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Abstract 

 

In this thesis we were interested in combining functional connectivity (from functional Magnetic 

Resonance Imaging) and structural connectivity (from Diffusion Tensor Imaging) with a data 

fusion approach. While data fusion approaches provide an abundance of information they are 

underutilized due to their complexity. To solve this problem, we integrated the ease of a 

neuroimaging toolbox, known as the Functional And Tractographic Analysis Toolbox 

(FATCAT) with a data fusion approach known as the anatomically weighted functional 

connectivity (awFC) approach - to produce a practical and more efficient pipeline. We studied 

the connectivity within resting-state networks of different populations using this novel pipeline. 

We performed separate analyses with traditional structural and functional connectivity for 

comparison with the awFC findings - across all three projects. In the first study we evaluated the 

awFC of participants with major depressive disorder compared to controls. We observed 

significant connectivity differences in the default mode network (DMN) and the ventral attention 

network (VAN). In the second study we studied the awFC of MDD remitters compared to non-

remitters at baseline and week-8 (post antidepressant), and evaluated awFC in remitters 

longitudinally from baseline to to week-8. We found significant group differences in the DMN, 

VAN, and frontoparietal network (FPN) for remitters and non-remitters at week-8. We also 

found significant awFC longitudinally from baseline to week-8 in the dorsal attention network 

(DAN) and FPN. We also tested the associations between connectivity strength and cognition. In 

the third study we studied the awFC in children exposed to pre- and postnatal adversity 

compared to controls. We observed significant differences in the DMN, FPN, VAN, DAN, and 

limbic network (LIM). We also assessed the association between connectivity strength in middle 
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childhood and motor and behavioral scores at age 3.  Therefore, the FATCAT-awFC pipeline, 

we designed was capable of identifying group differences in RSN in a practical and more 

efficient manner.  
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Preface 

 

This thesis includes previously published research, research that is under review or in preparation 

for submission for publication in peer-reviewed scientific journals. Chapter 2 consists of a 

manuscript that is published in Human Brain Mapping.  The primary author of this publication is 

the same as the author of this thesis. Chapter 3 contains a manuscript that has been submitted to -

Elsevier Neuroscience. The paper presented in chapter 4 is in preparation for submission to 

Elsevier Neuroscience.  
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Chapter 1: Introduction 

1.1 Resting-State Functional Magnetic Resonance Imaging (fMRI)  

Resting-state fMRI is a functional neuroimaging technique which allows researchers to record 

participants’ brain activity while they lie down in an MRI scanner without performing any 

cognitive, language or motor tasks (‘at rest’). Resting-state fMRI measures spontaneous low-

frequency fluctuations of blood oxygen level dependant (BOLD) signal (0.01 Hz – 0.1Hz) to 

study the functional architecture of the brain (Lee et al., 2013). RS-fMRI was first demonstrated 

in (Biswal et al., 1995).  RS-fMRI identifies the underlying brain architecture, which makes it 

particularly suitable for studying the connectivity between brain regions. Brain regions that show 

similarity in their temporal BOLD signal at rest are referred to as a resting-state networks 

(Bijsterbosch et al., 2017).   

At the macroscopic level, the resting-state fMRI is measured from BOLD signal.  However, 

BOLD contrast is an indirect way to measure the neuronal activity (Shmuel & Leopold, 2008).  

Microscopically a local field potential (representing action potentials of many neurons), of 

synaptic activity is measured at the recording site (Logothetis, 2008). These brain regions are 

considered to be ‘active regions’ while at rest. However, neurons don’t have internal reserves of 

energy.  Therefore, they rely on a process known as hemodynamic response which involves the 

supply of cerebral blood flow and an increase in oxygen supply (more than required) from 

adjacent capillaries for the delivery of glucose (Handwerker & Bandettini, 2011; Sirotin & Das, 

2009).  This change of the relative levels of oxyhemoglobin and deoxyhemoglobin is detectable 

by MRI due to the nature of their differing magnetic susceptibilities.  Echo planar imaging (EPI) 

is sensitive to the BOLD signal indicating neuronal activity and has a fast imaging speed capable 

of capturing MR images within 20-100 ms (Poustchi-Amin et al., 2001), making it suitable for 
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fMRI studies (Bandettini et al., 1992; Kwong et al., 1992).  This fast acquisition time, allows it 

to capture rapidly changing physiological processes (Poustchi-Amin et al., 2001).  Oxygenated 

hemoglobin is diamagnetic, whereas de-oxygenated hemoglobin is paramagnetic (Stippich, 

2015).  This alters the magnetic field within and around the blood vessels in the capillary bed and 

venules (Stippich, 2015).  When the amount of oxygenated hemoglobin in the blood is more than 

the deoxygenated hemoglobin, which results in a homogenous local magnetic field.  This 

homogenous local magnetic field results in a slower dephasing of the excited protons, which in 

turn leads to a stronger MRI signal in the activated state (Kwong et al., 1992; Stippich, 2015).   

 

1.2 Diffusion Tensor Imaging  

 

Diffusion imaging utilizes the variability of ‘Brownian Motion’ of the water molecules in brain 

tissue.  Brownian motion describes the random movement of water that is dependent on 

temperature and the kinetic energy of the molecules. There are only a few locations in humans 

which free diffusion occurs such as the cerebrospinal fluid.  Random diffusion is often referred 

to as ‘isotropic diffusion’.  However, water molecules in brain tissue are not truly random 

because there is structure to tissue. Axons, cell membranes and vascular structures, may restrict 

or hinder the diffusion of water molecules (Mannelli et al., 2015.; Parker, 2004; Patterson et al., 

2008). Directionality dependent diffusion is also called ‘anisotropic’ diffusion. Water diffusion 

in the brain is referred to as ‘apparent diffusion’. 

 

Diffusion-weighted imaging (DWI) is an MRI technique that allows the measurement of random 

Brownian motion of water molecules within a voxel of brain tissue. Diffusion weighted imaging 
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is commonly acquired using a spin-echo echo planar sequence (SE-EPI) with diffusion 

sensitizing gradients.  The movement of water molecules along the diffusion gradient results in a 

reduced DWI signal intensity (Patterson et al., 2008; Qayyum, 2009).  B-value represents the 

strength of diffusion sensitizing gradients.  Four sets of images are produced from DWI, one b = 

0 s/mm2 map (a T2- weighted image with no sensitizing gradients- to detect presence of water 

molecules), a b value at approximately 1000 in the x, y, and z directions (these can be combined 

later arithmetically), whereby T2 signal is attenuated according to how fast water molecules 

diffuse in a specific direction. These structural images allow researchers to study the underlying 

integrity and direction of white matter tracts (Beaulieu et al., 1999).  Two sets of images b = 

1000 s/mm2 and b = 0 s/mm2 are used in post-processing to calculate an image that reflects 

diffusion, known as the Apparent Diffusion Coefficient (ADC) (mm2 /s) also known as the ADC 

map. The diffusion tensor, also referred to as the ‘apparent diffusion tensor’, is applied to the 

ADC map to represent/model the values of the ADC in function of gradient direction, in each 

voxel (Hecke et al., 2016; Özarslan & Mareci, 2003).  From the tensor, a number of parameters 

may be obtained (calculated) including eigenvalues and eigenvectors.  Tractography is then 

applied to reconstruct white matter pathways from the principal eigenvector of the tract (Hecke 

et al., 2016). An assumption is made in diffusion tractography that the principal direction is 

parallel to the direction of the fibers in each voxel (Papanicolaou, 2017). Structural connectivity 

measures the white matter fiber bundle count that form pathways between brain regions of the 

brain networks (Frau-Pascual et al., 2018).  
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1.3 Brain connectivity analysis using brain imaging  

 

With the advancements of magnetic resonance imaging, scientists are able to evaluate 

connectivity non-invasively, with functional magnetic resonance imaging (fMRI) and diffusion 

tensor imaging (DTI). FMRI and DTI are two commonly used imaging modalities in brain 

imaging (Glover, 2011; Nucifora et al., 2007).  There is merit in combining fMRI and DTI data 

to evaluate the connectivity that is established between brain regions (Bihan et al., 2001; 

Skudlarski et al., 2008).   Both fMRI and DTI have historically been capable of detecting subtle 

abnormalities in connectivity linking brain regions (Chu, Lenglet, et al., 2018; Liu et al., 2020). 

Other studies have also shown that dually analyzing structural and functional connectivity in 

neuropsychiatric disorders has demonstrated to be useful, as both play a key role in detecting 

abnormalities (F. Wu et al., 2020). Functional connections (temporal correlations) are mediated 

through white matter fibers (structural connections); therefore the combination of functional and 

structural connectivity may give researchers some insight that better represents the connectivity 

within RSNs.   

 

While fMRI and DTI are both powerful MRI techniques, they each have particular weaknesses. 

DTI is able to compute the number of fiber tracts running between different pairs of ROIs using 

tractography.  However, tractography is prone to error, with false positives, due to limitations of 

spatial resolution, noise and indirect connectivity (Jbabdi & Johansen-Berg, 2011).  These DTI 

limitations can be reduced with the technological advances that resting-state fMRI has to offer.  

Resting-state fMRI can readily and robustly identify distant brain regions that are functionally 

connected (via low frequency temporal correlations) (Smith et al., 2013).  For instance, 
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distributed brain regions are difficult to accurately detect and interpret using DTI alone, the 

greater the distance in tractography the more prone to error in detecting the right pathway and the 

fewer the tracts that terminate at the target brain region (Zalesky, 2008; Zalesky & Fornito, 

2009). However, the identification of physically distant temporally synchronous regions can be 

achieved with rsfMRI. On the other hand, while rsfMRI is able to robustly detect connectivity 

between distant brain regions, resting-state fMRI doesn't provide information on the structural 

basis for which the FC networks exist. While tractography has its limitations (i.e. susceptible to 

missing long range tracts, complex fiber orientation), it provides valuable information on the 

white matter connectivity strength.  It is presumed that white matter tracts serve as the basis for 

the functional interactions, thus shaping the rsFC correlations between brain regions (Ghosh et 

al., 2008; Honey et al., 2007). While it is presumed that functional connectivity is constrained by 

structural connectivity (Park et al., 2017),  the exact relationship may be complicated.  There are 

studies that reported a negative fMRI-DTI relationship (Putnam et al., 2008), some have found a 

positive relationship between fMRI-DTI (Forstmann et al., 2008; Kim & Whalen, 2009), and 

others have found both negative and positive fMRI-DTI relationships within the same study 

(Baird et al., 2005).   Instead of analyzing each connectivity measure separately and correlating 

them with one another, quantitatively combining structural and functional data, may perhaps 

better distinguish patients versus controls (Calhoun & Sui, 2016).  The concatenation of these 

measures may provide a more complete view of the neural networks of brain connectivity and 

enrich our understanding of brain networks (Greicius et al., 2009)..  The complementary nature 

of each modality makes it easier to combine both metrics to produce a unique measure that 

combines both FC and SC.  Instead of assuming structural connectivity from functional 
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connectivity, studies are beginning to combine metrics to assess structural/functional relationship 

in a single connectivity measure. 

 

1.4 Methodology development  

 

There’s increasing demand for combining functional (from fMRI) and structural (from DTI) 

data, specifically in an “advanced and deeply fused structure-function” approach (Zhu et al., 

2014). An enhanced fusion approach can provide a more complete understanding of underlying 

structural-functional connectivity (Zhu et al., 2014).  However, neuroimaging data fusion is not 

applied in literature very often due to the complex nature of combining these two datasets.  

Therefore the use of a toolbox to assist in the joint analysis of these data types would benefit the 

neuroimaging community.    The unique contribution of this research was to integrate the two 

models, FATCAT and awFC, in a flexible and comprehensive framework to acquire the best 

properties of each.   We integrate the two models in a user-friendly approach, by taking the 

output of FATCAT, the functional connectivity (Pearson r) and structural connectivity (number 

of tracts), as inputs for the awFC model (combines functional and structural connectivity). We 

predicted that the FATCAT-awFC model would identify MDD and development -related 

changes in connectivity in keeping with those previously documented in the RS-fMRI and DTI 

literature.  
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1.5 Imaging Background  

 

Recent development in brain connectivity studies, have examined the relationship between 

structural and functional connectivity and found some level of correspondence between 

connectivity metrics (Hagmann et al., 2008; Honey et al., 2009; Koch et al., 2002).  There is a 

growing body of research that combines the structural and functional connectivity in a joint 

analysis using different methods. According to Calhoun and Adali, data fusion is defined as the 

process that applies multiple image types simultaneously to utilize the cross-information 

(Calhoun & Adalı, 2009).  Data fusion can be categorized into two types: symmetric and 

asymmetric. Asymmetric data fusion is using one imaging modality to constrain a dataset 

derived from another imaging modality in order to analyze it (Huster et al., 2012), whereas 

symmetric data fusion simultaneously analyzes datasets originating from different sources 

(Valdes-Sosa et al., 2009).  The most popular form of data fusion approach for the neuroimaging 

field, among asymmetrical and symmetrical data fusion, is symmetric data fusion (Tulay et al., 

2019).   Among the symmetrical data fusion approaches, datasets can be combined in one of two 

ways: early integration or late integration (Turk, 2014). Early data integration involves the 

immediate fusion of data after low-level processing, whereas late data integration involves the 

data fusion of two different datasets after full unimodal processing is completed  (Turk, 2014). 

The advantage to performing a late integration, is that software development is simpler (Turk, 

2014). Given the advantages of multimodal data fusion, the problem of combining multiple 

datasets from multiple modalities is key to future work.  
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New metrics have been derived such as anatomically-weighted functional connectivity (Bowman 

et al., 2012) or track-weighted functional connectivity (Calamante et al., 2013) to combine 

structural and functional information.  Bowman et al (2012) applied a structural connectivity 

measure in the functional connectivity maps, producing an improved functional connectivity 

map. This was demonstrated in a simulation study that found awFC to produce comparable, and 

at times superior accuracy compared to the standard approach.  Calamante et al (2013), on the 

other hand, suggested that propagating the functional connectivity information along white 

matter pathway connecting functionally correlated brain regions, produces a unique quantitative 

white matter connections image that contains functional information. Some studies combine 

structural-functional information to enhance estimation of functional connectivity by 

incorporating structural connectivity (Bowman et al., 2012; Xue et al., 2015), while other 

research aims to enhance estimation of structural connectivity by incorporating functional 

connectivity (Calamante et al., 2013).   The benefit of combining structural and functional data 

with a multimodal fusion approach, is its capacity to reveal hidden patterns that may only be 

discovered within a combined structural-functional dataset (Calhoun & Sui, 2016).  As 

demonstrated in Calhoun and Sui, 2016, there is an increasing interest in multimodal data fusion 

- 2-way multimodal fusion included.  Despite the countless benefits associated with multimodal 

neuroimaging (Tulay et al., 2019), data fusion still remains underutilized in research studies and 

not yet a universally accepted approach to studying brain networks (Calhoun & Sui, 2016).  A 

possible explanation for this may be due to the complex nature of fusing multimodal data.  

 

Recent advances in data fusion for neuroimaging that rely on joint blind source separation have 

become particularly popular (Chen et al., 2016).  Joint blind source separation allows the 
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combination of data from different imaging modalities by assessing statistical dependencies 

among datasets (Adali et al., 2014).  To date, there are many biomedical research studies that 

have utilized JBSS methods (Anderson et al., 2012; Correa et al., 2010; X.-L. Li et al., 2011; Y.-

O. Li et al., 2009).  New brain imaging techniques that use a blind source separation approach 

have provided researchers with new opportunities to assess the brain, from different perspectives. 

A blind source separation technique to combine fMRI and DTI was proposed by Sui et al (2011), 

which is a two-step method that relies on higher order statistics to combine a multi-set canonical 

correlation analysis (mCCA) with a joint independent component analysis (jICA), known as 

‘mCCA+jICA’ (Sui et al., 2011).  This framework performs a correlation analysis using mCCA 

to compare multiple datasets, and identifies the associated components; jICA is then applied on 

the horizontally concatenated components to extract joint independent components (Sui et al., 

2011). The joint independent component analysis, allowed the fMRI (contrast map derived from 

GLM) and DTI (fractional anisotropy) scans to be combined within a single analysis.  The 

extracted components represent areas where associations between both modalities exist.  While 

there is benefit to using this approach, it is mathematically dense and a complex approach. 

 

A number of studies have utilized a Bayesian model for the joint analysis of functional and 

structural data (Bielza & Larrañaga, 2014). For instance, Xue et al (2015) and Kang et al (2017) 

applied a Bayesian method, which used the probabilistic tractography (from DTI) as priors, to 

construct and analyze functional connectivity (from rs-fMRI). However, Bayesian statistical 

methods, such as the hierarchical Bayesian approach used in joint FC-SC analysis (Kang et al., 

2017; Xue et al., 2015), are computationally expensive (S. Wu et al., 2016).  The high 
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computational cost that comes with Bayesian models may discourage users from utilizing it 

(Kitanidis, 2005).  

 

Another approach that aims to combine functional and structural data is known as the activated 

fibers method.  The activated fibers method measures dynamic functional connectivity via the 

functional synchronization of two end voxels that are structurally connected (white matter tract 

connecting two brain regions).  A GLM is then applied to the dynamic functional connectivity 

time series of fibers, which generates activation maps of fibers (Lv et al., 2011). This method is 

said to produce network-level responses compared to conventional voxel based activation, which 

reflects local voxel-level response to stimuli (Lv et al., 2011). The activated fibers method is said 

to detect more activated brain regions compared to the raw fMRI BOLD signal. Other studies 

employing this method have also demonstrated this relationship (Lim et al., 2011; Lindenberger 

et al., 2009).   

 

Alternatively, a multilayer network framework (Kivelä et al., 2014) has been proposed for the 

joint structural-functional connectivity analysis of human neuroimaging.  Mathematical advances 

have allowed for a multilayer motif analysis to study multiplex (multilayer) networks. Motifs are 

subgraphs of networks, usually made up of three to four nodes (Milo, 2002).  These multiplex 

(multilayer) networks can be represented with two layers: one layer constituting structural 

connectivity, and the other functional connectivity.  This allows one to analyze the interaction 

between the layers. Battison et al. (2017), reported that the joint structural-functional multiplex 

network differed from monoplex networks.  Studies that have utilized this technique include 

Battiston et al (2017) and De Domenico (2017) (Battiston et al., 2017; De Domenico, 2017).  
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While it seems to be an appealing approach, multilayer network framework has many 

parameters, whereby each node is highly interconnected with other nodes in a dense web 

(Hammoud & Kramer, 2020). Higher dimensions (multilayers) can result in redundancy (De 

Domenico et al., 2014) and inefficiency.  While convergence (back propagation) has been 

proposed in multilayer studies, it is extremely slow and time-consuming process (Elliott, 2001; 

Haykin, 2000; Zhang & Lei, 2011).  The mapping of the neural network is dependent on the 

correct training of the system, training method and the sample size which must be large to 

achieve accuracy (Zhang & Lei, 2011).     

 

To date, new data fusion approaches have emerged due to the interest of jointly analyzing 

functional and structural data, which may provide different but complementary aspects of brain 

connectivity. Joint analysis models can have clinical relevance across many neuropsychiatric 

disorders and also among healthy individuals to understand normal/typical brain patterns and 

connections. The added value of DTI-tractography information to functional connectivity and 

vice versa, has been demonstrated to be useful. It allows researchers to discover potentially new 

and unique information about the data (Staempfli et al., 2008; Vassal et al., 2016) and capitalize 

on the strengths of each modality (Sui et al., 2013). 

 

 

1.6 FATCAT-awFC Pipeline design, novelty and limitations 

 

1.6.1 Popular Neuroimaging Software Packages 
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In its early days, fMRI analysis software packages were programmed in-lab and not widely 

distributed (Poldrack et al., 2011). This made consistency between packages difficult to compare. 

As fMRI became more popular, the software packages became distributed as analysis suites to 

perform different aspects of fMRI analysis. Today, the most commonly used fMRI analysis 

packages are: Analysis of Functional NeuroImages (AFNI), FMRIB Software Library (FSL), and 

Statistical and Parametric Mapping (SPM).  SPM was one of the earliest, most popular and 

openly distributed software for fMRI analysis (Poldrack et al., 2011).   It is built in MATLAB, 

and is considered ‘readable’ in that one can understand the code from reading it (Poldrack et al., 

2011). It is useful for processing data, reading and writing data files and has several extensions 

that are open source and freely downloadable (Poldrack et al., 2011).  However, SPM’s 

visualization tools are limited (Poldrack et al., 2011).  Another platform, FSL,  is popular 

because it offers cutting-edge techniques such as: 1) novel modeling, estimation and inference 

techniques (i.e. FEAT) 2) performs robust ICA analysis 3) utilizes sophisticated tools for DTI 

analysis 4) has powerful visualization tool: FSLeyes, that allows the easy and simple overlay of a 

number of atlases and functional/structural images (Poldrack et al., 2011).  Lastly, AFNI was 

developed in the early days of fMRI and is popular among researchers for fMRI analysis. One of 

the main advantages of AFNI is its flexibility and its ability to be highly customizable (Poldrack 

et al., 2011). A disadvantage to the implementation of AFNI is the steep learning curve and the 

need to understand each command in a processing pipeline.  

 

1.6.2 Software and Programming Utilized in the Development of our FATCAT-awFC 

Pipeline 
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In this thesis, a FATCAT-awFC pipeline was designed.  This included a number of 

neuroimaging software, and programming languages to perform these tasks.  While my pipeline 

design allows the traditional data fusion approach to be simpler and more intuitive, it requires the 

user to have proficient knowledge of programming and mathematical understanding. In order to 

run any of these commands, the researcher must be able to enter commands and navigate files 

using terminal. It must be understood that this is not a simple point-and-click GUI application.  

This thesis work reflects a proficient experience of Python, R programming and command line 

knowledge. The Mac terminal command line was used to run the AFNI commands in batch 

processing. Beyond FATCAT, Python was used to perform mathematical operations.  This thesis 

also reflects a proficient understanding of matrices, and mathematical concepts.  

 

A limitation of this pipeline was that ROIs suitable for the DTI data are not automatically 

generated from the command 3dROIMaker.  An added benefit would be to transform ROIs into 

diffusion-weighted space. Another limitation of this approach was the lack of optimal ROI 

selection in the 3dROIMaker step; which was a more arbitrary selection process. Another 

limitation to this pipeline was the 3dTrackID step. This command acted as a bottleneck to our 

study, as it slowed processing speed.  It took a long time to process the tractography for each 

individual subject.  In order to work around this limitation, we used SHARCNET, which allowed 

us to perform 3dTrackID at a much faster rate and more reasonable time frame.  SHARCNET is 

a consortium of 16 universities, colleges and research institutes, which utilizes parallel clusters 

for high performance tasks.  
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Fig.1| FATCAT-awFC pipeline. (a) FATCAT pipeline. The Functional and Tractographic 

Connectivity Analysis Toolbox (FATCAT) pipeline. Functional connectivity (from fMRI) 
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and tract count  (from DTI) were output from FATCAT. (b) awFC pipeline demonstrating 

that the output of Functional and Tractographic Connectivity Analysis Toolbox (FATACT) 

was used as input for the awFC pipeline. 

Note: fMRI = functional magnetic resonance imaging, DWI = diffusion weighted imaging, ICA 

= independent component analysis, ROIs = regions of interest, SC = structural connectivity, FC 

= functional connectivity, awFd = anatomically weighted functional dissimilarity, awFC = 

anatomically weighted functional connectivity.  

 

 

Aside from the fMRI/DTI software packages applied and the programming languages involved 

in our pipeline, there is novelty to our pipeline. There are differences in the conventional awFC 

technique and the FATCAT suggested pipeline that produced a novel FATCAT-awFC pipeline. 

To get a deeper understanding of the design of the FATCAT-awFC pipeline shown above, we 

provide a more detailed explanation of the differences and added value of our approach has 

compared to the conventional awFC technique and FATCAT pipeline.  

 

1.7 Changes made to the Conventional awFC technique proposed by Bowman et al 

(2012) in our novel FATCAT-awFC pipeline 

 

1.7.1 Different approaches for Network Analysis 
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To understand the changes made in our pipeline, one must first understand different types of 

network analysis that exist, in order to fully understand the reasoning for making this change.  

Thus, we will discuss seed-based correlation, ICA and clustering.  

 

Conventionally, functional connectivity studies are analyzed using seed-based analysis (Khosla 

et al., 2018).  The time series of the seed is correlated with the time series from each and every 

voxel from the brain (Khosla et al., 2018).  Although this is a powerful technique, seed-based 

correlation requires the selection of a seed region a-priori and the outcome is dependent on the 

way in which seeds are defined (hypothesis driven) (Khosla et al., 2018). It can only extract one 

functional system at a time, which may result in missing some interesting correlations that are 

not associated with the chosen seed region (Khosla et al., 2018).  Another popular approach for 

analyzing functional connectivity is through data-driven techniques such as ICA and clustering 

(Khosla et al., 2018).  These methods allows the study of the whole brain RSNs (Khosla et al., 

2018).  Clustering can be divided into two main types: flat (i.e. k-means) or hierarchical.  

 

Hierarchical clustering iteratively merges the least dissimilar clusters according to a 

predefined distance metric, until the entire data is labeled as one large cluster whereby a 

threshold distance is set to obtain clusters (Khosla et al., 2018).  While hierarchical clustering has 

been demonstrated to be a powerful technique, it has inherent disadvantages (Bansal et al., 2012; 

Khosla et al., 2018).   Errors in clustering at an early stage in the hierarchical clustering process 

cannot be changed or modified later in the process (Khosla et al., 2018). Furthermore, 

hierarchical clustering is sensitive to noise and outliers (Khosla et al., 2018). Hierarchical 

clustering is computationally taxing and time consuming.  Given N voxels to be clustered, 
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hierarchical clustering requires N2 CPU memory space for storing the dissimilarity matrices and 

requires a long timeframe of N3 CPU time (Embrechts et al., 2013).  Therefore hierarchical 

clustering does not perform well with large datasets (Khosla et al., 2018). For this reason, 

hierarchical clustering approaches often use a small cohort, i.e., the awFC approach proposed by 

Bowman et al, used a small cohort of 6 healthy females for rsfMRI and DTI data (Bowman et al., 

2012). To account for the computationally demanding nature of hierarchical clustering, 

oftentimes dimension reduction strategies are applied as well, i.e. using an anatomical template 

(results in parcellation bias) or limiting number of slices (poor spatial resolution) (Khosla et al., 

2018).  

 

1.7.2 Conventional awFC technique proposed by Bowman et al (2012)  

 

1.7.3 Network Selection 

 

Hierarchical clustering requires a lengthy and complicated process to obtain resting-state 

networks.  The Bowman method uses hierarchical clustering approach to group clusters into 

networks. A data reduction approach is applied in the Bowman et al (2012) approach by using an 

anatomical atlas (AAL) and analyzing 20 fMRI slices (Bowman et al., 2012). Within each AAL 

region, the time domain signals are transformed to the frequency domain using fast Fourier 

transform.  Then the singular value decomposition (SVD) is applied to each region to identify the 

most dominant frequency pattern (Bowman et al., 2012). The voxel that has frequency patterns 

that most resembles the regional summary is identified, and the 150 most proximal voxels (that 

fall within the AAL region) are taken to be part of that cluster (Bowman et al., 2012). Once the 
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clusters are identified, a check is done to confirm that the primary singular vector correctly 

characterize the cluster.  Therefore, the primary singular vector output from the SVD is 

compared to the mean signal of the sub-region (Bowman et al., 2012). If the primary singular 

vector is not representative of the data the second singular vector is used, and the steps are 

repeated (Bowman et al., 2012). Once the clusters that fall within the AAL regions are identified, 

based on the dominant voxel, hierarchical clustering can be applied.  A hierarchical cluster is 

generated in order to group the least dissimilar clusters together until the whole data is one large 

cluster. A threshold can now be set to group clusters into different networks, this threshold is 

chosen arbitrarily, and can be differently grouped across subjects (Khosla et al., 2018). This 

hierarchical clustering process is repeated for each subject separately, it is done on an individual 

basis.  As hierarchical clustering is performed for each subject separately, grouping of clusters 

into networks may not be consistent across all subjects (Bowman et al., 2012).  To achieve 

consistent networks of clusters across subjects, for performing a group analysis, networks are 

compared across subjects to inspect the grouping of clusters (Bowman et al., 2012). If the 

clusters are consistent across networks for each subject, they are included in the group network 

being analyzed (Bowman et al., 2012). The hierarchical clustering process for large groups is a 

tedious one, with several complex calculations and manual steps involved to adjust the data. 

These considerations detract from use of hierarchical clustering and the make ICA an appealing 

alternative.  

 

ICA relies on simple linear algebra calculations and identifies maximally statistically 

independent sources from observed data.  Multi-subject studies, most widely use Group 

Independent Component Analysis (GICA) for the decomposition of fMRI data and extracting 
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brain networks. When group ICA is performed for multi-subject analysis a PCA approach is 

applied to perform group and subject level reductions in the data (Erhardt et al., 2011). GICA 

assesses the entire brain to determine temporally correlated regions, and is not limited to 

assessing only ROIs selected a-priori (Faro et al., 2011). ICA has several advantages, including 

being naturally robust to noise and having the ability to capture noise sources as separate 

components (removal of structured noise) (Faro et al., 2011). Unlike hierarchical clustering, the 

ICA approach is optimized and feasible for both the number of operations performed and the 

computer memory required (Varoquaux et al., 2010). The ICA approach is fast and feasible on 

average hardware (Varoquaux et al., 2010).  The components extracted by ICA for neuroimaging 

studies are distinct, and consistent with known RSN’s previously reported in literature 

(Varoquaux et al., 2010).  The common spatial maps generated by GICA makes it easier for 

researchers to draw inferences about group data.  

 

The FATCAT approach adopts an ICA approach for identifying networks and filtering out noise.  

Group ICA, is the most popular method for analyzing large datasets, and concatenated along the 

temporal dimension (Joel et al., 2011). This approach adopts consistent spatial maps across 

subjects but does not enforce restrictions on the temporal map for each subject (Joel et al., 2011).  

In thesis chapters 2 and 3, both HC and MDD groups were concurrently input into the ICA step, 

to decompose the 4D fMRI time series into independent component maps.  This approach 

reduces the likelihood of bias that would result from the selection of HC solely, and results in a 

consistent number of ROIs between both groups; making them comparable (Bijsterbosch et al., 

2017).  A benefit to including both groups as input for GICA is that it will return spatial 

components (and structured noise) that are well representative of the entire dataset (Bijsterbosch 
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et al., 2017). As such, it will be highly sensitive to detecting differences between groups since it 

accurately represents the dataset (Bijsterbosch et al., 2017). However, a disadvantage to this 

approach is that the group ICA may split components in a way  that is discordant with the ??? 

described in the literature (Bijsterbosch et al., 2017).  Therefore, it is important to include a 

template matching process to ease the identification of best matching IC’s to standard networks. 

