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Abstract
Since the problem of image dehazing is of great significance and challenging, it has

attracted many researchers for a long time. Many excellent dehazing algorithms have

emerged one after another. However, few works focus on dehazing tasks with color

deviations. Existing methods do not perform as well as expected on real image dehazing,

especially on images with color deviations. The proposed method mainly focuses on

this task and achieves competitive performance. In this paper, a two step network is

proposed, which consists of the Colour BalanceModule and theDehazingModule. Hazy

images are first fed into the Colour Balance Module to generate color corrected hazy

images, which are then sent to the pretrained dehazing net to get the real color corrected

haze-free results. A colored haze image database is also constructed. Experiments and

comparisons are implemented to show the effectiveness of the proposed method, not

only on real colored-haze images, but also on other dehazing tasks.
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Chapter 1

Introduction and Problem Statement

1.1 Introduction and Problem Statement

In the current situation where hazy weather often occurs, people need to extract as

much information from hazy images as possible. Then the image dehazing technology

is derived based on image processing. This technology is is a result of interdisciplinary

research involving multiple knowledge categories such as atmospheric imaging, physics

and mathematics.

Image is an objective mapping of the natural landscape through a certain system, and

it is the visual basis for humans to perceive the world.The visual quality of the image

will have an important impact on the analysis, understanding and use of the target for

human. Images captured by sensors are often not directly used for processing and ap-

plications such as target recognition. The sensor imaging process will be affected by

many uncertain factors, such as image defocusing, camera movement, atmospheric tur-

bulence, etc., which will cause different degrees of blur in the acquired image. Severe

weather, including haze weather, is the main interference to outdoor imaging. Some
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preprocessing operations are required to improve the quality and effects. This process is

image processing a technology to perform various operations on digital images through

computers. In the past 30 years, with the rapid development of electronic technology,

computer science and other disciplines, digital image processing technology has made

remarkable progress, which has greatly changed people’s lives and brought convenience

to a wide range of fields such as medicine, industry, and military.[16].

As mentioned above, existing image acquisition equipment is very sensitive to the

interference of the external environment. When there is heavy haze, particles suspended

in the atmosphere will reflect and scatter the radiation of the scene. This phenomenon

will cause the contrast of the image to decrease and cause the loss of edge and texture in-

formation. The visibility of the image is also significantly reduced. Thus, images taken

under such weather conditions have low contrast, small dynamic range, and unclear im-

age details. At the same time, the color will be partially distorted. Such an image will

affect the outdoor vision system. The functions and effects of target recognition and

tracking, monitoring and so on are limited. Fig.1.1 gives examples of the effect of haze

for images. Taking the highway monitoring system as an example, the visibility of the

road is greatly reduced, causing visual obstacles to drivers, and also causing great dif-

ficulties to the outdoor traffic monitoring system. Therefore, to improve the availability

of data, there is an urgent practical need to study how to effectively reconstruct the orig-

inal clear image from the image obtained in the haze environment, and to improve the

robustness of the visual system.

In the hazy weather, when the reflected light of the scene object passes through the

atmosphere, the absorption and scattering of the scene radiation will happen. Part of it

is absorbed along the way, resulting in attenuation of the final light intensity. The light

2

http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/


Master of Applied Science– Zijun Wu; McMaster– Electrical Engineering

Figure 1.1: Example of Clear and Hazy Images

in the atmospheric environment will be scattered, which causes a negative confounding

effect on the original scene radiation. The attenuation of the scene radiation and the

scattering of atmospheric light will gradually accumulate as the propagation distance

increases. This kind of phenomenon can be described by the Atmosphere Scattering

Model(ASM)[26][6]:

I(x) = J(x) · t(x) + [1− t(x)] · A (1.1)

where I(x) and J(x) denote the hazy image and clear image respectively. x indicates the

coordinate position of the image pixel while A is the ambient light and t(x) represents

the transmittance.

Besides, t(x) is closely related to depth information:

t(x) = e−βd(x) (1.2)

where, β is the attenuation parameter and d(x) is the scene depth.

3
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Restoring the original image from the haze map is a very challenging task, as it re-

quires recovering unknown atmospheric ambient light, scene depth, and haze-free im-

ages based only on a given single input haze map. Although the research started rela-

tively late about two decades ago, it has become one of the important research hotspots

in related fields[43]. At the same time, due to the randomness and complexity of weather

changes faced by dehazing technology, traditional image enhancement algorithms, such

as contrast stretching and histogram equalization, often have limited processing effects

and are not sufficient to deal with the image quality degradation caused by physical rea-

sons. Almost all the effective methods currently known have certain limitations and

require continuous improvement[45].

Except[8], few researchers focus on dehazing tasks with color deviations, although

the existing dehazing methods performed badly in this task (as is shown in chapter4).

