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Abstract

The automotive industry is inevitably experiencing a paradigm shift from fossil fuels

to electric powertrain with significant technological breakthroughs in vehicle electri-

fication. Emerging hybrid electric vehicles were one of the first steps towards cleaner

and greener vehicles with a higher fuel economy and lower emission levels. The energy

management strategy in hybrid electric vehicles determines the power flow pattern

and significantly affects vehicle performance.

Therefore, in this thesis, a learning-based strategy is proposed to address the

energy management problem of a hybrid electric vehicle in various driving conditions.

The idea of a deep recurrent neural network-based energy management strategy is

proposed, developed, and evaluated. Initially, a hybrid electric vehicle model with a

rule-based supervisory controller is constructed for this case study to obtain training

data for the deep recurrent neural network and to evaluate the performance of the

proposed energy management strategy.

Secondly, due to its capabilities to remember historical data, a long short-term

memory recurrent neural network is designed and trained to estimate the powertrain

control variables from vehicle parameters. Extensive simulations are conducted to

improve the model accuracy and ensure its generalization capability. Also, several

hyper-parameters and structures are specifically tuned and debugged for this purpose.
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The novel proposed energy management strategy takes sequential data as input

to capture the characteristics of both driver and controller behaviors and improve the

estimation/prediction accuracy. The energy management controller is defined as a

time-series problem, and a network predictor module is implemented in the system-

level controller of the hybrid electric vehicle model. According to the simulation

results, the proposed strategy and prediction model demonstrated lower fuel con-

sumption and higher accuracy compared to other learning-based energy management

strategies.
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Chapter 1

Introduction

1.1 Background and Motivations

The automotive industry is a vital part of the global economy. Its distinctive role

encompasses every aspect of the value chain, from raw materials through design and

development, production, services, and disposal. Due to competitive factors and

environmental forces, all of these value-creating domains are undergoing consider-

able innovative transformations. Among interesting trends, industry-based research

shows that fuel efficiency is rapidly becoming the major priority of customers across

all product-market categories. Both industry innovation and customer demand for

alternative fuels and drive train technologies have been encouraged by government

involvement [1].

For centuries, reciprocating piston engines were an inseparable power source com-

ponent for land and water vehicles, including automobiles, motorcycles, boats, etc.

An internal combustion engine (ICE) is a heat engine with intermittent combustion
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cycles. The thermal efficiency of the ICE idealized thermodynamic cycle cannot ex-

ceed that of the Carnot cycle. Assuming the operation under ideal conditions, the

Carnot efficiency of ICE could be approximately around 75%. In real-world condi-

tions considering frictions and incomplete combustion, the engine efficiency is much

lower. Many improvements have been made to enhance the efficiency of internal

combustion engines. Peak thermal efficiency of 50% was achieved in Formula one

engines by the latest technologies [2]. Besides the low efficiency of engines, serious

environmental problems such as air pollution and global warming count as their most

important drawbacks. According to Environmental Protection Agency (EPA), 29%

of total U.S. greenhouse gas emissions in 2019 were from the transportation sector.

Transportation, in fact, holds the largest share of greenhouse gas emissions [3].

While contemporary transportation relies primarily on fuel-powered cars, a world-

wide contest is happening to prototype and create the next generation of vehicles.

Electric, hybrid electric, and fuel cell-powered drive train technologies have long been

considered as the most potential future solutions to the challenge of land transporta-

tion [4]. Different degrees of electrification are thoroughly discussed in the next chap-

ter. Lower level powertrain electrification degrees result in hybrid electric vehicles

(HEV), which take advantage of both electrical and heat energy in electric motors

and internal combustion engines. Higher degrees of electrification results in plug-in

HEV (PHEV) and all-electric vehicles (EV) with only battery electrical propulsion

power. Figure 1.1 demonstrates the powertrain production forecast in 2030. It can

be seen that the North American region is staying behind the global growth of trans-

portation electrification with the highest percentage of ICE-only vehicles [5]. Thus,

the need for research and development in this area is growing rapidly.

2
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Figure 1.1: Powertrain Technology Outlook in regional and global markets in
2030(adapted from [6])

Besides improvements in ICE, powertrain electrification caused improvements in

electrical subsystems of vehicles such as battery packs, electric motors, and power

electronic devices. In the battery sector, there is an interesting trend towards design-

ing the next generation of battery packs that are more powerful, lighter, and capable

of fast charging. Lithium-Ion batteries are currently used in most PHEVs and EVs

due to their high-to-power ratio and energy efficiency, good high-temperature perfor-

mance, and low self-discharge. Nickel-Metal Hydride batteries also have been widely

used in HEVs.

Permanent magnet synchronous motors and AC induction motors are two main

types of electric machines used in the transportation sector. Top-selling HEV as of

2016, the Toyota Prius, has a 60 kW V-shaped interior permanent magnet traction
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motor and Tesla Model S high-performance EV uses 310 kW, 600 N.m three-phase

induction machine. Furthermore, researchers are working to produce more desired

electric motors for traction applications, such as switched reluctance motors (SRM),

which have demonstrated remarkable propulsion and manufacturing capabilities [7].

Electrified vehicles are the future of the automotive industry due to their great

potential in saving fuel consumption and reducing greenhouse gas emissions. Such

encouraging promise has attracted attention to the importance of power management

in enhancing the fuel economy and decreasing emission levels. Also, with new data

collection and transformation technologies in vehicles and with the help of artificial

intelligence and machine learning algorithms, the overwhelming amount of data about

roads, driving conditions, vehicle motions, and global position (GPS) can be used

towards improving the energy management control strategies of electrified vehicles.

The powertrain control unit, an important part of hybrid electric vehicles, manages

the power flow between different components. Various energy management strate-

gies (EMS) employment result in different fuel economy, performance, and emissions.

Most of the existing HEV control strategies are fine-tuned to obtain optimal fuel con-

sumption under certain driving situations. Due to the difficulties in driving condi-

tions prediction, those methods are not practical in real-world applications. Frequent

change in driving behaviors and circumstances makes the condition-based control very

hard to optimize a controller for every situation. As a result, control designers focus

on real-time learning-based control methods such as Neural Networks (NN) and their

issues for commercialization. The learning-based methods are particularly beneficial

in applications where pattern recognition is difficult since they can learn from the

experience provided by existing energy management control strategies to build an

4
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optimal/sub-optimal controller [8].

This work presents an energy management strategy based on a Deep Recurrent

Neural Network (RNN). The deep RNN-based strategy is specifically designed to

learn various driving behaviors through an existing control strategy data in an offline

framework and then use those historical data in real-time power flow control of the

hybrid electric vehicle. The control strategy used to train the deep RNN in this work

is similar to that used in an actual power-split HEV, Toyota Prius Model year 2010.

The outline of the work and detail discussion of each part will be presented in the

rest of this thesis.

1.2 Thesis Outline

Chapter 2, Hybrid Electric Powertrains, gives a brief explanation of electrification

levels in electrified transportation with product examples and fuel efficiency improve-

ments. The main focus is on hybrid electric vehicles powertrain components and their

various architectures. Four popular architectures of mild, series, parallel, and power-

split are demonstrated. Then three major powertrain supervisory control objectives of

fuel economy, emissions and greenhouse gasses, and performance are presented. These

are among the main objectives of this thesis which are explained through statistics

and literature review.

Chapter 3, Fundamentals of Energy Management Strategies, presents a classifi-

cation for energy management strategies in HEV powertrain, which divides EMSs

into three groups: optimization-based, rule-based, and learning-based. Then, a brief

overview of a few popular online and offline energy management of each classified

5



M.A.Sc. Thesis – Helia Jamali McMaster University – Mechanical Engineering

group is given. Deterministic and fuzzy rule-based, dynamic programming, equiv-

alent consumption minimization strategy, model predictive control, and neural net-

works and machine learning strategies are evaluated for their benefits and drawbacks.

In the end, a comparison is made to wrap up the review on various EMSs.

In chapter 4, Hybrid Electric Vehicle Modeling, the model for Toyota Prius model

year 2010, which is a power-split HEV, is explained thoroughly. The model is de-

veloped in MATLAB/Simulink software using actual vehicle dynamometer test data.

Model parameters are obtained from comparing model outputs to test data. The

model has three major subsystems: Driver, supervisory controller, and vehicle mod-

els. Driver speed and torque demand are simulated using driving cycle input to a PID

controller. The vehicle model consists of minor powertrain and chassis subsystems:

internal combustion engine, motor/generators and power electronics, power-split de-

vice, battery, wheel, final drive, and chassis models. Each subsystem modeling is

discussed briefly with relevant equations. A rule-based EMS is developed for the su-

pervisory controller based on the vehicle behavior under four different driving cycles

available in test data. Model Evaluations at the end show adequate model fidelity

for investigating the impact of using other EMSs on fuel economy and vehicle perfor-

mance.

In chapter 5, Offline LSTM Multi-Parameter Prediction Model, the process of

developing a Long short-term memory (LSTM) model from the HEV model and con-

troller outputs is presented. An introduction on the reasons for selecting recurrent

neural networks and specifically LSTM networks for this work are highlighted. The

LSTM network has trained on four input data of vehicle speed, acceleration, battery

state of charge, and torque demand. It predicts the control variables of engine speed

6
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and engine torque. A pre-processing is done on the training dataset, including nor-

malization with standard score method before training the network. After a brief

introduction on LSTM networks, the methodology for developing the LSTM multi-

parameter prediction model is outlined into four major steps: Define, Compile & fit,

Verify, and Predict. Evaluation metrics for choosing the best model performance are

then described. At least 45 networks with different structures and hyper-parameters

are simulated in the next step to find the optimal model and parameters. Ten net-

work structures with different layers and neurons, three sizes of the testing dataset,

four learn rate drop factors, five mini-batch sizes, and seven time window sizes are

evaluated. The final model achieved 1.41 (rad/s), and 0.57 (N.m) validation root

mean square error (RMSE) for engine speed and torque, respectively.

In chapter 6, Deep Recurrent Neural Network Based Energy Management Strat-

egy, the developed LSTM model from the previous chapter is implemented online in

the selected HEV model. The network predictor module takes the historical data

from the model in real-time. It predicts the engine speed and torque variables which

can be used in supervisory control of the HEV. For this purpose, a time-series inter-

pretation of EMS is given to elaborate on using the LSTM prediction model as an

online energy management controller. The integration of the LSTM prediction model

in the HEV Simulink model is discussed, and the results on tested drive cycles have

shown improvements in fuel economy over the initially developed rule-based strategy.

7



Chapter 2

Hybrid Electric Powertrains

2.1 Introduction

With significant technological breakthroughs in vehicle electrification, the future of

the automobile industry is inevitably experiencing a paradigm change from fossil

fuels to the electrified powertrain. HEVs (Hybrid Electric Vehicles), plug-in hybrid

electric vehicles (PHEVs), and fuel-cell vehicles are the first step toward a more

energy-efficient future [9]. Hybrid electric vehicles use multiple sources of energy and

power in their system. Battery, internal combustion engine, fuel cell, ultracapacitor,

etc., are some of the energy sources used primarily on HEVs [10]. In this chapter, the

main focus is on hybrid electric powertrains and explaining the electrification level and

their powertrain architecture. We specifically consider a hybrid electric powertrain

consisting of an internal combustion engine, electric motors, power electronics units,

and a battery pack.
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2.2 Powertrain Electrification and Architecture

2.2.1 Electrification Level

The capacity of the electric path is determined by the electrification level, which is

generally denoted by battery voltage, power, and performance of xEVs. Micro hybrid,

mild hybrid, strong hybrid, plug-in hybrid, and fully-electric powertrains are the most

common types of electrified powertrains [11]. The electrification level defines the ratio

of electrical power available to the total power. Nowadays, most commercial vehicles

have at least 10 % -20 % electrification [12].

