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Abstract 

Laser powder bed fusion (L-PBF) is an additive manufacturing process where a 

heat source (such as a laser) consolidates material in powder form to build three-

dimensional parts. For quality control purposes, this thesis uses real-time 

monitoring in L-PBF. Defects such as pores and cracks can be detected using 

Acoustic Emission (AE) during the powder bed selective laser melting process via 

the machine learning approach. This thesis investigates the performance of several 

Machine Learning (ML) techniques for online defect detection within the Laser 

Powder Bed Fusion (L- PBF) process. The goal is to improve the consistency in 

product quality and process reliability. The application of acoustic emission (AE) 

sensors to receive elastic waves during the printing process is a cost-effective way 

of meeting such a goal.   

For the first step, stainless steel 316L was produced via eight parameters. The 

acoustic emission signals received during the printing and data collection steps are 

analyzed using an AE sensor under various process parameters. Several time and 

frequency-domain features were extracted from data during the mining process 

from the AE signals.  

K-means clustering is employed during unsupervised learning, and a neural 

network approach was used for the supervised machine learning on the dataset. 

Data labelling is conducted for different laser powers, clustering results, and signal 



M.A.Sc Thesis – M. Ghayoomi Mohammadi                      McMaster University-              
Mechanical Engineering Department 

 

ii 
 

time durations. The results showed the potential of real-time quality monitoring 

using AE in the L-PBF process. 

Some process parameters within this project were intentionally adjusted to create 

three various levels of defects in H13 tool steel samples. First classes were printed 

with minimum defects, second classes with intentional cracks, and last classes with 

intentional cracks and porosities. AE signals were acquired during the samples' 

manufacturing process. Three different machine learning (ML) techniques were 

applied to analyze and interpret the data. First, using a hierarchical K-means 

clustering method, the data was labelled. This was followed by a supervised deep 

learning neural network (DL) to match acoustic signals with defect type. Second, a 

principal component analysis (PCA) was used to reduce the dimensionality of the 

data. A Gaussian Mixture Model (GMM) enabled the fast detection of defects, 

which is suitable for online monitoring. Third, a variational auto-encoder (VAE) 

approach was used to obtain a general feature of the signal, which could be used as 

an input for the classifier.  Quality trends in AE signals collected from 316L 

samples were successfully detected using a supervised DL trained on the H13 tool 

steel dataset. The VAE approach shows a new method for detecting defects within 

the L-PBF processes, which would eliminate the need for model training in 

different materials.  
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Preface 

This thesis project deals with the Monitoring of the LPBF process by Acoustic 

emission with machine learning methods. It is composed of two journal papers 

listed as followed, based on the publication order: 

Chapter 2: A version of this chapter is published as a research paper:  Mohammadi, 

M. G., & Elbestawi, M. (2020). Real Time Monitoring in L-PBF Using a Machine 

Learning Approach. Procedia Manufacturing, 51, 725-731. 

Chapter 3: A version of this chapter is published as a research paper: Mohammadi, 

M. G., Mahmoud, D., & Elbestawi, M. (2021). On the application of machine 

learning for defect detection in L-PBF additive manufacturing. Optics & Laser 

Technology, 143, 107338.  
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1 Introduction  

A sub-field of Additive Manufacturing(AM), known as Laser Powder Bed Fusion (L-PBF), uses 

powder as the raw material, along with a heat source (laser) to fabricate the desired part. Owing to 

its unique capabilities, L-PBF has attracted the attention of different industrial sectors. The 

building platform is then heated if required and using a recoater, the first layer of powder is spread 

on the building platform. The recoater used could have a blade or a roller form. The laser begins 

scanning specific locations on the powder bed according to the part’s geometry. The powder gains 

energy and transforms from a solid to a liquid state. The layer is subjected to the atmosphere and 

cools down very rapidly, solidifying into the first layer. The build platform is moved one layer 

downwards, while the powder dispenser is moved one layer upwards. The recoater spreads a fresh 

layer of powder on the previously solidified layer, and this process repeats until the whole part is 

manufactured, layer by layer. 

A good method for understanding the numerous L-PBF process parameters is to categorize them 

according to time increments in which these parameters can be measured, whether they be 

controlled or chosen[1].  These classifications can be pre-process, in-process, or post-process. Pre-

process parameters may be related to the material, for example, related to powder type, size, shape, 

or distribution. The parameters may also be related to the machine, such as laser type, mode, spot 

size, and laser scanning method. They could also be related to the building chamber, such as to the 

type of inert gas, build plate temperature, and inert gas pressure. Post-process parameters are 

typically related to part’s performances in terms of mechanical properties. The focus of this paper 
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is on the in-process parameters, such as laser power, scan speed, scanning strategy, and layer 

thickness.      

The defects generated in the parts manufactured via the L-PBF process can be classified into three 

categories; defects from machine parameters, from setup, or ones due to damage in the equipment 

or miscalibration [2]. The adjustment of laser power, scan speed, or hatch spacing can result in 

porosities, which can further be classified into lack of fusion or keyhole defects.  The second 

category of defects is related to inadequate support placements or failures in applying a design for 

additive manufacturing approach while parts are being designed. These defects may lead to uneven 

powder spreading or high thermal gradients, which can lead to residual stresses and formation of 

cracks. 

The third category of defects is related to faults and errors which might occur during the printing 

process. The levelling of the build plate and its orientation or alignment to a recoater could create 

an uneven powder layer, which would lead to a failure in some parts of the build plate. Powder 

particles that have adhered to the recoater may be plowed across the new powder layer, leading to 

a non-uniform powder layer. The recoater blade could also impact warped parts or edges, causing 

them to be removed from the build plate and hit other components. 

The laser interacts with the powder being melted during the L-PBF process. This laser is either 

absorbed, reflected, refracted, scattered, or transmitted. It is expected that heating, melting, 

vaporization, or forming plasma might occur [3]. These phenomena present the opportunity to 
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monitor the process using a variety of methods, like monitoring the radiation, the acoustic, the 

acoustic emission, or the electromagnetic emission. 

1.1 Motivation  

It is of great importance to use the machine learning approach, presenting a novel Acoustic 

Emission-based approach with the aim of examining the real-time monitoring of L-PBF. Using the 

machine learning method, the present study aims to detect a variety of defects like pores and cracks 

during the power bed selective laser melting process. Moreover, through the use of Fast Fourier 

Transform (FFT), the frequency-time domain was obtained, which included pure consolidation, 

micro-cracks, and porosity. Nowadays, the importance and practicality of L-PBF in the industry 

are visible, and the benefits of ML in this technology are remarkable. 

