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ABSTRACT 

Public infrastructure systems are crucial components of modern urban 

communities as they play major roles in elevating countries’ socio-economics. 

However, the inherent complexity and systemic interdependence of infrastructure 

construction/renewal projects have left sites hindered with multiple forms of 

performance disruptions (e.g., schedule delays, cost overruns, workplace injuries) 

that result in long-term consequences such as claims, disputes, and stakeholder 

dissatisfactions. The evolution of advanced data-driven tools (e.g., machine 

learning and complex network analytics) can play a pivotal role in driving 

improvements in the management strategies of complex projects due to such 

tools’ usefulness in applications related to interdependent systems. In this respect, 

the research presented in this dissertation is aimed at developing data-driven 

strategies geared towards a resilience-based approach to managing complex 

infrastructure projects. Such strategies can support project managers and 

stakeholders with data-informed decision-making to mitigate the impacts of 

systemic interdependence-induced risks at different levels of their projects. 

Specifically, the developed data-driven resilience-based strategies can empower 

decision-makers with the ability to: i) predict potential performance disruptions 

based on real-time and dynamic project conditions such that proactive 

response/mitigation strategies and/or contingencies can be deployed ahead of 

time; and ii) develop adaptive solutions against potential interdependence-induced 

cascade project disruptions such that rapid restoration of the most important set of 

performance targets can be restored. It is important to note that data-driven 

strategies and other analytics-based approaches are not proposed herein to replace 

but rather to complement the expertise and sensible judgment of project managers 

and the capabilities of available analysis tools. Specifically, the enriched 

predictive and analytical insights together with the proactive and rapid adaptation 

capabilities facilitated by the developed strategies can empower the new paradigm 

of resilience-guided management of complex dynamic infrastructure projects.  
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Chapter 1:  

INTRODUCTION 

1.1 BACKGROUND AND MOTIVATION 

1.1.1 Industry Challenges 

Public infrastructure systems (e.g., power, water/wastewater, 

telecommunication, and transportation) function as arteries of modern urban 

communities as they provide vital services to meet societal, economic, and 

political needs (Di Maddaloni and Davis 2018). Construction projects of such 

systems typically: 1) have long schedules and large budgets; 2) involve work 

scopes with high degrees of technical complexity and uncertainty; 3) require 

substantial resources and diverse specialized expertise; 4) need the collaboration 

of a multidisciplinary workforce each with their own constraints and 

uncertainties; and 5) spread spatially over a large geographical area of dynamic 

work environments (Sun and Zhang 2011; Flyvbjerg 2014; Luo et al. 2016). The 

success of such projects is typically measured by key performance indicators 

(KPI) such as schedule delay, cost overrun, workplace injuries, quality deficits, 

resource disruptions, etc. However, the above-listed characteristics set 

construction apart from many other industries and pose significant challenges to 

the management of its projects. As a result, projects’ inability to meet basic 

performance targets has been globally recognized (Yeo 1995; Han et al. 2009; 
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Cantarelli et al. 2012; McKinsey Global Institute 2017).  

For example, 3,632 projects in Canada were reported as delayed at the 

time of writing, as shown in Figure 1.1 (Construct Connect 2021). It should be 

appreciated that it is neither a federal nor a provincial requirement on construction 

organizations to report delayed projects to the above-cited platform, and thus the 

actual numbers for each jurisdiction may be more than what is shown in the 

figure. Nonetheless, even if the presented data are considered as the lower bounds 

of delayed projects, the problem is still clear. In addition, the Canadian 

construction industry in 2019 accounted for the third highest number of injuries 

(28,111) and the highest number of fatalities (204) in the workplace among all 

other major industries, as shown in Figures 1.2a and 1.3a, respectively (AWCBC 

2021; Statistics Canada 2021). It can also be seen through Figures 1.2c and 1.3c 

that the Canadian construction industry was constantly ranked within the top three 

industries with the highest injury and fatality rates, respectively, over the past two 

decades.  

Such alarming KPI examples, as well as other challenges faced by the 

industry, can be attributed to the industry’s inherent complexity and systemic 

risks which stem from the interdependence of many of its components (Jarkas 

2017). Within the current research program, construction systemic risk is looked 

at from two levels: intra-KPI and inter-KPI systemic (interdependence-induced) 

risks. 



Figure 1.1: Number of delayed construction projects in Canada per province as of September 2021 

(based on data from Construct Connect, 2021)
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Figure 1.2: Lost-time injuries in Canada: a) all industry counts, 2019; b) construction counts by province, 2019; and 

c) major industry rates (per 100 workers), 2000-2019 (based on data from AWCBC, 2021 and Statistics Canada, 2021)

Ph.D. Thesis – A. Gondia McMaster University – Civil Engineering

4

(a) (b)

(c)



Figure 1.3: Workplace fatalities in Canada: a) all industry counts, 2019; b) construction counts by province, 2019; and c) 

major industry rates (per 10,000 workers), 2000-2019 (based on data from AWCBC, 2021 and Statistics Canada, 2021)
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1.1.2 Intra-KPI Systemic Risks 

Disruption to one KPI can be attributed to the combined and 

interdependent effects (as opposed to the independent effects alone) of multiple 

underlying factors affecting such KPI. For example, schedule delay can be 

initiated by a i) change request from the project owner which would require the 

introduction of ii) new construction techniques/technologies and subsequently iii) 

re-design. This situation may thus induce iv) delays in preparing and approving 

design documents by the consultant, v) challenges with new equipment 

acquisition and site mobilization and vi) re-work due to contractor inexperience 

with such new techniques. While any of such delay factors can occur on its own 

within a project and influence the schedule independently without triggering other 

factors, multiple factors can also materialize due to their interdependent nature as 

in the above example (Eriksson et al. 2017). Similarly, workplace injuries result 

from one or more injury precursors such as those related to the i) surrounding 

worksite, ii) work means/methods, iii) exposure to hazards and iv) environmental 

conditions. Such precursors are also interdependent where, for example, the type 

of hazard exposure is typically influenced by changes to worksite environment 

and/or weather conditions (Feng et al. 2014). 

1.1.3 Inter-KPI Systemic Risks 

Project performance targets, and thus KPIs, are also highly interconnected 

with one another, as illustrated in Figure 1.4. Specifically, disruption to one KPI 



Figure 1.4: Inter-KPI interdependence-induced cascade potential
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can potentially lead to interdependence-induced cascade disruptions extending to 

other KPIs (Serrador and Turner 2015). For instance, execution errors typically 

require multiple reworks, thus hindering productivity and disrupting resource 

allocations within a project, and subsequently incurring schedule delays and cost 

overruns (Larsen et al. 2015). In an attempt to adapt, project managers typically 

resort to accelerating progress through compressing schedules and/or crashing 

tasks, which may also have a negative impact on the finished work quality and the 

safety of the workers, which are catalysts for further schedule and cost 

complications (Nepal et al. 2006; Love at al. 2016). Such disruptions may 

ultimately result in delayed infrastructure project completion and operation-

readiness, leaving governments and other stakeholders with lost revenues on 

project capital, and subsequently provoking negative societal perceptions and 

public controversies (Ndekugri et al. 2008; Di Maddaloni and Davis 2018). Such 

consequences, in turn, spark tensions between project stakeholders, where 

unresolved conflicts give rise to legal claims and disputes which have become 

increasingly common in infrastructure projects (Yates and Epstein 2006; Mehany 

et al. 2018). 

1.1.4 Resilience-guided Project Management 

Broadly speaking, the resilience of a system in the face of disruptive 

events denotes the ability to: 1) absorb the impacts of such disruptions through 

prior identification of systemic vulnerabilities and proactive preparedness; 2) 



Ph.D. Thesis – A. Gondia McMaster University – Civil Engineering 

 

9 

 

adapt to such events by mobilizing risk management strategies aimed at 

preserving continued performance; and 3) rapidly recover from such events and 

restore the pre-disruption performance state through fully operationalizing the 

developed response strategies (Barker et al. 2013; Hernandez-Fajardo and 

Dueñas-Osorio 2013; Wilkinson et al. 2016; Hariri-Ardebili 2018). In that 

respect, the motivation behind the current research program is to adopt a 

resilience-guided approach to manage complex projects with the aim of enhancing 

projects’ ability to mitigate systemic risks at the intra- and inter-KPI levels. The 

program scope is presented in two stages as shown in Figure 1.5a. The first stage 

initially looks at individual KPIs separately/in isolation as interdependent systems 

of inducing factors that influence such KPI. The first stage further works toward 

predicting potential KPI disruptions in projects such that proactive 

response/mitigation strategies and/or contingencies can be deployed ahead of 

time. It should be noted that this thesis’ focus is on schedule delays and 

workplace injuries as KPIs. The second stage considers the interconnectedness 

between different KPIs and develops adaptive solutions against the resulting 

potential interdependence-induced cascade disruptions, thus facilitating a rapid 

restoration of the most important set of project performance targets. These two 

stages would thus improve the overall project resilience under both levels of 

interdependence-induced vulnerability. 
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1.1.5 Data-driven Approaches 

Data analytics offers a suite of tools that can support actionable decision-

making for construction stakeholders based on insights mainly generated from 

historical/previous project data. Following many other industries, construction is 

undergoing a technological shift driven by the fourth industrial revolution 

(Industry 4.0) which is aimed at digitalizing and automating the industry for 

improved productivity (García de Soto et al. 2019). This technological shift has 

also seen the construction industry experience rapid growth in the amount of data 

generated and collected throughout projects’ day-to-day operations (Yan et al. 

2020). Such digital data collection growth, in turn, has the potential to promote 

rapid adoption and application of data-driven strategies to solve construction-

related problems and facilitate construction stakeholders in making proper 

decisions towards the better performance of construction projects. However, 

leveraging analytics tools that are capable of handling interdependent systems, 

such as those described earlier, is key. In this respect, machine learning (ML) is a 

known effective tool to model and predict outcomes of complex interdependent 

systems by learning the inherent relationships between inputs (e.g., delay factors 

or injury precursors) and outputs (e.g., schedule delay or injury incidences) 

enshrined within such systems’ historical data while maintaining good 

generalization error (Bilal et al. 2016). The key advantage of ML methods is 

attributed to their capability of avoiding any prespecified model assumptions, 

unlike in statistical-based methods for instance, which is an important 
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consideration when dealing with interdependent systems whose behaviors are 

largely complex and unknown a priori (Aggarwal 2016). Other key tools include 

those related to system simulation and complex dynamic network theory (CDNT) 

due to their ability to model, analyze and facilitate understanding of dynamic 

interdependencies in complex systems (such as those between project 

stakeholders or between KPIs) both over space and time and subsequently adapt 

their behaviors to mitigate possible systemic risk (Gong et al. 2017; Fu et al. 

2018). 

1.1.6 Related Work and Research Gaps 

The past decade has seen significant advances in ML applications within 

construction project management research, such as those applied to cost 

estimation (Chao and Chien 2009; Cheng et al. 2009; Son et al. 2012; Ahiaga-

Dagbui and Smith 2014; Williams and Gong 2014), quality performance 

assessment (Shi 2009; Naji et al. 2018; Fan 2020), project dispute classification 

and resolution (Mahfouz and Kandil 2012; Chou and Lin 2013; Chou et al. 2013), 

contractor performance classification and prequalification (Elazouni 2006; Kong 

and Yaman 2014), labor productivity assessment (Desai and Joshi 2010; Heravi 

and Eslamdoost 2015), and classification of heavy construction equipment (Fan et 

al. 2008; Gong et al. 2011; Rashid et al. 2019). Accurately predicting project 

schedules continues to represent a challenge for both researchers and project 

managers. Construction project schedule estimation has been studied extensively 
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using statistical analysis-based methods such as multiple linear regression, 

bivariate correlation, factor analyses and Monte Carlo simulation (Chan 2001; 

Chan and Chan 2004; Rezaie et al. 2007; Hammad et al. 2008; Abu Hammad et 

al. 2010; Dursun and Stoy 2011; Kokkaew and Wipulanusat 2014; Avlijaš 2019; 

Tokdemir et al. 2019). Although such research directions introduce models for 

delay risk simulation, the underlying statistical assumptions together with the 

complex interdependent nature of such systems can limit the accurate prediction 

of project duration. In this respect, there is a general lack of research geared 

towards ML-based approaches; examples include works by Petruvesa et al. 

(2013), Sobhani and Madadi (2015), Wauters and Vanhoucke (2016) and Cheng 

et al. (2019). However, such works consider experimental/training datasets that 

either i) constitute general project attributes as model inputs (e.g., project type, 

contract type, contract amount, total floor area, number of contractors; ii) are 

computer-generated to produce fictitious progress executions; or iii) are heavily 

based on subjective data sources as from expert consultations/surveys. As such, 

approaches based on delay risk factors collected from objective/actual previous 

project datasets may prove a viable and more meaningful alternative. 

In construction safety research, ML has been applied to predict the 

likelihood of incident types (Tixier 2016; Gerassis et al. 2017; Kang and Ryu 

2019; Ayhan and Tokdemir 2020) and incident risk levels (Zhou et al. 2017; Poh 

et al. 2018; Sakhakarmi et al. 2019), and to assess construction safety climate 
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scores across projects (Patel et al. 2015; Abubakar et al. 2018; Makki and Mosly 

2021). While these studies have focused on employing black-box types of ML 

(e.g., random forests, support vector machines, artificial neural networks), there 

has been little discussion about glass-box/transparent ML types which can not 

only enable quantitative predictions but also support qualitative judgement 

through interpretable insights that can deepen managers understanding of the 

cause-and-effect relationships that exist between injury precursors incidences. 

What is also not yet clear in construction safety prediction research is to what 

extent glass-box models are comparable to black-box counterparts in terms of 

predictive accuracy—a discussion which can facilitate rationale for 

interpretability/performance trade-off and model selection criteria. Furthermore, 

little is known about the potential of integrated ML approaches (e.g., multiple 

model ensembles) within the construction research area. Such approaches 

combine the learning strengths of individual models and compensate for their 

weaknesses by diminishing the impact of a single source of error—which 

contributes to better model robustness and stability (Sagi and Rokach 2018). As 

individual models are better than others in dealing with particular facets within 

complex systems, an ensemble approach should, in theory, bear high potential in a 

complex domain such as site safety risk prediction. 

Over the past two decades, CDNT has elicited increasing attention in 

construction project management research as a response to the emerging 
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perspective of viewing projects as network-based organizations (Zheng et al. 

2016). As such, CDNT has been mainly used to study stakeholders’ (nodes) 

patterns of interactions and interrelationships (links) during project-based 

collaborations. An example of links in the construction literature is the frequency 

of communications between the project development teams (Mead 2001; 

Chinowsky et al. 2011; Dogan et al. 2015; Castillo et al. 2018) and the channels 

of information exchange/knowledge flow that exist when project-related issues 

arise (Thorpe and Mead 2001; Doloi et al. 2016; Schröpfer et al. 2017; Xue et al., 

2018). However, there has been little attention on studying the interdependence of 

technical crews such as on-site contractor groups that also have a significant 

direct impact on project performance, and how such interdependencies 

dynamically evolve over time. CDNT has also been employed to study 

stakeholder collaborations at the intra-organizational cross-project level (Pryke 

2004; Chinowsky et al. 2018; Di Marco et al. 2010; Pauget and Wald 2013; Li et 

al. 2019) and at the wider inter-organizational scale (Park et al. 2011; Ruan et al. 

2012; Solis et al. 2013; Lu et al. 2020). Such approaches have been useful in 

understanding important stakeholders and the interdependencies they induce on 

their local or global networks; however, investigating the effects of such 

interdependence-induced vulnerabilities on overall project performance is still 

needed. 
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1.2 RESEARCH OBJECTIVES 

The main goal of this work is to develop data-driven strategies that can 

support project managers and stakeholders with resilience-guided approaches to 

complex infrastructure project management and empower their ability to mitigate 

systemic risks at both the intra-KPI and inter-KPI levels of their projects. In 

fulfillment of the stated goal, the following specific objectives were envisioned: 

• Build on previous research to identify key factors affecting KPIs, such as 

delay factors or injury precursors, and identify or collect objective data from 

previous projects that describe qualitative or quantitative assessments of such 

factors with regards to influencing relevant KPIs. 

• Develop ML-based approaches/frameworks to predict potential disruptions to 

different KPIs, based on the existence of sets of factors, such that proactive 

response/mitigation strategies and/or contingencies can be deployed ahead of 

time. 

• Develop CDNT-based approaches/frameworks to model the 

interconnectedness between project stakeholders and between different KPIs, 

and facilitate adaptive solutions against potential interdependence-induced 

cascade in KPI disruptions, such that rapid restoration of the most important 

set of project performance targets can be achieved in cases of occurrence of 

disruptive events.  
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1.3 ORGANIZATION OF THE DISSERTATION 

This dissertation comprises six chapters (see Figure 1.5b): 

• Chapter 1 presents the motivation and objectives of the dissertation as well as 

background information pertaining to the research program. 

• Chapter 2 discusses the development of a ML-based tool that learns from 

previous construction project data to facilitate predictions of future project 

durations based on these projects’ risk factors. Key delay factors are identified 

from the literature and adapted by industry professionals, and subsequently, a 

relevant historical project dataset is compiled and explored to uncover key 

interdependencies between such factors. ML-based schedule delay predictive 

models are then developed and validated, such that they can be utilized by 

project managers to facilitate accurate forecasts of future and ongoing projects 

schedules, thus supporting their proactive project risk management strategies. 

• Chapter 3 discusses the development of a ML-based construction safety 

decision support framework that enables quantitative construction injury 

prediction, while also supporting qualitative safety judgment and 

interpretation. Both glass- and black-box type ML models are developed and 

validated to predict injury risk levels across different construction sites based 

on the existence of key injury factors. Guidance is then provided on selecting 

between glass-box model interpretability and black-box model possible higher 
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performance based on different site characteristics. An application using an 

injury cases dataset is provided to demonstrate the framework utility and other 

key managerial insights. Using the framework, safety managers can evaluate 

different sites’ safety risk levels and classify them to potentially high-risk or 

low-risk zones for ultimately formulating and disseminating better-informed 

and targeted prevention strategies. 

• Chapter 4 discusses the development of site risk models that can generate 

predictions of injury outcomes and safety risk leading indicators across 

different site zones and over project lifecycles, thus empowering a proactive 

and real-time approach to construction safety management. In this respect, 

ensemble ML algorithms, which drive the generation of predictions within 

these models, are trained and validated to learn from previous injury 

precursors and outcomes. A demonstration application is then considered, 

where the ensemble algorithms are employed to develop a risk model of a 

construction site which generates forward-looking forecasts of safety risk 

leading indicators, such as injuries’ financial implications and body parts most 

likely affected, across various zones and over different timeframes which can 

support key proactive and zone-specific injury-preventive decision making. 

• Chapter 5 discusses the development of a CDNT-based resilience 

management framework that can enhance projects’ ability to rapidly 

overcome possible cascades in KPI disruptions. The chapter focuses on: 1) 
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modelling the complex dynamic interdependencies of project contractors 

using CDNT approaches and correlating such networks with KPI variations; 

2) analyzing the behaviors of these networks and proactively assessing 

possible cascades in KPI disruptions; and 3) facilitating dynamically adaptive 

(self-organized) network recovery responses to support project managers with 

proactive and objective response plans (e.g., re-coordinated schedules) to 

ensure project resilience against such KPI disruptions. A large-scale 

infrastructure project is used to demonstrate the implementation of the 

developed framework which revealed several insights that further both the 

comprehensive and granular understandings of the project dynamics in terms 

of key contractor influences, their interdependence-induced vulnerabilities and 

challenging/critical work packages and months.  

• Chapter 6 presents the dissertation summary, major conclusions and 

recommendations for future research. 

It should be noted that although Chapters 2 through 5 represent standalone 

manuscripts that are already published or submitted as journal articles, these 

chapters collectively describe a cohesive research program as outlined in this 

introductory chapter of the dissertation. Nonetheless, some overlap might exist for 

the completeness of the standalone chapters/manuscripts. 
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Chapter 2:  

MACHINE LEARNING ALGORITHMS FOR CONSTRUCTION 

PROJECTS DELAY RISK PREDICTION  

ABSTRACT 

Projects delays are among the most pressing challenges faced by the 

construction sector attributed to the sector’s complexity and its inherent delay risk 

sources’ interdependence. Machine learning offers an ideal set of techniques 

capable of tackling such complex systems, however adopting such techniques 

within the construction sector remains at an early stage. The aim of this study is to 

identify and develop machine learning models in order to facilitate accurate 

project delay risk analysis and prediction using objective data sources. As such, 

relevant delay risk sources and factors were first identified, and a multivariate 

dataset of previous projects’ time performance and delay-inducing risk sources 

was then compiled. Subsequently, the complexity and interdependence of the 

system were uncovered through an exploratory data analysis. Accordingly, two 

suitable machine learning models, utilizing decision tree and naïve Bayesian 

classification algorithms, were identified and trained using the dataset for 

predicting project delay extents. Finally, the predictive performances of both 

models were evaluated through cross validation tests and the models were further 

compared using machine-learning-relevant performance indices. The evaluation 
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results indicated that the naïve Bayesian model provides better predictive 

performance for the dataset examined. Ultimately, the work presented herein 

harnesses the power of machine learning to facilitate evidence-based decision 

making, while inherent risk factors are active, interdependent and dynamic, thus 

empowering proactive project risk management strategies.  
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2.1 INTRODUCTION 

Construction project delay is a global phenomenon (Assaf and Al-Hejji, 

2006; Sambasivan and Soon, 2006). Its occurrence is mainly attributed to the 

interdependent inherent risk factors and uncertainties associated with the complex 

and dynamic nature of construction processes. Such factors might for example be 

related to stakeholder(s) incompetence, poor communication, inadequate 

estimation of employed resources, contractual deviations, or even municipal 

constraints (Assaf and Al-Hejji, 2006; Aziz, 2013). As a result, project delays, 

quantified through time overrun (TO), can negatively impact the project and its 

stakeholders in multiple ways including: a) claims, disputes and arbitration; b) 

cost overruns and loss of revenues; c) disruption of work and loss of productivity; 

or d) contract termination and, possibly, total project abandonment (Aibinu and 

Jagboro, 2002; Majid, 2006).  

In order to provide accurate estimates of project durations, construction 

firms typically adopt standard quantitative delay risk analysis tools. For example, 

Monte Carlo analysis can be used for investigating the complete extent of risk 

associated with scheduled work items to estimate more reasonable project 

completion dates (Rezaie et al., 2007; Sadeghi et al., 2010; Kokkaew and 

Wipulanusat, 2014). Similar to most probabilistic modelling tools, Monte Carlo 

analysis is data-intensive and requires estimates of work item duration ranges and 

relevant probability distributions. These estimates can be acquired either 
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objectively, through historical data of similar projects, or, more commonly in the 

absence of such data, subjectively based on expert opinion and judgement. The 

latter approach, however, poses several key limitations related to: 1) using 

imprecise and/or ambiguous data sources that would typically add another layer 

of uncertainty to the analysis; 2) overlooking the complex and interdependent 

nature of inherent risk factors in construction projects which might significantly 

influence original predictions; and 3) using data that is rarely updated to represent 

the actual project progressions since the subjective data collected are relevant 

only at the time of apprehension (Ferson, 1996; Guyonnet et al., 2003; Goldstein, 

2006; Tixier et al., 2017). To overcome these limitations, it is critical to base 

construction schedule estimates and planning decisions on knowledge extracted 

from objective and factual data. 

In recent times, the construction sector has experienced an explosive 

growth in the amount of such objective data generated on a daily basis and stored 

from the various disciplines throughout the project or the facility lifespan (Bilal et 

al., 2016). Such provision of data creates an opportunity for extracting useful 

corporate knowledge and promising solutions to the prevailing project delay 

dilemma. However, because of the interdependence of construction-related data, 

the adoption of effective data analytics tools is key. In this respect, the potential of 

machine learning (ML) techniques and algorithms in analyzing voluminous, 

complex and interdependent datasets of varying structures for deriving useful 
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insights cannot be overemphasized (Kim et al., 2008; Bilal et al., 2016). ML 

algorithms, in their different forms, have been widely employed in different fields 

over the past two decades. Nonetheless, ML remains a new prospect within the 

construction sector despite its highly regarded advantageous potential. A literature 

survey by the authors of the present study showed that only a limited number of 

studies have focused on applications of ML techniques within construction 

research in general, and to an even much lesser extent on delay risk analysis. A 

non-comprehensive list of ML techniques applied in construction-related 

disciplines includes artificial neural networks (Elazouni, 2006; Chao and Chien, 

2009; Heravi and Eslamdoost, 2015), decision trees (Desai and Joshi, 2010; Chi et 

al., 2012; Chou and Lin, 2013), naïve Bayesian models (Jiang and Mahadevan, 

2008; Gong et al., 2011; Gerassis et al., 2016), and support vector machines 

(Cheng and Wu, 2009; Lam et al., 2009; Huang and Tserng, 2018).  

The goal of the present study is to identify and develop an efficient 

predictive data analytics tool to analyze and learn from objective delay risk 

sources based on previous construction project data. Achieving this aim will 

ultimately facilitate more accurate predictions of future project durations based on 

these projects’ inherent and expected risk levels, thus supporting a proactive 

project risk management strategy.  
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In fulfillment of the stated research aim, the present study is focused on 

achieving two key objectives (see Figure 2.1). The first objective is to identify 

relevant delay risk sources and factors extracted from literature and adapted by 

the industry, and subsequently compile and understand a relevant historical 

construction project delay risk dataset, as similar data is currently not available in 

open literature to the best of the authors’ knowledge. Within the process of data 

collection, constraints pertaining to data characteristics, project types, and 

analysis limitations were set. These constraints and limitations ensured the 

consistency and homogeneity of the input data to the predictive data analytics tool 

in order to realize meaningful results. Afterwards, and from various unstructured 

historical construction project data formats, data pertaining to different types of 

delay risk sources, along with their level of contribution to project delay, were 

extracted and subsequently pre-processed to constitute a structured, consistent and 

multivariate dataset ideally suited for predictive analytics. Subsequently, an 

exploratory data analysis was conducted to explore the dataset properties and the 

complex interdependencies between the risk sources were uncovered. 

Based on the complexity and interdependence of construction delay risk 

sources, a ML approach was deemed the most appropriate to tackle such a 

challenging system of interacting variables, and the rationale behind this selection 

was reported. As such, the second objective of the present study is to identify, 

develop and validate appropriate ML algorithms to analyze the compiled previous 
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project dataset. Appreciating the dataset size and properties and prior to 

conducting the ML-based analysis, a review of previous ML applications was 

conducted in order to identify the ML technique and algorithms best suited to the 

dataset considered. Subsequently, the study focuses on applying a supervised 

learning classification technique through two ML algorithms: decision tree and 

naïve Bayesian classification algorithms, that were found to be ideal considering 

the compiled dataset properties. These two algorithms were employed to analyze 

the degrees of variabilities of the influencing risk sources (the independent 

variables) and their effect on the extents of TO (the dependent variable) described 

as class labels, in order to generate two TO predictive models/classifiers. Finally, 

validation of the two generated models’ predictive performances was conducted, 

in terms of both training and testing, through comparisons of predicted and actual 

class outcomes; and the two models were evaluated and compared using 

confusion matrices and multiple performance indices. 

Figure 2.1 shows the methodology adopted to attain the study’s objectives, 

and thus its aim, described above. The following sections explain the different 

steps outlined in Figure 2.1 followed by concluding remarks, inferred findings 

and future recommendations to reach the research long-term goals. 
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2.2 DELAY RISK FACTOR AND SOURCE IDENTIFICATION 

Prior to identifying the type of data to be collected, a literature survey was 

first conducted in order to identify the most common risk factors influencing 

building construction project delay and to group such factors into different source 

categories. This literature survey was conducted in three tiers. 

First, a broad search was carried out to identify articles containing the 

terms: (“delay” OR “time delay” OR “time overrun” OR “delay risk” OR “delay 

factor” OR “delay source” OR “delay cause”) AND (“construction” OR 

“construction project”). This search was conducted through two main sources: 1) 

academic literature databases including the American Society of Civil Engineers 

Library, Elsevier Science Direct Digital Library, Springer, Taylor & Francis 

Online and Emerald Insight; and 2) academic literature search engines as Web of 

Science, EBSCOhost and Google Scholar. The temporal range of the search was 

set to cover the period from 1980 to 2018, since construction project delay and the 

factors influencing it have been attracting increased attention for the past three to 

four decades. By the end of the first tier of literature survey, a total of 83 articles 

were identified. 

In the second tier, the search was narrowed down, whereas the titles, 

abstracts and keywords of the articles identified from the first tier were reviewed 

in order to select and retain those articles of relevance to the research scope for a 



Ph.D. Thesis – A. Gondia McMaster University – Civil Engineering 

 

44 

 

full review. Specifically, the following criteria were set for selecting an article for 

a full review: 1) peer-reviewed articles published in refereed journals of project 

management, construction management, built environment or construction 

economics; and 2) articles focusing on the causes of delays in building 

construction projects and/or the quantitative assessment of these causes on 

influencing project delays. This screening process resulted in the selection of 34 

relevant research articles from the following journals: Construction Management 

and Economics, International Journal of Construction Management, Journal of 

Construction Engineering and Management, Journal of Management in 

Engineering, International Journal of Project Management, Automation in 

Construction and Construction Economics and Building. 

The third tier involved an in-depth review of the 34 selected articles from 

the second tier in order to examine previous studies’ identifications of individual 

delay risk factors and their assemblies into main delay risk sources. Different 

authors focused on selected risk sources within their articles and identified lists of 

individual risk factors within such sources. After reviewing the 34 articles, the 

results of ten articles were used for risk factor and source identification as the 

former were repeatedly cited by the rest of the 34 articles. Beyond these ten 

articles, no distinct risk factors were identified within any risk source. By the end 

of the three-tier literature survey, nine delay risk sources were established and 

subsequently adopted in the present study.  



Ph.D. Thesis – A. Gondia McMaster University – Civil Engineering 

 

45 

 

These delay risk sources relate to: 1) owner; 2) consultant; 3) contractor; 

4) design; 5) labor; 6) material; 7) equipment; 8) project; and 9) external aspects, 

and cover all possible sources of delay-inducing risk factors. Table 2.1 shows the 

different subsets of the ten articles on which all the nine risk sources, and their 

constituting factors, were based. 

Inevitably, variations existed in the individual delay risk factor lists 

identified by the reviewed articles within the different risk source categories. This 

was attributed to dissimilarities within the different articles in terms of 

construction environments, geographical conditions, political situations, 

construction methods, resource availabilities and stakeholder engagements. As 

such, a first series of meetings were held with 15 construction experts to confirm 

the relevance of the identified risk factors to the construction sector and modify 

them as necessary. Based on the literature survey and the expert meetings, 59 

delay risk factors were identified by the present study and a full listing of these 

factors within their source categories is presented in Table 2.2. 