As listed in table 2.1, HEVs have varying degrees of electrification, ranging from

conventional vehicles to fully electric vehicles. The degree of electrification contributes

directly to fuel economy improvement and CO2 emission reduction. Also, it is highly

dependant on the powertrain architecture, which is discussed in the following subsec-

tion.

2.2.2 Powertrain Architecture

The architecture of a hybrid electric powertrain is dependant on the electrification

level and the connection between drive train components such as internal combustion

engine (ICE), electric motor or generator (M/G), battery pack, transmission, and

differential (final drive). Conventionally, HEVs were classified into two simple archi-

tectures of series and parallel. After 2000, some new HEVs, such as Toyota Prius,

Chevrolet Volt, and Fiat-Chrysler Pacifica, could not be classified into such conven-

tional categories [4]. Their powertrain architecture was a combination of both classes

called series-parallel, which benefits from the advantages of both series and parallel
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Electrification Classification
Electric motor

power range

Fuel efficiency

improvement
Examples

∼0-5% Micro hybrid 3-10 kW 2-10%
Volkswagon Passat

BlueMotion

∼10-15% Mild hybrid 8-20 kW 8-20%
Mercedes benz S400

Honda Acura ILX Hybrid

∼20-40%
Parallel hybrid

20-50 kW 20-50%

Hyundai Sonata 2016

BMW activehybrid 5

Series-parallel

Toyota Prius

Chevrolet volt

Cadillac Escalade

∼40-50% Series hybrid
BMW i3

Nissan e-Power NISMO

∼50-70% Plug-in hybrid 30-80 kW 40-100%
Toyota Prius 2016

Chevrolet Volt PHEV

100% Fully electric (EV) 100 kW 100%

Tesla Model S

Nissan Leaf

Chevrolet Bolt EV

Table 2.1: Degree of electrification and classification of electrified powertrains: fuel
efficiency improvement and electric traction motor power (adapted from [13,14])

architectures and eliminates some disadvantages in both typologies [15]. The notion

of series-parallel architecture can be achieved with the help of multiple clutches or a

power-split device (PSD) [16]. Figure 2.1 demonstrates the arrangement of drive train

components in the architectures discussed above. Note that solid and dashed lines

indicate mechanical and electrical links, respectively. Also, ICE denotes engine, and

M/G denotes motor/generator. In this work, the main focus will be on power-split

architecture as they are the most advanced topology. Additionally, this architecture

offers better fuel economy and performance.
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(a) Mild Hybrid (b) Parallel Hybrid

(c) Series Hybrid (d) Series-Parallel Hybrid

Figure 2.1: Various types of hybrid powertrain architectures.
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2.3 Powertrain Supervisory Control Objectives

The control of the power flow between fuel and electrical energy sources that leads

to vehicle propulsion is the key problem in the development of HEVs. The problem

emerges as a result of limited electrical energy source and the need to reduce fuel usage

and emissions. The selected energy management strategy (EMS) significantly impacts

the vehicle’s performance, fuel economy, and exhaust emissions, which is the main

focus herein [17]. The supervisory control for managing energy flow from powertrain

components to the wheels in series-parallel configuration is more complicated than

other topologies because more energy sources need to operate at optimal or near-

optimal points [14].

2.3.1 Fuel economy

The oil and fuel resources are limited, and the amount of years Earth’s oil resources

can sustain our oil supply is entirely dependent on the discovery of fresh oil reserves

and cumulative oil production, which is highly difficult and expensive. Based on

this and the fact that the transportation section is one of the primary consumers of

petroleum, improving the vehicle’s fuel economy significantly influences the supply

of oil [4]. Also, it has been predicted that global fossil fuels production will be

maximized around the 2030s and 2040s, after which it would gradually decline [18].

Based on the U.S. Environmental Protection Agency (EPA) report, fuel economy

has increased 29% or 5.6 mpg, since 2004 [19]. The EPA has devised a regulation

that will significantly improve the fuel economy of new automobiles to ensure that

automakers invest in fuel-saving technologies. The corporate average fuel economy

(CAFE) standard requires passenger vehicles to achieve a minimum fuel economy of
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43.1 mpg by 2026 [20].

Moving toward electrifying vehicles is one of the most viable solutions to meet the

fuel economy standards in the future. Figure 2.2 shows the fuel economy for different

types of vehicles from 1975 to 2020. As it can be seen, the trend is toward higher fuel

economy [21].

Figure 2.2: Estimated real-world fuel economy (adapted from [21])

2.3.2 Emissions and Greenhouse Gasses

The products of non-ideal hydrocarbon fuels combustion contain carbon dioxide

(CO2), nitrogen oxides (NOx), unburned hydrocarbons (HC), and carbon monox-

ide (CO), which are harmful both to the environment and public health. From 1980

to 1999, 32% of carbon dioxide, which is one of the greenhouse gasses (GHG), has

been emitted from the transportation sector resulting in global warming [4]. In most

countries, an emission performance standard has been set to regulate greenhouse
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gasses and exhaust emissions. For instance, in the US, EPA manages the emission

standards. However, the state of California is allowed to set stricter standards due to

severe air quality issues, which is set by California Air Resources Board (CARB) [22].

EPA and the National Highway Traffic Safety Administration (NHTSA) have issued

final rules to reduce GHG emissions for light-duty vehicles from 2017 to 2025. In

model year 2025, the final requirements are expected to result in an average fleetwide

CO2 level of 163 g/mi [23]. Based on the report published by EPA, since 2004, CO2

emission rates have decreased 23% or 105 g/mi [19]. Figure 2.3 demonstrates the

downward trend of real-world CO2 emissions for the past 25 years.

Figure 2.3: Estimated real-world CO2 emissions (adapted from [21])

Large automotive manufacturing companies have set goals towards zero emissions.

Stellantis targets over 70% of Europe sales to be low emission vehicles by 2030 [24].

Also, General Motors has aimed for an all-electric future with zero emissions by 2030

in the US market [25].
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2.3.3 Performance

Besides the advantages of powertrains electrification in fuel economy and emission

reduction, the driving performance of electrified vehicles is an important factor that

should be discussed. Combining the HEVs available electric power with ICE power to

create exceptional vehicle drivability is a tremendous opportunity. The acceleration

time, maximum cruising speed, gradability, braking, and stability of a vehicle are

generally used to evaluate its driving performance.

There are numerous techniques to improve the performance of internal combustion

engines. One of them that is directly related to increasing the torque generated by

ICE, is the ’forced induction’, which simply increases the amount of air induced in

cylinders. Forced induction can be done by variable intake manifold, supercharging,

or turbocharging. Turbocharging can highly increase the power output of the engine.

Also, the dynamic performance can be significantly improved by directly attaching

an electric motor to the turboshaft [26]. Slow response time and low effectiveness at

low engine speed are the most important disadvantages of turbocharging in engine

performance [4]. The transient response time of the turbocharger can be improved

by using an auxiliary electric motor [26].

The key factors in EV drive train design are the appropriate motor power rating

and transmission characteristics to satisfy the performance criteria. Electric motors

have an entirely different torque profile than internal combustion engines in which

they can achieve their maximum torque at extremely low speeds. ICEs, on the other

hand, typically require at least 33% of their maximum engine speed to achieve peak

torque [27]. Based on this characteristic of electric motors, they can make up for the

lack of available torque from the ICE, which improves the traction and propulsion
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performance of HEVs.

Additionally, Regenerative braking reduces the amount of pressure applied to the

brakes and recovers free energy in braking intervals, which can subsequently be used

as an electric boost.
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Chapter 3

Fundamentals of Energy

Management Strategies

3.1 Introduction

Several factors are impacting the performance of HEVs and PHEVs from a system

design standpoint, including the powertrain type, architecture, and energy manage-

ment strategy (EMS). To achieve an energy-efficient powertrain, numerous control

objectives, as discussed in section 2.3 , must be addressed, making the EMS one of

the most critical parts of the powertrain system design [28].

EMS is responsible for deciding which energy source (e.g., battery pack, gaso-

line fuel) and propulsion unit (e.g., electric motor, ICE) must be used to provide the

demanded power from the driver while meeting its objectives. Different control strate-

gies would have various fuel economy, emissions, and drivability results. Thus, the

EMS actions should be feasible to implement and be towards achieving near-optimal

results.
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Due to the importance of the EMS in HEV powertrain, it is essential to review

different types of EMS. In [14], Biswas and Emadi presented a similar classification

by dividing EMSs into three groups of premediated, casual, and blended EMS. Enang

and Bannister in [29] classified HEV control strategies into online and offline energy

management strategies. Figure 3.1 is demonstrating one of the many classifications

represented for energy management strategies [28], classified EMSs into optimization-

based, rule-based, and learning-based strategies. Some of these strategies are equiv-

alent consumption minimization strategy (ECMS), model predictive control (MPC),

Pontryagin’s minimum principle (PMP).

Figure 3.1: Classification of energy management strategies for HEV powertrains

In this chapter, a brief overview of a few popular energy management strategies
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will be presented.

3.2 Deterministic and Fuzzy Rule-Based

Rule-based (RB) EMSs, as it comes from their name, rely on a set of predetermined

rules based on intuitions, heuristics, and human skills without the need for a priori

knowledge of the driving cycle. This kind of control strategy has the advantage of

real-time implementation feasibility due to its simplicity and efficiency. However, RB

strategies do not offer an optimal solution [28]. RB strategies divide into deterministic

and fuzzy.

Deterministic strategies such as thermostat (on/off), power follower, and state

machine-based strategies [30], lack the capacity to deal with uncertainties caused by

model inaccuracy, as well as flexibility for various driving cycles, due to the fixed

rules [31].

Fuzzy RB strategies differ from deterministic RB in being more robust to noises

from measurement tools and component variability [32]. Thus, fuzzy RB strategies

are particularly well suited to multi-domain, nonlinear, and time-varying systems [33].

The main structure is still similar to deterministic strategies with sets of if-then rules,

including membership functions for possibly improved performance [34].

3.3 Dynamic Programming

The dynamic programming approach was created by Richard Bellman and sought to

identify optimal control policies through a multi-stage decision process. This approach

is one of the popular and widely used algorithms for the EMS offline optimization
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problems [29]. This control strategy requires a priori knowledge of the future driving

cycle, and the optimal cost-to-go function J() is then formulated, which is expressed

in the following equation:

J(x(t), t) = min
u(t)∈U

(
J(x(t+ ∆t), t+ ∆t) +

∫ t+∆t

t

g(x(τ), u(τ), τ)dτ

)
(3.3.1)

Note that u(t) and x(t) are control inputs and state variables, respectively. Also, U

is the set of all potential control inputs. A numerical-based DP method should be

utilized to solve this finite optimization problem. By discretization of time in the

format of k ∈ [1, 2, ...,M ] and discretization of states in the format of i ∈ [1, 2, ..., N ],

previous equation can be written as:

J∗ (x(k), k) = min
u(k)∈U(k)

{J∗ (x(k + 1), k + 1) + g (x(k), u(k), k)} (3.3.2)

Moreover, the model of the HEV in discrete-time format can be stated as

x(k + 1) = f(x(k), u(k)) (3.3.3)

g(x, u) in equation 3.3.2represents a linear/nonlinear dynamical system with any cost

function and any limitations on u and x. Practically, the discretization of numerical

implementation is critical to the optimality of final results. Hence as the problem

complexity increases, the computing time grows dramatically. In brief, there are

two setbacks that DP suffers from, reliance on prior knowledge of driving cycle and

heavy computational burden dependant on dimensionality. Therefore, DP control

results are only helpful as optimal benchmarks for other controllers or foundations
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for developing and improving other sub-optimal controllers [29,31,35].