It is worth mentioning that making a comparison between the performance of several machine 

learning methods for an online monitoring system in the L-PBF process can bring considerable 

and important results. In addition, making this comparison with the aim of enhancing the product 

quality and making the L-PBF a reliable technique in terms of accuracy, time, and authenticity is 

of great significance.  A hierarchical K-Means clustering method, PCA-GMM technique, and VAE 

method were examined in detail. The main focus of this study is optimizing the ML methods’ 

practicalities for online monitoring of the L-PBF process, which can lead to acceptable and striking 

results. The results of this study are very advantageous in both industries and in terms of practical 

processes. 
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1.2 Schematic model for online quality control of the L-PBF process  

Figure 1.1 illustrates a simplified flow chart of the system proposed for monitoring the process 

based on the AI decision-making of the deep learning classifier. As observed, the process 

parameters are placed as the input, and the system begins with depositing and executing a layer. 

As the layer is being executed, the system monitors the process and determines if there is a defect. 

If no defect exists, the system continues with the next layer or finishes the process. If there is a 

defect, the system determines if it is within a correctable threshold. If it’s is correctable, it attempts 

to correct and repair it, but if not, it aborts the process and triggers an alarm. 

 

 

 

 

 

Figure 1.1 Flow chart for the online quality control of the L-PBF process. 
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1.3 Schematic AE setup for monitoring the L-PBF process  

In order to monitor the L-PBF process, the AE sensor has been embedded beneath the build plate 

to minimize the distance between source and sensor. This setup could also provide a similar 

distance for each sample printing part to the sensor. Figure 1.2 shows the schematic of the AE 

setup in an L-PBF  machine. Also, the ultimate monitoring system could have other outputs such 

as a Pyrometer and CCD camera.  

 

 

Figure 1.2 schematic of  AE setup for monitoring L-PBF process 
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1.4 Research objectives 

The main goal of this research project is to use Acoustic emission as an output for monitoring 

Laser powder Bed Fusion(L-PBF) via different machine learning methods to improve defect 

detection during Online monitoring. 

The core objective of this work could be refined as the following: 

1) Develop an acoustic emission sensor setup for monitoring the L-PBF process.  

2) Process and analyze AE signals in different domains like the time and frequency domain.  

3) Recognize patterns and classify AE signals with the goal of detecting defects in the 

monitoring L-PBF process. 

4) Use Machine learning methods to produce a more general ML model for defect detection, 

one without material dependency.  
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1.5 Thesis outline 

The main results of this thesis are a combination of two journal papers, which have already been 

published. The thesis is comprised of the following chapters: 

Chapter 1 introduces the background, motivation, and objectives of the research to frame 

the scope of the thesis. 

Chapter 2  is the first published journal article. This chapter targets the acoustic emission 

signals feature extraction in the time-domain and frequency-domain. Acoustic emission signals 

could be a good candidate for output in a monitoring system on L-PBF, as shown by the study on 

frequency domains via different machine learning methods (supervised and un-supervised 

methods). Moreover, the time domain signal’s features show the repeatability of the acoustic 

emission signals in the steady-state of the printing process. 

Chapter 3 is the second published journal article. This chapter targets the application of 

machine learning on the acoustic emission signals in L-PBF. The potential of machine learning 

methods for monitoring the L-PBF process was shown using different machine learning methods 

based on the nature of each printed material. Moreover, the variational autoencoders suggested a 

new feature extraction method for having a more generalized data set. That leads to eliminating 

the material dependency in the training machine learning models.  

Chapter 4 summarizes the main conclusions and contribution of the thesis, highlights the 

strength and limitations, and presents suggestions for future work. Finally, this chapter outlines 

the contribution of this thesis to the literature. 
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Figure 1.3 Structure of the thesis 
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Chapter 2 

2 Literature review    
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2.1 Background  

Nowadays, the machine learning method has received much attention due to its practicalities and 

benefits in various branches of science. One of the unique applications of this method can be found 

within monitoring laser powder bed fusion (L-PBF) additive manufacturing. Many components in 

industries are complicated in terms of geometry, and consequently, cannot be created using 

traditional manufacturing methods. The additive manufacturing (AM) approach has come to these 

complex geometries' aid and facilitated manufacturing. The L-PBF technique is considered a 

subfield of AM in which the raw material is powder, and a laser is used to fabricate the desired 

part. 

In 2018, Yuan et al. employed a two-step machine learning method in this field and outlined the 

benefit of the obtained results for rapid evaluations of laser track welds[1]. L-PBF is also regarded 

as an additive manufacturing technique in which the metal parts are created layer by layer, and the 

powdered metals and alloys are melted through a high-power laser [2]. In another study, additive 

manufacturing was defined as a method to assemble and join materials with the aim of making 

parts from 3D model data[3]. Ivanna Baturynska et al. (2018) aimed to integrate the machine 

learning approach and finite element method (FEM) to optimize powder bed fusion additive 

manufacturing [4]. This combination can be helpful to simulate the process, optimize or anticipate 

the process parameters to obtain the specific mechanical properties. In addition, the developed 

models in the FEM were tested through this approach.  

The research regarding the AM technique dates back to about twenty years ago [5]. However, the 

studies in this field need to be continued, and there are still concerns regarding this method's 
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practicalities and advantages. Baturynska et al. have illustrated the challenges in line with 

exploiting the machine learning method that is given below [4]: 

• Such a tremendous amount of data needs to be considered in this method to have a 

precise performance. 

• The data are gathered with too many difficulties, and the material costs for the experiment 

are remarkably high. 

In another study, the three-dimensional bin-packing problems and nonconvex parts were defined 

considering the genetic algorithm used to optimize the part's orientation [5]. The parts contained 

holes and cavities and were machined through the Stereolithography AM process. Among all 

practicalities that have been introduced for machine learning so far, the fused deposition modelling 

(FDM) AM process has received much attention up to now [6]. 

A variety of machine learning methods have been proposed to model and simulate the AM process. 

There exists a considerable body of literature on the L-PBF AM process considering the machine 

learning approach [7-9]. These techniques that are used to simulate the L-PBF AM process are as 

follows: Artificial neural network, such as backpropagation neural network, and radial basis 

function neural network, based on fuzzy clustering and Pseudo-Inverse method, ensemble-MGGP 

including ANN, Bayesian classifier and support vector machine algorithm, the genetic algorithm 

like multi-gene genetic programming (MGGP), non-dominated genetic algorithm (NSGA-II), and 

multi-objective particle swarm optimizer, and support vector regression (SVR). 

It is noteworthy that several machine learning (ML) methods can be utilized for a variety of 

purposes. In a significant study done by Sing et al. (2021), the main concern associated with the 

L-PBF technique is that the parts made from L-PBF do not have appropriate quality. One of the 
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unique challenges in using L-PBF is that it works with too many complications when fabricating 

the parts and that there are many oscillations. As a result, inconsistent parts are produced, which 

are not practical for the industry [10]. In this situation, the machine learning method can be 

employed to tackle such problems. Hence, the datasets are computed at different steps of the L-

PBF process. Sing et al. (2021) combined the ML and L-PBF processes to monitor the quality and 

obtain acceptable results. Gobert et al., in 2018, also proposed a study that looked at the advantages 

of supervised machine learning to realize defects within metallic powder bed fusion additive 

manufacturing[11]. Notably, the image processing technique has been considered to monitor the 

additive manufacturing process using a high-resolution digital single-lens reflex (DSLR) camera. 

