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Abstract: 

 Infrastructure deterioration has been attributed to insufficient maintenance budgets, lacking 

restoration strategies, deficient deterioration prediction techniques, and changing climatic 

conditions. Considering that the latter adds more challenges to the former, there has been a 

growing demand to develop and implement climate-informed infrastructure asset management 

strategies. However, quantifying the impact of the spatiotemporally varying climate metrics on 

infrastructure systems poses a serious challenge due to the associated complexities and relevant 

modelling uncertainties. As such, in lieu of complex physics-based simulations, the current study 

proposes a glass box data-driven framework for predicting infrastructure climate induced 

deterioration rates. The framework harnesses evolutionary computing, and specifically 

multigene genetic programming, to develop closed-form expressions that link infrastructure 

characteristics to relevant spatiotemporal climate indices and predict infrastructure deterioration 

rates. The framework consists of four steps: 1) data collection and preparation; 2) input 

integration; 3) feature selection; and 4) model development and result interpretation. To 

numerically demonstrate its utility, the proposed framework was applied to develop deterioration 

rate expressions of two different classes of concrete and steel bridges in Ontario, Canada. The 

developed predictive models reproduced the observed deterioration rate of both bridge classes 

with coefficient of determination (R2) values of 0.912 and 0.924 for the training subsets and 

0.817 and 0.909 for the testing subsets of the concrete and steel bridges, respectively. Attributed 

to its generic nature, the framework can be applied to other infrastructure systems, with available 

historical deterioration data, to devise relevant effective asset management strategies and 

infrastructure restoration standards under future climate scenarios. 

Keywords: Asset Management, Bridge Condition Index, Climate Indices, Data-Driven Models, 

Deterioration Rate, Genetic Programming, Infrastructure, Multigene, Symbolic regression. 
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1. INTRODUCTION  

Infrastructure deterioration can be attributed to numerous natural and anthropogenic factors. 

The latter include insufficient design, improper materials, poor deterioration prediction models 

leading to deficient rehabilitation planning (Elmansouri et al., 2020; Mirza, 2006), and human 

activity contribution to climate change (Bastidas-Arteaga et al., 2013; Ring et al., 2012). On the 

other hand, natural factors include different forms of hazards such as hurricanes (Inkoom et al., 

2021; Yang & Frangopol, 2020), floods (Sultana et al., 2018), sea level rise  (Melchers, 2006) 

increased groundwater salinity (Cui et al., 2016), increased air chloride diffusion (Strauss et al., 

2013), and elevated atmospheric carbon dioxide level (Stewart et al., 2011), as well as changes to 

ambient climate characteristics (e.g., precipitation, temperature) (C. M. Chang et al., 2021; 

Derrible et al., 2020). Greenhouse gas emission has resulted in major changes in climate patterns 

(Scheffran & Battaglini, 2011), subsequently resulting in weather extremes occurring more 

frequently (Rahmstorf & Coumou, 2011). Such extremes have significantly affected infrastructure 

health and deterioration rates negatively (Tari et al., 2015; Khelifa et al., 2013), highlighting the 

urgent need to develop effective infrastructure deterioration rate prediction models that explicitly 

account for climate characteristics (Jeong et al., 2017; Liu et al., 2020). 

Most governments and municipalities adopt different infrastructure management systems to 

ensure infrastructure functionality and provide timely and adequate rehabilitation throughout their 

lifespan (Bolar et al., 2014; Assaad & El-adaway, 2020a). Infrastructure reactive management 

systems employ either numerical or categorical indicators that reflect the condition of the 

considered infrastructure following field inspections. Such indicators, in turn, are estimated based 

on safety, performance, monetary or integrated asset measures for different infrastructure 

components to quantify the infrastructure’s overall condition (Y. Shen et al., 2019). However, 
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proactively, infrastructure condition should be also predicted over its remaining lifespan in order 

to devise effective asset management strategies. Several infrastructure deterioration modelling 

methodologies have therefore been developed to estimate infrastructure conditions over their 

lifespan deterministically (Zhang & Durango-Cohen, 2014), stochastically (Bu et al., 2013; M. 

Chang et al., 2019), or mechanistically (Lounis & Madanat, 2002; Nickless & Atadero, 2018).   