3.4 Equivalent Consumption Minimization Strat-

egy

Paganelli et al. [36] developed the equivalent consumption minimization strategy

(ECMS) for parallel HEVs functioning in a charge-sustaining mode. ECMS, de-

spite DP, does not require priori knowledge of driving cycle.In this strategy, an

equivalency factor (EQF), depending on the average efficiency of the battery dur-

ing charge/discharge, along with the efficiencies of electric motors and other compo-

nents, transforms electrical power consumption into fuel consumption [37]. The total

of actual fuel consumption ṁf and battery fuel consumption ṁf,batt,eq is known as

equivalent fuel consumption, expressed in the below equation

ṁf,eq = ṁf + ṁf,batt,eq (3.4.1)

The idea is to minimize the instantaneous cost, which is stated in the equation

below

J∗ = arg min
u∈U

ṁf,eq(u) (3.4.2)

More operation metrics such as emissions can be added to the instantaneous cost

function with tuning factors. This approach will achieve locally optimized results,

and it has the potential for online implementation. The definition of equivalence

factors is crucial in ECMS. That is due to the change of EQFs depending on the

driving conditions [38]. Therefore, variations of ECMS, such as Adaptive ECMS and
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Telemetry ECMS, have been evolved to adjust the equivalence factor based on driving

data and future predictions [39,40].

3.5 Model Predictive Control

The MPC is a popular and commonly used approach in HEVs for dealing with multi-

variable restricted control problems. This strategy can be thought of as a compromise

between DP and ECMS [41,42]. The MPC algorithm is usually implemented in three

iterative steps: (i) predicting the outputs based on the optimization horizon by using

the plant model; (ii) determining the cost function for the future outputs of the plant;

and (iii) implementing the control policy with minimum cost [34]. Figure 3.2 shows

these steps in a flow diagram.

Figure 3.2: Flow diagram of MPC algorithm

In classical MPC, which indicates control problems involving linear time-invariant

(LTI) systems, the system dynamics are described in the equations below without
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considering any uncertainties.

x(k + 1) = Ax(k) +Bu(k) (3.5.1a)

y(k) = Cx(k) (3.5.1b)

Where x(k) ∈ X , u(k) ∈ U , y(k) ∈ Y are the system state, control input and system

output, respectively. The index k = 0, 1, ..., N−1 is indicating the discrete time, where

N is the controller horizon. The controller is required to minimize
∑N−1

k=0 g(x(k), u(k))

subject to the constraints. Also, it is assumed that the state of the model in equation

3.5.1 is stable and observable to ensure that the optimal cost value is properly defined

[43].

3.6 Neural Networks and Machine Learning

Artificial Intelligent (AI) related EMSs are able to solve complicated problems and do

intelligent data processing and provide intelligent control. Artificial Neural Networks

(ANN), Deep Learning (DL), and Q-Learning (QL) are examples of this kind of

EMSs [44]. An artificial neural network (ANN) is a computing system made up of

several basic, highly linked processing units that process data by changing their state

in response to external inputs. By changing weights to minimize the error between

the actual and projected output patterns of a training set, neural networks may be

trained to learn a highly non-linear input/output relationship [45].

Some researchers used neural networks to predict and recognize the driving pat-

terns based on typical driving patterns and then employed them in other EMSs to

obtain an intelligent EMS [46]. In other cases, [47] the neural network architecture
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has been enhanced to accommodate additional multi-objectives such as fuel efficiency

and torque distribution optimization. Recurrent Neural Network (RNN) algorithms

are also employed for HEV EMS or batteries state-of-charge (SOC) estimation due to

their ability to model a time collection. In [48], an NN-controller has been proposed

for the Toyota Prius based on RNN using online and offline training.

Another learning-based strategy that has drawn researchers’ attention is the reinforcement-

Learning (RL) algorithm-based control strategy. The RL algorithm is a method for

learning from interactions. Through a numerical reward or punishment signal, the

goal to make the best decision possible can be achieved by trial and error [49].

In this work, using Long Short-Term Memory (LSTM) network, which is a deep

RNN-controller is the main approach, and it will be discussed more in the next

chapters.

3.7 Comparison

In conclusion of this chapter and the literature review on a few of the popular EMSs,

a brief comparison along with advantages and disadvantages of the aforementioned

strategies will be presented. Figure 3.3 illustrates the comparison between rule-based

(RB), learning-based (LB) (including AI-related strategies), equivalent fuel consump-

tion minimization (ECMS), model predictive control (MPC), and dynamic program-

ming (DP) in respect of optimality, real-time implementation capability, and control

horizon. Tran et al. in [28] investigated a comparative analysis of these strategies.

The main focus in the rest of the chapters will be on rule-based and AI-related

energy management approaches.

24



M.A.Sc. Thesis – Helia Jamali McMaster University – Mechanical Engineering

Figure 3.3: Comparison of studied EMSs. (adapted from [28])

a
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Chapter 4

Hybrid Electric Vehicle Modeling

4.1 Introduction

The first step in developing any control strategy or energy management system for an

HEV is developing its model based on available data and engineering assumptions.

Also, detailed design is one of the important steps in the V-model of software devel-

opments after requirement analysis, and it makes the basis for integration, testing,

and verification of the software [50]. Building a high-fidelity model for the selected

HEV gives us a more clear idea of the performance and behavior of the vehicle and

each component under different driving situations.

The targeted modeled HEV is Toyota Prius model year 2010- 3rd generation of

Prius models, which has a series-parallel powertrain configuration with a power-split

device to control the energy flow between its Atkinson-cycle engine and two permanent

magnet motors. The model has been developed in MATLAB/Simulink. The goal is

to create a system-level model that can simulate power flow between components in

a real vehicle.
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The model structure, as shown in figure 4.1 consists of three main blocks: Driver,

system-level controller, and vehicle model. As it can be seen, the drive cycle infor-

mation, which is the vehicle velocity v(t) from tstart to tend is provided for the driver.

This approach gives the ability to compare the model performance under various con-

ditions and drive cycles. Figure 4.2 shows a sample drive cycle of urban dynamometer

driving schedule (UDDS). The driver uses the input from the driving cycle to cal-

culate the required torque needed from the vehicle to follow the drive cycle velocity.

The driver requested torque is then given to the controller to make a decision on how

to split the torque and power between sources of energy and thus make commands

for powertrain components. In the last step, the torque and power command fed to

the drivetrain and then simulated the vehicle acceleration/deceleration through the

wheel model.

Figure 4.1: Model structure in Simulink: driver, controller, vehicle blocks

In the development of the model, downloadable dynamometer database testing

results for the 2010 Toyota Prius are used, which is available from the Argonne

National Laboratory database, [51] to improve the fidelity of the controller and vehicle
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model and to obtain some parameters. Moreover, the data for the vehicle model is

obtained from technical reports, publications, and vehicle specifications documents.

Figure 4.2: Urban Dynamometer Driving Schedule (UDDS)

4.2 Vehicle Model

The selected vehicle, as mentioned before, has an Atkinson-cycle internal combustion

engine (ICE) which propels the vehicle by converting the chemical energy in fuel

(gasoline) to mechanical energy, and it is connected to motor/generator 1 (MG1)

through the planetary gearset 1 in the power-split device (PSD). Excessive engine

power goes to MG1, which acts mostly as a generator and charges the battery pack.

Also, MG1 helps in the start/stop of the engine by acting as a motor. Motor/

generator 2 (MG2) is connected to the planetary gearset 2 of the PSD, and it propels

the vehicle by using battery energy and converts it to mechanical energy. Due to the
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higher power ratings of MG2, it mostly acts as a motor, but it is also responsible

for regenerative braking. Energy storage system (ESS) is a fan-cooled high-voltage

Nickle-metal Hydride (NI-MH) battery pack that can be charged or discharges by

motor/generators through power electronic devices (power inverter/converter). Also,

electrical accessories such as headlights and air conditioner (AC) use battery power

for their operation. The schematic of the drivetrain and PSD has shown in figure

4.3. Parameters of drivetrain components are listed in Table 4.1 [52–54]. Also, the

Simulink model layout for the vehicle is captured in figure 4.4 and each component

of the model is going to be explained in detail in the next sections.
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Figure 4.3: Drivetrain and power-split device configuration (figure not drawn to
scale)

30



M.A.Sc. Thesis – Helia Jamali McMaster University – Mechanical Engineering

Component Parameters Symbol Value

Engine (ICE)

Max. Power PICE,max 73 kW

Max. Torque TICE,max 142 N.m

Moment of inertia JICE 0.18 kg.m2

Motor/Generator 1

(MG1)

Max. Power PMG1,max 42 kW

Max. Torque TMG1,max 45 N.m

Max. Speed ωMG1,max 10000 rpm

Moment of inertia JMG1 0.02 kg.m2

Motor/Generator 2

(MG2)

Max. Power PMG2,max 60 kW

Max. Torque TMG2,max 207 N.m

Max. Speed ωMG2,max 13500 rpm

Moment of inertia JMG2 0.05 kg.m2

Battery

Rated Capacity Cbatt 6.5 Ah

Nominal voltage Vbatt,nom 201.6 V

Rated Power Pbatt,max 27 kW

Power-split device

Gearset 1 ratio n1 78:30

Gearset 2 ratio n2 58:22

Efficiency ηpsd 0.95

Final Drive
Gear ratio nfd 3.268

Moment of inertia Jfd 0.1 kg.m2

Wheel

Radius rwh 0.31 m

Efficiency ηwh 0.98

Moment of inertia Jwh 0.8 kg.m2

Table 4.1: Vehicle components parameters
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Figure 4.4: Vehicle components layout in Simulink including MG1, MG2, ICE,
battery, electrical accessories, final drive, chassis, wheel, and PSD

32



M.A.Sc. Thesis – Helia Jamali McMaster University – Mechanical Engineering

4.2.1 Vehicle Dynamics

In order to have sufficient model accuracy, a longitudinal vehicle dynamics mode is

necessary. In this regard, the chassis (vehicle body) model considers aerodynamic,

and road grade losses and the wheel model accounts for rolling resistance losses. Table

4.2shows a summary of required parameters for the calculation of mentioned losses.

Parameter Symbol Value

Total vehicle mass m 1460 kg

Equivalent vehicle mass meq 1565kg

Frontal area A 1.746 m2

Air drag coefficient cd 0.25

Air density ρ 1.225 kg/m2

Rolling resistance
µ1 0.002

µ2 0.0002

Gravity constant g 9.81 m/s2

Table 4.2: Vehicle specifications and longitudinal dynamics parameters

For road grade losses, the equation for gravitational drag force can be written as

Fgrade = mg sin(θ) (4.2.1)

where θ is the road grade. For rolling resistance force, the following equation is

considered

Froll = (µ1 + µ2.v)mg cos(θ) (4.2.2)

where v is the vehicle speed. And lastly, the aerodynamic drag force can be calculated
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from

Faero =
1

2
ρcdAv

2 (4.2.3)

Thus, the total loss force and the wheel force which is propelling the vehicle are equal

to

Ftot,loss = Faero + Froll + Fgrade (4.2.4)

Fwh = meq
dv

dt
− Ftot,loss (4.2.5)

where the equivalent vehicle mass is the sum of vehicle mass and total moment of

inertia of rotational components, and it can be stated as

Jtotal =

(
n2

1JMG1 +

(
n1

1 + n1

)2

JICE + n2
2JMG2

)
n2
fd + Jfd + 4Jwh

meq = m+
Jtotal

r2
wh

(4.2.6)

Figure 4.5 shows a free-body diagram of the longitudinal dynamics of a vehicle on

a graded surface.
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Figure 4.5: Vehicle longitudinal dynamics free-body diagram

4.2.2 Internal Combustion Engine Model

The power requirement from the system-level controller is sent into the engine model.

