
 

  

ADVANCED CHARACTERIZATION OF  

BATTERY CELL DYNAMICS 

 



 

 

ADVANCED CHARACTERIZATION OF  

BATTERY CELL DYNAMICS 

By MARVIN MESSING, M.A.Sc, B.Eng. 

A Thesis Submitted to the School of Graduate Studies in Partial Fulfilment of the 

Requirements for the Degree of Doctor of Philosophy 

© Copyright by Marvin Messing, September 2021 

McMaster University 



 

 

- ii - 

 

 

DOCTOR OF PHILOSOPHY (2021), McMaster University, Hamilton, Ontario  

(Mechanical Engineering)  

 

TITLE:  Advanced Characterization of Battery Cell Dynamics  

AUTHOR:    Marvin Messing, M.A.Sc, B.Eng.  

SUPERVISOR:   Professor Saeid R. Habibi  

NUMBER OF PAGES:  xx, 223 

  



 

 

- iii - 

Lay Abstract 

Replacing conventional gasoline/diesel powered cars with battery powered vehicles is part of 

a solution to the climate crisis. However, the initial costs paired with range anxiety stops many 

from switching to electric cars. Both cost and range are related to the battery pack. To achieve 

the best possible range for the lowest possible cost, battery packs must be carefully controlled 

by sophisticated algorithms. Unfortunately, battery range or health cannot be measured 

directly, but must be inferred through measurable indicators. This thesis explores battery 

behavior under different operating conditions and develops improved methods which can be 

used to determine battery health and/or range. A powerful method usually used only in 

laboratory settings is studied and improved to make it more suitable for implementation in 

electric cars. In this work it is used for accurate battery health determination. Furthermore, a 

strategy for improving battery range determination at low temperatures is also proposed.  
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Abstract 

Battery Electric Vehicles (BEV) are gaining market share but still must overcome several 

engineering challenges related to the lithium-ion battery packs powering them. The batteries 

must be carefully managed to optimize safety and performance. The estimation of battery 

states, which cannot be measured directly, is an important part of battery management and 

remains an active area of research since small gains in estimation accuracy can help reduce 

cost and increase BEV range.  

This thesis presents several improvements to battery state estimation using different methods. 

Electrochemical Impedance Spectroscopy (EIS) is receiving increased attention from 

researchers as a method for state estimation and diagnostics for real-time applications. Due to 

battery relaxation behaviour, long rest times are commonly used before performing the EIS 

measurement. In this work, methods were developed to significantly shorten the required rest 

times, and a State of Health (SoH) estimation strategy was proposed by taking advantage of 

the relaxation effect as measured by EIS. This method was demonstrated to have an estimation 

error of below 1%.  

At low temperatures, the accuracy of the battery model becomes poor due to the non-linear 

battery response to current. By using an adaptive filter called the Interacting Multiple Model 

(IMM) filter, the next part of this work showed how to significantly improve low temperature 

State of Charge (SoC) estimation. Further reduction in estimation errors was achieved by 

pairing the IMM with the Smooth Variable Structure Filter (SVSF), for SoC estimation errors 

below 2%.  

The work presented in this thesis also includes the application of Deep Neural Networks (DNN) 

for SoC estimation from EIS data. Finally, an extensive aging study was conducted and an 
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accelerated protocol was compared to a realistic drive cycle based protocol using EIS as a 

characterization tool.  

 

Keywords: 
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Chapter 1: Introduction 

To have one or several vehicles standing at the ready at any time to quickly get people to 

near locations within tens or even hundreds of kilometers is one of the great luxuries 

enjoyed by many since the late 20th century. Although public transportation is well 

developed in many countries, there is nothing quite like the feeling of freedom that comes 

with owning a vehicle. However, the majority of vehicles still emit exhaust gases which 

contribute to two major issues: 1) air pollution and 2) the climate crisis. The findings of a 

recent study on global air pollution highlight again the need to remove sources of pollution 

from densely populated areas [1], where people and  vehicles are found in large 

concentrations. For example, the study found that over one million people die each year 

due to air pollution in China alone. In addition, it found that air pollution is causing a 

reduction of almost two years in the global average life expectancy. The sources and impact 

of the climate crisis are detailed in a United Nations (UN) report, which predicts further 

increases in flooding, droughts and hurricanes around the world, if Greenhouse Gas (GHG) 

emissions are not reduced drastically [2]. Global transportation comprises around 15% of 

all GHG emissions [3]. In the United States, this percentage is almost double (29%) and 

almost 60% of that is due to light duty vehicles [4]. Therefore, the automotive industry is 

heavily investing in Electric Vehicles (EV) as part of the solution to the global air pollution 

problem and climate crisis.     

Battery packs in EVs are overdesigned to carry more capacity than they use. This is done 

to ensure that the battery operating range stays within safe charge and discharge limits [5], 
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[6]. However, accurately determining those limits over a wide range of operating conditions 

and variations in battery designs is a significant challenge [7]. EV battery packs are 

continuously monitored by Battery Management Systems (BMS) which contain advanced 

algorithms to achieve optimal and safe operation. Extensive research is currently carried 

out find new ways to maximize the useable battery capacity. One of the most challenging 

aspects of battery management is the estimation of hidden battery states. This thesis 

explores state estimation for lithium-ion batteries and EV applications. The findings of this 

thesis contribute to the improvement of battery state estimation through in-depth research 

into impedance spectroscopy, adaptive filters, and machine learning methods. In this 

Chapter, background material is reviewed in Sections 1.1 to 1.8 including introductions to 

Lithium-Ion batteries, impedance spectroscopy, state estimation, neural networks and 

battery testing. In Section 1.9 the research hypotheses and contributions are described. 

Section 1.10 provides an outline of the thesis.  

1.1 LITHIUM-ION BATTERIES 

Lithium-ion chemistries dominate the market for secondary batteries, especially, for all-

electric vehicles [8]. A lithium-ion battery consists of an anode (negative electrode), 

electrolyte, a separator, and a positive electrode (cathode), as shown in Figure 1-1. During 

the charge process, electrons flow into the anode and combine with lithium-ions to 

intercalate lithium into the electrode. During discharge, electrons flow out of the anode and 

into the cathode to intercalate there [9]. The porous separator ensures that electrons cannot 

pass from anode to cathode without an external circuit. There is a tendency for electrolyte 
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reduction at the negative electrode (Anode) due to its low potential. This causes the 

electrolyte to react with the electrode and leads to the formation of the Solid Electrolyte 

Interphase (SEI) layer. After the SEI layer has formed, it protects the electrode from further 

undesirable reactions with the electrolyte. On the positive electrode a similar layer is called 

the Cathode Electrolyte Interphase (CEI) [10]. The CEI is thinner since there is only a 

small, or no driving potential on the cathode.  

 

Figure 1-1: Lithium-ion battery components and operation 

There are several variants of lithium-ion chemistries with a broad range of properties. 

Lithium cobalt oxide (LCO) batteries are the most common type in many applications. 

However, the high cost, poor durability and low availability of cobalt makes LCO an 

unfavourable choice for large battery packs [11,12]. Instead, nickel cobalt aluminum oxide 

(NCA) cells can eliminate some of the drawbacks of LCO, but safety concerns remain. 

Specifically, the risk of thermal runaway is high in NCA batteries which has lead to several 

EV fires [12]. Nickel manganese cobalt oxide (NMC) lithium-ion cells have high energy 
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density [12] and are, therefore, chosen by some car manufactures for EV battery packs. 

However, the thermal runaway risk is still present, although only at higher temperatures 

compare to NCA. Examples of catastrophic battery failure also exist for NMC battery packs 

[12]. Lithium-ion phosphate (LFP) and LCO with spinal lithium titanium oxides (LTO) 

anodes deliver the best results in terms of safety, but energy density is reduced [8]. Thus, 

the selection of presently commercialized lithium-ion batteries is a trade-off between 

energy density (which translates to EV range) and safety.  

There is growing concern that conventional lithium-ion batteries (LIB) cannot meet the 

increasing energy storage demands for mobile applications. Therefore, improvements to 

lithium-based and alternative chemistries are constantly explored. One promising 

improvement to lithium-ion chemistries is the use of Solid-State Electrolyte (SSE) instead 

of organic solvents. The use of SSE allows for increased energy density, increased battery 

safety as well as reduced volume due to bi-polar cell stacking [13], [14]. However, 

challenges concerning the transport properties of SSEs as well as the scalability of 

manufacturing processes must be addressed before SSEs become a viable solution. 

Nonetheless, Solid State Batteries (SSB) are presently regarded as the next leap forward in 

battery technology.  

Some advances have been made in the development of sodium-ion batteries (NIB). In [15] 

the progress and challenges are discussed. NIBs show promising performance; however, 

more studies are required to form a complete picture of the properties of NIBs with regards 

to lifetime, safety, and cost.  
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1.1.1 AGING MECHANISMS & STRESSORS 

The useful lifetime of a lithium-ion battery is a function of its operating conditions. To 

achieve maximum lifetime, the battery should be kept at room temperature and charged or 

discharged at low current, strictly between optimal voltage limits. However, for automotive 

applications, for example, the operating temperatures can range from -30°𝐶 to +52°𝐶 [16], 

charge rate is high, to reduce charging time, and discharge profiles depend on the driving 

habits of the operator. The impact of deviating from optimal operating conditions and the 

resulting battery degradation, are studied extensively in literature, for a range of automotive 

battery types. Gao et al. studied voltage limits as well as charge rates of an 18650 LCO 

battery and found a drastic increase in degradation rates, for voltages above 4.2 V and 

charge rates above 1C [17]. Su et al. applied different stressors and found that charge 

current, charge voltage, temperature, charge current, and discharge current contribute 

heavily to battery degradation of an 18650 NCA battery [18]. They separate degradation 

due to temperature into low-temperature (below 25°𝐶) degradation and high-temperature 

(above 25°𝐶) degradation. This difference in temperature degradation mechanisms was 

also found by Waldmann et al., for an 18650 NMC battery [19]. A prismatic NMC cell was 

studied by Waag et al. to show the change in battery impedance (see Section 1.1.2) with 

temperature, SoC, and aging; however, the aging procedure is not specified [20]. Leng et 

al. used a prismatic LCO battery to study the effect of temperature on the parameters of a 

combined electrochemical-electric model [21]. They found the parameters changed 

significantly with increased operating temperature between 25°𝐶 and 55°𝐶 and related each 
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parameter to the degradation of components inside the battery. In addition, they showed the 

degradation of the electrodes to be the main contributor to aging.  

Another form of battery aging is calendar aging which refers to degradation that occurs 

while the battery is at rest over long periods of time. Calendar aging was investigated by 

[22–25], but no clear consensus exists. This may be due to a combination of different 

behaviours between chemistries as shown by [25], who showed different aging behaviors 

with temperature for LMO, NMC, LFP, and NCA. The lack of consensus may also be due 

to additional degradation introduced by testing procedures as mentioned by [22] who argue 

that some types of characterization tests introduce additional aging. Since calendar aging 

happens slowly over a long period of time, it is often difficult to distinguish it from 

degradation caused by diagnostic testing.  

Finally, some studies show that vibration also causes battery degradation [26,27]. However, 

a recent study by Hooper et al. [28] shows only a small, yet statistically significant, increase 

in ohmic resistance after an equivalent vibration profile of 10 years of EV driving, for 

18650 NCA cells. This study included control samples to differentiate degradation related 

to vibration from calendar aging.  

 A detailed review of lithium-ion battery aging mechanisms is given by [11]. The main 

mechanisms are the growth of SEI, the buildup of other surface films on the electrodes, and 

the break-down of electrode material. The initial formation of the SEI is important for the 

operation of the battery as it electrically separates the electrolyte from the electrode. 

However, over time it grows by consuming lithium-ions which causes capacity fade.   
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1.1.2 IMPEDANCE 

The components of the battery as well as the electrochemical reactions taking place during 

battery operation cause several overpotentials (or losses). Figure 1-2 shows a typical 

voltage drop which occurs when current is drawn from the battery. The voltage profile 

shows three drop regions which represent different overpotentials. These overpotentials can 

be grouped as follows: 

1. Overpotential 𝜂𝑂 manifests as the immediate voltage drop observed within a few 

milliseconds after current is applied. It is caused by the ohmic resistances of the cell which 

include current collectors, the solid parts of the electrodes, electrolyte resistance, and 

interface resistances between current collectors and electrodes.  

2. Overpotential 𝜂𝐶  causes a further voltage drop within a few seconds and is a combination 

of charge transfer losses 𝜂𝐶𝑇 , SEI losses 𝜂𝑆𝐸𝐼 and contact resistance losses 𝜂𝐶𝐶 .  

 𝜂𝐶 = 𝜂𝐶𝑇 + 𝜂𝑆𝐸𝐼 + 𝜂𝐶𝐶  

 (1-1) 

3. Overpotential 𝜂𝐷  is a result of diffusion losses from lithium inside the electrodes (solid 

state) as well as from lithium ions in the electrolyte (liquid state) and occurs during 

sustained current draw.  

Each of the overpotentials occur because of some form of opposition to current flow 

through the battery. This current flow opposition is measured by impedance, a combination 

of resistance and reactance (capacitive and inductive) effects. The impedance of a battery 

changes depending on the battery chemistry and materials used, the excitation signal, the 

SoC, the SoH and the battery temperature. In Section 1.2 a method is introduced that can 
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identify the impedance of the different battery components in a non-destructive, in-vivo 

way. Studying battery impedance under different operating conditions can provide insight 

into battery dynamics and battery states. In Section 1.3 battery models are described which 

imitate the impedance behavior of batteries. Accurate battery models are a crucial part of 

battery state estimation. In the next section the battery relaxation effect is discussed which 

is closely related to the impedance characteristics of a battery.  

 

Figure 1-2: Overpotentials Caused by Impedances 

1.1.3 RELAXATION EFFECT 

When a load is applied to a battery its voltage drops due to overpotentials which occur 

because of impedances as described in the previous section. If the load is removed the 

battery voltage does not instantly rise back to a constant Open Circuit Voltage (OCV) but 

instead recovers slowly, stabilizing over time. This is known as the battery relaxation effect. 

Figure 1-3 shows battery voltage behaviour during a discharge pulse followed by a rest 
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period at OCV. At the start of the rest period, the voltage rises immediately to recover the 

ohmic losses. During the first few minutes of the rest period, the voltage continues to rise 

as lithium ions diffuse back into the electrodes as shown in Figure 1-4b.  The relaxation 

effect continues for hours after that with the voltage increasing slowly over time while 

lithium is diffusing inside the electrodes to equalize micro potentials as shown in Figure 

1-4a [29], [30]. The relaxation effect has several implications for battery characterization 

and management: 

• Battery models must reflect relaxation behaviour. The accuracy of battery models is 

crucial to the performance of state estimation algorithms, so they must capture both 

load conditions and rest conditions accurately. Additional battery model terms may 

be necessary to capture the time constants associated with the long-term effects.  

• The OCV of a battery is a useful quantity for SoC estimation. However, true OCV 

only occurs when the relaxation effect has slowed sufficiently. This means long rest 

times are required before accurate OCV can be measured.  

• Rest times must be included for most test procedures to ensure consistent response 

of the battery. A relaxed battery will respond differently to loads than a battery which 

was recently excited. Therefore, rest times of 1 to 4 hours are usually observed in 

between excitation tests.  
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Figure 1-3: Battery Voltage Relaxation. 

 

Figure 1-4: Battery Relaxation Effect Process Long Term (a), Short Term (b). 

In the next section, an impedance measurement technique is described for which the impact 

of the relaxation effect on measurement results must be considered.  
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1.2 ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY 

One of the major areas of research presented in this thesis concerns the results obtained 

using Electrochemical Impedance Spectroscopy (EIS). EIS can reveal a detailed snapshot 

of the impedance of the internal components of batteries, which can be interpreted to 

indicate the health of various components, the battery state, temperature, and fault 

conditions. EIS is based on small signal excitation at different frequencies. For example, in 

Galvanostatic EIS (GEIS) a sinusoidal current signal is applied to the battery at different 

frequencies and the corresponding voltage response is measured. The current signal must 

be sufficiently low for the battery to remain in its linear response region, but high enough 

to maintain adequate signal to noise ratio. The current value which satisfies these 

requirements depends on the battery type and size as well as hardware characteristics of the 

measurement equipment. A linear response of the battery is usually ensured if the battery 

voltage stays within +/- 10 mV throughout the EIS test. A voltage-controlled version of 

EIS, called Potentiostatic EIS (PEIS), can guarantee this voltage range by applying voltage 

and measuring the current. PEIS is primarily used in the work described in this thesis. The 

measured EIS data can be converted to frequency domain using the Discrete Fourier 

Transform (DFT) [31] to produce a characteristic plot called the Nyquist plot as shown in 

Figure 1-5.  



Ph.D. Thesis - Marvin Messing  McMaster University - Mechanical Engineering 

 

- 12 - 

 

 

 

Figure 1-5: EIS Signal and Analysis 

Given a sine wave signal 𝑓(𝑖) in time domain with discrete points 𝑖 from 0 to 𝑁 − 1, the 

DFT 𝐹(𝑛) at point 𝑛 in the frequency domain can be calculated for each 𝑛 from 0 to 𝑁 − 1 

using Equation 1-3. 

 𝐹(𝑛) =
1

𝑁
∑ 𝑓(𝑖) exp (−𝑗

2𝜋𝑛𝑖

𝑁
)𝑁−1

𝑖=0  (1-2) 

The DFT 𝐹(𝑛) produces complex numbers (real and imaginary pairs) for each 𝑛 which 

correspond to frequencies from 0 to the sampling frequency 𝑓𝑠 . The exact frequency 𝑓𝑛 for 

each 𝑛 is calculated using Equation 1-3.  

 𝑓𝑛 =
𝑛

𝑁
𝑓𝑠  (1-3) 

However, the highest frequency 𝑓𝑚𝑎𝑥  which can be observed is half of the sampling 

frequency according to the Nyquist theorem as shown in Equation 1-4. 

 𝑓𝑚𝑎𝑥 =
1

2
𝑓𝑠  (1-4) 

Therefore, only the first half of the DFT results from 𝑛 = 0 to 𝑛 =
𝑁−1

2
 produce meaningful 

results, beyond that the results repeat. The following is an example of the DFT calculation: 
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Assuming 𝑓(𝑖) = sin (
2𝜋𝑓1𝑖

𝑓𝑠
) with 𝑓1 = 10𝐻𝑧 and 𝑓𝑠 = 0.5𝑘𝐻𝑧, 𝑁 =

𝑓𝑠

𝑓1
= 50 points are 

obtained for one sine wave period as shown in Figure 1-6a. The Matlab implementation of 

the Fast Fourier Transform (FFT), a more computationally efficient version of the DFT, 

can be used to obtain the transformed sine wave data. Figure 1-6b shows the magnitude of 

the FFT output for frequencies from 0 to 𝑓𝑠 . The first peak corresponds to the frequency of 

the time domain sine wave signal with the frequency domain index 𝑛 = 1, which can be 

found using Equation 1-3. The complex valued FFT result at 𝑛 = 1 is 𝐹(1) = 1.55 −

j25.18 with an absolute value of |𝐹| = 25.23. 

 

Figure 1-6: A discrete time domain sine wave (a) transformed in to the frequency domain 

using the Fourier Transform (b). 

The signal in the example above could be one frequency of the EIS signal applied to a 

battery, a sine wave with 1 Ampere amplitude for example. The impedance can then be 
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calculated using Equation 1-5. Here, 𝐹𝑖𝑛(𝑛) is the FFT (or DFT) of the input signal and 

𝐹𝑜𝑢𝑡(𝑛) the FFT of the output signal, the voltage response of the battery in the case of this 

example. The frequency domain index corresponding to the signal frequency 𝑓𝑛 is 𝑛 = 1. 

Finally, the impedance 𝑍 is obtained using Ohm’s law 𝑅 =
𝑉

𝐼
, or in this case, the FFT of 

the voltage signal at index 𝑛 divided by the FFT of the current signal at index 𝑛 is equal to 

the impedance as shown in Equation 1-5.  

 𝑍 = 𝐹𝑜𝑢𝑡(1)/𝐹𝑖𝑛(1) (1-5) 

The above method assumes a signal which is low in noise and has an integer valued number 

of periods per sine wave frequency. The former depends on the quality of the 

instrumentation and the latter on the signal generation. If the signals are noisy, the 

measurements can be averaged over several sinewave periods to produce improved results. 

If the signal contains incomplete sine wave periods, windowing can be applied to the FFT 

to remove the incomplete signal parts. In laboratory settings, potentiostats are frequently 

used to perform EIS tests. These devices contain precision circuitry to generate clean sine 

waves and accurately measure the response of electrochemical devices such as batteries. 

Most modern portentiostats also include on-board signal post-processing features.  

The impedance 𝑍 for frequency 𝑓𝑛 represents a point on the Nyquist plot, where the real 

part of 𝑍 is plotted against the imaginary part. By convention, the imaginary part is 

multiplied by −1. Figure 1-7 shows an example of a Nyquist plot with real and imaginary 

pairs plotted for EIS excitation signals between 700 Hz and 0.4 Hz [32]. EIS, Nyquist plots 
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and how the data can be used for battery modeling are discussed more in Chapters 2, 3 and 

5.  

 

Figure 1-7: Nyquist plot showing EIS results in frequency domain [32]. 

EIS is used heavily in laboratory settings for battery characterization. However, studies 

have indicated some success in implementing feasible setups to perform EIS on-board a 

vehicle for real-time diagnostics. Abedi et al. [33] reviewed state-of-the art methods for 

implementing online EIS and found that efforts are centered on utilizing parts of existing 

balancing circuitry to generate the EIS signal. Further real-time EIS solutions are discussed 

in Chapters 3 and 6. 

1.3 BATTERY MODELING 

Battery models fall into three categories: Electrochemical Models (EM) (based on 

fundamental equations), empirical white box models, and empirical black box models. 

Black box models are usually used to model not just the measurable behaviour of a battery, 
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but also the hidden states. Battery states and black box models are discussed in sections 1.4 

and 1.7. EMs have the potential to be highly accurate since they can closely reflect the real 

behaviour of batteries. However, to increase accuracy, more complex processes must be 

modeled, increasing the overall complexity of the model. In particular, differential 

equations are frequently used for EMs, requiring significant computational resources. In 

addition, constants associated with the physical processes must be parameterized by 

performing extensive laboratory experiments [34]. Therefore, EMs are impractical for real 

time applications, such as battery management systems in electric vehicles (EV) [35]. In 

contrast, empirical models can be simple and still provide high accuracy, but only for a 

limited range of conditions. Furthermore, accuracy is often hard to interpret since it depends 

on the quality of the underlying data and experiments [36]. Still, empirical models can 

provide a suitable trade-off between accuracy and complexity.  

The most popular white-box models are equivalent circuit models (ECM). ECMs model 

batteries as circuits of ideal electrical components (resistors, capacitors) to approximate 

processes inside the battery. For example, the overpotentials described in Section 1.1.2 

could be modeled using the circuit shown in Figure 1-8a [37]. In this circuit, series 

resistances are used to represent the ohmic resistances at the anode and cathode, and 

resistor-capacitor (RC) pairs model impedances of the interface layers (SEI and CEI), 

electrode/electrolyte charge transfer, and electrode diffusion. However, the values for each 

capacitance and resistance must be determined experimentally, and simple, non-destructive 

battery tests cannot distinguish between anode and cathode overpotentials. In addition, the 

SEI impedance is much more dominant than the CEI impedance, so CEI is often omitted. 
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Instead, the anode and cathode circuit elements are combined into a series resistance 

followed by RC pairs as shown in Figure 1-8b. Depending on the application, additional 

RC-elements can be added to capture battery behaviour more closely. For example, 

dynamic load profiles of EV applications may require additional RC element with small 

time constants. Stationary battery applications, where load profiles are constant for longer 

periods of time, may required larger time constants.   

 

Figure 1-8: ECM to model battery internal processes separated for anode and cathode (a) 

and combined (b). 

Figure 1-9 shows the fundamental ECM which consists of RC parallel pairs repeated n 

times in series. Since RC pairs only loosely represent the physical processes, 𝑛 can be 

increased to model experimental data more closely. Many different circuits have been 

proposed to increase accuracy with fewer circuit elements, each with their own advantages 

and drawbacks [38]. However, there are an infinite number of circuit configurations 
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possible for any experimental result, which questions the relevance of fitted parameters. 

Each circuit element must be carefully related to physical phenomena inside the battery to 

give ECM models more relevance.  

 

Figure 1-9: RC battery model of order n 

Nonetheless, ECMs are used in EVs for battery state estimation due to their simplicity. First 

and second order RC circuits were compared by [39], showing a reduction in SoC 

estimation error for the higher order models. In [40], a third order RC circuit was used, 

showing further reduction in estimation error. ECM parameters are usually obtained using 

a discharge pulse method, where the characteristics of the voltage response can be related 

to resistance and capacitance values. A common protocol is the hybrid pulse power 

characterization (HPPC) pulse [41] which is used by the US Department of Energy (DoE).  

ECM parameters can also be obtained by fitting the circuit to the characteristic frequency 

response of a battery using EIS (Section 1.2). EIS gives a much more detailed picture of 

the battery response and shows the limitations of RC based circuits as shown by Farmann 

et al. [7]. They showed how RC-based circuits can only roughly approximate the shape of 

the battery impedance response. In the next section, impedance models are introduced, an 

improved version of ECMs which can model EIS data more closely.  
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1.3.1 IMPEDANCE MODELS 

The impedance profile of a battery holds useful information about its internal condition. 

Impedance is the combination of reactance and resistance and comes from the interaction 

between different materials inside a battery, the material characteristics, and from chemical 

reactions [42] as was introduced in Section 1.1.2. A detailed picture of the battery 

impedance can be obtained using EIS as described in Section 1.2. A Nyquist plot obtained 

from EIS data of a fresh lithium-ion cell is shown in Figure 1-10a. The ECM shown in the 

previous section (Figure 1-9) with 𝑛 = 2 can be used to fit to the Nyquist plot. For this 

data, with 𝑛 = 2 (i.e. two RC-elements) the charge transfer process and the diffusion 

process are captured. The SEI impedance is negligible here, due to the high SoH and 

specific properties of the cell used. The ECM fit is shown in Figure 1-10b. As is apparent 

in the figure, the ECM fit does not follow the data very closely. This is because processes 

like charge transfer in a battery are non-ideal and, therefore, exhibit a distribution of time 

constants, rather than a single time constant modeled by one RC-branch. Increasing 𝑛 can 

capture more time constants and improve the fit, however, the model complexity grows and 

the meaning of model parameters is obscured.  
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Figure 1-10: EIS Nyquist plot (a), with RC model fit (b), with fractional fit (c). 

Alternatively, the ECM can be refined by introducing a non-ideal circuit component: The 

Constant Phase Element (CPE) [31]. The CPE can model the capacitive behaviour of non-

ideal processes with only a single additional model parameter 𝛼, the constant phase 

exponent. The CPE impedance is slightly modified from the ideal capacitor impedance 

(𝑍𝐶 =
1

𝑖𝜔𝐶
) as shown in Equation 1-6.  

 𝑍𝐶𝑃𝐸 =
1

𝑄(𝑖𝜔)𝛼 
 (1-6) 
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Here, 𝑄 is related to the capacity in units of (𝐹 𝑠𝛼−1 𝑐𝑚−1). The exponent 𝛼 has a range 

of 0 ≤ 𝛼 ≤ 1, and for 𝛼 = 1, 𝑍𝐶𝑃𝐸 = 𝑍𝐶 (with 𝑄 = 𝐶), and the CPE becomes an ideal 

capacitor. The CPE models a non-ideal capacitor which has an imaginary component as 

well as a real component. Physically this means the capacitor is “leaking”, i.e. experiencing 

a current drain. The CPE can also be used in parallel with a resistor and the combined 

circuit is called a Zarc element. Figure 1-11 shows a circuit which uses a Zarc element to 

model the charge transfer processes (anode and cathode combined) and a CPE to model 

diffusion processes (also anode and cathode combined). In addition, an inductor is added 

to model the inductive effects resulting from cell connections and measurement cables at 

high frequencies. Such models are often referred to as impedance models to distinguish 

them from RC circuits [43].  The fit of this model to the EIS data is shown in Figure 1-10c. 

This model can accurately reflect the impedance behaviour of the battery. The Zarc element 

(𝑄1, 𝛼1||𝑅1) results in a depressed semi-circle due to the use of the CPE. This better reflects 

the multiple time constants associated with the charge transfer processes, which is non-

ideal due to surface roughness and porous electrodes.  The CPE in series creates an angled 

line, where the angle is defined by the exponent 𝛼. If 𝛼 = 1, the angle is 90° resulting in a 

vertical line representing an ideal capacitor. This series CPE (𝑄2, 𝛼2) models the non-ideal 

diffusion processes inside the battery electrodes.  
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Figure 1-11: Impedance model used to model EIS response 

The complex impedance 𝑍, of the impedance model in Figure 1-11 changes with frequency 

𝜔 according to Equation 1-7, where the time constant 𝜏 = (𝑅𝑝𝑄𝑝)
1

𝛼⁄
. 

 𝑍(𝜔) = 𝑖𝜔𝐿 + 𝑅𝑠 +
𝑅𝑝

1+𝑅𝑝𝑄𝑝(𝑖𝜔𝜏)𝛼
+

1

𝑄𝑑(𝑖𝜔)𝛽
 (1-7) 

A special case of the CPE is the Warburg element given by Equation 1-8. This equation is 

of a similar form as the impedance for a CPE, but with 𝑎 = 0.5, resulting in a line at a 45° 

angle on the Nyquist plot.  

 𝑍𝑤𝑏 =
1

𝑊(𝑖𝜔)0.5 
 (1-8) 

As batteries age, the SEI layer increases and starts to contribute significantly to the battery 

impedance at frequencies around 0.5kHz to 0.1kHz. To model the SEI layer impedance, a 

second ZARC element can be used or a traditional RC element. 

Impedance models are frequently used throughout this thesis to model EIS data. In 

particular, impedance models proved to be suitable to capture battery relaxation effects, as 

shown in Chapters 2, 3, and 4. Chapter 3 employs a useful property of RC models to 

validate EIS data. This is discussed in the next section.  
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1.3.2 KRAMERS-KRONIG TRANSFORM AND THE VOIGT-CIRCUIT 

As was stated in the previous section, an 𝑛𝑡ℎ order ECM such as shown in Figure 1-9 (also 

known as a Voigt-Circuit) can still fit to EIS results with low error if 𝑛 is increased 

sufficiently. A near perfect fit can be obtained with 𝑛 = 20 or higher, but the model 

becomes impractical and meaningless. However, the Voigt-Circuit model can still be used 

as part of a validation procedure for EIS results called the Kramers-Kronig (KK) transform. 

The KK transform makes use of the fact that the real components 𝑍′ of the EIS results can 

be obtained from only the imaginary components 𝑍′′ (and vise versa) using Equation 1-9 

to calculate 𝑍′′ and Equation 1-10 to calculate 𝑍′ at signal frequency 𝜔. 

 𝑍′′(𝜔) = −(
2𝜔

𝜋
)∫

𝑍′(𝑥)−𝑍′(𝜔)

𝑥2−𝜔2

∞

0
𝑑𝑥 (1-9) 

 𝑍′(𝜔) = 𝑍′(∞) +
2

𝜋
∫

𝑥𝑍′′(𝑥)−𝜔𝑍′′(𝜔)

𝑥2−𝜔2

∞

0
𝑑𝑥 (1-10) 

The KK transform itself is difficult or impossible to implement for real datasets due to the 

infinite limits of the integrals. However, any linear circuit is KK-transformable, which 

means that if a dataset can be approximated using a linear circuit, such as the Voigt circuit, 

the dataset is also KK-transformable [31]. This means that if a good fit to the Voigt-Circuit 

can be obtained, EIS data can be shown to be KK-transformable, and, therefore, valid. This 

method is used in Chapter 3 to ensure the validity of EIS results. Furthermore, the method 

is extended such that it can be used to filter out noise from the EIS data.  