2.3 DATASET COMPILATION AND PRE-PROCESSING 

The dataset used to develop the proposed predictive analytics tool included 

data from 51 construction projects, from 28 firms, that experienced varying 

degrees of time delay. Each data record in the dataset represents a specific project 
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Table 2.1: Previous studies from which risk sources and comprising risk 

factors were identified 

Risk source Relevant study 

1. Owner Arditi et al., 1985; Chan & Kumaraswamy, 1997; Mezher & 

Tawil, 1998; Al Momani, 2000; Odeh & Battaineh, 2002; Assaf 

& Al-Hejji, 2006; Sambasivan & Soon, 2006; Fugar & 

Agyakwah-Baah, 2010 

2. Consultant Al Momani, 2000; Odeh & Battaineh, 2002; Assaf & Al-Hejji, 

2006; Aziz, 2013 

3. Contractor Arditi et al., 1985; Chan & Kumaraswamy, 1997; Mezher & 

Tawil, 1998; Sambasivan & Soon, 2006; Fugar & Agyakwah-

Baah, 2010 

4. Design Arditi et al., 1985; Chan & Kumaraswamy, 1997; Assaf & Al-

Hejji, 2006; Aziz, 2013 

5. Labor Al Momani, 2000; Assaf & Al-Hejji, 2006; Sambasivan & 

Soon, 2006 

6. Materials Mansfield et al., 1994; Al Momani, 2000; Sambasivan & Soon, 

2006; Fugar & Agyakwah-Baah, 2010 

7. Equipment Mansfield et al., 1994; Assaf & Al-Hejji, 2006; Sambasivan & 

Soon, 2006 

8. Project Mansfield et al., 1994; Chan & Kumaraswamy, 1997; Fugar & 

Agyakwah-Baah, 2010; Aziz, 2013 

9. External Chan & Kumaraswamy, 1997; Al Momani, 2000; Assaf & Al-

Hejji, 2006 
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 Table 2.2: Complete list of identified risk factors within respective 

risk sources 

Risk source Identified risk factors 

1. Owner 1.1 Inadequate project planning by owner 

1.2 Selecting inappropriate contractors 

1.3 Delays in site delivery to contractor 

1.4 Delays in reviewing and approving design documents 

1.5 Change orders by owner 

1.6 Slow decision-making process by owner  

1.7 Delays in progress payments by owner 

1.8 Suspension of work by owner 

1.9 Poor coordination by owner between consultant and contractor 

1.10 Conflicts between joint-ownership of the project 

2. Consultant 2.1 Delays in reviewing and approving design documents 

2.2 Delays in performing inspection and testing 

2.3 Delays in approving major changes in scope of work by consultant 

2.4 Inadequate consultant experience 

2.5 Poor consultant communication with contractor and owner 

2.6 Conflicts between consultant and design engineer 

3. Contractor 3.1 Ineffective project planning by contractor 

3.2 Difficulties in financing project by contractor 

3.3 Incompetence or inexperience of contractor 

3.4 Inadequate site investigation 

3.5 Slow site mobilization 

3.6 Poor site management and supervision 

3.7 Delays due to unreliable subcontractors’ work 

3.8 Frequent change of subcontractors 

3.9 Rework due to errors during construction 

3.10 Poor contractor communication with consultant and owner 

3.11 Conflicts between contractor and consultant and/or owner 

4. Design 4.1 Inadequate design team experience 

4.2 Misunderstanding of owner’s requirements by design engineer  
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4.3 Delays in producing design documents 

4.4 Design errors/incomplete or unclear design drawings 

5. Labor 5.1 Shortage of labor 

5.2 Unqualified or inadequate workforce   

5.3 Low productivity of labor  

5.4 Personal conflicts among labor 

6. Materials 6.1 Shortage of construction materials in market 

6.2 Delays in delivery of materials 

6.3 Inadequate quality of materials 

6.4 Damage of sorted materials 

6.5 Changes in material types and specifications during construction 

7. Equipment 7.1 Shortage of equipment 

7.2 Slow mobilization of equipment 

7.3 Low productivity and efficiency of equipment 

7.4 Frequent equipment breakdowns 

7.5 Improper equipment or lack of high-tech equipment 

8. Project 
8.1 

Unsuitable type of project bidding and award (e.g. negotiation, lowest bidder, 

etc.) 

8.2 Mistakes or discrepancies in contract documents 

8.3 Original contract duration is too short 

8.4 Ineffective delay penalties 

8.5 Lack of communication between project parties 

8.6 Legal disputes between project participants 

   9. External 9.1 Delays in obtaining permits from municipality 

9.2 Changes in government regulations and laws 

9.3 
Delays in providing services from utilities (e.g. water, electricity, telephones, 

etc.) 

9.4 Unexpected surface & subsurface conditions (e.g. soil, water table, etc.) 

9.5 Problems with neighbors  

9.6 Unfavorable weather conditions 

9.7 Accidents during construction 

9.8 Price fluctuations 
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and is linked to ten data variables. The first of these variables represents the 

dependent variable which is the extent of TO sustained by the project. The other 

nine variables, reflecting the nine different delay risk sources above, are 

considered independent variables. Table 2.3 shows a sample of the described 

dataset after all the operations pertaining to data collection and pre-processing 

(discussed next) were performed. 

To compile the described dataset, a second series of meetings were 

arranged. In total, 112 meetings were held across the 28 contacted firms over the 

span of nine months to extract data from the 51 completed projects. The 

preliminary meeting with each firm involved explanations of the research aim and 

significance and the type of project data sought. Subsequently, one to two follow-

up meetings were allocated to each project for collecting the necessary data. In 

these meetings, various project-related documents from the firm’s historical 

records were investigated including contract documents, specifications, change 

orders, schedule baselines, monthly and quarterly updates, resource calendars, and 

risk registers. Based on these records and the knowledge of the risk factors 

constituting the risk sources, each risk source was assigned scores (index values) 

on two different index scales. The first of these scales relates to the consequence 

severity towards affecting the project time objective, and the second relates to the 

frequency of recurrence throughout the project, as shown in Tables 2.4 and 2.5, 

respectively. The overall risk source contribution values towards the TO are then 
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Table 2.3: Compiled dataset structure 

Project ID Extent of TO Risk source 1: 
Owner 

Risk source 2: 
Consultant … Risk source 9: 

External 

Project 1 30-60% TO Moderate Very Low … High 
Project 2 > 60% TO Moderate Very Low … Very High 
Project 3 > 60% TO Very High Very Low … High 

⁞ ⁞ ⁞ ⁞ ⋱ ⁞ 
Project 50 30-60% TO Very High Very Low … Very Low 
Project 51 > 60% TO High Very Low … High 

 

Table 2.4: Consequence severity index scale 

Index value Description 

0.05 Contributes to no or insignificant time overrun 

0.1 Contributes to < 5% time overrun 

0.2 Contributes to 5-10% time overrun 

0.4 Contributes to 10-20% time overrun 

0.8 Contributes to > 20% time overrun 

 

Table 2.5: Frequency of recurrence (throughout project lifecycle) index scale 

Index value Description 

0.1 Non-existing or very rare 

0.3 Rare 

0.5 Moderate 

0.7 Frequent 

0.9 Very frequent 
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numerically evaluated through multiplying the two corresponding scores (Assaf 

and Al-Hejji, 2006; Ismail et al., 2014; Xia et al., 2017).  Afterwards, these 

numerical risk source contribution values were discretized into categorical risk 

source contribution levels based on the discretization matrix shown in Figure 2.2, 

where the values of the consequence severity are set along the horizontal axis, and 

those of the frequency of recurrence are set along the vertical axis. In this manner, 

each independent variable was classified into one of the following five categorical 

levels in terms of its contribution to TO: 1) Very low; 2) Low; 3) Moderate; 4) 

High; and 5) Very high. The two index scales and the discretization matrix were 

first adopted from literature (Assaf and Al-Hejji, 2006; Mahamid, 2011; Ismail et 

al., 2014; Kerzner, 2017; PMI, 2017; Xia et al., 2017), and then adapted based on 

input from the experts of the first series of meetings, and ultimately confirmed for 

adequacy to the projects investigated during the second series of meetings. 

Furthermore, the dependent variable (i.e., TO) was also categorized into 

three class labels. One approach for such categorization is to divide the variable 

based on its frequency distribution into three equal class labels with each 

containing one-third of the variable count (i.e., exactly 17 project records). This 

approach would yield three class labels which are: 1) < 21% TO; 2) 21-27% TO; 

and 3) > 27% TO. Although this categorization approach reduces bias when 

implementing predictive data analytics, it is atypical for practical applications. It 

would thus be more beneficial to categorize TO in a way that provides greater 
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managerial insights and benefits. As such, the dependent variable was categorized 

into one of the following three class labels: 1) < 30% TO; 2) 30-60% TO; and 3) 

> 60% TO, which resulted in the class labels containing: 23, 16 and 12 project 

records, respectively. These three classes describe the extents of TO as: minor; 

moderate; and major, respectively, and were agreed on during the second series of 

meetings with construction firms.  

2.4 DATASET CONSTRAINTS AND ANALYSIS CONSIDERATIONS 

It should be noted that several constraints, considerations and limiting 

factors were enforced and/or encountered during data collection. First, the data 

gathered pertain to construction projects limited to those within Egypt and that are 

owned, financed, designed, built, managed and operated by national firms and 

entities. Second, the data collected were constrained to only building projects and 

do not concern other construction project categories (e.g., bridges) or disciplines. 

The third constraint pertains to project size, where data was only assembled from 

projects with contract values between 40 and 80 million Egyptian Pounds, and 

with contract durations within the range of 1 to 2 years. Fourth, data was only 

collected from projects that had incurred time overruns (i.e., TO > 0). Unifying 

the type of construction data within the compiled dataset was a key consideration 

for ensuring input consistency and homogeneity to the eventual predictive data 

analytics tool for attaining more reliable results, as mentioned earlier. 
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Furthermore, to ensure data integrity and quality, several carefully 

contemplated considerations were adopted. In this respect, only contractors with 

valid registrations in the Egyptian Federation for Construction and Building 

Contractors were considered. In addition, special attention was paid to consider 

only project cases having sufficient records and evidence to accurately infer 

credible and reliable data. Another important aspect was to avoid collecting data 

from projects with time intervals spanning across the period of the Egyptian 

revolution, which broke out on the 25th of January, 2011. Such projects would 

have experienced relatively extreme conditions and would disturb the consistency 

of risk levels among the wider apprehension of assembled projects. 

These constraints and considerations resulted in including only 51 project 

data records for further analyses, which although constituted a valuable dataset of 

variables that is rarely reported or studied in literature, was nonetheless relatively 

small. As such, the selection of the predictive data analytics tool used in the 

present study was based on tools which performed well on small-sized datasets, as 

will be explained following the next section.  
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2.5 EXPLORATORY AND SENSITIVITY DATA ANALYSES 

In order to better understand the system of delay-inducing risks within the 

construction sector, an exploratory data analysis, the results of which are 

displayed in Figure 2.3, was conducted to visually represent the properties of the 

collected data records and the correlations between different variables. The figure 

is a 10  10 matrix, in which the class labeled dependent variable (i.e., TO) and 

the nine independent variables (i.e., risk sources) are shown on the rows and 

columns. To facilitate its interpretation, the figure is divided into five blocks: the 

leftmost column – Block 1; the diagonal – Block 2; the uppermost row – Block 3;  

the lower-left triangle – Block 4; and the upper-right triangle – Block 5. The 

exploratory data analysis provides three main insights: 1) variable frequency 

counts and smoothed frequency curves; 2) a sensitivity analysis that explores the 

dependency of TO on the different risk sources; and 3) a sensitivity analysis that 

explores the dependencies of the different risk sources on one another. 

Regarding the first insight, the boxes in Block 1 and Block 2 show the 

frequency counts and the smoothed frequency curves, respectively, of the data 

variables within each class. As mentioned earlier, the counts of projects incurring 

< 30% TO, 30-60% TO and > 60% TO were 23 (45%), 16 (31%) and 12 (24%), 

respectively. These percentages are consistent with the prevailing phenomenon of 

building projects experiencing less serious delays more frequently than more 

serious delays (Abd El-Razek et al., 2008; Singh, 2009). It can also be seen that 
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Figure 2.3: Exploratory and sensitivity data analysis of time overrun extent and the nine risk sources
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the risk contribution values of the owner, contractor, project and external risk 

sources are higher than those related to other risk sources. 

The second insight is inferred through the box plots located within Block 3 

that demonstrate how the changes of TO from one class to another are sensitive 

to/affected by any changes in the risk contribution values of different risk sources. 

These box plots illustrate the risk contribution value ranges and distributions 

pertaining to the nine risk sources for each class of TO, where the thick black bars 

and the middle boxes represent the median values and the inter-quartile ranges of 

these distributions, respectively. An important observation is that, for each of the 

nine risk sources, the risk value distributions for each class are highly 

overlapping. This overlapping indicates that no individual risk source is fit to 

provide a definite/clear distinction of the TO class, which subsequently entails 

that the risk sources are heavily interdependent with regards to influencing TO, 

and that the studied system exhibits a significant level of complexity. 

Nonetheless, some findings from the box plots will be described for 

completeness. Most notably, higher project risk values are associated with the < 

30% TO class, while lower risk values are not distinctly related to a certain TO 

class. This implies that minor TO extents are sensitive to project-related risks, 

whereas moderate and major TO extents are insensitive. Moreover, lower owner 

risk values are associated with the < 30% TO class whereas with higher risk 

values, 30-60% and > 60% TO extents tend to occur. Accordingly, for the owner-
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related risks, minor, moderate and major TO extents are all sensitive, however, 

there is no clear separability/discrimination between the latter two since the risk 

value distributions for these two classes are nearly identical and almost fully 

overlapping. Through similar interpretations, it can be noted that for contractor 

risks, minor and moderate TO extents are sensitive albeit with a lack of clear 

separability between the two classes, and that major TO extents are insensitive. In 

addition, for External risks, only minor TO is sensitive. A final observation is that 

TO is insensitive to consultant, design, labor and materials risks, which is also 

attributed to the fact that these risks’ ranges are all limited to lower risk values.  

Regarding the third insight, Blocks 4 and 5 represent a correlation matrix 

that illustrates the dependencies among the risk sources. The boxes in Block 4 

show scatter plots of the risk values of every two risk sources. Complementing 

these scatter plots, the boxes in Block 5 show the corresponding correlation 

values (ranging from +1 to -1), which describe the strength and direction of the 

relationship between the risk sources, both for all project records collectively and 

for project records within each TO class separately. The magnitude of the 

correlation value is indicative of the strength of the relationship between any two 

risk sources (i.e., how much variance in one data variable is explained by the 

variance in the other variable), whereas the sign of the correlation value specifies 

the direction of this relationship (i.e., whether the data variable values vary 

together positively or negatively). As expected, no strong positive or negative 
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correlation exists among any pair of risk sources, either for all project records 

collectively or for project records within a specific TO class separately. This 

implies that: 1) for the considered dataset, no two risk sources are related to one 

another, adding to the complexity of the system; and 2) the property of variable 

conditional independence for each class is manifested in the current dataset of 

project records. The latter finding played an important role in selecting one of the 

predictive analysis approaches, as will be discussed in the following section. 

The three key conclusions from the exploratory and sensitivity data 

analyses conducted in this section can be summarized as: 1) delay risk sources are 

highly interdependent which is evident from the lack of any specific dependence 

trend of the TO on any individual risk source; 2) delay risk sources and TO 

classes are related in a complex manner which is evident from the class 

inseparability issue; and 3) delay risk sources are also, among themselves, related 

in a complex manner which is evident from the weak correlations between pairs 

of risk sources. These conclusions demonstrate the complexity of the studied 

system (i.e., the manner in which the independent and dependent variables are 

altogether related), and thereby asserting the complex nature of the construction 

sector and its inherent delay-inducing risks. It is this complexity that guided the 

selection of a capable predictive data analytics tool in order to realize an accurate 

predictive delay risk analysis model, as will be discussed in the next section. 
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2.6 SELECTION OF PREDICTIVE ANALYTICS TOOL AND 

ALGORITHMS 

2.6.1 Tool Selection 

ML is one of the most promising tools in predictive data analytics. It 

combines methods from statistics, database analysis, data mining, pattern 

recognition and artificial intelligence to extract trends, interrelationships, patterns 

of interest and useful insights from complex datasets (Aburrous et al., 2010; Flath 

et al., 2012). In the present study, ML was selected over other predictive data 

analytics tools, as, for example, statistical learning (SL), for two main reasons.  

First, as detailed by Breiman (2001), Tixier et al. (2017), and Dindarloo 

and Siami-Irdemoosa (2017), SL-based models require both formal model 

structures and data frequency distributions to be imposed a priori to the data 

fitting processes either based on some knowledge of the system or arbitrarily 

through assumptions. However, data generated from complex systems (such as 

those analyzed herein) would rarely have model structures and frequency 

distributions that are known or tractable. To reiterate, based on the conclusions of 

the exploratory and sensitivity data analyses conducted in the previous section, 

the complex nature of the studied system was apparent through: 1) the highly 

interdependent delay risk sources which lacked any specific trend for the 

subsequent TO extent – indicating that the underlying model structure is complex 

for such a system; and 2) the complex relationships between the risk sources, both 
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with the TO classes and among themselves – indicating that the underlying 

variable frequency distributions for such a system are intractable. 

The power of ML algorithms relies on their ability to avoid the limitations 

of any explicitly programmed instructions concerning the model structure and any 

hypothetical assumptions pertaining to the data frequency distributions. In fact, 

the underlying ML assumption is that the forms by which the independent 

variables and dependent variable are altogether related are complex and unknown. 

ML thus focuses on learning from the implicit data patterns through algorithms 

that continuously improve their performances through experience and induction. 

Based on the above, ML algorithms are not only effective in dealing with data 

variables having simple linear or nonlinear relationships, but also with variables 

having complex high order relationships, or even disjunctive variables. It can thus 

be argued that the adoption of conditioned analysis methods (e.g., SL) to analyze 

data collected from complex systems may result in imposed model structures 

and/or data frequency distributions that are poor representations of the actual 

system’s phenomena. Such adoption would thus undermine the predictive 

accuracy of the resulting model compared to the models to be generated by the 

more versatile ML approach. 

Second, ML uses optimization techniques to maximize the predictive 

performances (by minimizing the number of incorrect predictions) of the 

generated models, while SL focuses on the inferences induced from the 
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relationships between the variables in the statistical model. Therefore, SL-based 

models typically face deficiencies in their predictive performances when dealing 

with datasets having a large number of variables, while ML-based models are 

known to be more suited to analyze such datasets and typically yield higher 

predictive accuracies (Kim et al., 2008; Aggarwal, 2016). As the data collected 

within this study consists of nine independent variables (risk sources) and one 

dependent variable (TO), and also based on the complexity of the system which 

was previously discussed above and in the “Exploratory and Sensitivity Data 

Analyses” section, ML was adopted in the present study.  

2.6.2 ML Algorithms Selection 

The R open source platform (R Core Team, 2013) was used by the present 

study and is a powerful computation tool that supports implementations of 

different ML techniques such as clustering, classification and regression. 

Classification is a supervised ML technique that is very effective in predictive 

data analytics. It is based on learning, via historical/training data, in order to 

facilitate mapping new input records (e.g., project cases) into specific dependent 

variable output classes (e.g., the extent of TO) based on relevant independent 

variable values (e.g., project-anticipated risk contribution levels). The present 

study focused on using the classification technique because of its capability of 

handling complex-related variables and is its effectiveness in dealing with 

categorical variables (Aggarwal, 2016). 
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Two classification algorithms were applied in this study which are the 

decision tree (DT) and naïve Bayesian (NB) algorithms. Through a review of the 

different ML classification algorithms reported in the literature, these two 

algorithms were selected, among other reasons, mainly because they are suited to 

small-sized datasets with a demonstrated history of satisfactory performance 

(Amor et al., 2004; Chi et al., 2012; Ashari et al., 2013; Aggarwal, 2016).  

The DT classification algorithm produces an indictive classifier/model for 

segmenting new data records into class labels by modelling the classification 

process through a set of hierarchical decisions (rules) concerning the data 

variables. The induced decisions are arranged in a tree-like structure which is 

initiated by identifying the root node and then recursively splitting nodes until no 

further divisions are possible. The splitting criteria are derived from concepts of 

information theory which depend on the values of information gain, or entropy 

reduction, to assess the amount of information needed to generate decisions for 

segmenting a data record into a class label. Such information theoretic measures 

are key as they represent the criterion for assessing the hierarchical order of 

variables along the tree and the splitting of the nodes throughout (Caldas and 

Soibelman, 2003; Desai and Joshi, 2010; Aggarwal, 2016). Different available 

ML algorithms in the R platform can be used to develop DT classifiers. Some 

examples of such algorithms include: ID3 (Glur, 2018), rpart (Therneau and 

Atkinson, 2018), tree (Ripley, 2018), J4.8 (Hornik et al., 2009) and C5.0 (Kuhn 
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and Quinlan, 2018). The Recursive Partitioning and Regression Trees (rpart) 

algorithm in R was selected within the present study. The rationale behind 

selecting this algorithm is its proven robustness against noisy data, its capability 

of learning disjunctive variable relationships, and its proven performance with 

small datasets (Chi et al., 2012; Aggarwal, 2016). 

The NB classification algorithm, on the other hand, produces a classifier 

which identifies classes for new data records by calculating joint conditional 

probabilities of the previous data records’ independent variable values given their 

dependent variable class labels. This algorithm is based on Bayes’ theorem which 

quantifies the conditional probability of random variables (Gong et al., 2011). It 

also assumes that the naïve assumption, that variable values are conditionally 

independent for each class, holds (Ng and Jordan, 2002; Aggarwal, 2016). The 

outputs of the produced model are conditional probability scores and mutually 

exclusive class label designations based on the highest class label joint probability 

value for the data record (Gong et al., 2011; Bilal et al., 2016; Aggarwal, 2016). 

The Naïve Bayes algorithm in R (Meyer et al., 2017) was selected because it is 

ideal for small-sized datasets since it is known to converge quicker than other 

algorithms and, as such, requires less training data (Amor et al., 2004; Ashari et 

al., 2013). It should be noted, however, that NB algorithms are only suitable for 

analyzing datasets with conditionally independent variables, which was evident 

from the properties of the dataset considered in the present study, as explained 
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previously in the “Exploratory and Sensitivity Data Analyses” section. 

In terms of DT or NB previous applications within the construction 

research field, Caldas and Soibelman (2003) presented a model based on 

automatic hierarchical classification to enhance the access and organization of 

unstructured text documents within construction management information 

systems. Another study, carried out by Desai and Joshi (2010), utilized a DT 

classification mining algorithm to assess the most important factors influencing 

labor productivity in Indian construction projects. In addition, a study by Chi et al. 

(2012) applied four different DT classification algorithms to predict the cost 

performance of projects. Furthermore, an application of classification and 

regression trees was presented by Chou and Lin (2013) to proactively forecast 

disputes in the initiation phase of public-private partnership projects.  

Jiang and Mahadevan (2008) proposed a Bayesian probabilistic 

methodology to assess the nonparametric damage detection of building structures. 

Bayesian learning methods were also employed by Gong et al. (2011) for 

identifying and classifying worker and heavy equipment actions in challenging 

construction environments from video datasets. Moreover, Bayesian networks 

were applied to analyze the specific causes of different types of accidents 

associated with the construction of embankments by Gerassis et al. (2016).  

Evidently, and to the best of the authors’ knowledge, it can be seen that although 

ML classification algorithms are widely used in various disciplines, their 
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applicability has rarely been exploited in the delay risk analysis area. 

2.7 DECISION TREE AND NAÏVE BAYESIAN CLASSIFIERS TRAINING 

This section focuses on describing the analyses performed to achieve the 

second objective of the present study (see Figure 2.1). Both DT and NB 

classification algorithms were used to generate classifiers that predict the time 

performance of projects based on their risk source levels by partitioning each 

project into a class label describing the expected time delay. Each algorithm 

initially defines the dataset as an information system with a finite set of data 

records and variable values. Each row is considered a distinct project record, and 

each column is considered a distinct variable of that record. The model then 

identifies the independent variables (the nine risk sources) and the single 

dependent variable (TO). When implementing supervised classification learning, 

the ML algorithms are employed to learn the internal structure of the dataset to 

examine the effect of the variations of different variables on the degree of TO 

sustained. Each algorithm then forms a classifier to predict class labels for any 

new records.  
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2.7.1 Decision Tree Classifier  

As previously discussed, the DT algorithm analyzes the training data for 

learning the influences of independent variables on partitioning data records into 

class labels. The algorithm then outputs a classifier in the form of a tree-like 

structure that describes the decision flow.  

First, information theoretic measures of entropy and gain for all 

independent variables are calculated to be used as criteria for tree construction 

and node splitting. The classifier considers an independent variable to be more 

informative, and thus affects the dependent variable more significantly, when 

more information is induced by knowing the variable’s value for predicting the 

dependent variable’s class label. In other words, an independent variable is 

relevant if by eliminating knowledge about this variable, estimating the dependent 

variable can be substantially adversely affected. The algorithm then builds on 

these information theoretic insights and develops a knowledge-inductive decision 

tree for partitioning new records into predefined classes through conjunctive if-

then rules. 

Applying the DT algorithm to the described dataset used in this study 

generates the decision tree structure shown in Figure 2.4. The decision tree grows 

from the top node, referred to as the root node, and forms a hierarchical structure 

to map new data records (representing risk source levels of new construction 

projects) into class labels (describing the project’s expected extent of TO). 



Contractor
(Very High)

Contractor
(Very Low)

External
(Moderate, High, Very 

High)

External
(Very Low, Low)

Owner
(Very Low)

Owner
(Low, Moderate, 
High, Very High)

Equipment
(Low, High)

Equipment
(Very Low, Moderate)

Contractor
(Low, Moderate, High)

Contractor
(Very Low, Very High)

Project
(High, Very High)

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

< 30% TO (13/18)

13 5 0

72.22% 27.78% 0%

< 30% TO (23/51)

23 16 12

45.10% 31.37% 23.53%

30-60% TO (5/7)

2 5 0

28.57% 71.43% 0%

< 30% TO (11/11)

11 0 0

100% 0% 0%

> 60% TO (6/8)

2 0 6

25% 0% 75%

30-60% TO (6/9)

0 6 3

0% 66.67% 33.33%

< 30% TO (5/6)

5 0 1

83.33% 0% 16.67%

30-60% TO (3/5)

2 3 0

40% 60% 0%

> 60% TO (9/17)

2 6 9

11.76% 35.29% 52.94%

< 30% TO (8/16)

8 5 3

50% 31.25% 18.75%

> 60% TO (12/33)

10 11 12

30.30% 33.33% 36.36%

30-60% TO (5/10)

3 5 2

30% 50% 20%

> 60% TO (3/5)

1 1 3

20% 20% 60%

Figure 2.4: Decision tree for predicting project time overrun from risk source levels 

Class 1: ≤ 30% TO Class 2: 30-60% TO Class 3: > 60% TO

Project
(Very Low, Low, Moderate)
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Apart from the root node, the tree consists of internal nodes, leaf nodes and 

branches. In general, nodes represent class labels, and branches refer to the 

associated variables and variable values. Starting from the root node, data is 

recursively split to form new tree levels, where each level comprises internal 

nodes connected by branches. This splitting criterion is based on the previously 

explained information theoretic measures, where each possible split of the data is 

examined at each node and the variable with the highest information gain (i.e., 

highest influence on TO) is chosen for splitting the data. Accordingly, the 

branches represent possible variable values from the node which they originate. 

In that sense, each node represents a subset of the data space defined by 

the combination of split criteria in the nodes above it, which is why the root node 

is the only node corresponding to the entire feature space. In addition, each node 

is labeled with the dominant class according to the distribution of classes within 

the node. Nodes also return information regarding this class distribution in the 

form of counts and percentages of the class labels at that node. This recursive 

partitioning process continues until there is no more benefit from further data 

segmentation, signaling that additional tree levels would cause data overfitting 

which would lead to higher levels of misclassification, thus diminishing the 

algorithm’s predictive performance. Nodes that are at the end of the last branches 

on the tree are called leaf nodes and play an important role when the tree is used 

as a predictive model. These leaf nodes represent the outcomes of all prior 
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decisions and refer to the class label which all data records following the path to 

that leaf would be segmented into. 

By referring once again to the generated decision tree from the 51 

compiled projects dataset in Figure 2.4, the following observations can be made. 

Each node refers to one of the three classes, where red nodes correspond to a 

dominant Class 1 (< 30% TO), green nodes to a dominant Class 2 (30-60% TO), 

and blue nodes to a dominant Class 3 (> 60% TO). Each branch represents, out of 

the nine independent variables, the selected risk source to be split, and indicates 

its variable levels (Very low, Low, Moderate, High or Very high). The instances 

of project TO at the root node are all the instances in the dataset. As such, this 

root node contains 51 instances, of which 23 projects experienced TO of less than 

30%, 16 projects between 30-60%, and 12 projects greater than 60%, as explained 

earlier. Consequently, the root node is labeled as a “Class 1” node. Furthermore, 

the hierarchical order of variables along the tree and the splitting of each node 

follow the criteria of information entropy and gain as previously discussed. The 

top three levels of the tree are occupied by the Project, Owner and Contractor 

sources, respectively, indicating their high significance towards influencing TO. 

Similar interpretations can be deduced from the remaining nodes and branches of 

the decision tree. 

For further interpretation of the decision tree logic, the tree can be 

converted into a set of rules to be used for predicting the time performance of new 
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project cases. Rules are generated by traversing each branch of the tree and 

collecting the variable values until a root node is encountered indicating the 

predicted class label. A confidence percentage is associated with each generated 

rule and describes the confidence in the class predicted by the rule (shown as a 

probability score in the leaf node). The model produced seven rules which follow 

a series of logical if-then statements. The rules produced from Figure 2.4, taken 

from top to bottom and from left to right, are shown in Figure 2.5. Interesting 

predictive patterns can be derived from these rules, and for further clarification, 

Rules 1 and 2 will be discoursed. Rule 1 states that for a project with High or 

Very high levels of Project-related risk factors, as well as Low, Moderate, High or 

Very high levels of Owner-related risk factors, there is a 71.4% chance that the 

project will be delayed beyond completion date by 30% to 60% of its original 

project duration. Rule 2 indicates that for a project with High or Very high levels 

of Project-related risk factors, and a Very Low level of Owner-related risk factors, 

it is certain that the project will experience a TO of less than 30%. In a similar 

manner, interpretations can be deduced from the remaining rules. 

2.7.2 Naïve Bayesian Classifier  

The NB classifier identifies mutually exclusive classes of TO for new 

project cases through calculations of conditional probabilities of variable values 

with relation to their class labels. It is based on the Bayes Theorem which 

quantifies the conditional probability of a random variable, and on the naïve 



Figure 2.5: Decision rules for predicting project time overrun from risk source levels
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assumption of variable conditional independence. To describe the NB algorithm, 

the Bayes law must first be introduced for completeness. The Bayes law is shown 

in Equation (2.1), where C is the class label, A is the variable value of the new 

data record, and P(C|A) is the conditional probability of C given that A is 

observed. The Bayes theorem is useful for estimating P(C|A) when it is difficult 

to be attained from the training data, but other values as P(A|C), P(C), and P(A) 

can be obtained more easily. 

