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Abstract
We study energy-driven nonlocal pattern forming systems with opposing interactions. Selections are

drawn from the area of Quantum Physics, and nonlocalities are present via Coulombian type interactions.
More precisely, we study Thomas-Fermi-Dirac-Von Weizsäcker (TFDW) type models, which are mass-
constrained variational problems. The TFDW model is a physical model describing ground state electron
configurations of many-body systems.

First, we consider minimization problems of the TFDW type, both for general external potentials and for
perturbations of the Newtonian potential satisfying mild conditions. We describe the structure of minimizing
sequences, and obtain a more precise characterization of patterns in minimizing sequences for the TFDW
functionals regularized by long-range perturbations.

Second, we consider the TFDW model and the Liquid Drop Model with external potential, a model pro-
posed by Gamow in the context of nuclear structure. It has been observed that the TFDW model and the
Liquid Drop Model exhibit many of the same properties, especially in regard to the existence and nonexis-
tence of minimizers. We show that, under a “sharp interface” scaling of the coefficients, the TFDW energy
with constrained mass Gamma-converges to the Liquid Drop model, for a general class of external potentials.
Finally, we present some consequences for global minimizers of each model.
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Chapter 1

Introduction

In computational Chemistry and Physics, behaviour of atoms and molecules should be governed by the many-
body Schrödinger theory. However, using this theory is unfeasible, both analytically and computationally,
when there is a large number of particles. Thus, approximate theories have been developed to study properties
of atoms and molecules, and the most widely used ones can be classified into two main classes: wavefunction
methods, and density functional methods. The Thomas-Fermi-Dirac-von Weizsäcker (TFDW) theory is an
example of the latter. In the TFDW theory, properties of atoms and molecules are encoded in the electron
density instead of the more complex wavefunction. The first density functional theory was the TF theory
(see [56, 19],) a theory that captures the behavior of the ground state energy of molecules in the large nuclear
charge limit [35]. But negative ions, molecules with more electrons than protons, were absent in this theory,
and there were issues with stability of molecules in the TF theory [55]. Then, two corrections were incorpo-
rated (see [57, 16]) hence making the accuracy of the TFDW theory comparable to that of the Hartre Fock
theory [6], an accurate density matrix theory (statistical ensemble of various quantum states,) when there are
many protons.

Throughout this thesis we are concerned with a class of energy functionals which include the TFDW
model. More precisely, we consider variational problems of the form

I p,q
V (M) := inf{E p,q

V ; u ∈H 1(R3),‖u‖2
L 2(R3) = M}, M > 0, (1.1)

where the energy E p,q
V is defined as

E p,q
V (u) :=

∫
R3

(
cW‖∇u‖2 + cT F |u|p− cD|u|q−Vu2)d #»x +

1
2

∫
R3

∫
R3

u2( #»x )u2( #»y )
‖ #»x − #»y ‖

d #»x d #»y ,

with cW ,cT F ,cD > 0, 2 < q < p≤ 6, and

V ≥ 0, V ∈L
3
2 (R3)+L ∞(R3), and V ( #»x )−−−−−→

‖ #»x ‖→∞

0. (1.2)

1
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Conditions above ensure I p,q
V (M) is finite for each M > 0, E p,q

V is coercive in H 1(R3) on the constraint set
(see Proposition 3,) and

u ∈H 1(R3) 7→
∫
R3

Vu2d #»x

is weakly continuous (see Proposition 5.)

The TFDW model corresponds to particular choices of cW ,cT F and cD, p = 10
3 , q = 8

3 , and

VT FDW ( #»x ) :=
K

∑
k=1

αk

‖ #»x − #»r k‖
, (1.3)

with K ∈ N, {αk}K
k=1 ⊂ R+ and { #»r k}K

k=1 ⊂ R3 all fixed. E
10
3 , 8

3
VT FDW

(u) is to be thought of as the energy of a
system of M electrons interacting with K nuclei fixed at positions #»r k. Each nucleus has charge αk > 0, and
the total nuclear charge is denoted

Z :=
K

∑
k=1

αk > 0, (1.4)

and plays a key role in existence results (see the works of Frank, Nam, and Van Den Bosch [23], and Lieb [33]
for a survey.) We note that chemical and physical systems are usually found in their most stable state, and
that corresponds to the lowest energy possible. The infimum corresponds to the ground state energy, and an
optimal u corresponds to a state or configuration of optimal energy.

Background potentials of the form

Vν(
#»x ) :=

K

∑
k=1

αk

‖ #»x − #»r j‖ν
, (1.5)

with K ∈ N, {αk}K
k=1 ⊂ R+, { #»r k}K

k=1 ⊂ R3, and 0 < ν < 2, are also of mathematical interest.

In the TFDW model, the gradient term in the energy is the von-Weizsäcker term; it corresponds to the
kinetic energy of particles very close to nuclei, the leading order correction. The term with the 10

3 in it also
corresponds to the kinetic energy. The Dirac term is the term with 8

3 in it, which represents the exchange
energy between electrons, the second order correction. In regard to other terms, VT FDW is a Coulombian po-
tential that corresponds to the one-body attractive interaction between electrons and nuclei, while the nonlocal
term models the two-body repulsive interaction between electrons. Here u plays the role of electron distribu-
tion. We note that Z and M do not necessarily have to be integers. Also, appropriate values of coefficients
would have to be chosen in order for the TFDW model to be an accurate approximation to Schrödinger’s
theory.

The second chapter of the thesis contains preliminary results, some of which are original. The main con-
tribution of the third chapter of this thesis is the characterization of minimizing sequences for I p,q

V , both with
V general and with V chosen to be a perturbation of the molecular potential VT FDW .

2
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Even though the energy E p,q
V is coercive, existence of a minimizer for I p,q

V (M) is a highly nontrivial
problem, due to a lack of compactness at infinity and the nonconvexity of E p,q

V . Lions devised a method
for studying compactness of minimizing sequences in unbounded domains for a diverse array of problems
in Physics, including functionals of the form I p,q

VT FDW
. The method is called the concentration-compactness

method and it relies on a Lemma that tells us that there are only three options when we have a sequence
of functions with fixed mass in R3: there is convergence up to a subsequence and translations, or there is
vanishing, or there is splitting of mass into at least two pieces moving infinitely far away from one another.
The proof of the concentration Lemma relies on a concentration function that measures “the largest piece of
mass that stays in a bounded region”. In our setting, convergence ensures the existence of minimizers and
we can prove that translations can be bypassed, vanishing cannot happen because I p,q

V < 0, and if there is
splitting then the energy splits accordingly (see Proposition 9.) Lions [37] used his method to prove that
there exists a minimizer for I p,q

VT FDW
(M) if M ≤ Z , while Le Bris [31] proved existence of minimizers for

I
10
3 , 8

3
VT FDW

(M) in the case M ≤Z +ε for some ε = ε(Z )> 0. We can extend the latter with little to no changes
to the following result we do not prove in this thesis:

Theorem 1. (Le Bris [31, Theorem 1]) Let V satisfy (1.2) and

V ( #»x )≥VT FDW ( #»x ) =
K

∑
k=1

αk

‖ #»x − #»r k‖
, pointwise almost everywhere in R3, (1.6)

for some K ∈N, {αk}K
k=1 ⊂R+ and { #»r k}K

k=1 ⊂R3. Then, I p,q
V (M) is attained for 0 < M ≤Z +ε for some

ε = ε(Z ).

For V more general, we can easily extend a proof by Lions [37] to the following result we do not prove in
this thesis:

Theorem 2. (Lions [37, Corollary II.2, part i)]) Let V satisfy (1.2). Then, I p,q
V (M) is attained for M suffi-

ciently small.

In regard to nonexistence of minimizers for I
10
3 , 8

3
VT FDW

(M), Nam and Van Den Bosch proved that I
10
3 , 8

3
VT FDW

(M)

is not attained if both M is sufficiently large and Z is sufficiently small, while Frank, Nam, and Van Den
Bosch [46] proved nonexistence of a minimizer for M > Z +C, for some universal C > 0, in the case where
there is only one nucleus (i.e., K = 1 in (1.3).) In experiments, it has been observed that this constant is two.
It makes sense there is a bound on the number of electrons which can be bound by nuclei because when nuclei
are not sufficiently charged, then electrons are left free to repel each other and escape.

There is a special class of potentials V for which the existence problem for I
10
3 , 8

3
V is completely under-

stood. We say that V is a long-range potential if V satisfies (1.2) and

liminf
t→∞

[
t
(

inf
‖ #»x ‖=t

V ( #»x )
)]

= ∞. (1.7)

For instance, the homogeneous potentials V ν( #»x ) = ‖ #»x ‖−ν are of long-range for 0 < ν < 1. For long-range

potentials, Alama el al. [3] showed that I
10
3 , 8

3
V (M) is attained for every M > 0. We can extend their result

with little to no changes to the following result we do not prove in this thesis:

3
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Theorem 3. (Alama et al. [3, Theorem 2]) Let 2 < p ≤ 4, and V satisfy (1.2) and (1.7). Then, I p,q
V (M) is

attained for every M > 0.

Thus, we may perturb the TFDW potential via a long-range potential of the form Vν as in (1.5), and think
of this as a “regularization” of the TFDW model. We, thus, define a family of long-range potentials,

VZ(
#»x ) :=VT FDW ( #»x )+

Z
‖ #»x ‖ν

, 0 < ν < 1,

with parameter Z > 0. By taking a sequence Zn −−−→
n→∞

0+ we recover the TFDW model I
10
3 , 8

3
VT FDW

, but via a spe-

cial minimizing sequence {un}n∈N composed of minimizers of the long-range problem, E
10
3 , 8

3
Vn

(un) = I
10
3 , 8

3
Vn

.

The energy I
10
3 , 8

3
0 plays a special role as the “energy at infinity” obtained by translating u(·+ #»x n) with

‖ #»x n‖ −−−→
n→∞

∞. The existence properties for I
10
3 , 8

3
0 are analogous to those of I

10
3 , 8

3
VT FDW

: the infimum is attained
for sufficiently small M > 0 (see [46, Lemma 9 (iii)],) while the infimum is not attained for large M (see [39].)

If a function u ∈H 1(R3) attains the minimum in I p,q
V (M) (respectively, u0 ∈H 1(R3) attains the mini-

mum in I p,q
0 (M),) the minimizers satisfy the partial differential equations (PDEs)

−cW ∆u+ cT F
p
2

u|u|p−2− cD
q
2

u|u|q−2−Vu+(u2 ?‖ · ‖−1)u = µu, (1.8)

−cW ∆u+ cT F
p
2

u|u|p−2− cD
q
2

u|u|q−2 +u2 ?‖ · ‖−1u = µu, (1.9)

with Lagrange multiplier µ induced by the mass constraint (see Propositions 10 and 11.)

As mentioned above, the existence question is complicated by noncompactness due to translations of
mass to infinity and the lack of concavity of the energy functional. However, minimizing sequences may be
characterized using a general Concentration-Compactness structure (see [36], [37].) The following Theorem
is proved in section 1 of chapter 3.

Concentration Theorem 4. Let {un}n∈N be a minimizing sequence for I p,q
V (M), where V satisfies (1.2).

Assume q < 3 in the case V ≡ 0.

Then, there exist N ∈ N∪ {0,∞}, masses {mi}N
i=0 ⊂ R+, translations { #»x i

n}n∈N ⊂ R3, and functions{
ui
}N

i=0 ⊂H 1(R3) such that, up to a subsequence,

un(·)−
N

∑
i=0

ui (·− #»x i
n
)
−−−→
n→∞

0 in L 2(R3), (1.10)

I p,q
V (m0) = E p,q

V (u0), I p,q
0 (mi) = E p,q

0 (ui), i > 0,

where ‖ui‖2
L 2(R3) = mi;

(1.11)

4
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N

∑
i=0

mi = M, I p,q
V (m0)+

N

∑
i=0

I p,q
0 (mi) = I p,q

V (M), (1.12)

‖ #»x i
n− #»x j

n‖ −−−→n→∞
∞, i 6= j. (1.13)

The functions ui satisfy (1.8) for i = 1, . . . ,N, and u0 satisfies (1.9), each with the same Lagrange multiplier

µ ≤ 0.

Moreover,

1. if V 6≡ 0, then we can take #»x 0
n =

#»
0 , while

2. if p = 10
3 and q = 8

3 , then N < ∞ and the convergence in (1.10) takes place in H 1(R3).

If a minimizer exists, then no splitting is necessary, and there exist minimizing sequences with N = 0.
This occurs for V =VT FDW when the mass is not much larger than the total charge (see Theorem 1,) or for V

in the class of long-range potentials (see Theorem 3,) for instance. In contrast, we expect splitting with large
mass M, and the pieces resulting from noncompactness each minimize I p,q

V or I p,q
0 for its given mass, that

is,
m0 ∈M p,q

V , mi ∈M p,q
0 , i > 0,

where
M p,q

V :=
{

M > 0 ; I p,q
V (M) has a minimizer u ∈H 1(R3),

∫
R3

u2 = M
}
.

It is an open question to determine whether M p,q
V is an interval, for any choice of background potential V and

powers p and q.

Let us explain the basic idea behind Theorem 4. Minimizing sequences {un}n∈N for I p,q
V (M) may lose

compactness due to splitting into widely spaced components, each of which tends to a minimizer of I p,q
V or

(for those components which translate off to infinity) I p,q
0 . Asymptotically, all of the mass M is accounted

for by this splitting. Although the pieces eventually move infinitely far away, they retain some information of
the original minimization problem as they share the same Lagrange multiplier.

Concentration results like this one have appeared in numerous papers. For the TFDW model, a very sim-
ilar result is outlined in [37], and a proof of the exact decomposition of energy (1.12) for the case V ≡ 0,
p = 10

3 , and q = 8
3 is given in [46, Lemma 9]. The finiteness of the components in the case p = 10

3 and q = 8
3

is a result of the concavity of the energy E
10
3 , 8

3
0 for small masses, as proved in Proposition 7.

We obtain more precise information on the splitting structure of sequences coming from perturbing
I p,q

VT FDW
. In particular, when mass splits, the piece that remains in a bounded region has mass m0 ≥ Z ,

the total nuclear charge in case p = 10
3 and q = 8

3 . The proof of the following Theorem can be found in
section 2 of chapter 3.

Theorem 5. Assume V satisfies (1.2) and (1.6). Then, with the notation of Theorem 4, for any minimizing

sequence {un}n∈N of I p,q
V (M), either M ∈M p,q

V or splitting occurs with m0 ≥Z , with Z as in (1.4).

5
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Heuristically, this is a satisfying result when p = 10
3 and q = 8

3 : after splitting, the nuclei should still cap-
ture as many electrons as the total nuclear charge Z . We expect that nuclei should be able to retain strictly
more, to form a negatively charged ion.

Next, we examine more closely the loss of compactness which may occur for the long-range regularized

families Vn satisfying (1.14) with 0 < ν < 1 and with p = 10
3 ,q = 8

3 . First, minimizers of I
10
3 , 8

3
Vn

(M) form

a minimizing sequence for I
10
3 , 8

3
VT FDW

(M), so when M is large in comparison with Z , compactness is lost and
mass splits off to infinity as described in Theorem 4.

Proposition 1. Let Zn −−−→
n→∞

0+ and

Vn(
#»x ) =VT FDW ( #»x )+

Zn

‖ #»x ‖ν
, (1.14)

with 0 < ν < 1, and Z as in (1.4). Suppose that un minimizes I
10
3 , 8

3
Vn

(M), n ∈ N. Then,

(i) {un}n∈N is a minimizing sequence for I
10
3 , 8

3
VT FDW

(M).

(ii) Either M ∈M
10
3 , 8

3
VT FDW

or splitting occurs with m0 ≥Z .

The nonlocal term in E
10
3 , 8

3
Vn

exerts a repulsive effect on the components ui, while the vanishing long-range
potential provides a degree of containment. The combination of attractive and repulsive terms has generally
led to pattern formation, at a scale determined by the relative strengths of the competitors. This phenomenon
has been identified in nonlocal isoperimetric problems (such as the Gamow Liquid Drop Model; see [11, 2].)

Nonetheless, for potentials Vn of the form (1.14), the interactions between the fleeing components ui

appear in the energy at order Z
1

1−ν
n . As a result, we need some information about the spatial decay of the

minimizers of I
10
3 , 8

3
Vn

away from the centers of the support in order to control the errors in an expansion of
the energy in terms of Zn −−−→

n→∞
0+. In the liquid drop problem, the splitting is into characteristic functions

of disjoint bounded domains , and this issue does not arise. To calculate interactions we require exponential
decay of the solutions, which is connected to the delicate question of the negativity of the Lagrange multiplier
µ . We obtain exponential decay when µ < 0,

|u( #»x )| ≤Ce−λ‖ #»x ‖,

for any 0 < λ <
√
−µ . We know that µ ≤ 0 because I

10
3 , 8

3
VT FDW

(M) is strictly decreasing in M and in fact we
expect that µ < 0 should hold, if not always, at least for all but a residual set of M. It is an open question

whether µ < 0 holds whenever M ∈M
10
3 , 8

3
V . The strict negativity is known for the cases V ≡ 0 with suffi-

ciently small mass, or with V =VT FDW with M < Z +κ with κ = κ(VT FDW )> 0 (see Proposition 11.)

Let us state our result on the distribution of masses in the case of splitting. The proof of this result can be
found in section 3 of chapter 3. But first, we define the set

M ∗
V :=

{
M ∈M

10
3 , 8

3
V ; every minimizer u of I

10
3 , 8

3
VT FDW

(M) satisfies (1.8) with µ < 0.
}

6
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Theorem 6. Let un minimize I
10
3 , 8

3
Vn

(M) with Vn satisfying (1.14) with 0 < ν < 1 and Zn −−−→
n→∞

0+. Let N ∈N,

{mi}N
i=0 and { #»x 0

n}n∈N,. . . ,{ #»x N
n }n∈N be as in Theorem 4. Assume m0 ∈M ∗

VT FDW
. Then, up to a subsequence

and relabeling, either

(i) m0 > Z and

Z
1

1−ν
n

#»x i
n −−−→n→∞

#»y i, i = 1, . . . ,N,,

where ( #»y 1, . . . , #»y N) minimizes the interaction energy

FN,(m0,m1,...,mN)(
#»w1, . . . , #»wN) := ∑

1≤i< j

mim j

‖ #»w i− #»w j‖
+
(
m0−Z

) N

∑
i=1

mi

‖ #»w i‖
−

N

∑
i=1

mi

‖ #»w i‖ν

over

ΣN :=
{
( #»w1, . . . , #»wN) ∈ (R3 \{ #»

0 })N : #»w i 6= #»w j
}

;

or,

(ii) m0 = Z, Z
1

1−ν
n

#»x 1
n −−−→n→∞

#»
0 and if N ≥ 2 we have:

Z
1

1−ν
n

#»x i
n −−−→n→∞

#»y i, i = 2, . . . ,N,,

where ( #»y 2, . . . , #»y N) minimizes the interaction energy

FN,(m1,m2,...,mN)(
#»w2, . . . , #»wN) := ∑

2≤i< j

mim j

|‖ #»w i− #»w j‖
+m1

N

∑
i=2

mi

‖ #»w i‖
−

N

∑
i=2

mi

‖ #»w i‖ν

over

ΣN :=
{
( #»w2, . . . , #»wN) ∈ (R3 \{ #»

0 })N−1 : #»w i 6= #»w j
}
.

Remark 1. 1. The specific choice of powers p = 10
3 and q = 8

3 in the nonlinear potential well W (u) =

cT F |u|p− cD|u|q is physically appropriate for the TFDW model, but from the point of view of analysis

other choices might be possible. Theorem 6 can be extended to the case 2 < q < 3 and q < p≤ 4 with

no major modifications provided that N in Theorem (4) is finite. A necessary condition for N < ∞ is

that I p,q
0 (M) is strictly subadditive for M� 1, but it is unclear whether this is the case for general p

and q.

2. The degenerate case m0 = Z is very delicate, as the term measuring the repulsion between the weakly

convergent component supported near zero and the diverging pieces is nearly exactly cancelled by the

attractive effect of the nuclear potential VT FDW . Thus, the error terms in the expansion of the energy

may exceed the principal term creating a net repulsion (or attraction) to the nuclei which is difficult

to estimate. For instance, if N = 1 and only one component splits to infinity then all we can say when

7
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m0 = Z is that it diverges at a rate much slower than Z−
1

1−ν . In some sense, there is no natural scale

for its interaction distance to the nuclei. For this reason, we believe that in fact m0 > Z , but have no

proof of this conjecture.

3. If m0 = Z , then m0 ∈M ∗
VT FDW

automatically (see Proposition 11.)

4. The proof of the compactness of all minimizing sequences of infFN,(m0,m1,...,mN) and infFN,(m1,m2,...,mN)

follows with little modification from the proof of [2, Proposition 8] (see Proposition 16.)

5. By Theorem 4, each of the components ui shares the same Lagrange multiplier µ , and hence it suffices

to have that any one of the components satisfy (1.8) with µ < 0.

6. We do not know whether the condition µ < 0 could be relaxed. We make use of µ < 0 for uniform

exponential decay of the functions {un}n∈N away from #»x i
n, but some weaker uniform decay away from

the mass centers may be sufficient. It is unclear how rapidly minimizers of (1.1) decay when µ = 0.

Graphically, we are thinking of the following situation:

Figure 1.1: Splitting, in the case there are four pieces in total (N = 3)

From now on we denote

D( f ,g) :=
∫
R3

∫
R3

f ( #»x )g( #»y )
‖ #»x − #»y ‖

d #»x d #»y ,

for any pair of functions f ,g : R3→ R.

We build a bridge between the TFDW mode and the Liquid Drop Model in chapters four and five of this
thesis. The Liquid Drop model was conceived by George Gamow, a Russian theoretical physicist, during his
visit to Bohr. Mathematicians became more interested in the Liquid Drop Model about fifteen years ago when
studying the Ohta-Kawasaki functional. The purpose of the Liquid Drop Model is to predict three features:
the shape of nuclei (observed ones are spherical,) the existence of nuclei with the least energy per nucleon,
and the nonexistence of nuclei with too many protons. Nuclei are to be thought of as fluid bodies that are
incompressible and uniformly charged.

8
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The Liquid Drop Model (with potential) is also a variational problem: for sets Ω⊂ R3 of finite perimeter
and fixed volume |Ω|= M, we minimize the energy

ELD(Ω) := PerR3(Ω)−
∫

Ω

V d #»x +D(1Ω,1Ω).

In this model, the first term represents the perimeter of ∂Ω, which may be calculated as the total variation
of the measure ‖∇1Ω‖, with 1Ω ∈ BV (R3;{0,1}). When V ≡ 0, this is Gamow’s problem. The constraint
value M represents the number of nucleons bound by the strong nuclear force. Mathematically, the energy
that is being minimized corresponds to the sum of surface tension and the Coulombic repulsion interaction
term over sets of fixed nuclear mass, that is, a fixed number of neutrons.

As variational problems, the TFDW and Liquid Drop Models have much in common. Each problem
features a competition between local attractive terms (gradient and potential terms) and a common nonlocal
repulsive term. As such, each problem is characterized by subtle problems of existence and nonexistence due
to the translation invariance of the problem “at infinity”: for large values of the “mass” constraint M, minimiz-
ing sequences may fail to converge due to splitting of mass which escapes to infinity, the “dichotomy” case in
the concentration-compactness principle of Lions [36]. (See e.g., [9, 11, 20, 21, 23, 28, 29, 37, 39, 40, 46].)
While this similarity has often been remarked, and we often speak of the Liquid Drop Model as a sort of
“sharp interface” version of TFDW, no direct analytic connection between the two has been made. If we think
of the Liquid Drop model as sharp interface toy model for the TFDW model, then we are thinking of an atom
as having piece-wise constant density, and the kinetic energy corresponds to surface tension.

In the second part of this thesis we prove that, after an appropriate “sharp interface” scaling and normal-
ization, a TDFW energy converges to the Liquid Drop Model with potential, in the context of Γ-convergence.
In order to establish this connection we select the constants in the TFDW type energy so as to set up a sharp
interface limit. We emphasize that this choice of scaling is not physically natural for the application to ion-
ization phenomena, but is motivated purely mathematically.

We introduce a length-scale parameter ε > 0, and choose constants cW = ε

2 , cT F = 1
2ε

and cD = 1
ε

. We
note that for fixed ε , the qualitative behavior of the minimization problem for TFDW type models is not
affected by the specific choices of the constants cW ,cT F ,cD, and the values we select here match the standard
choice of constants in the Liquid Drop Model. In addition, we complete the square in the nonlinear potential
by adding in a multiple of the constrained L 2 norm, which is a constant in the minimization problem and
thus has no effect on the existence of minimizers or the Euler-Lagrange equations. That is, we rewrite the
nonlinear potential as, ∫

R3

1
2ε

(
|u|

10
3 −2|u|

8
3

)
d #»x =

∫
R3

1
2ε

u2
(
|u|

2
3 −1

)2
d #»x − M

2ε
,

where M = ‖u‖2
L 2(R3)

according to the constraint. Thus we recognize the triple well potential,

W (u) := u2
(
|u|

2
3 −1

)2
,

9
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vanishing at |u|= 0,1, and a version of the TFDW type energy in the rescaled and normalized form,

E V
ε (u) :=

∫
R3

[
ε

2
‖∇u‖2 +

1
2ε

W (u)−Vu2
]

dx+D(u2,u2), ‖u‖2
L 2(R3) = M. (1.15)

As ε → 0+ we expect that sequences {uε}ε>0 of uniformly bounded energy converge almost everywhere to
one of the wells of the potential W , that is, in the limit u( #»x ) ∈ {0,±1}. As E V

ε (|u|) = E V
ε (u), we expect

minimizers of E V
ε to have fixed sign, but families {uε}ε>0 with bounded energy might well take both positive

and negative values. Hence, we define the limiting liquid drop functional for u ∈ BV (R3;{0,±1}) as

E V
0 (u) :=

1
8

∫
R3
‖∇u‖−

∫
R3

Vu2d #»x +D(u2,u2). (1.16)

The first term is the total variation of the measure ‖∇u‖, and for u = 1Ω it measures the perimeter of ∂Ω. If
u takes both values ±1, then ∫

R3
‖∇u‖=

∫
R3
‖∇u+‖+‖∇u−‖,

which measures the perimeter of { #»x ∈R3 ; u( #»x ) = 1} and that of { #»x ∈R3 ; u( #»x ) =−1}, whereas the other
terms yield the same value for u and |u|= u2.

For the second part of this thesis we make the following general hypotheses regarding the background
potential V :

V ∈L
5
2 (R3)+L ∞(R3) and V ( #»x )−−−−−→

‖ #»x ‖→∞

0. (1.17)

The hypothesis (1.17) is slightly stronger than is typical for problems of TFDW type, in which a weaker

local integrability is assumed, V satisfying (1.2) (see e.g., [8, 46].) Having V ∈L
3
2

loc(R
3) is a natural condi-

tion for using the squared gradient to control V |u|2 via the Sobolev embedding. However, given the singularly
perturbed nature of E V

ε , control on the Dirichlet energy is lost as ε→ 0+, and we must rely on the L
10
3 norm

instead; hence the need for the more stringent L
5
2 (R3)+L ∞(R3) demanded in (1.17).

We define domains for the functionals which incorporate the mass constraint,

H M :=
{

u ∈H 1(R3) ; ‖u‖2
L 2(R3) = M

}
,

X M :=
{

u ∈ BV (R3,{0,±1}) ; ‖u‖2
L 2(R3) = M

}
,

and define the infima values

eV
ε (M) := inf

{
E V

ε (u) ; u ∈H M} , eV
0 (M) := inf

{
E V

0 (u) ; u ∈X M} ,
for the constrained TFDW and liquid drop problems. Given that the existence problem for both the TFDW
type and the Liquid Drop models is very subtle (see the first chapter of this thesis and papers [11], [46], [2], [1],
and [12],) the target space and Γ-limit incorporate the concentration structure of minimizing sequences for
the Liquid Drop Model: while minimizing sequences for either TFDW or liquid drop may not converge, they

10
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do concentrate at one or more mass centers, and if there is splitting of mass the separate pieces diverge away
via translation. We define the energy “at infinity”, E 0

0 (u), taking potential V ≡ 0, with infimum value e0
0(M).

From this we then define the appropriate Γ-limit as

FV
0 ({ui}∞

i=0) :=


E V

0 (u0)+
∞

∑
i=1

E 0
0 (u

i), {ui}∞
i=0 ∈H M

0 ,

∞, otherwise,
(1.18)

on the space of limiting configurations,

H M
0 :=

{
{ui}∞

i=0 ⊂ BV (R3,{0,±1});
∞

∑
i=0

∫
R3
‖∇ui‖< ∞,

∞

∑
i=0
‖ui‖2

L 2(R3) = M

}
.

Let us state our Γ-convergence result with respect to the notion of convergence given by (1.19)-(1.20). This
result is proved in chapter 4.

Theorem 7. E V
ε Γ−converges to FV

0 , in the sense that:

(i) (Compactness and Lower-bound) For any sequence εk −−−→
k→∞

0+, if {uεk}k∈N ⊂H M and supk E V
εk
(uεk)<

∞, then there exist a subsequence (still denoted εk,) a collection {ui}∞
i=0 ∈ H M

0 , and translations

{ #»x i
k}k∈N ⊂ R3, with { #»x 0

k}k∈N = { #»
0 }, so that∣∣∣∣∣uεk(·)−

∞

∑
i=0

ui(·− #»x i
k)

∣∣∣∣∣−−−→k→∞
0 in L 2(R3), (1.19)

‖ #»x i
k− #»x j

k‖ −−−→k→∞
∞, i 6= j, (1.20)

FV
0 ({ui}∞

i=0)≤ liminf
k→∞

E V
εk
(uεk). (1.21)

(ii) (Upper-bound) Given {ui}∞
i=0 ∈H M

0 and a sequence εk −−−→
k→∞

0+, there exist functions {uεk}k∈N ⊂H M
0

and translations { #»x i
k}k∈N ⊂ R3, with { #»x 0

k}k∈N = { #»
0 }, such that equations (1.19) and (1.20) hold, and

FV
0 ({ui}∞

i=0)≥ limsup
k→∞

E V
ε (uεk).

