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ABSTRACT 

Background: Type 2 Diabetes (T2D) is growing in prevalence worldwide over the last 

century. T2D incidence is linked to numerous complications, increased risk of heart 

disease, and oncology outcomes. This highlights the importance of preventive measures for 

T2D, wherein genetic predisposition can serve as an early warning sign. The role of rare 

variants (RVs) in T2D pathogenesis has not been adequately explored due to study size 

limitations, therefore we hypothesized that new associations could be found using publicly 

available data repositories. 

Methods: Significant RV gene burden for T2D risk was discovered using exome sequences 

obtained from the United Kingdom Biobank (UKB) (n=162,215), then tested for replication 

in the Korean Association Resource project (n=973), the Metabolic Syndrome in Men 

Study (n=969), the San Antonio Mexican American Family Studies (n=309), and a pooled 

meta-analysis of the latter three cohorts. RV gene burden was reassessed in secondary 

analyses using T2D cases from each cohort and summary level data from the Genome 

Aggregation Database (GnomAD) (n=125,748). 

Results: UKB exome wide significant associations were found in GCK (OR=2.44, 

p=8.91×10-11) and PAM (OR=1.32, p=1.39×10-6), and suggestive associations (p<0.001) 

were found in 33 additional genes. Replication was limited in KARE, METSIM, SAMAFS 

and in the secondary analyses with GnomAD because of limited sample sizes and 

miscalibration with the external control, respectively. Follow-up analyses include 

exploration of RV gene burden in additional diabetes subtypes, evaluation of clinical 
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features between RV carriers and non-carriers, comparing the ability to predict T2D with 

rare variant, polygenic, and phenotypic risk scores. Methodological improvements include 

the incorporation of robust analytic tools and increasing access to a greater diversity and 

number of samples. 

Conclusion: Publicly available exome sequencing data has identified genes where RV 

burden affects T2D pathogenesis and risk. The study of rare genetic variation in diabetes is 

just beginning.   
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CHAPTER 1 – Background 

1.1 Overview 

This chapter provides background information on two topics integral to this thesis: 

diabetes and the genetics of disease.   

1.2 Diabetes Mellitus 

1.2.1 History and Physiology 

Despite its presence throughout human history, the nature of the chronic disease 

Diabetes Mellitus (DM) had remained a mystery for centuries. Records from ancient Egypt 

and India described DM by intense thirst and excessive production of urine with a 

characteristically sweet taste 1. Chinese, Greek, and Arab physicians in the early Common 

Era observed additional long-term symptoms like deteriorated eyesight, frequent skin 

infections, and emaciation 1. Only starting in the 18th and 19th centuries did various 

scientists sequentially uncover the physiological nature of DM. Breakthroughs, made 

primarily through animal experimentation on canines, included: the discovery of a 

substance (“glycogen”) in the liver that raised blood sugar (glucose); that removal of the 

pancreas resulted in sugary urine (“glycosuria”); and that the diabetic state was reversed 

after intravenous injection of a purified pancreas extract (“insulin”) 1. This accumulated 

knowledge has facilitated the modern understanding of DM. 

Blood glucose concentration is tightly regulated in humans to be within 4 to 6 

mmol/L, achieved through the endocrine hormone system known as glucose homeostasis 

(Figure 1.1) 2. Glucose homeostasis can be briefly described as the interplay of insulin and 
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glucagon.  Insulin is created by β-cells in the pancreas and secreted in response to high 

blood glucose 2. Endogenous insulin lowers blood glucose by stimulating the uptake of 

glucose from the blood into cells in adipose and muscle tissue, reducing the production of 

glucose from non-carbohydrates (gluconeogenesis), and increasing the conversion of 

glucose to glycogen that is stored in the liver (glycogenesis) 2. Conversely, glucagon is 

created by alpha-cells in the pancreas in response to low blood glucose, promoting 

gluconeogenesis and conversion of glycogen back into glucose (glycogenolysis) 2. DM is 

the manifestation of this system failing: where insufficient production of insulin, often 

coupled with its reduced efficacy, causes chronic high blood glucose (hyperglycemia).   

 

Figure 1.1: Generalized overview of glucose homeostasis. While the roles of insulin and 

glucagon are highlighted here, the system involves several additional hormones that effect 

a multitude of factors including satiety, digestion, β-cell proliferation, and secretion 

regulation (Adapted from Röder, et al., 2016) 2. 
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1.2.2 Prevalence, Complications, and Classification 

Within the span of the last couple hundred years, DM had gone from a rare affliction 

of antiquity to a global epidemic 3.  Throughout most of human civilization, life expectancy 

was lowered due to widespread outbreaks of infectious disease and general malnutrition 3,4.  

In western countries this started to change halfway through the 19th century when public 

health initiatives, improved standards of living, and industrialized agriculture were adapted 

5.  However, as these populations lived longer, chronic diseases like DM and obesity began 

to manifest at an ever-increasing rate 3.  The prevailing early 20th century explanation for 

this phenomenon was that decreased physical activity and increased consumption of sugary 

food led to obesity, of which DM was a complication 3.  While diet and lack of exercise 

continue to be recognized as DM risk factors, the contemporary view is that socioeconomic 

status strongly dictates adherence to a healthy lifestyle and access to medical care 6. 

Without this nuanced understanding, early public health initiatives were unsuccessful in 

preventing the epidemic from growing over time 3. For example, the number of adults with 

diabetes in 2000 was estimated globally at 151 million 9. By 2019 this increased over three 

fold to an estimated 463 million, equivalent to a worldwide prevalence of over 9% 9. While 

DM can be managed through medical or lifestyle interventions, inequity in medical access 

and education leaves many cases undiagnosed or untreated 10. This is evidenced by 

developing countries currently contributing to 80% of DM cases 9,10. 

DM is dangerous because hyperglycemia damages capillaries leading to 

microvascular and macrovascular complications. For example, vison loss in diabetic 

retinopathy occurs because damage to the microvasculature of the retina causes hypoxia 
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from reduced blood flow, leakage from ruptured blood vessels, and abnormal capillary 

proliferation 11,60. The association of hyperglycemia with atherosclerosis in the 

macrovasculature may be due to capillary damage in the vasa vasorum 60. Alternatively, it 

may be due to the build-up of cholesterol plaque that narrows the arteries, reducing blood 

flow to the heart or to other peripheral organs and tissues 11. Furthermore, plaques can 

rupture and form blood clots that can cause myocardial infarctions or strokes by blocking 

blood flow to the heart or brain, respectfully 11. People with DM are up to 4 times more 

likely to develop cardiovascular disease, which lead as causes of death for the chronic 

disease 12. DM can also induce cell proliferation in carcinogenesis, possibly leading to 

cancers 13. The risk of all-cause mortality for people with DM is 50% greater than those 

without, and each year DM accounts for millions of deaths worldwide 8. 

Several different etiologies can lead to DM, so the disease has been classified into 

specific subtypes. The two most commonly occurring are Type 1 Diabetes (T1D) and Type 

2 Diabetes (T2D). T1D occurs in less than 10% of DM cases, and mostly in juveniles, 

where production of insulin is hindered due an autoimmune reaction that destroys β-cells 

14. While risk for T1D has traditionally been explained by genetic predisposition, there is 

now evidence that environmental factors can help trigger the autoimmune condition 15. By 

a large margin, the predominant form of DM is T2D, with a case prevalence of over 90% 

in adults and between 20% to 45% in certain populations of children 16. It is notable that 

the age of onset for T2D has been decreasing over time, as prior to the mid 1990’s the case 

prevalence in children was only 1 to 2% 16. T2D has traditionally been characterized by 

resistance to insulin and a subsequent inadequate production of the hormone, though efforts 
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to reclassification efforts 14,63. Several hypotheses explaining the mechanisms behind 

insulin resistance have been proposed, though their clinical application has been limited 17. 

In contrast, risk factors for T2D are well documented and are frequently referenced in both 

preventive and diagnostic settings. Environmental risk factors include an overweight body 

mass index (BMI), low activity levels, and poor socioeconomic status 16. Inherited risk 

factors include prior family history of T2D, as well as belonging to an ethnic minority 

which have higher incidence rates 16. These risk factors are invaluable early warning signs 

to delay or slow the progression of T2D. 

1.2.3 Diagnosis, Treatment, and Prevention  

Diagnosis of T2D, as well as evaluating efficacy of treatments, can be achieved 

with rapid tests of blood glucose concentration such as the fasting plasma glucose test 

(FPG). Long-term glycemic control over a 3-month period can be monitored by measuring 

levels of glycated hemoglobin (HbA1C) 61. Results from either test can be used to diagnose 

a normal, prediabetic or diabetic state (Table 1.1) 18. While not guaranteeing progression 

to diabetes even in the absence of interventions, prediabetes nevertheless incurs a greater 

risk of diabetes and associated complications 19,61. Furthermore, if the diabetic state 

progresses past the diagnostic threshold, the chance of morbidity and mortality increases 

20. 
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Table 1.1: Diagnostic ranges for T2D & interventions 

Diagnosis HbA1C (%) FPG (mmol/L) Interventions 

Normal < 6 < 6.1 Healthy lifestyle promotion, risk factor assessment 

Prediabetes 6 – 6.4 6.1 – 6.0 Lifestyle changes, Metformin, risk factor assessment 

Diabetes ≥ 6.5 ≥ 7.0 Lifestyle changes, Metformin, Second-line medications 

Two standard clinical tests and thresholds used to diagnose T2D, as well as interventions 

used to prevent disease progression.  

 

 

Progression of the diabetic state is gradual and can be interrupted, and possibly 

reversed, with lifestyle changes and medical interventions. Exercise increases glucose 

uptake and glucose metabolism in skeletal muscles 21,22. Weight loss achieved through 

dieting reduces adiposity and fat distribution, improving insulin regulation 23. The first-line 

medication for T2D treatment is metformin, which increases insulin sensitivity 24,25. There 

are also several second-line drugs that also improve insulin sensitivity or increase insulin 

secretion, as well as insulin therapy 25. 

Although T2D has many treatment options, the earlier the detection of the chronic 

disease, the better the prognosis 26. In asymptomatic or prediabetic people, environmental 

and inherited risk factors can be assessed to estimate the probability of developing T2D 27. 

For example, overweight individuals have at least 50% greater risk of getting T2D than 

those with normal BMI 28. Prior family history has been estimated to convey a 40% or 70% 

lifetime risk, depending on whether one or both parents had T2D, respectfully 29. While 

serving as valuable pre-diagnostic and monitoring tools, these conventional risk factors are 

hindered by confounding effects and imprecise associations 30. However, improvements in 

genetics over the last two decades have made it usable for early detection of disease, as 



M.Sc. Thesis – James Feiner  McMaster University – Medical Sciences 

 

7 

 

well as potentially provide pathophysiological insights, identify novel drug targets, or find 

sub-populations of patients. 

1.3 Disease Genetics 

1.3.1 Mendelian versus Complex Disease  

 One of the challenges with early genetics was figuring out how chronic diseases 

like T2D fitted within Mendelian patterns of inheritance. In the 19th century, the Austrian 

scientist Gregor Mendel discovered that traits are inherited though genes, with the paternal 

and maternal sides each contributing one version (allele) of each gene 31. Specific allele 

pairings (genotypes) correspond to variations of a trait (phenotypes), where the expressed 

phenotype corresponds to the dominant allele in the genotype 31. Mendel also postulated 

that each gene is inherited independently of other genes 31. One example of a Mendelian, 

or monogenic, disease is Mature Onset Diabetes of the Young (MODY), a rare autosomal 

dominant form of DM present in up to 5% of cases (Figure 1.2, Table 1.2) 32. However, 

most chronic diseases seemed to defy Mendelian patterns of inheritance because they were 

observed to have continuous phenotypic expression, such as varying age of onset in T2D 

33. Over time it became clear that these diseases were multifactorial with both 

environmental and polygenic components, with the latter referring to the cumulative effect 

of multiple mutations across multiple genes.  A new model was required to explain such 

complex patterns of inheritance 33. 
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Figure 1.2: Mendelian inheritance of MODY. Diploid parental germ cells undergo meiosis 

and form haploid gametes, each with one allele per gene. Fertilization between male and 

female gametes results in diploid offspring, where two alleles combine as a genotype. The 

MODY phenotype is expressed if the glucokinase genotype contains at least one dominant 

mutant allele, which was the case for Parent 1 and had a 50% chance of occurring in the 

offspring  34. 

 

Table 1.2: Overview of MODY genes 

Gene 
Percent of 

MODY cases 
Pathophysiology 

Microvascular 

complications 

HNF1A 30–65 β-cell dysfunction: mainly insulin secretory defect Common 

GCK 30–50 β-cell dysfunction: glucose-sensing defect Rare 

HNF4A 5–10 β-cell dysfunction: mainly insulin secretory defect Common  

HNF1B <5 β-cell dysfunction Common 

PDX1 1 β-cell dysfunction Unknown 

ABCC8 <1 ATP-sensitive potassium channel dysfunction Unknown 

APPL1 <1  Insulin secretion defect Unknown 

BLK <1  Insulin secretion defect Unknown 

CEL <1  Pancreatic endocrine & exocrine dysfunction Unknown 

INS <1 β-cell dysfunction Unknown 

KCNJ11 <1 ATP-sensitive potassium channel dysfunction Unknown 

KLF11 <1  Decreased glucose sensitivity of β-cells Unknown 

NEUROD1 <1  β-cell dysfunction Unknown 

PAX4 <1  β-cell dysfunction Unknown 

Adapted from Naylor, Knight, and del Gaudio, 2018 57. 

The prevailing hypothesis explaining inheritance of complex disease is based on the 

interaction of allele frequency and penetrance. Alleles that cause or contribute to disease 

are subject to negative selective pressure, which over successive generations should result 
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in their lowered population frequency 33. Certain alleles may protect against disease 

pathogenesis and have an increased population frequency due to positive selective pressure 

33. However, an allele may have pathogenic, protective, or benign effects on different 

disease phenotypes, each influencing its population frequency 33. At any given genomic 

location, there is one major allele that is most prevalent and any number of minor alleles 

with lower prevalence. Therefore, the term minor allele frequency (MAF) is used to denote 

allele population prevalence.  

The effect size or penetrance of an allele will vary depending on its functional 

impact, which can range from negligible to intermediate to singlehandedly causing or 

preventing disease 35. As is the case with MODY and most Mendelian disease, alleles of 

high penetrance that cause the disease phenotype are strongly selected against and have low 

to rare MAFs 36. In contrast, the higher prevalence of complex diseases indicates that the 

alleles contributing to their pathogenesis are better tolerated, allowing them in turn to retain 

higher MAFs 36. This is the basis of the common disease, common variant (CDCV) 

hypothesis (Figure 1.3), which has pervaded the field of modern genomics 33.  
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Figure 1.3: Common disease, common variant hypothesis. Effect size on the y-axis 

represented as odds ratios, which compares disease prevalence among carriers of the 

alleles and non-carriers 36. Variants are different versions of alleles at specified genomic 

locations (position on a chromosome). 