𝑃(𝐶|𝐴) =  
𝑃(𝐴|𝐶)𝑃(𝐶)

𝑃(𝐴)
 (2.1) 

A more realistic approach would be to consider the case where a data 

record has several (m) independent variable values A = (a1, a2,..., am). The 

objective is to assign this record to a definite class Ci (which is one of n class 

labels) such that it corresponds to the maximum value of P(Ci|A). In that sense, 

Equation (2.2) could be inferred. It is based on the product of conditional 

probabilities of independent variable values a1, a2,…, am given that class Ci is 

observed. 

𝑃(𝐶𝑖|𝐴) =  
𝑃(𝑎1, 𝑎2, … , 𝑎𝑚|𝐶𝑖)𝑃(𝐶𝑖)

𝑃(𝑎1, 𝑎2, … , 𝑎𝑚)
   

=  
(∏ 𝑃(𝑎𝑗|𝐶𝑖)

𝑚
𝑗=1 ) × 𝑃(𝐶𝑖)

𝑃(𝑎1, 𝑎2, … , 𝑎𝑚)
 ,where i = 1,2,..., n (2.2) 
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Since the denominator is independent of the class, it thus suffices to only 

compute the numerator value in order to determine the class with maximum 

P(Ci|A). Therefore, the NB model equation is simplified by removing the 

denominator as it will have no impact on the conditional probability outcome: 

𝑃(𝐶𝑖|𝑎1, 𝑎2, … , 𝑎𝑚) ∝ (∏ 𝑃(𝑎𝑗|𝐶𝑖)

𝑚

𝑗=1

) 𝑃(𝐶𝑖)  ,where i = 1,2,..., n (2.3) 

It can be interpreted from Equation (2.3) that a data record with variable 

values A = (a1, a2,…, am) is allocated to a class label Ci which returns the highest 

value of P(Ci|a1,a2,…,am) which is proportional to the product of the various 

P(aj|Ci) multiplied by the probability of that class label existing in the data set, 

which is P(Ci). 

Upon application to the dataset, the model outputs are conditional 

probability scores of each independent variable level for each risk source given 

each of the three dependent variable class labels. The results of the first risk 

source (owner risk source) are shown in Table 2.6 as a sample. For any new 

project case, the model computes values of conditional probability products for its 

independent variable levels given each class label, multiplied by the probability of 

retrieving that class from the dataset. Subsequently, the model maps this project to 

its predicted class label based on the maximum of the three values corresponding 

to each of the classes. Evaluations of the NB classifier’s predictive accuracy and 
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performance comparisons with the DT classifier will be discussed next. 

Table 2.6: Class conditional probabilities for Owner risk source 

Class label 

Variable level 

Very low Low Moderate High Very high 

< 30% TO 0.609 0.043 0.000 0.087 0.261 

30-60% TO 0.125 0.063 0.188 0.125 0.500 

> 60% TO 0.167 0.000 0.167 0.083 0.583 

2.8 MODEL PERFORMANCE EVALUATION AND VALIDATION 

After introducing and applying both the DT and NB classification models, 

the purpose of this section is to validate their predictive performance and also 

evaluate/compare the effectiveness of both models in analyzing the project 

dataset. Primarily, references from the literature will be called upon to develop a 

well-rounded interpretation of the common performance of both models based on 

different domain aspects. Generally, NB classifiers do not require a large amount 

of data to acquire the internal structure of a dataset, and are therefore better than 

DT classifiers in learning from smaller training sets while reaching high levels of 

classification accuracy (Ashari et al., 2013). Moreover, from a computational 

perspective, NB classifiers are typically faster and more efficient in terms of both 

their learning and predictive capabilities (Amor et al., 2004). However, NB 

classification follows the laws of independent events’ probability; and hence a 
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central assumption in applying NB classifiers is that for each class, variable 

values are all conditionally independent of one another. Therefore, DT classifiers 

typically perform better in domains involving correlated variables. In other words, 

if two or more variables are highly correlated in NB classification, more weight is 

allocated to their influence on the predicted class label, which leads to a decline in 

predictive accuracy. DT models do not suffer from such an undesirable bias 

because it would not be possible to use two correlated variables for splitting the 

data of the training set, since this would lead to exactly the same split (Xhemali et 

al., 2009; Niuniu and Yuxun, 2010). It has been discussed that the considered 

project dataset is relatively small in size and the projects have variables that are 

conditionally independent of one another. For these two reasons, and based on the 

overall inferences presented above, the authors’ preliminary hypothesis was that 

the NB model would generally outperform the DT model for a dataset of such 

properties. 

2.8.1 Performance Evaluation Indices 

The models’ performance evaluations are facilitated by further developing 

the algorithms in R to return confusion matrices. Confusion matrices are specific 

table representations that describe the performance of classification models. The 

confusion matrices of the DT and NB classifiers are shown in Tables 2.7 and 2.8, 

respectively, where the classifiers were initially deployed to train on the entire 

dataset. Confusion matrices include integers reflecting the counts of certain 
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classifications. Rows correspond to the number of actual classifications or total 

number of records within each class, while columns represent the number of 

predicted classifications. All correct predictions are located in the diagonal of the 

table, and this facilitates the visual inspection of the matrix for errors, which are 

any non-zero values outside the diagonal.  

Table 2.7: Confusion matrix from DT classifications 

Actual class 

Predicted class 

Totals < 30% 

TO 

30-60% 

TO 
> 60% TO 

< 30% TO 16 4 3 23 

30-60% TO 0 14 2 16 

> 60% TO 1 3 8 12 

Totals 17 21 13 -- 

 

 

Table 2.8: Confusion matrix from NB classifications 

Actual class 

Predicted class 

Totals < 30% 

TO 

30-60% 

TO 
> 60% TO 

< 30% TO 18 3 2 23 

30-60% TO 3 12 1 16 

> 60% TO 1 1 10 12 

Totals 22 16 13 -- 
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Before proceeding to evaluate the model performances from the matrices, 

a few key terms for each class need to be clarified first: 

▪ True Positives (TPs): Number of predictions that were correctly assigned 

to a class (i.e., value in the matrix diagonal for the corresponding class). 

▪ False Positives (FPs): Number of predictions that were incorrectly 

assigned to a class (i.e., sum of values in the corresponding class column 

excluding the TPs). 

▪ False Negatives (FNs): Number of predictions that were incorrectly 

unrecognized as class assignments (i.e., sum of values in the 

corresponding class row excluding the TPs). 

▪ True Negatives (TNs): Number of predictions that were correctly 

recognized as not belonging to a class (i.e., sum of values of all rows and 

columns excluding the row and column of that class). 

Based on the aforementioned terminologies, confusion matrices enable 

analysts to extract numerical measures that act as indicators of the model 

performance. Such measures could be either overall performance indices or class 

performance indices, since this is a multi-class classification.  
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The two model overall performance indices used in this study are 

accuracy and misclassification error. Accuracy is a percentage of the total 

number of correct classifications to the total number of predicted classifications 

by a model, and correspondingly, the misclassification error (also referred to as 

the error rate) is a percentage of the direct misclassifications. In other words, the 

overall accuracy can be perceived as the ratio between the sum of diagonal values 

and the sum of the table. Thus, the confusion matrix of a highly performing model 

has large numbers in its diagonal and small numbers (ideally zero) outside the 

diagonal. Model class performance indices include precision, sensitivity, 

specificity, false positive rate (FPR), and false negative rate (FNR), and are 

calculated from the confusion matrices as shown in Equation (2.4), (2.5), (2.6), 

(2.7) and (2.8) respectively. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2.4) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2.5) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (2.6) 

𝐹𝑃𝑅 =  
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 (2.7) 
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𝐹𝑁𝑅 =  
𝐹𝑁

𝑇𝑃 + 𝐹𝑁
 (2.8) 

2.8.2 Validation Approaches 

The validation of both models was performed based on two approaches 

which reflect the two stages of a typical ML procedure: training and testing. In the 

first approach, and due to the small size of the compiled project dataset, training 

performance is evaluated by deploying the models to learn from the entire dataset 

and, subsequently, predict the class labels of the same data used for training. In 

the second approach, to evaluate the testing performance, the models were trained 

to learn from a subset of the entire dataset (a training set) and then predict class 

labels for the remaining part of the dataset (a testing set) in order to ensure an 

unbiased evaluation.  

The holdout method is a common practice for investigating model testing 

performance, where the complete dataset is randomly split into 80-60% and 20-

40% portions for training and testing sets, respectively. However, the major 

drawback of the holdout method include difficulties with arriving at a random 

testing set split that would be representative of the entire dataset in terms of: 1) 

the true variability of the independent variables; and 2) the distributions of the 

three class labels of the dependent variable in a way that avoids class imbalance 

(Kim et al., 2008; Chou and Lin, 2013). 
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In this respect, k-fold cross validation was adopted for evaluating the 

testing performance since it is known to be a reliable method that minimizes the 

bias and variance associated with the random splitting performed in the holdout 

method (Kohavi, 1995; Hastie et al., 2009; Arlot and Celisse, 2010; Seong et al., 

2018). In k-fold cross validation, the complete dataset is divided into k distinct 

and almost equal subsets or folds, where k is a positive integer. The holdout 

method is then repeated k times where in each time one of the k folds is held out 

rotationally as the test set and the other k-1 folds are put together for training. For 

every repetition, a confusion matrix is obtained from which overall and class 

performance indices can be extracted. The final k-fold cross validation 

performance indices are then computed by averaging these k individual indices 

(Gong et al., 2011; Son et al., 2014; Tixier et al., 2017). As such, the advantage of 

this method is that the entire dataset is used in both training and testing whereas 

each fold, and hence each data record, is retained exactly once for testing. The 

present study employed 10-fold cross validation as many researchers have 

reported k=10 to be optimal in terms of computational time, estimation of error, 

and variance of indices (Kohavi, 1995; Hastie et al., 2009; Wei et al., 2013). 

2.8.3 Analysis Results and Discussion 

The training and testing performances of both DT and NB classifiers were 

evaluated based on the performance indices calculated from the confusion 

matrices. In general, unrepresentable model ability to predict the testing set is 
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apparent from the results generated by the 10-fold cross validation. This is 

attributed to the small size of the dataset (51 data records) where a single test fold 

contains 5-6 records and training folds sum up to 45-46 records. Small-size 

testing and training sets often lead ML models to: 1) overfitting, where the models 

memorize the peculiarities of the training data rather than its general structure; 

and 2) generating performance indices with high variances among the test folds 

(Kim et al., 2008). Therefore, for small-size datasets, it is important to note that 

testing performance indices may not reflect individual model performance but 

may rather serve the comparative study between the DT and NB models. 

Table 2.9 shows a comparison of the overall performance indices where 

the training (testing) values of accuracy and misclassification error for the DT 

classifier are 74.5% (47.2%) and 25.5% (52.8%), respectively, and for the NB 

classifier are 78.4% (51.2%) and 21.6% (48.8%), respectively. Given the 

complexity and interdependence of the system, it can be inferred that both models 

perform reasonably well in terms of training, with the NB classifier exhibiting 

relatively better performance in both training and testing abilities. Accordingly, 

the NB model is showing initial signs of exceeding the DT performance as 

suggested by the writers’ hypothesis. Nevertheless, more performance measures 

need to be examined for a wider perspective. 

  



Ph.D. Thesis – A. Gondia McMaster University – Civil Engineering 

 

83 

 

Table 2.9: Comparison between classifiers based on overall performance 

indices 

Performance Index DT Classifier NB Classifier 

Accuracy 74.5% (47.2%) 78.4% (51.2%) 

Misclassification Error 25.5% (52.8%) 21.6% (48.8%) 

Note. Values without parentheses are training performance indices. Values in 

parentheses are testing performance indices. Values in bold indicate the superior 

performance. 

 

 

Table 2.10: Comparison between classifiers based on class performance 

indices 

Performance Index 

DT Classifier NB Classifier 

< 30% 

TO 

30-60% 

TO 

> 60% 

TO 

< 30% 

TO 

30-60% 

TO 

> 60% 

TO 

Precision 
94.1% 

(51.7%) 

66.7% 

(40.0%) 

61.5% 

(20.8%) 

81.8% 

(54.0%) 

75.0% 

(21.7%) 

76.9% 

(45.0%) 

Sensitivity 
69.6% 

(63.3%) 

87.5% 

(40.0%) 

66.7% 

(35.0%) 

78.3% 

(60.0%) 

75.0% 

(45.0%) 

83.3% 

(45.0%) 

Specificity 
96.4% 

(59.1%) 

80.0% 

(90.5%) 

87.2% 

(66.3%) 

85.7% 

(61.7%) 

88.6% 

(82.1%) 

92.3% 

(79.2%) 

False Positive Rate (FPR) 
3.6% 

(40.8%) 

20.0% 

(9.5%) 

12.8% 

(33.7%) 

14.3% 

(38.3%) 

11.4% 

(20.3%) 

7.7% 

(20.0%) 

False Negative Rate (FNR) 
30.4% 

(36.7%) 

12.5% 

(60.0%) 

33.3% 

(65.0%) 

21.7% 

(40.0%) 

25.0% 

(55.0%) 

16.7% 

(55.0%) 

Note. Values without parentheses are training performance indices. Values in parentheses 

are testing performance indices. Values in bold indicate the superior performance per class 

label. 
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Class performance indices are computed by both models for each of the three 

classes and Table 2.10 summarizes the comparison of training and testing 

abilities. Moreover, to enhance the visual interpretation of model performance by 

class, the class performance indices were plotted as shown in Figure 2.6. Overall, 

it can be stated that the predictive performance of the NB classifier is largely 

impressive. Apart from its high training accuracy of 78.4%, its training measures 

of precision, sensitivity and specificity do not fall below 75.0%, 75.0% and 

85.7%, respectively, and its measures of FPR and FNR do not exceed 14.3% and 

25.0%, respectively. Furthermore, the results display the NB classifier’s 

consistent performance throughout the classes. In addition, the results show that 

the DT model also performs reasonably well, in terms of training, with a 

relatively low misclassification error and rather good class performances. The DT 

classifier’s least values of precision, sensitivity and specificity are 61.5%, 66.7% 

and 80.0%, respectively, and highest values of FPR and FNR are 20.0% and 

33.3%, respectively. Similar findings and trends can be interpreted for the testing 

performances of both DT and NB classifiers. 

In terms of comparing both models, it can be inferred that the NB 

classifier’s predictive performance exceeds that of the DT classifier in terms of 

both training and testing capabilities. The described results indicate the 

superiority of the NB classifier with regards to the minimum threshold attained 

for precision, sensitivity and specificity, and maximum threshold attained for FPR 
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and FNR. Other important insights can be made by comparing the models’ 

performance in each class. The NB classifier returns higher values in two out of 

three class comparisons concerning precision, sensitivity and specificity. As for 

FPR and FNR comparisons, the NB model was also found to have better 

performance since it returned lower values in two out of three class comparisons. 

It is also clear from the figures that the NB classifier displays a more consistent 

performance across the three classes compared to its DT counterpart. As such, the 

NB model outperforms the DT model in terms of overall performance, as well as 

in every class performance measure. 

As a final statement, proactive project risk management entails the 

identification of new arising risk factors as well as the continuous monitoring of 

both the established and arising risk factors’ dynamic behavior throughout the 

project lifecycle. In this respect, such monitoring involves the timely tracking and 

reassessment of the risk sources’ expected risk severity and recurrence scores, and 

hence, their overall risk contribution levels. As such, the long-term goal of the 

present research is to create an analysis platform that, through modifying the 

independent variable input risk values, would facilitate continuous refinement of 

project duration prediction throughout the project lifecycle. As a first and key step 

towards meeting this long-term goal, the focus of the present study was to create 

trained ML models that are capable of conducting such dynamic analysis when 

such dynamic data becomes available. 
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2.9 CONCLUSION 

The construction sector is a knowledge-based domain that deals with large 

volumes of objective, heterogeneous and interdependent data encapsulating 

abstract knowledge. In most cases, construction firms fail to capitalize on the 

opportunity presented by this data availability whereas, typically, conventional 

risk analysis methods, that are heavily dependent on subjective data sources 

and/or do not consider variable interdependencies within the data, are employed. 

Nonetheless, exploiting the power of ML data analytics tools can result in 

significant corporate benefit by enhancing the time performance of construction 

projects— regarded as one of the key indicators of a successful project.  

The present study contributed to this endeavor by identifying and applying 

ML algorithms to develop two construction project delay risk predictive models 

based on decision tree and naïve Bayesian classification algorithms. This 

contribution was realized by reaching two key objectives. First, the main 

influential risk factors and sources affecting construction projects’ delay were 

identified through a literature survey and consultations with construction sector 

experts. Subsequently, a dataset, comprising of previous building projects’ extents 

of time overrun and the corresponding contributions of risk sources, was 

assembled through meetings with construction firms. Throughout this process, 

several key constraints were considered to ensure data consistency and quality. In 

addition, and through an exploratory and sensitivity data analysis, an 
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understanding of the complex nature of the construction sector and the 

interdependence among the various delay risk sources was reached. 

Second, a ML-based approach was considered the most suitable to handle 

such a complex system of interacting variables. Afterwards, two different ML 

algorithms were carefully selected based on the assembled project data’s 

properties and were employed to create trained predictive models. Finally, the 

models were evaluated using 10-fold cross validation, among other methods, to 

generate overall and class performance indices through confusion matrices. The 

results confirmed the validity of both models and the effectiveness of their 

predictive performance. The analysis further revealed that, based on both training 

and testing results, the naïve Bayesian model outperforms the decision tree model 

in terms of overall performance, as well as in every class performance measure. 

This finding reflected a consensus with the preliminary hypothesis due to the 

conditional independence of the data variables.  

It should be noted that, although the proposed ML analysis approach is 

thought to be applicable to tackle complex and interdependent systems of risk 

sources such as those generated within the construction sector, the specific 

constraints, properties and limitations associated with the dataset analyzed within 

this study renders the resulting numerical/categorical values not necessarily 

transferable to other cases/datasets, as is the case in any data-driven model. 

Nonetheless, the procedures described in the chapter can be applied to other 
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project datasets, different from the one compiled herein which was studied mainly 

to facilitate understanding and demonstrate applicability of the proposed ML 

analysis approach. Subsequently, some recommendations pertaining to future 

adoption of the methodology described in the chapter are warranted. 

First, only variables belonging to the nine identified delay risk sources 

were considered in the present study. As such, the dataset used in the study had 

multiple constraints on other external project variables to facilitate homogeneity 

and meaningful analyses. It is recommended, however, that the influences of other 

external project variables, that were constrained in the present study, are 

considered in future applications, as project location, type/end use, duration, 

contract value, contract type, technical complexity and surrounding area. 

Second, the independent variables (nine risk sources) in the dataset were 

found to reflect properties of conditional independence with one another for each 

class of the dependent variable (TO). Such properties may not be present in other 

cases and variables may be correlated. It is thus recommended for future studies 

that careful sensitivity analysis be primarily carried out as a key step on which to 

base the selection of adequate ML algorithms for application.  

Finally, dataset size can significantly impact ML model performance 

results. Small-sized datasets increase the chance of model overfitting thus 

adversely affecting model performance. In such cases, the authors highly 

recommend selecting models suited to small-sized datasets with a demonstrated 
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history of satisfactory performance. On the other hand, larger datasets are more 

prone to noisy data which can also undermine model performance. Therefore, 

noise modelling and outlier analysis techniques are highly endorsed for larger 

datasets. 

Ultimately, the developed methodology can be further incorporated into 

construction management information systems in support of a proactive project 

risk management approach that benefits project managers in a twofold manner. 

The first benefit is the ability to assess and anticipate the time performance of 

projects, described as the extent of time overrun, from the early planning stages 

based on the projects’ inherent risk levels quantified from these stages. The 

second benefit pertains to the potential of facilitating continuously refined and 

more realistic estimates of project durations as the project progresses and while 

risk factors affecting construction delays are active and dynamic. Overall, such an 

intelligent platform would influence the state-of-the-practice by addressing the 

need for transforming multidimensional historical data of completed projects into 

useful corporate value. Such value would enable construction firms to make 

knowledge- and evidence-based changes and data-supported decisions to avoid 

future construction delays. 
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Chapter 3:  

MACHINE LEARNING-BASED DECISION SUPPORT FRAMEWORK 

FOR CONSTRUCTION INJURY SEVERITY PREDICTION AND RISK 

MITIGATION 

ABSTRACT 

Construction is a key pillar in the global economy, but it is also an 

industry that has one of the highest fatality rates. The goal of the current study is 

to employ data analytics (e.g., machine learning) to develop a framework capable 

of extracting hidden safety knowledge, upon which better-informed and 

interpretable injury-risk mitigation decisions can be made for construction sites. 

Central to the framework, generalizable decision tree and random forest models 

are developed and validated to quantitively predict injury severity levels from the 

interdependent effects of identified key injury factors. To demonstrate the 

framework utility, a dataset pertaining to construction site injury cases is utilized. 

By employing the developed decision support framework, safety managers can 

evaluate different construction sites’ safety risk levels and the subsequent 

potential high-risk sites can be flagged for ultimately formulating targeted (site-

specific) proactive risk mitigation strategies. Managers can also utilize the 

framework to explore interdependent factors and corresponding cause-and-effect 

relationships with injury severity which can enhance their understanding of the 
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underlying mechanisms that shape construction safety risk. Overall, the current 

study offers interpretable and generalizable decision-making insights for safety 

managers and workplace safety practitioners to better identify, understand, predict 

and control the factors influencing injuries on their construction sites and 

ultimately improve the safety level of their working environments and prevent or 

reduce injuries.  
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3.1 INTRODUCTION 

3.1.1 Background 

The construction industry continues to be one of the most dangerous 

industries worldwide (Jin et al. 2019; Marin et al. 2019; Alkaissy et al. 2020). For 

example, in the U.S., the construction industry accounted for approximately 22% 

of all work-related fatalities in 2019, despite employing only about 7% of the 

workforce, thus being the deadliest industry in the country with a fatality rate 

three times greater than the all-industry average (Hallowell et al. 2013; Bureau of 

Economic Analysis 2021; Bureau of Labor Statistics 2021a). More specifically in 

2019, the U.S. construction industry suffered from over 1,000 fatal injuries in 

addition to more than 200,000 nonfatal injuries (Bureau of Labor Statistics 

2021b). Such alarming examples of fatality and injury rates, along with their 

corresponding societal burdens and financial losses, have elevated the urgent 

research need to cultivate safer work environments across construction sites.   

Primary safety research efforts were focused on identifying sets of 

construction injury factors (CIFs) or root causes (Zohar 1980; Dedobbeleer and 

Béland 1991; Mattila et al. 1994; Glendon and Litherland 2001). Such CIFs 

include but are not limited to: a) project factors as company size, project type, end 

use, duration, contract amount, and number of involved contractors; b) work 

condition factors as worksite environment, hazard exposure, and project hazard 

level; c) human factors as human error and mental state; d) competence factors as 
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work familiarity, site experience, and safety training; e) production pressure 

factors as work pace, overload, and fatigue; f) motivation factors as wages, 

incentives and job satisfaction; g) personal factors as age, gender, and marital 

status; h) weather factors as temperature, humidity, wind speed, precipitation and 

snowfall; and i) safety management factors as safety programs, policies and 

compliance with procedures. Recent research studies attempted to quantify the 

impacts of different CIFs on injury incidence; however, they mainly relied on 

opinion-based data collection methods (e.g., structured interviews and 

questionnaire surveys). Specifically, such studies evaluated the relative influences 

of the different CIFs based on professional experience and intuition of relevant 

safety managers (McDonald et al. 2000; Mohamed 2002; Zohar 2002; Mearns et 

al. 2003; Fang et al. 2006; Pereira et al. 2018). More recent research studies 

centered around employing statistical analyses (e.g., multiple linear regression, 

bivariate correlation, and factor analyses) to such opinion-based collected data to 

study the relationships between CIFs and the incidence of injuries (Choudhry et 

al. 2009; Chen and Jin 2013; Marin et al. 2019; Pereira et al. 2020). 

While the latter efforts are certainly valuable, they nonetheless suffer from 

two key drawbacks. First, subjective data can, in many cases, be 

biased/influenced by personal/subjective judgment and ‘gut-feeling’ (Akhavian 

and Behzadan 2013). Second, injuries can be viewed as the resulting outcome of 

combined and interdependent effects of multiple fundamental CIFs. For instance, 
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the type of hazard exposure is typically influenced by changes to worksite 

environment and/or weather conditions (Feng et al. 2014). However, to simplify 

the resulting statistical models, the above research efforts considered CIFs in 

isolation (i.e., independently), thus reducing the reliability of such models and 

limiting their generalization and widespread adoption (Mohammadi et al. 2018). 

As such, these drawbacks have highlighted the necessity for an alternative safety 

decision support approach as presented in the current study. 

3.1.2 Point of Departure 

Empirical safety data and information are among the most valuable assets 

for organizations’ safety decision-making. Currently, such data are becoming 

more available as a result of legislations requiring employers from various 

industries (i.e., including construction) to report work-related injury and fatality 

incidences along with reports that describe project and worksite circumstances 

surrounding these incidences (Huang et al. 2018; OSHA 2021). From such 

reports, key CIFs and construction injury severity levels (ISLs) can be extracted 

and organized into database formats to facilitate their use for further analysis. 

An equally important asset is a suitable data analytics platform that 

addresses challenges of statistical analysis techniques, as discussed earlier, to 

accurately extract intrinsic injury-related patterns and thus hidden safety 

knowledge from such empirical datasets (Zhou et al. 2019). In this context, 

machine learning (ML) is known to model and predict complex phenomena (e.g., 
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construction injuries) with interdependent variables (e.g., CIFs) and outcomes 

(e.g., ISL) due to its capability to discover the nonlinear complex relationships 

between such variables and outcomes without statistical assumptions (Rodriguez-

Galiano et al. 2014; Siam et al. 2019; Gondia et al. 2020).  

ML has been applied in construction safety research to predict the 

likelihood of incident types (Tixier 2016; Gerassis et al. 2017; Kang and Ryu 

2019; Ayhan and Tokdemir 2020) and incident risk levels (Zhou et al. 2017; Poh 

et al. 2018; Sakhakarmi et al. 2019), and to assess construction safety climate 

scores across projects (Patel et al. 2015; Abubakar et al. 2018; Makki and Mosly 

2021). However, most developed models within such works are essentially “black 

boxes” (e.g., random forests, artificial neural networks and support vector 

machines) that would, for instance, disable interpreting the underlying causation 

and interrelationships between CIFs and ISL, thus ultimately limiting qualitative 

safety judgment (Li et al. 2012; Kakhki et al. 2019). In that respect, there has been 

little discussion in construction safety prediction research about “glass-box” ML 

methods which can not only enable quantitative predictions, but also support 

qualitative judgement through interpretable insights that can also deepen 

managers understanding of the cause-and-effect relationships that exist between 

CIFs and ISL. For example, decision tree models are among the few powerful 

glass-box/transparent ML models that can explicitly link/map combinations of 

CIFs to different outcomes of ISL through rules. These rules can also be used to 



Ph.D. Thesis – A. Gondia McMaster University – Civil Engineering 

 

107 

 

predict the most likely outcomes for new construction site circumstances (Chi et 

al. 2012). Random forests, on the other hand, adopt an ensemble of decision trees 

and aggregate their predictions, which improves the overall predictive 

performance of the models but again restricts their interpretability (Kuhn and 

Johnson 2013). What is also not yet clear in construction safety prediction 

research, is to what extent glass-box models are comparable to black-box 

counterparts in terms of predictive accuracy—a discussion which can facilitate 

rationale for interpretability/performance trade-off and model selection criteria. In 

this respect, a trade-off between decision trees’ interpretability and random 

forests’ possible performance enhancement within safety applications is still 

needed. 

3.1.3 Goal and Objectives 

Adapting specific ML models, the current study aims at developing an 

empirical data-driven construction safety decision support framework (see Figure 

3.1) that enables quantitative construction injury prediction, while also supporting 

qualitative safety judgment and interpretation. As shown in Figure 3.1, key 

influential injury factors contributing to injury incidences are initially evaluated 

and identified, upon which top-priority safety decisions can be based. 

Subsequently, decision tree models are developed to facilitate predicting ISL from 

the combined and interactive effects of CIFs, upon which better-informed and 

interpretable safety decisions can be based. Adopted as candidates of black-box 



Figure 3.1: Construction safety decision support framework architecture linked with key managerial implications

Decision Support Framework Managerial Implications/Insights

Key injury factors evaluation
Top-priority 

actions

ML modelling and parameter optimization

Decision trees

Random forests

Model performance evaluations and validations

Holdout testing

10-fold cross validation

ROC curves

Interpretability/performance trade-off

Glass-box decision flow interpretation

Site safety risk level classification

Cause-and-effect relationships

Model performance assessments

Robustness assessment

Reliability assessment

Versatility assessment

Prediction threshold analysis Model performance enhancement

Model selection criteria
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models, random forests are also developed herein. All model development 

considers the key step of parameter optimization to yield unbiased/generalizable 

models. The predictive performance of the developed models is further verified 

using cross-validation tests and multiple relevant performance evaluation 

measures. In that respect, guidance is provided on how to select between decision 

trees’ glass-box interpretability and random forests’ possible higher performance. 

Finally, receiver operating characteristics insights are provided to support 

decision making in adjusting model prediction thresholds to enhance overall 

model performance. To demonstrate the framework utility and examples of key 

learnings/managerial insights, an Occupational Safety and Health Administration 

construction site injury cases dataset is used. Using the developed models, safety 

managers can evaluate different construction sites’ safety risk levels and classify 

them, with respect to injury severity levels, to potentially high-risk or low-risk 

zones for ultimately formulating and disseminating prevention strategies in a 

more targeted and proactive manner. 

3.2 FRAMEWORK ARCHITECTURE 

3.2.1 Key Injury Factors Evaluation 

CIF evaluation and ranking can be performed on an empirical injury cases 

dataset to: 1) quantitatively evaluate the relative importance of CIF contributions 



Ph.D. Thesis – A. Gondia McMaster University – Civil Engineering 

 

110 

 

to ISL; 2) identify key CIFs with the greatest influence on ISL to use for making 

top-priority safety decisions; and 3) proceed with such key CIFs to create a 

simplified dataset that would reduce computation time and increase the 

subsequent ML model accuracy (Gerassis et al. 2017; Zhang et al. 2020). The 

Information Gain Attribute Evaluator (IGAE) was used as the ranking algorithm 

due to its known accuracy with categorical variables and its ability to learn 

potentially disjunctive patterns (Chi et al. 2012; Aggarwal 2015). The IGAE is 

based on information-theoretic measures of entropy and gain that are calculated 

for each variable (i.e., CIF) in the dataset (Shannon 1948). Generally, information 

entropy (𝐸) is a measure of uncertainty in a variable and denotes the lack of 

predictability from that variable, whereas information gain (𝐺) is inversely 

proportional to entropy and infers the amount of information added to the 

prediction process by including such a variable. For example, variables with 

lower 𝐸 values (i.e., higher 𝐺 values) are more significant within the dataset. 