The compactness and lower semicontinuity with respect to the notion of convergence given by (1.19)-
(1.20) proved in (i) combine two different approaches in the calculus of variations. Local convergence of the
singular limits uses BV bounds in the flavor of the Cahn-Hilliard problems, as studied in [44, 52]. There,
authors consider a fluid under isothermal conditions and confined to a bounded container in R3 whose Gibbs
free energy, per unit volume, is a prescribed function W of the density distribution u. The classical problem
of determining stable configurations of the fluid is to minimize the total energy of the fluid. To recover the
physically reasonable criterion that the interface has minimal area, the gradient term is added with a coeffi-
cient ε2 that vanishes.

11
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On the other hand, the lack of global compactness imposes a concentration-compactness structure [36, 37,
21, 2], in order to recover all of the mass escaping to infinity. This form of the Γ-limit, as a sum of disassoci-
ated variational problems splitting on different scales is common in droplet breakup for di-block copolymers;
see [11, 4].

For the recovery sequence and upper bound (ii), the presence of an infinite number of {ui}∞
i=0 presents

some obstacles not normally seen in Cahn-Hilliard-type problems, where the setting is usually a bounded
domain or a flat torus. Indeed, for (ii) of Theorem 7 we must consider {ui}∞

i=0 with infinitely many nontrivial
components, and then it is only possible at any fixed ε > 0 to construct a trial function approximating ui when
the scale of its support is large compared to ε .

There are various implications of Theorem 7 to minimization problems in various settings on minimizers
of TFDW type and of the liquid drop problem. We note that E V

ε (|u|) = E V
ε (u), E V

0 (|u|) = E V
0 (u), and so we

restrict to the cone of nonnegative functions H M
+ , X M

+ , H M
0,+ as the domain for each.

We think of a Γ-limit as a framework in which minimizers of the ε functionals should converge to
minimizers of the limiting energy (see, e.g., [30],) but given the complexity of the question of the existence
of minimizers for each model, this is a subtle point. The notion of generalized minimizers, introduced for
the case V ≡ 0 in [29, Definition 4.3], provides a useful means of discussing the structure of minimizing
sequences which may lose compactness:

Definition 1. Suppose that V satisfies (1.17) and M > 0. A generalized minimizer of E V
0 (M) is a finite

collection {u0,u1, . . . ,uN}, ui ∈ BV (R3,{0,1}), such that:

1. ‖ui‖2
L 2(R3)

:= mi, i = 0,1, . . . ,N, with
N

∑
i=0

mi = M;

2. u0 attains the minimum eV
0 (m

0) and ui attains e0
0(m

i), i = 1, . . . ,N;

3. eV
0 (M) = eV

0 (m
0)+

N

∑
i=1

e0
0(m

i).

Alama et al. showed in [2] that we may associate a generalized minimizer as above to any minimizing
sequence for the Liquid Drop Model with (or without) potential V . In this way, up to translation ferrying
the components ui to infinity, the collection of all generalized minimizers of E V

0 with constrained mass M

completely characterizes the minimizing sequences of E V
0 .

We naturally associate to a generalized minimizer {u0,u1, . . . ,uN} an element {ui}∞
i=0 of H M

0 by taking
ui = 0 for all i ≥ N + 1, and then we have FV

0 ({ui}∞
i=0) = eV

0 (M). In what follows, when convenient, we
abuse notation and set FV

0 ({ui}N
i=0) to be the value of the limiting energy for a generalized minimizer. We

may thus address the convergence of minimizers of E V
ε (should they exist) in terms of generalized minimizers

of E V
0 , using Theorem 7:

Theorem 8. Let M > 0 and assume that there exists εn −−−→
n→∞

0+ for which eV
εn(M) is attained at un ∈H M

+

for each n ∈N. Then, there exists a subsequence (not relabeled) and a generalized minimizer {u0, . . . ,uN} of

12
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E V
0 for which (1.19) and (1.20) hold for i = 0, . . . ,N, and

FV
0 ({ui}N

i=0) = eV
0 (M) = lim

n→∞
eV

εn(M).

A slightly more general version of Theorem 8 is proved in Lemma 17, and both results can be found in
chapter 5.

As mentioned before, there is a special class of potentials V for which the existence problem infE V
ε is

completely understood for each ε; namely, long-range V . We proved that the global minimum is attained for
any M > 0 for TFDW type models in Theorem 3, and the same is true for liquid drop functionals [3]. For this
class of problem, we prove global convergence of minimizers in L 2(R3) in chapter 5:

Corollary 1. Assume that V satisfies (1.17) and (1.7), and for M > 0 and ε > 0, let uε ∈H M
+ be a minimizer

of eV
ε (M). Then, for any sequence εn −−−→

n→∞
0+ there exists a subsequence (not relabeled) and a minimizer

u0 ∈X M
+ of eV

0 (M) with uεn −−−→n→∞
u0 in L 2(R3).

Atomic or molecular potentials V are the most important examples for TFDW as they are related to the
Ionization Conjecture [37, 31, 23, 40, 46]. We consider the atomic case,

V ( #»x ) =VZ(
#»x ) =

Z
‖ #»x ‖

,

with Z ≥ 0 representing a constant nuclear charge in the case p = 10
3 and q = 8

3 . With slight abuse of notation,
we denote by E Z

ε , E Z
0 the energies (1.15) and (1.16), respectively, with the atomic choice V = VZ = Z/‖ #»x ‖,

and

eZ
ε (M): = inf

{
E Z

ε (u) : u ∈H M
+

}
, eZ

0 (M): = inf
{
E0(u) : u ∈X M

+

}
.

For this choice of potential in the liquid drop setting, Lu and Otto [40] proved that there exists µ0 > 0 for
which the ball BM = BrM (

#»
0 ), rM = 3

√
3M
4π

, centered at the origin of volume M is the unique (up to translations
for Z = 0), strict minimizer of eZ

0 (M) for all 0 < M < Z +µ0. The corresponding existence result for TFDW
is much weaker, as stated in Theorem 1. A natural conjecture is that the intervals of existence converge, that
is, µε −−−→

ε→0+
µ0. Using Theorem 7, we can prove the following in chapter 5:

Theorem 9. Let V ( #»x ) = Z
‖ #»x ‖ and Z>0.

(a) For any M ∈ (0,Z+µε), eZ
ε (M) is attained at uε ∈H M

+ for each ε > 0, and uε −−−→
ε→0+

1BM in L 2(R3).

(b) For all M ∈ (Z,Z + µ0) and ε > 0, ∃Mε ≤M with Mε −−−→
ε→0+

M such that eZ
ε (Mε) attains a minimizer

uε∈H Mε

+ . Moreover, uε −−−→
ε→0+

1BM in L 2(R3).

Theorem 9 is related to the classical Kohn-Sternberg [30] result on the existence of local minimizers of
the ε-problem in an L 2-neighborhood of an isolated local minimizer of the Γ-limit. We find minimizers for
E Z

ε which converge to the ball of mass M as ε → 0+ in L 2(R3), which would have the given mass M except
for the possibility of vanishingly small pieces splitting off and diverging to infinity as ε → 0+. If we could

13



PhD Thesis - Lorena Aguirre Salazar McMaster University - Mathematics

find a uniform (in ε > 0) lower bound on the quantity of diverging mass in the case of splitting, then we would
be able to eliminate this possibility completely and assert that Mε = M in (b), as conjectured above.

My studies have left a wealth of questions unanswered that have motivated me to consider continuations
of my work in multiple directions, including exploring collective behaviour and nonlocal PDEs further.

I would like to investigate local minimizers or nonminimizing critical points of TFDW type models fur-
ther by using the Lyapunov-Schmidt reduction method. Naturally, knowing more about spectral properties
of TFDW type equations would be very important, and this falls into the areas of spectral properties of
Schrödinger equations and nonlocal equations. HF, TFW, and some of TFDW equations have been studied
by Lions [37] by using min-max critical point theory, fixed point theory, and critical point theory and index
bounds. On the other hand, the Lyapunov-Schmidt reduction has been used to study local minimizers and
nonminimizing critical points for sharp interface energies of Ohta-Kawasaki models in works like the ones
by Cristoferi [15], and Ren and Wei [50]. Functions we may start studying as candidates for critical points of
the atomic TFDW model relate to the atomic TFDW functional restricted to radial functions. Indeed, we can
show that the radial atomic TFDW problem always has minimizers; Lieb [33] showed that minimizers for the
atomic TFDW are radial if M ≤ Z, and Nam and Van Den Bosch [46] proved that such minimizers are not
radially symmetric if M is sufficiently large.

It is possible to extend my studies to models with similar structure. Examples of such models come not
only from considering V and W more general, but also the repulsive term is not necessarily Coulombic, nor
the model 3D. Super-Coulombic interactions between closely spaced atoms and molecules, like 1/|x− y|3,
have been observed in 2D hyperbolic media [7, 14]; that is, highly anisotropic media with hyperbolic disper-
sion. Extensions to more general nonlocal terms have been recently explored for the Liquid Drop Model with
background potential by Alama et al. [2], and for Riesz-type problems generalizing the Liquid Drop model
by Novaga and Pratelli [47]. On the other hand, models with coercive background potentials; i.e., potentials
that do not decay but grow at infinity, are likely to lead to new patterns, as well. One such problem was
recently studied by Générau and Oudet [25] in the context of the Liquid Drop Model, where they proved that
there exists a minimizer for all masses such that for certain interactions, as the mass blows up, minimizers
eventually coalesce into a large ball, and that balls centered at the origin are the only minimizers for large
M, again, for certain interactions. Even though the Liquid Drop Model with background potential and the
TFDW model are close to one another, analyses for the latter may differ due to the fact that minimizers are
not necessarily compactly supported. Therefore, some information about the spatial decay of minimizers
may be required, which leads to questions on properties of solutions of the PDE associated with the problem
and related spectral problems. Among other directions that could be explored there are TF type functionals.
An example of such functionals, more precisely the TFDW energy for graphene at the neutrality point, was
recently studied by Lu et al. [38].

There are many interesting questions about the structure of minimizing sequences for TFDW type models
that remain open. For instance, one of the questions concerns the existence of minimizing sequences that
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undergo splitting and end up with a prescribed structure. Also, it is unclear how components into which min-
imizing sequences may break decay. In regard to the first issue, we can generate minimizing sequences by
minimizing perturbations that “regularize” the problem. Since those minimizers are eigenfunctions of PDEs
that differ by little, it is natural to try to generate combinations of eigenfunctions of such equations in a way
that the prescribed structure is imposed. However, complications arise very quickly due to the complexity of
the PDE; namely, such equation is nonlinear and nonlocal, and its spectral properties are not fully understood.
As for the second issue, components decay exponentially if, for instance, zero is not a Lagrange Multiplier
of the equations associated with the system; this seems to be a difficult spectral problem. Another question is
how different “regularizations” via potentials that decay slow enough may impact the structure of minimizers
as there are multiple ways to introduce these perturbations.

Lastly, there are long-standing questions in the TFDW theory, for instance the nonexistence of highly
negative molecules, and a better understanding of qualitative properties of minimizers. In regard to qualita-
tive properties, works on Choquard equations by Ma and Zhao [42], and Moroz and Schaftingen [43] may be
relevant for further explorations in the PDE direction, while works on a quantitative Pólya-Szegö principle by
Cianchi et al. [13], and spherical flocking by Frank and Lieb [22] may be relevant for further exploration in
the direction of the Calculus of Variations.

Note: C denotes a generic constant hereafter; C might vary from one line to the other.
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Chapter 2

Energy estimates

In this chapter we establish some basic estimates, which give relations between the various terms in the TFDW
energy, both for arbitrary functions in H 1(R3) and for minimizers. We treat various cases of p > q, including
the physically relevant p = 10

3 and q = 8
3 . The study of (1.1) with q > p instead of p > q differs greatly.

Throughout this chapter, we assume V satisfies (1.2).

2.1 On nonlinearity

By considering powers 6 > p > q > 2 we cover the original TFDW model. The choices p = 10
3 and q = 8

3

are particularly convenient because of the origins of I
10
3 , 8

3
VT FDW

in Physics, and because we know more about

I
10
3 , 8

3
0 than we do about I p,q

0 with p and q more general (see Proposition 7.) By understanding the energy “at
infinity” better, we are then able to carry out a more detailed analysis of the structure of minimizing sequences

for I
10
3 , 8

3
V (see Theorems 4-6.)

On the other hand, considering p < q leads to very different analyses. More precisely, in such case it is
possible to have either I p,q

V ≡ −∞ or I p,q
0 (M) = 0 (see Proposition right below.) If the latter occurs, then

the concentration-compactness structure of minimizing sequences might be simpler (see [37, Corollary II.1].)

Proposition 2. Suppose that 2 < p < q < 6. The following hold:

(i) If q > 10
3 , then I p,q

V (M) =−∞ for all M > 0.

(ii) If q≤ 10
3 , then for M sufficiently small, both I p,q

0 (M) = 0 and I p,q
0 (M) is not attained.

Proof. In order to prove (i), we note that the transformation

u ∈L 2(R3)→ uσ (
#»x ) := σ

3/2u(σ #»x ),σ > 0, (2.1)
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keeps the L 2 norm invariant, and for u ∈H 1(R3),∫
R3
‖∇uσ‖2d #»x =

∫
R3
‖∇(σ3/2u(σ #»x ))‖2d #»x =

∫
R3
‖σ5/2(∇u)(σ #»x )‖2d #»x = σ

2
∫
R3
‖∇u‖2d #»x ,

∫
R3
|uσ |rd #»x =

∫
R3
|σ3/2u(σ #»x )|rd #»x = σ

3r/2−3
∫
R3
|u|rd #»x , r ≥ 1,

and

D(u2
σ ,u

2
σ ) = σ

∫
R3

∫
R3

[σ3/2u(σ #»x )]2[σ3/2u(σ #»y )]2

‖σ #»x −σ
#»y ‖

d #»x d #»y = σD(u2,u2).

Consequently,

E p,q
V (uσ )< E p,q

0 (uσ )

=
∫
R3
(cW σ

2‖∇u‖2 + cT F σ
3p/2−3|u|p− cDσ

3q/2−3|u|q)d #»x +
1
2

D(u2,u2)−−−→
σ→∞

−∞.

As for statement (ii), I p,q
0 ≤ 0 follows from applying the transformation (2.1) and taking σ → 0+.

Moreover, if we also have cW = cT F = cD = 1, then Hölder’s inequality and Sobolev’s inequality give∫
{ #»x ∈R3:|u( #»x )|≥1}

|u|qd #»x ≤
∫
{ #»x ∈R3:|u( #»x )|≥1}

|u|
10
3 d #»x

≤
(∫
{ #»x ∈R3:|u( #»x )|≥1}

u2d #»x
) 2

3
(∫
{ #»x ∈R3:|u( #»x )|≥1}

u6d #»x
) 1

3

≤
(∫

R3
u2d #»x

) 2
3
(∫

R3
u6d #»x

) 1
3
≤ 1

3

(
2
π

) 4
3
(∫

R3
u2d #»x

) 2
3 ∫

R3
‖∇u‖2d #»x .

As a result, for u in the domain of E p,q
0 and M sufficiently small, we have

E p,q
0 (u)≥

∫
R3
‖∇u‖2d #»x +

∫
R3
(|u|p−|u|q)d #»x

=
∫
R3
‖∇u‖2d #»x +

∫
{|u|≥1}

(|u|p−|u|q)d #»x +
∫
{|u|<1}

(|u|p−|u|q)d #»x

≥
∫
R3
‖∇u‖2d #»x +

∫
{|u|≥1}

(|u|p−|u|q)d #»x ≥

[
1− 1

3

(
2
π

) 4
3

M
2
3

]∫
R3
‖∇u‖2d #»x > 0,

Then, I p,q
0 (M) = 0, and the infimum cannot be attained. The proof we just gave does not change sig-

nificantly if cW ,cT F , and cD are more general.
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2.2 Some bounds for terms in E p,q
V and coercivity

We use the following results to prove that E p,q
V is coercive.

We begin by estimating the nonlinear terms.

Lemma 1. Given ε > 0 and 1≤ r < q < p < ∞,

∫
R3
|u|qd #»x ≤ ε

∫
R3
|u|pd #»x +

p−q
p− r

[
q− r

ε(p− r)

] q−r
p−q ∫

R3
|u|rd #»x , u ∈L q(R3). (2.2)

In particular, ∫
R3
|u|

8
3 d #»x ≤ ε

∫
R3
|u|

10
3 d #»x +

1
4ε

∫
R3

u2d #»x , ε > 0,u ∈L
8
3 (R3).

Proof. By the interpolation inequality in Lebesgue spaces,

∫
R3
|u|qd #»x ≤

(∫
R3
|u|rd #»x

) 1
r qθ (∫

R3
|u|pd #»x

) 1
p q(1−θ)

, (2.3)

where

1
q
=

1
r

θ +
1
p
(1−θ),

or, equivalently,

θ =
r(p−q)
q(p− r)

,

implying

1
r

qθ =
p−q
p− r

,
q
p
(1−θ) =

q
p

q(p− r)− r(p−q)
q(p− r)

=
q− r
p− r

< 1.

Therefore, (2.3) reads

∫
R3
|u|qd #»x ≤

(∫
R3
|u|rd #»x

) p−q
p−r
(∫

R3
|u|pd #»x

) q−r
p−r

.

and Young’s inequality applies to ensure

∫
R3
|u|qd #»x ≤ p−q

p− r

[
q− r

ε(p− r)

] q−r
p−q
(∫

R3
|u|rd #»x

) p−q
p−r

(
p−r
q−r

)′
+ ε

∫
R3
|u|pd #»x

=
p−q
p− r

[
q− r

ε(p− r)

] q−r
p−q ∫

R3
|u|rd #»x + ε

∫
R3
|u|pd #»x .

18
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Next, we consider bounds on the external potential.

Lemma 2. Given ε > 0,∫
R3

Vu2d #»x ≤ ε

∫
R3
‖∇u‖2d #»x +Cε

∫
R3

u2d #»x , u ∈H 1(R3), (2.4)

where Cε −−−→
ε→0+

∞.

Moreover, in the case V =Vν as in (1.5), we can take

Cε :=
1
3

(
2
π

) 4
3
(

4π

6−3ν

) 2
3 (maxk=1,...,K αk

ε

) 2−ν
ν

Z.

Finally, in the case V =Vν with ν taking certain values we can tell more:∫
R3

Vν u2d #»x ≤ ε‖∇u‖2
L 2(R3)+C

√
D(u,u), ε > 0,u ∈H 1(R3),2−1 < ν < 2.

Proof. We follow techniques from [34, section 11.3].

Let us rewrite V =V3/2 +V∞ where V3/2 ∈L
3
2 (R3) and V∞ ∈L ∞(R3). Since

L ({ #»x ∈ R3 : | f ( #»x )|> t})≤ t−
3
2 ‖ f‖

3
2

L
3
2 ({ #»x ∈R3:| f ( #»x )|>t})

≤ t−
3
2 ‖ f‖

3
2

L
3
2 (R3)

, f ∈L
3
2 (R3), t > 0,

we have that
L ({ #»x ∈ R3 : |V3/2(

#»x )|> t}) = o
(

t−
3
2

)
as t→ ∞.

As a result,

‖[V3/2− t(ε)]+‖
L

3
2 (R3)

= ‖V3/2− t(ε)‖
L

3
2 ({ #»x ∈R3:V3/2(

#»x )>t(ε)})
< 3

(
π

2

) 4
3

ε

for some t(ε)> 0. Therefore, by Hölder’s inequality and Sobolev’s inequality,∫
R3

Vu2d #»x =
∫
R3
[V3/2− t(ε)]u2d #»x + t(ε)

∫
R3

u2d #»x +
∫
R3

V∞u2d #»x (2.5)

≤
∫
R3
[V3/2− t(ε)]+u2d #»x + t(ε)

∫
R3

u2d #»x +
∫
R3

V∞u2d #»x

≤ ‖(V3/2− t(ε))+‖
L

3
2 (R3)
‖u‖2

L 6(R3)
+C‖u‖2

L 2(R3)

≤ ε‖∇u‖2
L 2(R3)+C‖u‖2

L 2(R3).

Next suppose V =Vν for 0 < ν < 2. Then, by Hölder’s inequality and Sobolev’s inequality,

∫
R3

Vu2d #»x =

(∫
∪Bδ (

#»r j)
+
∫
R3\∪Bδ (

#»r j)

)
Vu2d #»x

19
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≤ ‖V‖
L

3
2 (∪Bδ (

#»r j))
‖u‖2

L 6(∪Bδ (
#»r j))

+‖V‖L ∞(R3\∪Bδ (
#»r j))
‖u‖2

L 2(R3\∪Bδ (
#»r j))

=

(
2π

3− 3
2 ν

δ
3− 3

2 ν

) 2
3

Z‖u‖2
L 6(∪Bδ (

#»r j))
+ max

k=1,...,K
αkδ

−ν‖u‖2
L 2(R3\∪Bδ (

#»r j))

=

(
4π

6−3ν

) 2
3

δ
2−ν Z‖u‖2

L 6(∪Bδ (
#»r j))

+ max
k=1,...,K

αkδ
−ν‖u‖2

L 2(R3\∪Bδ (
#»r j))

≤
(

4π

6−3ν

) 2
3

δ
2−ν Z‖u‖2

L 6(R3)
+ max

k=1,...,K
αkδ

−ν‖u‖2
L 2(R3)

≤ 1
3

(
2
π

) 4
3
(

4π

6−3ν

) 2
3

δ
2−ν Z‖∇u‖2

L 2(R3)+ max
k=1,...,K

αkδ
−ν‖u‖2

L 2(R3), δ > 0.

Equation (2.4) is established by choosing δ appropriately.

Next, given δ > 0 to be fixed, pick any smooth η : R3→ [0,1] for which

1Bδ (
#»

0 )η ≡ 1, 1R3\B2δ (
#»

0 )η ≡ 0,

and let

V1(
#»x ) := ‖ #»x ‖−ν

η( #»x ) and V2(
#»x ) = ‖ #»x ‖−ν [1−η( #»x )].

Then, by definition of η and since 3− 3
2 ν > 0,

1R3\B2δ (
#»

0 )V1 ≡ 0, V1 ∈L
3
2 (R3),

and

1Bδ (
#»

0 )V2 ≡ 0, V2 ∈W 2,r(R3),r� 1, and −∆V2 ∈L
6
5 (R3),

the latter coming from 3− 6
5 (ν +2)< 0. Also, from

−∆
(
u2 ?‖ #»x ‖−1)= 4πu2,

and by Sobolev’s inequality, we have

∣∣∣∣u2 ?‖ · ‖−1∣∣∣∣2
L 6(R3)

≤ 1
3

(
2
π

) 4
3 ∣∣∣∣∇(u2 ?‖ · ‖−1)∣∣∣∣2

L 2(R3)
=

4π

3

(
2
π

) 4
3

D(u2,u2).

Consequently, by Hölder’s inequality and Sobolev’s inequality,

∫
R3

u2( #»x )
‖ #»x ‖ν

d #»x =
∫
R3

V1u2d #»x +
∫
R3

V2u2d #»x

≤ ‖V1‖
L

3
2 (R3)
‖u‖2

L 6(R3)
+
∫
R3

V2u2d #»x
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= ‖V1‖
L

3
2 (R3)
‖u‖2

L 6(R3)
+

1
4π

∫
R3

V2
[
−∆
(
u2 ?‖ · ‖−1)]d #»x

=

∣∣∣∣∣∣∣∣ η(·)
‖ · ‖ν

∣∣∣∣∣∣∣∣
L

3
2 (R3)

‖u‖2
L 6(R3)

+
1

4π

∫
R3
(−∆V2)(

#»x )
(
u2 ?‖ · ‖−1)( #»x )d #»x

≤
∣∣∣∣‖ · ‖−ν

∣∣∣∣
L

3
2 (B2δ (

#»

0 ))
‖u‖2

L 6(R3)
+

1
4π
‖−∆V2‖

L
6
5 (R3)

∣∣∣∣u2 ?‖ · ‖−1∣∣∣∣
L 6(R3)

=

[
4π

3− 3
2 ν

(2δ )3− 3
2 ν

] 2
3

‖u‖2
L 6(R3)

+
1

4π
‖−∆V2‖

L
6
5 (R3)

∣∣∣∣u2 ?‖ · ‖−1∣∣∣∣
L 6(R3)

=

(
8π

6−3ν

) 2
3
(2δ )2−ν‖u‖2

L 6(R3)
+

1
4π
‖−∆V2‖

L
6
5 (R3)

∣∣∣∣u2 ?‖ · ‖−1∣∣∣∣
L 6(R3)

≤ 1
3

(
2
π

) 4
3
(

8π

6−3ν

) 2
3
(2δ )2−ν‖∇u‖2

L 2(R3)

+
1

4π

√
1
3

(
2
π

) 4
3
‖−∆V2‖

L
6
5 (R3)

∣∣∣∣∇(u2 ?‖ · ‖−1)∣∣∣∣
L 2(R3)

=
1
3

(
2
π

) 4
3
(

8π

6−3ν

) 2
3
(2δ )2−ν‖∇u‖2

L 2(R3)

+
1

4π

√
8π

3

(
2
π

) 4
3
∣∣∣∣∣∣∣∣−∆

[
1−η(·)
‖ · ‖ν

]∣∣∣∣∣∣∣∣
L

6
5 (R3)

√
D(u2,u2).

Now we can prove coercivity of the TFDW energy, which is essential for proving compactness of mini-
mizing sequences.

Proposition 3. (Coercivity) For each u ∈H 1(R3), we have

E p,q
V (u)+C

∫
R3

u2d #»x ≥ 1
2

∫
R3
(cW‖∇u‖2 + cT F |u|p)d #»x +

1
2

D(u2,u2). (2.6)

Proof. This is an immediate consequence of equations (2.2) and (2.4) both with ε = 1
2 .

We make use of the following Proposition throughout the thesis:

Proposition 4. Let u ∈H 1(R3) with ‖u‖2
L 2(R3)

= M and E p,q
V (u)≤ 0. Then,

‖u‖2
H 1(R3)+D(u2,u2)+

∫
R3

Vu2d #»x ≤CM.

Proof. This is an immediate consequence of Proposition 3 and (2.5).

Remark 2. We note that boundedness of a sequence in H 1(R3) implies boundedness of the same sequence

in L r(R3) for 2≤ r ≤ 6.

Next, we study the nonlocal relation. We use the following result to prove that I
10
3 , 8

3
0 (M) is strictly

concave down for M sufficiently small (see part (vi) of Proposition 7).
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Lemma 3. Given 12/5 < r < 3, we have that

D(u2,u2)≤C‖u‖
2(5r−12)
3(r−2)

L 2(R3)
‖u‖

2r
3(r−2)

L r(R3)
, u ∈L 2(R3)∩L r(R3),

where

C ≤ 3
2

(
4
3

π

) 1
3 2(5r−6)

3r2

{[
r

3(r−2)

] 1
3
+

(
r

6−2r

) 1
3
}

In particular, when r = 8
3 we obtain

D(u2,u2)≤C‖u‖
4
3
L 2(R3)

‖u‖
8
3

L
8
3 (R3)

, u ∈L 2(R3)∩L
8
3 (R3),

where

C ≤ 11
8
(3+3

2
3 )
(

π

12

) 1
3 ≈ 4.5.

Furthermore, if also q≤ 8
3 , uM is a minimizer for I p,q

V (M), and M is sufficiently small, then

D(u2,u2)≤CM
5q−12
3(q−2) ‖u‖q

L q(R3)
. (2.7)

Proof. Since

2
r
+

1
3
+

5r−6
3r

= 2,

we can make use of Hardy-Littlewood’s inequality to obtain

D(u2,u2)≤C‖u2‖
L

r
2 (R3)
‖u2‖

L
3r

5r−6 (R3)
=C‖u‖2

L r(R3)‖u‖
2

L
6r

5r−6 (R3)
. (2.8)

On the other hand, by the interpolation inequality,

‖u‖
L

6r
5r−6 (R3)

≤ ‖u‖θ

L 2(R3)
‖u‖1−θ

L r(R3)
,

where

5r−6
6r

=
1
2

θ +
1
r
(1−θ) =

(
1
2
− 1

r

)
θ +

1
r
=

r−2
2r

θ +
1
r
,

or, equivalently,

θ =
2r

r−2

(
5r−6

6r
− 1

r

)
=

2r
r−2

5r−12
6r

=
5r−12
3(r−2)

.
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Then,

‖u‖
L

6r
5r−6 (R3)

≤ ‖u‖
5r−12
3(r−2)

L 2(R3)
‖u‖

6−2r
3(r−2)

L r(R3)
. (2.9)

By inserting (2.9) into (2.8) we obtain

D(u2,u2)≤C‖u‖
2(5r−12)
3(r−2)

L 2(R3)
‖u‖

2
[
1+ 6−2r

3(r−2)

]
L r(R3)

=C‖u‖
2(5r−12)
3(r−2)

L 2(R3)
‖u‖

2r
3(r−2)

L r(R3)
.

Finally, (2.7) follows from Proposition 4 and the fact that when q≤ 8
3 and M is sufficiently small,

2q
3(q−2)

≥ q, and ‖u‖L q(R3)� 1,

hence ‖u‖
2q

3(q−2)

L q(R3)
≤ ‖u‖q

L q(R3)
.

The following proposition states that the background potential term in the TFDW energy is weakly sequen-
tially continuous. This result plays an important role in characterizing the structure of minimizing sequences
of I p,q

V described in Theorem 4.

Proposition 5. If un −−−⇀
n→∞

u in H 1(R3), then

∫
R3

Vu2
nd #»x −−−→

n→∞

∫
R3

Vu2d #»x .

Proof. We follow ideas from [33, Theorem 11.4].

Let us rewrite V =V3/2 +V∞ where V3/2 ∈L
3
2 (R3) and V∞ ∈L ∞(R3).

We have that for R > 0,∣∣∣∣∫R3
V (u2

n−u2)d #»x
∣∣∣∣≤ ∫R3

V |u2
n−u2|d #»x

=

(∫
BR(

#»

0 )
V3/2|u2

n−u2|d #»x +
∫

BR(
#»

0 )
V∞|u2

n−u2|d #»x +
∫
R3\BR(

#»

0 )
V |u2

n−u2|d #»x
)

≤

(∫
BR(

#»

0 )∩{ #»x ∈R3:|V3/2|≥R}
|V3/2‖u2

n−u2|d #»x +
∫

BR(
#»

0 )∩{ #»x ∈R3:‖V3/2‖≤R}
|V3/2‖u2

n−u2|d #»x

+
∫

BR(
#»

0 )
|V∞‖u2

n−u2|d #»x +
∫
R3\BR(

#»

0 )
V |u2

n−u2|d #»x
)

≤ ‖V3/2‖
L

3
2 ({ #»x ∈R3:|V3/2(

#»x )|≥R})
‖u2

n−u2‖L 3(R3)+(R+C)
∫

BR(
#»

0 )
|u2

n−u2|d #»x

+
∫
R3\BR(

#»

0 )
V |u2

n−u2|d #»x ,

≤ ‖V3/2‖
L

3
2 ({ #»x ∈R3:|V3/2(

#»x )|≥R})
(‖un‖2

L 6(R3)
+‖u‖2

L 6(R3)
)+(R+C)

∫
BR(

#»

0 )
|u2

n−u2|d #»x

+
∫
R3\BR(

#»

0 )
V |u2

n−u2|d #»x ,
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On the other hand, it is possible to choose a radius R > 0 such that all terms on the right hand side are small
for n large thanks to the Dominated Convergence Theorem, Sobolev’s inequality,

‖un‖H 1(R3) ≤C,

the Rellich-Kondrakov compactness Theorem, and (1.2). Thus the conclusion follows.