Typically, a pre-specified number of 20 components are defined.  It has been shown in pervious 

studies that selecting the number of components to be 20-30 results in 8-10 functionally relevant 

networks (Joel et al., 2011). However, it does not identify which components are signal and 

which are noise. An advantage of GICA is its ability to isolate noise sources from signal sources 

of interest (Khosla et al., 2018). A drawback of ICA is its inability to distinguish source signals 

and nuisance signals (Joel et al., 2011). Identifying and choosing significant components, 

requires manual intervention and is subjective and time consuming (De Blasi et al., 2018; Khosla 

et al., 2018). However, with our FATCAT-awFC ‘3dMatch’ command, we are capable of 

identifying the source signals from noise quickly and efficiently, by matching them to a standard 

RSN template (Yeo et al., 2011). According to Grecius et al (2007), a spatial template matching 

procedure is often performed after ICA to select the “best fit”, and discards the remaining 

components (due to noise, other networks not of interest, etc.) (Greicius et al., 2007).  To match 

with the ICA components, a standard template was used known as the Yeo network (Yeo et al., 

2011) to extract 5 known resting-state networks.  This matching approach does not modify the 

networks; instead it simply calculates and identifies the component that best matches the 

standard template (Greicius et al., 2007).  This makes for a fast and easy identification of RSN’s 

that are comparable to standard RSN’s (since RSN’s are robust and reproducible). Any 

structured noise will not match the standard template and therefore will not be included in the 
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study (Greicius et al., 2007). The selected templates that match the standard network will be 

consistent with the literature definition of that RSN, and therefore will be easily compared to past 

studies (Greicius et al., 2007).   Using a standard template alone without GICA is possible but 

may not accurately represent our dataset, therefore it is best to use GICA with template matching 

to make the most of our data-driven results (Bijsterbosch et al., 2017). The network-based 

approach is important because these are known networks that are capable of detecting 

neuropsychiatric disorders.  For instance, the default mode network (DMN) has been reported to 

have a high degree of heritability, and is a commonly used to distinguish MDD from HC 

(alterations in connectivity) (Allen et al., 2011). Next, 3dROIMaker is used to parcellate the FC 

maps by thresholding and spatial clustering. Thresholding can also suppress clusters that were 

formed by chance. This is performed using software to make this process easier. Group ICA uses 

a common spatial template that allows direct comparisons of networks across subjects, which 

eliminates the challenges found in cluster analysis(Du et al., 2016).  

 

By design, the FATCAT-awFC approach uses a set of software tools to perform a fast 

and efficient pipeline for extracting data-driven RSN’s. It eliminates the process of having to 

perform several complicated steps that place large demands on computer  memory and CPU 

space, that are associated with the hierarchical clustering approach (awFC approach alone).  

 

1.7.4 Changes made to the Conventional awFC technique proposed by Bowman et al 

(2012) in our novel FATCAT-awFC pipeline 

 



.   37 

1.7.5 Node selection: aROI versus fROI 

Another difference to our combined FATCAT-awFC approach is that unlike the awFC approach, 

the FATCAT-awFC uses functionally defined ROIs to identify network nodes.   The awFC 

approach, on the other hand, used structurally defined regions from the AAL atlas to identify 

anatomical nodes.  There are two schools of thought when it comes to identifying nodes in 

functional connectivity, either based on anatomical or functional ROIs (Nord et al., 2017).  

Indeed, it can be argued that functional ROI’s are more ideal when studying functional 

connectivity. Since the awFC approach is a modified and enhanced version of the traditional 

functional connectivity analysis (by weighting structural connectivity) it would only make sense 

to identify regions based on functional landmarks instead of anatomical landmarks.  

 

Unlike anatomical brain atlases, which are used to define ROIs a-priori in the awFC presented by 

Bowman et. al, data-driven approaches such as ICA, do not reflect a pre-defined parcellation of 

brain structures(Thirion et al., 2014).  Data-driven functional ROIs are regarded as better at 

representing the brain parcellation for functional brain activation patterns(Thirion et al., 2014).  

 

The Bowman et al method relies on anatomically defined ROIs. The problem with the 

anatomical ROIs is that voxels from functional data are forcibly clustered into separate 

anatomically defined ROIs , which impose spatial constraints on the functional activity 

(DonGiovanni & Vaina, 2016). Anatomical ROIs are derived from high spatial resolutions, 

which may not apply to functional data. Therefore, ROIs should be functionally homogeneous, 

so that all voxels in a cluster have similar time course, which is not guaranteed in anatomical 

ROIs. Data-driven functional ROIs are regarded as better at representing the brain parcellation 
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for functional brain activation patterns (Thirion et al., 2014). According to Saxe et al, functional 

ROIs identify “stable, coherent and interesting regional response profiles”(Saxe et al., 2006).  

Functional ROIs have an advantage in multi-subject studies because they have been found to be 

consistent across subjects and studies.(Saxe et al., 2006).  Functional ROIs are more biologically 

grounded, i.e. most cortical regions have functional correspondence in both 

hemispheres(Bijsterbosch et al., 2017).  A disadvantage of the awFC method proposed by 

Bowman et. al was that they used an AAL atlas to define ROIs.  However, it is important to note 

that there is a key tradeoff when choosing anatomical ROIs versus functional ROIs.  Functional 

ROIs suffer from a lack of spatial contiguity, whereas anatomical ROIs suffer from a lack of 

functional homogeneity(Craddock et al., 2012).  

In our FATCAT-awFC approach, the derived functional regions are named to identify the 

region.  While many research studies that use functional ROIs opt out of naming these ROIs, it 

can be of value to name functional regions, in order to draw inferences about these regions (Saxe 

et al., 2006). Functional ROIs are useful for specifying brain locations across subjects, for testing 

hypotheses concerning the function of specific brain regions.  

 

1.7.6 Changes made to the Conventional awFC technique proposed by Bowman et al 

(2012) in our novel FATCAT-awFC pipeline 

 

1.7.7 Hard parcellation versus soft parcellation 

 

In addition, brain parcellations can be divided into hard and soft (Bijsterbosch et al., 2017). Non-

overlapping ROIs are known as hard parcellations, whereas a soft parcellation is one in which a 
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voxel can belong to two or more ROIs (Bijsterbosch et al., 2017).  Soft parcellations more 

accurately represent the underlying biology (Bijsterbosch et al., 2017).  This is due to the fact 

that single brain region may play a role in more than one function (Bijsterbosch et al., 2017).  

For instance, in the visual network, there is a group of voxels associated with distance of a 

fixation to a point but also associated with sensitivity to orientation of visual stimuli.  Therefore, 

to account for this complexity, a soft parcellation is often best.  FATCAT (ICA) offers a soft 

parcellation, whereas hierarchical clustering provides a hard parcellation (using the AAL atlas). 

As such, the FATCAT-awFC approach more accurately represents the data as compared with 

awFC alone.  

 

1.7.8 Additions to the Conventional FATCAT pipeline proposed by Taylor and Saad 

(2013) in our novel FATCAT-awFC pipeline  

 

FATCAT is a suite of software tools aimed at facilitating the combination of functional and 

structural data in a network.  However, the FATCAT method combines functional and structural 

data using an integrative approach.  While data integration works to enhance one imaging 

modality with another by constraining certain features (i.e. functionally defined regions to extract 

structural connections between them), it has its limitations (Sui et al., 2014). Data integration, 

does not maximally exploit the complimentary information obtained by each modality and does 

not allow for the direct interaction between both data types (Calhoun & Sui, 2016; Guo et al., 

2018) [see Introduction for more information].  To capitalize on the wealth of information we 

collect from one neuroimaging study, we aim to fuse the data through a data fusion approach.  

The neuroimaging data fusion approach is reported to contain maximal information. The 
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FATCAT pipeline was also modified to include the awFC for this reason. The FATCAT pipeline 

was also greatly enhanced by combining the functional and structural connectivity output by 

FATCAT into a single metric, the awFC.  In addition, distance bias and indirect connectivity 

were included which both greatly improve structural connectivity measurements [See figure 1b]. 

Therefore by combining a toolbox (for the easy integration of functional and structural data) with 

awFC (a technically and computationally taxing method for fusing functional and structural 

connectivity), we arrive at a re-designed, easy-to-use toolbox of data fusion connectivity for 

large-scale networks. Our research highlighted the wealth of information that can be collected 

and evaluated from a single neuroimaging study and the combined awFC measure from both 

functional and structural connectivity can be associated with MDD changes within subjects 

(Hayasaka & Laurienti, 2010).  

 

1.8 Applications of our FATCAT-awFC Pipeline to Different Populations 

 

Once the FATCAT-awFC pipeline was established, it was ready to be applied on the datasets of 

different populations.  

 

1.8.1 MDD, REM, and NREM  

 

Depression affects as many as one in five people in their lifetime and often runs a recurrent 

lifetime course (Rycroft-Malone et al., 2017).  According to World Health Organization (WHO), 

depression is the leading cause of disability worldwide, and affects 300 million people globally 

(WHO | Depression, 2021).  MDD has been well-documented to impact neural networks (Liu et 
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al., 2020). The most prevalent symptoms of MDD are anhedonia, irritability and depressed mood 

(Diagnostic And Statistical Manual Of Mental Disorders, 2015).  In addition, many cognitive 

deficits occur as a result of MDD (Gotlib & Joormann, 2010; McIntyre et al., 2013; Roca et al., 

2015).  

 

Antidepressants have been shown to reduce depressive symptoms substantially within weeks or 

months (Trivedi et al., 2006).  In some cases improvement in mood can be experienced as soon 

as one week following treatment (Ballenger, 2008; Smagula et al., 2015).  However, MDD 

antidepressants may be ineffective for more than one-third of the population of depressed 

patients (Trivedi et al., 2006). An example of this was that a STAR*D study assessed the effect 

citalopram antidepressant had on MDD participants, and found that only 28% of participants 

reached remission (with the Hamilton Depression Rating Scale) (Trivedi et al., 2006). 

 

1.8.2 Development & Adversity 

 

By age 6 the brain is almost developed to adult size (Giedd & Rapoport, 2010).  The brain in 

middle childhood continues to undergo development, with intensive synaptogenesis (including 

synaptic pruning) in gray matter, and white matter (axonal) maturation. The majority of white 

matter myelination occurs during the first two years of life (Yu et al., 2020).  Middle childhood 

is characterized with slow white matter maturation (Yu et al., 2020).  This includes changes in 

axonal packing, myelination, and synaptic density, which plays an important role in white matter 

maturation in children up to 8 years of age (Yu et al., 2020).  However, myelination nevertheless 

continues to undergo changes throughout the first two to three decades of life (Yakovlev & 
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Lecours, 1967).  The development changes of white matter is highly influenced by the 

environment and may be altered by learning or through activities (Fields, 2008; Zatorre et al., 

2012). A hierarchical maturation occurs in the developing brain from primary sensorimotor 

systems to higher order functional systems. For instance the commissural tract splenium are 

among the first tracts to develop (part of the primary sensorimotor system) (Yu et al., 2020).  

Likewise, synaptogenesis happens most intensely in the first two years of life, afterwards it slows 

(Gattaz et al., 2004). However, synaptogenesis and synaptic pruning occur at different stages in 

different brain regions.  For instance, the synapse elimination in the human brain may continue 

in the prefrontal cortex until the age of 12, whereas maximum synaptogenesis occurs at 15 

months in the middle frontal gyrus.  Functionally, the DMN at the ages 7-9 years old are sparsely 

functionally connected and becomes increasingly interconnected over development (Fair et al., 

2008).  This would be observed as an increased functional connectivity and the strengthening of 

networks.   

 

Pre- and/or postnatal adversity has been known to impact the developing fetus and predispose 

children to developing psychopathological, neurobiological and behavioral issues (Monk et al., 

2012).  One area of particular interest is the influence of pre- or postnatal adversity on 

neurodevelopment (Thomason et al., 2021).   Research in this area suggests that early adversity, 

typically leading to chronic stress, activates the stress response system (Shonkoff et al., 2012).  

The stress response system can hyper-activate the hypothalamic-pituitary-adrenal (HPA) axis 

(Boullier & Blair, 2018).  The HPA axis triggers a Glucocorticoid response, in order to prepare 

for fight or flight. This chronic activation of the HPA axis is neurotoxic and may result in long-

term effects negative effects and impact the immune system, endocrine system, and cause 
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dysregulated neural pathways (Boullier & Blair, 2018).  Prenatal stress exposure may affect the 

offspring long term, causing cognitive deficits, psychiatric and behavioral issues (Lupien et al., 

2009).  Aside from this, maternal-fetal HPA axis hyper-activationdue to prenatal stress, prenatal 

depression, prenatal anxiety is capable of impacting children’s long-term development and 

growth (Kinsella & Monk, 2009). Maternal anxiety and stress may also impact the offspring 

neurodevelopmental trajectories, which are reflected as atypical functional connectivity (De 

Asis-Cruz et al., 2020). However, regardless of the stress experienced some children form a 

coping mechanism, whereby they form a resilience to the adversity (Luthar & Cicchetti, 2000).  

These may appear in the form of higher tolerance to negative experiences, acceptance of change, 

tenacity, secure relationships and goal orientation (Connor & Davidson, 2003).  This may also be 

reflected in brain connectivity and brain maturation.  

 

1.9 Thesis Goals and Objectives  

 

1.9.1 Objective 

The global objective of this thesis was to propose a novel pipeline for combining fMRI and DTI 

data in a more intuitive manner, by integrating a toolbox with a sophisticated data fusion 

approach to allow us to detect atypical brain connectivity within RSNs. We propose using this 

intuitive multimodal analysis pipeline on brain imaging data of neuropsychiatric disorders such 

as MDD to utilize the complementary information embedded in different imaging modalities. 

This thesis develops a novel pipeline that combines a neuroimaging toolbox with a 

mathematically dense approach (for the data fusion of fMRI and DTI), to make the merging of 

neuroimaging data a simpler and more intuitive approach to apply on future work. 
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We hypothesized that we will be able to detect brain connectivity (either 

increases/decreases) within RSNs among different groups. In this thesis, we developed a 

FATCAT-awFC pipeline that utilizes two multivariate approaches (FATCAT and awFC) which 

shows promising application for the use in the neuroimaging community.  Combining fMRI and 

DTI is typically a complicated and time-consuming task.  Therefore, an engineering approach 

may help facilitate this process dramatically, by designing a user-friendly pipeline. A simpler 

and more straightforward approach to combining fMRI and DTI would encourage other 

researchers to combine these metrics.  The FATCAT-awFC pipeline produced in this work, will 

reduce processing time, as it will be more intuitive for users to combine and analyze structural 

and functional connectivity.  

 

1.9.2 Goal 

A primary goal was to be able to successfully detect awFC group differences in different 

populations using the FATCAT-awFC pipeline. A secondary goal was to compute traditional 

structural and functional connectivity to compare the awFC measures to traditional structural and 

functional connectivity measures. A tertiary goal of this thesis was to test the hypothesis that 

cognitive and psychomotor deficits may be associated with atypical brain connectivity.  

 

1.10 Specific Hypothesis/Aims 

 

1. Determine brain regions that are impacted due to MDD across multiple resting state 

networks using our designed FATCAT-awFC approach. The aim of this thesis was to 
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develop a fast, practical and intuitive approach for combining functional and structural 

connectivity for the analysis of neuropsychiatric disorders in adults and to assess atypical 

brain development, within resting-state networks.  Thus, we hypothesized that MDD 

patients will display reduced connectivity changes compared to healthy control 

participants.  

2. Investigate connectivity between brain regions in MDD non-remitters and MDD 

remitters and the cognitive dysfunction that is identified in MDD, using our novel 

FATCAT-awFC approach. The hypothesis is that brain connectivity for i) MDD REM 

and NREM at baseline ii) MDD REM and NREM at week-8 iii) REM at baseline and 

REM at week-8, are distinguishable from one another with reduced connectivity for the 

REM compared to NREM.     

3. The FATCAT-awFC was used to investigate the brain connectivity of children 

during middle childhood with pre and/or postnatal adversity, and studied the 

associations between brain connectivity, orientation behavior and motor control at 

age three. The hypothesis for this project is that the offspring (middle childhood aged) 

exposed to pre and/or postnatal adversity will have increased awFC between regions in 

RSNs compared to children without pre and/or postnatal adversity, which will be 

detectable with our novel FATCAT-awFC pipeline.  
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1.11 Contributions 

 

This study applies our newly developed multimodal fusion pipeline – FATCAT-awFC  - to 

different populations, to assess typical and atypical brain connectivity differences for different 

populations.  The main contributions are as follows:  

 

• In the first study:  

o We have proposed a new two-part pipeline that consists of a toolbox and a 

sophisticated data fusion approach, to combine structural and functional data. This 

allowed us to assess MDD and HC subjects.  

o The complementary nature of structural (obtained from DTI) and functional 

(obtained from fMRI), may provide users with a weighted measure that utilizes 

information from both modalities for a unique perspective  

o Since DTI data is routinely collected along with fMRI data, we propose that our 

FATCAT-awFC approach is able to be applied to other work in the future without 

the need to modify the data collection process for specific requirements  

o Our FATCAT-awFC method was able to identify distinguishable differences in 

RSN brain connectivity between MDD and HCs. 

o With this study we demonstrate that structural and functional connectivity may 

sometimes both be contributing to the awFC measure that compares two groups, 

and at times functional connectivity may be the one detecting the group 

differences whereas structural connectivity does not detect these differences. 
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o Therefore the fusion of these two metrics appears to be complimentary and may 

provide us a value that is better representative of the connectivity underlying 

neuropsychiatric disorders 

 

• In the second study:  

o We applied our previously developed (from the first publication) FATCAT-awFC 

pipeline to MDD REM and NREM groups to assess whether there were 

distinguishable connectivity differences for participants unable to reach remission 

compared to participants that reached remission, at baseline and week-8.  We also 

assessed whether there were detectable changes in connectivity for remitters at 

baseline within this study, compared to their brain connectivity 8-weeks post-

treatment.  

o With this study we demonstrate that we are capable of identifying connectivity 

differences among groups. 

o The traditional structural and functional connectivity revealed that the awFC is, at 

times, supported by differences in functional connectivity alone, and other times 

supported by differences in both structural and functional connectivity.  

o With this study we were able to demonstrate the ease in which we were able to 

combine data into a single awFC metric using the FATCAT-awFC pipeline.  We 

were able to assess 3 different comparisons between groups, all within a 

reasonable timeframe and with regular memory space using a MAC OS X 

operating system.  Typically, data with higher dimension (due to the combination 

of fMRI and DTI) often have excessive memory requirements, and processing 
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speed for batch processing.  However, our pipeline is user-friendly and may be 

used on a standard computer with no specific requirements.  

o Extending our work, we also assessed the association between the awFC metric 

derived from our FATCAT-awFC pipeline and cognitive variables from the CNS-

Vital Signs, using regression analysis 

o It was revealed to us that cognitive flexibility was associated with awFC in non-

remitters 

 

• In the third study:  

o We propose that the combination of a toolbox with a complex mathematical 

approach to combine two metrics with ease, allows users to produce a fused 

metric, which may be better representative of the brain connectivity and may 

provide more information than performing one modality alone 

o We applied the novel FATCAT-awFC pipeline (introduced in the first project) 

which combines structural and functional data in a user-friendly and 

straightforward pipeline, and assessed a child population  

o The established FATCAT-awFC pipeline was applied to a child population 

(children with pre and/or postnatal adversity vs children without pre and/or 

postnatal adversity) to assess the different awFC between the groups 

o We demonstrate that the complementary information output from our FATCAT-

awFC pipeline was able to detect differences between groups  

o What’s more interesting is that with our FATCAT-awFC pipeline we were able to 

capture the combined effect of structural and functional connectivity on the brain 
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within RSNs rather than separating them out and analyzing how each may impact 

the overall connectivity  

o With this study, we also demonstrate that brain connectivity measures (produced 

from our FATCAT-awFC pipeline) are associated with the Bayley scale outcome 

(i.e. psychomotor development and orientation behavior) in children within the 

middle childhood age group 
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2.1 Abstract 

 

There is a growing interest in examining the wealth of data generated by fusing functional and 

structural imaging information sources. These approaches may have clinical utility in identifying 

disruptions in the brain networks that underlie Major Depressive Disorder (MDD).  We 
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combined an existing software toolbox with a mathematically dense statistical method to produce 

a novel processing pipeline for the fast and easy implementation of data fusion analysis.  The 

novel FATCAT-awFC pipeline was then utilized to identify connectivity (conventional 

functional, conventional structural and anatomically weighted functional connectivities) changes 

in MDD patients compared to healthy comparison participants (HC). Data was acquired from the 

Canadian Biomarker Integration Network for Depression (CAN-BIND-1) study.  Large-scale 

resting-state networks were assessed. We found statistically significant awFC group differences 

in the default mode network and the ventral attention network, with a small effect size (d<0.4). 

Functional and structural connectivity seemed to overlap in significance between one region-pair 

within the default mode network. By combining structural and functional data, anatomically 

weighted functional connectivity served to heighten or reduce the magnitude of connectivity 

differences in various regions distinguishing MDD from HC. This can help us more fully 

understand the interconnected nature between structural and functional connectivity as it relates 

to depression.  

 

Key Words: Neuroimaging; major depressive disorder; Structural connectivity; Functional 

connectivity; data fusion; Resting brain networks; Toolbox 

 

2.2 Introduction 

Increasing interest in brain connectivity patterns in illness and in health has given rise to the 

development of multimodal imaging analysis approaches, utilized to combine functional 

magnetic resonance imaging (fMRI) data with diffusion tensor imaging (DTI) data (Reddi, 2017; 

Zhu et al., 2014). Multimodal imaging analysis methods aim to capture the complex interactions 
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between structural and functional connectivity in brain networks and provide new insights into 

brain connectivity. Complex and heterogeneous disorders such as major depressive disorder 

(MDD) can benefit from multimodal imaging analysis, which offers a better understanding of the 

joint structural and functional changes in human brain connectivity patterns (Zhu et al., 2014). 

MDD is associated with both structural and functional abnormalities between brain regions 

within a number of resting-state networks (Coloigner et al., 2019; Kaiser, Andrews-Hanna, 

Wager, & Pizzagalli, 2015). Functional connectivity analyses use resting state fMRI (rsfMRI) to 

identify synchronous inter-regional temporal correlations in blood oxygen level dependent 

signals (Biswal, Van Kylen, & Hyde, 1997). Common approaches to identify these functionally 

connected brain networks utilize independent component analysis (ICA) or Pearson-r  

correlations to isolate and index the connectivity between regions in anatomically segregated 

brain networks (Yoo et al., 2018). Group ICA has been widely used for multi-participant studies 

to identify a set of commonly replicable, temporally synchronized resting-state networks (RSNs) 

(Beckmann, DeLuca, Devlin, & Smith, 2005; Damoiseaux et al., 2006; Esposito et al., 2005). 

Typically, these networks include the visual, somatomotor, default mode (DMN), frontoparietal 

(FPN), dorsal attention (DAN), ventral attention (VAN), and limbic networks (LIM) (Yeo et 

al., 2011). From diffusion tensor imaging (DTI), a wide range of metrics, including fractional 

anisotropy, mean diffusivity, tract density, tract volume and number of tracts, can be used to 

represent structural connectivity in MDD (Klooster et al., 2020). However, edge weight (which 

includes a combination of number of tracts, tract length and region of interest (ROI) size) may be 

a more suitable metric for the measurement of structural connectivity in relation to functional 

connectivity (Huang & Ding, 2016). While previous studies have reported significant alterations 

in structural connectivity in MDD, these findings have shown considerable variability, and 
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depending on the network and/or tracts examined, have pointed to increases (de Kwaasteniet et 

al., 2013), decreases (Davis et al., 2019; Wu et al., 2020), or both increases and decreases (Wu et 

al., 2011) in connectivity. Supplementing the structural connectivity data with functional indices 

may provide some clarity regarding the brain changes that are having the greatest impact in 

depression. 

Importantly, the above studies do point to a concordance between the functional brain regions 

that are dysregulated in MDD and their associated internodal structural connectivity (Greicius, 

Supekar, Menon, & Dougherty, 2009). However, the indices of functional connectivity do not 

map directly, one to one, with the white matter connectivity alterations identified by DTI 

(Greicius et al., 2009). Indeed, it has been suggested that neither functional nor structural 

imaging modalities are reliable enough alone to reflect the highly interconnected nature of the 

brain (Kambeitz et al., 2017; Park & Friston, 2013). Functional connectivity may arise from 

indirect white-matter pathways (Nth-order structural connections) or undetectable white matter 

connections (from DTI imaging techniques) (Koch, Norris, & Hund-Georgiadis, 2002). 

Moreover, with DTI, branching or crossing fibers can make it difficult to resolve long-range 

interhemispheric connections and therefore imposes limits on the mapping of structural 

connectivity (Behrens, Berg, Jbabdi, Rushworth, & Woolrich, 2007; Peled, Friman, Jolesz, & 

Westin, 2006; Wiegell, Larsson, & Wedeen, 2000). As a consequence, recently there has been 

considerable interest in the application of multimodal approaches that jointly examine the 

structural and functional integrity of parallel distributed neural circuits implicated in 

psychopathology (Reddi, 2017). 

Some researchers have argued that multimodal fusion techniques may provide a better 

representation for whole brain connectivity and a better diagnostic classification between groups 
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(Pineda-Pardo et al., 2014). Instead of inferring structural connectivity from functional 

connectivity, and vice versa, their interconnected structural-functional relationship is 

quantitatively measured. 

There are a number of different approaches to combining structural and functional datasets 

including: (1) joint analysis (data integration) which extracts common features from separate 

data sources to perform statistical analysis such as correlations (Honey et al., 2009; van den 

Heuvel et al., 2013); (2) asymmetric data fusion which uses one dataset to constrain and analyze 

another (i.e., deriving structural connectivity from functional data) (Taylor & Saad, 2013); (3) 

symmetric data fusion (data fusion based on higher order statistics) which performs separate 

analyses for functional and structural data but combines them statistically (Bowman, Zhang, 

Derado, & Chen, 2012; Zhu et al., 2014) and (4) machine learning algorithms which utilize 

computational models that are automated to improve through iterative optimization (Dyrba et 

al., 2012; Rosa et al., 2015). Calhoun and Sui (2016) argued that among all multimodal 

approaches, asymmetric and symmetric data fusion, respectively, provide the most information 

(Calhoun & Sui, 2016). Data fusion uses statistical methods to combine the effects of different 

metrics (retrieved from separate complementary modalities) in a single measure. It is a more 

realistic representation of the real biology of brain networks, instead of studying brain networks 

from one angle alone (from a single modality). 

To date only two studies have been published that combine functional and structural 

neuroimaging data in a symmetric data fusion approach for the study of MDD, both of which 

used a joint-ICA fusion approach. Choi and associates conducted a preliminary study with a 

small sample size of four MDD participants and nine healthy comparison participants (HC) 

employed a joint ICA approach for combining functional and structural connectivity (Choi et 
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al., 2008). These researchers reported changes in fractional anisotropy (FA) white matter values 

and changes in the strength of functional connectivity in MDD patients compared with HC (Choi 

et al., 2008). Furthermore, there were detectable differences in both the functional and structural 

connectivity in the “subgenual anterior cingulate cortex (sACC) and perigenual ACC, anterior 

midcingulate cortex, caudate, thalamus, medial frontal cortex, amygdala, hippocampus, insula, 

and lateral temporal lobe” (Choi et al., 2008). Ramezani et al. (2015), also reported a joint 

analysis approach with a small sample size of 25 participants (11 MDD, 14 HC). Their results 

indicated no detectable differences between MDD and healthy control participants when 

examining either fMRI or DTI in isolation, but when employing the joint-ICA fusion approach, 

detectable differences in hippocampal volume loss were identified (Ramezani et al., 2015). This 

illustrates the added value of utilizing a combined fMRI and DTI approach for the study of MDD 

connectivity in a symmetric data fusion approach. Another joint-model, which has not yet been 

applied to MDD data in the literature, is the “anatomically-weighted functional connectivity” 

(awFC) (Bowman et al., 2012). This approach combines structural and functional connectivity in 

a mathematically dense approach. 

Software packages for the analysis of functional and structural connectivity can substantially 

speed up processing time and reduce the likelihood of human error (Man et al., 2015). Presently 

available toolboxes designed to combine functional and structural data include: Graph Analysis 

Toolbox (GAT) (Hosseini, Hoeft, & Kesler, 2012), Brain Connectivity Analysis Toolbox 

(BrainCAT) (Marques, Soares, Alves, & Sousa, 2013), Multimodal Imaging Brain Connectivity 

Analysis (MIBCA) (Ribeiro, Lacerda, & Ferreira, 2015) and Brain Connectivity Toolbox (BCT) 

(Rubinov & Sporns, 2010). Another toolbox is the “Functional and Tractographic Analysis 

Toolbox” (FATCAT) (Taylor & Saad, 2013) which extracts functional connectivity (Pearson 



.   75 

correlation) and corresponding tractography metrics (i.e., FA, tract count) between functionally-

derived ROI-pairs. However, it does not combine these two modalities in a fusion approach. A 

processing toolbox consists of a set of software tools and a recommended (or definitive) pipeline. 

Some of these toolboxes are overly simplified (fully automated with no control over parameters), 

while others are highly specialized (i.e., only used for task-based or only rsfMRI), 

computationally demanding (i.e., nonlinear fitting of DTI) or have complex workflows (Cusack 

et al., 2015). 

Here, for the first time, we combine a connectivity toolbox (FATCAT) (Taylor & Saad, 2013) 

and a data fusion method (awFC) (Bowman et al., 2012), into a novel single pipeline known as 

“FATCAT-awFC.” This yields a single powerful hybrid pipeline that combines functional and 

structural connectivity information into a single index, known as anatomically weighted 

functional connectivity (awFC). While FATCAT uses functionally derived ROIs to extract DTI 

parameters, awFC fuses both datasets together in a complex approach. The FATCAT-awFC 

pipeline preserves the complexity of the relationship between structural and functional 

connectivity and provides maximal information, while allowing for simple implementation. To 

the best of our knowledge, this article is the first to design, explore, and compare a unique 

multimodal fusion approach with unimodal approaches in a large sample of patients with MDD. 

Using the FATCAT-awFC pipeline, we expect to find differences between MDD patients and HC 

in commonly identified RSNs, including the DMN, FPN, DAN, VAN, and LIM (Yeo et 

al., 2011). We hypothesized that performing a joint functional-structural connectivity analysis 

using the FATCAT-awFC approach may allow us to better discriminate connectivity changes 

between MDD and HC groups compared to analyzing these changes using a single modality. 
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2.3 Materials and Methods  

This study was executed as part of the Canadian Biomarker Integration Network in Depression 
(CAN-BIND-1) (Kennedy et al., 2019; Lam et al., 2016; MacQueen et al., 2019). 

2.3.1 Participants  

The CAN-BIND-1 study enlisted a total of 267 participants (164 MDD and 103 Healthy 

Comparison participants), which were available. Of these, 17 participants were excluded due to 

high levels of motion in rsfMRI data (Jenkinson, Bannister, Brady, & Smith, 2002), 4 

participants were excluded following a visual inspection of fMRI data for artifacts paired with a 

Jaccard similarity index, and 7 participants were excluded due to missing DTI data. This left a 

total of 239 participants, 143 MDD and 96 HC (excluded participants = 21 MDD: 7 HC). Data 

was collected in unmedicated MDD patients prior to the initiation of the selective serotonin 

reuptake inhibitor (SSRI) escitalopram. Participants were recruited from six sites across Canada: 

Calgary (Hotchkiss Brain Institute), Hamilton (St. Joseph's Healthcare Hamilton), and Kingston 

(Providence Care Mental Health Services) (Kennedy et al., 2019; Lam et al., 2016; MacQueen et 

al., 2019), Toronto (2 sites: University Health Network, and Centre for Addiction and Mental 

Health), Vancouver (Djavad Mowafaghian Centre for Brain Health). Research ethics approval 

for the study was obtained from the local ethics boards at each site. Study group demographic 

information can be found in Table 1. The demographic data was analyzed 

using gtsummary packages (Sjoberg, 2021) in R software (R Core Team, 2018). The Bonferroni 

method was applied to correct for of multiple comparisons where appropriate. 

