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Abstract 

In Canada, patients who occupy hospital beds but do not require that intensity of care are 

called Alternate Level of Care (ALC) patients. ALC has numerous negative implications 

on patient health and the health care system. Early identification of patients who are at 

risk of becoming ALC could help decision-makers better manage the situation and 

alleviate this problem. This thesis evaluates the use of various ML algorithms in 

predicting ALC at two different time points in the patient’s trajectory. Moreover, it 

identifies the most important predictors of ALC in each time point and provides insights 

on how adding more information, at the expense of time for decision-making, would 

improve the predictive accuracy. 
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1. Introduction 

Delayed discharge has become a prominent challenge in hospitals (Bai et al., 2019). 

In Canada, hospitalized patients who are occupying beds while not needing the intensity of 

its services are called alternate level of care (ALC), a term first assigned by the Canadian 

Institute for Health Information (CIHI) in 1989 (CIHI, 2009). Moreover, a patient is 

designated ALC only after the physician in charge of their care has decided that the patient 

is not medically in need of the current acute care setting (Costa et al., 2012; Ahmed, 2019). 

The majority of these patients are older adults who have received the care and are now 

waiting to be transferred to a proper facility suitable for their post-acute needs. The 

“alternate” solutions to staying in acute-care beds could be long-term care (LTC) facilities, 

rehabilitation centers, or home-care settings (Walker, Morris and Frood, 2009).  

Research shows ALC patients who stay in acute care settings have a high chance 

of developing medical complications  such as functional decline, infectious diseases, and 

depression. These could increase their length of stay (LOS) and make their discharge 

planning more complicated (Bender and Holyoke, 2018; Arthur et al., 2021). 

Delayed discharge affects not only the patient's health but puts a heavy strain on 

the health system, especially a publicly funded one (Sutherland and Crump, 2013). First, 

ALC patients occupying acute care beds are costly to the system. They could be staying in 

more suitable settings with significantly lower costs. In Ontario, it costs an average of 

$1100/day to stay in acute-care beds, whereas staying in long-term care is less than 
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$150/day, and in-home care is less than $50/day (Home Care Ontario, 2014). Second, the 

delayed discharge could act as a bottleneck in the system and adversely affect other health 

sectors. Hospital beds are finite resources, and when these beds are occupied by ALC 

patients, it causes the hospital to have less room to treat people in need of those medical 

services. This would contribute to longer inpatient bed wait times in ED, putting a heavy 

strain on the ED that is already facing an increase in the number of visits (Milne, Petch and 

Tepper, 2017). This would, in turn, cause those patients to occupy beds in ED and impede 

access to emergency beds and other resources for other patients still waiting for care 

(Health Quality Ontario, 2016). 

Moreover, the ALC issue would force hospitals to provide care in unconventional 

places such as hallways. The rising ALC rate is said to be one of the main reasons for the 

problem of hallway medicine (Ontario Hospital Association, 2019). Some might even 

argue that “The loss of beds that results from housing ALC patients is the major cause for 

congested Emergency Departments, crowded wards, and delayed/canceled procedures and 

surgeries” (Archer, 2016). Whether ALC is the main reason behind such problems across 

healthcare sectors or one of the reasons, its impact on patient flow throughout the hospital 

has been deemed substantial (Costa et al., 2012). 

It is estimated that more than 14% of inpatient beds in Ontario are occupied by 

ALC patients (Bender and Holyoke, 2018). Despite the range of solutions implemented to 

address ALC by the government and hospitals, the number of patients waiting in hospitals 

for appropriate care has increased over the years. It is anticipated that the current rise in 
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ALC rates will continue as Canada is faced with a rapidly growing and aging population 

(Ontario Hospital Association, 2019). This emphasizes the importance of more assessment 

around alternate level of care. 

There is no one simple solution to ALC (Sutherland and Crump, 2013). It is an 

interrelated issue among all health sectors, including primary care, home and community 

care, and acute care hospitals. Most commonly, the ALC patients start their journey by 

visiting the ED (Bender and Holyoke, 2018). They could be admitted from home, 

community care centers, or long-term care institutes. After being admitted to the hospital, 

they receive the care they need before being designated as ALC.  

Early identification of ALC patients, beginning at the time of admission to ED, 

could result in better resource management and decision-making by healthcare managers 

(Lavergne, 2015). The sooner decision-makers could be informed of patients with complex 

medical care needs such as those designated as ALC, the better they could start planning 

their discharge from the hospital. 

With the advent of data collection and computing resources, data-driven methods 

such as machine learning (ML) and statistical modeling could be used to predict ALC 

designation. However, very few works have been done in this area. More specifically, there 

has been no research that uses ML to predict delayed discharge at the first patient’s contact 

point with the healthcare system, i.e., ED. Our aim in this study is to use large 

administrative datasets gathered throughout the years and machine learning to predict if a 
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patient would be designated ALC in the hospital. Also, linking different data sets from ED 

and acute care hospitals would result in a data-driven integrated approach to ALC in 

hospitals. Machine learning allows for simultaneous examination of independent variables 

in the prediction of ALC. In contrast with statistical methods, ML approaches are more 

flexible, meaning they could take better advantage of large data sets. Also, ML is more 

likely to find hidden patterns among predictor variables (Kuhn and Johnson, 2013). It 

would also help the healthcare planners to make better data-driven decisions. 

The research questions posed in this thesis are as follows: 

1. Can machine learning be used to predict ALC at different time steps in a 

patient’s journey to the hospital, namely ED and hospital? 

2. What are the main predictors of a patient being designated as ALC at each 

time point? 

3. How does adding more information to the model (i.e., from ED to the 

hospital admission) at the expense of time for decision making improve prediction 

accuracy? (trade-off between waiting and predictive accuracy) 

Early identification of ALC patients long before it happens in acute care would help 

with optimal discharge planning. Healthcare decision-makers could use these predictions 

to take more informed actions, such as resource planning, care prioritization, and treatment 

plans. As the majority of ALC patients are waiting for a long-term care placement (Costa 

et al., 2012), communications with discharge destinations could be started much earlier to 
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quicken the patient’s discharge process. The result could be improved capacity planning 

both in acute and post-acute care, improved admission /discharge planning, and optimal 

staffing in healthcare settings. Simply put, information powered by data with enough time 

to act could alleviate the issue of delayed discharge. 

Moreover, finding the predictors of ALC would help identify types of patients who 

are more at risk of becoming ALC. This could help health care providers and policymakers 

to take better proactive measures regarding different high-risk populations or patient 

groups. Also, determining whether a feature in large administrative data sets is associated 

with ALC or not could enhance future data collections, leading to the collection of more 

useful predictors. Thus, leading to better prediction capacity. 

Finally, predicting ALC designation at two different time points would benefit 

healthcare providers in a number of ways. First, they can assess the situation at an earlier 

time point to have enough time for taking necessary actions (e.g., resource planning, etc.). 

Second, they can wait and use more precise predictions at a later time in the hospital, 

although it would allow for less time to take action before the patient becomes ALC. 

Having both options could assist decision-makers in different scenarios. 
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2. Literature Review 

Given the importance of delayed discharge and its adverse effect on the patients’ 

health and health care system, much research has been conducted in this area. In this 

chapter, the literature around delayed discharge (worldwide) and ALC (in Canada) has 

been studied. The keywords used to find the related literature were “predict,” “delayed 

discharge,” “alternate level of care,” “artificial intelligence (AI),” and “machine learning.” 

In the following paragraphs, we will discuss the related works and categorize them 

into three main groups, which are (1) identifying determinants of ALC in general or in 

specific diagnosis groups, (2) deriving clinical risk scores for ALC patients, and (3) 

predicting ALC as an outcome measure. In the end, we will summarize the conducted 

research regarding ALC predictions at different time points in the patient’s journey in the 

healthcare system using recent machine learning and show how this thesis aims to fill in 

the research gaps. 

2.1 Identifying determinants of alternate level of care  

Earlier studies of alternate level of care, or delayed discharge outside of Canada, 

have been focused on finding the sociodemographic and clinical characteristics of ALC 

patients. These studies use conventional statistical methods such as logistic regression to 

calculate the significance of the factors based on p-value and odds ratio.  
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Victor et al. (2000) (Victor et al., 2000) studied 456 older adults who were admitted 

from home to three different elderly care wards in the UK to find the determinants of 

delayed discharge among them. It argued that factors such as age, sex, and medical 

conditions were not significant predictors of delayed discharge. In contrast, organizational 

factors such as care provider type in hospital (e.g., nurse, social worker, or occupational 

therapist), discharge to institutional care (e.g., nursing homes), and the absence of family 

caregiver predicted delayed discharge independently. 

It must be noted that discharge displacement could not be a predictor of the delayed 

discharge as the decision that the patient does not require the intensity of current care 

precedes it. However, Victor et al. (2000)  aim to show that organizational factors are more 

associated with delayed discharge as opposed to patient characteristics. They need to be 

discharged from an elderly care ward to a nursing home requires a waiting period, resulting 

in delayed discharge more often. 

