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Abstract  

As awareness intensifies regarding the presence of microplastics (MPs) throughout the 

environment, there is a growing concern that MPs in drinking water may contribute to a toxic 

response in consumers. With the increasingly large volumes (> 100L) being sampled to improve 

accuracy, yielding potentially hundreds of MPs that must be counted, coupled with the large 

amount of time it requires to process MP samples, there is a need to know the minimum 

subsample required to accurately represent the actual MP population. In order to develop a 

statistically justified framework for sampling, drinking water was filtered via “in-lab” and “in-

line” methods. Fifteen 10 μm filters 47 mm in diameter were examined with 70 0.7 mm² grid 

cells, where each cell’s total MPs were counted using an optical microscope. Suspected MPs 

were examined in areas ranging within zero to 100% of the filter using three strategies: i) random 

discontiguous, ii) one random contiguous area, and iii) two random contiguous areas equidistant 

from the centre. Significant clustering was observed in all but two of the fifteen filters. 

Subsample estimates of total suspected MPs were compared with the actual MP population via 

consistency values. A minimum suitable sampling area was determined to exist when a specified 

subsample area and every sampling interval above it had a 95% confidence interval of each 

filter’s upper and lower confidence intervals of consistency that fell within a suitable percentage 

from the true value.  Results of this study suggest that out of all the sampling methods tested, 

discontiguous sampling is optimal. Randomly sampling one quarter of the filter results in an 

accuracy within ± 15%, nineteen times out of twenty. Overall, it is recommended that this 

method be employed for future research in order to statistically justify the sampling area required 

for MPs in drinking water.  
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Introduction  

Presence of Microplastics  

Microplastics (MPs) have been detected in freshwater and saltwater ecosystems (Auta, Emenike 

and Fauziah, 2017; Li, Liu and Paul Chen, 2018), the atmosphere (Chen, Feng and Wang, 2020), 

and terrestrial environments around the world (Qi et al., 2020). The California State Water 

Resources Control Board has recently defined MPs as manmade solid polymeric particles with 

dimensions between 1 nm and 5 mm in size (Adoption of Definition of Microplastics in Drinking 

Water), which accurately describes the definition agreed upon within the literature (Koelmans et 

al., 2019; Novotna et al., 2019). As MPs are considered an emerging contaminant and potential 

human health hazard, concern has grown regarding the presence of MPs in drinking water (WHO, 

2019). MPs have been quantified throughout the drinking water treatment process including 

untreated, raw water and treated tap water (Novotna et al., 2019). While there is currently no 

legislation limiting the concentration MPs within treated water, it is likely that existing technology 

within drinking water treatment plants is capable of removing at least >70 % of MPs present in 

source waters (Pivokonsky et al., 2018a; Wang, Lin and Chen, 2020a). 

It is currently estimated that drinking water contributes to approximately 1% of all the MPs that 

are consumed by humans (Van Cauwenberghe and Janssen, 2014; Cox et al., 2019). Although MPs 

have been consistently observed in raw and treated water, their concentration ranges widely 

between studies, from <1 MP/L to >1000 of MPs/L (Mintenig et al., 2019; Wang, Lin and Chen, 

2020; Pivokonsky et al., 2018; Novotna et al., 2019). While much of this difference is related to 

source water concentrations, differing sampling and counting methods, sample contamination as 

well as inconsistent quality assurance (QA) and quality control controls (QC) make it challenging 

to compare reported MPs among studies (Koelmans et al., 2019).  Improving the comparability of 
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studies by improving sampling procedures may serve as a major next step in conducting MP risk 

assessment. 

Health Concerns 

While consistent evidence exists for MP toxicity in aquatic organisms, the evidence for human 

toxicity has not yet well been elucidated (WHO, 2019). MPs may contribute to potential human 

health issues as a function of: i) particle physical toxicity, ii) chemical toxicity and, iii) as biofilm 

hosts (WHO, 2019). Deng et al. (2017) reported that MP ingestion resulted in physical toxicity in 

mice after 4 weeks of  exposure to 0.1 mg MPs/day MPs. The mice were reported to experience 

significant decreases in ATP levels and relative liver weight. Key neurotransmitter precursors also 

decreased, an indication of potential MP derived neurotoxicity. Lu et al. (2018) observed gut 

microbiome disruptions when exposed to 1.456 × 1010 particles/L 0.5 μm in size as well as 

1.456 × 104 particles/L 50 μm in size for five weeks. In human cells, MP exposure of 1000 μg/L 

has resulted in responses that induce inflammation (Hwang et al., 2020). These results imply that 

consumption of MPs by humans may physically incur a toxic response and reinforces the need to 

accurately evaluate the quantity and type of MPs in treated drinking water. 

While the main components of MPs are chemically inert polymers, up to 4% of MPs may include 

potentially harmful residual agents, including plasticizers such as phthalates and flame retardants 

such as polybrominated diphenyl ethers (WHO, 2019). These agents sometimes remain following 

chemical processing and induce chemical toxicity  (Rist et al., 2018). Bisphenol A, an endocrine 

disruptor, is a widely known example of these chemicals, however many thousands more exist 

(Rist et al., 2018). Further adding to potential toxicity pathways, sorbed hydrophobic chemicals 

can bind to MPs and cause harm (Rist et al., 2018; Hartmann et al., 2017).  For example, Avio et 

al. (2015) found that after six days of treatment of  ≥0.5 μg/L pyrene, polyethylene and polystyrene 
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MPs absorbed 145 ± 35 ng/g and 126 ± 35 ng/g of pyrene, respectively. Pittura et al. (2018) 

likewise reported benzo(a)pyrene, a polyaromatic hydrocarbon, sorbed to MPs. Upon ingestion by 

mussels, there was an induced cellular toxicity after four weeks of exposure to 10 mg/L of 

benzo(a)pyrene-contaminated MPs which presented evidence for the possible transfer of 

benzo(a)pyrene from MPs to the organism. In surface water environments, MPs have also been 

identified as vectors for human bacterial pathogens, especially Vibrio species (Bowley et al., 

2020).  