 

 

Table 1 | Demographic and clinical characteristics of the study group 
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Characteristic Healthy control 
participants, N = 96a 

Patients with 
MDD, N = 143a 

Group 
comparison p-
value b 

Sex   .9 

Female n (%) 62 (64.6%) 94 (65.7%)  

Male n (%) 34 (35.4%) 49 (34.3%)  

Age, years mean (SD) 32 (10) 33 (12) .8 

Education, years, mean 
(SD) 

18.5 (2) 16.9 (2) <.001d 

MADRS mean (SD) 1 (2) 29 (6) <.001d 

Age of onset of MDD, 
years, mean (SD) 

NA 19 (8)  

Number of MDE's mean 
(SD) 

NA 4 (3)  

Duration of current MDE n (%) 

≤1 year NA 77 (53.8%)  

1–2 years NA 14 (9.8%)  

>2 years NA 42 (29.4%)  

Unknown/unreported NA 10 (7.0%)  

Antidepressants n (%) 

Drug naïve 0 73 (51.0%)  

Past history of 
antidepressants 

0 70 (49.0%)  

Comorbiditiesc n (%) 
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Social anxiety disorder 0 31 (21.7%)  

Generalized anxiety 
disorder 

0 32 (22.4%)  

Panic disorder 0 23 (16.1%)  

Agoraphobia 0 14 (9.8%)  

Posttraumatic stress 
disorder 

0 10 (7.0%)  

Bulimia nervosa 0 3 (2.1%)  

Alcohol abuse (past 12 
months) 

0 2 (1.4%)  

Non-alcohol substance 
abuse (past 12 months) 

0 2 (1.4%)  

• Abbreviations: MDE, major depressive episode; MADRS, Montgomery Åsberg Depression Rating 
Scale; NA, not applicable; n, the number of participants. 

• a n (%); mean (SD). 
• b Pearson's Chi-squared test; Wilcoxon rank sum test; Fisher's exact test. 
• c The Mini-International Neuropsychiatric Interview was used to diagnose the DSM-IV-TR disorders 

(Diagnostic and Statistical Manual). 
• d Significant after Bonferroni correction. 

2.3.2 Inclusion and exclusion criteria 

Inclusion criteria for HC included: 18–60 years of age with no history of psychiatric disorder or 

unstable medical diagnosis, and able to understand instructions in English. The inclusion criteria 

for MDD were: 18–60 years of age, currently experiencing a major depressive episode with a 

duration of three or more months as defined in the Diagnostic and Statistical Manual IV-TR 

(American Psychiatric Association, 2000) and as identified by the Mini International 
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Neuropsychiatric Interview (MINI; Sheehan et al., 1998), with a Montgomery-Åsberg 

Depression Rating Scale (MADRS) (Montgomery & Åsberg, 1979) score equal to or greater than 

24 and sufficient fluency in English to complete study procedures. In addition, MDD participants 

were required to have been free of psychotropic medications for at least 5 half-lives prior to 

baseline testing, and able to comprehend instructions in English. 

The exclusion criteria for MDD patients excluded patients with any axis I (aside from MDD) 

diagnosis which would be considered a primary disorder that could interfere with the study, or 

bipolar I/II disorder. Additional exclusion criteria included high suicide risk or heightened risk of 

hypomanic switch, and previous failure to respond to more than four pharmacological 

interventions. Participants were also excluded if they previously failed to respond to aripiprazole 

or escitalopram treatments, and/or received psychological treatment within the past 3 months 

from baseline and planned to continue psychological treatment. 

Exclusion criteria common to both groups (HC and MDD) involved individuals with: a history of 

substance abuse within the past six months, neurological disorders, head trauma, pregnant or 

breastfeeding, and/or have any other contraindications to MRI. Every participant in the study 

provided informed written consent and was compensated for their participation. MDD patient 

comorbidities are listed in Table 1. 

2.3.3 Data acquisition 

Cognitive Testing: A computerized cognitive test battery, the CNS-Vital Signs (CNS-VS) was 

used to assess participants’ level of cognitive functioning (Gualtieri & Johnson, 2006). Five 

cognitive subscales of the CNS-VS were administered: memory, cognitive flexibility, complex 

attention, processing speed and neurocognitive index (a summary score that consists of the mean 



.   80 

of five cognitive variables: complex attention, memory, psychomotor speed, reaction time, and 

cognitive flexibility) (Iverson et al., 2009). 

Images were acquired using receiver head coils on six 3T MR scanners: (One Signa HDxt from 

GE Healthcare, USA; Three Discovery MR750 from GE Healthcare, USA; One Intera from 

Phillips, Netherlands; One Trio Tim from Siemens, Germany) [see (MacQueen et al., 2019) for 

more details]. 

Functional images were acquired using a whole-brain T2*-sensitive blood oxygen level 

dependent (BOLD) echo planar imaging series with the following parameters: repetition time 

(TR)/echo time (TE)/flip angle = 2000 ms/30 ms/75°, voxel size = 4 × 4 × 4 mm3, field of view 

(FOV) = 256 mm for all sites, matrix size = 64 × 64 and, slices = 34–40 for full brain coverage. 

During rsfMRI acquisition, participants were required to lie still, and keep their gaze on a 

fixation cross for a scanning time of 10 minutes, with 300 volumes recorded in total. 

Anatomical reference scans were acquired across sites following a similar acquisition protocol, 

although Siemens scanners reported different repetition times from their MPRAGE sequence. 

The parameters were visually optimized to produce similar image contrast levels across sites. 

The 3D T1-weighted scans were acquired using a whole-brain magnetization-prepared gradient 

echo sequence with the following parameters: TR/TE/flip angle: 6.4–7.5 ms/2.7–3.5 ms/8–15° 

(Exception: Siemens Scanners TR = 1760, 1840 ms), inversion time: 450–950 ms, voxel size: 

1 × 1 × 1 mm3, matrix dimensions 240 × 240 and 256 × 256, slice thickness: 1 mm, number of 

slices: 155–192. A vitamin E pill was taped on the right side of the participants' heads as a 

fiducial marker. Acquisition time for anatomical data ranged from 3:30 to 9:53 minutes [see 

(Lam et al., 2016) and (MacQueen et al., 2019) for more details]. 
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The DTI acquisition used single-shot spin-echo echo-planar imaging (EPI) with the following 

parameters: TR/TE/flip angle: 8000–9000 ms/94 ms/90°, voxel size: 2.5 × 2.5 × 2.5 mm3, 

FOV = 240 × 240 mm, matrix dimensions 96 × 96, 155–192 slices at 2.5 mm thickness, axial 

slices = 52–58. A single b-value (b = 1000 s/mm2) was applied to 30–31 noncollinear gradient 

directions. Image space reconstruction was completed with an acceleration factor of 2 at 

individual sites including: GE ASSET, Philips SENSE, or the GRAPPA k-space method. 

Acquisition time for DTI data was approximately 5 min [see (Lam et al., 2016) and (MacQueen 

et al., 2019) for more details]. 

2.3.4 Data preprocessing 

To begin, dicom images were converted to nifti using MRIcron (Rorden & Brett, 2000). An 

optimized preprocessing pipeline, OPPNI (Churchill, Raamana, Spring, & Strother, 2017; 

Churchill, Spring, Afshin-Pour, Dong, & Strother, 2015), was used to perform the following 

resting-state preprocessing steps. Principle component analysis (PCA) was used to identify the 

centroid of the data and measure the Euclidean distance of each volume to the centroid of all 

volumes. The volume with the least amount of head displacement was chosen based on the 

smallest Euclidean distance to the centroid. This was considered the reference volume from 

which the mean distance for all other volumes was calculated. Data was motion corrected using 

AFNI's 3dVolreg (Cox, 1996), by matching each volume displacement to the reference volume. 

Basic Censoring (CENSOR—from the OPPNI pipeline) was applied, to remove outlier volumes 

and replace them with interpolated values from neighboring volumes (Churchill & 

Strother, 2013). Slice timing offsets were corrected (TIMECOR—from the OPPNI pipeline) for 

the interleaved acquisition by using AFNI's 3dTshift (Cox, 1996) using Fourier interpolation. 

This was followed by AFNIs 3dBlurtoFWHM (Cox, 1996), which was used to spatially smooth 



.   82 

fMRI images with a 6 mm full width at half maximum smoothing kernel along three directions 

(x,y,z). A binary mask was created for each functional run using AFNIs 3dAutomask in which 

non-brain voxels were excluded and only voxels corresponding to brain areas remained. 

Afterwards, a neuronal tissue mask (to exclude non-neuronal tissues such as ventricles and 

sinuses) was obtained using the PHYCAA+ (first part) algorithm (Churchill & Strother, 2013). In 

the next few steps, nuisance regressors were calculated using linear regression. A general linear 

model using second order Legendre polynomial was applied to the functional data to regress low 

frequency fluctuations, in the range of 0.01–0.1 Hz. Next, the motion parameters (derived 

from 3dvolreg) were used as motion parameter estimates for PCA, and were regressed from the 

data. PCA was performed on the six motion parameter estimates (pitch, yaw, rol l, x, y, z), 

whereby the PC with the largest variance (accounting for 85% variance) was taken to be the first 

PC (of the six PCs) and regressed out. PCA was able to correct for the maximum variance caused 

by head motion while simultaneously reducing multicollinearity and preserving power. A global 

signal removal step was performed that regressed out the first PC (highly correlated with global 

signal effects) of the fMRI data (Carbonell, Bellec, & Shmuel, 2011). Physiological (i.e., cardiac 

and/or respiratory) noise was corrected using the PHYLUS, PHYCAA+ (second part) algorithm. 

A low-pass filter was then applied (LOWPASS) to remove BOLD frequencies above 0.10 Hz. 

FSL's FLIRT tool was then applied: first, functional data was aligned to the structural image in 

native space, second, functional data was transformed to register the structural image to the 

Montreal Neurological Institute (MNI) template (4 mm resolution). The first 5 functional 

volumes were discarded to avoid relaxation effects at scan start. The remaining 295 consecutive 

volumes were used for data analysis. 
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Motion artifacts (i.e., physiological motion causing ghosting), inhomogeneity (signal intensity 

changes and image distortions), digital imaging artifacts (i.e., phase wrap-around artifacts) and 

hardware related artifacts (radio frequency inferences and spike noise) are confounding factors 

that affect connectivity (Maknojia, Churchill, Schweizer, & Graham, 2019; McRobbie, Moore, 

Graves, & Prince, 2017). However, head motion is the most problematic confounding factor that 

can significantly impact resting state functional connectivity (rsFC), as each voxel relies on the 

spatial correspondence over a time course. Sub-millimeter motion may distort functional 

connectivity estimates (Maknojia et al., 2019). Motion-related artifacts are also strongly 

correlated with framewise displacement (FD) measures (Dosenbach et al., 2017). Censoring the 

data was achieved based on the Jenkinson mean framewise displacement criteria (FDjenk). 

Volumes were marked as motion contaminated if FDjenk > 0.20 mm. If 125 volumes of data (~5 

min or more) were retained, participants were not excluded, otherwise the participant was 

removed from the sample for not having enough data for the stable estimation of rsFC (Lanka & 

Deshpande, 2019). Thus, seventeen participants were removed due to gross motion. The 

Jenkinson volume-based FD formula was calculated as follows (Jenkinson, 1999; Jenkinson et 

al., 2002): 

 

where R is the radius of the head (R = 80 mm), c represents the coordinates for the center of the 

volume, and A and b are defined as: 
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In addition, the correspondence between the functional data transformed to MNI space and the 

MNI 152 template was calculated using the Jaccard similarity index to evaluate the accuracy of 

registration. 

When acquiring DTI data, rapid switching of applied diffusion gradients can introduce eddy 

currents, which warp the DTI image in the phase encoding direction (Hecke, Emsell, & 

Sunaert, 2016). Each participants diffusion-weighted volumes was aligned to the b = 0 images 

using an affine transformation (eddy_correct) (Hecke et al., 2016; Jenkinson, Beckmann, 

Behrens, Woolrich, & Smith, 2012) to minimize distortion by eddy currents, reduce head motion 

effects, and improve the signal to noise ratio (SNR). The diffusion tensor model was fit with the 

weighted least-squares technique to minimize the influence of outlier volumes. In addition, the 

brain tissues types (gray matter, white matter and cerebrospinal fluid) were extracted using the 

FSL (Jenkinson et al., 2012) Brain Extraction Tool (BET) to improve co-registration. Afterwards, 

the diffusion data was registered to the standard space FA atlas (1 × 1 × 1 mm resolution; average 

of 58 FA images) FMRIB58 (Webster, 2012). 

 

2.3.5 Modifications in the awFC approach 

Building on the awFC approach proposed by Bowman et al. (2012), our current study utilized 

independent component analysis (ICA) and FATCAT to extract networks of regions of interest, 

rather than performing cluster analysis as outlined in Bowman et al. (2012). The singular value 

decomposition (SVD) clustering process implemented by Bowman et al. (2012) is 

computationally expensive for a matrix of size n × m and becomes increasingly more complex 

between each region pair as the number of ROIs increases (Vasudevan & Ramakrishna, 2019). 
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ICA, on the other hand, reveals distinct spatial maps, across healthy and clinical study 

populations (Juneja, Rana, & Agrawal, 2016; Vergun et al., 2016). ICA is a powerful 

methodology, and is straightforward to apply with FATCAT's recommended pipeline involving 

FSL's MELODIC (Griffanti, 2019; Nascimento et al., 2017). 

 

2.3.6 Generated resting-state networks (RSNs) 

In our study, we used an ICA (data-driven) approach to identify RSNs, which were then 

thresholded to generate ROIs. It has been suggested that data-driven approaches are more 

accurate and more sensitive at detecting the greatest effects between groups (Ma, Wang, Chen, & 

Xiong, 2007; van de Ven, Formisano, Prvulovic, Roeder, & Linden, 2004). Group ICA (gICA) 

was used to derive standard RSNs from 239 participants (143 MDD, 96 HC). The rsfMRI data of 

MDD and HC groups was concatenated in time for each session across participants into a single 

4D dataset and decomposed into 20 independent component (IC) maps using 

the MELODIC gICA in FSL (Smith et al., 2004). Twenty ICs is the typical dimensionality in 

rsfMRI studies (Taylor & Saad, 2013). Matching is performed based on spatial correlation; to 

match ICs to the Yeo 7-network template (Yeo et al., 2011). This was performed using 

FATCAT's 3dMatch tool (Taylor & Saad, 2013), along with visual inspection. Binarized maps 

were created for the selected ICs that best matched the standard functional RSNs 

template. 3dMatch identified and extracted a total of five ICs that matched the five of the 

standard functional networks, which included the DMN, FPN, LIM, VAN, and DAN. However, 

through visual inspection, we were able to identify that gICA split the LIM into two distinct 

components. Consequently, to better match the LIM, we combined the ROIs of both of these 

components into one network by applying the fslmaths function. These combined ROIs were 
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then defined as the LIM (see Figure 1). The remaining 14 ICA components were not included in 

the study because they contained non-gray matter regions, motion artifacts, edge alignment 

artifacts and other networks that were not of interest. 

2.3.7 ROI selection 

The binarized spatial maps (derived from ICs) that were identified as RSNs, were stacked in a 
4D image file. The 4D stacked image file was then separated out so that each network had its 
own 4D file (using fslsplit). This step was necessary to set an appropriate threshold for each 
individual network. Functional connectivity should not be set to the same unified threshold 
across all networks since this would inaccurately define network ROIs, as each network may 
vary significantly in noise level (Wang, Adeli, Wang, Shi, & Suk, 2016). Therefore, a different 
threshold was applied for each component: DMN (Z > 6), FPN (Z > 9), DAN (Z > 5.5), VAN 
(Z > 11), LIM (Z > 6), with a minimum ROI size restriction of 30 voxels (see Table 2). The 
levels of thresholding were selected to qualitatively and visually capture the networks observed 
in Yeo et al. (2011) and in line with commonly identified RSNs in the literature (Sala-Llonch, 
Bartrés-Faz, & Junqué, 2015). The FATCAT tool 3dNetCorr (Taylor & Saad, 2013) was used to 
generate a functional connectivity matrix using Pearson's correlation for each participant's five 
RSNs. 

Table 2 |  Z-threshold values for 3dROIMaker and number of ROIs per network 

Network Threshold, Z Number of ROIs 

DMN 6 5 

FPN 9 7 

VAN 11 5 

DAN 5.5 4 

LIM 6 3 

• Abbreviations: DAN, dorsal attention network; DMN, default mode network; FPN, front parietal 
network; LIM, limbic network; ROIs, region of interest; VAN, ventral attention network. 
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2.3.8 DTI image processing 

Raw DTI dicom images from the scanner were converted into a single 4-D nifti file 
using dcm2nii. Tensors were estimated from diffusion data using AFNI's 3dDWItoDT (Taylor & 
Saad, 2013) using nonlinear fits and a scheme file containing both the b-value and b-vectors. The 
following indices were estimated from the diffusion tensor: Eigenvalues (L1, L2, L3), 
eigenvectors (V1, V2, V3), FA, mean diffusivity (MD), axial diffusivity (AD) and radial 
diffusivity (average of two radial eigenvalues; RD), all of which were done in the participant's 
native space. All parameter estimates have some noise and errors included in their values. Thus, 
an advantage of probabilistic tractography is its ability to incorporate confidence intervals and 
uncertainty parameters into the calculation. Uncertainty of the diffusion tensor parameter was 
calculated using Monte-Carlo simulation with nonparametric resampling (i.e., bootstrap and 
direct variants). The variance of the FA and the primary eigenvector (e1) was estimated with 
FATCATs 3dDWUncert (Taylor & Saad, 2013) using 300 jackknife-resampling iterations. 
Together, the DTI parameters and uncertainty measures with target ROIs were used to perform 
probabilistic tractography. 

The 3dROIMaker step (outlined above) (Taylor & Saad, 2013), also returned inflated ROIs for 
use with the DTI data. The inflated ROIs were necessary to allow regions to maintain contact 
with the mean FA tract skeleton (defined as FA > 0.2) (Nugent et al., 2019). The ROIs were 
transformed to each individuals' DTI space, from MNI standard space, using nonlinear 
transformations (Bowman et al., 2012; Yeatman, Dougherty, Myall, Wandell, & 
Feldman, 2012). 3dTrackID (Taylor & Saad, 2013) was applied to perform probabilistic tracking 
between each region pair with the following settings: tract length > 20 mm; turning angle < 60°; 
Nseed = 5 tract seeds per voxel; Nmc = 1000 Monte Carlo iterations; and a fractional threshold 
(ftr) = 0.05 (to calculate the number of tracts per voxel, included in the final white matter (WM) 
ROI: ftr × Nseed × Nmc = 250 tracts/voxel). An FA threshold of 0.2 was set to reduce partial 
volume effects after warping (Yeatman et al., 2012). The 3dTrackID(Taylor & Saad, 2013) step 
returned DTI metrics including: white matter volume (physical volume and number of voxels), 
counts of tracts, FA, MD, L1, RD and AD. Number of tracts and tract length are used later along 
the FATCAT-awFC pipeline. 

2.3.9 Generating structural connectivity matrix 

A Poisson-regression based adjustment was applied (to reduce the likelihood of false positives 

due to distance bias):  where gij is the distance between each region 
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pair, Sij is the unbiased number of tracts (Bowman et al., 2012). We estimated and adjusted for 

the bias that exists between the number of tracts and physical distance with the effect 𝛼1 to more 

accurately represent structural connectivity strength. To account for indirect structural 

connectivity, we relied on the awFC approach to calculate all possible second-order connections 

(indirect connections) with the following equation: πij = max[πij, maxm(πimπmj)], where π is the 

probabilities of structural connectivity, i is the starting ROI, j is target ROI, and m is the third 

connection. This equation calculated the structural connectivity probabilities of direct 

connections and indirect connections, taking the higher connectivity value to be the neural 

pathway. For instance, if the connectivity is such that the structural connectivity is higher for 

indirect connections versus direct connections, we took the indirect connection to be the pathway 

used to connect the functional regions (see Supplemental for more information). 

2.3.10 Functional and structural connectivity combined into one unit (awFC) 

Once structural connection probabilities, distance bias, direct/indirect structural pathways were 

calculated and factored into structural connectivity using the awFC approach, the structural 

connectivity was ready to be integrated into the functional connectivity (Figure 2). In this study, 

a multiplicative combination technique was used to derive the fused model, whereby the 

dissimilarity between region pairs (for connectivity) were multiplied together to generate the 

fused dissimilarity matrix (Liu, Li, Xu, & Natarajan, 2018). We first computed functional 

dissimilarity (1 − functional connectivity) and the structural dissimilarity (1 − structural 

connectivity) between each region pair. To transform the fused dissimilarity metric back to a 

correlational value (awFC), we performed a simple subtraction: 1-|awFd|. The dissimilarity 

metric (which emphasized correlations and differences) was transformed back to a connectivity 

metric; the awFC (Bowman et al., 2012) (see Supplemental for more information). 
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2.3.11 Correction for multiple comparisons 

To test the hypothesis that the awFC underlying the RSNs varies between groups, we performed 

a Mann–Whitney test between each region pair within each RSN and within-group contrasts 

between MDD and HC groups. Unless otherwise noted, all reported p-values for the statistical 

tests of functional connectivity, structural connectivity, and awFC were corrected for multiple 

comparisons using the false discovery rate (FDR) criterion proposed by Benjamini and Hochberg 

(Waite & Campbell, 2006). The significance level was set to p(FDR corrected) < .05. Effect 

sizes were generated using Cohen's d in the statistics package R (R Core Team, 2018). 

2.3.12 Statistical analysis 

To evaluate the association between awFC within RSNs and cognitive changes in the MDD 

group compared to HC, a post-hoc test was performed on regions with significant associations. 

First, multicollinearity was assessed using Pearson correlation pair plots, among the cognitive 

variables (neurocognitive index, memory domain, complex attention, cognitive flexibility, 

processing speed). Pearson correlation pairwise comparisons were produced using the 

function ggpairs from the GGally package (Schloerke et al., 2018) in R. Since multicollinearity 

exists among variables (see Figure S1a), PCA can be applied to reduce information redundancy 

and preserve important information (Kassambara, 2017; Refaat, 2010). PCA was performed with 

the R package (R Core Team, 2018) using the princomp function, in which a set of orthogonal 

PCs were produced corresponding to a linear combination of the original variables (Hair, Black, 

Babin, & Anderson, 2009). PCs were retained based on two criteria: if they had an eigenvalues 

>1.0 (Kaiser, 1960) and visually from the “first elbow” of the scree plot. A scree plot was created 

using the fviz_eig function from the factoextra package (Kassambara, 2017) in R. The PCs that 

met this criterion were taken to be independent variables in a PC regression model with awFC as 
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the dependent variable. PC regression was performed using lme function in R's nlme package (R 

Core Team, 2018). PC regression (PCR) was used to evaluate any potential PC effects. If the PC 

showed a significant effect, it was evaluated further to interpret the results in terms of the 

original cognitive variables. This was done in order to interpret the data in a more meaningful 

manner. Only factor loadings greater than 0.40 were considered. Multiple regression analysis 

was performed to investigate whether cognitive variables interacted with the connectivity pattern 

within RSNs. They were conducted using the lme function in R's lmepackage R (R Core 

Team, 2018), whereby the awFC was taken as the dependent variable and each loadings > 0.40 

as the independent variable. The regression was evaluated using the participant within site as a 

random effect. Age and sex were added as covariates in each statistical model. All the index 

scores were standard scores, which were mean centered. Multiple comparisons were corrected 

for using FDR. 

 

 

2.4 Results 

2.4.1 Regions of interest 

See Table 2 for ROI thresholds selected and resultant number of ROIs. Table 3 presents 

information on ROIs MNI coordinates of peak voxel and size of ROIs per network. 

Table 3 | Regions of interest (ROIs) defined within the five resting state networks 

  MNI 
coordinates 

Volume (# of 
voxels) 

ROI 
# 

Anatomical location x y z  
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Default mode network 

1 Cerebellum/lateral occipital cortex 34 −86 −40 726 

2 Posterior cingulate cortex (PCC) −2 −54 24 559 

3 Medial prefrontal lobe −6 42 12 1200 

4 Middle temporal gyrus −58 −22 −20 168 

5 Left inferior parietal lobe −50 −70 28 278 

Frontoparietal network 

6 Middle and inferior temporal gyrus 62 −42 −16 182 

7 Right parietal lobe and lateral occipital cortex 50 −58 44 703 

8 Right frontal lobe −42 46 −4 43 

9 Left frontal lobe 46 22 36 1200 

10 Left parietal lobe −50 −54 44 145 

11 Cerebellum −46 −70 −36 394 

12 Frontal pole 46 14 20 127 

Limbic network 

13 Left cerebral cortex and temporal lobe −30 −6 −36 400 

14 Right cerebral cortex/right temporal lobe 30 −10 −36 400 

15 Frontal pole, frontal medial pole 30 42 −12 850 

Ventral attention network 

16 Left temporal lobe −38 −18 −8 1169 

17 Cingulate gyrus 14 −34 40 962 

18 Left DLPFC (frontal lobe) −30 34 24 215 
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19 Right DLPFC (frontal lobe) 46 42 0 241 

20 Right temporal lobe 46 −10 −16 1293 

Dorsal attention network 

21 Right superior parietal lobule 50 −30 40 1339 

22 Right lateral occipital cortex, inferior temporal 
gyrus 

54 −62 −12 100 

23 Left lateral occipital cortex, inferior temporal gyrus −50 −66 −8 112 

24 Left superior parietal lobule −50 −30 36 1454 

• Note: All ROIs were derived from FATCAT's “3dROIMaker” command. MNI coordinates and 
volume of each individual ROI were identified. The functionally defined ROIs covered a number 
of anatomical structures that were reported. 

• Abbreviations: ROI, region of interest; RSNs, resting state networks. 

2.4.2 Functional connectivity group differences 

Compared to HC, the MDD group showed less functional connectivity in the DMN between the 

posterior cingulate cortex (ROI 1) and cerebellum/occipital regions (ROI 2), 

(W = 8406.5, padj = .0332). In addition, reduced functional connectivity in MDD compared to HC 

within the VAN was found between the left temporal lobe (ROI 16) and the right dorsolateral 

prefrontal cortex (DLPFC) (ROI 19) (W = 8365, padj = .0211). We did not find significant 

functional connectivity differences between MDD and HC groups within the LIM, FPN, or the 

DAN (see Table 4). 

Table 4 | A Wilcoxon test was used to identify significant connectivity (structural, 

functional and anatomically weighted functional connectivity) differences between MDD 

and HC participants between regions of interest (ROIs). 
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Start 
ROI 

End 
ROI 

SC p-value (FDR 
corrected) 

FC p-value (FDR 
corrected) 

AwFC p-value (FDR 
corrected) 

Default mode network 

1 2 .009** .033* .032* 

1 5 .71 .19 .20 

1 3 .71 .24 .24 

2 4 .43 .23 .23 

3 5 .73 .20 .20 

5 2 .013* .30 .30 

Frontoparietal network 

6 7 <.001*** .82 .58 

8 9 .040* .47 .47 

Limbic network 

13 14 <.001*** .76 .76 

Ventral attention network 

16 17 <.001*** .72 .71 

17 18 <.001*** .87 .87 

18 16 <.001*** .17 .16 

19 17 <.001*** .73 .73 

19 16 .64 .021* .042* 

20 19 <.001*** .072 .036* 

Dorsal attention network 
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21 22 <.001** .98 .90 

23 24 <.001*** .76 .75 

24 21 <.001*** .87 .86 

• Abbreviations: HC, healthy comparison; MDD, major depressive disorder; SC, structural 
connectivity; FC, functional connectivity; awFC, anatomically weighted functional connectivity. 

• * p-value (FDR corrected) < .05. 
• ** p-value (FDR corrected) < .01. 
• *** p-value (FDR corrected) < .001. 

2.4.3 Structural connectivity group differences 

Between-group comparisons of structural connectivity between HC and MDD patients, are 

presented in Table 4. There were significant differences in all 5 RSNs for MDD compared with 

HC groups (see Table 4). These were characterized by lower connectivity values for MDD 

compared to HC for all networks. See Table 4, for a comparative summary of SC, FC, and 

awFC. 

2.4.4 Anatomically weighted functional connectivity group differences 

Exploratory analysis of the five RSNs awFC connectivity revealed reduced correlation 

differences between ROI pairs for MDD groups compared with HC in three regions: one in the 

DMN and two region pairs in the VAN (see Table 5). Figure 3a,b illustrates the group ROIs that 

demonstrated significant connectivity differences between MDD and HC groups. Lower awFC 

connectivity was found in the DMN between the PCC (ROI 1) and cerebellum/occipital regions 

(ROI 2), (W = 7917, padj = .0322) for the MDD group compared with the HC (see Table 5). In 

addition, MDD patients demonstrated lower awFC in the VAN, between the left temporal lobe 

(ROI 16) and the right DLPFC (ROI 19) (W = 8274, padj = .0421) compared with HC (see 
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Table 5). Reduced connectivity in MDD compared with HC within the VAN was observed 

between the right temporal lobe (ROI 20) and the right DLPFC (ROI 19) 

(W = 8366, padj = .0361). No other significant differences were found within the remaining RSNs. 

A summary of the significant regions and p-values is presented in Table 5, and a summary of the 

mean and standard deviations of connectivity values are presented in Table 5. In addition, 

Figure 4 displays boxplots of awFC values between ROI-pairs within RSNs. 

 

Table 5 | A Wilcoxon test was performed whereby significant anatomically weighted 

functional connectivity differences between MDD and HC groups, and their associated 

structural and functional connectivity (significance set to FDR-corrected p < .05) are 

reported. Mean, standard error and effect size are also reported for each group. 

      MDD HC 

Start ROI End ROI SC padj FC padj awFC padj Effect size Mean SE Mean SE 

Default mode network 

1 2 .00905** 0.0331* 0.0320* 0.34 −0.011 0.017 0.061 0.022 

Ventral attention network 

16 19 0.64 0.021* 0.0421* 0.32 0.36 0.024 0.46 0.027 

19 20 <.001*** 0.0722 0.0361* 0.36 0.22 0.023 0.33 0.028 

• Abbreviations: ROI, region of interest; SC, structural connectivity; FC, functional connectivity; 
awFC, anatomically weighted functional connectivity; padj, FDR corrected p-values; MDD, 
major depressive disorder, HC, healthy comparison; SE, standard error. 

• * p-value (FDR corrected) <.05. 
• ** p-value (FDR corrected) <.01. 
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• *** p-value (FDR corrected) <.001. 

 
2.4.5 Post hoc analysis 

Performing PCA on the cognitive variables resulted in five PCs (each PC is a linear combination 

of the original variables). Applying the Kaiser-Guttman rule (Guttman, 1954; Kaiser, 1961), of 

extracting only PCs with an eigenvalue >1, revealed the first PC had an eigenvalue >1 (𝜆 = 3.2). 