One significant positive aspect of this study is that the proposed approach prevents spending large 

sums of money on undesired products. Through this method, it is possible to check the quality and 

correct the defects during the build process.  

In contrast, other computed tomography (CT) methods cannot realize the defects beforehand. 

Zhang et al. (2019) conducted a comprehensive investigation into the fatigue phenomenon and 

fracture behaviour of laser powder bed fusion stainless steel 316L [12]. In this study, the neuro-

fuzzy method has been employed to predict fatigue life. The processing and post-processing 

strategies employed in studies play a prominent role in the number of variations in the severe cyclic 

fatigue phenomenon existing in the laser powder bed fusion materials. In addition, employing an 

effective and practical method to evaluate the fatigue property is a fundamental need. Zhang et al. 

(2019) attempted to anticipate the high cycle fatigue life of laser powder bed fusion stainless steel 

316L using a neuro-fuzzy-based machine learning approach. The dataset considered in this study 

includes fatigue life data for the specimens under a variety of processing conditions (like laser 
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powder, scan speed, and layer thickness), cyclic stresses, and post-processing operations such as 

annealing and hot isostatic pressing. It is worth mentioning that the major usage of this data is 

related to simulating a complicated nonlinear input-output environment. The modes of crack 

creation and deformation were determined in this research.  

One of the significant drawbacks of conventional methods is that they often fail to accurately create 

multi-scale, multi-material, and multi-functional products. Hence, the additive manufacturing 

method has emerged as a practical method to fabricate products and tackle the previous limitation. 

Despite such benefits, sometimes, the obtained products through AM differ considerably from the 

theoretical design expectations. A recent review of the literature on this topic (in 2020) [13] found 

that proposing some advanced algorithms and novel artificial intelligence methods can be 

significantly helpful to overcome the mentioned problems. In this review, Jin et al. aimed to 

illustrate enough information regarding the future of algorithm-driven additive manufacturing. 

Furthermore, several algorithms associated with the machine learning approach were examined 

and reviewed in detail.  These algorithms were proposed to systematically overcome the three 

significant steps of the additive manufacturing process, namely geometrical design and process 

parameter configuration as well as in situ anomaly detection. 

In order to summarize the AM's capabilities, four features are specified for this technique. They 

are as follows: (1) this method is known as the layer-by-layer process through which various 

shapes are fabricated; (2) hierarchical multi-scale structures ranging from the microstructure 

geometric to the part-scale macrostructure are designed and produced using this method; (3) a 

variety of material in the vast range of locations can be designed and produced; (4) an AM process 

is considered to fabricate fully functional assemblies and mechanisms directly. 
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Since there are many design variables with complex interactions over multiple domains, the AM's 

benefits have also delivered several challenges and defects. In a significant attempt in 2019, Xiong 

et al. aimed to study all these design variables and discussed their interactions [14]. In 2020, Jiang 

et al. introduced a ML integrated design for AM technique to illuminate the benefits of ML in 

learning the complicated relationships between the design and performance spaces. The AM 

technique considered in this study was employed to learn process-structure-property (PSP) 

relationships illustrated in. Finally, a case study was conducted to show the advantages of using 

ML in designing a customized ankle brace containing a tunable mechanical performance with 

tailored stiffness[15].  

Recent years have seen many types of metal AM technologies that have been developed and 

employed in manufacturing fully functional parts. Some studies define seven groups for the 

technology that are as follows: binder jetting, direct energy deposition, material extrusion, material 

jetting, powder bed fusion (PBF), sheet lamination, and vat photopolymerization [16]. Hence, the 

basic theory and mechanism of AM technologies can vary considerably within the industry.  

The steps that need to be considered in L-PBF are as follows: product design, process planning, 

L-PBF manufacturing, post-processing, and quality measurement. Some factors such as unsuitable 

quality assessment, inefficient process plan, and insufficient process control are the main reasons 

for inconsistency. On the other hand, to tackle such limitations, Liu et al. presented a new machine 

learning (ML)-enabled method employed to develop feedback loops in the whole metal L-PBF 

process. First, the metal L-PBF feedback loops were categorized, and a summary of the critical L-

PBF manufacturing data was proposed for each step. Then, a generic framework of ML-enabled 

metal L-PBF feedback loops was introduced, and the feedback loops were individually defined in 
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detail. According to the obtained results, it was found that monitoring the closed-loop 

manufacturing for metal L-PBF can be possible using the ML-enabled feedback loops presented 

in this study(in 2020)[17]. 

The additive manufacturing (AM) process is also considered as three-dimensional printing within 

other studies. It is prevalent compared to the traditional subtractive manufacturing method due to 

the aforementioned reasons ]18[ . One of the significant drawbacks of the AM process is that this 

technique's parameters cannot be easily tuned. It has a remarkable impact on the printed 

microstructure and the subsequent products' performance. Hence, the conventional numerical and 

analytical models have mainly failed to create a process-structure-property-performance (PSPP) 

relationship for AM. Accordingly, presenting an effective approach for recognizing complicated 

patterns and analyzing regression irrespective of an explicit method is a fundamental need in order 

to construct and solve the most important physical models. 

Interestingly, using the neural network (NN) to optimize the training process brings many benefits 

and is helpful in expediting the process. The NN has a large dataset, robust computational power, 

and complicated algorithm architecture. Qi et al. have considered this concept and finally reached 

acceptable results by suggesting the application of the NN algorithm to a number of steps in the 

AM process, such as model design, in situ monitoring, and quality assessment. The conclusions 

drawn in this study are also beneficial to those aiming to employ NNs in a vast range of 

applications like a conventional MLP for linking the AM technique, a conventional NN for AM 

melt pool recognition, and LSTM for creating FEM. 

Moreover, direct metal deposition (DMD) is regarded as an AM technique in which many 

materials like steel or Titanium are employed to create the finished product [19]. The 
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computational methods and simulations have come to AM technique's aid and eliminated the trial 

and error involved in costly manufacturing processes. Through the use of finite element-based 

multi-physics simulation models (FEM), the AM process is assessed beforehand, and more limited 

parts can be used [20, 21]. Nevertheless, for computation purposes, the FEM-based simulations 

are not efficacious in terms of time and cost. In order to overcome this limitation, a predictive 

approach based on machine learning (ML) can be used to obtain simulation results and prevent 

conducting costly physics-based simulations. The physic-informed, data-driven, machine-learning 

systems can be employed to anticipate the AM processes' behaviour. Using this strategy increases 

the computation’s speed in the multi-scale simulation tools, and real-time control systems are 

enhanced using in-situ data. 

In 2019, Paul et al. designed and developed several important components in a scientific 

framework and extended a data-driven, model-based, real-time control system[22]. Through the 

use of FEM, the time-dependent thermal equations were solved, and the database was developed. 