Finally, the following result plays an important role in the proof of Theorem 7. We could have stated
Proposition 5 as a corollary of the following:

Proposition 6. Assume V satisfies (1.17), and {un}n∈N,{vn}n∈N are sequences which are bounded in L 2(R3)∩
L

10
3 (R3) and such that (un− vn)−−−→

n→∞
0 in L 2

loc(R3). Then,

∫
R3

V
(
|un|2−|vn|2

)
d #»x −−−→

n→∞
0.

Proof. Let δ > 0 be given. By (1.17) we may decompose V =V1 +V2 +V3, where

V1(
#»x ) =V ( #»x )[1−1BR(

#»x )], V2(
#»x ) = [V ( #»x )− t]+1BR(

#»x ), V3(
#»x ) = min{V ( #»x ), t}1BR(

#»x ),

with R large enough that ‖V1‖L ∞(R3) < δ ; t large enough that ‖V2‖
L

5
2 (R3)

< δ . Note that V3 is compactly

supported and uniformly bounded. We then consider each part separately:∫
R3

V1
∣∣|un|2−|vn|2

∣∣d #»x ≤ δ (‖un‖2
L 2(R3)+‖vn‖2

L 2(R3))≤ cδ ;∫
R3

V2
∣∣|un|2−|vn|2

∣∣d #»x ≤ ‖V2‖
L

5
2 (R3)

(‖un‖
L

10
3 (R3)

+‖vn‖
L

10
3 (R3)

)≤ cδ ;∫
R3

V3
∣∣|un|2−|vn|2

∣∣d #»x ≤ ‖V3‖L ∞(R3)

∫
BR

∣∣|un|2−|vn|2
∣∣d #»x −−−→

n→∞
0.

As δ > 0 is arbitrary, the result follows.

2.3 Basic properties of I p,q
V

In this section we present properties of I p,q
V we use in later chapters.

Proposition 7. The following hold:

(i) For any M > 0, I p,q
0 (M)≤ 0.

(ii) The following ”binding inequality” holds:

I p,q
V (M)≤I p,q

V (M)+I p,q
0 (M−m), 0≤ m≤M. (2.10)

In particular, I p,q
V is always nonincreasing.

Proof. Statement (i) follows from (2.1) by taking σ → 0+.
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Next, let v1,v2 ∈C∞
0 (R3) satisfy∫

R3
v2

1d #»x = m,
∫
R3

v2
2d #»x = M−m,

pick any #»x 0 ∈ R3 \{ #»
0 }, and set

wn(·) := v1(·)+ v2(·+n #»x 0),n ∈ N.

Then, up to a subsequence,∫
R3
‖∇wn‖2d #»x =

∫
supp v1

‖∇v1(
#»x )+∇(v2(

#»x +n #»x 0))‖2d #»x +
∫
R3\supp v1

‖∇(v2(
#»x +n #»x 0))‖2d #»x

=
∫

supp v1

‖∇v1‖2d #»x +
∫
R3
‖(∇v2)(

#»x +n #»x 0)‖2d #»x

=
∫
R3
‖∇v1‖2d #»x +

∫
R3
‖∇v2‖2d #»x ,

∫
R3
|wn|rd #»x =

∫
supp v1

|v1(
#»x )+ v2(

#»x +n #»x 0)|rd #»x +
∫
R3\supp v1

|v2(
#»x +n #»x 0)|rd #»x

=
∫

supp v1

|v1|rd #»x +
∫
R3
|v2(

#»x +n #»x 0)|rd #»x

=
∫

supp v1

|v1|rd #»x +
∫

supp v2

|v2|rd #»x , r ≥ 1,

∫
R3

V w2
nd #»x =

∫
R3

V v2
1d #»x +2

∫
R3

V ( #»x )v1(
#»x )v2(

#»x +n #»x 0)d #»x +
∫
R3

V ( #»x )[v2(
#»x +n #»x 0)]

2d #»x

=
∫
R3

V v2
1d #»x +2

∫
supp v1

V ( #»x )v1(
#»x )v2(

#»x +n #»x 0)d #»x +
∫
R3

V ( #»x −n #»x 0)v2
2(

#»x )d #»x

=
∫
R3

V v2
1d #»x +

∫
supp v2

V ( #»x −n #»x 0)v2
2(

#»x )d #»x ,

and

D(w2
n,w

2
n) =

∫
supp v1

∫
supp v1

|v1(
#»x )+ v2(

#»x +n #»x 0)|2|v1(
#»y )+ v2(y+n #»x 0)|2

‖ #»x − #»y ‖
d #»x d #»y

+
∫
R3\supp v1

∫
R3\supp v1

|v2(
#»x +n #»x 0)|2|v2(y+n #»x 0)|2

‖ #»x − #»y ‖
d #»x d #»y

+
∫
R3\supp v1

∫
supp v1

|v1(
#»x )+ v2(

#»x +n #»x 0)|2|v2(y+n #»x 0)|2

‖ #»x − #»y ‖
d #»x d #»y

+
∫

supp v1

∫
R3\supp v1

|v2(
#»x +n #»x 0)|2|v1(

#»y )+ v2(y+n #»x 0)|2

‖ #»x − #»y ‖
d #»x d #»y

=
∫

supp v1

∫
supp v1

v2
1(

#»x )v2
1(

#»y )
‖ #»x − #»y ‖

d #»x d #»y

+
∫
R3\supp v1

∫
R3\supp v1

|v2(
#»x +n #»x 0)|2|v2(y+n #»x 0)|2

‖( #»x +n #»x 0)− (y+n #»x 0)‖
d #»x d #»y
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+2
∫
R3\supp v1

∫
supp v1

v2
1(

#»x )|v2(y+n #»x 0)|2

‖ #»x − #»y ‖
d #»x d #»y

=
∫

supp v1

∫
supp v1

v2
1(

#»x )v2
1(

#»y )
‖ #»x − #»y ‖

d #»x d #»y +
∫
R3\supp v1+n #»x 0

∫
R3\supp v1+n #»x 0

v2
2(

#»x )v2
2(

#»y )
‖ #»x − #»y ‖

d #»x d #»y

+2
∫
R3\supp v1+n #»x 0

∫
supp v1

v2
1(

#»x )v2
2(

#»y )
‖ #»x − #»y +n #»x 0‖

d #»x d #»y

=
∫

supp v1

∫
supp v1

v2
1(

#»x )v2
1(

#»y )
‖ #»x − #»y ‖

d #»x d #»y +
∫

supp v2

∫
supp v2

v2
2(

#»x )v2
2(

#»y )
‖ #»x − #»y ‖

d #»x d #»y

+2
∫

supp v2

∫
supp v1

v2
1(

#»x )v2
2(

#»y )
‖ #»x − #»y +n #»x 0‖

d #»x d #»y .

Consequently, the dominated convergence Theorem applies to ensure

I p,q
V (M)≤ lim

n→∞
E p,q

V (wn) = E p,q
V (v1)+E p,q

0 (v2), (2.11)

and we can optimize the right hand side of (2.11) to obtain (2.10).

We can say that the energy “at infinity” vanishes under certain conditions. As pointed out in the first
section of this chapter, the study of TFDW problems with vanishing energy “at infinity” might be simpler.

Proposition 8. Assume that

g(t) := cT F |t|p− cD|t|q +
2
√

cW

C
|t|3 ≥ 0, t ∈ R, (2.12)

where C satisfies

∫
R3
|u|3d #»x ≤ C

2

√∫
R3
‖∇u‖2d #»x

√
D(u2,u2), u ∈H 1(R3). (2.13)

Then, I p,q
0 ≡ 0 and the infimum cannot be attained.

Moreover,

i) both I
p, 10

3
0 (M) = 0 and the infimum is not attained for M� 1,

ii) (2.12) holds if and only if

q = 3,
cD√
cW
≤ 2

C
, (2.14)

or

q > 3,
cT F√

cW

(
cD

cT F

) p−3
p−q

<
2(p−3)
C(p−q)

(
p−3
q−3

) q−3
p−q

. (2.15)

Proof. In virtue of (2.13),

E p,q
0 (u)≥

∫
R3

(
cW‖∇u‖2−

2
√

cW

C
|u|3
)

d #»x +
1
2

D(u2,u2)
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≥ cW

∫
R3
‖∇u‖2d #»x −

√
cW

∫
R3
‖∇u‖2d #»x

√
D(u2,u2)+

1
2

D(u2,u2)

=

(√
cW

∫
R3
‖∇u‖2d #»x − 1

2

√
D(u2,u2)

)2

+
1
4

D(u2,u2)> 0, u ∈H 1(R3)\{0}

As a result, I p,q
0 ≥ 0, which joint with the nonpositivity of I p,q

0 implies I p,q
0 ≡ 0. Moreover, from the

equation above we can see that the infimum cannot be attained.

Next, we establish (i). We note that

∫
R3
|u|

10
3 d #»x ≤

(∫
R3

u2d #»x
) 1

2
10
3 θ (∫

R3
|u|6d #»x

) 1
6

10
3 (1−θ)

≤CM
5
3 θ

(∫
R3
‖∇u‖2

) 5
3 (1−θ)

, (2.16)

by the interpolation inequality in Lebesgue spaces and Sobolev’s inequality, where

3
10

=
1
2

θ +
1
6
(1−θ),

or, equivalently, θ = 2/5. Then, (2.16) reads∫
R3
|u|

10
3 d #»x ≤CM

2
3

∫
R3
‖∇u‖2d #»x ,

thus

E p,q
0 (u)≥

∫
R3

[
(cW − cDCM

2
3 )‖∇u‖2 + cT F |u|p

]
d #»x +

1
2

D(u2,u2), u ∈H 1(R3),

and when M� 1,

E0(u)> 0,u ∈H 1(R3),‖u‖2
L 2(R3) = M.

The latter joint with the nonpositivity of I
p, 10

3
0 implies I

p, 10
3

0 ≡ 0. Moreover, the infimum cannot be attained.
This proves (i).

Finally, in regards to (ii), q < 3 is discarded because g(t)< 0 for t � 1 in this case. Regarding the other
two posibilities for q, first note that

lim
|t|→∞

g(t) = ∞.

Then,

q = 3⇒ g(t) = cT F |t|p +
(

2
√

cW

C
− cD

)
|t|3,∀t ∈ R,⇒

(
g(t)≥ 0,∀t ∈ R,⇔ cD ≤

2
√

cW

C

)
;
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that is, if (2.14) holds, then (2.12) holds. Moreover, if (2.15) holds, then g(0) = 0 and for

t ∈ R\{0} 7→ f (t) :=
g(t)

cT F |t|3
,

it is true that

( f (t)≥ 0⇔ g(t)≥ 0,∀t ∈ R\{0}) , lim
|t|→∞

f (t) = ∞.

Also, f has only one critical point, say t0, and it satisfies

(p−3)t p−4
0 − cD

cT F
(q−3)tq−4

0 = 0⇔ t p−3
0 =

cD(q−3)
cT F(p−3)

tq−3
0 ⇔ t0 =

[
cD(q−3)

cT F(p−3)

] 1
p−q

,

then

f (t0) =
[

cD(q−3)
cT F(p−3)

− cD

cT F

]
tq−3
0 +

2
√

cW

cT FC

=
cD(q− p)
cT F(p−3)

tq−3
0 +

2
√

cW

cT FC

=
cD(q− p)
cT F(p−3)

[
cD(q−3)

cT F(p−3)

] q−3
p−q

+
2
√

cW

cT FC
> 0.

As a result, (2.12) also holds if we assume (2.15) holds.

The following Lemma is used in the proof of the Concentration-compactness Theorem in the case p =

10/3 and q = 8/3 (see Theorem 4), in the study of vanishing of the energy at “infinity” (see Corollary right
after the Lemma), and in the study of the minimization problem over the class of radial functions (see section
4 in chapter 3):

Lemma 4. The following hold:

1. I
10
3 , 8

3
0 (M) is strictly concave for M� 1. In particular, this implies that I

10
3 , 8

3
0 (M) is strictly subaddi-

tive for M� 1, hence no splitting occurs for sufficiently small masses (i.e. there exist minimizers).

2. If q≤ 3,K = 1, #»r 0 =
#»
0 and either Z = 0 or c = 2q−4, then

M ∈ R+ 7→
I p,q

V (M)

M2q−3

is nondecreasing.

3. Let q≤ 2.4 and K = 1, #»r 0 =
#»
0 . Then,

M ∈ R+ 7→
I p,q

V (M)

Mγ0
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is nonincreasing for

V ≡ 0, γ0 ∈
[

0,
12−5q
8−3q

)
(∈ [0,1)),

or

V 6≡ 0, ν ∈
[

2q−4
4−q

,
3q−6

q

]
(⊆ (0,1)), γ0 =

3
2

(q−2)2

2c+6−3q
+

q
2
(∈ [0,1)).

Proof. Nam and Van Den Bosch [46] showed I
10
3 , 8

3
0 (M) is attained for M small enough by exploiting the

fact that

I0(M) = inf{Fu(M);u ∈H 1(R3),‖u‖L 2(R3) = 1}, M > 0,

where

Fu(M) :=−
M

5
3

(
Cu−M

2
3 Du

)2

+

4
(

Au +M
2
3 Bu

) ,

with

Au := cW

∫
R3
‖∇u‖2d #»x , Bu := cT F

∫
R3
|u|

10
3 d #»x ,

Cu := cD

∫
R3
|u|

8
3 d #»x , Du :=

1
2

D(u2,u2).

Indeed, they proved M � 1 7→ I
10
3 , 8

3
0 (M) is strictly subadditive by showing that M � 1 7→ Fu(M)/M is

strictly increasing, uniformly in u. The latter was established by making use of the inequalities

Bu ≤CM
2
3 Au, Du ≤CM

2
3 Cu, u ∈H 1(R3). (2.17)

(2.17) follow from Hölder’s inequality, Sobolev’s inequality, Hardy-Littlewood’s inequality, and the interpo-
lation inequality in Lebesgue spaces.

Then, let us fix any α ∈ (0,1), and M1,M2� 1. By (2.17),

d2F
dM2 =

d2

dM2

−M
5
3

(
Cu−M

2
3 Du

)2

4
(

Au +M
2
3 Bu

)
=− 2Gu(M)

9M
1
3 (Au +M

2
3 Bu)3

, M� 1,

where

Gu(M) := 14M
8
3 B2

uD2
u +M2(37AuBuD2

u−10B2
uCuDu)+M

4
3 (27A2

uD2
u−30AuBuCuDu)

+M
2
3 (−28A2

uCuDu +AuBuC2
u)+5A2

uC2
u
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> A2
uC2

u(−10M2−30M
4
3 −28M

2
3 +5)> 0,

uniformly in u. Therefore, Fu(M) is strictly concave for M� 1 uniformly in u. In consequence, for some
u∗= u∗α,M1,M2

I0(αM1 +(1−α)M2) = Fu∗(αM1 +(1−α)M2)

> αFu∗(M1)+(1−α)Fu∗(M2)

≥ αI0(M1)+(1−α)I0(M2).

Since α , M1, and M2 were arbitrary, we conclude that I
10
3 , 8

3
0 is strictly concave for M� 1.

Now we turn to the proof of statement 2. Given α and β positive, α < β , choose any function u∈H 1(R3)

with ‖u‖2
L 2(R3)

= β . Set v := γ2u(γ·) where γ := α/β < 1. Then,

∫
R3

v2d #»x =
∫
R3
|γ2u(γ·)|2d #»x = γ

∫
R3

u2d #»x = α,

∫
R3
‖∇v‖2d #»x =

∫
R3
‖∇(γ2u(γ·))‖2d #»x =

∫
R3
‖γ3(∇u)(γ·)‖2d #»x = γ

3
∫
R3
‖∇u‖2d #»x ,

∫
R3
|v|rd #»x =

∫
R3
|γ2u(γ·)|rd #»x = γ

2r−3
∫
R3
|u|rd #»x , r ≥ 1,

∫
R3

V v2d #»x = γ
4+ν

∫
R3

Zu(γ #»x )
‖γ #»x ‖ν

d #»x = γ
1+ν

∫
R3

Vu2d #»x = γ
2q−3

∫
R3

Vu2,d #»x

and

D(v2,v2) = γ

∫
R3

∫
R3

[γ2u(γ #»x )]2[γ2u(γ #»y )]2

‖γ #»x − γ
#»y ‖

d #»x d #»y = γ
3D(u2,u2).

Consequently,

I p,q
V (α)≤ E p,q

V (v)

=
∫
R3
(cW γ

3‖∇u‖2d #»x + cT F γ
2p−3|u|pd #»x − cDγ

2q−3|u|qd #»x − γ
2q−3Vu2)d #»x +

1
2

γ
3D(u2,u2)

≤ γ
2q−3E p,q

V (u).

Thus the conclusion follows.

Regarding statement 3, for s,α ∈ R satisfying

2s−3α = 1,
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I p,q
V (M) = inf

w∈H 1(R3)
‖w‖

L 2(R3)=1

{
E p,q

V (Msw(Mα ·))
}

= inf
w∈H 1(R3)
‖w‖

L 2(R3)=1

{∫
R3
(cW M1+2α‖∇w‖2 + cT F M

3
2 (p−2)α+ p

2 |w|p− cDM
3
2 (q−2)α+ q

2 |w|q)d #»x

+ Mαc+1
∫
R3

V w2d #»x +M2+α 1
2

D(w2,w2)

}
= Mγ0 inf

w∈H 1(R3)
‖w‖

L 2(R3)=1

{∫
R3
(cW M(5− 3

2 q)α+1− q
2 ‖∇w‖2 + cT F M

3α+1
2 (p−q)|w|p− cD|w|q)d #»x

−Mαc+1−γ0

∫
R3

V w2d #»x +M(4− 3
2 q)α+2− q

2
1
2

D(w2,w2)

}
,

where

γ0 =
3
2
(q−2)α +

q
2
.

If V≡ 0 Choose any constant α such that

− q
3q−6

≤ α ≤− 4−q
8−3q < 0

. (2.18)

Note that the interval above is well defined thanks to q≤ 2.4, and that as one varies α ,

0 =
3
2
(q−2)

(
− q

3q−6

)
+

q
2
≤ γ0 ≤

3
2
(q−2)

(
− 4−q

8−3q

)
+

q
2
=

12−5q
8−3q

.

If V 6≡ 0 Choose a constant α such that so that the powers of negative terms in E p,q
V match; i.e.

α =
q−2

2c+6−3q
. (2.19)

Then, as ν ∈
[

2q−4
4−q , 3q−6

q

]
,

− (q−2)(8−3q)
4−q

≤ 2c+6−3q≤− (q−2)(3q−6)
q

,

so that from (2.19), (2.18) holds again. Also, for this value of α ,

γ0 =
3
2

(q−2)2

2c+6−3q
+

q
2
.

In any case, we have (
5− 3

2
q
)

α +1− q
2
< 0+0 = 0
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3α +1
2

(p−q)≤
3
(
− 4−q

8−3q

)
+1

2
(p−q) =− 2

8−3q
(p−q)< 0,

and (
4− 3

2
q
)

α +2− q
2
≤ 8−3q

2

(
− 4−q

8−3q

)
+

4−q
2

= 0.

Consequently, if M̃ < M,

I p,q
V (M) = Mγ0 inf

w∈H 1(R3)
‖w‖

L 2(R3)=1

{∫
R3
(cW M(5− 3

2 q)α+1− q
2 ‖∇w‖2 + cT F M

3α+1
2 (p−q)|w|p− cD|w|q)d #»x

−
∫
R3

V w2d #»x +M(4− 3
2 q)α+2− q

2
1
2

D(w2,w2)

}
≤Mγ0 inf

w∈H 1(R3)
‖w‖

L 2(R3)=1

{∫
R3
(cW M̃(5− 3

2 q)α+1− q
2 ‖∇w‖2 + cT F M̃

3α+1
2 (p−q)|w|p− cD|w|q)d #»x

−
∫
R3

V w2d #»x + M̃(4− 3
2 q)α+2− q

2
1
2

D(w2,w2)

}
=

(
M
M̃

)γ0

I p,q
V (M̃)

Finally, we can prove that the energy at “infinity” does not vanish under certain conditions:

Corollary 2. If q < 3, then I p,q
0 < 0.

Proof. Following the same reasoning as in the proof of part 2 of Lemma 4 with β = 1 and u fixed, we find
that the leading term in E p,q

0 (v) is the negative one, so that I p,q
0 (α) < 0 for all p ∈ (q,6) and all α � 1.

Consequently, the binding inequality ensures the function is strictly negative on its whole domain. It is worth

to mention that when we choose functions v = γsu(γ·) and see what happens with s to force the negative term

to be dominant, we find the same condition q < 3 coming from trying to force sq−3 < 2s−1,4s−5 that leads

to 2/(4−q)< 2/(q−2).

The following proposition contains what the concentration-compactness Lemma by Lions gives in relation
to minimizing sequences of TFDW type problems. The first part concerns conditions under which there is
equality in the binding inequality.

Proposition 9. The following are true:

(i) Let {un}n∈N be a minimizing sequence for I p,q
V (M) and assume I p,q

V < 0. Then, there exist translations

{ #»x 0
n}n∈N and a function u0 ∈H 1(R3)\{0} such that, up to a subsequence,

un(·− #»x 0
n)−u0 −−−⇀

n→∞
0 in H 1(R3) and pointwise almost everywhere in R3.

Moreover,

I p,q
V (M) = I p,q

V (m0)+I p,q
0 (M−m0), I p,q

V (m0) = E p,q
V (u0),I p,q

V (M−m0) = lim
n→∞

E p,q
V (un−u0).
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where m0 := ‖u0‖2
L 2(R3)

, and we can choose vectors { #»x n =
#»
0 }n∈N if V 6≡ 0.

(ii) I p,q
V < I p,q

0 ≤ 0 for V 6≡ 0.

Proof. (i) Let us consider V 6≡ 0 first.

The sequence {un}n∈N is bounded in H 1(R3) as E p,q
V is coercive (see Proposition 3). Then, there

exists u0 ∈H 1(R3) and a (not relabeled) subsequence for which un −−−⇀
n→∞

u0 weakly in H 1(R3) and

pointwise almost everywhere in R3. By the weak convergence and the Brezis-Lieb Lemma [10], E p,q
V

decouples in the limit (see [46, 33]),

lim
n→∞

[
E p,q

V (un)−E p,q
V (u0)−E p,q

0 (un−u0)
]
= 0,

and thus

I p,q
V = lim

n→∞
E p,q

V (un) = E p,q
V (u0)+ lim

n→∞
E p,q

0 (u0
n)≥I p,q

V (m0)+I p,q
0 (M−m0).

On the other hand, by the binding inequality (2.10), we have

I p,q
V (m0)+I p,q

0 (M−m0)≥I p,q
V (M)≥ E p,q

V (u0)+ lim
n→∞

E p,q
0 (u0

n)≥I p,q
V (m0)+I p,q

0 (M−m0),

(2.20)
and hence we obtain equality of each expression,

E p,q
V (u0) = I p,q

V (m0) and lim
n→∞

E p,q
0 (un−u0) = I p,q

0 (M−m0),

that is, the remainder sequence {u0
n}n∈N is a minimizing sequence for I p,q

0 (M−m0).

Next, we prove that m0 > 0. Suppose this was not the case to get a contradiction.

We eliminate the possibility of “vanishing” in the Concentration-Compactness framework [36], for any
bounded sequence we define (as in Nam-van den Bosch [46],)

ω({vn}n∈N) := sup
{
‖v‖2

L 2(R3) ; ∃yn ∈ R3 and a subsequence such that vn(·− yn)−−−⇀
n→∞

v in H 1(R3)
}
.

(2.21)
We claim that ω({un}n∈N)> 0. Indeed, applying [36, Lemma I.1], if ω({un}n∈N) = 0, then un −−−→

n→∞
0

in L r(R3) norm, for all 2 < r < 6, so in particular∫
R3
|un|q −−−→

n→∞
0.

In addition, by Proposition 5 we have ∫
R3

V |un|2d #»x −−−→
n→∞

0,

and hence
I p,q

V (M) = lim
n∈N

E p,q
V (un)≤ liminf

n→∞
E p,q

0 (un)≥ 0,
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which contradicts I p,q
V < 0. Hence “vanishing” cannot occur. Then, by definition of ω({un}n∈N), we

can choose translations { #»x 1
n}n∈N so that, up to a subsequence, un(·− #»x 1

n)−−−⇀n→∞
u1 6≡ 0 in H 1(R3).

Now, since E p,q
0 is translation invariant, V 6≡ 0, and by Proposition 5, we have

I p,q
V (M)≤ liminf

n→∞
E p,q

V (un(·− #»x 1
n))

= liminf
n→∞

{
E p,q

0 (un)−
∫
R3

V [un(
#»x − #»x 1

n)]
2d #»x

}
= liminf

n→∞
E p,q

V (un)−
∫
R3

V (u1)2d #»x

= I p,q
V (M)−

∫
R3

V (u1)2d #»x .

We reached a contradiction. We then must have that m0 > 0.

Finally, we consider V ≡ 0. In this case, we prove that ω({un}n∈N)> 0 by using negativity of the energy
again, so that it is possible to translations { #»x 0

n}n∈N so that un(·− #»x 0
n)−−−⇀n→∞

u0 6≡ 0 in H 1(R3).

(ii) By part (i) and Proposition 10, there exists m ∈ (0,M] for which

I p,q
0 (M) = I p,q

0 (m)+I p,q
0 (M−m),

where I p,q
0 (m) is attained by a function |u0,m|> 0. Then,

I p,q
V (M)−I p,q

0 (m)≤I p,q
V (u0,m)−I p,q

0 (u0,m) =−
∫
R3

V ( #»x )u2
0,m(

#»x )< 0,

because V 6≡ 0. Therefore, the binding inequality gives

I p,q
V (M)≤I p,q

V (M)+I p,q
0 (M−m)< I p,q

0 (m)+I p,q
0 (M−m) = I p,q

0 (M)≤ 0.

Finally, we can compare I p,q
V with M as follows.

Corollary 3. Let V be as in (1.5). Then, there exist K1,K2 ∈ R+ for which

−K1M ≤I p,q
V (M)≤−K2M.

For V more general, we can take K2 = 0.

Proof. The lower bound follows from coercivity of E p,q
V . On the other hand, the upper bound follows from

applying the binding inequality multiple times and from

limsup
M→0+

I p,q
V (M)

M
< 0,

an inequality we establish in what remains of this proof.
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Let us define

EM,V := inf
{∫

R3
(cW‖∇u‖2−Vu2)d #»x ; u ∈H 1(R3),

∫
R3

u2 = M
}
, M > 0.

We can show that EM,V < 0 by applying the transformation u 7→ σ
3
2 u(σ ·) and taking σ → 0+. Moreover,

EM,V = ME1,V for M > 0. Then, by applying the concentration-compactness Lemma to a minimizing se-
quence for any of the EM,V and by lower semicontinuity of the energy that is being minimized, we obtain that
each EM,V is attained. In particular, there exists φ1 ∈H 1(R3) at which E1,V is attained.

Next, we have
I p,q

V (M)≤ E p,q
V (
√

Mφ1) = ME1,V +Mε(M),

where ε(M)→ 0 as M→ 0+. Hence

limsup
M→0+

I p,q
V (M)

M
≤ E1,V < 0.

2.4 Basic properties of minimizers of I p,q
V

In this section we present some estimates on minimizers and consequences.

Proposition 10. If I p,q
0 (M) is attained at u0,M , then u ∈ C ∞(R3), 0 < |u0,M| ≤

(
q
p

cD
cT F

) 1
p−q

, and (1.9) holds

with Lagrange Multiplier µ ≤ 0 induced by the mass constraint. Moreover, if either q≤ 12
5 or both q≤ 8

3 and

M� 1, then µ < 0.

Remark 3. When the Lagrange multiplier µ < 0, we obtain exponential decay (see (66) in [37]): for all

t <
√
−µ/cW , there exists C with

|u0,M( #»x )|+‖∇u0,M( #»x )‖ ≤Ce−t‖ #»x ‖ pointwise almost everywhere in R3. (2.22)

Even if µ0 = 0, we still have |u0,M|+‖∇u0,M‖ −−−−−→
‖ #»x ‖→∞

0. This follows from (1.9) and Theorem 8.17 uniformly

by Gilbarg and Trudinger [26].

Proof. Equation (1.9), without the sign of µ , corresponds to the Euler-Lagrange equation associated to I p,q
0 .

From the Euler-Lagrange equation we obtain

cW

∫
R3
‖∇u0,M‖2d #»x + cT F

p
2

∫
R3
|u0,M|pd #»x − cD

q
2

∫
R3
|u0,M|qd #»x +D(u2

0,M,u2
0,M) = µM. (2.23)

Next, since M ∈R+ 7→I0(M) is nonincreasing and I0(M) = E0(u0,M), the function σ ∈ [0,1] 7→ E0(σu0,M)

has a minimum at σ = 1. Then,

0≥ d
dσ

[E0(σu0,M)]

∣∣∣∣
σ=1
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=
d

dσ

[∫
R3
(cW σ

2‖∇u0,M‖2 + cT F σ
p|u0,M|p− cDσ

q|u0,M|q)d #»x +
1
2

σ
4D(u2

0,M,u2
0,M)

]∣∣∣∣
σ=1

=
∫
R3
(2cW‖∇u0,M‖2 + cT F p|u0,M|p− cDq|u0,M|q)d #»x +2D(u2

0,M,u2
0,M) = 2µM,

implying that µ ≤ 0. In order to obtain µ < 0 in the case q≤ 12
5 we note that

0 =
d

dσ
[E p,q

0 (σ3/2u0,M(σ #»x ))]
∣∣∣∣
σ=1

=
d

dσ

[∫
R3
(cW σ

2‖∇u0,M‖2 + cT F σ
3p/2−3|u0,M|p− cDσ

3q/2−3|u0,M|q)d #»x +
1
2

σD(u2
0,M,u2

0,M)

]∣∣∣∣
σ=1

=
∫
R3

(
2cW‖∇u0,M‖2d #»x + cT F

3p−6
2
|u0,M|p− cD

3q−6
2
|u0,M|q

)
d #»x +

1
2

D(u2
0,M,u2

0,M)

(2.24)

as u0,M is a minimizer for I p,q
0 (M), or, equivalently,

cD
q
2

∫
R3
|u0,M|qd #»x = cW

2q
3q−6

∫
R3
‖∇u0,M‖2d #»x +

cT F

2
q(p−2)

q−2

∫
R3
|u0,M|pd #»x

+
q

2(3q−6)
D(u2

0,M,u2
0,M).