This work mainly deals with hazy images with color deviations due to light and other

reasons. Combined with application scenarios, a new dehazing scheme is developed and

verified through a large number of experiments, which greatly improved the visual effect

of dehazing pictures.

1.2 Thesis Structure

In this thesis, Chapter 2 will make a quick review of existing dehazingmodels and related

works, while Chapter 3 will illustrate the details of the proposed color correction based

dehazing model. In addition, Chapter 4 will analyze of the proposed network and make

comparisons of this work and state-of-the-art methods and Chapter 5 is a conclusion.

4
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Chapter 2

Related Works

Since the problem of image dehazing is of great significance and challenging, it has

attracted many researchers for a long time. Many excellent dehazing algorithms have

emerged one after another. According to the principle of the dehazing algorithms, this

chapter will divide them into two categories: physical models based dehazing algorithms

and dehazing algorithms based on neural network. They are currently the mainstream

solution in this field.

2.1 Physical Model-based Dehazing Algorithm

The degradation process of the hazemap ais captured by the atmosphericmodel as shown

in Eq.1.1 shows, the atmospheric scattering model. Based on this model, many excel-

lent dehazing algorithms have been proposed. Since the model is an underdetermined

equation, researchers need to add some reasonable priori constraints, to get the unique

solution for the model. So algorithms based on physical models are often referred to as

priori algorithm. The most critical step in the dehazing algorithm based on the physical

model is the atmospheric ambient light and transmittance evaluation, which is directly

5
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related to the final dehazing effect, and the evaluation of these two physical quantities is

an open question.

As it is difficult to calculate an accurate transmission map and atmospheric ambi-

ent light with a single input hazy map, some researchers attempt to improve the visual

quality of the image through color and contrast enhancement to avoid this model. The

histogram equalization algorithm is used to improve the contrast of hazy images. Then

adaptive histogram equalization[37] and partially overlapping sub-blocks[18] are pro-

posed respectively. To improve the visual quality, a hazy image enhancement algorithm

based on multi-image fusion[1][12] is proposed by Ancuti et al. Retinex is a color vision

model that simulates human vision under different lighting conditions. Based on this

model, Adrian et al[1] proposed an effective haze map enhancement algorithm. How-

ever, These methods do not consider the essential principle of haze map degradation.

Because of this, the enhancement effect is limited and the robustness is often poor.

In recent years, researchers have proposed many excellent methods for evaluating

atmospheric light and transmittance. Tan et al [38] observed that the contrast of a haze-

free image was higher than that of a degraded image in a hazy day. The air light, whose

depth of field is positively correlated, is usually globally smooth. Based on this, a cost

function based on Markov random field is proposed[38]. The haze-free image can be

obtained by optimizing this cost function. However, the image restored by this method

will show Halo effects in discontinuous places.

He et al. [13] proposed the well-known dark channel algorithm in 2009, which is

based on a statistical prior. That is, in a haze-free image, the minimum channel value

of the local regions of the image is close to 0. This channel is called the dark channel.

6
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While due to the shadow of air light, the dark channel of a hazy image does not approach

0. According to this clue, the degree of concentration of haze can be judged by the dark

channel value of the hazemap so as to obtain the atmospheric light and transmissionmap.

For a haze-free image J , its dark channel mathematical expression is as follows[13]:

Jdark(x) = min
y∈Ω(x)

( min
c∈(r,g,b)

J c(y)) (2.1)

where J c represents one colour channel of J , Ω is a local area centered on x. Then we

get the dark channel image. The dark channel prior can be expressed as:

Jdark(x)→ 0. (2.2)

Then clear images can be restored by the following equation:

J(x) =
I(x)− A
t(x)

+ A (2.3)

where the brightest pixels of a hazy image can be considered as A and t can be expressed

as:

t = 1−min
Ω

(min
c

Ic

Ac
). (2.4)

In view of the halo problem that He’s dark channel algorithm encounters in the trans-

mission map evaluation, based on local block evaluation of transmission map, Berman

et al. [3][4] proposed a method for globaly evaluating the transmission map, which is

based on a new non-local prior (Non-local Prior). That is, in a haze-free image, all the

colors can be quantified by hundreds of colors without affecting the visual perception,

and these colors can be gathered in clusters in the RGB space. Pixels of the same color

7
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at different positions (that is, different depths of field) will also cluster into the same

color group. This prior is global and does not rely on local tiles. And in the hazy image,

these bright color groups will form a line in the RGB space due to the difference in the

emission rate related to the depth, that is called the haze line. The two ends of the haze

line are the original scene light and the ambient light. However, when the atmospheric

light is extreme, this method will fail due to the unsuccessful detection of the haze line.

Fattal[10] found that the local pixels in natural images without haze are generally dis-

tributed in one dimension in the RGB space. That is called the color line. The color line

of the haze map will have an offset, so the scene transmission map can be solved by this

a prior.