Deterministic infrastructure deterioration models assume a monotonic relationship between 

infrastructure condition and influencing factors. Linear and nonlinear regression are the typical 

approaches used to develop such models; however, such approaches usually do not account for the 

complex-uncertain mechanisms of infrastructure deterioration. Stochastic infrastructure 

deterioration models aim at estimating the statistical behavior of the deterioration measures (e.g., 

infrastructure condition, time spent in a specific condition) such that the different sources of 

uncertainty inherent within the deterioration process are understood. The stationary Markov chain 

is most often applied to develop such deterioration models; however, a significant amount of 

infrastructure inspection data is typically required to ensure the stationarity assumption (Jiang et 

al., 1988; Jiang & Sinha, 1989). Therefore, the stationary Markov chain has been recently coupled 

with nonlinear and evolutionary optimization techniques to overcome the typical violation of such 

assumptions (Yosri et al., 2021; Bu et al., 2014; Wellalage et al., 2015). In contrast to deterministic 

and stochastic deterioration modelling methodologies, their mechanistic counterparts aim at 

predicting infrastructure conditions based on physical/chemical/functional phenomena 

contributing to deterioration. The availability of mathematical formulae describing such 

phenomena is thus essential to building such mechanistic (i.e., physics-based) infrastructure 

deterioration models.  
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Despite the substantial number of applications of deterministic, stochastic, and mechanistic 

modelling to estimate the temporal infrastructure condition, most former studies adopting such 

methodologies have not explicitly considered the climatic conditions' effect on the deterioration 

process throughout the infrastructure lifespan. The global climate change and its weather extremes 

present major challenges, to such assumptions, that are expected to remain persistent for the 

foreseeable future. This situation subsequently highlights the need to integrate relevant climate 

metrics within infrastructure deterioration models to inform effective climate adaptation strategies 

(Peng & Stewart, 2016; Stewart et al., 2012). Climate conditions can generally be characterized 

by temperature and precipitation indices (Sillmann & Roeckner, 2008). Approaches focused on 

integrating such spatiotemporal indices with infrastructure characteristics within multi physics-

based simulations produce complex prediction models with low accuracy attributed to the 

numerous sources of uncertainty (Camacho, 2009; Underwood et al., 2020).  

Data-driven models (DDM) present an efficient alternative to physics-based modelling of 

interacting systems (Zhou et al., 2020). In DDM, multiple inputs describing the characteristics of 

two or more systems (e.g., climate and infrastructure) are mathematically integrated to predict an 

output(s) of interest (e.g., infrastructure deterioration rate). It is also beneficial to consider DDM 

techniques that produce symbolic regression expressions (glass box) in lieu of typical black box 

techniques (e.g., deep learning) (Berardi et al., 2008; Cho, 2021). This will empower users to 

directly use the developed deterioration rate expressions without prior algorithm development 

knowledge. Such symbolic regressions can be achieved through parametric or nonparametric 

approaches, where classical regression (i.e., linear, and nonlinear) and artificial neural networks 

are examples of parametric DDM approaches that assume a fixed mathematical formula for the 

input-output relationship (Chukwu & Adepoju, 2012). Evolutionary computing techniques—a 

class of nonparametric DDM approaches, continuously evolve initial mathematical expressions 
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until the input-output relationships are sufficiently captured. Genetic Programming (GP) is one 

example of such techniques (Gondia et al., 2020) and is inspired by the concept of biological 

evolution proposed by Darwin (1859). 

Using the exact resemblance with evolution theory, the application of the GP starts with a 

predefined number of randomly generated expressions (individuals). Depending on the 

expressions’ ability to mimic the input-output relationship, individuals are either preserved or 

merged/changed in an attempt to create offspring with better performance. This process is repeated 

continuously until a prespecified termination criterion is satisfied. Due to its efficacy, DDM has 

been applied to simulate the infrastructure deterioration process (Yin et al., 2020; Ishida et al., 

2021), with only few studies considered some basic climate characteristics (Piryonesi & El-Diraby, 

2021).  

The present study develops a framework using a climate based DDM to produce closed form 

expressions that can predict the infrastructure deterioration rates efficiently. The framework starts 

by collecting datasets representing the infrastructure's spatiotemporal and functional 

characteristics and associated climate indices. The temporal infrastructure conditions are 

subsequently converted to corresponding deterioration rate metrics, as described in detail later. A 

geospatial analysis is then carried out to link climate indices and infrastructure characteristics 

while representing climate indices by their corresponding statistical measures (e.g., means, 

standard deviation). Since the resulting integrated dataset (of the infrastructure-climate system) 

may include redundant information caused by interrelated parameters and noise introduced by 

irrelevant parameters, identifying, and applying an efficient feature selection procedure is thus key. 