1.3.3 OPTIMIZATION FOR PARAMETERIZATION 

Impedance models are parameterized by optimizing an objective function such as the mean 

square error (MSE) shown in Equation 1-11: 
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 𝑀𝑆𝐸 =
∑ (𝑦𝑖−𝑦�̂�)

2𝑛
𝑖=1

𝑛
 (1-11) 

where 𝑦𝑖 is a measurement data point, 𝑦�̂� is the model prediction, and 𝑛 is the number of 

data points. For impedance models with equations in frequency domain, the most common 

optimization method used to minimize the MSE is the Levenberg-Marquardt (damped 

least-squares) algorithm [22,44,45]. The genetic algorithm (GA) is frequently used for time 

domain optimization [46–48]. The particle swarm optimization (PSO) algorithm is used by 

some for time domain battery model parameterization [7,40]. The PSO algorithm is also 

used for EIS model fitting in the work presented in this thesis. Chapter 4 includes a set of 

upper and lower parameter bounds suitable to fit EIS data obtained from Samsung 

INR2170-50E cylindrical battery cells using the PSO algorithm.  

1.4 BATTERY STATE ESTIMATION 

The State of Charge (SoC) and State of Health (SoH) of a battery are fundamental quantities 

which must be estimated for safe and efficient battery operation. Other states, such as State 

of Power (SoP), which indicates how much power can safely be drawn from a battery, are 

derived from these states. SoP is usually calculated by taking into account the predicted 

battery voltage after applying current over a small time-delta of 1 to 20 seconds [7]. 

Farmann et al. [49] reviewed SoP methods and grouped them into two categories: 

characteristic maps (CM) and equivalent circuit models (ECM). CMs are maps which store 

the power value that can be drawn from a battery under different SoCs, temperatures and 

currents. ECM based methods are used in the same way for SoC estimation which is 

discussed in the next section. 
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1.4.1 STATE OF CHARGE 

The most important information a battery user requires is how much longer the battery can 

be used until it must be recharged. This depends on the application specific battery usage 

and on the amount of charge remaining inside the battery. State of charge is a quantity to 

indicate the remaining charge of a battery, defined as the percentage of charge available 

with respect to the maximum available charge. SoC is also used to keep the battery within 

a safe operating range during operation. Unfortunately, SoC cannot be measured directly, 

but must instead be estimated from measurable quantities such as voltage, current, and 

temperature. SoC estimation can be grouped into three categories: direct methods, model-

based methods, and data-driven methods.  

Battery current (𝐼) can be used directly to calculate SoC from the charge added to, or 

removed from the battery. The known initial charge (𝐶𝑖) is required as a starting point from 

which the accumulated charge over time is integrated. The result is divided by the 

maximum available capacity (𝐶𝑛) as shown in Equation 1-12 [38]. This method is 

frequently referred to as coulomb or amp-hour counting.  

 𝑆𝑜𝐶 = 1 −
∫ 𝐼𝑑𝑡+𝐶𝑖

𝐶𝑛
 (1-12) 

The accuracy of the coulomb counting method depends on the accuracy of the current and 

time measurements since measurement errors are amplified during the integration. In 

addition, the required starting reference charge (𝐶𝑖) will drift over time [50] because of the 

measurement errors.  
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OCV can be used to estimated SoC by using a battery characteristic OCV-SoC relationships 

which must be determined offline beforehand. Since true OCV rarely occurs during normal 

battery operation, battery models are used to estimate OCV under a given load. The 

accuracy of the OCV-SoC method depends on the accuracy of the OCV-SoC data, the 

accuracy of the battery model, as well as voltage and current measurement accuracies [51]. 

Kalman filters (KF) are used to achieve optimal SoC estimation in the presence of 

modelling, measurement, and process noise [52]. Usually, battery model equations are non-

linear, but can be linearized and used in the Extended Kalman Filter (EKF). The EKF is 

described in detail in Chapter 6.2.2. Sepasi et al. [53] use the EKF with a 2nd-order RC 

model to estimate SoC for new and aged batteries, by updating the model parameters 

online. The linearization in the EKF can reduce the accuracy of the estimator, especially if 

the modelling and measurement equations are highly non-linear. Therefore, improvements 

were made to the EKF to retain estimator accuracy with non-linear equations. Pan et al. 

[54] used a 1st-oder RC model with an EKF and a grey model to avoid linearization. A 

fractional order model was used with an unscented Kalman filter (UKF) by Mu et al. [46] 

to find more accurate estimates using the unscented transform. The accuracy of the EKF or 

UKF is highly dependant on the accuracy of the system model. Since it is often hard to find 

accurate models for real applications, efforts have been made to improve estimation 

robustness for inaccurate models. The Smooth Variable Structure Filter (SVSF) is a robust 

filtering method, described in detail in Chapter 6.2.3. The SVSF was used by Afshari et al. 

[40] and Ahmed et al. [47] with a 3rd-order RC model and electrochemical model, 

respectively. With the SVSF, a boundary can be defined for uncertainties and noise levels 
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of the system which ensures convergence of the estimate to a value within the boundary. In 

Chapter 6, the EKF and the SVSF are used together with the Interacting Multiple Model 

(IMM) filter for low temperature SoC estimation. The IMM is used in cases where several 

models are possible, but the correct one is unknown (see Chapter 6.2.4). The IMM uses the 

likelihood of each model to compute a blended state estimate. EKF, SVSF, and IMM are 

also discussed in detail in Chapter 6.  

Data driven methods use advanced machine learning techniques to predict SoC from a 

given usage profile. The accuracy of such models depends on the amount, diversity, and 

quality of the data used to train the model. Tong et al. [55] used three neural networks to 

predict SoC for idle, charge, and discharge conditions. The networks were trained with 

drive cycles and validated with discharge pulses. Chemali et al. [56] used deep neural 

networks to estimate SoC at different temperatures. Neural networks are introduced in 

detail in Section 1.6 and applied to SoC estimation from EIS data in Chapter 5. 

1.4.2 STATE OF HEALTH 

As discussed in the previous section, SoC is an important quantity which must be estimated. 

However, as the battery ages, SoC estimation algorithms must adapt to account for changes 

in the battery behaviour. This can be accomplished if the state of health is known. As was 

the case with the SoC, SoH is a hidden quantity which cannot be measured directly. Similar 

to SoC estimation, SoH estimation can be grouped into categories: direct measurement 

methods, indirect analysis methods, adaptive filtering methods, data driven methods, and 

physical modelling methods. Most of these are reviewed by Xiong et al. [57]. Li et al. [58] 
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developed a single particle electrochemical model which can predict SEI growth and crack 

propagation at different operating temperatures and track SoH this way. Pastor-Fernandez 

et al. [59] compared results from EIS and IC-DV (incremental capacity and differential 

voltage) data to identify degradation mechanisms. To overcome barriers of using EIS in 

real time applications, Mingant et al. [60] proposed a quasi-electrochemical impedance 

spectrum which requires less precise equipment. Tian et al. [61] used a fractional order 

impedance model in combination with incremental capacity analysis to account for SoH. 

The SVSF used by Afshari et al. [40] for SoC estimation can estimate SoH from a chattering 

parameter of the filter.  Li et al. [62] applied a Gaussian filter to incremental capacity 

analysis to identify features of interest for SoH estimation. Yang et al. [63] identified time 

constants during the constant voltage (CV) charge region and related them to the SoH of 

the battery. Eddahech et al. [64] also investigated the CV region during charge, but related 

it to degradation mechanisms during calendar aging. Hu et al. [65] used HPPC tests, sparse 

Bayesian predictive modelling, and the concept of statistical sample entropy to model the 

change in the pulse response with SoH. Further SoH estimation techniques are reviewed in 

Chapter 4, where the battery relaxation effect (Section 1.1.3) is combined with EIS (Section 

1.2) to estimate SoH.  

1.5 FRACTIONAL ORDER CALCULUS 

The impedance models introduced in Section 1.3.1 can often achieve higher voltage 

modeling accuracy. However, to use the impedance model for state estimation in a similar 

way as ECMs (for example, with Kalman filters), the model equation must be in time 
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domain. Translating a complex impedance equation such as (1-7) into time domain is a 

non-trivial task. One approach is to simply approximate non-ideal elements such as the 

CPE using a string of RC-pairs as shown in Figure 1-12. However, this adds a lot of 

additional model parameters which is undesirable. A relatively new approach uses 

fractional order calculus (FOC) [44,46,61,66–68] instead to convert fractional order 

impedance elements into time domain, also shown in Figure 1-12.  

 

Figure 1-12: Representation of CPE element with RC approximation or FOC. 

FOC involves the use of the fractional order operator 𝐷𝑡
𝛼 which is defined by Equation 1-

13, for a time domain measurement 𝑥𝑘 at discrete timestep 𝑘 with sample rate 𝑇𝑠. Here, 𝛼 

is the fractional order exponent from the CPE impedance, and (𝛼
𝑗
) is the binomial 

coefficient calculated using Equation 1-14 by making use of the Gamma function Γ. 

 𝐷𝑡
𝛼𝑥𝑘 =

1

𝑇𝑠
𝛼
∑ (−1)𝑗𝑘

𝑗=0 (𝛼
𝑗
) 𝑥𝑘−𝑗 (1-13) 

 (𝛼
𝑗
) = {

𝛼!

𝑗!(𝛼−𝑗)!
=

Γ(α+1)

Γ(𝑗+1)Γ(𝛼−𝑗+1)

1
 (1-14) 

Figure 1-13 shows impedance models which have been converted for time domain use. 

Mauracher et al. [69] transformed the Warburg impedance in the model shown in Figure 
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1-13c into time domain by first approximating the element as a string of RC pairs and 

assuming each RC pair to have equal values. Wang et al. [70] as well as De Sutter et al. 

[42] used FOC to convert the impedance of a CPE to time domain and parameterized the 

model shown in Figure 1-13a using time domain discharge pulses. Eddine et al. [67] 

translated the Warburg impedance into time domain using FOC for the model shown in 

Figure 1-13b, parameterized the model using time domain discharge pulses and validated 

the results using EIS data. Ideally, EIS should also be used to parameterize impedance 

models as it provides the most complete impedance profile. To obtain the model parameters 

for all discharge currents, EIS can be collected under a DC bias current which is possible 

only for lower currents. At higher currents, the battery would discharge significantly over 

the duration of the EIS measurement, changing the result, or fully discharging the battery. 

Xu et al. [43] parameterized a Warburg element with EIS data in frequency domain and 

used FOC to convert the impedance to time domain. This was possible because the portion 

of the Nyquist plot modelled by the Warburg element does not change significantly with 

discharge current. Kollmeyer et al. [71] used time domain pulses to obtain ohmic resistance 

values under different discharge currents and used the results to scale EIS data. They then 

used the scaled EIS and the RC pair conversion method to parameterize the model shown 

Figure 1-13c. 
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Figure 1-13: Common impedance models 

1.6 DEEP NEURAL NETWORKS 

Machine learning techniques are used in a large variety of applications and battery state 

estimation is one of them. In Chapter 5 deep neural networks are used for estimation of 

SoC from EIS data and from battery models parameterized with EIS data. This section 

serves as a general introduction to neural networks and deep neural networks.  

The concept of Artificial Neural Networks (ANN) is based on early models of human brain 

function. A basic ANN consists of three layers, an input layer a hidden layer and an output 

layer. The number of elements of the input layer and output layer depend on the application 

and available data. For example, in the case of binary classification from a set of n 

measurements, the input layer would have n elements, one for each measurement, and the 
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output layer would have two elements, one for each class. The hidden layer consists of one 

or more neurons, the basic building block of ANNs shown in Figure 1-14. A neuron 𝑗 of 

hidden layer 𝐿 takes in inputs 𝛼0
𝐿−1 from the previous layer (for example the input layer) to 

compute an output, or activation, 𝛼𝑗
𝐿 via an activation function 𝜎(𝑧𝐿) from the weighted 

input 𝑧𝐿. The weighted input 𝑧𝐿 is computed from weights 𝑤𝑖 and biases 𝑏𝑖 using Equation 

1-15. 

 𝑧𝐿 = ∑ 𝑤𝑖𝑎𝑖
𝐿−1 + 𝑏𝑖

𝑛
𝑖=0  (1-15) 

A step function could be used for the activation function 𝜎 to achieve threshold-like 

behaviour of the neuron. However, the fact that the step function is discontinuous presents 

a challenge for training procedures introduced later in this section. Instead, the Sigmoid 

function is used, a smooth, differentiable version of the step function shown in Equation 1-

16. 

 𝜎(𝑧𝐿) =
1

1+𝑒−𝑍𝐿 (1-16) 

 

Figure 1-14: Neuron 

Several neurons can be combined to form a network structure as shown in Figure 1-15. 

Neural networks with large number of layers and neurons have proven to be capable of 
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solving complex problems and referred to as a Deep Neural Networks (DNN). By tuning 

the weights and biases, the network can be used to, for example, perform classification. A 

given set of inputs will propagate through the network and produce a probability of the 

inputs belonging to a certain class, based on the activation of the different neurons and the 

interaction between them [72].  

 

Figure 1-15: Simple Neural Network 

Tuning of the weights and biases requires an optimization algorithm. For optimization 

problems in general, an algorithm should modify the tuning parameters and then evaluate 

the performance of the system to be optimized by minimizing a const function 𝐶. In the 

case of multi-layer neural networks, a complication arises from the fact that the tuning 

parameters of the hidden layers are not directly connected to the output, which means the 

desired output values of the hidden layers are unknown. However, the cost evaluated at the 

output layer can be backpropagated through the hidden layers. Therefore, neural networks 

are optimized, or trained, using the backpropagation algorithm with the gradient descent 

optimization method. The method works as follows [73]. In general, the error 𝛿𝐿 at the 

output of layer 𝐿 can be calculated using Equation 1-17, where ∇𝑎𝐶 is the gradient of the 
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cost function, ⨀ denotes the Hadamard product (element wise vector product), 𝜎′ the 

derivative of the activation function and 𝑧𝐿 the weighted input at layer 𝐿 (Equation 1-17).  

 𝛿𝐿 = ∇𝑎𝐶⨀ 𝜎′(𝑧𝐿)  (1-17) 

The error 𝛿𝐿 can then be related to the error of the previous layer 𝛿𝐿−1 using Equation 1-

18, where (𝑤𝐿)𝑇 is the transpose of the weights of layer 𝐿. 

 𝛿𝐿−1 = ((𝑤𝐿)𝑇𝛿𝐿)⨀ 𝜎′(𝑧𝐿−1)  (1-18) 

Finally, the gradient at each layer can be calculated using Equation 1-19, where 𝑤 is the 

weight of a neuron with error 𝛿𝑜𝑢𝑡 and 𝑎𝑖𝑛 the activation of the previous neuron. 𝑏 is the 

bias of the perceptron, and 𝛿 is the error evaluated at the same neuron as the bias.   

 
𝜕𝐶

𝜕𝑤
= 𝑎𝑖𝑛𝛿𝑜𝑢𝑡,

𝜕𝐶

𝜕𝑏
= 𝛿  (1-19) 

With the equations introduced above, the gradient between any two nodes connected 

between adjacent layers can be calculated and used in the gradient descent algorithm to find 

the direction of possible minima of the cost function 𝐶.The gradient descent method itself 

includes a tuning parameter 𝜂 called the learning rate, which is related to the step size the 

algorithm takes in its search of solutions. Parameters other than the weights and biases of 

the network are referred to as hyper parameters and must be carefully chosen. In the case 

of the learning rate, 𝜂 must be selected to be large enough such that the gradient descent 

algorithm learns fast enough, but not too high for the algorithm to overshoot solutions.   

The data used to train the DNN should be split into training data and validation data as a 

basic way to protect against overfitting. During training, the inputs of the whole training 

set are fed to the network and the cost function is used to compare the network output 

against a ground truth. This repeated until a set number of cycles, or Epochs, are completed. 



Ph.D. Thesis - Marvin Messing  McMaster University - Mechanical Engineering 

 

- 35 - 

 

 

The number of epochs can potentially be large, especially if the network starts with poor 

initialization of parameters. Several methods exist to improve the performance of DNN 

training. The selection of the cost function plays an important role in the speed with which 

the training converges to a minimum. The quadratic cost function shown in Equation 1-20 

for example may be a desired choice, where 𝑛 is the number of training samples, 𝑥 is the 

training sample, 𝑦(𝑥) is the ground truth evaluation given 𝑥 and 𝛼𝐿(𝑥) is the DNN output 

given 𝑥.   

 𝐶 =
1

2𝑛
∑ ‖𝑦(𝑥) − 𝛼 𝐿(𝑥)‖𝑥

2
 (1-20) 

However, the partial derivates of the quadratic cost function are proportional to the derivate 

of the activation function 𝜎′, which becomes small far away from the threshold. As a result, 

learning is slow for values far from the solution. The speed of learning can be improved by 

using the cross-entropy cost function shown in Equation 1-21 instead. 

 𝐶 = −
1

𝑛
∑ [𝑦(𝑥) ln(𝛼(𝑥)) + (1 − 𝑦) ln(1 − 𝛼(𝑥))]𝑥  (1-21) 

The partial derivates of the cross-entropy function turn out to be proportional to the 

activation function 𝜎, instead of its derivative. This means that a badly initialized DNN can 

still produce large enough gradients to learn faster.  

Several other modifications and hyper parameters exist and those relevant to the results 

shown in Chapter 5 are introduced next: 

Stochastic Gradient Descent: The speed of the gradient descent algorithm can be 

improved by randomly sampling the dataset into small batches and using the batches for 

training instead of the entire dataset. The gradients computed from the batches serve as 
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close approximations of the gradients of the whole dataset but take less time to compute. 

This method is called Stochastic Gradient Descent (SGD). In addition to the learning rate, 

SGD requires the size of the batches as another hyper parameter.  

L2 Regularization: Increasing the number of neurons and layers can improve the 

performance of the DNN. However, if training sets are limited in size, the DNN is likely to 

overfit to the training data as the number of parameters grow. To protect against overfitting, 

L2 regularization can be used. This method adds a weighting factor to the cost function as 

shown in Equation 1-22. Here, the first half of the equation is the regular quadratic cost 

function, and the second term is the L2 regularization factor. This factor is the sum of 

squares of the weights of the network scaled by 
𝜆

2𝑛
 where 𝑛 is the size of the training set 

and 𝜆 is a new hyper parameter.  

 𝐶 =
1

2𝑛
∑ ‖𝑦(𝑥) − 𝛼 𝐿(𝑥)‖𝑥

2
+

𝜆

2𝑛
∑ 𝑤2

𝑤  (1-22) 

Using L2 regularization forces the learned weights to be small, only allowing bigger 

weights if significant C reduction is achieved. Avoiding large differences between weights 

promotes generalization of the network.  

Pruning: The large number of model parameters required to run a completed DNN can be 

impractical of constrained embedded applications. However, not all model parameters are 

equally important. In fact, a large number of neurons can be removed without significantly 

reducing the network performance. Pruning works by choosing a threshold and removing 

all neurons with weights below this threshold. This process can be repeated until the highest 

network performance with the desired number of parameters is achieved.  



Ph.D. Thesis - Marvin Messing  McMaster University - Mechanical Engineering 

 

- 37 - 

 

 

1.7 BATTERY TESTING & AGING 

In this section, some of the battery testing methods used throughout this thesis are 

introduced. The following tests were used:  

1) Break-in Procedure 

The first time a battery cell is tested, it needs to undergo a break-in procedure consisting of 

several charge and discharge cycles to stabilize the batteries’ response. All batteries used 

in the experimental parts of this thesis were first cycled 10 times for this reason.  

2) Capacity Test 

The capacity test determines the SoH of the battery by coulomb counting during discharge. 

For this test, the battery is first fully charged according to manufacturer specifications, 

followed by a rest, followed by a complete discharge during which the coulomb counting 

is performed. The total coulombs counted during the discharge step (assuming an initial 

charge of zero) are the measured capacity of the cell.  

3) OCV-SoC Test 

The OCV-SoC test provides the data used for the OCV-SoC lookup tables for state 

estimation algorithms. For this test, the battery is first fully charged according to 

manufacturer specifications. After a rest period, the battery is discharged at very low 

current until the lower cut-off voltage is reached. Following another rest, the battery is 

charged at the same low current until the upper voltage cut-off is reached. Since low current 

is used for this test, the voltage measured during discharge and charge is close to OCV. 

Lower current will result in more accurate OCV measurements, but the test duration will 
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increase. Figure 1-16 shows example OCV-SoC datasets for a new (100% SoH) and an 

aged (80% SoH) Samsung INR2170-50E cylindrical battery cell. The shape of the OCV-

SoC curve depends on the type of battery used. The cylindrical NMC batteries used in this 

study show a relatively steep OCV-SoC curve slope. Other chemistries can exhibit OCV-

SoC curves with a nearly horizontal section between 80% and 20% SoC. Obtaining a 

distinct SoC value from OCV becomes less accurate for near horizontal parts of the OCV-

SoC curve. The steeper slopes shown in  Figure 1-16, on the other hand, allow for more 

accurate readings since the points on the curve are more clearly separated. As the battery 

ages, the OCV-SoC behavior changes slightly, mostly at high SoC (>80%) and at low SoC 

(<20%). In the middle region the results are similar for fresh and aged cells. Also shown in 

Figure 1-16 are polynomial fits for both curves. Polynomial orders of 10th or higher are 

typically needed to fit OCV-SoC curves. The OCV-SoC test procedure is described in more 

detail in Chapter 6, where it is used as part of SoC estimation algorithms.  

 

Figure 1-16: Experimental OCV-SoC curve results for new and aged batteries. 
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4) EIS Test 

EIS provides information about the battery impedance behaviour and can be used to 

parameterize impedance models. The EIS test is performed using a potentiostat. Since this 

is one of the most used tests in this study, the test details are described repeatably in method 

sections of Chapters 2, 3, 4, and 7.  

5) Charge Discharge aging 

The most common form of aging is cycle aging where batteries are continuously charged 

and discharged to full charge and full discharge depth. While this method can be relatively 

fast, the way the battery ages is different from realistic conditions in EV applications. As a 

result, battery behaviour after cycle aging may be different from its behaviour after field 

operation, particularly when considering impedance profiles. The cycle aging procedure is 

described in detail in Chapter 7 where it is compared to realistic drive cycle aging. 

6) Drive cycle aging 

Realistic battery aging is a time and resource intensive process by which battery cells are 

artificially aged in controlled laboratory settings. Instead of full charge and discharge 

cycles, standardized drive cycles are used to age batteries. These drive cycles are provided 

for example by the US Environmental Protection Agency (EPA) and consist of speed vs. 

time data for different driving scenarios. To be able to use EPA drive cycles in battery 

aging, the speed vs. time data must be converted to battery load demand. This can be 

achieved using a simple vehicle model as shown in Figure 1-17.  
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Figure 1-17: Simple Vehicle Model 

This model considers forces acting on a vehicle such as drag due to air (𝐹𝐷𝑟𝑎𝑔) and rolling 

resistance (𝐹𝑟𝑜𝑙𝑙) from the tires on the road (assuming flat roads, zero road angle). These 

forces must be overcome to achieve the speeds demanded by the EPA drive cycle, using 

the power provided by the battery. The battery losses are approximated with a constant 

efficiency number (𝜂𝑏𝑎𝑡𝑡). Further losses due to drivetrain (transmission and motor) 

inefficiencies are approximated by 𝜂𝑑𝑟 . While not suitable for exact range simulations, the 

simple model can provide representative load profiles to use for battery aging. The details 

of this model including model parameters and equations are provided in Chapter 7. Chapter 

7 also describes an aging study which compares charge/discharge cycle aging with realistic 

drive cycle aging.  

1.8 CUSTOM BATTERY CELL TESTER 

The research reported in several parts of this thesis required experimental data from 

lithium-ion batteries under various operating conditions. A custom battery test system was 

designed to perform different types of battery experiments. The design of the test system 
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was subject to the following three key requirements: 1) the voltage and current sensing 

must be accurate enough to achieve an amp-hour counting accuracy of less then 0.5 %, 2) 

all experiments shall run autonomously while ensuring battery operation stays within safe 

limits, and 3) the system shall be open to extension of functionality. Figure 1-18 shows an 

overview of the components and connections of the test system and Table 1-1 lists each of 

the devices used.  

 

Figure 1-18: Custom battery test system diagram (only one channel shown) 

Any Windows 7 (or higher) PC can be used to run the system, so no PC is specified. The 

PC hosts custom software to control the devices used to perform various battery tests. To 

charge and discharge batteries a power supply and a load were used, respectively. Both 

power supply and load support 4 individual channels, allowing the system to test four 

individual cells simultaneously. The load is controlled via RS232 serial communication, 

and the power supply via Ethernet. The battery voltage is measured using the NI9239, 4 

channel analog input module which is housed in the National Instruments Data Acquisition 
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(NIDAQ) chassis. Battery current is measured via the voltage drop across a shunt resistor. 

This voltage drop is measured by the NI9219, 4 channel analog input model, which is also 

housed in the NIDAQ chassis, and controlled via the Universal Serial Bus (USB) 

connection. The Ethernet controlled potentiostat used in this work has only a single 

channel, however, a custom designed multiplexer allows for automated switching of the 

potentiostat between each of the four channels. Four mechanical relays are used to switch 

each of the two load lines (positive and negative) as well as each of the two sense lines 

from the potentiostat to a battery adapter. 

Table 1-1: Custom battery test system parts list 

Name Manufacturer Model Description 

Potentiostat BioLogic SP150 1 channel 

Load Agilent N3306A 4 channels, 20V/15A/300W 

Power Supply Agilent N6773A 4 channels, 60V/60A/300W 

NIDAQ 
National 

Instruments 
cDAQ-9178 8 slot chassis 

Analog Input 
National 

Instruments 
NI9239 

4 channel NIDAQ module to 
sense battery voltage 

Analog Input 
National 

Instruments 
NI9219 

4 channel NIDAQ module to 
sense shunt voltage 

Thermal 
Chamber 

Thermotron T8200 -10°𝐶 to +40°𝐶 

Micro 
Controller 

Arduino Uno 
Multiplexer control and thermistor 
sensing 

Current Shunt Riedon 
RSN-100-

100B 
1𝑚Ω resistance for current 
measurement 

Thermistor Semitec 103AT-11 One thermistor per battery 

Multiplexer Cadex Electronics Custom 
Multiplexes the potentiostat to 4 
channels 

Battery 
Adapter 

Cadex Electronics Custom 
With Kelvin connection (Section 
1.8.1) 

Figure 1-19 shows a diagram of the multiplexer illustrating one active channel and one 

disconnected channel (grey connections). Each set of four relays is controlled by an 
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Arduino microcontroller, through its Digital Inputs/Outputs (DIO). The same 

microcontroller also measures the battery temperature via thermistors. The microcontroller 

is attached to the PC via USB. A thermal chamber houses each of the four battery adapters 

and is able to maintain a stable environment. The thermal chamber is controlled via 

Ethernet. The battery adapters are discussed in detail in Section 1.8.1.  

 

Figure 1-19: Multiplexer diagram for 2 channels 

The different parts of the system are orchestrated by custom software running on a host PC. 

The software was developed in Python 3.7 with an architecture as shown in Figure 1-20.  
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Figure 1-20: Custom battery test system software architecture 

The software consists of two separate processes, several threads, and many classes. 

Processes are isolated from each other since each uses its own Python interpreter instance. 

Threads run code in parallel within the same processes. Classes contain groups of methods 

to perform the different functions of the system. 

A watchdog program, Figure 1-20 block (1) runs independently of the main program as a 

separate Python process such that the watchdog can shut-down and re-start the test system 

in case of malfunction, or if safety parameters are exceeded. The watchdog starts the 

Drivecycle aging system process (2), which opens up the Graphical User Interface (GUI) 

(16) shown in Figure 1-21. Pressing the “Connect” button starts a thread to establish 

communication with the different hardware devices (3). Next, the channel worker (4) is 
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stated which contains four threads, one for each channel. The scripts class (5) contains 

functions which represent different experiments which can be performed using this system. 

Pressing a “Start” button next to a channel row on the GUI (Figure 1-21) will prompt the 

user to select from a list of experiments as well as select a battery ID.  

 

Figure 1-21: Graphical user interface for custom battery test system 

Battery IDs must first be registered in the underlying Microsoft SQL Server relational 

Database (DB), which is controlled by the DB handler (17). After entering the required 

information, the experiment is started via the event handler (14). The event handler will 

also stop the experiment if a stop button is pressed. While an experiment is running, 

different devices will be used by the scripts class (5) via the device handler class (6). The 

simplest devices to control are the thermal chamber (simple read/set of temperature) and 

the Arduino microcontroller (set multiplexer channel/read thermistor temperature). To be 

able to run custom current profiles such as drivecycles, the load (12) and power supply (13) 

must be controlled via its own thread, the cycler worker (10). Cycler refers to the 



Ph.D. Thesis - Marvin Messing  McMaster University - Mechanical Engineering 

 

- 46 - 

 

 

combination of load and power supply. The Potentiostat is not directly controlled by Python 

code, instead a C# API library is used. This is because well designed C# example code was 

already available from the manufacturer of the potentiostat. Fortunately, C# code exported 

as a Dynamically Linked Library (DLL) file can be integrated into Python via the Pythonnet 

library. A similar approach was used for the NIDAQ, where the direct control of the 

NIDAQ is also performed in C#. This was done due to the high sampling rates required by 

the NIDAQ modules, which are too fast for Python to handle. Via the C# layer, 

measurements can be buffered and down sampled to be made available to Python at a much 

slower rate. The data is sampled periodically, requiring another thread, the NIDAQ worker 

(9). The data is also independently monitored by the data observer (11).  

During the execution of experiments, the GUI displays select measurements, such as 

voltage, current, temperature, charge (in Ampere-hours), and aging cycles (if applicable, 

depending on selected test). The active test step is also displayed along with the battery ID 

for each channel. Data and events are communicated to and from the GUI to the rest of the 

system via a publisher/subscriber signal architecture, facilitated by the signal handler class 

(4). A subscriber (for example a part of the GUI) can be attached to a publisher (for example 

the data observer) without the need for the two parts to be aware of each other. The 

publisher does not know which are all the subscribers, it simply sends out its message. This 

is illustrated in Figure 1-20 via the dotted lines creating weak connections between the GUI 

and the rest of the system. This publisher/subscriber architecture is a common Object-

Oriented (OO) design pattern. Another OO design patter which was used is the Model-

View-Controller (MVC) pattern. The MVC pattern further simplifies the decoupling of 
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GUI (front-end) and “system” (back-end) by sharing a single “data model” object between 

front-end and back-end. The data model is the data carrier where experiment data, shared 

settings, as well as the back-end status is stored. The publisher signals are then used to 

notify different parts of the system of relevant changes to the data model.  