2.2 CNN Based Dehazing Algorithm

Convolutional neural network algorithm has a strong learning ability, it can effectively

capture potential mapping relationship between input signal and output signal. There-

fore, researchers have successively jumped out of traditional dehazing methods based on

hypothetical priors. In recent years, there have been many dehazing methods based on

deep learning. According to whether the dehazing framework relies on the classic atmo-

spheric scattering model, the algorithm can be roughly divided into two categories, two-

stagemethods and single-stage dehazing algorithms(also known as end-to-endmethods).

For two-stage neural network dehazing, although the algorithm introduces a neural

network structure, it still strictly follows the atmospheric scattering model, and the entire

dehazing framework is focused on the estimation of the scene transmission map t and

the atmospheric ambient light A by neural networks and the prior knowledge. Then

obtain the haze-free image according to the atmospheric scattering model[6]. In this

8
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kind of algorithm framework, the neural network is only used as an intermediate tool for

obtaining transmission maps or atmospheric light.

The single-stage dehazing algorithm is completely separated from the physical model

and directly simulated by the neural network. By combining the data to obtain the map-

ping function between hazy images and haze-free images, and finally realize the haze

removal through the mapping function.

The early applications of neural network algorithms in the field of dehazing are all

using the two-stage framework mentioned above. In 2016, Cai et al. [5] proposed a

network called DehazeNet to estimate the transmission map of the scene. A novel non-

linear activation function BReLU (Bilateral Rectified Linear Unit) is proposed. The

author uses Convolution Neural Network (CNN) to get transmission image information

by non-linear regression, and the global atmospheric light is obtained by assuming that

the atmospheric light is the brightest point of the image. Finally, a haze-free image is ob-

tained. DehazeNet significantly improves the effect of the dehazing algorithm, compared

with traditional prior-based algorithms.

In the same year, Ren et al. [30] proposed the MSCNN algorithm at the at the 2018

European Computer Vision Conference (ECCV). Similar to DehazeNet, it is also a con-

volution neural network based algorithm. The algorithm is also to find the mapping be-

tween the input hazy image and the corresponding transmissionmap, but the difference is

that MSCNN passes multi-scale network structure, constructs coarse sub-networks and

fine sub-networks, and realizes evaluation and refinement of rough transmission map

at the same time. The transmission map obtained by DehazeNet needs to be addition-

ally smoothed by guided filtering. Therefore, the final transmission map obtained by

9
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MSCNN effectively suppresses halo artifacts on the dehazing result.

At the 2017 International Computer Vision Conference (ICCV), Li et al. [20] pro-

posed an AOD-Net, which was the first to achieve end-to-end dehazing. It leads the

dehazing algorithm framework from two stages to a single stage. The author believes

that evaluating the transmission map and atmospheric light separately, then substituting

the two into the atmospheric scattering model for dehazing directly will cause errors.

Because the entire process will be affected by the errors of these three steps at the same

time, the author integrates these three steps in the neural network structure. It should be

noted that the structure of AOD-Net is is different from the single stage dehazing. The

design does not completely abandon the physical scattering model. As shown in Eq.2.5,

The atmospheric scattering model is deformed by the following formula in this paper:

J(x) = K(x)I(x)−K(x) + b (2.5)

with,

K(x) =

1
t(x)

(I(x)− A) + (A− b)
I(x)− 1

(2.6)

where I(x) and J(x) denote the hazy image and clear image respectively. x indicates

the coordinate position of the image pixel while A is the ambient light, t(x) represents

the transmittance and b is the bias.

Thus, the transmittance and atmospheric light are combined into an intermediate vari-

ableK. The author tests the algorithm in vehicle inspection task in a hazy environment.

The results show that AOD-Net as a pre-processing module can significantly improve

the performance of subsequent detection algorithms.

10
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Since AOD-Net, single-stage dehazing algorithms have sprung up. Zhang et al. in

DCPDN[42](Densely Connected Pyramid Dehazing Network) constructed a densely

connected feature pyramid decoder sub-network to estimate the transmittance, and at

the same time used a U-shaped sub-network to evaluate the atmospheric light. Finally

they use a joint discriminator to conduct adversarial learning for the dehazing network

to yield the dehazing results. Ren et al. [31] combined image fusion strategy with deep

network for the first time. In the dehazing task, they first perform white balance on the

input image, then synthesize the input image and apply gamma correction. By put them

into a decoder respectively, the confidence map can be calculated. By multiplying the

input images and their confidence maps, final haze-free images are obtained.

The GCANet, proposed by Chen et al. [7], uses the latest smooth dilated convo-

lution to eliminate the halo effect generated by the convolution process, and leverages

gated subnets to integrate features from different scales. It achieves good performance

in dehazing and rain removal tasks at the same time.

As Generative Adversarial Networks (GANs) perform good on various computer vi-

sion tasks, many GAN-based dehazing algorithms have been proposed [22][28]. Be-

sides, the GridDehazeNet[23] showed excellent performance on synthetic image dehaz-

ing, while DANet[33] focused on improving the quality of real haze image dehazing.