Finally, a symbolic predictive model for the deterioration rate can be developed using DDM 

approaches, and the model feasibility, performance, and complexity can be subsequently analyzed.  
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2. FRAMEWORK ARCHITECTURE 

Figure.1 illustrates the proposed framework which provides a standardized way to integrate 

the parameters describing the climate and infrastructure systems to develop a representative 

infrastructure deterioration rate expression. The framework encompasses four steps: (1) data 

collection and preparation; (2) input integration; (3) feature selection; and (4) model development 

and result interpretation. A detailed description of each of these steps is provided in the following 

sections.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1. Framework architecture  
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2.1. DATA COLLECTION AND PREPARATION 

In this step, values of different infrastructure parameters that can affect the deterioration 

rate should be compiled. Such parameters may include material, geometry, safety, functionality, 

and location (latitude and longitude) data. Climate indices should also be collected at this step, 

where precipitation and temperature indices are typically used to describe the spatiotemporal 

climate conditions. The former set of indices can include the annual number of days with rainfall, 

snowfall, precipitation, consecutive dry days, and the quantity of pouring, whereas the latter set of 

indices can contain the annual number of hot, cold, and freezing days and nights, and the 5th and 

95th percentiles of the maximum and minimum temperatures in the four seasons (Mekis & Vincent, 

2008). Such indices are typically derived from daily precipitation and temperature records acquired 

from in-situ weather stations or from regional climate models calibrated using measurements from 

these stations (IPCC, 2021).  

Finally, the infrastructure conditions of those existing in the study area need to be collected 

and subsequently used to estimate the corresponding deterioration rates. Infrastructure 

deterioration processes are typically nonlinear and nonstationary due to the complex nature of the 

deterioration mechanisms and the performance enhancement following minor or major 

interventions (i.e., rehabilitation). As such, successive records of infrastructure conditions can be 

used to calculate deterioration rates, and for simplification, the average can be used to represent 

the deterioration rate of the infrastructure over the considered time period assuming constant 

performance decline.  When the aforementioned procedure is used, the overall average 

deterioration rate (ADR) of infrastructure reflects how it deteriorates over time, whereas a 

homogenization procedure should be performed for major rehabilitated infrastructures prior to and 

post-rehabilitation. It should also be noted that negative deterioration rate values may be 



Master’s Thesis – Yasser Elleathy    McMaster University – Civil Engineering 

7 
 

encountered when minor rehabilitation significantly improves the considered infrastructure 

performance or due to possible human data entry errors or subjectivity. Predictive DDM developed 

considering such (erroneous) observations might significantly underestimate the ADR value, and 

therefore such data points should be removed during the data collection and preparation step.  

2.2. INPUT INTEGRATION 

As the locations of infrastructures may not exactly coincide with weather stations where 

climate indices are evaluated, geospatial analysis is essential to identify the climate indices at each 

infrastructure location. Geospatial analysis has a wide range of applications, including 

interpolation and linkage. Interpolation includes assigning the infrastructure a weighted set of 

climate indices, where the weights can either be related to the distances between the infrastructure 

and surrounding weather stations (i.e., inverse distance weighted interpolation) or be calculated 

based on the variogram of climate indices (i.e., kriging interpolation) (Oliver & Webster, 1990). 

On the other hand, direct linkage refers to assigning each infrastructure the set of climate indices 

corresponding to the nearest weather station (De Smith et al., 2007). For simplicity, time series of 

climate indices that correspond to the infrastructure over its lifetime could be substituted by 

representative statistics (e.g., mean, standard deviation). After linking infrastructures to their 

corresponding climate indices statics, an integrated dataset can be prepared. Such dataset should 

contain: 1) input features, including the infrastructure characteristics and climate indices statics 

over the infrastructure lifetime; and 2) an output feature, which is the corresponding ADR.  
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2.3. FEATURE SELECTION 

Feature selection is the process of identifying the best subset of nonredundant input features 

that can facilitate accurate prediction of the output of interest without: 1) sharing/replicating the 

same information (i.e., due to interdependence); 2) producing biased output; or 3) unnecessarily 

increasing the model complexity (Alabdulwahab & Moon, 2020). Several feature selection 

techniques have been developed, and can generally be classified under Filters, Wrappers, and 

Embedded techniques.  

Filters are the simplest and most straightforward feature selection techniques, in which the 

strength of the relationship between inputs and input-output pairs are evaluated. Highly correlated 

inputs are subsequently replaced by a single representative one, and those of a lower correlation 

with the output of interest are eliminated. As such, filter-based feature selection techniques 

necessitate identifying a correlation measure (e.g., Pearson’s correlation coefficient, Chi-squared) 

along with an input elimination threshold. (Duch, 2006). 