Challis et al. (2014) considered a similar population of older adults in the United 

Kingdom, where 665 people were included in this research. They found the discharge 

disposition type of patient being significantly associated with delayed discharge. This 

emphasizes once again the effect of organizational factors on delayed discharge. Cognitive 

impairment was found to be an important clinical risk factor, particularly for those with 

dementia. Length of acute care stay was also indicative of discharge delay. However, they 

found that the status of the patient’s caregiver before being admitted to the hospital did not 
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affect their delayed discharge. This contradicts the findings of the previous study by (Victor 

et al., 2000). 

More recently, Lenzi et al.(2014) conducted a cross-sectional study over a two-

week time span in northern Italy to identify the factors associated with delayed hospital 

discharge. They assessed more than 6000 patients across a large number of healthcare units 

with different medical specialties. Patient information consisted of hospital discharge 

records (age, sex, method of arrival, primary diagnosis, procedures, and comorbidities) and 

a survey containing living arrangements and dependency metrics (Activities of Daily 

Living). For patient’s diagnoses and diseases, a modified version of Elixhauser disease 

groups was implemented using ICD-9 codes (Quan et al., 2005). According to this study, 

an increase in age and number of comorbidities was shown to increase the likelihood of 

delayed discharge. Moreover, a primary diagnosis of dementia, fracture, or tumor and stay 

in intensive care units were found to be major factors for delayed discharge.  

A series of articles in the literature was centered around studies focusing on the 

predictors of ALC in certain patient groups. Univariate or multivariate logistic regression 

is the main analytical tool used in these works. Amy et al. (2012) studied ALC designation 

among patients with acquired brain injury, a leading cause for death and disability 

worldwide. Acute care hospitalization records from 2007-2010 in Ontario were used from 

the discharge abstract data set (DAD) from CIHI. The target variable of having at least one 

ALC day was analyzed with respect to clinical and demographic variables available in 

DAD. Multivariate analyses suggested that an increase in age, female sex, having a 
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psychiatric co-morbidity, acute length of stay, and being involved in a motor vehicle 

collision are among the most significant predictors of ALC designation in acute care 

hospitals for traumatic and non-traumatic brain injury patients. A finding similar to what 

was found in other population groups. A key characteristic of this study is that it was 

conducted across several acute care hospitals; however, because it relied on administrative 

data regarding the estimates of the ALC days, one limitation of this research is that not all 

hospitals report ALC days in the same manner and there is a wide variation among ALC 

days reported by hospitals. It is argued that this leads to underestimation of actual ALC 

days. Using a relatively large sample size of around 62,000 patients was another strong 

point of this research.  

In another study, Little (2016) investigated the predictors of alternate level of care 

among mental health inpatient units in Ontario. Logistic regression was applied to features 

obtained from the RAI-MH data set that is a comprehensive assessment tool for mental 

health patients. The cut-off point of +30 ALC days was used to define a binary target 

variable. Little found that dependency (Activities of Daily Living (ADL) and Instrumental 

Activities of Daily Living (IADL) variables), cognitive impairment, social isolation, and 

being male in addition to older age were among the predictors of delayed discharge from 

mental health wards. 

Stock et al. (2016) also reviewed the population of hypoxic-ischemic brain injury 

patients who survived acute care in Ontario. They used a multivariable zero-inflated 

negative binomial regression to identify the predictors of ALC. The authors emphasize the 
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importance of this population as their ALC rates are disproportionally higher than other 

groups. It was found that 50% of acute care episodes for patients with hypoxic-ischemic 

brain injury ended with an ALC designation, with a median length of 20 days. In terms of 

significant predictors, it was concluded that younger age and less severity (measured by 

time spent in special care units) were unique predictors. A finding that contradicts the 

previous studies of ALC and the cause for it remained unknown to the authors. Having a 

previous acute care episode and a psychiatric/behavioral comorbidity were other 

significant determinants of ALC for these patients. It is noteworthy to say that the sample 

size of this study was 669 patients. 

Turcotte and Hirdes (2015) assessed the long-term (>30 days) ALC stays in 

Ontario’s complex continuing care (CCC) and mental health beds. CCC facilities provide 

post-acute care rehabilitation and nursing services for patients with complex medical 

needs. Once again, logistic regression was used to identify the predictors of ALC status. It 

was found that hospitalization history in the last five years, presence of the spousal 

caregiver, aggressive behaviors, medical conditions such as Alzheimer’s disease and 

related dementias, and stroke were risk factors of delayed discharge. Functional and 

cognitive impairment measured by the RAI MDS 2.0 clinical scales was also a significant 

predictor for ALC stay in CCC beds. The author suggests that future works in this area 

should focus on the implementation of predictive models to help identify patients with high 

ALC likelihood from an early stage. 



M.Sc. Thesis – Faraz Ahmadi; McMaster University – Computational Science and Engineering 

11 

2.2  Deriving clinical risk scores for ALC patients 

In the literature, some authors took the work further than just identifying the 

predictors of delayed discharge and created clinical risk scores for patients in different 

acute care settings. 

Bai et al. (2019) used logistic regression to find predictors of ALC among patients 

who visited an internal medicine ward in a single hospital in Ontario. After that, they 

selected the best variables and created a clinical prediction rule, a point system created by 

assigning a value of 1 to the presence of each predictor in the final LR model and adding 

them together for each patient. The authors found Age, Sex, Dementia, Diabetes with 

complications and referral to occupational therapy, physiotherapy and speech-language 

pathology as their final set of predictors. The derived score was used on the validation set. 

It consisted of half the total sample size of 4311 patients, achieving an AUC of 0.85. 

Likelihood ratios for ALC designation were calculated for each of 0 to 6 scores in the 

derived point system. 

In a follow-up study, Turcotte, Daniel and Hirdes (2020) developed a Post-acute 

Delayed Discharge Risk Scale (PADDRS). An outcome measure designed to identify 

patients with a risk of delayed discharge at the time of admission to a post-acute care 

setting. The authors used the previously found predictors of long-term ALC (Turcotte and 

Hirdes, 2015) and constructed a classification tree to group patients based on the likelihood 

of delayed discharge. The tree nodes were selected based on the magnitude of the 

likelihood ratio test statistics and common clinical knowledge. Having an end-stage disease 
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and cognitive performance were the top two classifiers in the decision tree. In the end, 

patients were clustered into seven distinct risk groups. The data used in this study was 

partitioned into a train and validation set (70%, 30%), and the validation set of CCC 

patients across all Ontario achieved an AUC of 0.76. A sample of 30,657 admission 

episodes from 84 facilities was included in the study. This article was the first study of 

Alternate level of Care in Canada that tried to predict ALC designation as an outcome 

measure with patient-level data. The authors discuss that their motivation was to help 

discharge planners detect patients with a risk of delayed discharge from an early stage. 

Although the authors acknowledge that their risk score may not have the same 

discriminatory power at a shorter ALC wait time (less than 30 days), this study shows that 

predictive models could help decision-makers. Predictive models would not solve the 

problem of ALC, but having more information and earlier on the patient’s journey could 

certainly alleviate the problem. 

2.3 Prediction of ALC status as an outcome 

Only one paper was found in the literature to implement a machine learning model 

to predict delayed discharge. Francis et al. (2015) used neural networks on patients in 

enhanced recovery following a laparoscopic colorectal cancer surgery to predict delayed 

discharge and 30-day readmission. The study was conducted in the UK and only had a 

sample size of 275. The trained neural network achieved an AUC of 0.817 that showed 

improvement over the use of a multivariable logistic regression with an AUC of 0.807. 
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In one recent study, Arthur et al. (2021) predicted delayed discharge among home 

care clients in acute care hospitals. The population of the study is believed to be often frail 

older adults with complex medical needs. Comprehensive data is gathered from these home 

care clients using standardized instruments such as the international Resident Assessment 

Instrument-Home Care (interRAI-HC). The home care reporting system records were 

linked with the Discharge Abstract Database (DAD) to include information on ALC 

designation. This cohort data set allowed the authors to have access to many useful 

measures and predictors that were discussed in the literature but never implemented in a 

predictive model to find the likelihood of delayed discharge. 

Caregiver and marital status, living arrangements, age, sex, medical history and 

diagnoses in addition to Cognitive scores, instability, pain and frailty scales, Activities of 

Daily Living (ADL), and Instrumental Activities of Daily Living (IADL) scale from RAI-

HC were all used as independent variables in this study. The outcome variable was having 

1 or more ALC days in the hospital; this was new in the literature as previous works only 

investigated longer ALC days (>30 or 7 days)(Francis et al., 2015; Turcotte, Daniel and 

Hirdes, 2020). Moreover, Arthur et al. (2021) used the largest sample size by far in the 

literature, a number of 210931 unique home care patients in Ontario and British Columbia. 