 

1.3.2 GWAS and Missing Heritability  

By the 1990’s research in T2D genetics was making steady progress with the 

identification of associated genes through linkage analysis and targeted sequencing 29. 

Though at the time there were limitations for these techniques: linkage analysis offered low 

resolution of the genome and performed poorly in identifying polygenic alleles, whereas 

the cost and time requirements of targeted sequencing restricted studies to sample sizes 

unrepresentative of general populations 29,37. Both issues would be addressed with the 

completion of the Human Genome Project (HGP) in 2003, a colossal project that took 13 

years of international collaboration and cost – adjusted for inflation – upwards of $5 billion 

37. In addition to creating the first full sequence of the human genome, the HGP also 

expedited development of technology and software that would transform the field of 
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genomics 38. While advancements coincided with a massive reduction in the price of 

genomic laboratory techniques, in 2006 whole genome sequencing remained prohibitive 

by costing tens of millions of dollars per person 37. However, by then single nucleotide 

polymorphism (SNP) based arrays were becoming the predominant and cost-effective 

means of conducting a new kind of genetic analysis, the genome wide association study 

(GWAS) 39. 

Over the last 15 years, GWAS have been the major driver in the discovery of 

variants associated with T2D and other complex disease 40. In a GWAS, the frequency of 

variants spanning the genome are compared between cases and controls of a disease 

phenotype 39. Variants associated with the disease are those with significantly different 

MAFs between the groups and can be pathogenic or protective if there is a higher or lower 

frequency in cases, respectfully 39. GWAS usually employ genotyping arrays, which 

contain probes corresponding to SNPs across the genome. Deoxyribonucleic acid (DNA) 

is extracted, exposed to the genotyping array, and any probe that hybridizes to the DNA 

generates a signal indicating presence of the given SNP in the sample 39. This process is 

easily automated and has allowed high throughput GWAS with tens and hundreds of 

thousands of samples 40. Multiple GWAS have investigated T2D and to date more than 500 

associated variants have been identified (Figure 1.4) 41. These findings have provided 

insights into T2D pathology and have helped established a strong basis for polygenic risk 

scores, where the cumulative effect of the variants is used as a measure of genetic 

predisposition in an individual 42. However, these variants have an average small effect size 

and collectively they only explain 19% of T2D heritability, a fraction of the 72% estimated 
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from twin studies 41,62. This phenomenon, known as “missing heritability”, has been 

characterized in other complex disease and suggests that the CDCV hypothesis is 

insufficient on its own.  

 

Figure 1.4:  Manhattan plot of T2D GWAS associations. Adapted from the meta-analysis 

by Vujkovic, et al., 2020. Shown here are results from the European subset of 148,726 T2D 

cases and 965,732 controls. Red points are variants that achieved genome wide 

significance (p < 5.0×10-8), their chromosomal locations approximated on the x-axis.  

One explanation for missing heritability is the common disease, rare variant 

(CDRV) hypothesis. CDRV postulates that predisposition for complex disease is driven by 

high penetrance rare variants (RVs) that occurred too recently, approximately over the last 

two centuries, to be eliminated by natural selection 33. However, the study of RVs on a 

population level has been a challenge with GWAS. Early SNP arrays only had a few 

thousand probes, necessitating the selection of probes that corresponded to commonly 

occurring variants to maximize representation of the genome 39,43. Probe density on arrays 

has increased and the ability to infer uncalled genotypes through imputation has improved 

over time, yet SNP arrays still have limited capacity in detection of RVs with MAFs under 

1% or 0.1% 41.The proper investigation of the role of RVs in complex disease required a 

return to sequencing. 
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1.3.3 Affordable Exome Sequencing  

The HGP was largely completed using automated Sanger Sequencing, a very 

accurate methodology that is limited by high expenses, slow determination of base pairs, 

and low sample throughput 58. Over the course of the early 2000s, next generation 

sequencing (NGS) technology was developed and solved or improved all these problems 

58. In NGS there is almost unlimited sensitivity for detection of RVs, though this technology 

still costs a lot more compared to SNP genotyping arrays. However, the nature of RVs 

means that expensive sequencing of the entire genome is not necessary. RVs of high 

penetrance are likely to be located within one of the approximately 20,000 protein coding 

genes 43. The coding regions within genes are called exons, which collectively are called 

the exome and consist of 1–2% of the base pairs in the genome 43. Consequently, exome 

sequencing was used as a less expensive and comprehensive alternative to whole genome 

sequencing to study RV associations 43. In exome sequencing, exonic regions of DNA are 

selectively captured and replicated with the polymerase chain reaction (PCR). During PCR, 

addition of nucleotides generates a signal that allows simultaneous physical construction 

of the replicates and digital versions called “reads” 44. The reads are then aligned and 

compared to a reference genome, where differences in the DNA sequence are identified as 

variants 44. While there is no limit to the rarity of variants that can be detected with exome 

sequencing, the number of variants and ability to analyze them is dependant on the number 

of samples in a study  45. 

Like in a GWAS, analysis of RV disease association involves comparison of variant 

MAFs between exome sequences of cases and controls. However, the low population 
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frequency of RVs makes it unlikely that any one variant will be present in two or more 

samples in a study 43. This inconsistency severely reduces the statical power of analysing 

individual RVs 43. One solution is to instead compare the cumulative burden of all RVs in 

each gene, assuming there is a shared functional impact of RVs in each region 46. Previous 

exome sequencing studies have used this RV gene burden technique, yet they have not been 

able to find many statistically significant RV associations with T2D 47. One explanation is 

that exome sequencing studies require tens of thousands of samples  to capture rare 

variation that is representative of the population, 45. Currently, exome sequencing costs 

around $300 per person, about ten times the price of genotyping with a SNP array covering 

the full genome 37. The financial cost of exome sequencing projects can become prohibitive 

when studies require several thousand samples 37. To obtain the required sample sizes to 

analyze RVs, another option is use publicly available data.     

1.3.4 Publicly Available Data 

Since the international collaboration of the HGP, sharing of genomic data has 

continued worldwide 48. Currently there are innumerable publicly available resources, 

ranging catalogues of GWAS results, genome reference builds, annotation databases, and 

open-source software. From these, a trove of information can be used for a well powered 

analysis of RV gene burden in T2D.   

When approaching genomics on a global scale, it is important consider the ethnicity 

and ancestry of the exome sequenced samples. Historically, the distribution of genetic 

studies around the globe has not been uniform, with the majority conducted in seven distinct 

ancestry groups. These are categorized as five major and two minor super populations: non-
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Finish European (NFE), East Asian (EAS), South Asian (SAS), American admixed/Latino 

(AMR), African/African American (AFR), Finnish (FIN), and Ashkenazi Jewish (ASJ) 50. 

FIN and ASJ are separate from NFE because the two groups are genetically bottlenecked, 

and FIN is also overrepresented compared to the rest of the continent 49. On its own, NFE 

contributes to over half of the exomes in publicly available exome sequencing data 50. 

Relative to the remaining four super populations, AFR is the most under-represented 51. 

This disparity is problematic because MAF of risk alleles can vary considerably between 

the groups and affect disease susceptibility 52. Extrapolating genetic insights from an NFE 

cohort to another ethnic or ancestry group can be inaccurate and even dangerous when 

influencing clinical decisions 50. There are a growing number of multi-ethnic exome 

sequencing studies being made publicly available, however inequality persists.  

Table 1.3: Breakdown of T2D cases by ethnicity and ancestry in the UKB 

Ethnicity T2D cases Percent of total 
All 

samples 
Percent of total 

African 918 2.79 7504 1.56 

British 27920 84.78 431102 89.42 

Indian 988 3.00 7465 1.55 

Non-British Caucasian 1679 5.10 28581 5.93 

South Asian 1427 4.33 7465 1.55 

Total 32932 
 

482117 
 

 

One of the biggest and newest genomic resources consists of participants who are 

almost 90% of British ancestry (Table 1.3), though it is still an invaluable resource and 

cannot be discounted for its relative lack of diversity.  The United Kingdom Biobank 

(UKB) is a massive conglomeration of patient information including diagnostics, clinical 

endpoints, laboratory measurements, and genomic data for over 500,000 participants 53. 
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Patient level data from the UKB is accessible to researchers upon application approval and 

monetary fees. SNP array-based genotyping and exome sequencing of all UKB participants 

have been completed, though so far only about 200,000 exomes have been released. With 

over 32,000 T2D cases in the full database, this resource can drive the discovery of RV 

associations to the complex disease.      

There are some large, UKB-sized exome sequence initiatives for underrepresented 

populations that are underway, like the Human, Heredity, and Health in Africa project. In 

the meantime, available online are data from a multitude of smaller studies from diverse 

populations. One of the largest repositories is the Database of Genotypes and Phenotypes 

(DBGap) which contains over 240,000 exome sequences from its collected studies. Access 

to this data on DBGap is granted to researchers by an approval process and can be 

downloaded on a study-by-study basis. A previous meta-analysis used exome sequences 

from over 40,000 T2D cases and controls, primarily from DBGap (Table 1.4) 47. This data 

could be accessed again and used to validate RV associations found in the UKB. 

Additionally, the small individual studies could be analyzed with another database that 

approximates the general population. 

Table 2.4: Breakdown of 26 T2D studies available from DBGap 

Study  

name 

Main 

ancestry 

T2D  

cases 

T2D 

Controls 

Wake Forest School of Medicine Study AFR 518 532 

Jackson Heart Study AFR 502 527 

BioMe Biobank Program AFR 1294 1254 

Exome Sequencing Project A AFR 467 1374 

Exome Sequencing Project B NFE 390 2843 

Korea Association Research Project EAS 526 561 

Korea Seoul National University Hospital EAS 450 475 

Research Studies in Hong Kong EAS 493 485 

Malmo-Botnia Study FIN 478 443 
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UKT2D Consortium NFE 322 320 

Metabolic Syndrome in Men Study FIN 484 498 

Ashkenazi ASJ 506 355 

Genetics of Diabetes and Audit Research Tayside Study NFE 960 966 

Framingham Heart Study NFE 396 596 

Mexico City Diabetes Study AMR 281 549 

Multiethnic Cohort AMR 1476 1443 

Diabetes in Mexico Study AMR 1522 1546 

UNAM/INCMNSZ Diabetes Study AMR 1998 1977 

Starr County, Texas AMR 1762 1738 

San Antonio Mexican American Family Studies AMR 272 218 

Singapore Indian Eye Study SAS 1640 1478 

London Life Sciences Population Study SAS 531 538 

Pakistan Genomic Resource SAS 914 932 

SEARCH for Diabetes in Youth Multi-ethnic 533 0 

Finland-United States Investigation of NIDDM Genetics Study FIN 472 476 

Treatment Options for Type 2 Diabetes in Adolescents and Youth Multi-ethnic 3097 0 

Total  22284 22124 

 

An alternative way of analysing RVs, especially those from smaller studies, is to 

utilize summary level data as external controls 54. The Genome Aggregation Database 

(GnomAD) is a consortium providing summary level genotypes, with the current release 

consisting of 125,748 human exomes (Figure 1.5) 55. Curation of GnomAD involved the 

removal of related individuals and cases of pediatric disease. These steps helped ensure that 

disease prevalence in GnomAD would not exceed that of the general population 56. The 

large size of this database allows for the detection of rare alleles that may otherwise go 

undetected in a smaller study.    
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Figure 1.5: Breakdown of GnomAD superpopulations. Bar plots showcasing the ancestries 

and ethnicities of participants that contributed to GnomAD’s exome sequences 55. 

 

1.4 Summary 

The chronic hyperglycemia indicative of DM has a well characterized pathology and 

there are several efficacious prevention and treatment strategies for the disease. However, 

global prevalence of DM has been rapidly growing, putting people with T2D at risk of 

severe complications like diabetic retinopathy, stroke, or heart disease. This accentuates 

the need for early detection tools that predict genetic predisposition for T2D. While the 

effects of common variation have been extensively explored, recent advancements in 

exome sequencing affordability and data availability invite RV analyses. 
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CHAPTER 2 – Methodology 

2.1 Overview  

 This chapter covers thesis methodology in four sections. First, the general exome 

sequencing process is summarized. Then selection criteria used for Type 2 Diabetes (T2D) 

are described. Finally, the intracohort and inter-cohort bioinformatic analyses of exome 

sequenced variants with T2D are explained in separate sections.  

2.2 Exome Sequencing  

2.2.1 Introduction 

There are currently several types of exome sequencing technologies, each patented 

by competing companies. There is much overlap between these, so a generalized overview 

of the exome sequencing pipeline is presented. However, important differences in exome 

sequencing workflows are highlighted when they cause bioinformatic implications 

downstream. To provide contrast, the popular Ion Torrent and Illumina platforms are 

primarily used as examples. 

2.2.2 DNA Preparation  

The exome sequencing workflow begins with collection of blood samples, followed 

by the extraction and purification of genomic deoxyribonucleic acid (DNA). The purified 

genomic DNA is then set to a specific input quantity, approximately in the range of 100 

nanograms. Next, two comprehensive steps must be undertaken to qualify genomic DNA 

for exome sequencing: exome capture and library preparation. Exome capture is the 

isolation of protein coding regions, or exons, from the rest of the genome. Library 
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preparation refers to the attachment of DNA fragments to synthetic oligonucleotides 

required for sequencing. There are a multitude of function-specific oligonucleotides, 

including sample-identifying barcodes, polymerase chain reaction (PCR) primers, and 

adaptors for substrate hybridization 1. After these steps, the DNA typically undergoes a 

form of PCR-based amplification, then normalization to picomolar range, and finally are 

loaded onto chips in the sequencing platform.   

Exome capture and library preparation are universal steps in exome sequencing. 

However, their respective methodology varies considerably between platforms. For 

example, the Ion Torrent pipeline first does exome capture, utilizing multiplex PCR on 

unamplified genomic DNA. This is followed by library preparation involving adapter 

ligation, which mediate attachment to specialized Ion Sphere Particles for enrichment 1. 

The Illumina pipeline instead starts with library preparation, which involves an 

amplification of genomic DNA. Exome capture is achieved via hybridization of target 

sequences with oligonucleotide probes, which are in turn bound to microbeads for 

purification and enrichment 1. The differences between these two methodologies comes 

into play downstream, during the treatment of the sequencing data. The pre-capture 

genomic amplification in the Illumina pipeline can result in PCR duplicates of the exons. 