One of the remarkable results of this study is that the proposed models can present mean absolute 

percentage errors of less than 1% for anticipating the temperature profiles for AM processes. 

One of the main aspects of quality evaluation in additive manufacturing (AM) is surface 

monitoring. Broadly speaking, engineers tend to realize the surface defects at the proper time 

during the AM process. In this case, the part is not subjected to undesired conditions and will not 

lose its quality. Concerning this concept, Chen et al. proposed a novel method to identify the 

surface defect rapidly for directed energy deposition (DED) in 2021 [23]. The major aim of this 

study was to develop an in-situ point cloud process using a machine learning approach that offered 

automatic surface monitoring without any sensor intermittence. 
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Moreover, machine learning and data informatics frameworks that were in line with detecting 

process-structure-property (PSP) relationships in the additive manufacturing process were 

discussed [24]. In this research, Kappes et al. attempted to create an ML framework with the aim 

of detecting the process structure and structure-property relationships during the AM process. The 

L-PBF was considered for manufacturing the Inconel 718, whose parameters were assessed in 

3600 experiments. Based on the experimented samples, the pore formation was connected to part 

orientation, part location, and the usage of recycled powder. The random forest network machine 

learning model considered in the study was able to model the process-property and process-

structure relationship in two ways and was expanded upon using data obtained from 3600 samples 

for the Inconel 718. The main steps considered for examining the L-PBF porosity and keyhole as 

well as fusion (LOF) defects in the specimen were examined in detail. Also, the striking effect of 

data collection, processing, and validation on the connections between input characteristics and 

output parameters associated with ML was examined. 

It is noteworthy to mention the great importance and practicalities of metal additive manufacturing 

(AM) in the healthcare, aerospace, and automotive industry. According to the aforementioned 

explanations, there is no guarantee that reproducibility through AM can be obtained. This problem 

prevented others from developing a larger diffusion in industry. The machine learning method was 

proposed to deal with this problem as the manufacturing process is monitored simultaneously. As 

this technique is a layer-by-layer process, in-situ monitoring and the process of defects' 

identification can be very advantageous to prevent a waste of time and money. In 2021, D. 

Cannizzaro et al. aimed to present a system to monitor in-situ defects for metal powder bed fusion 

using an off-axis camera [25]. The algorithms considered in this research were based on computer 
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vision and machine learning that identified several powder bed defects and monitored the object’s 

profile during the process. 

There are various types of machine learning methods that can be employed in AM technology. For 

instance, Meng et al. employed a Gaussian process-based machine learning approach for L-PBF 

pf stainless steel [26]. In this research, the laser power was combined with laser scan speed in the 

L-PBF, and the re-melted depth of single tracks was anticipated. The numerical and experimental 

data were considered for training the GP model. The materials used in this process were 316L, and 

17-4 PH stainless steel, and they were extended via the trained model. The main criterion 

considered in the study was the ratio of ∆H/hs, in which ∆H denoted the specific enthalpy and hs 

represented the enthalpy at melting. According to the results obtained in this study, the ∆H/hs ≥30 

criterion was considered for the powder layer thickness in 316L. ∆H/hs ≥25 was considered for 

17-4 PH. 

Many techniques have been reported in the literature concerning monitoring the manufacturing 

process and defect identification. Some of these techniques have been mentioned above. 

Additionally, a support vector machine can also be advantageous for specifying the number of 

defects. These defects negatively affect the laser powder bed fusion and the fabricated metallic 

components' lifetime scatter. As a result, predicting the fatigue life of the engineering parts under 

the manufacturing process is an essential need. In 2020, Bao et al. employed a machine learning 

approach to identify the effect of defect location, size, and morphology on the lifetime of a 

selective laser melted Ti-6Al-4V alloy [27]. The high cycle fatigue post-mortem examination and 

synchrotron X-ray tomography were integrated with the aim of obtaining the geometric 

characteristics of the critical defects. Notably, the training of this process was conducted using 
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SVM. The results obtained in this study highlighted the fact that the maximum determination 

factor’s value between the anticipated and experimental fatigue lives was 0.99. The SVM model 

has a remarkable capability for training in this field. 

Previous studies have emphasized the applicabilities of acoustic-based monitoring in monitoring 

welding defects, identification of phase transformation, cracks formation, surface defects, and 

plasma formation [28]. Through the use of ML algorithms, it is possible to identify and categorize 

the defects of the welded melt pool rapidly[29]. In addition, existing studies represented the AE 

sensors’ applications in monitoring the L-PBF process.   

Kouprianoff et al. employed an ICP microphone attached to the wall of the build chamber to 

identify the defects and balling effects in single tracks of maraging steel and also compared two 

efficient and defective tracks in terms of powder layer thickness. Irrespective of using the ML 

algorithm, the difference in the energy over frequency between these tracks was accurately 

specified[30].  

 Using the L-PBF technique, Pandiyan et al. examined the various melting conditions of 316L laser 

tracks. A PAC AM41 sensor was mounted on the sidewalls of the build chamber to identify the 

airborne signals. Besides, a variety of processing for the raw AE signals was examined in this 

study. The authors stated that the frequency and time-frequency domains could also be considered 

to specify the different characteristics of the laser regimes[31]. 

Reider et al. employed the ultrasound sensor to monitor the L-PBF process and gather the related 

data layer by layer. A cylinder with an internal defect was examined in the study. On the lower 

side, a transducer was mounted, and it made it difficult to detect the longitudinal defects. The 

authors exploited the fast Fourier transform of the ultrasonic signals to examine the impact of 
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process parameters on the various layers. The results obtained in the study represented the 

ultrasound signals’ capability for defect identification[32].  

Ye et al. used a variety of ML algorithms in terms of time and frequency domain to collect the AE 

signal in a L-PBF process. Changing the laser scan speed and power, the balling, slightly balling, 

normal, and slightly overheating conditions were experimented for melting. In this research, a 

comparison was made between the multilayer perceptron (MLP) and support vector machine 

(SVM) technique based on the DBN classifier. The obtained results indicate the acceptable 

performance of SVM in classification for data after a FFT. Nevertheless, DBN has by far the best 

performance in the classification of raw data and is appropriate for fast decision-making and online 

control[33]. 

Wasmer et al. utilized a fibre Bragg grating AE sensor at the internal wall of the chamber to identify 

the airborne signals. Changing the laser scan speed, the various qualities were examined. In order 

to determine the frequency bands of the raw AE signals, a standard wavelet packet transform 

(WPT) was employed. Using this method, it is able to classify the various quality levels with up 

to 79-84% accuracy [34]. In a similar study, this classification rate reached 83-89% by using a 

fixed running window for the AE signal analysis [35]. The long and short running window method 

was experimented with twice with SCNN and presented higher classification accuracy. The same 

AE signals were classified employing an RL method to decrease the time required for training and 

data labelling. Although, the accuracy of classification was restricted to 74-82% [36].   