In addition, from the scree plot (Figure S1b), we selected one PC at the marked “elbow,” 

whereby 62.5% of the variance in the data was explained. Therefore, based on these two criteria, 

only the first PC was retained. PCR was then performed on the first PC, in which a significant 

effect was detected. This warranted further analysis to determine the cognitive variable 

associated with the awFC. Variables (loadings > 0.4) were investigated further. The 

neurocognitive index (NCI) (loading = 0.40), cognitive flexibility (loading = 0.45), processing 

speed (loading = 0.49), and complex attention (loading = 0.52) met this criterion. Therefore, 

multiple linear regressions were performed on each variable individually. Therefore, multiple 

mixed-effects linear regressions were performed, separately on each variable. 

Applying PCR to the DMN (uncorrected p = .0475) showed significant associations between the 

first PC and the awFC. Multiple linear regressions revealed that awFC between the PCC and the 

cerebellum/occipital lobe was significantly associated with changes in MADRS 

(uncorrected p = .02) and complex attention (uncorrected p = .047). Second, a PCR for the VAN 

revealed significant associations between the first PC and awFC (uncorrected p = .02). 

Therefore, multiple linear regressions were performed for variables with loadings > 0.4. The 

VAN, between the right temporal lobe and the right DLPFC revealed, awFC was significantly 
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associated with complex attention (uncorrected p = .028). However, none of the cognitive 

associations survived correction for multiple comparisons. 

2.5 Discussion  

We developed a novel pipeline for combining functional connectivity (derived from fMRI) and 

structural connectivity (derived from DTI) and used it to study awFC connectivity changes in 

MDD patients. We analyzed a total of 24 ROIs (from five resting-state functional networks), 

three of which revealed statistically significant differences in awFC between MDD and HC 

groups using the FATCAT-awFC approach. For each region pair we also conducted standard 

functional and structural connectivity analyses to compare against our novel combined 

functional-structural analysis approach (FATCAT-awFC). 

As predicted, the multivariate connectivity analysis was capable of revealing group differences 

not identified by the univariate analysis within RSNs. We found reduced awFC connectivity 

within the DMN between the PCC and cerebellum/lateral occipital cortex in the MDD group 

compared with the HC group. Aberrant connectivity between this ROI-pair was also found in 

both the traditional structural and traditional functional connectivity approaches, which 

supported the changes we found in the awFC measure output by the FATCAT-awFC pipeline. In 

MDD, similar findings in resting state functional connectivity (rsFC) have been reported by Liu 

et al. (2012) who found that rsFC between the PCC (associated with self-referential processing) 

and cerebellum was reduced in MDD groups compared to HC. Negative self-referential 

processing, is a common feature of MDD and has been associated with MDD severity (Lou, Lei, 

Mei, Leppänen, & Li, 2019). We also observed decreased awFC between the right DLPFC and 

the right temporal lobe (encompassing the right temporo-parietal junction). In this case, when we 
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examined the functional and structural data independently, we did not find differences in 

functional connectivity, but there were detectable changes in structural connectivity. Past 

literature (Hwang et al., 2015; Penner et al., 2018) has identified that reduced functional 

connectivity between the right temporo-parietal junction and right DLPFC in MDD, is associated 

with depression severity. Lower connectivity between these regions was associated with more 

severe depression symptomology (Hwang et al., 2015). We also observed reduced awFC 

between the right DLPFC and the left temporal lobe (includes the left temporo-parietal junction). 

It is interesting to note that we observed significant differences in functional connectivity 

between this region pair, but structural connectivity had no detectable changes with MDD 

compared to HC. With our FATCAT-awFC approach, it appears that significant group 

differences in the underlying SC do not drive the awFC connectivity differences as much as FC 

differences do. Our finding were supported by (Hwang et al., 2015; Penner et al., 2018), who 

also detected decreased functional connectivity between the right DLPFC and the left temporal 

lobe in MDD patients. According to (Samson, Apperly, Chiavarino, & Humphreys, 2004) the 

reduced connectivity between the frontal lobe and the left temporo-parietal junction may be 

associated with difficulty assessing thoughts that another person possesses. Inaccurately 

interpreting mental states, often results in reduced social interactions and may contribute to 

further social isolation in MDD (Weightman, Air, & Baune, 2014). Connectivity changes 

(between these three region pairs) in MDD reported in our study are well documented in MDD 

literature, confirming that our method is effective at detecting some of the neural changes 

associated with MDD. 

In contrast to our predictions, we did not observe group differences in awFC network 

connections of the LIM. These findings may be a result of our use of relatively large ROIs, 
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which encompassed a number of brain regions with varying functions. In our analyses, the LIM 

that was extracted by 3dMatch consisted of three large ROIs, where the first two were homotopic 

ROIs, whereby each ROI included the parahippocampal gyrus, temporal fusiform gyrus, inferior 

temporal gyrus; the third ROI crossed the midline and consisted of the bilateral amygdala, 

nucleus accumbens, caudate, paracingulate gyrus, frontal medial gyrus, and putamen. 

Consequently, it may be that because these ROIs were so large, they lacked the specificity 

necessary to identify localized group differences. In addition, in contrast to expected patterns, we 

did not observe group differences in awFC network connections in either the FPN, or DAN. 

In our study, we conducted a post hoc test that consisted of a PCA and PCR, to study the 

association between connectivity and cognitive data. We found a trend in the association 

between complex attention and the awFC within the DMN (PCC to cerebellum/occipital 

regions). We also found a trend level association between complex attention and the awFC 

between the right temporal lobe to the right DLPFC. The standard functional Yeo template, 

classifies the anterior temporo-parietal junction as a component of the VAN (Yeo et al., 2011). 

The VAN is involved in regulating emotional salient events (Korgaonkar, Goldstein-Piekarski, 

Fornito, & Williams, 2020) and as such. our observation of reduced awFC between this ROI-pair 

may point to connectivty changes that underlie the mood dysregulation associated with MDD 

(American Psychiatric Association, 2013). 

Our FATCAT-awFC approach identified region pairs that were observable in one modality but 

not the other. The FATCAT-awFC model identified group differences in connectivity, some of 

which were only captured using SC, and others identified through FC. Using SC alone resulted 

in many region pairs having detectable differences in MDD compared to HC. However, this may 

be a result of false positive findings in SC (Bowman et al., 2012), whereas FC identified just two 
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regions with group differences after correction for multiple comparisons. Furthermore, 

our FATCAT-awFC approach revealed a connectivity change in MDD that was undetected using 

the conventional FC approach alone. Finally, for most comparisons the FATCAT-awFC approach 

resulted in p-values that were lower than those in a single modality, suggesting that FATCAT-

awFC was sensitive to connectivity changes distinguishing groups. 

 

2.5.1 Contributions of the FATCAT-awFC 

The FATCAT-awFC pipeline was designed to be a more practical solution for combining FC and 

SC together. With our FATCAT-awFC pipeline, we hope that researchers will benefit from a 

faster and more intuitive approach to combining SC and FC, as opposed to using a 

computationally intense method (awFC method) or a toolbox that does not provide maximal 

information (FATCAT) alone. The combination of FATCAT with awFC provides for a unique 

hybrid pipeline that combines the advantages of an intuitive, rapid and efficient toolbox with a 

computationally intense data-fusion approach that provides an abundance of information. By 

combining FC and SC data we are able to better represent whole brain connectivity as opposed to 

studying it utilizing data from one modality alone. The awFC metric is able to measure the 

combined effect of SC and FC and may provide us with a more accurate connectivity value as it 

relates to different neuropsychiatric disorders. 

There were two main limitations in this study. The first is that one set of group ROIs (derived 

from gICA) were generated from the CAN-BIND participants. This was done to have a 

consistent number of ROIs across participants; however applying the same group networks 

across all participant-level networks implies spatial similarity among all participants (Sohn et 

al., 2015). However, gICA does not account for inter-participant variability in functional 
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boundaries, and does not construct participant-specific spatial maps of networks. The second 

limitation was the ambiguity of selecting a cut-off threshold for ROI creation. There is no 

standard for selecting ROIs, although many studies have selected a threshold of Z > 2.3 (Sohn et 

al., 2015). ROI selection is a threshold-dependent process and can have very different effects on 

the outcomes and conclusions of a study (Sohn et al., 2015). Our ROIs were fairly large and 

encompassed a number of functionally different regions. Tong and associates (Tong et al., 2016) 

found that larger ROIs are often accompanied by greater variance within connectivity data, in 

comparison to smaller ROIs, resulting in a smaller effect size. Consequently, the larger ROI used 

in this study may have reduced our capacity to detect group differences. 

Hebbian theory is summarized as: “neurons that fire together, wire together” (Keysers & 

Perrett, 2004), which suggests that regions that are functionally connected (temporally 

synchronous) are in principal structurally connected through fiber tracts. The complimentary 

nature of FC and SC suggests their combination would provide a more complete picture of 

connectivity as a whole. Due to the complex nature of data fusion in neuroimaging, many 

researchers have not utilized this approach. By integrating a toolbox (FATCAT) with a 

computationally intense technique for combining SC and FC (awFC), we were able to implement 

a relatively straightforward approach to the combination of functional and structural data. We 

also showed that FATCAT-awFC was capable of identifying ROI-pairs, which would have been 

missed when only applying unimodal analyses. Hence, the joint approach of FATCAT-

awFC allows for a more detailed understanding of the interconnected nature between structural 

and functional connectivity and how it relates to depression. 
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2.5.2 Figures  

 

 

 

Figure 1 | The resting state networks and corresponding regions of interest (ROIs) derived 

through group independent component analyses of RS fMRI data. CANBIND-1 resting-state 

fMRI data was used to extract ROIs. Five resting-state networks were identified and extracted 

from the components (DMN, default mode network; DAN, dorsal attention network; FPN, 

fronto-parietal network; Limbic, limbic network; VAN, ventral attention network). Z-score maps 

were thresholded and binarized using FATCATs 3dROIMaker to generate network masks 
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(DMN, Z = 5.5; FPN, Z = 9; Limbic, Z =6; DAN, Z = 5.5; VAN, Z = 11). The colored regions 

depicted represent different ROIs within each network 

 

 

Figure 2 | The FATCAT-awFC analysis pipeline. awFC, anatomically weighted functional 

connectivity; FATCAT, functional and tractographic connectivity analysis toolbox 
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Figure 3 | ROIs within RSNs with significant brain connectivity group differences (a) VAN, 

orange = right DLPFC, blue = left temporal lobe, green = right temporal lobe. (b) DMN, red ROI 

= cerebellum/lateral occipital cortex, yellow ROI = posterior cingulate cortex (PCC). ROIs, 

regions of interest; RSNs, resting state networks; A, anterior; P, posterior; R, right; L, left; S, 

superior; I, inferior 
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Figure 4 | Boxplots demonstrated lower anatomically weighted functional connectivity between 

ROI-pairs for the major depressive disorder (MDD) and healthy comparison (HC) participants. 

Boxplots also quantified the strength of connectivity for MDD and HC groups (a) AwFC 

between the left temporal lobe and the right DLPFC within the VAN (b) AwFC between the 

right temporal lobe and the right DLPFC within the VAN (c) AwFC between the occiptial 

lobe/cerebellum and the PCC within the DMN. AwFC, anatomically weighted functional 

connectivity; DLPFC, dorsolateral prefrontal cortex; VAN, ventral attention network; DMN, 

default mode network; Occ., occipital; Cerr., cerebellum; PCC, posterior cingulate cortex. 

Asterisks identify significant between-group differences following FDR correction (p < .05) 
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3.1 Abstract 
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Neural network-level changes underlying symptom remission in major depressive disorder 

(MDD) are often studied from a single perspective. Multimodal approaches to assess 

neuropsychiatric disorders are evolving, as they offer richer information about brain networks. A 

FATCAT-awFC pipeline was developed to integrate a computationally intense data fusion 

method with a toolbox, to produce a faster and more intuitive pipeline for combining functional 

connectivity (FC) and structural connectivity (SC). The combined measure is known as 

anatomically weighted functional connectivity (awFC). Ninety-three participants from the 

Canadian Biomarker Integration Network for Depression study (CAN-BIND-1) were included. 

These individuals with MDD treated with 8 weeks of escitalopram and adjunctive aripiprazole 

for another 8 weeks, and between-group connectivity (SC, FC, awFC) comparisons were 

performed for remitters (REM) (defined as Montgomery-Asberg Depression Rating Scale score 

≤10 at week-8 sustained through to week-16) versus non-remitters (NREM) (defined as MADRS 

score >10 at week-8 sustained through to week-16) at baseline and 8 weeks. Additionally, a 

longitudinal study analysis was preformed to compare connectivity changes in REM from 

baseline to week-8.  The association between cognitive performance and awFC were also 

assessed. REM were distinguished from NREM by lower awFC within the default mode, 

frontoparietal, and ventral attention networks. Compared to REM at baseline, REM at week-8 

revealed increased awFC within the dorsal attention network and decreased awFC within the 

frontoparietal network. A medium effect size was observed for most results. AwFC in the 

frontoparietal network was associated with cognitive flexibility for the NREM group at week-8. 

In conclusion the practicality of the FATCAT-awFC pipeline, allowed us to better evaluate 

awFC differences between groups.   
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3.2 Introduction 

 

Major depressive disorder (MDD) is one of the most common mental health disorders affecting 

approximately 163 million people worldwide, accounting for high levels of morbidity, mortality 

and psychosocial functional impairment (James et al., 2018). Antidepressants are one of a 

number of treatment options used in the management of MDD (Gautam et al., 2017; Kennedy et 

al., 2016). Selective serotonin reuptake inhibitors (SSRIs) are often the first choice of 

antidepressant treatment for MDD (Cipriani et al., 2016; Middleton et al., 2005). One of the most 

commonly prescribed SSRIs for the treatment of MDD is escitalopram (Kaplan & Zhang, 2012).  

 

Clinical remission has become the gold standard and primary goal of MDD treatment (Ballenger, 

1999; Khoo et al., 2015; McIntyre et al., 2006; Stahl, 1999). The Diagnostic and Statistical 

Manual-IV (DSM-IV-TR) (Diagnostic and Statistical Manual of Mental Disorders, 2000) 

defines remission in MDD as the ‘absence or near absence of the signs and symptoms’ of 

depression. Other important characteristics of MDD remission after treatment include: the 

feeling of a return to normal self, improved mental health, and improved functioning 

(Zimmerman et al., 2006).  As such it is of interest to study the effect behavioural changes have 

on brain connectivity in MDD remission. It is in the MDD remitters that we expect to see 

changes in connectivity after treatment, because it has been extensively documented that MDD 

remitters show improved behavioural performance (Zimmerman et al., 2006).  However, 

although symptom remission has become the primary goal of MDD treatment, remission rates 

vary from 30 to 50 percent in research-based, 6-14-week trials, involving symptomatic 

participants with MDD (Thase et al., 2005, 2010; Trivedi et al., 2006). In addition, participants 
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with MDD who fail to attain remission status from one round of antidepressant treatment, have a 

much lower remission rate with each subsequent treatment attempt (Rush et al., 2006). Non-

remission in MDD is often associated with higher healthcare resource utilization and costs 

(Byford et al., 2011; Dennehy et al., 2015; Kubitz et al., 2013; Mauskopf et al., 2009).  

 

Previous neuroimaging studies in MDD have used structural connectivity (SC) and functional 

connectivity (FC) to identify neural biomarkers for the prediction of treatment outcomes, 

including remission (Korgaonkar et al., 2014, 2020). Building on this work, examining the brain 

connectivity changes between baseline and follow-up in patients with remitted MDD (REM) and 

patients with non-remitted MDD (NREM) may provide us with a better understanding of the 

underlyingnetwork-level differences that distinguish these two groups.  Alongside clinical 

remission, cognitive remission is a goal in the treatment of MDD (McIntyre et al., 2013). 

Cognitive dysfunction is one of the most common symptoms of MDD (Fava et al., 2006; Lee et 

al., 2012).  Cognitive dysfunction impacts multiple cognitive domains such as memory, difficulty 

in decision making, and loss of cognitive flexibility (Jaeger et al., 2006; McCall & Dunn, 2003; 

Naismith et al., 2007).  While general symptom remission may be achieved with 

pharmacotherapy, cognitive dysfunction may persist (Conradi et al., 2011; Hasselbalch et al., 

2011; Snyder, 2013). Many of the same brain regions that play a role in these cognitive 

dysfunctions are implicated in MDD (Albert et al., 2019).  Therefore, because of this overlap we 

want to try and understand the association between those cognitive domains and remission. 

Reports of cognitive deficits in REM have been inconsistent, with some reports of cognitive 

improvements (Abo Aoun et al., 2019a; Gudayol-Ferré et al., 2015) and other studies reporting 

persistent cognitive deficits (Bhalla et al., 2006; Conradi et al., 2011; Reppermund et al., 2009).  
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Combining SC and FC data can capture unique and complimentary aspects of the underlying 

Resting State Networks (RSN) in REM and NREM. This study focuses on connectivity within 

five RSNs affected in MDD: the default mode network (DMN), dorsal attention network (DAN), 

ventral attention network (VAN), frontoparietal network (FPN), and limbic network (LIM). 

These five networks were drawn from the 7-network model suggested by Buckner et al. (2011). 

The visual and auditory networks were excluded, similar to a meta-analysis of FC conducted by 

Kaiser et al. (2015), which specifically investigated RSNs implicated in MDD.  

 

Both structural and functional network-level connectivity changes within RSNs have shown 

connectivity changes associated with remission status (REM or NREM after treatment), both at 

baseline and after a course (e.g. 8 weeks) of antidepressant treatment.  Karim et al (2017) 

assessed resting-state FC at different intervals starting at baseline and ending at week-12.  They 

found that REM showed decreased connectivity in the DMN from baseline to week-12, whereas 

there was increased connectivity in the executive control network, part of the DAN. These 

findings were attributed to a reduction in rumination and anxiety and greater cognitive control 

(Karim et al., 2017). These patterns appear to fit within the framework that MDD is 

characterized by functional under-activity particularly in the executive control network (i.e. pre- 

and post-central gyrus), and with response to antidepressant treatment there is a shift toward 

normalized function that is reflected in either strengthening or weakening of brain connections 

within the executive control network or the DMN (Karim et al., 2017). Studies have also 

assessed whether FC and SC after antidepressant treatment can distinguish remission status 

(REM vs NREM). A study by Xiao et al. (2019), found that rapid remission (within 1-5 days) 
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was associated with lower FC between several brain regions after five days (i.e. between 

subgenual cingulate cortex and DMN nodes) (Xiao et al., 2019). Additionally, Pillai et al. (2019) 

performed an SC analysis using fractional anisotropy (FA) after 8 weeks of antidepressant 

treatment and reported lower SC between the raphe nucleus and amygdala for REM compared to 

NREM. Hence, treatment of MDD is associated with either increases or decreases of brain 

connectivity, reflecting normalization – also known as reversal – of the connectivity patterns 

observed with MDD prior to medication therapy (Wang, Xia, et al., 2014).  Combining SC and 

FC may then provide a more comprehensive understanding of brain changes and their 

association with clinical variables in REM and NREM (Zheng et al., 2018).  

 

For this project, we examined neuroimaging and clinical data from the Canadian Biomarker 

Integration Network for Depression study (CAN-BIND-1) comprised of patients with MDD 

treated with escitalopram alone and with escitalopram and adjunctive aripiprazole (Kennedy et 

al., 2019; Lam et al., 2016). The goal was to evaluate whether network-level differences can be 

detected (1) between REM and NREM groups at baseline, (2) between REM and NREM groups 

at week-8, and (3) within the REM group between baseline and week-8. We applied a FATCAT-

awFC pipeline, developed in our previous work (Ayyash et al., 2021), that involves the 

combination of the Functional and Tractographic Connectivity Analysis Toolbox (FATCAT) 

(Taylor & Saad, 2013) with a computationally intense method, known as the Anatomically-

Weighted Functional Connectivity (awFC) method (Bowman et al., 2012).  To the best of our 

knowledge, this is the first study to perform a data fusion analysis using functional and structural 

connectivity, to assess the REM and NREM population and study traditional FC and SC within 

RSNs.  We also performed separate and comparative brain connectivity analyses between FC, 
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SC, and awFC. Finally, we explored the association of brain connectivity changes with cognition 

in RSNs within the REM and NREM groups at baseline and week-8.  We hypothesized that 

NREM will produce lower connectivity strength between brain regions compared to REM, at 

baseline and week-8.  This hypothesis was raised given consideration of the study by 

Korgaonkar et al. (2020), who demonstrated that at pre-treatment (baseline) NREM displayed a 

lower connectivity compared to REM, which was amplified post-treatment (week-8). We also 

hypothesized that the REM group will have reduced connectivity from baseline to week-8. 

Finally, we hypothesized that connectivity strength will be associated with cognitive 

performance in the REM and NREM groups at week-8.    

 

3.3 Materials and Methods 

 

3.3.1 Participants  

The Canadian Biomarker Integration Network for Depression (CAN-BIND-1) study included 

participants from six Canadian academic health science institutions (Kennedy et al., 2019; Lam 

et al., 2016; MacQueen et al., 2019). At each institution, the research protocol was reviewed and 

approved by the respective research ethics board.  

 

3.3.2 Inclusion and Exclusion Criteria  

 

The included 211 participants from six Canadian academic health science institutions (Kennedy 

et al., 2019; Lam et al., 2016; MacQueen et al., 2019). The inclusion criteria for these 

participants included: 18-60 years of age; diagnosis of MDD by DSM-IV-TR criteria and 
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confirmed with the Mini International Neuropsychiatric Interview (Sheehan et al., 1998); and a 

Montgomery-Åsberg Depression Rating Scale (MADRS) (Montgomery & Asberg, 1979) score ≥ 

24. If previously taking antidepressants, a medication washout of at least five half-lives was 

required. The exclusion criteria included: diagnoses of psychosis, bipolar I/II disorder, substance 

use disorder (in the past 6 months), prior brain injury, and prior neurological diseases; four failed 

trials of pharmacological intervention; history of non-response or intolerance to escitalopram, 

pregnant or breastfeeding, high suicidality risk; and any magnetic resonance imaging 

contraindications (MacQueen et al., 2019). Written, informed consent was obtained from all 

participants before participation in the study, and participants received compensation for their 

time and effort.  

 

3.3.3 Treatment 

 

Following baseline testing, MDD patients began treatment with the SSRI escitalopram, at a dose 

of 10mg/d, which was then increased (up to 20 mg/d) at week-2 or week-4 if a 20% or 50% 

MADRS reduction from baseline was not observed, respectively (Lam et al., 2016). All 

participants took escitalopram in the first phase of the study (duration of 8 weeks).  In phase 2, 

responders (defined as MADRS reduction from baseline to Week 8 ≥50%) continued to take 

escitalopram alone, while non-responders were given adjunctive aripiprazole (0.5-2 mg/d) for 

another 8 weeks.  Data were collected at baseline before medication treatment and at week-8 

after 8 weeks of escitalopram treatment.  
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3.3.4 Cognitive testing 

 

The CNS-Vital Signs (CNS-VS) computerized cognitive test battery was used to assess 

participants’ level of cognitive functioning (Gualtieri & Johnson, 2006). Of the administered 

tests, five cognitive subscales of the CNS-VS test were examined: memory, cognitive flexibility, 

complex attention, processing speed and neurocognitive index (a summary score that 

encompasses the mean of five cognitive variables: complex attention, memory, psychomotor 

speed, reaction time, and cognitive flexibility) (Iverson et al., 2009). 

 

3.3.5 fMRI Data Acquisition and Processing 

 

The rsfMRI scanning was performed on 3.0 T scanners (Three Discovery MR750 from GE 

Healthcare, USA; One Intera from Phillips, Netherlands; One Signa HDxt from GE Healthcare, 

USA; One Trio Tim from Siemens, Germany), in which brain MRI images were acquired. For 

rsFMRI acquisition the participants lay still in the MRI scanner with eyes open, looking at a 

fixation cross for a total of 10 minutes. Functional images were acquired with an echo planar 

imaging (EPI) sequence with the following parameters: repetition time (TR)/echo time (TE) = 

2000/30ms, 36-40 axial slices, 64 × 64 matrix, 75° flip angle, 256 mm field of view (FOV) 

(exception: Queens site FOV =1536mm), 4 mm section thickness, with no slice gap, and 300 

volumes with one run per session.   

 

3.3.6 T1-Weighted Image Acquisition  
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Anatomical reference scans were obtained with the following parameters: TR/TE/flip angle: 6.4–

7.5 ms/2.7–3.5 ms/8–15° (exception: Siemens Scanners TR = 1760, 1840 ms), inversion time: 

450–950 ms, voxel size: 1 × 1 × 1 mm3, matrix dimensions 240 × 240 and 256 × 256, slice 

thickness: 1 mm, number of slices: 155–192. Time of acquisition for anatomical scans varied 

from 3:30 to 9:53 minutes. For more information, see (Lam et al., 2016; MacQueen et al., 2019).  

 

3.3.7 fMRI Preprocessing  

 

The software package, Optimization of Preprocessing Pipelines for NeuroImaging-fMRI 

(OPPNI) was employed for image preprocessing (Churchill et al., 2015; Strother, 2006). For 

fMRI images, the first five images were discarded to control for destabilization of the magnetic 

field at scan start. To correct for participant movement during the scan a principal component 

analysis (PCA) was used to calculate the Euclidean distance of each volume from the median 

coordinates. The volume with the smallest Euclidean distance from the mean was selected to be 

the reference volume, and was then utilized in the motion correction step, AFNI’s 3dvolreg 

function. To mitigate the effects of participant motion, rigid-body realignment was performed, 

whereby subsequent time-series volumes were transformed to match the reference volume. In the 

censoring step, slices that were identified as outliers were replaced by interpolated values from 

neighboring time points via cubic splines. Fourier interpolation was used to correct for timing 

offsets between interleaved axial slices using AFNI’s 3dTshift (TIMECOR) a slice-timing 

correction function. FMRI images were then smoothed using the 3dBlurToFWHM command in 

AFNI at full width half maximum = 6 mm in the x y z directions. Participant-specific non-

neuronal tissue masks were generated via the PHYCAA+ algorithm and a second-order Legendre 
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polynomial was used for temporal detrending. The six motion parameters obtained from the 

motion correction step were regressed out using PCA. Principle components explained 85% of 

the variance of the motion parameters. In addition, nuisance regressors (such as cerebrospinal 

fluid, white matter, and global signal) were used as temporal covariates and regressed out. 

Finally, a low-pass filter was applied to the functional data to remove physiological noise with a 

frequency cut-off of 0.1 Hz.  

 

3.3.8 Resting-State Functional Connectivity Analysis 

 

The FATCAT-awFC pipeline has two inputs; one is from the functional data (rsfMRI) and the 

second is from the structural data (DTI).  First, the functional data is fed into the FATCAT 

pipeline. Resting-state functional data was evaluated using group independent component 

analysis (gICA) using temporal concatenation with FSL’s Multivariate Exploratory Linear 

Decomposition into Independent Components (MELODIC) version 6.0 (Griffanti, 2019). REM 

and NREM participants were combined in the analysis (at which time points?). The group ICA 

chooses the main overlapping brain regions from the concatenated individual data; the 

dimensionality was selected to be 20 components. Each gICA component was quantitatively 

compared to the Yeo 7-network map to identify RSNs (Yeo et al., 2011). Using FATCAT’s 

3dMatch tool (Taylor & Saad, 2013), dice coefficients were calculated, whereby the highest dice 

coefficient was used to extract the independent component (IC) that most resembled the Yeo et 

al (2011) template (Yeo et al., 2011). This was further validated by visual inspection. FATCAT’s 

3dROIMaker (Taylor & Saad, 2013) step was applied to threshold the spatial maps (DMN, Z= 

3.4; FPN, Z= 5.4; DAN, Z = 0.85; VAN, Z= 3; LIM, Z= 1.3). Network parcellation thresholds 
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were selected for the spatial maps with a visual similarity to networks observed in the Yeo 

network and are similar to the standard networks in the literature (Kaiser et al., 2015b; Yeo et al., 

2011). These networks ranged in complexity from 3-5 nodes. The group-derived regions of 

interest (ROIs) were then projected on to each participant’s functional data. FATCAT’s 

3dNetCorr (Taylor & Saad, 2013) tool was used to calculate correlations between the mean time-

series of each region pair within each network for each participant. A set of inflated ROIs (which 

were inflated by two voxels) was also produced from the 3dROIMaker command, for use in the 

diffusion side of the pipeline. 

 

3.3.9 DTI Data Acquisition and Processing 

 

Diffusion weighted imaging was conducted using a single-shot spin-echo EPI sequence. 

Diffusion gradients at b = 1000 s/mm2, were applied sequentially along 31 non-collinear 

directions in most sites (exceptions, Queens: 30, University of British Columbia: 30). An 

additional scan without diffusion sensitizing at B=0 s/mm2 was also collected.  The DTI 

acquisition protocol included one-signal averages of a whole brain sequence: TR = 8000 ms 

(exception: University of British Columbia: 9000), TE = 94 ms, FOV: 240 × 240 mm, matrix: 96 

× 96 with 52-58 slices, voxel size: 2.5 mm3, acceleration factor R =2, with an acquisition 

duration of approximately 5 minutes for one dataset. Image space reconstruction (i.e. GE 

ASSET, Phillips SENSE) was used for most sites, except for 3 sites that used the GRAPPA k-

space method.  
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3.3.10 DTI Preprocessing 

Each volume was co-registered using an affine transformation (FSL eddy_correct tool) to the 

first B0 volume to correct for motion and eddy current distortions(?). B-values were rotated 

accordingly. Data were then skull stripped, and a diffusion tensor reconstruction was calculated 

using a weighted least squares fit and FA maps were created. All the participant’s FA data were 

then aligned onto a standard 2-mm FMRIB58 FA template (Webster, 2012) using the non-linear 

registration tool FNIRT. FSL’s tract-based spatial statistics was used to project each participant’s 

FA maps onto the skeletonized mean-FA template (to avoid partial volume effects).  

 

3.3.11 DTI Analysis 

 

As previously mentioned, the FATCAT-awFC pipeline has two data inputs: the functional RS 

data and the structural diffusion data. The diffusion data was processed using the FATCAT 

pipeline (Taylor & Saad, 2013) as shown in Ayyash et al. (2021). Bayesian estimation of 

diffusion parameters were determined using FSL’s Bayesian Estimation of Diffusion Parameters 

Obtained using Sampling Techniques (BEDPOSTX). Uncertainty estimates for DTI parameters 

(FA and first eigenvector) were determined for each participant, using FATCAT’s 3dDWUncert 

(Taylor & Saad, 2013) with 300 iterations (Jackknife resampling). DTI parameters and 

uncertainty measures were used to perform probabilistic tractography. Inflated ROIs (produced 

from 3dROIMaker) were transformed from the Montreal Neurological Institute (MNI) space 

(Ashburner & Ridgway, 2013) of the resting state data to the diffusion-weighted space, for 

tractography analysis.  Next, 3dTrackID (Taylor & Saad, 2013) was applied to produce an 

intensity map of probabilistic connections with the following settings for all datasets: FA > 0.15; 
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turning angle < 50°, Nseed = 5 tract seeds per voxel; Nmc = 1000 Monte Carlo iterations and a 

fractional threshold of ftr = 0.05 (so that ftr x Nseed x NMC = 250 tracts/voxel). 3dTrackID (Taylor 

& Saad, 2013) also generated the number of streamlines (fiber count) and anatomical distances 

between region pairs. The number of streamlines was then used to calculate the strength of 

connectivity between each pair of ROIs as a part of the awFC technique (refer to [Ayyash et al. 