These PCR duplicates are essentially artifacts that can cause an over-representation error, 

necessitating their removal. In contrast, generation of PCR duplicates during the Ion 

Torrent pipeline are intentional. In this scenario, removing them would cause an under-

representation error. In addition to exome capture and library preparation, the specific 

sequencing methodology also has an influence on the data produced.   
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2.2.3 Exome Sequencing 

The exomic DNA that are loaded onto chips serve as templates for which 

complementary strands are constructed. Sequencing methodologies differ by platform, but 

generally involve recording the incorporation of bases to the complementary strand during 

PCR .  For example, the Ion Torrent S5 platform automates the supply of deoxynucleotide 

triphosphates (dNTPs) on the sequencing chip: adenosine triphosphate, guanosine 

triphosphate, cytosine triphosphate, and tyrosine triphosphate. The dNTPs are supplied one 

type at a time in cycles. Each time a base is incorporated by the polymerase, a hydrogen is 

released into the local solution. A semiconductor sensor detects the resulting pH change, 

which translates to a signal proportional to the number of bases incorporated during the 

nucleotide cycle 2. As the complementary strands are physically completed, these signals 

correspond to base calls and are used to construct digital sequences. These are also known 

as sequencing reads.  

Reads can be influenced by the sequencing methodology used to construct them. 

For example, the detection sensitivity of homopolymer regions – multiple adjacent bases 

of the same type – varies considerably between platforms. With semi-conductor 

sequencing, the quality of base calls is inversely proportional to homopolymer length due 

to signal saturation 3. Two adjacent adenosine bases would produce a signal approximately 

double in intensity compared to a single adenosine. In contrast, the difference in signal 

intensity between seven and eight adjacent adenosines would be harder to discern, possibly 

causing a miscall. A miscalled homopolymer, such as 8 cytosines miscalled as 6 cytosines, 

will lead to gaps in the alignment. Other platforms are more resilient to miscalling 
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homopolymers, such as Illumina’s iSeq platforms where fluorescently tagged nucleotides 

have a terminator that prevent incorporation of multiple nucleotide per cycle 2. While 

homopolymer miscalls can be addressed by the alignment software, the process is specific 

to the sequencing platform used to generate the data.  

2.2.4 Read Alignment and Quality Control 

Since the exomic DNA is amplified during library preparation, the raw sequencing 

reads consist of multiple, overlapping strands (Figure 2.1a). Prior to alignment, reads are 

trimmed of adapter sequences and low quality 3’ ends, which are sequenced last. 

Furthermore, trimmed reads are excluded if: they are too short in base length, contain 

adapter dimers, lack barcode sequences, or are polyclonal in origin. The trimmed reads that 

pass these quality checks are then be aligned to a human reference genome assembly 

(Figure 2.1b). Alignment software generates candidate mapping locations and use an 

alignment algorithm, such as Smith Waterman, to create multiple alignment sets. The sets 

are aggregated and those with the highest overall mapping quality are saved as Binary 

Alignment Map (BAM) files.       

Samples, represented in the BAM files, are assessed on several metrics. Many 

utilize the read depth (DP) value, which is the number of reads that contribute to a given 

base (Figure 2.1c). The distribution of DP across the exome, or coverage, is not uniform 

and can vary between samples and different next generation sequencing platforms 4. Three 

DP-based metrics are the mean DP, proportion covered by a minimum number of reads, 

and the proportion covered within a percentage of the mean DP. Other metrices can be the 

proportion of reads mapped to specific target regions and proportion of bases with a 
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minimum Phred-based quality score. Samples that fail to satisfy these metrics can be 

salvaged by repeating in their library preparation and sequencing, then comparing to 

samples of high-quality metrics as references.4. The more samples there are in an exome 

sequencing study, the better the ability to detect high- and low-quality samples.  

 

Figure 2.1: Sequencing read quality control and alignment, a) Raw sequencing reads are 

flanked by adaptor sequences (blue) and 3’ bases are low quality, b) Quality control 

includes trimming of adaptor sequences, low quality 3’ bases, and reads that are too short 

in length. The remaining reads are then aligned to sequences from the reference genome, 

c) Read depth for a given base determined by the number of overlapping reads containing 

that base.     

2.2.5 Variant Calling  

Finally, the sample BAM files are used to call variants, which are alleles at any 

given genomic location that are different from the reference. For example, if the reference 

allele is an adenosine, and the sample allele is not adenosine, an alternate variant is called 
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at that location. Single nucleotide variants (SNV) are the most common kind of variant, 

where a single nucleotide base has been substituted for another. When a nucleotide base is 

gained or lost relative to the reference genome, insertion or deletion (Indel) variants are 

called, respectfully. Examples of variant types and possible mutations are summarized in 

Table 2.1.     

Table 2.1: Variant types and possible mutations  

Variant type Example alleles (Reference, Alternate) Example protein-altering mutations 

SNV 

SNV 

SNV 

Adenosine, Cytosine 

Adenosine, Tyrosine  

Adenosine, Guanine  

Non-synonymous 

Stop-gain or stop-loss 

Splicing 

Insertion indel 

Deletion indel 

Deletion indel 

Adenosine, Cytosine-Guanine  

Adenosine, nothing 

Adenosine-Guanine-Guanine, nothing 

Frameshift  

Splicing 

Non-frameshift 

 

Each exome sequencing platform comes with its own software suite that handles 

the data processes described thus far, as well as variant calling. While variant calling 

specifications and capabilities differ between the software suites, they all start with 

individual BAM files and end up with the variant calls of all samples consolidated into a 

single table. Briefly, reads from individual samples are first compared against the reference 

genome, identifying the alternate variants. At a given genomic location, the proportion of 

reads with the alternate variant is used to statistically infer the genotype: heterozygous 

alternate genotype (0/1) or homozygous (1/1) alternate. If the reads at a genomic location 

do not consistently have the same variant, or if they are of otherwise low quality, a non-

PASS tag is assigned for later exclusion. Then the samples are compared against each other. 

Variants with the homozygous reference genotype (0/0) are identified if alternate variant 

calls are made in some samples but not others. Variants with homozygous reference 
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genotypes in all samples are excluded; their genotype information undistinguishable from 

the reference genome. The missing genotype (./.) can be called for a variant in some 

samples if read constancy or sample-wide representation is low. Excluding low quality 

variants is necessary because they may be artifacts and therefore represent false positives. 

All the sample genotypes are translated into a numerical code and combined into the table, 

often arranged in the variant call format (VCF). Each row of the VCF represents a different 

variant, with the columns designated to information about each variant: its genomic 

coordinates (chromosome, position, database identification number, reference and alternate 

allele), then various metrics like DP or Phred quality scores, and finally the genotypes of 

each individual. The tabular VCF, as well as alternative binary formats, serve as accessible 

jumping off points for bioinformatic analysis of exome sequencing data.   

2.3 T2D Selection Criteria 

Exome sequences of T2D cases and controls were obtained from the United 

Kingdom Biobank (UKB) and studies from the Database of Genotypes and Phenotypes 

(DBGap). 200,643 exomes were downloaded from the UKB successfully. However, the 

ongoing coronavirus 2019 pandemic led to a delay in DBGap data availability. Of the 26 

studies requested, only 8 were approved for access, and of those only 3 were downloaded: 

the Korea Association Research (KARE) project (n=1087), the Metabolic Syndrome in 

Men Study (METSIM) (n=982), and the San Antonio Mexican American Family Studies 

(SAMAFS) (n=491).   

Individuals in the DBGap cohorts had assigned phenotype for T2D case or control 

status. Inclusion criteria were not identical across all studies, but they shared usual 
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qualifiers such as past T2D diagnoses, sufficient fasting or 2-hour plasma glucose levels, 

and family history 19,20,21,37. In the UKB, T2D status was not preassigned and had to be 

determined using provided International Classification of Diseases, Tenth Revision (ICD-

10) codes. Guidelines on T2D case and control selection from Choi, et al. (2019) and Khera, 

et al. (2018) were also consulted. 32, 33. Table 2.2 summaries T2D case and control selection 

criteria for the UKB, KARE, METSIM, and SAMAFS. Since it only offers summary level 

information, T2D controls could not be individually selected from GnomAD. Curation of 

the database should have prevented enrichment of T2D cases relative to the general 

population, though phenotypic heterogeneity is still possible because there were no 

exclusion criteria specific to diabetes. 

Table 2.2: T2D case and control selection criteria 

Cohort Case criteria Control criteria 

UKB 

ICD-10s 

present: 

First occurrence, underlying / 

contributory cause of death:  

ICD-10s 

absent: 

First occurrence, or underlying / 

contributory cause of death: 

E11 Non-insulin-dependent diabetes 

mellitus, ... 

E10 Insulin-dependent diabetes 

mellitus 

E11.0 with coma E11 Non-insulin-dependent diabetes 

mellitus 

E11.1 with ketoacidosis E12 Malnutrition-related diabetes 

mellitus 

E11.2 with renal complications E13 Other specified diabetes mellitus 

E11.3 with ophthalmic complications E14 Unspecified diabetes mellitus 

E11.4 with neurological complications E15 Nondiabetic hypoglycaemic coma 

E11.5 with peripheral circulatory 

complications 

E16 Other disorders of pancreatic 

internal secretion 

E11.6 with other specified complications 

E11.7 with multiple complications 

E11.8 with unspecified complications 

E11.9 without complications 

KARE 

Past history of T2D. No past history of diabetes. 

Use of T2D medication. No anti-diabetic medication. 

Fasting plasma glucose >/=7 mmol/l or plasma 

glucose >/=11.1 mmol/l 2 hours after ingestion 

of 75gm oral glucose load. 

Fasting plasma glucose <5.6 mmol/l and 

plasma glucose 2 hours after ingestion of 75g 

oral glucose load <7.8 mmol/l at both baseline 

and follow up timepoints. 

Age of disease onset >/=40 years. Older subjects with normal glucose prioritized. 

Participants with early onset and family history 

prioritized. 

Samples with age of diagnosis <40 excluded. 
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SAMAFS  

Unrelated samples. Unrelated samples. 

Fasting plasma glucose of 7.0 mmol/l or a 2-h 

glucose after an oral glucose tolerance test of 

11.1 mmol/l 

 

Self-reported physician-diagnosed diabetes.  

Reported current therapy with either oral 

antidiabetic agents or insulin. 

 

Family history of diabetes.  

 

METSIM 

Previous diagnosis of T2D, or both fasting and 

2-hr criteria met for new T2D diagnosis 

Normal glucose tolerance at baseline and 

follow-up visits. 

Family history of diabetes. 

Anti-GAD antibody <50 U/mL to rule out Type 

1 Diabetes. 

C-peptide >0.10 nmol/L. 

Unrelated samples. 

Prioritized samples with no family history of 

diabetes and meeting strict normal glucose 

tolerance criteria: fasting glucose <5.6 mmol/l 

and 2 hour post-challenge glucose <7.8 

mmol/l. 

Preferentially select individuals with genotype 

data, as well as non-genotyped individuals with 

earlier possible age of diagnosis. 

Additional samples selected with fasting 

glucose <6.1 mmol/l and 2 hour post-challenge 

glucose <7.8 mmol/l. 

 Unrelated samples. 

  Older controls preferentially selected. 

 

 

2.4 Intracohort Analyses 

2.4.1 Introduction 

 The ideal goal of this research would be to identify protein altering rare variants 

(RVs) which have effects on T2D risk, as defined by the selection criteria in the previous 

section. However, individual RVs are unlikely to occur in many samples due to their low 

population frequency, limiting power to detect association signals 16,18. Instead, the RV 

gene burden method was employed, where in each gene the effects of RVs were cumulated 

together into RV gene burdens 18. RV gene burden were assumed to have loss of function 

(LOF) effects on the encoded proteins 18. Any gene casual in T2D pathogenesis would be 

expected to have a significantly greater frequency or magnitude of RV gene burden among 

carriers in cases than in controls 18. Therefore, the actual goal of this research was to 

discover genes that, through their RV gene burden, contribute to T2D risk. 
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The ability of RV gene burden to predict T2D case or control status was assessed  

with logistical regression in intracohort analyses of the UKB and repeated in KARE, 

METSIM, SAMAFS, as well as a pooled meta-analysis of the latter three cohorts. However, 

between downloading public exome sequencing data and RV gene burden analyses several 

quality control, annotation, and filtering steps were required. The numbers of samples, 

genes, and variants in each step, across all cohorts, are summarized in Table 2.3. A 

schematic overview is shown in Figure 2.2. 

Table 2.3: Intracohort sample, variant, and gene counts 

Study Initial download 

(samples / 

variants)  

Quality control 

(samples / 

variants) 

Rare protein 

altering variants 

T2D 

cases  

Non-T2D 

controls*  

Number 

of Genes 

UKB  200,643 / 

17,975,236 

173,688 / 

17,570,704 

 

2,994,778 

 

8,784 

 

153,431 

 

18,815 

KARE 1087 / 

690,291 

973 / 

631,648 

 

116,119 

 

462 

 

511 

 

11,927 

METSIM 982 / 

478,498 

969 / 

456,299 

 

78,772 

 

477 

 

492 

 

9,606 

SAMAFS 

(Project 1) 

491 / 

549,096 

309 / 

431,740 

 

51,277 

 

168 

 

141 

 

7,960 

11,473 samples were excluded from non-T2D control status in the UKB because they 

belonged to confounding disease groups, such as Type 1 Diabetes. SAMAFS project 2 was 

not used because it was entirely comprised of related individuals.    

  

Figure 2.2: Intra-cohort analyses overview. Flowchart summarizing the steps involved in 

the intra-cohort analyses of T2D cases and controls. 

Study cohort VCF 

Sample and variant level quality control 

Annotate & filter protein-altering RVs 

Logistic regression of T2D risk 

RV gene burden in T2D cases and controls 
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2.4.2 Additional Quality Control 

Individual-level exome sequencing data for KARE, METSIM and SAMAFS was 

downloaded from DBGap as VCFs. The UKB’s exome sequence data release in joint call 

set PLINK format was downloaded from the UKB data showcase 9. Following download, 

additional sample and variant level quality control was performed in all cohorts. The quality 

control steps done in the UKB are shown as an example in Figure 2.3. 

 

Figure 2.3: Flowchart of quality control for UKB exome sequencing data 
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Samples were excluded if they failed to meet criteria in five factors: non-majority 

ethnicity and ancestry, genetic relatedness, proportion of missing variant calls, sex checks, 

and current consent status (Figure 2.3). Only samples belonging to each cohort’s majority 

ethnicity or ancestry were included: British in the UKB, Korean in KARE, Finnish in 

METSIM, and Latino in SAMAFS. Samples were excluded if they had greater than a 2nd 

degree of genetic relatedness with other participants. The familial inheritance of alleles in 

related samples would confound T2D allele burden in the majority unrelated samples, 

necessitating removal of the former 5,22. The threshold of missing variant calls was set to a 

maximum proportion of 10% to ensure a high quality of variant calls. Samples were 

excluded if genetic sex, as determined by markers on the X chromosome, conflicted with 

reported gender 6. While alternative biological explanations, such as hormone insensitivity, 

could explain a failed sex check, experimental or human error are assumed 6,9. Missingness 

and sex checks were done using PLINK’s missing and check sex functions, respectfully 20. 