Their analysis included a descriptive phase which helps select the most significant 

predictors with respect to the outcome. The select predictors were then deployed in a 

multivariable logistic regression model. The result was a moderate predictive performance 

with an AUC of 0.67. The study shows promise that using integrated data sets and 
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information about the at-risk groups prior to hospitalization could be very helpful for care 

planning and would benefit both the system and the patients. They also mention that the 

model performance could be improved using machine learning techniques. (Arthur et al., 

2021) 

2.4 Literature Summary and Identified Gaps 

The literature review shows a clear gap in the use of machine learning techniques 

and large datasets in the prediction of delayed discharge at different time points regarding 

the patient’s trajectory. Although there has been an increase in using machine learning in 

healthcare settings, such as predicting discharge displacement (Ogink et al., 2019), 

predicting hospitalization upon entry to ED (Mowbray et al., 2020; Sills, Ozkaynak and 

Jang, 2021), and predicting admission to Intensive Care Unit from ED (Fernandes et al., 

2020), alternate level of care has not been assessed in such ways. These are only a few 

examples of predictive modeling using machine learning in the healthcare domain. These 

approaches often outperform statistical methods (e.g., logistic regression). 

With little known about the performance and application of ML methods in predicting 

ALC, we are aiming to find out if ML could accurately predict ALC. For this, we will use 

retrospective administrative data, linking ED and acute-care hospitals across Ontario to 

predict ALC designation at different time points in the patient’s journey. Our aim is also 

to take advantage of available large data sets with different ML methods. This study aims 

to make the following contribution to the literature: 
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1- Apply a data-driven approach using ML to predict delayed 

discharge at different time points in a patient’s journey, namely in ED before being 

admitted to the hospital and in acute care hospital 

2- We provide insight regarding the trade-off between information and 

time by adding more predictors with the cost of time for decision making 

3- Use retrospective data from 2004-2016 that includes more than 

1,400,000 episodes of care. A larger sample size has a better chance of the 

generalizability of obtained results. 
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3. Methods 

3.1 Study Design 

In this study, ML methods were deployed using retrospective electronic health 

records. Our research is comprised of two separate algorithms at two different time points 

in the patient’s journey. Figure 3.1 presents the overview of the two algorithms. The first 

algorithm is carried in the ED stage and uses predictors available before admission to acute 

care hospital to predict delayed discharge in the hospital. The second algorithm uses a 

combination of predictors in both ED and hospital to predict the same outcome. Emergency 

department is the first point of contact of patients before becoming ALC in the hospital. 

Our aim was to use available predictors in ED to predict ALC and then add value to the 

algorithm by adding more information regarding the patients stay in the acute care hospital. 

In this chapter, we will elaborate on different steps taken to implement these predictive 

models in detail. The results are presented in the next chapter. 
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Figure 3.1: The proposed models and their different phases 

3.2 Data Sources 

We used the National Ambulatory Care Reporting System (NACRS), Discharge Abstract 

Database (DAD), and Registered Person Database (RPDB). All of these datasets are 

maintained by the Canadian Institute of Health Information (CIHI). The NACRS contains 

all visits to facility-based or community-based ambulatory care (CIHI, 2020). This includes 

visits to ED that are specifically used in this research. NACRS contains all sorts of 

administrative and clinical variables, marking each patient's journey throughout their visit 

in ED until being admitted to an acute-care hospital. 

The second data set used in this research is a cohort of DAD and RPDP that captures 

administrative, clinical, and demographic information pertaining to hospital discharges. 

ALC designation and the number of ALC days in the hospital are also flagged in this data 

set. 

These administrative data sets were provided to us by the Institute for Clinical 

Evaluation (ICES), accessed remotely via a secure, encrypted VMware virtual desktop 

server called ICES Data & Analytics Virtual Environment (IDAVE). To access this data, 

ethical approval was obtained to avoid a data breach and maintain participant 

confidentiality. Analyses were done solely on this remote system and final outputs were 

extracted only after being examined for reidentification risk by an ICES analyst.  
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3.3 Population of Study 

For this study, we identified older adults aged 65 and older who visited ED across 

Ontario and were next admitted to acute-care hospitals between the 2004 and 2016 fiscal 

years. Therefore, the cohort data set for this study is compromised of the NACRS and DAD 

data sets, linked together by a unique anonymized ID number provided by ICES. The final 

cohort consists of 1,474,285 care episodes, of which 174,228 (12%) were designated as 

ALC patients over their time of stay in acute care. 

3.4 Outcome variable 

In our predictive models, ALC designation is used as the outcome variable. It is the target 

variable that the ML predicts based on the features fed to them. From here on, ALC is used 

as a proxy for delayed discharge from the hospital (Arthur et al., 2021). When a patient is 

deemed medically fit for discharge by a healthcare provider but stayed in the current 

setting, awaiting their proper discharge destination, they are assigned an ALC status. The 

number of days a patient stays in the hospital with this status is coded as the number of 

ALC days in the DAD data set. In our study, ALC status that was coded as Yes (1 or more 

ALC days) and No (0 ALC days) is the outcome variable. 

3.5 Predictor variables 

The NACRS data set provided to us by ICES contained 261 variables. These features 

captured the entirety of a patient’s journey throughout the ED. It contains medical variables 

such as the mode of arrival, triage score, diagnoses, intervention type, intervention location, 

provider type, investigative technology (Cat scan, Xrays, etc.) flags, and other 



M.Sc. Thesis – Faraz Ahmadi; McMaster University – Computational Science and Engineering 

19 

administrative variables. It also includes time-based variables of the time of arrival, 

registration, triage, physician’s initial assessment, interventions, and discharge from ED. 

The demographic variables were present in the cohort data set of DAD and RPDP. The 

second data set contained additional diagnosis, procedures, length of stay, main service 

type in hospital, and special care unit information. In the beginning, all independent 

variables present in the linked data set were considered for the prediction of delayed 

discharge. 

3.6 Data Pre-processing and Preparation 

A series of steps were taken to modify and select the predictors of delayed discharge. At 

first, administrative variables that contained no predictive information (e.g., patient, 

hospital and health provider unique IDs) were removed from the analysis. The remaining 

variables were pre-processed, as elaborated in the next paragraphs. 

3.6.1 Feature Engineering 

The data contained a large number of variables that could not be used with their 

raw format in ML algorithms. A good example were dx10code1 – dx10code10 variables 

that contained diagnosis codes. They were based on the International Classification of 

Diseases 10th Revision Canadian version (ICD-10-CA) codes. These codes mark a patient’s 

main diagnosed problem and other comorbidities assessed in ED or before. Each variable 

could contain more than 5000 unique diagnosis codes. Using them with their raw format 

could be problematic in most ML algorithms, and creating dummy variables for all levels 

could leave us with the so-called “curse of dimensionality” (Altman and Krzywinski, 

2018).  
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A common approach to resolve this issue in Electronic Health Records (EHR) is to 

develop risk indices or scores. These include the comorbidity-based Charlson index 

(Charlson et al., 1987), Elixhauser index (Elixhauser et al., 1998) and their updated 

versions (Sundararajan et al., 2004). The hospital frailty risk score (HFRS) is another 

measure that focuses on older adults in acute care settings (Gilbert et al., 2018). However, 

with the recent advancements in computational power and machine learning systems, more 

researchers have been trying to grow their medical data feature sets beyond the carefully 

crafted comorbidity lists (Tran et al., 2014). 

Risk scores would not capture all the information available in diagnosis codes and 

one-hot-encoding (dummy variable) results in sparse and high-dimensional vectors; 

therefore, a common approach is to leverage the hierarchical arrangement of ICD-10 codes, 

which means to use only higher-order and less specific of these 5-7 digits long codes. We 

tried grouping the diagnosis codes by the first three digits and used them in univariate 

analyses to identify the most associated levels with ALC designation. This enabled us to 

enhance our models with more useful predictors.  Similar approaches to diagnosis codes 

were taken for other predictors that contained a large number of levels. In some cases, the 

top levels in terms of occurrence were selected, and the rest were coded as the “other” 

category.  

3.6.2 Feature Selection 

Feature selection is the process of reducing the number of predictors used in 

predictive models. Moreover, “Feature selection is primarily focused on removing non-
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informative or redundant predictors from the model” (Kuhn and Johnson, 2013). Reducing 

the number of predictors helps ease the computation cost and also helps with the predictive 

performance in some cases. It is an important part of every machine learning problem. In 

supervised classification, there are three most common feature selection methods: 

1. Wrapper methods 

2. Filter methods 

3. Embedded methods 

Wrapper methods aim to find the best subset of predictors by creating many 

predictive models with different combinations of predictors. They use a greedy search 

method and are computationally intensive. Filter methods use statistical measures outside 

of predictive models to assess the relationship between each feature and the target variable 

(Kuhn and Johnson, 2013). The chi-Square test measures the independence of two 

variables and mutual information uses entropy to determine a score between two random 

variables. Both are examples of the filter method. 

In some algorithms, the feature selection process is embedded automatically in the 

model training. “Some models are naturally resistant to non-informative predictors. Tree- 

and rule-based models, MARS and the lasso, for example, intrinsically conduct feature 

selection” (Kuhn and Johnson, 2013). These are called embedded or intrinsic feature 

selection methods. 
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A comprehensive literature review and the statistical significance from the 

univariate analyses were combined in our approach to identifying the predictors of ALC. 

In the literature, there was no clear link between the ED visits and ALC; therefore, in the 

beginning, we tried to produce as many meaningful features as possible that were indicative 

of the patient's process through ED. Then, a systematic approach was taken to select the 

best variables. First, each variable was individually investigated. The frequency and 

missingness of each were reported. Variables with little or no variance between their levels 

and a high amount of missingness were excluded from the analysis. Variables not pertained 

to our outcome measure or those which were recorded after the ALC incidence in acute 

care were also removed. 