Given a variable with a distribution of 𝑋 = (𝑥1, 𝑥2, . . , 𝑥𝑚), the 𝐸 of the variable is 

computed as given in Equation (3.1) (Wang et al. 2010; Aggarwal 2015). The 

greater the variable distribution randomness, the less 𝐸 the variable contains, 

which indicates that the maximum 𝐸 (i.e., least conveyed information) is observed 

when the variable is uniformly distributed. 

𝐸(𝑋) = − ∑ 𝑥𝑖

𝑚

𝑖=1

log2(𝑥𝑖) (3.1) 
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When applying the IGAE to a dataset that contains multiple CIFs, each 

with varying numbers of categories/values, and an outcome ISL with several 

underlying classes, Equation (3.2), (3.3) and (3.4) are adopted to calculate class-

based entropy (Aggarwal 2015; Gerassis et al. 2017; Zhang et al. 2020). First, the 

base entropy, 𝐸(𝐶), is calculated for the entire dataset using Equation (3.2) which 

is based on the counts of each class within the dataset. This is followed by 

computing the conditional entropy, 𝐸(𝐶𝑘𝑗), for each category within every CIF 

using Equation (3.3). This is the weighted summation of entropies pertaining to a 

category’s distribution across the two classes. The weighted average entropy, 

𝐸(𝐶𝑘), over all categories within each CIF is then calculated for each CIF, as 

shown in Equation (3.4). As such, CIFs with higher 𝐸(𝐶𝑘) imply a greater mixing 

of the two classes with relation to the distributions of the categories, while a CIF 

with an 𝐸(𝐶𝑘) value of zero implies perfect separation and therefore the greatest 

possible predictive power. The final step is to compute values of information gain, 

𝐺(𝐶𝑘), for each CIF. The gain in information due to a specific CIF is the 

difference between the information conveyed for predicting the ISL from the 

dataset before and after the introduction of that CIF. Specifically, the 𝐺(𝐶𝑘) of the 

𝑘𝑡ℎ CIF is the difference between the base entropy 𝐸(𝐶) of the dataset and the 

weighted average entropy 𝐸(𝐶𝑘) of that CIF, as demonstrated in Equation (3.5). 

As such, information gain indicates a reduction in entropy, and the most 

informative/influential CIF toward ISL is that with the highest 𝐺(𝐶𝑘). 
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𝐸(𝐶) = − ∑
|𝐶𝑖|

|𝐶|

𝑛

𝑖=1

× log2

|𝐶𝑖|

|𝐶|
 (3.2) 

𝐸(𝐶𝑘𝑗) = − ∑
|𝐶𝑘𝑗𝑖|

|𝐶𝑘𝑗|

𝑛

𝑖=1

× log2

|𝐶𝑘𝑗𝑖|

|𝐶𝑘𝑗|
 (3.3) 

𝐸(𝐶𝑘) = ∑
|𝐶𝑘𝑗|

|𝐶|

𝑚

𝑗=1

× 𝐸(𝐶𝑘𝑗) (3.4) 

𝐺(𝐶𝑘) = 𝐸(𝐶) − 𝐸(𝐶𝑘) (3.5) 

where 𝑛 is the total number of classes, 𝑖 is the class, 𝐶 is the total number 

of cases in the dataset, 𝐶𝑖  is the number of cases of the 𝑖𝑡ℎ class, 𝑘 is the variable 

or CIF, 𝑗 is the category, 𝐶𝑘𝑗𝑖 is the number of cases of the 𝑗𝑡ℎ category within the 

𝑘𝑡ℎ variable belonging to the 𝑖𝑡ℎ class, 𝐶𝑘𝑗 is the total number of cases of the 𝑗𝑡ℎ 

category within the 𝑘𝑡ℎ variable, and 𝑚 is the total number of categories within 

the 𝑘𝑡ℎ variable. 

3.2.2 ML Modelling and Parameter Optimization 

The injury cases dataset is split into a training set (e.g., 80%) and a testing 

set (e.g., 20%). The training set is used to train/develop the ML models and the 

testing set is later introduced to evaluate the predictive performance of such 

models.  
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3.2.2.1 Decision Tree Models 

3.2.2.1.1 Models Development 

In the current framework, three different and commonly used decision tree 

models were applied: recursive partitioning and regression trees (RPART) 

(Therneau and Atkinson 2018), classification and regression trees (CART) 

(Ripley 2018), and C4.5 (Hornik et al. 2009) models. By comparing the 

performances of such three models against one another, their validity can be 

further tested and the most appropriate model for construction injury prediction 

can be identified. Generally, decision tree models are based on the recursive 

splitting of the data cases into subsets represented as nodes, where such nodes 

expand to form a top-down tree-shaped structure (see Figure 3.2a) that describes 

the decision (and thus prediction) flow (Breiman et al. 1984; Chi et al. 2012; 

Gondia et al. 2019). Starting from the root (i.e., top) node, the IGAE procedure 

described earlier is applied on the data subset comprising each node, and the most 

predictive CIF (i.e., most influential toward ISL) is then selected for splitting such 

node through two branches into two child nodes. Such node splitting is repeated 

until all cases within a node belong to only one of the ISL classes, marking a 

perfect classification and designating such node as a terminal node. Once all 

terminal nodes are reached, the splitting process concludes, and the resulting final 

tree can be used for predicting the classes of new cases. As a glass-box ML 

model, decision trees facilitate such prediction through an explicit/interpretable 

mapping of CIF combinations and corresponding categories to an ISL class by 



Figure 3.2: Decision tree: (a) structure and node splitting; and (b) mapping CIF combinations to ISL outcome 

(a) (b)

Root node

Terminal nodes
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descending from the root node until reaching a terminal node, as shown in Figure 

3.2b.  

3.2.2.1.2 Parameter Optimization 

If a decision tree model is allowed to grow indefinitely until all terminal 

nodes are reached, the resulting tree may become extremely complex due to its 

numerous nodes. Not only will a complex tree complicate its interpretability, but 

also such a tree will learn the unique peculiarities of the training set rather than its 

general structure, causing the tree to be incapable of generalizing to new cases—

an issue known as overfitting (Kuhn and Johnson 2013). Therefore, tree pruning, 

through “snipping off” the least important splits, can avoid overfitting. A key step 

to such tree pruning is optimizing the tree parameters that control tree complexity. 

In this respect, the objective of tree parameter optimization is to find the optimal 

level of tree complexity that achieves the right trade-off between predictive 

accuracy on that training set and another set of new data (Bergstra and Bengio 

2012). As such, the decision tree models in the current study are developed 

through a generalizable approach through tree parameter optimization where a 10-

fold cross-validation procedure is applied repeatedly to the training set only, with 

nine training folds and a single alternating validation fold (Arlot and Celisse 

2010). For each 10-fold cross-validation procedure, a specific tree parameter 

value is selected and the average predictive error (i.e., 1-accuracy) of the resulting 

trees over the ten validation folds is recorded. Several procedures are repeated to 
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search through the parameter space, and parameters achieving the minimum 

average cross-validation error are selected to yield the optimum model.  

For the RPART model, the parameter to be optimized is the complexity 

parameter (CP), which is the minimum improvement in model accuracy needed 

for a node to be allowed to split. Specifically, while growing the tree, any split is 

not pursued if it does not minimize the model’s predictive error by a factor of CP. 

Regarding the CART model, the parameter available to be optimized is the 

maxdepth that refers to the maximum tree depth in which the tree is prevented 

from growing past that depth. The depth of a tree is the length of the shortest path 

from a root node to the deepest terminal node, where for example the tree in 

Figure 3.2a has a depth of three. As for the C4.5 model, the parameter that needs 

to be optimized is the minsplit, which refers to the smallest number of cases inside 

a node that could be further split. If a node is found to comprise a number of cases 

less than the set minsplit value, it is labeled a terminal node and does not continue 

to grow.  

3.2.2.2 Random Forest Model 

3.2.2.2.1 Model Development 

Random forest (RF) models are also tree-based models that involve 

growing/training many single decision trees to form a forest that predicts new 

cases by combining the output of each tree (Breiman 2001; Zhou et al. 2019). 

This combination yields a RF model that can typically achieve a better predictive 
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performance than any one individual tree (Rodriguez-Galiano et al. 2012). More 

precisely, for a dataset with a total of 𝐶 cases (of which 𝑐 are training cases) and 𝑘 

variables (i.e., CIFs), the RF procedure is implemented as illustrated in Figure 3.3. 

First, a number 𝑛 of data samples (each of the same size 𝑐 as the training set) is 

created using bootstrap random sampling with replacement from the original 

training set, which means that some cases may be repeated (within the same 

sample) or left out. Two-thirds of the 𝑐 cases are randomly designated as in-bag 

cases and are used for tree training, while the remaining one-third is left out for 

parameter optimization (discussed next) and is known as the out-of-bag set 

(OOB). Second, each in-bag set is used to build a corresponding decision tree; 

however, at each node of the tree, a subset of 𝑘𝑡𝑟𝑦 variables (which is not greater 

than the total number of 𝑘 variables) is randomly selected and the best predictive 

variable from that subset is used for node splitting. Third, each tree contributes 

with a single vote of a predicted class to the forest and the final prediction result is 

obtained by considering the majority vote (i.e., the class with the higher frequency 

of votes). Overall, randomizing the sampling procedure and only trying a random 

subset of variables at each split result in dissimilar trees (as each is grown on a 

different data sample and variable subset) with reduced correlations, which 

ultimately improves the RF model generalization performance. A similar ML 

technique, bootstrap aggregating (bagging) has one (but key) difference with RF 

in that the former considers all variables at a node for splitting. This produces 

single trees that are highly correlated when subjected to a dataset having variables 
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that are strong predictors (Breiman 1996; Han et al. 2018). However, combining 

the results of single trees that are essentially similar/correlated does not typically 

lead to large improvements in generalizability (Zhou et al. 2019)—the effects of 

which will be evaluated in the application demonstration. 

3.2.2.2.2 Parameter Optimization 

Two major RF parameters need to be optimized, namely the number 𝑛𝑡𝑟𝑒𝑒 

of trees in the forest (i.e., same as the number of n obtained bootstrap samples) 

and the number 𝑘𝑡𝑟𝑦 of variables randomly considered at each node split. A too 

small 𝑛𝑡𝑟𝑒𝑒 value may result in insufficient training and a too small 𝑘𝑡𝑟𝑦 value 

may lead to underfitting. In contrast, too large 𝑛𝑡𝑟𝑒𝑒 and 𝑘𝑡𝑟𝑦 values may cause 

both overfitting and prolonged computation time. As such, different combinations 

of these two parameters are used in the current study to sequentially train RF 

models on the in-bag set (see Figure 3.3). This training is followed by introducing 

such resulting models to the OOB set (presenting new data that was not used in 

training) to calculate the average OOB error. The parameter combination resulting 

in the lowest OOB error is the optimum one. 
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3.2.3 Models Performance Evaluation and Validation 

3.2.3.1 Evaluation Measures 

To evaluate the performance of the developed ML predictive models 

within the framework, confusion matrices (Chou and Lin 2013; Seong et al. 2018) 

are primarily produced. As presented in Table 3.1, such a confusion matrix 

exhibits numbers of predicted and actual ISL classes, where the diagonal 

represents correct predictions and the off-diagonal represents incorrect 

predictions. For demonstration, the example in Table 3.1 assumes two ISL 

classes, fatal and nonfatal injuries, which can be used to mark construction sites 

as high- and low-risk zones, respectively. From such confusion matrices, several 

performance evaluation measures are then derived. Accuracy evaluates the overall 

performance of a model and describes the percentage of correct predictions 

relative to the total number of predictions (Equation 3.6). As it is particularly 

important to evaluate the model’s ability to accurately predict fatalities, precision 

measures how many of the predicted fatal cases are correct. However, the 

implication of overlooking a fatality (i.e., a high-risk zone) by predicting it as a 

nonfatality (i.e., a low-risk zone) (FN) is more serious than incorrectly predicting 

a nonfatality as a fatality (FP). As such, true positive rate (TPR) is a suitable 

measure to also consider since it takes FN into account (Equation 3.8), unlike 

precision. Finally, true negative rate (TNR) describes the percentage of correctly 

predicted nonfatalities relative to the total number of actual nonfatalities 

(Equation 3.9).  
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Table 3.1: Confusion matrix example 

Actual class 

Predicted class 

Fatal 

(i.e., high-risk zone) 

Nonfatal 

(i.e., low-risk zone) 

Fatal 

(i.e., high-risk zone) 
True Positives (TP) False Negatives (FN) 

Nonfatal 

(i.e., low-risk zone) 
False Positives (FP) True Negatives (TN) 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 (3.6) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (3.7) 

𝑇𝑃𝑅 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3.8) 

𝑇𝑁𝑅 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (3.9) 
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3.2.3.2 Validation Approaches 

To validate the robustness, reliability, and versatility of the developed ML 

predictive models, three approaches were adopted in the current study as 

presented next. 

3.2.3.2.1 Holdout Testing 

For holdout testing, the entire dataset is split into an 80% training set and 

a 20% testing set. The splitting is carried out in a stratified manner, where both 

training and testing sets have similar distributions of the ISL classes (Kohavi 

1995; Fiore et al. 2016). The former set is used to train the models, while the 

latter set is used to present the trained model with essentially new data to test 

(assess) its predictive robustness through the confusion matrix and multiple 

evaluation measures, as discussed earlier. 

3.2.3.2.2 10-fold Cross-validation 

For 10-fold cross-validation, the entire dataset is divided into ten separate 

and almost equally-sized folds in a stratified manner with regards to the ISL 

classes. Nine folds are combined for training and the remaining fold is set aside 

for testing. Such training and testing are then repeated ten times such that each of 

the ten folds is used exactly once for testing. For each test fold, a confusion 

matrix is generated and a corresponding set of evaluation measures are derived 

and subsequently averaged over the ten folds. Compared to the holdout testing 
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method, the main advantage of 10-fold cross-validation is that the entire dataset is 

utilized in training and the testing procedure is carried out ten times, thus allowing 

a better evaluation of the generalization capability of the developed model. This 

allows for an assessment of the model’s reliability when applied repeatedly to 

several unseen future datasets. 

3.2.3.2.3 ROC Curves 

Another performance validation approach that is useful in applications 

where the seriousness of two prediction errors is significantly unequal (i.e., FP 

and FN) is the inspection of its receiver operating characteristic (ROC) curve 

and the area under that curve (AUC) (Son et al. 2014). Typically, the final 

prediction of a ML model is based on the highest predicted probability of the 

available classes, and thus for a prediction problem with two classes, the default 

prediction threshold is 0.5. In that regard, the receiver operating characteristic 

space is presented by a two-dimensional graph, where values of TPR are plotted 

on the Y-axis and values of false positive rate (FPR) (where FPR = 1-TNR) are 

plotted on the X-axis for multiple prediction thresholds ranging from 0 to 1. A 

model with a larger AUC indicates better versatility in predictive performance 

because this implies that a larger value of TPR can be achieved for each value of 

FPR across many different thresholds. As such, the AUC evaluates the versatility 

of the model's predictions irrespective of what threshold is used. 
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3.2.4 Interpretability/performance Trade-off 

While decision tree models offer valuable glass-box interpretability merits, 

RF models may offer better predictive performance improvements, albeit, with 

restricted interpretability. As such, this subsection can provide managers with 

decision support pertaining to the criteria for which model to select under 

different characteristics of the injury cases data at hand. First, the RF models are 

more robust to unbalanced distributions of the outcome class compared to 

individual tree models (Zhou et al. 2016; Hong et al 2017). Second, the RF 

models can better handle data with large numbers of input variables (Abdel-

Rahman et al. 2013; Liu et al. 2018). Third, the RF models may perform better 

than single trees on data with strong predictor variables alongside other 

potentially irrelevant variables (Sutton 2005; James et al. 2013), as discussed 

earlier. The application presented later will further demonstrate how managers 

can use this decision support tool to assess the trade-off between interpretability 

and performance according to their unique application requirements and data 

characteristics. 

3.2.5 Prediction Threshold Analysis 

As briefly described earlier, instead of considering only the default 

prediction threshold of 0.5, the ROC curve follows the process of 1) varying the 

threshold values in the range between 0 and 1; 2) storing the corresponding 

designations of actual and predicted ISL classes for each threshold value; 3) 
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producing corresponding confusion matrices; and 4) plotting corresponding 

combinations of TPR and FPR. As such, the ROC curve provides a visual tool to 

better interpret the predictive performance of the model on a wide range of 

thresholds. Such curves demonstrate the trade-offs pertaining to increasing the 

model’s probability of incorrectly designating a low-risk zone as a high-risk zone 

(i.e., FPR) for ultimately improving its probability of successfully detecting high-

risk zones (i.e., TPR). Safety managers can use such a tool to adjust their model 

with a better threshold selection and yield a more suitable combination of FPR 

and TPR probabilities that meet the specific needs of a unique construction site, as 

will be further discussed in the demonstration application. 

3.3 DEMONSTRATION APPLICATION 

3.3.1 Dataset Description and Visualization 

The dataset used in the current demonstration was obtained from the 

Occupational Safety and Health Administration (OSHA) injury cases dataset 

(OSHA 2019), where at the time of access, approximately 3,400 cases 

corresponded to U.S. construction projects. These reports contained CIF 

information describing the work circumstances at the time of the injury and the 

outcome ISL, whether fatal or nonfatal. Figure 3.4 shows the average number of 

injuries per day for each month. As can be seen in the figure, more injuries 
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occurred during the non-winter months (e.g., May and June) compared to those 

during the winter months (e.g., December and January) since more construction 

activities are typically executed during the former months. Eight CIFs were 

provided, namely: 1) project type; 2) project end use; 3) contract amount; 4) 

worksite environment; 5) hazard exposure; 6) human error; 7) work familiarity; 

and 8) month. However, many of the nonfatal injury report cases contained 

missing CIF-related information. Therefore, such cases were not considered in the 

current study, thus reducing the dataset to a total of 1,981 injury cases with a 

complete set of eight CIFs and one corresponding outcome ISL (1,050 fatal and 

931 nonfatal). This preprocessing step was necessary to convert the remaining 

cases into a readable dataset to enable the subsequent ML analysis. 

Within the reduced dataset, injury numbers per month and distributions 

across ISL classes are shown in Figure 3.5. In addition, the distribution of 

categories of project type, project end use and contract amount across ISL classes 

are shown in Figures 3.6, 3.7 and 3.8, respectively. Worksite environment denotes 

the unsafe nature of the working conditions surrounding- or in close proximity to 

the worker, while hazard exposure is related to the dangers associated with the 

specific task performed by the worker at the time of the injury. The category 

distributions of these two CIFs are presented in Figures 3.9 and 3.10, respectively. 

In addition, the category distributions of human error, work familiarity and ISL 

are shown in Figures 3.11, 3.12 and 3.13, respectively. 
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As there were no spatial data included in the reports to match the date for 

deriving weather data, the month was considered as a CIF to represent weather 

factors. It can be seen from these figures that, although some CIFs have visible 

effects (i.e., clear distinctions) on ISL outcomes (e.g., worksite environment in 

Figure 3.9 and hazard exposure in Figure 3.10), other CIFs have less significant 

effects (i.e., balanced distributions) on ISL (e.g., project type in Figure 3.6). This 

finding suggests that different CIFs might have varying influences on ISL and 

thus varying significance toward the prediction procedure, which underlines the 

need for a CIF importance quantitative ranking. 

3.3.2 Top-priority Actions 

The IGAE presented in Equations (3.2) to (3.5) was applied to the dataset, 

where 𝑛 = 2; 𝑖 = 1 or 2 (i.e., 1 = nonfatal and 2 = fatal); 𝐶 = 1,981; 𝐶𝑖  = 𝐶1 or 𝐶2 

(i.e., 𝐶1= 1,050 and 𝐶2= 931); 𝑘 = 1 to 8 (e.g., 1 = project type, 2 = project end 

use, etc.), 𝑗 is the category for each CIF (e.g., for project type, 1 = new build, 2 = 

maintenance, etc.), and 𝑚 is the total number of categories within the 𝑘𝑡ℎ CIF 

(e.g., 14 for worksite environment). The information gain 𝐺(𝐶𝑘) results are shown 

in Figure 3.14. The top three ranked CIFs according to their corresponding 𝐺(𝐶𝑘) 

values are month (0.356), worksite environment (0.317) and hazard exposure 

(0.302). This finding is supported by the visualizations presented earlier, where 

the category distributions of such CIFs over the two ISL classes had visible 

separations in Figures 3.5, 3.9 and 3.10, respectively. 



Figure 3.14: Ranking of CIF importance toward ISL
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The fourth and fifth CIFs are human error (0.165) and work familiarity (0.101), 

which is also apparent from more balanced distributions of such CIF categories 

over the two ISL classes in Figures 3.11 and 3.12, respectively. The lowest ranked 

CIFs are project end use (0.016), contract amount (0.011) and project type 

(0.007), indicating these CIFs are the least among others in affecting ISL.  

In selecting the key CIFs to proceed with, the average uncertainty 

coefficient (UC) is used as a cutoff threshold to exclude irrelevant CIFs (Desai 

and Joshi 2010). The UC for each CIF is calculated as the ratio of 𝐺(𝐶𝑘) to 

𝐸(𝐶𝑘), and then the CIFs with a UC value greater than the average UC value are 

selected to proceed with during the subsequent ML analyses. Based on the UC 

values (see Figure 3.14), the top five CIFs are considered to be key CIFs, namely 

month, worksite environment, hazard exposure, human error and work familiarity, 

whereas the bottom three CIFs are excluded from the dataset, namely project end 

use, contract amount and project type. This selection is also in alignment with 

several previous studies (Cooper and Phillips 2004; Behm 2005; Choudhry et al. 

2009) which highlighted that project-related factors and personal demographics 

(e.g., the bottom three CIFs) have less significant relationships with injury 

outcomes compared to safety-related factors and site situational conditions (e.g., 

the top five CIFs). 

Injury prevention begins with having a clear understanding of CIFs that 

significantly influence safety in construction projects. As such, the described 
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IGAE procedure can help managers pinpointing those key CIFs to better invest in 

injury prevention and risk mitigation strategies that are of top priority. This 

procedure can be useful as a decision support tool in the planning stage of the 

construction project, especially when a large number of CIFs needs to be 

considered. In the current application, for example, the procedure pointed to 

weather factors, worksite environment and hazard exposure as CIFs on which 

efforts should be focused. Such actionable feedback may guide managers, from 

the onset, to devise prevention strategies that mitigate risks pertaining to: a) 

weather conditions through appropriate personal protective equipment 

regulations, emergency weather evacuation planning, and relevant weather safety 

training; b) worksite environment by preparing practical site-specific safety plans, 

hazardous conditions inspections and equipping workers with knowledge about 

physical protection in complicated sites and working from heights; and c) hazard 

exposure through job hazard analyses, pre-task safety planning meetings to ensure 

that hazards are recognized and communicated prior to worker exposure, safety 

programs for operating equipment, regular equipment maintenance, and 

emergency response drills. 

3.3.3 Model Controls 

As previously described, the dataset (1,981 cases) was split into an 80% 

training set (1,585 cases) and a 20% testing set (396 cases). The decision tree 

models were developed through a generalizable approach by means of tree 
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parameter optimization through a 10-fold cross-validation procedure applied to 

the training set. The results for the RPART model are shown in Figure 3.15, 

where, as previously discussed, higher values of CP are more likely to restrict tree 

growth, while lower values of CP are more lenient to node splitting and result in 

larger tree sizes (i.e., number of terminal nodes). As can be seen in the figure, a 

CP value of 1.41% results in the smallest tree size of one split into two terminal 

nodes, while a CP value of 0.02% allows all splits and thus produces the largest 

tree possible with a tree size of 28. From the figure, the optimum CP value for the 

current RPART model is 0.27%, resulting in a minimum average cross-validation 

error of 18.49% and a tree size of 16. Also based on the 10-fold cross-validation 

results, the maxdpeth for the current CART model is limited to an optimum value 

of five which corresponds to a minimum average cross-validation error of 

19.24%. Furthermore, the optimum minsplit value for the current C4.5 model is 

15, resulting in a minimum average cross-validation error of 19.75%. 

The RF model parameters are optimized based on the average OOB error. 

As shown in Figure 3.16, the range of 𝑛𝑡𝑟𝑒𝑒 is set from 5 to 500 with a step size of 

1, and values of 𝑘𝑡𝑟𝑦 between 2 and 4 (i.e., RF) as well as all 5 (i.e., bagging) 

variables are also considered—which means that 1,980 iterations of successive 

parameter combinations, and thus RF models, are evaluated. Based on the results, 

the optimum combination of parameters is 𝑛𝑡𝑟𝑒𝑒 = 315 and 𝑘𝑡𝑟𝑦 = 4, resulting in a 

minimum average OOB error of 15.31%. The figure also shows that using a 𝑘𝑡𝑟𝑦 
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Figure 3.16: Parameter optimization for RF model – Average OOB error under different values of ntree and ktry
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value of all 5 variables does not provide the least average OOB error, which 

confirms the need for RF over bagging to inject more randomness in each 

bootstrap sample, thus producing less correlated trees and a more generalizable 

model, as previously discussed. 

3.3.4 Model Performance Assessments 

3.3.4.1 Robustness  

Using the aforementioned optimum parameters for training, the results of 

the holdout testing for the four models are reported in Table 3.2. The table 

includes performance evaluation measures of accuracy, precision, TPR, FPR and 

the average of such measures to establish an overall score for each model. 

Generally, the four models perform well as the average score of each model is 

always higher than 80%, which also confirms the reliability of the selected CIFs. 

Based on the measures in the table, the CART and C4.5 models demonstrate 

comparable performances with the former slightly outperforming the latter with 

respect to the average score. However, the RPART model is the best performing 

decision tree model in every measure including accuracy (81.82%), precision 

(81.08%), TPR (85.71%), TNR (77.42%) and thus average score (81.51%). As 

discussed, TPR is especially observed as the predictive performance of the fatal 

class is particularly important. The RPART model performs well leaving only a 

14.29% chance that a fatality (i.e., high-risk zone) will be overlooked as a 

nonfatality (i.e., low-risk zone). Regarding the RF model, the results of the 
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holdout testing in Table 3.2 indicate that this model outperforms its singular 

decision tree model counterparts, including the RPART model, in terms of all the 

performance evaluation measures as accuracy (83.84%), precision (82.59%), TPR 

(88.10%) and TNR (79.03%), attaining an average score of 83.39%.  

Table 3.2: Model comparison results of holdout testing on testing set 

Model Accuracy (%) Precision (%) TPR (%) TNR (%) 
Average Score 

(%) 

RPART 81.82% 81.08% 85.71% 77.42% 81.51% 

CART 80.56% 80.09% 84.29% 76.34% 80.32% 

C4.5 80.30% 80.28% 83.33% 76.88% 80.20% 

RF 83.84% 82.59% 88.10% 79.03% 83.39% 

 

3.3.4.2 Reliability  

Figure 3.17 demonstrates the results of the 10-fold cross-validation as box 

plots representing the maximum, minimum, interquartile range, median and 

average of the 10 resulting accuracy values. Compared to the CART ad C4.5 

models, the RPART model’s higher median (81.86%) and average (81.53%) 

accuracy indicate its better generalization capability among the tree models. In 

addition, the RF model’s better cross-validation performance is demonstrated 

through its: 1) highest median and average accuracies of 84.09% and 83.85%, 

respectively; 2) highest maximum and minimum recorded accuracies which are 

included between 86.87% and 81.31%, respectively; and 3) smallest max-min 

range over 10 testing folds of 5.56% which remains more stable than the ranges 



Figure 3.17: Model comparison results of 10-fold cross validation accuracy on entire dataset
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pertaining to singular trees (e.g., 7.07% of the RPART model). The latter finding 

confirms that the RF model not only generalizes better to unseen data but also can 

achieve consistent performances (i.e., is more reliable) over multiple new 

datasets.  

3.3.4.3 Versatility  

The receiver operating characteristic curves for the four models are 

presented in Figure 3.18. The figure visually shows that the curve for the RF 

model lies above the rest which, supported by the highest quantified AUC value 

of 0.91, speaks to the versatility of the RF model under different prediction 

thresholds and further underlines its ability in avoiding serious types of prediction 

errors (i.e., FNs). 

3.3.5 Model Selection  

As can be seen from the results discussed above, while the RF model 

achieves higher performance, it does not hugely outperform its decision tree 

counterparts. For instance, the RF model outperforms the RPART model by only 

2.02% in accuracy, 2.39% in TPR and 0.03 in AUC. As such, within the current 

construction safety and injury prediction application, decision tree models can be 

recommended for use because such models 1) preserve good predictive 

performance; 2) provide valuable glass-box interpretation-related merits 

(discussed next); and 3) consume short computation time which is conducive to 

rapid decision-making. 
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The reasons behind this observed performance similarity can be discussed 

in the context of the three criteria/rationale discussed earlier. The first criterion is 

related to RF models being more robust to unbalanced distributions of the 

outcome class. Within the current application, the outcome ISL had a relatively 

balanced distribution (see Figure 3.13) which is why the RF model did not exhibit 

largely superior performance compared to its tree counterparts. Nonetheless, in 

dissimilar situations, managers may consider RF modelling. The second criterion 

is related to how RF models can better handle data with large numbers of input 

variables. For example, if the injury cases dataset used herein had contained a 

large number of CIFs describing more features of the work circumstances at the 

time of the injury, a RF model may be considered. The third criterion is in regards 

to how RF models may perform better than single trees on data with strong 

predictor variables alongside other potentially irrelevant variables. In applications 

where CIFs selection is not performed (unlike the current application), there may 

exist large differences in the influences of different CIFs on the ISL (e.g., see 

Figure 3.14), and managers may consider RF modelling in such cases. Despite the 

closeness in performance between the RPART and RF models within the current 

application, the gap between the model performances may widen under different 

safety applications and a RF model may be a more suitable selection in scenarios 

where considerable improvements in predictive performance can be achieved. 
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3.3.6 Glass-Box Decision Flow Interpretation 

Figure 3.19 shows the developed RPART decision tree model which is 

selected for demonstration since it is the best performing single tree model in the 

current study. The tree has a depth of 8 and contains 16 terminal nodes which 

indicate the predicted ISL class (i.e., fatal or nonfatal) and the corresponding site 

safety risk level (i.e., high-risk zone or low-risk zone). Since the tree is earlier 

pruned to achieve better generalizability, the terminal nodes quantify the 

probabilities of each ISL, rather than providing perfect classifications, and the 

outcome ISL designation follows the more probable one (i.e., the default 

prediction threshold is 0.5, as discussed earlier). The tree branches comprise a 

series of logical decisions as each branch indicates one of the five key CIFs (i.e., 

month, worksite environment, hazard exposure, human error, or work familiarity) 

and corresponding categories. Some categories are referenced through numbering 

consistent with Figures 3.9, 3.10 and 3.11 in order to keep the tree aesthetic and 

size efficient. Since the IGAE is applied at each node to select CIFs for node 

splitting, the higher branches of the tree contain the more influential CIFs as 

recorded in Figure 3.14. For example, the first node in the tree, which contained 

all the training set, was split using the month CIF since it was the top influential 

CIF on the same set of data. Furthermore, the category groupings (i.e., months) 

used for that split were January-April on one branch and May-December on the 

other since these groupings provided the best child node homogeneity (i.e., the 

cleanest split in terms of the ISL classes) as can be noted from the class 
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distributions over months in Fig. 3.5. As discussed earlier, such node splitting was 

repeated until the CP criteria was reached, thus yielding the final decision tree 

model in Figure 3.19. Such a glass-box model provides a transparent and 

interpretable decision flow structure that can empower safety managers with two 

key capabilities.  