Relatedness was evaluated with KING software 21. Finally, samples were removed if 

consent for research use was withdrawn 7.  

Variants were excluded based on four factors: monomorphism, high degree of 

missing variant calls, lack of adherence to Hardy Weinberg Equilibrium (HWE), and 

location in under-called regions (Figure 2.3) 25,26. Monomorphic variants have minor allele 

frequencies (MAFs) of 1 or 0, and therefore cannot be analyzed 8. Like with the samples, 

variants with a proportion of missed calls greater than 10% were excluded. HWE describes 

the distribution of alleles in the absence of evolutionary forces and defined by the equation 

q2 + 2qp + p2, where p and q are recessive and dominant alleles 9,21-3. Variants that violated 
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HWE below a set threshold of p < 5 x 10-6 were indicative of sequencing error. Following 

these steps, the 22 autosomal chromosomes were retained for analysis. The sex 

chromosomes were excluded because they require stratification by males and females, and 

they also present analytical challenges. For example, in females X-inactivation of the 

maternal or paternal chromosome is random in each cell and is difficult to identify with 

current sequencing technology 38. 

2.4.3 Format Standardization  

While the same level of quality was achieved across the various studies, further 

standardization was required. First all variants were put into a biallelic format, such that at 

any given site only two alleles were present: the reference and a single alternate.  

Multiallelic sites with more than two alternate alleles were split into separate biallelic 

variants because they need be assessed on an individual basis. Second, insertion and 

deletion (indel) variants were normalized. Normalization involves two criteria: left-

alignment and parsimony. Left-alignment ensures that a variant’s position is as far left as 

possible and parsimony allows only the shortest length of nucleotides to represent the 

variant 10. These steps were done using vcfbreakmulti and norm functions of vcf library and 

bcftools, respectfully 27. 

2.4.4 Variant Annotation 

By this point the processed information for all cohorts was limited to variant lists, 

sequencing metrics and sample genotypes. Additional context was needed to conduct 

association analysis, namely: gene information, mutation outcomes, superpopulation 
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MAFs, and pathogenicity predictions. These were to be used to find protein altering 

mutations.  

Gene and mutation annotations were done by cross-referencing variant coordinates 

with the RefGene database, accomplished using the Annovar software 11,29 . This added 

three essential pieces of information for each variant: the gene it resides in, whether it is in 

a coding region, and, if so, the alternate allele’s effect on the amino acid. While exome 

capture is centered around exons, intronic regions would still have been sequenced. Reads 

capturing the 5’ and 3’ ends of exons need to overlap with the surrounding introns 1. This 

extra non-exonic sequencing is not superfluous because splicing sites can be in introns 1. 

Any alternate variant in an exon will change its codons, which has the potential to change 

the corresponding amino acids. Some mutations are so severe that not only protein 

alteration, but complete LOF in the peptide is all but guaranteed. A likely LOF scenario is 

where indels of a base length indivisible by three result in a frameshift mutation, upsetting 

the whole open reading frame. Conversely, the functional impact of SNVs are harder to 

define, since they can either be synonymous or nonsynonymous. The former, where the 

codon change still results in the same amino acid, is usually considered benign. 

Nonsynonymous SNVs will always code for a different amino acid, however the 

consequence can vary considerably. Possibilities range from a minor effect on tertiary 

structures or polarity to completely altering the resultant protein 12. For example,  cysteine-

altering residues can disrupt disulfide bridge formation and cause massive destabilization.   

Nonsynonymous SNVs can also cause LOF scenarios by prematurely activating stop 

codons or deactivating start codons, in stopgain or startloss mutations, respectfully. 
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Deactivation of Stop codons in stoploss mutations will likely create an elongated protein 

and be LOF 13. Estimating the effects of nonsynonymous SNVs can be further refined by 

considering their population frequency as a function of natural selection.   

Variants were annotated with observed MAFs in GnomAD’s five major 

superpopulations: non-Finish European (NFE), East Asian (EAS), South Asian (SAS), 

American admixed/Latino (AMR), African/African American (AFR). Additionally, 

METSIM variants were annotated with the minor Finnish (FIN) MAF. All cohorts were 

also annotated with an internal MAF specific to each, calculated using vcftools freq 

function 31. A rare variant in any given single ancestry may not be solely explained by 

negative selective pressure. De novo (new) mutations and sequencing artifacts would 

present as rare. Genetic bottlenecking and genetic drift could alter the distribution of 

pathogenic variants, independent of impact on survival 14. Regional recruitment biases, 

methodological biases, or other population homogeneities could likewise skew 

distributions 15. Therefore, assessing the rarity across multiple ancestries helps detect 

variants that are truly deleterious.  

The final annotation was the Mendelian Clinically Applicable Pathogenicity 

(MCAP) score.  MCAP employs an ensemble of pre-existing scores and machine learning 

to predict the functional impact of nonsynonymous SNVs 15. MCAP incorporates a variety 

of factors, including estimated impact on protein structure, evolutionary conservation rates, 

and models trained on verified pathogenic variants from Human Gene Mutation Database 

15. The MCAP score itself is a continuous numerical scale ranging from benign at 0 to 

pathogenic at 1.   
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2.4.5 Variant Filtering  

The annotations were then used to select variants most likely to have a pathogenic 

influence: rare protein altering mutations. First, variants were included if they were located 

within exons or splicing regions. Then variants causing nonsynonymous SNV, frameshift 

insertion, frameshift deletion, stop-gain, or stop-loss mutations were selected. Of these, 

variants were excluded if they had a MAF greater than 0.01 in any of the five major 

GnomAD superpopulations and each cohort’s internal frequency. METSIM variants were 

also compared to frequencies in GnomAD’s minor FIN superpopulation. Finally, 

nonsynonymous SNVs were included if they had an MCAP greater than 0.025, which is 

the threshold recommended by the score’s authors for optimal detection of true positives 

15. 

2.4.6 RV Gene Burden 

To facilitate the discovery of genes with protein altering RVs that contribute to T2D 

risk, RV gene burdens were calculated. First, genotypes of individual RVs were converted 

to numeric allele burden scores using the additive penetrance model (Table 2.4). Under this 

model, it is assumed that each allele acts equally in magnitude and uniform in direction of 

effect 18. This assumption allowed allele burden scores in each gene to be simply added 

together to form RV gene burdens. RV gene burden was calculated for all samples 

simultaneously.  
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Table 2.4: Genetic models of penetrance  

Variant genotype Genotype 

code 

Additive allele 

burden 

Dominant allele 

burden 

Recessive allele 

burden 

Missing ./. 0 0 0 

Homozygous reference 0/0 0 0 0 

Heterozygous alternate 0/1 1 1 0 

Homozygous alternate 1/1 2 1 1 

Allele burden in carriers of alternate mutations under different genetic models of 

penetrance. Allele burden is continuous in the additive model, while it is binary in the 

dominant and recessive models.  

 

 These calculations were merged with sample phenotypes, resulting in a large 

table for each cohort detailing each sample’s age, sex, T2D case/control status, and the RV 

gene burdens of the different genes (Table 2.5). Underpowered genes with fewer than one 

carrier among cases or controls were removed from the analyses. The number of genes in 

remaining in each cohort after this pruning step are shown in Table 2.3. The UKB included 

additional fields for its top 40 principal components (PCs), which are sets of constructed 

values that explain variation in the cohort’s genetic population structure 39. Along with age 

and sex, the PCs were included in the logistic regression models used to predict the 

relationship of gene’s RV burden with T2D. 

Table 2.5: Example merged table of sample phenotypes, PCs, and RV gene burdens 

Sample ID Age Sex T2D PC1 PC2 GeneA GeneB 

SAMPLE_001 37 0 0 -14.409 4.312 0 3 

SAMPLE_002 45 0 1 -13.034 -2.191 0 0 

SAMPLE_003 56 1 0 12.401 -4.093 0 1 

SAMPLE_004 40 1 1 15.091 2.239 1 2 

In this example, RV gene burden of four samples are shown in two fake genes, as well as 

age, sex, status as a T2D case or control, and the first two principal components (PC1 and 
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PC2). Since the additive allele burden model was used, RV gene burdens >= 3 are possible 

in samples if multiple variants are detected in a gene.  

 

2.4.7 Penetrance and Logistic Regression 

The effect RV gene burden had on T2D was presented in two ways: penetrance 

estimates and predictive logistic regression models. 

 In the context of this thesis, genetic penetrance can be defined as the probability 

that carriers, or samples with non-zero RV gene burdens, present as T2D cases 40. The 

calculation of a gene’s penetrance is straightforward: 

𝑃𝑒𝑛𝑒𝑛𝑡𝑟𝑎𝑛𝑐𝑒 =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑠 𝑡ℎ𝑎𝑡 𝑎𝑟𝑒 𝑐𝑎𝑠𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑠
 

The ability of RV gene burden in each gene to predict T2D risk was assessed using 

logistic regression and adjusted for age and sex in all cohorts, as well as the 40 PCs in the 

UKB: 

log (
𝑝𝑖

1 − 𝑝𝑖
) =  𝛽0 + 𝛽𝑏𝑢𝑟𝑑𝑒𝑛𝑋𝑏𝑢𝑟𝑑𝑒𝑛 + 𝛽𝑎𝑔𝑒𝑋𝑎𝑔𝑒 + 𝛽𝑠𝑒𝑥𝑋𝑠𝑒𝑥 + 𝛽𝑃𝐶1𝑋𝑃𝐶1 + 𝛽𝑃𝐶2𝑋𝑃𝐶2

+  𝛽𝑃𝐶3𝑋𝑃𝐶3+. . . . . . . . . 𝛽𝑃𝐶40𝑋𝑃𝐶40 

 Where the logistic regression 𝛽𝑏𝑢𝑟𝑑𝑒𝑛 coefficient is the expected change in log odds 

of having the outcome (T2D) per unit increase (number of alleles) in the exposure (RV 

gene burden). The odds ratio (OR) is the exponent of the 𝛽𝑏𝑢𝑟𝑑𝑒𝑛 coefficient: 

𝑂𝑅 = 𝑒𝑥𝑝(𝛽𝑏𝑢𝑟𝑑𝑒𝑛) 
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 OR shows the change in odds for developing T2D per each additional allele in RV 

gene burden. Uncertainty in the 𝛽𝑏𝑢𝑟𝑑𝑒𝑛 coefficient was represented by 95% confidence 

intervals calculated from each gene’s standard error using the confint function from the 

Modern Applied Statistics with S package 41. 

2.4.8 Exome-Wide Significance  

Each estimate of a gene’s OR had an accompanying P-value, which was the 

probability of observing the result of the logistic regression if the null hypothesis was true. 

In the context this project: 

Test = Whether a gene’s RV gene burden (exposure) predicts T2D risk (outcome) 

Result = The OR between exposure and outcome 

Null hypothesis = The OR equals 1.0 (does not predict) 

 Statistical significance is usually defined when the p-value is less than 0.05, a 

maximum 5% chance the result is false positive. However, the more tests (RV gene burden 

in each gene) conducted on the same sample (of T2D cases and controls), the greater the 

chance of getting false positive results 16. Bonferroni correction accounts for this by 

adjusting the p-value threshold for statistical significance, pmin, by n number of individual 

tests 16:  

𝑝𝑚𝑖𝑛 <
0.05 

𝑛
 

Exome-wide significance pmin was configured using the largest single-sample 

number of tests among the analyses: 18,815 genes in the UKB: 

𝑝𝑚𝑖𝑛 <
0.05 

18815
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𝑝𝑚𝑖𝑛 <  2.65 × 10−6 

However, this threshold could be too conservative because genes are not necessarily 

independent from one another 34. In a phenomenon known as linkage disequilibrium (LD), 

it is possible that two or more alleles can have a non-random association. There are many 

causes of LD, including genetic drift, chromosomal proximity, or selective pressures 35. For 

example, protein altering RVs in the same gene could be in LD because of shared functional 

impact. While RVs have been thought to be free of LD, this may have been due to the 

inability to properly detect the phenomenon with past data available 36. The outright 

dismissal of genes below the exome wide significance threshold as false positives may miss 

some otherwise insightful findings. Therefore, genes with P-values below 0.001 were also 

examined as suggestive associations.  

2.4.9 DBGap Meta-analysis  

A pooled meta-analysis was conducted with RV gene burdens from the three 

DBGap studies: KARE, METSIM, and SAMAFS. This was achieved by simply combining 

the merged phenotype and RV gene burden tables from each study. Exclusion of 

underpowered genes was reassessed, with the minimum number of carriers now counted 

across the three studies. For the 12,744 remaining genes, logistic regression of the ability 

of RV gene burden to predict T2D risk proceeded with the expanded pool of samples.  
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2.5 Inter-cohort Analyses 

2.5.1 Introduction 

 In the inter-cohort analyses, RV Gene burden was compared between T2D cases in 

the UKB and DBGap studies and controls represented by GnomAD. GnomAD version 

2.0.1 summary-level exome sequence VCFs and coverage information was downloaded 

from the Broad Institute website 6.  Preparation of exome sequencing data of T2D cases 

and GnomAD was similar to the intracohort analyses, but there were some important 

distinctions. These were the intersection of high coverage regions, the different method 

used to calculate RV gene burden in GnomAD, the use of delta counts and Z-tests, and the 

pursuit of inter-cohort corrections. In GnomAD and each corresponding T2D case cohort, 

the numbers of genes and variants at each major step are summarized in Table 2.6. An 

overview of the inter-cohort analyses is shown in Figure 2.4.  

Table 2.6: Inter-cohort variant and gene counts 

Study Downloaded 

GnomAD variants 

Intersected variants 

(GnomAD / study)  

Protein altering variants  

(GnomAD / study) 

Number of 

genes 

UKB 13,146,649 

 

 

 

8,545,792 / 7,668,684  1,263,887 / 1,207,653 15,534 

KARE 505,560 / 372,699 71,251 / 159,995 5,835 

METSIM 326,436 / 262,118  38,801 / 85,033  4,927 

SAMAFS 422,733 / 245,056  43,718 / 35,746 2,326 
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Figure 2.4: Inter-cohort analyses overview. Flowchart summarizing the steps of the inter-

cohort analyses of T2D cases and GnomAD. 

 

2.5.2 Intersection 

Non-differential coverage between GnomAD and each study was required.  In this 

context, coverage refers to exomic regions that are successfully sequenced 17. For a given 

base, its successful sequencing requires sufficient DP for a high-quality variant call. 

Coverage is therefore evaluated by the DP of regions across the exome. When detecting 

rare alternate alleles, regions with low DP are prone to produce false negatives. 