Wrapper techniques, in contrast, rely on iteratively developing a predictive models based on 

different subsets of input features. When wrapper techniques are applied, the model performance 

is evaluated based on an error estimator (e.g., root mean squared error (RMSE), Akaike 

Information Criterion (AIC)) or a penalized error (e.g., Bayesian Information Criteria (BIC)). The 

optimal subset of input features is that produces the highest model performance. Examples of 

wrapper-based feature selection techniques include: 1) the forward stepwise variable selection, in 

which an initial model is developed based on a single input and iteratively adding more features 

until the model with the best performance is identified; 2) the backward stepwise variable 

elimination, in which the initial model is developed based on the full set of inputs and subsequently 

removing those with lower impacts on the model performance; 3) the stepwise regression, in which 
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both forward and backward stepwise methods are integrated; and, 4) genetic algorithms, in which 

a population of models is built based on different subsets of input features and subsequently evolve 

over iterations to identify more superior models. It should be emphasized that wrapper feature 

selection techniques typically result in more accurate models compared to those developed based 

on filter approaches; however, their applications are most often computationally demanding 

(Pistore et al., 2019).  

An embedded feature selection technique allows the iterative choice of input features that 

significantly boost performance of the resulting model, albeit at a lower computational cost 

(Peralta & Soto, 2014). Examples of modelling approaches with embedded feature selection 

include the random forest, and GP. It should be emphasized that when a DDM approach with a 

built-in (i.e., embedded) feature selection technique is employed, the use of an external feature 

selection technique (i.e., filters and wrappers) should be avoided (Babatunde et al., 2014).  

2.4.  MODEL DEVELOPMENT AND RESULT INTERPRETATION  

After selecting the input subset that significantly influence the infrastructure deterioration rate, 

several DDM approaches can be employed to develop the ADR symbolic prediction model. These 

approaches include classical regression, supervised machine learning, and evolutionary computing 

techniques. Classical regression techniques aim at combining input features either linearly or 

nonlinearly. Coefficients typically exist within the model structure to reflect the contribution of 

each input feature to the model output, and their values are most often calculated based on least 

squared analyses. However, the development of classical regression models, particularly those 

linear ones, requires a monotonic relationship between each input-output pair and also necessitate 

the model errors to be normal and independent (Myers & Myers, 1990). Supervised machine 

learning techniques, such as artificial neural networks, represent more efficient alternatives to 
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classical regression techniques. Such techniques typically employ a linear-nonlinear model 

structure to capture complex input-output relationships. Model coefficients (weights) are 

iteratively adjusted through a backpropagation algorithm to minimize the difference between 

actual and estimated outputs. It is worth noting that extracting underlying symbolic expression 

from the artificial neural networks model is neither an easy nor a straightforward procedure (Taha 

& Ghosh, 1999). It also should be highlighted that both classical regression analysis and supervised 

machine learning techniques employ a predefined fixed model structure which restricts the 

developed model applicability (Cuevas et al., 2002; Yegnanarayana, 2009).  

On the other hand, the more powerful evolutionary computing techniques can efficiently 

uncover complex input-output relationships through an adapted model structure (Gondia et al., 

2020). Such techniques typically employ specific operations that prevent the solution from being 

trapped in local opima. GP is an example of evolutionary computing techniques used for predictive 

model development and can be adopted in a single- or multi-gene fashion. The application of GP 

starts by defining the operands and operation functions (Fig. 2), and subsequently develop an initial 

set of suggested solutions (i.e., initial population). Each solution witihn the population is typically 

referred to as an individual (expression) and represents a candidate mathematical relationship 

between the input and output features. Individuals are represented by variable-length tree-like 

structures, where an operation function is used as a root node and operands typically exist at 

terminal nodes (Fig. 2). A fitness value is subsequently assigned to each individual to reflect its 

suitability to replicate the actual output. Such value can be calculated based on an error estimator 

(e.g., RMSE), strength quantifier (e.g., R2) of the relationship between the actual and predictied 

output, model performance cretieria (e.g., BIC), or a cost function that combines two or more 

measures. New individuals are continously reproduced over generations from precursors through 
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the application of: 1) elitism, where individuals with higher fitness are copied to the next 

generation; 2) crossover, where parts of two selected individuals are randomly shuffeled to 

produce two new offspring individuals (Fig. 3a); and 3) mutation, where part of a single individual 

is randomly changed (Fig. 3b). The most common selection methods used in this step are the 

tournament and roulette wheel methods. When a tournament selection is applied, a number of 

individuals (competitors) is chosen randomly and the competitor with the highest fitness value is 

selected for crossover or mutation. On the other hand, when the roulette wheel selection method 

is adopted, each individual is assigned a selection probability depending on its fitness value. 

Individuals are subsequently selected randomly from the entire population based on such 

probability (Chudasama et al., 2011). 

It should be noted that elitism is typically applied to preserve high quality individuals over 

generations, whereas crossover and mutation are applied to increase the diversity within the 

remaining individuals such that their performance is enhanced over multiple generations. The 

reproduction process continues until a termination cretrion is sutisfied. Such certerion my be a 

specific number of generations, fitness value, computation time, or a combination of such metrics. 