The brake-specific fuel consumption (BSFC) map (adopted from [55]) has been used

inside the model to obtain engine speed and torque needs in the form of a 2-D lookup

table. It has also been used to determine the minimum engine idle speed, which is at

1000 rpm and engine maximum speed, and saturates the engine torque based on the

maximum torque curve at each speed. In this model, we are neglecting the dynamics

of the ICE and leaving out all the losses associated with it. Engine mechanical power

PICE and fuel power PICE,fuel can be written as

PICE = TICE · ωICE (4.2.7)
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PICE,fuel =
PICE

f1 (TICE, ωICE)
(4.2.8)

where TICE, ωICE and f1 are engine torque, speed and the BSFC map (2-D lookup

table), respectively.

4.2.3 Motor/Generator Model

Permanent magnet synchronous motor/generators rated at 650Vdc (MG1 and MG2)

are built in this vehicle. The motor can operate in either propulsion or regenerative

mode. The electric motor acts as a generator during regenerative braking, generating

negative torque to assist vehicle deceleration while charging the battery pack. Com-

bined motor-inverter efficiency maps (adopted from [53]) are used to simulate both

motor/generators in the form of 2-D lookup tables. The motor torque is saturated by

torque limits as a function of motor speed. Motor speed from the transmission model

and motor torque from the system-level controller are used as inputs to the model.

Electrical power for MG1 and MG2 can be stated as

PMG1,elec = PMG1 · f2 (TMG1, ωMG1)− sgn(PMG1) (4.2.9)

PMG1 = TMG1 · ωMG1 (4.2.10)

PMG2,elec = PMG2 · f3 (TMG2, ωMG2)− sgn(PMG2) (4.2.11)

PMG2 = TMG2 · ωMG2 (4.2.12)
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where f2 and f3 are motor-inverter efficiency maps for MG1 and MG2, respec-

tively.

4.2.4 Power-split Device Model

The power-split device or commonly known as the electronic continuously variable

transmission (eCVT), consists of two planetary gearsets in this vehicle. The PSD is

depicted schematically in figure 4.3. The sun gear is attached to each electric motor

in both gear sets (MG1 and MG2). Two ring gears are linked to each other before

being coupled with the final drive gearset (differential), which delivers power to the

wheels. The first carrier link is connected to the engine, while the second carrier link

is grounded.

It is worth noting that the powertrain components integrated by the planetary

gearsets have two degrees of freedom. If two speeds or torques are determined, the

other two torques and speeds can be determined by the equations.

ωMG1 + n1ωout = (1 + n1)ωICE (4.2.13)

ωMG2 = −n2ωout (4.2.14)

Tout =
n1

1 + n1

TICE + n2TMG2 (4.2.15)

TMG1 = − 1

1 + n1

TICE (4.2.16)

where n1 and n2 as listed in table 4.1 are representing the gear ratio between Ring

and Sun gears in gearset 1 and gearset 2, respectively.
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4.2.5 Battery Model

The OCV-R equivalent circuit model is used to simulate the battery pack. The

required current (I) from powertrain components, including the electric motor, gen-

erator, and electrical accessories, is the battery model input, as shown in the following

equation. A constant electrical accessories power of Pacc = 500W is considered.

I = IMG1 + IMG2 +
Pacc
Vbatt

(4.2.17)

The Coulomb Counting technique is used to estimate the battery state-of-charge

(SOC) from input current and battery rated capacity Cbatt. SOC0 is the initial SOC

value.

SȮC = − 1

Cbatt
I(t) (4.2.18)

SOC = SOC0 −
1

Cbatt

∫ t

0

I(t)dt (4.2.19)

By using test data in lookup tables, the estimated SOC is then utilized to obtain

open-circuit voltage (OCV) and internal resistance (R) during charge and discharge.
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Figure 4.6: Open circuit voltage versus battery state of charge

Equation 4.2.20 is used to calculate the battery terminal voltage (VT ), which is

then sent into electric motor models as an input.

VT = OCV (SOC)− I ×R(SOC) (4.2.20)

Pbatt = VT × I (4.2.21)

Note that I ∈ R and positive sign for I happens during battery discharge, and a

negative sign is during the battery charging intervals.

4.2.6 Wheel and Final Drive Models

For the final drive model, as listed in table 4.1, the overall ratio in differential (counter-

drive and final drive gears) is nfd = 0.3268, and a 1-D look-up table is used to obtain

the efficiency of the final drive based on torque input from the power-split model.

Depending on the state of the vehicle (propulsion or braking), the input torque will
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be either multiplied or divided by the efficiency.

For the wheel model, a constant efficiency of ηwh = 0.98 is used (listed in table

4.1) because of the slip. The output force of the wheel Fwh is calculated by output

torque from final drive Tfd, braking torque command Tbrk, and torque loss from rolling

resistance (discussed in section 4.2.1).

Fwh =
Tfd + Tbrk − Tloss

rwh
(4.2.22)

4.3 Driver Model

The driver model goal is to simulate the vehicle’s required speed and torque based

on the driving cycle chosen for the simulation. Vehicle dynamics calculations (4.2.1)

define the required torque and power of the vehicle for a particular speed. Although,

determining the torque and power requests from this open-loop approach is insufficient

given the model uncertainty and powertrain limitations. Thus, to adjust the requests

based on the driving cycle, a PI controller is used on the vehicle speed feedback and

drive cycle speed difference. The PI controller parameters are obtained by trial and

error to minimize the RMS error of driver requested speed and drive cycle speed.

4.4 Controller

The system-level controller of the vehicle consists of high-level and rule-based algo-

rithms, including engine on/off control, power-splitting strategy, energy management,

and SOC balancing. The algorithm should also consider the vehicle components’ lim-

itations to guarantee that the final decision is feasible. The controller is also created
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using MATLAB/Simulink blocks and Simulink Stateflow. The controller is responsi-

ble for generating the required control commands for the powertrain components from

the driver’s torque and power requests. In this work, the vehicle controller strategies

have been developed based on the dynamometer test data and previous studies on

Toyota Prius 2010 [51,56,57].

The first important thing to notice is that whether the requested power/torque is

positive or negative. If it is positive, then the vehicle is in propulsion mode, and the

powertrain needs to supply the power, and if it is negative vehicle is in the braking

mode, and the powertrain needs to capture power. The next step is to define the

engine-on/off control. When the requested power is lower than a threshold and the

battery SOC is not considered low, the vehicle is controlled to run in a pure electric

mode, and the engine is off. Due to having lower battery capacity in HEVs than EVs,

the battery will be rapidly depleted in this mode, and the engine should be turned

on at the right time. The threshold for the turning engine on/off is dependant on

SOC (SOCth), vehicle requested speed (vth), and power (Pth) based on the actual

data and model outputs. Table 4.3summarizes the statements of each control mode

for engine-on/off strategy.
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(a) Battery power vs. SOC (b) Engine speed vs. Power demand

(c) Regenerative fraction vs. vehicle speed

Figure 4.7: Lookup tables used in control modes 1, 3, and 4.
Referred to as (a) g1(SOC), (b) g2(Pdmd), and (c) g3(v)

In mode 1, the engine speed is obtained based on the demanded power, as shown

in figure 4.7b. This plot is fitted on vehicle power (product of vehicle speed and

traction force) versus engine speed from dynamometer test data on the steady state
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Control

Mode

Engine

Mode
Condition

Propulsion
1 ON Pdmd ≥ Pth || v ≥ vth || SOC ≤ SOCth

2 OFF Pdmd < Pth && v < vth && SOC > SOCth

Braking
3 ON v ≥ vth

4 OFF v < vth

Table 4.3: Engine-on/off control modes and statements

drive cycle. The steady state drive cycle has been used mostly in developing the

vehicle model and controller due to its characteristic of gradually accelerating and

decelerating.

After determining the engine-on/off strategy, another important issue in HEV

control is ”SOC Balancing”. Based on the actual test data of the vehicle, the battery

SOC varies in a small range rather than utilizing the battery energy in a wide range

of SOC. Of course, this approach is going to affect the energy management strategy

by decreasing the system efficiency, but on the other hand, it is going to maintain

the battery health and life by not using battery energy aggressively. In this regard,

the desired battery power is related to the SOC and has been obtained from testing

results [56]. Figure 4.7a demonstrates the relation between battery power and SOC

used in the control strategy.

Based on each mode discussed above, a set of control inputs are defined for pow-

ertrain components as a power-splitting strategy. Control inputs for modes 1 and 2
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in propulsion are listed in table 4.4.

Mode 1

Battery Power Pbatt = g1(SOC)

Engine Speed ωICE = g2(Pdmd)

Engine Torque TICE = (Pdmd − Pbatt)/ωICE

MG1 Torque Obtained from 4.2.16

MG1 Speed Obtained from 4.2.13

MG2 Torque Obtained from 4.2.15

MG2 Speed Obtained from 4.2.14

Brake Power Pbrk = 0

Mode 2

Engine Speed ωICE = 0

Engine Torque TICE = 0

MG1 Torque TMG1 = 0

MG1 Speed ωMG1 = 0

MG2 Torque TMG2 = Pdmd/ωMG2

MG2 Speed Obtained from 4.2.14

Brake Power Pbrk = 0

Table 4.4: Control modes in propulsion

g1(SOC) and g2(Pdmd) are the discussed lookup tables shown in figure 4.7.

As mentioned previously, MG2 is responsible for regenerative braking in assist-

ing the vehicle’s deceleration by producing negative torque during the braking. The

amount of regenerative braking power is related to the vehicle speed, and it is calcu-

lated using a 1-D lookup table of regenerative fraction versus vehicle speed shown in

figure 4.7c and referred to as g3(v). Control inputs for modes 3 and 4 during braking
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are stated in table 4.5.

Mode 3

Engine Power PICE = 1.17kW , idle power

Engine Speed ωICE = 1000rpm idle speed

Engine Torque: TICE = PICE/ωICE

MG1 Torque Obtained from 4.2.16

MG1 Speed Obtained from 4.2.13

MG2 Torque TMG2 = (g3(v).Pdmd)/ωMG2

MG2 Speed Obtained from 4.2.14

Brake Power Pbrk = Pdmd − PMG2

Mode 4

Engine Speed ωICE = 0

Engine Torque TICE = 0

MG1 Torque TMG1 = 0

MG1 Speed Obtained from 4.2.13

MG2 Torque TMG2 = (g3(v).Pdmd)/ωMG2

MG2 Speed Obtained from 4.2.14

Brake Power Pbrk = Pdmd − PMG2

Table 4.5: Control modes in braking

4.5 Evaluations

The final step in developing the vehicle model is to evaluate its performance under

various driving conditions and compare it with available test data to ensure that model

has sufficient accuracy for further developing the controller and embedded EMS. The

available dynamometer test data available [51] is limited to vehicle outputs (such
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as SOC, ICE speed, fuel consumption, etc.) under four driving cycles of UDDS,

Highway, US06 (aggressive highway driving), and steady state.

The main driving cycle used to develop the model parameters and improve accu-

racy is the steady state drive cycle. It covers most of the speed ranges and constant

acceleration/deceleration rates. The results for vehicle linear speed, battery SOC,

ICE speed, and fuel flow rate has shown in the four following figures 4.8, 4.9, 4.10,

4.11.

Figure 4.8: Model linear speed in comparison with reference driving cycle speed.
Overall RMS error is 0.243 m/s.