Study cohort VCF GnomAD VCF 

RV gene burden 

in T2D cases 
RV gene burden 

in T2D controls 

Sample and variant level 

quality control 
Variant level quality control 

Annotation & filter rare 

protein-altering variants 
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protein-altering variants 

Intersection FILTER==PASS  
study variants 

Intersection >20DP 

GnomAD regions 

Observed 

counts 
Observed 

counts’ 
Expected 

counts 
Expected 

counts’ 

iCF adjustment iCF adjustment’ 

gCF adjustment 

Z-tests of T2D risk 

RV gene burden in 

GnomAD 

RV EXCALIBER 
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Furthermore, coverage between cohorts can vary wildly because of differences in 

sequencing methodology and study population 18. Avoidance of false negatives and 

positives can be achieved with intersection of high DP regions in both cohorts to achieve 

non-differential coverage.  

 Regional coverage depth can only be determined using the BAM files produced 

during the exome sequencing pipeline. BAM files contain DP information for the entirety 

of the aligned exon reads, allowing for a comprehensive evaluation of coverage. In contrast 

a VCF retains DP information only for the included variants. The large size of BAM files 

makes them restrictive to work with, necessitating consolidation of coverage information 

into the browser extensible data (BED) file format. BED files simply list the sequenced 

exonic regions, each denoted by a chromosome number and positional range from 

beginning to end. To establish regions of high coverage, BED files can be created that 

include regions that meet a minimum DP. 

For the UKB and DBGap datasets, regional coverage could not be established. The 

UKB exome sequencing data release did include CRAM files (a compressed version of the 

BAM format), but the 175 terabytes of required disk space exceeded available storage. 

None of the exome sequencing data sourced from DBGap studies included coverage 

information. While GnomAD did not provide individual level BAM files, the database did 

include summary level coverage information in a BED-like format. From these, GnomAD 

regions with a minimum 20X DP were established. With the data available, two kinds of 

intersection were conducted.  
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In the first kind, variants from the UKB and DBGap study cohorts were 

independently intersected with the minimum 20X DP regions in GnomAD, resulting in 

variants that fell within those regions (Figure 2.5a). This was done with Bedtool’s 

intersectBed function 24. The UKB exome sequencing data was built using the Genome 

Reference Consortium Human genome build 38 (GRCh38) human genome reference 

assembly, whereas the GnomAD v2.0.1 had used the older GRCh37. To ensure 

compatibility, genomic coordinates were lifted over between the two assemblies using the 

University of California Santa Cruz liftOver executable and hg38 to hg19 chain file 11, 31. 

While this achieved true non-differential coverage for UKB and the DBGap variants with 

respect to high coverage regions in GnomAD, intersection the opposite direction required 

compromise. 

 

Figure 2.5: Intersection of high coverage regions and variants in GnomAD and study 

cohorts, a) Variants from a study cohort are excluded if they fall outside of high coverage 

GnomAD regions, b) When there is insufficient coverage information, GnomAD variants 

are excluded if they do not share Pass sites with study variants.  

Variants that qualified with the Pass filter on the GnomAD VCF were checked 

against UKB and DBGap variants that qualified with the Pass in their respective VCFs, 

resulting in total checked GnomAD variants (Figure 2.5b). The Pass filter is based on 

quality scores, which in turn are based on DP. Therefore, the total checked GnomAD 
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variants approximate non-differential coverage with respect to high coverage regions in 

UKB and the DBGap cohorts. This is not a perfect substitution because GnomAD variants, 

which could otherwise exist within high coverage regions, will be excluded if coordinates 

are not an exact match. After intersection, the number of variants in GnomAD exceeded 

those in each study cohort, though this ratio equalized or reversed after filtering of protein 

altering RVs (Table 2.5). Since each cohort is much smaller compared to GnomAD, the 

intersection may have been too stringent and led to under-estimates of RV gene burden. 

Doing either no intersection or a one-way approach (Figure 2.5a) with the limited coverage 

information available may have been better options. Ultimately, the two-way intersection 

was used because it best emulated the original regional coverage method and GnomAD 

was considered to have enough variants to handle the added stringency.  

 

2.5.3 GnomAD RV Gene Burden 

RV gene burden in GnomAD was calculated using the MAF of the ancestry 

corresponding to each study cohort. For example, allele counts (AC) of UKB T2D cases 

were compared to the NFE MAF of variants in GnomAD. Per gene variant MAFs were 

added together to form cumulative minor allele frequencies (CMAFs). The GnomAD 

CMAFs were then multiplied by two which converted them into cumulative minor allele 

counts (CMACs) relative to the number of alleles in humans who are diploid. 

Corresponding to each study gene matrix was a GnomAD table that listed all genes and 

their CMACs. Since the CMACs were based on GnomAD’s population MAFs, they could 

be scaled up by multiplying by the sample size of the corresponding study. 
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2.5.4 Delta Counts 

Despite the earlier intersection of high coverage regions, a direct comparison of 

allele burden between study cohorts and GnomAD will still run into confounding issues. 

For example, it is impossible to determine from summary level data if the RVs were 

inherited together in groups, a phenomenon called linkage disequilibrium (LD) . Since LD 

leads to inflated allele burden, a case control comparison using Fisher’s exact test or logistic 

regression would encounter many false positives 18. 

A solution was to do delta counts for each sample of each gene by finding the 

difference in allele count between the observed T2D cases and expected controls 

(GnomAD). The null hypothesis for each gene was no difference, or a delta count of zero, 

which could be checked with a z-test:   

𝑍 =
𝑚𝑒𝑎𝑛 𝑑𝑒𝑙𝑡𝑎 𝑐𝑜𝑢𝑛𝑡

(
𝑆𝐷 𝑜𝑓 𝑑𝑒𝑙𝑡𝑎 𝑐𝑜𝑢𝑛𝑡

√𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒
)

 

2.5.5 RV EXCALIBER 

All samples in an exome sequencing study are typically selected from the same 

localized population and are sequenced with the same technology. This methodological 

consistency is lost when comparing a given cohort to GnomAD, where population and 

methodological factors confound analyses 18. Such inter-cohort differences in sequencing 

methodology and population ancestry were addressed using Rare Variant Exome 

CALIBration using External Repositories (RV EXCALIBER), which employed an 

individual correction factor (iCF) and a gene correction factor (gCF) 18. The iCF accounted 
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for variation in population substructure and sequencing chemistry by comparing mutation 

load across individuals 18: 

𝑖𝐶𝐹 =
𝑐𝑎𝑠𝑒 𝑒𝑥𝑜𝑚𝑒−𝑤𝑖𝑑𝑒 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑙𝑜𝑎𝑑

𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑒𝑥𝑜𝑚𝑒−𝑤𝑖𝑑𝑒 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑙𝑜𝑎𝑑
 

 An iCF unique to each individual was multiplied with GnomAD’s CMAC gene 

values, resulting in  iCF-adjusted expected counts. New delta counts and z-tests were done 

using the original observed T2D case counts and the iCF-adjusted expected counts. A 

simplified example of iCF adjustment is shown in Figure 2.6. 

Like the iCF, the gCF also compared case and control mutation load, but instead 

acted on groups of genes based on their mutability. The gCF was constructed using a third, 

independent calibration cohort to capture gene-specific mutation biases 18. For each study 

cohort, the samples without T2D were used for gCF calibration. This was ideal because 

within the same study, the non-T2D samples were sequenced on the same platform as the 

T2D samples and thus subject to the same confounding factors 
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Figure 2.6: iCF adjustment example. iCF is calculated separately for each individual and 

multiplied by the GnomAD expected counts.    

. 

Following rare variant association methodology identical to that used on the case 

cohorts, the calibration cohorts underwent gCF adjustment. The iCF-adjusted genes in the 

calibration cohorts were then sorted and grouped: five quantiles of ascending expected 

counts and ten descending deciles of z-test p-values. The groups were then combined into 

50 distinct bins and a gCF was calculated for each:     

𝑔𝐶𝐹 =
𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 𝑏𝑖𝑛−𝑤𝑖𝑑𝑒 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑙𝑜𝑎𝑑

𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑏𝑖𝑛−𝑤𝑖𝑑𝑒 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑙𝑜𝑎𝑑
 

 Genes in the case T2D cohorts were then matched to the bins and given the bin’s 

gCF value. These gCF values were multiplied with the iCF-adjusted expected counts of 
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GnomAD, resulting in  both iCF and gCF adjusted expected counts. A new, final set of 

delta counts and z-tests were conducted using the original observed T2D case counts and 

the iCF-gCF-adjusted expected counts. Figure 2.7 continues the simplified example with 

gCF adjustment using a calibration cohort. 

 

Figure 2.7: gCF adjustment example. gCF is calculated for each gene and them multiplied 

by the GnomAD expected counts.  

 

 

2.5.6 DBGap Meta-analysis 

 Like with the intracohort analyses, an inter-cohort version of the pooled meta-

analysis of the three DBGap studies was also done. Each cohort underwent RV-
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EXCALIBER correction separately, then gene delta counts from each cohort were added 

together. Genes with delta counts in only one of the three studies were excluded. Total 

sample sizes were adjusted accordingly for each remaining gene. 

2.6 Summary 

The methodologies covered in this chapter included reviews of exome sequencing 

protocols, selection criteria for T2D cases and controls, and two approaches for RV gene 

burden analysis of T2D risk. Following quality control and filtering for protein-altering 

variants, in the intracohort analyses RV burden gene was compared in T2D cases and 

controls of each study. With additional establishment of non-differential coverage and use 

of RV-EXCALIBER, the inter-cohort analyses compared RV gene burden of T2D cases to 

GnomAD as a summary level control. 
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CHAPTER 3 – Results 

3.1 Overview 

 The results presented in chapter are divided into four main sections: highlights of 

top intracohort rare variant (RV) gene associations, illustrations of genomic inflation, and 

assessments of the inter-cohort correction factors. All other result data are provided with 

the supplementary materials.  

3.2 RV Gene Burden Associations 

Due to the number of varied analyses, RV association results are presented by using 

the most well powered and calibrated comparison, Type 2 Diabetes (T2D) cases versus 

controls in the United Kingdom Biobank (UKB), as a discovery cohort. Table 3.1 

showcases the top genes from this analysis and includes the number of carriers, the 

estimated percent penetrance of each gene, the odds ratios for the risk of T2D per unit 

increase of RV gene burden, and the gene association P-values.  

Table 3.1: Top genes in intracohort analysis in the UKB  

Gene Number of 

RV carriers 

Percent 

Penetrance 

Odds Ratio 

(95% CIs) 

P-value 

GCK 509 11.98 2.44 (1.86 - 3.20) 8.91×10-11 

PAM 4784 6.84 1.32 (1.18 - 1.48) 1.39×10-6 

FGF16 78 14.10 4.03 (2.11 - 7.70) 2.55×10-5 

HNF4A 1123 8.28 1.55 (1.25 - 1.93) 6.82×10-5 

NEPRO 852 8.45 1.63 (1.28 - 2.08) 7.06×10-5 

TM4SF20 635 8.50 1.74 (1.32 - 2.29) 8.33×10-5 

BTF3 100 15.00 3.19 (1.78 - 5.69) 9.06×10-5 

ACE 8936 6.21 1.18 (1.08 - 1.29) 1.33×10-4 

KAT14 1008 7.84 1.50 (1.21 - 1.86) 1.77×10-4 

TBKBP1 2198 7.05 1.36 (1.16 - 1.60) 1.84×10-4 

IER2 179 11.73 2.40 (1.50 - 3.83) 2.39×10-4 

RAI2 453 7.28 1.90 (1.34 - 2.70) 2.95×10-4 
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RAD52 217 10.60 2.22 (1.44 - 3.42) 3.23×10-4 

HTR1E 134 12.69 2.59 (1.54 - 4.36) 3.26×10-4 

ADGRD1 4925 6.40 1.23 (1.10 - 1.38) 3.58×10-4 

ZNF708 2702 6.55 1.31 (1.13 - 1.53) 3.87×10-4 

ZNF620 89 14.61 2.97 (1.63 - 5.43) 3.94×10-4 

NSUN4 476 9.66 1.76 (1.28 - 2.41) 4.26×10-4 

C1orf195 52 15.38 3.54 (1.74 - 7.22) 5.00×10-4 

RNMT 148 11.49 2.39 (1.46 - 3.90) 5.24×10-4 

ZNF184 108 12.04 2.73 (1.54 - 4.83) 5.86×10-4 

PTPN3 2075 7.18 1.35 (1.14 - 1.59) 5.94×10-4 

PPIAL4C 4581 4.39 0.81 (0.72 - 0.92) 5.94×10-4 

MCCC1 2153 6.69 1.32 (1.13 - 1.56) 6.63×10-4 

PCNX1 3590 6.52 1.26 (1.10 - 1.44) 6.86×10-4 

SYPL2 2415 6.83 1.31 (1.12 - 1.54) 7.01×10-4 

HEATR5B 993 7.65 1.39 (1.15 - 1.68) 7.28×10-4 

ABI1 1908 3.98 0.67 (0.53 - 0.84) 7.38×10-4 

CHML 943 8.06 1.50 (1.19 - 1.91) 7.60×10-4 

SLC45A2 2059 6.80 1.34 (1.13 - 1.59) 8.07×10-4 

GNPTAB 4757 6.24 1.21 (1.08 - 1.35) 8.51×10-4 

KCNK17 1748 7.55 1.37 (1.14 - 1.64) 8.79×10-4 

GSAP 414 8.94 1.77 (1.26 - 2.47) 8.91×10-4 

AMMECR1L 14 28.57 7.84 (2.32 - 26.52) 9.18×10-4 

ABAT 1302 3.23 0.59 (0.43 - 0.81) 9.32×10-4 

Genes with p < 0.001 in intracohort analysis of RV burden in the UKB. The dashed line 

marks the exome wide significance threshold for multiple hypothesis testing (p<2.65×10-

6). 
 

Of the top genes, only two had replication of significant RV association with T2D 

in either intracohort or inter-cohort analyses of the DBGap cohorts: ACE in Korean 

Association Resource (KARE) project cases versus the Genome Aggregation Database 

(GnomAD), (OR = 1.46, P = 0.021) and TBKBP1 in the Metabolic Syndrome in Men Study 

(METSIM), cases versus controls (OR = 2.38, P = 0.030). There was no replication of top 

genes in the San Antonio Mexican American Family Studies (SAMAFS), or in the meta-

analysis of KARE, METSIM, and SAMAFS (KMS).  Several genes had exome-wide 
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significant associations with T2D in the analysis of UKB cases versus GnomAD (Table 

S6).  