Finally, the data collected from the experiments is fed into the DB, again via the DB handler 

(17). The DB architecture is shown in Figure 1-22. Batteries are stored in the “Batteries” 

table, each with a reference (foreign key) to a battery model from the “BatteryModels” 

table which in turn references a manufacturer from the “Manufacturers” table. When a new 

experiment is started, a new entry into the “MasterExperiments” table is created using the 

battery ID provided by the user via the GUI. Each experiment can contain one or more 

steps, which are recorded separately in the “Experiments” table. The data obtained from 

the experiments comes in two forms, time domain data (voltage, current, temperature, etc) 

and EIS results (real, imaginary, frequency). The “ExperimentLogs” table contains the time 

domain data and the “EISDatas” table the EIS data. Since many different drive cycles are 

frequently used in this work, they are also stored in this DB in the “DriveCycles” and 

“DriveCycleDatas” tables. Specific drive cycles can also be linked to specific experiments 

via the “ExperimentDriveCycleLinks” table. The data stored in this DB can be accessed 

directly from MATLAB, where scripts can be written to automate data retrieval. The 

system described in this section enabled accurate, repeatable, time efficient and reliable 

battery experiments, and was instrumental in obtaining the various results presented in this 

thesis.  
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Figure 1-22: Database architecture for custom battery test system 

1.8.1 BATTERY ADAPTER 

The test system includes a custom adapter to attach batteries to the devices using four-point 

measurement (Kelvin connection). A Kelvin connection separates current carrying (load) 

wires from sense wires. If a sense wire shares the same conductor as a load wire, the 

measured voltage includes the battery voltage as well as an additional voltage drop across 
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the shared conductor. This additional voltage drop also varies with current, which makes it 

difficult to predict for calibration.  The adapter shown in Figure 1-23 implements a Kelvin 

connection for a cylindrical battery cell to avoid any additional voltage drop. Nickel tabs 

welded to the positive and negative terminals of the battery extend outwards to allow 

connections on both ends. The adapter also includes screw terminal blocks to connect larger 

load cables from the load and power supply. The side with the terminal blocks is the load 

carrying side, and the opposite side is for sense lines. The adapter base was machined from 

a block of ABS plastic.   

 

Figure 1-23: Custom battery adapter for custom battery test system. 1 – battery, 2 – 

adapter base, 3 – screw terminal connector, 4 – nickel tab.  

Figure 1-24 shows a 3D printed welding fixture which was used to align the tabs on both 

sides of the battery during the welding processes. The figure shows the fixture with the top 

of a battery visible in the center, and a nickel tab placed in a slot on top. Once both tabs are 

welded on the top and bottom of the battery, the tabs can be gently folded up and the battery 

can be extracted using the clearance slot. Without this fixture, alignment cannot be 
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guaranteed. If the welded tabs are not parallel to each other, the battery cannot be properly 

attached to the adapter.  

 

Figure 1-24: Battery welding fixture 

1.9 RESEARCH CONTRIBUTIONS 

In this section, the hypotheses which formed the basis for this thesis are stated, an overview 

of the project contributions is provided, and primary and secondary contributions are 

presented.  

1.9.1 HYPOTHESES 

The following hypotheses formed the basis for the results shown in this thesis:  

 Hypothesis 1: EIS Measurement duration can be shortened by reducing the rest time 

requirement through understanding the battery relaxation effect.  

EIS is a powerful technique with a lot of potential to significantly improve diagnostics in 

BMSs. However, the long rest times required to ensure stable conditions create a barrier to 
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the successful implementation of EIS for real time, EV applications. Rest times are usually 

required to avoid measurement drift and other instabilities. Some methods exist which can 

compensate for measurement drift, however, the impact of shorter rest times on EIS 

measurements under different battery operating conditions is not well understood.   

 Hypothesis 2: The battery relaxation effect contains information about the battery 

SoH which can be extracted using EIS. 

The battery relaxation effect is known to correlate well with SoH. However, proposed SoH 

estimation methods based on the relaxation effect require fully charged or fully discharged 

batteries or other conditions difficult to achieve in real time applications. EIS can be used 

to rapidly characterize the relaxation effect and estimate the SoH in the process.  

 Hypothesis 3: The IMM can be used to improve SoC estimation at low temperatures 

by considering C-rate specific models. 

The IMM is a useful filter to blend several independent system models into a unified state 

estimate. At room temperature or above, a single ECM can accurately model the response 

of a battery independent of current. However, at low temperatures, the battery response 

changes as current increases, reducing the accuracy of the ECM. In the context of state 

estimation, the updating of model parameters in real time is only possible for slow changing 

conditions such as temperature, SoH and SoC. Current in EV applications can change 

significantly within seconds, making state estimation un-observable.  Instead, multiple 

battery models each dedicated to specific regions of current magnitudes can be used and 

unified with the IMM.  
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1.9.2 CONTRIBUTIONS 

Figure 1-25 provides a graphical overview of the different parts of the thesis project. The 

major parts of this project, which are published as journal papers, are highlighted with red. 

Conference papers are marked with black. Finally, non-published contributions in the area 

of battery testing are also included. Next, the primary and secondary contributions are 

listed.  

 

Figure 1-25: Contributions Overview 

1.9.2.1 PRIMARY CONTRIBUTIONS 

The primary contributions of this work are itemized and briefly described in this section.  
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1. Characterized the short-term battery relaxation effect to reduce EIS rest time 

requirements and shorten testing times (Chapter 3).  

This first contribution is further to Hypothesis 1 and based on in-depth research into the 

battery relaxation effect and its impact on EIS measurements. Several hours of rest are 

usually required before EIS can be measured to simply avoid the rest-time effect. In Chapter 

3 methods and results are presented to help understand the relaxation effect and to 

significantly reduce the rest time requirement to 5 minutes under controlled conditions.  

2. Used the battery relaxation effect together with EIS to develop a new method for SoH 

determination (Chapter 4). 

The battery relaxation effect changes as the battery ages. However, as shown in literature, 

this property of the relaxation effect is difficult to capture with time-domain methods. In 

Chapter 4 a method is proposed to use impedance modelling and EIS to capture the battery 

SoH information contained within the relaxation effect. Further to Hypothesis 2, this 

method can determine SoH within an error of 2%.  

3. Developed an improved low temperature SoC estimation strategy using the IMM with 

SVSF and C-rate specific battery models (Chapter 6). 

Battery SoC estimation shows increased errors at low operating temperatures, due to the 

increased non-linear response of the battery with current (or C-rate). In Chapter 6, a method 

is proposed to blend three battery models, each specialized for a different C-rate range, into 

a single SoC estimate. This is achieved through the used of the IMM-SVSF filter, which is 

shown to have an SoC estimation error below 2%. This is in response to Hypothesis 3.  
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4. Characterized the long-term battery relaxation effect with EIS and showed its impact on 

impedance model parameters (Chapter 2).  

As part of the general research into the battery relaxation effect, the long-term relaxation 

effect was characterized with EIS. In Chapter 2, the EIS results were modeled with an 

impedance model to show how model parameters change with relaxation as well as SoC 

and temperature.  

5. Demonstrated SoC estimation with deep neural networks from frequency domain EIS 

data as well as impedance model parameters (Chapter 5). 

The large EIS dataset obtained as part of the research into the relaxation effect proved to 

be complex due to its many dimensions (rest time, SoC, temperature). DNNs lend 

themselves well to such complex data and were used in Chapter 5 to estimate SoC from 

EIS data. 

6. Conducted an aging study to compare accelerated aging to realistic drive cycle aging 

using EIS to show differences in impedance characteristics at different SoH (Chapter 7). 

The impedance characteristics of aged batteries are dependent on how they are aged. To 

understand the impact of different aging pathways, an extensive aging study was 

conducted. In Chapter 7 the results of this study, comparing charge/discharge aging to drive 

cycle aging, are presented. The impedance characterization throughout the aging tests give 

insight into the impact of each aging method.  
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1.9.2.2 SECONDARY CONTRIBUTIONS 

A number of additional contributions are listed and briefly explained in this section.  

1. Developed Voigt-circuit based filtering method to improve EIS data analysis (Chapter 

3). 

Reduced rest times prior to EIS measurement can introduce drift and noise into the EIS 

data due to the battery relaxation effect. To smooth out EIS results, a Voigt-circuit was 

used as a filter. The use of this filter allowed for consistent comparison of EIS 

measurements as well as tracking of the relaxation effect. The filter is described in Chapter 

3. 

2. Compared the performance of the SVSF and EKF as part of the IMM filter for battery 

SoC estimation applications (Chapter 6).  

In Chapter 6 the IMM-EKF was shown to significantly improve SoC estimation at low 

temperature. In addition, the IMM-SVSF was shown to be able to further reduce the SoC 

estimation error due to its adaptive properties and robust estimation.  

3. Developed simple EV model to convert speed vs. time driving schedules to drive cycle 

current profiles (Chapter 7).  

An EV model based on Tesla Model 3 was developed using basic vehicle dynamics and 

constant powertrain efficiencies. The model is described in detail in Chapter 7 and used for 

realistic battery aging.  

4. Published case study on impedance model fitting from EIS data.  
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Methods for impedance model fitting to EIS measurements are not widely accessible. 

Fundamentals and equations can be found in literature, but few tutorials and examples exist. 

As part of this research project, a case study was made available online demonstrating 

impedance model fitting with real EIS results using MATLAB as a framework. The case 

study can be found online [32].   

5. Designed and implemented a multi-channel battery test system (Chapter 1). 

To perform accurate battery characterization as well as realistic drive cycle aging tests, a 

custom battery test system was designed. This test system is capable of performing fully 

automated tests on four cells at the same time. The detailed implementation of the test 

system is described in Section 1.8. 

1.10 THESIS OUTLINE 

Chapter 2 provides a literature review on the long-term battery relaxation effect with focus 

on the impact of the relaxation effect on battery modeling. Results are presented showing 

how model parameters change during the relaxation effect for batteries at different SoCs 

and temperatures. 

Chapter 3 provides a literature review on characterization of the battery relaxation effect 

with EIS. In addition, the technical challenges regarding EIS measurement and the 

relaxation effect are discussed. A filtering strategy is proposed to obtain consistent EIS 

measurements during the short-term relaxation effect. Finally, results are presented to show 

how different conditions impact the relaxation effect and EIS measurement with short rest 

times.  
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Chapter 4 provides a literature review on the use of the relaxation effect as well as the use 

of EIS for SoH estimation. In this chapter a new method for SoH estimation is proposed 

combining the relaxation effect and EIS measurements.  

Chapter 5 provides a literature review on SoC estimation techniques with special focus on 

machine learning methods. Furthermore, the chapter presents SoC estimation results for a 

deep neural network trained on EIS data.  

Chapter 6 provides a literature review on low temperature SoC estimation techniques and 

presents the technical challenges related to current dependant battery models for SoC 

estimation. The IMM-SVSF low temperature SoC estimation strategy is presented in this 

chapter.  

Chapter 7 presents and discusses results of the accelerated and realistic aging studies. The 

vehicle model equations are also introduced in this chapter.  

Chapter 8 provides the conclusions and discusses future work.  
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ABSTRACT  

The accurate estimation of the state-of-charge (SoC) of lithium-ion batteries is crucial for 

safely operating electric vehicles. One way to obtain information about SoC is to utilize 

battery impedance profiles. Effects of temperature, SoC, and state-of-health (SoH) on 

impedance have been studied using Electrochemical impedance spectroscopy (EIS) but the 

effect of relaxation period following a charge or discharge cycle requires more attention. 

In this study EIS results are obtained with respect to relaxation period at different SoCs and 

temperatures. An impedance model is fit to the data and the change of model parameters 

with relaxation is analyzed. The results show that the behaviour of the model parameters is 

in good agreement with electrochemical theory. Furthermore, it is found that changes in 

some model parameters are significant when compared to changes in SoC. This highlights 

the need to account for the relaxation effect when measuring battery impedance.  

 

                                                
2 In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does not 

endorse any of McMaster's products or services. Internal or personal use of this material is permitted. If 

interested in reprinting/republishing IEEE copyrighted material for advertising or promotional purposes or 

for creating new collective works for resale or redistribution, please go to 

http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how 

to obtain a License from RightsLink.   



Ph.D. Thesis - Marvin Messing  McMaster University - Mechanical Engineering 

 

- 59 - 

 

 

2.1 INTRODUCTION 

Lithium-ion batteries (LiB) are the current choice for many applications due to their energy 

density, and long life-span [1]. However, charge and discharge rates, voltage levels, and 

temperature have to be carefully managed to ensure the safe operation of LiBs [2]. The 

quality of battery management depends on the accuracy of the estimation of battery states 

such as state of charge (SoC), and state of health (SoH). These states have to be estimated 

since they cannot be measured. Instead, battery voltage, current, and temperature are 

measured, and used in estimation strategies [3]. The most important estimate is the SoC 

which indicates how much energy is left in the battery. The SoC changes non-linearly as 

the battery is discharged and depends on the discharge profile. All charge is depleted once 

the lower voltage limit – which is determined by the manufacturer – is reached. One factor 

determining the accuracy of SoC estimation is the SoH of the battery. The SoH affects the 

maximum capacity that the battery can supply at any point in its life, relative to the initial 

rated capacity. The SoH changes due to aging mechanisms inside the battery [4], which 

depend on the operating conditions during the lifetime of the battery. Therefore, SoC must 

be estimated using measurable signals such as voltage, current, and temperature, but also 

by factoring in how the behaviour of the battery changes as a function of SoH.  

The management of LiBs is particularly important for battery packs in electric vehicles 

(EV). A wide variety of parameter estimation techniques are available for EV applications, 

collectively covering most operating conditions and individually showing reasonable 

tracking accuracy [5].  
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 However, the challenge remains to find a more accurate, reliable, universal, and feasible 

estimation strategy.  

Battery states are also related to battery impedance. Battery impedance holds useful 

information about the internal condition of the battery. Impedance is the combination of 

reactance and resistance. In batteries, impedance comes from the interaction between 

different materials, the material characteristics themselves, and chemical reactions [6]. 

Impedance can be modeled using fundamental electrical circuit components such as 

resistors and capacitors. However, imperfect circuit elements must be used to increase the 

modeling accuracy. Models containing such imperfect elements are referred to in this work 

as impedance models, to distinguish them from ideal equivalent circuit models (ECM).   

Electrochemical impedance spectroscopy (EIS) is a method frequently used to characterize 

the impedance of batteries. In this method, the battery response to a small, sinusoidal signal 

at multiple frequencies is measured. Using the Fourier transform the time domain response 

can be converted to frequency domain. From the frequency domain data, a characteristic 

Nyquist plot can be constructed and used to gain insight into the state of the battery, 

including its internal resistances, capacities and time constants. To accomplish this, the 

impedance response of a battery is fit to ECMs or impedance models to mimic electrical 

systems that result in a similar shape of the Nyquist plot, in response to EIS.  Any elements 

used in ECMs or impedance models must relate to internal characteristics of the battery to 

be meaningful [7]. Hardware to implement EIS is not usually found on-board battery 

management systems (BMS) in EVs because of the added cost and complexity of the 
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electronics [8]. However, some recent studies have shown EIS implementations utilizing 

existing electronics [9], [10]. If hardware barriers can be overcome, EIS could provide 

valuable measurements that can be used in SoC estimation algorithms. Another concern 

with EIS is that measurements are dependent on a variety of factors such as SoC, SoH, 

temperature, and time of measurement with respect to other battery excitation 

(charge/discharge) – known as relaxation. Therefore, the relationships between these 

variables and the shape of the Nyquist plot must be studied and understood. Many have 

studied the impact of SoC, SoH, and temperature [11]–[14], however, few have shown the 

impact of relaxation. In [15], discharge pulses were used to measure the change in lithium-

ion battery impedance with relaxation. They found that many ECM parameters change with 

relaxation for different SoCs and discharge currents. In [16] the change in OCV with 

relaxation time was analyzed. Here, time constants of ECM parameters were related to 

SoH. Relaxation was investigated by [17]–[19]. The relaxation effect was acknowledged 

by [15] as part of an impedance characterization study and changes in the Nyquist plot were 

shown to 40 hours. They concluded that impedance changes due to relaxation are small 

compared to impedance changes due to temperature and SoC but significant enough to 

require the relaxation effect to be accounted for when comparing impedance results. In [18] 

the Nyquist plots were shown to stabilize after relaxation of 4 hours under constant SoC 

and temperature. In [19] relaxation effects were shown to still be visible after 10 hours, and 

a range of SoCs and temperatures were tested. Both [18] and [19] tested different lithium 

ion chemistries and battery formats, and developed models to explain the cause of 

relaxation.  



Ph.D. Thesis - Marvin Messing  McMaster University - Mechanical Engineering 

 

- 62 - 

 

 

 The proposed study aims to provide insight into the variation of EIS in relation to 

relaxation effects for a range of battery conditions for a state of the art commercial, 

cylindrical cell. In addition, the impact of relaxation on the parameters of an impedance 

model is analyzed. 

2.2 EXPERIMENTAL 

A custom battery test bench was designed to perform unattended relaxation experiments by 

integrating a BioLogic SP150 potentiostat with Agilent loads and power supplies (N3306A, 

N6773A respectively) and a Testequity 1007C thermal chamber. In this study a new 

Samsung INR21700-48G, 4.8 Ah, cylindrical lithium ion battery was used. The cell was 

conditioned by 10 full charge discharge cycles. The cell was charged as specified by the 

manufacture’s datasheet starting with a constant current (CC) phase at 0.3C 4.2V followed 

by a constant voltage (CV) phase to 0.02C cut-off current. Full discharge was done at 0.2C 

to 2.5 V in CC mode, and SoC targets between 100% and 30% were obtained at 0.2C as 

well using ampere-hour counting. EIS data was collected between frequencies of 30 mHz 

to 30 kHz with a voltage amplitude of 5 mV, 6 points per decade and 5 sine wave periods 

per frequency. EIS data was measured immediately after reaching the target SoC (via 

discharge only), and re-measured at 30, 60, 180, 300, and 420 minutes. The relaxation test 

was performed at 25 °C and 40 °C cell surface temperature. 

2.3 RESULTS AND DISCUSSION 

The EIS response of a battery was measured as described in the previous section to capture 

the relaxation effect. The relaxation test was repeated three times to ensure the repeatability 
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of the impedance data. It was found that relaxation effects could be distinguished from 

repeatability errors. The average standard deviation of the impedance was found to be 4.6e-

05 mΩ. Figure 2-1: Nyquist plots for 100%, 70% and 30% SoC at 25°𝐶 and 40°𝐶. shows 

Nyquist plots for impedance data at 24 °C and 40 °C and how the impedance changes from 

100 % to 70 % to 30 % SoC. In the following subsections the impedance data is fit to a 

model and the change of model parameters with respect to the relaxation effect is analyzed. 

 

Figure 2-1: Nyquist plots for 100%, 70% and 30% SoC at 25°𝐶 and 40°𝐶. 

2.3.1 IMPEDANCE MODEL 

Figure 2-2a shows an ECM adopted from [22] and used in this work. The complex 

impedance 𝑍 of this ECM changes with frequency 𝜔 according to (2-1), where the time 

constant 𝜏 = (𝑅𝑝𝑄𝑝)
1

𝛼⁄
. 

 𝑍(𝜔)  =  𝑖𝜔𝐿 + 𝑅𝑠 + 𝑅𝑝/(1 + 𝑅𝑝𝑄𝑝(𝑖𝜔𝜏)𝛼) + 1/𝑄𝑝(𝑖𝜔)𝛽 (2-1) 
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Here, 𝑖 is the applied current magnitude, 𝐿 is the inductance due to cables used for 

measurment, and 𝑅𝑠 is the ohmic resistance of the battery. 𝑅p and 𝑄p, 𝛼 define the 

polarization resistance and a constant phase element (CPE) for capacitive effects from the 

electric double layer. Together they form a ZArc element. Finally, 𝑄d, 𝛽 defines another 

CPE to capture the solid-state diffusion process. The impedance model can fit the EIS data 

well as shown in Figure 2-2b for impedance data after discharge to 90% SoC with no rest 

and 7 hours of rest. The impedance model parameters were optimized using a combination 

of non-linear least squares and particle swarm optimization algorithms.  

 

Figure 2-2: Impedance model used to model relaxation effect a), and model fit to relaxation 

data at 25°C and 90% SoC b). 
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However, neither algorithm was able to produce fits with consistent fitting error. Figure 

2-3 shows how the fitting error changes for different SoCs and relaxation times. The model 

fit has greater error at zero rest and stabilizes to a constant value for data at 60 minutes and 

after. This fitting error must be considered when analyzing the relaxation results.  

 

Figure 2-3: Impedance model fitting error with different SoCs over different rest times.   

Figure 2-4 shows how the fit evolves with relaxation time at 25 °C and 40 °C. The change 

of the Nyquist plot between 5 and 7 hours is small but still present and is smaller at higher 

temperature when compared to the lower temperature. It can be observed that after 5 hours 

the change in battery impedance has slowed significantly. However, it is unclear when 

exactly it has slowed significantly enough such that any further impedance changes are 

negligible. Changes in impedance may be deemed negligible if the change has minimal 

impact on the fitting of an impedance model. This is because ultimately the impedance 
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model may be used to further analyze the battery behaviour and, therefore, the accuracy 

and consistency of the model becomes important. 

 

Figure 2-4: Modelled relaxation effect at 90% SoC and 25°𝐶 a), and 40°𝐶 b). 

2.3.2 RELAXATION EFFECT 

To understand how the parameters of the model shown in Figure 2-2a change with 

relaxation time, the percentage change of each parameter P from its value at 7 hours (420 
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minutes) 𝑃420 was calculated using (2-2). Pt is the value of a model parameter (one of L, 

Rs, Qd, Qp, Rp, a, or b) at relaxation time t. The datasets for each parameter were fit with 

exponential functions to model the rate of change during relaxation. 

 Δ420  =
𝑃t – 𝑃420

𝑃420
 (2-2) 

Figure 2-5 shows Δ420 at 25 °𝐶 for each model parameter at three SoCs, 100 % a), 90 % 

b), 70 % c), and 30 % d). The inductance L and the ohmic resistance Rs stabilize within 10 

minutes in all cases. The changes of L and Rs before 10 minutes are inconsonant and likely 

due to the error introduced by the fitting process as discussed in the previous section. At 

100% SoC the parameters with the longest relaxation time are Qp and Rp, i.e. two 

components of the ZArc element. The depression constant a (or α) for the first semi-circle 

does not change. The depression constant for the second semi-circle b (or β) shows a 

smooth decay at a fast rate. The second CPE parameter Qd on the other hand shows noisy 

data points. This may be explained by little or no lithium diffusion at 100% SoC due to low 

availability of intercalation sites on the anode. At 90% SoC, where more intercalation sites 

are available and the relatively high cell potential accelerates diffusion, Qd behaves similar 

to Rp. At 70 % Qd stabilizes rapidly again which may indicate a point where the cell 

potential (driving force) and the SoC (available intercalation sites) work together to 

equalize concentration gradients [21]. This is reflected by the lower initial values of Δ420 

for Qp and Rp. However, while the difference is lower initially, it takes longer for 

parameters to stabilize due to many available intercalation cites for the lithium and, 

therefore, potentially longer travel paths [19]. 
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Figure 2-5: Percentage change in impedance model parameters from values at 420 minutes 

at 25°C for a) 100% SoC, b) 90% SoC, c) 70% SoC and d) 30% SoC. 

Finally, at 30 % SoC the cell potential is low, such that Qp, Rp and Qd equalize slowly 

despite the large number of available interalation cites. In fact, the relaxation is slowest at 

30 % for all three parameters. Lithium slowly diffuses into and through the electrode to 

find intercalation cites during relaxation. At low SoC this process is slow because of the 

reduced driving potential. The exponential fit to the Qp dataset at 30 % SoC (Figure 2-5d) 

suggests that at 420 minutes (7 hours) the cell has not yet stabilized.  
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At 40 °C (Figure 2-6) the model parameters change in a way similar to that at 25 °C. The 

parameters stabilize faster at higher SoC and slower at lower SoC, with 30 % showing the 

slowest rate of stabilization. The polarization parameters Qp and Rp stabilize at a slightly 

slower rate at 40 °C compared with 25 °C. This is unexpected because of higher reaction 

kinetics at higher temperatures. However, the decrease in rate is small, such that additional 

data will be needed to understand this trend. In contrast, Qd does stabilize faster in all cases 

as expected. At 100 % SoC, both diffusion parameters exhibit noisy behaviour again. At 

40 °C the exponential fit for Qp and Rp at 70 % SoC (Figure 2-5c) and Qp at 30 % (Figure 

2-6d) do not reach steady state, suggesting again that further rest is required. 



Ph.D. Thesis - Marvin Messing  McMaster University - Mechanical Engineering 

 

- 70 - 

 

 

  

Figure 2-6: Percentage change in impedance model parameters from values at 420 minutes 

at 40°C for a) 100% SoC, b) 90% SoC, c) 70% SoC and d) 30% SoC. 

2.3.3 IMPEDANCE MAPS 

Figure 2-7 shows how the dominant model parameters Qp, Rp, and Qd change with time and 

SoC at 25 °𝐶. The relaxation effect manifests mostly at the edges of the three-dimensional 

plots. These plots visualize the difference in magnitudes of the parameter change due to 

relaxation and due to SoC. At the middle range of SoCs (80 % to 40 %) the parameter 

changes due to relaxation become insignificant when compared to the parameter changes 

due to SoC. However, the relaxation effect does cause significant parameter changes at the 

edges of the SoC range (> 90 % and < 40 %). This is evident in Figure 2-7a and c for Qp 
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and Rp at 25 °𝐶. At 40 °𝐶 the same can be seen in Figure 2-8c for Rp only. The magnitudes 

of the parameter values also change significantly between 25 °𝐶 and 40 °𝐶. The diffusion 

CPE parameter Qd exhibits a linear trend with SoC from 90 % SoC for both temperatures. 

This is a useful property of SoC estimation.  
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Figure 2-7: Impedance maps showing values for a) Qp, b) Qd and c) Rp for different SoCs 

and rest times at 25°C. 

The need for rest time during experiments can be eliminated with the help of impedance 

maps shown in Figure 2-7 and Figure 2-8, since measurements at 0 minutes can be 
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extrapolated to rest time values. This is especially important for real time applications for 

EIS measurement where rest times are impractical.  

 

Figure 2-8: Impedance maps showing values for Qp, Rp, and Qd for different SoCs and 

rest times at 25°C (a-c), and 40°C (d-f). 
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2.4 CONCLUSION 

In the work presented in this paper the relaxation effect of a commercial lithium ion battery 

was characterized using EIS and impedance modelling. A suitable impedance model was 

found in literature and used to model the relaxation effect. The change of each model 

parameter with relaxation time was analyzed and found to be consistent with 

electrochemical theory. Results at 40 °𝐶 indicate a small decrease in relaxation rate which 

must be investigated further as it is contrary to previous literature findings. Impedance 

maps show that the changes in model parameters due to relaxation are significant at certain 

conditions when compared to the changes in parameters due to SoC and temperature. This 

should be validated by assessing the impact of the change in model parameters due to 

relaxation on the accuracy of the model. This work highlights again the need for careful 

consideration of the relaxation effect. The study will be expanded to longer rest times as 

well as different temperatures, charge/discharge rates, battery types, and impedance model 

in future work. 

REFERENCES 

[1] M. A. Hannan, M. S. H. Lipu, A. Hussain, and A. Mohamed, “A review of lithium-
ion battery state of charge estimation and management system in electric vehicle 
applications: Challenges and recommendations,” Renew. Sustain. Energy Rev., vol. 
78, no. August 2016, pp. 834–854, 2017. 

[2] R. Xiong, J. Cao, Q. Yu, H. He, and F. Sun, “Critical Review on the Battery State of 
Charge Estimation Methods for Electric Vehicles,” IEEE Access, vol. 6, pp. 1832–
1843, 2018. 

[3] L. Ungurean, G. Cârstoiu, M. V Micea, and V. Groza, “Battery state of health 
estimation : a structured review of models , methods and commercial devices,” no. 
July 2016, pp. 151–181, 2017. 

[4] M. M. Kabir and D. Demirocak, “Degradation mechanisms in Li-ion batteries: a 
state-of- the-art review,” Int. J. energy Res., vol. 41, no. April 2017, pp. 1963–1986, 
2017. 

[5] M. U. Cuma and T. Koroglu, “A comprehensive review on estimation strategies used 
in hybrid and battery electric vehicles,” Renew. Sustain. Energy Rev., vol. 42, pp. 



Ph.D. Thesis - Marvin Messing  McMaster University - Mechanical Engineering 

 

- 75 - 

 

 

517–531, 2015. 
[6] M. Schönleber, C. Uhlmann, P. Braun, A. Weber, and E. Ivers-Tiffée, “A Consistent 

Derivation of the Impedance of a Lithium-Ion Battery Electrode and its Dependency 
on the State-of-Charge,” Electrochim. Acta, vol. 243, pp. 250–259, 2017. 

[7] R. Cottis and S. Turgoose, Electrochemical Impedance and Noise. Houston: NACE 
International, 1999. 

[8] J. Meng et al., “An Overview and Comparison of Online Implementable SOC 
Estimation Methods for Lithium-Ion Battery,” IEEE Trans. Ind. Appl., vol. 54, no. 
2, pp. 1583–1591, 2018. 

[9] E. Din, C. Schaef, K. Moffat, and J. T. Stauth, “A scalable active battery 
management system with embedded real-time electrochemical impedance 
spectroscopy,” IEEE Trans. Power Electron., vol. 32, no. 7, pp. 5688–5698, 2017. 

[10] X. Wei, X. Wang, and H. Dai, “Practical on-board measurement of lithium ion 
battery impedance based on distributed voltage and current sampling,” Energies, 
vol. 11, no. 1, 2018. 

[11] P. Kollmeyer, A. Hackl, and A. Emadi, “Li-ion battery model performance for 
automotive drive cycles with current pulse and EIS parameterization,” 2017 IEEE 
Transp. Electrif. Conf. Expo, ITEC 2017, pp. 486–492, 2017. 

[12] C. Pastor-Fernández, K. Uddin, G. H. Chouchelamane, W. D. Widanage, and J. 
Marco, “A Comparison between Electrochemical Impedance Spectroscopy and 
Incremental Capacity-Differential Voltage as Li-ion Diagnostic Techniques to 
Identify and Quantify the Effects of Degradation Modes within Battery Management 
Systems,” J. Power Sources, vol. 360, pp. 301–318, 2017. 

[13] U. Westerhoff, T. Kroker, K. Kurbach, and M. Kurrat, “Electrochemical impedance 
spectroscopy based estimation of the state of charge of lithium-ion batteries,” J. 
Energy Storage, vol. 8, pp. 244–256, 2016. 

[14] B. Fridholm, T. Wik, and M. Nilsson, “Robust recursive impedance estimation for 
automotive lithium-ion batteries,” J. Power Sources, vol. 304, pp. 33–41, 2016. 

[15] H. Wang, M. Tahan, and T. Hu, “Effects of rest time on equivalent circuit model for 
a li-ion battery,” Proc. Am. Control Conf., vol. 2016–July, pp. 3101–3106, 2016. 

[16] P. S. Attidekou, C. Wang, M. Armstrong, S. M. Lambert, and P. A. Christensen, “A 
New Time Constant Approach to Online Capacity Monitoring and Lifetime 
Prediction of Lithium Ion Batteries for Electric Vehicles (EV),” J. Electrochem. 
Soc., vol. 164, no. 9, pp. A1792–A1801, 2017. 

[17] W. Waag, S. Käbitz, and D. U. Sauer, “Experimental investigation of the lithium-
ion battery impedance characteristic at various conditions and aging states and its 
influence on the application,” Appl. Energy, vol. 102, pp. 885–897, 2013. 

[18] A. Barai, G. Chouchelamane, Y. Guo, A. McGordon, and P. Jennings, “A study on 
the impact of lithium-ion cell relaxation on electrochemical impedance 
spectroscopy,” J. Power Sources, vol. 280, no. Special Issue, pp. 74–80, 2015. 

[19] F. M. Kindermann, A. Noel, S. V. Erhard, and A. Jossen, “Long-term equalization 
effects in Li-ion batteries due to local state of charge inhomogeneities and their 
impact on impedance measurements,” Electrochim. Acta, vol. 185, pp. 107–116, 
2015. 

[20] J. Schmitt, A. Maheshwari, M. Heck, S. Lux, and M. Vetter, “Impedance change and 
capacity fade of lithium nickel manganese cobalt oxide-based batteries during 
calendar aging,” J. Power Sources, vol. 353, pp. 183–194, 2017. 