(2.25)

Consequently, plugging (2.25) into (2.23) gives

µM =
∫
R3

[
−cW

(
2q

3q−6
−1
)
‖∇u0,M‖2− cT F

2

(
q

p−2
q−2

− p
)
|u0,M|p

]
d #»x

−
[

q
2(3q−6)

−1
]

D(u2
0,M,u2

0,M)

=
∫
R3

(
−cW

6−q
3q−6

‖∇u0,M‖2− cT F
p−q
q−2

|u0,M|p
)

d #»x − 12−5q
2(3q−6)

D(u2
0,M,u2

0,M),

hence µ < 0 in the case q≤ 12
5 . Now suppose 12

5 < q≤ 8
3 and M� 1. We can rewrite (2.24) as

cT F
p
2

∫
R3
|u0,M|pd #»x =

∫
R3

[
−cW

2p
3p−6

‖∇u0,M‖2 +
cD

2
p(q−2)

p−2
|u0,M|q

]
d #»x

− p
2(3p−6)

D(u2
0,M,u2

0,M),
(2.26)

and insert (2.26) into (2.23) to obtain

µM =
∫
R3

[
−cW

(
2p

3p−6
−1
)
‖∇u0,M‖2 +

cD

2

(
p

q−2
p−2

−q
)
|u0,M|p

]
d #»x −

[
p

2(3p−6)
−1
]

D(u2
0,M,u2

0,M)

=
∫
R3

(
−cW

6− p
3p−6

‖∇u0,M‖2− cD
p−q
p−2

|u0,M|q
)

d #»x − 12−5p
2(3p−6)

D(u2
0,M,u2

0,M),

Then, from (2.7) with r = q we obtain that that µ < 0 if M is sufficiently small.
We note that if we insert D, or any other term, into the equation for −µ we do not improve q ≤ 12

5 . For
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instance, inserting D into (2.23) gives

µM =
∫
R3

[
−3cW‖∇u0,M‖2− cT F

(
3p−6− p

2

)
|u0,M|p + cD

(
3q−6− q

2

)
|u0,M|q

]
d #»x

=
∫
R3

[
−3cW‖∇u0,M‖2− cT F

2
(5p−12)|u0,M|p +

cD

2
(5q−12)|u0,M|q

]
d #»x .

so we can see that q = 12
5 would be a sufficient condition.

Also, we observe that the Pohozaev identity associated with (1.9) does not bring new information about µ .

Next, we observe that u0,M ∈H 2(R3)⊂L ∞(R3) as a result of −∆u0,M ∈L 2(R3) and by elliptic regu-
larity. u0,M( #»x )−−−−−→

‖ #»x ‖→∞

0 and (1.9) ensure

−cW ∆u0,M =

(
µ− 5

3
cT F u

4
3
0,M +

4
3

cDu
2
3
0,M−u2

0,M ?‖ · ‖−1
)

u0,M,

for some µ < 0. Fix t ∈ (0,
√
−µ/cW ); then, we have

−∆u0,M + t2u0,M <

[
1
2

(
t2 +

µ

cW

)
+

4
3

cD

cW
u

2
3
0,M

]
u0,M,

so that for R large enough

−∆u0,M + t2u0,M < 0, pointwise almost everywhere in R3 \BR(0).

Next, we can check that

−∆e−t|| #»x ||+ t2e−t|| #»x || > 0, pointwise almost everywhere in R3 \BR(
#»
0 ),

and that there exists C > 0 so that

u0,M|∂BR(
#»

0 ) ≤Ce−tR =Ce−t|| #»x |||
∂BR(

#»

0 ).

Thus,

−∆[u0,M( #»x )−Ce−t|| #»x ||]+ t2[u0,M( #»x )−Ce−t|| #»x ||]< 0, pointwise almost everywhere in R3 \BR(
#»
0 ).

At this point, we use the maximum principle to assert that u0,M( #»x ) is dominated by the supersolution v( #»x ) =

Ce−t|| #»x || in R3 \BR(
#»
0 ). As the domain is unbounded, this requires some care, but applying Stampacchia’s

method as in Benguria, Brezis and Lieb [8, Lemma 8] we obtain the desired bound,

0 < u0,M( #»x )≤ v( #»x ) =Ce−t|| #»x ||, #»x ∈ R3 \BR(
#»
0 ).

The estimate on ‖∇u‖ follows from standard elliptic estimates; see for instance Theorems 8.22 and 8.32
of [26].
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Proposition 11. If I p,q
V (M) is attained at uM , then (1.8) holds with Lagrange multiplier µ ≤ 0 induced by

the mass constraint. Furthermore, µ < 0 if

(i) V ≥VT FDW satisfies (1.2) and M ≤Z +κ , for some κ = κ(Z )> 0, or

(ii) V is of long-range (1.7), or

(iii) V satisfies (1.2), M� 1, and

E := inf
{∫

R3
(‖∇uM‖2−Vu2

M)d #»x ;uM ∈H 1(R3),‖uM‖2
L 2(R3) = 1

}
< 0, or,

(iv) V is given by (1.5), and M� 1.

Remark 4. (i) In the case p≤ 4, (1.8) implies that uM ∈C0,α(R3) for all 0 < α < 1, |uM|> 0, and uM is

smooth wherever V is.

(ii) When the Lagrange multiplier µ < 0, we obtain exponential decay (see (66) in [37]) as in (2.22). Even

if µ0 = 0, we still have |u0,M|+‖∇u0,M‖ −−−−−→
‖ #»x ‖→∞

0. This follows from 1.8 and Theorem 8.17 uniformly

by Gilbarg and Trudinger [26].

Proof. The proof of (1.8) with µ ≤ 0 does not differ from the one of (1.9) with µ ≤ 0 substantially.

Statement (i) is the equivalent to part (ii) of Theorem 1 by Le Bris [31], and its prove does not change
substantially. More precisely, if µ = 0 and M ≤Z , then Newton’s Theorem and Lemma 7.18. of Lieb [33]
imply that uM 6∈L 2(R3), a contradiction to uM ∈H 1(R3). On the other hand, if it is possible to find se-
quences {µn}n∈N = {0}, {uMn}n∈N and Mn ↓Z such that I p,q

V (Mn) is attained at uMn , and uMn is associated
with the Lagrange multiplier µn, then uMn −−−→n→∞

uZ in H 1(R3) and µn −−−→
n→∞

µ where uZ is a minimum of

I p,q
V (Z ) associated with the Lagrange multiplier µ . However, µn −−−→

n→∞
0 and µ 6= 0 simultaneously. Thus

we reach a contradiction.

Statement (ii) is the equivalent to Theorem 2 of Alama et al. [3] and its prove does not change substantially.
More precisely, if µ = 0, then Newton’s Theorem and Lemma 7.18. of Lieb [33] imply that uM 6∈L 2(R3), a
contradiction to uM ∈H 1(R3).

Statement (iii) follows by the same reasoning as in the proof of Corollary II.2. of Lions [37]. More pre-
cisely, if I p,q

V

( 1
n

)
is attained at u1/n, and u1/n is associated with the Lagrange multiplier µn, then

√
nu1/n−−−→n→∞

φ in H 1(R3), where φ is the minimizer for E. Then, µn −−−→
n→∞

E < 0.

Finally, (iv) is a consequence of (iii).

The following result is instrumental in studying qualitative behaviour of minimizers further. This result
allows us to understand the contribution a minimizer makes to the TFDW energy outside and inside balls.
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Proposition 12. (i) (Localization estimate) Let χ,η :R→ [0,1] be smooth functions satisfying χ2+η2≡ 1
on R3, and define Ω := { #»x ∈ R3 : χ( #»x ) ∈ (0,1)}. If I p,q

V (M) is attained at uM , then

D(χ2u2
M,η2u2

M)

≤
∫
R3

V η
2u2

Md #»x +

cD
p−q
p−2

[
cD(q−2)

cT F(p−2)

] q−2
p−q

+ cW

(
‖∇χ‖2

L ∞(R3)+‖∇η‖2
L ∞(R3)

)
∫

Ω

u2
Md #»x .

(2.27)

(ii) (Annular estimate) If I p,q
V (M) is attained at uM , then

∀ #»x 0 ∈ R3,R≥ 1,
(∫

BR(
#»x 0)

u2
Md #»x

)(∫
R3\B2R(

#»x 0)

‖ #»x − #»x 0‖
‖ #»x ‖

u2
M( #»x )d #»x

)

≤ 12
∫
R3\BR(

#»x 0)

cD
p−q
p−2

[
cD(q−2)

cT F(p−2)

] q−2
p−q

+8cW +‖ #»x − #»x 0‖V ( #»x )

u2
M( #»x )d #»x . (2.28)

(iii) (Special case of the annular estimate) Let V be as in (1.3). If I p,q
V (M) is attained at uM , then

∀R� 1,∃CR,Z ∈ R+,

(
1
3

∫
BR(

#»

0 )
u2

Md #»x −CR,Z

)∫
R3\B2R(

#»

0 )
u2

Md #»x

≤ 4

cD
p−q
p−2

[
cD(q−2)

cT F(p−2)

] q−2
p−q

+8cW


∫
R3\BR(

#»x 0)
u2

Md #»x . (2.29)

Moreover, we can choose constants {CR,Z }R�1 so that

lim
R→∞

CR,Z = Z .

Proof. We follow ideas by Nam and Van Den Bosch [46, Lemmas 6 and 7].

(i) Since

M =
∫
R3

u2
Md #»x =

∫
R3
(χ2 +η

2)u2
Md #»x =

∫
R3

χ
2u2

Md #»x +
∫
R3

η
2u2

Md #»x ,

we can apply the binding inequality to obtain

E p,q
V (uM) = IV (M)≤ Ip,q

V

(
‖χuM‖L 2(R3)

)
+I p,q

0

(
‖ηuM‖L 2(R3)

)
≤ E p,q

V (χuM)+E p,q
0 (ηuM).
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Therefore,

0≥ E p,q
V (uM)−E p,q

V (χuM)−E p,q
0 (ηuM)

= cW

∫
R3
(‖∇uM‖2−‖∇(χuM)‖2−‖∇(ηuM)‖2)d #»x

+
∫
R3
[cT F(1−|χ|p−|η |p)|uM|p− cD(1−|χ|q−|η |q)|uM|q]d #»x

−
∫
R3

V (1−χ
2)u2

Md #»x +
1
2
[
D(u2

M,u2
M)−D(χ2u2

M,χ2u2
M)−D(η2u2

M,η2u2
M)
]

= cW

∫
R3

[
−(‖∇χ‖2 +‖∇η‖2)u2

M +(1−χ
2−η

2)‖∇u‖2− 1
2

∇(χ2 +η
2) ·∇u2

M

]
d #»x

+
∫
R3
[cT F(1−|χ|p−|η |p)|uM|p− cD(1−|χ|q−|η |q)|uM|q]d #»x −

∫
R3

V η
2d #»x

+
1
2

∫
R3

∫
R3

u2
M( #»x )u2

M( #»y )
‖ #»x − #»y ‖

[1−χ
2( #»x )χ2( #»y )−η

2( #»x )η2( #»y )]d #»x d #»y

=−cW

∫
R3
(‖∇χ‖2 +‖∇η‖2)u2

Md #»x

+
∫
R3
[cT F(1−|χ|p−|η |p)|uM|p− cD(1−|χ|q−|η |q)|uM|q]d #»x

−
∫
R3

V η
2d #»x +

1
2

∫
R3

∫
R3

u2
M( #»x )u2

M( #»y )
‖ #»x − #»y ‖

[1−χ
2( #»x )χ2( #»y )−η

2( #»x )η2( #»y )]d #»x d #»y .

(2.30)

Equation (2.27) follows from estimating each of the terms on the right hand of the inequality above.

First, ∇χ1R3\Ω = ∇η1R3\Ω ≡ 0 gives

∫
R3
(‖∇χ‖2 +‖∇η‖2)u2

Md #»x =−
∫

Ω

(‖∇χ‖2 +‖∇η‖2)u2
Md #»x

≥−
(
‖∇χ‖2

L ∞(R3)+‖∇η‖2
L ∞(R3)

)∫
Ω

u2
Md #»x .

(2.31)

Second, from

0≤ 1−|χ|q−|η |q ≤ 1−|χ|p−|η |p ≤ 1Ω, (1−|χ|r−|η |r)1R3\Ω ≡ 0, r ≥ 1

and

cT F |t|p− cD|t|q ≥−cD
p−q
p−2

[
cD(q−2)

cT F(p−2)

] q−2
p−q

|t|2, t ∈ R,

we obtain ∫
R3

[cT F(1−|χ|p−|η |p)|uM|p− cD(1−|χ|q−|η |q)|uM|q]d #»x

≥
∫

Ω

(1−|χ|p−|η |p)(cT F |uM|p− cD|uM|q)d #»x

≥−cD
p−q
p−2

[
cD(q−2)

cT F(p−2)

] q−2
p−q ∫

Ω

u2
Md #»x .

(2.32)
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Third,

1−χ
2( #»x )χ2( #»y )−η

2( #»x )η2( #»y ) = χ
2( #»x )η2( #»y )+η

2( #»x )χ2( #»y ), #»x , #»y ∈ R3,

so that, by symmetry of the nonlocal term,

1
2

∫
R3

∫
R3

u2
M( #»x )u2

M( #»y )
‖ #»x − #»y ‖

[1−χ
2( #»x )χ2( #»y )−η

2( #»x )η2( #»y )]d #»x d #»y = D(χ2u2
M,η2u2

M). (2.33)

By plugging (2.31), (2.32), and (2.33) back into (2.30) we get

0≥−
(
‖∇χ‖2

L ∞(R3)+‖∇η‖2
L ∞(R3)

)∫
Ω

u2
Md #»x − cD

p−q
p−2

[
cD(q−2)

cT F(p−2)

] q−2
p−q ∫

Ω

u2
Md #»x

−
∫
R3

V η
2u2

Md #»x +D(χ2u2
M,η2u2

M)

=−

cD
p−q
p−2

[
cD(q−2)

cT F(p−2)

] q−2
p−q

+ cW

(
‖∇χ‖2

L ∞(R3)+‖∇η‖2
L ∞(R3)

)
∫

Ω

u2
Md #»x

−
∫
R3

V η
2u2

Md #»x +D(χ2u2
M,η2u2

M),

which corresponds to (2.27) but rearranged.

(ii) Let us fix any pair of smooth functions f ,g : R→ [0,1] for which

f 2 +g2 ≡ 1, f1t≤0 ≡ 1, f1t≥1 ≡ 0, and ‖ f ′‖,‖g′‖L ∞(R3) ≤ 2. (2.34)

Define functions χk,ηk : R3→ [0,1] by

χk(
#»x ) := f (‖ #»x − #»x 0‖−R− k),ηk(

#»x ) := g(‖ #»x − #»x 0‖−R− k).

Each pair (χk,ηk) satisfies hypotheses of part a) of this Lemma with corresponding sets

Ωk = { #»x ∈ R3 : χk(
#»x ) ∈ (0,1)}= BR+k+1(

#»x 0)\BR+k(
#»x 0).

By applying (2.27) to each pair χk,ηk and adding over k ∈ N∪{0} we obtain

∞

∑
k=0

D(χ2
k u2

M,η2
k u2

M)≤
∞

∑
k=0

[∫
R3

V η
2
k u2

Md #»x +Ck

∫
BR+k+1(

#»x 0)\BR+k(
#»x 0)

u2
Md #»x

]
≤

∞

∑
k=0

{∫
R3

V η
2
k u2

Md #»x

+

cD
p−q
p−2

[
cD(q−2)

cT F(p−2)

] q−2
p−q

+8cW


∫

BR+k+1(
#»x 0)\BR+k(

#»x 0)
u2

Md #»x


=

∞

∑
k=0

∫
R3

V η
2
k u2

Md #»x +

cD
p−q
p−2

[
cD(q−2)

cT F(p−2)

] q−2
p−q

+8cW


∫
R3\BR(

#»x 0)
u2

Md #»x ,

(2.35)
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where

Ck := cD
p−q
p−2

[
cD(q−2)

cT F(p−2)

] q−2
p−q

+‖∇χk‖2
L ∞(R3)+‖∇ηk‖2

L ∞(R3).

Now note that, by definition,

χk1BR+k(
#»x 0) ≡ 1, χk1R3\BR+k+1(

#»x 0)
≡ 0, (2.36)

or, equivalently,

ηk1BR+k(
#»x 0) ≡ 0, ηk1R3\BR+k+1(

#»x 0)
≡ 1. (2.37)

On the other hand, (2.36), (2.37), and

‖ #»x − #»y ‖ ≤ ‖ #»x ‖+‖ #»y ‖ ≤ R+ k+1+‖ #»y ‖ ≤ 3‖ #»y ‖, #»x ∈ BR+k+1(
#»
0 ), #»y ∈ R3 \BR+k(

#»
0 )

give

D(χ2
k u2

M,η2
k u2

M) =
∫

BR+k+1(
#»x 0)

∫
R3\BR+k(

#»x 0)

χ2
k (

#»x )u2
M( #»x )η2

k (
#»y )u2

M( #»y )
‖ #»x − #»y ‖

d #»x d #»y

≥
∫

BR+k(
#»x 0)

∫
R3\BR+k(

#»x 0)

χ2
k (

#»x )u2
M( #»x )η2

k (
#»y )u2

M( #»y )
3‖ #»y ‖

d #»x d #»y

=

(
1
3

∫
BR+k(

#»x 0)
χ

2u2
Md #»x

)∫
R3

η2
k (

#»x )u2
M( #»x )

‖ #»x ‖
d #»x

≥
(

1
3

∫
BR(

#»x 0)
u2

Md #»x
)∫

R3

η2
k (

#»x )u2
M( #»x )

‖ #»x ‖
d #»x , k ∈ N∪{0}.

As a result,

∑
k∈N{0}

D(χ2
k u2

M,η2
k u2

M)≥
(

1
3

∫
BR(

#»x 0)
u2

Md #»x
)

∞

∑
k=0

∫
R3

η2
k (

#»x )u2
M( #»x )

‖ #»x ‖
d #»x .

Plugging this back into (2.35) gives(
1
3

∫
BR(

#»x 0)
u2

Md #»x
)

∞

∑
k=0

∫
R3

η2
k (

#»x )u2
M( #»x )

‖ #»x ‖
d #»x ≤

∞

∑
k=0

∫
R3

V η
2
k u2

Md #»x +C
∫
R3\BR(

#»x 0)
u2

Md #»x . (2.38)

Next, note that

1R3\BR+k+1(
#»x 0)
≤ η

2
k ≤ 1R3\BR+k(

#»x 0)
, k ∈ N∪{0},

∞

∑
k=0

1R3\BR+k(
#»x 0)

( #»x )≤ ‖ #»x − #»x 0‖1R3\BR(
#»x 0)

( #»x ), #»x ∈ R3
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and

∞

∑
k=0

1R3\BR+k+1(
#»x 0)

( #»x )≥ 1
2
(‖ #»x − #»x 0‖−R)1R3\BR+1(

#»x 0)
( #»x )

≥ 1
4
‖ #»x − #»x 0‖1R3\B2R(

#»x 0)
( #»x ), #»x ∈ R3.

Then,

1
4
‖ #»x − #»x 0‖1R3\B2R(

#»x 0)
( #»x )≤

∞

∑
k=0

[ηk(
#»x )]2 ≤ ‖ #»x − #»x 0‖1R3\BR(

#»x 0)
( #»x ), #»x ∈ R3.

This implies that

∞

∑
k=0

∫
R3

V ηku2
Md #»x ≤

∫
R3\BR(

#»x 0)
V ( #»x )‖ #»x − #»x 0‖u2

M( #»x )d #»x , (2.39)

and

∞

∑
k=0

∫
R3

η2
k (

#»x )u2
M( #»x )

‖ #»x ‖
d #»x ≥ 1

4

∫
R3\B2R(

#»x 0)

‖ #»x − #»x 0‖u2
M( #»x )

‖ #»x ‖
d #»x . (2.40)

Equation (2.28) follows from plugging (2.39) and (2.40) back into (2.38).

(iii) The proof of (2.29) is the same to that of (2.28) with #»x 0 =
#»
0 up to (2.38). At that point, we use

∃CR,Z ∈ R+,∀ #»x ∈ R3 \BR(
#»
0 ), V ( #»x )≤

CR,Z

‖ #»x ‖

to obtain that(
1
3

∫
BR(

#»x 0)
u2

Md #»x
)

∞

∑
k=0

∫
R3

η2
k (

#»x )u2
M( #»x )

‖ #»x ‖
d #»x

≤CR,Z

∞

∑
k=0

∫
R3

η2
k (

#»x )u2
M( #»x )

‖ #»x ‖
d #»x +C

∫
R3\BR(

#»x 0)
u2

Md #»x ;

or, equivalently,(
1
3

∫
BR(

#»x 0)
u2

Md #»x −CR,Z

)
∞

∑
k=0

∫
R3

η2
k (

#»x )u2
M( #»x )

‖ #»x ‖
d #»x ≤C

∫
R3\BR(

#»x 0)
u2

Md #»x . (2.41)

Equation (2.29) follows from using (2.40) with #»x 0 =
#»
0 to estimate the left hand side of (2.41).

Pick any pair of functions f ,g : R→ [0,1] satisfying (2.34), and define χR,ηR : R3→ [0,1] for R ∈ R+,
by

χR(
#»x ) := f (‖ #»x ‖−R) and ηR(

#»x ) := g(‖ #»x ‖−R).
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For each M > 0, let uM be a minimizer for I p,q
V and fix RM ∈ R+ for which∫

R3
χ

2
RM

u2
Md #»x =

M
2

=
∫
R3

η
2
RM

u2
Md #»x .

Since χRM1BRM (
#»

0 ) ≡ 1 and χRM1R3\BRM+1(
#»

0 ) ≡ 0, or, equivalently,

ηRM1BRM (
#»

0 ) ≡ 0 and ηRM1R3\BRM+1(
#»

0 ) ≡ 1,

we have that ∫
BRM+1(

#»

0 )
u2

Md #»x ≥
∫
R3

χ
2
RM

u2
Md #»x =

M
2
. (2.42)

and ∫
R3\BRM (

#»

0 )
u2

Md #»x ≥
∫
R3

η
2
RM

u2
Md #»x =

M
2
. (2.43)

Here is an estimate of RM in terms of M.

Lemma 5. M ≤CR3
M .

Proof. Hölder’s inequality and Proposition 4 give

M
2

=
∫
R3

χ
2
RM

u2
Md #»x ≤

∫
BRM+1(

#»

0 )
u2

Md #»x

≤
[

4π

3
(RM +1)3

] p−2
p
[∫

BRM+1(
#»

0 )
|uM|pd #»x

] 2
p

≤
[

4π

3
(RM +1)3

] p−2
p

M
2
p .

Hence the Lemma follows.

Then, we can say that, under certain conditions, the mass of a minimizer concentrates on an annular
region.

Corollary 4. Suppose that

limsup
‖ #»x ‖→∞

‖ #»x ‖V ( #»x )< ∞. (2.44)

Then, there exists a constant CV independent of M such that if M� 1, then∫
B2RM+2(

#»

0 )\BRM/2(
#»

0 )
u2

Md #»x ≥M−CV .

Furthermore, if V is given by (1.3), then we have

1
3

∫
BRM/2(

#»

0 )
u2

Md #»x ≤CRM ,Z +8

cD
p−q
p−2

[
cD(q−2)

cT F(p−2)

] q−2
p−q

+8cW

 ,

and
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∫
R3\B2RM+2

u2
Md #»x ≤ 24

cD
p−q
p−2

[
cD(q−2)

cT F(p−2)

] q−2
p−q

+8cW

 1

1−6
CRM ,Z

M

,

where CRM ,Z −−−→
M→∞

Z (CR,Z = Z for V = Z
‖ #»x ‖ ).

Proof. We prove the particular case. The general case is very similar.

By (2.29),

∀R� 1,
[

1
3

∫
BR(

#»

0 )
u2

Md #»x −CR,Z

]∫
R3\B2R(

#»

0 )
u2

Md #»x ≤ 4

cD
p−q
p−2

[
cD(q−2)

cT F(p−2)

] q−2
p−q

+8cW

M,

where {CR,Z }R�1 ⊂R+ can be chosen so that CR,Z →Z as R→∞. Then, we can make use of Lemma 5 to
obtain that[

1
3

∫
BRM+1(

#»

0 )
u2

Md #»x −CRM+1,Z

]∫
R3\B2RM+2(

#»

0 )
u2

Md #»x

≤ 4

cD
p−q
p−2

[
cD(q−2)

cT F(p−2)

] q−2
p−q

+8cW

M, M� 1,

and[
1
3

∫
BRM/2(

#»

0 )
u2

Md #»x −CRM/2,Z

]∫
R3\BRM (

#»

0 )
u2

Md #»x ≤ 4

cD
p−q
p−2

[
cD(q−2)

cT F(p−2)

] q−2
p−q

+8cW

M, M� 1.

Then, (2.42) and (2.43) give

(
M
6
−CRM+1,Z

)∫
R3\B2RM+2(

#»

0 )
u2

Md #»x ≤ 4

cD
p−q
p−2

[
cD(q−2)

cT F(p−2)

] q−2
p−q

+8cW

M, M� 1.

and

M
2

[
1
3

∫
BRM/2(

#»

0 )
u2

Md #»x −CRM/2,Z

]
≤ 4

cD
p−q
p−2

[
cD(q−2)

cT F(p−2)

] q−2
p−q

+8cW

M, M� 1,

Hence conclusions follow.

Finally, the following two propositions can be proved with no major changes from [46, Lemma 17 and
Theorem 3(ii)], correspondingly.

The first result is a consequence of the fact that the mass of a minimizer concentrates on the annular region
B2RM+2 \BRM/2, as shown before.
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Proposition 13. There exists a constant CV such that if uM is a minimizer for I p,q
V (M), then

sup
R3\BRM/2(

#»

0 )

|uM| ≥C.

And we can use the Proposition above to show the following:

Proposition 14. Suppose that V satisfies both (1.2) and (2.44). Then, for M sufficiently large, minimizers of

I p,q
V (M), if any, are not radial.
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Chapter 3

Structure of minimizing sequences

In this chapter we prove Theorems 4, 5, and 6. Throughout this chapter, we assume V satisfies (1.2).

The use of Concentration-Compactness techniques in Thomas-Fermi-type problems goes back at least to
Lions [37], for whom these problems were an important motivation for the development of the general theory.

3.1 General background potential

The idea of the Concentration Theorem 4 is partly contained in Lions[37], although it is not stated as a single
Theorem, and it leaves many details left to the reader. We provide a complete proof here.

Proof of Theorem 4. We first consider V 6≡ 0.
By Proposition 9, there is a function u0 ∈H 1(R3)\{0} such that

un(·− #»x 0
n)−u0 −−−⇀

n→∞
0 in H 1(R3) and pointwise almost everywhere in R3,

and

I p,q
V (M) = I p,q

V (m0)+I p,q
0 (M−m0), I p,q

V (m) = E p,q
V (u0),

where m0 := ‖u0‖2
L 2(R3)

.
If m0 = M, then the sequence converges strongly in L 2(R3) by the Brezis-Lieb Lemma [10], u0 mini-

mizes I p,q
V (M), and the procedure terminates, with N = 0.

If m0 < M, then we define the remainder sequence

u0
n := un−u0, n ∈ N.
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We note that by the Brezis-Lieb Lemma [10], ‖u0
n‖2

L 2(R3)
−−−→
n→∞

M−m0, while by weak convergence and the
Brezis-Lieb Lemma [10] again, the energy decouples in the limit (see [46, 33]),

lim
n→∞

[
E p,q

V (un)−E p,q
V (u0)−E p,q

0 (u0
n)
]
= 0,

and thus
I p,q

V = lim
n→∞

E p,q
V (un) = E p,q

V (u0)+ lim
n→∞

E p,q
0 (u0

n)≥I p,q
V (m0)+I p,q

0 (M−m0).

By the binding inequality (2.10), we have

I p,q
V (m0)+I p,q

0 (M−m0)≥I p,q
V (M)≥ E p,q

V (u0)+ lim
n→∞

E p,q
0 (u0

n)≥I p,q
V (m0)+I p,q

0 (M−m0), (3.1)

and hence we obtain equality of each expression,

E p,q
V (u0) = I p,q

V (m0) and lim
n→∞

E p,q
0 (u0

n) = I p,q
0 (M−m0),

that is, the remainder sequence {u0
n}n∈N is a minimizing sequence for I p,q

0 (M−m0).
Now we consider the residual sequence {u0

n}n∈N and show it concentrates after translation. First, we must
eliminate the possibility of “vanishing” in the Concentration-Compactness framework [36]. We claim that
ω({u0

n}n∈N) > 0, where ω is given by (2.21). Indeed, applying [36, Lemma I.1], if ω({u0
n}n∈N) = 0, then

u0
n −−−→n→∞

0 in L r(R3) norm, for each 2 < r < 6, so in particular

∫
R3
|u0

n|q −−−→n→∞
0

and hence
I p,q

0 (M−m0) = lim
n→∞

E p,q
0 (u0

n)≥ 0,

which contradicts Proposition 7. Hence “vanishing” cannot occur.
Therefore, we can choose a sequence of translations #»x 1

n ∈ R3 for which u0
n(· − #»x 1

n) −−−⇀n→∞
u1 weakly in

H 1(R3) and pointwise almost everywhere in R3, for some u1 ∈H 1(R3), with mass

m1 := ‖u1‖2
L 2(R3) ≥

1
2

ω({u0
n}n∈N)> 0.