Two strongly associated genes in the RV burden analysis, GCK and HNF4A, are 

known to cause 30-50% and 5-10% of cases in Mature Onset Diabetes of the Young 

(MODY), respectfully 1. Despite being responsible for a majority 30-65% of MODY cases 

HNF1A was not significant in the intracohort UKB analysis 1. ABCC8, BLK, and CEL, each 

a minor MODY representing under 1% of cases, showed some significance (P < 0.05) in 

both the intracohort and intercohort analyses of the UKB, METSIM, and KMS  (Table 3.2). 

Table 3.2: Associations of MODY genes with T2D  

Cohort UKB KARE METSIM  SAMAFS KMS 

 

Intracohort Analyses: T2D cases vs. controls 

Gene OR P OR P OR P OR P OR P 

HNF1A 1.06 0.49 1.32 0.64 1.53 0.34 0.73 0.63 1.32 0.31 

GCK 2.44 8.90×10-11 0.56 0.73 0.37 0.55   1.49 0.60 

HNF4A 1.55 6.82×10-5 3.56 0.07 0.60 0.54   1.14 0.76 

HNF1B 1.03 0.76 0.61 0.24 0.86 0.77 0.30 0.089 0.90 0.63 

PDX1 1.07 0.27 0.67 0.66 2.20 0.24   2.21 0.051 

ABCC8 1.19 0.0033 0.98 0.95 0.41 0.011 1.40 0.49 0.78 0.12 

APPL1 0.83 0.25 2.64 0.50     7.22 0.10 

BLK 1.13 0.034 0.23 0.24 5.57 0.00021 2.44 0.31 2.45 0.015 

CEL 0.94 0.17 0.96 0.74 1.60 0.017 0.81 0.61 1.13 0.10 

INS 0.91 0.81   0.79 0.80     

KCNJ11 1.31 0.06 3.04 0.53 1.21 0.90 0.64 0.72 0.74 0.69 

KLF11 1.15 0.13 4.87 0.40       

NEUROD1 0.72 0.16 0.76 0.75     1.22 0.74 

PAX4 1.02 0.72 0.34 0.14 1.51 0.47 0.79 0.85 1.04 0.90 

 

Inter-cohort Analyses: T2D cases vs. GnomAD 

Gene OR P OR P OR P OR P OR P 

HNF1A 1.10 0.17 1.00 0.50   1.13 0.41 1.05 0.44 

GCK 1.13 0.24         

HNF4A 1.62 0.00034         

HNF1B 0.92 0.75 0.39 1.00       

PDX1 1.04 0.29         

ABCC8 1.15 0.029 1.20 0.20 0.51 0.98 2.30 0.053 1.11 0.26 

APPL1 0.97 0.59         

BLK 1.12 0.029 0.40 0.98 2.77 0.0060 1.48 0.23 1.75 0.022 

CEL 1.17 0.010 1.24 0.24 5.15 0.0022   2.10 0.0042 

INS           

KCNJ11 1.33 0.049   0.27 0.99     

KLF11 1.28 0.054         

NEUROD1 0.59 0.99         

PAX4 1.07 0.24 0.98 0.52       
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Odds ratios (ORs) and P-values (P) of all 14 major and minor MODY genes, separated by 

intracohort and intercohort analyses.   

 

30 of the 35 genes in Table 3.1 had previously been identified in genome wide association 

studies (GWAS) to have significant associations with other phenotypes. These associations 

were largely based on common variants located anywhere within the boundaries of each 

gene, including non-coding regions like promoters or introns. The phenotype that had the 

strongest association with common variants in each gene are shown in Table 3. Some genes 

contained common variants that were associated with numerous different phenotypes. The 

total number of phenotypes that have reached genome wide significance (P < 5×10-8) with 

common variants in the genes are also shown. Its notable that the strongest associated 

phenotypes for several of the genes was T2D or a related phenotype, suggesting a shared 

functional impact of RVs and common variants in those genes. 

 

Table 3.3: Genes with previous associations found in GWAS  

Gene Strongest phenotype association Genome-wide 

significant phenotypes 

GCK Random glucose 16 

ZNF184 Waist-hip ratio adj BMI 14 

HNF4A Type 2 Diabetes 11 

SYPL2 LDL cholesterol 10 

PAM Type 2 diabetes adj BMI 9 

ACE Height 8 

TBKBP1 LDL cholesterol 8 

HEATR5B PR interval 7 

IER2 Height 6 

PTPN3 Diastolic blood pressure 6 

KCNK17 Type 2 diabetes 6 

TM4SF20 Late diabetic kidney disease adj HbA1c-BMI 5 

RAI2 Urinary albumin-to-creatinine ratio 5 
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RAD52 BMI 4 

PCNX1 PR interval 4 

GSAP BMI 4 

FGF16 Urinary albumin 3 

NEPRO Height 2 

KAT14 BMI 2 

ADGRD1 Height 2 

BTF3 Height 1 

HTR1E BMI 1 

ZNF708 Type 2 diabetes 1 

ZNF620 PR interval 1 

NSUN4 Waist-hip ratio 1 

RNMT Height 1 

ABI1 BMI 1 

SLC45A2 Any cancer 1 

GNPTAB Height 1 

ABAT Height 1 

 All fields were obtained from respective gene pages on the Type 2 Diabetes Knowledge Portal 3. BMI is body 

mass index. LDL is low density lipoprotein. 
 

3.3 Distributions of Gene Significance 

Gene p-value distributions of all intracohort (Figure 3.1) and inter-cohort (Figure 

3.2) analyses are displayed on quantile-quantile (QQ) plots with calculated genomic 

inflation factors (med). Gene association P-values (P) are first converted to Pnew: 

𝑃𝑛𝑒𝑤 = − log10 𝑃 

Which effectively inverses the P-value, making small, statistically significant P-

values into large values that are easier to visualize on the QQ plot. Then, these converted 

P-values (observed) are ordered by increasing significance and are plotted against an equal 

number of ordered P-values (expected) that follow a uniform distribution. Most genes in 

the exome are not expected to be functionally related to T2D, so the distribution of observed 
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association P-values should closely match the uniform distribution of the expected P-

values, resulting in a QQ plot with a straight diagonal line. Genes that are truly related to 

T2D should have P-values of great enough significance that they appear above the diagonal 

line and its 95% confidence interval wings on the QQ plot. However, if most genes are 

above the diagonal line on the QQ plot, they may be false positives and indicate systematic 

genomic inflation. In this context, genomic inflation refers to overestimation of statistical 

significance due to RV gene burden. Conversely, if most genes are below the diagonal, then 

they may be false negatives and indicate systematic genomic deflation. QQ plots do not 

reveal the causes of the inflation or deflation but are good visual indicators for them.  

Genomic inflation can also be calculated as med, which simply the median of the 

observed P-values divided by the median of the expected P-values. Genomic inflation  is 

indicated when med > 1 and deflation when med < 1. 

a)   

 

b)   

  

c)  

  

d)  
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e)  

  

 

Figure 3.1: Gene-based QQ plots for intracohort analyses. Corresponding study cohorts 

include a) the UKB, b) KARE, c) METSIM, d) SAMAFS, and d) KMS meta-analysis. All 

plots include genes with case MAC >= 10 and control MAC >= 10. The dashed line in a) 

marks the exome wide significance threshold for multiple hypothesis testing (p<2.65×10-

6). 

 

 GCK and PAM show up in their expected spots in the upper righthand corner of 

Figure 3.1a as their exome-wide significance exceeded the expected distribution. Genomic 

inflation in genes of the intracohort UKB analysis appears to be minor both visually and by 

a med close to 1. However, the other intracohort analyses in depicted in Figures 3.1b-e show 

moderate genomic deflation and is most severe in the smallest cohort SAMAFS.   

a)  

 

b)  
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c)  

 

d)  

  
e)  

  

 

Figure 3.2: Gene-based QQ plots for inter-cohort analyses. Dots denoted as before (red) 

and after (blue) individual & gene level correction with RV-EXCALIBER. Corresponding 

study cohorts: a) the UKB, b) KARE, c) METSIM, d) SAMAFS, and d) KMS meta-analysis. 

All plots include genes with case MAC >= 10 and GnomAD CMAC => 10. The dashed 

line marks the exome wide significance threshold for multiple hypothesis testing 

(p<2.65×10-6). 

 

 Genomic inflation was much more pronounced in the intercohort analyses. 

However, it was dramatically decreased following correction with RV-EXCALIBER in all 

cohorts except the UKB. Post correction, exome-wide significant genes appeared to be 

present in every cohort except SAMAFS.  

3.4 Correction Factor Performance 

Differences between individual correction factor (iCF) and gene correction factor 

(gCF) calibration in RV-EXCALIBER were demonstrated with folded cumulative 
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distribution function plots for delta count plots, also called mountain plots (Figure 3.3). 

Gene-level bias in iCF correction was represented by inflation of observed counts relative 

to GnomAD, followed by deflation, forming a “mountain”. Correction of this bias with the 

gCF “flattens” the mountain. 

a)  

 

b)  

 

c)  

 

d) 

 
Figure 3.3: Mountain plots of cumulative gene delta count distribution. Gene index was 

ordered by z-test p-value. Corresponding study cohorts: a) the UKB, b) KARE, c) METSIM, 

and d) SAMAFS. Correction factor calculations in all plots included genes with observed 

case MAC >=1 and expected GnomAD CMAC >=1.   

 Across all cohorts, gene-level bias remaining after iCF correction appeared to be 

successfully corrected following gCF correction. 
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3.5 Supplementary Materials 

 Please see the attached spreadsheet containing tables of all RV gene burden 

associations across both intracohort and inter-cohort analyses (S1-S10). 

3.6 Summary 

 In the intracohort analysis of T2D risk in the UKB, RV burden in two genes reached 

exome wide significance, GCK (OR = 2.44, P = 8.91×10-11 ) and PAM (OR = 1.32, P = 

1.39×10-6), though neither was replicated in the other cohorts. In addition to GCK, several 

other genes implicated in the monogenic diabetes subtype MODY showed suggestive 

significance in multiple cohorts: HNF4A, ABCC8, BLK, and CEL. Many top genes also 

contained common variants with previously established associations with T2D or related 

phenotypes. Examination of P-values of all genes showed a lack of genomic inflation in the 

intracohort analyses, though there was deflation in KARE, METSIM, and SAMAFS. 

Genomic inflation was present in all inter-cohort analyses but was reduced after correction 

with RV-EXCALIBER. 
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CHAPTER 4 – Discussion 

4.1 Overview  

 The discussion in this chapter first covered the results of RV gene burden 

associations with Type 2 Diabetes (T2D) from intracohort and intercohort analyses in the 

UK Biobank (UKB), the Korea Association Research Project (KARE), the Metabolic 

Syndrome Study in Men (METSIM), and the San Antonio Mexican American Family 

Studies (SAMAFS), and a meta-analysis of KARE, METSIM, SAMAFS (KMS). 

Discussion focused on the clinical significance of the top gene GCK, as well as exploring 

research implications of PAM and other suggestive genes, then follow-up analyses were 

suggested. The discussion moves onto examining limitations in the methodology and 

proposing improvements. 

4.2 RV Gene Burden Results  

4.2.1 Clinical Significance of GCK 

The gene of greatest significance with T2D risk was GCK, a major casual gene of 

the rare monogenic subtype of diabetes called Mature Onset Diabetes of the Young 

(MODY). Four other MODY genes, HNF4A, ABCC8, BLK, and CEL, also had suggestive 

significance in the UKB and in several intercohort analyses, suggesting the associations 

were driven by enrichment in T2D cases rather than just depletion in controls. However, it 

is notable that the gene HNF1A, which causes the most cases of MODY, did not have 

significant association in RV burden with T2D in any cohort or analysis.  Distinct from 

Type 1 Diabetes (T1D) and T2D, MODY is characterized by an age of diagnosis (AOD) 
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before 25 years, lack of autoantibodies, and an autosomal dominant mode of inheritance 8. 

MODY accounts for up to 5% of all diabetes cases, with a population prevalence of about 

1 in 10,000, though many cases go undiagnosed 8,69. MODY has several subtypes, each 

characterized by mutations in different genes with specific effects on pancreatic β-cells 8. 

The three most common MODY subtypes, describing 99% of cases, are caused by 

mutations in the hepatocyte nuclear factor-1-alpha (HNF1A) gene, followed by the 

glucokinase (GCK) and hepatocyte nuclear factor-4-alpha (HNF4A) genes 8. HNF1A and 

HNF4A are involved in transcriptional regulation of the insulin gene, whereas GCK 

encodes a glucose sensor that can dictate the glycemic threshold for insulin secretion 8. 

Eleven additional gene products have been associated with MODY, including ATP-binding 

cassette, subfamily C, member 8 (ABCC8), a nonreceptor tyrosine-kinase of the src family 

of proto-oncogen (BLK), and carboxyl ester lipase (CEL) 9,10,68. ABCC8 encodes a receptor 

for insulin-secretion-inducing sulfonylureas, BLK upregulates insulin transcription factors, 

and CEL digests dietary fats and fat-soluble vitamins in the small intestine  9,10,68. About 

90% of diabetes cases in the UKB had an AOD greater than 37 years, so MODY would 

have been an unlikely diagnosis in the cohort 11. Still the enrichment of MODY gene 

mutations in UKB T2D cases suggest the two forms of diabetes may not be as genetically 

distinct as previously thought. Indeed, recent efforts have been made to redefine T2D into 

distinct subtypes by cluster analysis of clinical biomarkers and risk factors 12. Exploring 

the genetic context of T2D heterogeneity could underscore this line of investigation.  
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4.2.2 Research Implications of PAM and other genes 

The second strongest exome-wide significant association to T2D risk was in the 

gene that encodes the protein peptidylgycine α-amidating monooxygenase (PAM). PAM is 

not clinically recognized in T2D pathology, however recent evidence has suggested 

otherwise  13. PAM is involved in the synthesis of neuropeptides, with a strong functional 

dependence on copper availability 14. Therefore, PAM has been historically linked to the 

copper metabolism disorder Menke’s disease 15. While insulin is not a substrate of PAM, 

its expression in pancreatic islets suggests it has some functionality in β-cells 16. In an 

experiment using human cell lines and islets taken from cadavers, Thomsen, et al., 

demonstrated that T2D risk factors caused PAM to lose functionality and lead to β-cell 

dysfunction 16. They proposed that PAM mediates β-cell insulin secretion via granule 

exocytosis 16. Missense mutations in PAM have previously been associated with T2D in 

GWAS, and recently, in the RV burden analysis by Flannick, et al. (OR = 1.31, P = 4.28 

×10-9)  13,16. While KARE, METSIM, and SAMAFS were included in Flannick, et al.’s 

study, it is notable that PAM enrichment was not significant in our analysis of those cohorts. 