(2021)]). To reduce the tractography distance bias, a Poisson regression-based adjustment was 

performed: log(𝜇 𝑆!" 𝑔!" =  𝛼! +  𝛼!𝑔!", where 𝑔!"is the distance between each region pair, 

𝑆!"is the unbiased number of streamlines, 𝛼! is the bias adjustment factor. The number of 

streamlines between region pairs was corrected accordingly. FC between brain regions can be 

supported by either direct or indirect SC (Honey et al., 2009; Teipel et al., 2010). To incorporate 

indirect connections into the SC measure, the following was applied: πij=max[πij, maxm(πimπmj)], 

where π are the probabilities of SC, i is the starting ROI, j is the target ROI, and m is the third 

connection. 

 

3.3.12 awFC Analysis  

 

Once the FC and SC values between ROIs in each network were estimated, FC data and 

weighted SC data were fused together using the awFC technique [Refer to (Ayyash et al., 2021) 

for the pipeline design]. The functional and structural dissimilarity matrices were computed and 

constructed for each ROI pair within each network for each participant. Dissimilarity was 

calculated for each ROI pair by one minus connectivity similarity (functional dissimilarity, one 

minus FC; structural dissimilarity, one minus SC). Data fusion was calculated using the formula: 

𝑑!" = 𝑤!" ∙ 𝑓!" , where dij is a combined dissimilarity measure, wij is structural dissimilarity and fij 
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is functional dissimilarity. Next, we used the dij to calculate the awFC metric: 𝑎𝑤𝐹𝐶 =  1−

𝑑!" . In the current study we examined awFC between ROI pairs for (1) REM and NREM at 

baseline, (2) REM and NREM at week-8, (3) REM at baseline and REM at week-8, within each 

ROI pair for every RSN using a Mann-Whitney U test. Effect sizes were calculated using 

Cohen's d (Cohen, 1998). 

 

3.3.13 Group Analyses Using R 

 

Mann-Whitney U tests were performed in each of the 3 paired comparisons (REM versus NREM 

at baseline; REM versus NREM at week-8; REM at baseline versus week-8). The significance 

threshold for comparisons was set at p < 0.05. To account for multiple comparisons, p-values 

were adjusted by controlling for the False Discovery Rate (FDR) using the Benjamini-Hochberg 

procedure. In this paper, we only report the results that survive the FDR correction for multiple 

testing (padj < 0.05). 

 

3.3.14 Associations of Cognitive Variables to awFC Using Principal Component Analysis 

and Principal Component Regression 

 

RSNs awFC may be related to cognitive and behavioural changes in MDD at remission. We 

explored the relationship between awFC and cognitive variables in each region pair at the level 

of p < 0.05. Associations were explored only for regions with significant awFC differences 

between REM and NREM groups.  
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Five cognitive variables of the CNS-VS test were examined: memory, cognitive flexibility, 

complex attention, processing speed and neurocognitive index. Multicollinearity among these 

variables was assessed with Pearson correlation using the ggpairs function from the GGally 

package in R (Schloerke et al., 2018), which confirmed that significant correlations existed 

between the five cognitive variables [See Supplementary Fig.1]. Variables that are correlated are 

considered redundant, thus a PCA can be applied to reduce the redundancy (Kassambara, 2017; 

Refaat, 2010). The Principal components produced from the PCA are orthogonal and 

uncorrelated to one another (Hair et al., 2009). PCA was performed with the R package (R Core 

Team, 2018) using the princomp function. A PCA was applied on the five cognitive variables 

and visually displayed using the fviz_pca_var function, from the “factoextra package” 

(Kassambara, 2017).  It was considered sufficient to retain one component from PCA to interpret 

the data, if they met the following criteria: (1) Principal components (PCs) having an eigenvalue 

greater than one (Jackson, 1993) (2) PCs corresponding to a minimum of 60% explained 

variance from the data] (3) Visually, components before the first ‘elbow’ of the Scree plot were 

retained. [Refer to Supplementary Fig.1]. The output of PCA (PCs) was used as an input 

(independent variables) for Principal Component Regression (PCR). A linear mixed effects 

regression was performed, whereby the PCs, MADRS, age and sex were taken to be the 

explanatory variables and awFC was taken to be the outcome variable. A two-level factor (REM 

and NREM) interaction effect was included in the mixed effects model. To account for possible 

site bias in the data, participants nested within site were included as a random effect. Principal 

component regression (PCR) was applied using the lme function from the nlme package in R (R 

Core Team, 2018). For each region pair within a network, PCs with significant associations with 

the awFC were post-hoc tested. Interpretation of the PCs can be made by examining the 
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component loadings (Hair et al., 2009). The component loadings are computed correlations 

between the original variables and the PCs (Hair et al., 2009). A variable was considered 

significantly loaded on a PC with a cut-off absolute threshold correlation of 0.3 (Hair et al., 

2009). The most important variables (high loadings on PCs) were identified to perform multiple 

linear regression models to further explore the association between the original variables (with 

the highest loadings on each PC), and the outcome variable (awFC).  

 

Post-hoc analyses were carried out only for significant ROI-pairs within RSNs. Three separate 

analyses were conducted using multiple linear regression analysis. The significant regions pairs 

were assessed for the following groups: (1) REM and NREM at baseline, (2) REM and NREM at 

week-8, (3) REM at baseline and REM at week-8. For the first analysis, the association between 

cognitive variables at week-8 and awFC at week-8 were assessed using PCA/PCR. The second 

analysis explored the association between the change in cognitive variables (from baseline to 

week-8) and change in awFC (from baseline to week-8) using PCA/PCR. The third analysis 

evaluated the association between the change in cognitive variables (from baseline to week-8) 

and awFC, at baseline. Changes in awFC were calculated by subtracting the post-treatment 

(week-8 awFC) from the pre-treatment (baseline awFC) connectivity values, change in MADRS 

was calculated by subtracting the baseline MADRS from the week-8 MADRS as previously 

described (Persson et al., 2020). 

 

3.4 Results 
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3.4.1 Participants in the analysis 

 

MADRS scores were used to assess depression severity and to define remission status. We 

defined REM as participants that had a MADRS score ≤10 at week-8, that was maintained at 

week-16 of treatment (Hawley et al., 2002; Mendlewicz, 2008), whereas participants with a 

MADRS score >10 at week-8 and maintained a >10 score at week-16 (after 8 weeks of 

adjunctive treatment with aripiprazole) were labeled as NREM. This study focused exclusively 

on imaging data from the REM and NREM participants at baseline and week-8.  

 

From the 211 participants in the CAN-BIND-1 study, 147 met these REM and NREM criteria. 

Additional participants were removed from this sample because of excessive motion in the 

scanner (n = 21) and missing resting state functional magnetic resonance imaging (rsfMRI) or 

diffusion tensor imaging (DTI) data at baseline (n = 16) and at week-8 (n = 18). This resulted in 

the exclusion of 23 REM and 31 NREM, leaving 93 participants (66 NREM and 27 REM) 

retained for this analysis.   

 

3.4.2 Demographics  

 

Table 1 summarizes the demographic characteristics and provides medical history of 

antidepressants for the participants in each group belonging to: REM and NREM.  

 

Table 1. Demographic Characteristics 

Characteristic Non-Remitters,  Remitters,  p-
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N = 661 N = 271 value2 

Sex   0.711 

  Female 44 (66.7%) 17 (63.0%)  

  Male 22 (33.3%) 10 (37.0%)  

Age in years    Mean (SD) 33 (12) 34 (11) 0.402 

MADRS Mean (SD) 21 (8) 5 (3) <0.001* 

Education, years Mean (SD) 17 (2) 17 (4) 0.724 

Age of Onset of MDD, years Mean 

(SD) 
19 (7) 19 (9) 0.731 

Duration of Current MDE, 

Months 
  0.801 

  ≤ 12 months 35 (53.0%) 14 (51.9%)  

   1-2 years 8 (12.1%) 2 (7.4%)  

  > 2 years 19 (28.8%) 9 (33.3%)  

  Other 4 (6.1%) 2 (7.4%)  

Number of MDE's Mean (SD) 4 (3) 5 (3)  

Antidepressants    

  Drug Naive 33 (50.0%) 11 (40.7%)  

  Past History of Antidepressants 33 (50.0%) 16 (59.3%)  

Comorbidities    

  Agoraphobia 6 (9.1%) 4 (14.8%)  

  Social Anxiety Disorder 14 (21.2%) 6 (22.2%)  
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  Bulimia Nervosa 1 (1.5%) 1 (3.7%)  

  Generalized Anxiety Disorder 15 (22.7%) 4 (14.8%)  

  Obsessive-Compulsive Disorder 2 (3.0%) 1 (3.7%)  

  Panic Disorder 9 (13.6%) 6 (22.2%)  

  Posttraumatic Disorder time frame 7 (10.6%) 2 (7.4%)  

  Alcohol Abuse (past 12 months) 1 (1.5%) 0 (0.0%)  

  Non-alcohol substance abuse (past   

12 months) 
1 (1.5%) 0 (0.0%)  

1 n (%); Mean (SD) 

2 Pearson's Chi-squared test; Wilcoxon rank sum test; Fisher's exact test  

* Bonferroni correction for multiple testing 

Note:  N= Number of participants, SD = Standard Deviation, MDD = Major Depressive 

Disorder, MDE = Major Depressive Episode, MADRS = Montgomery-Asberg 

Depression Rating Scale. 

 

3.4.3 ROIs Defined Within RSNs 

 

The results shown are for group-wise parcellation obtained from the REM and NREM groups. 

Table 2 lists the volume, anatomical names and locations of each group of ROI within each RSN.  
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3.4.4 Anatomically Weighted Functional Connectivity Group Comparisons 

 

The Wilcoxon-test showed a significant difference in awFC between groups. Fig. 1 illustrates the 

ROI pairs with significant connectivity differences between groups at padj < 0.05 (FDR 

corrected). Our results revealed group differences predominantly in the comparison between 

REM and NREM at week-8 in all networks except the LIM. There was also a connectivity 

difference identified for REM at baseline compared to week-8 within the DAN. However, no 

group differences in connectivity were detected when comparing the REM to the NREM at 

baseline. These results are summarized in Table 3.  In addition, as a reference, separate analyses 

were performed for SC and FC between each ROI pair within each RSN. Table 4 illustrates 

group-level comparison of FC and SC for each awFC comparison. 

 

Group Comparisons at Week 8: Comparing connectivity within RSNs for REM and NREM at 

week-8, revealed connectivity differences in the DMN, FPN, VAN, and DAN. Table 5 contains a 

summary of the mean and standard error of network nodal connections with significantly 

different awFC for each group. Results showed that the awFC was significantly lower in the 

REM as compared to NREM at week-8 in the DMN: between nodes linking the a) middle 

prefrontal cortex and the left middle temporal gyrus [See Fig. 2a] b) the left angular gyrus and 

the left middle temporal gyrus [see Fig. 2b] c) between the left angular gyrus to middle 

prefrontal cortex [see Fig. 2c]. There were also significantly lower awFC values within the FPN 

between regions of the left cerebellum and the right orbitofrontal gyrus for the REM compared 

with NREM at week-8 [Fig. 2d]. In addition, lower connectivity values were found in the VAN 

for the REM compared to NREM at week-8 between the right insular cortex and the left middle 
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frontal gyrus [Fig. 2e] and between anterior cingulate gyrus and the left middle frontal gyrus 

[Fig. 2f].  

 

Group Comparisons Examining Change from baseline to Week 8: Within group comparisons 

examining the connectivity changes associated with a positive medication response identified 

significantly greater awFC connectivity in the DAN between the pre-central and post-central 

gyrus and weaker connectivity in the FPN between the left cerebellum and right orbitofrontal 

gyrus. See figure 3g and 3h.  

 

3.4.5 Cognitive Variables Associated with awFC 

 

3.4.6 Principal Component Analysis  

 

PCA was performed on five cognitive variables (processing speed, memory, cognitive flexibility, 

neurocognitive index and complex attention), which revealed one significant PC with an 

eigenvalue>1 (eigenvalue = 3.34) and accounted for 63.8% of the total variance in the data [See 

Supplementary Fig.1]. Processing speed was the highest contributor to the first PC, followed by 

memory, cognitive flexibility, neurocognitive index and complex attention (a total of five PCs). 

Significant associations were found with the outcome variable awFC and the cognitive variables 

from the first PC in the FPN between the right medial frontal gyrus and the left cerebellum.  

 

3.4.7 Principal Component Regression 
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PCR was then performed. The PCR included awFC as the outcome variable and the first PC, 

MADRS, age and sex as independent variables. In addition, random effects (participants nested 

within site) were included. To further investigate which cognitive variable was driving the effect 

for the PCs, separate analyses were conducted for each group comparison, correlating awFC in 

different groups (at baseline, week-8 and from baseline to week-8) with cognitive variables and 

MADRS.  

 

3.4.8 Baseline awFC Association with Cognitive Variables 

 

After performing a PCA [see Principal Component Analysis section], a PCR was performed to 

examine associations between the first PC (among five PCs) and the awFC at baseline. We did 

not observe a significant association between the first PC and awFC.  

 

3.4.9 Association of Week-8 Cognitive Variables with Week-8 awFC  

 

After performing a PCA [see Principal Component Analysis section], a PCR was performed to 

examine associations between the first PC (among five PCs) and the awFC at week 8. We found 

a significant association between the first PC and awFC (padj = 0.01) between the left cerebellum 

to the right orbitofrontal gyrus, which prompted further analysis to investigate which cognitive 

variable contributed to this significance. Multiple linear regressions were performed examining 

each cognitive variable and awFC. The post-hoc regression revealed that brain connectivity 

between the left cerebellum to the right orbitofrontal gyrus was associated with cognitive 

flexibility (padj = 0.0011), and neurocognitive index (padj = 0.021) for the week-8 NR.  
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3.4.10 Changes (from baseline to week-8) in awFC in Association with Changes (from 

baseline to week-8) in Cognitive Variables 

 

After performing a PCA [see Principal Component Analysis section], a PCR was conducted to 

assess the association between the first PC (among five PCs) and the changes in awFC from 

baseline to week-8 (calculated by subtracting week-8 awFC from baseline awFC). However, 

there were no significant associations between the first PC and changes in awFC.  

 

Table 2 | Summarized characteristics of all the brain regions within each resting-state network.  

The volume (number of voxels), centroid location in MNI coordinates and anatomical names of 

each regions of interest (ROIs) are listed.  ROIs were defined using FATCATs 3dROIMaker 

command.  

 

ROI no. Anatomical location  Peak MNI 

coordinates 

x     y    z 

Volume  

(# of voxels) 

DEFAULT MODE NETWORK 

1 Left middle temporal gyrus  -62 -22 -16 55 

2 Middle prefrontal cortex  -2 54 8 55 

3 Posterior cingulate 

cortex/Precuneus 

-2 -54 28 55 

4 Left angular gyrus -50 -62 28 55 
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FRONTOPARIETAL NETWORK 

5 Left cerebellum  -34 -70 -40 45 

6 Right orbitofrontal gyrus  42 54 -8 10 

7 Right middle frontal gyrus  34 14 56 45 

8 Right angular gyrus (lateral 

occipital cortex)  

50 -54 44 45 

9 Paracingulate gyrus  6 34 36 10 

LIMBIC NETWORK 

10 Right parahippocampal gyrus, 

amygdala, hippocampus, temporal 

fusiform cortex  

30 -6 -40 37 

11 Lingual gyrus  -6 -94 -4 37 

12 Paracingulate gyrus  2 10 52 37 

VENTRAL ATTENTION NETWORK 

13 Left insular cortex (frontal 

operculum cortex)  

-38 10 0 80 

14 Right insular cortex (frontal 

operculum cortex)  

42 14 -8 80 

15 Anterior cingulate gyrus, 

paracingulate gyrus 

-6 22 32 80 

16 Left middle frontal gyrus  -30 46 20 80 

DORSAL ATTENTION NETWORK 

17 Right and left postcentral gyrus  -42 -34 44 100 
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18 Left parahippocampal gyrus 

(anterior and posterior), lingual 

gyrus, temporal fusiform gyrus 

-26 -26 -20 40 

19 Right insular cortex 42 -2 8 36 

20 Right precentral gyrus 58 10 24 100 

21 Superior frontal pole, 

paracingulate gyrus 

6 54 12 65 

 

 

Table 3 | Anatomically weighted functional connectivity (awFC) was compared between groups 

using a Wilcox-test. Displayed are the significant differences of awFC measures between brain 

regions for: remitters vs non-remitters at baseline, remitters vs non-remitters at week8, and 

remitters at baseline vs remitters at week8  

  COMPARISON 

 

 

Start ROI 

 

 

End ROI 

REM vs 

NREM 

(baseline) 

 

REM vs NREM 

(week-8) 

 

REM (baseline) 

vs REM (week8) 

  DEFAULT MODE NETWORK 

L-MTG MPFC 1.00 0.0050* 0.037* 

L-MTG L-AG 1.00 0.0051* 0.108 

MPFC L-AG 1.00 0.014* 0.093 

FRONTOPARIETAL NETWORK 

L-CER R-OFG 0.921 0.008* 0.005* 
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VENTRAL ATTENTION NETWORK 

R-INS L-MFG 0.802 0.021* 1.00 

ACC/PCG L-MFG 0.901 0.027* 1.00 

DORSAL ATTENTION NETWORK 

R+L Post CG R-Pre CG 0.457 1.00 0.005* 

*p-value (FDR corrected)  < 0.05, REM = remitters, NREM = non-remitters, ROI = region of 

interest, L-MTG = left middle temporal gyrus, MPFC = middle prefrontal cortex, L-AG = left 

angular gyrus, L-CER = left cerebellum, R-OFG = right orbitofrontal gyrus, R-INS = right 

insular cortex, ACC/PCG = anterior cingulate cortex, L-MFG = left middle frontal gyrus, R+L 

Post CG = right and left postcentral gyrus, right Pre CG = right precentral gyrus 

Table 4 | Structural connectivity, functional connectivity and anatomically weighted functional 

connectivity were compared between groups using a Wilcoxon-test.  Regions where 

anatomically weighted functional connectivity was significant for: remitters at week-8 compared 

to NREM at week-8 and  REM at baseline compared to remitters at week-8 - and their 

corresponding structural and functional connectivity significance.is shown  

 

Start ROI 

 

End ROI 

SC  

p-value (FDR 

corrected) 

FC  

p-value (FDR 

corrected) 

awFC  

p-value (FDR 

corrected) 

Remitters at week-8 compared to non-remitters  at week-8 

 DEFAULT MODE NETWORK  

L-MTG MPFC 1.00 0.0051* 0.0050* 

L-MTG L-AG 0.00815* 0.005* 0.0051* 



.   148 

MPFC L-AG 0.960 0.015* 0.014* 

FRONTOPARIETAL NETWORK 

L-CER R-OFG 0.980 0.0095* 0.008* 

VENTRAL ATTENTION NETWORK 

R-INS L-MFG  0.370 0.023* 0.021* 

ACC L-MFG  0.310 0.030* 0.027* 

Remitters at baseline compared to remitters at week-8 

DORSAL ATTENTION NETWORK 

R+L Post CG  R-Pre CG  1.00 0.009 0.005* 

  DEFAULT MODE NETWORK  

L-MTG MPFC 1.00 0.037 0.037 

FRONTOPARIETAL NETWORK 

L-CER R-OFG 0.05* 0.009* 0.005* 

*p-value (FDR corrected) < 0.05. ROI = region of interest, SC = structural connectivity, FC = 

functional connectivity, awFC = anatomically weighted functional connectivity, FDR = false 

discovery rate, L-MTG = left middle temporal gyrus, MPFC = middle prefrontal cortex, L-AG = 

left angular gyrus, L-CER = left cerebellum, R-OFG = right orbitofrontal gyrus, R-INS = right 

insular cortex, ACC/PCG = anterior cingulate cortex, L-MFG = left middle frontal gyrus, R+L 

Post CG = right and left postcentral gyrus, right Pre CG = right precentral gyrus 

 

Table 5 | Anatomically weighted functional connectivity (awFC) was compared between groups 

using a Wilcoxon-test. ROI-pair connectivity metrics: mean, standard error and effect size for 

remitters at week-8 compared to non-remitters at week-8 and remitters at baseline compared to 
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remitters at week-8 are displayed.  Only the ROI-pairs with significant connectivity differences 

between groups are listed. The effect sizes were determined using Cohen’s d and reported. 

  REM at Week-8 NREM at 

Week-8 

  

Start ROI End ROI (Mean ± SE) 

 

(Mean ± SE) Effect size 

(Cohen’s d) 

Remitters at week-8 compared to non-remitters at week-8 

DEFAULT MODE NETWORK 

L-MTG  MPFC 0.35 ± 0.064 0.53 ± 0.034 0.60 

(medium) 

L-MTG L-AG 0.45 ± 0.049 0.60 ± 0.031 0.56 

(medium) 

MPFC L-AG 0.44 ± 0.053 0.60 ± 0.029 0.61 

(medium) 

FRONTOPARIETAL NETWORK 

L-CER R-OFG  0.056 ± 0.045 0.22 ± 0.036 0.59 

(medium) 

VENTRAL ATTENTION NETWORK 

R-INS L-MFG 0.21 ± 0.061 0.40 ± 0.031 0.69 

(medium) 

ACC L-MFG 0.39 ± 0.054 0.54 ± 0.022 0.71 

(medium) 

Remitters at baseline compared to remitters at week-8 
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REM at 

Baseline 

 REM at 

Week-8 

  

Start ROI End 

ROI 

(Mean ± SE) 

 

(Mean ± SE) 

 

Effect size  

(Cohen’s d) 

DORSAL ATTENTION NETWORK 

R+L Post CG R-Pre 

CG 

0.26 ± 0.034 0.39 ± 

0.047 

 0.63 

(medium) 

DEFAULT MODE NETWORK 

L-MTG MPFC 0.527 ± 0.038 0.358 ± 

0.062 

 0.13 

(negligible) 

  FRONTOPARIETAL NETWORK 

L-CER R-OFG  0.22 ± 0.038 

 

 

0.046 ± 

0.044 

 

 0.923 (large) 

 

REM = remitters, NREM = non-remitters, ROI = region of interest, SE = standard error, L-MTG 

= left middle temporal gyrus, MPFC = middle prefrontal cortex, L-AG = left angular gyrus, L-

CER = left cerebellum, R-OFG = right orbitofrontal gyrus, R-INS = right insular cortex, 

ACC/PCG = anterior cingulate cortex, L-MFG = left middle frontal gyrus, R+L Post CG = right 

and left postcentral gyrus, right Pre CG = right precentral gyrus 

 

3.5 Discussion 
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To our knowledge, this is the first study to combine fMRI and DTI in a fused manner to assess 

REM and NREM in MDD, while simultaneously comparing these results to traditional FC and 

SC. The current study investigated awFC in MDD in five RSNs (the DMN, FPN, DAN, VAN, 

and LIM), with the aim of identifying differences between a) baseline and week-8 for the REM 

group, b) REM and NREM at baseline prior to the initiation of medication therapy, and c) REM 

and NREM following 8 weeks of treatment with SSRI escitalopram. Using the FATCAT-awFC 

pipeline (Ayyash et al., 2021), we identified differences in connectivity strength in four of five 

RSNs examined. Within group differences for REM were observed between the baseline period 

and week-8, and revealed REM at week-8 to have increased awFC across time within the DAN 

between the right and left post central gyrus to right precentral gyrus. In the comparison at 

baseline between REM and NREM no significant group differences were identified among five 

RSNs. This finding is similar to reports in the literature using rsfMRI analysis, where there were 

no signs of group differences at baseline between REM and NREM (Wang et al., 2014).  

However, we did find group differences, particularly reductions in awFC at 8 weeks for the 

REM compared to NREM across different RSNs including the: DMN, FPN and VAN. This will 

be discussed in greater detail below. Our findings are consistent with observations that in MDD, 

response to medication is accompanied not only by increased connectivity within the executive 

control network (i.e. pre and post central gyrus) brain regions longitudinally (from baseline to 

week 8) (Karim et al., 2017),  but also, by reductions in connectivity (following treatment) for 

REM (compared to NREM) between several brain regions (Xiao et al., 2019) as part of a 

normalisation of aberrant neural activities (Aizenstein et al., 2014; Xiao et al., 2019). Our 

findings suggest that utilizing our FATCAT-awFC pipeline, we can detect and distinguish 

connectivity differences associated with medication response and nonresponse.  
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3.5.1 Remitters at Baseline compared to Week-8: Within Group Differences in RSN 

Connectivity 

 

3.5.1.1 Dorsal Attention Network 

 

We demonstrated stronger awFC in the DAN between the right precentral gyrus and both the 

right and left post-central gyri (components of the executive control network) for REM at week-8 

relative to REM at baseline. Similarly, a study by Karim et al. (2017) found that MDD 

participants who took antidepressants (venlafaxine in the first phase, followed by aripiprazole in 

second phase) showed increased FC between the executive control network and the right 

precentral gyrus in week-12 REM relative to REM at baseline (Karim et al., 2017). This study 

supports our findings that REM at week-8 have stronger connectivity compared to REM at 

baseline, within the DAN.  

 

3.5.1.2 Frontoparietal Network  

 

Significantly less connectivity was found in the REM at week-8 compared to the REM at 

baseline within the FPN, between regions in the right orbitofrontal gyrus and the left cerebellum.  

Interestingly, the REM at week-8 also seemed to have decreased connectivity compared to 

NREM at week-8 [See ‘Remitters at Week-8 compared to Non-Remitters at Week-8: Group 

Differences in RSNs’ for more discussion]. This finding suggests that the decreased connectivity 
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that was observed in REM at week-8 compared to REM at baseline, and for REM at week-8 

compared to NREM at week-8, demonstrates the normalization of connectivity after treatment.    

 

3.5.2 Remitters at Week-8 compared to Non-Remitters at Week-8: Group Differences in 

RSNs 

 

3.5.2.1 Default Mode Network  

 

In order to examine the brain connectivity changes that occur as a result of the favourable 

response to medication, we examined REM from baseline to week-8.  We observed significantly 

lower awFC within the DMN for REM as compared to NREM at week-8 in three ROI-pairs 

within the DMN, including the a) middle prefrontal cortex (PFC) to the left middle temporal 

gyrus, b) left middle temporal gyrus to the left angular gyrus, and  c) left angular gyrus to medial 

prefrontal cortex. These findings are similar to other studies suggesting that antidepressant 

treatment in MDD results in reduced connectivity between DMN brain regions. For instance, a 

study by Xiao et al (2019) found MDD participants who reached a rapid remission (5 days), 

displayed reductions in FC between nearly all DMN ROIs compared to unmediated MDD 

participants. A possible explanation for the reductions in connectivity strength for MDD 

remitters may be the normalization of hyperconnectivity in the DMN that has been considered an 

indication of remission (Xiao et al., 2019). Supporting this notion is a study by Karim et al 

(2017), which found that week-12 MDD remitters were characterized by decreased FC in the 

DMN between the right inferior frontal gyrus and the supramarginal gyrus (Karim et al., 2017). 
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Taken together, our findings suggest that the response to SSRIs in MDD may be associated with 

FC and SC reductions within DMN brain regions.  

 

3.5.2.2 Frontoparietal Network 

 

Significantly less connectivity was found in the REM at week-8 compared to the NREM at 

week-8 within the FPN, between regions in the right orbitofrontal gyrus and the left cerebellum. 

These findings are consistent with those of Lisiecka et al. (2011), who performed a task-based 

fMRI study to assess the FC changes during antidepressant treatment and their association with 

treatment outcome.  They found increased FC between the orbitofrontal cortex and the 

cerebellum in patients who did not reach remission with antidepressant treatment (Lisiecka et al., 

2011).  They concluded that increased connectivity between the orbitofrontal gyrus and the 

cerebellum was reflective of a more persistent depression, rather than a more severe form of 

depression (Lisiecka et al., 2011).  Interestingly, we found higher awFC in the NREM at week-8 

compared to the REM at week-8.  These results demonstrate that lower awFC within the FPN is 

reflective of remission status.  

 

3.5.2.3 Ventral Attention Network  

 

In this study, we observed weaker connectivity in REM compared with NREM at week-8 

between two region pairs (a) between the insula and the middle frontal gyrus, and (b) between 

the anterior cingulate cortex and the middle frontal gyrus. In a similar study to ours, Karim et al. 

(2017) carried out rsfMRI and examined medication response in MDD. They found that REM 
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participants had weaker functional connectivity between the inferior frontal gyrus and the middle 

frontal gyrus compared to the NREM participants (Karim et al., 2017). Furthermore, in an 

implicit emotion processing task based fMRI study done by Godlewska et al. (2016), MDD 

participants were identified as REM or NREM based on their response following 6 weeks of 

escitalopram treatment. Participants’ neural response to emotional faces was examined early in 

the course of treatment, after the initial 7 days of medication therapy (Godlewska et al., 2016).  

Responders to escitalopram, compared to non-responders, showed greater reductions in the 

neural activation of the insula and the dorsal anterior cingulate during the processing of negative 

fearful faces (Godlewska et al., 2016).  Similar to the DMN, we found the VAN to also have 

reduced connectivity in the REM compared to NREM. Additionally, our findings are consistent 

with functional imaging findings identifying that response to escitalopram treatment is associated 

with the overall pattern of reduced connectivity in the VAN (Li et al., 2021).  

 

3.5.3 Contribution of Traditional FC and Traditional SC in the Analysis of awFC   

 

The traditional SC and traditional FC were performed to allow the visual comparison of 

significant group differences. Their combination at times allowed for a more significant 

connectivity measure, while at other times it performed only as well as the traditional FC alone. 

This is the basic principle behind the original awFC technique.  While the awFC measure 

appears to predominantly be driven by FC, there are times that connectivity differences were 

supported by SC as well. At times, the significance level for group differences was amplified 

(i.e. DAN), even in the absence of significant SC group differences. This may perhaps be due to 
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the adjusted SC distance bias, and consideration of indirect structural connections between brain 

regions. 

 

3.5.4 Associations Between Cognitive Variables and awFC 

  

The significant association between cognitive variables collected at week-8, and awFC at week-8 

(within the FPN between the right orbitofrontal gyrus and left cerebellum) was reported for the 

NREM. An increase in awFC was found to reflect an increase in cognitive flexibility, between 

the left cerebellum and the right orbitofrontal gyrus. This ROI-pair was found to be associated 

with cognitive flexibility as measured by the CNS-VS at week-8 in this study.  

Previous studies have found that the orbitofrontal cortex (Boulougouris et al., 2007) and the 

cerebellum (De Bartolo et al., 2009) mediate cognitive flexibility.  Previous studies have shown 

that cerebellar (De Bartolo et al., 2009) and orbitofrontal lesions (Robbins et al., 2012) impact 

cognitive flexibility. The cerebellum may play a role in monitoring incoming sensory 

information (i.e. from the orbitofrontal gyrus) and navigate appropriate behavior (i.e. motor 

movements) based on environmental conditions (Bower, 2002; Ito, 2002; Schmahmann, 2004; 

Thach, 2007).  

 

3.5.5 Study Limitations  

 

A limitation we encountered in our previous work (Ayyash et al., 2021) concerned the 

observation that each ROI encompassed several anatomical regions, and this may have impacted 

the overall connectivity values. We addressed this limitation in the present study through the use 
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of ROIs that were smaller in size. However, in a combined FC-SC study such as the current 

study, smaller ROIs can result in a greater effect size for the FC component. Furthermore, the 

use of smaller ROIs necessitated the inflation of ROI boundaries to detect white matter tracts 

running between ROIs. This may have produced a less accurate identification of SC parameters. 

Future work will need to find the best trade-off between the optimal ROI size and the optimal 

amount of ROI inflation to reach white matter tracts.  