It can be seen that the model outputs are following the reference data with ac-

ceptable root mean square (RMS) errors. Most of the deviations are due to simplified

assumptions in components dynamics modeling (ICE, battery, transmission, etc.). In

particular, the model engine speed inconsistency in following test data is due to the

lack of engine thermal modeling, which affects the idle speed at braking periods with

high speeds that the engine is working at idling conditions [58]. Also, the differ-

ence in model and test SOC profiles is due to the impact of error accumulation over

time in the SOC estimation method (Coulomb-counting method). In general, model
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Figure 4.9: Model SOC profile in comparison with SOC profile in test data. Overall
RMS error is 0.0136.

output signals are following the trend of test data signals which shows promising

correspondence with actual vehicle experiments.

Figure 4.10: Model engine speed profile in comparison with test data engine speed.
Overall RMS error is 375.18 rpm.

Furthermore, the model has been evaluated with UDDS driving cycles for the

same output parameters to capture the effect of different driving conditions. The

results are shown in the following figures 4.12, 4.13, 4.14, 4.15. Same observations

as steady state results can be made about UDDS model outputs; however, the RMS
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Figure 4.11: Model fuel consumption rate profile in comparison with test data fuel
consumption rate. Overall RMS error is 0.622 g/s.

value for each case is different.

Figure 4.12: Model linear speed in comparison with reference driving cycle speed.
Overall RMS error is 0.428 m/s.

Table 4.6 summarizes the fuel consumption and final SOC value for all four drive

cycles in both model and test data. It is essential to evaluate the overall fuel consump-

tion output of the model because, ultimately, the model will be used to develop EMS

and compare the fuel economy. Also, the fuel consumption is highly dependant on the
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Figure 4.13: Model SOC profile in comparison with SOC profile in test data.
Overall RMS error is 0.0123.

SOC, and for having a fair comparison between fuel consumption, it is important to

capture approximately the same SOC at the end of each driving cycle. Results show

that both fuel consumption and final SOC are very close to actual vehicle outputs.

As a result, the accuracy of the developed HEV model is acceptable for developing

the proposed energy management strategy.

Figure 4.14: Model engine speed profile in comparison with test data engine speed.
Overall RMS error is 405.99 rpm.
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Figure 4.15: Model fuel consumption rate profile in comparison with test data fuel
consumption rate. Overall RMS error is 0.423 g/s.

Drive cycle Fuel consumption (g) End SOC (%)

Test Model Error Test Model Diff.

UDDS 403.5 402.3 -0.29% 35 36.23 1.23

Highway 1227 1183 -3.58% 40 43.69 3.69

US06 1459 1399 -4.11% 43 44.66 1.66

Steady State 388.9 388.4 -0.12% 37 37.24 0.24

Table 4.6: Fuel consumption and final SOC of model and test data comparison in
different drive cycles

used
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Chapter 5

Offline LSTM Multi-Parameter

Prediction Model

5.1 Introduction

In section 3.6, a brief overview of intelligent energy management strategies using

Neural Networks and Learning-based algorithms has been presented. In this work,

a deep recurrent neural network (RNN) has chosen to estimate or predict the power

distribution based on a few driving features such as vehicle speed and battery SOC.

For historical time series problems such as SOC estimation [59,60], speech recog-

nition [61, 62], and time-series predictions [63, 64], Recurrent Neural networks have

demonstrated significant feature extraction and prediction capabilities. The EMS

problem itself has consisted of time series data which can be formulated as time

series prediction problem.

The recurrent neural network is a closed-loop neural network that leverages past

information. Sending the network output, or an intermediate state, as an input
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to a neural network can make it recurrent. Figure 5.1shows an RNN architecture

being unfolded in time. Whenever short-term dependencies are required in output

data, this conventional form of RNN is suitable; however, it may not function as

effectively for long-term dependencies due to issues during training [65]. The LSTM,

the bidirectional LSTM (BiLSTM), and the gated recurrent unit (GRU) are all RNN

variants that were designed to address the aforementioned issues [66].

Figure 5.1: Architecture of RNN (left side) and RNN unfolded in time (right side),
where t is the current time, and ht is the hidden layer of LSTM RNN at the current

time.

In this chapter, the chosen RNN network, which is the Long Short-Term Memory

(LSTM) network, data processing, and methodology, will be discussed. A sensitivity

analysis is done to improve the performance of the offline LSTM multi-parameter

prediction model for further utilization of the model in an online EMS platform.

This model can be used for both prediction and estimation. In this work, only the

estimation part was explored where the controlled variables are being estimated for

the next time step. The model also has the capability to predict the variables for

longer time steps in the future which can be explored in future work. Due to this
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extended capability, the model will be referred to as prediction model rather than

estimation model for generalization purposes.

5.2 Data Description and Pre-Processing

5.2.1 Data Description

As discussed in the section 4.4, some multiple signals and data impact the supervisory

control algorithm of the vehicle. Input information for the rule-based EMS imple-

mented previously was based on battery SOC, chassis, or vehicle speed, power, or

torque demand from the driver. The outputs of the controller, as shown in tables 4.4

and 4.5, are powertrain components’ input signals. Based on power-split equations

(4.2.13 - 4.2.16) and the control algorithm itself, it can be concluded that there are

only two degrees of freedom, meaning if two of the independent powertrain compo-

nents inputs (TICE, ωMG1, TMG1, ωICE, TMG2, ωMG2, Pbatt) are determined, the rest

can be calculated through equations of power-split or energy balance equation.

Inputs and outputs of the proposed model are chosen to replace the original super-

visory control algorithm with minor changes instead of extracting too many features

(such as max and min speed and acceleration, trip length, etc.) from drive cycles

in comparison to previous works [67,68], the LSTM RNN will extract relevant infor-

mation and store them in cell state, which decreases the artificial interference while

extracting driving cycle data [69].

In conclusion, similar to the rule-based supervisory control, the inputs to the

model are vehicle speed (v), acceleration (a), battery SOC (SOC), and demanded

torque (Tdmd). Two independent parameters of engine speed (ωICE) and engine torque
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Drive Cycle Distance (km) Time (s)
Maximum Speed

(m/s)

Average Speed

(m/s)

HWFET 33 1565 26.78 21.09

UDDS 12 1390 25.32 8.61

WLTC class 3b 23.26 1800 36.47 12.92

Table 5.1: Training Drive Cycles Characteristics

(TICE) have been chosen as the network output.

5.2.2 Data Pre-Processing

Data for training, testing, and validation of the model are derived from the HEV

vehicle model (Chapter 4) because the amount of data from dynamometer testing [51]

are limited to only a set of data for four drive cycles. However, the model fidelity is

already evaluated with the vehicle testing data to ensure that information given to

the network has an adequate quality for training.

Choosing a training/testing dataset that involves different road types, driving

styles, and control modes has significant importance. Thus, three drive cycles of

UDDS, Highway Fuel Economy driving schedule (HWFET), and Worldwide Har-

monized Light-duty vehicles Test Cycle (WLTC) class 3b, has been chosen for this

matter. These drive cycles are able to capture urban, extra-urban, and highway road

types. Furthermore, to learn different modes of rule-based control algorithms, all four

control modes are being captured fairly. Table 5.1 shows the detailed information of

each drive cycle.

It was important to capture an urban schedule with low average speed and frequent
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start and stops (UDDS), along with a highway cycle with less than 17% brakes along

the way (HWFET). The selection of the third drive cycle (WLTC) was based on a lack

of very high speeds in the other two drive cycles (directly affecting fuel consumption).

In this regard, the WLTC class 3b has been chosen, which is a recent replacement

of the New European Drive Cycle (NEDC), and it is representative of the real and

modern driving conditions [70]. Figure 5.2 shows the vehicle speed for this drive cycle.

Figure 5.2: WLTC class 3b driving schedule

Battery SOC affects the engine power production (which impacts TICE) and ulti-

mately on fuel consumption. Moreover, it is one of the inputs that can be changed

and played with compared to the other three inputs. Thus, in the dataset, for each

drive cycle, we changed the battery SOC from 0.30 to 0.70. Because the sensitivity of

the battery SOC is 1% in dynamometer testing data, we chose to change the battery

SOC in steps of 1% and randomly sample data from total available data as testing

and validation datasets.
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The input data’s sampling time (time step) has been set to ∆t = 1s because the

HEV’s system reaction is not too quick, and the model complexity and adaptability

must be balanced. However, the impact of changing time window size in training

and prediction will be assessed thoroughly in the following sections. Hence, in total,

194,955 seconds of training/testing/validation data are available for the network.

The final step in data pre-processing is the normalization of data. The normaliza-

tion is important for training and testing the network to eliminate the effect of data

dimensions. There are a few common normalization methods used in previous works,

which in this work, two popular methods had been tested. The first method scales

the input and output data to 0-1, called maximum and minimum normalization, [71]

shown in the following equation.

x̂ =
x− xmin

xmax − xmin

(5.2.1)

where xmin and xmax for each data type determined based on the vehicle and power-

train components specifications.

The second method uses the average and standard deviation of data to create a

standard score normalization with zero mean and unit variance [72,73].

x̂ =
x− µ
σ

(5.2.2)

where µ is the mean of the data and σ is the standard deviation of the data.

The second method with standard score normalization had been chosen due to

lower errors with the same network parameters. The problem with the max and min

normalization was that the engine speed and torque values in zero or near-zero values
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were not being predicted accurately.

Finally, the procedure of obtaining data from the HEV model and implemented a

rule-based controller, storing it into a database, normalization, and passing it on to

the network training module has been illustrated in figure 5.3.

Figure 5.3: Data pre-processing and model training modules and their connections

For more clarification on the distribution of data in each training, testing and

validation dataset, the break down of each set with number of initial SOCs used

(either generated randomly or picked in a range) is shown in Table 5.2.
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Dataset Drive Cycles
No. of initial

SOCs used

Time length (s) Percentage (%)

Total
UDDS

HWFET

WLTP

41 194955 100

Training 23 166425 85.4

Testing 6 9510 4.9

Validation 12 19020 9.7

Table 5.2: Training, testing, and validation dataset breakdown based on size and
initial SOCs

5.3 Methodology

To apply the LSTM network model on HEV to predict engine parameters during the

vehicle operation, a few issues will be dealt with. The first issue is to ensure that the

network converges to the right network weights. Another issue is that in most of the

literature using LSTM network for battery or powertrain parameters prediction, the

output of the regression model is a single output (e.g., battery SOC, engine torque,

velocity, etc.) [59,60,69,74]. So the challenge in this model is to train and optimize the

model on two independent and different in dimension parameters. Another concern

for a real-time implementation is the size of the trained network, which should not

be too large in order to avoid time delays in online prediction and control of the

powertrain components.

Numerous network structures and training parameters have been explored to ad-

dress the above-mentioned challenges, which will be discussed in the following sec-

tions. The developed model used a many-to-many (m-n) LSTM architecture, as can
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be seen in figure 5.4 for the multi-parameter prediction issue mentioned earlier.

Figure 5.4: Different mapping types of LSTM [75]. Input vectors are shown in
green, output vectors are in yellow, and RNN’s states are in red rectangles. Arrows

represents mathematical functions.

5.3.1 LSTM Networks

LSTM Networks, as mentioned, are a special form of RNN with the capability of

learning long-term dependencies. Hochreiter & Schmidhuber [76] introduced them

in 1997 and many researchers improved and popularized them in future works. All

RNNs are made up of series of repeated NN modules. This repeating module can have

a relatively basic structure, such as a single tanh layer in conventional RNNs. LSTMs

have a chain-like structure as well, but the repeating module is more complicated. As

it can be seen in figure 5.5 each module is consisted of four NN layers, each of which

interacts in a unique way [77].