Carriers of protein altering mutations in PAM were present in all three cohorts: 13 in KARE, 

3 in METSIM and 7 in SAMAFS (Tables S2, S3, and S4). The pooled cohort of the 

Database of Genotypes and Phenotypes (DBGap) and the European Genome-phenome 

Archive (EGA) studies utilized by Flannick, et al. was twenty times larger than our KMS 

meta-analysis 13. This provided them sufficient power to detect significant PAM 

enrichment, albeit in an ethnically heterogeneous population 7,17.  
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Many genes with suggestive associations between RV burden and T2D contained 

common variants that had previously been identified to be significantly associated with 

several phenotypes (Table 3.3). Some of these previously associated phenotypes are T2D, 

lending credence to the observed association of T2D with RV burden in those genes. 

However, some of the phenotypes were not directly related to T2D. For example, common 

variants within SYPL2 are strongly associated with low density lipoprotein (LDL) 

cholesterol, a major risk factor for coronary artery disease (CAD) 4,5. In turn, those 

diagnosed with T2D have a greatly increased risk of developing CAD 1. The shared 

presence of RVs associated with T2D and common variants associated with LDL 

cholesterol in SYPL2 suggest the gene is involved in the pathology of both T2D and CAD. 

However, such speculation is tenuous because SYPL2s association with T2D did not reach 

exome wide significance and the functional impact of common and rare variants may differ 

despite proximity in a given gene region 7. Still, this could justify a project testing risk of 

CAD or LDL cholesterol concentration between SYPL2 carriers and non-carriers with T2D. 

The relationships between T2D and the other phenotypes identified in Table 3.3 may also 

be worth exploring.  

4.2.3 Follow-up Analyses 

In addition to specific follow-up analyses for mutations in MODY genes and PAM, 

there are two general avenues that should be considered. 

First, its important to recognize that while common and rare variation act 

independently on T2D risk, they still both contribute to the measured outcome 7. New 

polygenic risk scores derived from common variation in the UKB can be included as 
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covariates to investigate their effect on the RV gene burden associations 28. It is also 

possible to construct rare variant genetic risk scores (RVGRS) using the RV gene burden 

test statistics and test how well they predict T2D. RVGRS would be constructed in a sample 

by first weighting each gene’s RV burden by its estimated effect size on T2D risk, then 

taking the sum of all genes that meet an optimized P-value threshold 33. The ability of 

RVGRS to predict T2D can be compared between cohorts and contrasted with risk scores 

based on common variants or phenotypes.     

Second, any findings can be further validated with replication in underrepresented 

non-European populations 19. The current release of the UKB exomes includes about 

12,000 non-European, unrelated individuals that could be utilized for this purpose. Further 

stratification of these 12,000 individuals into distinct, ethnically homogenous groups may 

jeopardize power to detect RV associations 17. Aside from waiting for the full release of the 

500,000 UKB exomes, sufficient sample size of these groups could be achieved by pooling 

each with ethnically corresponding DBGap cohorts.  

Several options can be pursued to explore the relationship of MODY and T2D. 

Sensitivity tests can determine if explicit loss-of-function (frameshift, stop-gain, stop-loss, 

and start-loss) RVs in MODY genes were driving the observed associations. Adjustment 

for T2D medication use, such as metformin, can be easily checked as well. RV burden in a 

combination of MODY genes could be tested to see if they predict T2D risk more 

effectively than individual major or minor genes 7. Inclusion of multiple genes would mean 

a larger genomic area in the comparison; increasing the power to detect RVs. This approach 

would be limited however by potentially expanded bidirectional effects between 
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pathogenic and protective genes, an issue inherent to the RV gene burden model 17. This 

issue, and a viable solution, are further discussed in Section 4.3. Another option would be 

to examine RV burden in MODY genes relative to biomarkers used to differentiate MODY 

from T2D or T1D, such as age of diagnosis (AOD), adiposity, triglyceride levels, or 

glutamic acid decarboxylase antibody levels 29,30. In people with T2D, the concentration of 

these biomarkers could be tested between carriers and non-carriers of MODY RVs. The 

absence of a significant association of RV gene burden in HNF1A with T2D could be 

explored by redoing the analyses using T1D, as well as other diabetes subtypes, as the 

primary phenotype. 

RV burden in PAM can be compared to measures of insulin secretion in carriers to 

test the effect on β-cell function 16. Endogenous insulin secretion is measured by proxy 

using C-peptide, which is produced along with insulin in equal amounts from the cleavage 

of proinsulin 20. Modern monoclonal based C-peptide assays are more affordable and 

reliable than traditional radioimmunoassays, however issues in test standardization have 

limited their adoption as a routine clinical measurement 20,21. All three DBGap cohorts 

include C-peptide measurements, while the UKB does not at present. Though analysis may 

be possible in the future in 50,000 UKB samples if C-peptide is included in its upcoming 

panel of 1,500 circulating plasma proteins or its release of nuclear magnetic resonance 

assayed metabolomics 30,32.  
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4.3 Methodology Review 

4.3.1 Limitations 

 The limitations of this thesis’s methodology fall into four categories: statistical 

power in relation to cohort size and composition, selection criteria for samples and variants, 

assumptions of RV burden analysis, and requirements for implementing RV-EXCALIBER. 

Replication of RV gene burden associations with T2D risk largely failed to replicate 

between the UKB and the three DBGap cohorts. While this trend of non-replication may 

have been partially explained by the ethnic diversity across the cohorts, it was most likely 

because KARE, METSIM, and SAMAFS were underpowered for RV burden association 

17,19. Using simulations of loci with known disease risk, Zhang, et al. estimated that at least 

14,000 total cases and controls are needed to achieve a 90% rate of identifying true positives 

in burden analysis of variants with MAFs under 0.01 17. In contrast, the simulated true 

positive rate of cohorts the size of the DBGap studies, either individually or combined, 

would fall well short of 50% 17. This is further illustrated by the actual number of nominally 

powered genes in each cohort. Out of approximately 20,000 unique protein coding genes, 

at least one RV was detected in both T2D cases and controls for: 18,815 in the UKB, 11,927 

in KARE, 9,606 in METSIM, and 7,960 in SAMAFS (Supplementary Tables 1-4). While 

of sufficient total sample size for RV burden analysis, the UKB had its own unique issue: 

an unbalanced case to control ratio. The UKB has 8,784 T2D cases and 153,431 controls, 

a ratio of almost 1 to 20. Under these conditions, variant score statistics may deviate from 

the normal distribution and have higher false positive rates 39. Though in Zhang, et al.’s 

simulations, they found that increasing the number of controls from 10,000 to 30,000, while 
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keeping a constant ratio to cases, lowered the false positive rate 17. With over 150,000 

controls, the effects of an unbalanced case to control ratio in the UKB may be similarly 

subdued 40. However, several techniques can reportedly control for these effects, including 

saddle point approximation (SPA) which was used by Jurgens, et al. in their recent RV 

burden study 41. 

 Jurgens, et al.’s study examined RV burden in UKB exomes with multiple 

phenotypes, including T2D. The differences between the methodology of this thesis and 

their sample and variant selection invite discussion. Their sample selection was more 

inclusive because they retained both related and non-European individuals for a total of 

199,832 samples, which included 13,462 T2D cases 41. While sample size was increased, 

their expanded sample selection criteria would have entailed some extra considerations. 

First, variant MAFs in related individuals are less dependent on their effect on disease risk 

and more so tied to familial inheritance 42. RV burden analysis of a population that includes 

both related and unrelated individuals would result in inflated allele counts from the former. 

Though, as done by Jurgens, et al., a weighted adjustment could be used to account for 

relatedness 41. The second consideration, inclusion of non-Europeans, has a consequence 

that is harder to quantify: increased ethnic heterogeneity. While RV associations seem to 

conform to specific ethnicities to a lesser degree compared to common variant associations, 

analysis including population stratification could still be insightful 7,18. For example, people 

not of British ancestry make up about 11% of the entire UKB, but account for 

approximately 15% of all T2D cases (Table 1.3) 43. RV burden may follow a likewise 

ununiform distribution.  
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With many thousands fewer samples, all unrelated and European, it is not 

unexpected that our T2D gene association results did not perfectly align with Jurgens, et 

al.’s. However, while we did overlap in the exome wide significance of GCK, their signal 

(OR = 13.9 [8.2-23.4], P = 1.46 ×10-19) was much stronger than ours 41. They also found 

two novel associations in GIGYF1 and CCAR2, which where non-significant in our analysis 

41. These discrepancies may be explained by differences in filtering criteria for protein 

altering variants and sample selection. Jurgens, et al.  used a maximum MAF cut-off at 

0.001 (0.1%) to filter for protein altering variants, while we were less stringent with 0.01 

(1%) 41. Also, where we only used MCAP at its default threshold, they employed multiple 

pathogenicity scores from the Single Nucleotide Polymorphism Database (dbSNP). RVs 

had to achieve a deleterious rating in at least 36 of 40 the dbSNP predictors (90%) to qualify 

as protein altering 41. Conversely, we were more inclusive in our sample selection by 

retaining only unrelated persons of British ancestry, while Jurgens, et al. made no such 

exclusions (Figure 2.3) 41.  

 Theses methodological differences were reflected in GCK RV carrier rates. In our 

analysis, T2D was present in about 12% of carriers and 5% of non-carriers (Table 3.1). In 

contrast, they observed T2D in 48% of carriers and in 7% of non-carriers 41. While more 

stringent variant filtering criteria and less exclusive sample selection may have contributed 

to a stronger signal for GCK, it is not clear if the same applied to all genes relevant to T2D.  

The balance between eliminating false negatives and retaining true positives is situational 

to the data available, so there are no universally agreed upon thresholds for RV MAF and 
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pathogenicity scores 44. Therefore, it may be necessary to include diverse parameters in RV 

analyses to enable comparisons between studies.  

 Other parameters to consider were the models on which the analysis was based, 

particularly our chosen genetic penetrance model and method of association: additive and 

allele burden, respectfully. In the additive penetrance model, the disease risk in each carrier 

is based on a continuous value determined by the sum of gene’s alternate alleles 45. On one 

hand, the additive model may be appropriate for T2D as it fits well into the common 

disease, common variant model 46. On the other hand, the additive model may be 

inappropriate for RV burden analysis because it assumes too low of a penetrance for the 

protein altering mutations. Alternatively, different degrees of penetrance can be assumed 

by using the dominant or recessive models, where the disease risk in each carrier is based 

on a binary value. The carrier’s disease risk is conditional on whether the variant genotype 

provides a sufficient alternate allele count: one/heterozygous in the dominant model and 

two/homozygous in the recessive model (Table 2.4) 45. Across all cohorts, a majority of RV 

carriers had single heterozygous alternate genotypes in each gene, so adaption of the higher 

penetrance dominant model may not be too different from the current additive model. In 

contrast, use of the lower penetrance recessive model would then drastically reduce the 

number of carriers due to the rarity of homozygote alternate genotypes. The recessive 

carrier state can also be caused by compound heterozygotes, where two different 

heterozygous mutations appear on the same gene, but on different chromosomes, having 

the same effect as a homozygote 47. Detection of compound heterozygotes requires phasing, 

where variants are assigned to the maternal and paternal chromosomes 47. While phasing 
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was not incorporated in the exome sequencing pipelines used in the UKB or DBGap, it is 

possible to phase variants using computational techniques in-silico  48. 

Whichever model of genetic penetrance is used for RVs however, the allele burden 

test is not the only, or necessarily the best, option for association with T2D. While 

collapsing RVs by genes improves statistical power, this method implicitly makes two 

assumptions: uniform direction and magnitude of effect 49. Within a given gene, different 

variants could have bidirectional effects, where some are deleterious and increase T2D risk 

while others are protective and decrease risk 49. Some variants may have a large functional 

impact, such as affecting a protein’s binding site, while others may result in a minor 

conformational change. The burden test does not account for any of these deviations from 

its assumptions, limiting its power to detect true associations 17. In the UKB intracohort 

analysis for example, per unit increase in RV burden in the ACE gene conveyed 18% 

increased odds of risk for T2D. Although this finding did not reach the exome-wide 

significance threshold for multiple hypothesis testing, it is still somewhat alarming because 

it contradicts previous evidence that both LOF mutations in ACE and inhibition of 

angiotensin converting enzyme protects against T2D 22-24. While it is possible that gain-of-

function mutations were driving the RV gene burden association, in the model they would 

have assumed to be of equal magnitude to the more numerous LOF mutations and 

effectively been cancelled out 49.  

Variants of bidirectional and varying magnitude of effect are handled better by 

another kind of association test that measure dispersion of variance in cases and controls 

50. One of these is the sequence kernel association test (SKAT), which may prove to be a 
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versatile alternative to the allele burden test 49. Multiple software is available that can run 

burden tests and SKAT in parallel, while also using SDA or other techniques to control for 

case-control imbalance 51. 

 Despite using the same T2D cases as the intracohort analyses, the inter-cohort 

comparisons to summary level data in GnomAD produced very divergent results. While it 

may seem promising that many cohorts had genes that achieved exome wide significance, 

the sheer abundance of these associations indicates a high false positive rate (Figure 3.2, 

Table S6-10). Some genes shared strong association signals across intracohort and inter-

cohort analyses, suggesting that the associations for those gene were driven by enrichment 

in cases instead of depletion in controls. However, none of these replications qualified as 

independent, and it was impossible to tell how much systematic inflation affected the 

associations in GnomAD. This inflation was tempered by RV-EXCALIBER, as shown by 

the lower lambda values in all cohorts after implementation of individual (iCF) and gene 

correction (gCF) factors (Figure 3.2). The high genomic inflation pre-correction may have 

been caused by the compromise made to establish non-differential coverage (Section 2.5.2). 

Recall that binary alignment files for individual samples were not received, necessitating 

intersection between GnomAD and each cohort per-variant at a study-wide level (Figure 

2.3). This procedure may have inadvertently restricted the number of variants in GnomAD, 

such that they were depleted relative to the number of variants in the cases 34. It is possible 

that some groups of variants existed in linkage disequilibrium (LD) such that they were 

inherited together non-randomly 2. A group of RVs that are in LD should not be counted as 

separate contributors to gene burden because they are less affected by selective pressures 
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compared to RVs that are not in LD 3. Failure to account for variants in LD can cause 

inflation of gene burden. While the GnomAD database was curated to filter out individuals 

with pediatric disease, its unlikely that all cases of T2D or other confounding adult-onset 

diseases were entirely removed. This phenotypic heterogeneity could have contributed to 

inflation, or otherwise added noise to any true association signals 52. Despite the large size 

of GnomAD, the inter-cohort analyses was well-powered for fewer genes than the 

intracohort analyses, an average reduction of about 75% (Table 2.3, 2.5). This could have 

been caused by the gCF correction because its calibration of mutation load requires genes 

to be cross-referenced between cases and another cohort 7. We used non-T2D controls for 

this step, though more permissive options may be available.  

4.3.2 Improvements 

 There are several methodological options to pursue to improve statistical power of 

the RV associations. These include increasing the sample size, exploring alternative 

parameters and robust techniques for true associations, and better data preparation for RV-

EXCALIBER.  