Another limitation is that, while combining SC-FC may result in improved detection of aberrant 

connectivity, it lacks specificity.  In other words, it is more difficult to interpret what could be 

driving the connectivity changes among groups. Although in this study we performed a separate 

traditional connectivity analyses to reveal which connectivity analysis (SC or FC) was driving 

the significance, we would not be able to deduce that from the awFC metric.  

 

3.5.6 Future Directions 

 

In this paper we examined changes in awFC in individuals with MDD identified as REM or 

NREM following a course of SSRI medication escitalopram. Future studies could investigate 

treatment-resistant depression and the effects of different classes of medication on brain 

connectivity changes. In addition, it would be of interest to investigate the use of diffusion 

spectrum imaging (DSI) in our pipeline instead of DTI, as it is capable of delineating tracts in 

complex and multidirectional areas (i.e. crossing fibers, small fibers) more accurately. This will 

be beneficial for our pipeline, as the FATCAT-awFC approach uses tract count to quantify SC, 

and DSI is capable of assessing tract count with greater sensitivity (Bassett et al., 2011).   
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3.5.7 Conclusion  

 

The consistency of our results with existing literature, demonstrates the efficacy of FATCAT-

awFC as a novel approach that works as a fast and easy tool to explore the combined effect of 

FC and SC. We used the FATCAT-awFC analysis approach to investigate the connectivity 

changes within five RSNs (DMN, FPN, DAN, VAN, LIM) for patients with MDD who matched 

criteria for REM or NREM after 8 weeks of treatment with the SSRI escitalopram. The results 

demonstrated that treatment outcome was reflected in awFC differences between REM and 

NREM within four of the five RSNs. Further, the observed increased connectivity from baseline 

to week-8 in the DAN, and decreased connectivity from baseline to week-8 in the FPN, were an 

indication of the normalisation of aberrant connectivity caused by MDD. Finally, cognitive 

flexibility was found to be associated with awFC for one region pair in the FPN. This 

demonstrated the impact that alterations of the orbitofrontal gyrus and cerebellum connectivity 

have on cognitive flexibility for non-remitted MDD participants. Our findings corroborate the 

notion that the FATCAT-awFC pipeline (Ayyash et al., 2021) is able to distinguish REM from 

NREM at week-8.   
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3.5.8 Figures 

 

 

Fig.1 | Group differences in anatomically weighted functional connectivity are displayed for 

each network. Isolated brain regions were defined using the FATCAT command 

3dROIMaker. Each colour represents a different ROI for each network; Default Mode Network, 

blue ROI= middle prefrontal cortex, green ROI = left middle temporal gyrus, orange ROI= left 

angular gyrus; Frontoparietal Network, brown ROI = right orbitofrontal gyrus, blue ROI = left 

cerebellum; Ventral Attention Network, red ROI= left middle frontal gyrus, green ROI = right 

insular cortex, orange ROI = anterior cingulate gyrus/paracingulate gyrus; Dorsal Attention 

Network, red ROI = right and left postcentral gyrus, yellow ROI = right precentral gyrus. ROI = 
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region of interest, Anatomical positions, A = anterior view, P = posterior view, S = superior 

view, I = inferior view, L = left view, R= right view.   

 

 

Fig.2 | Boxplots of the anatomically weighted functional connectivity comparing: (a-f ) – 

remitters at week-8 (dark gray boxes) versus non-remitters at week-8 (light gray boxes) 

and (g-h) remitters at baseline (light gray box) versus remitters at week-8 (dark gray box).  

Only ROI pairs that demonstrated significant anatomically weighted functional 

connectivity differences are displayed. Circles represent outliers. Note: DMN = default mode 

network, FPN = frontoparietal network, VAN = ventral attention network, DAN = dorsal 

attention network, M-PFC = middle prefrontal cortex, L-Middle Temp = left middle temporal 

gyrus, L-AG = left angular gyrus, L-CER = left cerebellum, R-OFG = right orbitofrontal gyrus, 

NREM at Week-8 vs REM at Week-8 

REM at Baseline vs REM at Week-8

(c)(a) (b)

(d) (f)(e)

(g) (h)
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R-AG = right angular gyrus, R-INS = right insular cortex, L-middle frontal = left middle frontal 

gyrus, L-middle frontal = left middle frontal gyrus, ACC = anterior cingulate cortex, R+L-Post 

CG= right and left post central gyrus, R-Pre CG = right precentral gyrus. 
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4.1 Abstract  

 

Middle childhood is an often-understudied age group. The developing brain is particularly 

vulnerable to adversity (both pre- and postnatally). This study aimed to determine whether a 

combined functional-structural connectivity analysis approach is able to detect significant group 

differences between children exposed to pre- and/or postnatal adversity versus healthy control 

children during middle childhood. We applied a unique pipeline that combines resting state fMRI 

functional data with DTI tractography data to yield a metric of functional connectivity that is 

anatomically weighted. The FATCAT-awFC approach was applied to study typical/atypical 
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brain connectivity in middle childhood. The results revealed that children exposed to pre- and/or 

postnatal adversity had a lower awFC compared to controls, in all but one resting-state network – 

the ventral attention network.  Additionally, it was evident that the orientation behavior and 

psychomotor development at age 3 were predictive of atypical brain connectivity in middle 

childhood. This is the first study that combines structural and functional connectivity in this 

manner to study middle childhood brain connectivity changes, providing a new way to 

understand the brain response to neurodevelopmental challenges.  

 

Key Words:  

Development, middle childhood, maternal adversity; structural connectivity; functional 

connectivity; data fusion; resting-state networks; toolbox 

 

 

4.2 Introduction 

 

Both prenatal and postnatal adversity are considered a ‘global public health concern’ with 

serious health implications for both the mother and the developing child (Almond, 2009; Dadi et 

al., 2020).  A childs’ quality of life can be largely dictated by their pre- and postnatal 

environment (Austin, 2018; Strauss, 1997). This may involve a number of factors including: 

epigenetics (DeSocio, 2018; Monk et al., 2012), prenatal  adversity (i.e. poor maternal nutrition, 

maternal stress, maternal depression, anxiety, alcohol intake, and substance abuse) (Hellemans et 

al., 2010; Talge et al., 2007) , and postnatal adversity (i.e. parental style, maladaptive mother-

child interactions, abuse, and family conflict) (Burke et al., 2011; Felitti et al., 1998; Marie-
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Mitchell & O’Connor, 2013).  The root of many of these adversities may be related to poor 

socio-demographic, social, psychiatric and personal life events (Felitti et al., 1998; A. Murphy et 

al., 2014).  Such adversity can not only lead to a number of chronic illnesses, but also to 

neurobiological deficits and disorders long term (DeSocio, 2018; Felitti et al., 1998; Hellemans 

et al., 2010).   

 

Neuroimaging is useful in the detection of brain network changes underlying abnormal 

neuropsychiatric disorders in children (Peterson, 1995). Structural and functional connectivity 

are powerful tools for understanding the mechanism behind brain network maturation across age 

(Dubois et al., 2015).  Resting-state functional magnetic resonance imaging (rsfMRI), is an 

imaging technique that is able to map functional brain networks of cortical and subcortical 

regions (Lee et al., 2013). Functional connectivity (FC) is computed based on the temporal 

correlation between distant regions in the brain (Biswal et al., 1995). However, functional 

connectivity alone is unable to capture how these functional regions are structurally 

interconnected through white matter tracts. Diffusion tensor imaging (DTI) is an MRI technique 

that can differentiate different white matter pathways non-invasively (Fernandez-Miranda et al., 

2012).  Structural connectivity (SC) can be calculated from DTI metrics (i.e. tract count) 

between brain regions to better understand neuropsychiatric disorders (Ma et al., 2015).  

Functional connectivity (from rsfMRI) and structural connectivity (from DTI) compliment one 

another, because they are able to capture unique and complementary features of the brain-

network connectomes (Honey et al., 2009; Jessica Damoiseaux & Greicius, 2009; Zimmermann 

et al., 2018).  By combining these two parameters, one is able to utilize all the information 

embedded in MR scans (Straathof et al., 2020). Examining a combined structural-functional 
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connectivity metric can be an important tool in studying typical brain development in children in 

the middle childhood age group. Aberrant connectivity can be indicative of abnormalities in 

development for children exposed to adversity.   

 

While there are many studies that have explored abnormal brain changes in children exposed to 

adversity (i.e. children of depressed mothers) during the fetal, neonatal, early childhood, and 

adolescence years, there are a limited number of studies to date that focus on middle childhood 

(Farah et al., 2020; Qiu et al., 2015; Tirumalaraju et al., 2020; Wang et al., 2019).  Middle 

childhood typically spans 7-10 years of age (DeFries et al., 1994).  Middle childhood is 

considered an important developmental phase, and abnormal neurodevelopmental disorders 

during this stage often carry forward into adulthood and manifest as cognitive, emotional, 

behavioral, interpersonal problems, and overall poor mental health (D. Boyd & Bee, 2012; Mah 

& Ford-Jones, 2012). Yet, middle childhood remains understudied in neuropsychiatric disorders 

and is sometimes referred to as the ‘forgotten years’ of childhood (Mah & Ford-Jones, 2012).  

 

In this paper, we combine FC and SC using a novel approach that uses a toolbox (Taylor & Saad, 

2013) in combination with a mathematically dense approach (Bowman et al., 2012). Functional 

And Tractographic Analysis Toolbox (FATCAT) consists of a set of AFNI commands that 

process MRI data. Anatomically Weighted Functional Connectivity (awFC) model, on the other 

hand, is the mathematically complex approach that is used to fuse FC and SC with a series of 

computational steps into a single unit known as the awFC metric.  The unique combination of 

these two (FATCAT and awFC model), results in a faster and more intuitive pipeline than using 

the awFC model alone.  This FATCAT-awFC pipeline was first introduced in Ayyash et al 
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(2021).  Here, we build on our previous work, as we apply the FATCAT-awFC pipeline, to study 

brain connectivity changes within resting state networks (RSNs), in the middle childhood age 

group exposed to pre- and postnatal adversity.  One objective of this study was to assess whether 

there were detectable differences in brain connectivity for the middle childhood age group 

exposed to pre- and/or postnatal adversity compared to children who were not. Previous work in 

the literature, has demonstrated that children with pre- and/or postnatal adversity had lower SC 

and FC between regions of interest (ROIs) within brain networks (Dufford & Kim, 2017; Fan et 

al., 2017; Luking et al., 2011; Sripada et al., 2014).  However, these studies did not combine data 

in a fused manner to study brain connectivity. Here, we hypothesized that children with pre- and 

postnatal adversity will have reduced awFC between regions in RSNs compared to controls. 

 

Another objective of this study was to also examine whether behavioural and psychomotor 

development in toddlerhood (age 3) would be predictive of atypical brain connectivity in middle 

childhood. A number of longitudinal studies have suggested that behavioural characteristics of 

children at age 3 are predictive of adult personality characteristics (i.e. emotional stability, social 

potency, social closeness, alienation, and stress reaction,) (Caspi, 2000; Caspi et al., 2003; Caspi 

& Silva, 1995).  These studies suggested that an early intervention might be necessary to reverse 

this outcome. By the same token, early developmental outcomes in toddlerhood, such as 

orienting behaviour and motion in three-year olds, may account for atypical brain connectivity 

outcomes during middle childhood.  As such, three years of age may be potentially a very useful 

time for the early detection of issues. 
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The Bayley Scale of Infant Development (BSID-II) is a well-recognized tool used to assess the 

progress of infant development.  The psychomotor development index (PDI) and orientation 

behaviour (OB) of the Bayley Scale are two metrics of interest for this study. We focused on 

these two developmental categories given previous animal studies that have demonstrated that 

the offspring of mothers exposed to prenatal stress had lower scores for orientation, motor 

maturation (Schneider, 1992; Schneider et al., 1999) and motor activity (Schneider et al., 1999) 

compared to healthy control mothers.  In addition, Schnieder et al (1992) studied the impact 

prenatal maternal stress had on neurobehavioral development.  They found that prenatal maternal 

stress resulted in motor and attention (measured with orientation) impairments in offspring, 

compared to controls.  These findings are also consistent with human studies indicating that both 

orientation behaviour and psychomotor development (PDI) are affected in children exposed to 

prenatal or postnatal maternal adversities. In fact, existing literature has revealed that children 

from low-income families (Black et al., 2000) or those that are born prematurely (Boyd et al., 

2013) exhibited both: lower orientation behaviour and PDI scores(Black et al., 2000; L. A. C. 

Boyd et al., 2013, p. 2). In addition, a study done by Lyons-Ruth et al (1986), found an 

association between maternal depression and poor motor development scores (measured with 

Bayley scale) for infants at one-year old (Lyons-Ruth et al., 1986).  

 

We explored whether early motor and orientation scores at age three could be a potential marker 

for atypical brain connectivity in middle childhood following exposure to prenatal/postnatal 

maternal adversity. We hypothesized that behavioural and motor scores at the age of three, 

would be predictive of atypical RSNs in middle childhood.  

 



.   182 

4.3 Methods  

 

4.3.1 Subjects, Inclusion/Exclusion, Ethics 

 

We used data from the MAVAN – Maternal Adversity, Vulnerability and Neurodevelopment – 

study.  The MAVAN study is a longitudinal birth cohort study based in Canada that tracked 

children from birth to age six in Hamilton, Ontario, Canada (O’Donnell et al., 2014). The follow-

up study evaluated the offspring of mothers at regular time points, starting at 6 months until the 

age 12 years old through questionnaires, diagnostic tools and behavioural tasks (O’Donnell et al., 

2014). The recruited mothers were included if they were above the age of 18, delivering a 

singleton pregnancy, and were fluent in English or French. Mothers were excluded if there was a 

history of incompetent cervix, presence of placenta previa, maternal severe chronic illness, 

impending delivery, or a fetus affected by a major anomaly. The Ethics committee from the St. 

Joseph’s Hospital approved the protocols for the Hamilton cohort, and the Ethics committee 

from the Douglas Mental Health University Institute approved the protocols for the Montréal 

cohort. Enrolment for the study required all mothers to submit a written informed consent.  

Mothers received a compensation of $25 for every visit.  

 

A subsample of this cohort consisted of thirty-three children that had both fMRI and DTI data 

available in the middle childhood age group, which was used in this study. Of the sample of 

thirty-three subjects, those whose head motion exceeded a relative mean displacement of 0.55 

mm (n=8) were excluded from the pool- as reported in Satterthwaite et al (2012) (Satterthwaite 

et al., 2012).  Motion exclusion criteria are discussed in greater detail later in this section. In 
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addition, subjects that had missing resting-state fMRI data points (n=2), contained rsfMRI 

artifacts (signal inhomogeineity) (n=1), or had missing DTI data (n=5) were omitted from the 

analysis.  This left a total of 17 subjects, 9 children with no pre/postnatal adversity (CON) and 8 

children with pre/postnatal adversity (ADV) for analysis.  The ratio of male/female participants 

is 11 females: 6 males; in the CON there are 7 F: 2 M, whereas the ADV group had: 4 F: 4 M.  

Our population has a mean age of 7.63 (standard deviation = 0.66).  

 

4.3.2 Maternal history of Adversity Score 

The Research Ethics Board of St.Joseph’s Healthcare approved this study and written consent 

was acquired from each participant.  The Maternal Adversity Vulnerability and 

Neurodevelopment (MAVAN) study is a birth cohort study of pregnant Canadian mothers and 

their children. These children were observed longitudinally throughout their development. 

Pregnant women were assessed at the Women’s Health Concerns Clinic (WHCC) with 

depression between 12 to 24 weeks of gestation. Mothers (with pre- and postnatal adversity and 

controls) with a current or past history of psychotic disorder were excluded, assessed with the 

Mini International Neuropsychiatric Interview. Women were included if they were 18 years of 

age or older, pregnant (up to 24 weeks of gestation), and able to communicate in English.  Pre- 

and postnatal maternal adversity was measured based upon the: Montgomery-Asberg Depression 

Rating Scale (MADRS) ≥9, Edinburgh Postnatal Depression Scale (EPDS) ≥13, Hamilton 

Anxiety Rating Scale (HAM-A); State-Trait Anxiety Inventory (STAI) ≥40, and the Center for 

Epidemiologic Studies Depression (CES-D) Scale.  
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4.3.3 Image Acquisition Parameters 

 

Magnetic resonance images were obtained on a GE Discovery 750 3T MR scanner (General 

Electric Healthcare, Milwaukee, WI) with a 32-channel head coil at the Imaging Research 

Centre, St. Joseph’s Healthcare (Hamilton, Canada).   

Functional images were acquired using a single-shot gradient-echo echo-planar imaging (EPI) 

and the acquisition parameters were: TE  (echo time) = 35 ms, TR (repetition time) = 3000 ms, 

flip angle = 90°, matrix = 64 x 64 x 45, voxel size = 3.75 x 3.75 x 3 mm, interslice gap = 0, slice 

thickness = 3 mm, FOV = 24 cm2, number of slices = 108, ascending interleaved sequence.   

Diffusion tensor images were acquired with a single-shot spin-echo EPI sequence, with 66 

gradient directions at 1000 s/mm2.  Additional DTI parameters included: TE = 87 ms, TR = 8800 

ms, matrix = 122 x 122 x 70, voxel size = 2 x 2 x 2 mm3, FOV = 24.4 cm2, 70 ascending 

interleaved slices, slice thickness = 2 mm (no slice spacing). Three non-diffusion weighted 

b = 0 s/mm2 images were also collected.  

 

4.3.4 fMRI Pre-processing 

 

Resting-state functional data were preprocessed using FSL version 6.0.1 (Jenkinson et al., 2012).  

Standard resting state preprocessing protocols were applied similar to previous resting-state data 

[See: (Krafft et al., 2014) for reference].  Preprocessing included the following steps: (1) The 

first three volumes of every participant’s functional data were discarded to account for magnetic 

field homogenization (2) Interleaved slice timing correction (3) brain extraction toolbox (BET) 

(S. M. Smith, 2002) for skull stripping (4) motion correction using MCFLIRT (Saccà et al., 2018)  
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(5) spatial smoothing using a Gaussian kernel with FWHM = 5mm (6) high pass temporal 

filtering (0.1 Hz). Functional data was normalized and registered to standard MNI152 space (12 

DOF) and resampled to a 4-mm cubic voxel for subsequent analysis. One extra step was 

introduced in the standard preprocessing pipeline (Goto et al., 2016), which involves despiking 

the functional data using AFNI (version 18.2.15) as described in (Patel et al., 2014). This method 

is said to be more effective than other motion correction methods such as scrubbing (Goto et al., 

2016).  

 

For the child data in our study (children aged 7-9 years), a standard adult functional brain 

template (MNI 152) was used for registration and normalization.  Previous studies by Wilke et al 

(2002) and Muzik et al (2000) demonstrated that spatial registration of children data aged 5 and 

above and 6 and above, respectfully, to adult brains, are acceptable with negligible or minor 

distortions (if any) (Muzik et al., 2000; Wilke et al., 2002).  Additionally, children aged 5 and 

above do not undergo significant increases in brain volume past the age of five (Casey et al., 

2000; Giedd et al., 1996).  Therefore, a standard functional MNI-152 template was used.  

 

In this study, five RSN’s were investigated that are involved in: internally generated thoughts 

Default Mode Network (DMN), emotional regulation (Limbic Network; LIM), and higher-order 

functions (i.e. Ventral Attention Network, Dorsal Attention Network and FrontoParietal 

Network; VAN, DAN, FPN) as previous literature has reported that connectivity in these RSN's 

has been impacted due to maternal adversity (Bergh et al., 2018) 
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4.3.5 Motion correction  

 

Head motion is a major source of artifacts in connectivity studies (Power et al., 2012), and thus, 

it is necessary to exclude subjects with gross motion that may contaminate the signal 

(Satterthwaite et al., 2012).  A study done by Satterthwaite et al. (2012), deemed gross motion in 

functional data, as having a relative mean displacement greater than 0.55mm. Therefore, subjects 

were inspected for gross motion. Subjects with an average relative volume-volume displacement 

greater than 0.55 mm they were excluded from our study. This resulted in the exclusion of eight 

subjects from our study.  

 

4.3.6 fMRI Analysis – using FATCAT 

 

A group independent component analysis (GICA) was applied to the resting data using 

MELODIC (FMRIB Analysis Group, Oxford University) (Beckmann et al., 2005; Beckmann & 

Smith, 2004).  The preprocessed functional data in MNI space was input into the MELODIC 

GUI with the component number set at 20 and the decomposition approach set to multisession 

temporal concatenation. Independent components were compared and matched to the standard 

Yeo 7 network template (Yeo et al., 2011) using a spatial cross correlation – from FATCAT’s 

‘3dMatch’ command (Taylor & Saad, 2013). Of the 20 components generated, 5 networks were 

matched with a mean correlation of r=0.62.  The DMN, FPN, LIM, VAN and DAN were 

identified and extracted from the components. Five of the networks identified were consistent 

with standard RSNs. The remaining maps were either taken to be artifactual, noise or simply not 

matching with the components.  The independent components (Z-score maps) were then 
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thresholded into separate labeled group-level regions of interest (ROIs) using FATCATs 

‘3dROIMaker’.  Inflated ROIs were also derived from FATCAT’s ‘3dROIMaker’ command 

(Taylor & Saad, 2013), in order to be used for the diffusion data.  The ROIs are transformed into 

diffusion-weighted space and inflated in order to reach white matter tracts (for the diffusion 

data). The Pearson correlation coefficient was calculated between the mean time courses of each 

ROI pair, using the non-inflated ROIs with FATCAT’s ‘3dNetCorr’ command (Taylor & Saad, 

2013).  The functional connectivity (Pearson correlation) was estimated for each subject. 

Functional connectivity group differences were then investigated using a Wilcox-test between 

ADVand CON subjects using R code and corrected for multiple comparisons [will be discussed 

in greater detail later in this section]. Statistically significant (padj<0.05) group differences were 

identified and reported in this study as ‘conventional functional connectivity’.  

 

4.3.7 DTI Pre-processing 

 

DTI pre-processing steps were performed using a source-code repository (A. D. Davis et al., 

2019).  Pre-processing involved a combination of FSL and AFNI commands and consisted of the 

following steps: (1) Diffusion-weighted images and b=0 images were converted from DICOM to 

NIFIT using dcm2nii (2) Eddy current distortions and motion were corrected (registered to b=0 

reference volume) with FSL’s ‘eddy_correct’ command (Jenkinson et al., 2012)  and diffusion 

vectors were rotated (3) DTI images were skull stripped using FSL’s ‘BET’ (S. M. Smith, 2002) 

(4) FATCAT’s ‘3dDWItoDT’ (Taylor & Saad, 2013) was applied for diffusion tensor fitting, and 

FA maps were generated (in diffusion-weighted space) (5) FA maps were spatially normalized to 

a standard FA template (FMRIB58) for group analysis.  
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4.3.8 DTI Analysis – using FATCAT 

 

Uncertainty maps from FA and principal eigenvector were generated, with the FATCAT 

command ‘3dDWUncert’(Taylor & Saad, 2013) to include in probabilistic tractography.  

Probabilistic tracking was then estimated between inflated ROI-pairs using FATCAT’s 

‘3dTrackID’(Taylor & Saad, 2013) with the default standard settings: FA = 0.2, turning angle = 

60°, Monte Carlo iterations = 1000. The DTI measures, such as the distance and number of tracts 

between each inflated group-level ROI pair were estimated for each subject.  ‘Conventional 

structural connectivity’ was calculated by counting the number of tracts between two ROIs (a 

DTI metric output by FATCAT).  Group-level comparison of structural connectivity was 

performed to study differences between ADV and CON subjects.  Between-group comparisons 

were performed with a Wilcox-test and corrected for multiple comparisons using r [discussed in 

greater detail later]. Comparisons that were statistically significant (padj < 0.05) are reported in 

this study and discussed.   

 

4.3.9 Structural And Functional Connectivity Combined – Using the Anatomically 

Weighted Functional Connectivity Method 

 

Figure 1 shows how the FATCAT-awFC pipeline begins with FATCAT and transitions into the 

awFC method. From the FATCAT, functional connectivity (from the functional data) and ‘tract 

count’ (from the structural data) are output. In turn, these two metrics are used as inputs for the 

awFC method.  
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Once ‘tract count’ is output from the FATCAT approach (Taylor & Saad, 2013), a number of 

additional steps were performed using the awFC method to calculate an improved structural 

connectivity measure.  These steps include: calculating the probabilities of structural 

connectivity, performing a Poisson-regression (to adjust for distance bias), computing and 

incorporating indirect (second-order) structural connectivity between ROI pairs (Bowman et al., 

2012).  Structural connectivity probabilities were estimated by calculating the 90th percentile of 

voxel-level counts connecting two ROIs, divided by the total streamlines leaving the ROI 

(Bowman et al., 2012).  Next, the structural connectivity distance-bias was adjusted by fitting a 

zero-inflated Poisson regression model (Bowman et al., 2012).  The Poisson regression was 

applied using: log(𝜇 𝑆!" 𝑔!" =  𝛼! +  𝛼!𝑔!", where 𝑔!"is the distance between each region pair, 

𝑆!"is the unbiased number of tracts (Bowman et al., 2012).  All possible second-order (indirect) 

connections were calculated using the equation: πij=max[πij, maxm(πimπmj)], where π is the 

probabilities of structural connectivity, i is the starting ROI, j is target ROI, and m is the third 

connection (Bowman et al., 2012).  The greater connectivity value (between the direct and 

indirect connectivity) was taken to be the pathway between the connected ROIs (Bowman et al., 

2012).  Once all of the above mentioned steps are performed, a structural connectivity metric is 

produced.  

 

FC was produced from the FATCAT pipeline and SC was produced from the awFC method.  

Two additional steps were required to combine both in a single metric.  To combine FC and SC 

into a single metric, the dissimilarity metrics were first calculated (Bowman et al., 2012).  FC 

and SC measure entirely different aspects of brain connectivity, whereby functional connectivity 
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measures the temporal correlation (using Pearson correlation) and structural connectivity 

measures the tract count between brain regions. Therefore, to generate a modality-independent 

comparison between structural and functional connectivity, the dissimilarity metric is used 

(Kriegeskorte et al., 2008). The structural dissimilarity (1 minus structural connectivity) and 

functional dissimilarity (1 minus functional connectivity) are multiplied to obtain the 

anatomically weighted functional dissimilarity (awFd). Next, the dissimilarity metric (a 

combined structural-functional measure) is transformed back to a correlation metric.  This metric 

is known as the   anatomically weighted functional connectivity, which is obtained by applying 

the equation: 1− 𝑎𝑤𝐹𝑑  (Bowman et al., 2012).  It is transformed back to a correlation metric 

in order to interpret the data with ease.   

 

4.3.10 Wilcox Test Group Comparisons and Multiple Comparisons Adjustment 

 

A Wilcox test was applied to determine whether there were any significant FC, SC and awFC 

differences between children with pre/postnatal adversity (ADV) compared to children without 

pre/postnatal adversity (CON). The function ‘wilcox.test()’ was employed to assess pair-wise 

differences in FC, SC and awFC between the CON and ADV for each ROI-pair within each 

RSN.  Multiple comparisons were corrected for, using the False Discovery Rate (FDR) by 

Benjamini and Hochberg (Waite & Campbell, 2006) using the function ‘p.adjust()’ from the stats 

package in R (R Core Team, 2018). The significance level was set to padj <0.05.  Significant 

awFC differences between the CON and ADV groups were visualized using boxplots, with the 

‘ggplot()’ function from the ggplot2 package (v.2.2.1) in R software (v.4.0.2).  Finally, the effect 

size was calculated using Cohen's d, ‘cohen.d’ function from the effsize package (Tocrchiano, 
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2017) in R  (R Core Team, 2018).   A Cohen’s d between 0.5 > d > 0.2 is considered small, 0.8 > 

d > 0.5 moderate and d ≥0.8 large.  

 

4.3.11 Bayley Measures  

 

The Bayley Scales of Infant Development is the most widely reported standard developmental 

assessment for children 1 to 42 months of age (Bayley, 1993).  The infant’s behaviour was 

evaluated within a controlled environment, and a standardized scale. A trained examiner 

evaluates the infants’ behaviour and assigns a BSID score according to his/her judgement of the 

infant’s performance. The BSID-II has three main categories: mental scale, motor scale and 

behaviour rating scale (Bayley, 1993).  However, only two metrics, the psychomotor 

development index (PDI) and orientation/engagement (from the behaviour rating scale) were 

evaluated for this study.  The Motor scale uses a score known as the psychomotor developmental 

index (PDI) – it measures the child’s muscle coordination, fine and gross motor skills, body and 

postural control, and recognizing and discriminating objects through touch (Bayley, 1993).  The 

PDI Bayley scale, ranges as follows: (1) >115; Accelerated performance (2) 85-114; within 

normal limits (3) 70-84; mildly delayed performance (4) < 70; Significantly delayed performance 

(Bayley, 1993).  The Behavioural Rating Scale (BRS), on the other hand, evaluates 

orientation/engagement – this includes orientation to examiner, social engagement, cooperation, 

attempts to interact socially, trusting the examiner/lack of fearfulness (Bayley, 1993).   The range 

of BRS scores are considered within a normal range (26–99 percentiles), questionable (11–25th 

percentile) and non-optimal (< 11th percentile) (Bayley, 1993).  Scores <25th percentile on the 

behavioural scale of the BSID-II are considered sub-optimal.  
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4.3.12 Regression Analysis 

 

Regression analysis was performed to examine the association between PDI and awFC and 

between orientation behaviour and awFC for both ADV and CON, for each significant ROI-pair 

within each RSN.  The ‘lm’ function in the ‘stats’ R package (R Core Team, 2018) was used. 

The first linear regression model was set up with the awFC as the dependent variable and PDI as 

the independent variable.  The second linear regression model was set up with the awFC as the 

dependent variable and the orientation behaviour as the independent variable.   Regression 

analysis was only applied to ROI-pairs with significant awFC differences between groups (CON 

vs ADV).  

 

4.4 Results 

 

4.4.1 Significant ROI-ROI pairs 

 

A complete listing of the ROIs in each RSN, their associated anatomical location, volume, and 

MNI coordinates is reported in Table 1.  A visual representation of the ROIs that revealed 

significant connectivity differences for ADV groups compared to CON groups are shown in 

Figure 2.   

 

4.4.2 ROI-ROI Anatomically Weighted Functional Connectivity Group Differences   
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Children who had experienced early adversity showed lower awFC in a number of ROI-pairs 

compared to children who did not. Table 2 details regions where lower awFC were found in 

ADV compared to CON. In summary, lower awFC was noted for the ADV group compared to 

CON group in  (i) the DMN between the PCC and the left angular gyrus (ii) the FPN between the 

left inferior frontal gyrus to the lingual gyrus/cerebellum, the FPN between the right superior 

frontal gyrus and the lingual gyrus/cerebellum (iii) the LIM between the right superior temporal 

gyrus and the left superior temporal gyrus (iv) the DAN between the right posterior orbitofrontal 

gyrus and the left inferior temporal gyrus.  On the other hand, greater awFC was noted in 

children who faced adversity compared to children who did not in the VAN between the right 

anterior orbitofrontal gyrus and the left lingual gyrus/cuneus.  The statistical comparisons 

between ADV and CON groups are shown in the boxplots in Figure 3. 