Unfortunately, studies regarding the impact of MPs on human health studies are absent; laboratory 

trials to-date provide insufficient evidence to make definitive conclusions on MP human health 

concerns (WHO, 2019). Human health hazards may be defined as a product of both toxicity and 

exposure (WHO, 2019). As toxicity research is ongoing, research on exposure (e.g., concentration 

and composition) through drinking water is an essential part of assessing overall MP risk. 

Microplastic Sample Analysis and Characterization 

To better understand MPs in drinking water systems, water samples have been collected from 

water treatment facilities (Johnson et al., 2020), wells which serve as sources to drinking water 

systems (Panno et al., 2019), and from consumer taps (Shruti, Pérez-Guevara and Kutralam-

Muniasamy, 2020). The literature varies with respect to the need of replicates with studies ranging 

from individual samples to 3-10 replicates (Table 1; Pivokonsky et al., 2018; Wang, Lin and Chen, 

2020). Samples may be subsequently stained, centrifuged or mixed with a surfactant to enhance 

MP detection and quantification (Elkhatib and Oyanedel-Craver, 2020; Cherniak et al., 2020). 

Separation of suspected MPs from water is typically accomplished using either a stack of sieves 

of varying mesh sizes or membrane filters ranging from 5 to 5000 μm (Elkhatib and Oyanedel-

Craver, 2020; Johnson et al., 2020). Due to low concentrations commonly observed in many 
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treated drinking waters, high-throughput in-line filtration consisting of cartridge filters within a 

filter housing may be employed such that larger volumes of water (>100L) may be evaluated 

without the need to transport exceedingly large volumes of water to an analytical laboratory 

(Mintenig et al., 2019). Larger volumes are expected to both provide more representative results 

and ensure that a sufficient number of MPs are evaluated. 

Following filtration, the filter is typically scanned visually for suspected MPs using microscopy 

such that they may be classified according to physical characteristics, including size, shape (e.g. 

fibers, films, fragments) and colour (Shruti, Pérez-Guevara and Kutralam-Muniasamy, 2020). This 

process can be accomplished manually or through the use of visual analysis software such as 

ImageJ  (Rivers, Gwinnett and Woodall, 2019). Suspected MPs must then be characterized as to 

their chemical composition using Fourier transform infrared (FTIR) or Raman Spectroscopy (Silva 

et al., 2018). Some studies have combined physical and chemical quantification via FTIR micro 

spectroscopy using complementary software (Mintenig et al., 2019; Johnson et al., 2020). 

In decreasing order, the five most common shapes represented in the literature are fragment, fibres, 

films, foams and pellets (Koelmans et al., 2019).  In general, MPs of smaller sizes appear far more 

abundantly. According to Pivokonsky et al. (2018), 95% of particles in raw and treated drinking 

water have been reported with a size <10 μm. Reflecting trends in global plastic production, the 

three most common plastic types, from highest to lowest presence, are polyethylene, 

polypropylene, and polystyrene (Elkhatib and Oyanedel-Craver, 2020). Plastics with densities 

greater than water (>1 g/ml) tend to settle out of aquatic environments and are not observed in as 

high proportions relative to their abundance in global production (Koelmans et al., 2019).  
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Current Drinking Water Microplastic Methodology Recommendations  

Koelmans et al. (2019) presented a systematic review of sampling procedures which highlighted 

key issues regarding methodology for the determination of MP concentration. They suggested a 

number of criteria for improving MP sampling strategies including the use of a minimum sample 

volume of 500 L and 1000 L for surface and treated water, respectively. These volumes were 

suggested to provide a representative sample, defined as the analysis of 5 to 500 MPs. The same 

authors suggest using FTIR or Raman spectroscopy on a minimum of 50 particles per sample or 

50% of the total particle number. Furthermore, they suggest at least 25% of the filter should be 

observed (Koelmans et al., 2019). While Koelman’s et al. (2019) suggests these methodologies to 

improve accuracy, sampling procedures reported in the literature vary widely and are rarely as 

rigorous. As well, it should be noted that differences in source water, seasonality, and applied 

treatment technologies may limit the transferability of the predetermined sample sizes to new 

situations, often requiring  pre-sampling to ensure that appropriate volumes are collected based on 

the MP concentration (Wang et al., 2021; Johnson et al., 2020). Many authors highlight the concern 

of the time intensive nature of MP chemical verification via Raman spectroscopy, showing that 

well thought-out, timely subsampling for qualitative analysis is needed (Pivokonsky et al., 2018; 

Johnson et al., 2020). 

In the literature, methods vary widely, as well as their final MP concentration estimates. Table 1 

highlights just how unstandardized methodology remains in drinking water to this day. Volumes 

sampled range several orders of magnitude. Filter area sampled ranges from <1 % of the filter to 

100% of the filter. Minimum particle size varies from <1 μm to 100 μm. As such, papers that report 

smaller particle size will likely observe higher concentrations of MPs solely because they include 

MPs that were too small to detect in other studies (Johnson et al., 2020). With such large  
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Table 1: Methods of selected drinking water sampling and analysis from the literature.  