As u0
n −−−⇀n→∞

0 and by the Rellich-Kondrakov compactness Theorem, we must have that ‖ #»x 1
n‖ −−−→n→∞

∞.

In case m0 = M−m1, the sequence converges strongly in L 2(R3) by the Brezis-Lieb Lemma [10], u1

minimizes I p,q
V (M−m1), and we obtain (1.10), (1.11), (1.12), and (1.13), with N = 1.

If m1 < M−m0, we again define the remainder sequence u1
n(

#»x ) := u0
n(

#»x )−u1( #»x + #»x 1
n). By definition,

u1
n −−−⇀n→∞

0, u1(·− #»x 1
n)−−−⇀n→∞

0, and ‖u1
n‖2

L 2(R3)
−−−→
n→∞

M−m0−m1, and the energy splits,

E p,q
0 (u0

n) = E p,q
0 (u1)+E p,q

0 (u1
n)+o(1)
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By the same argument as in (3.1), this implies that

E p,q
0 (u1) = I p,q

0 (m1), I p,q
0 (M−m0) = I p,q

0 (m1)+I p,q
0 (M−m0−m1),

and {u1
n}n∈N is a minimizing sequence for I p,q

0 (M−m0−m1). Substituting for I p,q
0 (M−m0) in (3.1) we

conclude:
I p,q

V (M) = I p,q
V (m0)+I p,q

0 (m1)+I p,q
0 (M−m0−m1).

We can iterate the process we just described to obtain translations { #»x k
n}n∈N in R3, ‖ #»x k

n‖−−−→n→∞
∞, functions

uk ∈H 1(R3) with

‖uk‖2
L 2(R3) =: mk ≥ 1

2
ω({uk−1

n }n∈N), (3.2)

and remainder sequences

uk
n(

#»x ) := uk−1
n ( #»x )−uk( #»x + #»x k

n) = un(
#»x )−u0( #»x )−

k

∑
i=1

ui( #»x + #»x i
n),

for each k = 2,3, . . . satisfying:

M =
k

∑
i=0

mi + lim
n→∞
‖uk

n‖2
L 2(R3),

uk
n(·− #»x k

n)−−−⇀n→∞
0, weakly in H 1(R3) and pointwise almost everywhere in R3,

I p,q
V (M) = I p,q

V (m0)+
k

∑
i=1

I p,q
0 (mk)+I p,q

0

(
M−

k

∑
i=0

mi

)
,

E p,q
0 (uk) = I p,q

V (mk) and lim
n→∞

E p,q
0 (uk

n) = I p,q
0

(
M−

k

∑
i=0

mi

)
.

At this point we would like to note that the splitting process terminates at some finite step in the case
p = 10

3 and q = 8
3 . Indeed, the concavity of I p,q

0 (M) for small (see Proposition 7 or [46, Lemma 9 (iii)],)
implies that there exists Mc > 0 such that minimizing sequences for I p,q

0 do not split for M < Mc. If the
process terminates in finitely many steps, then (1.10), (1.11), and (1.12) hold.

If the splitting process does not end, then since M ≥ ∑
k
i=0 mi for all k, we have limi→∞ mi = 0, and then,

by (3.2), we conclude that
lim
k→∞

ω({uk
n}n∈N) = 0. (3.3)

On the other hand, from the proof of Lemma I.I in [36], we have

limsup
n→∞

∫
R3
|uk

n|
10
3 d #»x ≤C

[
ω({uk

n}n∈N)
] 2

3
limsup

n→∞

||uk
n||2H 1(R3),
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where C is a universal constant. Then, since {||uk
n||2H 1(R3)

}n∈N is uniformly bounded in k and by (3.3),

lim
k→∞

limsup
n→∞

∫
R3
|uk

n|qd #»x = 0,

hence

liminf
k→∞

I p,q
0

(
M−

k

∑
i=0

mi

)
= liminf

k→∞
lim
n→∞

E p,q
0 (uk

n)≥ 0.

But then, since I p,q
0 is strictly negative, equations in (1.12) follow.

All the above prove that statements (1.10) (by the Brezis-Lieb Lemma [10]), (1.11), and (1.12) still hold
if the splitting process continues indefinitely, in which case N = ∞.

Now we show that ‖ #»x k
n− #»x i

n‖ −−−→n→∞
∞ for all i 6= k. Suppose this is not the case, and take the smallest

k > i for which {‖ #»x k
n− #»x i

n‖}n∈N remains bounded along some subsequence. (And so ‖ #»x i
n− #»x j

n‖ −−−→
n→∞

∞ for

all i < j < k.) Taking a further subsequence if necessary, ( #»x k
n− #»x i

n)−−−→n→∞

#»

ξ for some
#»

ξ ∈ R3. Note that

ui
n(

#»x ) = uk
n(

#»x )+
k

∑
j=i+1

u j( #»x + #»x j
n),

and hence

ui
n(

#»x − #»x i
n) = uk

n(
#»x − #»x i

n)+uk( #»x − #»x i
n +

#»x i
n)+

k

∑
j=i+1

u j( #»x − #»x i
n +

#»x j
n). (3.4)

Since ‖ #»x j
n− #»x i

n‖ −−−→n→∞
∞ for i < j < k, u j(·− #»x i

n+
#»x j

n)−−−⇀
n→∞

0, while uk(·− #»x i
n+

#»x k
n)−−−→n→∞

uk(·+
#»

ξ ). And

uk
n(·− #»x i

n)−−−⇀n→∞
0, and hence we pass to the limit in (3.4) to obtain ui

n(·− #»x i
n)−−−⇀n→∞

uk(·+
#»

ξ ) 6≡ 0, which is
a contradiction. Hence (1.13) is verified.

Next, we show that each ui solves the Euler-Lagrange equation with the same Lagrange multiplier µ . By
the Ekeland Variational Principle [17] (see also [54, Corollary 5.3],) we may find a minimizing sequence
{vn}n∈N, with ‖vn‖2

L 2(R3)
= M and ‖vn−un‖ −−−→

n→∞
0, for which the Euler-Lagrange equation is solved up to

an small error in H −1(R3). That is, ∃µn ∈ R with

DE p,q
V (vn)−µnvn −−−→

n→∞
0 in H −1 norm.

The Lagrange multipliers may be expressed as:

µnM = 〈DE p,q
V (vn),vn〉+o(1)‖vn‖H 1(R3) = 〈DE p,q

V (vn),vn〉+o(1),

as minimizing sequences are bounded. By Propositions 3 10 11, {|µn|}n∈N is bounded, and hence (up to a
sequence) we may assume µn −−−→

n→∞
µ for some µ ∈ R. As un(·− #»x i

n)−−−⇀n→∞
ui weakly in H 1(R3), the same
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is true for ṽn := vn(·− #»x i
n)−−−⇀n→∞

ui, i = 0, . . . ,N. Hence, for every ϕ ∈C∞
0 (R3),

〈DE p,q
V (u0)−µu0,ϕ〉= lim

n→∞
〈DE p,q

V (ṽn)−µnṽn,ϕ〉= 0,

and similarly, DE p,q
0 (ui)−µui = 0, i = 1, . . . ,N.

For V ≡ 0, the functional E p,q
0 is translation invariant. Hence, we may begin the process at the Step

k = 1, defining ω({un}n∈N) and identifying a first set of translates { #»x 0
n} as above. By translation invariance,

ũn = un(· − #»x 1
n) is also a minimizing sequence for I p,q

0 (M), and the weak limit u0 = w− limn→∞ ũn is
nontrivial. The rest of the proof continues as in the case of nontrivial V .

3.2 Potentials that are at least Newtonian

The proof of Theorem 5 relies on the splitting structure given in Theorem 4, and on the idea that, when
calculating the interaction energy between fleeing components ui( #»x + #»x i

n), only the mass mi and centers #»x i
n

enter into the computation at first order. The following Lemma makes this precise for compactly supported
components:

Lemma 6. (a) Let v1,v2 ∈H 1(R3) be functions with compact support, suppvi ⊂ Bρ(
#»

ζ i), i = 1,2, with

1 < ρ < 1
4 R, R = ‖

#»

ζ 1−
#»

ζ 2‖> 0. Then,∣∣∣∣∣
∫

Bρ (
#»

ζ 1)

∫
Bρ (

#»

ζ 2)

|v1( #»x )|2|v2( #»y )|2

‖ #»x − #»y ‖
d #»x d #»y −

‖v1‖2
L 2(R3)

‖v2‖2
L 2(R3)

‖
#»

ζ 1−
#»

ζ 2‖

∣∣∣∣∣≤ 4ρ

R2 ‖v
1‖2

L 2(R3)‖v
2‖2

L 2(R3).

(b) Let v ∈H 1(R3) be a function with compact support, suppv⊂ Bρ(
#»

ζ ), with 1 < ρ < 1
4 R = ‖

#»

ζ ‖. For

any ν > 0 and fixed vector r ∈ R3 with 0 < ‖r‖< 1
4 R,∣∣∣∣∣

∫
Bρ (

#»

ζ )

|v( #»x )|2

‖ #»x − #»r ‖ν
d #»x −

‖v‖2
L 2(R3)

‖
#»

ζ ‖ν

∣∣∣∣∣≤Cν

ρ

Rν+1 ‖v‖
2
L 2(R3).

Proof. These follow from the pointwise estimates,∣∣∣∣∣ 1

‖
#»

ζ 1−
#»

ζ 2‖
− 1
‖ #»x − #»y ‖

∣∣∣∣∣≤ 2ρ

(R−ρ)2 ≤
4ρ

R2 ,∣∣∣∣∣ 1

‖
#»

ζ ‖θ
− 1
‖ #»x − #»r ‖θ

∣∣∣∣∣≤ θρ

(‖
#»

ζ ‖−ρ−‖r‖)θ+1
≤Cθ

ρ

R1+θ
,

for all #»x ∈ Bρ(
#»

ζ 1), #»y ∈ Bρ(
#»

ζ 2), and 1 < ρ < 1
4 R.

Unlike the case of the Gamow liquid drop problem, our components ui are not of compact support, so we
need to resort to truncation. This proves effective provided we are in a situation where the minimizers ui have
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exponential decay. To generate localization functions, let us fix any smooth φ : R→ [0,1] for which

φ1(−∞,0] ≡ 1, φ1[1,∞) ≡ 0, ‖φ ′‖L ∞(R) ≤ 2. (3.5)

Now we prove Theorem 5 and Proposition 1, on the size of the compact part of minimizing sequences. We
note that the argument for the first Theorem is similar to Lions’ proof of existence of minimizers [37] for
TFDW type models in the case V =VT FDW and M ≤Z .

Proof of Theorem 5. We rewrite the potential V = VT FDW +W , where W ( #»x ) ≥ 0 and W satisfies (1.2). To
obtain a contradiction, assume {un}n∈N is a minimizing sequence for I p,q

V (M) that splits but 0 < m0 < Z .
We let ui, mi = ‖ui‖2

L 2(R3)
, i = 0, . . . ,N be as given by Theorem 4. Fix unit vectors

#»v i = (0,cos(2π/i),sin(2π/i)) ∈ R3,

and for ρ > 1 define #»q i∞
i=0 by

#»q 0 :=
#»
0 , #»q 1 := e

√
ρ #»v 1, #»q i := e(i+1)ρ #»v i, i = 2, . . . ,N.

Then we define the truncated components,

U i
ρ(

#»x ) := φ(‖ #»x − #»q i‖−ρ +1)ui( #»x − #»q i), i = 0, . . . ,N.

Each function U i has been truncated to have support in the ball Bρ(
#»q i).

As m0 < Z , by Proposition 11, µ < 0 for all Lagrange multipliers corresponding to ui, i = 0, . . . ,N, and
hence the exponential decay estimate (2.22) holds for all of them. We choose the constant λ = 1

2
√
−µ for

simplicity. Then,
mi

ρ := ‖U i
ρ‖2

L 2(R3) ≤
∫

Bρ (
#»q i)
|ui( #»x )|2d #»x = mi−O(e−λρ),

and
E p,q

V (U0
ρ ) = E p,q

V (u0)+O(e−λρ), E p,q
0 (U i

ρ) = E p,q
0 (ui)+O(e−λρ), i = 1, . . . ,N.

Let

wρ :=U0
ρ +

N

∑
i=1

U i
ρ .

As ‖wρ‖2
L 2(R3)

< M, by monotonicity of I p,q
V (M) (see Proposition 7) we have

I p,q
V (M)≤I p,q

V (‖wρ‖2
L 2(R3))≤ E p,q

V (wρ)

≤ E p,q
V (U0

ρ )+
N

∑
i=1

E p,q
0 (U i

ρ)+
N

∑
i, j=0
i 6= j

∫
Bρ (

#»q i)

∫
Bρ (

#»q j)

|U i
ρ(

#»x )|2|U j
ρ(

#»y )|2

‖ #»x − #»y ‖
d #»x d #»y

−
N

∑
i=1

∫
Bρ (

#»q i)
[VT FDW ( #»x )+W ( #»x )]|U i

ρ(
#»x )|2 d #»x +O(e−

λ
2 ρ)
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= I p,q
V (m0)+

N

∑
i=1

I0(mi)+
N

∑
i, j=0
i 6= j

∫
Bρ (

#»q i)

∫
Bρ (

#»q j)

|U i
ρ(

#»x )|2|U j
ρ(

#»y )|2

‖ #»x − #»y ‖
d #»x d #»y (3.6)

−
N

∑
i=1

∫
Bρ (

#»q i)
[VT FDW ( #»x )+W ( #»x )]|U i

ρ(
#»x )|2 d #»x +O(e−

λ
2 ρ).

Next, we use Lemma 6 to evaluate the interaction terms. Note that Ri, j = ‖ #»q i− #»q j‖ is of order e
√

ρ when
i+ j = 1, and of order e3ρ otherwise, and

0 < mi−mi
ρ < O(e−λρ).

Thus, we have

∫
Bρ (

#»q i)

∫
Bρ (

#»q j)

|U i
ρ(

#»x )|2|U j
ρ(

#»y )|2

‖ #»x − #»y ‖
d #»x d #»y =


m0 m1

e
√

ρ
+O(e−min{3,µ}ρ), if i+ i = 1,

O(e−min{3,µ}ρ), otherwise,

and for i = 1, . . . ,N, the interaction with VT FDW gives

∫
Bρ (

#»q i)

|U i
ρ(

#»x )|2

‖ #»x − ri|
d #»x =


m1
√

ρ
+O(e−min{3,µ}ρ), if i = 1,

O(e−min{3,µ}ρ), if i≥ 2.

Substituting into (3.6), and using W ≥ 0, we obtain the strict subadditivity of I p,q
V (M),

I p,q
V (M)−

[
I p,q

V (m0)+
N

∑
i=1

I0(mi)

]
≤ m0m1−Z m1

e
√

ρ
+O(e−min{3/2,µ/2}ρ)< 0,

for all ρ sufficiently large, since we are assuming m0 < Z . However, this contradicts (1.12) in the Concen-
tration Theorem 4. Thus m0 ≥Z , and the Theorem is proved.

The following is stated as part of Proposition 1, but its proof only depends on the bounds stated in Propo-
sition 4, and the result is needed below.

Proposition 15. Let un minimize I
10
3 , 8

3
Vn

(M), where Vn is as in (1.14). Then {un}n∈N is a minimizing sequence

for I
10
3 , 8

3
VT FDW

(M).

Proof. Let un be a minimizer for I
10
3 , 8

3
Vn

(M), n ∈ N. First, note that V1 ≥Vn ≥VT FDW , and hence

E
10
3 , 8

3
V1

(un)≤ E
10
3 , 8

3
Vn

(un) = I
10
3 , 8

3
Vn

(M)≤I
10
3 , 8

3
VT FDW

(M)< 0

for all n. Applying Proposition 4 with V = V1, the sequence {un}n∈N satisfies the bounds in Lemma 4

uniformly in n ∈ N. Next, we observe that ‖ #»x ‖−ν ∈L
3
2

loc(R
3) for 0 < ν < 1, and thus

Zn

∫
R3

u2
n(

#»x )
‖ #»x ‖ν

d #»x ≤ Zn

∫
B1(

#»

0 )

u2
n(

#»x )
‖ #»x ‖ν

d #»x +Zn

∫
R3\B1(

#»

0 )
u2

n(
#»x )d #»x
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≤ Zn‖un‖2
L 6(R3)

∥∥‖ #»x ‖−ν
∥∥

L
3
2 (B1(

#»

0 ))
+ZnM

≤ cZn‖∇un‖2
L 2(R3)+ZnM −−−→

n→∞
0.

In particular,

E
10
3 , 8

3
Vn

(un) = E
10
3 , 8

3
VT FDW

(un)+o(1),

and therefore we may conclude,

I
10
3 , 8

3
VT FDW

(M)≤ liminf
n→∞

E
10
3 , 8

3
VT FDW

(un) = liminf
n→∞

E
10
3 , 8

3
Vn

(un)

= liminf
n→∞

I
10
3 , 8

3
Vn

(M)

≤ limsup
n→∞

I
10
3 , 8

3
Vn

(M)≤I
10
3 , 8

3
VT FDW

(M).

Proof of Proposition 1. In Proposition 15 we have already shown that any sequence of minimizers un of

I
10
3 , 8

3
Vn

forms a minimizing sequence for I
10
3 , 8

3
VT FDW

(M). Part (ii) then follows from Theorem 5.

Lemma 7. Under all hypotheses of Theorem 6, we have that, up to a subsequence, for all 0 < t <
√
−µ/cW ,

there exists a constant C independent of n with

0 < |un(
#»x )|+‖∇un(

#»x )‖ ≤Ce−tσn(
#»x ), pointwise almost everywhere in R3, (3.7)

where

σn(
#»x ) := min

0≤i≤N
‖ #»x − #»x i

n‖,

and #»x i
n are as in the Concentration Theorem 4.

Proof. By Proposition 11, we may take un > 0 in R3. Alama et al. [3] proved that

−cW ∆un =

(
µn−

5
3

cT F u
4
3
n +

4
3

cDu
2
3
n +Vn−u2

n ?‖ · ‖−1
)

un, (3.8)

for some µn < 0. Additionally, by the final step in the proof of the Concentration Theorem 4, µn −−−→
n→∞

µ . Fix

t ∈ (0,
√
−µ/cW ); then, for n sufficiently large, we have

−∆un + t2un <

[
1
2

(
t2 +

µ

cW

)
+

4
3

cD

cW
u

2
3
n

]
un.

Furthermore, by Lemma 4 and equation (3.8), we have that {un}n∈N is bounded in H 2(R3), and hence in
L ∞(R3). Therefore, we can apply Theorem 8.17 by Gilbarg and Trudinger [26] to obtain:

‖un‖L ∞(B1(
#»y )) ≤C‖un‖L 2(B2(

#»y )) ≤C‖un‖L 2(R3\∪BR/2(
#»x i

n))
, #»y ∈ R3 \∪BR(

#»x i
n),R� 1,
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where C is a constant independent of n, R and y. By covering R3 \∪BR(
#»x i

n) with balls of radius one centered
at points in the same set we obtain

‖un‖L ∞(R3\∪BR(
#»x i

n)))
≤C‖un‖L 2(R3\∪BR/2(

#»x i
n))
.

On the other hand, by Proposition 15, {un}n∈N is a minimizing sequence for I
10
3 , 8

3
VT FDW

(M), and hence
the conclusions of Concentration Theorem 4 hold. In particular, this implies that given ε > 0, there exists
R0 = R0(ε)≥ 1 such that

‖ui‖2
L 2(R3\BR/2(

#»

0 ))
<

ε

N +1
, i = 0, . . . ,N, R≥ R0,

and (1.10), (1.13), the Rellich-Kondrakov compactness Theorem, and the decay of all ui (2.22) ensure that,
up to a subsequence,

un(·+ #»x i
n)−−−→n→∞

ui in L 2(BR/2(
#»
0 )), i = 0, . . .N, R≥ R0.

Consequently,

lim
n→∞
‖un‖2

L 2(R3\BR/2(
#»x i

n))
= M− lim

n→∞
‖un‖2

L 2(∪BR/2(
#»x i

n))

= M− lim
n→∞

N

∑
i=0
‖un(

#»x + #»x i
n)‖2

L 2(BR/2(
#»

0 ))

= M−
N

∑
i=0
‖ui‖2

L 2(BR/2(
#»

0 ))

=
N

∑
i=0
‖ui‖2

L 2(R3\BR/2(
#»

0 ))
< ε.

Then, given any ε > 0, by choosing R0 = R0(ε) larger if necessary, we have

limsup
n→∞

‖un‖L ∞(R3\∪BR(
#»x i

n)))
≤ ε, R≥ R0,

and hence for large enough n and R,

−∆un + t2un < 0, pointwise almost everywhere in R3 \∪BR(xi
n).

Next, we can check that

−∆e−tσn + t2e−tσn > 0, pointwise almost everywhere in R3 \∪BR(
#»x i

n),

and that there exists C > 0 so that

un|∂∪BR(
#»x i

n)
≤Ce−tR =Ce−tσn(

#»x )|∂∪BR(
#»x i

n)
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Thus,

−∆[un(
#»x )−Ce−tσn(

#»x )]+ t2[un(
#»x )−Ce−tσn(

#»x )]< 0, pointwise almost everywhere in R3 \∪BR(
#»x i

n).

At this point, we would like to invoke the maximum principle to assert that un(
#»x ) is dominated by the

supersolution v( #»x ) =Ce−tσn in the domain Ωn := R3 \∪BR(
#»x i

n). As the domain is unbounded, this requires
some care, but applying Stampacchia’s method as in Benguria, Brezis and Lieb [8, Lemma 8] we obtain the
desired bound,

0 < un(
#»x )≤ v( #»x ) =Ce−tσn(

#»x ), #»x ∈Ωn.

The estimate on ‖∇un‖ then follows from standard elliptic estimates; see for instance Theorems 8.22 and
8.32 of [26].

Proposition 16. Let FN,(m0,m1,...,mN) and F̄N,(m1,m2,...,mN) be as in Theorem 6. Then,

inf
ΣN

FN,(m0,m1,...,mN)+ inf
Σ̄N

F̄N,(m1,m2,...,mN) >−∞

and for each infimum, minimizing sequences are compact.

Proof. With no loss of generality, assume we are studying a functional of the form

GN(
#»w1, . . . , #»wN) := ∑

1≤i< j≤N

mim j

|‖ #»w i− #»w j‖
+b

N

∑
i=1

mi

‖ #»w i‖
−

N

∑
i=1

mi

‖ #»w i‖ν
,

over

ΣN :=
{
( #»w1, . . . , #»wN) ∈ (R3 \{ #»

0 })N : #»w i 6= #»w j
}
.

with m1, . . . ,mN ,b > 0 fixed. −∞ < infΣN GN < 0 as

lim
t→0+

(at−1−bt−ν) = ∞, a > 0,

and
lim
t→∞

(at−1−bt−ν) = 0, at−1−bt−ν < 0 for t� 1. (3.9)

Next, suppose, by contradiction, that

inf
ΣN

GN = lim
n∈N

GN(
#»

ξ
1
n, . . . ,

#»

ξ
N
n )

but {
#»

ξ i
n}n∈N is not compact for some i ∈ {1, . . . ,N}\ I∗ =: I∗∗ 6= /0.

First, we observe that I∗ 6= /0 because of (3.9) and infΣN GN < 0. Then, up to (not relabeled) subsequences,

#»

ξ
i
n −−−→n→∞

#»

ξ
i, i ∈ I∗ and ‖

#»

ξ
i
n‖ −−−→n→∞

∞, i ∈ I∗∗
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Therefore,

inf
ΣN

GN = ∑
i, j∈I∗

mim j

|‖
#»

ξ i−
#»

ξ j‖
+b ∑

i∈I∗

mi

‖
#»

ξ i‖
−∑

i∈I∗

mi

‖
#»

ξ i‖ν
+ lim

n∈N ∑
i< j∈I∗∗

mim j

|‖
#»

ξ i
n−

#»

ξ
j
n‖

.

On the other hand, we can check that for each j ∈ I∗∗,

−∞ < inf
#»w 6= #»

0

(
∑
i∈I∗

mim j

‖ #»w−
#»

ξ i‖
+b

m j

‖ #»w‖
− m j

‖ #»w‖ν

)
< 0

is attained at a vector
#»

ξ j. Then, we replace one of the sequences {
#»

ξ
j
n}n∈N, j ∈ I∗∗, by the constant sequence

{
#»

ξ j0}n∈N, and then evaluate Gn at the new vector of sequences. By doing so, we obtain

∑
i< j∈I∗∪{ j0}

mim j

|‖
#»

ξ i−
#»

ξ j‖
+b ∑

i∈I∗∪{ j0}

mi

‖
#»

ξ i‖
− ∑

i∈I∗∪{ j0}

mi

‖
#»

ξ i‖ν
+ lim

n∈N ∑
i< j∈I∗∗\{ j0}

mim j

|‖
#»

ξ i
n−

#»

ξ
j
n‖

< inf
ΣN

GN

in the limit. However, the equation above contradicts the fact that the original sequence was a minimizing
sequence. Hence we cannot have I∗∗ 6= /0.

3.3 Potentials approaching a Newtonian potential

The proof of Theorem 6 is more intricate than that of Theorem 5, as it requires us to make a finer estimate of
the smaller order terms in the expansion of the energy.

By (i) of Proposition 1, {un}n∈N is a minimizing sequence for I
10
3 , 8

3
VT FDW

(M), and hence the conclusions
of Concentration Theorem 4 hold with N < ∞. We assume there is splitting, that is, N ≥ 1, and let ui,
mi = ‖ui‖2

L 2(R3)
, and #»x i

n (with #»x 0
n =

#»
0 ,) be as in the Concentration Theorem. By hypothesis, the common

value of the Lagrange multipliers of the limit components ui is negative, µ < 0.
As in the proof of Theorem 5 we construct comparison functions by localization to balls with centers qi

spreading to infinity. However, we have limited control on the errors introduced by the passage of un(· −
#»x i

n)−−−⇀n→∞
ui, and thus we use truncations of the minimizers themselves to make these constructions.

Let us set
Rn := min

0≤i< j
‖ #»x i

n− #»x j
n‖. (3.10)

Consider also a sequence ρn −−−→
n→∞

∞ and translations { #»q 0
n =

#»
0 }n∈N, . . . ,{ #»q N

n }n∈N ⊂ R3 (all to be chosen
later,) satisfying

1≤ ρn ≤
1
4

min{Rn,Qn} where Qn := min
i< j
‖ #»q i

n− #»q j
n‖. (3.11)

Using the same cutoff functions φ defined in (3.5), we then set

χρn(·) := φ(‖ · ‖−ρn +1),

Gi
n(·) := χρn(·− #»x i

n)un(·), and H i
n(·) := Gi

n(·+ #»x i
n− #»q i

n). (3.12)
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Thus, each Gi
n is compactly supported in a ball Bρn(

#»x i
n), while H i

n is the same function but translated to have
centers at #»q i

n, which we choose later to create appropriate comparison functions. Set

mi
n := ‖Gi

n‖2
L 2(R3) = ‖H

i
n‖2

L 2(R3).

The following Lemma states that truncations we just defined provide a good approximation to the limit
profiles.

Lemma 8. For any ρn satisfying (3.11),

lim
n→∞

mi
n = mi = ‖ui‖2

L 2(R3).

Proof. First, we have that Gi
n(·+ #»x i

n) −−−⇀n→∞
ui, i = 0, . . . ,N weakly in H 1(R3) by construction, and in the

norm on L 2
loc(R3) by the Rellich-Kondrakov compactness Theorem. As a consequence,

mi = ‖ui‖2
L 2(R3) ≤ liminf

n→∞
mi

n. (3.13)

To obtain the complementary bound, we note that ∑
N
i=0 Gi

n(
#»x )≤ un(

#»x ) pointwise almost everywhere on R3,
and since the supports of the Gi

n are disjoint we have

limsup
n→∞

N

∑
i=0

mi
n < ‖un‖2

L 2(R3) = M =
N

∑
i=0

mi ≤
N

∑
i=0

liminf
n→∞

mi
n ≤ liminf

n→∞

N

∑
i=0

mi
n.

In particular, the limit

M = lim
n→∞

N

∑
i=0

mi
n

exists. Since individually the terms are bounded below via (3.13), we claim that each of the terms mi
n−−−→n→∞

mi,

i = 0, . . . ,N. Indeed, given ε > 0 there exists K > 0 for which ∑
N
i=0 mi

n < M+ε and for any i, mi
n ≥mi−ε/N,

whenever n≥ K. Thus, for each j we have

m j
n +∑

i 6= j
mi− ε ≤

N

∑
i=0

mi
n <

N

∑
i=0

mi + ε,

and so m j
n < m j +2ε , for all n≥ K, that is, limsupn→∞ mi

n ≤ mi, for each i, and the claim is proved.

Since we assume µ < 0, the exponential decay of each un away from balls Bρn(
#»x i

n) (see Lemma 7) allows

us to localize the energy E
10
3 , 8

3
Vn

(un) with an exponentially small error as stated in the following:

Lemma 9. Let ρn −−−→
n→∞

∞ with ρn ≤ 1
4 Rn. Then,

E
10
3 , 8

3
Vn

(un)≥ E
10
3 , 8

3
VT FDW

(
G0

n
)
+

N

∑
i=1

E0
(
Gi

n
)
−Zn

∫
R3

|G0
n(

#»x )|2

‖ #»x ‖ν
d #»x

+ ∑
1≤i< j

mi
nm j

n

‖ #»x i
n− #»x j

n‖
+
(
m0

n−Z
) N

∑
i=1

mi
n

‖ #»x i
n‖
−Zn

N

∑
i=1

mi
n

‖ #»x i
n‖ν
− ε1,n,
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where

|ε1,n| ≤C
(

ρn

R2
n
+

Znρn

R1+ν
n

+ e−
√
−µ

2 ρn

)
, (3.14)

as n→ ∞, with C depending on {mi}N
i=0 and Z but independent of translations { #»x i

n},{ #»x 1
n}, . . . ,{ #»x N

n }.

Proof. By Lemma 7, for sufficiently large n,∣∣∣∣∣un(
#»x )−

N

∑
i=0

Gi
n(

#»x )

∣∣∣∣∣≤Ce−
√
−µ

2 σn(
#»x ), #»x ∈Ωn := R3 \

N⋃
i=0

Bρn(
#»x i

n),

where σn(
#»x ) is as in Lemma 7. This together with (3.7), (3.8), µn −−−→

n→∞
µ , Lemma 4, ‖∇χn,ρn‖L ∞(R3) ≤ 2,

and Hölder estimates for first derivatives imply∥∥∥∥∥∇

(
un(

#»x )−
N

∑
i=0

Gi
n(

#»x )

)∥∥∥∥∥≤Ce−
√
−µ

2 σn(
#»x ).