Subsequently, the remaining variables and engineered features were implemented 

in univariate analysis with respect to ALC. Then the most significant features were 

selected. The goal was to include as many features as possible due to the absence of a clear 

link in the literature between ED variables and ALC. Finally, the mutual information (MI) 

criterion was used to rank the selected features in both ED predictors and after adding 

hospital predictors. ML algorithms were implemented using different subsets of ranked 

features (by MI) to identify the optimal number of predictor features. We tried not to 

include too many features as it complicates the algorithm while attempting to achieve 

higher accuracy. 
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3.6.3 Imbalanced Data Resampling 

In practice, a common problem in supervised classification problems is that we 

have to deal with imbalanced data sets, i.e., the data is not evenly distributed between target 

classes and that there is a majority (referred to as “negative” in medical cases) and a 

minority (referred to as “positive”) class. For imbalanced classification, the interest usually 

leans towards the correct classification of the rare positive class. This poses a challenge for 

predictive modeling as most of the ML algorithms used for classification were designed 

around the assumption of an equal number of examples for each class. Therefore, classic 

metrics such as total error or accuracy are not useful in imbalanced data sets. For example, 

in a 2-class data set when the majority takes up 95% percent of the data, the ML model 

could easily assign all observations to this class and achieve a high accuracy of 0.95, 

whereas for the 5% sample that was important it is achieving a per-class-error-rate of 

100%. 

There are two common approaches to eliminate the problem within imbalanced 

data sets. One is based on adjusting the cost function in ML models. Assigning a high cost 

to misclassification of the minority class while trying to minimize the overall cost 

(Krawczyk, Woźniak and Schaefer, 2014; Domingos, 1999). The other approach modifies 

the training sample fed to ML models. It uses resampling methods, either over-sampling 

the minority class or under-sampling the majority class, or a combination of both (hybrid-

sampling). In addition, the synthetic minority over-sampling technique (SMOTE) is 
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sometimes used to create synthetic instances of the minority (positive) class to balance the 

imbalanced data (Fernandes et al., 2020; Chawla et al., 2002). 

In our cohort data, ALC patients consist of 12% of data, leading to an imbalanced 

classification problem. Up-sampling, down-sampling, and SMOTE techniques were used 

on the training data before feeding them to each model. The test data remained imbalanced. 

SMOTE was not used in the final models as it did not improve the accuracy. In almost all 

cases, over-sampling the training data performed better than other resampling techniques. 

3.7 Analysis 

We used R version 3.6.3 for all analyses. Predictive models were mostly built on 

H2O, which provides a faster, more efficient tool for building ML models on large data 

sets. H2O uses in-memory processing with fast serialization between nodes and clusters to 

support massive datasets. Moreover, its distributed processing on big data delivers speeds 

up to 100x faster with fine-grain parallelism, enabling an overall optimal solution for 

building ML models in R (R Interface for H2O, 2020). The caret package was also used 

for implementing some ML models that were not available in H2O (Kuhn, 2008). 

After engineering and selecting the final predictors for both models, stratified 

random sampling was used to split the data set into the train (80%) and test (20%) sets. The 

data set was pre-processed before this stage; however, the test set was remained imbalanced 

to be indicative of true ALC distribution. In the training set, a stratified 5-fold cross-

validation was performed to find the best hyperparameters. The area under curve (AUC) 
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was the predictive accuracy criteria for hyperparameter tuning. It is important in ML that 

the test data is unseen by the model until it is fully tuned with the best hyperparameters. 

Cross-validation is used to avoid overfitting and ensure better generalizability during the 

tuning phase. 

We used Logistic Regression (LR), Elastic Net (EL), Classification and Regression 

Tree (CART), an ensemble of decision trees with bagging (treebag), random forest (RF) 

and gradient boosted trees (GBT). We aimed to use a variety of tree-based and non-tree-

based ML models. 

3.8 Performance measures 

When dealing with imbalanced data sets, overall accuracy is not a good indicator 

of the model’s performance; therefore, we used 7 different classification metrics. We used 

sensitivity (recall), precision, specificity, and F1-score. All these metrics are a function of 

the confusion matrix shown in Table 3.1. Sensitivity measures the proportion of those who 

were designated ALC (positive class) that were classified as ALC by the algorithm. 

Specificity refers to the proportion of those who were not ALC that were not classified as 

ALC (negative class) by the algorithm. We also used the area under the receiver-operating 

curve (AUC), a method commonly reported in the literature (Francis et al., 2015; Bai et 

al., 2019; Arthur et al., 2021). ROC is a function of true positive ratio (TPR) or recall 

versus the false positive ratio (FPR) plotted over all possible classification thresholds. An 

AUROC of 0.5 is achieved with a trivial random classifier, whereas 1 represents perfect 

discrimination among classes. 
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Another great measure of success for imbalanced classification is the Area Under 

Precision-Recall Curve (AUPRC). The AUPRC shows the trade-off between precision and 

recall among different thresholds. Higher values indicate better performance in classifying 

the minority class. It must be noted that AUPRC could not be used to compare models 

trained on different data sets with different imbalanced ratios among classes. But AUPRC 

is a good measure in comparing different models’ performance on one data set. 

F1-score was also assessed, and it is a great measure used in evaluating 

classification models suited for dealing with imbalanced data sets. It is defined as the 

harmonic mean of precision and recall, as shown in Table 3.1. In H2O, F1-score is 

automatically used to select the best threshold. 

Every classification model assigns a probability (from 0.0-0.1) to each class; it is 

our job to come up with the best threshold used to assign class labels. The default threshold 

for interpreting probabilities to class labels is 0.5; however, in imbalanced data, it is not 

the best decision. In order to find the optimal threshold, we have to decide on our desired 

metric or metrics and seek a threshold that maximizes that metric. In this study, models 

were trained and evaluated using AUC and AUPRC during the hyperparameter tuning 

stage. Also, the best threshold was selected as the one achieving the highest F1 score among 

the rest. 
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Table 3.1: Confusion Matrix and common performance measures 

 

  

Predicted Negative 

Class 

Predicted Positive 

Class 

Actual Negative Class True Negative (TN) False Positive (FP) 

Actual Positive Class False Negative (FN) True Positive (TP) 

 

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝑇𝑃𝑅), 𝑅𝑒𝑐𝑎𝑙𝑙, 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 +  𝐹𝑁
 

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒(𝐹𝑃𝑅) =
𝐹𝑃

𝐹𝑃 +  𝑇𝑁
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 +  𝐹𝑃
 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 +  𝐹𝑃
 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2 ×  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

3.9 Hyperparameter Tuning 

Machine learning algorithms require parameter tuning to ensure maximum 

performance. Each algorithm has its own set of parameters, and the optimal parameters 
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could significantly affect the resulting model’s performance (Claesen and De Moor, 2015). 

The following table shows the hyperparameters each algorithm had tuned in this study. 

Table 3.2: Description of Gradient Boosted Trees Hyperparameters 

Gradient Boosted Trees 

Max depth Maximum tree depth 

Sample Rate For each tree in the ensemble, we only use a sample of the balanced training 

data. 

Columns sample 

rate 

The rate at which the sampling of training data’s features (columns) occurs at 

every split node. 

Column rate per 

tree sample 

Another sampling of columns at each tree. It is multiplicative with column 

sample rate, meaning if both are set to 0.8, it results in 64% of columns being 

used at each split. 

Column sample rate 

change per level 

Specifies the change in column sampling as a function of tree depth. 

Min rows Indicates the minimum number of observations needed at a leaf to split. For 

example, if min_rows =512, at each node, we need more than 512 responses on 

both Yes and No values of the outcome variable (ALC status). 

Min split 

improvement 

The minimum relative decrease in error needed for a split to happen at any 

given node. If a split does not improve the error rate by the specified amount, it 

will not happen. 

Histogram type The histogram aggregation method used to find the best split point. 

Learning Rate The rate at which GBT learns when building model 

Learn rate 

annealing 

Reducing the learning rate after each tree by this factor 

Early stopping 

criteria and metric 

The criteria and metrics (AUC, AUPRC, F1 etc.) used for early stopping in 

ensemble methods. 

Table 3.2 shows in detail the hyperparameters in gradient boosting trees. In GBT , 

the training data could be sampled on both rows (observations) and columns (features), 

causing the trees in GBT to not use all the training data. This might reduce the training 

performance but often helps improve the test accuracy (Friedman, 2002). The early 
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stopping criteria used was based on AUPRC. Meaning if the AUPRC did not improve after 

10 consecutive scoring events (each scoring event is 10 tree intervals apart), the model 

would not build any more trees and stop the process there. Table 3.2-Table 3.5 show the 

hyperparameters for Random Forest, Elastic Net, and CART. Logistic Regression and 

Bagging CART were used but had no hyperparameters. 