Author 

  

Source 

Water 

Volume 

of Water 

Sampled 

per 

Sample 

(L) 

Minimum 

Particle 

Size (μm) 

Number of 

Samples 

Taken per 

Exact 

Location 

Percentage 

of Filter 

Area 

Chosen for 

Quantitative 

Analysis 

Percentage of 

Filter Area 

Chosen for 

Qualitative 

Analysis 

Average MP 

Concentration in Raw 

Water (MP/L) 

Average MP 

Concentration in 

Treated or Tap 

Water (MP/L) 

Adib, Mafigholami and 

Tabeshkia, 2021 

Surface 2.5 1 3 .7% 107 for all 

filters 

2325±101 1138±100 

Pittroff et al., 2021 Ground > 1300 5 1 22%a 22%a 0.066 ± 0.076b 0.066 ± 0.076b 

Sarkar et al., 2021 Surface 30 25 15 100% 100% 17.88 2.75 

Cherniak et al., 2020 Surface ~10 10 2 100% 10% of 

particles (min. 

10 MPs) 

42 ± 18 20 ± 8 

Johnson et al., 2020 Surface 

& 

Ground 

> 100 5 5 92 % 92 % 4.9 0.0011 

Mintenig et al., 2019 Ground 300 - 

2500 

3 1 100% 100 % 0.0007b 0.0007b 

Shruti, Pérez-Guevara 

and Kutralam-

Muniasamy, 2020 

N/A 1 .22 1 100% Unreported N/A 18 ± 7 

Tong et al., 2020 N/A 2b 0.2 1 0.66% A Cross 

Section of 

Both Axes 

N/A 440 ± 275 

Pivokonský et al., 2020 Surface 2c 1 3 54% 25% 23 ± 2d 

1296 ± 35 

14 ± 1d 

151 ± 4 

Panno et al., 2019 Ground 2 0.45 1 100% 20 MP per 

filter 

2.76 N/A 

Pivokonský et al., 2018 Surface 1e 1 9 15% 25% 2297 ± 166 470 ± 27 

Strand et al., 2018 N/A 50 100 1 100% 10% N/A 0.58 

Notes:  

Only studies that included some chemical identification and evidence of MPs as well as physical quantification are included.  
aFor particles less than 10 μm, only 1.4% of the filter area was analyzed. 
bRaw and treated water concentrations were not reported separately, because differences within treatment were far more apparent than between treatment. 
c1 L was collected for quantitative analysis + 1 L for qualitative analysis. 
dThe DWTPs are disclosed separately due to their extreme differences 
e1 L were collected for quantitative analysis per replicate and 1 L per sampling day (three days total) was taken for qualitative analysis 



BSc Thesis ‐ Elysia Fuller-Thomson ‐ McMaster - Honours Integrated Science Program 
 

7 

 

discrepancy in methodology within the literature, it is difficult to distinguish whether the large 

observed differences in concentration are due to the intrinsic properties of the source water or an 

outcome of methodology dissimilarities. Study after study flags the need to standardize 

methodology in order to alleviate this concern (Danopoulos, Twiddy and Rotchell, 2020; Elkhatib 

and Oyanedel-Craver, 2020; Koelmans et al., 2019; Zhang et al., 2020).  

Challenges in Accurately Quantifying Microplastics  

It remains difficult to quantify and characterize MPs in drinking waters due to analytical 

challenges. Contamination remains an ever-present concern as laboratory environments (e.g. air 

and laboratory equipment) may contain or be comprised of plastic materials (Wesch et al., 2017). 

A further lack of positive and negative controls, including environmental spiking and blanks, along 

with insufficient chemical analysis, raises issues regarding the confidence of published MPs 

concentrations (Koelmans et al., 2019).When considering the relatively small number of MPs 

typically observed in treated drinking water, small volumes of water (<25 L) may not be adequate 

for accurate MP concentration assessment (Koelmans et al., 2019). However, transferring and 

storing large volumes, while also protecting them from airborne contamination is not practical. In 

addition, the large amount of time required to visually characterize and chemically analyze 

suspected MPs significantly hinders the ability to quantify MPs in large numbers (> 100  MPs) 

(Pivokonsky et al., 2018; Wang, Lin and Chen, 2020).  

Recent studies have drawn attention to ensuring clean laboratory environments and the analysis of 

positive and negative controls in an effort to minimize contamination (Cherniak et al., 2020; 

Johnson et al., 2020). To further reduce contamination during sample collection, high-throughput, 

in-line filtration is a relatively new form of sampling that allows for hundreds of liters of water to 

be sampled, while effectively reducing exposure to airborne contaminants (Mintenig et al., 2019).  
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Three publications of note have utilized high-throughput in-line filtration for MP quantification in 

raw and treated water (Johnson et al., 2020; Mintenig et al., 2019; Pittroff et al., 2021).  

Methodologically, the studies’ detection of low MP concentrations in surface water suggests 

perhaps an even higher sampling volume is required than that suggested by Koelman et al. (2019).  

In-line filtration suggests much lower values for MP concentrations in raw and treated waters when 

compared to in-lab filtration, with treated water concentrations <0.1 MP/L. Values for treated 

water are several orders of magnitude below the predominant concentration within the literature, 

suggesting a potential lack of scalability when considering smaller sample volumes. Should high-

throughput in-line MP quantification research continue to suggest radically different results when 

compared to low volume measurements, the implications are broad. Large volumes provide the 

potential to capture more MPs, however, more particles inherently require additional time to 

accurately identify and characterize. This issue is compounded when employing high-throughput 

in-line filtration as large sample volumes (> 1 m3) could potentially yield hundreds of MPs.  