From Gi
n(

#»x ) = un(
#»x ) in Bρn(

#»x i
n), and has support in Bρn+1(

#»x i
n), the contribution to the energy is unchanged

in
⋃

i Bρn(
#»x i

n), and is exponentially small in the complementary region, Ωn. Furthermore, the energy density

is integrable over Ωn, and of order ε1,n = O(e−
√
−µ

2 ρn). Hence, we calculate:

E
10
3 , 8

3
Vn

(un) =
N

∑
i=0

EVn

(
Gi

n
)
+∑

i< j

∫
Bρn (

#»x i
n)

∫
Bρn (

#»x j
n)

|Gi
n(

#»x )|2|G j
n(

#»y )|2

‖ #»x − #»y ‖
d #»x dy+ ε1,n

= E
10
3 , 8

3
VT FDW

(
G0

n
)
−Zn

∫
Bρn (

#»

0 )

|G0
n(

#»x )|2

‖ #»x ‖ν
d #»x

+
N

∑
i=1

[
E0
(
Gi

n
)
−
∫
R3

V ( #»x )|Gi
n(

#»x )|2d #»x −Zn

∫
Bρn (

#»x i
n)

|Gi
n(

#»x )|2

‖ #»x ‖ν
d #»x
]

+∑
i< j

∫
Bρn (

#»x i
n)

∫
Bρn (

#»x j
n)

|Gi
n(

#»x )|2|G j
n(

#»y )|2

‖ #»x − #»y ‖
d #»x dy+ ε1,n

= E
10
3 , 8

3
VT FDW

(
G0

n
)
+

N

∑
i=1

E0
(
Gi

n
)
−Zn

∫
Bρn (

#»

0 )

|G0
n(

#»x )|2

‖ #»x ‖ν
d #»x

+∑
i< j

∫
Bρn (

#»x i
n)

∫
Bρn (

#»x j
n)

|Gi
n(

#»x )|2|G j
n(

#»y )|2

‖ #»x − #»y ‖
d #»x d #»y

−
N

∑
i=1

K

∑
k=1

αk

∫
R3

|Gi
n(

#»x )|2

|x− rk|
d #»x −Zn

N

∑
i=1

∫
Bρn (

#»x i
n)

|Gi
n(

#»x )|2

‖ #»x ‖ν
d #»x + ε1,n.

(3.15)

Now, we apply Lemma 6 to evaluate the interaction terms. In this way we have:

∫
Bρn (

#»x i
n)

∫
Bρn (

#»x j
n)

|Gi
n(

#»x )|2|G j
n(

#»y )|2

‖ #»x − #»y ‖
d #»x d #»y ≥ mi

nm j
n

‖ #»x i
n− #»x j

n‖
−4mi

nm j
n

ρn

R2
n
,

∫
R3

|Gi
n(

#»x )|2

|x− rk|
d #»x ≤ mi

n

‖ #»x i
n‖

+C1mi
n

ρn

R2
n
,
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∫
Bρn (

#»x i
n)

|Gi
n(

#»x )|2

‖ #»x ‖ν
d #»x ≤ mi

n

‖ #»x i
n‖ν

+Cν mi
n

ρn

Rν+1
n

.

By substituting these estimates into (3.15) we arrive at the desired lower bound.

Next we create an upper bound estimate on the minimum energy by moving the localized components
H i

n (which are simply translates of Gi
n,) to study the role of the #»x i

n. That is, we consider a trial function
wn = ∑

N
i=0 H i

n, which has the same localized components as un but with centers #»q i
n. The advantage of this

over the upper bound constructed for the proof of Theorem 5 is that the terms of order O(1) exactly match
those in the lower bound given by Lemma 9.

Lemma 10. Let {ρn}n∈N ⊂ (1,∞) and { #»q 0
n =

#»
0 }n∈N, . . . ,{ #»q N

n }n∈N ⊂ R3 satisfy (3.11). Then,

E
10
3 , 8

3
Vn

(un)< E
10
3 , 8

3
VT FDW

(
G0

n
)
+

N

∑
i=1

E0
(
Gi

n
)
−Zn

∫
R3

|G0
n(

#»x )|2

‖ #»x ‖ν
d #»x

+ ∑
1≤i< j≤N

mi
nm j

n

‖ #»q i
n− #»q j

n‖
+
(
m0

n−Z
) N

∑
i=1

mi
n

‖ #»q i
n‖
−Zn

N

∑
i=1

mi
n

‖ #»q i
n‖ν

+ ε2,n,

where

|ε2,n| ≤C
(

ρn

Q2
n
+

Znρn

Q1+ν
n

+ e−
√
−µ

2 ρn

)
, (3.16)

as n→ ∞, with C depending on {mi}N
i=0 and Z but independent of { #»q i

n}N
i=0.

Proof. Set

wn :=
N

∑
i=0

H i
n.

As 0 ≤ wn(
#»x ) ≤ un(

#»x ) for all #»x ∈ R3, ‖wn‖2
L 2(R3)

< ‖un‖2
L 2(R3)

. By the monotonicity of I
10
3 , 8

3
Vn

(M)

(Proposition 7,)

E
10
3 , 8

3
Vn

(un) = I
10
3 , 8

3
Vn

(M)< I
10
3 , 8

3
Vn

(
‖wn‖2

L 2(R3)

)
≤ E

10
3 , 8

3
Vn

(wn).

Using the support properties of H i
n and recognizing

E
10
3 , 8

3
VT FDW

(H0
n ) = E

10
3 , 8

3
VT FDW

(G0
n), E0(H i

n) = E0(Gi
n),

we expand as in the proof of Lemma 9 to obtain the desired upper bound.

By matching the lower bound from Lemma 9 with the upper bound from Lemma 10, we conclude for any
choice of ρn, { #»q i

n} satisfying (3.11), we have the following bound satisfied by the translations { #»x i
n}:

∑
1≤i< j≤N

mi
nm j

n

‖ #»x i
n− #»x j

n‖
+
(
m0

n−Z
) N

∑
i=1

mi
n

‖ #»x i
n‖
−Zn

N

∑
i=1

mi
n

‖ #»x i
n‖ν
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≤ ∑
1≤i< j≤N

mi
nm j

n

‖ #»q i
n− #»q j

n‖
+
(
m0

n−Z
) N

∑
i=1

mi
n

‖ #»q i
n‖
−Zn

N

∑
i=1

mi
n

‖ #»q i
n‖ν

+ ε1,n + ε2,n, (3.17)

where ε1,n,ε2,n are defined in the statements of the Lemmas 9 and 10.
In what follows we exploit the freedom we have of choosing vectors #»q i

n and radii ρn to prove Theorem 6.
First we must find the correct scale for the diverging centers { #»x i

n}. We define

R0
n := min

1≤i≤N
‖ #»x i

n‖,

and for N ≥ 2,
Rn := min

1≤i< j≤N
‖ #»x i

n− #»x j
n‖.

By Concentration Theorem 4, each diverges to infinity; furthermore, Rn = min{Rn,R0
n} (see (3.10).) By

passing to a subsequence and reordering the components if necessary, we may assume that the first diverging
center is the closest:

‖ #»x 1
n‖= R0

n, n ∈ N.

Lemma 11. (a) If m0 > Z , then

liminf
n→∞

RnZ
1

1−ν
n > 0. (3.18)

(b) If N ≥ 2 and

limsup
n→∞

R0
n

Rn
> 0,

then there exists a subsequence for which (3.18) holds.

(c) If N ≥ 2 and
R0

n

Rn
−−−→
n→∞

0,

then

liminf
n→∞

RnZ
1

1−ν
n > 0.

Proof. First assume m0 > Z . By contradiction, assume that along some subsequence

RnZ
1

1−ν
n −−−→

n→∞

#»
0 .

Choose vectors #»q i
n = Rn

#»p i, for distinct fixed vectors #»p i, i = 1, . . . ,N, and #»p 0 =
#»
0 . We denote by

#»y i
n = R−1

n
#»x i

n. By the definition of Rn, we have ‖ #»y i
n‖ ≥ 1 for all i = 1, . . . ,N, and ‖ #»y i

n− #»y j
n‖ ≥ 1 for all

0≤ i < j ≤ N. Extracting a further subsequence if necessary, we may assume that either

‖ #»y 1
n‖= 1, or, there exists i0, j0 6= 0 for which ‖ #»y i0

n − #»y j0
n ‖= 1,n ∈ N. (3.19)

Set ρn =
√

Rn, and so (3.11) is satisfied for these choices, and in fact Rnε1,n,Rnε2,n −−−→
n→∞

0, where ε1,n,ε2,n

are the remainder terms defined in Lemmas 9 and 10.

61



PhD Thesis - Lorena Aguirre Salazar McMaster University - Mathematics

Then, we multiply (3.17) by Rn to obtain:

∑
1≤i< j≤N

mi
nm j

n

‖ #»y i
n− #»y j

n‖
+
(
m0

n−Z
) N

∑
i=1

mi
n

‖ #»y i
n‖
≤ ∑

1≤i< j≤N

mi
nm j

n

‖ #»p i− #»p j‖
+
(
m0

n−Z
) N

∑
i=1

mi
n

‖ #»p i‖

−ZnR1−ν
n

N

∑
i=1

mi
n

‖ #»p i‖ν
+ZnR1−ν

n

N

∑
i=1

mi
n

‖ #»y i
n‖ν

+Rnε1,n +Rnε2,n

≤ ∑
1≤i< j≤N

mi
nm j

n

‖ #»p i− #»p j‖
+
(
m0

n−Z
) N

∑
i=1

mi
n

‖ #»p i‖
+o(1),

(3.20)

as ZnR1−ν
n −−−→

n→∞
0 by the contradiction hypothesis. Assuming that ‖yi0

n −y j0
n ‖= 1 is chosen in (3.19), we then

obtain

mi0
n m j0

n ≤ ∑
1≤i< j≤N

mi
nm j

n

‖ #»p i− #»p j‖
+
(
m0

n−Z
) N

∑
i=1

mi
n

‖ #»p i‖
+o(1),

which holds for all n ∈ N and any choice of vectors { #»p i}N
i=0. Since mi

n −−−→n→∞
mi > 0, i = 0, . . . ,N, we obtain

a contradiction by choosing ‖ #»p i− #»p j‖ (with 0 ≤ i < j ≤ N) sufficiently large. If the choice in (3.19) gives
‖ #»y 1

n‖= 1, we instead have

(m0
n−Z )m1

n ≤ ∑
1≤i< j

mi
nm j

n

‖ #»p i− #»p j‖
+
(
m0

n−Z
) N

∑
i=1

mi
n

‖ #»p i‖
+o(1).

As we are assuming m0 = limn→∞ m0
n >Z we arrive at the same contradiction as above, choosing ‖ #»p i− #»p j‖

(with 1≤ i < j ≤ N) sufficiently large. This completes the proof of (a).
In order to prove (b), we assume N ≥ 2 and there exists a subsequence and r > 0 for which R0

n ≥ rRn, but

RnZ
1

1−ν
n −−−→

n→∞
0.

Recall that Rn = min{R0
n,Rn}, and so

min{r,1}Rn ≤ Rn ≤ Rn,

and so each of R0
n,Rn,Rn is of the same order of magnitude. As in part (a), let #»y i

n = R−1
n

#»x i
n, #»q i

n = Rn pi, and
choose indexes i0, j0 for which ‖ #»x i0 − #»x j0‖= Rn. Note that

‖ #»y i0
n − #»y j0

n ‖−1 =
Rn

Rn
≥min{1,r}.

Again, multiply (3.17) by Rn, and pass to the limit as in (3.20) to obtain:

min{1,r}mi0
n m j0

n +
(
m0

n−Z
) N

∑
i=1

mi
n

‖ #»y i
n|
≤ ∑

0<i< j

mi
nm j

n

‖ #»p i− #»p j‖
+
(
m0

n−Z
) N

∑
i=1

mi
n

‖ #»p i|
+o(1),
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for all n and any choice of vectors #»p i. Since mi
n −−−→n→∞

mi > 0 and m0 ≥ Z by Theorem 5, we obtain a

contradiction by choosing vectors #»p i with ‖ #»p i− #»p j‖ sufficiently large.
Finally, to prove (c) we assume

R0
n

Rn
−−−→
n→∞

0,

and suppose that RnZ
1

1−ν
n −−−→

n→∞
0 instead. First, we note that

‖ #»x i
n‖= ‖ #»x i

n− #»x 1
n +

#»x 1
n‖ ≥ ‖ #»x i

n− #»x 1
n‖−‖ #»x 1

n‖ ≥ Rn−R0
n ≥

1
2

Rn�‖ #»x 1
n‖, i≥ 2,n� 1.

and so only one of the centers is much closer to the origin than the others, ‖ #»x 1
n‖ � Rn ≤ ‖ #»x i

n‖, for all
i = 2, . . . ,N.

Choose cut-off radii ρn in Lemmas 9 and 10 with R0
n � ρn � Rn; for instance, ρn =

√
R0

nRn. Notice
that the ball Bρn(

#»
0 ) now includes both #»x 0

n = 0 and #»x 1
n. In particular, when defining the disjoint components

Gi
n,H

i
n with Rn and ρn, we no longer have a component with i = 1, but the i = 0 piece accounts for the mass

concentrating both at the origin and at #»x 1
n. In particular, we have,

‖G0
n‖2

L 2(R3) = ‖H
0
n‖2

L 2(R3) = m0 +m1 +o(1)> Z . (3.21)

In this way, we return to the same situation as in part (a), but where Rn replaces Rn as the decisive length
scale. As in (a), we choose distinct vectors #»q 0 =

#»
0 and #»q i, i = 2, . . . ,N, and set #»p i

n := Rn
#»q i, and (as before)

#»y i
n =

#»x i
n/Rn. Modulo a subsequence, either there is a pair with

‖ #»y i0
n − #»y j0

n ‖= 1, i0, j0 ≥ 2,

or i0 ≥ 2 with ‖ #»y i0
n ‖= 1,n ∈ N. Then we multiply (3.17) by Rn, to obtain:

∑
2≤i< j

mi
nm j

n

‖ #»y i
n− #»y j

n‖
+
(
m0 +m1−Z +o(1)

) N

∑
i=2

mi
n

‖ #»y i
n‖
−ZnR1−ν

n

N

∑
i=2

mi
n

‖ #»y i
n‖ν

≤ ∑
2≤i< j

mi
nm j

n

‖ #»p i− #»p j‖
+
(
m0 +m1−Z +o(1)

) N

∑
i=2

mi
n

‖pi‖
−ZnR1−ν

n

N

∑
i=2

mi
n

‖ #»p i‖ν
+Rnε1,n +Rnε2,n,

where ε1,n and ε2,n satisfy (3.14) and (3.16), for Rn,ρn replacing Rn,ρn. In particular, Rnε1,n,Rnε2,n −−−→
n→∞

0.

Employing the contradiction hypothesis RnZ
1

1−ν
n −−−→

n→∞
0, and the choice of Rn,ρn we deduce that (in the case

‖ #»y i0
n − #»y j0

n ‖= 1,)

mi0
n m j0

n ≤ ∑
2≤i< j

mi
nm j

n

‖ #»p i− #»p j‖
+
(
m0 +m1−Z +o(1)

) N

∑
i=2

mi
n

‖ #»p i‖
+o(1)
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or (in the case ‖ #»y i0
n ‖= 1,)

(m0 +m1−Z )mi0 ≤ ∑
2≤i< j

mi
nm j

n

‖ #»p i− #»p j‖
+
(
m0 +m1−Z +o(1)

) N

∑
i=2

mi
n

‖ #»p i‖
+o(1)

In either case, we then arrive at the same contradiction as in (a), by choosing ‖ #»p i − #»p j‖ large enough,
i 6= j.

We now prove the main theorem on the convergence of concentration points at the scale Rn = O(Z
− 1

1−ν
n ).

Proof of Theorem 6. Let un attain the minimum in I
10
3 , 8

3
Vn

(M), n∈N. Applying the Concentration Theorem 4,
we obtain a value of N ∈ N, masses {mi}N

i=0, and translations { #»x i
n}.

For part (i), we assume m0 ∈M ∗
VT FDW

and m0 > Z . For any choice of N and masses m0, . . . ,mN with
m0 > Z , all minimizing sequences for FN,(m0,...,mN)(

#»w1, . . . , #»wN) on ΣN are convergent by Propositon 16. Let
( #»a 1, . . . ,aN) ∈ ΣN be such a minimizer,

FN,(m0,...,mN)(
#»a 1, . . . ,aN) = min

(w1,...,wN)∈ΣN

FN,(m0,...,mN)(
#»w1, . . . , #»wN)< 0.

We define the vectors
#»

ξ
i
n := Z

1
1−ν
n

#»x i
n.

By Lemma 11, ‖
#»

ξ i
n‖,‖

#»

ξ i
n−

#»

ξ
j
n‖ ≥ c > 0 are bounded below, for each i = 1, . . . ,N and j 6= i.

Set

ρn := Z
− 1

2(1−ν)
n , and #»q i

n := Z
− 1

1−ν
n

#»a i.

Then, by the previous Lemma, up to a subsequence,

1≤ ρn ≤
1
4

min
i< j
{‖ #»q i

n− #»q j
n‖,Rn},

so that equation (3.17) holds, and

∑
1≤i< j

mi
nm j

n

‖
#»

ξ i
n−

#»

ξ
j
n‖

+
(
m0

n−Z
) N

∑
i=1

mi
n

‖
#»

ξ i
n‖
−

N

∑
i=1

mi
n

‖
#»

ξ i
n‖ν

≤ ∑
1≤i< j

mi
nm j

n

‖ #»a i− #»a j‖
+
(
m0

n−Z
) N

∑
i=1

mi
n

‖ #»a i‖
−

N

∑
i=1

mi
n

‖ #»a i‖ν
+Z

− 1
1−ν

n (εn + ε̂n), (3.22)

where εn and ε̂n satisfy (3.14) and (3.16), correspondingly. In particular, Z
− 1

1−ν
n εn,Z

− 1
1−ν

n ε̂n −−−→
n→∞

0.
In addition to this, by Lemma 11.

liminf
n→∞

‖
#»

ξ
i
n−

#»

ξ
j
n‖ ≥ liminf

n→∞
Z

1
1−ν
n Rn > 0. (3.23)
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By Lemma 8, limn→∞ mi
n = mi, and hence applying (3.22) and (3.23) we obtain:

limsup
n→∞

FN,(m0,...,mN)(
#»

ξ
1
n, . . . ,

#»

ξ
N
n )

= limsup
n→∞

[
∑

1≤i< j≤N

mi
nm j

n

‖
#»

ξ i
n−

#»

ξ
j
n‖

+
(
m0

n−Z
) N

∑
i=1

mi
n

‖
#»

ξ i
n‖
−

N

∑
i=1

mi
n

‖
#»

ξ i
n‖ν

]

≤ limsup
n→∞

[
∑

1≤i< j≤N

mi
nm j

n

‖ai−a j‖
+
(
m0

n−Z
) N

∑
i=1

mi
n

‖ai‖
−

N

∑
i=1

mi
n

‖ai‖ν

]
= FN,(m0,...,mN)(a

1, . . . ,aN)

= min
(w1,...,wN)∈ΣN

FN,(m0,...,mN)(w
1, . . . ,wN). (3.24)

Therefore, {(
#»

ξ 1
n, . . . ,

#»

ξ N
n )}n∈N is a minimizing sequence for FN,(m0,...,mN) in ΣN , and by Proposition 16,

#»

ξ
i
n =

#»x i
nZ

1
1−ν −−−→

n→∞

#»y i, i = 0, . . . ,N,

with ( #»y 1, . . . , #»y N) a minimizing configuration for FN,(m0,...,mN). This completes the proof in case m0 > Z .

Now consider (ii), for which m0 = Z . We first show that ‖ #»x 1
n‖ � Z

1
ν−1
n . Indeed, assume the contrary

that, up to a subsequence, ‖ #»x 1
n‖Z

1
1−ν
n ≥ c > 0 for all n. In case N ≥ 2, by part (b) of Lemma 11, then

RnZ
1

ν−1
n ≥ c′ > 0. As in the proof of (i), define

#»

ξ
i
n := #»x i

nZ
1

1−ν
n ;

then ‖
#»

ξ i
n‖ ≥ c, i = 1, . . . ,N, is bounded below. We also fix any distinct points p1, . . . , pN ∈ R3 \ {0} and

#»q i
n = piZ

1
ν−1
n .

We now proceed as above, arriving at (3.22). Note that the inequality (3.22) holds for any N ≥ 1. In fact,
if N = 1 the inequality simplifies significantly: the double sums are not present, and only the i = 1 terms
remain. Passing to the limit as in (3.24), and recalling m0

n −−−→n→∞
Z , we then have

limsup
n→∞

FN,(Z ,m1,...,mN)(
#»

ξ
1
n, . . . ,

#»

ξ
N
n )≤ FN,(Z ,m1,...,mN)(

#»p 1, . . . , #»p N),

for any choice of distinct nonzero vectors p1, . . . , pN in R3. Now, as the
#»

ξ i
n are bounded below, the left hand

side of the above inequality is finite. However, the function FN,(Z ,m1,...,mN) is unbounded below, and thus we

may choose vectors #»p 1, . . . , #»p N so as to contradict the inequality. We conclude that ‖ #»x 1
n‖� Z

1
ν−1
n .

Lastly, for m0 = Z and N ≥ 2 we prove the asymptotic distribution of the concentration centers. For
this, we return to the definitions of Rn,ρn in the proof of Lemma 11 (c) above, in which we proved that

Rn ≥ cZ
1

ν−1
n . We recall that the components G0

n,H
0
n defined in (3.12) (but using ρn in the cut-off χρn

,) enclose
neighborhoods of both #»x 0

n =
#»
0 and #»x 1

n, and hence their masses combine in G0
n,H

0
n , as in (3.21). By the

same arguments as in [3, Proposition 8], all minimizing sequences of the interaction energy FN,(m1,m2,...,mN)
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converge to a minimizer ( #»y 2, . . . , #»y N) ∈ ΣN . Define q0
n = 0 and #»q i

n =
#»y iZ

1
ν−1
n , i = 2, . . . ,N. Applying (3.17)

with these choices, we have:

∑
2≤i< j

mi
nm j

n

‖ #»x i
n− #»x j

n‖
+
(
m0 +m1−Z +o(1)

) N

∑
i=2

mi
n

‖ #»x i
n‖
−Zn

N

∑
i=2

mi
n

‖ #»x i
n‖ν

≤ ∑
2≤i< j

mi
nm j

n

‖ #»q i
n− #»q j

n‖
+
(
m0 +m1−Z +o(1)

) N

∑
i=2

mi
n

‖ #»q i
n‖
−Zn

N

∑
i=2

mi
n

‖ #»q i
n‖ν

+ ε1,n + ε2,n,

with (as in part (i))

Z
1

ν−1
n ε1,n,Z

1
ν−1
n ε2,n −−−→

n→∞
0.

Multiplying the above inequality by Z
1

ν−1
n , we pass to the limit and obtain an inequality for FN,(m1,m2,...,mN),

limsup
n→∞

FN,(m1,m2,...,mN)(
#»

ξ
2
n, · · · ,

#»

ξ
N
n )≤ FN,(m1,m2,...,mN)(

#»y 2, · · · , #»y N).

Again, the renormalized centers (
#»

ξ 2
n, . . . ,

#»

ξ N
n ) give a minimizing sequence for FN,(m1,m2,...,mN) and must con-

verge to a minimizer. This completes the proof of Theorem 6.

3.4 Infimum over the class of radial functions

In this section we consider the minimization problem in a radial class. We set

I p,q,radial
V (M) := inf

{
E p,q

V (u) ; u ∈ H1
radial(R3),‖u‖2

L 2(R3) = M
}
.

Remark 5. 1. If the binding inequality holds, its proof is not the same we showed for the general case.

2. Corollary 2 does not necessarily hold because the proof used the binding inequality.

Proposition 17. I p,q,radial
V ≤ 0; moreover, if q < 8/3 or c� 1, the inequality is strict.

Proof. The transformation (2.1) does not only keep the L 2 norm, but it is also invariant under rotations.
Then, just as in the proof of part (i) of Proposition 7, and since

∫
R3

Vu2d #»x =
∫
R3

Z
|σ3/2u(σ #»x )|2

‖ #»x ‖ν
d #»x = σ

3
σ

ν

∫
R3

Z
u2(σ #»x )
‖σ #»x ‖ν

d #»x = σ
ν

∫
R3

Vu2d #»x ,

E p,q
V (uσ ) =

∫
R3

(
cW σ

2‖∇u‖2 + cT F σ
3p/2−3|u|p− cDσ

3q/2−3|u|qσ
νVu2

)
d #»x +

1
2

σD(u2,u2). (3.25)

As a result, the nonpositivity follows from (3.25) by taking σ → 0+, while the strict negativity follows from
the fact that when q < 8/3 or c� 1, the dominant term as σ → 0 is negative.

Theorem 10. Let q < 2.4 and M be any positive real number. If

V ≡ 0 or ν ∈
[

2q−4
4−q

,
3q−6

q

]
(⊆ (0,1)),
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then I p,q,radial
V (M) is attained.

Remark 6. If q < 2.4 the interval for ν is well defined.

Remark 7. In particular, if q < 2.4, then I p,q,radial
V (M)< I p,q,radial

0 (M).

Proof. Let {un}n∈N be a minimizing sequence for I p,q,radial
V (M). Up to a subsequence (not relabelled),

un −−−⇀
n→∞

u in H1
radial(R3) for some u because (2.6) ensures {un}N is bounded in H 1(R3). Then,

un→ u ∈L r(R3),2 < r < 6, (3.26)

by compactness of the embedding H1
radial(R3) ↪→L r(R3) for 2 < r < 2∗ = 6,

lim
n→∞

∫
R3

Vu2
nd #»x =

∫
R3

Vu2d #»x

by Proposition 5, and

m :=
∫
R3

u2d #»x ≤M. (3.27)

Furthermore, un −−−⇀
n→∞

u in H 1(R3), (3.26), q < 8/3 and Proposition 17 combined imply

E p,q,radial
V (u)≤ liminf

n→∞
E p,q,radial

V (un) = I p,q,radial
V (M)< 0,

so that m = 0 cannot happen, while I p,q
V < 0 and (3.26)-(3.27) yield

I p,q
V (m)

mγ
≤

E p,q
V (u)
mγ

≤
E p,q

V (u)
Mγ

≤
liminf

n→∞
E p,q

V (un)

Mγ
=

I p,q
V (M)

Mγ
,γ ≥ 0. (3.28)

Therefore, part 3 of Lemma 4, which is also valid in the radial case, ensures M =m, otherwise E p,q,radial
V (u)<

0 and (3.28) would give

I p,q
V (M)

mγ
<

I p,q
V (M)

Mγ
.

As a result, u is a minimizer.
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Chapter 4

Convergence to the Liquid Drop model

In this chapter we prove Theorem 7. From now on, we assume V satisfies (1.17).
Recall

E V
ε (u) :=

∫
R3

[
ε

2
‖∇u‖2 +

1
2ε

W (u)−Vu2
]

dx+D(u2,u2), W (u) := u2
(
|u|

2
3 −1

)2
,

E V
0 (u) :=

1
8

∫
R3
‖∇u‖−

∫
R3

Vu2d #»x +D(u2,u2),

H M :=
{

u ∈H 1(R3) ; ‖u‖2
L 2(R3) = M

}
,

X M :=
{

u ∈ BV (R3,{0,±1}) ; ‖u‖2
L 2(R3) = M

}
,

eV
ε (M) := inf

{
E V

ε (u) ; u ∈H M} , eV
0 (M) := inf

{
E V

0 (u) ; u ∈X M} ,

FV
0 ({ui}∞

i=0) :=


E V

0 (u0)+
∞

∑
i=1

E 0
0 (u

i), {ui}∞
i=0 ∈H M

0 ,

∞, otherwise,

and

H M
0 :=

{
{ui}∞

i=0 ⊂ BV (R3,{0,±1});
∞

∑
i=0

∫
R3
‖∇ui‖< ∞,

∞

∑
i=0
‖ui‖2

L 2(R3) = M

}
.

4.1 Compactness and Lower Bound

In this section we prove part (i) of Theorem 7. This involves combining lower bounds on singularly perturbed
problems of Cahn-Hilliard type with concentration-compactness methods, to deal with possible loss of com-
pactness via splitting.
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We begin with some preliminary estimates.

Lemma 12. Let {vε}ε>0 ⊂H 1(R3), with ‖vε‖2
L 2(R3)

≤M and E V
ε (vε) ≤ K0 , where K0 > 0 is a constant

independent of ε . Then there exists a constant C0 =C0(K0,M,V ) such that for all 0 < ε < 1
4 , we have

∫
R3

[
ε

2
‖∇vε‖2 +

1
2ε

W (vε)

]
d #»x +D(|vε |2, |vε |2)≤C0.

Proof. First by (1.17), we write V =V5/2+V∞, where V5/2 ∈L
5
2 (R3) and V∞ ∈L ∞(R3), and fix K > 0 large

enough so that

|t|
10
3 ≤ 5

3
W (t), |t|> K.

Then, by Young’s inequality, for any u ∈H 1(R3),∫
R3

Vu2d #»x ≤
∫
R3

V5/2u2d #»x +‖V∞‖L ∞(R3)

∫
R3

u2d #»x

≤ 2
5

∫
R3
|V5/2|

5
2 d #»x +

3
5

∫
R3
|u|

10
3 d #»x +‖V∞‖L ∞(R3)

∫
R3

u2d #»x

≤C
(

1+
∫
{|u|<K}

|u|2d #»x
)
+
∫
{|u|>K}

W (u)d #»x +‖V∞‖L ∞(R3)

∫
R3

u2d #»x

≤C2 +C1

∫
R3

u2d #»x +
1

2ε

∫
R3

W (u)d #»x .

Hence, there exist constants C1,C2 > 0 for which

2E V
ε (u)+C1

∫
R3

u2d #»x +C2 ≥
∫
R3

[
ε

2
‖∇u‖2 +

1
2ε

W (u)
]

d #»x +D(u2,u2),

and the desired estimate follows.

Remark 8. Under the hypotheses of Lemma 12, {vε}ε>0 is bounded in L
10
3 (R3) and∫

R3
W (vε)d #»x −−−→

ε→0+
0.