Details will be introduced as follows.

2.2.1 Enhanced Pix2pix Dehazing Network

EPDN[29] includes a multi-scale generator, a multi-scale discriminator and an enhancer.

The discriminator supervises the multi-scale generator on the coarse scale to generate

11
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Figure 2.1: Enhanced Pix2pix Dehazing Network[29]

haze-free images, followed by the enhancer on the fine scale to do the refinement. The

network structure is shown in Fig.2.1.

The multi-resolution generator includes a global generator G1 and a local generator

G2. G1 generates images on small scales while G2 generates image on the original size.

Combine G2 and G1, restored haze-free can be obtained and will be fed into the next

enhancer step.

Similarly, the multi-scale discriminator contains two discriminators on the aforemen-

tioned two different scales D1 and D2. D2 is used to supervise generator to generate a

real image, while D1 will help to restore details.

The enhancer module introduces the pyramid pooling module in DCPDN[42]. This

module can integrate feature details of different scales into the final fine result.

2.2.2 GridDehazeNet

The author proposed an end-to-end multi-scale network with a preprocessing model and

a post image refinement block[23]. This network can efficiently exchange information

12
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Figure 2.2: GridDehazeNet[23]

of different scales, thereby effectively alleviating the bottleneck problem of multi-scale

estimation.

The author stated that grid network has obvious advantages over encoder-decoder net-

work. Because encoder-decoder network is susceptible to bottleneck effect. The method

also uses the channel-level attention mechanism, which makes the exchange and aggre-

gation of information more flexible. Experiments show that the attention mechanism can

better deal with the preprocessing module.

The overall network architecture of this method is shown in Fig.2.2 which is a three-

row and six-column structure and is based on the GridNet[11] network architecture

(GridNet was originally used for semantic segmentation). Each layer is composed of

five residual dense blocks, and each column in the figure can be seen as a bridge for

multi-scale operations (implemented through up-sampling and down-sampling).

The image output directly from backbone may have artifacts. Therefore, a post-

processing module is proposed to process the image.

13
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2.2.3 DANet

Figure 2.3: DANet[33]

The author uses the advantages of CycleGAN[44] structure to adapt the real hazy

image to the dehazing model trained on synthetic data. The framework[33] consists of

two parts, an image translation module and two domain-related dehazing modules (one

for the synthetic domain and the other for the real domain). In order to reduce domain

gaps, this method first uses a two-way image translation network to convert images from

one domain to another. Since the hazy image inconsistently depends on the depth of

the scene, the author incorporates the depth information into the conversion network to

guide the conversion into a real hazy image.

Taking synthetic to real subnet as an example, the dehazing network related to syn-

thetic domain takes the image from synthetic domain (including the original synthetic

image and the translated fake synthetic image) as input to perform image dehazing. In

addition, consistency loss is used to ensure the two-way dehazing networks produce

consistent results. At this training stage, in order to further improve the generalization
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ability of the network in the real domain, real hazy images are incorporate into the train-

ing. Dark channel priors and image gradient smoothing are used as the regularizers to

ensure the dehazing results of real hazy images to have some characteristics of clear im-

ages. By training the image conversion network and the dehazing network at the same

time, they can improve on each other.

The feature-level adaptation method is employed to adjust the feature distribution be-

tween the source domain and the target domain by minimizing the maximum average

difference or adopting an adversarial learning strategy in the feature space. Another re-

search area focuses on pixel-level adaptation. This method solve the problem of domain

shift by applying inter-image conversion learning or style conversionmethods to increase

the database in the target domain.
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Chapter 3

Proposed Method

The proposed method consists of two parts: the colour correction part and image dehaz-

ing part.

Figure 3.1: Net Structure of Proposed Method

As illustrated in 3.1, we train the colour balance module and the dehazing module

respectively, thenwe use the two pretrained network to generate the final colour corrected

dehazed image.

16
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3.1 Colour Correction Module

Figure 3.2: Network Structure of Colour Correction Module

As illustrated in (Fig.3.2), a designed end to end network is used to convert colored

haze image into white haze image. Table.3.1 gives some examples of real colored haze

images and the corresponding results of color balanced network.

Colored Color Corrected Colored Color Corrected

Table 3.1: Results of Color Balance Module

3.1.1 Network Structure

As is shown in Fig.3.2, a colored hazy image first enters a 5×5 convolution layer followed

by aReLU activation function to extract 16-channel features. Then the features are sent to
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two residual downsample blocks to get higher dimensional feature maps. These features

will be refined by 3 residual attention groups. Skip-connections are applied to avoid

the loss of essential detailed information and to keep the training progress more stable.

After upsampling, residual features will be refined by a 3 × 3 convolution layer. After

element-wise sum with the input image, color corrected images will be generated.