Improved reporting of QA/QC controls and procedures have emerged following concerns 

regarding potential MP contamination (Wesch et al., 2017; Koelmans et al., 2019), however, the 

field needs to improve the justification of sampling procedures in order to close research gaps. 

Ideally, individual studies should always report volume of water filtered, number of replicates, and 

proportion of filter area selected for analysis. Hence there remains a need to the question: how 

many MPs do we need to sample? No studies could be identified that specifically justify exact 

volumes, number of replicates, or the amount of filter area selected for analysis. As such, there 

exists a need to develop a statistically justified approach for subsampling MPs collected from water 

treatment facilities in order to reduce analysis time without negatively impacting data quality. For 

the purposes of this study, a statistically justified sampling procedure is represented by a stepwise 



BSc Thesis ‐ Elysia Fuller-Thomson ‐ McMaster - Honours Integrated Science Program 
 

9 

 

process to provide confidence that the sample is representative of the whole population within a 

predetermined suitable range. Since subsample filter area is not directly related to source 

concentration, this parameter is one of the most general sampling decisions applied to almost all 

MP drinking water analysis. In order to improve MP sampling methodology with a particular focus 

on subsampling filter area, the main objectives of this study were to: i) develop a method to provide 

statistical justification for selecting the area of filter to analyze MPs and ii) to suggest an optimal 

value for the area of a filter that should be subsampled for drinking water samples. 

Method 

Sample Collection and Processing  

In order to determine a statistically suitable sampling area within a given filter, suspected MPs 

were filtered, repeatedly sampled, and finally compared to the population counted on the entire 

filter. While filtration is described in greater detail by Yuan (2021) as well as Cherniak et al. 

(2020), the filters analyzed in this study considered samples obtained using two principal filtration 

strategies: i) in-line and ii) in-lab filtration (Table 2). Samples were collected from the influent and 

effluent flow of a water treatment plant which treats water originating from Lake Simcoe, Ontario. 

In-line filtration incorporates a 10 μm polycarbonate filter 47 mm in diameter (Millipore Sigma, 

Burlington, MA, USA) housed within a stainless-steel filter holder (Sigma-Aldrich, Oakville, ON, 

CA) followed by a nickel-plated brass flow totalizer (McMaster-Carr, Elmhurst, Il, USA).  

In contrast, in-lab filtration required water samples to be collected in 20 L stainless steel Cornelius 

Ball Lock Kegs (Ontario Beer Kegs, Bolton, ON, CA), which were previously cleaned and rinsed 

three times with Elix water (MilliPore Sigma, Burlington, MA, USA) (Type II ASTM). After 

sample collection, the kegs were transported to the University of Toronto Drinking Water Research 

Group laboratory. Alcojet® surfactant was then added to achieve a 1% surfactant solution  
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 (Alconox, White Plains, NY, USA). The kegs were pressurized (Mastercraft, Canadian Tire, 

Toronto, ON) with filtered air (Cole Parmer, Montreal, QC) to flush the contents through copper 

tubing and a 10 μm pore filter 47 mm in diameter. The kegs were subsequently rinsed three times 

using 1% Alcojet® solution and then pressurized to ensure that all of the sample was expelled.  

Prior to use, all surfaces, materials, and instruments to potentially come into contact with the 

sample were cleaned and rinsed three times with Elix water. A HEPA air purifier (ALEN, Austin, 

Table 2: Properties of the source water and filtration strategy of the filters  

Filte

r  

Source 

Water 

Filtration 

Strategy   

Influent or 

Effluent 

Volume 

(L) 

Sample 

Number 

Rinse/Clog 

1 WTP 

Sample 

In-line Influent  189.2 1  

2 WTP 

Sample 

In-line Influent  <1 1 Rinse for Filter 

#1 

3 WTP 

Sample 

In-line Influent  6.4 1  

4 WTP 

Sample 

In-line Influent  <1 1 Rinse for Filter 

#3 

5 Field Blank 

(Elix Water) 

In-lab Influent  9 2  

6 Field Blank 

(Elix Water) 

In-lab Influent  9 2  

7 WTP 

Sample 

In-lab Effluent  12 2  

8 WTP 

Sample 

In-lab Effluent  12 1 Rinse for Filter 

#7 

9 WTP 

Sample 

In-lab Effluent  13 2  

10 WTP 

Sample 

In-lab Influent  13 1 Rinse for Filter 

#9 

11 WTP 

Sample 

In-lab Influent  12 2  

12 WTP 

Sample 

In-lab Influent  

 

12 2 Second filter 

due to clog  

13 WTP 

Sample 

In-lab Influent  12 1 Rinse for filter 

11 & 12 

14 WTP 

Sample 

In-lab Influent  14 2  

15 WTP 

Sample 

In-lab Influent  14 2  
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TX, USA) was in use for the entirety of the sampling and counting process to minimize air 

contamination. 

Counting and Characterization  

Following the method reported by Yuan (2021), a 10 μm pore size filter was placed above a Petri-

Sticker grid of 70 cells with dimensions of 7 mm by 7 mm (Diversified BiotechSo, Dedham, MA, 

USA) on top of a clear glass petri dish (VWR, Mississauga, ON, Canada). Under an OMAX 10X 

- 80X binocular zoom stereo microscope (Microscopenet.com, Kitchener, ON, Canada), each grid 

was counted for MP suspected particles and their colour and shape (e.g. fragment, fibre, or film) 

were recorded.   