[21] T. R. Jow, S. A. Delp, J. L. Allen, J.-P. Jones, and M. C. Smart, “Factors Limiting 
Li + Charge Transfer Kinetics in Li-Ion Batteries,” J. Electrochem. Soc., vol. 165, 
no. 2, pp. 361–367, 2018. 



Ph.D. Thesis - Marvin Messing  McMaster University - Mechanical Engineering 

 

- 76 - 

 

 

Chapter 3: Electrochemical Impedance Spectroscopy with 

Practical Rest-times for Battery Management 

Applications 

Marvin Messing1,2, Tina Shoa2, Saeid Habibi1 

1Department of Mechanical Engineering, McMaster University, Hamilton, ON, Canada, 

2Cadex Electronics, Richmond, BC, Canada 

This paper is published in IEEE Access, vol. 9, pp. 66989-66998, 2021, doi: 

10.1109/ACCESS.2021.3077211. This paper is republished here with permission. 
 

ABSTRACT  

The State of Charge (SoC), State of Health (SoH), and State of available Power (SoaP) of 

Lithium-Ion Batteries (LiB) are critical quantities which cannot be measured but must be 

estimated by Battery Management Systems (BMS) instead. A technique known as 

Electrochemical Impedance Spectroscopy (EIS) provides a non-destructive way of 

measuring battery impedance, offering detailed insight into the battery state of operation. 

Several challenges must be solved in to utilize EIS as part of the BMS, including the 

defining of operating conditions at which to perform the sensitive EIS measurement. In 

laboratory conditions, several hours of rest are used to ensure a stable response of the 

battery, but such rest times are impractical for BMS applications. This paper proposes a 

methodology combining drift compensation and a Voigt-circuit used as a filter to obtain 

valid EIS data with short rest times under different operating conditions. Extensive tests 

were conducted on lithium nickel manganese cobalt (NMC) batteries to evaluate the 

methodology and show how the different operating conditions impact the rest time required 
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for valid EIS measurement. The results show that rest times between 5 and 30 minutes can 

be used to obtain useful EIS data for a wide range of operating conditions. 

3.1 INTRODUCTION 

In this paper, we address some of the challenges pertaining to Electrochemical Impedance 

Spectroscopy (EIS) measurements for applications in Battery Management Systems 

(BMS). Specifically, the impact of the battery relaxation effect on EIS measurements is 

examined to determine the shortest possible rest required before valid EIS results can be 

obtained under various operating conditions. Extensive experiments have been conducted 

on Lithium nickel manganese cobalt (LiNiMnCoO2 or NMC) batteries. This paper 

proposes a methodology that combines drift compensation and Voigt-circuit based filtering 

to produce valid EIS results. In addition, different battery relaxation behavior is induced 

using discharge pulses of different current rates (C-rate) to understand the relationship 

between battery discharge and relaxation. The discharge pulses are performed at different 

SoCs and temperatures, and EIS measurements are obtained for each case at different rest 

times. This section discusses the motivation and technical challenges, summarizes recent 

relevant literature, presents the main paper contributions, and provides an outline of the rest 

of the paper. 

3.1.1 MOTIVATION AND TECHNICAL CHALLENGES 

Battery management systems (BMS) perform multitude of functions that impact the 

performance and the safe operation of batteries in advanced applications. Lithium-ion 

batteries (LiB) are currently the preferred choice for energy storage in Electric Vehicles 
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(EVs) as well as many other applications, primarily due to their high energy density and 

their relatively long cycle life [1]. The BMS must estimate, in real-time, the battery’s State 

of Charge (SoC), State of available Power (SoaP) and SoH, but this continues to remain a 

challenge [2], [3]. SoC provides an indication of how much driving range remains before 

the battery must be charged. However, as the SoC decreases, the battery voltage also drops, 

which means more current is required at lower SoC to achieve the same power compared 

to high SoC. SoaP provides a way of predicting the available power output within the 

voltage and current limits of the cell in the battery pack. SoH determines the total available 

capacity of a battery and gives insight into the battery behavior as it changes with age.  

Inaccuracies in SoH estimates lead to further inaccuracies in the SoC and SoaP estimates, 

and, as a result, battery packs in EVs are over engineered to account for these uncertainties 

[4]. A variety of methods exist to estimate SoC, SoH, and SoaP for BMS and EV 

applications including model-based filters and observers [5]–[12] machine learning 

methods [13], [14] and methods based on direct measurement of charge/discharge behavior 

of the battery [15] as well as several others [16]. In laboratory settings, advanced 

instrumentation and exhaustive test methods are used to extract additional information from 

the battery and infer SoC and SoH. One such method is EIS, which measures the impedance 

of a battery [17]. In EIS, a sinusoidal voltage or current signal of small amplitude is applied 

to the battery at different frequencies. Using the Fast Fourier transform (FFT) of these 

signals, the impedance of the battery is obtained by calculating its amplitude and phase 

responses for each frequency. The real and imaginary component pairs of the complex 

impedance can be plotted to provide the Nyquist plot. The battery impedance and its 



Ph.D. Thesis - Marvin Messing  McMaster University - Mechanical Engineering 

 

- 79 - 

 

 

representation of Nyquist plot changes depending on the state of the battery. In general, the 

high cost of EIS hardware as well as length of test times make EIS characterization 

unfeasible for integration into BMS [18], however, efforts are being made to change this 

by developing more cost-effective ways to generate EIS [19]. The hardware requirements 

depend on the desired frequency range and the range of the internal resistance of the 

batteries used. Furthermore, the hardware should be able to maintain a sufficiently high 

signal to noise ratio, while only exciting the battery within its linear operating range. Using 

potentiostatic EIS (PEIS) allows for the control of the excitation voltage such that linearity 

is maintained. However, the lower the battery internal resistance, the higher the output 

currents that must be measured. To avoid high output currents, galvanostaic EIS (GEIS) 

can be used, where current is the input signal and voltage is measured. For GEIS the current 

must be carefully chosen such that the signal to noise ratio of the voltage measurement is 

sufficiently high, but the linear operating range of the battery is not exceeded and the 

excitation does not cause the battery to heat up significantly. Din et al. [20] combined active 

balancing circuitry and a control strategy to produce sinusoidal battery cell excitation. They 

used a switched inductor ladder configuration which allows dissipation of power from one 

cell to another, reducing energy loss. Their results show close agreement when compared 

to lab-grade measurements. Wei et al. [21] proposed a hardware solution for exciting 12 

battery cells in series with a single current signal, and measured the voltage response of 

each cell. They use a DC to AC converter to generate the pack input signal.  Lohmann et 

al. [22] proposed a method for extracting impedance spectra from conventional driving 

cycle data. In this scenario, the electric motor of the EV generates the signal. However, and 
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as a result, the frequency range is limited to that of the drive cycles. The studies reviewed 

above provide possible answers for practical EIS as part of a BMS, however, consideration 

of relaxation effects and required rest times before measurement are largely omitted. In the 

next part of this section, studies which discuss relaxation effects are reviewed. 

3.1.2 RELAXATION EFFECT AND EIS MEASUREMENT 

EIS varies according to the battery’s SoH and SoC amongst other factors. To use EIS in 

practical applications, the impact of different measurement conditions must be investigated. 

SoC, SoH, and temperature were investigated in several studies [23]–[27] in laboratory 

settings for the purpose of battery characterization. In most EIS studies, a rest time period 

of 1 to 24 hours is used after charge or discharge and before the EIS measurement [28]. 

This is done to ensure that only the small signal EIS excitation is causing the battery 

response measured by EIS. During normal discharge, the battery response is highly non-

linear, and once the discharge is stopped, the battery voltage rises rapidly (relaxation 

effect). Over time, the voltage stabilizes, and EIS is usually measured once the relaxation 

effect has slowed significantly, to avoid contribution of the relaxation effect to the EIS 

measurement. Kindermann et al. [28] presented a thorough investigation of the long-term 

relaxation effects under different conditions and for different types of batteries. They 

showed that battery relaxation still impacts EIS results after 40 hours, and low SoC and low 

temperature slow the rate of relaxation. Barai et al. [29] also studied the long-term 

relaxation effect as well as its impact on cell resistance and capacitance, showing that ohmic 

resistance is independent of relaxation, but capacitance follows a logarithmic trend.  Waag 
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et al. [30] acknowledged the relaxation effect and demonstrated changes in the Nyquist plot 

after 40 hours. They concluded that the impact of the relaxation effect is small compared 

to the impact of SoC and temperature, but significant enough to account for it when 

interpreting EIS results since the relaxation effect can change the EIS measurement by 5 to 

10%. The relaxation effect was also investigated without the use of EIS by Wang et al. [31], 

who used a current pulse followed by different rest times to extract rest time dependent 

parameters for a second-order equivalent circuit model. They found robust trends for 

changes in model parameters with rest time, discharge current and SoC. Zinth et. al. [32] 

investigated changes in graphite anode electrodes using neutron diffraction to track the 

impact of different discharge rates on the relaxation effect. They showed long lasting 

effects for low temperatures beyond 11 hours. Deverakonda et al. [27] studied the impact 

of the relaxation effect on the parameters of the Thevenin equivalent circuit model after 

different discharge and charge currents for lead acid batteries. In our previous study on 

relaxation [33], we investigated how fractional order impedance model parameters change 

with the long-term relaxation effect at different SoCs and temperatures.   

The above studies all focus on the behavior and implications of the battery relaxation effect 

over long periods of time, conclude that the relaxation effect is still present after days of 

rest, and largely use 1 to 3 hours before performing EIS measurements. However, no 

solutions exist for obtaining EIS results with short rest times (<1 hour). Short rest times are 

desirable to reduce measurement times for BMS applications, but validity of EIS 

measurements must be ensured by filtering out measurement contributions from the 

relaxation effect. The objective of the present study is to address this gap by investigating 
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the short-term relaxation effect of different severity induced by discharge pulses for 

different SoCs, and temperatures to define operating points for EIS measurement with short 

rest time. 

3.1.3 CONTRIBUTIONS 

This paper presents the following original contributions and conclusions: (1) A 

methodology using drift compensation and  a Voigt-circuit as a filter to convert short rest-

time EIS measurements to valid EIS data is proposed (2) a method comparing EIS 

measurements obtained during relaxation effects is developed  (3) it is shown that EIS 

measurements with short term relaxation times are valid and useful under specific 

conditions (4) the effect of discharge pulse depths is only visible up to 30 minutes of rest 

for high SoC, and temperatures at and above 25°C. 

3.1.4 PAPER OUTLINE 

The paper is organized as follows. Section 3.2 discusses EIS validity, drift compensation, 

Kramer-Kronigs relations and then introduces a methodology which combines these 

methods with a Voigt-circuit used as a filter for obtaining valid EIS results with short rest 

times. In Section 3.3, the experimental methods used for investigating the relaxation effect 

are described. Section 3.4 describes a method to simplify analysis of the relaxation effect. 

Section 3.5 discusses the general variation in behavior of the relaxation effect under 

different experimental conditions including changes in SoC and temperature, evaluates 

short rest time EIS validity, and shows how the combination of discharge pules, SoC, and 
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temperature impacts the relaxation effect and EIS results. Concluding remarks are provided 

in Section 3.6. 

3.2 SHORT TERM EIS MEASUREMENT METHOD 

When a discharge pulse is applied to a battery, the rate of the relaxation effect changes 

depending on the C-rate. Higher C-rates, for example 5C, cause more pronounced and 

longer relaxation behavior. Figure 3-1 shows Nyquist plots after a 5C discharge pulse at 

different rest times for three tests (sets 1 to 3) conducted on different days, but with constant 

operating conditions (90% SoC, 25°C). The results show that the EIS measurements are 

repeatable enough to clearly distinguish different rest times, suggesting that the relaxation 

effect yields repeatable results when measured with EIS. This repeatability of the short-

term relaxation effect suggests it is worth measuring EIS with short rest times if the effects 

of relaxation are understood and properly compensated. 

 

Figure 3-1: Three repeats of EIS measurements (set 1, 2 and 3) for different rest times after 

a 5C discharge pulse. 
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An EIS measurement is considered valid if it is applied to a system that satisfies the criteria 

of linearity, stability and causality [17]. EIS can be applied to non-linear systems such as 

batteries only if they remain within a piece-wise linear operating region, normally 

following long rest periods and requiring small amplitudes of input excitations. Collecting 

an EIS spectrum with short rest times after a high current discharge will cause drift in the 

measurement as shown in Figure 3-2 for 1 minute of rest after a discharge pulse, thereby 

violating causality and stability. Nonetheless, EIS can still be used in this case by applying 

drift compensation and by using the Kramer-Kronigs transformable Voigt circuit as a filter, 

which are discussed in this section. 

 

Figure 3-2: Effect of drift compensation with 1-minute rest. 

Drift in the EIS measurement can be compensated by following the procedure described by 

Zahner [74], which is implemented in most modern potentiostats. In this method, multiple 

periods of the EIS excitation signal are measured at each frequency to determine the non-

periodic (under drift), mean DC component. The mean DC component is then subtracted 

from the signal to obtain a drift-corrected signal. This signal still contains non-periodic 

components, which are identified and eliminated in the frequency domain after applying 
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the FFT. The resulting EIS measurement, after drift compensation, is also shown in Figure 

3-2. 

The Kramer-Kronigs transform calculates the imaginary part (Z’’) of the impedance from 

the real part (3-1) or the real part (Z’) from the imaginary part (3-2) given a frequency ω as 

follows. 

 𝑍′′(𝜔) = −(
2𝜔

𝜋
)∫

𝑍′(𝑥)−𝑍′(𝜔)

𝑥2−𝜔2

∞

0
𝑑𝑥 (3-1) 

 𝑍′(𝜔) = 𝑍′(∞) +
2

𝜋
∫

𝑥𝑍′′(𝑥)−𝜔𝑍′′(𝜔)

𝑥2−𝜔2

∞

0
𝑑𝑥 (3-2) 

This transform only applies if the linearity, stability, and causality criteria are satisfied, thus 

providing a way of validating EIS measurements. However, EIS cannot be measured for 

frequencies (𝑥) from zero to infinity, making the KK-transform itself impossible to 

implement. To circumvent this limitation, the EIS spectra were fitted to a Voigt circuit 

shown in Figure 3-3. A good fit, with random residuals and low mean-square-error (MSE), 

indicates a valid EIS spectrum, since the Voigt circuit is known to be KK-transformable 

[17], [35].  

 

Figure 3-3: Voigt Circuit 

Equation 3-3 defines the Voigt circuit, where the impedance 𝑍 = 𝑍′ + 𝑗𝑍′′, the sum of real 

and imaginary parts given a frequency 𝜔𝑘: 

 𝑍(𝜔𝑘) = ∑
𝑅𝑖

1+(𝜔𝑘𝜏𝑖)
2

𝑛
𝑖=1 − 𝑗∑

𝜔𝑘𝜏𝑖𝑅𝑖

1+(𝜔𝑘𝜏𝑖)
2

𝑛
𝑖=1  (3-3) 
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Here, 𝜏𝑖 = 1
𝜔𝑖

⁄  are the time constants and 𝜔𝑖 are the experimental frequencies. Equation 

3-3 was extended as shown in (3-4): 

 𝑍(𝜔𝑘) = 𝑗𝜔𝑘𝐿 − 𝑗
1

𝜔𝑘𝐶
+ 𝑅0 + ∑

𝑅𝑖

1+𝑗𝜔𝑘𝜏𝑖

𝑛
𝑖=1  (3-4) 

A capacitor (with capacitance C) and an inductor (with inductance L) were added in series. 

The resistances 𝑅𝑖 are the only unknowns, since the capacitances 𝐶𝑖 = 𝜏𝑖 𝑅𝑖⁄ . The time 

constants 𝜏𝑖 may be computed for each frequency 𝜔𝑖, but fewer time constants may be 

necessary to avoid overfitting. Overfitting can be detected by computing the ratio, μ, of the 

sum of positive and negative 𝑅𝑖 parameters as described by Schonleber et. al [36] and 

shown in (3-5). 

 𝜇 = 1 −
∑ |𝑅𝑖|𝑅𝑖<0

∑ |𝑅𝑖|𝑅𝑖≥0
 (3-5) 

This ratio 𝜇 measures oscillations in the Voigt fit which result from noise or measurement 

errors. Oscillations in the Voigt fit are only mathematically possible with some of the 𝑅𝑖’s 

(the only unknowns in Voigt fit) are negative. Therefore, 𝜇 relates the amount of positive 

𝑅𝑖 elements to the amount of negative 𝑅𝑖’s. If μ has a value of one, the amount of negative 

𝑅𝑖’s is small and no overfitting occurs. 

Figure 3-4a shows an example of EIS data used in this study (5-minute rest after 5C 

discharge) and the corresponding Voigt circuit fit. The Nyquist plot (Figure 3-4a) as well 

as the gain and phase plots (Figure 3-4b) show close agreement between the EIS 

measurements and Voigt fit. To further evaluate the goodness of fit, the residuals (Figure 

3-4c) and the MSE (Figure 3-4d) are considered. The residuals appear to resemble white 

noise, as shown in Figure 3-4c for 5 minutes of rest, suggesting that the Voigt fit is valid 
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for EIS at short rest times. The MSE stabilizes after 10 minutes indicating that short rest 

time EIS results are Kramer-Kronigs transformable. The MSE can be used to determine a 

threshold value below which EIS results are considered valid. This is discussed further in 

Section 3.5.2 with additional datasets. 

 

Figure 3-4: Real and imaginary EIS data with Voigt fit at 5-minute rest (a), EIS gain and 

phase with Voigt fit at 5-minute rest (b), Voigt fit residuals at 5-minute rest (c), Voigt fit 

MSE for various rest times and datasets (d) all after 5C discharge. 

The validated EIS data still includes a small amount of noise. When analyzing a single 

dataset, this noise is small enough to not be of concern. However, when comparing 

consecutive EIS measurements, as is done in this study for different rest times, the noise of 
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different EIS datasets compounds. Figure 3-5 shows the difference of two (raw) EIS gain 

plots exhibiting compounded noise in the mid frequency range. The Voigt circuit can help 

to reduce this noise. Instead of using the EIS measurements directly, the output of the Voigt 

model can be used. To do this, the Voigt-circuit is first fit to the complex impedance (real 

and imaginary) pairs of the EIS data. Then the measurement frequency of each complex 

impedance pair is used as an input to the Voigt circuit model, creating a new, modeled set 

of real and imaginary pairs. The modeled complex impedance pairs are similar to the 

measured ones, as shown, for example, in Figure 3-5b in the gain plot. However, when 

considering again the difference of two consecutive datasets, a smoothing effect can be 

observed. Figure 3-5 also shows the difference of two modeled (filtered) EIS gain plots. 

The Voigt-model filtered plot is significantly smoother than the raw EIS plot in Figure 3-5. 

In Section 3.4 a method is introduced that uses the difference between consecutive EIS 

scans and relies on the smoothing effect of the Voigt filter.  
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Figure 3-5: Voigt filter smoothing result. 

The full procedure combining drift-compensation and Voigt-circuit filtering is shown in 

Figure 3-6. During the Voigt-circuit fitting procedure, μ, shown in (3-5), is used to prevent 

overfitting. If the MSE of the Voigt-circuit fit is found to be sufficiently low, the output of 

the Voigt-circuit fit is used to generate new EIS datapoints at the measurement frequencies. 

The combination of all steps shown in Figure 3-6 reduces the impact of the relaxation effect 

on EIS measurements. The residuals and MSE resulting from the Voigt circuit fit are used 

as criteria to determine if EIS results are valid. In the next section, experiments are 

described to test this proposed methodology. 
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Figure 3-6: Short rest time EIS measurement methodology. 

3.3 EIS CHARACTERIZATION AND EXPERIMENTS 

This section describes characterization and experiments designed to further investigate the 

impact of the relaxation effect on EIS and to analyze the usefulness and limitations of using 

Voigt-circuit filtering together with drift compensation as introduced in the previous 

section. To induce relaxation behavior of different magnitudes, a protocol was developed 

consisting of discharge pulses between 1C and 5C with each having a discharge duration 

of 15s followed by a 3-hour rest. During the rest period, EIS was measured periodically. 

The protocol is shown in Figure 3-7 and consists of the following steps: 

1. The battery is fully charged (CC-CV mode at 0.3C to 4.2V and 0.02C cutoff 

current). 
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2. The battery is discharged at 0.2C to a specific SoC target determined by coulomb 

counting and by subtracting the charge lost during the pulse such that the SoC target will 

be reached after the discharge pulse; 

3. A 5C discharge pulse is applied for 15 seconds; 

4. EIS is measured every 5 minutes until 30 minutes past the initial pulse discharge, 

then after every 15 minutes until 1 hour, and every hour until 3 hours is past;  

5. Steps 1 to 4 are repeated for 4C, 3C, 2C, and 1C discharge pulses. 

 

Figure 3-7: Experimental protocol showing where EIS measurements are taken with respect 

to discharge pulses of different C-rates. 

The schematic of the experimental setup that was used for the experiments in this study is 

shown in Figure 3-8 for one channel. It consisted of the following devices:  

• A BioLogic SP150 potentiostat for EIS measurement with a single multiplexed 

measurement channel. 
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• Agilent loads and power supplies (N3306A, N6733A respectively) with four 

channels each to supply and draw current.  

• A National Instruments data acquisition (NI-DAQ) module with NI 9219 to 

measure cell voltage and NI  9201 to measure shunt voltage to obtain the cell current, with 

four measurement channels per module.  

• A Testequity 1007C thermal chamber to control cell temperature.  

• Custom software (written in Python) to control and automate testing with all the 

devices. 

The batteries used in this study were fresh Samsung INR21700-50E, 4.9Ah, cylindrical 

lithium ion cells also shown in Figure 3-8. Prior to any tests, the new battery cells were 

conditioned with 10 charge/discharge cycles.  

 

Figure 3-8: Schematic of experimental setup and battery cell. 

EIS was performed between 800 Hz and 0.1 Hz, with a voltage amplitude of 10 mV, 6 

points per decade, and two sine wave periods per frequency. The drift compensation option 
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of the potentiostat was applied in all cases to reduce the effect of drift as described in 

Section 3.2. 

3.4 RELAXATION EFFECT ANALYSIS METHOD 

Discharge pulses of different C-rates cause different relaxation behavior which causes 

differences in EIS results. If this difference is large, the C-rate must be considered for the 

interpretation of the EIS results. Otherwise, the results may be mis-interpreted. Visually 

evaluating the differences in Nyquist plots is not very useful, so a method is proposed in 

this section which allows for a quantitative comparison of the impact of different C-rates 

on EIS results. In this method, the percent difference between the magnitude of the 

impedance following the lowest (1C) and highest (5C) discharge pulses was calculated for 

various rest times as shown in (3-6). 

 Δ𝑍(𝜔) = 100 ×
𝑎𝑏𝑠(|𝑍(𝜔)|1𝐶−|𝑍(𝜔)|5𝐶)

|𝑍(𝜔)|5𝐶
 (3-6) 

Here,  |𝑍(𝜔)|1𝐶  and |𝑍(𝜔)|5𝐶  are the magnitudes of the impedance data for one frequency 

𝜔 after 1C and 5C discharge pulses, respectively. Figure 3-9 shows Δ𝑍(𝜔) for different 

frequencies and rest times. Between 10 and 0.1 Hz, Δ𝑍(𝜔) shows a flat region for all rest 

times. To further simplify comparison of the rest time effect across different operating 

conditions and C-rates, Δ𝑍(5) is used as a representative value from this flat region. This 

value at 5Hz will be referred to as simply Δ𝑍 in the remainder of this paper. As evident in 

Figure 3-9, Δ𝑍 becomes smaller and smaller as the battery rests. This indicates that the 

differences in relaxation rates induced by 1C and 5C discharge pulses is only significant 
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for a short time after which the relaxation rates merge. This is discussed further and for 

various operating conditions in the next section.   

 

Figure 3-9: ΔZ(ω) for different frequencies and rest times. 

3.5 RESULTS & DISCUSSION 

In this section the relaxation effect is analyzed using the methods described in the previous 

sections with EIS data collected under different battery operating conditions. This section 

is organized as follows: 1. The impact of the discharge pulses at different C-rates on the 

EIS results is shown under constant operating conditions; 2. The effectiveness of the short-

term measurement and filtering methodology is evaluated for different SoCs and 

temperatures using the MSE of the Voight fit; and 3. The combined impact of SoC, 

temperature and C-rate of the discharge pulses on the relaxation behavior is presented. 

3.5.1 RELAXATION EFFECT AND C-RATE 

Figure 3-10 shows how Nyquist plots change over time after pulses of different C-rates 

(between 1C and 5C). The plots for each of the different C-rates are clearly separated after 

10 minutes of rest time due to the different relaxation behaviors caused by the various 



Ph.D. Thesis - Marvin Messing  McMaster University - Mechanical Engineering 

 

- 95 - 

 

 

discharge depths. After 30 minutes of rest, however, all five datasets merge together to 

become nearly indistinguishable. After 3 hours (180 minutes), the datasets overlap 

completely, but have shifted further due to the continuing relaxation effect, however, in a 

manner independent of the foregoing discharge pulse depth. Figure 3-10 also shows that 

the lower the C-rate, i.e. the lower the initial disturbance, the smaller the difference between 

the disturbed and the rested EIS results. 

 

Figure 3-10: Evolution of Nyquist plots measured at different rest times after different C-

rates. 

As was shown in Figure 3-9 (Section 3.4) for measurements at 90% SoC, and 25°𝐶,  Δ𝑍(𝜔), 

which evaluates the difference in EIS results after 1C and 5C discharge pulses, is large 

initially for rest times of 10 minutes and 15 minutes. After 30 minutes of rest time, Δ𝑍(𝜔) 

is similar to its values after 3 hours. These results suggest that rest times may be shortened 

significantly, from the 3 hours conventionally observed to 30 minutes, since the effect of 

C-rate becomes small. With this rest time of 30 minutes, EIS results can be interpreted 

without considering (or measuring) the C-rate which induced the relaxation effect. If C-

rate is measured it can be used to inform EIS interpretation, or EIS measurements can be 
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limited to follow low C-rates (1C or less) only. In either case, rest times may be shortened 

to less than 30 minutes if validity of the EIS measurement can be ensured. This is discussed 

in the next section.  

3.5.2 RELAXATION EFFECT AND VOIGT-FIT MSE 

The previous section showed that the differences in Nyquist plots after 1C and 5C discharge 

pulses becomes small after 30 minutes of rest. In this section, the MSE of the Voigt-fit (see 

Section 3.2) is used to further investigate the short-term relaxation effect for different 

operating conditions. Figure 3-11a shows the Voigt-fit MSE for different rest times and 

different SoCs all measured at 25 °C. For rest times below 25 minutes, the spread of MSE 

is relatively large. After 25 minutes, although there are some outliers, the MSE stays within 

smaller clusters. Figure 3-11b shows the Voigt-fit MSE for different C-rates and different 

temperatures, all measured at 90% SoC. Here, the clusters are similar to Figure 3-11a, 

however, the MSE at 10°C is consistently higher and shows a large variance. This suggests 

that the Voigt-fit is of low quality, and EIS results may not be valid even after 3 hours of 

rest at low temperature. This is due to low temperatures causing the battery to relax at a 

much slower rate, which was also shown by Kindermann et al. [28]. The implication for 

the short-term relaxation affect is that much longer rest times are required to obtain valid 

EIS results at lower temperatures. For all other conditions observed, the MSE appears to 

stabilize quickly. To better understand this, the MSEs for the valid conditions were 

combined and the mean and standard deviation (SD) for each rest time was obtained, as 

shown in Figure 3-11c. After 1-minute rest, the mean is high, and a large SD can be seen. 
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Between 5 to 20 minutes of rest, the means are similar and the SD error bars overlap, but 

the means are much lower than after 1 minute of rest. Finally, between 25 minutes and 3 

hours of rest, the means are even lower and in a similar range with overlapping error bars. 

Therefore, for best results, a 25 min rest should be observed. However, rest times as low as 

5 minutes will produce EIS results with only slightly elevated Voigt-fit MSEs, which may 

still be valid. Rest times of less than 5 minutes will not produce valid EIS results. 

 

Figure 3-11: Voigt-fit MSE for different C-rates and SoCs (a), MSE for different C-rates 

and temperatures (b), mean and SD of combined conditions (c). 
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3.5.3 RELAXATION EFFECT AND Δ𝑍 

The previous section showed how the Voigt-fit MSE changes with different SoCs, 

temperatures and C-rates. To better visualize the effects of different C-rates in combination 

with SoC and temperature, Δ𝑍 (Section 3.4) is plotted over rest time in Figure 3-12a and 

Figure 3-12b, respectively, with 90% SoC, 25°𝐶 at 30 minutes of rest used as a reference. 

The Nyquist plots for each condition are also shown for each case. In Figure 3-12a, the 

impact of rest time and SoC on ΔZ is shown. ΔZ increases as the SoC decreases, which 

means longer rest times are required for lower SoCs to sufficiently reduce the effect of C-

rate on the EIS results. At 70% SoC Δ𝑍 reaches a value below the reference after 60 minutes 

of rest. At 50% SoC Δ𝑍 is still above the threshold even after 3 hours of rest. This can also 

be seen in the Nyquist plots from EIS measurements with 30-minute rest times after 1C and 

5C discharge as shown in Figure 3-12b. At 90% SoC, the Nyquist plots for the two C-rates 

overlap, however, at 50% SoC, a significant gap exists between the two plots. This 

suggests, only high SoCs should be used when measuring EIS with short rest times after 

large discharge rates precede the measurement.  
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Figure 3-12: ΔZ for 90%, 70% and 50% SoC compared to reference at 25°C and 90% SoC 

(a). Nyquist plots for 90% and 50% SoC after 30 minutes of rest (b). 

Figure 3-13a shows ΔZ for different temperatures. Increasing the temperature from 25°C 

to 35°C has no significant impact on the relaxation behavior. However, decreasing the 

temperature to 10°C increases the time it takes to reduce ΔZ, suggesting that, again, lower 

temperatures are not suitable for EIS measurements with short rest times. At 10°C, ΔZ 

reaches below the reference after approximately 2.5 hours of rest, however, as was shown 

in the previous section, EIS results at 10°C may still not be valid even after 3 hours of rest. 

At higher temperatures, ΔZ starts out much lower than at 25°C at 5 minutes rest and then 

rapidly decreases to match the values at 25°C for longer rest times. The Nyquist plots 

corresponding to the different temperatures are shown in Figure 3-13b, showing 

overlapping plots for higher temperatures, but a small gap for the 10°C case. The results 

discussed above show that the 30-minutes rest time is sufficient for room temperature and 

above, as long as the SoC remains high. Lower SoCs and lower temperatures still show a 

large difference in EIS results even after 3 hours of rest, so care must be taken when 
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interpreting EIS under such conditions. The findings on rest times for different operating 

conditions for relaxation induced by a 5C discharge pulse are summarized in Table 3-1. 

 

Figure 3-13: ΔZ at 25°C, 35°C and 10°C compared to reference at 25°C and 90% SoC (a). 

Nyquist plots for the same temperatures (b). 

 

Table 3-1: Summary of Minimum Rest Time for Different Conditions 

Temperature (°𝐶) SoC (%) C-rate Rest Time (min) 

≥ 25 
90 5 30 
70 5 60 
50 5 > 180 

10 90 5 > 180 

The results shown in this study are applicable to batteries with NMC cathodes. The 

relationship between the relaxation effect and battery chemistry is not well researched in 

literature. However, the long term (48 hours) relaxation rate of NMC was compared to 

Lithium Manganese (LiMn) and Lithium-Iron-Phosphate (LFP) chemistries by 

Kindermann et al. [28] showing that NMC and LiMn relaxation rates are within 2% of each 

other. This suggests that the NMC results shown in this work may be applicable to other 
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chemistries as well. LFP showed a faster relaxation rate compared to NMC and LFP which 

suggests rest times are less important for LFP.  