Finally, in an advanced project, Eschner et al. exploited a piezoceramic sensor fixed under the 

build plate to monitor the L-PBF process. In order to define 54 cubes with various quality levels 

for the experiment, the laser power, scan speed, and hatch speed were changed. Short Fourier 
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transform was used on the raw AE data, and a spectrogram was gained for the layers and 

specimens. Three different classes were specified according to the number of specimens, and the 

background noise was eliminated from the spectrograms. Notably, a multilayer perceptron (MLP) 

was considered to classify the AE signals. The sigmoid function was used as an activation function 

for individual neurons and softmax for the output layer. The results obtained in this study 

represented the applicability of the proposed approach for classification with 76-86% accuracy. In 

contrast, the prediction accuracy for complex shapes was significantly lower [37, 38]. 

2.2 Potentials and challenges   

AM can improve communication, training, and education in medical anatomical models. 

Anatomical models can include image anatomy acquisition, image processing, reconstruction 

using CT, and anatomical models prints [39, 40]. For having an accurate model image resoultions 

should be high as well. Also, It is possible to use material jetting techniques (such as polyjet) to 

material tune multi-material prints. ML algorithm can be trained with mechanical properties data 

and physician’s input on haptic perception so that the model could help to achieved multi-material 

printing [41]. 

A new field in tissue engineering is Tissue engineering Bioprinting.  This field focuses on prints 

bio-inks that fabricate tissue-like structures using 3D printing processes ((Khan et al. 2019 [42]; 

Mishbak et al. 2019 [43]). ML could predict the properties of the material by learning from large 

databases of designs and materials. Material properties can include the various mixture 

compositions of bio-inks to produce new scaffold designs for specific purposes (Yu and Jiang 2020 
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[44]. ML algorithms can lead to the Multiple objectives optimization of bio-ink prints, such as 

freeform reversible embedding.(Menon et al. (2019) [45]). 

Numerous aspects like material, design and other processes can be covered by using ML in the 3D 

printing process of buildings and construction works (Lim et al. 2018[46]; Lao et al. 2020 [47]).  

AM could play an essential role in having specific mechanical properties in building structures or 

particular interior design shapes. In addition, ML could help choose the process parameters based 

on the large dataset that came from the PSP of the material. Thus, ML can optimize material 

consumption, learn process plans, and reduce build time by contrasting the cost of the numerous 

plans [41]. 

Since the late 1980s, the automotive industry has used AM to design and redesign car components. 

A wide range of prototypes have been printed at the product development stage and are used for 

negotiations and evaluations. AM is also an attractive solution as customization becomes 

increasingly important. This is because of its ability to tailor-make products, which conventional 

techniques have difficulty doing.  AM was used to print car interior prototypes intended for testing 

and communication purposes. This is in contrast to conventional techniques, such as plastic 

injection moulding, that were used to manufacture actual car components[48].  

The interior design of a car often influences sales. With customizable interiors available, buyers 

can personalize according to their taste and budget, which boosts car sales. Printed parts can now 

be more frequently used in actual cars since AM is capable of meeting the demands of the 

variations within customization. Dashboards with the same dimensions are printed in smaller 

sections before being glued together and coated with acrylic paint. SLA has high printing accuracy, 



M.A.Sc Thesis – M. Ghayoomi Mohammadi                      
                                   

                                                                          McMaster University- Mechanical Engineering Department 
 
 

24 
 

which allows the seamless fitting of separate sections and the fabrication of functionally fitted 

parts. The working airbox of an engine can also be printed via SLA. Due to the high temperature 

produced during combustion, thermoset polymers capable of withstanding this tremendous heat 

are selected for the printing process[48]. 

AM is currently used in all stages of the aircraft manufacturing industry, from the initial design to 

the final production of the aerospace components. AM is also used for repairs and support systems. 

The ever-increasing use of AM techniques is observed in aerospace original equipment 

manufacturers (OEMs), as well as maintenance, repair, and overhaul (MRO) companies. Complete 

assemblies or special design requirements for a component are often desired in the aerospace 

industry. These needs can easily be met with AM’s agility and empowerment within small and 

medium-sized enterprises. This would allow these enterprises to compete with big companies[48].   

To produce hollow composite components, composite materials can be wrapped around 3D printed 

soluble cores. One example of this process is the fabrication of unmanned vehicle capsules. AM 

would eliminate the need for tooling works in repair and small-scale manufacturing, thereby 

reducing what makes up the majority of the overall cost. Compared to the weeks needed for 

conventional manufacturing methods, manufacturing tools like moulds, jigs, surrogates, fixtures, 

and templates can be printed in a matter of hours. For example, the building of polycarbonate 

wiring conduits through FDM can take less than three days and be done at a small price. In contrast, 

a similar aluminum cast component would take more than six weeks to produce[48].  
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Airlines can also have different needs for their aircraft interiors. Boeing, an aircraft manufacturing 

company, would print customizable interiors for its aircraft. It will be time-consuming to make 

these customizations conventionally. It is not justifiable to produce a few copies at such a high 

price. General Electric Aviation saves on fuel consumption by reducing engine weight using 3D 

printing technology[48]. 

Manufacturers equipped with 3D printers have the ability to gain demanding business 

opportunities not achievable with conventional manufacturing techniques. AM’s flexibility allows 

manufacturers to adjust product designs at any time point by editing the CAD file. AM focusing 

on small to medium-sized prototyping business opportunities brought about the revolution of 

conventional injection moulding techniques. The tooling cost of injection mouldings is high, and 

the development and building process is time-consuming. With AM, it is possible to import a CAD 

file to a machine and print a part within hours. Even if the part is large or has complex geometries, 

it will take a maximum of several days to complete. Traditional manufacturing would take weeks 

or even months. Competition within the traditional manufacturing sector is tough, but companies 

can use 3D printing to secure business via the development, design, proof, or prototyping phases 

of the idea as opposed to quick production turnarounds. This enables companies to communicate 

more effectively with clients throughout the prototype development and production stages[48]. 

In ML techniques, data-driven numerical simulations are more efficient (computationally) versus 

the more physics-based numerical simulations. A trained ML model gives stress predictions for 

lattice structures in 0.47 s while FEM simulations take five to ten hours (in 2018) [49]. However, 

training large data sets is time-consuming and computationally expensive.  
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The computational cost could be an important factor within in situ monitoring and closed-loop control. 

Real-time layer-by-layer defect detections and melt pool inspections need to detect defects spontaneously 

in order to not increase build time or significantly affect production rates. Since printing a layer takes several 

minutes to finish, the detection operation is considered to be fast acting. However, melt pool inspections 

with high-speed cameras need more computational power because of the larger data set. Better ML 

techniques are required for these kinds of applications to compensate for the large data set. thermal-

mechanical models were studied using high-performance computations known as Convolutional (Francis 

and Bian, 2019) [50]. Artificial Neural Networks for Additive Manufacturing Predictions were used via 

Big Dat deep learning algorithms (CAMP-BD). A large sum of thermal images were captured, equivalent 

to 40 GB of data. The supercomputer cluster at Mississippi State took 26 days to train the Deep learning 

model[41]. 