Using a memory cell ck, the LSTM can store and transmit information from

previous and present states for future use. The data flow through the cell state (the

upper horizontal stream in figure 5.5) is regulated by gates. LSTM has three gates

of input, output, and forget, which can selectively allow information to pass through

each cell. A sigmoid neural net layer plus a point-wise multiplication operation make
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Figure 5.5: Schematic of LSTM layer module [77]

up each gate. A step-by-step explanation for each gate, starting from the left side of

the LSTM layer figure is given below.

Forget gate: The decision to save or discard information is made by this layer

which is the first step of LSTM. Inputs to the gate are output from previous time-step

(ht−1), and input at current time-step (xt). The output of the sigmoid function will

be a value ∈ [0 1], representing fully discard or fully save the data, respectively. In

the case of this work problem, the discarded information can be noises and irrelevant

parameters.

ft = σ (Wf · [ht−1, xt] + bf ) (5.3.1)

where Wf and bf are the weight and bias for the forget gate, respectively.

Input gate: This layer, in the next step, decide the values to be updated, and

then a tanh activation function squeezes the input between [-1 1]. Input vectors to
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this gate are the same as to forget gate. The input gate it and tanh layer gt can be

expressed as

it = σ (Wi · [ht−1, xt] + bi) (5.3.2)

gt = tanh (Wg · [ht−1, xt] + bg) (5.3.3)

whereWi andWg represent the weights for input and previous output, respectively,

and bf and bg are the corresponding biases.

Output gate: This layer which is expressed as follows, determines what infor-

mation is eventually outputted. The output is based on the filtered version of the

cell state. Similar to the input gate, the sigmoid layer decides for output values, and

then it is multiplied to the cell state, which went through tanh. Inputs of this gate

are equal to the previous gates.

ot = σ (Wo [ht−1, xt] + bo) (5.3.4)

ht = ot ∗ tanh (Ct) (5.3.5)

where ht is the output of the LSTM layer at the current time-step, Wo and bo are the

weight and bias for the output gate, respectively.

The final step is to update the previous cell state (ct−1), which, as it can be seen

from the figure is calculated through forget and input gates.

Ct = ft ∗ Ct−1 + it ∗ gt (5.3.6)
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5.3.2 Architecture of LSTM multi-parameter prediction

The LSTM multi-parameter prediction network has been trained using MATLAB

Deep Learning Toolbox, which is easy to use and implement for this case as both the

HEV model and data preparation have been done in the same software platform.

There are four major steps for constructing the model: Define, compile & fit,

verify, and predict.

1. Define: In the first step, we need to define both the network and the portion of

the training to testing data. The appropriate size of the testing dataset usually

varies from approximately 10% to 30% of the training dataset. Defining the

network structure, meaning determining the number of layers and number of

hidden units or neurons in each layer, is of high importance and also complicated

to achieve the optimal network structure. the simulation results of the model

with different network architectures and size of the testing dataset are shown

in the next section.

2. Compile & fit: After defining the network structure, we should specify various

parameters for training to be compiled, such as optimizer, initial learn rate, time

window or sequence length, weight parameters initialization, mini-batch size,

etc. The NN training uses the backpropagation method, so an optimal number

of epochs need to be determined to achieve lower training losses without facing

overfitting or underfitting problem.

3. Verify: After completion of training, the network performance needs to be eval-

uated and analyzed against the effects of changing parameters mentioned in the

second step on validation datasets. This will ensure the model’s generalization
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capability and leads to finding the model that best fits our requirements.

4. Predict: Finally, after choosing the well-fitted model, the model can be used to

perform predictions on new sets of data.

Based on the above procedure, the LSTM multi-parameter prediction model for

powertrain EMS can be designed as demonstrated in figure 5.6.

Figure 5.6: LSTM multi-parameter prediction model design flowchart

5.3.3 Evaluation Metrics

The goal in the training of the network is to minimize the error between predicted

outputs (TICE(k | θ) and ωICE(k | θ)) and the reference controller data from HEV

model (TICE and ωICE). Various performance metrics have been used in previous

works, such as mean square error (MSE) [67, 78], mean absolute error (MAE), and
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root mean square error (RMSE) [59, 64, 71], and mean relative error (MRE) [60]. In

this work MAE of normalized data has been chosen as the main performance index;

however, the RMSE of de-normalized data has also been calculated to give a better

sense of error values in their own units and dimensions. MRE is not a suitable

performance index in this work due to calculating large errors for data values near

zero, which often happens in engine speed and torque outputs.

RMSEtrq =

√∑N
i=1 (T iICE(i∆t | θ)− T iICE(i∆t))

2

N

RMSEspd =

√∑N
i=1 (ωiICE(i∆t | θ)− ωiICE(i∆t))

2

N

(5.3.7)

Besides, because the network has two outputs of different units, it is important

to evaluate the whole output dataset; thus, the MAE and RMSE of concatenated

normalized outputs are also calculated and compared for each case.

min
θ∈Θ

MAE =
1

M

M∑
i=1

|Yi(i∆t | θ)− Yi(i∆t)| (5.3.8)

where M = 2N and Yi are concatenated vectors of engine torque and speed vectors.

5.4 Simulation Analysis and Discussion

5.4.1 Comparison of different Network Structures and train-

ing dataset

s

The network structure consists of a sequence input layer, one or multiple hidden
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sequence-to-sequence LSTM layers, activation layers, a fully connected layer, and an

output regression layer. In general, hidden layers represent the relationship between

past and future time series; they can also help the LSTM network create more com-

plicated models and increase generalization ability. In this work, different structures

have been chosen and simulated to find the optimal network structure. Table 5.3

shows different network structures used in this work to find the optimal number of

hidden lstm layers and the number of hidden units or neurons in each layer. Also,

the ’tanh’ function had been chosen as the activation function for the hidden layers

in this work to reduce the transfer error between layers. The network definition in

MATLAB code can be found in Appendix A.

The funnel-shaped structures have been chosen to cover up to 5 layers and up to

120 hidden units in total. Also, various combinations of training and testing dataset

proportions have been explored to discover the best-performed network since the link

between the size of the testing dataset and network structure is difficult to detect.

From the available data described in the section 5.2.2, 16 randomly selected datasets

were set aside for validation purposes, meaning those datasets have never been used

to train and test the network. From the remaining data for training, 10%, 20%, and

30% were randomly selected as testing datasets.
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Structure

number

Hidden Layer

1 2 3 4 5

1 30 0 0 0 0

2 50 0 0 0 0

3 100 0 0 0 0

4 10 10 0 0 0

5 30 20 0 0 0

6 30 10 10 0 0

7 80 30 10 0 0

8 10 10 10 10 0

9 50 30 20 10 0

10 50 30 20 10 10

Table 5.3: Different network structures of hidden layers and hidden units

Simulation results for each network structure under three different sizes of the test-

ing dataset are shown in figure 5.7. The performance of the LSTM multi-parameter

prediction model has been evaluated based on MAE of model outputs TICE and ωICE.

It can be seen that there is not a unique trend between performance with different

structures and testing dataset sizes. However, it is obvious that in all three test sizes,

structure number 7 has shown the best performance in both TICE and ωICE and in-

creasing the number of hidden layers to more than three layers does not necessarily

improve the model performance. Also, it can be concluded that in most of the struc-

tures, the model performance with a 10% testing dataset is better than the other

two.
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Thus, structure number 7, with three hidden layers of 80, 30, and 10 hidden units

and 10% testing dataset size, has been selected for the rest of the work. The MAE

of TICE and ωICE for that specific model in validation dataset is 0.58 N.m and 1.59

rad/s, respectively.
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(a) with 10% of the testing dataset

(b) with 20% of the testing dataset

(c) with 30% of the testing dataset

Figure 5.7: Performance of LSTM multi-parameter model under various network
structures and testing dataset sizes on the validation dataset.
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5.4.2 Selection and Debugging of Hyper-parameters

There are multiple training-related and model-related parameters that can be opti-

mized towards decreasing the training and validation losses. In the following sections,

the selection procedure of a few important hyper-parameters will be discussed. To

keep consistency between results for comparison, we only sample the testing dataset

’once’ randomly from 10% of the whole training dataset. As discussed in the previous

subsection, the chosen network with structure number 7 has been used to determine

the hyper-parameters in the following sections.

5.4.3 Selection of training options

One of the important model-related hyper-parameters to determine is the optimizer

or solver for the training network. Optimizers that can be used in MATLAB Deep

Learning Toolbox are SGDM (stochastic gradient descent with momentum) , RM-

SProp (root mean square propagation), and Adam (adaptive moment estimation) [79].

Adam, a method for efficient stochastic optimization, is the most used optimizer in

deep learning and machine learning applications [80]. It combines the benefits of two

optimization approaches, AdaCrad and RMSProp, to improve the performance of the

LSTM model.

According to the analysis done in [60], Adam optimizer offers outstanding features

of having a lower need for computer memory processing, having the ability to compute

multiple adaptive learning rates for various factors, and more significantly being more

suitable to a huge dataset and a high dimensional space, in comparison of mentioned

optimizers. So, the Adam optimizer has been chosen in this work due to numerous

parameters that will be obtained and used throughout the LSTM-oriented modeling
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process.

Learning rate is another training-related parameter that needs to be determined.

It has a significant influence on the consistency and efficiency of training times. It is

common to have a high learning rate at the start of the training process and then see

it drops over time as it approaches convergence.

In this regard, a step decay method has been chosen for setting up the learning

rate, in which the learning rate decays every n number of epochs. This method can

be set in MATLAB training options as piece-wise learn rate schedule’. Following this

method, two other factors of learn rate drop period (n) and drop rate (η) should be

determined as well. As a common practice, the initial learn rate has been set to 0.01,

and various drop rates simulated as shown in figure 5.8. It can be seen that generally,

by increasing the η, the performance of the network increases as well. So, η = 0.9

with n = 100 epochs has been chosen.

Figure 5.8: MAEs of predicted data based on different learn rate drop factors.

Mini-batch size is a critical model parameter that can be different for various
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datasets. The batch size (BS) initially determines the gradient’s direction of descent

and updates the weights. Larger mini-batch sizes will decrease the number of itera-

tions required to execute an epoch (full dataset) and enhance the same data process-

ing performance. On the other hand, it can increase the operating time and memory

usage. As a result, the mini-batch size should be adjusted to meet the prediction

accuracy within a reasonable run time [60].

In this work, five mini-batch sizes of 4, 8, 16, 32, and 64 have been investigated,

and the MAEs of predicted data with each BS are indicated in figure 5.9. It can

be seen that the lowest validation errors for both TICE and ωICE happened in BS =

4 and then in BS = 16, and then the validation MAE increases as mini-batch size

increases. Also, the convergence rate of validation loss was the fastest in BS = 4, as

shown in figure 5.10. Hence, the mini-batch size of 4 has been selected for the model.

Figure 5.9: MAEs of predicted data based on different mini-batch sizes.

A maximum number of epochs for training was set to 500, as the training and

validation loss converged well, and running under a higher number of epochs could
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Figure 5.10: Validation losses with different mini-batch sizes.

cause over-fitting and much longer processing times.

Network weights and biases (W & b) are initialized randomly to break symmetry

and ensure that various hidden units can learn different things. Since different initial

weights (generating randomly) lead to different training and validation losses, for

each network setting, the training process has been repeated three times, and then

the average of losses and errors were reported.

Table 5.4 shows all the chosen training parameters for this model. Determining

the values for sequence option parameters will be discussed in the next subsection.