The focus of this paper is on the relaxation effect of single cells; however, similar relaxation 

behavior can likely be observed for battery modules with cells in parallel, and therefore 

equal voltages. Several new methods for BMS-compatible EIS allow for cell voltage 

measurement as described in Section 3.1.1 [20], [21]. Combined with such methods, the 

findings in this paper are intended to provide BMS engineers with suitable operating points 

at which to perform the EIS measurements under different conditions. Furthermore, BMS 

generated EIS may require filtering and validation for which the Voigt filter approach 

introduced here is suitable.    

3.6 CONCLUSION 

EIS measurements obtained after C-rate pulses and short rest times must be compensated 

and filtered due to drift caused by the rapid change of the battery voltage. In this study, EIS 

was measured for batteries of different SoC and at different temperatures, with short rest 

times after different discharge pulses by utilizing drift compensation methods and 

validating EIS results using the Kramer-Kronigs. Furthermore, a method was proposed to 

use the Voigt-circuit as a filter to further improve EIS measurements at short rest times. It 

was found that using this method valid EIS results could be obtained for EIS measurements 

as low as 5 minutes as long as temperatures remain at room temperature or above. 

Furthermore, it was found that the effect of different C-rate pulses disappears after 30 

minutes of rest for batteries at 90% SoC and above 25°C. However, batteries at SoCs below 
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90% as well as batteries at temperatures of 10°C require longer rest times to eliminate the 

effect of large C-rates. 
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ABSTRACT  

Among the most important tasks of a Battery Management System (BMS) are State of 

Charge (SoC) and State of Health (SoH) estimation. Many SoH estimation techniques are 

available, each with their advantages and drawbacks. These include methods based on a 

technique known as Electrochemical Impedance Spectroscopy (EIS). This technique 

provides detailed information about the battery’s state of health but requires long rest times 

to prevent the battery relaxation effect from impacting the EIS measurement. In this paper 

EIS is shown to be able to track the short-term relaxation effect for batteries of different 

SoH. A SoH estimation method is proposed which combines fractional order impedance 

modeling and short-term relaxation effects with EIS characterization for rapid SoH 

determination. This empirical method is demonstrated to have an average SoH estimation 

error of less than 1%. As new methods arise to simplify EIS hardware requirements for real 

time applications, the proposed method offers a new way of utilizing EIS for SoH 

estimation.  
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4.1 INTRODUCTION 

In this paper an empirical model is proposed for battery State of Health (SoH) 

estimation. The model is developed based on the battery relaxation effect and 

Electrochemical Impedance Spectroscopy (EIS) measurements fitted with a fractional 

order impedance model. The rate of change of a combined model resistance is shown to be 

a repeatable quantity and is utilized here for SoH estimation. This section summarizes the 

motivation and technical challenges, provides a review of recent and relevant literature, 

presents the main paper contributions, and provides an outline of the rest of the paper. 

4.1.1 MOTIVATION AND TECHNICAL CHALLENGES 

Lithium-ion Batteries (LiB) are used in many applications including Electric 

Vehicles (EV). Any multi-cell LiB pack requires a Battery Management System (BMS) to 

optimize the performance of the battery pack and to ensure each cell remains within safe 

operating limits [1]. To do these tasks, the BMS must estimate the State of Charge (SoC) 

and SoH of the cells, since these states cannot be measured. The SoC indicates the charge 

left in the battery before it must be charged. The SoH indicates the capacity of the cell, i.e. 

how much energy the cell can provide after it is fully charged, compared to when it was 

new. The accuracy of SoC algorithms depends on the SoH of the battery and many different 

methods have been investigated to improve the accuracy of SoH [2–7]. A group of SoH 

estimation methods are based on diffusion processes taking place inside the battery 

electrodes during rest time, known as the relaxation effect. As a result of the relaxation 

effect, the battery voltage changes over time and the rate of change of the voltage can be 

related to the SoH of the battery. Another method commonly used in laboratory settings to 
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investigate SoH is EIS, a non-destructive and time efficient technique that provides detailed 

insight into the condition of a battery cell. This is achieved by applying small sinusoidal 

signals to the battery over a wide frequency range and measuring the battery response. The 

resulting response signal is then analyzed in the frequency domain by considering 

magnitude, phase as well as real and imaginary components of the response at each 

frequency. Although a BMS would greatly benefit from this technique, the required 

hardware is complex and costly [8]. Nonetheless, there is increasing research effort to 

develop solutions to make EIS available for BMS applications [9–12] for use in EV 

applications. For example, Carkhuff et al. [10] designed multiplexer hardware to deliver an 

EIS signal to each cell in a battery pack. More recently, Locorotondo et al. [13] designed a 

wireless charging circuit with built-in EIS measurement capability. In this paper, EIS is 

used to track the relaxation effect to develop an empirical SoH estimation model. In the 

next section, literature relevant to SoH estimation and the relaxation effect is reviewed. 

4.1.2 RELAXATION EFFECT AND SOH ESTIMATION 

When batteries are allowed to rest, slow diffusion processes take place which slowly 

change the voltage and impedance of the battery [14]. This relaxation effect was used for 

SoH estimation by several studies. Qian et al. [15] proposed an SoH estimation strategy 

based on voltage relaxation for 10 minutes of rest after full charge and full discharge. They 

used a second order ideal Equivalent Circuit Model (ECM) which was fit to the voltage 

curve and the model parameters were related to SoH. Fang et al. [16] proposed a similar 

model using a third order ECM and 2 hours of rest. Baghdadi et al. [17] correlated the 
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voltage after 30 minutes of rest after full charge to SoH. They used a linear model to 

estimate the SoH with model parameters adjusted for different operating conditions. Ran 

et al. [18] proposed a data driven model to cluster batteries by SoH using a pulse profile 

which included relaxation phases. They find a clustering accuracy of 88%. EIS was used 

to characterize the relaxation effect in several studies [14], [19–23]. Several studies also 

use EIS for SoH estimation directly. Shabbir et al. [24] built a SoH prediction model based 

on multiple features of the Nyquist plot with an estimation error of around 10%. Guha et 

al. [25] reconstructed EIS from constant discharge pulses and modeled the change of the 

internal resistance from the EIS results with a third order polynomial.  Kim et al. [26] 

measured EIS with a constant current bias and used linear regression to model the change 

in SoH with EIS impedance at 250 Hz. Gismero et al. [27] used EIS to track the calendar 

age of batteries and used third order ECM parameters to model SoH with a 2.5% error. 

Locorotondo et al. [28] used a Pseudo-Random Binary Sequence (PRBS) signal (instead of 

multi-sine) to generate EIS results. They a limited number of cells between 100% and 50% 

SoH and proposed an impedance clustering method for SoH detection. They state a required 

rest time of 1 hour before measurements can be obtained.   

The studies discussed above either use the relaxation effect in time domain or EIS 

measurements to estimate SoH. Each study imposes requirements such as long 

measurement times (hours), and having the battery to be fully charged or discharged, or 

applying a fixed bias or discharge current during measurement. In addition, the SoH 

estimation errors seem to be greater than 2% in most cases. In this study, the combination 
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of the relationship between the battery relaxation effect and its SoH, complemented by EIS 

measurements are used to develop a new SoH estimation strategy. 

4.1.3 CONTRIBUTIONS 

This paper presents the following original contributions and conclusions: (1) An 

empirical SoH estimation method is proposed by combining EIS measurements, fractional 

order battery modeling, and the short-term relaxation effect; (2) The proposed SoH 

estimation method is experimentally applied in an aging study and is shown to have an 

average estimation error of less than 1% SoH. 

4.1.4 PAPER OUTLINE 

The paper is organized as follows. Section 4.2 describes the experiments conducted 

to characterize the relaxation effect with EIS and to obtain aged batteries. Section 4.3 

introduces the battery relaxation effect and presents a conceptual view of the underlying 

physical phenomenon and its impact on battery impedance. Section 4.4 introduces the 

fractional order battery model and describes the modeling approach. Section 4.5 introduces 

the SoH estimation method followed by a discussion of its performance in Section 4.6. The 

concluding remarks are provided in Section 4.7.   

4.2 EIS CHARACTERIZATION AND AGING EXPERIMENTS 

The work presented in this paper includes extensive experiments conducted on 

Samsung INR2170-50E lithium nickel manganese cobalt (LiNiMnCoO2 or NMC) batteries 

of different SoH. The experiments were conducted to provide development and validation 

datasets for the proposed SoH estimation method. The experiments consisted of discharge 
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pulses of different currents used to induce relaxation behavior with different relaxation 

rates. Each pulse was followed by a 3 hours rest period, during which EIS was measured at 

regular intervals starting after 1 minute of rest. Discharge currents between 1C and 5C were 

tested, with each pulse held for 15 seconds. EIS was measured with a Bio-logic SP150 

potentiostat for the frequency range of 0.1 to 800 Hz, with a 10 mV amplitude with two 

sine waves per period, 6 points per decade, and with the drift compensation setting enabled 

[29]. The EIS measurement duration with these settings is 64 seconds for each full scan. 

This time interval is considered as part of any rest time intervals.  In this study, all results 

were obtained at 90% SoC. This SoC target was obtained by first fully charging the battery 

according to the manufacturer’s recommendation. Next, batteries were discharged at 0.2C 

and the charge counted using coulomb-counting and by subtracting the charge lost during 

the pulse. This way, the battery SoC is equal to 90% at the beginning of the rest period. 

The temperature was held at 25°C using a Testequity 1007C thermal chamber. A schematic 

of the test setup is shown in Figure 4-1.  

 
Figure 4-1: Schematic of experimental setup and battery cell. 
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Table 4-1: SoH and Test Conditions for 14 Battery Cells at 90% SoC and 25°C. 

SoH (%) C-rates Repeats  

99.96 1,2,3,4,5 3  

98.26 5 1  

97.61 5 1  

96.00 1,2,3,4,5 1  

92.00 5 1  

91.27 5 3  

90.69 1,2,3,4,5 1  

86.54 5 1  
86.22 5 1  

85.05 1,2,3,4,5 1  

83.44 5 1  

83.03 5 3  

81.69 1,2,3,4,5 1  

78.41 5 1  

The protocol discussed above was applied to 14 battery cells of different SoH as 

shown in Table 4-1. As indicated in the “C-rates” column, selected cells between 100% 

and 80% SoH were subjected to discharge pulses of 5 different C-rates to test the impact of 

varying relaxation severity on EIS measurements and to investigate how this changes with 

various battery SoH. All cells were tested with 5C discharge pulses to form the dataset for 

the development and testing of the proposed SoH estimation method. Some cells at 

different SoHs were tested three times at the same condition to ensure the repeatability of 

the results. Three repeats of the 5C, 15 seconds discharge pulse are shown in Figure 4-2. 
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Figure 4-2:  Three repeats of a 5C, 15s discharge pulse at 90% SoC, 100% SoH. 

The cells were aged with simple charge/discharge cycle aging at a constant 

temperature of 25°C. The cells were charged at C/2 with the standard constant-current, 

constant-voltage (CC-CV) method to 4.2V with a target current of C/20. The cells were 

discharged at 1C to 2.5V as recommended by the manufacturer.  

The SoH of the batteries was determined at 25°C by first fully charging the battery 

(at C/2 with the CC-CV method to 4.2V and C/20 cut-off current), followed by a 1 hour 

rest, followed by a discharge at C/5 to 2.5V. This procedure yields a measured capacity 𝐶𝑚 

value via coulomb counting. The capacity value of 4.9 mAh is stated as the rated capacity 

𝐶𝑟 of the battery according to the manufacturer datasheet and the SoH is calculated using 

Equation 4-1. 

𝑆𝑜𝐻 (%) =
𝐶𝑚

𝐶𝑟
× 100 (4-1) 
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4.3 RELAXATION EFFECT AND IMPEDANCE 

In this section, the battery relaxation effect and its possible origin are discussed 

based on EIS measurements and conceptual explanation of physical processes inside the 

battery. The relaxation effect can most easily be observed by monitoring the Open Circuit 

Voltage (OCV) of the battery after applying a charge or discharge pulse. The OCV slowly 

increases over several hours before reaching a stable value. This happens because of ion 

concentration gradients inside the electrodes causing charge imbalances which are resolved 

by slow diffusion processes in the absence of an external driving force. Kindermann et al. 

[29] presented a mind-model showing the different kinds of diffusion processes, which are 

still on-going even after the voltage has stabilized. They show that the relaxation effect not 

only impacts voltage, but battery impedance as well. Using EIS measurements, they 

detected impedance changes for as long as 40 hours of rest time. 

In this paper, the short term relaxation effect for new and aged battery cells is 

considered. Figure 4-3 shows the Nyquist plots for EIS measurements obtained from 

batteries at 100%, 90% and 80% SoH. At each SoH, the Nyquist plots from EIS 

measurements obtained at rest times of 5, 10 and 15 minutes after a discharge pulse are also 

shown. Each set of three EIS measurements track the relaxation effect in a distinctive way, 

with decreasing distance between the mid to low frequency range of the Nyquist plots for 

the same total time interval of 15 minutes. The rate at which the distance between Nyquist 

plots changes decreases with SoH. This behavior forms the basis for the SoH estimation 

method proposed in this paper. 
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Figure 4-3: Evolution of Nyquist plot with rest time and SoH. 

The change of impedance with rest time can be explained by the change in charge 

concentration inside the electrodes over time. Figure 4-4 shows the Nyquist plots of the 

EIS results as they change with rest time and battery age. The same plot is shown three 

times with a specific dataset highlighted corresponding to the rest time, one for new and 

one for aged batteries in each case. Also shown in Figure 4-4 are diagrams showing 

conceptual views of the charge concentration inside the anode (similar behaviour also 

occurs on the cathode). During relaxation after a discharge pulse the ions diffuse through 
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the Solid Electrolyte Interface (SEI) into the electrode. However, at first, most of the charge 

is located close to the surface of the electrode [30]. As the rest time increases, ions move 

further into the electrode, decreasing the readily available surface charge, and increasing 

charge transfer impedance, 𝑍𝐶𝑇, as a result. In the case of aged cells, 𝑍𝐶𝑇 starts out larger 

due to an increased SEI and reduced electrode material. The rate of change of 𝑍𝐶𝑇 during 

relaxation is slowed also due to the increased SEI impedance and because it takes longer 

for ions to arrive at active electrode material. This behaviour for new and aged battery cells 

is conceptually shown in the diagrams of Figure 4-4 as it relates to EIS measurements.  
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Figure 4-4: Short-term relaxation effect impedance evolution tracked with EIS data (plots highlighted 

according to rest time) and conceptually pictured with battery half-cell diagrams.  

4.4 BATTERY MODELING 

EIS results are best quantified by fitting battery models to the data. ECMs are 

frequently used because of their simplicity and because the circuit elements used somewhat 

represent the physical behavior of the battery [30]. The simplest model is a single resistor, 

which models the internal, ohmic resistance of the battery. However, since the chemical 
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reactions inside batteries are also time dependent, additional elements are used to model 

processes of different time constants, such as charge transfer of both electrodes, impedance 

of the SEI and diffusion inside the electrodes. These processes can be modeled using 

multiple branches with a resistor in parallel with a capacitor (R||C) [31]. For EIS modeling, 

these R||C branches produce ideal semi-circles, however, the EIS results for batteries are 

non-ideal, and semi-circles only provide approximate fits. 

As shown in Figure 4-5a, the SEI impedance usually manifests as a small semi-

circle in the high to mid frequency range of the EIS measurement. The SEI is a biproduct 

of undesirable chemical reactions between the negative electrode and the electrolyte. At the 

same time, after its formation, the SEI layer prevents further reactions between electrode 

and electrolyte. However, the SEI contributes to the internal resistance of the battery and 

further increases this resistance, as the SEI layer grows with battery age. A larger semi-

circle in the mid frequency range is caused by the chemical reactions necessary for lithium 

ions to be transferred between electrodes and electrolyte (charge transfer). Finally, lithium 

ions which enter the electrodes slowly diffuse deeper into the electrode materials. This 

diffusion appears as a line at a 45° angle in the low frequency range of the EIS measurement 

[32]. Higher numbers of R||C branches can achieve improved fits, however, at the cost of 

adding many model parameters, and possibly overfitting to the data. Near perfect fits can 

be obtained using a rendition of capacitors known as constant phase elements (CPE), and 

CPEs in parallel with resistors (𝑅||𝑄, 𝛼), known as ZArc elements. CPE and ZArc elements 

produce much better fits since they are non-ideal circuit elements, at the cost of only one 

additional parameter (𝛼) compared to ideal capacitors. Furthermore, the fitting process can 
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be controlled more easily since there is low ambiguity in the fitting results. In contrast, 

when using ideal circuit elements, two fits with different parameters may be accepted, due 

to the large inherent error between the fit and the data. This means that ideal models cannot 

distinguish between small changes in the EIS results, making them unsuitable to model the 

subtle changes in charge transfer and diffusion impedance occurring as a result of the 

relaxation effect. 

 
Figure 4-5:  Nyquist plots of low and high SoH EIS measurements with model fits (a), fractional order 

impedance model (b). 
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Figure 4-5a shows two EIS datasets, one for a battery at 100% SoH, and the other 

for a battery at 90% SoH. The EIS results at lower SoH show significant increases in SEI 

layer and charge transfer impedances. The equivalent circuit structure used to model EIS 

results in this work is also shown in Figure 4-5b. The circuit consists of an inductance (𝐿) 

to model inductive effects from cell windings and cables (used to connect the potentiostat 

to the battery), a resistance (𝑅0) modeling ohmic resistance, a ZArc element (𝑅1||𝑄1, 𝛼1) to 

model the SEI layer impedance, a second ZArc element (𝑅2||𝑄2, 𝛼2) to model charge 

transfer impedance, and finally a CPE (𝑄3, 𝛼3) to model diffusion. The impedance 𝑍𝑐 of 

this circuit is defined by Equation 4-2 for input frequency 𝜔. The time constants are defined 

by τi = (RiQi)
1

αi⁄  [26]. 

𝑍𝑐(𝜔) = 𝑗𝜔𝐿 + 𝑅0 +
𝑅1

1 + 𝑅1𝑄1(𝑗𝜔𝜏1)𝛼1
+

𝑅2

1 + 𝑅2𝑄2(𝑗𝜔𝜏2)𝛼2

+
1

𝑄3(𝑗𝜔)𝛼3
 

(4-2) 

Further to the above, the circuit in Figure 4-5b provides good fits for both healthy 

and aged batteries as also shown in Figure 4-5a. Model fitting was done using Particle 

Swarm Optimization (PSO) with the objective function 𝑆 shown in Equation 4-3: 

𝑆 = ∑ {[𝑍′(𝜔) − 𝑍𝑐
′(𝜔)]2 + [𝑍′′(𝜔) − 𝑍𝑐

′′(𝜔)]2}

𝜔𝑓

𝜔=𝜔𝑖

 (4-3) 

This objective function computes the square of the difference between the real value 

of the measured impedance 𝑍′ and the real value of the calculated impedance 𝑍𝑐
′  for 

frequencies 𝜔 between the initial frequency 𝜔𝑖 and the final frequency 𝜔𝑓 . The same is 

done for the imaginary parts of the measured and calculated impedance (𝑍′′ and 𝑍𝑐
′′ 
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respectively). The resulting square differences are summed to yield a single objective 

function for the PSO algorithm to optimize. 

4.5 SOH ESTIMATION METHOD 

This section first introduces the empirical SoH model followed by a description of 

the fitting process used to obtain consistent fractional order model fits to the EIS data.  

4.5.1 EMPIRICAL SOH MODEL 

In this section, a new SoH estimation method is proposed based on the rate of 

change of an equivalent resistance with relaxation time. This equivalent resistance 𝑅𝑒𝑞 , as 

shown in Equation 4-4, is a summation of the branch resistances of the impedance model 

of Equation 4-2 introduced in the previous section. 

𝑅𝑒𝑞 = 𝑅1 + 𝑅2 (4-4) 
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Figure 4-6: Evolution of 𝑹𝒆𝒒 with rest time at 100% SoH (a), log-linear trend of 𝑹𝒆𝒒 for rapid relaxation 

region (b). 

Figure 4-6a shows how 𝑅𝑒𝑞  changes for models fitted to EIS data measured at 

different rest times after a 5C, 15 second discharge pulse. The initial rate of change of Req 

with rest times at 5, 10 and 15 minutes can be correlated to SoH. To find the rate of change, 

a semi-log-linear fit defined by Equation 4-5 and shown in Figure 4-6b was used. 

𝑅𝑒𝑞(𝑡) = 𝑚 × 𝑙𝑜𝑔(𝑡) + 𝑦𝑟  (4-5) 
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Here, Req is given by the rate of change 𝑚, y-intercept 𝑦𝑟 and relaxation time t.  

The performance of this model is discussed in Section 4.6. The correlation of rate 

of change 𝑚 and SoH follows a two-phase exponential decay model shown in Equation 4-

6.  

𝑠𝑜ℎ(𝑚) = 𝑎1 exp(𝑚 × 𝑏1) + 𝑎2 exp(𝑚 × 𝑏2) (4-6) 

The parameters 𝑎1 and 𝑏1 describe an initial fast decay from 100% SoH to 95% SoH, 

followed by a slower decay from 95% SoH to 80% SoH described by 𝑎2 and 𝑏2. The 

parameter values and performance of this model are discussed in detail in Section 4.6.  

4.5.2 MODEL FITTING PROCEDURE 

The following model fitting procedure was found to be necessary to guide the PSO 

algorithm to find repeatable solutions. First, the impedance model (Equation 4-2) is fit to 

the EIS dataset measured after the longest rest time (15 minutes). Further to the model 

presented in Equation 4-2, Table 4-2 shows an example of model parameters found for the 

100% SoH case. Also shown are the upper and lower bounds used with the PSO algorithm. 

For a new EIS dataset at unknown battery state, the upper or lower bounds can be used as 

initial values for the PSO algorithm provided the data comes from the same battery model.  

Table 4-2: Model Parameter Bounds and Example Values at 90% SoC, 100% SoH, 25°C and 15 

minutes Rest 

 L (𝝁F) R0 (m𝛀) R1 (m𝛀) 𝝉𝟏 (ms) R2 (m𝛀) 𝝉𝟐 (ms) Q3 𝜶𝒊 

Upper Bound 0.7 28 40 480 6 30 5 1 

Lower Bound 0.4 20 0 0 2 0 1 0 

Example 0.58 22.2 0.41 2 4.8 0.5 4.04 1, 0.58, 0.52 
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After the 15-minute rest EIS fit is obtained, these upper and lower bounds are 

updated such that 𝐿, 𝑅0, and 𝛼3 are fixed to the value of the 15-minute rest fit. Furthermore, 

𝑅1 and 𝑅3 from the 15-minute rest EIS fit are set to be the upper bounds of the next fit. 

With these new limits in place, 𝑅1, 𝜏1, 𝑅2, 𝜏2 and 𝑄3 are fit to the 10-minute rest EIS. 

Finally, the limits are updated once more to fix the upper bounds of R1 and R2 to their 

values at 10 minutes rest, and a fit for 5 minutes rest EIS is obtained. The parameters 𝐿, 𝑅0, 

and 𝛼3 are not affected by the relaxation effect [33], so they can be fixed once an initial fit 

is found. This procedure is shown in Figure 4-7 together with the steps of the empirical 

SoH model to show a summary of the complete SoH estimation method.  
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Figure 4-7: Procedure to obtain SoH estimate from EIS data at different rest times. 

4.6 RESULTS AND DISCUSSION 

In this section the performance of the proposed SoH estimation method is discussed. 

In Section 4.5 the general method was described for one SoH example dataset. With this 

method, the rate of change m of the combined branch resistance 𝑅𝑒𝑞  for EIS data recorded 
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between 5 and 15 minutes of rest after a 5C, 15s discharge pulse can be correlated to SoH. 

The rate of change m is found using a semi-log linear fit to 𝑅𝑒𝑞  over rest time defined by 

Equation 4-5. Figure 4-8a shows how 𝑅𝑒𝑞  evolves with rest time for a subset of six different 

SoHs between 100% and 80%. The semi-log-linear fits are shown in Figure 4-8b for each 

of the six datasets.  
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Figure 4-8: Short term evolution of Req with rest time (a) and semi-log-linear fits to the initial rate of 

change of Req (b). 

Table 4-3 shows the slopes and intercepts for each case as well as the fitting 

statistics. The R squared and adjusted R squared values are all between 0.994 and 1, 

suggesting the linear fit is suitable to describe the datasets. Figure 4-8b and Table 4-3 show 

that the slopes of the log-linear fits increase as SoH decreases, but not in a linear fashion. 

Instead the data follows an exponential decay with two time constants.  

Table 4-3: Semi-log Fit (Equation 5) Results and Statistics 

SoH (%) 100 96 92 90 85 80 

Y intercepts 3.68 2.95 8.24 5.90 10.76 20.63 

Slope, m 0.54 0.55 0.78 0.96 2.24 7.884 

𝑅2 0.9967 0.9999 0.9992 0.9986 0.9998 0.9971 

𝑅𝑎𝑑𝑗
2  0.9934 0.9998 0.9984 0.9972 0.9996 0.9942 

RMSE 0.017 0.003 0.012 0.020 0.018 0.236 

Figure 4-9 shows the calculated slopes m vs. measured, true SoH for the entire 

experimental dataset. Also shown in this figure is the double exponential model given by 

Equation 6 fitted to the data, as well as the 95% prediction band (dotted lines), indicating 

where 95% of unknown data will fall. The first time constant of this model (Equation 4-6) 

describes the initial steep drop between 100% and 90% SoH. The second time constant 

describes the much slower, nearly linear decay between 90% and 78% SoH.  
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Figure 4-9: Req short term relaxation evolution slopes and SoH. 

The parameters of the model (Equation 4-6) are shown in Table 4-4, with statistics 

showing a high 𝑅𝑎𝑑𝑗
2  equal to 0.98 and a RMSE of less than 1% SoH. The repeatability of 

the SoH estimation method was assessed for one dataset at above 90% and another below 

90%. Each dataset consists of three repeats of the experimental EIS measurement.  

Table 4-4: Double Exponential Model (Equation 6) Fit Results and Statistics 

𝒂𝟏 𝒃𝟏 𝒂𝟐 𝒃𝟐 𝑹𝒂𝒅𝒋
𝟐  RMSE (% SoH) 

22.16 -1.67 88.48 -0.0156 0.98 0.82 

Table 4-5: Repeatability of the SoH Estimation Method 

Variable True SoH (%) 
Data Set 

mean SD 
1 2 3 

Rate of change, 𝑚 
91.27 1.00 1.09 1.19 1.09 0.095 

83.03 3.58 3.67 4.30 3.85 0.394 

Estimated SoH (%) 
91.27 91.20 90.58 90.05 90.61 0.573 

83.03 83.61 83.44 82.41 83.15 0.651 

Figure 4-10a shows the estimated SoH with mean and SD error bars for the repeat 

sets, as well as the estimated SoHs for the entire dataset.  The corresponding numbers are 
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shown in Table 4-5, where the first two rows show data for m and the last two rows data 

for the estimated SoH. Above 90% SoH, the SD of m is small and the corresponding SoH 

estimate has a small SD as well. Below 90% SoH, the SD of m is much larger, however, 

the SD of the SoH estimate is still small. This is because of the different time constants in 

the exponential model, causing the estimated SoH to be sensitive to changes in m for the 

high SoH, fast decay portion of the model, but much less sensitive for the low SoH, slow 

decay portion of the model. In general, the estimation error is consistently lower for the 

low SoH portion of the model as shown in Figure 4-10b. This model has an RMSE SoH 

estimation error of 0.82% with an overall maximum error of 1.74%. Below 90% SoH, the 

maximum error is much lower, at 0.62%.   
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Figure 4-10: Estimated SoH vs. True SoH and slope repeatability (a), SoH Estimation Error and 

RMSE (b). 

The proposed method is demonstrated at 90% SoC, 25°C, with a relaxation effect 

induced by a 15s, 5C discharge pulse and a measurement period of up to 15 minutes. 

However, the method can be adjusted by accounting for SoC and temperature in the model, 

as long as the relaxation effect does not change significantly. 𝑅𝑒𝑞  slopes obtained for a 
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100% SoH battery for different SoCs and temperatures are shown in Figure 4-11. SoC 

values of 70% and 50% fall within one SD (assumed to be 0.095 from Table 4-5) of the 

90% SoC used for the proposed method. Similarly, increasing the temperature to 35°𝐶 

produces a slope value also within one SD of the 100% SoH (and 25°𝐶) datapoint shown 

in Table 4-3. This suggests that the relaxation rate of change behaves similar across a wide 

range of operating conditions. However, lowering the temperature to 10°𝐶 results in a 

significantly different slope value. Therefore, to be able to test SoH at lower temperatures, 

a representative number of batteries must be re-tested at different SoH to understand the 

impact of low temperature on Equation 4-6. 

 
Figure 4-11: 𝑹𝒆𝒒 slopes for different SoCs and Temperatures for battery at 100% SoH. 

Discharge pulses similar to 5C can also be used with some model adjustment, 

however, 5C was found to provide the most consisted results. Reducing the C-rate may 

increase the SoH estimation error. In this study, EIS was measured at 5, 10 and 15 minutes, 
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however, due to the semi-log linear nature of the rate of changed of the combined 

resistance, any three points between 5 and 15 minutes can be used to obtain the relaxation 

rate. Each EIS measurement for the chosen frequency range has a duration of less than 2 

minutes, therefore, the measurement time could be reduced to less than 10 minutes overall. 

Further reduction in measurement time may be achieved by utilizing multi-sinewave EIS 

methods [34], which allow the sine waves at different frequencies to be stacked into a single 

signal, instead of running them consecutively as done in this study. The EIS measurement 

time is then limited only by the lowest frequency. Thus, the upper end of the measurement 

time of the proposed SoH estimation method should be further investigated to see if it can 

be reduced, possibly well below 10 minutes.  

Compared to voltage-based methods, introduced in Section 4.1.2, which utilize the 

relaxation effect, the proposed method shows gains in accuracy and testing time. Table 4-6 

summarizes the method comparison. The method requiring 10 minutes of rest time [14] is 

limited to full charge or full discharge conditions and accuracy was not stated, possibly due 

to the low number of cells tested. The method requiring 30 minutes of rest time after full 

charge [17] also did not state SoH accuracy. A promising method was proposed by [16] 

with a rest time of 20 minutes and a wide SoC range (requiring building of lookup tables 

at different SoCs). They showed an accuracy of 1.8% SoH, although with only 6 cells 

tested.  
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Table 4-6: Method Comparision 

Reference 
Rest Time 

(min) 
SoC 

SoH 

Accuracy 

Number of 

Cells  

Tested 

Aging Procedure 

(Temperature, 

Charge) 

[75] 10 
100 or 

0 
Not Stated 3 75°C, 1C 

[76] 20 40-80 1.8% 6 25°C, 1C 

[77] 30 100 Not Stated 9 55°C, 1C 

This 
Study 

15 50-90 1% 16 25°C, 0.5C 

 

The proposed SoH estimation method has been experimentally applied here to an 

NMC cylindrical battery cells aged with cycle aging at room temperature, but is also 

applicable to other chemistries. Kindermann et al. [14] showed that the relaxation rates 

measured with EIS of NMC and Lithium Manganese Oxide (LiMn) cells are within 1% of 

each other, suggesting that the proposed SoH estimation model would be equally effective. 

4.7 CONCLUSION 

In this paper a SoH estimation method is proposed that entails a combined 

consideration of the short-term relaxation effect, EIS measurements and fractional order 

impedance modeling. It was shown that EIS measurements obtained between 5 and 15 

minutes of rest can produce repeatable results to be used with an empirical model. The 

proposed empirical model was shown to provide an average SoH estimation error of less 

than 1%. This method shows promise for SoH estimation with EIS, for potential 

implementation with a BMS.  
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ABSTRACT  

In this paper, a battery state of charge (SoC) estimation strategy with deep neural networks 

(DNN) and Electrochemical Impedance Spectroscopy (EIS) is proposed. EIS data was 

obtained for a range of conditions and was used as inputs to a DNN. Additionally, a battery 

model was fit to the data, and the model parameters were used as inputs to a second DNN. 