Table 3.3: Description of Random Forest Hyperparameters 

 Random Forest 

Max depth Maximum tree depth 

Mtries Number of splitting variables randomly selected at each level 

Min rows Indicates the minimum number of observations needed at a leaf to split. For 

example, if min_rows =512, at each node we need more than 512 responses 

on both Yes and No values of the outcome variable (ALC status) 

Min split improvement The minimum relative decrease in error needed for a split to happen at any 

given node. If a split does not improve the error rate by the specified 

amount, it will not happen 

Sample rate per class For each tree in the ensemble, we only use a sample of the balanced training 

data. This sample rate is different for members of each class in the training 

data 

Histogram type The histogram aggregation method used to find the best split point 

Early stopping criteria 

and metric 

The criteria and metric (AUC, AUPRC, F1 etc.) used for early stopping in 

ensemble methods 

 

Table 3.4: Description of Elastic Net Hyperparameters 

 Elastic Net 

Lambda Controls the penalty strength for both regularizations. If lambda = 0, no regularization is 

applied and alpha is ignored. 
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Alpha The alpha parameter controls the distribution between the ℓ1 (LASSO) and ℓ2 (ridge 

regression) penalties. 

Table 3.5: Description of CART Hyperparameters 

 Classification and Regression Tree (CART) 

Tree depth Depth of the implemented tree. Also, a measure of the number of predictors 

involved in the tree as tree nodes. 
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4. Results 

The results from the predictive models are presented in this chapter. 

4.1 Descriptive Analysis 

The results for the descriptive analysis on patients who visited the ED and were 

admitted to the hospital between 2004 to 2016 are depicted in Appendix A: Descriptive 

Analysis Table. The data contained a total of 1,474,285 episodes of care and 765,133 

unique patient IDs. The mean age of our sample was 75 years (SD 7.8). Out of this 

population, 174,228 (12%) episodes of care resulted in ALC designation compared with 

1,300,057 (88%) episodes of non-ALC designation. The mean age for ALC designated 

population was 78 years (SD 8.0), whereas it was 75 years (SD 7.7) for non-ALC visits. 

The majority of ALC patients were females (58%). Most of them stayed in urban hospitals 

(87%) and four out of every five ALC patients (80%) entered ED via ambulance. 

Approximately 93% of all visits by ALC patients were deemed to be urgent, receiving a 

Canadian Acuity and Triage Scale (CTAS) score of three or less. Missing data percentage 

was less than about 5% for all variables included. 

4.2 Hyperparameter Tuning results 

Table 4.1 summarizes the results of hyperparameter tuning for the CART algorithm 

for both models. Table 4.2 shows the range and optimal points for Random Forest 

hyperparameters. For Gradient Boosting Machine, the learning rate was 0.05, and 

learn_rate_annealing was set to 0.99. This combination ensures convergence as it is both 
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small from the start and shrinks after each iteration. Table 4.3 summarizes the rest of GBT 

tuned hyperparameters. GBT and RF were deployed using H2O. Encoding of categorical 

variables is an important part of our predictive models as the majority of predictors are 

categorical. H2O  uses "Enum" encoding that does not change the data set and internally 

maps the strings to integers. Then it uses those integers to make splits in trees. The Enum 

method proved to be more practical than one-hot-encoding for our categorical features. 

Table 4.4 shows the optimal values for the Elastic Net models. 

Table 4.1: Tuned hyperparameters for CART 

Models 
CART 

Parameters Tree length 

 Range 1-30 

ED only Optimal 4 

ED + Hospital Optimal 5 

 

 

 

 

Table 4.2: Tuned hyperparameters for Random Forest 

 Random Forest 

Models Parameters mtries Min rows 
Max 

depth 

Min split 

improvement 
Histogram type 
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 Range 
1-36 

 

2𝑥: 

𝑥 𝜖 {0 𝑡𝑜 (log2 𝑁i )
− 1 𝑏𝑦 1} 

5 - 30 
0, 1e-8, 1e-6, 

1e-4 

Uniform Adaptive, 

Quantiles Global, 

Round Robin 

ED Only Optimal 10 64 17 1e-04 Quantiles global 

ED + 

Hospital 
Optimal 16 64 18 0 Quantiles global 

 

 Table 4.3: Tuned hyperparameters for GBT 

 

 

i N is training sample size 
ii N is training sample size 

 Gradient Boosting Trees 

Models Parameters 

Sample 

rate 

Min rows Max 

depth 

Min split 

improvement 

Column sample 

rate 

 Range 

0.4-1 by 

0.01 

 

2𝑥: 

𝑥 𝜖 {0 𝑡𝑜 (log2 𝑁ii )
− 1 𝑏𝑦 1} 

4-20 

 

{0, 1e-8, 1e-6, 

1e-4} 

0.4-1 by 0.01 

 

ED Only Optimal 0.92 512 14 1E-06 0.45 

ED + 

Hospital 
Optimal 0.79 256 12 0 0.99 

 Gradient Boosting Trees - Continued 

Models Parameters 

Column sample rate per 

tree 

Column sample rate change per level Histogram 

type 
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Table 4.4: Tuned hyperparameters for Elastic Net 

Models 

Elastic Net 

Parameters Lambda 
Alpha 

 Range {1, 0.5, 0.1, 0.01, 1e-3, 1e-4, 1e-5, 0} 0-1 by 0.01 

ED only Optimal 1e-5 0.39 

ED + Hospital Optimal 1e-5 1 

 

4.3 Predictive Model Performance 

Table 4.5 summarizes the various performance measures for each ML algorithm in 

both ED and acute care models. Error! Reference source not found. and Figure 4.2 

illustrate the 95% confidence interval of all performance measures across ED and Hospital 

models. It is based on the 5-fold cross-validated models trained on the optimal 

hyperparameters. Overall, models based on ED predictors only achieved an AUC of 0.73. 

After adding more information to the first model and by including more predictors from 

 Range 
0.4 - 1 by 0.1 

 
0.9 - 1.1 by 0.01 

Uniform 

Adaptive, 

Quantiles 

Global, 

Round 

Robin 

ED Only Optimal 0.9 1.05 
Quantiles 

Global 

ED + 

Hospital 
Optimal 0.7 1.09 

Round 

Robin 
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the hospital, an AUC of 0.81 was achieved. GBT was the best classifier for both ED and 

Hospital models. 

Table 4.5: Performance measure on test data 

Model ML Algorithm AUC AUPRC Recall Precision Specificity 
F1 

Score 

Accuracy 

 

M
o

d
el

 1
 (

a
t 

E
D

) 

CART 0.66 0.21 0.61 0.19 0.63 0.28 0.63 

Bagging-CART 0.69 0.23 0.52 0.22 0.74 0.31 0.72 

Logistic 

Regression 
0.73 0.27 0.47 0.27 0.92 0.34 0.79 

Elastic Net 0.73 0.27 0.45 0.28 0.92 0.34 0.80 

Random Forest 0.74 0.28 0.47 0.28 0.92 0.35 0.79 

Gradient 

Boosted Trees 
0.74 0.29 0.46 0.29 0.92 0.35 0.80 

 

M
o

d
el

 2
 (

in
 

h
o

sp
it

a
l)

 

CART 0.72 0.25 0.49 0.27 0.82 0.35 0.78 

Bagging-CART 0.76 0.27 0.61 0.26 0.77 0.37 0.75 

Logistic 

Regression 
0.79 0.33 0.55 0.32 0.93 0.40 0.81 

Elastic Net 0.79 0.33 0.55 0.32 0.93 0.40 0.81 

Random Forest 0.81 0.36 0.59 0.33 0.94 0.42 0.81 

Gradient 

Boosted Trees 
0.81 0.37 0.57 0.34 0.94 0.43 0.81 
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Figure 4.1: Cross-Validation 95% Confidence Interval for ED models 
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Figure 4.2: Cross-Validation 95% Confidence Interval for in-hospital models 
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4.4 ROC curves 

ROC curves are another good measure of a predictive model’s performance. ROC is a 

graph that shows performance at all classification thresholds. Its parameters are True 

Positive Rate and False Positive Rate. Figure 4.3 and Figure 4.4 depict ROC curves for all 

6 ML algorithms used in this study. 

 

Figure 4.3: ROC curves for ED models 
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Figure 4.4: ROC curves for in-hospital models 
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4.5 Variable Importance 

Figure 4.5 depicts the scaled importance of the top 20 variables for the top-

performing ML algorithm in the first stage (i.e., in-hospital). Appendix B: Variable 

Importance in ML models provides the full details of variable importance across all ML 

algorithms. The top predictors of ALC designation for the GBT using predictors from both 

ED and acute care hospitals were (1) length of stay in acute care; this is the number of days 

a patient stays in acute beds before being designated as ALC or immediate discharge; (2) 

method of arrival to ED, walk-in or by an ambulance; (3) main diagnosis being a physical 

injury (meaning any ICD-10 code starting with the letter “S”); (4) patient’s age and (5) 

whether the patient stayed in a Special Care Unit (SCU) during their time in the hospital. 