Fig. 4 shows the typical steps followed when GP is applied. A detailed description of each of these 

steps is provided in the study by Koza (1994). 

 

Fig. 2. Tree-like structure of individuals within the GP procedure 
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Fig. 3. Schematics of crossover and mutation 
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Fig. 4. GP application flowchart  

Although the application of GP has proven to produce accurate predictive models in 

different fields (Grosman & Lewin, 2002; J. Shen & Jimenez, 2018), GP most often result in 

exceptionally complex mathematical expressions particularly when the number of input features 

is significantly large. It is thus more effective to apply GP in a multigene fashion, where low-depth 

(i.e., flat) non-linear individuals are combined within a linear regression model (Gandomi & Alavi, 
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2012). Fig. 5 shows an example of a mathematical expression developed based on the application 

of the multigene genetic programming (MGGP). In such example, the final mathematical model 

is the summation of a bias coefficient (i.e., C0) and two flat genes (trees 1 and 2), each of which 

is multiplied by a weighting coefficient (C1 and C2, respectively). These coefficients are evaluated 

to minimize the linear least-squares values between the predicted output (푌) and the actual output. 

The MGGP thus merges the ability of the classical linear regression and the power of capturing 

the non-linearity without predefining a model structure. It should be noted that models developed 

using MGGP usually outperform those resulted from the application of the standard GP for the 

same inputs and outputs (Mehr & Safari, 2020). In addition, the application of MGGP provides 

more control over the model complexity compared to that when standard GP is applied. 

Expressional complexity is a measure of the complexity of a mathematical expression and is 

typically used to differentiate between flat and deep trees (Le et al., 2016). For example, if two 

trees have the same number of nodes, the flatter one has lower expressional complexity compared 

to the deeper one. A Pareto selection method is typically applied to choose a less complex solution 

as such approach considers both the fitness and complexity of the model rather than the model 

fitness only (Ekart & Nemeth, 2001).  

 

Fig. 5. An example of MGGP-generated expression 
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 When the MGGP is employed, a random number of trees between 1 and a predefined 

number Gmax is allocated to each individual within the initial population. Higher values of Gmax 

increases the likelihood of capturing more non-linear interrelationships between inputs and 

outputs. However, such higher values of Gmax facilitates the occurrence of horizontal bloat. The 

horizontal bloat is defined as the development of a complex model that capture the input-output 

relationship efficiently during training, but this complexity result in no appreciable enhancement 

in the model prediction performance (Gandomi et al., 2016). It should be noted that the choice of 

the population size is crucial when using the MGGP as it controls the convergence rate, individual 

quality, and, therefore, the final solution. A large population size increases the likelihood of 

obtaining an optimal solution at earlier generations (Rylander & Gotshall, 2002); however, 

individual diversity may intensify across the population such that rapid convergence cannot be 

achieved (Koljonen & Alander, 2006).  It should be also noted that using a two-point high-level 

crossover is preferred to acquire new trees within each individual (Braik, 2021), as shown in Fig. 

6.

 

Fig. 6. Two-point high-level crossover procedure  
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3. DEMONSTRATION APPLICATION   

To demonstrate its utility, the proposed framework is applied to develop a predictive model 

for the deterioration rate of highway bridges, as are key infrastructure susceptible to climate 

induced deterioration in North America (ASCE, 2009). In this respect predictive models developed 

based on the proposed framework can: 1) aid designers and practitioners to efficiently choose the 

bridge material, geometry, and structural system that allow the bridge to deteriorate slowly under 

both loading and climate conditions; and 2) help decision- and policymakers to prepare efficient 

management guidelines for bridges under climate change.  

3.1. DATASET 

The present study employs the bridge inventory database of the Ministry of Transportation 

of Ontario (MTO) and relevant climate indices to develop a closed form predictive expression for 

bridge ADR in the province of Ontario, Canada considering the climate impacts. The bridge 

inventory dataset contains the year of the construction, material-, geographical-, geometric-, and 

structural characteristics as well as inspection scores between the year 2000 and 2017 for 1,250 

non-rehabilitated bridges made of concrete or steel in the province of Ontario. Inspection scores 

are reported in terms of a bridge condition index (BCI) that represents the bridge asset value 

compared to the corresponding replacement cost at the time of inspection (Stevens et al., 2020; 

Alzoor et al., 2021). Such measure reflects the overall bridge condition and inherently combines 

the conditions of the different components of the bridge. The BCI values range is between 0 and 

100, where a large value indicates a higher bridge asset value and thus reflects a lower possibility 

of replacement.  
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Climate indices considered in the present study include 10 precipitation and 30 temperature 

indices (Table 1) acquired from 59 and 48 weather stations, respectively, across the province of 