3.3.6.1 Site Risk Level Classification 

The first is employing the model as a predictive tool that facilitates 

quantitatively classifying construction sites in accordance to their safety risk 

levels, thus flagging sites that are of particularly high-risk levels. At early 

planning stages, managers can qualitatively identify potential CIF categories (e.g., 

collected from Figures 3.9 to 3.12) for a work package that is scheduled to be 

executed within a certain site location. This can be achieved through knowledge 

of the: 1) time of work execution (month); 2) risks associated with the spatial 

working conditions relevant to the site (worksite environment); 3) nature of work 

and execution methods relevant to the work package (hazard exposure); and 4) 

assigned workers’ experience and motivation (human error and work familiarity). 

Using such qualitative CIF categories, managers can utilize the tree to 

probabilistically quantify the outcome ISL and thus designate a site as a low- or 

high-risk zone. Armed with such leading safety insights, managers are able to 

make proactive and better-informed decisions so as any possible risks can be 

mitigated before reaching the construction site. 
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3.3.6.2 Cause-and-Effect Relationships 

The second capability is utilizing the tree for qualitatively exploring 

intercausal reasoning within the construction injury phenomenon. The tree 

establishes explicit cause-and-effect relationships by mapping combinations of 

CIFs (causers) to an ISL (effect) which managers can use to evaluate the 

interrelatedness among certain CIF categories and their combined contributions 

toward ISL. For example, one can elaborate by isolating the most risk-prone 

terminal node in Figure 3.19, which is the sixth terminal node from the left 

marked as node A. The results of following combinations of CIF categories 

leading to this node infer that, within U.S. construction sites, work during the 

winter months (January to April) typically leads to worksite environments with 

difficult weather conditions [e.g., (12) temperature +/- tolerance level; (10) 

over/under-pressure; (9) gas/vapor/mist/fume/smoke/dust; and (11) illumination] 

and slippery/unstable work surfaces [e.g., (1) work-surface/facility-layout 

condition]. Such conditions are strongly connected to hazard exposures related to 

breathing difficulty [e.g., (6) inhalation; and (8) card-vascular/resp. failure], slips, 

trips and falls [e.g., (3) from elevation; or (7) same level] and falling objects. 

These events, coupled with any sort of human error, are almost certain (having an 

89% probability) to result in a fatal injury. To minimize such a major source of 

fatalities, safety managers are encouraged to effectively put forward actions to 

better plan worksites. These actions should accommodate such working 

conditions and reduce their accompanying risks before workers are exposed and 
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then forced to react to minimize these risks. Such timely measures can prove 

essential to protecting construction workers from occasional/seasonal or 

unexpected accidents. Similar interpretations can be made for CIF combinations 

funneling through other nodes, and such new knowledge can enhance the 

understanding of the underlying mechanisms that shape construction safety risk 

and create injuries. 

3.3.7 Model Performance Enhancement 

To complement the RPART tree model above, its ROC curve is shown in 

Figure 3.20. For example, within the current application, the default threshold of 

0.5 corresponds to a combination of FPR and TPR values of 22.58% and 85.71%, 

respectively, as shown in Figure 3.20 and reported in Table 3.2. Managers may 

opt instead for a threshold of 0.2 and accept a reasonable increase in FPR (to 

33.81%) but considerably raise TPR to 94.09%, whereas the TPR improvement 

due to a threshold of 0.1 does not justify the accompanying large FPR increase. A 

threshold of 0.2 means that terminal nodes in Figure 3.19 with a fatal ISL 

probability of 20% or more will be designated as fatal injuries and thus flagged as 

high-risk zones. With this adjustment, managers would further improve their 

model’s predictive performance by reducing the more serious types of predictive 

errors (i.e., FNs) and ultimately amplify the impacts of their managerial actions 

and prevention strategies. 

  



Figure 3.20: Receiver operating characteristic curve with prediction thresholds for RPART model
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3.4 CONCLUSIONS 

Construction remains one of the most hazardous industries worldwide. 

Learning from past incidents is key to future injury prediction and prevention. As 

such, machine-learning-based analyses of empirical data have the potential to 

transform the way organizations make their safety decisions through more  

accurate predictions and more effective prevention. In this respect, the current 

study develops an interpretable-machine learning-based framework for 

construction injury severity prediction and subsequent risk mitigation.  

First, through evaluating the predictive power of different injury factors, a 

ranking algorithm procedure is utilized to pinpoint the key influential factors 

which safety managers can use for targeted efforts and priority actions. 

Subsequently, decision tree and random forest models are developed and 

optimized, and subsequently employed to quantitively predict injury severity level 

from the combined and interdependent effects of the key identified injury factors. 

These quantitative predictions are also supported by interpretable/explainable 

qualitative insights through leveraging the glass-box merits of such models. The 

predictive robustness, reliability and versatility performances of the developed 

models are verified using cross-validation tests and multiple relevant performance 

evaluation measures. Decision support is also provided to equip managers with 

knowledge on when to use decision trees or random forest models through a 

trade-off between interpretability and performance. Finally, receiver operating 
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characteristics insights are presented to aid in further adjusting model prediction 

thresholds in order to improve overall model performance according to unique 

safety applications and requirements. 

A demonstration application using the OSHA injury cases dataset is 

subsequently presented to showcase how the decision support framework can be 

utilized to provide safety managers with the following key insights: i) Awareness 

of the key influential construction injury factors at specific sites such that targeted 

efforts and top-priority preventative strategies can be deployed; ii)  Guidance on 

identifying high-risk sites so that hazards can be eliminated proactively, thus 

enhancing workplace safety; iii) Qualitative exploration of the underlying 

interdependence between injury factors as well as their interactive cause-and-

effect relationships with injury severity (i.e., root causes of injuries);  iv) Decision 

support on model selection based on a trade-off between interpretability and 

performance; and v) Deepened understanding of machine learning model 

mechanisms and outputs for ultimately selecting prediction thresholds that can 

improve model  performance. Ultimately, through the ability to better understand, 

predict, and prevent the occurrence of construction injuries, the framework 

developed and described herein should empower safety managers and workplace 

safety practitioners with better-informed and safer decision-making that would 

foster safer sites and save lives. 
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Chapter 4:  

MACHINE LEARNING-BASED CONSTRUCTION SITE RISK MODELS 

ABSTRACT 

In the last decade, injury statistics have not exhibited significant 

improvement within the construction industry. Current management strategies are 

typically deployed reactively in response to safety lagging indicators (e.g., injury 

rates, lost workdays, and post-incident inspections). This situation suggests that 

proactive safety management approaches that rely on leading indicators for key 

decision-making need to be developed. In this respect, the current study is aimed 

at developing site risk models that generate predictions of safety risk leading 

indicators across different zones and over project lifecycles. Such leading 

indicators can be used to proactively anticipate worksite risks such that preventive 

measures are implemented in advance and can also be adjusted in real-time as 

projects progress to dynamically monitor and enhance safety performance. The 

developed models are driven by ensemble machine learning algorithms trained 

using previous injury precursors and outcomes. Specifically, the ensemble 

algorithms consider five base algorithms which are subsequently tuned and 

validated: naïve Bayes, decision trees, random forests, support vector machines, 

and artificial neural networks. A demonstration application is also presented 

herein, where the ensemble algorithms are employed to develop a risk model that 
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forecasts leading indicators of site-specific risk levels, including financial 

implications of potential injuries and most likely affected body parts. Such a 

model, which can be extended to other safety-related settings, can have a tangible 

impact on construction worksite safety through transforming datasets of historical 

incidents and injuries into actionable insights that support proactive and real-time 

safety management and decision-making within the construction industry.  
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4.1 INTRODUCTION  

4.1.1 Background 

The construction industry is constantly ranked as one of the most unsafe 

industries globally (Behm 2005; Choudhry et al. 2008; Choudhry et al. 2009; 

Hallowell et al. 2013; Feng et al. 2014; Jin et al. 2019; Marin et al. 2019). For 

example, Figure 4.1 demonstrates that the U.S. construction industry in 2019 

accounted for more than 200,000 worksite injuries, of which approximately 

80,000 were injuries that resulted in days away from work (Bureau of Labor 

Statistics 2021). The figure also shows that construction garnered the third highest 

injury rate (i.e., 1.1 injuries with days away from work per 100 workers) among 

all major industries in the U.S. that year (Bureau of Labor Statistics 2021). 

However, perhaps what is most concerning is that, in the last decade, the overall 

trends of injuries have remained remarkably constant, where a flat trend/plateau 

of injury rates can be inferred in Figure 4.2 through the past 10 years (i.e., 

hovering between 1.5 and 1.1 injuries per 100 workers per year) (CPWR 2018; 

Bureau of Labor Statistics 2021). Such a safety plateau has been 

observed/reported not only in the U.S. but also in several other countries/regions 

such as Europe (Lander et al. 2016; Misiurek and Misiurek 2017), Asia 

(Mohammadi et al. 2018; Kang and Ryu 2019) and North America (Tixier et al. 

2016a, b; Chen et al. 2018). This situation suggests that traditional safety 

strategies by governments, industry and academia may have reached the end of
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their abilities (Esmaeili and Hallowell 2012; Tixier et al. 2016b), which highlights 

the need to continue to develop innovative approaches to break through this 

plateau.  

Where reported, the safety plateau has been attributed to two key reasons. 

First, safety has traditionally been measured and managed reactively. For 

example, reactive/lagging indicators, such as injury rates (e.g., Figure 4.1), lost 

workdays and experience modification ratings, which are essentially outcome-

based measures, are continuously monitored and have long been relied on to 

measure safety performance, evaluate past safety management strategies and 

indicate progress (Chen and Jin 2013). Other lagging indicators are post-incident 

inspections and incident learning analysis, which support management actions 

that are responsive to a worker being injured, a new standard or regulation being 

published, or an inspection finding a problem that must be fixed (Hallowell et al. 

2013; OSHA 2021). Alternatively, identifying hazards before they cause injuries 

is a far more effective approach, which is why proactive safety risk leading 

indicators and management strategies are still needed and should occur from the 

frontend planning phases of projects (Zou 2011). Second, traditional safety 

strategies are neither real-time nor dynamic. Different sets of conditions, and thus 

risks/injury precursors, exist with each spatial or temporal change in a project 

(Sacks et al. 2009; Villanova 2014). It is therefore important to employ strategies 

that can dynamically monitor and improve safety performance such as models 
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that can allow for adjustments as the project progresses in order to reflect the 

current/real-time state of a project (Tixier et al. 2017; Chen et al. 2018). However, 

traditional strategies do not translate well to different work scenarios, thus 

preventing the efficient capture of the dynamic nature of construction work 

(Tixier et al. 2016b). As such, with proactive, real-time and dynamic capabilities 

lacking from traditional strategies, such strategies may be limited when used to 

compete in everchanging/dynamic construction worksite environments and to 

meet the proactive and real-time demands for effective safety decision making. 

Proactive real-time strategies can be based on predictive algorithms to 

forecast injury outcomes and safety risks (Poh et al. 2018). Predictive algorithms 

have been gaining increasing attention in safety research for the past decade, as 

will be explained later in more detail. Such algorithms can learn from measures of 

injury precursors/root causes as worksite-, work method- or worker-related 

hazards or conditions that are relevant to worksite safety and injury outcomes 

(Guo and You 2016). Products of such predictive algorithms are proactive/leading 

indicators that can facilitate identifying and controlling potential hazards before 

they result in injuries in the worksite (Hallowell et al. 2013).  

4.1.2 Related Work 

Recent research suggests that we have entered into the so-called third 

wave of construction safety management research which harnesses intelligent 

systems and emerging technologies (Jin et al. 2019; Niu et al. 2019). This follows 



Ph.D. Thesis – A. Gondia McMaster University – Civil Engineering 

 

175 

 

the first wave characterized by a reliance on hard protection as personal protective 

equipment as a physical buffer between workers and hazards (Zohar et al. 1980; 

Dedobbeleer et al. 1991; Glendon and Litherland 2001); and the second wave of 

studies on safety climate and culture and their impacts on workers’ safety 

perceptions and behaviors and on promoting safety and health in the construction 

team (Mohamed et al. 2002; Mearns et al. 2003; Cooper et al. 2004; Fang et al. 

2006; Choudhry et al. 2007; Choudhry et al. 2009; Chen et al. 2013; Feng et al. 

2014).  

The mainstream directions of the third wave of construction safety 

management research can be represented by four clusters: 1) Information 

technology applications (Moon et al. 2014a, b; Shen and Marks 2016; Martínez-

Aires et al. 2018; Akram et al. 2019); 2) Computer vision applications (Park and 

Kim 2013; Sacks et al. 2013; Sacks et al. 2015; Le et al. 2015; Wang et al. 2018); 

3) Wearable sensing technologies applications (Hwang et al. 2016; Yang et al. 

2016; Guo et al. 2017; Nath et al. 2017; Ahn et al. 2019); and 4) Data-driven 

(analytics) applications (Salas and Hallowell 2016; Amiri et al. 2017; Goh and 

Ubeynarayana 2017; Zou et al. 2017; Kim and Chi 2019) which is more related to 

the current study focus. This fourth cluster has been inspired by the large amounts 

of structured, semi-structured and unstructured heterogeneous safety-related data 

continuously collected from construction sites, as worksite, work method and/or 

worker descriptors upon accident/injury occurrence—data characteristics too 
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difficult for traditional computing methods to effectively support related 

processing, analysis and computation (Huang et al. 2018).  

Data-driven research within construction safety management include 

applications of a) natural language processing and text analytics (Tixier 2016b; 

Zhang et al. 2019; Barker et al. 2020); b) data mining (Rivas et al. 2011; Cheng et 

al. 2012; Hsueh et al. 2013; Tixier et al. 2017; Huang et al. 2018); and c) 

predictive algorithms which employs statistical learning and machine learning 

(ML) techniques to produce validated safety/injury risk leading indicators or 

outcomes upon which informed safety decision-making can be based such as how 

organizations effectively prioritize their safety management resources. ML 

applications include, for example, decision tree and random forests algorithms 

which were employed to predict construction injury severity levels and flag high-

risk sites (Gondia et al. 2021). Random forest algorithms were also used to predict 

energy types produced from construction incidents (Tixier 2016a) and accident 

types to occur in Korean construction projects (Kang and Ryu 2019). Support 

vector machine algorithms were used to: i) classify construction accidents in 

Singapore based on the number of man-days lost (Poh et al. 2018); ii) determine 

safety risks associated with the construction of deep pit foundations in subway 

infrastructure projects in China (Zhou et al. 2017); and iii) forecast failure modes 

of large and complex scaffolds on construction sites (Sakhakarmi et al. 2019). 

Artificial neural network algorithms were utilized to predict construction project 
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safety climate scores in India (Patel et al. 2015) and to classify accidents in the 

Turkish construction sector (Ayhan and Tokdemir 2020). Bayesian algorithms 

were used to determine accident types in mining and embankment construction 

projects in Spain (Gerassis et al. 2017). Studies in the area of ML-based 

predictive algorithms, such as those cited above, have made great strides by 

opening the gate for the first time to leveraging big and objective safety-related 

data in order to develop algorithms that proactively forecast injury outcomes and 

safety risks. These studies are also not limited by statistical assumptions and have 

demonstrated validation of their resulting leading indicators. 

4.1.3 Ensemble Approaches 

Before selecting the predictive algorithm to predict injury outcomes as 

safety risk leading indicators, it is important to note how construction safety 

environments are increasingly being reported as inherently complex systems in 

nature, and how injuries are the emergent outcomes of interdependent interactions 

within such systems (Tixier et al. 2016a; Alkaissy et al. 2020). Such complexity 

can be attributed to the unique characteristics of construction projects including 

the various involved trades, transient workforce, dynamic work environments, and 

often unstraightforward required construction techniques (Guo et al. 2015). Such 

characteristics thus render construction injuries as the resulting outcome of the 

joint presence of a worker and the interplay among several injury precursors 

within that worker’s surrounding complex environment. These precursors are 
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related to numerous attributes including those related to construction means and 

methods, environmental conditions and human behavior, and can be either 

observed before an injury occurs or collated after the fact. These unique 

characteristics set construction apart from many other industries and pose 

significant challenges to its safety management. 

Integrated ML approaches as multiple algorithm (ensemble) approaches 

are useful ways to approach such complex systems and predict their phenomena 

since they have been reported to be considerably successful in complex domains 

compared to individual algorithm methodologies (Chou and Lin 2013; Son et al. 

2014). Specifically, a ML ensemble algorithm is comprised of a set of underlying 

ML base algorithms whose individual learning strengths are integrated to better 

adapt to complex systems by modelling their multiple complex facets including 

the relationships between input (e.g., injury precursors) and response (e.g., injury 

outcomes) attributes (Zhou et al. 2019). When utilizing such an ensemble 

algorithm for future predictions, the base algorithm prediction results are 

combined such that better predictive performances and improved generalization 

capabilities can be achieved by reducing the variance in the individual algorithm 

predictions (Gholizadeh et al. 2018). 

In this respect, the goal of the current study is to develop construction site 

risk models that generate predictions of injury outcomes and safety risk leading 

indicators across different site zones and over project lifecycles, thus empowering 
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a proactive and real-time approach to construction safety management. In this 

respect, ensemble algorithms, which drive the generation of predictions within 

these models, are trained and validated to learn from previous injury precursors 

and outcomes. The study employs naïve Bayes, decision tree, random forest, 

support vector machine and artificial neural network as the base algorithms of the 

ensemble algorithm. A demonstration application is subsequently considered, 

where the ensemble algorithms are employed to develop a site risk model that 

supports proactive and real-time decision making by generating leading indicator 

forecasts of site-specific risk levels, injuries’ financial implications and body parts 

most likely affected. 

4.2 ML ALGORITHM APPROACH 

Supervised ML algorithms have gained significant recognition for their 

regression (i.e., when the response attribute is quantitative) and classification (i.e., 

when the response attribute is qualitative) capabilities. When used for 

classification, ML algorithms/classifiers learn from historical/training data to map 

a set of input attribute categories (e.g., injury precursors) into one of several 

response attribute classes (e.g., injury outcomes). In the current study, five 

different ML algorithms were considered: naïve Bayes, decision tree, random 

forest, support vector machines and artificial neural networks—subsequently 

serving as the base algorithms for the final ensemble algorithms. The training, 
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hyperparameter tuning and evaluation procedure followed for each developed 

algorithm are illustrated through the flowchart shown in Figure 4.3. 

4.2.1 Training and Evaluation 

The dataset is first split into an 80% training set and a 20% testing set, 

where the dataset featured in Figure 4.3 pertains to the one adopted in the 

demonstration application discussed later. The splitting is carried out in a 

stratified manner, where both training and testing sets have similar distributions of 

the response attribute (Kohavi 1995; Fiore et al. 2016). The training set is 

employed to train the base ML algorithms and to tune/optimize each algorithm’s 

hyperparameters, whereas the testing set was later introduced to present the 

algorithms with new data to validate and evaluate their performances. To ensure 

consistency in the evaluation, the same training set and testing set are used for the 

different ML algorithms. The results of the performance evaluation play a key 

role in the ensemble algorithms development as discussed later. The measures 

used to evaluate the ML algorithms herein include: accuracy, precision, 

sensitivity and specificity (Chou and Lin 2013; Son et al. 2014; Seong et al. 

2018). In applications with class imbalance (as will be discussed later), it is also 

endorsed to assess the F-measure (McDonald et al. 2012; Kang and Ryu 2019) 

which aggregates the precision and sensitivity measures as: 

(2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦)  (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦)⁄  (4.1) 



Figure 4.3: Algorithm training, hyperparameter tuning and validation approach
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To compound the effect of the five described measures, an overall average 

performance score (S) for each algorithm was also calculated as: 

𝑆 = 1 𝑚⁄ ∑ 𝑑𝑖

𝑚

𝑖=1
 (4.2) 

where m is the number of distinct evaluation measures (e.g., 5 herein) and 

di is the ith measure. 

4.2.2 Hyperparameter Tuning 

Each ML algorithm comprises one or more hyperparameters that make up 

that algorithm’s architecture. These hyperparameter values need to be tuned to 

yield an algorithm that neither overfits (i.e., learns the unique pattern of the data) 

nor underfits (i.e., unable to capture the relationships between inputs and outputs 

well enough) with respect to the training data, but rather strikes the right balance 

such that the algorithm preserves good generalization capabilities to new data. To 

carry out algorithm hyperparameter tuning, grid search techniques are used in 

conjunction with a 10-fold cross-validation approach, as shown in Figure 4.3. For 

each combination of hyperparameter values, a 10-fold cross-validation procedure 

is carried out, where the training set is divided into ten separate and almost 

equally-sized folds; nine for algorithm development and one for its validation. 

This process is then repeated ten times where each fold is used once for 

validation. Ten algorithms are thus developed using the same hyperparameter 

combination resulting in ten accuracy values on the validation folds which are 
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averaged to yield one accuracy value for each hyperparameter combination. Grid 

search techniques are adopted to search through the hyperparameter space and 

record average accuracies against hyperparameter combinations, and the 

combination with the highest average accuracy provides the optimal algorithm. 

4.2.3 Base Algorithms Overview 

4.2.3.1 Naïve Bayes 

Naïve Bayes (NB) is a probabilistic classifier based on the Bayes theorem 

of conditional probability. NB simplifies the calculation of probabilities by 

assuming conditional independence in the input attributes belonging to a given 

response attribute’s class (John and Langley 2013; Goh and Ubeynarayana 2017). 

During training, class conditional probabilities are calculated for each input 

attribute category (Gondia et al. 2019; Seong et al. 2018). For a new case, NB 

calculates the maximum posterior probability and then assigns the most likely 

class based on the case’s input attributes (Rish 2001; Gerassis et al. 2017). NB is 

widely used as a classification technique because, despite its simplicity, it has 

shown good predictive performances in various classification tasks (Liu et al. 

2013; Bhowmik 2015; Moreira et al. 2016; Kakhki et al. 2019). Specifically, NB 

algorithms usually perform well when applied to high-dimensional datasets or in 

binary classification problems (Marucci-Wellman et al., 2017; Seong et al. 2018), 

and were thus adopted as part of the current ensemble algorithm. 
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4.2.3.2 Decision Tree 

Decision trees (DT) (Breiman et al. 1984) are based on the recursive 

binary splitting of the data cases across multiple nodes through a divide-and-

conquer approach. Starting from the root node which consists of all the data cases, 

the most influential input attribute is determined via calculations of entropy and 

its resultant information gain (Poh et al. 2018; Gondia et al. 2019). All attribute 

categories are considered and those providing the best homogeneity (i.e., the 

cleanest split in terms of the response attribute classes) are selected to split the 

data into two subset nodes. The process is then repeated, where the cases within 

each node become more homogeneous than those in the previous nodes, and 

stopped once full homogeneity is reached or some other stopping criterion is 

satisfied (Chou and Lin 2013). The resulting tree can be used to generate a set of 

classification rules from the data which sends a new case to the lowest node in the 

tree based on its input attributes (Son et al. 2014). Usually, full homogeneity is 

not reached since this can cause overfitting, but instead, tree pruning is employed 

using cross-validation (Zhou et al. 2019). Tree pruning is controlled by the 

complexity parameter (cp) which describes the minimum improvement in the 

algorithm accuracy needed to be achieved to allow a node to split. DT were 

adopted herein since they have shown good classification performances, when 

pruned, across various applications (Navada et al. 2011; Somvanshi et al. 2016).  
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4.2.3.3 Random Forest 

Random forests (RF) (Breiman 2001) are ensemble algorithms of DTs 

which combine two powerful techniques: bootstrap aggregating (bagging) 

(Breiman 1996) and random attribute selection (Ho 1998). In bagging, ntree 

bootstrap data samples are drawn from the training set by sampling with 

replacement, where each sample is used to independently build a DT (Zhang et al. 

2020). Trees in RF are constrained to be simple, where each tree is grown to a 

maximal depth (set as 5 in the current application) and no tree pruning is applied 

(Nitsche et al. 2014). During tree construction, instead of considering all input 

attributes as in DT, RF selects only a subset of ktry attributes (less than the total 

number of attributes) which are randomized at each node split (Zhou et al. 2019). 

For a new case, each tree in the forest classifies its final response attribute class, 

and the majority class among the collection of trees is the RF final classification 

(Goh and Ubeynarayana 2017). The RF tuning hyperparameters are ntree and ktry. 

Compared to DT, RF is known to be more robust in terms of generalizability to 

new data and better in cases with input attributes with varying predictive powers 

(Nitsche et al. 2014; Poh et al. 2018). This is because through randomizing the 

procedures of data sampling and attribute selection at each node split, RF can 

reduce bias to training data and to attributes with strong predictive 

powers/influence on the response attribute, and can thus form a valuable part of 

the ensemble algorithm. 
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4.2.3.4 Support Vector Machine 

Support vector machines (SVM) (Vapnik 1999) are known as strong 

classifiers due to their ability to map training data to a higher dimensional feature 

space using nonlinear kernel functions when such data cannot be separated 

linearly (Meyer 2001; Olson et al. 2012). In the transformed feature space, 

nonlinear class boundaries are more easily separable through linear hyperplanes 

which appear nonlinear in the original feature space (Son et al. 2014). To achieve 

good generalizability, SVM detects the separating hyperplanes that maximize the 

margins between the underlying classes (Seong et al. 2018). Popular kernel 

functions include the polynomial, sigmoid and radial basis functions (RBF), 

where the latter is used in the current application due to its renowned high 

performance (Zhou et al. 2017; Kakhki et al. 2019). The RBF kernel, which is 

computed for pairs of training vectors (e.g., 𝑥𝑖 and 𝑥𝑗), takes the form (James et 

al. 2013; Nitsche et al. 2014; Zhang et al. 2020): 

𝐾(𝑥𝑖, 𝑥𝑗) = exp (−𝛾‖𝑥𝑖 − 𝑥𝑗‖
2

)  (4.3) 

 The SVM tuning hyperparameters are the cost/penalty of training cases 

that violate the separating plane (C), and the RBF kernel parameter (𝜸). Low 

values of C indicate more tolerance of violations (acceptable errors) and thus a 

wider margin which yields a classifier with potentially higher training error but 

better generalizability. On the other hand, high values of C indicate narrow 



Ph.D. Thesis – A. Gondia McMaster University – Civil Engineering 

 

187 

 

margins that are rarely violated which results in a classifier with improved fitting 

performance but deteriorated generalization (i.e., overfitting) (James et al. 2013). 

The 𝜸 parameter plays an important role in optimizing the separating plane as it 

denotes how far the influence of a single training case reaches in terms of defining 

the plane’s boundary. Low 𝛾 values denote far reaches and high values denote 

close reaches, and so 𝜸 can be seen as the inverse of the radius of influence of the 

selected support vectors on the boundary. When 𝜸 is too small, the region of 

influence can include the whole training set, thus preventing the classifier from 

capturing the complexity or shape of the data. If 𝜸 is too large, the region of 

influence can only include the support vectors, thus yielding a classifier prone to 

overfitting (Zhou et al. 2017). Combinations of C and 𝜸 provide a wide range of 

feature space transformations and separating hyperplanes, which enables RBF 

SVMs to accommodate for complex data mappings. As such, it is known to 

perform well in complex classification problems, which justified its consideration 

herein.  

4.2.3.5 Artificial Neural Networks 

Artificial neural networks (ANN) are inspired by the organization and 

functioning of biological neural systems, as that of human brains, and are 

effective in simulating relationships between input and response attributes that are 

part of complex nonlinear systems (Mangalathu and Jeon 2018; Kulkarni et al. 

2017). According to most researchers (Arditi et al. 1998; Arditi and Tokdemir 



Ph.D. Thesis – A. Gondia McMaster University – Civil Engineering 

 

188 

 

1999; Kulkarni et al. 2017; Waziri et al. 2017), a feed-forward back-propagation 

neural network was used in the current study, as shown in Figure 4.4. Typically, 

an ANN consists of an input layer, an output layer and one or more hidden layers. 

Increasing the number of hidden layers can enhance the modelling capabilities in 

highly complicated systems but also can increase the risk of overfitting. In this 

study, one hidden layer was used which was i) proven sufficient to approximate 

any continuous nonlinear function (Cybenko 1989; Hossein et al. 2010; Gandomi 

and Roke 2015); and ii) capable of solving complex classification problems 

(Lippmann 1987; Ripley 2002; Son et al. 2014). As can be seen in Figure 4.4, the 

input layer contains a set of m neurons representing the input attributes, the output 

neurons serve as discriminators between the response attribute’s n classes, and the 

hidden layer contains several h computation neurons connected to the input and 

output neurons by numeric weights in order to pass information between the input 

and output layers. Every neuron in the hidden layer undergoes two computations, 

where the first determines its net input through a biased weighted summation of 

all its connected input neurons as: 

𝐴𝑗 = ∑ 𝑤𝑖𝑗𝑥𝑖

𝑚

𝑖=1

+ 𝑏𝑗 , j = 1, .., h (4.4) 

where Aj is the net input of hidden neuron j, wij is the weight connecting 

input neuron i to hidden neuron j, and bj is the bias or threshold term for hidden 

neuron j. For the second computation, the net input result is passed into an 



Figure 4.4: Architecture diagram for feed-forward back-propagation neural network with one hidden layer
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activation or transfer function that controls the contribution of a hidden neuron’s 

output. Popular activation functions include the unit function, rectified linear 

function, hyperbolic tangent function or sigmoid function, where the latter is 

typically preferred and was used in this study in order to introduce nonlinearity 

into the algorithm and due to its ability to capture the complexity in systems 

(Moayed and Shell 2011; Ayhan and Tokdemir 2020). As such, the output (Zj) of 

the jth neuron in the hidden layer can be described as: 

𝑍𝑗 = 𝜎(𝐴𝑗) =
1

1 + 𝑒−(𝐴𝑗)
 , j = 1, .., h (4.5) 

The results of the hidden layer are ultimately mapped into the output layer 

through another two computations, where the input into the kth output neuron is: 

𝐵𝑘 = ∑ 𝑣𝑗𝑘𝑍𝑗

ℎ

𝑗=1

+ 𝑑𝑘 , k = 1, .., n (4.6) 

where vjk is the weight connecting hidden neuron j to output neuron k, and 

dk is the bias in output neuron k. In classification problems, the softmax function 

in Equation (4.7) is commonly used and allows for a final transformation of the 

inputs (e.g., Bk) into positive probabilities that sum to one (Hastie et al. 2009). 