Figure 4.6 illustrates the first 20 variables in the GBT in the second stage of the 

analytics (i.e., using only predictors in ED). The full list and importance of all predictors 

in the ED stage are in Appendix B: Variable Importance in ML models. Physical injury, 

method of arrival, and age were again the top predictors of ALC designation. Moreover, 

the number of investigative technologies that were used on the patient in ED and their types 

(X-ray, Cat-scan, etc.) were among the top-performing variables. The triage score assigned 

to patients at ED was one of the top-6 predictors of delayed discharge in this model. We 

also found that the frailty index (HFRS) was among our top predictors in both time points. 
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Figure 4.5: Top Predictors of delayed discharge for in-hospital model 
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Figure 4.6: Top Predictors of delayed discharge for ED model 
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5. Discussion 

5.1 Summary of Findings 

To our knowledge, no study has used machine learning techniques with a sample 

size as large as us (n = 1,474,285) to predict ALC. We were able to do so long before its 

occurrence at two different important time points in the patient’s trajectory. In the first 

stage, i.e., in the ED, before the patient is admitted to hospital, we were able to predict 

ALC with an AUC of 0.74. GBT was the leading ML algorithm across the majority of 

performance measures. In the second stage, i.e., in the hospital, as we added more 

information, GBT produced an AUC of 0.81. From ED to hospital, recall was increased by 

0.1 and became 0.6 and a specificity of 0.9 was achieved in both time points.. 

Regarding the performance of ALC prediction, this study reported a higher value 

of AUC than what was reported in other studies. Arthur et al. (2021) achieved an AUC of 

0.67 with a smaller sample size (n = 210,931) and Turcotte, Daniel and Hirdes (2020) were 

able to predict ALC designation with an AUC of 0.76 (n = 30,657). The time point for both 

studies was in the hospital. The highest prediction accuracy (AUC = 0.85) reported in the 

literature belongs to Bai et al. (2019), however, not only they used a significantly smaller 

sample size (n = 4,311) and observations were limited to a single hospital, but also they 

did not use ML. Their outcome measure was not ALC designation as in our study and ROC 

is obtained using a clinical prediction rule. 

In our study, we found that advanced age, female sex, urbanism, diagnosis of 

dementia, and any other mental/behavioral diagnosis in ED were among the important 



M.Sc. Thesis – Faraz Ahmadi; McMaster University – Computational Science and Engineering 

44 

predictors of ALC. These findings are consistent with prior studies (Challis et al., 2014; 

Little, 2016; Bai et al., 2019). Interestingly, the method of arrival to ED was the second 

most important predictor at the in-hospital time point and the most important at ED. More 

specifically, it suggests that older adults who entered ED via ambulance were most likely 

to become ALC. Lenzi et al. (2014) also found admittance via ambulance to be a major 

predictor of delayed discharge. Also, our study determined that when a physical injury 

diagnosis was the main reason for the visit to the first contact point (ED), it becomes an 

important predictor of becoming ALC. Physical injury flag was a feature based on ICD-10 

diagnosis codes in the data.  

Another interesting result is that we found that the hospital frailty risk score was a 

stronger predictor of ALC than the Charlson comorbidity index. The HFRS was in the top 

15 features at both stages, whereas the Charlson comorbidity index was not a predictor in 

the hospital time point and a weaker predictor in ED. Arthur et al. (2021) measured the 

frailty index to be useful in predicting ALC in their initial bivariate analyses. However, it 

was not a significant predictor in their final model as their data contained other clinical 

scales that measured subdomains of frailty (e.g., ADL, IADL). As our data did not have 

such measures, we can conclude that HFRS is a good predictor of ALC in both time points. 

Acute length of stay (i.e., the time patient stayed in hospital beds before becoming 

ALC) was the most informative predictor across all ML algorithms in the hospital. In the 

literature, similar studies found the length of stay to be a determinant of ALC (Amy et al., 

2012; Challis et al., 2014). High length of stay could be an indicator of the complexity and 

severity of medical needs for older adults staying in acute beds (Amy et al., 2012; Toh et 
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al., 2017). After receiving care, such reasons could be still existing, causing their discharge 

planning to take more time and become ALC. Moreover, staying in special care units while 

in the hospital was among the top five predictors of ALC in the second time point. 

To our knowledge, we are the first study that use clinical variables in ED to predict 

ALC in hospitals. As a result, we found the number of investigative technologies used for 

each patient and its type (X-ray, Cat-scan, etc.) were among the top five and top ten 

predictors of ALC at ED and hospital time points, respectively. These predictors could be 

indicative of complex medical situations or certain diagnosis groups that require more 

testing for the main health provider to make clinical decisions (Pines, 2009; Mogensen, 

Borch and Brandslund, 2011). Moreover, the triage score assigned in ED was also among 

the top ten predictors at both time points. These findings are valuable in timely prediction 

of ALC as ED is the first point of contact for most ALC patients (Ahmed, 2019). 

Another interesting finding of our study was that patients who received orthopedics 

surgery service in the hospital were much more likely to become ALC. This finding aligns 

with the performance of physical injury as a significant predictor. Also, having an 

orthopedic as a main service provider in ED was among the predictors in our model. These 

findings could be justified in the way that the aforementioned group suffers from limited 

mobility and impeded function. Therefore, they may have more post-acute-care needs, such 

as rehabilitation services, a reasoning that is consistent with the literature (Jerath et al., 

2020).  
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5.2 Clinical and Policy Implications 

Integrating data sets from different health sectors and using them to predict ALC 

designation at different time points has numerous clinical and policy implications. First, 

identifying ALC patients early on could be helpful to healthcare managers to start their 

discharge planning and resource allocations sooner. As a result, communications with long-

term care, palliative care, or community care facilities could be initiated promptly. 

Moreover, it could provide policy planners with evidence-based data-driven insights, 

highlighting the complex needs of ALC patients, leading to better resource planning, as 

well as optimized training and staffing in LTC or other discharge destinations. 

A more integrated approach is key in addressing the problem of ALC. Clinical 

variables obtained in ED for those who are at risk of becoming ALC can be shared with 

the care team in the hospital. Helping them to prepare for the complex medical needs of 

such patients, therefore, reduces the number of ALC days. Gathering information in a 

timely manner and sharing it among different health sectors (e.g., home-care, ED, acute 

hospital, and post-acute care facilities) would ensure proactive planning instead of current 

reactive practices (Arthur et al., 2021). Additionally, families and home support teams 

would also benefit from knowing the possibility of the patient’s ALC occurrence at earlier 

time points in the patient’s trajectory. 

As mentioned before, the issue of ALC is costly to the health care system (Home 

Care Ontario, 2014; Ahmed, 2019). Evidence-based ML processes such as our study could 

become integrated into clinical decision support tools within the EHR for 

operationalization purposes. The impact of this practice is better management of ALC cases 
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and saving the health system millions of dollars (Bender and Holyoke, 2018). In general, 

the cost-saving potential of data-driven decision-making in the case of ALC is significant. 

5.3 Strengths, Limitations, and Future Research 

5.3.1 Strengths 

There were several strengths to this study. First, our sample size was significantly 

larger than other related works. This would cause better statistical and clinical inference 

from the data. Helping us draw more accurate conclusions. Moreover, our data were 

collected from different ED and hospitals across Ontario. This had a positive impact on the 

generalizability of our results.  

Second, our study was the first study to predict ALC at two different time points, 

providing the decision-makers with more flexibility around the trade-off between time and 

accuracy. Also, the comparison of the variable importance between the two time points 

was another strength of our study. Third, in conducting this study, we went beyond 

common statistical methods (e.g., logistic regression) and used ML on a large data set. 

Using different ML algorithms enabled us to take advantage of all the data we had. 

5.3.2 Limitations 

One major limitation of this study was the absence of some useful predictors as 

administrative datasets have their limitations. In particular, we did not use marital 

information, caregiver status, living arrangements (living alone, etc.) and source of 

admission to ED (from home, LTC, etc.). All of these patient-level variables are discussed 

in the literature as major predictors of delayed discharge (Bai et al., 2019; Turcotte, Daniel 
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and Hirdes, 2020; Arthur et al., 2021). Moreover, we did not have access to common 

clinical variables and assessments tailored for older adults. Arthur et al. (2021) used ADL, 

IADL, MAPLe, CHESS, and many more variables in their predictive model. These 

variables were also shown to be contributing to the occurrence of ALC. While we did not 

have access to these important predictors, we were able to outperform most prior studies. 

One problem is the inconsistencies in definitions of ALC across different hospitals 

due to different hospital policies, physicians and patient flow. Therefore, the results could 

be biased by some misclassification errors. Looking at differences among hospitals could 

be a topic of future research. 

5.3.3 Future research 

Future research should aim to build on the mentioned limitations and focus on 

improving ML accuracies. This could be done by integrating data sets from other health 

sectors such as RAI-HC and LTC to include more useful features. Moreover, adding 

premorbid assessments and pre-existing clinical characteristics of older adults could help 

implement predictive models at even earlier time points (e.g., upon entry to ED). 

Another area of focus could be the addition of organizational factors regarding 

ALC. Most studies in the literature were based on patient-level characteristics. Adding 

variables informing of capacities in different discharge destinations and patient flow could 

also enhance ALC prediction. Future studies could also check for agreement among various 

ML algorithms on the variable importance and comparing them with the odds ratio from 
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Logistic Regression. This would show the robustness of the variable importance as well as 

its comparisons with statistical measures. 

One interesting clinical implication using the results of our study is their insights 

into making decisions about the ALC patient or wait until the next time point (i.e., hospital) 

to gain more confidence about the predictions. This waiting, however, could be costly. The 

trade-off between the two could be an interesting topic of future research, which could be 

carefully analyzed using operation research methods. 