The Root Mean Square Error (RMSE) of both networks was found to be less than 5% for 

SoC above 30%. The dataset used in this study included batteries of different States of 

Health (SoH) as well as EIS measured at various rest times after different discharge pulses. 

5.1 INTRODUCTION 

Battery state estimation accuracy for lithium-ion batteries and their use in electric vehicles 

(EV) remains an area of interest to engineers and researchers. The most important battery 

states are State of Charge (SoC) [1], State of Health (SoH) [2], and State of available Power 

                                                
3 In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does not 

endorse any of McMaster's products or services. Internal or personal use of this material is permitted. If 

interested in reprinting/republishing IEEE copyrighted material for advertising or promotional purposes or 

for creating new collective works for resale or redistribution, please go to 

http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how 

to obtain a License from RightsLink.   
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(SoaP) [3]. Further increase in accuracy for the estimation of these states can result in a 

decrease in cost, size, and weight of the battery pack, as well as increase in longevity and 

safety [4], [5]. However, the information extracted from the battery is usually restricted to 

simple voltage, current and temperature measurements, and Kalman filters are used 

together with battery models to obtain optimal state estimation in the face of uncertainties 

[6], [7],[8]. A more detailed picture of the states of the battery can be obtained using 

Electrochemical Impedance Spectroscopy (EIS), a technique which has been widely used 

by researchers in electrochemistry and battery engineering to characterize battery 

behaviour [9], [10]. EIS applies a voltage or current signal to the battery at different 

frequencies and the corresponding response is measured and converted to frequency 

domain via the Fourier transform. The real and imaginary components of the impedance 

are commonly plotted for each frequency resulting in a Nyquist plot [11]. EIS is not yet 

available as part of the battery management system (BMS) in EVs, but efforts are being 

made to bring down costs and complexity of this method [12]–[14]. Once EIS becomes 

available in the BMS it can be used to augment SoC estimation algorithms. Only a few 

studies have attempted to obtain accurate state estimation from EIS data. In [15], an 

equivalent circuit model was fit to EIS data and the model parameters were related to SoC 

showing an error of 2 to 5%. In [16], a large EIS dataset was used with Gaussian process 

regression to estimate SoH. The SoH estimated by the Gaussian algorithm was shown to 

be within ±1 standard deviation after 150 cycles.  The zero phase frequency was related to 

SoH and used to train a simple neural network in [17], however, no information about 

estimation accuracy was provided. Deep Neural Networks (DNN) have become a useful 
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tool to solve difficult classification and regression problems [18] in areas ranging from 

image processing to natural language processing. The relationship of the EIS data and the 

battery states is very complex making DNNs a suitable choice for state estimation from 

EIS. The aim of this study is to train a DNN with EIS data from lithium-ion batteries of 

different SoH to estimate SoC. Two networks are trained, one using raw EIS data, and the 

other using parameters from an impedance model.  

5.2 EXPERIMENTAL 

5.2.1 CHARACTERIZATION TESTS AND DATA 

Lithium-ion batteries (Samsung INR21700-50E, 4.8Ah) were tested with EIS using a Bio-

logic SP150 Potentiostat. Battery SoC and SoH were determined with a custom battery 

tester to less than 0.5% accuracy, and aging was done by cycling (constant current – 

constant voltage charge at C/2, discharge at 1C) using a Cadex C7400ER 4-channel battery 

analyzer. EIS and capacity tests were performed under controlled temperature conditions 

using a Testequity 1007C thermal chamber. The dataset used in this study consist of EIS 

scans for 25 frequencies between 800 Hz and 100 mHz each with a voltage amplitude of 

10 mV. To account for relaxation effects [19], EIS was measured periodically after 15 

second discharge pulses of 1C, 3C and 5C currents. The measurements were taken every 5 

minutes over 30 minutes, then after every 15 minutes for 1 hour, and then every hour over 

3 hours. In addition, the batteries were tested at 25°C and at 100%, 90%, and 80% SoH. 

Finally, SoC was varied in 5% increments from 30% to 95%. This multi-dimensional 

dataset of over 600 data points formed the basis for the findings of this study. A small 
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subset of Nyquist plots for the different conditions are shown in Figure 5-1a from which 

the high complexity of the relationship between SoC, SoH and EIS results can be observed. 

Figure 5-1b shows how different rest times after a 5C discharge impact the EIS 

measurement.  

 

Figure 5-1: Nyquist plots for 100%, 70% and 30% SoC at 25°C and different SoH (a). 

Nyquist plots for 95% SoC, 90% SoH at 25°C after 15 second, 5C discharge pulse measured 

different rest times (b). 

100% SoH

90% SoH

80% SoH

a)

b)
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5.2.2 BATTERY MODEL 

The impedance model shown in Figure 5-2b was fit to the EIS data using particle swarm 

optimization and the sum of squares cost function with equal weighting [11]. The model is 

based on [9] who showed a good fit to EIS data and provided clear reasoning for the 

selection of model components. The complex impedance 𝑍 of this fractional model changes 

with frequency 𝜔 according to (5-1), where 𝜏𝑘 = (𝑅𝑘𝑄𝑘)
1

𝛼𝑘
⁄ . 

 𝑍(𝜔) = 𝑖𝜔𝐿 + 𝑅0 +
𝑅1

1+𝑅1𝑄1(𝑖𝜔𝜏1)𝛼1
+

𝑅2

1+𝑅1𝑄1(𝑖𝜔𝜏1)𝛼2
+

1

𝑄3(𝑖𝜔)𝛼3
 (5-1) 

The model parameters across the different conditions are used as inputs to one of the neural 

networks. EIS data at 100% SoH can be modeled using a simpler model, with an inductor 

in series with a resistor in series with a constant phase element (CPE) and in series with 

only one parallel Zarc element. However, the neural network requires the same amount of 

inputs regardless of SoH, therefore, two Zarc elements were used as shown in Figure 5-2 

in all cases.  
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Figure 5-2: Impedance model used to model relaxation effect (a), and model fit to relaxation 

data at 25°C and 90% SoC (b). 

5.2.3 NETWORK ARCHITECTURES 

The architectures for the two neural networks used in this study are shown in Figure 5-3. 

Both networks consist of a single output, which is the SoC of a battery. The input 

parameters for the first network (Figure 5-3a) are the raw EIS values in frequency domain, 

which are a complex pair for each measurement frequency. The complex pairs were split 

into real and imaginary parts, yielding 25 numbers for the real parts and 25 numbers for the 

imaginary parts of the impedance, since 25 frequencies were used in the EIS measurement. 

Therefore, the neural network in Figure 5-3a has a total of 50 inputs. A network structure 

consisting of three hidden layers with 180 nodes each was found to result in the lowest 

regression error. For the second neural network (Figure 5-3b), the EIS data was used to 

a)

b)
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parameterize the battery model presented in Section 5.2.2. This resulted in 10 numbers for 

each EIS scan, representing the model parameters 𝐿, 𝑅0, 𝑅1, 𝑄1, 𝛼1, 𝑅2, 𝑄2, 𝛼2, 𝑄3 and 𝛼3. 

These 10 model parameters were used as the inputs to the neural network shown in Figure 

5-3b. In this case, a single hidden layer with 70 nodes resulted in the lowest regression 

error.  

 

Figure 5-3: Network structures for raw EIS input (a), and EIS model parameters (b). 

The models were designed and trained using Keras (based on TensorFlow) and Scikit-

Learn Python libraries. The input parameters were scaled by removing the mean and scaling 

to unit variance, using the Scikit-Learn StandardScaler function. The output parameters 

a)

b)
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were scaled to values between 0 and 1, using the Scikit-Learn MinMaxScaler function. 

Without these scaling methods, the neural networks were unable to estimate the SoC. All 

neurons have Sigmoid activation functions and optimization was done using the standard 

stochastic gradient descent (SGD), with the mean squared error (MSE) cost function. 

Learning rates were varied between 0.001 and 0.1. The dataset was split into training (80%) 

and validation (20%) sets, and half of the training set was used as a batch size. In addition, 

L2 regularization was employed, with a factor of 0.0001 for raw EIS input, and 0.00016 

for model parameter input to prevent overfitting. Higher and lower regularization factors 

resulted in increased RMSEs or over-fitting. Network training was performed to a 

maximum of 10 million epochs. The hyper parameters are summarized in Table 5-1. 

Table 5-1 Network Hyper Parameters 

Hyper Parameter Value 

Activation Function Sigmoid 

Optimizer SGD 

Cost Function MSE 

Learning Rate 0.001-0.1 

Training/Validation Split 20% 

Batch Size ½ of Training Set 

Regularization L2  

Epochs 10M 

5.3 RESULTS AND DISCUSSION 

The performance comparison of the two networks is visualized in Figure 5-4 for each 

measured SoC. All estimates from the neural networks are shown (50 points per SoC), as 

well as their mean and standard deviation for each SoC. For both networks, some SoC 

values are estimated more consistently than others. With raw EIS input (Figure 5-4a), the 

standard deviation is large in the mid SoC range (50-70%), which is where the EIS data 
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mostly overlaps, making it harder for the neural network to distinguish SoCs. However, for 

model parameter inputs, the standard deviation is higher for lower SoCs (50-30%). In Table 

5-2, performance parameters are summarized for both networks. The RMSE values for the 

raw EIS input network are similar between training and validation sets suggesting that 

overfitting is minimal. However, the training and validation RMSE values for the model 

parameter input network are further apart, suggesting that some overfitting is present. The 

maximum standard deviation per SoC is slightly higher when using raw EIS inputs, 

however, it is also more robust.   
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Figure 5-4: RMSE evolution during training epochs for DNN using raw EIS data (a), and 

DNN using EIS model parameters (b). 

Table 5-2: Network Performance 

Parameter 
Input 

Raw EIS Model Param. 

Overall RMSE 3.80 3.87 

Training RMSE 3.81 3.78 

Validation RMSE 3.74 4.22 

Max. Std. Dev. 4.39 3.83 

 

Figure 5-5 shows the evolution of the RMSE during training for both types of networks. 

With raw EIS inputs, the neural network reaches a low RMSE within 1 million epochs. 
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During the rest of the training time the performance gains are much smaller, but the training 

and validation RMSE approach the same value. With model parameters as inputs, on the 

other hand, the network training is slower in general, with over 6 million epochs required 

before the RMSE stabilizes. The difference between training and validation RMSEs, 

however, remains significant. The training process for this network is not smooth but shows 

steps at epoch numbers 2 million and 6 million, which may be a result of the regularization 

algorithm.  
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Figure 5-5: RMSE evolution during training epochs for DNN using raw EIS data (a), and 

DNN using EIS model parameters (b). 

To find suitable numbers for hidden layers and nodes per layer for each network, the 

number of layers and nodes were changed in different directions. Figure 5-6 shows how 

the RMSE changes for both training and validation values, for the two types of inputs (raw 

EIS and model parameters) and for different numbers of layers (Figure 5-6a) and different 
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number of nodes per layer (Figure 5-6b). In each case, the criteria for best performance was 

the lowest RMSE and the shortest distance between training and validation, favouring the 

latter over the former. The configurations for number of layers and nodes per layer selected 

based on this criterion are circled in Figure 5-6. For raw EIS inputs, 3 hidden layers (Figure 

5-6a) with 180 nodes each (Figure 5-6b) were selected, since this configuration results in 

both the lowest RMSE, as well as the shortest distance between training and validation. For 

battery model inputs, the lowest RMSE occurs at 3 layers for the training set (Figure 5-6a), 

however, the validation set RMSE is much higher. This indicates that the network over-fits 

to the training data. The next lowest RMSE occurs with 1 layer, and here, the distance 

between training and validation is smaller. However, the RMSE for the training set is still 

lower than the RMSE for the validation set, even at 1 layer, so overfitting was not 

eliminated. Similarly, the smallest distance between training and validation is found for 70 

nodes per layer (Figure 5-6b).  



Ph.D. Thesis - Marvin Messing  McMaster University - Mechanical Engineering 

 

- 149 - 

 

 

 

Figure 5-6: RMSE for validation and training for different number of network layers (a), 

and different number of nodes per layer (b). 

The results of this study show that when using simple, feed-forward neural networks, there 

are no performance gains from using battery model parameters over raw EIS data. The 

smaller number of input nodes required for model parameters is desirable, however, the 

modeling process itself can add noise to the data, and as shown in this study, the neural 

network does not perform significantly better than with all 50 raw EIS values as inputs. 

Furthermore, all neural network configurations used in this study for model parameter 

inputs tended to over-fit to the training data. In contrast, using raw EIS as inputs to the 
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neural networks resulted in RMSE values which were similar for both training and 

validation sets, as well as lower RMSE values for most SoC values, as shown in Figure 5-7. 

Figure 5-7 further shows that for SoCs above 30%, all RMSE values are below 5%. At 30% 

SoC, however, a clear increase in RMSE is seen for both types of inputs.  

 

Figure 5-7: RMSE for each SoC. 

If EIS measurement capability is available on board EVs or, for smaller battery packs used 

in portable applications, as part of a charger, SoC may be measured by feeding raw EIS 

data into a neural network. The purpose of this study was to provide a starting point for this 

method and show how simple neural networks perform in this task. Various values for 

number of layers, nodes per layer, regularization and learning rate were investigated, 

however, an even more systematic approach considering a wider range of values for each 

parameter may improve performance. In this study, the training-validation split was held 

constant, however, a k-fold validation approach may provide more information of the 

robustness of the neural network performance. Finally, the dataset used in this study 
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included EIS scans taken with rest times ranging from as short as 5 minutes to 3 hours. The 

difference in EIS results especially at short rest times (Figure 5-1b) creates an additional 

challenge for the neural network regression. As part of a future study, scans at different rest 

times should be isolated to investigate the impact of rest times on neural network 

performance. Shorter rest times are desirable for real time applications; however, any 

discharge or charge has a significant impact on the EIS measurement during initial rest.  

Beyond simple, feed-forward neural networks, more sophisticated network structures are 

available such as recurrent neural networks (RNN) and convolutional neural networks 

(CNN). However, using EIS data with these types of neural networks is less straight 

forward since special formatting of the input data may be required. CNNs are frequently 

used to find features in images and RNNs have a short-term memory component, neither 

of which are directly applicable to EIS data. However, strategies to take advantage of RNNs 

and CNNs will be investigated in future studies.  

5.4 CONCLUSION 

Neural networks were used in this work to estimate the SoC of Samsung INR21700-50E 

lithium-ion batteries from EIS scans at different SoH, rest time, and prior discharge pulse 

depths. The EIS data was used to parameterize a fractional order battery model. Two neural 

networks were designed, one to use for inputs, the values of the real and imaginary EIS 

data components, and another to use the battery model parameters as its inputs. Different 

network structures were evaluated for each case. The ones with lowest RMSE and lowest 

overfitting were presented. It was found that both cases can provide SoC estimates with 
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RMSEs of less than 5% for the SoC range of 35% to 95%. However, using battery model 

parameters as inputs to the neural network still showed some degree of overfitting. Further 

work is suggested to include more advanced neural network architectures as well as 

investigate the impact of rest time on the estimation accuracy.   
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ABSTRACT 

Lithium-ion battery State of Charge (SoC) estimation for Electric Vehicle (EV) 

applications must be robust and as accurate as possible to maximize battery utilization and 

ensure safe operation over a wide range of operating conditions. SoC estimation commonly 

utilizes filters such as the Extended Kalman Filter (EKF) which rely on battery models, 

usually in the form of Equivalent Circuit Models (ECM). At low temperatures the battery 

response to current draw becomes increasingly non-linear, resulting in amplified SoC 

estimation errors. In this study, current dependent SoC estimation at low temperature is 

proposed using an Interacting Multiple Model (IMM) filter with three ECMs covering a 

range of C-rates. The IMM is combined with the Smooth Variable Structure Filter (SVSF) 

to obtain robust SoC estimates within a SoC estimation error of 2%. 

6.1 INTRODUCTION 

In this paper an improved low temperature State of Charge (SoC) estimation strategy is 

proposed. Reduced SoC estimation errors are achieved by using different battery models 

optimized for different drive cycle discharge current magnitudes (or C-rates). Three 



Ph.D. Thesis - Marvin Messing  McMaster University - Mechanical Engineering 

 

- 155 - 

 

 

Equivalent Circuit Models (ECM) are parameterized to cover low, medium, and high C-

rate drive cycles. The Interacting Multiple Model (IMM) filter is combined with the ECMs 

and the Smooth Variable Structure (SVSF) filter to estimate SoC at low temperature. The 

performance of the proposed estimation strategy is evaluated for lithium-ion cells at 100% 

and 90% State of Health (SoH). Furthermore, the IMM-SVSF strategy is compared to the 

conventional EKF in place of the SVSF (i.e. IMM-EKF). The remainder of this section 

discusses the motivation and technical challenges, presents a review of relevant literature, 

and provides the main contributions as well as an outline of the paper.  

6.1.1 MOTIVATION AND TECHNICAL CHALLENGES 

Electric Vehicles (EV) depend on Battery Management Systems (BMS) to ensure optimal 

operation of the battery pack. One of the most important tasks of a BMS is the estimation 

of several battery states, including SoC, State of Power (SoP), and SoH. A large selection 

of methods exists for battery state estimation across a wide range of operating conditions 

[1]. For low temperature operation, special care must be taken to ensure sufficient state 

estimation accuracy. The behavior of the battery changes considerably at low temperatures 

[2] and to account for that, model parameters are adjusted for different temperatures. Huo 

et al. [3] developed a temperature dependent 2nd order ECM and used it to improve SoC 

estimation using an EKF. Guo et al. [4] combined a temperature adjusted 2nd order ECM 

with a dual extended Kalman filter and showed that their method greatly improves SoC 

estimation compared to an EKF without temperature compensation. Xiong et al. [5] used a 

temperature dependent battery model and a membership theory based estimation algorithm 
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to estimate SoC within 5% down to -40°𝐶. Furthermore, they show that even with 

temperature compensation, the average estimation errors increase as temperature decreases. 

Yang et al. [6] used a temperature compensated model with the EKF with an estimation 

error within 3% for temperatures as low as 0°𝐶. Zhu et al. [7] proposed a temperature, SoC 

and current compensated electro-thermal battery model and showed reduced voltage errors 

down to -20°𝐶. Shen et al. [8] used a Square Root Cubature Kalman Filter (SRCKF) with 

a temperature compensated, 2nd order ECM and showed improved SoC estimation accuracy 

between -20°𝐶 and 60°𝐶 for medium C-rate drive cycles. At low temperature, the battery 

response becomes increasingly non-linear with C-rate, creating additional modeling errors.  

Kollmeyer et al. [9] compared different models and different parameterization methods for 

various drive cycles and temperatures and showed the increased impact of C-rate at low 

temperatures on battery model parameters. The battery models can be improved to include 

current-dependent mode parameters; however, this creates additional challenges with filter-

based state estimation methods. Temperature dependent model parameters (much like SoC 

dependent parameters) are compatible with state estimation filters such as the EKF. This is 

because temperature and SoC are low frequency signals, changing at a slow rate and mostly 

in one direction. However, drive cycle currents for EV applications are high frequency 

signals, able to rapidly change magnitude and direction from one second to the next. This 

means that current dependent battery models could exhibit parameter updates from one 

filter sample to the next, creating a system which is no-longer observable. Observability is 

a requirement for filters such as the EKF to produce robust estimates [10], [11]. Therefore, 

current dependent battery models are not feasible for use with EKF and similar filters. In 
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this paper, the IMM is used to circumvent this limitation while maintaining observability 

and robust state estimates. Relevant literature on the usage of the IMM for battery state 

estimation is reviewed next.  

6.1.2 INTERACTING MULTIPLE MODEL FILTER 

When the uncertainty of a single model used with an EKF or similar filter is high, the 

estimation error will also be high [12]. In such cases, estimation can be improved by 

combining information from several models into one filter. This can be useful if the system 

model is uncertain, but will be close to within a range of different models or their blended 

combination. A static multi-model algorithm can then pick the most suitable one to use for 

the given inputs. A dynamic multi-model algorithm can be used if the system model 

changes during the estimation process. However, in the dynamic case, an optimal estimator 

is not computationally feasible [10]. Instead, a sub-optimal algorithm such as the IMM 

derived by Blom et al. [13] can be used. The IMM is used in many practical applications 

such as air traffic tracking, autonomous vehicle tracking and missile tracking, and new 

applications are still being explored [14]–[16]. For battery applications, the IMM has been 

used to allow for multiple battery models to be considered simultaneously as part of state 

estimation algorithms. Smiley et al. [17] used the IMM with EKF to select from 21 physics-

based, reduced order battery models each representing different battery aging states. In [18] 

the same group introduced a post processing method to improve the predictions obtained 

from the IMM by analyzing the probability mass function. Su et al. [19] considered three 

different aging models, a polynomial, an exponential, and a Verhulst model, and used the 
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IMM to combine the models for an improved prediction of the Remaining Useful Life 

(RUL) of the battery. In this paper, the IMM is used to improve SoC estimation at low 

temperatures by switching between three different models, which are parameterized for 

different C-rate regions. 

6.1.3 SMOOTH VARIABLE STRUCTURE FILTER 

The SVSF approach is a predictor-corrector method first presented in [20]. The SVSF is 

based on sliding mode control (SMC) which uses a discontinuous gain and a smoothing 

boundary layer. The stability and robustness of the SVSF method has been illustrated 

against uncertainties and noise in relation to the filter model. The SVSF was later improved 

with several advancements, including the covariance formulation, time-varying smoothing 

boundary layer (SVSF-VBL) and combinations with different filters such as KF, EKF, 

UKF, Particle filter (PF) and more [21]–[23]. The SVSF-VBL approach provides more 

accuracy in the presence of noise and model uncertainties [24]. However, observability of 

the system needs to be guaranteed in use of these algorithms. Gadsden et al. [25] compared 

the SVSF to EKF and other filters for a target tracking problem and showed superior 

performance of the SVSF especially in the presence of modeling errors. In a similar study, 

Gadsden et al. [26] showed improved state and parameter estimation performance using the 

SVSF for a hybrid EV application. In another study, Gadsden et al. [27] used the SVSF 

with an IMM and compared the IMM-SVSF to the IMM-EKF for an air traffic control 

problem. They found a significant improvement of the IMM-SVSF over the IMM-EKF. 
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This paper compares SVSF and EKF in terms of accuracy and robustness and their 

performance as part of the IMM for low temperature battery SoC estimation. 

6.1.4 CONTRIBUTIONS 

In this work the IMM is used with the SVSF to reduce SoC estimation errors at low 

temperatures by considering different battery models for different C-rates. This paper 

includes the following contributions: 1) multiple models are used to reduce SoC estimation 

errors at low temperatures using the IMM with C-rate specific models, and 2) the IMM-

SVSF is demonstrated to have higher SoC estimation accuracy compared to the IMM-EKF.    

6.1.5 PAPER OUTLINE 

The remainder of this paper is organized as follows. Section 6.2 contains background theory 

on the battery model, EKF, SVSF, IMM, as well as vehicle modeling to obtain drive cycles. 

In Section 6.3 the datasets used to parameterise and validate the proposed estimation method 

are introduced. Section 6.4 presents the results and discusses the performance of the IMM-

SVSF compared to IMM-EKF and single model IMM and SVSF filters at low temperatures. 

Concluding remarks are provided in Section 6.5.   

6.2 THEORY 

This section first defines the equivalent circuit model used in this study, followed by 

descriptions of the EKF and SVSF SoC estimation algorithms. Finally, the IMM algorithm 

is introduced.  
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6.2.1 BATTERY MODELING & PARAMETERIZATION 

The battery model used in this study as part of the SoC estimation methods is shown in 

Figure 6-1. This 3rd order ECM is a common choice for SoC estimation algorithms. A 

resistor 𝑅0 is used to model the internal resistance of the battery and three RC-pairs are 

used to model the time dependent, transient response of the battery caused by charge 

transfer and diffusion reactions [28]. The resistances 𝑅𝑗 and capacitances 𝐶𝑗 are for the jth 

element of the circuit with elements from 1 to 3. The ECM can be used together with the 

OCV-SoC relationships of the battery to obtain terminal voltage using (6-1), (6-2), (6-3), 

and (6-4) given an SoC and a cell current demand 𝑢𝑘. 

 �̂�𝑘+1 = 𝑂𝐶𝑉(𝑥𝑘,𝑘+1) − 𝑅0𝑢𝑘 − ∑ 𝑣𝑗,𝑘+1
𝑛
𝑗=1  (6-1) 

 𝑣𝑗,𝑘+1 = 𝑣𝑗,𝑘 (1 −
𝛥𝑡

𝜏𝑗
) +

𝛥𝑡

𝐶𝑗
𝑢𝑘 (6-2) 

 𝜏𝑗 = 𝑅𝑗𝐶𝑗 (6-3) 

 𝑥𝑘+1 = 𝑥𝑘 +
Δ𝑡

𝐶𝑟
𝑢𝑘 (6-4) 

 

Figure 6-1: 3rd order battery equivalent circuit model. 

Here, 𝑛 is the order of the ECM (in this case 𝑛 = 3), Δ𝑡 is the time between steps 𝑘 and 

𝑘 + 1 (sample rate), 𝑣𝑗,𝑘 is the voltage drop across RC branch 𝑗 at time 𝑘 and 𝜏𝑗 is the time 

constant associated with branch 𝑗. Finally, 𝑥𝑘 is the SoC of the battery at time 𝑘 and (4) is 

the coulomb counting equation used to calculate the gain or loss of SoC given 𝑢𝑘 and Δ𝑡. 

Finally, 𝐶𝑟 (in Amp-seconds) is the rated capacity of the cell. The OCV-SoC relationship, 

OCV(𝑥𝑘) can be used in the form of a lookup table obtained from experimental data. Figure 
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6-2 shows two OCV-SoC datasets used in this study, one at 25°C used for baseline ECMs, 

and a second at 0°C used for low temperature ECMs. The lower temperature OCV-SoC 

curve shows slightly lower OCV throughout the operating range of the cell.   

 

Figure 6-2: OCV-SoC Curve for different temperatures. 

The ECM is used with different model parameter sets to match the behavior of batteries at 

different temperatures and SoH. The parameters are found using the Simulink Parameter 

Estimator with the Non-linear Least Squares method and the Trust-Region-Reflective 

algorithm. The sum of squared errors was used as a cost function.  

6.2.2 EXTENDED KALMAN FILTER 

In this section, the EKF equations are presented. The EKF is widely used for battery state 

estimation and, therefore, considered in this work as a baseline for comparison to the 

proposed implementation of the IMM-SVSF SoC estimation strategy. The EKF estimates 
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the state vector �̂� using non-linear system and measurement equations as shown in (6-5) 

and (6-6), respectively. 

 𝑥𝑘+1 = 𝑓(𝑥𝑘 , 𝑢𝑘 ,𝑤𝑘) (6-5) 

 �̂�𝑘 = ℎ(𝑥𝑘 , 𝑢𝑘 , 𝑣𝑘) (6-6) 

where 𝑢𝑘 is the input to the system, 𝑤𝑘  is the system noise, 𝑣𝑘 is the measurement noise, 

and �̂�𝑘 is the measurement prediction.  The battery model described in Section 6.2.1. can 

be rearranged into matrix form to be used with the EKF as shown in (6-7).  

 𝑥𝑘,𝑘 = [

𝑣1,𝑘

𝑣2,𝑘

𝑣3,𝑘

𝑥𝑘

] , 𝐹 =

[
 
 
 
 
 1 −

𝛥𝑡

𝐶1
0 0 0

0 1 −
𝛥𝑡

𝐶2
0 0

0 0 1 −
𝛥𝑡

𝐶2
0

0 0 0 1]
 
 
 
 
 

,   𝐺 =

[
 
 
 
 
 
 

𝛥𝑡

𝐶1

𝛥𝑡

𝐶2

𝛥𝑡

𝐶3

−
𝛥𝑡

𝐶𝑟]
 
 
 
 
 
 

 , 𝐻 =

[
 
 
 
 

−1
−1
−1

𝑑𝑂𝐶𝑉(𝑥𝑘,𝑘+1)

𝑑𝑥 ]
 
 
 
 

 (6-7) 

The matrices 𝐹 and 𝐺 make up the parts of (6-2) as well as (6-4) to produce the state vector 

�̂�𝑘,𝑘 at filter step 𝑘. The state vector contains the three branch voltages as well as the SoC 

estimate 𝑥𝑘. The matrix 𝐻 is the Jacobian derived from (6-1). 

A single cycle of the EKF algorithm consists of prediction, correction and update steps 

defined as follows:  

• Prediction: Equation 6-8 is the state equation of the EKF producing the a-priori state 

estimate �̂�𝑘,𝑘+1, where the a-priori is indicated by incrementing the second subscript 

𝑘. Equation 6-9 is the covariance corresponding the a-priori state estimate. Equation 

6-11 represents the error 𝜈 between the measured voltage 𝑧𝑘 and the voltage estimate 

�̂�𝑘.  

 𝑥𝑘,𝑘+1 = 𝐹𝑥𝑘,𝑘 + 𝐺𝑢𝑘 (6-8) 

 𝑃𝑘,𝑘+1 = 𝐹𝑃𝑘,𝑘𝐹′  + 𝑄 (6-9) 

 �̂�𝑘|𝑘+1 = 𝐻𝑥𝑘|𝑘+1 (6-10) 

 𝜈𝑘,𝑘+1 = 𝑧𝑘+1 − �̂�𝑘,𝑘+1 (6-11) 
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• Correction: In (6-12), the innovation covariance 𝑆 is calculated given the 

measurement noise covariance 𝑅 and used in (6-13) to calculate the EKF gain 𝑊: 

 𝑆 = 𝑅 + 𝐻𝑃𝑘,𝑘+1𝐻′ (6-12) 

 𝑊 = 𝑃𝑘,𝑘+1𝐻
′𝑆−1 (6-13) 

• Update: Finally, the gain is used in (6-14) and (6-15) to calculate the a-posteriori 

state vector �̂�𝑘+1,𝑘+1 and state covariance 𝑃𝑘+1,𝑘+1 respectively. Here, 𝐼 is the 

identity matrix.  

 

 𝑥𝑘+1,𝑘+1 = 𝑥𝑘,𝑘+1 + 𝑊𝜈𝑘+1 (6-14) 

 𝑃𝑘+1,𝑘+1 = (𝐼 − 𝑊𝐻)𝑃𝑘,𝑘+1 (6-15) 

 𝜈𝑘+1,𝑘+1 = 𝑧𝑘+1 − �̂�𝑘+1,𝑘+1 (6-16) 

6.2.3 SMOOTH VARIABLE STRUCTURE FILTER 

This section provides the SVSF algorithm which is applicable to any observable and 

differentiable system. The SVSF employs a smoothing boundary layer 𝝍 and a 

discontinuous gain. The SVSF gain forces the states to converge to a neighborhood of the 

true value. This paper employs the SVSF with a time-varying smoothing boundary layer 

(SVSF-VBL) to enhance estimation accuracy [24]. The width of the boundary layer 

depends on the uncertainty of the filter model, as well as the system and measurement noise. 