𝑌𝑘 =
𝑒𝐵𝑘

∑ 𝑒𝐵𝑙𝑛
𝑙=1

 , k = 1, .., n (4.7) 

where Yk is the final probability that an instance becomes classified as 
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class k. The network architecture is completed by determining the hidden layer 

size (i.e., number of hidden neurons h) which is key since too small or large h 

values can lead to underfitting or overfitting, respectively. The current study 

determined an upper bound for h using Kolmogorov’s theorem (Hecht-Nielsen 

1987; Gandomi and Roke 2015) as: ℎ ≤ 2𝑚 + 1, where m is the number of inputs 

as stated earlier, and the exact number of h was subsequently tuned using cross-

validation, as will be described later. Training the ANN is a two-stage process: i) 

a forward pass of training cases through the network to produce predicted classes 

which are compared with the actual classes for computing error rates; and ii) a 

backward pass to continuously adjust the weights and biases to reduce errors and 

iteratively capture the input-output relationships enshrined within the data. For a 

new case, the input attributes flow through the hidden layer of neurons to the 

output layer and the class k with the highest probability Yk is the predicted class. 

4.2.4 Ensemble Algorithm 

For each of the described base algorithms, the prediction output is initially 

in the form of a probability distribution over the outcome classes, rather than a 

definitively selected class. For example, as presented in Table 4.1, if the 

prediction probabilities of classes A, B and C are 55%, 32% and 13%, 

respectively, then class A is the prediction. The ensemble methodology 

subsequently aggregates the prediction probabilities of the base algorithms in 

order to determine the final prediction—thus producing an ensemble algorithm 
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that performs at least as well as the best-performing base algorithm and 

oftentimes better (Hou and Ramani 2007; Zhou et al. 2011).  

Table 4.1: Demonstration example for different ensemble algorithm 

techniques 

Confidence 

score 
Algorithm Class A Class B Class C 

80.87% Base algorithm 1 55.10% * 31.59% 13.31% 

37.54% Base algorithm 2 17.83% 39.55% 42.62% * 

22.81% Base algorithm 3 8.52% 44.70% 46.78% * 

— 
Ensemble algorithm 1  

(majority voting) 
— — 100% * 

— 
Ensemble algorithm 2 

(average voting) 
27.15% 38.61% * 34.24% 

— 

Ensemble algorithm 3 

(confidence-weighted average 

voting) 

37.67% * 35.82% 26.51% 

Note. * Final prediction per algorithm. 
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Several ensemble techniques are available including majority voting, 

average voting and confidence-weighted average voting (see Table 4.1). In 

majority voting, each base algorithm casts a vote (i.e., a predicted class) and the 

maximum vote is the final prediction. For example, if two out of three base 

algorithms predict class C, then the final prediction is class C. In the case of 

average voting, the base algorithms’ prediction probabilities are simply averaged, 

and the final prediction is the class with the highest average. In the current study, 

confidence-weighted average voting is adopted, where the prediction probabilities 

are weighted according to a confidence score for each base algorithm. The 

confidence score used herein for each base algorithm is its overall average 

performance score (S) which was introduced earlier. More specifically, the 

ensemble algorithm’s prediction probability for a certain class k is calculated as: 

𝑃𝑘 =
∑ 𝑆𝑖𝑝𝑖𝑘

𝑛
𝑖=1

∑ 𝑆𝑖
𝑛
𝑖=1

 , ∀𝑘 (4.8) 

where n is the number of base algorithms and pik is the prediction 

probability of the ith base algorithm for that class k. The final prediction is the 

class with the highest prediction probability as per the confidence-weighted 

average calculations (Hastie et al. 2009; Chou and Lin 2013; Son et al. 2014). 
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4.3 DEMONSTRATION APPLICATION 

4.3.1 Data Description 

The data adopted in the current study to demonstrate an ensemble 

algorithm approach for developing a site risk model were obtained from the 

Occupational Safety and Health Administration (OSHA) occupational injury and 

illness cases database (OSHA 2019). At the time of access, 1,981 cases 

corresponded to construction workplace injuries which were used herein. The 

dataset consists of seven attributes; five injury precursors (input attributes) and 

two injury outcomes (response attributes). The five precursors include: 1) 

worksite environment—describing the unsafe nature of the working conditions 

surrounding- or in close proximity to the worker at the time of the injury; 2) 

hazard exposure—describing the hazards associated with the specific work 

method performed by the worker to complete a task at the time of the injury; 3) 

human error—describing worker negligence of controllable circumstances within 

their responsibilities; 4) work familiarity—describing whether the task assigned 

was considered regular work performed by the worker; and 5) month—describing 

weather conditions at the time of injury, since the dataset did not include detailed 

injury location information to match to the date for deriving weather data. The 

precursor categories and corresponding injury counts within the adopted dataset 

are presented in Table 4.2. 
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Table 4.2: Injury precursor categories and injury counts 

Precursor Category Injury count Total count 

Worksite 

environment 

1. Work-surface/facility-layout condition 456 1,981 

2. Materials handling equip./method 428 

3. Pinch point action 338 

4. Overhead moving/falling object action 247 

5. Catch point/puncture action 153 

6. Shear point action 80 

7. Flying object action 77 

8. Weather, earthquake, etc. 55 

9. Gas/vapor/mist/fume/smoke/dust 41 

10. Overpressure/underpressure 34 

11. Illumination 24 

12. Temperature +/- tolerance level 18 

13. Chemical action/reaction exposure 16 

14. Sound level 14 

Hazard exposure 1. Caught in or between 720 1,981 

2. Struck-by 576 

3. Fall (from elevation) 463 

4. Shock 63 

5. Struck against 60 

6. Inhalation 46 

7. Fall (same level) 34 

8. Card-vascular/resp. failure 9 

9. Rubbed/abraded 5 

10. Absorption 5 

Human error 1. Misjudgment, hazardous situation 857 1,981 

2. Safety devices removed/inoperable 190 

3. Position inappropriate for task 168 

4. Mater-handling procedure inappropriate 130 

5. Insufficient/lack of engineering controls 106 

6. Insufficient/lack of written work practice program 102 

7. Equipment inappropriate for operation 95 
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8. Insufficient/lack of protective work 

clothing/equipment 
86 

9. Lockout/tagout procedure malfunction 85 

10. Malfunction in securing/warning operations 78 

11. Perception malfunction task-environment 23 

12. Defective Equipment in use 19 

13. Distracting actions by others 17 

14. Insufficient/lack of housekeeping program 14 

15. Insufficient/lack of respiratory protection 11 

Work familiarity 1. Regularly assigned 1,293 1,981 

2. Not regularly assigned 688 

Month January 172 1,981 

February 201 

March 207 

April 146 

May 132 

June 144 

July 159 

August 144 

September 146 

October 145 

November 211 

December 174 

 

The first injury outcome is the injury cost that describes the level of 

financial implications incurred by the employers due to the injury. As shown in 

Table 4.3, the dataset originally featured the injury nature outcome which 

describes the principal physical characteristics of the injury. The injury nature 

categorization scheme is consistent with that of the Bureau of Labor Statistics’ 

standardized Occupational Injury and Illness Classification Manual (OIICM) 

(Bureau of Labor Statistics 2012). Subsequently, the injury nature categories were 
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assessed based on the worker compensation lost work-time claims data and the 

injuries in the dataset were classified accordingly into high- and low-cost injuries, 

as shown in Table 4.3 (Rosecrance et al. 2011; Davis and Stern 2012; Liao et al. 

2015; CPWR 2018; Gholizadeh et al. 2018). The injury counts pertaining to the 

resulting injury cost outcome are summarized in Table 4.4. The second injury 

outcome is the body part which describes the part of the body directly affected by 

the injury. As shown in Table 4.5, in the adopted dataset, the body part outcome 

was originally comprised of 27 subcategories which were also recorded consistent 

with the OIICM. These subcategories were subsequently classified into five 

OIICM categories. The classification carried out on the two injury outcomes 

within the current study was performed in order to simplify the predictive 

modelling process and to enhance the practical use of the algorithm outcomes. 

As shown in Table 4.4, the injury cost outcome is classified into two 

classes including high-cost injury (46.3%) and low-cost injury (53.7%). As shown 

in Table 4.5, the body part outcome is classified into five classes including head 

& neck (27.6%), trunk (22.7%), upper extremities (29.7%), lower extremities 

(10.3%), and multiple areas (9.7%). As discussed, the prediction of these outcome 

classes is called a classification problem, where the injury cost problem is a 

binary classification problem and the body part problem is a multi-class 

classification problem (i.e., having more than two classes). 
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Table 4.3: Injury nature outcome categories and injury counts 

OIICM category OIICM subcategory*  Subcategory  

injury count 

Injury cost Category  

injury count 

2.1.2.1.1 Traumatic injuries to bones, nerves, spinal cord Fracture/broken bones 402 High cost 402 

2.1.2.1.2 Traumatic injuries to muscles, tendons, ligaments, 

joints, etc. 

Strain/sprain 481 Low cost 509 

Dislocation 28 Low cost 

2.1.2.1.3 Open wounds Amputation/crushing 356 High cost 570 

Laceration 192 Low cost 

Puncture 22 Low cost 

2.1.2.1.4 Surface wounds and bruises Bruising/contusion 147 Low cost 147 

2.1.2.1.5 Burns and corrosions Fire burn 21 Low cost 31 

Chemical burn 10 Low cost 

2.1.2.1.6 Intracranial injuries Head trauma 159 Low cost 159 

2.1.2.1.9 Other traumatic injuries and disorders Asphyxiation/drowning 96 High cost 163 

Electrocution 64 High cost 

Poisoning 3 Low cost 

Total – 1,981 – 1,981 

Note. * The attribute in the original data set. 

  

 

 

Table 4.4: Injury cost outcome categories and injury counts 

Category Injury count 

High-cost injury 918 

Low-cost injury 1063 

Total 1,981 
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Table 4.5: Body part outcome categories and injury counts 

OIICM category OIICM subcategory* Subcategory 

injury count 

Category 

injury count 

2.2.2.1 

2.2.2.2 

Head & 

Neck 

Head 452 546 

Neck 67 

Face 25 

Eye(s) 2 

2.2.2.2.3 Trunk Rib(s) 131 450 

Internal chest organ(s) 131 

Lung(s) 49 

Abdomen 41 

Back 36 

Heart 33 

Hip 23 

Liver 4 

Kidney(s) 2 

2.2.2.4 Upper extremities Finger(s) 367 588 

Hand(s) 100 

Shoulder(s) 47 

Arm(s) 43 

Wrist(s) 14 

Forearm(s) 13 

Elbow(s) 4 

2.2.2.5 Lower extremities Leg(s) 99 204 

Feet 57 

Lower leg(s) 30 

Thigh(s) 10 

Knee(s) 8 

2.2.2.8 Multiple areas Whole body 180 193 

Multiple body parts 13 

Total – 1,981 1,981 

Note. * The attribute in the original data set. 
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4.3.2 Class Imbalance 

The injury cost classes are relatively balanced/equally distributed (see 

Table 4.4), while the body part outcome carries some class imbalance (see Table 

4.5). Specifically, on the latter, the underrepresented classes include lower 

extremities and multiple areas. Class imbalance presents challenges to ML 

algorithms during training, where typically the final ML algorithms would 

perform well for the majority classes but neglect the minority classes (Tixier 

2016a; Kang and Ryu 2019). In the current study, accurately predicting the rare 

classes was equally important as predicting the common ones. To address the 

class imbalance issue, the oversampling with replacement method was used for 

the body part problem instead of the stratified splitting method (described earlier) 

which was used for the balanced injury cost problem. In the oversampling with 

replacement method, the training set is created through a random sample 

containing more cases from the minority classes than what would have been 

normally obtained by the stratified splitting method (Sun et al. 2007; Poh et al. 

2018). To achieve this, each body part class was assigned a probability that is 

inversely proportional to its count, for example, head & neck (588/546), trunk 

(588/450), upper extremities (588/588), lower extremities (588/204), and multiple 

body parts (588/193). The training set was put together by random drawing with 

replacement from the entire dataset based on these probabilities until the classes 

were equally represented. Rebalancing the class distributions allowed the 

underrepresented classes to become more important to the ML algorithms during 



Ph.D. Thesis – A. Gondia McMaster University – Civil Engineering 

 

201 

 

training in order to produce final algorithms that perform well across all classes. 

4.3.3 Algorithm Training 

Two ensemble algorithms were developed; one to predict each injury 

outcome class from the same set of injury precursor categories. Central to the 

ensemble approach, the five base ML classification algorithms were trained 

independently (for each of the two problems) and then used collectively to select 

the best/final outcome class. During training, each algorithm’s hyperparameters 

were tuned using a cross-validated grid search as described earlier, and the tuned 

hyperparameters were the ones used to ultimately train the algorithm. The tuned 

sets of hyperparameters and the corresponding optimal accuracies for each 

algorithm across both problems are reported in Table 4.6. 

Table 4.6: Algorithms tuned hyperparameters 

Algorithm Hyperparameters 

Injury cost problem Body part problem 

Tuned value 
Optimal 

accuracy* 
Tuned value 

Optimal 

accuracy* 

DT 
cp 

Tree size 

0.0082 

10 
78.42% 

0.0061 

9 
72.38% 

RF 
ntree 

ktry 

80 

3 
79.36% 

110 

4 
76.77% 

SVM 

Kernel function 

C 

γ 

RBF 

8 

0.005 

79.77% 

RBF 

16 

0.005 

75.21% 

ANN 

No. hidden layers 

Activation function 

h 

Number of epochs 

Weight decay 

1 

sigmoid 

36 

500 

0.3 

80.07% 

1 

sigmoid 

22 

500 

0.3 

77.08% 

Note. * Optimal accuracies are results of 10-fold cross-validation averages. 
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Regarding DT, the results of the cp tuning showed that the optimal cp for 

the injury cost problem was 0.008 resulting in a tree size of 10, and for the body 

part problem was 0.006 resulting in a tree size of 9. Concerning RF, the ntree and 

ktry tuning results for the injury cost problem are demonstrated in Figure 4.5.  As 

shown in the figure, the range of ntree values was set from 5-500 with a step size 

of 10, and ktry values of 1, 2, 3 and 4 were explored. The optimal combination of 

hyperparameters for the injury cost and body part problems was (ntree = 80, ktry = 

3), and (ntree = 110 and ktry = 4), respectively. With regards to SVM, the C and 𝜸 

tuning results for the injury cost problem are demonstrated in Figure 4.6. The 

figure shows a 3D plot and a contour plot of the change in cross-validation 

accuracy as a function of C and 𝜸.  As the range of C values was significantly 

wide, its axis was represented as the transformed range of log2 𝐶. Searching 

through C values within the range [2-10, 24] and 𝜸 values within the range [0.005, 

0.05], good SVM classifiers were found for intermediate values of C and 𝜸, where 

wider boundary classifiers (i.e., smaller 𝜸 values) can be made stricter by 

increasing the importance of misclassifying training cases (i.e., larger C values). 

The optimal SVM hyperparameter combination was found to be (C=8, 𝜸=0.005) 

for the injury cost problem and (C=16, 𝜸=0.005) for the body part problem.  
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Throughout the ANN training, the number of epochs or training iterations 

was set to 500. For ANN, the five categorical injury precursor attributes were 

encoded to numeric attributes by mapping each to binary vectors based on its 

underlying categories, thus yielding a total of 53 new input attributes. As such, the 

maximum h was determined as 2×53 + 1 = 107 hidden neurons. Figure 4.7 shows 

the h tuning results for the injury cost problem within the range of 1 and 110 

hidden neurons. Too large h can cause overfitting because too many weights can 

cause the ANN to match the training data too closely. Indeed, from the figure, the 

cross-validation average accuracy showed trends of increase with the increase in 

h until an optimal value of 36 neurons, beyond which slight overfitting trends 

started to emerge. The optimal h for the body part problem was found to be 22. 

Often ANNs with weight values that are too large can also lead the algorithm to 

overfitting to the set of training patterns. A weight decay was used (Zur et al. 

2009; Nakamura and Hong 2019), where after each epoch/iteration, the weights 

were multiplied by a factor (i.e., slightly less than one) to prevent the weights 

from growing too large. By subtracting the decay multiplied by the weight from 

the original weight, the ANN can be prevented from approaching the global 

minimum error on the training data. Through manual tuning, the decay values 

were set to 0.3 for both problems. Finally, based on the S values discussed next, 

the ensemble algorithms were developed using confidence-weighted average 

voting, as discussed earlier. 
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4.3.4 Algorithm Evaluation 

Using the tuned hyperparameters, the trained ML algorithms were 

evaluated based on their ability to replicate the testing set. The evaluation results 

for the injury cost and body part problems are reported in Tables 4.7 and 4.8, 

respectively. In these tables, the algorithms are ranked based on their average 

performance score (S). For the injury type problem, the best performing algorithm 

was ANN (S=79.51%) followed by SVM (78.80%), whereas for the body part 

problem, ANN also ranked highest (80.15%) but was followed by RF (79.72%). 

The ensemble algorithms’ aggregation power was also assessed and were found to 

outperform their base algorithm counterparts for both injury cost (81.82%) and 

body part (81.91%) problems. To enable an assessment of the algorithms’ 

generalization capabilities, a 10-fold cross-validation procedure was subsequently 

applied to the entire dataset, the accuracy results of which are presented in Figure 

4.8. Across both problems (injury cost, body part), the ensemble algorithm 

demonstrated the best generalization performance exhibited through its highest 

maximum (84.45%, 80.78%), minimum (80.39%, 76.16%), median (82.27%, 

78.94%) and average (82.33%, 78.58%) accuracy values, as well as the smallest 

max-min range (4.06%, 4.62%) over the 10 folds. The latter finding supports that 

the ensemble algorithms produce less variance and yield similar results if applied 

repeatedly to distinct datasets. Overall, although the differences in performance 

between the ensemble algorithm and the base algorithms were not very large, the 

evaluation results confirm that an ensemble algorithm can improve classification 



Ph.D. Thesis – A. Gondia McMaster University – Civil Engineering 

 

210 

 

performance relative to that of base algorithms in terms of both accuracy and 

generalizability. 

Table 4.7: Algorithm evaluation results (injury type problem) 

 
Accuracy Precision Sensitivity Specificity F-measure S Ranking 

Ensemble 82.62% 78.89% 85.33% 80.28% 81.98% 81.82% – 

ANN 80.35% 76.24% 83.70% 77.46% 79.79% 79.51% 1 

SVM 79.60% 76.41% 80.98% 78.40% 78.63% 78.80% 2 

RF 79.09% 74.63% 83.15% 75.59% 78.66% 78.23% 3 

DT 78.34% 74.50% 80.98% 76.06% 77.60% 77.50% 4 

NB 77.33% 72.60% 82.07% 73.24% 77.04% 76.45% 5 

 

 

 

Table 4.8: Algorithm evaluation results (body part problem) 

 
Accuracy Precision Sensitivity Specificity F-measure S Ranking 

Ensemble 78.84% 79.01% 78.84% 93.95% 78.93% 81.91% – 

ANN 76.83% 76.93% 76.83% 93.29% 76.88% 80.15% 1 

RF 76.57% 76.45% 76.57% 92.49% 76.51% 79.72% 2 

SVM 75.31% 75.30% 75.31% 92.20% 75.31% 78.69% 3 

NB 73.05% 73.42% 73.05% 92.41% 73.23% 77.03% 4 

DT 72.29% 73.23% 72.29% 90.30% 72.76% 76.18% 5 

Note. The values presented are class averages. 

 

  



Figure 4.8: Algorithm evaluation results of 10-fold cross-validation on entire dataset: a) injury cost problem; and b) body part problem
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4.3.5 Site Risk Model 

The two ensemble algorithms developed herein to predict injury cost and 

body part can be used in conjunction with the algorithm developed by Gondia et 

al. (2021) which predicts only the site risk level. These three algorithms can be 

deployed to drive a site risk model that supports proactive safety management and 

real-time decision-making, as shown in Figure 4.9, where input, hidden and 

output layers would comprise the model. 

The input layer can be presented in a checklist form (e.g., left side of 

Figure 4.9), with pre-job safety inspections and audits serving as the means of 

collecting work setting characteristics and injury precursor information such as 

worksite-, work means- and worker potential hazards. The hidden layer (engine) 

of the model comprises the ML ensemble prediction algorithms that would have 

been previously trained to learn the relationships between the work setting 

characteristics/potential injury precursors and the injury outcomes based on a 

historical dataset, as explained above in detail. Based on this training, the 

ensemble algorithms can generate predictions of different injury and safety risk 

leading indicators as per the inputted precursor information from the input layer. 

The output layer can be presented as a visual interface (e.g., right side of Figure 

4.9) that showcases both real-time and proactive values of these predictions across 

different sites, presented as prediction probabilities of site risk level, injury cost, 

and body parts most likely to become affected should an accident occur. 
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These leading indicators can indicate which sites exhibit work settings that 

suggest they are at a heightened risk of injury occurrences and what the financial 

implications could look like. 

4.3.6 Practical Use 

It is useful to provide an example of how the model can be practically used 

by a company that requires a safety oversight/forecast across multiple of its 

worksites which are scheduled to have work packages starting in October, for 

instance (see Figure 4.9). Within the considered application, towards the end of 

August and during preparations for such work packages, site inspections can be 

carried out and the checklist method can be used to mark the availability of one or 

more potential incident precursor categories pertaining to the spatial working 

conditions of the intended site (worksite environment). Through the knowledge of 

the nature and technical requirements of the work packages, any potential 

availability of precursor categories associated with the planned work execution 

methods can also be marked (hazard exposure). Through the knowledge of the 

assigned workforce’s experience and motivation, potential precursor categories 

for human error and work familiarity can be identified and marked. The month 

representing prevailing weather conditions will be marked as October in this 

demonstration example.  

These marked sets of precursors are then automatically fed as inputs into 

the ensemble algorithms embedded within the hidden layer which would output 
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three leading indicators. These leading indicators classify the site into a high- or 

low-risk site, with the potential of high- or low-cost injuries, and denote which 

body parts are the most likely to become affected in the case of an incident. The 

same can be performed across all relevant sites, thus enabling a spatial vision of 

potential worksite risk levels, as shown in Figure 4.9. With every temporal change 

(e.g., T1 , T2, .. Tn), there can exist a different setting of precursors, and so with 

timely precursor information collection, the platform can be used as a spatio-

temporal tool in the sense described above, providing ongoing decision support in 

the form of updated/real-time forecasts of leading indicators every month or every 

work package handover. These indicators can be used to better plan a worksite in 

time and/or space. For example, sites flagged as high-risk sites and/or prone to 

high-cost injuries can ultimately be prioritized for additional management 

attention in the form of more in-depth inspections and intervention actions—all in 

a proactive manner prior to work commencement. On the worker level, workers 

can be informed of such risk level classification and most likely affected body 

parts should an injury occur. The body part leading indicators can also help better 

plan pre-work planning and safety meetings. For example, a forecasted high 

probability of an upper extremity injury can heighten targeted discussions around 

the use of proper gloves for the work; and likewise, a high probability of a head 

and neck injury can encourage discussions on proper headwear.  
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Such a model can help company decision-makers and site safety managers 

1) accurately predict and proactively intervene to prevent incidents and injuries; 

2) prioritize the use of limited safety resources to areas that will make the most 

impact; 3) enhance their social responsibility goals by communicating action-

items and forecasts between management and workers to create a culture of 

continuous improvement; and 4) save costs by realizing significant reductions in 

workers' compensation premiums. While the model layers in Figure 4.9 are 

specific to the demonstration application and dataset considered in the current 

study (i.e., the ensemble algorithms were trained on a specific dataset of 

construction injuries described by specific precursors and outcomes), the 

described ensemble approach can be extended to develop other full end-to-end 

models that are based on different safety-related applications and datasets within 

any setting (e.g., manufacturing facility, heavy industry, oil & gas, utility 

company and office space). An ensemble approach’s good generalization 

capabilities (e.g., Figure 4.8) support its reliability when applied to different 

safety-related domains and datasets. 

4.4 CONCLUSIONS 

Injury statistics position construction among the most dangerous industries 

in the world, yet safety improvement in the industry has decelerated in the last 

decade. The current study develops construction site risk models that can generate 
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predictions of safety risk leading indicators across different zones and over 

project lifecycles. The models are driven by ensemble ML algorithms that, given 

sets of injury precursors, can predict injury outcomes that act as worksite safety 

risk leading indicators for supporting proactive actions and real-time monitoring. 

The developed ensemble algorithms comprised five base algorithms, namely 

naïve Bayes, decision trees, random forests, support vector machines and artificial 

neural networks. The training and hyperparameter tuning of each base algorithm 

were based on cross-validated grid search techniques to prevent overfitting by 

ensuring the algorithm’s accuracy was not constrained to the training data only 

and help yield a tuned algorithm that generalizes better. When employed, the 

ensemble algorithm aggregates the predictions of the base algorithms through 

confidence-weighted average voting. The advantage of the ensemble approach 

relies on combining the learning strengths of its base algorithms to better shape 

the final algorithm for capturing systems with complex relationships as those 

between injury precursors and injury outcomes/leading indicators. 

A demonstration application was presented using a construction dataset 

from the OSHA injury and illness cases database, where ensemble algorithms 

were trained to predict injuries’ financial implications and body parts most likely 

affected as leading indicators. The algorithm evaluation results supported that the 

ensemble algorithm could improve classification accuracy and generalizability 

relative to those of base algorithms across both prediction problems. Therefore, a 
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demonstration was introduced to show how these trained and validated ensemble 

algorithms can be deployed as part of a site risk model capable of supporting 

safety managers with proactive and real-time updated leading indicator 

predictions of worksite safety risks across various sites and timeframes (e.g., site 

risk level classification, potential injury financial implications, and body parts 

most likely to be affected) which can inspire key injury-preventive decision 

making. Extended utilization of such models can bring practical benefits to 

empower construction companies’ safety management strategies in the form of: 1) 

accurately predicting and proactively intervening to prevent incidents and 

injuries; 2) prioritizing the use of limited safety resources to areas with high-risk 

levels; 3) communicating action-items and forecasts between management and 

workers to create a culture of continuous improvement; and 4) saving costs by 

realizing significant reductions in workers' compensation premiums. 
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Chapter 5:  

DYNAMIC NETWORKS FOR RESILIENCE-DRIVEN MANAGEMENT 

OF INFRASTRUCTURE PROJECTS 

ABSTRACT  

The importance of ensuring the resilience (rapid adaption to and recovery 

from disruptions) of infrastructure projects in modern societies can be hardly 

overstated. However, using currently available tools, managing such projects 

continues to be challenging because of their intrinsic complexities and dynamic 

spatiotemporal interdependencies. In this respect, the objective of the current 

study is to develop a novel framework for resilience-driven management of 

infrastructure projects. By-design, the framework can ensure project resilience 

through mitigating the risk of complex interdependence-induced vulnerabilities 

and subsequent cascade disruptions of project performance. The framework 

adopts a dynamic network approach to model and analyze spatiotemporal 

contractor interdependence within infrastructure project sites. Subsequently, the 

framework harnesses the power of metaheuristic optimization techniques to 

proactively detect interdependence-induced vulnerabilities and rapidly adapt 

contractor networks accordingly. Such adaption will then reflect on the work 

schedule—enhancing the overall project resilience to possible performance 

cascade disruptions. Finally, to demonstrate the applicability of the developed 
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framework, a several hundred million dollars power infrastructure overhaul 

project of high strategic importance was considered. By examining complex 

infrastructure projects through a network-level lens, the framework provides 

project managers with key managerial insights and deepened understanding of 

their projects’ underlying interdependence-induced vulnerabilities and possible 

shortcomings of preset risk mitigation strategies. Overall, the current study 

empowers managers through its resilient-by-design approach to infrastructure 

projects in order to absorb, recover from, and adapt to disruptive events 

persistently triggered by the project’s dynamic risk environment.  
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5.1 INTRODUCTION 

Public infrastructure systems (e.g., power, water/wastewater, 

telecommunication, and transportation) function as arteries of modern urban 

communities as they provide vital services to meet societal, economic, and 

political needs (Di Maddaloni and Davis 2018). Construction, operation, 

overhaul/refurbishment, retrofit and expansion projects of such systems typically: 

1) have long schedules and large budgets; 2) require substantial resources, 

extensive work scopes and diverse specialized expertise; 3) spread spatially over a 

large geographical area; 4) result in significant socio-economic impacts; and 5) 

attract high private- and public sector engagements (Sun and Zhang 2011; 

Flyvbjerg 2014). In this respect, managing such infrastructure projects is 

perceived to be particularly challenging and risky due to their inherent complex 

interdependence and their dynamic (time-dependent) nature (Aritua et al. 2009; 

Mok et al. 2015). As a result, projects’ inability to meet basic targets of duration, 

budget, benefits realization, and subsequently stakeholder satisfaction, has been 

well recognized (Yeo 1995; Han et al. 2009; Cantarelli et al. 2012; Eriksson et al. 

2017; McKinsey Global Institute 2017). 

A key facet of infrastructure projects’ inherent complexity lies in their 

different task technical complexities as their associated work scopes typically 

require high degrees of technical know-how, specialized skillsets, and significant 

multidisciplinary collaborative efforts (Luo et al. 2016). As such, this technical 
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complexity leads to contractor-related interdependence, where the sites of the 

project typically accommodate numerous specialized contractor crews from 

different disciplines (e.g., mechanical, electrical, fire protection, steel fabricator, 

etc.), each with their own interests, constraints and uncertainties. These crews also 

work simultaneously (and not interchangeably) on heavily interdependent, 

successive and overlapping tasks over extended periods (Chester and Hendrickson 

2005; Jarkas 2017). Contractor-related interdependence also influences 

performance-related interdependence, where project performance objectives are 

also highly intertwined. Specifically, unless the project tasks are properly 

coordinated (i.e., contractor-related interdependence is adequately managed and 

controlled), execution errors, quality deficits, delays in approval, and 

subsequently, other interdependence-induced project cascade performance 

disruptions (CPD), as shown in Figure 5.1, are likely to spread throughout 

(Serrador and Turner 2015; Eriksson et al. 2017; Gondia et al. 2020). For 

illustration purposes, Figure 5.1a represents several key CPD as components of a 

“small-world network”, where all network components are interconnected. 

Therefore, different disruptions have the potential to induce others, in a cascade 

manner possibly extending to all project components, as illustrated in Figure 5.1b.  