Moreover, a limitation of our study is that the predictive accuracies mentioned are average 

for all patients, some have lower accuracy, and some have higher. It would be interesting 

to focus on those of higher predictive accuracy in different time points or study the clinical 

characteristics of both high-performing and low-performing groups for more insights. 
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6. Conclusion 

To our knowledge, this was the first study to predict ALC in two different time 

points for older adults. We used a series of ML methods to predict ALC designation and 

compared their results between the two points in patient trajectory. We were able to obtain 

an AUC score of 0.74 in ED and improve that to 0.81 in the hospital. Furthermore, our 

study highlighted a number of interesting features that are predictive of ALC. This 

information could be used to help decision-makers with better resource management and 

proactive planning for discharge destinations in a timely manner.  
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Appendices  

Appendix A: Descriptive Analysis Table 

Characteristic 
Non-ALC Patients1  

(N = 1,300,057) 

ALC patients1  

(N = 174,228) 
p-value2 

Discharge disposition   <0.001 

Acute care  

 
71,280 (5.5%) 3,330 (1.9%)  

Long term care 164,250 (13%) 95,774 (55%)  

Ambulatory/  

Palliative care  
9,558 (0.7%) 2,869 (1.6%)  

Home with support  

 
359,781 (28%) 47,790 (27%)  

Home without support  

 
570,960 (44%) 7,861 (4.5%)  

Signed out against medical advice 8,052 (0.6%) 276 (0.2%)  

Died 116,080 (8.9%) 16,299 (9.4%)  

Other 96 (<0.1%) 29 (<0.1%)  

Geographic Location   <0.001 

Urban 1,056,366 (81%) 151,968 (87%)  

Rural 243,503 (19%) 22,217 (13%)  

(missing) 188 43  

Residential Instability Quintiles   <0.001 

1 (least unstable) 153,175 (12%) 16,884 (9.8%)  

2 211,686 (16%) 24,791 (14%)  

3 255,314 (20%) 31,542 (18%)  

4 286,558 (22%) 38,613 (22%)  

5 (most unstable) 377,151 (29%) 60,649 (35%)  

(missing) 16,173 1,749  

Dependency Quintiles   <0.001 

1 (least dependent) 148,117 (12%) 19,123 (11%)  

2 186,589 (15%) 24,799 (14%)  

3 225,914 (18%) 29,457 (17%)  

4 274,406 (21%) 35,728 (21%)  

5 (most dependent) 448,858 (35%) 63,372 (37%)  

(missing) 16,173 1,749  

Ethnic Concentration   <0.001 
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Characteristic 
Non-ALC Patients1  

(N = 1,300,057) 

ALC patients1  

(N = 174,228) 
p-value2 

Quintiles 

1 (lowest) 324,263 (25%) 37,307 (22%)  

2 284,898 (22%) 37,542 (22%)  

3 234,052 (18%) 33,944 (20%)  

4 216,628 (17%) 32,800 (19%)  

5 (highest) 224,043 (17%) 30,886 (18%)  

(missing) 16,173 1,749  

Income Quintiles   <0.001 

1 (lowest) 288,170 (22%) 40,969 (24%)  

2 273,568 (21%) 37,551 (22%)  

3 250,753 (19%) 32,610 (19%)  

4 246,073 (19%) 31,942 (18%)  

5 (highest) 235,058 (18%) 30,504 (18%)  

(missing) 6,435 652  

Gender   <0.001 

Male 629,673 (48%) 72,576 (42%)  

Female 670,384 (52%) 101,652 (58%)  

Age Group   <0.001 

65-67 296,940 (23%) 22,427 (13%)  

68-73 335,501 (26%) 33,380 (19%)  

74-80 342,127 (26%) 49,642 (28%)  

+81 325,489 (25%) 68,779 (39%)  

Triage    

1 = Resuscitation 65,439 (5.0%) 7,704 (4.4%)  

2 = Emergent 566,091 (44%) 60,476 (35%)  

3 = Urgent 598,923 (46%) 93,836 (54%)  

4 = Less-Urgent (Semi-Urgent) 62,177 (4.8%) 11,050 (6.4%)  

5 = Non-Urgent 4,653 (0.4%) 911 (0.5%)  

(missing) 2,774 251  

Blood Transfused   <0.001 

N 1,276,474 (98%) 172,109 (99%)  

Y 23,403 (1.8%) 2,102 (1.2%)  

(missing) 180 17  

Clinical Decision Unit Flag   0.011 

N 1,254,059 (96%) 167,854 (96%)  
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Characteristic 
Non-ALC Patients1  

(N = 1,300,057) 

ALC patients1  

(N = 174,228) 
p-value2 

Y 45,998 (3.5%) 6,374 (3.7%)  

Mode of Arrival to ED   <0.001 

Walk-in 526,010 (40%) 34,162 (20%)  

Ambulance 774,047 (60%) 140,066 (80%)  

CACS Anesthetic Technique code   <0.001 

No Anaesthetic 1,270,444 (98%) 169,677 (97%)  

General/Spinal/Epidural/Neuraxial 191 (<0.1%) 25 (<0.1%)  

Other nerve block/Monitored care 1,594 (0.1%) 223 (0.1%)  

Unmonitored 16,628 (1.3%) 2,566 (1.5%)  

Local 11,020 (0.8%) 1,720 (1.0%)  

(missing) 180 17  

CACS investigative technology 

category 
  <0.001 

Xray 634,288 (49%) 81,053 (47%)  

Cat Scan 315,946 (24%) 59,032 (34%)  

Not Applicable 302,163 (23%) 29,986 (17%)  

Ultrasound 44,874 (3.5%) 3,632 (2.1%)  

Others 2,786 (0.2%) 525 (0.3%)  

CACS investigative technology 

category count 1 
  <0.001 

Not Applicable 302,163 (23%) 29,986 (17%)  

1 Intervention within Investigative 

Technology Category 
881,049 (68%) 122,408 (70%)  

2 or more Interventions within 

Investigative Technology Category 
116,464 (9.0%) 21,794 (13%)  

(missing) 381 40  

CACS investigative technology total 

count 
   

0 302,163 (23%) 29,986 (17%)  

1 718,355 (55%) 78,516 (45%)  

2 236,439 (18%) 51,448 (30%)  

3 36,055 (2.8%) 11,516 (6.6%)  

4 5,832 (0.4%) 2,265 (1.3%)  

5 891 (<0.1%) 401 (0.2%)  

6 134 (<0.1%) 71 (<0.1%)  

7 8 (<0.1%) 7 (<0.1%)  
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Characteristic 
Non-ALC Patients1  

(N = 1,300,057) 

ALC patients1  

(N = 174,228) 
p-value2 

8 0 (0%) 1 (<0.1%)  

(missing) 180 17  

CACS Partition   <0.001 

Emergency Visit (EV) Acute 

Admission Partition 
1,272,912 (98%) 171,478 (98%)  

Diagnosis Partition 26,144 (2.0%) 2,667 (1.5%)  

Intervention Partition 821 (<0.1%) 66 (<0.1%)  

(missing) 180 17  

Glasgow coma scale   <0.001 

Not a coma patient 1,292,735 (99%) 172,848 (99%)  

Any coma scale 7,322 (0.6%) 1,380 (0.8%)  

Main Service Provider in ED   <0.001 

General Practitioner 369,604 (28%) 40,888 (23%)  

Emergency Medicine 764,482 (59%) 111,231 (64%)  

Others 165,786 (13%) 22,089 (13%)  

(missing) 185 20  

Orthopedics main provider 11,138 (0.9%) 4,206 (2.4%) <0.001 

30-day revisit to ED 107,690 (8.3%) 14,662 (8.4%) 0.061 

Hospital Frailty Risk Score   <0.001 

Less than 5 77,692 (6.0%) 21,674 (12%)  

>= 5 1,222,365 (94%) 152,554 (88%)  

Cachexia in main diagnoses or as 

comorbidity 
  <0.001 

No 1,288,169 (99%) 167,900 (96%)  

Yes 11,888 (0.9%) 6,328 (3.6%)  

Triage to first assessment by 

physician time quartile 
  <0.001 

1st 316,598 (26%) 36,291 (22%)  

2nd 311,153 (25%) 40,950 (25%)  

3rd 302,408 (25%) 42,747 (26%)  

4th 299,321 (24%) 46,898 (28%)  

(missing) 70,577 7,342  

Assessment to left ED time quartile   <0.001 

1st 313,964 (25%) 37,095 (22%)  

2nd 307,423 (25%) 41,787 (25%)  

3rd 306,737 (25%) 42,244 (25%)  
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Characteristic 
Non-ALC Patients1  

(N = 1,300,057) 

ALC patients1  

(N = 174,228) 
p-value2 

4th 303,789 (25%) 45,850 (27%)  

(missing) 68,144 7,252  

Acute Length of Stay median 6.45 (8.19) 13.01 (16.80) <0.001 

Prior 90-day hospitalization   <0.001 

0 959,740 (74%) 126,949 (73%)  

1 340,317 (26%) 47,279 (27%)  