The SVSF-VBL algorithm uses a time-varying boundary layer with saturated limits to 

guarantee stability and estimation convergence [21]. The SVSF-VBL has the same 

prediction and update steps as the EKF but a different correction step: 

• Correction: In (6-17) the combination of measurement errors 𝑬𝒌+𝟏 is calculated 

given the SVSF convergence parameter 𝜸. Equation (6-18) calculates the SVSF 

smoothing boundary layer width 𝝍. The SVSF gain is shown in (6-19), given a 

tuning parameter 𝝍𝒍𝒊𝒎. 
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 𝐸 = |𝜈𝑘,𝑘+1| + 𝛾|𝜈𝑘| (6-17) 

 𝜓 = (𝐸−1𝐻′𝑆𝑘+1
′ )−1 (6-18) 

 𝑊 = {
𝐻−1𝐸 𝑠𝑎𝑡(𝜈𝑘𝜓−1) 𝜈𝑘,𝑘+1

−1 , 𝜓 ≥ 𝜓𝑙𝑖𝑚

𝐻−1𝐸𝜓−1              , 𝜓 < 𝜓𝑙𝑖𝑚

 (6-19) 

6.2.4 INTERACTING MULTIPLE MODEL FILTERS 

The IMM allows several estimation filters to run in parallel, each using a different model. 

The estimates from each of the filters are then blended together using mixing probabilities 

obtained based on the filters’ error covariance matrices. The main function of the IMM is 

to compute mixing probabilities, which determine how much weight is assigned to each 

filter estimate. The IMM must be initialized with a mode probability vector 𝝁𝒌 and a mode 

transition probability matrix 𝒑. For the 𝒓 = 𝟑 filters used in this work, the initialization is 

shown in (6-20).  

 𝜇 = [

𝜇𝑘,1

𝜇𝑘,2

𝜇𝑘,3

] , 𝑝 = [

𝑝11 ⋯ 𝑝13

⋮ ⋱ ⋮
𝑝31 ⋯ 𝑝33

] (6-20) 

The mode probabilities indicate the probability of each filter (or mode) using the correct 

model at each time step 𝒌. The elements 𝒊, 𝒋 of the mixing probability matrix 𝝁𝒌,𝒌 are 

calculated using (6-21), where �̅�𝒋 is calculated using (6-22). 

 𝜇𝑘,𝑘,𝑖𝑗 =
𝑝𝑖𝑗

𝑐�̅�
𝜇𝑘,𝑖        𝑖, 𝑗 = 1,… , 𝑟 (6-21) 

 𝑐�̅� = ∑ 𝑝𝑖𝑗𝜇𝑘,𝑗
𝑟
𝑖=1        𝑗 = 1,… , 𝑟 (6-22) 

The mixing probability matrix is then used in (6-23) and (6-24) to calculate new state 

estimates �̃�𝑗 and new state covariances 𝑃𝑗 for each of the 𝑟 filters, using the last filter output 

�̂�𝑘+1,𝑘+1 and 𝑃𝑘+1,𝑘+1 . Here, 𝐴𝑥,𝑖 = (�̂�𝑘+1,𝑘+1,𝑖 − �̃�𝑗).  The new �̃�𝑗 and 𝑃𝑗 are then used for 

blending of the estimates and as new starting parameters for the next filter steps.  

 �̃�𝑗 = ∑  𝜇𝑘,𝑘,𝑖𝑗  𝑥𝑘+1,𝑘+1,𝑖
𝑟
𝑖=1      𝑗 = 1,… , 𝑟 (6-23) 
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 𝑃𝑗 = ∑ 𝜇𝑘𝑘,𝑖𝑗(𝑃𝑘+1,𝑘+1,𝑖 + 𝐴𝑥,𝑖𝐴𝑥,𝑖′)
𝑟
𝑖=1    𝑗 = 1,… , 𝑟 (6-24) 

The remaining steps of the IMM are used to calculate the mixing probabilities for the next 

iteration, given the voltage estimate �̂�𝒌,𝒋 and associated innovation covariance 𝑺𝒋 from the 

filters. This is done by first computing the likelihood 𝚲𝒋 using the gaussian probability 

density function (PDF) 𝑵(𝒙, 𝝁, 𝝈) as shown in (6-25). 

 𝛬𝑗 = 𝑁(𝑧𝑘 , �̂�𝑘,𝑗 , 𝑆𝑗) (6-25) 

The likelihood is then used together with �̅�𝒋 from (6-22) and 𝒄 from (6-27) to update the 

mode probabilities 𝝁𝒌+𝟏,𝒋 in (6-26). 

 𝜇𝑘+1,𝑗 =
𝑐�̅�

𝑐
𝛬𝑗  , 𝑗 = 1,… , 𝑟 (6-26) 

 𝑐 = ∑ 𝛬𝑗𝑐�̅�
𝑟
𝑗=1  (6-27) 

Finally, the IMM state vector �̂�𝒌+𝟏,𝒌+𝟏 and associated covariance 𝑷𝒌+𝟏,𝒌+𝟏 can be 

computed using (28) and (29), where 𝑩𝒙,𝒋 = [�̂�𝒌+𝟏,𝒌+𝟏,𝒋 − �̂�𝒌+𝟏,𝒌+𝟏]. 

 𝑥𝑘+1,𝑘+1 = ∑  𝜇𝑘+1,𝑗  �̂�𝑘+1,𝑘+1,𝑗
𝑟
𝑗=1  (6-28) 

 𝑃𝑘+1,𝑘+1 = ∑ 𝜇𝑘+1,𝑗 (𝑃𝑘,𝑗 + 𝐵𝑥,𝑗𝐵
′
𝑥,𝑗)

𝑟
𝑗=1  (6-29) 

Figure 6-3 shows an overview of the IMM algorithm. The algorithm starts at the “IMM 

mixing probabilities” block to compute the mixing probabilities given initial values from 

(20). The mixing probabilities are used in the next block (“IMM mixing”) together with the 

initial state vectors and state covariances of each of the filters (𝑟 = 3 ) used in this diagram 

to compute updated state vectors and covariances as shown in (6-23). The updated states 

are then used to initialize regular filters, such as the EKF or the SVSF. At this point, the 

IMM estimate can also be computed in the “IMM Estimate” block with (6-28) and (6-29). 

The output voltage estimates and measurement covariances of each of the filters are sent to 

the “IMM likelihood” block to compute likelihoods using the measured voltage and (6-25). 
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The state estimates and state covariances are sent to the “IMM mixing” block to be used in 

the next iteration instead of the initial values used for the first iteration. Finally, the mode 

probabilities are updated in the “IMM update” block with (6-26) and used in the “IMM 

mixing probabilities” block for the start of the next iteration instead of the initial mode 

probabilities used in the first iteration. In Figure 6-3 only three filters are shown, but 

additional filters can be used.  

 

Figure 6-3: IMM Algorithm Diagram. 
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6.2.5 VEHICLE MODELING 

The IMM-EKF or IMM-SVSF SoC estimation filters allow multiple battery models to run 

in parallel to achieve an overall improved SoC estimate. In this study, the IMM filters are 

used to improve SoC estimation at low temperatures where the three different battery 

models are optimized for different C-rates. First, the battery models must be parameterized 

with datasets that represent different C-rate ranges as well as the dynamic voltage response 

specific to a given application. This study is intended for EV applications; therefore, 

automotive drive cycles are used to obtain parameterization datasets. Automotive drive 

cycles as provided by the US Environmental Protection Agency (EPA) consist of 

representative sections of vehicle speed vs. time data for different driving conditions. This 

drive cycle data can be used to simulate battery load demand for a given vehicle by 

calculating the power required to overcome rolling resistance, aerodynamic drag, and in 

some situations, gravity to achieve the speed of the drive cycle [78]. In (6-30), the power 

required to accelerate the mass of the vehicle 𝑷𝒂𝒄𝒄 is calculated using the desired speed 𝑽 

from the drive cycle, the mass of the car 𝒎𝒄𝒂𝒓 and acceleration given by 𝒂 = 𝒅𝑽/𝒅𝒕. 

 𝑃𝑎𝑐𝑐 = 𝑚𝑐𝑎𝑟  𝑎 𝑉 (6-30) 

Given the air density 𝜌𝑎𝑖𝑟, the frontal area of the vehicle 𝐴𝑓𝑟𝑜𝑛𝑡 and the drag coefficient of 

the vehicle 𝐶𝐷, (6-31) can be used to calculate the power required to overcome drag, 𝑃𝑑𝑟𝑎𝑔.  

 𝑃𝑑𝑟𝑎𝑔 =
1

2
 𝜌𝑎𝑖𝑟  𝐴𝑓𝑟𝑜𝑛𝑡  𝐶𝐷  𝑉3 (6-31) 

Under the assumption that the vehicle is driven on a flat road (i.e. without inclines of 

declines), (6-32) calculates the power 𝑃𝑟𝑜𝑙𝑙,𝑓𝑙𝑎𝑡  to overcome rolling resistance, given 
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acceleration due to gravity 𝑔=9.81𝑚\𝑠2. The constants 𝐶𝑟𝑎, 𝐶𝑟𝑏, and 𝐶ℎ describe the 

conditions of the road surface.  

 𝑃𝑟𝑜𝑙𝑙,𝑓𝑙𝑎𝑡 = (𝐶𝑟𝑎 + 𝐶𝑟𝑏  𝑉)  𝐶ℎ 𝑚𝑐𝑎𝑟  𝑔 (6-32) 

To achieve the given drive cycle speeds, the battery must at least provide enough power to 

overcome 𝑃𝑡𝑜𝑡 = 𝑃𝑎𝑐𝑐 + 𝑃𝑑𝑟𝑎𝑔 + 𝑃𝑟𝑜𝑙𝑙,𝑓𝑙𝑎𝑡 . However, additional power is lost due to non-

ideal battery efficiency 𝜂𝑏𝑎𝑡𝑡  and losses associated with the drivetrain efficiency 𝜂𝑑𝑟 . 

Furthermore, parasitic power 𝑃𝑎𝑢𝑥 is required to run the auxiliary systems of the car, such 

as lights, air-conditioning, radio, etc. The total power required by the battery pack is then 

given by (6-33). 

 𝑃𝑏𝑎𝑡𝑡 = [(𝑃𝑡𝑜𝑡 𝜂𝑑𝑟⁄ ) + 𝑃𝑎𝑢𝑥] 𝜂𝑏𝑎𝑡𝑡⁄  (6-33) 

Since current is usually easier to control in laboratory equipment than power, the power 

can be converted into battery pack current. As this is a simple model, a fixed nominal 

voltage 𝐸𝑐𝑒𝑙𝑙,𝑛𝑜𝑚 is assumed. The total voltage of the pack can be calculated given the 

number of cells in series 𝑁𝑠𝑒𝑟𝑖𝑒𝑠. Dividing 𝑃𝑏𝑎𝑡𝑡 by the total pack voltage and the number 

of cells in parallel 𝑁𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙  yields the battery cell current 𝐼𝑐𝑒𝑙𝑙 as shown in (6-34). 

 𝐼𝑐𝑒𝑙𝑙 = [𝑃𝑏𝑎𝑡𝑡 (𝑁𝑠𝑒𝑟𝑖𝑒𝑠  𝐸𝑐𝑒𝑙𝑙,𝑛𝑜𝑚⁄ )]/𝑁𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 (6-34) 

The battery cells used in this study are similar to those used by the Tesla Model 3 Long 

range EV. The simple vehicle model described above can be used to approximate the 

behavior of a Tesla Model 3 by using the parameters as well as assumed efficiencies shown 

in Table 6-1. The efficiency of the battery pack and the drive train depend on many factors 

and conditions, but for this simple vehicle model, constant, conservative numbers are 

assumed [30]. The original Tesla Model 3 battery pack configuration was scaled by 
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reducing the number of modules in parallel to achieve slightly higher currents to cover a 

C-rate range between 0 and 4C across different drive cycles. 

Table 6-1: Simple Vehicle Model Parameters [29], [34], [35] 

Name Symbol Value 

Mass of the vehicle. 𝑚𝑐𝑎𝑟 1730 kg 

Rolling resistance calculation factor. 𝐶𝑟𝑎 0.0041 

Rolling resistance calculation factor. 𝐶𝑟𝑏 0.000018 

Rolling resistance calculation factor. 𝐶ℎ 1.5 

Density of air. 𝜌𝑎𝑖𝑟 1.2 

Vehicle frontal area. 𝐴𝑓𝑟𝑜𝑛𝑡 3.25 𝑚2 

Vehicle drag coefficient. 𝐶𝑑 0.23 

Vehicle auxiliary power draw. 𝑃𝑎𝑢𝑥 350 W 

Drivetrain efficiency. 𝜂𝑑𝑟 0.765 

Battery efficiency. 𝜂𝑏𝑎𝑡𝑡  0.95 

Number of modules in parallel. 𝑁𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙,𝑠𝑐𝑎𝑙𝑒𝑑 18 

Number of series cells per module. 𝑁𝑠𝑒𝑟𝑖𝑒𝑠  96 

Nominal battery cell voltage. 𝐸𝑐𝑒𝑙𝑙,𝑛𝑜𝑚 3.6 V 

 Figure 6-4 shows three drive cycle speed profiles and the corresponding current profiles 

obtained with the simple vehicle model described above. Figure 6-4a shows the US Urban 

Dynamometer Driving Schedule (UDDS) from which two low C-rate sections were 

selected to parameterize the low C-rate model. Similarly, Figure 6-4b shows the aggressive 

driving schedule called US06 from which two medium C-rate and two high C-rate sections 

were chosen to parameterize the medium C-rate and high C-rate models, respectively. This 

was done to achieve significant differences in model parameters for the three models, which 

enables the IMM to identify the correct model more clearly. In each case, only discharge 

currents were considered to simplify the model used for this study. The model can be 

extended to include components to handle charge currents following methods described in 

[31]. Figure 6-4c shows a drive cycle mix used for validation consisting of the unified 
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driving schedule called LA92 and the UDDS. In the next section, the drive cycle samples 

and the validation cycle are used in experiments to obtain voltage profiles from battery 

cells. These voltage profiles are later used to parameterize the three C-rate specific models 

as well as to benchmark the proposed IMM based estimation strategy.  
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Figure 6-4: Current profile samples from EPA drive cycles for low C-rates (a) medium and 

high C-rates (b). Validation drive cycle current profile (c). 
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6.3 LOW TEMPERATURE DRIVE CYCLE TESTING 

This section describes the experiments and experimental setup used to obtain the 

parameterization and validation drive cycle datasets from Samsung INR2170-50e lithium-

ion battery cells. The resulting datasets are also shown in this section.  

6.3.1 EXPERIMENTS AND EXPERIMENTAL SETUP 

The data used to parameterize the battery models and to validate the algorithms was 

obtained using a custom designed battery tester. The main components of the tester are 

shown in Figure 6-5a. The setup includes an Agilent load and power supply to discharge 

and charge the battery cells as well as to implement the drive cycle load demand profiles. 

An NI9219 Data Acquisition (DAQ) unit was used to measure the cell voltage via a custom 

Kelvin connection. The DAQ also measures battery cell temperature as well as cell current 

via the voltage drop across a shunt resistor. The battery cells were housed in a thermal 

chamber for controlled environmental conditions and to simulate low temperature 

conditions. The entire system was controlled and automated by custom software written in 

the Python programming language. Figure 6-5b shows a picture of the setup in the lab as 

well as a screen capture of the custom control software. A custom designed 4-point 

measurement battery holder is also shown in magnified form since the cells cannot be seen 

through the thermal chamber window otherwise.  
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Figure 6-5: Experimental setup diagram (a), picture and custom control software screen 

capture (b). 

New Samsung INR21700-50e 4.9Ah cylindrical lithium-ion battery cells were first broken 

in with 10 charge/discharge cycles at 25°C with a standard constant-current constant-
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voltage (CCCV) charge protocol at 0.5C to 4.2V and 0.02C charge cut-off current as 

recommended by the manufacturer. The discharge current was set to 0.2C. The same 

settings are used to verify the battery SoH. OCV-SoC tests were performed at 25°C and 

0°C using C/15 discharge and charge currents. Prior to each OCV-SoC test, the batteries 

were fully charged at 25°C. For the drive cycle tests, the batteries were first fully charged 

at 25°C. Then, the environmental temperature was set to 0°C followed by a rest period of 

1hour after the temperature setpoint was reached. Finally, the drive cycle current profile 

was implemented to draw the required current from the battery. After the drive cycle profile 

was completed, the temperature was raised back to 25°C and the battery was charged again. 

In this study, results at 100% and 90% SoH are presented. The aged dataset was obtained 

by aging battery cells with continued charge/discharge operations involving 1C discharge 

and 0.5C charge currents and, the CCCV charge method to 0.02C cut-off current.  The 

ambient temperature was set to 25°C. 

6.3.2 DRIVE CYCLE DATASETS 

With the experimental procedures described in the previous section, the battery cell voltage 

response at 0°𝐶 corresponding to different drive cycle current profiles are obtained. Four 

different drive cycles are used as described in Section 6.2.5. Three of the current profiles 

are used to produce high, medium, and low C-rate voltage cycles to parameterize each 

battery model. These current profiles consist of drive cycle samples representative of 

different C-rates (see Section 6.2.5) and are repeated several times in a row to cover a wider 

SoC window. The fourth current cycle is used as a validation cycle to evaluate the 
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performance of the algorithms considered in this study. The validation cycle covers an SoC 

range of approximately 5%. To include the full range of SoC, the procedures described in 

this study can be repeated to construct lookup tables for the parameters of each model 

across the entire range of SoC (for example, at every 5% SoC). However, for the purpose 

of demonstrating the IMM-SVSF estimation approach with C-rate specific models, only 

the 5% SoC window is presented.  

Figure 6-6 shows each of the 4 cycles and their current and voltage responses obtained at 

0°C for a battery at 100% SoH. In Figure 6-6a, high current loads up to 4C (20A) produce 

the voltage profile to parameterize the high C-rate model. Figure 6-6b shows current loads 

up to 2C (10A) and the corresponding voltage profile to parameterize the medium C-rate 

model. The low C-rate model was parameterized with the voltage profile in Figure 6-6c 

resulting from current loads of less than 1C (5A). The validation cycle current profile, 

Figure 6-6d, includes loads between less than 1C and up to 4C. Similar voltage profiles 

were obtained at 25°C to establish baseline results as well as for a battery at 90% SoH at 

0°𝐶 for further evaluation of the proposed SoC estimation strategy. The model 

parameterization results and the performance of the EKF, SVSF, and IMM algorithms are 

presented and discussed in the next section. 
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Figure 6-6: Drive Cycles at 0°C and 100% SoH for parameterization of the high C-rate 

model (a), the medium C-rate model (b), the low C-rate model (c), and for validation (d). 

6.4 RESULTS & DISCUSSION 

In this section, the models optimized for different C-rate ranges are discussed and the 

behaviour of the IMM is investigated using mode probabilities. The performance of the 

IMM-SVSF and IMM-EKF are then compared. 

6.4.1 C-RATE SPECIFIC EQUIVALENT CIRCUIT MODELS 

To evaluate the proposed SoC estimation strategy, the ECM introduced in Section 6.2.1. 

was parameterized for three different C-rate ranges at 100% and 90% SoH and 0°C. Table 

2 shows an overview of the model parameters obtained for each condition. Models L1, M1, 



Ph.D. Thesis - Marvin Messing  McMaster University - Mechanical Engineering 

 

- 177 - 

 

 

and H1 are used in Section 6.4.3. with the IMM for low temperature SoC estimation at 

100% SoH, and L2, M2, and H2 for 90% SoH. Models B1 and B2 are used in Section 6.4.2. 

to establish a baseline performance of the EKF and SVSF single filters at 25°C and 0°C, 

respectively, for a 100% SoH battery. Model B2 has the same parameters as model M1 as 

both are at the same conditions. 

For each model, the drive cycle inputs were kept within different C-rate ranges (as shown 

in Section 6.3.2) such that models are obtained for low C-rate (0-1C), medium C-rate (1-

2C) and high C-rate (2-4C). The performance of the 100% SoH, 0°C models (L1, M1 and 

H1) compared to the parameterization profiles from Section 6.3.2. is shown in Figure 6-7. 

For each C-rate range, a close fit is obtained using the 3rd order ECM introduced in Section 

6.2.1 The Root Mean Square Error (RMSE) of the model fits is also included in Table 2. 

The high C-rate models (H1 and H2) show the highest RMSEs, which indicates that the 3rd 

order ECM has some difficulty modeling battery response at high C-rates and low 

temperatures. The remaining models (L1, L2, M1, M2, B1, B2) all fall into a range of 

RMSEs between 0.003 and 0.03. The three time constants of the ECM fall within three 

ranges, 0.19-0.36, 3.7-10, and 18-42, with model B1, 𝜏2 being the only exception. Model 

B1 is the only model at 25°C which suggests that at higher temperatures, the ECM does not 

need all three time constants to achieve a good RMSE of 0.0071 which falls well within 

the range of the RMSEs of the other models.  
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Table 6-2: Battery Model Parameters 

Model Name L1 L2 M1 M2 H1 H2 B1 B2 

Type Low C-rate Medium C-rate High C-rate Baseline 

C-rate Range 0-1 1-2 2-4 1-2 

SoH [%] 100 90 100 90 100 90 100 100 

Temperature 

[°𝐶] 
0 0 0 0 0 0 25 0 

𝑅0 [𝑚Ω] 43.1 25.6 39.1 30.4 34.8 18.8 22.8 39.1 

𝑅1 [𝑚Ω] 12.4 34.7 9.5 21.8 8.8 24.5 7.6 9.5 

𝑅2 [𝑚Ω] 3.8 16.3 2.5 5 2 12.6 11.5 2.5 

𝑅3 [𝑚Ω] 49.7 8 37.4 28.4 26.9 9.2 14.2 37.4 

𝜏1  [𝑠] 
0.25 0.23 0.3 0.25 0.36 0.19 0.24 0.3 

𝜏2 [𝑠] 
3.7 5.74 4.1 10 6.6 9.3 3824.3 4.1 

𝜏3 [𝑠] 42 18 31.54 21.1 24.5 18 18.4 31.5 

Fit RMSE  

[× 10−3] 
10.1 3.5 12.1 24.5 31.5 63.3 7.1 12.1 
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Figure 6-7: Performance for L1 (a), M1 (b), and H1 (c) c-rate specific models at 100% SoH 

and 0°C. 

Figure 6-8 shows how the series resistance 𝑅0 and the branch resistances of the models L1, 

M1 and H1 vary. All of the resistances decrease as C-rate increases. At this low temperature 

condition, the model parameters are significantly different for different C-rate regions, 

therefore, the IMM will be able to extract different information from each model to achieve 

an improved SoC estimate. In the next section, the models are used with IMM-EKF and 

IMM-SVSF filters for SoC estimation. The medium C-rate models (M1 and M2) are used 

for the EKF and SVSF single filters. 
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Figure 6-8: Change in model resistances with C-rate at 0°C. 

6.4.2 FILTER INITIALIZATION AND BASELINE 

The initialization parameters of the standard EKF are the initial state vector �̂�𝑘,𝑘, the initial 

state covariance 𝑃𝑘,𝑘 , the process covariance 𝑄 and the measurement covariance 𝑅. 

Equation (35) shows the initial values used for �̂�𝑘,𝑘 , 𝑃𝑘,𝑘, and 𝑄, where 𝐼4 is the 4-by-4 

identity matrix and 𝑠𝑜𝑐𝑖𝑛𝑖𝑡  changes depending on the drive cycle used or when evaluating 

filter convergence speed. 𝑄 was chosen sufficiently low to indicate some confidence in the 

process. If 𝑄 is too small and the input currents and measured voltages are very accurate, 

the filter will favor the process over the model. In addition to choosing a suitably high 𝑄, a 

bias was added to the current and voltage signals to simulate realistic conditions. Similarly, 

the measurement covariance 𝑅 is chosen to reflect some uncertainty. �̂�𝑘,𝑘 and 𝑃𝑘,𝑘  are 

updated as part of the filter and their values mostly impact convergence speed. The same 

values for the three parameters in (6-35) are used for all filters in this study.  

 𝑥𝑘,𝑘 = [

10−3

10−3

10−3

𝑠𝑜𝑐𝑖𝑛𝑖𝑡

] , 𝑃𝑘,𝑘 = 𝐼4 × 4 × 10−6 , 𝑄 = 𝐼4 × 2 × 10−2 (6-35) 
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The SVSF uses the same initial parameters as the EKF plus the two additional parameters 

ψ_lim, the constant smoothing boundary width, and γ, the convergence rate. The 

parameters are summarized in Table 6-3. The measurement covariance is the only value 

that is adjusted between the 100% and 90% SoH datasets as shown. 

Table 6-3: Filter Initialization Parameters 

Name Symbol Value 

Measurement Covariance (100%/90% SoH) R 0.2/0.8 

SVSF Convergence Rate 𝛾 0.1 

SVSF Constant Smoothing Boundary Width 𝜓𝑙𝑖𝑚  70 

Current Bias 𝐼𝑏𝑖𝑎𝑠 80 mA 

Voltage Bias 𝑉𝑏𝑖𝑎𝑠 1 mV 

With these initial settings as well as a suitable battery model, the battery SoC can be 

estimated using EKF and SVSF filters. To establish a baseline performance, the model B1 

(see Table 6-2) was then used with the EKF and SVSF and the validation drive cycle 

voltage profile also at 25°C. Similarly, the mode B2 was used with the validation drive 

cycle at 0°C. Figure 6-9a shows the SoC estimation performance at 25°C.  Although the 

medium C-rate model B1 is very specific to the medium C-rate range, good SoC tracking 

is achieved. In contrast, the SoC estimation performance shown in Figure 6-9b, shows large 

deviation of both EKF and SVSF from the measured SoC. The objective of this paper is to 

improve the SoC tracking of EKF and SVSF at 0°C by using the IMM algorithm. The IMM 

requires two additional initialization parameters, 𝜇𝑘  and 𝑝, with initial values for this study 

shown in (6-36). The initial mode probability 𝜇𝑘  is chosen such that each filter has equal 

probability of using the correct model at the start, since the correct filter is unknown. The 
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mode transition probabilities p impact how quickly the IMM switches between modes. The 

chosen values result in smooth switching behaviour of the IMM. 

 𝜇𝑘 = [
0.33
0.33
0.33

] , 𝑝 = [
0.9998 0.0001 0.0001
0.0001 0.9998 0.0001
0.0001 0.0001 0.9998

] (6-36) 

 

Figure 6-9: Baseline filter performance at 100% SoH, 25°C (a) and 0°C (b). 

In the next section, the performance of the IMM-EKF and IMM-SVSF are presented and 

compared.  

6.4.3 PERFORMANCE COMPARISON 

In this section, the low-temperature performance of the IMM-SVSF and IMM-EKF 

estimation strategies is demonstrated for 100% SoH and 90% SoH batteries. Figure 6-10 

shows SoC estimation performance, SoC error and C-rate (for reference) for the validation 
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drive cycle profile. Figure 6-10a shows the measured SoC for the validation drive cycle at 

100% SoH as well as the estimated SoC from the EKF, SVSF, IMM-EKF, and IMM-SVSF. 

Figure 6-10b shows similar results for the 90% SoH case. The SoC estimation errors for 

100% and 90% SoH are shown in Figure 6-10c and Figure 6-10d, respectively. The C-rate 

load profile of the validation drive cycle is shown in Figure 6-10e and Figure 6-10f for 

reference. The validation drive cycle starts with C-rates of less than 1.5C until about 300 

seconds into the cycle, then C-rates increase to around 2C on average. Towards the end the 

average C-rate is raised again with peaks of up to 4C. Initially, in Figure 6-10a and Figure 

6-10b, all filters perform in a similar way up until around 200 seconds into the drive cycle. 

In this first part, the C-rates are mostly between 0.5 and 1.5C which can still be captured 

well by the medium C-rate models (M1 and M2) used by the single filters. Between 200 

seconds and 300 seconds, the drive cycle C-rates are mostly below 0.5C and the single 

filters show an increased estimation error. Beyond 300 seconds, the C-rates become 

increasingly larger and the single model filters (EKF and SVSF) show further increased 

estimation errors. The EKF-IMM estimation error also increases, however, at a much 

slower rate. The SVSF-IMM shows the lowest estimation error during the second half of 

the drive cycle and overall remains within ±2%. Table 6-4 summarizes the performance 

of each filter using the RMSE of the SoC estimate for the 100% and 90% SoH validation 

cycles at 0°C. The IMM based low temperature SoC estimation strategy can achieve 

significant improvements over single filters. Furthermore, the SVSF on its own performs 

similar to the EKF, however, when combined with the IMM strategy, the IMM-SVSF 

produces the lowest SoC estimation RMSE. 
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Table 6-4: Filter RMSE Comparison for validation cycles at 0°C 

Filter RMSE 100% SoH RMSE 90% SoH 

EKF 3.29 2.26 

SVSF 3.03 2.36 

IMM-EKF 1.01 0.85 

IMM-SVSF 0.70 0.71 

 

Figure 6-10: IMM SoC Estimation and error at 0°C for 100% SoH (a, c) and 90% SoH 

(b,d), C-rates for reference (e, f). 

A performance metric for the filters is how well they respond to increased uncertainty due 

to, for example, increased input error. Figure 6-11 shows the impact of increasing the input 

current bias on the RMSE of the SoC estimation during the validation cycle. Figure 6-11a 

shows how the RMSE changes for each filter with the 100% SoH dataset, and Figure 6-11b 
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for the 90% SoH dataset. The RMSE increases in all cases with increased current bias, 

however, the IMM-SVSF shows a slightly slower rate of RMSE increase compared to the 

other filters.  

 

Figure 6-11: Impact of current bias on RMSE for 100% SoH (a) and 90% SoH datasets. 

In the next section, the performance of the IMM-SVSF and IMM-EKF is investigated 

further using the voltage modeled by each filter as well as the mode probabilities calculated 

by the IMM algorithm. 
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6.4.4 IMM VOLTAGE MODELING & MODE PROBABILITIES 

The results shown in the previous section demonstrate the effectiveness of the IMM-SVSF 

combination for low temperature SoC estimation. The reason for the lower estimation 

errors of the IMM based filter is that the IMM is able to consider trade-offs between 

different models. In this study, the models L1, M1, and H1 are used for 100% SoH data at 

0°C. Each model is parameterized to suite different C-rate ranges, so the IMM can adjust 

the SoC estimate based on the input C-rate by selecting the most suitable combination of 

models. In this section, the behavior of the IMM is investigated further by first considering 

the modeled battery cell voltages produced by the three different models. Figure 6-12 

shows the voltage response of the three models used in the IMM-SVSF compared to the 

measured voltage of the battery for the same drive cycle input. Also shown is the voltage 

error for each model. When the drive cycle C-rates are low, the voltage error of the high C-

rate model H1 increases as shown, for example, between 220 and 320 seconds in the 

magnified portion of Figure 6-12b. However, when voltage drops are large, such as shown 

in Figure 6-12a.3, the model H1 is the most accurate. Similarly, the medium C-rate model 

M1 is the most accurate for medium voltage drops and the low C-rate model L1 for low 

voltage drops and rest periods as shown in Figure 6-12a.1 and Figure 6-12a.2 respectively. 

This shows that the models perform as intended when they are used as part of the IMM. 
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Figure 6-12: Voltage and voltage error of the three models (L1, M1, H1) used in the IMM-

SVSF at 100% SoH and 0°C. 