For instance, immediate execution errors by one contractor in the network may 

not only affect those contractors within the closest task-dependent proximity but 

might also trigger multiple additional CPD to other contractors within the 

network. Such errors typically require multiple reworks—hindering productivity 



Figure 5.1: Project performance disruptions’ (a) interdependent nature and (b) cascade potential
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and disrupting resource allocations to multiple contractors and tasks, and 

subsequently incurring schedule delays and cost overruns (Larsen et al. 2015). As 

they attempt to adapt to such CPD, project managers typically resort to 

accelerating progress through compressing schedule and/or crashing tasks, which 

may also have a negative impact on the finished work quality and the safety of the 

workers— inducing further project complications (Nepal et al. 2006; Love at al. 

2016). Such disruptions may ultimately result in delayed infrastructure project 

completion and operation-readiness, leaving governments and other stakeholders 

with lost revenues on project capital, and subsequently provoking negative 

societal perceptions and public controversies (Ndekugri et al. 2008; Di Maddaloni 

and Davis 2018). Such consequences, in turn, spark tensions between project 

stakeholders, where unresolved conflicts give rise to legal claims and disputes 

which have become increasingly common in infrastructure projects (Yates and 

Epstein 2006; Mehany et al. 2018). 

Industry standard and commercially available software tools, widely used 

for project management and control, typically employ the critical path method 

(CPM) and the Monte Carlo analysis (see Figure 5.2a). The former is customarily 

used for planning, scheduling and controlling of projects task durations, resource 

allocations and costs, whereas the latter is employed to enable further 

probabilistic modelling and risk analyses to the former’s outcomes in order to 

quantify the levels of reliability associated with such outcomes (Nasir et al. 2003; 
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Tomczak and Jaśkowski 2020). Despite providing valuable insights to support the 

management of small- and medium-sized projects, these current tools suffer from 

three main underlying limitations when adopted to manage complex 

infrastructure projects, as outlined in Figure 5.2a. First, such tools are not 

particularly designed to visualize and analyze contractor-related interdependence. 

Specifically, commercial CPM tools, such as Microsoft Project or Oracle 

Primavera P6, enable visualizing interdependence at the project task-level by 

connecting user-defined predecessor and successor tasks within project schedules, 

as shown in Figure 5.2a. Such tools also allow tasks to be sorted by contractor 

responsibility (i.e., through grouping all tasks assigned to a particular contractor), 

as shown in Figure 5.2a, which can be used to understand work schedules and 

scope of work (overall duration involved) for specific contractors within the 

project. However, focusing on interdependence, representing such a contractor-

sorted schedule in the form of a very large sheet introduces too many details 

(taskbars) to remain comprehensible (Lu and AbouRizk 2000; Aritua et al. 2009; 

Tomczak and Jaśkowski 2020). Subsequently, such sorting does not lend itself to 

concise visualization or analyses of aggregated and/or quantified measures 

describing interdependence between contractors, which in turn can reveal specific 

critical contractors and interdependent contractor collaborations. In terms of 

performance-related interdependence, such tools are also unable to recognize the 

full extent of interrelationships between CPD, where they only optimize 

performance with respect to achieving a single objective (i.e., minimum 
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completion duration or optimum resource usage levels), thus disregarding the 

influences of other performance measures such as, for example, quality and safety 

(Chassiakos and Sakellaropoulos 2005; Ipsilandis 2007). Second, such tools can 

reveal predictions of project completion durations and budgets only following 

periodic schedule/budget updates, occasional scope changes or infrequent project 

risk level reassessments (Hazir 2015; Project Management Institute 2017). As a 

result, such tools are mainly useful to assist project managers in 

periodic/progressive project monitoring which typically allows for only reactive 

response plans against performance disruptions as they arise (Avlijaš 2019). 

Third, such tools leave project managers dependent solely on their own 

(subjective) expertise to find, prepare and execute response plans for project task 

and contractor coordination in order to rectify any oversimplified predictions of 

project performance disruptions revealed through periodic updates (Goldstein 

2006; Sadeghi et al. 2010). However, decision-making based solely on subjective- 

and experience-driven reasoning often does not lend itself to systematic strategic 

project management or to develop systemic robust solutions. As such, such an 

approach to project management often leads to uncoordinated response plans with 

resulting lost functionalities and slow project performance recoveries (Loizou and 

French 2012). Notwithstanding the value and indispensability of current analysis 

tools, the above three limitations raise the need to complement such tools with 

additional project resilience-focused tools —which can be achieved through 

adopting more capable complex systems simulation approaches (Figure 5.2b). 
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A multidisciplinary concept, resilience of a system, organization or 

community in the face of disruptive events denotes the system’s ability to: 1) 

absorb the impacts of such disruptions through prior identification of systemic 

vulnerabilities and proactive preparedness ; 2) adapt to such events by mobilizing 

risk management strategies aimed at preserving continued performance; and 3) 

rapidly recover from such events and restore the pre-disruption performance state 

through fully operationalizing the developed response strategies (Barker et al. 

2013; Hernandez-Fajardo and Dueñas-Osorio 2013; Wilkinson et al. 2016; Hariri-

Ardebili 2018). Considering the above, the resilient-by-design project 

management approach, proposed in the current study, aims at enhancing the 

project’s ability to absorb systemic risks attributed to contractor-interdependence-

induced vulnerabilities and develop adaptive solutions against the resulting CPD, 

thus facilitating a rapid restoration of the most important set of project 

performance objectives. In this fulfillment, approaches related to complex 

dynamic network theory (CDNT) offer an ideal suite of tools to model, analyze 

and understand dynamic interdependencies in complex systems (both over space 

and time) and subsequently adapt their behaviors (Barker and Haimes 2009; Gong 

et al. 2017; Fu et al. 2018) to mitigate possible cascade (systemic) risks.  
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5.2 STUDY GOAL AND OBJECTIVES 

The goal of the current study is to develop a resilience-driven management 

framework that ensures project resilience by-design through the adoption of 

network analyses and manipulations to complement the current industry-standard 

tools (see Figure 5.2b). Specifically, this framework aims at enhancing 

infrastructure projects’ ability to rapidly overcome possible CPD through 

providing project managers with proactive, dynamically adaptive and objective 

response plans with respect to contractor and task re-coordination. Within this 

goal, this study focuses on achieving the following three key objectives: 1) 

modelling the complex dynamic interdependencies of contactors’ tasks, both 

spatially (i.e., based on physical site location) and temporally (i.e., as the project 

schedule progresses), using CDNT approaches; 2) analyzing the behaviors of 

these networks and proactively assessing possible CPD; and 3) facilitating data-

driven adaptive (self-organized) network recovery through re-coordinated 

contractor tasks to ensure project resilience against CPD. 

In fulfillment of the stated research goal and objectives, the current study 

is organized into five main sections (Sections 5.3 to 5.7). In Section 5.3, an 

understanding of CDNT and relevant CDNT-based measures are provided, after 

which how corresponding project-level managerial insights can be drawn from 

such measures are highlighted. In Section 5.4, the resilience-driven infrastructure 

project management framework for adaptive contractor re-coordination against 
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CPD using a CDNT approach is presented, and the procedures related to the 

framework’s five underlying tools are described. Finally, to demonstrate the 

implementation of the developed framework, an actual large-scale infrastructure 

project is considered. In that respect, Section 5.5 features a description of the 

project and its strategic importance of compliance with performance targets, 

followed by a demonstration of the framework tools and procedures to model and 

analyze the project data using the afore-described CDNT-based measures. 

Subsequently, in Section 5.6, the results of the analysis are described to reveal 

several insights that further both the comprehensive and granular understandings 

of the project in terms of key contractor influences, namely their interdependence-

induced (collaboration) vulnerabilities, challenging months, and critical work 

packages—insights that would typically not have been revealed using solely 

available industry-standard tools. As a closure, Section 5.7 discusses some overall 

generalizable insights that can be inferred from the developed framework, 

aggregated by project stage (i.e., from commencement to completion) and are 

categorized by insights gained by different project stakeholders such as 

contractors and project managers among others. 
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5.3 COMPLEX DYNAMIC NETWORK MEASURES 

CDNT facilitates modelling and visualization of the dynamic relationships 

and complex interdependencies and behaviors within spatiotemporal systems 

through network layouts of nodes and links (Sarkar and Moore 2006; Zhu and 

Mostafavi 2015; Fu et al. 2018; Duan and Ayyub 2020). This section provides an 

understanding of some relevant network-based measures and highlights how these 

measures facilitate drawing unique project-level managerial insights. 

Within the context of the current study, nodes represent contractors bound 

by a specific project-based collaboration, while links represent these contractor 

interdependencies if they collaborate on tasks within the same spatiotemporal 

setting. The networks considered herein are both: a) undirected, since task 

interdependence between any pair of contractors affects them (concurrently) in a 

two-way/mutual relationship; and b) weighted, since the level/magnitude of task 

interdependence can vary widely among the contractors on site. Furthermore, 

since actual infrastructure project contractors’ interactions vary within the project 

site (space) locations and project lifecycle (time) stages, the spatio-temporal 

network approach adopted in the current study is key to examine the project in its 

evolution through multiple spatiotemporal stages (McGee et al. 2019; Lu et al. 

2020). 
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Once the contractor interdependence network is constructed, numerical 

analyses are key to better understand the relationships (interdependence) between 

the different network nodes (contractors) and hence to uncover critical 

vulnerabilities. There is a wide range of complex network analytic measures, 

including those specific to network components (nodes) and those that are 

systemic (network-level). For node-specific measures, centralities present 

insightful measures that describe the relative importance of nodes in the network 

by assessing how connected such nodes are to other nodes. Several types of 

centrality measures exist all with their own unique characteristics, including: 

▪ Weighted degree centrality (WDC) (Dueñas-Osorio et al. 2007; Park et 

al. 2010; Gong et al. 2017; Xue et al. 2018; Ezzeldin and El-Dakhakhni 

2019): Representing the total summation of weights of the links connected 

to the underlying node. This type of centrality quantifies the node’s ability 

to influence other network nodes. Since it reflects direct influence, within 

infrastructure project management, this centrality is key for capturing the 

criticality of specific contractors pertaining to the magnitude of 

interdependent shared tasks within the network. 

▪ Betweenness centrality (BC) (Park et al. 2010; Gong et al. 2017; 

Schröpfer et al. 2017; Yu et al. 2017; Xue et al. 2018): Reflecting the 

number of shortest paths between connected pairs of network nodes that 

pass through the underlying node. This type of centrality characterizes 
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how important a node is in connecting other pairs of nodes. In project 

management, such centrality can be used to capture the importance of a 

contractor in terms of controlling the flow of work on-site through task 

continuity (i.e., tasks received from or handed-over to other contractors). 

▪ Closeness centrality (CC) (Park et al. 2010; Kao et al. 2017; Xue et al. 

2018; Ezzeldin and El-Dakhakhni 2019): Denoting the number of links on 

the shortest paths from the underlying node to all other nodes in the 

network. This type of centrality essentially portrays how relatively close 

the node is to the rest of other nodes. In project management, this 

centrality can be used to represent the importance of contractors in terms 

of the magnitude of direct and indirect involvements they may have with 

other contractors’ work scopes. 

▪ Eigenvector centrality (EC) (Estrada and Knight 2015; Gong et al. 2017; 

Kao et al. 2017): Quantifying the extent to which a node is connected to 

other influential (high centrality) nodes. This type of centrality is used to 

investigate how connected the node is to very- versus not very important 

nodes. In project management, this centrality can be used if there is prior 

management knowledge that highly central contractors are only 

exclusively participating with a few other contractors. 
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Unlike those that are node-specific, network-level measures are related to 

the overall network structure, and the most relevant of these measures to 

infrastructure project management include: 

▪ Network density (ND) (Park et al. 2010; Wehbe et al. 2016; Kereri and 

Harper 2019): Indicating the ratio of the actual number of links in the 

network to their maximum possible number. This measure, which reflects 

how well connected and cohesive a network is, has values ranging from 

zero to one, where zero denotes the network nodes are completely 

unconnected and one indicates full connectivity. In infrastructure projects, 

this measure can be used to assess the level of involvement among unique 

contractors’ work scopes. 

▪ Average weighted degree centrality (AWDC) (Estrada and Knight 2015; 

Wehbe et al. 2016; Lu et al. 2020): Normalizing the summation of the 

weighted degree centrality values for all network nodes by their number, 

reflecting how fast disruptions can cascade throughout a network. In 

project management, this measure can be employed to gain a deeper 

understanding of contractors’ site-interdependence, thus reflecting the 

network-level magnitude of specific task interdependencies and thus their 

vulnerability to CPD. 
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5.4 FRAMEWORK ARCHITECTURE 

Figure 5.3 shows the tools comprising the proposed resilience-driven 

infrastructure project management framework for adaptive contractor re-

coordination against CPD. The framework encompasses the following five tools: 

1) Interdependence quantification and snapshot network modelling; 2) Dynamic 

network modelling; 3) Dynamic network centrality analyses; 4) Network measure 

versus project key performance indicator (KPI) correlation analyses; and 5) 

Adaptive (self-organized) network development. 

5.4.1 Project Schedule Pre-processing 

The data source on which the framework tools are applied is the project 

schedule which typically encapsulates abstract yet valuable interdependence data. 

In this respect, the schedule first needs to undergo some key data pre-processing 

steps to prepare the interdependence data to be incorporated in the network-based 

tools. As stated earlier, contractor interdependencies within the current focus are 

understood as contractor collaborations on tasks within the same spatiotemporal 

setting. As such, one network layout (snapshot) is produced for each group of 

contractors working together within a specific project site (spatial setting) and for 

a definite time-window (temporal setting). Therefore, tasks in the project schedule 

need to be segmented by site location and time-window and further sorted by each 

contractor assignment. 
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The time-window represents a time interval during which contractor 

interdependencies are aggregated into one snapshot. The size of the time-window 

by which the project lifecycle is segmented can be selected as, for instance, a 

yearly quarter, month, week, or any other time interval based on the project 

duration and purpose of the analysis. Although reducing the size of the time-

window increases temporal resolution and thus yields more network snapshots, 

managerial judgment is needed to ensure that each snapshot aggregates all 

contractor interdependencies during the selected time-window. For example, a 

too-small time-window can yield a snapshot with no network structure and hence 

little meaningful project insights. For demonstration, the current study employs 

monthly time-windows throughout the project lifecycle as will be shown later. 

The project schedule segmentation can be carried out using two types of 

tools. First, commercial CPM tools (e.g., Microsoft Project or Oracle Primavera 

P6) allow for grouping and sorting project tasks based on different (and more than 

one) criteria/attributes. Although the default grouping is based on the work 

package (e.g., Figure 5.2a), tasks can also be grouped by site location (grouping 

level 1) and then by contractor responsibility (e.g., Figure 5.2a) (grouping level 

2). Subsequently, these tools’ filtering capabilities can be utilized to segment the 

full schedule by each site and by each time-window (e.g., month) through the 

filter controls. Finally, the different schedule segments can be exported in a 

tabular format. Alternatively, standard numerical computing or spreadsheet tools 
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can be used to achieve the same schedule segmentation procedure on the full 

schedule in a tabular format, as demonstrated in Figure 5.4. 

For demonstration, Figure 5.4 shows the Gantt chart from Figure 5.2a in a 

tabular format, where each task is attributed by its work package, site location 

where it is performed, start date (e.g., D04 means the fourth day since the project 

start), duration (e.g., in days), end date and assigned contractor (e.g., C1 to C5). 

The procedure can be described in five stages. In Stage 1, the tasks in the table are 

sorted by the site to create a clear distinction between the tasks performed on the 

two project sites, A and B, selected in this example. In Stage 2, tasks in each site 

are segmented in separate tables. For Stage 3, tasks in each table are sorted by 

their end date to distinguish between different time-windows (e.g., in months). In 

this example, tasks ending in the second month of the project are considered 

falling within the second time-window. In Stage 4, tasks in each time-window are 

segmented in separate tables. Finally, in Stage 5, tasks in each table are sorted by 

contractor to group contractor-specific tasks together. Ultimately, each of the four 

segmented tables at the end of the procedure is used to generate four 

corresponding network layouts—two monthly snapshots per site. 
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5.4.2 Tool (1): Interdependence Quantification and Snapshot 

Network Modelling 

As a first step in the framework, different contractor snapshot network 

layouts are generated for each site location and every time-window (i.e., for each 

segment), as shown in Figure 5.5. For demonstration, it is assumed that the 

contractor-sorted schedule in Figure 5.5c pertains to the same site and month (i.e., 

is one segment). Within each segment, the magnitude of interdependence between 

any pair of contractors is numerically quantified through the time in days 

(longevity) of these contractors working simultaneously with interrelated tasks 

within the same site location. These numerical quantifications are then used to 

develop an adjacency matrix (Newman et al. 2006), as shown in Figure 5.5d, 

which describes the magnitude of task interdependence (i.e., the weight of links) 

between each contractor (i.e., node) pairs in the network. Such an adjacency 

matrix can be derived from the schedule segment in Figure 5.5c (or in tabular 

format) using standard numerical computing or spreadsheet tools based on the 

start and end dates of contractor-specific tasks. For example, consider the first 

row of the matrix in Figure 5.5d. Contractor C1 worked together interdependently 

with C2 for 3 days, with C3 for 14 days, with C4 for 14 days, and with C5 for 7 

days, and so on for other contractor pairs. The matrix is also symmetrical with 

zeroes in the diagonal since contractors working with themselves is meaningless.  

  



(d) Adjacency Matrix(e) Visual Network Layout

C1 C2 C3 C4 C5

C1 0 3 14 14 7

C2 3 0 11 4 4

C3 14 11 0 8 7

C4 14 4 8 0 6

C5 7 4 7 6 0

Figure 5.5: Tool (1): Interdependence quantification and snapshot network modelling
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This adjacency matrix can be further transformed into a visual monthly 

contractor network layout, as shown in Figure 5.5e. Different software packages 

are available for network modelling, visualization, and subsequent analysis (e.g., 

Ucinet, Pajek, Net Draw, and Gephi). Within these tools, Gephi was used in the 

current study as it is more user friendly, is an open-source software program, 

possess powerful visualization capabilities, supports the customization of network 

layout features of color and size for elegant network representation, and provides 

metrics including those introduced earlier, (e.g., WDC, BC, ND, etc.) for further 

analyses (Apostolato 2013; Wehbe et al. 2016; Faysal and Arifuzzaman 2018). By 

importing the adjacency matrix in .xlsx format into Gephi version 0.9.2, a 

corresponding network layout is generated such as the one showed in Figure 5.5e. 

This layout contains 55 nodes and is only presented for demonstration purposes as 

it would typically be the result of a 55×55 adjacency matrix (compared to that in 

Figure 5.5d) and a much larger schedule (compared to that in Figure 5.5c). For 

context, one node in the network layout would essentially represent one of the 

five contractors (C1 to C5) in the adjacency matrix, as shown in the magnified 

lens view in Figure 5.5f. Different visual network layout features, as node size 

and color, can be customized to represent different measures to maximize the 

utility of the network layout. For example, in Fig 5e, node sizes represent each 

contractor’s scope of work that is measured as the number of working days within 

the considered monthly segment. Specifically, contractors with larger scopes are 

expressed by larger node sizes and are placed in the more central areas of the 
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network layout, whereas contractors with smaller scopes are expressed by smaller 

node sizes and are placed in the more peripheral areas of the network layout. 

Node colors represent the different contractor disciplines/professions, where for 

demonstration, the legend in Figure 5.5e comprises of three disciplines, namely 

mechanical, electrical, and fire protection. In the network layout, contractors of 

the same discipline are marked with the same color as per the legend and are 

clustered together. In addition to this, node color shades represent varying 

contractor influences toward the project work. From the multiple types of 

centrality measures introduced earlier, WDC is selected for further demonstration 

hereafter. The WDC of node i can be calculated from the adjacency matrix as 

(Park et al. 2010; Xue et al. 2018; Ezzeldin and El-Dakhakhni 2019): 

𝑊𝐷𝐶𝑖 = ∑ 𝑤𝑖𝑗

𝑛

𝑗=1

 (5.1) 

where wij is the weight/magnitude of interdependence between contractor i 

and all other contractors, and n is the number of contractors (nodes) in the 

network. Contractors with higher WDC values are expressed by darker node color 

shades, and vice versa. Those nodes with high WDC values indicate contractors 

with tasks that are highly correlated and interdependent with the tasks of other 

contractors. As such, the contractors with high WDC present bottlenecks on the 

site, thus possessing high potentials of triggering or amplifying CPD if they 

underperform their tasks. Beyond the scope of work and WDC used above for 
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demonstration purposes, nodes sizes, colors, and color shades can be customized 

interchangeably to portray rankings/scales of other measures, such as BC, CC, 

and EC, as necessary for different application purposes. 

5.4.3 Tool (2): Dynamic Network Modelling 

For every spatial and temporal change in the project, there transpires a 

different arrangement of tasks assigned to either the same or a different group of 

collaborating contractors and thus a different adjacency matrix and corresponding 

(snapshot) network layout. Therefore, as shown in Figure 5.6, dynamic networks 

are generated from the snapshot network layouts developed from Tool (1), with 

one network for each time-window per site. The monthly time-windows selected 

for the current demonstration are represented as month T1 to Tn hereafter. As can 

be inferred from the demonstration example shown in Figure 5.6, the group of 

contractors working during the first month, T1, are not the same group working 

during the final month, Tn. As such, for a project with a specific site location and 

work scopes that are scheduled for three years, for example, a dynamic network 

of 36 monthly layouts can be generated (i.e., Tn = T36). If quarterly (every three 

months) time-windows are selected instead, a corresponding dynamic network of 

12 quarter layouts can be generated (i.e., Tn = T12). These dynamic networks 

represent the different groups of contractors and their varying interdependencies 

across this site location and over the project lifecycle. 

  



Monthly Schedules

Snapshot Contractor Network

. . .

Figure 5.6: Tool (2): Dynamic network modelling

Different months,

contractor groups, 

& network layouts
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5.4.4 Tool (3): Dynamic Network Centrality Analyses 

Dynamic centrality analyses identify the most influential contractors on 

each site location and during different months of the project, which subsequently 

facilitates the visualization of how these influences vary with time over the entire 

project lifecycle. For any network layout, Gephi facilitates exporting a list of the 

computed node centrality values in .xlsx format (e.g., WDC, BC, CC, and EC), 

which can be carried out for every monthly snapshot. For example, Figure 5.7a 

demonstrates a list of centralities for three contractors in the network (one from 

each discipline listed earlier) during every month of the project. This in turn 

enables aggregating these values into one master list and visualizing these 

contractors’ varying influences throughout the entire project lifecycle, as shown 

in Figure 5.7b. For instance, it can be observed from the figure that, during the 

first month of the project, the mechanical contractor is the most influential on the 

site, followed by the electrical and fire protection contractors, respectively. The 

same figure also reveals that these three contractors possess higher WDC values, 

and are thus more influential, during the initial stages of the project compared to 

the later stages. The greater the influence of a contractor during a specific month, 

the greater their potential to cause disruptions to other contractors’ performances 

due to their highly interdependent tasks with such contractors. 
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Figure 5.7: Tool (3): Dynamic network centrality analyses
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5.4.5 Tool (4): Network Measure-Project KPI Correlation 

Analyses  

The proposed resilience-driven project management approach focuses on 

ensuring rapid recovery from and adaption to multiple CPD. As such, different 

metrics against which to measure network resilience are needed. In this respect, 

the fourth tool involves tracking the project’s performance at the end of every 

month (i.e., for every network snapshot) and evaluating the different 

corresponding project key performance indicators (KPIs). The current study 

considers six KPIs (Leon et al. 2017; Castillo et al. 2018) which are: 1) Schedule 

deviation (SD); 2) Cost deviation (CD); 3) Quality index (QI); 4) Accident 

frequency (AF); 5) Productivity rate (PR); and 6) Planning effectiveness (PE). 

Particularly, lower values of SD, CD, QI, and AF, and higher values of PR and PE 

are desirable and indicate satisfactory project performance. 

▪ Schedule deviation (SD) = 

(Scheduled advance − Actual advance)/Scheduled advance 

▪ Cost deviation (CD) = (Actual cost − Budgeted cost)/Budgeted cost 

▪ Quality index (QI) = Number of rework orders/Work hours 

▪ Accident frequency (AF) = Number of recordable accidents/Work hours 

▪ Productivity rate (PR) = Budgeted labor cost/Actual labor cost 
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▪ Planning effectiveness (PE) = Completed tasks/Scheduled tasks 

These tracked KPIs are then correlated with their respective network 

layouts to assess the effectiveness of scheduling specific tasks to different groups 

of contractors working within the same space and during the same time. This in 

turn is performed by plotting the six KPI values, for every network snapshot, 

against the WDC values for the different contractors, as presented in Figure 5.8. 

These plots can be developed using standard computing tools, as the R 

programming language and RStudio IDE (R Core Team 2013) which are used 

herein. For example, Figure 5.8 can be reproduced using the pairs.panels function 

within the psych package (Revelle 2020) or using the ggpairs function from the 

GGally package (Schloerke et al. 2021). From these plots, correlation scores 

(ranging from +1 to -1) are provided to describe the strength and direction of the 

relationship of the plotted values. These correlation scores uncover which task 

arrangements, high-influence contractors and contractor collaborations contribute 

to the satisfactory or poor project performance based on different indicators. For 

instance, it can be observed from Figure 5.8 that the greater the mechanical 

contractor’s influence on the project site (i.e., the more involved and the greater 

control this contractor has over the monthly tasks), the better the overall project 

performance. This observation is exemplified through this contractor’s WDC 

values’ strong relationships with decreasing values of SD, CD, QI and AF, and 

increasing values of PR and PE. 



Figure 5.8: Tool (4): Network measure-project KPI correlation analyses 
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5.4.6 Tool (5): Adaptive (self-organized) Network Development 

The fifth and final tool is designed as a twofold process. The first process 

involves proactively (at early project stages) foreseeing when (e.g., in which 

month, Td) CPD may occur and which KPI(s) may be affected. This prediction 

can be reached through utilizing each month’s contractors’ WDC values [obtained 

from Tool (3)] to analytically extrapolate each month’s expected KPI values from 

these contractors’ corresponding correlation plots [generated by Tool (4)]. From 

the extrapolated KPI values (e.g., SD, CD, QI, etc.), a disrupted month, Td, can be 

detected and may also be expected to experience unsatisfactory performance in 

one or more KPI(s), thus signaling the type of managerial intervention needed in 

response to such a disruptive event(s).  

The second process involves analytically evaluating all Td’s possible 

decision alternatives and returning the optimal response plan (see Figure 5.9). 

Specifically, metaheuristic schedule optimization techniques may be employed to: 

1) understand the internal structure of Td’s original schedule to define the different 

tasks’ time intervals and float durations, contractors’ and resources’ inactive slack 

durations, and underlying sets of logical-, resource-, technological- and 

organizational constraints; 2) iteratively search all possible solutions of task and 

contractor rearrangements bound by the above-learned durations and constraints; 

3) convert each solution into a corresponding network layout and apply WDC 

analysis to each network; 4) assess each solution’s extrapolated KPIs; and 



(b) Adapted/re-arranged network/schedule at Td*

Figure 5.9: Tool (5): Adaptive (self-organized) network development
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5) ultimately return the optimal solution (self-organized network) that renders the 

most favorable KPI values. The metaheuristic search will thus equip project 

managers with an objective and evidence-supported means for rapidly detecting 

the optimal response plan to face possible CPD. The response plan yields an 

adapted (self-organized) contractor network layout, Td*, which can be used as a 

strategic countermeasure to replace the disrupted Td network to rapidly restore a 

desired infrastructure project performance state. For example, the network layout 

pertaining to Td* in Figure 5.9b can have different (adapted) node layouts 

compared to that of the layout of Td in Figure 5.9a.  This adapted layout reflects 

the re-arranged tasks in Td* schedule in Fig 5.9b. By moving tasks within the 

boundaries of their floats and constraints, critical vulnerable work 

interdependencies between pairs of contractors can be avoided – 

interdependencies known to induce CPD in the past. It is important to observe 

how WDC values for contractors would decrease in the network layout in Figure 

5.9b compared to that in Figure 5.9a, reflected by lighter color scales. As such, by 

decreasing the WDC of specific nodes in the network layout, interdependence-

induced vulnerabilities can be avoided between contractors decreasing the chance 

of possible CPD. Finally, as shown in Figure 5.9b, this optimized/adapted 

network layout can be further reinstated into a new arrangement of (re-

coordinated) scheduled tasks, which may facilitate contractor re-coordination 

insights to project managers in preparedness against the threats of any further 

CPD extending to subsequent months. This can be observed through the re-
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arrangement of tasks in Figure 5.9b—providing project managers with new 

proposed schedules. 

5.5 FRAMEWORK DEMONSTRATION APPLICATION: A 

HYDROELECTRIC POWER GENERATION INFRASTRUCTURE 

OVERHAUL PROJECT 

The developed framework was introduced to one of the largest power 

generation corporations in North America, that owns and operates over a hundred 

power generation stations of nuclear, hydroelectric, wind, gas, and biomass 

sources. Every year, the corporation generates hundreds of TWh of power and 

billions of dollars in revenue and contributes billions of dollars into the 

continent’s GDP. To demonstrate its utility, the framework was applied in an 

industry setting to a large-scale overhaul project on one of the corporation’s 

hydroelectric power generation stations. 

5.5.1 Project Description 

The studied station houses six identical hydroelectric power generation 

units which are part of a synchronized outage cycle designed to ensure continued 

safe and reliable long-term operations of the station and compliance with 

regulatory requirements. This outage cycle is synchronized so that five units 

always remain operational and only one undergoes a planned outage and thus 
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overhaul, with the process repeated sequentially. A typical unit overhaul was 

studied herein and included refurbishment and rehabilitation work packages that 

aimed at restoring the unit’s original performance, extending its lifespan, 

preventing its components’ breakdowns, and reducing unforeseen forced outages 

and associated costs. Each unit overhaul project spans across a 13-month lifecycle 

period and consists of four main work packages as scheduled in Figure 5.10: 

components disassembly, pre-assembly works, components off-site 

refurbishment and components assembly and commissioning. The project’s 

main working location is the station site, where the units and their components are 

situated; however, work also spreads across several other locations remote to this 

site. A total of 14 contractors collaborated within the project and their 

anonymized IDs, contract types, technical disciplines, and working locations are 

presented in Table 5.1. Specifically, nine of these contractors (M1 to M4, E1 to 

E3 and X1 to X2) were in-house contractors, whereas five contractors (C1 to C5) 

were procured as external vendors and specialty contractors. As shown in the 

table, contractors M1 to M4, E1 to E3 and X1 to X2 denote mechanical, electrical 

and machining contractors, respectively, where contractors within the same 

discipline offer different skill sets, capabilities and roles, as necessitated by 

project requirements. These contractors were all positioned on the station site 

except for X2 who worked from an off-site location (machining yard). Also 

visible from the table, contractors C1 to C4, specialized in the refurbishment of 

power system components, were situated at their own remote locations for the 
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Figure 5.10: Hydroelectric power generation station typical unit overhaul project schedule

Lifecycle  stage (months)
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off-site refurbishment work package and the subsequent shipping of components 

back to the station site. In this respect, the external crane handling specialty 

contractor, C5, was positioned on the station site to employ the knowledge sets of 

these external contractors in the assembly and installation of the received 

components.  