Locating Suspected MPs on Filters    

Since the MP count had been used for a previous study, identification of the outside perimeter of 

the filters on the numbered grids had to be estimated. To do this, the filter was located using these 

three criteria of decreasing importance: i) no part of the filter was located outside the numbered 

cells of the PetriSticker, ii) every cell with a recorded suspected MP particle must be located in a 

numbered cell that intersects with the filter, and iii) the perimeter of the filter would be placed such 

that the minimum number of cells intersect with the filter (Figure 1).  
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Figure 1:  Filter #1 is located following the three rules of i) staying within the numbered cells, ii) 

incorporating all filters with suspected MPs, and iii) minimizing number of intersecting cells.   

If the cell was outside the estimated filter location, a value of zero was given for the relative area 

of that cell, whereas if the grid cell was inside the estimated filter location, a value of one was 

assigned. If a cell was both inside and outside the estimated filter perimeter, the proportion of the 

grid cell inside the filter was approximated using a triangle or rectangle from the vertices of the 

cell or points of intersection of the perimeter on the cell that best approximated the area of the 

filter that fell within the grid (Figure 2). The centre cell of the estimated filter location was also 

recorded. These filters were then visualized in RStudio (RStudio Team, 2018) using software 

packages tidyverse (Wickham, 2019), readxl (Wickham et al., 2019), Rcolorbrewer (Neuwirth, 

2014) and plot.matrix (Klinke and Chevalier, 2020). 
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Figure 2:  An example of the rectangles and triangles used to estimate the area, whose vertices 

either touch the intersection of the circle’s perimeter or the vertices of the cell, in cells that lie both 

within and outside of the filter area.   

Subsampling Model 

In order to predict how much of the filter is required in order to obtain an accurate estimation of 

the sample population, a bootstrapping methodology was adopted using a similar method to that 

reported by Jaworski et al. (2019) for statistically justifying sampling areas for mosquito counts. 

Sampling data were analyzed in RStudio (RStudio Team, 2018) and R (R Core Team, 2013) using 

additional software packages of data.table (Dowle et al., 2020), rlist (Ren, 2016),  spatstat 

(Baddeley, Turner and Rubak, 2020).  

Area-based random sampling methods were used to subsample the suspected MPs. Three sampling 

methods were used based on similar approaches in the literature (Figure 3). The first approach 

employed random discontiguous sampling. Grid cells were selected at random within the filter 

without replacement until a random value between one and all of the grid cells intersecting with 



BSc Thesis ‐ Elysia Fuller-Thomson ‐ McMaster - Honours Integrated Science Program 
 

14 

 

the filter were selected. The second approach employed random contiguous sampling, where one 

random grid cell was selected, from which adjacent cells were randomly populated cells until every 

adjacent cell from the initial random point were populated. Then the next concentric ring of cells 

was randomly populated. This process was repeated until a random value between one and all grid 

cells of the filter were selected. A final sampling strategy incorporated a two equal cut-out 

approach, similar to the random contiguous approach except rather than one contiguous shape, two 

identical contiguous shapes were formed from random cells equidistant from the centre cell in 

opposite directions. 

 

Figure 3: Three different cell subsampling methods: (A) random discontiguous sampling, (B) one 

contiguous area sampling and (C) two contiguous areas equidistant and opposite directions away 

from the centre.  The first random point is from which concentric circles are circled around shown 

by X and the centre grid from which the second location is located equidistant apart and opposite 

in direction is shown by Y. In all three examples, six cells are selected and ~16% of the filter has 

been sampled.   

Individual filters were examined using each sampling strategy 5,000 times without replacement, 

meaning no two samples per sampling strategy per filter were identical. Estimated total MP count 

was calculated using Equation 1, where N is the estimated total MPs, n is the total number of MPs 

in the subsample, A is the total area of the filter, and a is the area of the sample.  

1) N 𝑒𝑠𝑡 =  𝑛 ∙
𝐴

𝑎
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Each estimate was given a consistency score that refers to how far off the estimate is from the true 

population. Consistency was calculated by dividing the total estimated suspected MP count by the 

actual total suspected MP population derived from counting the entire filter multiplied by 100. 

From there, the percentage of total area that was sampled was rounded into intervals of 1%. The 

95% confidence interval for the consistency value was determined for each sample size interval of 

one percent for each filter for each sampling strategy. To answer the question of how much of the 

filter area is needed to obtain an adequate estimation of the MP population, a suitable subsample 

filter area was defined as a sample size in which the bulk of the filter estimates lies within a decided 

upon range around the MP population for that sampling area and every sampling area with greater 

area than it. Specifically, a suitable range is where a 95% confidence interval exists such that the 

lower and upper confidence intervals for all filters lie within that predetermined suitable 

percentage away from true suspected MP population. To examine sensitivity of this approach, the 

suitable subsampling areas of the filter needed for a range within ±5, ±10 and ±15% of the true 

population 19 times out of 20 were examined.  

To test whether there was non-random behaviour within the filters, a chi-squared test of complete 

spatial randomness using quadrat counts to fit an inhomogeneous Poisson model was employed. 

Quadrats of four grid cells were selected such that they exhibited as much detail as possible while 

also having high enough predicted values to increase the power of the study.  