Prior 365-day hospitalization   0.002 

0 711,894 (55%) 94,722 (54%)  

1 588,163 (45%) 79,506 (46%)  

90-day readmission   <0.001 

0 954,709 (73%) 135,019 (77%)  

1 345,348 (27%) 39,209 (23%)  

Specialized Clinical Interventions 

Received in Hospital 
  

Cardioversion    <0.001 

0 1,294,025 (100%) 173,835 (100%)  

1 6,032 (0.5%) 393 (0.2%)  

Cell Saver    <0.001 

0 1,298,074 (100%) 174,058 (100%)  

1 1,983 (0.2%) 170 (<0.1%)  

Chemotherapy   <0.001 

0 1,294,522 (100%) 173,207 (99%)  

1 5,535 (0.4%) 1,021 (0.6%)  

Dialysis   <0.001 

0 1,274,988 (98%) 170,308 (98%)  

1 25,069 (1.9%) 3,920 (2.2%)  

Tube Feeding   <0.001 

0 1,293,002 (99%) 170,967 (98%)  

1 7,055 (0.5%) 3,261 (1.9%)  

Heart Resuscitation   <0.001 

0 1,291,780 (99%) 173,575 (100%)  

1 8,277 (0.6%) 653 (0.4%)  

Mechanical Ventilation 

(long term) 
  <0.001 

0 1,285,281 (99%) 170,642 (98%)  
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Characteristic 
Non-ALC Patients1  

(N = 1,300,057) 

ALC patients1  

(N = 174,228) 
p-value2 

1 14,776 (1.1%) 3,586 (2.1%)  

Mechanical Ventilation 

(short term) 
  <0.001 

0 1,261,401 (97%) 169,974 (98%)  

1 38,656 (3.0%) 4,254 (2.4%)  

Parenteral Nutrition    <0.001 

0 1,291,027 (99%) 172,252 (99%)  

1 9,030 (0.7%) 1,976 (1.1%)  

Paracentesis  

 
  <0.001 

0 1,289,398 (99%) 172,446 (99%)  

1 10,659 (0.8%) 1,782 (1.0%)  

Pleurocentesis    <0.001 

0 1,278,101 (98%) 170,649 (98%)  

1 21,956 (1.7%) 3,579 (2.1%)  

Radiotherapy    <0.001 

0 1,294,612 (100%) 172,592 (99%)  

1 5,445 (0.4%) 1,636 (0.9%)  

Tracheostomy  

 
  <0.001 

0 1,296,911 (100%) 172,945 (99%)  

1 3,146 (0.2%) 1,283 (0.7%)  

Vascular Access Device  

 
  <0.001 

0 1,239,115 (95%) 162,006 (93%)  

1 60,942 (4.7%) 12,222 (7.0%)  

Flagged Intervention Count   <0.001 

0 1,086,952 (84%) 141,960 (81%)  

1 82,496 (6.3%) 11,985 (6.9%)  

2 54,781 (4.2%) 8,444 (4.8%)  

3 55,939 (4.3%) 7,605 (4.4%)  

4 4,751 (0.4%) 1,253 (0.7%)  

5 1,240 (<0.1%) 344 (0.2%)  

6 11,386 (0.9%) 1,995 (1.1%)  

7 2,394 (0.2%) 631 (0.4%)  

8 118 (<0.1%) 11 (<0.1%)  
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Characteristic 
Non-ALC Patients1  

(N = 1,300,057) 

ALC patients1  

(N = 174,228) 
p-value2 

Special Care Unit   
 

Medical Intensive Care Nursing Unit 17,726 (1.4%) 1,460 (0.8%)  

Surgical Intensive Care Nursing Unit 4,666 (0.4%) 1,257 (0.7%)  

Trauma Intensive Care Nursing Unit 63 (<0.1%) 5 (<0.1%)  

Combined Medical/Surgical Intensive 

Care Nursing Unit 
119,310 (9.2%) 14,586 (8.4%)  

Burn Intensive Care Nursing Unit 416 (<0.1%) 83 (<0.1%)  

Cardiac Intensive Care Nursing Unit 

Surgery 
4,066 (0.3%) 448 (0.3%)  

Coronary Intensive Care Nursing Unit 

Medical 
46,293 (3.6%) 3,077 (1.8%)  

Neonatal Intensive Care Nursing Unit 33(<0.1%) 3(<0.1%)  

Neurosurgery Intensive Care Nursing 

Unit 
4,496 (0.3%) 1,312 (0.8%)  

Respirology Intensive Care Nursing 

Unit 
97 (<0.1%) 23 (<0.1%)  

Step-Down Medical Unit 10,668 (0.8%) 1,779 (1.0%)  

Combined Medical/Surgical Step-

Down Unit 
16,328 (1.3%) 2,006 (1.2%)  

Step-Down Surgical Unit 5,673 (0.4%) 871 (0.5%)  

No SCU 1,070,222 (82%) 147,318 (85%)  

Charlson comorbidities:    

Dementia (comorbidity)   <0.001 

0 1,283,915 (99%) 168,647 (97%)  

1 16,142 (1.2%) 5,581 (3.2%)  

Dementia (main diagnosis)   <0.001 

0 1,296,028 (100%) 170,539 (98%)  

1 4,029 (0.3%) 3,689 (2.1%)  

Diabetes with complications   <0.001 

0 1,138,950 (88%) 155,428 (89%)  

1 161,107 (12%) 18,800 (11%)  

Cerebrovascular disease   <0.001 

0 1,290,652 (99%) 172,515 (99%)  

1 9,405 (0.7%) 1,713 (1.0%)  

Elixhauser comorbidities:    
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Characteristic 
Non-ALC Patients1  

(N = 1,300,057) 

ALC patients1  

(N = 174,228) 
p-value2 

Paralysis   <0.001 

0 1,298,330 (100%) 173,761 (100%)  

1 1,727 (0.1%) 467 (0.3%)  

Weight loss   <0.001 

0 1,286,201 (99%) 167,556 (96%)  

1 13,856 (1.1%) 6,672 (3.8%)  

Psychoses   <0.001 

0 1,298,819 (100%) 173,848 (100%)  

1 1,238 (<0.1%) 380 (0.2%)  

Charlson Index   <0.001 

0 689,597 (53%) 94,568 (54%)  

1 313,234 (24%) 42,538 (24%)  

2+ 297,226 (23%) 37,122 (21%)  

Main diagnosis group:    

Physical Injuries (S)   <0.001 

0 1,204,466 (93%) 136,408 (78%)  

1 95,591 (7.4%) 37,820 (22%)  

Mental and Behavioral (F)   <0.001 

0 1,280,960 (99%) 166,454 (96%)  

1 19,097 (1.5%) 7,774 (4.5%)  

Factors influencing health status and 

contact with health services (Z) 
  <0.001 

0 1,286,256 (99%) 169,210 (97%)  

1 13,801 (1.1%) 5,018 (2.9%)  

Musculoskeletal (M)   <0.001 

0 1,272,965 (98%) 167,155 (96%)  

1 27,092 (2.1%) 7,073 (4.1%)  

Main patient service in acute care:    

Orthopaedic Surgery   <0.001 

0 1,255,492 (97%) 154,212 (89%)  

1 44,565 (3.4%) 20,016 (11%)  

Geriatrics   <0.001 

0 1,297,358 (100%) 173,209 (99%)  

1 2,699 (0.2%) 1,019 (0.6%)  

Traumatology   <0.001 
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Characteristic 
Non-ALC Patients1  

(N = 1,300,057) 

ALC patients1  

(N = 174,228) 
p-value2 

0 1,280,800 (99%) 167,639 (96%)  

1 19,257 (1.5%) 6,589 (3.8%)  

Neurology   <0.001 

0 1,277,163 (98%) 167,655 (96%)  

1 22,894 (1.8%) 6,573 (3.8%)  

Rheumatology   <0.001 

0 1,298,874 (100%) 173,893 (100%)  

1 1,183 (<0.1%) 335 (0.2%)  

Psychiatry   <0.001 

0 1,298,543 (100%) 173,814 (100%)  

1 1,514 (0.1%) 414 (0.2%)  

Plastic Surgery   <0.001 

0 1,299,086 (100%) 174,169 (100%)  

1 971 (<0.1%) 59 (<0.1%)  

Urology   <0.001 

0 1,270,527 (98%) 172,470 (99%)  

1 29,530 (2.3%) 1,758 (1.0%)  

Gynaecology   <0.001 

0 1,298,016 (100%) 174,115 (100%)  

1 2,041 (0.2%) 113 (<0.1%)  

Cardiology   <0.001 

0 1,172,012 (90%) 167,302 (96%)  

1 128,045 (9.8%) 6,926 (4.0%)  

Gastro-Enterology   <0.001 

0 1,248,533 (96%) 171,517 (98%)  

1 51,524 (4.0%) 2,711 (1.6%)  

Thoracic Surgery   <0.001 

0 1,297,503 (100%) 174,104 (100%)  

1 2,554 (0.2%) 124 (<0.1%)  

1Frequency (%) or Median (IQR) 2Wilcoxon rank sum test; Pearson's Chi-squared test  
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Appendix B: Variable Importance in ML models 
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