Table 5.1: Contractors collaborating within the hydroelectric power 

generation station overhaul project 

Contractor 

ID 
Type Discipline Location 

M1 

In-house contactor Mechanical On station site 
M2 

M3 

M4 

E1 

In-house contractor Electrical On station site E2 

E3 

X1 
In-house contractor Machining 

On station site 

X2 Remote to station site 

C1 

External vendor 

Power system 

components 

refurbishment 

Remote to station site 
C2 

C3 

C4 

C5 External specialty contractor Crane operator On station site 
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5.5.2 Project Strategic Importance 

Notwithstanding the importance of the described overhaul projects in 

maintaining the station’s long-term operations safety and performance, it is 

important to note that variations to the frequencies, timings and durations of 

planned outages under the station’s outage cycle result in temporal variability in 

the company’s financial results, including an impact on revenue and operations, 

maintenance and administrative expenses. In this context, a single overhaul is not 

only faced with intra-project interdependence but also inter-project 

interdependence. As such, the importance of a well-managed overhaul project that 

successfully coordinates between the complex work packages and ensures 

effective collaborations of the contractors to achieve the desired performance 

targets (e.g., duration and budget) is critical. Because of this criticality, and 

because of the repetitive/identical nature of the overhaul projects across the units 

which rendered the managerial insights gained from one project directly 

transferable to the others, this type of project was considered suitable to 

demonstrate the application and utility of the developed framework. 

5.5.3 Project Network Analysis 

Available project data included project schedules and contractors’ 

assignments to tasks, whereas intermittently tracked KPIs were unavailable due to 

data restrictions imposed by the corporation. As such, the current demonstration 

focuses on applying Tools (1) to (3) of the framework, while applying the 
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remaining tools was beyond the scope of the current demonstration. Snapshot 

network modelling was primarily applied whilst considering the entire project 

lifecycle of 13 months as a single segment, as shown in Figure 5.11. This network 

contains all 14 participating contractors and presents an all-encompassing 

overview of their collaborations and relationships formed throughout the entire 

project lifecycle. However, given the 13-month duration of the project lifecycle, 

monthly segments were found to be suitable for implementing the subsequent 

dynamic (monthly) network modelling, as shown in Figures 5.12 (Months 1 to 7) 

and 5.13 (Months 8 to 13). Since links in the current study represent 

interdependent tasks bound by both spatial and temporal settings, as defined 

earlier, all networks can be divided into two visibly distinct areas (e.g., see Figure 

5.11), namely: 1) the core of the network, which exhibits only the contractors 

working on the station site and their interdependencies (links); and 2) the 

periphery of the network, where the remote contractors’ nodes are placed with no 

links connected. When visualizing the networks, the node sizes, link weights and 

node colors were each set to portray different project insights to maximize the 

practical use of each network plot. Specifically, node sizes represent each 

contractor’s scope of work measured as the number of working days within the 

project or the considered month. Link weights represent the magnitude of direct 

task interdependence that exists locally between two contractors. Node colors 

represent the magnitude of overall task interdependencies that exist globally 

between any one contractor and all others sharing links.  



Figure 5.11: Snapshot network modelling representing contractors’ scope of work and interdependent tasks for entire 

project lifecycle (13 months)
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Month 5 Month 6 Month 7

Figure 5.12: Dynamic (monthly) network modelling representing contractors’ scope of work and interdependent tasks over 

project lifecycle stages months 1-7
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Figure 5.13: Dynamic (monthly) network modelling representing contractors’ scope of work and interdependent tasks over 

project lifecycle stages months 8-13
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While network modelling enables the visual inspection of the overall 

network layouts and provides initial findings of existing 

interdependencies/interactions, network measure analyses offer a deeper 

interpretation. As summarized in Table 5.2, network-level measures, including the 

number of nodes and links, network density (ND) and average weighted degree 

centrality (AWDC) were computed to reflect the changes in the network layouts 

over the project lifecycle monthly stages. ND and AWDC can be computed as per 

Equations (5.2) and (5.3), respectively (Park et al. 2010; Estrada and Knight 2015; 

Xue et al. 2018). 

𝑁𝐷 = 𝑙 (𝑛 × (𝑛 − 1) 2⁄ )⁄  (5.2) 

𝐴𝑊𝐷𝐶 =
∑ ∑ 𝑤𝑖𝑗

𝑛
𝑗=1

𝑛
𝑖=1

𝑛
 

(5.3) 

where l is the number of network links, n is the number of network nodes, 

and wij is the weight/magnitude of interdependence between contractor i and j. 

Furthermore, two sets of dynamic WDC analyses were implemented. The first 

simulates the scope of work over project life cycle stages and is shown through 

Figures 5.14 and 5.15. Figure 5.14 is exclusive to the contractors working on the 

station site location and Figure 5.15 is specific to those working remotely. The 

second dynamic WDC analysis simulates interdependent tasks over lifecycle 

stages and is shown in Figure 5.16 to include only contractors working on-site. 
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Table 5.2: Network-level measures over lifecycle stages of the hydroelectric power generation station overhaul 

project 

 

Lifecycle stage (months) Entire 

lifecycle 1 2 3 4 5 6 7 8 9 10 11 12 13 

No. nodes representing 

on-site contractors 

7 7 7 7 7 7 7 8 9 9 8 8 8 9 

No. nodes representing 

remote contractors 

0 0 2 4 4 3 3 2 3 1 0 0 0 5 

No. links 21 21 21 21 21 21 21 28 36 36 28 28 28 36 

Network Density (ND) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Average weighted 

degree centrality 

(AWDC) 

159.40 172.84 351.51 353.69 405.70 420.09 
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Figure 5.14: Dynamic WDC analysis simulating scope of work over project lifecycle stages for contractors working 

on project site location
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Figure 5.15: Dynamic WDC analysis simulating scope of work over project lifecycle stages for contractors working 

remote to project site location
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In Figures 5.14 to 5.16, the WDCs, provided for each month and every contractor, 

are connected using smoothed lines to only facilitate visual interpretation of the 

WDCs dynamics over time rather than to imply continuity per se. 

5.6 DISCUSSION OF ANALYSIS RESULTS 

5.6.1 Project Overview 

From Figure 5.11, it can be observed that the overall project was 

centralized around the efforts of the four mechanical contractors M1 to M4 and, to 

a slightly lesser extent, the three electrical contractors E1 to E3. This finding is 

not surprising given the nature of such an overhaul project. In addition, the 

external vendor C1 was responsible for the largest portion of the scope within the 

off-site refurbishment works. By looking at the project through a network-level 

lens, such conclusions can help project managers develop a clearer overview as to 

the critical players with roles that are vital to the overall project’s success. 

5.6.2 Month-by-month Analysis 

Next, a closer inspection of the project’s monthly network layouts, and 

thus contractor collaboration patterns, can be inferred through investigating Table 

5.2 and Figures 5.12 to 5.16. Focusing first on the network cores, Table 5.2 

indicates that the number of collaborating on-site contractors increased from 

seven in Months 1-7 to nine in Months 9 and 10, and subsequently remained 
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constant at eight thereafter. It can also be observed from Table 5.2 and from 

Figures 5.12 and 5.13 that each monthly network is fully connected (i.e., ND = 1, 

as the total possible number of links exists between the collaborating contractors 

in the network core), which conveys that all on-site contractors remained 

interactive and collaborated on at least one task every month. Despite all months 

having the same ND values, a closer inspection of Table 5.2 shows varying 

AWDC values which indicates that the contractor/task interdependencies varied 

month-to-month. These AWDC values gradually increased from 159.40 in Month 

1 to 420.09 in Month 6, then fluctuated thereafter before ending with a peak value 

of 468.41 in the final month, Month 13. Specific months experiencing high 

AWDC values (i.e., those exceeding the entire lifecycle AWDC threshold of 

371.69) were Month 5 (405.70), Month 6 (420.09), Month 7 (411.48), Month 9 

(396.13), and Month 13 (468.41). This finding conveys that such months require 

more focused management efforts to handle such high magnitudes of overall 

contractors/tasks interdependence and thus vulnerability to CPD—an insight that 

would not have otherwise been obvious through typical industry standard tools 

(e.g., through Figure 5.10). Another observation related to contractors/tasks 

interdependence concluded from Figures 5.12 and 5.13 was that the four 

mechanical contractors M1 to M4 and three electrical contractors E1 to E3 

continuously occupied relatively central positions in the networks throughout the 

project lifecycle (due to the considered project’s specific nature as alluded to 

earlier), while contractor X1 seemed to have more relatively moderate roles. 
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Moreover, a consistent finding was that contractors M1 to M4 and contractors E1 

to E3 had almost identical work scopes and tasks assignments reflected through 

their essentially identical WDC values over time, as demonstrated from Figures 

5.14 and 5.16. This finding emphasizes the critical need for effective 

communication and collaboration means to be facilitated within each of these 

groups. Turning to the network peripheries, Table 5.2 and Figure 5.15 show that 

there was never a specific month where all five remote contractors participated 

together, but their roles rather alternated over time. More specifically, remote 

contractors were engaged until halfway through Month 10 before gradually 

pulling out, as can be observed from Table 5.2 and Figure 5.15. 

5.6.3 Analysis by Work Package 

Subsequently, a deeper examination of the project work packages that are 

shown in Figure 5.10 is discussed. Throughout the components disassembly in 

Months 1 and 2, there were high participations (i.e., the scope of work) and task 

interdependencies between M1 to M4 and only modest roles for E1 to E3 (see 

Figures 5.12a-b, 5.14 and 5.16). This situation is attributed to the fact that this 

work package mainly involved tasks of mechanical nature such as the uncoupling, 

removing and disassembly of several components including the rotor, generator 

shaft, turbine shaft, carbon shaft seal, control head, runner, diffuser, stub shaft, 

load cell (following its oil draining), headcover and exciter. Concerning the pre-

assembly works between Months 3 and 8, there were more balanced scope 
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involvements between both contractors M1 to M4 and contractors E1 to E3 (see 

Figures 5.12 c-g, 5.13a, 5.14 and 5.16) as the collective expertise of both 

disciplines was required for: 1) preparation of the erection bay that would be used 

for the shipping of certain components and the in-house refurbishment and 

assembly of other components; 2) in-house refurbishment of the rotor (including 

cleaning, ice blasting, cracks repairing and fan repairing), generator shaft, turbine 

shaft, carbon shaft seal, and control head; and 3) in-situ work as corn blasting the 

stator, cleaning the control head bearings and ventilating the exciter enclosure.  

Regarding the components off-site refurbishment spanning from Months 

3 to 10, contractor C1 was the critical remote contractor in charge of the largest 

portion of the off-site scope between Months 3 and 9 (see Figures 5.12c-g, 5.13a-

b and 5.15) including the refurbishment of the runner, diffuser and stub shaft. 

Contractor C2 was involved from Months 3 to 6 (see Figures 5.12c-f and 5.15) 

and assumed responsibility for the refurbishment of the load cell. Contractor C3 

was involved in Months 4 and 5 (see Figures 5.12d-e and 5.15) and undertook the 

refurbishment of the headcover. Contractor C4 was involved from Months 7 to 10 

(see Figures 5.12g, 5.13a-c and 5.15) and performed the refurbishment of the 

exciter. As for the components assembly and commissioning from Months 8 to 

13, contractor C5 interestingly emerged as a critical player (see Figures 5.13a-f, 

5.14 and 5.16). Through crane operating and handling efforts, contractor C5 

contributed heavily to other contractors (M1 to M4, E1 to E3 and X1) in the 
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assembly, installation, alignment, coupling and securing/locking of all the 

previously mentioned disassembled components. Month 9 is a prime example of 

contractor C5’s criticality (see Figure 5.13b), where this contractor was 

responsible for the most scope of work assigned to any contractor in any one 

month evident from their WDC value of 841.75 (see Figure 5.14). Contractor C5 

was also the most heavily interdependent-working contractor within the month 

apparent from its WDC value of 510.99 (see Figure 5.16). The significant 

contributions of the crane handing contractor to the tasks of the mechanical and 

electrical contractors made it crucial to the continuity of the works and presented 

another unexpected insight that typically would not have been discovered using 

industry standard tools (e.g., through Figure 5.10).  

Finally, although Month 13 had the same number of on-site contractors as 

the two preceding months (see Table 5.2), this last month had the most overall 

interdependence evident from its AWDC value (see Table 5.2 and Figure 5.16). 

By observing the month’s network layout in Figure 5.13f, visible changes are seen 

compared to the layouts of the preceding months. Specifically, all contractors 

worked closely and interdependently to carry out the testing and commissioning 

of the installed components and systems according to the regulatory 

requirements—thereby proving a critical month for the successful close out of the 

project. 
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5.6.4 Network Layout Expansion 

A final valuable feature is the network layout expansion which facilitates a 

more granular examination of any monthly network. Project managers can select a 

month to examine more closely and the expansion tool would provide a more 

holistic overview of that month. To highlight the tool’s added features, the 

network of Month 8 in Figure 5.13a is expanded to yield the network in Figure 

5.17 which provides a more detailed overview of contractors’ scope of work and 

interdependent tasks in that month. Within this expanded layout, nodes contain 

the number of working days within the month (e.g., contractor C1 worked for 26 

days on three levels of parallel activities), whereas links between any pair of 

contractors show the number of days they collaborated on interdependent tasks. 

5.7 MANAGERIAL INSIGHTS 

The developed resilient-driven management framework described above 

and subsequently applied within a practical setting, yields several key managerial 

insights that can enhance infrastructure project management and control from 

commencement to completion, serving both contractors, project managers, and 

other stakeholders. These insights are summarized in the following three 

subsections according to the project temporal stages. 

  



Figure 5.17: Network layout expansion for granular monthly overview of contractors’ scope of work and interdependent tasks in 

month 8 of the project lifecycle
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5.7.1 Preliminary Project Planning 

From the preliminary project stage, where strategic planning is key, the 

framework can equip project managers with a more in-depth assessment of 

project requirements, potential risks and difficult points in order to reach a clearer 

understanding of the management approach necessary to ensure project success 

through resilience to disruptions. For instance, project managers can secure 

stakeholder satisfaction and realize further savings by originally setting more 

realistic project durations and budgets from the preliminary stage, and continually 

monitoring adherence to these objectives during project execution. Moreover, the 

framework’s capabilities in predicting the performance of future lifecycle stages 

through KPIs can guide resilience-driven schedule improvements. Specifically, if 

unsatisfactory performance under the current schedules is predicted, project 

managers are equipped with tools to analytically evaluate decision alternatives so 

that they can revise schedules until a satisfactory project performance level is 

attained. In addition, project managers can, through network centrality analyses, 

identify critical contractors with the highest CPD influences within the entire 

contractor network over different project lifecycle stages. Project managers can 

place more emphasis on these contractors from the onset through financial 

incentives/penalties, cautious resource allocation and timely inspection of finished 

works in a proactive effort towards the efficient functioning of the entire network. 
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5.7.2 During-Project Execution 

During project execution, where project managers periodically review and 

adjust performance objectives, the framework can facilitate a more 

comprehensive project scenario planning to ensure that the updated objectives are 

compatible with the project’s dynamic surrounding environment. However, when 

unforeseen events/disruptions that warrant sudden changes to the project 

schedules arise during execution, the need for automated adaptation capabilities 

becomes even more critical to rapidly adjust previous schedules to recover from 

such new unexpected situations. In such events, the framework’s adaptive 

capabilities may enable rapid decision-making through generating self-organized 

networks and subsequently resilience-driven re-coordinated schedules. Such new 

networks and schedules can facilitate the project’s rapid recovery and can prevent 

further CPDs from extending to subsequent months, thus ensuring project 

resilience throughout its lifecycle stages. With the aid of the network layout 

models and analyses, contractors can also visually and analytically communicate 

the interdependent nature of other contractors with their crews for improved 

awareness of potential risks within their own immediate networks and thus 

workflows and performances over different lifecycle stages. Moreover, and 

guided by the provided visualizations of interdependence between crews over the 

project lifecycle, contractors can more appropriately organize their crews’ 

workspace allocations, task assignments and task supervisions. 
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5.7.3 Project Closure 

Upon project completion, project managers can revisit the experienced 

events resolved through the framework tools and subsequently assess their 

original management approach capabilities pertaining to vulnerability 

identification, risk awareness and coping strategies. By understanding the 

shortcomings in their previous management approaches, managers can improve 

their approaches for future projects as necessary. Project managers can also 

benefit by incorporating insights, gained from previous projects, into future 

projects. As such, lessons learned can be reflected in better-informed future 

decision-making in terms of contractor and subcontractor procurement, task 

scheduling, and contractors’ collaborative assignments within specific site 

locations and lifecycle stages.  

5.8 CONCLUSIONS 

Public infrastructure systems are crucial components of modern urban 

communities as they play major roles in elevating a country’s socio-economic 

status. However, the inherent complexity and interdependence of infrastructure 

construction/renewal projects have left project performances hindered with 

multiple forms of disruptions (e.g., schedule delays and cost overruns) that result 

in long-term consequences such as claims, disputes, and stakeholder 



Ph.D. Thesis – A. Gondia McMaster University – Civil Engineering 

 

297 

 

dissatisfactions. The key challenge facing the management of infrastructure 

projects addressed in the current study pertains to the successful coordination of 

the interdependent tasks assigned to the diverse set of contractors on site and the 

subsequent need for rapid re-coordination between such contractors in response to 

sudden disruptive events. In this respect, abstract, yet valuable, interdependence 

data of tasks and contractors are typically embedded within project schedules but 

are left unexplored and unexploited due to the limited capacities of the current 

industry standard tools. 

In the current study, the power of complex dynamic network theoretic 

approaches is harnessed to develop a resilience-driven infrastructure project 

management framework (summarized in Figure 5.3). The developed framework 

empowers project managers with the ability to proactively mitigate the systemic 

risks of their projects’ underlying complex interdependence-induced 

vulnerabilities and rapidly recover from cascade performance disruptions. First, 

interdependencies between contractors are modelled through a series of snapshot 

network layouts employing the first tool. The second tool focuses on generating 

dynamic networks representing the variations of these interdependencies across 

various site locations and over different project lifecycle stages. Further dynamic 

analyses are performed using the third tool to identify critical contractors with the 

highest potentials for disrupting performance in different site locations and 

lifecycle stages. Subsequently, key project performance indicators, tracked 
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throughout intermittent lifecycle stages, are correlated with the dynamic network 

layouts using the fourth tool to proactively forecast the impact of collective 

vulnerabilities of contractors on the overall project performance. Finally, the fifth 

tool proposes optimization search techniques to generate adaptive (self-organized) 

network layouts and subsequently alternative coordination strategies between 

contractors. This tool will thus ultimately enhance the project’s resilience against 

further interdependence-induced cascade performance disruptions. 

To demonstrate the application and utility of the developed framework, a 

large-scale overhaul project of a hydroelectric power generation station was 

analyzed. The analysis revealed numerous insights that furthered both the 

comprehensive and granular understandings of the project with respect to key 

contractor influences, their interdependence-induced vulnerable collaborations, 

challenging durations and critical work packages undertakings—insights that 

would typically not have been revealed using available industry standard tools. 

These valuable insights can thus play crucial roles in steering multiple similar 

projects to success in terms of conforming to the planned outage cycle durations 

and budgets, achieving baseload generation supply and surplus, realizing 

significant revenues, maintaining safe and reliable long-term operations, and 

adhering to regulatory requirements. Although demonstrated herein on one 

application, the framework can tackle other more complex and diverse 

infrastructure projects. 
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Due to restrictions on KPI data imposed by the corporation, the current 

study does not extend the demonstrated application to cover the full proposed 

framework; however, the framework tools and procedures described herein can 

open new opportunities for future research studies to apply the framework in full 

given the availability of such data. Finally, it is important to reiterate that complex 

dynamic network theoretic- and other analytics-based approaches are not 

proposed to replace but rather to complement the expertise and sensible judgment 

of project managers and the capabilities of available analysis tools. Specifically, 

the enriched visual and analytical insights together with the proactive and rapid 

adaptation capabilities facilitated by the developed framework can empower the 

new paradigm of resilience-driven management of complex spatiotemporally 

dynamic projects. 
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Chapter 6:  

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

6.1 SUMMARY 

The research presented in this dissertation aims at developing data-driven 

strategies geared towards resilience management of infrastructure projects that 

can support managers and stakeholders with actionable decisions to mitigate the 

impacts of systemic risks at both the intra-KPI and inter-KPI levels of their 

projects. To achieve this aim, three main objectives were followed.  

The first objective involved conducting literature surveys to identify key 

intra-KPI factors such as schedule delay factors (Chapter 2) and injury precursors 

(Chapters 3 and 4), and further compiling objective data from previous projects 

that describe qualitative or quantitative assessments of such factors and their 

influence on schedule delays (Chapter 2) or workplace injuries (Chapters 3 and 4) 

KPIs. This objective also included data pre-processing to constitute structured 

datasets suited for applying predictive analytics (in the second objective), as well 

as better understanding such datasets through exploratory data analysis and 

visualization. 

The second objective involved developing ML-based predictive tools to 

predict potential KPI disruptions, based on input values from sets of intra-KPI 
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factors, such that proactive response/mitigation strategies and/or contingencies 

can be deployed in a timely manner. This objective also included the hyper-

parameter tuning and validation of the ML algorithms that drive such tools. In 

Chapter 2, project delay risk predictive tools were developed to facilitate 

predictions of project schedule delay extents described as percentages of original 

schedule duration. In Chapter 3, injury severity risk level predictive tools were 

developed to enable identifying high-risk worksites in projects. In Chapter 4, 

predictive spatiotemporal site safety risk models were developed to generate 

forecasts of risk leading indicators (e.g., injuries’ financial implications and body 

parts most likely affected) across different zones and over project lifecycles.  

The third objective involved developing CDNT-based tools, in Chapter 5, 

to model the interdependences between project on-site contractor crews through 

dynamic networks, and further correlating such network behaviors with sets of 

KPIs. This objective then included facilitating predictive and adaptive solutions 

against potential interdependence-induced cascade disruptions at the inter-KPI 

level in the form of alternative project schedules and thus task re-

arrangements/contractor re-coordination, such that, in the case of disruptive 

events, the most important set of KPIs can be rapidly restored. 
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6.2 CONCLUSIONS 

In lieu of re-listing conclusions of the individual chapters, which can be 

found in Chapters 2 through 5 of the dissertation, this section is reserved for a 

discussion on the over-arching conclusions that can be drawn from the current 

work: 

• The results of the exploratory analysis of intra-KPI factors, such as that 

presented and discussed in Chapter 2 for schedule delay factors and in Chapter 

3 for injury precursors, revealed a deepened understanding of the complex 

nature of construction projects evident from the interdependence that exists, 

not only between such factors among themselves but also between the factors 

and their respective KPIs. Although such interdependence was explored only 

for schedule delay and workplace injury KPIs within the current work, similar 

analyses can be extended to unlock a better understanding of the 

interdependencies existing within other KPIs in construction projects. 

• The aforementioned complexity and interdependence guided the selection of 

the analytics methods used in this work. ML was used in Chapters 2 through 4 

because it has gained significant recognition for its capability to model and 

predict outcomes of complex interdependent systems while avoiding 

prespecified modelling assumptions, unlike in statistical-based methods for 

instance, which was an important consideration when dealing with systems 
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whose behaviors are largely complex/interdependent and thus unknown a 

priori. The excellent predictive performance of the developed ML-based 

predictive tools within this dissertation should, in theory, endorse ML as a 

viable option for tackling systems related to other KPIs in construction 

projects. 

• The developed KPI predictive tools can be utilized to support both proactive 

and dynamic project management strategies through: 1) the ability to 

proactively assess project delays or worksite injuries from earlier project 

stages based on delay factors or injury precursors, respectively, identified 

from these stages; and 2) the continuous ability to adjust input values of such 

factors across different sites, as the project progresses, as scopes change or as 

more information becomes available, which can enable a better capture of the 

dynamic nature of construction work and reflect the current/real-time state of 

a project. 

• The tools developed for schedule delay and workplace injury KPI prediction 

included both black-box and glass-box models (DT-based herein). Although 

the black-box models outperformed their counterparts across both considered 

KPIs, the differences in performance evaluation measures were closely 

comparable. In fact, leveraging glass-box models can be particularly 

opportune when: a) the outcome variable (i.e., KPI classes) distribution is 

relatively balanced; b) the input variables (i.e., KPI factors) do not contain 
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significantly strong predictors; and c) the dataset is not high-dimensional. 

Where possible, leveraging glass-box models may be useful since such 

models can not only support quantitative predictions but also enable 

qualitative interpretations of the input-output interdependencies, which are 

typically hidden in conventional ML methods resulting in a reluctance on the 

part of project managers to adopt them. Based on our discussions with project 

and safety managers, hesitancy to embrace change, such as a new predictive 

tool, is typically related to questions such as: a) why does a model predict the 

way it does? b) what to make out of the model’s predictions? and c) how to 

trust a model’s predictions? They informed us that they would favor and 

consider adopting white-box-based tools, such as the DT-based models 

developed in this dissertation, since such models are rule-based and display 

how the decisions are taken at each step, which ultimately enables an 

understanding of what the model did or might have done. 

• The CDNT-based resilience-driven tools developed in Chapter 5 are aimed at 

empowering project managers with the ability to proactively mitigate the 

inter-KPI systemic risks of their projects and rapidly recover from cascade 

KPI disruptions. The tools enable a) visually modelling the dynamic 

interdependencies of on-site contractor crews across various site locations and 

over different project lifecycle stages through dynamic network layouts; b) 

analyzing such network layouts to identify critical contractors with the highest 
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potentials for disrupting performance in different site locations and lifecycle 

stages; c) correlating such network layouts with sets of KPIs to proactively 

forecast the impacts of the underlying interdependence-induced vulnerabilities 

associated with the current contractor arrangement on overall project 

performance measured through multiple KPIs; and d) generating adaptive 

(self-organized) network layouts and subsequently alternative 

schedules/coordination strategies between contractors that quickly restore the 

project to a set of desired KPIs. It should be noted that the tools developed and 

described in this chapter can also be applied to other complex and diverse 

project types that are not limited to only construction or overhaul projects. 

• In retrospect, the tools developed in this work support the two dimensions of a 

resilience-driven management project approach. The first dimension involves 

predicting potential KPI disruptions based on real-time and dynamic project 

conditions, which is thus supported by the schedule delay risk predictive 

models and the site safety risk predictive models developed in Chapters 2 

through 4. The second dimension involves deploying adaptive solutions 

against potential inter-KPI cascade disruptions such that rapid restoration of 

the most important set of performance objectives can be restored, which is 

thus supported by the tools developed in Chapter 5. As such, organizations 

may use the suite of tools developed in this thesis based on their current 

management needs. For example, organizational groups that prioritize a 
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specific performance objective, such as those that are time- or safety-focused, 

may utilize the tools from the first resilience dimension. Higher levels of the 

organization which are interested in multi-objective management may utilize 

the tools from the second resilience dimension, where one or more KPIs can 

be triggered to guide the adaptive solution generation. 

Ultimately, this dissertation presents a cohesive body of work that is 

expected to: a) deepen construction organizations’ understanding of the 

interrelated and dynamic nature surrounding large-scale and complex projects; b) 

address the need for transforming historical data of completed projects into useful 

business value that enables organizations to make evidence-based data-supported 

decisions to mitigate project KPI disruptions; and c) influence a real change in the 

way organizations improve overall project resilience under different systemic risk  

levels and interdependence-induced vulnerability extents. 

6.3 RECOMMENDATIONS FOR FURTHER RESEARCH 

The research presented in this dissertation contributes to the state-of-the-

industry with data-driven resilience-guided strategies to support complex 

infrastructure project management through enabling the prediction of and 

adaptation to KPI disruptions in project environments with systemic risks, such as 

those between factors influencing project KPIs and between such KPIs. This 
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research has also highlighted several avenues for possible extensions to expand 

the state-of-the-industry regarding the development of other data-driven 

resilience-based approaches to complex project management: 

• The schedule delay prediction models in Chapter 2 were developed using a 

relatively small dataset of previous project information as similar data is 

currently not available in open literature to the best of the authors’ knowledge. 

Larger datasets under a wider range of delay factor quantitative/qualitative 

assessments are therefore needed to increase the models’ accuracy and extend 

their applicability. Larger datasets can also open opportunities for employing 

other ML algorithms, such as those used in other chapters of this thesis, which 

can achieve higher accuracy (e.g., ensemble algorithms) or facilitate 

numerical/quantitative predictions of delays (e.g., artificial neural networks, 

genetic algorithms or genetic programming). 

• While the models developed in Chapter 2 are useful for predicting schedule 

delay at the project level, the ML methodologies described in the chapter can 

be employed to yield models that are useful for task-level delay estimation. 

Such models would need to be trained on datasets that are task-granular and 

include assessments of delay factors/sources on singular task delays along 

with other general task descriptors (e.g., nature of work, task scheduled 

duration, no. involved workers, whether a rework incident). 
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• The safety risk prediction models developed in Chapters 3 and 4 were 

demonstrated/trained on datasets describing injury precursors such as 

worksite-, work method- or worker-related hazards/conditions influencing 

worksite safety and injury outcomes. Such precursors were collected as part of 

post-incident inspections under legislations requiring employers to report the 

conditions surrounding worksite incidents and near hits. In future studies, it 

might be useful to employ datasets that are collected as part of pre-job 

inspections and safety audits where collections/identifications of 

precursors/hazards are free from any form of accompanied influence/newly 

developed awareness in the aftermath of an incident when its nature and 

narrative are known. Such training data can also endorse the reliability of 

using such models during pre-job inspections and attach multiple usages to the 

information collected. 

• The full extent of the framework developed in Chapter 5 was not 

applied/demonstrated on the considered case study due to restrictions on key 

data imposed by the contacted corporation. As such, the framework tools and 

procedures described can open new opportunities for future research to study 

adaptive contractor network behaviors as driven by key KPI correlations, 

given the availability of sufficient data. 

• The key challenge facing the management of infrastructure projects addressed 

in Chapter 5 pertained to the effects of contractor network interdependence 
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over time on overall project performance. As such, relationships and 

disruptions across other stakeholder networks were not fully examined but are 

still needed especially in complex projects that involve many stakeholder 

groups. To develop a more holistic perspective on project dynamics, future 

research efforts can be directed toward employing multiplex network 

approaches that can extend the investigation to one which combines cross-

sectional and longitudinal network designs of stakeholder cross-network 

interactions over time and the multilateral effects on overall project outcomes. 
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