Next, we prepare the way for the proof of the compactness part of Theorem 7 by establishing that se-
quences {uε}ε>0 with bounded energy must have centers of concentration, even if they are divergent. The
following Lemma is used to rule out vanishing of {uε}ε>0 as long as the BV norm is bounded and the L

4
3

norm of uε is not vanishing:

Lemma 13. There exists a universal constant C > 0 such that for all ψ ∈BV (R3),

‖ψ‖BV (R3)

[
sup

#»a ∈R3

∫
B1(

#»a )
|ψ|d #»x

] 1
3

≥C
∫
R3
|ψ|

4
3 d #»x . (4.1)
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Proof. It suffices to prove (4.1) holds for ψ ∈W 1,1(R3), as we can extend it to ψ ∈ BV (R3) by using a
density argument [5, Theorem 3.9.].

Let ψ ∈W 1,1(R3), and define χ #»a := χ( #»x − #»a ), where χ ∈C∞
0 (R3)\{0} is any nonnegative function that

is compactly supported in B1(
#»
0 ).

Then, by Hölder’s inequality and Sobolev’s inequality,∫
B1(

#»a )
|χ #»a ψ|

4
3 d #»x =

∫
B1(

#»a )
|χ #»a ψ|

1
3 |χ #»a ψ|d #»x

≤
[∫

B1(
#»a )
|χ #»a ψ|d #»x

] 1
3
(∫

R3
|χ #»a ψ|

3
2 d #»x

) 2
3

≤C

[
sup

#»a ∈R3

∫
B1(

#»a )
|ψ|d #»x

] 1
3 ∫

R3
‖∇(χ #»a ψ)‖d #»x

≤C

[
sup

#»a ∈R3

∫
B1(

#»a )
|ψ|d #»x

] 1
3 ∫

R3
(χ #»a ‖∇ψ‖+‖∇χ #»a ‖|ψ|)d #»x .

We conclude the proof of this Lemma by integrating with respect to #»a ∈ R3.

From this Lemma we may then conclude that noncompactness of sequences with bounded BV (R3) norm
is due to splitting and translation. The following is an adaptation of [21, Proposition 2.1], which is proved for
characteristic functions of finite perimeter sets.

Proposition 18. Assume {ψn}n∈N is a bounded sequence in BV (R3), for which liminfn→∞ ‖ψn‖
L

4
3 (R3)

> 0.

Then, there exists translations {an}n∈N⊂R3, and ψ0 ∈ BV (R3)\{0}, such that for some (not relabeled)

subsequence we have:

(a) ψn(·−an)−−−→
n→∞

ψ0 in L 1
loc(R3),

(b) ‖ψ0‖BV (R3) ≤ liminfn→∞ ‖ψn‖BV (R3).

Proof. By Lemma 13, we have

sup
#»a ∈R3

∫
B1(

#»a )
|ψn|d #»x ≥

[
C
∫
R3 |ψ|

4
3 d #»x

‖ψn‖BV (R3)

]3

≥ 2c,

for some c > 0 independent of n. Hence, for each n ∈ N we may choose vectors #»a n ∈ R3 for which∫
B1(

#»a n)
|ψn|d #»x ≥ c > 0. (4.2)

As {ψn(· − #»a n)}n∈N is bounded in BV (R3), there exists a subsequence and ψ0 ∈BV (R3) for which (a)
and (b) hold. By (4.2) and L 1

loc convergence, the limit ψ0 6≡0.

Once we have localized a piece of our BV (R3)-bounded sequence {ψn}n∈N as an L 1
loc-converging part,

we need to separate the compact piece from the rest, which converges locally to zero but may carry nontrivial
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L 1-mass to infinity. To do this, we first define a smooth cut-off function ω : R→ [0,1], with

ω ≡ 1 for x < 0, ω ≡ 0 for x > 1, and ‖ω ′‖L ∞(R3) ≤ 2,

and for any ρ > 0,
ωρ(

#»x ) = ω(‖ #»x ‖−ρ). (4.3)

The next Proposition is based on [21, Lemma 2.2.]:

Proposition 19. Let {ψn}n∈N be bounded in BV (R3) with ψn −−−→
n→∞

ψ0 in L 1
loc(R3) and pointwise almost

everywhere in R3, for some function ψ0 ∈BV (R3). If 0 < ‖ψ0‖L 1(R3) < liminfn→∞ ‖ψn‖L 1(R3), then there

exist radii {ρn}n∈N ⊂ (0,∞) such that, up to a subsequence,∫
R3
[‖∇ψn‖−‖∇(ψnωρn)‖−‖∇(ψn−ψnωρn)‖]−−−→n→∞

0. (4.4)

Furthermore,

ψnωρn −−−→n→∞
ψ

0 in L 1(R3) and ψn(1−ωρn)−−−→n→∞
0 in L 1

loc(R3), (4.5)

with each converging pointwise almost everywhere in R3.

Proof. Note that ∫
R3
‖∇ψn‖ ≤

∫
R3
‖∇(ψnωρn)‖+

∫
R3
‖∇
[
ψn(1−ωρn)

]
‖

≤
∫
R3
‖∇ψn‖+2

∫
R3
‖ψn∇ω (‖ #»x ‖−ρn)‖d #»x

≤
∫
R3
‖∇ψn‖+4

∫
Bρn+1(

#»

0 )\Bρn (
#»

0 )
|ψn|d #»x .

Therefore, (4.4) holds if we find {ρn}n∈N ⊂ (0,∞) such that∫
Bρn+1(

#»

0 )\Bρn (
#»

0 )
|ψn|d #»x −−−→

n→∞
0. (4.6)

We consider two different cases.

First, suppose that suppψ0 ⊂ BR(
#»
0 ), for some R > 0. In this case, we claim that it suffices to choose radii

ρn = R for all n ∈ N. Indeed, by L 1
loc(R3) convergence and the compact support of ψ0,

∣∣∣∣ψnωρn

∣∣∣∣
L 1(R3)

=
∣∣∣∣ψnωρn

∣∣∣∣
L 1(BR+1(

#»

0 ))
−−−→
n→∞

‖ψ0‖L 1(R3),

and therefore (4.5) holds by the Brezis-Lieb Lemma [10] with each sequence converging pointwise almost
everywhere in R3. Also, since ψ0

1BR+1(
#»

0 )\BR(
#»

0 ) ≡ 0 and ψn −−−→
n→∞

ψ0 in L 1(BR+1(
#»
0 )), we conclude that

(4.6) is also verified in case supp(ψ0) is compact.
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In the second case, if suppψ0 is essentially unbounded, note that ‖ψ0‖L 1(R3) < liminfn→∞ ‖ψn‖L 1(R3)

implies that along some subsequence (not relabeled) we may choose radii Rn such that∫
BRn (

#»

0 )
|ψn|d #»x = ‖ψ0‖L 1(R3). (4.7)

We claim that, chosen this way, Rn −−−→
n→∞

∞. Indeed, assume that (taking a further subsequence if neces-
sary) , Rn −−−→

n→∞
R0:= supn∈N Rn. Then,

‖ψ0‖L 1(R3) = liminf
n→∞

‖ψn1BRn
‖L 1(R3) ≤ liminf

n→∞
‖ψn1BR0

‖L 1(R3) = ‖ψ
0
1BR0
‖L 1(R3) < ‖ψ

0‖L 1(R3),

since we are assuming that suppψ0 is essentially unbounded. Thus, Rn −−−→
n→∞

∞.
Next, fix R > 1 such that ∫

BR(
#»

0 )
|ψ0|d #»x ≥ 1

2
‖ψ0‖L 1(R3).

By L 1
loc(R3) convergence, for all sufficiently large n we have

∫
BR(

#»

0 )
|ψn|d #»x ≥ 1

4
‖ψ0‖L 1(R3). (4.8)

We now claim that for n large enough such that Rn > R, there exists ρn ∈
[R+Rn

2 ,Rn
]

for which

∫
Bρn+1(

#»

0 )\Bρn (
#»

0 )
|ψn|d #»x ≤ 3

Rn−R
‖ψ0‖L 1(R3). (4.9)

If so, then (4.6) is satisfied with this choice of ρn ≥ rn := R+Rn
2 −−−→

n→∞
∞. To verify the claim, suppose the

contrary, and so for every ρ ∈ [rn,Rn] we have the opposite inequality to (4.9). For fixed n, choose a constant
K ∈N with Rn−1≤ rn+K < Rn, so there are K intervals of unit length lying in [rn,Rn]. Then, by (4.7), (4.8),

3
4
‖ψ0‖L 1(R3) ≥

∫
BRn (

#»

0 )
|ψn|d #»x −

∫
BR(

#»

0 )
|ψn|d #»x

≥
∫

Brn+K(
#»

0 )\Brn (
#»

0 )
|ψn|d #»x

> K
3

Rn−R
‖ψ0‖L 1(R3)

≥ 3
Rn− rn−1

Rn−R
‖ψ0‖L 1(R3)

=
3
2

Rn−R−2
Rn−R

‖ψ0‖L 1(R3),

for all sufficiently large n, a contradiction. This completes the proof of (4.4). Finally, note that ψnωρn −−−→n→∞

ψ0 pointwise almost everywhere in R3, Fatou’s Lemma, (4.6), ρn ≤ Rn, and (4.7) imply that

‖ψ0‖L 1(R3) ≤ liminf
n→∞

∫
R3
|ψnωρn |d #»x
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= liminf
n→∞

[∫
Bρn (

#»

0 )
|ψnωρn |d #»x +

∫
Bρn+1 (

#»

0 )\Bρn (
#»

0 )
|ψnωρn |d #»x

]
= liminf

n→∞

∫
Bρn (

#»

0 )
|ψn|d #»x ≤ ‖ψ0‖L 1(R3).

Then, (4.5) follows from the Brezis-Lieb Lemma [10], with each sequence converging pointwise almost
everywhere in R3.

Remark 9. By lower semicontinuity of the total variation with respect to the L 1 convergence, up to a

subsequence, ∫
R3
‖∇ψ

0‖ ≤ lim
n→∞

∫
R3

(
‖∇ψn‖−‖∇(ψn−ψnωρn)‖

)
We are now ready to prove the compactness and Γ-liminf part of the theorem:

Proof of Theorem 7 (i). Let {uε}ε>0 be a family in H M with E V
ε (uε)≤ K0, ε > 0.

Step 1: Truncation.

First, we show that when proving (i) it suffices to restrict to uε satisfying the pointwise bounds−1≤ uε ≤ 1
pointwise almost everywhere in R3. Indeed, we define the truncations

u∗ε :=


−1, uε <−1,

uε , |uε | ≤ 1,

1, uε > 1.

We show that ‖uε −u∗ε‖2
L 2(R3)

−−−→
ε→0+

0, and

liminf
ε→0+

E V
ε (u∗ε)≤ liminf

ε→0+
E V

ε (uε). (4.10)

To accomplish this, we first note that by Remark 8, we have that

0≤
∫
R3
|uε −u∗ε |2d #»x =

∫
{|uε |>1}

(|uε |−1)2 d #»x ≤C
∫
R3

W (uε)d #»x −−−→
ε→0+

0,

where C is a constant independent of ε . Also by Remark 8, {uε}ε>0 is bounded in L 2(R3)∩L
10
3 (R3), and

hence the sequence of truncation s {u∗ε}ε>0 is as well. By Proposition 6, we conclude that the local potential
terms are close, ∫

R3
V
(
|uε |2−|u∗ε |2

)
d #»x −−−→

ε→0+
0.

Finally, each of the other terms decreases under truncation,

‖∇u∗ε‖ ≤ ‖∇uε‖, W (u∗ε)≤W (uε), D(|u∗ε |2, |u∗ε |2)≤ D(|uε |2, |uε |2),

and so (4.10) is verified.
In the following we therefore assume, without loss of generality, that −1 ≤ uε ≤ 1, ε > 0, pointwise

almost everywhere in R3.

73



PhD Thesis - Lorena Aguirre Salazar McMaster University - Mathematics

Step 2: Passing to the first limit.

Let φε := Φ(uε), where Φ : R→ R is defined by

Φ(t) :=
∫ t

0

√
W (τ)dτ.

Then,

φε =
∫ uε

0
|t|(1−|t|

2
3 )dt = sign(uε)

(
1
2
|uε |2−

3
8
|uε |

8
3

)
,

and since ‖uε‖L ∞(R3) ≤ 1,

1
8
|uε |2 ≤ |φε | ≤

1
2
|uε |2 and |φε | ≤ φε(1) =

1
8
. (4.11)

In particular,

‖φε‖L 1(R3) ≤
1
2
‖uε‖2

L 2(R3) ≤
M
2
.

Furthermore, {φε}0<ε< 1
4

is bounded in BV (R3). Indeed, by Young’s inequality and Lemma 12 with
vε = uε ,

∫
R3
‖∇φε‖d #»x =

∫
R3

√
W (uε)‖∇uε‖d #»x ≤

∫
R3

[
ε

2
‖∇uε‖2 +

1
2ε

W (uε)

]
d #»x ≤ K1, (4.12)

with constant K1 = K1(K0,M,V ). Consequently, {‖φε‖BV (R3)}0<ε< 1
4

is bounded.
Now let εk −−−→

k→∞
0+ be any sequence. By the compact embedding of BV (R3) in L 1

loc(R3) there exist a

subsequence, which we continue to denote by εk −−−→
k→∞

0+, and a function φ 0 ∈BV (R3) so that φεk −−−→k→∞
φ 0

in L 1
loc(R3) and pointwise almost everywhere in R3. What is more, by lower semicontinuity of the total

variation with respect to the L 1 convergence,∫
R3
‖∇φ

0‖ ≤ liminf
k→∞

∫
R3
‖∇φεk‖d

#»x . (4.13)

Now we can use the invertibility of Φ and the local uniform continuity of Φ−1 to obtain that uεk −−−→k→∞
u0 :=

Φ−1(φ 0) pointwise almost everywhere in R3. Then, by Fatou’s Lemma and Remark 8, we have

0≤
∫
R3

W (u0)d #»x ≤ liminf
k→∞

∫
R3

W (uεk)d
#»x = 0

hence W (u0)≡ 0, u0( #»x ) ∈ {0,±1} pointwise almost everywhere, and

φ
0 =

1
8

u0 pointwise almost everywhere in R3. (4.14)
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As a result, by Fatou’s Lemma and (4.11), for any compact K ⊂ R3,∫
K
|φ 0|d #»x =

1
8

∫
K
|u0|2d #»x ≤ 1

8
liminf

k→∞

∫
K
|uεk |

2d #»x ≤ lim
k→∞

∫
K
|φεk |d

#»x =
∫

K
|φ 0|d #»x . (4.15)

Thus, uεk −−−→k→∞
u0 pointwise almost everywhere in R3 and , by Brezis-Lieb Lemma [10], in L 2

loc(R3), while

by Fatou’s Lemma ‖u0‖2
L 2(R3)

≤M.
For the nonlocal term, as uεk −−−→k→∞

u0 locally, along a further subsequence it converges pointwise almost

everywhere in R3, and hence by Fatou’s Lemma,

D(|u0|2, |u0|2)≤ liminf
k→∞

D(|uεk |
2, |uεk |

2), (4.16)

and by Proposition 6 with un = uεk and vn = u0, (4.13), (4.12), and (4.14) we have

E V
0 (u0)≤ liminf

k→∞
E V

εk
(uεk).

If φεk −−−→k→∞
φ 0 in L 1(R3), then by the same argument as (4.15) we may conclude that uεk −−−→k→∞

u0 con-

verges in L 2(R3), and so m0 := ‖u0‖2
L 2(R3)

= M, and setting ui ≡ 0 for all i≥ 1, the proof is complete.

Step 3: Splitting off the remainder sequence. If m0 = M, then uεk −−−→k→∞
u0 in L 2(R3) by the Brezis-

Lieb Lemma [10], and setting ui ≡ 0 for all i ≥ 1, the proof is complete. To continue we assume that m0 :=
‖u0‖2

L 2(R3)
< M, so the first limit does not capture all of the mass in the sequence uεk . In this case, both uεk

and φεk converge only locally (and not in norm), that is,

‖φ 0‖L 1(R3) < liminf
k→∞

‖φεk‖L 1(R3),

and similarly for uεk , by the Brezis-Lieb Lemma [10].
Applying Proposition 19 and Remark 9 to φεk , and the fact that we do not have global convergence, there

exists a sequence of radii {ρk}k∈N ⊂ (0,∞) with ρk −−−→
k→∞

∞ so that, for

φ
0
εk

:= ωρk φεk , φ
1
εk

:= (1−ωρk)φεk ,

where ωρ is defined in (4.3), and for a subsequence (which we continue to write as εk −−−→
k→∞

0+ ),

φ
0
εk
−−−→
k→∞

φ
0 in L 1(R3), φ

1
εk
−−−→
k→∞

0 in L 1
loc(R3), (4.17)

φ
0
εk
−−−→
k→∞

φ
0 and φ

1
εk
−−−→
k→∞

0 pointwise almost everywhere in R3, and∫
R3
‖∇φ

0‖+
∫
R3

∥∥∇φ
1
εk

∥∥d #»x ≤
∫
R3

∥∥∇φεk

∥∥d #»x +o(1). (4.18)

Moreover, from (4.6) and (4.11) the mass contained in the cut-off region is negligible:

lim
k→∞

∫
Bρk+1(

#»

0 )\Bρk (
#»

0 )
|φεk |d

#»x = 0 = lim
k→∞

∫
Bρk+1(

#»

0 )\Bρk (
#»

0 )
|uεk |

2d #»x . (4.19)
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We also decompose uεk into two pieces,

u0
εk
= uεk

√
ωρk , and u1

εk
= uεk

√
1−ωρk , (4.20)

so that (uεk)
2 = (u0

εk
)2 +(u1

εk
)2 and u1

εk
−−−→
k→∞

0 pointwise almost everywhere in R3. Note that φ i
εk
= Φ(ui

εk
)

holds in R3 \{ρk < ‖ #»x ‖< ρk+1}, and by (4.19) the region where they are no longer explicitly related carries
a negligible amount of the mass of uεk .

Equations (4.18), (4.14) and (4.12) give

1
8

∫
R3
‖∇u0‖+ lim

k→∞

∫
R3
‖∇φ

1
εk
‖d #»x ≤ liminf

k→∞

∫
R3

[
ε

2
‖∇uε‖2 +

1
2ε

W (uε)

]
d #»x ≤ K0, (4.21)

and in particular, {φ 1
εk
}k∈N is bounded in BV (R3). The nonlocal term also splits in the same way. Indeed,

by (4.20), u0
εk
−−−→
k→∞

u0 pointwise almost everywhere in R3, the positivity of D( f ,g) for f ,g≥ 0, and (4.16)

liminf
k→∞

D(|uεk |
2, |uεk |

2) = liminf
k→∞

D(|u0
εk
|2 + |u1

εk
|2, |u0

εk
|2 + |u1

εk
|2)

≥ liminf
k→∞

D(|u0
εk
|2, |u0

εk
|2)+D(|u1

εk
|2, |u1

εk
|2)

≥ D(|u0|2, |u0|2)+ liminf
k→∞

D(|u1
εk
|2, |u1

εk
|2).

(4.22)

Additionally, (4.14), Fatou’s Lemma, (4.11), and (4.17) give∫
R3
|φ 0|d #»x =

1
8

∫
R3
|u0|2d #»x ≤ 1

8
liminf

k→∞

∫
R3
|u0

εk
|2d #»x ≤ lim

k→∞

∫
R3
|φ 0

εk
|d #»x =

∫
R3
|φ 0|d #»x .

thus u0
εk
−−−→
k→∞

u0 in L 2(R3). As a result,

M = m0 + lim
k→∞

M1
εk
, where M1

εk
:= ‖u1

εk
‖2

L 2(R3) = ‖uεk −u0‖2
L 2(R3)+o(1). (4.23)

Lastly, as uεk −−−→k→∞
u0 in L 2

loc(R3), by Proposition 6 we have

∫
R3

V |uεk |
2d #»x =

∫
R3

V |u0|2d #»x +o(1),

and hence we conclude by (4.14) and (4.21),

E V
0 (u0)+ liminf

k→∞

[∫
R3
‖∇φ

1
εk
‖d #»x +D

(
|u1

εk
|2, |u1

εk
|2
)]
≤ liminf

ε→0+
E V

ε (uε).

Step 4: Concentration in the remainder sequence.

For any bounded sequence {ψk}k∈N in L 1(R3) we define

M ({ψk}) := sup{‖ψ‖L 1(R3) : ∃xk ∈ R3,ψk(·+ xk)−−−→
k→∞

ψ in L 1
loc(R3)},

So M ({ψk}) identifies the largest possible L 1
loc limiting mass of the sequence, up to translation.

76



McMaster University - Mathematics PhD Thesis - Lorena Aguirre Salazar

We claim that for our remainder sequence, M ({φ 1
εk
})> 0. Indeed, this follows from Proposition 18 once

we have established the hypotheses. We first note that by (4.21), {φ 1
εk
}k∈N is bounded in BV (R3). Next,

we must show that the L
4
3 norm of φ 1

εk
is bounded below. As u1

εk
= uεk pointwise almost everywhere in

R3 \Bρk+1(
#»
0 ), from Lemma 12 we have

2C0εk ≥
∫
R3\Bρk+1(

#»

0 )
W (uεk)d

#»x =
∫
R3\Bρk+1(

#»

0 )
W (u1

εk
)d #»x ,

and thus, from (4.11), (4.6), (4.23) , and t
8
3 = (t

10
3 + t2)/2−W (t)/2, we have:

∫
R3\Bρk+1(

#»

0 )
|φ 1

εk
|

4
3 d #»x ≥ 1

16

∫
R3\Bρk+1(

#»

0 )
|u1

εk
|

8
3 d #»x

≥ 1
32

∫
R3\Bρk+1(

#»

0 )

(
|uεk |

10
3 + |uεk |

2
)

d #»x −C0εk

>
1
32

∫
R3\Bρk (

#»

0 )
|uεk |

2d #»x −o(1)

≥ 1
32

∫
R3
|u1

εk
|2d #»x +o(1)

=
M1

εk

32
+o(1) =

1
32

(M−m0)+o(1)> 0.

(4.24)

Applying Proposition 18 the claim follows.
By the claim and Proposition 18, we may choose a subsequence, translations { #»x 1

k}k∈N, and φ 1 ∈BV (R3)

with
φ

1
εk
(·− #»x 1

k)−−−→k→∞
φ

1 in L 1
loc(R3), and ‖φ 1‖L 1(R3) ≥

1
2
M ({φ 1

εk
}).

Note that since φ 1
εk
−−−→
k→∞

0 in L 1
loc(R3), the sequence ‖ #»x 1

k‖ −−−→k→∞
∞. By the same arguments as in Step 1

we may conclude that u1
εk
(·− #»x 1

k)−−−→k→∞
u1 = 8φ 1 in L 2

loc(R3) and pointwise almost everywhere in R3, with

W (u1) ≡ 0 pointwise almost everywhere in R3, and hence u1 ∈ BV (R3,{0,±1}) with ‖u1‖2
L 2(R3)

=: m1 ≤
(M−m0).

Finally, the nonlocal term, which splits as in (4.22), passes to the limit using Fatou’s Lemma,

D(|u0|2,(|u0|2)+D(|u1|2, |u1|2)≤ D(|u0|2, |u0|2)+ liminf
k→∞

D
(
|u1

εk
|2, |u1

εk
|2
)

≤ liminf
k→∞

D(|uεk |
2, |uεk |

2).

In conclusion, using the previous inequality and (4.21) we have

E V
0 (u0)+E 0

0 (u
1)≤ E V

0 (u0)+ liminf
k→∞

[∫
R3
‖∇φ

1
εk
‖d #»x +D

(
|u1

εk
|2, |u1

εk
|2
)]
≤ liminf

ε→0+
E V

ε (uε),

with m0 +m1 ≤M. If m1 = ‖u1‖2
L 2(R3)

= M−m0, then u1
εk
(·− #»x 1

k)−−−→k→∞
u1 in L 2(R3) by the Brezis-Lieb

Lemma [10], and the proof terminates, with ui ≡ 0 for all i≥ 2.

Step 5: Iterating the argument.
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If m0 +m1 < M, then as in Step 3, the convergence of φ 1
εk
(·− #»x 1

k) −−−→k→∞
φ 1 is only local and not in the

norm of L 1(R3) (and similarly for u1
εk
(· − #»x 1

k) −−−→k→∞
u1 in L 2(R3) ), and so there is again a remainder

part to be separated via Proposition 19. That is, we may choose radii {ρ1
k }k∈N going to infinity and further

decompose φ 1
εk
(·− #»x 1

k),

φ
1
εk
(·− #»x 1

k)ωρ1
k
−−−→
k→∞

φ
1 in L 1 norm, φ

2
εk

:= φ
1
εk
(·− #»x 1

k)(1−ω
ρ1

k
)−−−→

k→∞
0 in L 1

loc(R3),

with the same consequences as in Step 4, identifying a mass center for φ 2
εk

via Proposition 18, translating and
passing to a local L 1 limit to find φ 2 = 1

8 u2, and creating a refined lower bound.
Assuming the procedure has been done for the first n steps, we would have u0, . . .un ∈ BV (R3,{0,±1})

with masses ‖ui‖2
L 2(R3)

= mi, and translations { #»x i
k}k∈N for each i = 1, . . . ,n, such that:

uεk = u0 +
n

∑
i=1

ui(·− #»x i
k)+un+1

εk
(·− #»x n

k), and un+1
εk

(·− #»x n
k)−−−→k→∞

0 in L 2
loc(R3);

mi = ‖ui‖2
L 2(R3), i = 0, . . . ,n;

‖ #»x i
k‖ −−−→k→∞

∞, ‖ #»x i
k− #»x j

k‖ −−−→k→∞
∞, 1≤ i 6= j;

M =
n

∑
i=0

mi + lim
k→∞
‖un+1

εk
‖2

L 2(R3);

E V
0 (u0)+

n

∑
i=1

E 0
0 (u

i)≤ liminf
ε→0+

E V
0 (uε).



(4.25)

If for some n ∈ N, the remainder φ i
εk
−−−→
k→∞

0 in L 1(R3), then the iteration terminates at that n, and the

proof (i) of Theorem 7 is completed by choosing ui = 0 for all i≥ n+1. If the iteration continues indefinitely,
we must verify that the entire mass corresponding to {uεk}k∈N is exhausted by the {ui}∞

i=0. It is here that we
use M ({φ i

εk
}). When localizing mass in the remainder term φ i

εk
, the translations { #»x i

k} and limit φ i = 1
8 ui are

chosen via Proposition 18 in such a way that

‖φ i‖L 1(R3) ≥
1
2
M
(
{φ i

εk
}
)
, i = 1, . . . ,n.

In this way, the boundedness of the partial sums ∑
n
i=0 mi ≤ M implies that, should the process continue

indefinitely, the residual mass M
(
{φ i

εk
}
)
≤ 2mi −−→

i→∞
0. We claim that this implies that

M =
∞

∑
i=0

mi =
∞

∑
i=0
‖ui‖2

L 2(R3), (4.26)

and that the entire mass corresponding to {uεk}k∈N is exhausted by the {ui}∞
i=0. Indeed, if ∑

∞
i=0 mi = M′ < M,

then each remainder sequence satisfies

‖φ i
εk
‖L 1(R3) ≥

M−M′

8
.
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Returning to Step 4, and calculating as in (4.24), we obtain a lower bound up to a subsequence∫
R3
|φ i

εk
|

4
3 d #»x ≥C(M−M′),

for a constant C independent of k, i. Using Lemma 13 we then have a uniform lower bound,

M ({φ i
εk
})≥ sup

#»a ∈R3

∫
B1(

#»a )
|φ i

εk
|d #»x ≥C′(M−M′)3,

for each i ∈ N, with C′ depending on the upper energy bound K0, but independent of k, i. This contradicts
M ({φ i

εk
}) < 2mi −−→

i→∞
0. Hence (4.26) is established, and passing to the limit n→ ∞ in (4.25) we conclude

the proof of (i) of Theorem 7.

4.2 Upper bound

In this section we prove part (ii) of Theorem 7, the construction of recovery sequences in the Γ-convergence
of E V

ε . As the space H M
0 consists of a collection of functions in BV (R3,{0,±1}), we build the recovery

sequence by superposition of each, using the following lemma:

Lemma 14. Given v0 ∈ BV (R3,{0,±1}) with ‖v0‖2
L 2(R3)

= M, there exists ε0 = ε0(v0) > 0 and functions

{vε}0<ε<ε0 ⊂H M of compact support, such that

‖vε − v0‖L r(R3) −−−→
ε→0+

0, 1≤ r < ∞, and E V
ε (vε)−−−→

ε→0+
E V

0 (v0).

Proof. The basic construction is familiar, based on that of Sternberg [52, Proof of inequalities (1.12) and
(1.13)], so we highlight the modifications necessary for our case.

The first step is to regularize v0. As compactly supported functions are dense in the BV (R3) norm, we
may assume that suppv0 is bounded. Next, define a smooth mollifier, using ϕ ∈ C∞

0 (B1(
#»
0 )), ϕ( #»x ) ≥ 0,∫

B1(
#»

0 ) ϕd #»x = 1 to generate
ϕn(

#»x ) = n3
ϕ(n #»x ) ∈C∞

0 (B 1
n
(

#»
0 )).

Following the proof of regularization of BV functions (see [5, Theorem 3.42.] ), we create a sequence
wn =ϕn∗v0 which is smooth and supported in a 1

n -neighborhood of the support of v0. As in [5], the regulariza-
tion is obtained as a level surface of wn. Here, we have two components, corresponding to the regularizations
of v0

+ and v0
−, in case v0 takes on both values±1. By Sard’s Theorem [18, 3.4.3.], there exist values t+ ∈ (0,1)

and t− ∈ (−1,0) for which the boundaries of the sets

F+
n := { #»x ∈ R3 |wn(

#»x )> t+ > 0}, F−n := { #»x ∈ R3 |wn(
#»x )< t− < 0}

are smooth for each n ∈ N, v±n := 1F±n −−−→n→∞
v0
± in L 1(R3), and

∫
R3
‖∇v±n ‖ −−−→n→∞

∫
R3
‖∇v0

±‖.
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Note by this construction that the sets F±n are smooth and disjoint for each n. Hence, the construction in
[52] may be done separately for the components F±n , for any 0 < ε < ηn, with ηn > 0 being chosen so that the
neighborhoods of radius

√
ε of the boundaries F±n are disjoint. Thus, applying the result of Sternberg [52]1

for each n ∈ N, and each 0 < ε < ηn, there exists ṽ±n,ε(
#»x ) ∈H 1(R3) with ṽ+n,ε , ṽ

−
n,ε disjointly supported,

0≤ ṽ±n,ε ≤ 1, and

‖ṽ±n,ε − v±n ‖L 1(R3) −−−→
ε→0+

0, and
∫
R3

[
ε

2
‖∇ṽ±n,ε‖2 +

1
2ε

W (ṽ±n,ε)
]
−−−→
ε→0+

1
8

∫
R3
‖∇v±n ‖. (4.27)

Writing ṽn,ε = ṽ+n,ε − ṽ−n,ε (again, a disjoint sum for all 0 < ε < ηn ), the same properties (4.27) hold for ṽn,ε

and v0
n = v+n − v−n .