Downsample Block

Figure 3.3: Downsample Block

The downsample block employs the resnet[14] structure, consisting of 3 convolution

layers, all followed by a batch norm layer. The setting for kernel size, stride and padding

are [3,2,1], [3,1,1] and [1,2,0] respectively.

Residual Attention Block

In order to flexibly deal with uneven color distribution we use a residual pixel[27] atten-

tion block to extract features. The output of the previous layer is fed into two convolution

layers with ReLU and sigmoid activation function. Then we use the original input to the

element-wise product with the output of attention block to get the enhanced features.
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Figure 3.4: Res Attention Block

3.1.2 Loss Functions

Smooth L1 Loss

Let Iwi denotes the value of white haze in the ith color channel, Ici represents the value

of colored haze in the ith color channel, x is the pixel location. The Smooth L1 Loss

can be expressed as:

Ll1 =
1

N

3∑
i=1

N∑
x=1

σ(Iwi (x)− Ici (x)) (3.1)

where,

σ(e) =


0.5e2, if |e| < 1

|e| − 0.5, otherwise

. (3.2)

As is shown in 3.5, this function performs better than L1 and L2 loss functions. It is

smoother than L1 loss and is more stable than L2 loss. As the derivative of smoothl1

and l2 with respect to x are:
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Figure 3.5: Comparison of l1 loss, l2 loss and smoothl1 loss

∂L2(x)

∂x
= 2x,

∂smoothl1(x)

∂x
=


x, if |x| < 1

±1, otherwise

.

It is clear that in the early stage of training , when there is a large difference between the

predicted value and the ground truth, the gradient of the L2 loss function is too large and

too sensitive to make the training progress stable.

Perceptual Loss

In order to optimize the visual effect, we need to quantify the difference between features

extracted from model results and ground truths. Then the perceptual loss[17] is applied.

As illustrated in Eq.3.3, Cl,Hl andWl are the label, height and width of the lth channels

of the image respectively. Iw is the white haze image and Ic is the result of the proposed
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network.

Lp =
3∑
l=1

|| 1

ClHlWl

(φl(Iw)− φl(Ic))||22. (3.3)

A pretrained Vgg16[36] is used to extract features of Iw and Ic.

Overall Loss Function for Colour Balance Net

The total loss for the colour balance module is combined by 2 parts, the smoothl1 loss

Ll1 and perceptual lossLp:

Lcolor = Ll1 + γLp (3.4)

where, γ is the weight coefficient, set as 0.04.

3.1.3 Synthetic Colored Haze Image Dataset

Inspired by [8], although there have been many synthetic datasets with real clear image

and the corresponding synthetic hazy images, there is no datasets with paired clean im-

ages and colored hazy images. Then we followed the atmospheric scattering model[26],

based on the RESIDE[21] Outdoor dataset, generating the Synthetic Colored Haze Im-

ages. As is shown in the (ASM)[26] formula:

I(x) = J(x) · t(x) + [1− t(x)] · A (3.5)

where I(x) and J(x) denote the hazy image and clear image respectively. x indicates the

coordinate position of the image pixel while A is the ambient light and t(x) represents

the transmittance.
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Besides, t(x) is closely related to depth information:

t(x) = e−βd(x) (3.6)

where, β is the attenuation parameter and d(x) is the scene depth.

The scene depth map d(x) and clear image J(x) have already been given by the RE-

SIDE dataset. In order to generate hazy image dataset, all we need are the attenuation

parameter β and the ambient light A. The conventional method in the past is to assume

the values of these two parameters. β and A are always assumed as the same value for 3

color channels(RGB). After experiments, we find that different values of A for different

channels can change the color of a hazy image.

Figure 3.6: Method of Generating Colored Haze Image

As is shown in 3.6, we use the mean of every channel from a real colored haze image

as the value of A. For the diversity of the data, we choose β from [0.2, 0.3, 0.4, 0.5] to

generate hazy images with different density.
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To generate the ground truth white haze data, we set Â as the mean of A and keep

all other elements unchanged. Then according to Eq.3.5, with 50 randomly selected real

colored haze images from the RESIDE URHI[21], training data for the proposed colour

balance net can be generated. Fig.3.7 and Fig.3.8 give examples of the generated training

data and the comparison results of their colour histograms.

Figure 3.7: Histogram of Generated Color Haze Image

Figure 3.8: Histogram of Generated White Haze Image

3.2 Dehazing Module

3.2.1 Network Structure

As is shown in Fig.3.9, a hazy image first come into a 5 × 5 convolution layer with a

ReLU activation function to extract 16 channels of features. Then the features are sent
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to 4 residual downsample blocks to get higher dimensional information. Deformable

Feature extractor and 5 resdiual groups are used to fully extract features. Attention based

skip-connections are built between downsample blocks and upsample blocks to avoid the

loss of detailed information in low dimensional features. Finally, features will be refined

by a 3× 3 convolution layer and restored haze-free images will be generated.