5.4.4 Comparison of different time window sizes

For prediction of engine torque and engine speed in the near future, input features in

the last segment, i.e., [tc−∆Z, tc] are used when the driver is during the time period
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Description Value Description Value

Optimizer ADAM Mini batch size 4

Initial learn rate 0.01 Shuffle never

Learn rate schedule piecewise Max epochs 500

Learn rate drop period 100 Sequence padding direction right

Learn rate drop factor 0.9 Sequence padding value 0

Gradient Threshold 1 Sequence length 600

Table 5.4: Training parameters

[tc, tc + ∆t]. tc is the current time and the predictions are being made at k∆t, k ∈ N

as discussed in section 5.2.2, ∆t = 1s. The time window size of input features which

is the focus of this section is ∆Z.

The effect of various time window sizes had been discussed in many papers relating

to prediction either with LSTM network or other network types [59, 60, 67, 81, 82].

Features for estimation of outputs are extracted from the speed and acceleration

profile, SOC, and torque demand in time window [tc −∆Z, tc]. In case of too small

∆Z, the time segment may not be large enough to hold relevant information, and in

case of too large ∆Z, the time segment may include information that is no longer

relevant. By changing the time window size in a proper range, the optimal ∆Z can

be selected through a series of trials. The time window size can be changed through

the ’sequence length’ from training options, which can be a positive integer, longest,

or shortest.

Sequence padding is a data processing that affects the output and training progress

of the LSTM network. The training data sequences are sorted by their length, as can

be seen in figure 5.11 to reduce the amount of padding or discarded data. Since
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this model uses sequence-to-sequence LSTM layers, it is better to pad sequence data

on the right to prevent padding in the very first time steps of the sequence, which

can affect the predictions adversely. Also, a sample size of BS=8 (mini-batches) and

∆Z = 400 (splits) along with created padding is illustrated on the sample sorted

sequences graph to better understand the dataset and parameters.

Figure 5.11: Sample of sequence data length, padding, mini-batches, and splits
[adapted from [83]]

To investigate the effect of various time window sizes in training, seven time

window sizes of 20, 50, 100, 200, 400, 600 seconds and the longest ∆Z, which in

this case is the length of the longest drive cycle with a sequence length of 1565.

The shortest ∆Z is 800 (S), which truncates at least half of the valuable training

data. MAEs for engine speed and engine torque using different time window sizes

are compared in figure 5.12. It can be concluded from the results that the network

needs at least 100 (s) of historical data to achieve higher accuracy, and the optimum
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time window size is ∆Z = 600(S). It can be assumed that the increase in MAEs

for ∆Z = longest is due to the higher amount of padding on sequences with shorter

lengths.

Figure 5.12: MAEs of predicted data based on different time window sizes.

5.5 Results and Conclusion

According to the simulation results and analysis for improving the performance of

the LSTM multi-parameter prediction model, the final selected model has reached to

1.41 (rad/s) and 0.57 (N.m) RMSEs for ωICE and TICE, respectively. The validation

and training loss for the first 100 epochs of the training is shown in figure 5.13. The

final validation loss after 500 epochs reached 5.0033× 10−4. The validation loss will

decrease further by increasing the number of epochs over 500. While increasing the

epochs, the one should be aware of over fitting problem occurring in higher epochs.

In such case, the training process needs to be stopped before validation loss starts to

increase due to over fitting of weights on training dataset.
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Besides the model’s performance in the validation dataset, verifying the general-

ization capability and performance of the model with various drive cycles that have

not been used in either training or testing is of high importance. In the last step of

model verification, the network has been verified under US06 and LA92 (unified driv-

ing schedule) drive cycles which both have more aggressive driving behaviors (high

acceleration and deceleration rates) with respect to UDDS and HWFET driving cy-

cles.

Figure 5.13: Training and validation loss of the LSTM prediction model.

For the generalization dataset , four of each US06 and LA92 with random initial

SOCs have been chosen, and the actual output data from the HEV model is compared

with LSTM prediction model outputs in figures 5.14 and 5.15. The total RMSE

calculated for ωICE is 24.98 (rad/s), and for TICE is 6.72 (N.m), which are acceptable

for the purpose of online EMS where this prediction model will be used.
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(a) Engine torque profile

(b) Engine speed profile

Figure 5.14: LSTM prediction model outputs in comparison with actual data
obtained from the HEV model under the LA92 drive cycle.

The predictions made in this chapter were using the whole drive cycle and input

dataset at once, which was suitable for the purpose of training and improving the

network performance. Moreover, the model’s focus was to learn the driving trends

and controller responses as effectively as possible. In the next chapter, the predictions

will be made online as the goal is to perform an online EMS controller using the LSTM

multi-parameter prediction model.
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(a) Engine torque profile

(b) Engine speed profile

Figure 5.15: LSTM prediction model outputs in comparison with actual data
obtained from the HEV model under the US06 drive cycle.
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Chapter 6

Deep Recurrent Neural Network

Based Energy Management

Strategy

The fuel efficiency of HEVs can be improved by designing the EMS based on char-

acteristics collected from previous driving data. Various studies have revealed that

the driving cycle and driving style significantly impact fuel consumption and pollu-

tants [84,85]. Neural network and machine learning algorithms have been employed to

identify characteristics such as drive cycle recognition, traffic flow prediction, driving

trend prediction from historical data, resulting in considerable improvements in fuel

efficiency [67, 82, 86]. In [81], authors explained used existing on-board vehicle data

to estimate road type and traffic congestion (RT&TC) and then used that knowledge

to enhance vehicle power management. In a similar work [87], Murphey et al. used

the machine-learning framework for RT&TC and driving trend estimation [67] to pre-

dict battery power and engine (ICE) speed to develop three online intelligent energy
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controllers ultimately. In [88] and aforementioned studies, it can be observed that

multiple NNs are being utilized to develop an online intelligent energy controller, and

they are often trained with a high number of feature data from driving cycles and

vehicle outputs.

This chapter investigates the process of implementing the developed offline LSTM

prediction model (figure 6.1) in the previous chapter in an online format. The fuel

consumption of the selected HEV using this controller is then compared to the pre-

viously developed rule-based EMS controller.

Figure 6.1: The structure of deep RNN used for energy management controller

6.1 Time series interpretation of EMS

The quasi-static model equations for HEV powertrain components were discussed

in chapter 4. The problem of HEV energy management is a dynamic optimization
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problem, [67] and the EMS can be expressed as a time series forecast in the discrete-

time format:

u(t+ 1) = Φ(x(t), x(t− 1), · · · , x(t−N), t) (6.1.1)

where u(t+ 1) = [ωICE(t+ 1), TICE(t+ 1)] is the control variables array at sample

time t + 1 and x(t) = [v(t), a(t), SOC(t), Tdmd(t)] is the state variables array. The

nonlinear connection between the system states and the control variables is described

by the function Φ().

To elaborate the equation 6.1.1, the relation between control variables and system

states can be written as:



TICE(t | θ) =f(v(t), a(t), SOC(t)

Tdmd(t), . . . , v(t− z∆t), a(t− z∆t)

SOC(t− z∆t), Tdmd(t− z∆t))

ωICE(t | θ) =g(v(t), a(t), SOC(t)

Tdmd(t), . . . , v(t− z∆t), a(t− z∆t)

SOC(t− z∆t), Tdmd(t− z∆t))

(6.1.2)

where TICE(t | θ) and ωICE(t | θ) are representing the predicted engine torque

and speed at sample time t. Functions f and g are special functions which are

being learned and updated by the developed LSTM deep RNN model. θ is repre-

senting weight parameters and activation functions in the LSTM network. Inputs

of the special functions are the model inputs of v(t), a(t), SOC(t), Tdmd(t) at current

time and the historical data from previous time window showing. z is represent-

ing the time window size discussed in section 5.4.4 (described as ∆Z) and ∆t is
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the update time step which has set to 0.1 (s) same as in vehicle EMS modelling.

v(t − z∆t), a(t − z∆t), SOC(t − z∆t), Tdmd(t − z∆t) are denoting the input data at

first time of historical time window.

Moreover, powertrain components (ICE, motor/generators, battery pack) con-

straints in the system must be considered while using the control variables. Inequal-

ities should be applied to each component’s minimum and maximum values.



0 ≤ ωICE ≤ ωICE− max

0 ≤ TICE(t) ≤ TICE− max (ωICE(t))

ωMG1− min ≤ ωMG1 ≤ ωMG1− max

TMG1− min (ωMG1(t)) ≤ TMG1(t) ≤ TMG1− max (ωMG1(t))

ωMG2− min ≤ ωMG2 ≤ ωMG2− max

TMG2− min (ωMG2(t)) ≤ TMG2(t) ≤ TMG2− max (ωMG2(t))

(6.1.3)

Similar to the controller of the HEV (discussed in section 4.4), the rest of the

control parameters can be obtained from power-split relations. The difference is that

there are only two major modes of propulsion and braking, which are determined

using the sign of Tdmd and the engine speed and torque will be obtained from the

LSTM prediction model and given to the RNN-based controller. Table 6.1shows the

equations used in the controller.
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Control parameters Propulsion Braking

Engine Speed ωICE(t | θ)

Engine Torque TICE(t | θ)

Engine Power PICE = TICE(t | θ).ωICE(t | θ)

MG1 Torque Obtained from 4.2.16

MG1 Speed Obtained from 4.2.13

MG2 Torque (Pdmd − PMG1 − PICE)/ωMG2 (g3(v).Pdmd)/ωMG2

MG2 Speed Obtained from 4.2.14

Brake Power Pbrk = 0 Pbrk = Pdmd − PMG2

Table 6.1: Modes in RNN-based controller

6.2 Online implementation of RNN-based EMS

For the online implementation of the LSTM prediction model, the same Simulink

model has been used for the driver and vehicle plant model, but the controller block

has changed to the RNN-based controller. The trained optimal network based on

analysis in the previous chapter has been loaded on the controller via a function. As

mentioned in the previous chapter, for RNN-based controller, predictions are being

made at each time step as the simulation runs based on previous time steps inputs.
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Figure 6.2: Layout of Vehicle controller modules in online implementation of
RNN-based EMS

In order to maintain the fidelity of the HEV model, the prediction time step

has been set to ∆t = 0.1(s). For the first sequence of input data from [0,z∆t], the

vehicle uses the rule-based controller, and the network predictor module is updating

the LSTM prediction model simultaneously. Based on the analysis, the updating

time window has been set to one minute using z = 600 and ∆t. Thus, from [60,
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60+k∆t], the network predictor module is estimating the TICE(t | θ) and ωICE(t | θ)

and constantly updating the network based on previous data. The outputs of this

module are then being used in the RNN-based controller accordingly (see table 6.1).

Figure 6.2shows various modules used in the HEV controller model to implement the

RNN-based controller. The RNN-based controller, is an add-on to the previously

implemented rule-based algorithm. The RNN used inside the Network Predictor

module and utilized in RNN-based controller is the same as the final LSTM prediction

model developed in Chapter 5.

6.3 Results and Discussion

Even though identifying characteristics of driving cycles and driving behaviors can

improve the EMS performance, it is important to examine how the results of training

an LSTM prediction model and implementing an RNN-based controller apply to

the vehicle model. In this section, the developed RNN-based EMS will be applied

to the HEV model, and the results will be compared to the rule-based EMS and

dynamometer testing data.

For verification and generalization purposes, rather than previously mentioned

drive cycles, two new drive cycles of NEDC (New European Drive Cycle) and Japanese

JC08 drive cycle were also simulated with both rule-based and RNN-based EMS. The

overall fuel consumption and end SOC for each drive cycle in both methods are then

recorded.