Results 

Significant clustering (p < 0.05) was observed on every filter except Filters #1 and #11 within the 

cell quadrats (Appendix 1.1) (Figure 4). Cells containing the highest and lowest suspected MP 

counts were not typically observed at a particular location relative to the centre. Instead, relatively 
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small cell regions, located in no particular part of the filter, often held high suspected MP counts, 

such that as high as 22% of the MPs was observed to be located solely within one filter grid (Figure 

4.8). This indicates that the suspected MPs evaluated were not randomly distributed. Evidence of 

non-randomness indicates that estimated MP count is not independent of subsample area. 

Furthermore, this indicates that taking 10% of MPs for subsequent analysis and analyzing 10% of 

the filter are not equivalent processes. Instead, analyzing a portion of the filter and equating it to 

the percentage of MPs present is only a best estimate, not an underlying characteristic of MP 

enumeration.    

Typically, confidence upper and lower intervals approach a consistency of 100% accuracy as a 

greater portion of the filter area is evaluated. Specific trends were associated with discontiguous 

sampling, one area contiguous sampling, and two area contiguous area sampling equidistant apart 

(Figure 5). When comparing discontinuous sampling to both one and two-area contiguous 

sampling, acceptable results (±15%) were achieved with a third less of the filter area counted (22% 

vs 62%) (Figure 6).  

For all filters, sampling <10% of the filter resulted in widely varying estimates. When sampling as 

low as 10% of the filter area, typically consistency values for one contiguous area subsampling 

(95% CI, 54-146%) fell within ±50%, two area contiguous sampling (95% CI, 63-140%) fell 

within ±40%, and discontiguous sampling (95% CI, 76-119%) fell within ±20% of the true MP 

total filter count. From zero to 100% of the filter, discontiguous sampling was consistently more 

accurate (a narrower confidence interval) when compared to contiguous sampling (Figure 5). 

Discontinguous sampling of just ≥20% of the population is likely the most efficient approach as 

greater areas represents a point of diminishing return when considering the required analytical 

time. Each filter was typically subdivided into a minimum of 37 cells, suggesting that a 
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discontiguous random selection of eight cells (~22% of the filter) may provide an accurate estimate 

within ±15% of the entire filter anticipated MP count. However, a minimum of randomly 

discontiguous sampling of 15 cells (~40%) could be sampled to improve accuracy to within ±10% 

of the true population.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Percent of total suspected MPs for each grid for each completely enumerated filter. Since 

the suspected MP cell counts are somewhat right skewed, the total MP count in the maximum 

category is labelled for context.   
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Figure 5: Upper and lower confidence intervals of consistency used in: A) random discontiguous 

sampling of each filter, B) random contiguous one area sampling, and C) random contiguous one 

area sampling equidistant and opposite direction from the centre. Values that fell <25% and >175% 

near a sampling area of 0% were removed to improve visibility.  

A 

B 

C 
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Figure 6: Minimum area needed to confidently sample a filter in order to be within three possible 

desired ranges of the true population 19 times out of 20.  

When considering only one contiguous sampled region, confidence intervals were larger than those 

estimated from discontiguous sampling and thus required a much larger area to achieve the same 

accuracy obtained through discontiguous sampling. To achieve an estimated ±15% of the true 

population, >60% of the filter area required sampling. The imperfect accuracy observed in filter 

sampling can be seen as a result of the spatial autocorrelation indicated by significantly non-

random distribution of the adjacent four cell quadrats. Cells with high suspected MP counts are 

likely to be locally surrounded by cells that also have high MP counts. Contiguous sampling 

amplifies this spatial autocorrelation by sampling nearby cells which overemphasizes clusters and 

deemphasizes the average values across all regions, resulting in greater inaccuracy.   

Contiguous sampling resulted in asymmetrical sampling estimates, where both the higher and 

lower consistency values are often centered above 100% (Figures 7 and 8). This asymmetry was 
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observed throughout most of the filters, including Filter #1 in contiguous one area sampling 

(Figure 7) and, to a lesser extent, in contiguous two area sampling (Figure 8). Filter #1 shows that 

when sampling 30% or more, estimates for upper and lower confidence intervals exceeded a 

consistency of 100% (Figure 7).  While most filters revealed some level of overestimation, 

especially ≥50% onwards mark, not all did. In contrast, Filter # 6 along with Filter # 10 show 

consistent underestimation of the true value when sampling ≥50% in contiguous one area sampling 

(Figure 7), and to a lesser extent, in contiguous two area sampling (Figure 8). Since random one 

area contiguous sampling methodology oversamples the centre in comparison to outer cells, an 

overestimation in the samples results from higher suspected MP counts in the centre. Since the 

asymmetry shows that there are more filters whose suspected MP count is overrepresented in the 

centre, one can anticipate that a slightly higher concentration of MPs exists in the centre than on 

the outer rim, although statistical significance for this was not evaluated.  
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Figure 7: Upper and lower confidence intervals of consistency used in random one area contiguous 

sampling of A) Filter #1 and B) Filter #2. Values that fell below 25% and above 175% near a 

sampling area of 0 were removed from the chart for improved visibility. 

Figure 8: Upper and lower confidence intervals of consistency used in random two area contiguous 

sampling of A) Filter #1 and B) Filter #2. Values that fell below 25% and above 175% near a 

sampling area of 0 were removed from the chart for improved visibility. 