Figure 3.9: Dehaze Net Sturcture

Downsample and Upsample Block

Figure 3.10: Details for the Downsample and Upsample Block

The downsample block employs the resnet[14] structure, consisting of 3 convolution

layers, all followed by a batch norm layer.The setting for kernel size, stride and padding
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are [3,2,1], [3,1,1] and [1,2,0] respectively.

Then we use pixelshuffle[34] method for upsampling. The pixel shuffle method is to

Figure 3.11: PixelShuffle

convert the feature map from low-resolution space to high-resolution space. In Fig.3.11,

The first part on the left side is used to extract features. Then generate r2 channels of

feature maps. Final up sampling results will obtained by converting the r2 feature maps

to sizew∗r, h∗r features. That is, to transform image from shapeN∗(C∗r∗r)∗W ∗H to

shapeN∗C∗(H∗r)∗(W ∗r). This operation is implemented by inserting low-resolution

features into high-resolution images periodically according to specific positions, which

is called the periodic shuffling. Weights of the r2 features can be adjusted to optimize

the result.

Attention Based Skip-connection

The input of this block is the output di concatenated with the output of ui, where di and

ui denote the ith downsample and upsample block respectively.

In order to handle uneven haze distribution, channel and spatial attentionmethods[40]

are applied.
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Denote the input as F with sizeH×W ×C, we first perform a spatial global average

pooling and maximum pooling to obtain two 1 × 1 × C features. Then feed them to

a shared two-layer convolution block. The number of output channels in the first layer

is C/r, while the second is C and the activation function is ReLU. r is the reduction

ratio. Next, perform element-wise sum of the two obtained features and pass the result

through a sigmoid activation function to obtain the weight coefficient. Finally, multiply

the weight coefficient and the original feature F to get the enhanced feature map F ∗ with

size H ×W × C.

The obtained F ∗ is the input of the following spatial attention operation. Similar to

channel attention, given a feature F ∗ with size H ×W × C, we first perform average

pooling and maximum pooling on channel dimension to obtain two 1× 1× C features.

Then concatenate them and send the result into a 7 × 7 convolution layer with the sig-

moid activation function to obtain the weight coefficient. Finally, multiply the weight

coefficient and the feature F ∗, the final enhanced feature is generated.

Figure 3.12: Attention Block
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Deformable Feature extractor

Instead of the fixed kernel shape in traditional convolution layers, deformable convolu-

tion can apply more flexible deformable kernel shape to do the computation[41]. That

is, as the Fig3.13 shows, the extracted features will be more accurately.

Figure 3.13: Deformable Kernel

3.2.2 Loss Function

Adversarial Loss

Here we adopted Least Squares GAN (LSGAN) [25] to calculate the adversarial loss as

it is more stable during the learning process. Eq.3.7 shows the function of the adversarial

loss for the discriminator:

LD = Exgt∼Pgt(D(xgt)− 1)2 + Exdh∼Pdh
(D(xdh))

2 (3.7)
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whereD denotes the discriminator, xgt and xdh are sampled from clear image distribution

Pgt and dehazed image distribution Pdh.

Smooth L1 Loss

Let Igti denote the value of ground truth clear image in the ith color channel, Idhi repre-

sents the value of dehazed image in the ith color channel, x is the pixel location. The

Smooth L1 Loss can be expressed as:

Ll1 =
1

N

3∑
i=1

N∑
x=1

σ(Igti (x)− Idhi (x)) (3.8)

σ(e) =


0.5e2, if |e| < 1

|e| − 0.5, otherwise

. (3.9)

Perceptual Loss

In order to optimize the visual effect, the perceptual loss[17] is applied. As illustrated

in Eq.3.10, Cl, Hl and Wl are the label, height and width of the lth channels of the

corresponding image. Igt is the ground truth clear image and Idh is the dehazed image.

Lp =
3∑
l=1

|| 1

ClHlWl

(φl(Igt)− φl(Idh))||22. (3.10)

A pretrained Vgg16[36] is used as the loss network and uses the first, second and third

layers to calculate the loss value.

28

http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/


Master of Applied Science– Zijun Wu; McMaster– Electrical Engineering

Overall Loss Function for Dehaze Net

The total loss for the Dehaze Net combines 3 parts, the smoothl1 loss Ll1, perceptual

loss Lp and adversarial loss LD:

Lcolor = Ll1 + λ1Lp + λ2LD (3.11)

where λ1 and λ2 are trade-off weights, set as 0.04 and 1 respectively.
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Chapter 4

Experiments

4.1 Training and Testing Datasets

4.1.1 RESIDE Dataset

TheRESIDEDataset[21] is a new benchmark consisting of synthetic and real-world hazy

images. Besides, the synthetic data contains three parts, the Indoor Training Set(ITS),

the Synthetic Objective Testing Set(SOTS), and the Outdoor Training Set(OTS). The

ITS training set contains 13,990 hazy indoor images while the OTS training set contains

72135 hazy outdoor images. These images are generated by using the atmospheric scat-

tering model[6], with the depth maps are from the Middlebury stereo data set[32] and

the NYU Depth V2 data set[35].