2.3 Standardization requirements in ML 

Sharing data is necessary in order to develop an extensive database, something that is needed to 

run ML algorithms. In addition, many researchers are working on novel materials and process 

development stages. The standards are seen within data acquisition, and the pre-processing of data 

would encourage data sharing and improve collaboration amongst the AM community. 

Unfortunately, the ML frameworks in the market like TensorFlow, Cafe, and Pytorch are not 

compatible. As a result, a uniform framework is required to allow the sharing of machine learning 

models. [41]. 
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2.4 Summary 

It is evident through the literature review that process monitoring and inspection systems are 

needed to improve the AM process’ quality. Existing monitoring and inspection systems for AM 

processes typically focus on measuring process signatures like melt pool temperature and 

geometry. Thermal and vision-based imaging techniques have served excellently for predicting 

AM part quality. The collection of process signature data can be performed effectively and 

accurately with the advancements seen in measurement science and technology, the specification 

of IR and CCD cameras. Based on the accurate process signature data, further studies could lead 

to a more precise correlation between process parameters and signatures. For example, there is 

little focus on data processing and measurement error evaluation. This can lead to uncertainty in 

the melt pool geometry and temperature measurements. Minimizing measurement errors will help 

reach the necessary accuracy levels in developing a process control system. Using a numerical 

simulation method, a predictive model for metal-based AM processes should be developed to get 

the melt pool’s geometric information [51]. Currently, the numerical method can simulate a single 

track and simple geometries, which demonstrates the limited representation of melt pool dynamics. 

Further studies for a simulation technique should be performed to get the geometric information 

of the melt pool in multi-layers or multi-track. Based on the studies stated above, process 

monitoring, inspection systems, and control algorithms should be developed. Control algorithms 

specifically could be used to develop the real-time closed-loop system[52]. Same as the melt pool 

measurement, other measurements, such as acoustic signals, acoustic emission signals, temperate 

and etc. need to have more focus on data processing and in the case that there isn’t any 

mathematical model for the simulation, the AI can be a good candidate to create a model for 
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detections and prediction. Due to the sensitivity of AE technique and cost-effective method in 

comparison of IR camera or high speed- high resolution camera, it could be an effective method 

for quality control in the AM industry. It should be mentioned, although it is simple in principle, 

it can be difficult to implement. First, the characteristic of the emitted signal is unpredictable, as 

is greatly dependent on the source material. Second, the mechanism by which acoustic emission 

works unfortunately applies to noise as well. Depending on the positioning and setup, it is possible 

for different signals to be detected. 

 

 

 

 

 

 

 

 

 



M.A.Sc Thesis – M. Ghayoomi Mohammadi                      
                                   

                                                                          McMaster University- Mechanical Engineering Department 
 
 

29 
 

2.5 References 

1. Yuan, B., et al., Machine‐Learning‐Based Monitoring of Laser Powder Bed Fusion. Advanced 
Materials Technologies, 2018. 3(12): p. 1800136. 

2. Yap, C.Y., et al., Review of selective laser melting: Materials and applications. Applied physics 
reviews, 2015. 2(4): p. 041101. 

3. ISO, A., Standard Terminology for Additive Manufacturing–General Principles–Terminology. 
2015. 

4. Baturynska, I., O. Semeniuta, and K. Martinsen, Optimization of process parameters for powder 
bed fusion additive manufacturing by combination of machine learning and finite element method: 
A conceptual framework. Procedia Cirp, 2018. 67: p. 227-232. 

5. Ikonen, I., et al. A Genetic Algorithm for Packing Three-Dimensional Non-Convex Objects Having 
Cavities and Holes. in ICGA. 1997. 

6. Garg, A., K. Tai, and M. Savalani, State-of-the-art in empirical modelling of rapid prototyping 
processes. Rapid Prototyping Journal, 2014. 

7. Garg, A., J.S.L. Lam, and M. Savalani, A new computational intelligence approach in formulation 
of functional relationship of open porosity of the additive manufacturing process. The International 
Journal of Advanced Manufacturing Technology, 2015. 80(1): p. 555-565. 

8. Wang, R.-J., et al., ANN model for the prediction of density in selective laser sintering. International 
Journal of Manufacturing Research, 2009. 4(3): p. 362-373. 

9. Wang, R.-J., et al., Influence of process parameters on part shrinkage in SLS. The International 
Journal of Advanced Manufacturing Technology, 2007. 33(5): p. 498-504. 

10. Sing, S., et al., Perspectives of using machine learning in laser powder bed fusion for metal additive 
manufacturing. Virtual and Physical Prototyping, 2021. 16(3): p. 372-386. 

11. Gobert, C., et al., Application of supervised machine learning for defect detection during metallic 
powder bed fusion additive manufacturing using high resolution imaging. Additive Manufacturing, 
2018. 21: p. 517-528. 

12. Zhang, M., et al., High cycle fatigue life prediction of laser additive manufactured stainless steel: 
A machine learning approach. International Journal of Fatigue, 2019. 128: p. 105194. 

13. Jin, Z., et al., Machine learning for advanced additive manufacturing. Matter, 2020. 3(5): p. 1541-
1556. 

14. Xiong, Y., et al., Data-driven design space exploration and exploitation for design for additive 
manufacturing. Journal of Mechanical Design, 2019. 141(10). 

15. Rosen, D.W., Research supporting principles for design for additive manufacturing: This paper 
provides a comprehensive review on current design principles and strategies for AM. Virtual and 
physical prototyping, 2014. 9(4): p. 225-232. 

16. Astm, I., ASTM52900-15 standard terminology for additive manufacturing—general principles—
terminology. ASTM International, West Conshohocken, PA, 2015. 3(4): p. 5. 

17. Liu, C., et al., Machine Learning-enabled feedback loops for metal powder bed fusion additive 
manufacturing. Procedia Computer Science, 2020. 176: p. 2586-2595. 

18. Qi, X., et al., Applying neural-network-based machine learning to additive manufacturing: current 
applications, challenges, and future perspectives. Engineering, 2019. 5(4): p. 721-729. 

19. Ding, Y., J. Warton, and R. Kovacevic, Development of sensing and control system for robotized 
laser-based direct metal addition system. Additive Manufacturing, 2016. 10: p. 24-35. 

20. Yan, W., et al., Data-driven multi-scale multi-physics models to derive process–structure–property 
relationships for additive manufacturing. Computational Mechanics, 2018. 61(5): p. 521-541. 

21. Ding, J., et al., Thermo-mechanical analysis of Wire and Arc Additive Layer Manufacturing process 
on large multi-layer parts. Computational Materials Science, 2011. 50(12): p. 3315-3322. 



M.A.Sc Thesis – M. Ghayoomi Mohammadi                      
                                   

                                                                          McMaster University- Mechanical Engineering Department 
 
 

30 
 

22. Paul, A., et al. A real-time iterative machine learning approach for temperature profile prediction 
in additive manufacturing processes. in 2019 IEEE International Conference on Data Science and 
Advanced Analytics (DSAA). 2019. IEEE. 