 

A B 
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Sampling in two contiguous areas located equidistant from the centre also caused wider confidence 

intervals than discontiguous sampling (Figure 6). Overall, sampling in two areas did not improve 

minimum sampling areas compared to one area contiguous sampling. Clustering must be to such 

a great extent that having two areas of sampling does not counterbalance the misrepresentation 

that sampling from concentrated area causes due to cells having similar counts to adjacent cells 

suspected MP counts.  

Having decided that a minimum suitable sample size was defined as having a sample size and 

every sample size greater than it with an upper and lower confidence interval of consistency within 

reasonable value (Figure 9), sampling strategies greatly affected how large that sample size needed 

to be.  Out of the 15 filters, the minimum value for suitable sampling area within ±10% was 80% 

for one and two area discontiguous sampling and half that (40%) for discontiguous sampling 

(Figure 8). Across all three filters, an increase of sampling estimate accuracy from ± 15% to ± 

10% required an additional 18% of the filter area. An increase of sampling accuracy from a 

consistency range of ± 10% to ± 5% required an added 14% of sampling area for contiguous 

sampling and an additional 34% of sampling area for discontiguous sampling. 
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Figure 9: Suitable sample size is given at the point where there is a 95% confidence level that the 

upper and lower consistency confidence intervals of each filter lie within a predetermined range. 

For contiguous area sampling, the suitable sample area for an accuracy of 10% is 80% of the filter 

area. Even though there are still individual confidence intervals that exceed this range, the 

confidence interval of all of the upper and lower consistencies stays within 10% of true MP 

estimate when sampling 80% or more of the filter.   

Discussion 

To address the initial question of how many cells are needed to reliably subsample a MP filter, 

randomly sampling one in four cells (25% of the filter area) resulted in an adequate estimation 

within ± 15% of the true suspected MP count 19 times out of 20.  When considering published MP 

literature, consistent issues have been raised regarding the amount of time required to quantify and 

characterize MPs following filtration (Pivokonský et al., 2020; Imhof et al., 2016).  While high-

throughput, in-line filtration will ease many concerns regarding total sample size and the QA/QC 
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protocols needed, the additional MPs that will require analysis as samples increase in volume 

presents a challenging dilemma: either subsample a higher percentage of the filter area, limiting 

valuable time that could be used to analyze other samples, or subsample a smaller percentage of 

the filter area, introducing further uncertainty to the final MP estimate. It is suggested that this 

difficult trade-off be addressed using statistical rigour via the methods described herein. As such, 

it is suggested that drinking water researchers examining MPs in a new environment or with an 

adjusted method perform the following steps to determine how much of the filter area should be 

subsampled: 

1. Determine the smallest desired category of MPs whose concentration requires 

quantification. Categories maybe include as broad as total MP count to as detailed as counts 

of MP plastic types, shapes, or sizes. 

2. Determine desired MP estimation accuracy, keeping in mind inaccuracy associating with 

other steps of the methodology. 

3. Conduct an initial pilot study whereby the filters surfaces are quantified and characterized 

entirely. Obtain random samples over a range of different sampling areas to estimate MP 

counts from those filters. 

4. Calculate lower and upper consistency for confidence intervals for estimates. 

5. Determine a minimum sampling area whereby the upper and lower 95% confidence 

intervals between filters is within the desired accuracy and every sampling area greater 

than it has a confidence level that also lies within the desired accuracy, nineteen times out 

of twenty.  

6. Use the minimum sampling area generated in step 5 as the minimum sampling area. 
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By employing this method, a greater certainty exists that differences in MP counts in time, space 

and methodology are true differences rather than uncertainty resulting from sampling. Some of the 

previous studies show MP counts which exhibit little variation between water treatment plants 

while only sampling very small portions of the filter (Adib, Mafigholami and Tabeshkia, 2021; 

Tong et al., 2020). This is concerning as our results suggest that the differences observed in MP 

counts in studies with small subsample sizes could be explained by the uncertainty introduced by 

clustering within subsamples.  

Spatial evidence of clustering, and observations of density plots reveal that a random distribution 

for MP on any given filter cannot be assumed. Accurate estimation is dependant on sample size 

and smaller sample sizes lead directly to increased uncertainty. However, a non-random 

distribution does not represent a strong correlation between filter location and density. No 

sampling technique would need to incorporate specific underrepresented areas or diminish 

overrepresented areas. It is evident that discontiguous sampling represents a superior method when 

compared to one or even two area contiguous sampling, no matter how much of the filter is being 

evaluated. It is encouraged that sample strategies incorporate a large number of random cut-outs 

as a way of minimizing uncertainty, even if this adds time to particle enumeration. Since no strong 

location dependence exists on MP density, it would not affect uncertainty if the random cells 

selected at the beginning of sample enumeration be the same cells that are used to subsample each 

different filter.  Two area contiguous sampling provided the exact same results as one area 

discontiguous sampling when considering suitable sampling area estimations, indicating that a few 

additional discrete contiguous sampling areas does not improve results and thus is not a 

replacement for discontiguous sampling. Even though equidistant cut-outs are some of the most 

common sampling techniques used for counting drinking suspected MPs, this study presents weak 
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statistical evidence for employing such a sampling strategy unless many cut-outs are used 

(Pivokonský et al., 2020; Adib, Mafigholami and Tabeshkia, 2021). It is important to recognize 

that each cell itself can be interpreted as a cut-out. Discontiguous sampling at 22% in the filters in 

this study is the same as having at least 8 contiguous cut-outs. As such, it is recommended that at 

least 8 cut-outs are employed to sample MPs on a filter and suggested that the greater sampling 

area employed, the greater number of randomly selected cut-outs selected. 