4.1.2 Synthetic to Real Haze Image Dataset

This dataset[24] is generated from randomly selected 3000 ITS hazy images and 3000

OTS hazy images. By applying the CycleGAN[44] model, setting synthetic hazy images
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Figure 4.1: The CycleGAN Network Structure[44]

and real hazy images as X and Y in Fig.4.1 respectively, to make the synthetic haze

distribution and real haze distribution closer. The 1000 real images are randomly selected

from the URHI[21] dataset.

Figure 4.2: An Example of Synthetic to Real Haze Image

4.1.3 SOTS

The SOTS is the synthetic test set in the RESIDE[21] data set, which contains 500 indoor

hazy images and 500 outdoor hazy images.
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4.1.4 Middlebury

This data set is also calledD-HAZY[2] and is generated from theMiddelbury[32] dataset,

which provides images of various scenes and their corresponding depth maps. The

dataset is constructed based on the depth information and Koschmieder’s light propa-

gation model[15].

4.2 Implementation Details

The proposed Colour Balance Net is trained on the generated colored haze image dataset.

1/10 images from the dataset are selected as the test set. Input training images are ran-

domly cropped to 240×240 and are randomly rotated to 90, 180 or 270 degrees. Random

horizontal flip is also implemented. The Adam optimizer[19] is used with β1 = 0.9 and

β2 = 0.99 respectively. The initial learning rate is set to 0.001. The total training epochs

are 160 and adjust learning rate to half of the precious one every 40 epochs.

The proposed Dehaze Net is trained on the RESIDE dataset. For training data, 6000

indoor hazy images and 6000 outdoor hazy images are selected randomly from ITS and

OTS respectively. Then the SOTS dataset is used as the test set. Input training images

are randomly cropped to 240× 240 and are randomly rotated to 90, 180 or 270 degrees.

Random horizontal flip operation is also implemented. The Adam optimizer[19] is used

with β1 = 0.9 and β2 = 0.99 respectively. Then finetune the pretrained Dehaze Net on

the Synthetic to Real dataset.

The initial learning rate is set to 0.001. The total training epochs are 200 and adjust

learning rate to the half of precious one every 60 epochs. The training is carried out on

the server with two NVIDIA GeForce GTX 1080Ti.

32

http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/


Master of Applied Science– Zijun Wu; McMaster– Electrical Engineering

4.3 Evaluation Method

PSNR: Given an H × W clear image I and the corresponding dehazed image Î , the

mean square errorMSE is defined as:

MSE =
1

HW

H−1∑
i=0

W−1∑
i=0

(I(i, j)− Î(i, j))2. (4.1)

Then the Peak Signal-to-Noise Ratio(PSNR) is defined as:

PSNR = 10log10
(28 − 1)2

MSE
. (4.2)

SSIM: Structural SIMilarity(SSIM)[39] is used to compare the difference on luminance

l, contrast c and structure s between samples. Let gt denote ground truth clear image,

dh represent the corresponding dehazed image. The SSIM can be calculated by:

SSIM(gt, dh) =
2µgtµdh + c1

µ2
gt + µ2

dh + c1

· 2σgt,dh + c2

σ2
gt + σ2

dh + c2

= l(gt, dh) ∗ c(gt, dh)s(gt, dh)

(4.3)

where µgt is the mean of ground truth clear image, µdh is the mean of dehazed image,

σ2
gt is the variance of ground truth clear image, σdh is the variance of dehazed image and

σgt,dh is the covariance of ground truth and dehazed image. c1 and c2 are two constants.

4.4 Quantitative Results

The quantitative evaluations are conducted on SOTS andMiddlebury datasets. It is clear

that the proposed method have improvement on both SOTS and Middlebury dataset,

compared with DANet and other state-of-the-art methods.
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Method DCP AOD-Net EPDN GDN DANet Proposed

SOTS 15.49/0.64 19.06/0.85 23.82/0.89 31.51/0.98 27.76/0.93 31.88/0.98
Middlebury 15.91/0.81 13.86/0.79 15.11/0.83 16.70/0.85 15.93/0.70 16.33/0.85

Table 4.1: Quantitative Evaluations on SOTS and Middlebury.
PSNR/SSIM Evaluation Methods are Performed.

4.5 Qualitative Results

The quantitative evaluations are conducted on two synthetic hazy image datasets and two

real hazy image datasets. They are SOTS[21], Middlebury[32], URHI[21] and Fattal’s

real world dataset[9] respectively.