 

 

4.4.3 ROI-ROI Functional and Structural Connectivity Group Differences   

 

Functional connectivity differences were observed in the ADV compared to the CON in (i) the 

DMN between the PCC and the left angular gyrus (ii) the FPN between the left inferior frontal 

gyrus to the lingual gyrus/cerebellum, the FPN between the right superior frontal gyrus and the 

lingual gyrus/cerebellum (iii) the LIM between the right superior temporal gyrus and the left 

superior temporal gyrus (iv) the VAN between the right anterior orbitofrontal gyrus to the left 

lingual gyrus/cuneus (v) the DAN between the right posterior orbitofrontal gyrus and the left 

inferior temporal gyrus.  See Table 2 for a summary of the results.  
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Structural connectivity differences were observed for the ADV compared to the CON group in 

(i) the FPN between the left inferior frontal gyrus and the lingual gyrus/cerebellum.  However it 

did not survive multiple comparisons. See Table 2.  

 

4.4.4 Predictors of brain development  

 

Linear regression tests showed a significant interaction between orientation behavior (as 

measured by the Bayley scales) and awFC in the VAN (F (1,12) = 5.032, p = 0.045).  FDR 

corrected p-value for orientation behavior resulted in a padj = 0.045.  Linear regression models 

indicated that a lower orientation behavior score at the age of three was predictive of an atypical 

(greater) awFC within the VAN in middle childhood.  

 

Further, a linear regression test revealed that there was a significant interaction between PDI and 

awFC in the FPN (F(1,12)=5.74, p=0.0338). FDR corrected p-value for PDI resulted in a padj = 

0.045. A lower PDI score at the age of three revealed an atypical (lower) awFC in middle 

childhood.   

 

Table 1 | this table presents nineteen ROIs, their associated anatomical names, peak MNI 

coordinates and cluster sizes. These nineteen ROIs belong to five resting-state networks, 

including the default mode, frontoparietal, limbic, ventral attention, and dorsal attention network. 

ROIs were defined using FATCATs 3dROIMaker command.  

 

ROI no. Anatomical names  MNI coordinates Volume  



.   195 

  x          y          z (# of voxels) 

  DEFAULT MODE NETWORK 

1 Medial frontal gyrus (MFG)  2 62 8 7 

2 Posterior cingulate cortex (PCC) -2 -62 24 5 

3 Right angular gyrus (R-AG) 46 -58 28 6 

4 Left angular gyrus (L-AG)  -46 -58 28 5 

FRONTOPARIETAL NETWORK 

5 Left inferior frontal gyrus 

 (L-IFG)  

-38 38 12 12 

6 Lingual gyrus/cerebellum 

(LG/CER)  

-6 -74 -12 12 

7 Right Superior frontal gyrus (R-

SFG) 

10 38 56 10 

LIMBIC NETWORK 

8 Right posterior orbitofrontal gyrus 

(R-pOFG) 

18 38 -24 12 

9 Left posterior orbitofrontal gyrus 

(L-pOFG) 

-42 30 -20 12 

10 Right superior temporal gyrus (R-

STG) 

46 14 -44 11 

11 Left superior temporal gyrus (L-

STG) 

-42 2 -52 12 

12 Dorsolateral prefrontal cortex -2 46 32 12 
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(DLPFC) 

  VENTRAL ATTENTION NETWORK 

13 Left lingual gyrus/Cuneus - 

Lateral occipital cortex (L-

LG/CU) 

-14 -98 -16 20 

14 Right orbitofrontal gyrus (R-

aOFG) 

14 70 -16 5 

15 Right cerebellum (R-CER) 10 -66 44 20 

DORSAL ATTENTION NETWORK 

16 Right anterior orbitofrontal gyrus  

(R-aOFG) 

14 58 -20 9 

17 Right posterior orbitofrontal gyrus 

(R-pOFG) 

22 30 -16 14 

18 Right middle frontal gyrus (R-

MFG) 

38 42 -16 14 

19 L-Inferior temporal gyrus (L-ITG) -50 -54 -16 14 

Abbreviations: ROI – region of interest, RSN – resting state network 

 

Table 2 | Connectivity analysis was performed for: structural, functional and anatomically 

weighted functional connectivity.  A Wilcox test was performed to reveal significant brain 

connectivity differences between children exposed to pre/postnatal adversity (ADV) and children 

not exposed to pre/postnatal adversity (CON). Significant awFC differences between children 

exposed to pre/postnatal adversity compared to children not exposed to pre/postnatal adversity 
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are shown, along with their corresponding structural and functional connectivity group 

differences (some survived multiple comparisons others did not).  

 

Start 

ROI 

End  

ROI 

SC  

p-value 

(FDR 

corrected) 

FC  

p-value 

(FDR 

corrected) 

awFC  

p-value 

(FDR 

corrected) 

 

Cohen’s D 

 DEFAULT MODE NETWORK  

PCC L-AG 0.815 0.0274* 0.0274* 0.626 (medium) 

FRONTOPARIETAL NETWORK 

L-IFG LG/CER 0.041 0.006* 0.0053* 1.66 (large) 

R-SFG LG/CER 0.664 0.0274* 0.0274* 1.36 (large) 

  LIMBIC NETWORK 

R-STG L-STG 0.095 0.002** 0.00149** 1.75 (large) 

VENTRAL ATTENTION NETWORK 

R-aOFG L-LG/CU 0.198 0.032* 0.032* -1.27 (large) 

DORSAL ATTENTION NETWORK 

R-pOFG L-ITG 0.06 0.00551* 0.00551* 1.79 (large) 

Table displays connectivity values (bold indicates significant (p < 0.05)) of structural 

connectivity, functional connectivity and awFC for each ROI-ROI pair.  Note: awFC= 

anatomically weighted functional connectivity, ROI=region of interest, SC=structural 

connectivity, FC=functional connectivity, PCC = posterior cingulate cortex, L-AG = left 

angular gyrus, L-IFG = left inferior frontal gyrus, LG/CER = lingual gyrus/ cerebellum, R-



.   198 

SFG = right superior frontal gyrus, R-STG = right superior temporal gyrus, L-STG = left 

superior temporal gyrus, R-aOFG = right anterior orbitofrontal gyrus, L-LG/CU = left 

lingual gyrus/cuneus, R-pOFG = right posterior orbitofrontal gyrus, L-ITG = left inferior 

temporal gyrus.  

* Survives FDR (q < 0.05), ** Survives FDR (q < 0.01). 

 

 

 

 

 

 

 

4.5 Discussion  

 

The goal of this study was to apply our novel FATCAT-awFC pipeline (combines structural and 

functional connectivity) to assess whether maternal adversity impacts brain connectivity in RSN 

during middle childhood.  To study changes in brain connectivity, separate analyses were carried 

out using: traditional SC, traditional FC and awFC between each ROI pair within each RSN.  

The RSNs included the: DMN, FPN, LIM, VAN, and DAN.  In each of the five RSNs, 

distinguishable connectivity differences were observed between the ADV and CON groups in 

our sample of children aged 6-9 years old. Another goal of our research was to determine 

whether psychomotor development and behavioral scores at the age of three were predictive of 

atypical brain connectivity in middle childhood. Psychomotor development scores at the age of 
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three were found to be predictive of typical/atypical connectivity in middle childhood in the FPN 

and VAN, respectively.  

 

4.5.1 Typical Maturation of RSN in Brain Development 

 

Understanding the typical development trajectories of brain connectivity is essential to 

conceptualizing atypical connectivity as it relates to adversity.  While RSNs are observed in 

middle childhood (age 7-9 years old), they are not fully matured (Fair et al., 2008). During this 

time, the brain is maturing, adapting, and changing rapidly (Mah & Ford-Jones, 2012). Brain 

development involves a number of processes including synaptogenesis, pruning and myelination 

(Barnea-Goraly et al., 2005; Mah & Ford-Jones, 2012; Muftuler et al., 2012). As unimportant 

brain connections are being pruned, important connections are further strengthened to improve 

the speed of information transmitted between brain regions (Andersen, 2003; Luna et al., 2021, 

p. 20). The interplay of a dual process of integration (i.e. network efficiency) and segregation 

(i.e. clustering) contributes to this maturation (Dosenbach et al., 2010; Grayson & Fair, 2017).  

Studying connectivity as it relates to the maturation of RSNs may provide unique insights into 

typical and atypical brain development (Uddin et al., 2010), which may, in part, be impacted by 

adverse maternal environments (Webb et al., 2001).   

 

Connectivity in these RSNs can be used to distinguish children exposed to maternal adversity 

from typically developing children.  While we hypothesized that the CON group would have 

lower awFC compared to ADV, we instead observed greater connectivity between brain regions 

in the CON compared to ADV in all but one RSN.  Connectivity between a ROI-pair within the 
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VAN displayed the opposite trend with reduced connectivity between brain regions in the CON 

group compared to the ADV group [this will be discussed in greater detail later in this section]. 

A possible explanation for the greater awFC in the CON compared to ADV for the DMN, FPN, 

LIM, and DAN, could be due to the ongoing development of the RSNs architecture (i.e. 

myelination, tract density to strengthen important connections, etc), which strengthens important 

connections. Past literature has supported our findings by reporting that the ongoing 

development of RSNs occurs during middle childhood.  For instance, a study by Fair et al (2008) 

performed a comparative analysis, to study the DMN architecture within two groups: middle 

childhood (7-9 years old) and young adults (21-31 years old) in healthy individuals. They 

reported that connectivity between brain regions belonging to the DMN, increases in myelination 

(to support integration of ROIs belonging to the same network) to form more mature and 

efficient resting state networks (Fair et al., 2008).  Another study done by Szaflarski et al (2006) 

that assessed children aged 5, 6 and 7 years of age found that the BOLD signal increased in 

language cortex across age (Szaflarski et al., 2006).  Increased BOLD signal was found in 

regions such as the left angular gyrus, right lingual gyrus, right inferior temporal gyrus, the 

inferior frontal gyrus, and middle frontal gyrus.  The authors proposed that the increased BOLD 

signal was due in part to increased synaptic myelination of important connections in the language 

network. As shown from previous studies, the strengthening of connections between brain 

regions may occur through myelination across middle childhood.  Aside from myelination, brain 

maturation may include the reorganization of brain networks rather than just the fine-tuning (i.e. 

myelination) of already matured synapses within RSNs. Dosenbach et al (2010) demonstrated 

that middle childhood is a period of time when functional maturation occurs (Dosenbach et al., 

2010).  Segregation and integration are signature to functional brain maturation (Fair et al., 2007, 
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2009; Johnson, 2001; Supekar et al., 2009).  Brain development (maturation) across age groups 

(from childhood into adulthood) is characterized by increased connectivity between ROIs 

belonging to the same RSN (integration) and decreased connectivity between ROIs belonging to 

separate RSNs (segregation) (Fair et al., 2009; Rosenberg et al., 2020).  Studies have 

demonstrated that functional maturation continues to undergo changes (i.e. 

segregation/integration) throughout middle childhood.  For instance, a study done by Fair et al 

(2007), found that functional maturation involved further distinction of two separate RSNs: the 

frontoparietal network and the cinguloopercular network.  This occurred by segregating the 

aPFC and the dACC regions from the frontoparietal network and integrating of the dACC/msFC 

into the cinguloopercular network (Fair et al., 2007). Therefore, since we evaluated large-scale 

RSN in this study, it would be reasonable to observe predominately-increased connectivity 

between brain regions belonging to the same RSN as a sign of brain maturation (i.e. integration 

of ROIs belonging to the same RSN and/or increased myelination of important connections).  

 

Since strengthening of brain connectivity may imply integration of brain regions belonging to the 

same RSN, the lower connectivity observed between the orbitofrontal gyrus and the lingual 

gyrus in the VAN in our study could be the result of the segregation of these brain regions into 

separate RSN.  The ventral stream of attention is known to be associated with orienting. The 

orienting network primarily drives the attention network in infancy and early childhood, however 

the executive control network becomes the main attentional network in charge of control as the 

brain develops (>3 years) (Posner et al., 2014).  The increasing importance of the executive 

control network results in its continual strengthening and refinement across age (Ruff & 

Rothbart, 2001).  On the other hand, the orienting network that once primarily controlled 
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attention begins to diminish, but never entirely (Ruff & Rothbart, 2001). Menon (2013), reported 

that across age, significant strengthening of the executive control network (between the ACC and 

insula) was found.  This could be related to the shift in control of attention from the orienting 

network in infancy to the executive network in middle childhood. This finding suggests that 

there is a transition from the immature functional system that supports attentional functions in 

children to more mature systems in adults. The ventral visual (attention) pathway is known to 

have six distinct projections that originate from the occipital lobe and extend to cortical and 

subcortical regions, via a projection known as the occipitotemporal-orbitofrontal pathway 

(Kravitz et al., 2013). Kravitz and colleagues (2013) found that this pathway (originating from 

the occipital lobe) has weaker projections extending to the central orbitofrontal gyrus compared 

to other brain regions in adults (Kravitz et al., 2013). Therefore, as previous studies have 

suggested, since during childhood the executive control network predominantly controls 

attention while the orienting network plays a less significant role – the connectivity between the 

lingual gyrus and the orbitofrontal gyrus may be less used and therefore weakened during middle 

childhood due to a potential role it plays in visual attention.  This may explain why we observed 

reduced connectivity between these brain regions in the VAN in our study, and may also suggest 

that increased connectivity within these brain regions could be suggestive of atypical 

connectivity during middle childhood as a result of adversity.  

 

4.5.2 Adversity and adversity outcomes impact connectivity   

 

A number of studies have found that adversity impacts typical brain development (measured by 

connectivity strength) within RSNs.  For instance, a study done by Marshall et al (2018), 
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investigated changes in resting-state FC of the ventral striatum, for participants who ranged from 

6 to 17 years of age.  They found that individuals exposed to socio-economic disadvantage in 

their early years of life had atypical, reduced FC between the ventral striatum and the anterior 

part of the medial prefrontal cortex (Marshall et al., 2018). They also found this connectivity to 

be associated with anxiety (Marshall et al., 2018).  Other studies have also reported this 

connectivity to be associated with depression as well, which Marshall et al (2018) suggest could 

be caused by affective dysfunction from atypical corticostriatal connectivity. Another study 

evaluated children (aged 9) from low-income households and found that they had reduced 

within-network DMN connectivity compared to the children of middle-income families (Sripada 

et al., 2014).  These studies support our findings that maternal adversity impacts the typical 

development of RSNs, as indicated by reduced connectivity within RSN for the ADV compared 

to CON.  

 

4.5.3 Group differences in the frontoparietal network 

 

In our study, we found lower awFC between the left inferior frontal gyrus and the cerebellum in 

ADV compared to CON. A previous study by Li et al (2014), used rs-fMRI to assess children 

aged 6-16 years using seed-based functional connectivity.  They found reduced FC within the 

FPN and within the frontocerebellar network in children with ADHD compared to controls (Li et 

al., 2014).  Studies have shown that prenatal maternal stress is associated with ADHD in their 

offspring (Grizenko et al., 2008; Ronald et al., 2011). Therefore, this supports our findings that 

greater maternal adversity may contribute to an atypical connectivity within the brain networks 

of their offspring.  
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Reduced awFC for the ADV compared to CON was also found between the right superior frontal 

gyrus and the lingual gyrus in the FPN. A study done by Davis et al (2020) found an association 

between prenatal maternal stress and the cortical thinning of the occipital cortex and frontal 

cortex. Specifically, fetuses exposed to higher levels of prenatal maternal stress had significantly 

reduced cortical thickness in the superior frontal gyrus and the lingual gyrus, along with other 

structures ( Davis et al., 2020).  Previous studies have demonstrated that brain regions that had 

cortical thinning, also happened to have weakened connectivity between these brain regions 

(Bullmore, 2019). Thus, maternal adversity caused by stress may be a factor for the reduced 

connectivity found in offspring between the right superior frontal gyrus and the lingual gyrus 

(occipital cortex) in the ADV group compared to CON in our study.   

 

4.5.4 Group differences in the limbic network 

 

Within the limbic network, we found significantly greater awFC group differences for the CON 

group compared to the ADV in the LIM between the right superior temporal gyrus and left 

superior temporal gyrus. A study done by Muetzel (2016) evaluated the RSN of children aged 6-

10 years of age and found that the within this age group the brain continues to undergo 

developmental changes. They suggested that the interhemispheric connectivity is strengthened 

with age (Muetzel et al., 2016).  In this study we observed greater connectivity between the left 

and right superior temporal gyrus of the limbic network for the CON group compared to ADV.  
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Furthermore, the temporal lobes and amygdala of both hemispheres are connected by the anterior 

commissure (Klingler & Gloor, 1960). The amygdala is known to play an important role in 

emotional processing (LeDoux, 2000).  Altered interhemispheric connectivity within brain 

networks was found to correlate to emotional deficits (Saxena et al., 2012). More specifically, 

Saxena et al. (2012) demonstrated that lower structural connectivity (measured as fractional 

anisotropy) within the anterior commissure was associated aggression in youth (aged 7-17 years 

old) (Saxena et al., 2012).  Children of depressed mothers have been shown to display 

aggression, which Keenan-Miller et al (2010) suggested is a result of poor mother-child 

interactions. In our study, we also identified lower connectivity within this region. It may be 

suggested that lower awFC in the ADV group may contribute to emotional deficits in children of 

mothers exposed to greater levels of adversity. Future work will be necessary to examine this 

question directly.    

 

4.5.5 Group differences in the ventral attention network 

 

In this study, we observed that relative to ADV, CON displayed a greater connectivity within all 

RSN’s except the VAN. A study done by Farah et al (2020), used task based-fMRI to assess 

brain connectivity changes in preschoolers with mothers who experienced adversity either 

prenatally or postnatally. They found that maternal depression was associated with greater 

connectivity between the right visual region (located in the occipital lobe) and the right frontal 

regions (i.e. dorsolateral prefrontal cortex) in children. Farah et al (2020) suggested, that reduced 

connectivity in these brain regions may be indicative of children processing fewer positive 

emotions during visualization (imagination) that accompanies story time (Farah et al., 2020). In a 
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study done by Van der Werff (2013) increased lingual gyrus connectivity was identified in 

maltreatment-resilient individuals (van der Werff et al., 2013). The prefrontal cortex is another 

region of the brain found to play a key role in the mechanism of stress/trauma resilience 

(Arnsten, 2009).  In a review study, done by Bolsinger et al (2018), the trauma resistant 

individuals were characterized by increased activation of the PFC.   Their study suggests that 

resilient individuals have more cognitive control over their emotions, which is reflected in their 

brain networks in the form of increased activation in this region (Bolsinger et al., 2018).  This 

finding aligns with our work, as we observed greater connectivity in ADV compared CON. 

Greater connectivity between these regions may imply that these ADV children have formed 

resilience to the adverse events they had experienced either prenatally or postnatally. 

 

4.5.6 Group differences in the dorsal attention network 

 

We observed reduced connectivity between the orbitofrontal gyrus to the left inferior temporal 

gyrus within the DAN for ADV compared to CON.  The lateral orbitofrontal cortex shares strong 

connections with the inferior temporal pole (Martin-Elkins & Horel, 1992). The orbitofrontal 

gyrus receives and processes information from the temporal pole (Öngür & Price, 2000). A study 

done by J. L. Hanson et al., 2010 performed tensor-based morphometry and found that children 

exposed to maltreatment (specifically physical abuse) showed anatomical volume changes in the 

orbitofrontal gyrus and the inferior temporal gyrus in comparison to controls. Another study 

done by J. Hanson et al., 2013 demonstrated that children (9-14 years of age) exposed to early 

neglect exhibited reduced structural connectivity (they refer to as directional organization) 

measured with DTI-derived fractional anisotropy between the prefrontal and temporal lobes 
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compared to children that did not.  These studies reveal the impact of adversity on the structural 

connectivity between the frontal lobe and temporal lobe in children. Therefore, our findings may 

provide additional support that connectivity may be impacted upon exposure to early life 

adversity, specifically within the DAN. 

 

4.5.7 SC and FC decoupling 

 

Connectivity measures between brain regions that displayed significant functional connectivity 

group differences did not always display structural connectivity group differences as well [See 

table 2]. Although not uncommon, the age group of the participants may be a major factor.  

During middle childhood, functional connectivity is said to reach adult–like levels, whereas the 

structural connectivity is still undergoing constant change (i.e. pruning and myelination) 

(Supekar et al., 2010). These structural connectivity changes can result in a plateau phase 

(Levitt, 2003).  Since there are many processes that are taking place during development, 

including synaptogenesis, pruning and myelination, it can be difficult to detect changes in 

structural connectivity.  In particular, from a structural connectivity standpoint, synaptogenesis 

(increasing number of tracts) and pruning (decreasing number of tracts), can counterbalance each 

other for children aged 2-7 years of age (Levitt, 2003). This developmental period is also known 

as the “plateau phase” (Levitt, 2003). Our population has a mean age of 7.63 years (standard 

deviation = 0.66), which may explain the observed lack of detectable SC differences between 

CON and ADV groups in this study. Furthermore, white matter maturation can involve different 

types of maturation, depending on the connection. Structural connectivity maturation may have 

included myelination, but would not be detected with our SC approach since the measure of SC 
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used in this study is tract density. As such, changes in structural connectivity may be more 

difficult to detect during middle childhood while, group differences in functional connectivity 

are much more easily identified across this developmental period.  

 

There are several other reasons for the dissociated functional and structural connectivity changes. 

Inter-subject variability of brain development is substantial (Walhovd et al., 2014). Brain 

development may be occurring at different rates (i.e. pruning and myelination in different brain 

networks) for different children, thus not easily detected. The exact timing of when these 

changes occur for each child may also vary (Marsh et al., 2008). In addition, while the functional 

connectivity reconfigures due to experiential influences (i.e. adversity), the underlying structural 

reorganization (structural connectivity) changes at a slower rate (Honey et al., 2010). The 

structural connectivity may evolve at a slower rate compared to the functional connectivity 

(Honey et al., 2010). Ultimately, this could result in significant structural connectivity changes 

going undetected.  

 

4.5.8 Linking Infant Behaviour with Atypical Neural Networks in Middle Childhood  

 

4.5.8.1 Psychomotor Development and underlying FPN  

 

One of the important functions of the SFG is motor activity (Martino et al., 2011), although this 

brain region is also known to be associated with cognitive control (Vincent et al., 2008), working 

memory (Courtney, 1998) and resting-state regulation. The superior frontal gyrus is connected to 

the occipital lobe via the inferior fronto-occipital fasciculus (IFOF). The IFOF is also strongly 
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connected with the premotor and prefrontal areas, which contribute to movement planning and 

sensorimotor processing (Caverzasi et al., 2014).   The IFOF is known to have six different 

projections (Kravitz et al., 2013). A study done by Astafiev et al., 2004, revealed that limb 

movements activated not only motor areas (i.e. primary motor cortex, bilateral secondary 

somatosensory cortex and supplementary motor area), but visual areas such as the lingual gyrus 

as well (Astafiev et al., 2004).  The lateral occipital cortex (i.e. lingual gyrus) is known to have a 

modulatory role during the recognition of haptic objects (recognizing objects through touch) 

(Amedi et al., 2001).  In our study the Bayley tests for psychomotor development was used. The 

Bayley test includes picking up and exploring objects as categories for the PDI – this includes 

fragile objects (haptic perception) (Normand et al., 1995). Given this interesting link, it seems 

plausible that there is an association between PDI at age three and brain connectivity strength 

between the superior frontal gyrus and the lingual gyrus in middle childhood. Another potential 

explanation may be that motor movement is primarily driven by vision (Glickstein, 2000), and 

therefore the connectivity between the SFG and the LG (a visual area) would be impacted. 

 

4.5.8.2 Association between PDI during toddlerhood and awFC during middle childhood 

 

In this study, PDI score at age three was found to be associated with atypical connectivity 

between the SFG and the LG (located in the occipital pole) in middle childhood for children 

exposed to high levels of maternal adversity.  Many studies have suggested that the pre- and 

postnatal maternal environment, such as maternal smoking during pregnancy (Larsson & 

Montgomery, 2011), alcohol consumption during breastfeeding (Little et al., 1989), 

antidepressants during pregnancy (Casper et al., 2003; Galbally et al., 2011; Hanley et al., 2013; 
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Smith et al., 2013), among many other genetic and environmental factors (Golding et al., 2014),  

may affect children’s motor skills.  Previous studies have shown that the quality of spontaneous 

(motor) movements during early infancy (11-16 weeks) was predictive of behavioral issues and 

intelligence during middle childhood (7-11 years old) (Butcher et al., 2009).   A study done by 

Grunewaldt et al (2014), found that infants at 3 months of age with atypical motor-repertoire 

exhibited poorer working memory, poor motor skills, and had more attention and behavioral 

problems in middle childhood (age 10) as well (Grunewaldt et al., 2014, p. 10).  These studies 

suggest that poor gross motor skills may manifest as poor cognitive skills.  Cognition is 

developed through motor skills because during the earliest years of life infants and toddlers rely 

on their motor activity to explore their environment (Bruggink et al., 2010; Bushnell & 

Boudreau, 1993; Butcher et al., 2009).  Therefore, weakened motor activity during the early 

years of a child’s life may impact their cognitive and perceptual development throughout their 

childhood (driven by sensorimotor activity) (Bruggink et al., 2010; Bushnell & Boudreau, 1993; 

Butcher et al., 2009).  As such, it is important to assess motor movements during early life to 

predict the potentially long-lasting impacts on the neural brain development in middle childhood, 

which may persist into adulthood.    In addition, other studies evaluated the effect childhood 

adversity - as it relates to drug exposure - on typical development. For instance, a study done by 

Rosen & Johnson (1982) studied the effect in-utero methadone (an opioid) exposure has on 

infant development. They found that the two groups (methadone exposed and controls) had 

statistically significant differences in Bayley PDI measures (Rosen & Johnson, 1982).  More 

specifically, methadone-exposed infants scored lower on the PDI than controls, although all the 

scores were within the normal range (Rosen & Johnson, 1982).  They noted that as infants got 

older, the difference between both groups would become more apparent and increasingly 
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significant (Rosen & Johnson, 1982).  Similarly, in this study although all subjects were within 

the normal range of PDI score as described in Rosen & Johnson (1982), the children that were 

exposed to pre- and/or post-natal maternal adversity had a lower PDI scores than controls.  

 

4.5.8.3 Orienting behaviour and underlying VAN connectivity  

 

The orienting behaviour, first introduced by Pavlov (1927) was described to be an ‘investigatory 

reflex” or a “what-is-it?” exploratory response to novel stimuli (change in environment). The 

orienting reflex (rapid shifting of attentional focus to unpredicted stimuli) is mediated via the 

ventral attention network (interchangeably referred to as the ventral Frontoparietal network) 

(Corbetta et al., 2008; Corbetta & Shulman, 2002).  

Goodale and Milner (1992) proposed that the processing of visual information is composed of 

two main streams: the ventral and dorsal streams. The ventral stream has been known as the 

‘what’ pathway, whereas the dorsal stream is known as the ‘how’ pathway (Goodale & Milner, 

1992).  The ventral stream processes information about the structure of the object, whereas the 

dorsal stream processes the spatial information (Goodale & Milner, 1992).  The dorsal stream is 

well defined, whereas the exact anatomy of the ventral stream is still debated in the literature 

(Dick & Tremblay, 2012).  However, it’s been suggested that the inferior fronto-occipital 

fasciculus (IFOF) is one of the pathways that make up the ventral stream (Axer et al., 2013; Dick 

& Tremblay, 2012; Weiller et al., 2021).  The oribitofrontal gyrus is connected to the ventral 

occipital lobe (i.e. lingual gyrus) via the inferior fronto-occipital fasciculus (Catani & 

Thiebautdeschotten, 2008).  The IFOF is known to play a role in a number of cognitive tasks 

including pantomime, language, tool use, arithmetic’s or spatial attention (Fridriksson et al., 
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2018; Hickok & Poeppel, 2007; Umarova et al., 2010; Vry et al., 2015; Willmes et al., 2014) .  

The IFOF’s role is also suspected to be associated with visual processing (Fox et al., 2008; 

Rudrauf et al., 2008), visual perception of information (Ashtari, 2012), and re-orienting attention 

(Doricchi et al., 2008)..   

 

4.5.8.4 Association between orientation behaviour during toddlerhood and awFC during 

middle childhood 

 

The association between orientation behaviour in infants and atypical brain connectivity in 

middle childhood as an outcome of high or low maternal adversity score was explored. In this 

study, we found atypical connectivity for the ADV compared to CON in the VAN between the 

orbitofrontal gyrus and the lingual gyrus in middle childhood, which was significantly associated 

with orienting behaviour at age three.  A study done by Farber et al (1981) found that infants of 

mothers with anxiety had a lower orientation scores than infants of mothers who were not 

anxious (Farber et al., 1981). This supports our findings of lower orientation behaviour in 

children aged 3 and its association with greater awFC (atypical connectivity).  Previous studies 

have also shown that orientation behaviour (i.e. alertness, awareness, orienting to stimuli) in 

infants may be predictive of IQ and/or mental functioning later in life (Anderson, 1939; DiLalla 

et al., 1990; Nelson & Richards, 1938).  Orienting behaviour is frequently related to child 

cognitive development (Lemelin et al., 2006; Sajaniemi et al., 2001).  In addition, the right 

lateral orbitofrontal cortex has been found to contribute to the orienting of visuo-spatial attention 

(E. R. Murphy et al., 2017).  Thus, it may be of value to study orientation behaviour in 3-year-

old children to understand the long-term implications early attention and cognition may have 



.   213 

during middle childhood on brain connectivity within the VAN. Our results fit well with existing 

literature suggesting that maternal adversity may have adverse outcomes on behavioural 

development.  We extended this work to explore the impact adversity outcomes have on brain 

connectivity changes in middle childhood.  

 

 

4.5.9 Future directions and limitations 

 

Early development of psychomotor and orientation behaviour at the age of 3 was found to be 

predictive of atypical brain connectivity within RSNs in middle childhood. While we studied 

PDI and orientation behaviour at the age of three as predictive variables for connectivity in 

middle childhood, it would also be interesting to investigate PDI and orientation behaviour in 

middle childhood as well.  Does it become more distinguishable between CON and ADV 

groups?  This question remains an important and interesting area for future research.  In addition, 

this paper investigated atypical RSN development throughout middle childhood as a result of 

exposure to maternal adversity for children alone.  However, it would be interesting to perform a 

comparative study to evaluate RSN connectivity changes in mother and child.  By doing so, one 

would be able to study potential parallels between mother and child brain connectivity 

abnormalities as a result of adversity.  

 

Comparison of our data with that of the literature must be interpreted with caution because our 

sample size is small (17 participants). A study with a larger sample size may be useful in 

determining the impact of maternal adversity on RSN’s connectivity.  In addition, there has not 
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yet been other combined FC-SC studies in middle childhood and early exposure to maternal 

adversity. Moreover, the age range, which defines middle childhood, varies across studies and 

should be noted when comparing results. Furthermore, our analysis was limited to a few ROIs 

per network that represented regions of each of the RSN’s, however there are several other ROIs 

that we did not explore.  An appropriate threshold for the most optimal set of ROIs that represent 

key regions of each network still remains uncertain.  It is difficult to determine the most optimal 

threshold that can produce a set of ROIs that represents key regions of each of the RSN’s. In 

addition inputting different parameters into 3dROIMaker such as a white matter skeleton, CSF 

mask (which trims ROIs), and volume threshold, and ROI threshold, results in different set of 

ROIs location, size, and shape.  For this reason, it may be difficult to replicate the study with the 

same set of ROIs per network. In addition, in our study we used DTI to acquire white matter 

tracts.  DTI-based tractography, which involves indirectly measured tract tracing via a water 

diffusion technique, has its limitations. Crossing, converging, and diverging fibers are difficult to 

resolve in tractography and prone to error and inaccuracies (Jbabdi & Johansen-Berg, 2011). 