 A larger sample size would improve not only representation of the T2D trait, but 

also the diversity of the RVs potentially relevant to the disease. As previously mentioned, 

over 40K T2D cases and controls are available from exome sequencing studies on DBGap 

and the EGA (Table 1.4) 53. In late 2021 or early 2022 the UKB is planning to release its 

remaining 300K exomes, which includes over additional 20K T2D cases 54. This upcoming 

subset is large enough to elicit an independent analysis for its majority European ancestry, 

while the smaller number of non-European samples can be pooled together with 
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corresponding DBGap and EGA cohorts. Cohort-specific kinship matrices can be 

incorporated as random effects to adjustment for familial allelic frequencies, permitting the 

inclusion of related individuals 41,55. A technique normally reserved for common variation 

in GWAS, imputation of RVs is now possible with whole genome sequences from the 

Trans-Omics for Precision Medicine (TOPMed) Program 56. Imputation is the prediction 

of initially uncalled variants using reference panels of thousands of haplotypes: groups of 

variants in LD that are inherited together 57. Imputation would help fill in the gaps of exome 

coverage in each cohort, increasing the number of RVs analysed. The phasing required to 

detect compound heterozygotes, a genotype relevant to the recessive penetrance model, can 

be accomplished in-silico with information from haplotype reference panels 57. Fittingly, 

the SHAPEIT2 software can be used to both impute and phase RVs in the exome 

sequencing data 48. 

 One aspect worth emulating from Flannick, et al.’s study was their multi-pronged 

approach, whereby several variant filtering thresholds and association methods were used 

13. In the methodology of this thesis, a modest addition of the parameters previously 

discussed would accumulate to 24 combinations: two MAF thresholds (0.01 and 0.001), 

two pathogenicity score criteria (MCAP and dbSNP predictors), three penetrance models 

(additive, dominant, recessive), and two association tests (burden and SKAT). While this 

worsens the multiple hypothesis problem, the increased versatility to detect true 

associations may justify the extra exploration. The stringency required for statistical 

significance would deepen, but the large sample sizes available may be sufficient.  
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 There are a few changes to the methodology that may improve the comparison of 

T2D cases to GnomAD. Recent improvements to the application programming interface 

provided by the UKB now allow for sequential downloads of sample CRAM files. 

Coverage information can be extracted from each individually and saved at a fraction of 

the disk space, allowing for complete intersection with GnomAD by region at a per-sample 

basis. Along with imputation and phasing, haplotype reference panels can be used to find 

RVs in LD and prune them out to prevent overcounting 3. While not including the most 

recent release of whole genome sequences, GnomAD should be updated to version 2.1 

because it contains data of greatest relevance to this thesis. GnomAD v2.1 comes with a 

controls-only subset, which should reduce phenotypic heterogeneity for T2D 58. Lastly, 

calibration of the gCF for RV-EXCALIBER could be done using rare synonymous variants 

in the T2D case samples instead of protein altering RVs in the control samples 7. Since they 

are part of the same exome capture, synonymous variants should be under identical 

mutation sequencing bias as coding variants 7. Furthermore, this would eliminate the need 

to cross-reference with the control cohort, preventing gene loss. While currently outsized 

by the UKB and the collective cohorts in DBGap and EGA, optimization of GnomAD as a 

summary level control is still worthwhile because it captures a superior range of ethnic 

diversity.  

4.3.3 Future Resources 

The following three resources and technologies have the potential to greatly 

improve the efficacy of discovering true RV associations with T2D. While contemporary, 
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many require more time, development, or accessibility before they can be fully adopted for 

this research.  

 First, there are the plethora of exome sequencing data which, either in a partial or 

full capacity, are not available to the public. For research institutions or commercial entities 

that keep internal databases, the restricted access may be due to legal obligations, moral 

privacy concerns, financial incentives, or cost prohibitions 59. Still, with enough effort and 

motivation, some of these challenges could be overcome so that more data is released into 

the world. Conversely, databases that are already available to the public may not share all 

relevant information. For example, DBGap does not appear to host binary alignment files 

for its exome sequencing studies. Another example are the disease-specific subsets 

provided by GnomAD, which has yet to include one for T2D-controls only 58. While 

unknown if planned or not, a later inclusion of these features would be well appreciated. 

 Second, there are the steadily growing records of clinically relevant variants with 

hard supporting evidence, which are yet too small to fully replace computational predictive 

tools such as MCAP. Two prominent archives of these variants are ClinVar and HGMD, 

both publicly available, where the former is completely free, and the latter has a premium 

version requiring an annual subscription. Each has an impressive number of disease-

associated variants, about 120K in Clinvar and 300K in the HGMD 37,38. With millions of 

RVs in the UKB and other exome sequencing cohorts, Clinvar and HGMD  currently have 

too few variants to use directly as pathogenicity filters without heavily compromising 

statistical power (Table 2.3). They have however contributed indirectly, such as how 

MCAP was constructed using HGMD RVs as training data (Jagadeesh et al., 2016). While 
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empirical validation of all human variation would be very challenging, ClinVar and HGMD 

show its inevitability 60. 

 Third, whole genome sequencing (WGS) sequencing will ultimately replace exome 

sequencing with as the primary technology behind RV association, though this may not 

come true in the immediate future. The cost of WGS is decreasing, but it remains at least 

twice as expensive on average as exome sequencing 61. The extra cost of WGS buys 

improvements in both common and rare variant analyses but may only be justified for the 

former. Without having to contend with exon capture issues, WGS does offer better 

coverage of coding regions compared to exome sequencing 62. However, by far the largest 

areas with upgraded coverage in WGS are intergenic regions, which are more relevant to 

detection of common variants and identifying break points for copy number variations 63. 

Considering that large, multi-thousand sample sizes are required for effective RV analyses, 

exome sequencing could remain more affordable than WGS for some time 17. Though WGS 

does provide ancillary benefits to existing exome sequencing data, like imputation and 

phasing using WGS-derived haplotype reference panels from TOPMed 56. While WGS will 

eventually become the gold standard for both common and rare variation, currently the 

latter is still best approached with exome sequencing.  

4.4 Summary 

 The RV gene burden results showed clinical significance by implicating MODY 

genes in T2D, challenging the mutual exclusivity of the two diabetes subtypes, prompting 

follow up analysis of diagnostic biomarkers. The exome wide significant association of RV 

burden in the gene PAM has been corroborated by recent human cell line and common 
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variant experimentation linking the copper metabolism gene to insulin secretion and T2D 

incidence. Further research into the effects of PAM RV burden on insulin secretion is 

warranted.   

 The ability of the analyses to capture true RV associations was limited by the 

insufficient size of the non-European cohorts, avoidable removal of related T2D cases, 

burden test inflexibilities, and too stringent variant exclusion in GnomAD intersection. 

Solutions include extracting non-Europeans from the UKB, allelic frequency adjustment in 

related individuals, SKAT as an alternative test, and redoing intersection with complete 

coverage. WGS and forthcoming genetic databases will supersede exome sequence-based 

analysis, but until then the best course of action is to improve current methodologies.  
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CHAPTER 5 –  Conclusion 

5.1 Objective  

The contribution of common and low effect genetic variation on Type 2 Diabetes 

(T2D) risk has been extensively characterized, but this has not been enough to fully explain 

the disease’s heritability 1. Therefore, the overall goal of this thesis was to bridge this gap 

by uncovering the effects of rare and high effect variation on T2D risk. This was primarily 

assessed by rare variant (RV) gene burden: comparing the number of rare, pathogenic 

mutations in protein-coding genes between T2D cases and controls. Sample phenotype and 

exome sequencing data were downloaded from publicly available cohorts: the United 

Kingdom Biobank (UKB), the Korean Association Resource (KARE) project, the 

Metabolic Syndrome in Men Study (METSIM), and the San Antonio Mexican American 

Family Studies (SAMAFS). A secondary comparison of RV gene burden was made 

between T2D cases and the general population. The latter was approximated with summary 

level variant calls from The Genome Aggregation Database (GnomAD), while adjusting 

for inter-cohort differences using Rare Variant Exome CALIBration using External 

Repositories (RV-EXCALIBER) 2. 

 

5.2 Findings and Follow-up 

Exome wide significance with T2D risk was found with GCK, and suggestive 

association with HNF4A, which are causal for two of the three most common Mature Onset 

Diabetes of the Young (MODY) subtypes. Diagnosis of MODY is based on the mutual 
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exclusion from both Type 1 Diabetes and T2D, making their biomarkers and risk factors 

good targets for subsequent RV burden analyses 3. Another exome wide association was in 

the copper metabolism gene PAM, which recently has been implicated in the mechanism 

of insulin secretion 4. PAM’s effect on endogenous insulin should be tested in applicable 

cohorts. Results from the inter-cohort comparisons to GnomAD suffered from systematic 

inflation, which made it difficult to parse out true association signals from the noise. 

However, GnomAD could be made more viable as an external control by reducing 

phenotypic heterogeneity, increasing inter-cohort intersection coverage, and improving 

calibration of RV-EXCALIBER 2,6. 

 

5.3 Limitations and Improvements 

 There were several limitations to the data and methods used throughout this thesis, 

though improvements are possible with available resources. METSIM, KARE, and 

SAMAFS were of insufficient sample size to effectively capture RV burden, which was 

further exacerbated because the ethnicities and ancestries of the latter two cohorts are 

underrepresented in genomics 7,8. The samples needed for well powered, ethnically diverse 

analyses can accessed from DBGap, as well as subsets of studies on the European Database 

of Phenotypes and Genotypes and the UKB of non-European ancestry. While the majority 

European UKB yielded statistically significant results, the analysis may have been undercut 

by the cohort’s unbalanced case-control ratio, loss of T2D cases due to the exclusion of 

related individuals, overcounting variants in linkage disequilibrium (LD), and false positive 

signals from lenient variant pathogenicity criteria 9,10. While case-control imbalance, 
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sample kinship, and variant LD can be addressed with methodological adjustments, 

determining the optimal variant pathogenicity criteria is complicated because overt 

stringency can incur false negative signals 11. Furthermore, the additive penetrance model 

and RV burden association test are limited by their core assumptions on carrier definition 

and variant effect trajectory, respectfully 7. At the cost of exacerbating the multiple 

hypothesis problem, alternative penetrance models and association tests can be employed 

for an overall more robust analysis. Finally, polygenic risk scores for T2D risk can be 

included as a covariate to account for possible effects of common genetic variation 10. 

 

5.4 Closing Remarks 

 RV analysis will improve over time with growing databases of empirically 

determined clinically applicable variants and the ongoing publications of both exome and 

whole genome sequencing data 11,12. However, current tools and resources are sufficient for 

a well powered study, as demonstrated in this thesis. The results presented interesting 

findings on RV in T2D, namely the prevalence of major MODY genes and exploring the 

role of PAM in insulin secretion. Evidently the gap in T2D heritability has not yet been 

fully bridged, but this thesis has helped establish a foothold. 

  



M.Sc. Thesis – James Feiner  McMaster University – Medical Sciences 

 

101 

 

5.5 References 

1. Grotz, A.K., Gloyn, A.L. & Thomsen, S.K. (2017). Prioritising Causal Genes at 

Type 2 Diabetes Risk Loci. Curr Diab Rep 17, 76. 

https://doi.org/10.1007/s11892-017-0907-y 

2. Lali, R., Chong, M., Omidi, A., Mohammadi-Shemirani, P., Le, A., & Paré, G. 

(2020). Calibrated rare variant genetic risk scores for complex disease prediction 

using large exome sequence repositories. BioRxiv, 2020.02.03.931519. 

https://doi.org/10.1101/2020.02.03.931519 

 

3. McCulloch, D.W. (2019) Classification of diabetes mellitus and genetic diabetic 

syndromes. In:  Mulder, J.E., Nathan, D.M., and Wolfsdorf, J.I. (Eds.), UpToDate. 

Retrieved March 17, 2021, from 

https://www.uptodate.com/contents/classification-of-diabetes-mellitus-and-

genetic-diabetic-syndromes   

 

4. Flannick, J., Mercader, J.M., Fuchsberger, C. et al. (2019). Exome sequencing of 

20,791 cases of type 2 diabetes and 24,440 controls. Nature 570, 71–76. 

https://doi.org/10.1038/s41586-019-1231-2 

 

5. Gillespie, E. L., White, C. M., Kardas, M., Lindberg, M., & Coleman, C. I. 

(2005). The Impact of ACE Inhibitors or Angiotensin II Type 1 Receptor Blockers 

on the Development of New-Onset Type 2 Diabetes. Diabetes Care, 28(9), 2261–

2266. https://doi.org/10.2337/diacare.28.9.2261 

 

6. Francioli, L., Tiao, G., Karczewski, K., Solomonson, M., & Watts, N. (2018). 

gnomAD v2.1. Broad Institute. Retrieved August 22 2020, from 

https://gnomad.broadinstitute.org/blog/2018-10-gnomad-v2-1/ 

 

7. Zhang, X., Basile, A., Pendergrass, S., & Ritchie, M. (2019). Real world scenarios 

in rare variant association analysis: the impact of imbalance and sample size on 

the power in silico. BMC Bioinformatics, 20(46). doi: 10.1186/s12859-018-2591-6 

 

8. GenomeAsia100K Consortium., Wall, J.D., Stawiski, E.W. et al. (2019). The 

GenomeAsia 100K Project enables genetic discoveries across Asia. Nature. 

576, 106–111 (2019). https://doi.org/10.1038/s41586-019-1793-z 

 

9. Turkmen A, Lin S. (2017). Are rare variants really independent? Genet Epidemiol. 

41(4):363-371. doi: 10.1002/gepi.22039. 

 

10. Khan M, Di Scipio M, Judge C, Perrot N, Chong M, Mao S, Di S, Nelson W & Paré 

G. A versatile, fast and unbiased method for estimation of Gene-by-environment 

interaction effects on biobank-scale datasets. (2021). Nature Genetics Technical 

Reports. (In Preparation). 



M.Sc. Thesis – James Feiner  McMaster University – Medical Sciences 

 

102 

 

 

11. Lee, S., Abecasis, G. R., Boehnke, M., & Lin, X. (2014). Rare-variant association 

analysis: study designs and statistical tests. American journal of human 

genetics, 95(1), 5–23. https://doi.org/10.1016/j.ajhg.2014.06.009 

 

12. Belkadi, A., Bolze, A., Itan, Y., Cobat, A., Vincent, Q. B., Antipenko, A., Shang, 

L., Boisson, B., Casanova, J.-L., & Abel, L. (2015). Whole-genome sequencing is 

more powerful than whole-exome sequencing for detecting exome variants. 

Proceedings of the National Academy of Sciences, 112(17), 5473 LP – 5478. 

https://doi.org/10.1073/pnas.1418631112 

 