23. Chen, L., et al., Rapid surface defect identification for additive manufacturing with in-situ point 
cloud processing and machine learning. Virtual and Physical Prototyping, 2021. 16(1): p. 50-67. 

24. Kappes, B., et al. Machine learning to optimize additive manufacturing parameters for laser 
powder bed fusion of Inconel 718. in Proceedings of the 9th International Symposium on Superalloy 
718 & Derivatives: Energy, Aerospace, and Industrial Applications. 2018. Springer. 

25. Cannizzaro, D., et al. Image analytics and machine learning for in-situ defects detection in Additive 
Manufacturing. in 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE). 
2021. IEEE. 

26. Meng, L. and J. Zhang, Process design of laser powder bed fusion of stainless steel using a gaussian 
process-based machine learning model. JOM, 2020. 72(1): p. 420-428. 

27. Bao, H., et al., A machine-learning fatigue life prediction approach of additively manufactured 
metals. Engineering Fracture Mechanics, 2021. 242: p. 107508. 

28. Sun, A., E. Kannatey-Asibu Jr, and M. Gartner, Sensor systems for real-time monitoring of laser 
weld quality. Journal of Laser Applications, 1999. 11(4): p. 153-168. 

29. Saad, E., H. Wang, and R. Kovacevic, Classification of molten pool modes in variable polarity 
plasma arc welding based on acoustic signature. Journal of materials processing technology, 2006. 
174(1-3): p. 127-136. 

30. Kouprianoff, D., et al. Acoustic emission technique for online detection of fusion defects for single 
tracks during metal laser powder bed fusion. in Solid Freeform Fabrication Symposium, University 
of Texas at Austin. 2018. 

31. Pandiyan, V., et al., Analysis of time, frequency and time-frequency domain features from acoustic 
emissions during Laser Powder-Bed fusion process. Procedia CIRP, 2020. 94: p. 392-397. 

32. Rieder, H., et al. On-and offline ultrasonic characterization of components built by SLM additive 
manufacturing. in AIP Conference Proceedings. 2016. AIP Publishing LLC. 

33. Dong, G., J. Marleau-Finley, and Y.F. Zhao, Investigation of electrochemical post-processing 
procedure for Ti-6Al-4V lattice structure manufactured by direct metal laser sintering (DMLS). 
The International Journal of Advanced Manufacturing Technology, 2019. 104(9): p. 3401-3417. 

34. Wasmer, K., et al. In situ and real-time monitoring of powder-bed AM by combining acoustic 
emission and artificial intelligence. in International Conference on Additive Manufacturing in 
Products and Applications. 2017. Springer. 

35. Shevchik, S.A., et al., Acoustic emission for in situ quality monitoring in additive manufacturing 
using spectral convolutional neural networks. Additive Manufacturing, 2018. 21: p. 598-604. 

36. Wasmer, K., et al., In situ quality monitoring in AM using acoustic emission: A reinforcement 
learning approach. Journal of Materials Engineering and Performance, 2019. 28(2): p. 666-672. 

37. Eschner, N., et al., Classification of specimen density in Laser Powder Bed Fusion (L-PBF) using 
in-process structure-borne acoustic process emissions. Additive Manufacturing, 2020. 34: p. 
101324. 

38. Eschner, N., et al. Development of an acoustic process monitoring system for selective laser melting 
(SLM). in Proceedings of the 29th Annual International Solid Freeform Fabrication Symposium, 
Austin, TX, USA. 2018. 

39. Van Eijnatten, M., et al., CT image segmentation methods for bone used in medical additive 
manufacturing. Medical engineering & physics, 2018. 51: p. 6-16. 

40. Radzi, S., et al., Development of a three-dimensional printed heart from computed tomography 
images of a plastinated specimen for learning anatomy. Anatomy & cell biology, 2020. 53(1): p. 
48. 



M.A.Sc Thesis – M. Ghayoomi Mohammadi                      
                                   

                                                                          McMaster University- Mechanical Engineering Department 
 
 

31 
 

41. Goh, G.D., S.L. Sing, and W.Y. Yeong, A review on machine learning in 3D printing: applications, 
potential, and challenges. Artificial Intelligence Review, 2021. 54(1): p. 63-94. 

42. Khan, Z., et al., Optimization of a 3D bioprinting process using ultrashort peptide bioinks. 
International Journal of Bioprinting, 2019. 5(1). 

43. Mishbak, H., G. Cooper, and P. Bartolo, Development and characterization of a photocurable 
alginate bioink for three-dimensional bioprinting. International Journal of Bioprinting, 2019. 5(2). 

44. Yu, C. and J. Jiang, A perspective on using machine learning in 3D bioprinting. International 
Journal of Bioprinting, 2020. 6(1). 

45. Menon, A., et al., Optimization of silicone 3D printing with hierarchical machine learning. 3D 
Printing and Additive Manufacturing, 2019. 6(4): p. 181-189. 

46. Tan, K. The framework of combining artificial intelligence and construction 3D printing in civil 
engineering. in MATEC web of conferences. 2018. EDP Sciences. 

47. Lao, W., et al., Improving surface finish quality in extrusion-based 3D concrete printing using 
machine learning-based extrudate geometry control. Virtual and Physical Prototyping, 2020. 
15(2): p. 178-193. 

48. Chua, C.K., C.H. Wong, and W.Y. Yeong, Standards, quality control, and measurement sciences 
in 3D printing and additive manufacturing. 2017: Academic Press. 

49. Koeppe, A., et al., Efficient numerical modeling of 3D-printed lattice-cell structures using neural 
networks. Manufacturing Letters, 2018. 15: p. 147-150. 

50. Francis, J. and L. Bian, Deep learning for distortion prediction in laser-based additive 
manufacturing using big data. Manufacturing Letters, 2019. 20: p. 10-14. 

51. Lei, N., et al., An additive manufacturing process model for product family design. Journal of 
Engineering Design, 2016. 27(11): p. 751-767. 

52. Chua, Z.Y., I.H. Ahn, and S.K. Moon, Process monitoring and inspection systems in metal additive 
manufacturing: Status and applications. International Journal of Precision Engineering and 
Manufacturing-Green Technology, 2017. 4(2): p. 235-245. 

 



M.A.Sc Thesis – M. Ghayoomi Mohammadi                      
                                   

                                                                          McMaster University- Mechanical Engineering Department 
 
 

32 
 

Chapter 3 

3 Real Time Monitoring in L-PBF Using a Machine Learning 

Approach   
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Abstract:  

Laser powder bed fusion (L-PBF) is an additive manufacturing process whereby a heat source 

(laser) is used to consolidate material in powder form to build three-dimensional parts. This paper 

uses real-time monitoring in L-PBF for quality control. Acoustic Emission (AE) is used to detect 

various defects like pores and cracks during the powder bed selective laser melting process via the 

machine learning approach. Data collection is performed under various process parameters, using 

an AE sensor. Several time and frequency-domain features are extracted from the AE signals 

during data mining. K-means clustering is employed during the unsupervised learning, and a neural 

network approach is employed for the supervised machine learning on the dataset. Data labelling 

is conducted for different laser powers, clustering results and signal time durations. The results 

show the potential of real-time quality monitoring using AE during the L-PBF process. 