Ontario. Such indices were calculated based on homogenized daily precipitation and temperature 

and provided at an annual basis for the time period between 1900 to 2016. Precipitation indices 

include the number of days with different precipitation forms (e.g., rainfall, snow), as well as the 

1-day precipitation intensity. On the other hand, temperature indices are grouped into two sets: A 

and B. Set A contains indices for the number of days with a specific temperature, whereas set B 

encompasses the 5th and 95th percentiles of the maximum and minimum temperature of each season 

(i.e., winter, spring, summer, and fall) (Canadian Climate Data and Scenarios, 2019).  
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Table 1: Climate indices employed along with their definitions 
Classification Index Definition 

Precipitation 

ndr Number of days from January to December with rain ≥ 1 mm 
nds Number of days from July to June with snow ≥ 1 mm 
ndp Number of days from January to December with precipitation ≥ 1 mm 
h1r Number of days from January to December with rain > 90th percentile 
h1s Number of days from July to June with snow > 90th percentile 
h1p Number of days from January to December with precipitation > 90th percentile 
x1r Highest 1-day rain from January to December 
x1s Highest 1-day snow from July to June 
x1p Highest 1-day precipitation from January to December 

mcdd Max number of days from January to December with precipitation < 1 mm 

Temperature 
set (A) 

sd Number of days from January to December with maximum temperature > 25°C 
hd Number of days from January to December with maximum temperature > 30°C 
tn1 Number of days from January to December with minimum temperature > 20°C 
tn2 Number of days from January to December with minimum temperature > 22°C 
fd Number of days from July to June with minimum temperature ≤ 0°C 
cfd Max number of consecutive days from July to June with minimum temperature ≤ 0°C 
id Number of days from July to June with maximum temperature ≤ 0°C 
ft1 Number of days with minimum temperature ≤ 0°C and maximum temperature > 0°C 

ft2 Number of days from January to April with minimum temperature ≤ 0°C & maximum 
temperature > 0°C 

gdd5 Sum of degrees from January to December with mean temperature > 5°C 
cdd Sum of degrees from January to December with mean temperature < 18°C 
hdd Sum of degrees from January to December with mean temperature > 18°C 

FFS Maximum number of consecutive days from January to December with minimum 
temperature > 0°C 

GS start when mean temperature > 5°C for 6 days and end when mean temperature < 5°C 
for 6 days from Marsh to November 

Temperature 
set (B) 

WinTx05 Winter 5th percentile of maximum temperature from December to February 
WinTx95 Winter 95th percentile of maximum temperature from December to February 
WinTn05 Winter 5th percentile of minimum temperature from December to February 
WinTn95 Winter 95th percentile of minimum temperature from December to February 
SprTx05 Spring 5th percentile of maximum temperature from March to May 
SprTx95 Spring 95th percentile of maximum temperature from March to May 
SprTn05 Spring 5th percentile of minimum temperature from March to May 
SprTn95 Spring 95th percentile of minimum temperature from March to May 
SumTx05 Summer 5th percentile of maximum temperature from June to August 
SumTx95 Summer 95th percentile of maximum temperature from June to August 
SumTn05 Summer 5th percentile of minimum temperature from June to August 
SumTn95 Summer 95th percentile of minimum temperature from June to August 
AutTx05 Autumn 5th percentile of maximum temperature from September to November 
AutTx95 Autumn 95th percentile of maximum temperature from September to November 
AutTn05 Autumn 5th percentile of minimum temperature from September to November 
AutTn95 Autumn 95th percentile of minimum temperature from September to November 
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3.2. FRAMEWORK IMPLEMENTATION 

3.2.1. DATA COLLECTION AND PREPARATION   

Only bridges inspected more than one time between years 2000 and 2017 are considered 

in the present study as the bridge ADR can not be calculated from a single BCI value. The BCI of 

each of the considered bridges is converted into a corresponding ADR value, as described earlier. 

Fig. 7 shows the number of bridges constructed using different structural system and materials, as 

well as the corresponding deterioration rate. 

 

Fig. 7. Histogram of (a) a specific structural system and of (b) a specific construction 
material, and plot boxes of the deterioration rate grouped based on (c) the structural 

system and (d) the construction material 
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As can be revealed from Figs. 7a and 7b, the cast-in-place reinforced concrete frame 

bridges (in blue) represent a major portion of the bridges in the province of Ontario. In addition, 

weathering steel plate-I-girder bridges (in red) were observed to have the major portion of steel 

bridges in Ontario and a high deterioration rate compared to most other bridge types (Fig. 7c and 

7d). As such, the present model demonstration application adopts the proposed framework to 

estimate the ADR of cast-in-place concrete frame and weathering steel plate-I-girder bridges only. 