Another way to visualize the behaviour of the IMM is by considering the mode 

probabilities. The mode probabilities indicate which model is most likely to be the correct 

one, but effectively, mode probabilities also represent how much each model impacts the 

final IMM estimate. Figure 6-13a and Figure 6-13b show the mode probabilities for the 

IMM-EKF for the 100% and 90% SoH cases, respectively. Similarly, Figure 6-13c and d 
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show the mode probabilities for the IMM-SVSF. For each filter, the mode probabilities of 

the three models are shown, indicating the contribution of each model to the final state 

estimate. Figure 6-13e and Figure 6-13f show again the C-rate load profile of the validation 

drive cycle for reference. In the previous section, the IMM-EKF was shown to have a 

reduced estimation error, however, the IMM-SVSF estimation error was better and lower 

still. In general, the IMM filters first favour the low C-rate models (L1 and L2), then the 

medium C-rate models (M1 and M2), and finally the high C-rate models (H1 and H2). This 

roughly coincides with the gradual increase in average C-rate of the drive cycles, however, 

the IMM requires some time to switch between models. Subtle differences are apparent 

between the IMM-EKF and IMM-SVSF and for the two SoH conditions. In Figure 6-13c, 

the IMM-SVSF briefly favours the low C-rate model L1 again during a low C-rate region 

(less than 0.5C) around 300 seconds. For the same 100% SoH dataset, the medium C-rate 

model M1 remains dominant in the IMM-EKF as shown in Figure 6-13a. As shown in the 

previous section (Figure 6-10a), the IMM-SVSF computes an improved SoC estimate after 

300 seconds compared to the IMM-EKF. For the 90% SoH dataset, the IMM-SVSF in 

Figure 6-13d shows a smooth transition between models and a clear dominant model for 

each region. The IMM-EKF, on the other hand, shows similar overall trends, but with lower 

mode probabilities in each region. Again, the SoC estimation performance of the IMM-

SVSF is also improved (Figure 6-10b). The IMM-SVSF is able to switch between models 

more quickly and more confidently, resulting in improved SoC estimates.  
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Figure 6-13: Mode probabilities for IMM-EKF at 100% SoH (a), 90% SoH, (b) and IMM-

SVSF 100% SoH (c), 90% SoH (d). C-rates shown for reference in (e) and (f). 

The performance of the filters is demonstrated based on single cell data. However, the 

IMM-SVSF method can be scaled to full battery packs consisting of series and parallel 

connected cells. Sub-modules of parallel cells are often treated as single cells with higher 

capacities to reduce the number of sensors used in the battery pack [32]. This is valid under 

the assumption that the cells are similar enough in their characteristics. Improvements can 

be made to ECMs to include resistances of interconnects [33] and those models can then 



Ph.D. Thesis - Marvin Messing  McMaster University - Mechanical Engineering 

 

- 190 - 

 

 

be used with the IMM-SVSF. Single cells or parallel sub-modules in series equipped with 

individual voltage sensors can each be tracked with dedicated IMM-SVSF algorithms.  

6.5 CONCLUSION 

Low temperatures increase the C-rate dependence of the response of lithium-ion batteries. 

As a result, SoC estimation accuracy can decreases due to voltage modeling errors at 

different C-rates. In this paper, an IMM-SVSF SoC estimation method is proposed that 

utilizes three models, each for a different range of C-rates. The proposed strategy is able to 

significantly increases SoC estimation accuracy at low temperatures. The IMM-SVSF is 

further compared to IMM-EKF and still shows improved accuracy. The IMM behavior is 

discussed in terms of voltage modeling and mode probabilities.  
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ABSTRACT  

In this paper, the behaviour of lithium-ion batteries aged with an accelerated 

(charge/discharge) and a realistic (drive cycle) protocol is compared using Electrochemical 

Impedance Spectroscopy (EIS) characterization. Two equivalent circuit models are used to 

further analyse degradation trends. The results show increased impedances for drive cycle 

aged batteries above 90% State of Health (SoH) compared to charge/discharge aged cells 

at the same SoH. Below 90% SoH, the opposite is found, with charge/discharged aged cells 

showing higher impedance. 

7.1  INTRODUCTION 

Lithium-ion batteries (LiB) used in Electric Vehicles (EV) require precise battery 

management systems (BMS) for safety monitoring, fault detection and state estimation. 

The state of charge (SoC) [1], state of health (SoH) [2], and state of available power (SoaP) 

                                                
4 In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does not 

endorse any of McMaster's products or services. Internal or personal use of this material is permitted. If 

interested in reprinting/republishing IEEE copyrighted material for advertising or promotional purposes or 

for creating new collective works for resale or redistribution, please go to 

http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how 

to obtain a License from RightsLink.   
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[3] must be estimated by the BMS to ensure optimal operation and energy usage. The 

accuracy of the state estimation not only impacts longevity and safety of the battery, but 

also contributes to the cost and size of the battery pack [4], [5].  One of the main challenges 

with SoH estimation is the long time it takes to obtain representative battery data to use for 

algorithm development. Many studies that characterize batteries at different SoH employ 

accelerated aging techniques, such as increasing operating temperature or current rates [6]–

[9]. However, the use of acceleration factors results in data which is not necessarily 

representative of batteries that were aged as part of an EV battery pack. The impact of 

different aging methods on the battery behaviour becomes especially apparent if the 

batteries are analyzed with Electrochemical Impedance Spectroscopy (EIS). EIS is a non-

destructive material characterization technique that applies low amplitude, sinusoidal 

current or voltage signals at different frequencies to a battery [10]. The EIS excitation 

signals cause a battery current or voltage response which can be transformed using the Fast 

Fourier Transform (FFT) and analyzed in the frequency domain. The EIS results are most 

commonly visualized in the form of Nyquist plots, which show the complex impedance 

pairs (real and imaginary) for each input signal frequency. The Nyquist plots exhibit several 

features corresponding to the internal impedance response of the various layers of the 

battery. The EIS data can further be analysed by using battery models such as Equivalent 

Circuit Models (ECM). 

Several studies show how EIS changes under different operating and aging conditions. 

Schuster et al. [11] used EIS to track the evolution of ohmic resistance and charge transfer 

resistance under different charging/discharging rates, temperatures, and voltage limits and 
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showed that high charging rates, high temperature, and high voltage limits cause the 

resistances to increase significantly. However, a range of conditions are shown to result in 

similar resistance evolution. In another study, Schuster et al. [12] showed how ohmic and 

charge transfer resistances change with calendric, cyclic, and mild cyclic/high temperature 

aging protocols. They highlight the importance of using realistic aging protocols to obtain 

aged battery data when developing algorithms to utilize these resistances. Both studies use 

simple resistor-capacitor (RC) based ECMs. Zhu et al. [13] showed how different charging 

protocols change the evolution of EIS and corresponding fractional order model fits. 

Olofsson et al. [13] showed how EIS results change for drive cycle tests performed at room 

temperature and elevated temperature.  

The objective of this study is to analyse the differences between EIS results from batteries 

aged using accelerated and realistic cycling protocols by modeling EIS data with different 

ECMs. The aging protocols are designed to use similar temperatures and charging methods, 

while still resulting in different aging rates due to differences in cycling profiles.  The 

results show that the realistic test causes increased impedance measurements in the 

frequency regions associated with SEI layer growth and charge transfer resistance between 

100% and 90% SoH, even though it takes three times the amount of time to reach the same 

SoH as the accelerated test. However, this trend reverses for data below 90% SoH, showing 

faster SEI and charge transfer resistance increase with SoH for the accelerated test at 87% 

and 85% SoH. 
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The paper is organized as follows. In Section 7.2, a simple EV model based on the Tesla 

Model 3 is presented. This model is used to generate drive cycle current profiles for realistic 

battery aging. The aging experiment design is introduced next, followed by a description 

of the battery models used in this study. Section 7.3 contains the findings of the aging study 

and EIS characterization for the accelerated and realistic aging methods. Finally, 

concluding remarks are provided and future work is discussed in Section 7.4.   

7.2  METHODS AND THEORY 

7.2.1 ELECTRIC VEHICLE MODELING 

In this study, standard drive cycles as provided by the US Environment Protection Agency 

(EPA) are used to apply current profiles to battery cells such that the cells age in a way 

similar to cells used in EVs. However, the EPA drive cycles merely provide speed vs. time 

information for different scenarios. To convert this data into battery cell current, a vehicle 

model is required. The first step is to calculate the power required to achieve the desired 

speeds by overcoming opposing forces. Equation (7-1) shows how to calculate 𝑃𝑎𝑐𝑐, the 

power required to accelerate the mass of the vehicle, given the desired speed 𝑉, the mass 

of the car 𝑚𝑐𝑎𝑟 and acceleration calculated using (7-2). 

 𝑃𝑎𝑐𝑐 = 𝑚𝑐𝑎𝑟  𝑎 𝑉 (7-1)  

 𝑎 = 𝑑𝑉 𝑑𝑡⁄  (7-2) 

In (7-3), the power 𝑃𝑟𝑜𝑙𝑙,𝑓𝑙𝑎𝑡 to overcome rolling resistance assuming a flat surface is 

calculated given acceleration due to gravity 𝑔=9.81𝑚\𝑠2 and a road surface parameter 𝐶𝑟 

calculated using (7-4). 

 𝑃𝑟𝑜𝑙𝑙,𝑓𝑙𝑎𝑡 = 𝐶𝑟  𝑚𝑐𝑎𝑟  𝑔 (7-3) 
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The constants 𝐶𝑟𝑎, 𝐶𝑟𝑏, and 𝐶ℎ describe the conditions of the road surface.  

 𝐶𝑟 = (𝐶𝑟𝑎 + 𝐶𝑟𝑏  𝑉) 𝐶ℎ (7-4) 

The power required to overcome drag, 𝑃𝑑𝑟𝑎𝑔, is calculated in (7-5) given the air density 

𝜌𝑎𝑖𝑟 , the frontal area of the vehicle 𝐴𝑓𝑟𝑜𝑛𝑡 and the drag coefficient of the vehicle 𝐶𝐷. 

 𝑃𝑑𝑟𝑎𝑔 =
1

2
 𝜌𝑎𝑖𝑟  𝐴𝑓𝑟𝑜𝑛𝑡  𝐶𝐷  𝑉3 (7-5) 

Equations (7-1), (7-3), and (7-5) provide the total power required to achieve the desired 

speeds and is summarized in (7-6) as 𝑃𝑡𝑜𝑡. 

 𝑃𝑡𝑜𝑡 = 𝑃𝑎𝑐𝑐 + 𝑃𝑟𝑜𝑙𝑙,𝑓𝑙𝑎𝑡 + 𝑃𝑑𝑟𝑎𝑔 (7-6) 

Next, the power required from the battery pack is calculated in (7-7) by considering further 

losses due to drive train efficiency 𝜂𝑑𝑟 , battery efficiency 𝜂𝑏𝑎𝑡𝑡  and parasitic power 𝑃𝑎𝑢𝑥 

required by the auxiliary systems of the car.  

 𝑃𝑏𝑎𝑡𝑡 = [(𝑃𝑡𝑜𝑡 𝜂𝑑𝑟⁄ ) + 𝑃𝑎𝑢𝑥] 𝜂𝑏𝑎𝑡𝑡⁄  (7-7) 

Using (7-8), the power can be converted into battery pack current, assuming a fixed 

nominal voltage 𝐸𝑐𝑒𝑙𝑙,𝑛𝑜𝑚 and given the number of cells in parallel 𝑁𝑠𝑒𝑟𝑖𝑒𝑠, which make up 

the total pack voltage. 

 𝐼𝑝𝑎𝑐𝑘 = 𝑃𝑏𝑎𝑡𝑡 (𝑁𝑠𝑒𝑟𝑖𝑒𝑠  𝐸𝑐𝑒𝑙𝑙,𝑛𝑜𝑚⁄ ) (7-8) 

Finally, the battery cell current is obtained in (7-9) given the number of cells in parallel 

𝑁𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 . 

 𝐼𝑐𝑒𝑙𝑙 = 𝐼𝑝𝑎𝑐𝑘 𝑁𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙⁄  (7-9) 

In this study, the simple vehicle model described above is used to approximate the 

behaviour of a Tesla Model 3 Long range EV. The parameters specific to the EV as well as 

assumed efficiencies are shown in Table 7-1: Vehicle Model Parameters for Tesla Model 
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3 Long Range. The original Tesla Model 3 battery pack configuration was scaled by 

reducing the number of modules in parallel to achieve slightly higher currents. This results 

in utilization of more of the battery voltage range and reduced aging times. Nevertheless, 

the current profiles remain sufficiently realistic to compare to accelerated charge/discharge 

aging.  

Table 7-1: Vehicle Model Parameters for Tesla Model 3 Long Range 

Name Symbol Value 

Mass of the vehicle. 𝑚𝑐𝑎𝑟 1730 kg 

Rolling resistance calculation factor. 𝐶𝑟𝑎 0.0041 

Rolling resistance calculation factor. 𝐶𝑟𝑏 0.000018 

Rolling resistance calculation factor. 𝐶ℎ 1.5 

Density of air. 𝜌𝑎𝑖𝑟 1.2 

Vehicle frontal area. 𝐴𝑓𝑟𝑜𝑛𝑡 3.25 𝑚2 

Vehicle drag coefficient. 𝐶𝑑 0.23 

Vehicle auxiliary power draw. 𝑃𝑎𝑢𝑥 350 W 

Drivetrain efficiency. 𝜂𝑑𝑟 0.765 

Battery efficiency. 𝜂𝑏𝑎𝑡𝑡  0.95 

Number of modules in parallel. 𝑁𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙,𝑠𝑐𝑎𝑙𝑒𝑑 18 

Number of series cells per module. 𝑁𝑠𝑒𝑟𝑖𝑒𝑠  96 

Nominal battery cell voltage. 𝐸𝑐𝑒𝑙𝑙,𝑛𝑜𝑚 3.6 V 

7.2.2 BATTERY AGING 

An extensive aging study was conducted with battery cells undergoing accelerated 

charge/discharge aging and other cells undergoing aging in the form of a combination of 

drive cycles to simulate battery operation as encountered in EVs. For each aging condition, 

cells were aged to 85% SoH and EIS measurements were obtained at 100%, 95%, 90%, 

87%, and 85% SoH. All cells used in this study are Samsung INR21700-50E, 4.8Ah 

lithium-ion batteries. A custom battery tester was used to determine battery states to less 

than 0.5% error, as well as to simulate drive cycles for realistic aging. The accelerated aging 
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(constant current – constant voltage charge at C/2, discharge at 1C) was performed on 

Cadex C7400ER 4-channel battery analyzers. EIS (10 mV amplitude, 800Hz to 0.1Hz, 3-

hour pre-measurement rest) was performed using a Bio-logic SP150 potentiostat. Testing 

was done at a constant temperature of 25°C using a Testequity 1007C thermal chamber. 

Figure 7-1 shows the drive cycle aging protocol current, scaled by battery capacity (c-rate). 

The protocol consists of a series of “Week Cycles” (trips from home to work and back plus 

an evening errand and charge at home), a “Weekend Cycle” (trip through the city, onto a 

highway, fast charging (1C) at destination, and back), as well as a capacity check (constant 

current – constant voltage charge at C/2, discharge at C/5). The “Week Cycles” are a 

combination of urban (UDDS) and urban-aggressive (US06) EPA drive cycles, and the 

“Weekend Cycles” are a combination of US06 and highway (HWYFET) EPA drive cycles. 

Home charging is done with constant current – constant voltage charge at C/2. The week 

cycles are repeated 10 times, amounting to two work weeks of driving. This is followed by 

a weekend cycle (i.e. weekend trips occur every 2 weeks). Capacity checks are done after 

every 8 weekend cycles. If the capacity check indicates that the target capacity has been 

reached, the EIS characterization is performed. This procedure is summarized in Figure 

7-2. 
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Figure 7-1: Aging test load profiles in units of C-rate for drive cycle aging test (a) and 

charge/discharge aging test (b). 
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Figure 7-2: Aging test procedure showing the usage of different drive cycle protocols, 

different charge rates, and EIS steps. 

7.2.3 BATTERY MODELING 

To understand the degradation behaviour of the batteries as they age, two ECMs were used 

in this study. The first model is a fractional order impedance model which can follow the 

shape of the data very well and fitting can be automated if suitable initial conditions for the 

model parameters are provided. The second model is a 2nd order RC based ECM. Some of 

the parameters obtain from the RC model can reveal more realistic trends even though the 

model fit is poor due to the ideal nature of the RC circuit elements. Figure 7-3a shows 

Nyquist plots for EIS data at 100% SoH and 90% SoH and corresponding model fits for 

the fractional order model and the RC model. The fractional impedance model shown in 

Figure 7-3b consists of an inductor 𝐿, representing inductance effects due to cell windings 
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and cables, a series resistance 𝑅0, for ohmic resistance effects, a resistance 𝑅1 in parallel 

with a constant phase element (CPE) defined by 𝑄1 and 𝛼1, together known as a ZArc 

element, to model the solid electrolyte interface impedance, another ZArc element defined 

by 𝑅2, 𝑄2 and 𝛼2 to model charge transfer impedance, and finally a CPE defined by  𝑄3 

and 𝛼3 to model diffusion. The complex impedance 𝑍𝑓𝑟 of this ECM changes with 

frequency 𝜔 according to (9), where 𝜏𝑘 = (𝑅𝑘𝑄𝑘)1 𝛼𝑘⁄ . 

 𝑍𝑓𝑟(𝜔) = 𝑖𝜔𝐿 + 𝑅0 + ∑
𝑅𝑘

1+𝑅𝑘𝑄𝑘(𝑖𝜔𝜏𝑘)𝛼𝑘 
2
𝑘=1 +

1

𝑄3(𝑖𝜔)𝛼3
 (9) 

The RC model contains two RC pairs instead of the ZArc and CPE elements as shown in 

Figure 7-3c. The RC branches are used to model the charge transfer impedance and 

diffusion impedance, but neglecting the SEI layer impedance. This is done because the 

exact positioning of an additional RC semi-circle to model SEI layer impedance is 

somewhat arbitrary and does not yield useful information for this study. This is discussed 

further in Section 7.3.2. The complex impedance 𝑍𝑟𝑐 of the RC model is described by (10), 

where 𝜏2 = 𝑅2𝐶2 and 𝜏3 = 𝑅3𝐶3. 

 𝑍𝑟𝑐(𝜔) = 𝑖𝜔𝐿 + 𝑅0 +
𝑅2

1+𝑖𝜔𝜏2
+

𝑅3

1+𝑖𝜔𝜏3
 (10) 

The fractional order ECM was parameterized using the Particle Swarm Optimization (PSO) 

method. The PSO was also used for the RC ECM, however, 𝑅0 and 𝑅2 were fixed such that 

𝑅0 coincides with the real impedance value corresponding to the smallest imaginary value. 

𝑅2 was fixed to the difference between the lowest point in the charge transfer region and 

𝑅0 [12].  
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Figure 7-3: Equivalent circuit battery model fits to Nyquist plots (a), fractional order model 

circuit (b), RC-based circuit without SEI layer branch (c). 

7.3 RESULTS AND DISCUSSION 

7.3.1 VOLTAGE AND TEMPERATURE RESPONSE 

Figure 7-4a shows the voltage response of battery cells at 100% SoH resulting from drive 

cycle (week cycle followed by weekend cycle) and charge/discharge protocols. The same 

is shown in Figure 7-4b but for batteries at 85% SoH. The voltage response of the 

charge/discharge aging profile did not change much, only charging shows longer CV mode 

periods for low SoH. The voltage data from the drive cycle, however, shows a significantly 

altered response. At low SoH, the drive cycles use a much larger portion of the battery 

voltage range, with the weekend cycle nearly using the full range. This will also decrease 
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the average voltage of the cell and could possibly impact degradation. The fresh cell only 

uses the top half of the voltage range (3.6 to 4.2 V) and has a higher average voltage which 

can accelerate degradation. This degradation effect due to voltage may be slower for the 

aged cell which uses the full voltage range (2.5 to 4.2V).  

 

Figure 7-4: Drive cycle aged and charge/discharge aged voltage profiles for fresh cells (a) 

and cells at 85% SoH (b). 
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temperatures compared to the fresh cell. The lower temperatures reached in the aged case 

are likely due to the lower average voltage. The temperature data for fresh and aged cells 

aged with the charge/discharge profile is shown in Figure 7-5b. Here, the temperature peaks 

for the aged cell are lower for almost all peaks shown. This is likely a result of the extended 

CV region, where currents are dropping and less heat is generated. In contrast, the fresh 

cell spends more time at the 0.5C charging current, generating more heat. For both drive 

cycle aged and charge/discharge aged cells, charging results in the biggest temperature 

increase, with the overall maximum of close to 30°C reached during the fast charge as part 

of the weekend cycle. In general, however, the temperatures are similar between the two 

aging protocols as well as between fresh and aged cells, with differences not exceeding 

0.5°C. Therefore, temperature is expected to affect the two aging protocols in the same way 

and to not cause any significant differences in aging behaviour between charge/discharge 

aged and drive cycle aged battery cells. 
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Figure 7-5: Comparison of temperature profiles for fresh cells and cells at 85% SoH during 

drive cycle aging protocol (a) and charge/discharge protocol (c). 
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aged batteries, three datasets were available down to 90% SoH. Above 90% SoH the 

variance between the three sets is negligible but at 90% SoH the variance is larger and the 

standard deviation (Std. Dev.) is shown around the 90% SoH mean Nyquist plot in Figure 

7-6a. Between 100% and 90% SoH, the drive cycle aged data shows a faster increase in the 

semi-circles compared to the charge/discharge aged results. This suggests that impedance 

growth has a bigger impact on battery degradation when drive cycles are used above 90% 

SoH. The charge/discharge protocol reached 90% SoH much faster than the drive cycle 

protocol, however, with significantly smaller impedance growth. Below 90% SoH, the 

charge/discharge aged Nyquist plots become much larger than the drive cycle aged ones, 

indicating that in this lower SoH phase, charge/discharge cycles result in higher impedance 

increase at the same SoH. The variance observed for the drive cycle data at 90% SoH, while 

noticeable, is still small compared to the change between SoH targets and even more so, 

when compared to charge/discharge aging.  
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Figure 7-6: Nyquist plot evolution at various SoH targets with fractional order model fits 

for drive cycle aged EIS data (a) and charge/discharge aged EIS data (b). 
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increase up to 87% SoH, and decreases after that. Assuming the variance of the drive cycle 

data below 90% SoH is similar (or larger) to the variance at 90% SoH, 𝑅1 from the two 

aging datasets becomes indistinguishable. This behaviour is not obvious from the Nyquist 

plots. However, the charge/discharge Nyquist data shows a much more pronounced 

inflection point in the SEI layer impedance region. A more defined inflection point leaves 

the PSO algorithm with fewer options for the exact placement of the SEI layer impedance 

model branch. Figure 7-7c shows trends for 𝑅2 which are similar for both models, with the 

RC model only offset by the missing SEI layer resistance. For both models, 𝑅2 increases 

faster for drive cycle aged batteries to 90% SoH, and faster for charge/discharge aged cells 

bellow 90% SoH. The variance for the drive cycle data is also small in all available cases 

for the 𝑅2 parameter. Therefore, 𝑅2 is the most reliable parameter to consider for both 

fractional and RC models, when comparing EIS results. The inflection point in the Nyquist 

plot defining 𝑅2 is well defined in all cases, resulting in clear model parameter trends. 

Considering the Nyquist plots and model parameters, it is clear that a change in impedance 

growth rate with SoH occurs around 90% SoH. The voltage ranges utilized by the different 

aging protocols (as discussing in Section 7.3.1) may offer one explanation. The higher 

average voltage of fresh cells during drive cycle aging can cause accelerated degradation, 

and the average voltage decreases as the battery ages. For the charge/discharge aged cells, 

the duration spent at the maximum voltage during charge increases as the battery ages, 

causing the opposite degradation trend. This also happens in the drive cycle aging case, but 

the lower average voltage range during discharge seems to outweigh the longer CV mode 

periods. The higher frequency cycles of the drive cycle protocol may also be a factor 
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contributing to the aging behaviour, but is difficult to isolate among more dominant 

stressors such as temperature and voltage.  

 

Figure 7-7: Battery model parameter evolution with SoH for drive cycle and 

charge/discharge aging for ohmic parameter R_0 (a), SEI layer parameter R_1, and charge 

transfer parameter R_2 (c). 
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7.4 CONCLUSIONS AND FUTURE WORK 

In this work, accelerated (charge/discharge) and realistic (drive cycle based) aging 

protocols were employed to age LiBs. EIS results are presented for 100% to 85% SoH 

samples from both aging protocols and show increasing impedance with SoH. Two battery 

models are used to further analyse the EIS data. Impedance initially increases at a faster 

rate with SoH for the drive cycle aging dataset, but is overtaken by the charge/discharge 

aging dataset after 90% SoH. The voltage profiles for the different aging sets suggest higher 

average voltages at the beginning of drive cycle testing and at the end (85% SoH) of 

charge/discharge testing may explain the observed trends. The impact of drive cycle 

frequencies on battery degradation should be investigated further. 
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Chapter 8: Summary, Conclusions and Recommendations 

In this chapter, the major conclusions of this thesis are summarized and recommendations 

are made for possible future projects based on the findings.  

8.1 RESEARCH SUMMARY 

This thesis presents several advancements in the area of battery characterization through 

the development, improvement and implementation of methods including Electrochemical 

Impedance Spectroscopy (EIS), Deep Neural Networks (DNN), and adaptive filters such 

as the Interacting Multiple Model (IMM) filter. The estimation of battery State of Charge 

(SoC) and State of Health (SoH) is a critical component of Battery Management Systems 

(BMS), especially for applications in Electric Vehicles (EV). Many methods exist, 

however, each with their own advantages and drawbacks. The main objective of this thesis 

is to investigate and improve different state estimation techniques by characterizing battery 

dynamics under different temperatures, aging conditions and relaxation effects.  

Chapters 2, 3, 4 and 5 utilize EIS to estimate battery SoC and SoH. One of the main 

drawbacks of EIS is the requirement for long rest times to avoid interference from the 

battery relaxation effect. In Chapter 2, the relaxation effect is characterized with EIS and 

its impact on battery modeling is investigated. The findings from this work provide insight 

into the relaxation behaviour of batteries and the impact of relaxation on battery model 

parameters. In addition, impedance models such as Fractional Order Models (FOM) were 

found to accurately track the relaxation effect. The combined effects of relaxation, SoC, 

and temperature were analysed to show that relaxation effects must be carefully considered 
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when processing EIS measurements. With the growing interest in improving EIS methods 

to be more suitable for BMS applications, the requirement for long rest times becomes 

impractical. Yet the results discussed in Chapter 2 show an increased impact of the 

relaxation effect on model parameters as rest times are reduced. Therefore, the short-term 

relaxation effect must be investigated in more detail to determine its impact on EIS under 

different operating conditions. This is the subject of Chapter 3. 

Chapter 3 presents methodologies to significantly decrease the rest times required for EIS 

under a wide range of battery operating conditions, circumventing a major hurdle to the use 

of EIS in real time applications. The impact of the relaxation effect during short rest times, 

where it is most severe, is investigated for different SoCs, temperatures, and excitation 

amplitudes. A filtering technique is developed that utilizes the Voigt circuit to smooth out 

EIS measurements. Using this filter, rest times of as low as 5 minutes are shown to produce 

valid EIS results following low battery excitation. If the initial excitation is large, rest times 

can be as low as 30 minutes, provided the SoC remains high. The findings of this work 

provide operating points for the most time efficient EIS measurements. 

Chapter 4 shows how EIS can be used to extract battery SoH information from the 

relaxation effect and presents a method for battery SoH estimation to within 1%. The 

relaxation effect is found to slow down as batteries age and the rate of the slowdown can 

be detected with EIS. Using a FOM and an equivalent resistance model parameter, the rate 

of change of the relaxation effect can be related to the battery SoH. A double exponential 

model is used to capture two sperate time constants, a fast time constant between 100% and 
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90% SoH, and a slow time constant below 90% SoH. This second region exhibits a near 

linear trend, allowing for increased SoH estimation accuracy at lower SoH. Since batteries 

become unsuitable for EV applications below 80% SoH, the estimation of SoH becomes 

more important closer to 80%. With accurate SoH estimates, a BMS can act to ensure the 

safe operation of the battery as it ages while still maintaining performance and maximum 

battery utilization. The SoH method combined with the findings of Chapter 3 can bring EIS 

one step closer to being a viable option for battery state estimation and diagnostics in BMS 

applications.  

In Chapter 5, EIS data is used together with DNNs to estimate battery SoC to within 5% 

for a dataset which represents a wide range of battery operating conditions. Two DNNs are 

designed and compared. The first DNN accepts EIS data in frequency domain (real and 

imaginary pairs) as inputs to estimate SoC as the only output. For the second DNN, the EIS 

data was first used to parameterize a FOM. The parameters of the FOM were then used as 

inputs to the second DNN to estimate SoC. Both DNNs showed similar accuracies, 

however, using model parameters instead of EIS data directly, resulted in overfitting. The 

use of DNNs to estimate battery states from EIS is promising, especially since the shape of 

EIS results changes in a complex way with battery operating conditions and states. This 

kind of complexity presents a challenge for model-based state estimation methods but can 

be handled well by DNNs, as long as a sufficiently large dataset is available for training. 

Model-based methods typically require only a fraction of parameters compared to DNNs, 

which is a concern of real-time, embedded applications. However, methods such a pruning 

can be used to reduce DNN model parameters. 
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Chapter 6 combines the IMM filter with the Smooth Variable Structure (SVSF) filter to 

significantly improve battery SoC estimation at low temperatures. An estimation error of 

less than 2% is demonstrated. At low temperatures, the battery response to current becomes 

increasingly non-linear. This means that a single Equivalent Circuit Model (ECM) cannot 

accurately reflect the battery behaviour across the entire range of operating currents. As a 

result, state estimation filters such as the Extended Kalman Filter (EKF) become less 

accurate as temperature decreases. The IMM allows several EKFs (each with a different 

ECM) to run in parallel, and blends the different state estimates into an overall improved 

estimate. The IMM uses mode probabilities to weight each EKF estimate based on the 

likelihood of the battery model representing the real battery response. Three battery models 

were trained each for a different current range and used with three EKFs combined with 

the IMM. This IMM-EKF algorithm showed a significant improvement over the single 

model EKF for low temperature SoC estimation. In addition, it was shown that the 

estimation errors could be further reduced by using the SVSF instead of the EKF. The 

adaptive properties of the SVSF result in more robust estimation and estimation errors of 

less than 2% were demonstrated for new and aged battery data.  

Chapter 7 investigates the impact of different battery aging pathways on EIS measurements. 

An extensive aging study was designed to compare accelerated, charge-discharge based 

aging to more realistic, drive cycle based aging. The accelerated test showed a faster 

impedance increase between 100% and 90% SoH, but was overtaken by the impedance 

increase of the realistic test below 90% SoH. The results were analysed with both ECMs 

and FOMs. Understanding how EIS results change depending on the way a battery was 
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aged has a profound impact on experimental design, battery modeling, and, by extension, 

battery state estimation. The results shown in Chapter 7 can be used to inform accelerated 

aging experiments to significantly reduce testing time, while still obtaining realistic results.  

The research findings of this thesis advance the field of battery engineering by providing 

improved techniques for state estimation as well as insights into battery aging and 

impedance behaviour. The methods presented can improve battery management strategies, 

leading to more efficient EV battery packs. As a result, the cost of EVs can be reduced, 

increasing accessibility to a wider market and in turn contribute to the reduction of air 

pollution and Greenhouse Gas (GHG) emissions.  

8.2 RECOMMENDATION FOR FUTURE RESEARCH 

Many areas of future work can be recommended surrounding the topic of EIS and its 

applications to EVs. Some of the methods shown in this thesis are intended to improve the 

EIS analysis for real time applications, however, the methods were only tested with lab-

grade equipment and not combined with Battery Management System (BMS) hardware. 

Implementing EIS as part of a BMS itself is a large area of research.  

The proposed SoH estimation method combining EIS and the relaxation effect was 

validated using charge/discharge cycle aged batteries only. This study can be extended to 

include additional aging pathways and different types of batteries to understand the 

robustness of the method. 

The IMM-SVSF method presented for increasing SoC estimation accuracy at low 

temperatures shows promising performance. However, since multiple filters run in parallel, 
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some concern exists surrounding computational efficiency. More research is required to 

understand the computational impact of the IMM, develop efficiency improvements, and 

demonstrate its functionality on real-time systems.   

Another area of research that continues to be relevant is the aging behaviour of batteries. 

The results shown in this thesis demonstrate the need for careful consideration of the aging 

pathways when conducting experiments and analysing results. Additional aging studies 

utilizing EIS characterization and a wider range of stressors would greatly benefit the 

understanding of the relationship between accelerated and realistic aging tests.  
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