Note that in Table.4.3, Table.4.2 and Table.4.4, the proposed method have great im-

provement on the two synthetic hazy image datasets.

In Table.4.5 and Table.4.6, it is clear that the proposed method performs better not

only on real white haze images, but also have large improvement in the visual effects of

real colored haze images.
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Hazy DCP AOD-Net EPDN

GDN DANet Proposed Ground Truth

Hazy DCP AOD-Net EPDN

GDN DANet Proposed Ground Truth

Hazy DCP AOD-Net EPDN

GDN DANet Proposed Ground Truth

Table 4.2: Qualitative Comparisons on SOTS Outdoor Dataset

35

http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/


Master of Applied Science– Zijun Wu; McMaster– Electrical Engineering

Hazy DCP AOD-Net EPDN

GDN DANet Proposed Ground Truth

Hazy DCP AOD-Net EPDN

GDN DANet Proposed Ground Truth

Hazy DCP AOD-Net EPDN

GDN DANet Proposed Ground Truth

Table 4.3: Qualitative Comparisons on SOTS Indoor Dataset
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Hazy DCP AOD-Net EPDN

GDN DANet Proposed Ground Truth

Hazy DCP AOD-Net EPDN

GDN DANet Proposed Ground Truth

Table 4.4: Qualitative Comparisons on Middlebury Dataset
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Hazy DCP AOD-Net EPDN GDN DANet Proposed

Table 4.5: Qualitative Comparisons on Fattal’s Real World Dataset[9]

Hazy DCP AOD-Net EPDN GDN DANet Proposed

Table 4.6: Qualitative Comparisons on the URHI Real Hazy Image
Dataset
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4.6 Analysis and Ablation Study

4.6.1 Effect of Colour Balance Net

Figure 4.3: Histogram of Real Color Haze Image

Figure 4.4: Histogram of Real Color Balance Image

Fig.4.3 and Fig.4.4 show the changes in color histograms between original image and

the color corrected image. It is evident that the deviation value of blue channel tends to

be normal. Besides, the visual effect is also improved.

In addition, the proposed Colour Balance Net also can help in improving the dehazed

results of different backbones. Taking the Colour Balance Net as an image preprocessing

module, the results of selected backbones are illustrated in Table.4.7. Note that all the

backbones performs much better after using the result of Colour Balance Net. The new

dehazed images are more clear and have better visual effects.
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4.6.2 Ablation Study

First we do experiments to verify the effectiveness of attention module in Colour Balance

Net and adversarial loss, pixelshuffle in Dehaze Net. Quantitative results are reported in

Table.4.8 and Table.4.9

We also did ablation studies to verify the effectiveness of deformable feature block

and attention based skip connection. Experiments showed that the proposed Dehaze Net

failed to generate dehazed images without any of these two blocks.

Then we will study the effectiveness of Synthetic to Real(denote as s2r) Image data

and the Colour Balance Net in the proposed method. Qualitative results are illustrated

in Table.4.10.

Note that Table.4.10 showsmodel trained on the synthetic to real hazy image database

can have great improvement in real hazy image dehazing task. The use of Colour Balance

net can improve the visual effects in colored haze image dehazing tasks.
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Colored EPDN GDN DANet

Color Balance EPDN GDN DANet

Colored EPDN GDN DANet

Color Balance EPDN GDN DANet

Colored EPDN GDN DANet

Color Balance EPDN GDN DANet

Table 4.7: Qualitative Comparisons on Dehazing Result of the Color-
Balance Hazy Image for Different Backbones
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Table 4.8: Colour Balance Net Performance of w/ Attention and w/o
Attention

Methods w/ attention w/o attention

Generated dataset 31.21/0.97 29.48/0.97

Table 4.9: Dehaze Net Performance of w/ Adversarial Loss and w/o Ad-
versarial Loss

Methods w/ adversarial loss w/o adversarial loss adversarial loss + Convtranspose

SOTS 31.88/0.98 31.58/0.97 31.46/0.98

w/o s2r w/o CBNet w/o s2r and CBNet proposed

Table 4.10: Qualitative Results of w/o s2r, w/o Colour Balance, w/o s2r
and Colour Balance, Proposed

42

http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/


Chapter 5

Conclusion

In this paper, we propose a two stepmethod to deal with the colored haze. A colored haze

image database is also constructed. The Colour Balance Module learns the transfer from

colored haze distribution to white haze distribution. Pixel attention is applied to get the

enhanced information of every pixel. The Dehazing Module firstly learns the mapping

from hazy images to clear images. In order to improve performance, the synthetic to real

hazy image dataset is applied to alleviate the domain gap between synthetic hazy images

and real hazy images. Channel and spatial attention blocks are introduced in the dehazing

net. Deformable fexture extractor and pixeshuffle method are also used. Experiments

and comparisons illustrate that the proposed method have competitive performance in

dehazing task, especially in colored haze image dehazing.
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