Table 6.2 shows the comparison of using RNN-based and rule-based methods

performance on the vehicle model. In the results of this table, the initial SOC for

UDDS is 34%, HWFET 32%, Steady state 39%, and for the rest of the drive cycles
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is 40%. Following equations were used to obtain the ∆FC and ∆SOC (FC stands

for fuel consumption)

∆FC =
FCRNN − FCRB

FCRB
× 100 (6.3.1)

∆SOC = SOCRNNend
− SOCRBend

(6.3.2)

Drive Cycles
Fuel Consumption (g) End SOC (%)

RNN-based Rule-based ∆FC RNN-based Rule-based ∆SOC

UDDS 382.8 402.3 -4.85 34 36.23 -2.23

HWFET 1050 1183 -11.24 39.19 43.69 -4.5

US06 1343 1399 -4.00 43.84 44.66 -0.82

Steady state 375.6 388.4 -3.30 34.41 37.24 -2.83

LA92 628.8 641.2 -1.93 43.54 44.29 -0.75

NEDC 328.2 368.6 -10.96 39.69 44.1 -4.41

JC08 247.4 250.9 -1.39 37.29 38.48 -1.19

WLTC 812.9 852.4 -4.63 43.51 44.34 -0.83

Table 6.2: RNN-based vs. Rule-based EMS results

From the results in table 6.2, it can be seen that, as expected, the fuel consumption

using RNN-based controller has decreased slightly. The fuel consumption reduction

is more in drive cycles with higher average speeds (HWFET and NEDC), and it is

86



M.A.Sc. Thesis – Helia Jamali McMaster University – Mechanical Engineering

mostly due to the reduction in idling time of the engine. In a rule-based approach,

only a certain speed and power threshold were responsible for changing the engine

idling status in urban and highway driving situations, which was not completely

efficient and robust. It can also be observed that the ending SOC in RNN-based

EMS is lower than the rule-based approach, which is consistent with the decrease

in fuel consumption amounts. However, the frequent charging and discharging of

the battery, which happens more often in the RNN-based method, can degrade the

battery performance and state of health over time.

Figure 6.3 better illustrates the difference in fuel consumption with both methods

on tested drive cycles. Also, table 6.3 shows the comparison between vehicle fuel

consumption reported in dynamometer test data and fuel consumption using an RNN-

based controller. The results are in line with the conclusions drawn from table 6.2.

Figure 6.3: Results of fuel consumption obtained by rule-based and RNN-based
methods on HEV vehicle model
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Drive cycles
Fuel Consumption (g) End SOC (%)

RNN-based Test ∆FC RNN-based Test

UDDS 382.8 403.5 -5.13 34 35

HWFET 1050 1227 -14.43 39.19 40

US06 1343 1459 -7.95 43.84 40

Steady State 375.6 388.9 -3.42 34.41 37

Table 6.3: RNN-based EMS vs. actual dynamometer test results

Following figures 6.4, 6.5, and 6.6 show battery SOC, engine power, and MG2

power profiles along with vehicle speed obtained from the HEV model using both

rule-based and RNN-based EMS.
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Figure 6.4: Results of battery SOC, mechanical power of Engine and MG2 obtained
by rule-based and RNN-based methods on HEV vehicle model for NEDC drive cycle
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Figure 6.5: Results of battery SOC, mechanical power of Engine and MG2 obtained
by rule-based and RNN-based methods on HEV vehicle model for JC08 drive cycle
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Figure 6.6: Results of battery SOC, mechanical power of Engine and MG2 obtained
by rule-based and RNN-based methods on HEV vehicle model for UDDS drive cycle
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Chapter 7

Conclusions and Future Work

In this chapter, an overview of the research findings is presented. Following that, the

contributions of this thesis are outlined. The current research’s potential future work

is then described, with suggestions for improvements in several aspects.

7.1 Summary

The literature review chapters present a general overview of electrification and hybrid

electric powertrains and the motivations and objectives of supervisory control. Then,

state-of-the-art energy management strategies are reviewed in chapter three. Each

EMS method is evaluated in terms of its benefits and drawbacks. Also, the underlying

reasons for choosing a learning-based EMS are explained.

To begin the main work, an HEV model, in this case, Toyota Prius 2010, is created

based on online available test data. Model parameters were obtained from various

resources, reverse engineering techniques, and by calibrating the model outputs with

respect to the actual dynamometer test data. The developed model consists of three
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main subsystems: driver, system-level controller, and vehicle model. A rule-based

EMS was developed for the system-level controller to imitate the actual vehicle be-

havior in power flow and energy consumption. Model evaluation results were found

to be in accordance with the dynamometer data. For example, model and test data

fuel consumption and fuel flow errors for the UDDS driving cycle are -0.29% and

0.423 g/s, respectively. As a result, the HEV model achieved an acceptable accuracy

for capturing the model’s performance with new energy management strategies and

ensuring that they can be replicated in the actual vehicle.

In the next step, an LSTM multi-parameter prediction model is introduced and

developed. First, an explanation for choosing recurrent neural networks over tradi-

tional neural networks and the reasons for developing the model with LSTM network

are discussed. Data for training the network were chosen carefully to agree with the

main goal of learning the driving behaviors and control modes with the network.

During the data processing and training, an improvement in results was observed

with the standard score normalization method over the min and max normalization

approach. Based on the explained methodology, the network performance is improved

through four iterative steps: define, compile & fit, verify, and predict. Simulations on

ten different network structures varying from one hidden layer to five hidden layers

with different training to testing proportion sizes were performed. Through multiple

simulations and analyses, some of the important model hyper-parameters are tuned

to improve the accuracy of predictions. For a better understanding of model accu-

racy enhancement, the first trained network during the development of this model

had validation RMSEs of 8.93 (rad/s) and 2.92 (N.m) for engine speed and torque,

respectively. After the analysis, the final selected network achieved 1.41 (rad/s) and
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0.57 (N.m) validation RMSEs, which shows an average reduction of 80% in validation

RMSEs.

In the final chapter, the deep RNN-based energy management strategy is defined

and explained. The main goal is to employ the developed LSTM multi-parameter

prediction model in the system-level controller of the HEV. Being a type of learning-

based EMS, deep RNN-based EMS has the capability of real-time implementation.

Due to its learning ability, it can adapt the control variables based on driving char-

acteristics and historical data. In this regard, a time-series interpretation of EMS is

given. Engine speed and torque are being predicted in the current time based on the

network updated weights and biases from previous time window. Deep RNN-based

controller kicks off when the first time window (one minute) passes by. Integrat-

ing network predictor functions in MATLAB with Simulink environment for online

running the controller and model was the challenging part of this chapter. The re-

sults showed that the employment of deep RNN-based leads to an average 5.29% fuel

consumption reduction.

7.2 Contributions

There are three major contributions to this research. This thesis proposes an LSTM

multi-parameter prediction model, which takes the vehicle speed, acceleration, battery

SOC, and torque demand to learn engine speed and engine torque of a power-split

HEV model.

The proposed model is different from most of the previous work in terms of taking

sequential and historical data as network input to capture the characteristics of both

driver and controller behaviors and improve the prediction accuracy. Model inputs
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are limited to four parameters to create an end-to-end framework with the ability to

predict control variables without extracting features of drive cycles.

Moreover, being a multi-parameter model for predicting two of the power-split

powertrain parameters with only one deep neural network makes this work novel. In

previous relevant studies, proposed models either predict one of the control variables

or use multiple networks to predict multiple variables.

The sensitivity analysis and debugging of model hyper-parameters and simulating

various network structures in this work have not been investigated before to this

extent for power-split EMS purposes. Many studies with similar analyses are in the

SOC estimation field. Also, the achieved validation RMSE of model outputs are

lower than the ones achieved in similar studies using deep RNN networks in HEV

powertrain parameters prediction.

The deep RNN-based EMS based on the trained LSTM prediction model is im-

plemented in real-time. Driver’s intents are being fed to the trained network, and

the network predictor module responds to the driver’s intentions promptly. The fuel

economy of the selected HEV is increased using an RNN-based controller by only

learning the driving behaviors.

This work can be used as a modular framework for other studies developing the

RNN-based controller. The LSTM multi-parameter prediction model can be trained

using optimal EMS data such as dynamic programming or convex optimizations and

then used as the deep RNN-based controller to further improve the fuel economy.
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7.3 Future Work

7.3.1 Advanced Hybrid Electric Vehicle Modeling

The HEV model presented in chapter 4, uses quasi-static equations for most of the

vehicle components. Achieving higher fidelity of the model is possible through consid-

eration of the dynamics of each component. Taking 2D or 3D vehicle dynamics into

account instead of longitudinal dynamics considered herein would improve the model

accuracy to the real-world conditions. Moreover, developing component’s thermal

models can capture temperature effects in the vehicle model. In particular, battery

pack and internal combustion engine models can be improved by adding temperature-

dependent variables and their relations to the other subsystems.

7.3.2 Data Correlation Analysis

In the LSTM multi-parameter prediction model, four inputs are chosen among tens

of HEV parameters to predict control variables. Selecting the appropriate parameters

for model input ensures a better training effect and decreases the probability of over-

fitting. This is because many of the parameters have strong or irrelevant connections.

For this matter, correlation analysis on HEV parameters can be done to choose the

most appropriate input parameters and eliminate the destructive ones. The Pearson

correlation coefficient (PCC) is mostly used in relevant research studies.

7.3.3 Model and Training Hyper-parameters Analysis

A few important model-related and training-related hyper-parameters are discussed

and analyzed in this work. However, there are still many parameters and aspects that
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can be further investigated. Among training-related parameters, a higher number of

epochs can be used and analyzed for validation RMSE and computational effort.

Gradient threshold method and regularization can also be examined further.

One of the effective methods to improve the training performance and prevent

overfitting is dropout or pre-dropout methods. When training data is not enough,

usually overfitting happens. Dropout layers with different probabilities from (0 0.5]

can be added to the network structure to preserve the most advantageous neurons

and connections and stabilize the training process.

Lastly, the employment of the k-fold (5-fold or 10-fold) cross-validation method

was one of the initial intentions in comparing different hyper-parameters in this work

which could not be completed. Hence, a contribution can be made towards a more

effective analysis of hyper-parameters using the k-fold cross-validation method in

future.

7.3.4 Optimal Deep RNN-based EMS

The purpose of this work was to demonstrate the effect of using historical driving data

in the energy management controller of an HEV vehicle, and the rule-based strategy

was an efficient path to evaluate this. However, the LSTM model and RNN-based

controller are designed in a way that data of various EMS methods can be easily de-

veloped by them. An offline optimization method such as dynamic programming or

convex optimization can be carried out to achieve optimal/sub-optimal fuel consump-

tion with the deep RNN-based EMS. Then, the LSTM multi-parameter prediction

model can be trained using the optimized control variables. The online implemen-

tation of such an optimal trained network can lead to lower fuel consumption and
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emissions while having the advantage of real-time implementation.

7.3.5 Model Verification with Driving Simulator

A valuable future work would be towards testing the deep RNN-based EMS in a

virtual environment such as a driving simulator. The driving simulator will include

the driver in the model verification process (driver-in-the-loop). Testing the EMS

with a driver can reveal the model flaws in vehicle performance because every harsh

acceleration or deceleration made by the controller can be detected. In this regard,

a collaboration with the MARC Drive lab at McMaster Automotive Resource center

can be made.
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Appendix A

Codes and Functions

In this section, snapshots of some parts of the codes in MATLAB and Simulink is

presented.
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Figure A.1: LSTM multi-parameter prediction network structure
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Figure A.2: LSTM network training options

Figure A.3: Function used for updating the network state and prediction of
parameters
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Figure A.4: Functions used in network predictor module of online controller
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