After removing those with ADR outliers, the number of bridges within the two classes is 212 and 

68, respectively. Geometric features considered for each bridge include the number of spans, 

longest span, deck length, and total width. Fig. 8 shows the histograms of these geometric features 

for the concrete and steel bridges considered in this demonstration application. 

 

Fig. 8. Histograms of the geometric features (i.e., the number of spans, longest span, deck 
length, and total width) of the (a) concrete bridges and (b) steel bridges considered in the 

demonstration application 
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3.2.2. INPUT INTEGRATION 

The purpose of this step is to prepare an integrated set of inputs that include geometric 

characteristics of bridges and climate indices at the bridge location. Figure 9 shows the location of 

the considered concrete and steel bridges as well as those of the considered weather stations. 

Considering the proximity of the bridges to related weather stations, climate indices are assigned 

to each bridge based on the nearest weather station (i.e., direct linkage) using the geodesic distance 

rather than interpolation. 

 

Fig. 9. The location of concrete and steel bridges considered in the demonstration 
application with respect to available (a) precipitation and (b) temperature stations in the 

province of Ontario 
 

After linking each bridge to the nearest weather station, aggregate metrics (i.e., mean and 

standard deviation) for the precipitation and temperature indices are calculated to reflect the 

climate variability that affected each bridge over its lifetime. By calculating the mean and the 

standard deviation of each climate index, the integrated input dataset includes four bridges’ 

geometric characteristics, 20 metrics for the precipitation indices, and 60 metrics for the 

temperature indices, all defined for each bridge within the considered dataset. 
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3.2.3. FEATURE SELECTION 

In this demonstration application, the MGGP is used to uncover the complex relationship 

between the 84 input features and the corresponding ADR. Since the MGGP can internally select 

the input features most important for estimating the output, there is no need to use an external 

feature selection approach (i.e., filters or wrappers) as explained earlier. 

3.2.4. MODEL DEVELOPMENT AND RESULT ANALYSIS   

In this study, the MGGP was applied using the MATLAB© toolbox, GPTIPS, developed 

by Searson et al. (2010). The MGGP hyperparameters defined for the concrete and steel bridges 

are shown in (Table 2). These hyperparameters are defined through a trial-and-error procedure in 

order to obtain an optimal solution at a reasonable computational cost. The fitness function 

considered is the RMSE, with the aim of minimizing its value. As the absolute minimum of the 

RMSE cannot be easily achieved (i.e., RMSE = 0), a relatively higher fitness value is allowed in 

the present study. For each of the considered bridge classes, around 75% of the dataset were used 

for the model development (i.e., training) whereas the remaining 25 % of the data were kept for 

testing the obtained model.  

Table 2: The employed MGGP procedure hyperparameters 

 Cast-in-place Concrete 
Frame Bridges 

Weathering Steel 
Plate-I-Girder Bridges 

Operands All the independent variables 
Operation functions plus, minus, multiply, divide, square root, and power 
Population size 10,000  
Tree depth 3 
Max. number of genes Gmax 6 5 
Ratio of elite individuals 0.05 0.1 
Crossover probability 0.7 0.85 
Mutation probability 0.15 0.05 
Termination criterion Fitness value ≤ 0.03, or the number of generations = 250 
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Figures 10a and 10b show the RMSE for the individuals within each generation for the 

concrete and steel bridges, respectively. The mean RMSE values were nearly constant after 100 

generations for both bridge types, justifying the choice of 250 as the maximum number of 

generations (Table 2). The RMSE values of the best individual within the last generation were 0.14 

and 0.21 for the training data and 0.16 and 0.25 for the test data for the concrete and steel bridges, 

respectively. Further investigations of the individuals within the final population showed that a 

less complex individual with a relatively higher R2 (proposals P1 and P2) can still be used to 

efficiently estimate the ADR of both bridge classes as shown in (Fig. 10c and 10d). Accordingly, 

the individuals’ proposals P1 (Fig. 10c) and P2 (Fig. 10d) were chosen as the near optimal ADR 

expressions for the concrete and steel bridges, respectively.  