Next, we adjust the ṽn,ε so that for each n,ε , each has L 2 norm equal to M, and hence defines a function
in H M . For this we use dilation: let

λε :=
‖ṽn,ε‖2

L 2(R3)

M

1
3

−−−→
ε→0+

1.

We define the rescaled functions v̂n,ε : R3→ R by:

v̂n,ε(
#»x ) := ṽn,ε (λε x) , and v̂±n (

#»x ) := v±n (λε
#»x ).

First, by rescaling we have ‖v̂n,ε‖2
L 2(R3)

= M, and so v̂n,ε ∈H M for all n,ε . Next, we observe that, since the
supports F±n of the components of v0

n are smooth, for |λε −1| sufficiently small, we may estimate

‖v̂0
n− v0

n‖L 1(R3) ≤ c|λ
1
3

ε −1|
∫
R3
‖∇v0

n‖.

Hence, we have convergence in the L 1 norm,

0≤ ‖v̂n,ε − v0
n‖L 1(R3) ≤ ‖v̂n,ε − v̂0

n‖L 1(R3)+‖v̂
0
n− v0

n‖L 1(R3)

≤ λ
−1
ε ‖ṽn,ε − v0

n‖L 1(R3)+ c|λ
1
3

ε −1|
∫
R3
‖∇v0

n‖ −−−→
ε→0+

0.

As each of |v̂n,ε | ≤ 1 pointwise almost everywhere in R3, and for fixed n each is of uniformly bounded support,
the convergence extends to any L r(R3), r ≥ 1. Moreover,

∫
R3

[
ε

2
‖∇v̂±n,ε‖2 +

1
2ε

W (v̂±n,ε)
]

d #»x

=

[
λ
− 1

3
ε

∫
R3

ε

2
‖∇ṽ±n,ε‖2d #»x +λ

−1
ε

∫
R3

1
2ε

W (ṽ±n,ε)d
#»x
]
−−−→
ε→0+

1
8

∫
R3
‖∇v0

n‖,

1We note that the potential in [52] has two wells at u = ±1, whereas our transitions connect v = 0 to v = ±1, and so our ṽ±n,ε =
1
2 (ρε +1) for ρε as constructed in [52].
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which holds for each n ∈ N. As in [52], by a diagonal argument, there exists ε0 = ε0(v0)> 0 so that for any
sequence εk −−−→

k→∞
0+ with εk < ε0, we obtain a sequence {vεk}k∈N with

‖vεk − v0‖L r(R3) −−−→k→∞
0,r ≥ 1, and

∫
R3

[
εk

2
‖∇vεk‖

2 +
1

2εk
W (vεk)

]
d #»x −−−→

k→∞

1
8

∫
R3
‖∇v0

±‖.

The local potential terms also converge by Proposition 6. Furthermore, by the Hardy-Littlewood-Sobolev
inequality [34, Theorem 4.3] (with p = 6/5 = r),

0≤
∣∣D(|vεk |

2, |vεk |
2)−D(|v0|2, |v0|2)

∣∣
=
∣∣D(|vεk |

2−|v0|2, |vεk |
2 + |v0|2)

∣∣
≤
∥∥|vεk |

2−|v0|2
∥∥

L
6
5 (R3)

∥∥|vεk |
2 + |v0|2

∥∥
L

6
5 (R3)

−−−→
k→∞

0.

This completes the proof of Lemma 14.

Proof of (ii) of Theorem 7. If {ui}∞
i=0 is a finite collection with N nontrivial components, this follows easily

from Lemma 14. Indeed, for any sequence εk −−−→
k→∞

0+ with

0 < εk < min
i=0,...,N

{ε0(ui)}i=0,...,N ,

we apply the lemma to find ui
ε−−−→

ε→0+
ui, i = 0, . . . ,N, and form the disjoint sum,

uεk(
#»x ) = u0

εk
( #»x )+

N

∑
i=1

ui
εk
( #»x − #»x i

k),

by choosing translations { #»x i
k}k∈N which tend to infinity and far from each other quickly enough in k.

If {ui}∞
i=0 has an infinite number of nontrivial elements, we must be more careful. In particular, as we go

down the list of the {ui}∞
i=0, the characteristic length scale of each ui gets smaller, and for any particular ε > 0

there can only be a finite number of i with 0 < ε < ε0(ui), for which the trial functions ui
ε can be constructed

via Lemma 14. Take any decreasing sequence εk −−−→
k→∞

0+. By Lemma 14 and part (i) of Theorem 7, for

each i = 0,1,2, . . . there exist ε i = ε0(ui)> 0 and a sequence {ui
εk
}k∈N, for which

∣∣E V
εk
(u0

εk
)−E V

0 (u0)
∣∣< E V

0 (u0)

10k
and ‖u0

εk
−u0‖2

L 2(R3) <
m0

10k
, 0 < εk < ε

0,∣∣E 0
εk
(ui

εk
)−E 0

0 (u
i)
∣∣< E 0

0 (u
i)

10k
, and ‖ui

εk
−ui‖2

L 2(R3) <
mi

10k
, 0 < εk < ε

i, i = 1,2,3, . . .

 (4.28)

By taking ε i smaller if necessary we may assume 0 < ε i < ε i−1. We now construct Uεk as follows: for each
k ∈ N, choose the largest integer nk ∈ N∪{0} such that 0 < εk < ε i for all i≤ nk. Note that nk −−−→

k→∞
∞. As

the ui
εk

are all compactly supported, say supp ui
εk
⊂ BRi

εk
(

#»
0 ), we may choose vectors #»x i

k ∈ R3, i = 1, . . . ,nk,
so that

‖ #»x i
k− #»x j

k‖> 2i+ j+k+2(Ri
εk
+R j

εk +1)−−−→
k→∞

∞.
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In particular, this implies that the functions ui
εk
( #»x − #»x i

k) are disjointly supported.
Then, we set

Uεk(
#»x ) := u0

εk
( #»x )+

nk

∑
i=1

ui
εk
( #»x − #»x i

k).

Note that by the choice of the #»x i
k and V ≥ 0, we have

E V
εk
(Uεk)≤E V

εk
(u0

εk
)+

nk

∑
i=1

E 0
εk
(ui

εk
)+

nk

∑
i, j=1

D(|ui
εk
(·− #»x i

εk
)|2, |u j

εk(·−
#»x j

εk)|
2).

Further, since supp ui
εk
(·− #»x i

εk
)⊂ BRi

εk
( #»x i

εk
) and

∣∣∣∣ 1
‖ψ1−ψ2‖

− 1
‖ #»x − #»y ‖

∣∣∣∣≤ 4ρ

‖ψ1−ψ2‖2 ≤
1

‖ψ1−ψ2‖

for #»x ∈ Bρ(ψ
1), #»x ∈ Bρ(ψ

2),ρ < 1
4‖ψ

1−ψ2‖, we estimate

D(|ui
εk
(·− #»x i

εk
)|2, |u j

εk(·−
#»x j

εk)|
2) =

∫
BRi

εk
( #»x i

εk
)

∫
B

R j
εk
( #»x j

εk
)

|ui
εk
( #»x − #»x i

εk
)|2|u j

εk(y−
#»x i

εk
)|2

‖ #»x − #»y ‖
d #»x dy

≤
2‖ui

εk
‖2

L 2(R3)
‖u j

εk‖
2
L 2(R3)

‖ #»x i
k−

#»x j
k‖

≤ 2
M2

‖ #»x i
k−

#»x j
k‖

= o(1) as k→ ∞.

As a result,

E V
εk
(Uεk)≤ E V

εk
(u0

εk
)+

nk

∑
i=1

E 0
εk
(ui

εk
)+o(1) as k→ ∞. (4.29)

On the other hand, the mass ‖Uεk‖2
L 2(R3)

= ∑
nk
i=0 mi = : M(k) −−−→

k→∞
M− as more components are added to the

sum.
We next show that limsupk→∞E V

εk
(Uεk)≤FV

0 ({ui}∞
i=0). If FV

0 ({ui}∞
i=0) = ∞, then there is nothing to

prove. Otherwise, let δ > 0 be given, and choose a number N ∈ N for which

∞

∑
i=N+1

E 0
0 (u

i)<
δ

5
. (4.30)

From Lemma 14, there exists K ∈ N such that for all k ≥ K,

∣∣E V
εk
(u0

εk
)−E V

0 (u0)
∣∣+ N

∑
i=1

∣∣E 0
εk
(ui

εk
)−E 0

0 (u
i)
∣∣< δ

5
. (4.31)

Then, for all k ≥ K, using (4.29), (4.31), (4.28), and (4.30), we estimate

E V
εk
(Uεk)−FV

0 ({ui}∞
i=0)≤E V

εk
(Uεk)−E V

0 (u0)−
N

∑
i=0

E 0
0 (u

i)
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≤ E V
εk
(u0

εk
)−E V

0 (u0)+
N

∑
i=1

[E 0
εk
(ui

εk
)−E 0

0 (u
i)]+

nk

∑
i=N+1

E 0
εk
(ui

εk
)+o(1)

<
δ

5
+

11
10

nk

∑
i=N+1

E 0
0 (u

i)<
δ

2
.

Then,
limsup

k→∞

E V
εk
(Uεk)≤FV

0 ({ui}∞
i=0).

Now we prove that ∣∣∣∣∣
∣∣∣∣∣Uεk −

(
u0 +

∞

∑
i=0

ui( #»x − #»x i
k)

)∣∣∣∣∣
∣∣∣∣∣
L 2(R3)

−−−→
k→∞

0.

Let δ > 0 be given, and choose a number N ∈ N for which

∞

∑
i=N+1

mi <
δ

5
(4.32)

From Lemma 14, there exists K ∈ N such that for all k ≥ K,

N

∑
i=0
‖ui

εk
−ui‖2

L 2(R3) <
δ

5
. (4.33)

Then, for all k ≥ K, using (4.33), (4.28), and (4.32), we estimate∥∥∥∥∥Uεk −

(
u0 +

∞

∑
i=0

ui( #»x − #»x i
k)

)∥∥∥∥∥
L 2(R3)

≤
N

∑
i=0
‖ui

εk
−ui‖L 2(R3)+

nk

∑
i=N+1

‖ui
εk
−ui‖L 2(R3)+

∞

∑
i=nk+1

‖ui‖L 2(R3)

≤ δ

5
+

nk

∑
i=N+1

mi

10
+

δ

5
< δ ,

Then, ∣∣∣∣∣
∣∣∣∣∣Uεk −

(
u0 +

∞

∑
i=0

ui( #»x − #»x i
k)

)∣∣∣∣∣
∣∣∣∣∣
L 2(R3)

−−−→
k→∞

0.

It remains to correct the mass of Uεk , so that each ‖Uεk‖2
L 2(R3)

=M. This is done as in Lemma 14, dilating
each component ui

εk
by the scaling factor

λk =

(
M(k)

M

) 1
3

−−−→
k→∞

1,

that is, by setting

uεk(
#»x ) := u0

εk
(λk

#»x )+
nk

∑
i=1

ui
εk
(λk(

#»x − xk)).
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Then

‖uεk‖
2
L 2(R3) = M,k ∈ N, ‖uεk −Uεk‖L 2(R3) −−−→k→∞

0, and |E V
εk
(uεk)−E V

εk
(Uεk)| −−−→k→∞

0,

since λk−−−→
k→∞

1. This concludes the proof of Theorem 7.
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Chapter 5

Minimizers of the Liquid Drop and
TFDW functionals

In this chapter we examine the connection between minimizers of the liquid drop and TDFW functionals.
More precisely, we prove Theorems 8 and 9, and Corollary 1. Throughout this chapter, we assume V satisfies
(1.17).

Recall E Z
ε , E Z

0 are the energies (1.15) and (1.16), respectively, with the atomic choice V =VZ = Z/‖ #»x ‖,
and

eZ
ε (M): = inf

{
E Z

ε (u) : u ∈H M
+

}
, eZ

0 (M): = inf
{
E0(u) : u ∈X M

+

}
.

The compactness of minimizing sequences being a delicate issue which is shared by the two models. First,
whether the minimum in eV

ε (M) is attained or not, the infimum values converge as ε → 0+:

Lemma 15. Assume V satisfies (1.17). Then, for all M > 0,

eV
ε (M)−−−→

ε→0+
eV

0 (M).

Proof. The proof is standard. First, for each ε > 0, there is a function uε ∈H M with ‖uε‖2
L 2(R3)

= M and

E V
ε (uε)≤ eV

ε (M)+ ε.

It suffices to prove that for any sequence εn −−−→
n→∞

0+, the is a (not relabeled) subsequence for which

eV
εn(M)−−−→

n→∞
eV

0 (M). By Theorem 7 (i), there exists a sequence {ui}∞
i=0 ∈H M

0 and a subsequence εn −−−→
n→∞

0+

with
eV

0 (M)≤FV
0 ({ui}∞

i=0)≤ liminf
n→∞

E V
εn (uεn) = liminf

n→∞
eV

εn(M).
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For the complementary inequality, for any δ > 0, there exists a sequence {vi}∞
i=0 ∈H M

0 with

FV
0 ({vi}∞

i=0)< eV
0 (M)+δ .

Then, by (ii) in Theorem 7, for any ε > 0, ∃vε ∈H M with

eV
0 (M)+δ > FV

0 ({vi}∞
i=0)≥ limsup

ε→0+
E V

ε (vε)≥ limsup
ε→0+

eV
ε (M).

Putting the above inequalities together, and letting δ → 0+, we obtain the desired conclusion.

Proof of Corollary 1. In [3, Theorems 1 and 2] it is proved that for V satisfying (1.7), the minimum for both
E V

0 and E V
ε are attained , correspondingly. Indeed, the proof of these results in [3] actually yields the stronger

conclusion that all minimizing sequences for either the TDFW or liquid drop functionals are convergent.
Thus, for all ε > 0, there exists a function uε ∈H M which attains the minimum, eV

ε (M) = E V
ε (uε). By

Lemma 15, E V
ε (uε)−−−→

ε→0+
eV

0 (M), so for any sequence εn −−−→
n→∞

0+, by Theorem 7 (i), there exists a sequence

of functions {ui}∞
i=0 ∈H M

0 with

FV
0 ({ui}∞

i=0)≤ liminf
n→∞

E V
εn (uεn) = eV

0 (M).

Defining mi := ‖ui‖2
L 2(R3)

, we have

eV
0 (M) = eV

0 (m
0)+

∞

∑
i=1

e0
0(m

i), (5.1)

We then obtain a contradiction by using Step 6 in the proof of Theorem 1 of [3]. Indeed, by choosing
compactly supported v0,v1 ∈H M whose energies are close to the infima eV

0 (m
0),e0

0(m
1) as in Step 6, we

obtain the strict subadditivity condition,

eV
0 (M)< eV

0 (m
0)+ e0

0(m
1)+ e0

0(M−m0−m1)≤ eV
0 (m

0)+
∞

∑
i=1

e0
0(m

i),

and the desired contradiction to (5.1).

Analyzing the possible loss of compactness in minimizing sequences for eZ
ε (M), ε ≥ 0 and Z ≥ 0, requires

the use of concentration-compactness methods [36]. The following are standard results for problems where
loss of compactness entails splitting of mass to infinity:

Lemma 16. Assume V satisfies (1.17). Then, for any ε ≥ 0 and M > 0,

(i) If ∀m0 ∈ (0,M),

eV
ε (M)< eV

ε (m
0)+ e0

ε(M−m0), (5.2)

then all minimizing sequences for eV
ε (M) are precompact.
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(ii) If there exist non-precompact minimizing sequences for eV
ε (M), then ∃m0 ∈ (0,M) such that eV

ε (m
0)

attains a minimizer and

eV
ε (M) = eV

ε (m
0)+ e0

ε(M−m0).

Statement (ii) is a useful precision of the contrapositive of (i). The proof for the TFDW functional was
done in [37], and for Liquid Drop Models it may be derived from the more detailed concentration lemma in
[2]; although it is stated there for V of a special form, in fact it is true for a much larger class including those
satisfying (1.17).

Next, we specialize to the atomic case,

V ( #»x ) =
Z
‖ #»x ‖

,

and present the following refinement of the existence result of [40] for the Liquid Drop Model with atomic
potential:

Proposition 20. There exists a constant µ0 > 0 such that for all Z ≥ 0 and for all M ∈ (0,Z +µ0):

(i) All minimizing sequences for eZ
0 (M) are precompact.

(ii) The unique minimizer (up to translations if Z = 0) of eZ
0 (M) is the ball BM(

#»
0 ) of radius

rM =

(
3M
4π

)1/3

.

Proof. Statement (ii) is proved in Theorem 2 of [40], using Theorem 2.1 in [27]. The case Z = 0 was proved
in [28].

We sketch the proof of (i), since we need certain definitions and estimates for (ii). As in Julin [27], we
define an asymmetry function corresponding to a fixed set Ω of finite perimeter,

γ(Ω) := min
y∈R3

∫
R3

1B(
#»x )−1Ω(

#»x + #»y )
‖ #»x ‖

d #»x ,

where B = BM(
#»
0 ) is the ball of mass M centered at the origin. The quantitative isoperimetric inequality (see

(2.3) of [27] or [24]) then asserts the existence of a universal constant µ0 > 0, such that∫
R3
‖∇1Ω‖−

∫
R3
‖∇1B‖ ≥ µ0γ(Ω),

with equality if and only if Ω is a translate of B. Then, as in the proof of Theorem 1.1 of [27] in the three-
dimensional case, we may estimate the difference in the nonlocal terms by the asymmetry,

D(1B,1B)−D(1Ω,1Ω)≤ |B|γ(Ω).
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The optimality of the ball B = BM follows easily from this: assume Ω is of finite perimeter, with |Ω| = M.
Then, provided Ω is not a translate of the ball B = BM ,

E Z
0 (1Ω)−E Z

0 (1B)> (µ0−M)γ(Ω)+Z
(∫

R3

1B(
#»x )−1Ω(

#»x )
‖ #»x ‖

d #»x
)
≥ (Z +µ0−M)γ(Ω)> 0, (5.3)

for all M < Z +µ0.
To obtain (i), the precompactness of all minimizing sequences, we use the above to establish strict subad-

ditivity of eZ
0 (M), as in Lions [36]. Let M = m0 +m1 with m0,m1 > 0; we show that (5.2) holds, and then by

Lemma 16 all minimizing sequences for eZ
0 (M) are precompact.

Since 0 < m0 < M < Z + µ0, both eZ
0 (M), eZ

0 (m
0) are attained by balls B = BM(

#»
0 ), B0 = Brm0 (

#»
0 ). For

any δ > 0 (to be chosen later ), we may choose a bounded open set ω with
#»
0 ∈ ω , |ω|= m1, and

E0(1ω)< e0
0(m

1)+δ .

Note that if m0 ≥ Z, then 0 < m1 < µ0 and we may choose the set ω = B1 = Brm1 which attains e0
0(m

1).
Define

ω #»

ξ
: = ω +

#»

ξ , and Ω = Ω #»

ξ
= B0∪ω #»

ξ
,

with ‖
#»

ξ ‖ sufficiently large that the union is disjoint. We first claim that ∃R > 1 such that γ(Ω #»

ξ
)≥C > 0 is

bounded away from zero for all
#»

ξ with ‖
#»

ξ ‖> R, with constant C =C(m0,m1). Indeed, for #»y ∈ R3 define

v = v0 + v1, v0( #»y ) =
∫

B0

d #»x
‖ #»x − #»y ‖

, v1( #»y ) =
∫

ω #»

ξ

d #»x
‖ #»x − #»y ‖

,

so that
γ(Ω #»

ξ
) =

∫
B

d #»x
‖ #»x ‖

−max
y∈R3

v( #»y ).

Hence, to bound γ(Ω #»

ξ
) from below we must bound v( #»y ) uniformly from above. As −∆v = 4π(1B0( #»y )+

1ω #»

ξ
( #»y )) in R3, it attains its maximum at y ∈ Ω #»

ξ
= B0 ∪ω #»

ξ
. Thus, there are two possibilities: if the

maximum occurs at y ∈ B0, then v( #»y ) = v0( #»y )+O(‖
#»

ξ ‖−1). Since v0 is maximized at y = 0, there exists
C0 =C0(M,m0) and R > 1 with

γ(Ω #»

ξ
)≥

∫
B\B0

d #»x
‖ #»x ‖

−O(‖
#»

ξ ‖−1)≥C0 > 0,

for all ‖
#»

ξ ‖> R.
In case the maximum of v occurs at y ∈ ω #»

ξ
, then v( #»y ) = v1( #»y )+O(‖

#»

ξ ‖−1). For any domain D with
|D|= m1 we have ∫

D

d #»x
‖ #»x ‖

≤
∫

B1

d #»x
‖ #»x ‖

,

where B1 = Brm1 (
#»
0 ) is the ball with mass m1. It follows that

v1( #»y ) =
∫

ω #»

ξ

d #»x
‖ #»x − #»y ‖

≤
∫

B1

d #»x
‖ #»x ‖

.
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Therefore, as in the previous case, there exist C1 = C1(M,m1) and R > 1 with γ(Ω #»

ξ
) ≥ C1 > 0, for all

‖
#»

ξ ‖> R, and the claim is established, with C = min{C0,C1}.
To conclude, we choose a constant

0 < δ <
1
2
(Z +µ0−M)C ≤ 1

2
(Z +µ0−M)γ(Ω #»

ξ
),

for any ‖
#»

ξ ‖> R, and using (5.3),

eZ
0 (M) = E Z

0 (1B)< E Z
0 (1Ω #»

ξ
)− (Z +µ0−M)γ(Ω #»

ξ
)

≤ E Z
0 (1B0)+E Z

0 (1ω #»

ξ
)− (Z +µ0−M)γ(Ω #»

ξ
)+2

∫
B0

∫
ω #»

ξ

d #»x d #»y
‖ #»x − #»y ‖

≤ E Z
0 (1B0)+E 0

0 (1ω)− (Z +µ0−M)γ(Ω #»

ξ
)+O(‖

#»

ξ ‖−1)

≤ eZ
0 (m

0)+ e0
0(m

1)+δ − (Z +µ0−M)γ(Ω #»

ξ
)+O(‖

#»

ξ ‖−1).

Taking ‖
#»

ξ ‖ sufficiently large, (5.2) holds for all M ∈ (0,Z +µ0).

Remark 10. Thanks to Proposition 20, we may conclude that for the Liquid Drop Model with

V ( #»x ) =
Z
‖ #»x ‖

with 0<M < Z+µ0, the unique generalized minimizer (see Definition 1) is the singleton {u0 =1BM}. Indeed,

this is true for any functional which satisfies the strict subadditivity condition (5.2).

Next, we prove Theorem 8. In fact, we prove the following slightly more general version, which is also a
step towards the proof of Theorem 9.

Lemma 17. Let M > 0 and δn,εn −−−→
n→∞

0+. Assume un ∈H M for which

E V
εn (un)≤ eV

εn(M)+δn, n ∈ N.

Then, there exists a subsequence and a generalized minimizer {u0, . . . ,uN} of E V
0 for which (1.19) and (1.20)

hold for i = 0, . . . ,N, and

FV
0 ({ui}N

i=0) = eV
0 (M) = lim

n→∞
eV

εn(M).

Proof. By (i) of Theorem 7, there exists a subsequence along which un decomposes as in (1.19), with
{ui}∞

i=0 ∈H M
0 satisfying (1.21). By (ii) of Theorem 7 we have

FV
0 ({ui}∞

i=0) = lim
n→∞

E V
εn (un) = lim

n→∞
eV

εn(M) = eV
0 (M).

Let mi = ‖ui‖2
L 2(R3)

. It suffices to show that u0 minimizes eV
0 (m

0) and ui minimizes e0
0(m

i), for each i≥ 1,
and that all but a finite number of the ui ≡ 0. First, by (1.18) we have

eV
0 (m

0)+
∞

∑
i=1

e0
0(m

i)≤ E V
0 (u0)+

∞

∑
i=1

E 0
0 (u

i) = FV
0 ({ui}∞

i=0) = eV
0 (M)≤ eV

0 (m
0)+

∞

∑
i=1

e0
0(m

i),
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the last step by the Binding Inequality (subadditivity) of e0 see e.g. [2].) As each term is non-negative,
equality holds in each relation. Furthermore, as eV

0 (m
0) ≤ E V

0 (u0) and each e0
0(m

i) ≤ E 0
0 (u

i), we must have
equality in these as well. This proves that each ui, i≥ 0, is minimizing.

Finally, suppose infinitely many ui 6≡ 0. Then, by the convergence of the series, 0 < mi < µ0 for all
but finitely many i; assume 0 < m j,m j+1 < µ0. Then by the strict subadditivity, proved in the proof of
Proposition 20,

e0
0(m

j)+ e0
0(m

j+1)> e0
0(m

j +m j+1).

But then,

eV
0 (M) = eV

0 (m
0)+

∞

∑
i=1

e0
0(m

i)> eV
0 (m

0)+ ∑
i6= j, j+1

e0
0(m

i)+ e0
0(m

j +m j+1)≥ eV
0 (M),

a contradiction.

We finish with the proof of Theorem 9.

Proof. Recall that we assume V ( #»x ) = Z/‖ #»x ‖, Z > 0. For (a), 0 < M ≤ Z, the (relative) compactness
of all minimizing sequences for eZ

ε (M) was proved by Lions [37, Corollary II.2.]. Let uε ∈ H M with
E Z

ε (uε) = eZ
ε (M). By Lemma 17, there exists a generalized minimizer of eZ

0 (M), {ui}N
i=0, such that (1.19) and

(1.20) hold for i = 0, . . . ,N, and

F Z
0 ({ui}N

i=0) = eZ
0 (M) = lim

n→∞
eZ

εn(M).

By Remark 10, N = 0 and uε −−−→
ε→0+

u0 in L 2(R3), which attains the minimum in eZ
0 (M).

For (b), first note that if there is a sequence εn−−−→
n→∞

0+ for which eZ
εn(M) attains its minimum at un ∈H M ,

then by the same argument as for (a) we obtain the conclusion of the Theorem with Mεn = M. It therefore
suffices to consider sequences εn −−−→

n→∞
0+ for which the minimum in eZ

εn(M) is not attained. By part (ii) of

Lemma 16, for each n there exist s m0
n ∈ (0,M) such that

eZ
εn(M) = eZ

εn(m
0
n)+ e0

εn(M−m0
n),

and there exists un ∈H 1(R3) with ‖un‖2
L 2(R3)

= m0
n and E Z

εn(un) = eZ
εn(m

0
n). For each n, we may choose

functions vn ∈H 1(R3) with compact support and ‖vn‖2
L 2(R3)

= M−m0
n and for which

E 0
εn(vn)< e0

εn(M−m0
n)+ εn.

Next, choose radii ρn in the smooth cut-off ωρn defined in (4.3), such that ũn = unωρn satisfies both

‖ũn−un‖2
L 2(R3) −−−→n→∞

0 and|E Z
εn(ũn)−E Z

εn(un)| −−−→
n→∞

0.

We also choose vectors
#»

ξ n ∈ R3 such that ũn and vn(·+
#»

ξ n) have disjoint supports for each n, and
|

#»

ξ n| −−−→
n→∞

∞. Set
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Un(
#»x ) := ũn(

#»x )+ vn(·+
#»

ξ n),

so that

‖Un‖2
L 2(R3) = ‖ũn‖2

L 2(R3)+‖vn‖2
L 2(R3) −−−→n→∞

M, and |E Z
εn(Un)− eZ

εn(M)| −−−→
n→∞

0.

By Lemma 15, E Z
εn(Un) −−−→

n→∞
eZ

0 (M), so applying (i) of Theorem 7 there exists {ui}∞
i=0 ∈H M

0 for which
(1.19) and (1.20) hold, and

F Z
0 ({ui}∞

i=0) = eZ
0 (M).

By Remark 10, ui ≡ 0 for all i≥ 1 and u0 = 1BM minimizes eV
0 (M). From (1.19) we conclude that

Un = ũn + vn(·+
#»

ξ n)−−−→
n→∞

u0 in L 2(R3).

Since for every fixed compact set K ⊂ R3 we have Un = un pointwise almost everywhere in K and for
all sufficiently large n, it follows that un −−−→

n→∞
u0 in L 2

loc(R3) and pointwise almost everywhere up to a

subsequence. Consequently, we have vn −−−→
n→∞

0 and un −−−→
n→∞

u0 globally in L 2(R3). In conclusion, taking

Mεn := m0
n,

eZ
εn(Mεn = m0

n) is attained at uεn = un, Mεn −−−→n→∞
M, and un −−−→

n→∞
u0 = 1BM in L 2(R3).
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Weizsäcker model with background potential.” Journal of Mathematical Physics 61, 021502 (2020).

[2] S. Alama, L. Bronsard, R. Choksi, and I. Topaloglu, “Droplet breakup in the Liquid Drop Model with
background potential,” Commun. Contemp. Math. August 1850022 (2018).

[3] S. Alama, L. Bronsard, R. Choksi and I. Topaloglu. “Ground-states for the liquid drop and TFDW
models with long-range attraction,” J. Math. Phys. 58, 103503 (2017).

[4] S. Alama, L. Bronsard, X. Lu, and C. Wang, “Periodic Minimizers of a Ternary Non-Local Isoperimet-
ric Problem.” arXiv preprint at arXiv:1912.08971. To appear in Indiana U. Math. Jour.

[5] L. Ambrosio, N. Fusco, and D. Pallara, Functions of Bounded Variation and Free Discontinuity Prob-
lems, Oxford Mathematical Monographs, Oxford University Press, New York (2000).

[6] V. Bach, “Error bound for the Hartree-Fock energy of atoms and molecules,” Commun. Math. Phys.
147, 527-548 (1992).

[7] P. Belov, I. Iorsh, Y. Kivshar, and A. Poddubny, “Hyperbolic metamaterials,” Nature Photonics 7, 948-
957 (2013).
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