Crossing fibers in a voxel may result in inaccurate tractography tracing.  However, a diffusion 

imaging technique called diffusion spectrum imaging (DSI), is sensitive to detecting fibers and 

fiber crossings.  Therefore, DSI may be a more suitable technique since we use the number of 

fiber tracts as the measure for structural connectivity, and a worthwhile approach to consider.  

 

4.5.10 Conclusion 

 

Our results add to a growing body of literature that examines the impact of prenatal/postnatal 

maternal adversity on neurodevelopment. In particular, this research provides strong evidence of 
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RSN abnormalities amongst children aged 7-9 who were exposed to early life maternal adversity. 

We used a novel FATCAT/awFC approach that was designed to simplify a complex and 

computationally intense model (Bowman et al., 2012), by integrating a toolbox (Taylor & Saad, 

2013) in the pipeline, which ultimately resulted in a fast and simplified approach that preserved 

the abundance information. Our findings are similar to the existing literature of individuals 

exposed to adversity in early years. However, we extended upon these studies by performing a 

combined structural-functional connectivity approach to reveal (or study) changes in brain 

connectivity. Examining awFC can be an important tool in tracking normative brain 

development in children. Aberrant awFC connectivity can be reflective of atypical brain 

development in children exposed to adversity.  In addition, aberrant connectivity within these 

networks may play a role in the behavioural issues and neuropsychiatric disorders that are 

hallmarks of early adversity. As our results show, orientation behavior and psychomotor 

performance at age 3 may be predictive of aberrant connectivity in middle childhood Our 

research demonstrates that with our novel FATCAT-awFC pipeline, we were capable of 

detecting underlying changes in the brain networks among children in the middle childhood age 

group who were exposed to prenatal and postnatal maternal adversity.   
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4.5.11 Figures  

 

 

Fig.1 | FATCAT-awFC pipeline.  This is a two-stage pipeline, when combined; result in a 

more straightforward approach for combining fMRI and DTI. The first stage is the 

‘Functional and Tractographic Connectivity Analysis Toolbox’ (FATCAT) pipeline. The outputs 

include: functional connectivity (derived from fMRI) and the number of tracts (derived from 

DTI).  The second stage of the pipeline is known as the anatomically weighted functional 

connectivity (awFC), which processes the output of FATCAT to produce the anatomically 
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weighted functional connectivity measure (awFC measure).  Note: fMRI = Functional magnetic 

resonance imaging, DTI = Diffusion tensor imaging, DT = diffusion tensor, ICA = Independent 

component analysis, ROIs = Regions of interest, SC = Structural connectivity, FC = Functional 

connectivity, awFd = Anatomically weighted functional dissimilarity, awFC = Anatomically 

weighted functional connectivity, set of AFNI commands = (3dMatch, 3dROIMaker, 3dNetCorr, 

3dDWItoDT, 3dDWUncert, 3dTrackID).  

 

 

 

Fig. 2 | Statistically significant anatomically weighted functional connectivity group 

differences between brain regions are displayed for each network. Isolated brain regions 

were defined using the FATCAT command 3dROIMaker. Each colour represents a different 

ROI for each network a) DMN, green ROI= posterior cingulate cortex, red ROI = left angular 

gyrus b) FPN, blue ROI = left inferior frontal gyrus, orange ROI = right superior frontal gyrus, 

green ROI = lingual gyrus/cerebellum c) LIM, yellow ROI= right superior temporal gyrus, red 
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ROI = left superior temporal gyrus d) VAN, yellow ROI = right anterior orbitofrontal gyrus, blue 

ROI = left lingual gyrus/cuneus e) DAN, yellow ROI = right posterior orbitofrontal gyrus, red 

ROI = left inferior temporal gyrus . ROI = region of interest, DMN = default mode network, 

FPN = frontoparietal network, VAN = ventral attention network, DAN = dorsal attention 

network. Anatomical positions, A = anterior view, P = posterior view, S = superior view, I = 

inferior view, L = left view, R= right view. 

 

Fig. 3 | Boxplots demonstrate the anatomically weighted functional connectivity strength in 

children with pre/postnatal adversity (orange boxes) compared to children with no 

pre/postnatal adversity (blue boxes).  Significant differences between ADV and CON are 

shown within the a) DMN between the PCC and L-AG b) FPN between the L-IFG and the 

LG/CER c) FPN between the R-SFG and the LG/CER d) LIM between the R-STG and the 
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L-STG e) VAN between the R-aOFG and L-LG f) DAN between the R-pOFG and L-ITG. 

Note: ADV= Children exposed to high pre/postnatal adversity, CON = Control, DMN = Default 

mode network, FPN = Frontoparietal Network, LIM = Limbic network, VAN = Ventral 

Attention Network, DAN = Dorsal Attention Network, L- = Left, R- = Right, IFG = Inferior 

frontal gyrus, LG/CER = Lingual gyrus / Cerebellum, SFG = Superior frontal gyrus, STG = 

superior temporal gyrus, aOFG = anterior orbitofrontal gyrus, LG = Lingual gyrus, pOFG = 

posterior orbitofrontal gyrus, ITG = Inferior temporal gyrus.  

 

 

 

Fig. 4 | Linear regression to demonstrate the relationship between a) psychomotor 

developmental index (PDI) at age three and awFC within the FPN between the R-SFG and 

the LG/CER in middle childhood b) orientation behavior at 3 years old and awFC within 

the VAN between the R-aOFG and L-LG in middle childhood.  Significant associations were 

found between both PDI and orientation behaviour at age 3 and the awFC in middle childhood.  

Note: FPN = frontoparietal network, VAN = ventral attention network, R-SFG = right superior 

frontal gyrus, LG/CER = lingual gyrus/cerebellum, R-aOFG = right anterior orbitofrontal gyrus, 

L-LG = left lingual gyrus, ADV= Children exposed to high pre/postnatal adversity, CON = 

Controls.  
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Chapter 5: General Discussion 

 

5.1 Designing a faster and simpler pipeline for the combined structural and functional 

connectivity analysis of brain networks  

 

The main goal of my thesis was to develop a pipeline for the analysis of a combined structural 

and functional connectivity metric that could easily be applied across different scientific projects.  

Our priority was to produce a pipeline that was easy to understand, had reduced processing time 

compared to other methods, was flexible and compatible with different computers (didn’t need 

special equipment/hardware/software), and utilized open-source software packages with freely 

available tools. We accomplished this by combining a well-established AFNI toolbox (a software 

package for the analysis of fMRI and DTI data), known as FATCAT (Taylor & Saad, 2013) with 

a mathematically dense data fusion approach known as the awFC technique (Bowman et al., 

2012).  Taylor and  Saad (2013), demonstrated that the FATCAT AFNI commands had a much 

faster execution speed for processing probabilistic tractography compared to FSL (a software for 

the analysis of fMRI and DTI).  The original awFC technique relied on FSL to process 

probabilistic tractography. By including AFNI FATCAT in our pipeline, it improved the speed 

of the analysis and the execution speed of the awFC technique. The added advantage of 

incorporating fMRI/DTI analysis packages (AFNI commands from FATCAT) as a part of our 

pipeline was the application of mathematical formulas and algorithms that can be initiated with 

ease using a single command at a time.  In addition, the utility of FATCAT, which consists of set 

of AFNI commands, was designed to be intuitive because FATCAT follows a suggested pipeline 

with the set of functions that are run in an order in which they are typically applied. In addition, 
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FATCAT is also capable of processing a large quantity of data conveniently with batch 

processing (beneficial for large datasets).  Aside from that, each AFNI command provides users 

with different options (i.e. arguments) for more flexibility and specialization so that users may 

add new capabilities to it (as they see fit for their project).  Therefore, allowing users the 

flexibility to choose the parameters they wish to modify and not being completely automated is 

an added advantage (i.e. choose the parameters for DTI tractography, such as turning angle).  

Although we designed the pipeline with fMRI/DTI in mind, the toolbox is compatible with other 

data types such as task-based fMRI.  The awFC approach (Bowman et al., 2012), on the other 

hand, offers the sophistication of combining two connectivity metrics together in a fused 

approach to produce a single measure containing a wealth of information.   It also corrects the 

data for distance bias, and includes indirect structural connectivity to better correspond with 

functional connectivity (Bowman et al., 2012). This hybrid pipeline combined the advantages of 

a convenient neuroimaging toolbox and a sophisticated data fusion approach, to produce the 

FATCAT-awFC approach (Ayyash et al., 2021).  

 

Designing a pipeline for combining functional and structural connectivity was done solely for 

this thesis. The vision for the pipeline was that other researchers could use it in the future, 

perhaps even modified slightly for different applications to study different neuropsychiatric 

disorders. Although the focus in this thesis is resting-state functional data, there are other data 

types that can be incorporated as well, such as task-based fMRI.   

 

5.2 Functional ROIs and Tractography 
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An important component of the FATCAT-awFC pipeline is ROI-refinement. In the literature, 

there is no clear convention on the best method for ROI size/selection (Sohn et al., 2015).  Some 

papers choose to use predefined ROIs (Rosazza et al., 2012) others use a data-driven approach 

(Koush et al., 2019). In addition, ROI sizes also range greatly in the literature from large ROIs 

encompassing multiple brain regions at a time (Chu et al., 2018) to smaller brain regions 

encompassing a voxel or two (Sohn et al., 2015). There is no set standard practice for selecting a 

set of functional ROIs (i.e. thresholding arbitrarily) (Sohn et al., 2015).  The FATCAT approach 

used in our pipeline for selecting ROIs involved the selection of a threshold that seemed fairly 

representative of a particular network.  It was observed that larger ROIs tend to average out the 

signal, due to neighboring activations and deactivations canceling each other out, and result in 

the loss of potentially interesting information/findings (Mueller et al., 2013; Poldrack, 2007). We 

deduced that since larger ROIs average out the signal across the entire region, we could increase 

the threshold of the map and obtain the smaller more targeted activated voxels while eliminating 

unactivated (or less activated) voxels that contribute noise to the signal (Cohen & DuBois, 1999). 

However, increasing the threshold is not necessarily a solution due to the following tradeoff.  

While smaller ROIs seem to detect more specific brain regions, they have greater variability in 

matching the exact location of the ROI across the brains of subjects (Cohen & DuBois, 1999) .  

They are difficult to accurately map on different subjects’ brains due to the variability of brain 

size and shape (Cole et al., 2010). Larger ROIs may leave more room for covering similar brain 

regions (Sohn et al., 2015) and have less variability between subjects and more reproducibility of 

results (Song et al., 2016). In the first paper, the depression paper (Chapter 2), the ROIs were 

large and encompassed many brain regions at a time with an average ROI size of 594 voxels.  

The second paper, the remitters paper (Chapter 3), the average ROI size was 54 voxels. Finally, 
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the third paper (Chapter 4), the adversity paper, included ROIs with an average size of 11 voxels.  

This illustrates the challenges that arose when attempting to define the optimal threshold setting 

for ROI selection.   

 

Another added complication to ROI threshold selection, is that the location and size of the ROI 

can greatly impact the calculation of the white matter tracts connecting two brain regions (Sohn 

et al., 2015). This in turn, may greatly influence the structural and functional connectivity 

profiles (Li et al., 2012). Regardless of the utmost importance of ROI selection, it remains a great 

challenge in the neuroimaging community for various reasons including (Liu, 2011): a) the 

boundaries being unclear between cortical regions (Van Essen & Dierker, 2007) b) The great 

variability across individuals’ brain anatomy, function and connectivity (Brett et al., 2002) c) 

properties of ROIs are highly non-linear within and around the ROI (Li et al., 2012).   

 

5.3 Limitations to the Method 

 

In this section, I am going to discuss some of the processing steps that were explored, but due to 

various reasons, were not included in our pipeline for the analysis. This information may be of 

value methodologically for future research in this area.  Initially when designing a pipeline that 

combined structural and functional connectivity in a data fusion approach, we applied the 

processing steps incrementally from 3 subjects, to 10 subjects, to 40 subjects and so on, while 

refining the process.  
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We were interested in assessing subject specific RSNs.  While resting-state networks are 

consistent across subjects, there is not always an exact correspondence among the nodes 

identified within each particular network across individual subjects (Cole et al., 2010). Previous 

research has demonstrated that subject-specific ROI selection is more reliable and sensitive in a 

multi-subject analysis (Nieto-Castañón & Fedorenko, 2012). To generate subject-level RSNs, we 

incorporated a technique known as dual regression (Beckmann et al., 2009; Erhardt et al., 2011) 

into the pipeline, following the Group ICA step.  This applied the regression of the group-ICA 

spatial maps against the functional dataset of each individual subject (Nickerson et al., 2017). 

The group-ICA components were used as a set of spatial regressors in a multiple regression 

analysis (Nickerson et al., 2017). This generated subject-level spatial maps and subject specific 

time series for each component (i.e. resting-state networks) for each subject (Nickerson et al., 

2017).  However, there were clear limitations when performing dual regression to obtain subject-

specific RSNs.  Subject-specific RSNs lacked the consistency of functional ROIs across subjects. 

Some ROIs were undetected because functional brain ROIs may be missing in in particular 

subjects (Gordon et al., 2017).  Furthermore, ROIs were substantially different in size, location 

and shape, making it more difficult to compare across subjects. This naturally occurs due to the 

inter-subject variability of RSN (Mueller et al., 2013).  Thus, it was very difficult to draw 

inferences about different spatial maps across multiple subjects (Calhoun et al., 2001).  There are 

different levels of motion, artifacts and noise for data collected from each subject (Cohen & 

DuBois, 1999), as such, producing similar spatial ROIs across subjects would be difficult to 

achieve (Cohen & DuBois, 1999).  This meant that when setting a threshold across subjects-level 

functional data, in the 3dROIMaker step (Taylor & Saad, 2013), the result was an inconsistent 

number of ROIs produced within each RSN.  
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We also attempted to manually (through trial and error) find the threshold suitable for each 

subjects’ functional data, that produced a similar number of ROIs.  However, even through 

visual inspection, it was impossible to achieve a common spatial map across all subjects. For 

instance, the first subject’s (subject1) RSN for the DMN was separated into 5 ROIs, whereas 

another subject (subject2) the DMN was separated into 6 ROIs. We attempted to set a higher 

threshold for subject2 to achieve the same 5 ROIs.  Instead, this only resulted in the breaking 

apart of an ROI into two separate ROIs , resulting in 7 ROIs that were distributed differently than 

those observed in subject1.   This validated our previous observation that, even manually setting 

the threshold for each individual subject, would not achieve a consistent number of ROIs and 

common brain regions for ROIs across subjects.  The FATCAT toolbox lacks the ability to 

produce localized/subject specific ROIs that have a consistent number of ROIs across 

participants. The FATCAT is only able to apply the traditional ROI group analysis approach to 

study connectivity across subjects.  Therefore, we decided to apply group level ICA only, and 

transform the group-level ROIs back into each subjects’ functional data space.    

 

An argument can be made against group-level analysis, in that the variability in ROI location, 

size and shape is part of the distribution of individual networks (Van Essen & Dierker, 2007). 

There is the concern of generalizing these functional ROIs for subjects that don’t even have these 

functional activations (Michael et al., 2014).  However, there is merit to group-level ROI 

analysis because a common set of spatial maps are needed when comparing across subjects, 

(Calhoun et al., 2001).  Common spatial maps are not achievable with individual-level ICA 

making it difficult to draw inferences about the data (Salman et al., 2019). Group ICA allows 
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users to have common spatial maps to draw inferences about the dataset (Calhoun et al., 2001). 

The benefit of performing group ICA, is its robust ability to detect resting-state networks 

compared to individual-level ICA that has difficulty robustly detecting RSNs (Rytty et al., 2013).  

 

This thesis presents a pipeline for the faster and more intuitive analysis of a combined 

functional-structural connectivity that can be used for studying the functional and structural 

connectivity of the human brain. Our technical contributions offer new solutions to difficult 

neuroimaging data fusion approaches. We propose that applying the fused structural-functional 

connectivity for identifying atypical connectivity in different groups will help elevate research 

beyond that ascertained from traditional structural or functional connectivity alone. Researchers 

are increasingly beginning to understand the power and depth of information provided by using a 

multimodal approach to assess complex psychological issues (Calhoun & Sui, 2016).  This has 

made multimodal analysis appealing over the years, however, it is underutilized due to its 

complex nature (Calhoun & Sui, 2016). Thus, our FATCAT-awFC was applied to evaluate 

different populations.   

 

5.4 Neural circuitry abnormalities underlying MDD  

 

In Chapter 2, we assembled the FATCAT-awFC pipeline and applied it to MDD data. When we 

combined the functional and structural connectivity data via the FATCAT-awFC pipeline, we 

were able to observe significant awFC differences between groups (MDD vs HC) in two RSNs.  

First, decreased connectivity (MDD<HC) in the DMN was found between the occipital lobe 

(covering parts of the cerebellum) and the PCC. Second, decreased connectivity (MDD<HC) was 
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observed in the VAN between the left temporal lobe and the right DLPFC.  Third, decreased 

connectivity was observed in the VAN between the right temporal lobe and the right DLPFC. 

Decreased awFC following MDD may represent a weakening of important connections that are 

typically more strongly connected to one another in healthy adults.  This information may be of 

value for assessing underlying connectivity that may differentiate healthy from MDD patients 

and may help us better understand the underlying changes that brain connectivity may undergo in 

MDD. 

 

 

5.5 Neural circuitry abnormalities underlying REM and NREM in MDD 

 

The results of the first study (MDD vs HC) prompted us to investigate connectivity changes in a 

different population. In chapter 3, we wanted to investigate brain connectivity changes using our 

FATCAT-awFC pipeline in MDD patients administered escitalopram antidepressant. We were 

also interested in studying the connectivity differences characteristic of patients that reach 

remission (REM) compared to MDD participants that did not reach remission (NREM). We were 

also interested in assessing connectivity changes for REM at baseline compared to REM at 

week-8.  In relation to NREM at week8, REM at week8 had significantly different connectivity 

between brain regions in four RSNs. To examine the question of what changes distinguish REM 

from NREM at week-8, we found decreased connectivity (REMweek8 <NRweek8) in the DMN were 

found between three region pairs: between the left angular gyrus and the middle prefrontal 

cortex, between the middle prefrontal cortex and the left middle temporal gyrus, and finally 

between the left angular gyrus and the left middle temporal gyrus.  In addition, decreased 
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connectivity (REMweek8 <NRweek8) in the FPN was observed between the left cerebellum to the 

right orbitofrontal gyrus. Third, decreased connectivity (REMweek8 <NRweek8) in the VAN 

between the: right insula and left middle frontal gyrus and between the ACC and the left middle 

frontal gyrus.  

To examine the question of what changes occur with a favorable response to medication, we 

compared remitters at baseline to remitters post-treatment at week-8.  We observed increased 

connectivity (REMweek8 > REMbaseline) in the DAN between the right and left postcentral gyrus 

and the right precentral gyrus, we also observed decreased connectivity (REMweek8 < REMbaseline) 

in the FPN between the left cerebellum and the right orbitofrontal gyrus. Our findings 

demonstrate that there are connectivity differences that exist between MDD remitters and non-

remitters.  This work helps to shed light on the circuitry within RSNs that predicts a favorable 

response to treatment. .  

 

5.6 Neural circuitry abnormalities within middle childhood caused by pre- and/or 

postnatal adversity  

 

In Chapter 4, we investigated atypical brain development for children with pre- and/or postnatal 

adversity compared to children without pre- and/or postnatal adversity using our FATCAT-

awFC pipeline.  Statistically significant awFC group differences were discovered in five RSNs.  

Firstly, decreased connectivity (ADV<CON) in the DMN was found between the PCC and the 

left angular gyrus. Secondly, decreased connectivity (ADV < CON) in the FPN was observed 

between the: left inferior frontal gyrus and the lingual gyrus/cerebellum, and between the right 

superior frontal gyrus and the lingual gyrus/cerebellum. Thirdly, decreased connectivity (ADV < 
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CON) was found in the LIM between the right superior temporal gyrus and the left superior 

temporal gyrus. Fourthly, increased connectivity (ADV > CON) was found in the VAN between 

the right anterior orbitofrontal gyrus and the left lingual gyrus. Finally, decreased connectivity 

(ADV < CON) was observed in the DAN between the posterior orbitofrontal gyrus and the left 

inferior temporal gyrus.  This study helps us better understand the complex circuitry during 

middle childhood and the RSNs that are impacted as a result of pre- and/or postnatal adversity on 

this age group.  

 

5.7 Connectivity across studies 

 

Although functional brain ROIs across our studies are not directly comparable, due to the 

variability that is associated with selecting functionally-derived ROIs, conclusions may still be 

made about our findings.  

 

Common to both Chapter 2 and Chapter 3, it was evident that with the use of our FATCAT-

awFC pipeline, we were able to demonstrate that two RSNs, the DMN and the VAN were 

impacted in MDD: 1) in MDD versus controls in our first study, 2) between REM and NREM at 

week-8, post antidepressant therapy, in our second study. Only the DMN and VAN differentiated 

MDD from controls in the first study. The second study (remitters paper) differentiated 

connectivity for REM and NREM at week-8 in three RSNs: DMN VAN and FPN.  NREM 

demonstrated atypical connectivity compared to REM, as either decreases or increases compared 

to REM. Atypical connectivity may appear as either greater or weaker connectivity strength 

(Mattiaccio et al., 2016).  On the other hand, post-therapy connectivity changes for the MDD 
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population may indicate, “normalizing” that happens in remission post-antidepressant treatment, 

whereby atypical connectivity is adjusted/corrected (Aizenstein et al., 2014; Xiao et al., 2019).   

 

Another analysis in Chapter 3, involved comparing remitters at baseline to remitters at week-8.  

Interestingly, for this analysis, there was greater connectivity in the DAN for remitters at week-8 

compared to remitters at baseline. The opposite trend was observed for FPN from baseline to 

week-8.  We suspect that this may reflect the normalization of connectivity post 

pharmacotherapy.  

 

In Chapter 4, it was pre- and/or postnatal adversity that reflected as atypical connectivity in the 

developing brain of children in the middle childhood age-group within five RSNs: DMN, FPN, 

LIM, VAN, DAN, compared to children without pre- or postnatal adversity. This showed up as 

predominantly as reduced connectivity, although there was one instance where the opposite trend 

was observed.  Atypical connectivity can appear as either decreased/increased connectivity 

(Mattiaccio et al., 2016).  The FATCAT-awFC pipeline was capable of identifying atypical 

neurocircuitry in the developing child as a result of adversity.  

 

5.8 Future work 

 

The purpose of our study was to combine functional and structural connectivity to achieve a 

better representation of underlying brain connectivity with the help of a convenient pipeline that 

included the use of a well substantiated, publically available, and recognized, toolbox. However, 

there is much to be done to further improve this pipeline. The method that used for identifying 
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structural connectivity in this research was DTI tractography. However, DTI fiber tractography 

has inherent limitations. DTI tractography generates the trajectory of water molecules based on 

the principal eigenvector (the main direction of diffusion), which is beneficial when there is a 

single tract passing in a voxel (Descoteaux, 1999).  However, the brain typically has many 

crossing fibers (Tuch et al., 2002).  This can pose a serious issue when attempting to delineate 

fibers in a single voxel composed of multiple fibers (Descoteaux, 1999).  A known limitation to 

DTI tractography is its inability to resolve crossing fibers (Descoteaux, 1999). In the case of 

complex fibers, where major fiber tracts cross (i.e. semiovale), it is difficult to accurately 

represent complex fiber orientations with standard DTI tractography methods.  Tensors are used 

in diffusion imaging, but tensors may misrepresent the axon direction if there are multiple fibers 

crossing (Asken et al., 2018).  The tensor measures diffusivity in only 6 gradient directions in q-

space (Descoteaux, 1999).  Diffusion in other directions is unreliable and may be inaccurate. DTI 

relies on the Gaussian assumption that the diffusion shape is smooth between sparsely measured 

points (Descoteaux, 1999). High Angular Resolution Diffusion Imaging (HARDI), on the other 

hand, provides a more thorough view of diffusion (Descoteaux, 1999). HARDI (Caverzasi et al., 

2014) can improve tractography, and resolve regions of crossing fibers, since it serves multiple 

fiber orientations at each voxel (Descoteaux, 1999).  Therefore, a solution to the tensor used in 

DTI would be to use HARDI instead, which would be a worthwhile substitution for DTI as it has 

been reported to improve accuracy and sensibility (Bucci et al., 2013).  The FATCAT toolbox 

already is designed to accept either DTI or HARDI data in the pipeline.  Substituting HARDI for 

DTI can easily be done in the FATCAT (Taylor & Saad, 2013) pipeline and may offer more 

accurate structural connectivity measures to the pipeline. This may in turn provide richer 

information that is more correctly depictive of the white matter tracts.  



.   262 

 

Aside from the DTI side of the FATCAT-awFC pipeline, it would be of interest to improve the 

functional side as well. As previously discussed, when identifying the functional ROIs, the 

FATCAT approach is capable of only handling group ROIs. However, a clever workaround 

would be to perform functional localization for obtaining subject-specific ROIs in standard 

space. This would allow us to preserve the common spatial maps and the consistency in the 

number of ROIs across subjects, while maintaining variability that naturally happens across 

subjects. Nieto-Castañón & Fedorenko (2012) proposed a subject-specific ROI approach that 

involved functional localization that allowed the selective aggregation of voxels with a supra-

threshold response.  This may be applied after generating the group-level ROIs in order to 

achieve common ROIs and a consistent number of ROIs.  However, within each subject’s spatial 

map, functional localization would allow for a more accurate measure (higher correlation and 

less variance) of network connectivity (Sohn et al., 2015). This in turn, will produce a more 

precise representation of the connectivity, both functional and structural of each subject while 

eliminating noise from the signal.  While (Nieto-Castañón & Fedorenko, 2012) proposed an 

SPM toolbox for selecting localized fMRI ROIs, we worried that incorporating too many 

different analyses software may increase the complexity of the model.  However, this may be 

something to consider in the future.  Thus, the addition of a toolbox (i.e. SPM toolbox for 

functional localization of ROIs) [See: 

https://www.nitrc.org/project/list_screenshots.php?group_id=415&screenshot_id=291] for 

optimally functionally localizing the ROIs, from the group-level ROIs, could potentially be an 

open suggestion for incorporating it into the FATCAT-awFC pipeline. This could be a step after 

the Group ICA that is performed across subjects. However, incorporating additional software 
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may decrease the simple design and intuitiveness of the FATCAT-awFC pipeline and increase 

learning time of the software.  While this may increase processing speed to an extent, it will 

greatly refine the ROI selection per subject and increase accuracy of network connectivity (Sohn 

et al., 2015). These two adjustments: the tractography of choice and the functional ROI selection 

may further advance the FATCAT-awFC pipeline to increase accuracy of the model. 

 

 

5.9 General Conclusion 

 

In summary, for my Ph.D. thesis I first developed a new pipeline for analyzing brain connectivity 

with a data fusion approach in a more intuitive and faster approach, and ensured to choose freely 

available software and flexible tools that can be applied to a number of applications for current 

and future scientists.  Secondly, I contributed to the field of neuroscience research by 

investigating the brain connectivity that is impacted in MDD and researched the differences in 

brain connectivity for REM and NREM at week-8, and REM at baseline compared to REM at 

week-8.  I also assessed how this neuropsychiatric disorder may be associated with cognition in 

NREM. Finally I evaluated how pre- and/or postnatal adversity may impact child development 

for the middle childhood age group compared to their healthy counterparts. We also studied the 

association brain connectivity in middle childhood has with behavioral responses and 

psychomotor developmental index at age three, to observe whether there may be a predictive 

indication of atypical connectivity in children early on. I hope that my research serves an 

example of how to incorporate the ease of a toolbox with the sophistication of a data fusion 
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approach to produce a pipeline that offers a simpler and more intuitive approach that makes use 

of powerful emerging data fusion approaches to improve research.   
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Appendices 

 

Chapter 2 Supplementary Information 

 

 .1 Generating structural connectivity matrix 

In the awFC approach (Bowman et al., 2012), probabilities of structural connectivity are 

calculated by dividing the number of tracts running from ROI-to-ROI, by the total number of 

streamlines leaving the starting ROI.  This is not a typical step performed for the probabilistic 

tractography.  According to Zhang ,2010) incorporating this step (calculation of structural 

connectivity probabilities) results in higher overlap of structural and functional connectivity.  

However, calculating structural probabilities alone does not capture the full nature of structural 

connectivity.  Structural connectivity exhibits distance-dependent correlation bias, meaning that 

long-range connection (ROI pairs further apart) have weaker structural connectivity, while short-

range connections (pairs of ROIs closer together) display stronger structural connectivity 

(Geerligs et al., 2016).  Bias correction is a necessary step for adjusting structural connectivity 

values. 

 

 .2 Functional and structural connectivity combined into one unit (awFC)  

When measuring connectivity values using two different imaging modalities, we expect an 

overlap in the sampled data.  However, each modality measures connectivity values in different 

ways (i.e. functional connectivity measures temporally correlated regions, structural connectivity 

measures number of tracts) (Kriegeskorte et al., 2008).  A modality-independent comparison of 

connectivity values is achieved through dissimilarity.  The dissimilarity matrix is sensitive to 
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both activation difference and the correlation (Kriegeskorte et al., 2008).  Liu et al (2018) and 

Kriegeskorte et al (2018), have suggested that multiplicatively combining multimodal sources 

better captures cross-modal signal correlations by reducing the cost associated with the weaker 

modality and encouraging the discovery of truly important patterns from each modality. 

Therefore, combining information from different modalities, in theory, is capable of providing 

more robust inference on connectivity (Liu et al., 2018).  

 

Supplementary Fig 1. (a) A pair plot with all the variables (memory domain, complex 

attention, cognitive flexibility, processing speed and neurocognitive index) showing the 

Pearson’s correlation coefficients demonstrates multicollinearity exists among variables.  

(b) Scree Plot shows the eigenvalues/variance for each of the principal components. The 

number of principal components that were retained in our study was determined at the 

first ‘elbow’ of the plot.  Note: Mem_dom- memory domain, comp_attn – complex attention, 

cogn_flex – cognitive flexibility, proc_spd –processing speed, nci – neurocognitive index, Corr – 

correlation. 

(a) (b)
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 .3 Chapter 3 Supplementary Information  

 

 

Supplementary Fig.1 | Principal component analysis was performed to overcome 

multicollinearity among the variables  (a) Pair-wise plots of the cognitive variables were 

compared using Pearson correlation to assess multicollinearity.  An asterisk indicated a 

statistically significant correlation between variables. This was performed with ggpairs function 

from the “GGally” package (b) Scree plot, whereby the x-axis represents each of the 

principal components (output from PCA). The y-axis is the percentage of explained 

variance. The first principal component explains 63.8% of total variance in the data.  The 

first ‘elbow’ of the plot indicates that only the first PC should be retained (c) Eigenvalues 

for each principal component, whereby Eigenvalues > 1.0 are retained – only the first PC 

meets this criteria. These plots were all derived in R.  Note: Mem_dom- memory domain, 

comp_attn – complex attention, cogn_flex – cognitive flexibility, proc_spd –processing 

speed, nci – neurocognitive index, Corr – correlation, PC – Principal component.  

 

(a) (c)(b)