 

Fig. 10. The individuals mean RMSE value in each generation for (a) the concrete bridges 
and (b) steel bridges, as well the relation between the expression complexity and R2 for 
individuals in the final population in case of (c) concrete bridges and (d) steel bridges 
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The mathematical representation of the proposal P1 for the concrete bridges and proposal 

P2 for the steel bridges are shown in Equations 1 and 2, respectively: 

 

ADR = 1.75 −
0.08 × σ × σ × σ

μ
+

0.53 × μ
σ

+ 0.01 × μ +
μ

σ
− 0.23 × μ +

σ
0.66

+ 0.0004 ×
μ + L
μ

− 0.0044 × (μ + σ × μ × σ )                                                       (1) 

  

 

ADR = 7.78 − 0.0001 × μ × σ × σ × (1.2188 +  σ + σ )

+ 0.0924 × μ − 0.0001 × σ  × μ × (σ + σ + σ )

− 0.0007 × σ × μ  × σ  × ( μ + σ + μ )

× (n + μ + σ )

− 0.064 × 1.11 × σ  + σ + μ  + σ                                                  (2) 

 

where Ld is the deck length in m and ns is the number of bridge spans. 
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The MGGP-based expressions shown in Eqns. 1 and 2 sufficiently reproduced the actual 

ADR of the concrete (R2 = 0.912 and RMSE = 0.14 for the training subset; and R2 = 0.817 and 

RMSE = 0.16 for the testing subset) and steel (R2 = 0.924 and RMSE = 0.21 for the training subset; 

and R2 = 0.909 and RMSE = 0.25 for the testing subset) bridges (Fig. 11), which supports the 

accuracy and generalizability of the two models. 

 

Fig. 11. A comparison between the actual and predicted ADR values for the (a) training 
and (b) testing subsets of the concrete bridges (proposal P1), and for the (c) training and 

(d) testing subsets of the steel bridges (proposal P2) 
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To further investigate the relationship between input-output pairs, the mean Shapely value 

was estimated for each of the independent variables in Eqns. 1 and 2 based on the methodology 

described in Molnar (2020). The average of the 5th percentile of the minimum autumn temperature 

(μAutTx05) and the average number of days with heavy rain (μh1r) are the primary drivers of 

accelerated deterioration of concrete bridges, whereas the increasing average number of spring 

freeze-thaw cycles (μft2) and variability of the 95th percentile of the minimum and maximum 

summer temperature (휎SumTn95 and 휎SumTx95, respectively) can significantly hinder the deterioration 

of such bridges (Fig. 12a). On the other hand, increasing the number of bridge spans (ns) can highly 

facilitate the deterioration of steel bridges whereas the high variability of frost season length (휎FFS) 

and average 95th percentile of the maximum summer temperature (μSumTx95) can result in a lower 

deterioration rate for steel bridges (Fig. 12b). These observations show that the geometric 

characteristics of bridges and climate conditions can together influence the deterioration of 

bridges, supporting the importance of developing climate-based infrastructure deterioration 

models. 

 

Fig. 12: The mean Shapely values for the inputs affecting the deterioration of (a) cast-in-place 
concrete frame and (b) weathering steel plat-I-girder bridges 
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4. CONCLUSION  

Quantifying the infrastructure deterioration rate is key to estimate the corresponding 

lifespan, to design long-lasting infrastructure, to manage required rehabilitation plans, and to 

effectively allocate the available resources. However, the deterioration rate is influenced by the 

physical/chemical/functional infrastructure characteristics, as well as the ambient climate 

conditions. The latter influencing factor is of a particular importance due to the ongoing and 

expected climate change. In this respect, the present study proposes a framework that can be used 

to develop symbolic predictive models linking the deterioration rates of infrastructures to climate 

indices. To demonstrate its utility, the proposed framework was used to develop multigene genetic 

programming (MGGP)-based models for concrete and steel bridges in the province of Ontario, 

Canada. For the concrete bridges, the MGGP-based model effectively reproduced the actual 

deterioration rate values for the training subset with coefficient of determination (R2) and root 

mean squared error (RMSE) values of 0.912 and 0.14, respectively. The model accuracy was 

slightly lower for the testing subset, with R2 and RMSE values of 0.817 and 0.16, respectively. 

For the steel bridges, the accuracy of the MGGP-based model was nearly similar to that used for 

the concrete bridges for both the training (R2 = 0.924 and RMSE=0.21) and testing subsets (R2 = 

0.909 and RMSE=0.25). A factor importance analysis revealed the minimum autumn temperature, 

minimum and maximum summer temperature, number of days with heavy rain, and number of 

spring freeze-thaw cycles can significantly impact the deterioration of concrete bridges, whereas 

the number of bridge spans, frost season length, and maximum summer temperature can highly 

control the deterioration of steel bridges. The results of the present study highlight the importance 

of incorporating the climate conditions when developing predictive models for infrastructure 

deterioration and support the efficiency of the proposed data-driven framework in developing these 



Master’s Thesis – Yasser Elleathy    McMaster University – Civil Engineering 

28 
 

integrated models. Such models can: 1) aid the designers and practitioners to efficiently determine 

the remaining lifespan of existing infrastructure, as well as the expected lifetime of those under 

design, considering the climate impacts; 2) assist the infrastructure asset managers to devise 

reliable repair strategies; and, 3) enable the policymakers to prepare effective asset management 

strategies considering future climate projections. 
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