The consistent overestimation and occasional underestimation in contiguous sampling of 

suspected MP estimate population were unexpected. The hypothesis for this odd behaviour is that 

when ≥50% of the filter is enumerated or more, contiguous sampling results in the middle being 

sampled more than the surrounding areas. The estimates are more heavily sampled toward the 

centre of filter, and MPs in the centre are more heavily weighted. This explains why Filter #1 with 

a denser centre overestimates filter count and Filter #6 which has a relatively hollow centre 

underestimates filter count (Figure 4). Since there were more cells that had a slightly higher MP 

density in the centre than on the outside, overestimation of MP total count was more likely than 

underestimating. This overrepresentation of the centre provides further evidence that, when at all 

possible, discontiguous subsampling should be used for suspected MP enumeration. However, it 

should be noted that many studies that have employed the cut-out method typically sample less 

than 50% of the filter area, and are not oversampling the centre (Pittroff et al., 2021; Tong et al., 

2020). Our results indicate that sampling in three large central cut-out such as the strategy 

employed by Pivokonský et al. (2020) may result in some slight overestimation of the filter count 

and greater inaccuracy in estimation due to clustering of MPs.  

While it ultimately depends on the intent of the study, a random discontiguous subsampling area 

of >22% in order to achieve an accuracy of ± 15% 19 times out of 20 appears to provide an 
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adequate trade-off between the time needed to subsample and accuracy of the final count when 

considered treated drinking water. This study not only confirms the one quarter suggestion of filter 

area analysis suggested by Koelmans et al. (2019), but provides the statistical justification for such 

a claim. Going forward, this is the recommendation of subsample percent area for studies that may 

not have the resources to conduct pilot studies.  

Next Steps  

The crucial next step needed to provide additional statistical rigour when subsampling MPs is to 

perform the same study with individually identified chemically characterized MPs. If MPs are 

clustered due to aggregation as opposed to the way in which particles interact with the filter, it is 

possible that confirmed MPs may be more clustered than suspected MPs (Wang et al., 2021b). The 

possibility that the true MPs are more clustered and deviate further from a random distribution 

than suspected MPs would mean that a greater sampling area is needed to achieve the true accuracy 

within a desired range and is a very legitimate concern that should be evaluated in subsequent 

research.  

A number of other intrinsic parameters that may affect MP distribution, including total MP count, 

chemical type, size, shape, and origin. Furthermore, methodology variations such as surfactant 

usage should also be evaluated. When considering in-lab filtration, Cherniak et al. (2020) observed 

that adding surfactant changes particle behaviour within a sampling vessel, allowing allows more 

particles to leave the vessel. It would also be beneficial to see how particle distribution on the filter 

might also be affected by surfactant. While examining how surfactant and total MP count affect 

sample size accuracy was not the purpose of this study, it should be noted there does not appear to 

be any abundantly obvious correlation between either total suspected MP count when within the 

range of total suspected MP examined in this study (45 – 266) nor does there appear to be any 
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difference between filters with surfactant (Filter #5-15) versus those without (Filter #1-4). It is also 

possible that source water could potentially influence MP distribution on the filter and merits 

further research. Since clustering appears to be at the sub-cell layer, understanding MP distribution 

and how localized clustering behaves would benefit from measuring MP coordinates on the filter 

rather than the larger cell sizes used in this study.  

Conclusion 

To answer the question of how much of the filter should be sampled in order to have reasonable 

confidence in the accuracy of the estimate while also saving the most amount of counting time, 

this study suggests conducting a pilot study where a framework of repeatedly randomly 

subsampling from a few filters that are completely counted in order to determine a sample size that 

fits the parameters of the study.  Going forward, subsampling should incorporate many randomly 

selected cut-outs as that choice of subsampling results in 20-40% less subsampling area needed to 

obtain the same accuracy of MP estimation when compared to sampling an unbroken subsample 

area. Our method indicates that a minimum area of a quarter of the filter area is needed to obtain 

an estimate of the total suspected MP population within ±15% of the true population 19 times out 

of 20. Additional research is required to determine if this subsampling size is independent of MP 

characterization, source water, surfactant usage, and manual versus automated enumeration. In 

general, going forward, studies should attempt to justify the subsampling area chosen as the field 

attempts to standardize methodology. Until a standardized methodology to assess MP 

concentration emerges, every step of the MP collection and counting process must be questioned 

and rigorously justified in order that one method can clearly be accepted as an improvement to 

another using statistical evidence and convincing substantiation.   
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Appendix  

Table A.1: Statistical parameters for clustering of suspected MPs on each filter  

Filter Number Degrees of Freedom  Significance of Clustering (p 

value) 

1 20 0.06893 

2 15 < 0.00001* 

3 20 0.00026* 

4 15 < 0.00001* 

5 15 < 0.00001* 

6 15 < 0.00001* 

7 16 < 0.00001* 

8 15 0.00002* 

9 15 < 0.00001* 

10 16 < 0.00001* 

11 20 0.08326 

12 15 < 0.00001* 

13 20 < 0.00001* 

14 15 < 0.00001* 

15 15 0.00044* 

Notes: 

*p-value < 0.05 

 

Table A.2: Total suspected MPs counts on Filter  

Filter Number Total suspected MPs  

1 74 

2 85 

3 266 

4 83 

5 177 

6 273 

7 177 

8 45 

9 104 

10 123 

11 204 

12 79 

13 196 

14 223 

15  190 

 