Keywords:  

Powder bed fusion; K-means; Acoustic Emission 
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3.1 Introduction 

Additive Manufacturing (AM) is a promising technology used to fabricate complex geometries 

which are difficult or impossible to manufacture through conventional manufacturing routes. A 

sub-field of AM, known as Laser Powder Bed Fusion (L-PBF), uses powder as the raw material, 

along with a heat source (laser) to fabricate the desired part. Owing to its unique capabilities, L-

PBF has attracted the attention of different industrial sectors [1]. The increasing demand for 

performance improvement in various industries has motivated design innovation [2]. AM 

technologies are particularly suited to deal with these increasing market requirements. Despite its 

huge demand, lack of repeatability is one of the biggest issues in the application of L-PBF within 

various industries. Therefore, improving the quality and repeatability within AM technology is an 

important objective.  

Even if the same process parameters are used, it is challenging to produce parts with the same 

mechanical properties. Despite significant advancements in AM technology, microstructure 

defects such as porosity, material supply issue, cracks, vaporization and etc. persist and are the 

main contributors to the existing lack of repeatability. The presence of such an issue is attributed, 

at least in part, to insufficient in-process monitoring and closed-looped control algorithms of 

machine operations. Additional modules can be added to AM machines to store generated data in 

real-time for the closed-loop feedback. Some closed-loop feedback equipment includes high-speed 

CMOS-camera (PBF process for melt pool monitoring), dual-colour pyrometer (Directed Energy 

Deposition(DED) for melt pool monitoring and build height), and in-line coherent imaging (DED 

for depth measurement)[3]. 
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The purpose of this paper is to address the problem of lack of repeatability during the L-PBF for 

on-line process monitoring by using Acoustic Emission (AE). AE creates transient electric waves 

by quickly releasing localized energy, thereby capturing information on subsurface dynamics 

occurring during the process. Examples include fracture, plastic deformation, and crack initiation 

and growth[4]. For example, for pipe rupture research, AE is applied to examine flaws in pressure 

vessels and stress corrosion cracking among others. AE is exceptionally sensitive, detecting crack 

growth of 25µm compared to the 0.55 mm growth detected by ultrasonic and radioactive testing[5]. 

AE monitoring also identifies growing flaws with magnitudes smaller than any other non-

destructive test technique (NDT)[5]. 

Alongside its exceptional sensitivity, AE is more applicable than other techniques for monitoring 

and evaluating structural integrity. This is due to its potential for continuous monitoring, warning 

indications, complete component volume inspection, and the identification of crack initiation, 

propagation, and leaks. Using an array of AE sensors, the global area or the volume of components 

can be assessed without the use of time-consuming and high-cost scanning[4].  

The characteristics of the AE signal depend on the defect itself, and therefore, can be correlated to 

its occurrence. However, the AE signal cannot predict any upcoming changes in the characteristics 

of the defects (e.g. size) in advance. In addition, the characteristics of the AE signal depend on the 

path between the defect and the source[4].   

The AE data can be acquired via the AE system, which is comprised of a pre-amplifier, a data 

acquisition, and AE sensors. After collecting time-domain waves, AE features need to be extracted 

from the raw wave data. The AE features could be in the time-domain, frequency-domain, or time-

frequency-domain. The main purpose behind collecting data and feature extractions is using them 
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for online investigations, where the using waves created by defects and those created via perfect 

solidification can be distinguished. 

Previous monitoring methods have primarily focused on the experimental setup and variable 

measurements. Studies have rarely employed intelligent process monitoring for defect detection. 

In-situ monitoring processes require faster speeds, higher recognition accuracy, and fewer 

computational cost. Intelligent methods are widely applied in defect detection and manufacturing 

process monitoring [6, 7]. An artificial intelligent method would be a good candidate for classifying 

wave sources. Thus, monitoring the L-PBF process by AE signal via a machine learning method 

is proposed. 

This study includes three parts. The first is looking at the Time-Domain data and analyzing AE 

signals for the entire printing process. Afterwards, all waveforms were transferred to the frequency-

domain. They were then used as input for the K-Means clustering to produce more information 

from the dataset. Lastly, the deep learning method was used to categorize AE signals, which helps 

in the control system of the L-PBF machine.  

At the end, the deep learning model is already prepared and requires the input of information. The 

deep learning model can classify AE signals in each layer, a procedure which includes transferring 

all waveforms to the frequency-domain and using them as test data. The result can help to change 

input for the next layers or for the last printed layer to melt again. After inputting new process 

parameters, the L-PBF will continue printing parts. 

 

 



M.A.Sc Thesis – M. Ghayoomi Mohammadi                      
                                   

                                                                          McMaster University- Mechanical Engineering Department 
 
 

37 
 

3.2 Experimental procedures 

3.2.1 Feedstock materials  

The starting material was gas-atomized stainless steel 316 L powder (Carpenter Technology LTD) 

with particle sizes in the 15–45μm range. The particle size distribution (PSD) of the received and 

sieved powder was measured through the laser diffraction method using a Malvern Master sizer 

2000. 

3.2.2 Selective laser melting processing   

An OmniSint-160 SLM machine equipped with a 400 W laser was used to produce test samples. 

In all samples, the layer thickness, hatch spacing and scanning speed were set at 0.04 mm, 0.08 

mm, and 600 mm/sec, respectively. Laser power and energy density for each sample are listed in 

Table 3-1  During each run, eight cylindrical parts with a 10 mm radius of and a 10 mm height 

were produced (Figure 3.1).Samples were directly fabricated on the build plate without any post-

processing. The cylinders were then removed using wire-cut Electrical Discharge Machining 

(EDM). 

Figure 3.1. Printed parts on the build plate. 
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Table 3-1laser power and energy density of each test sample. 

 

 

 

 

3.2.3 AE system 

The AE system used in this experiment is a WSα, 100-900 kHz wideband frequency sensor 

connected to a USB-ae node. The USB Node is a full-featured, low-cost Acoustic Emission System 

that plugs conveniently into the USB Port of the User’s PC or laptop. All filtering parameters for 

the AE system acquisition are listed in Table 3-2. The sensor was attached to the center of and 

underneath the build plate. In order to maintain the same distance between parts and sensor, all 

parts were placed within a 4 cm radius circle. The pencil lead break method was used prior to each 

test according to the ASTM E976-1025 standard in order to calibrate the AE sensor. Vacuum 

grease was used to cover the contact surface between specimens and sensor to produce proper 

acoustical coupling. There was a time gap for melting each part in each layer to distinguish each 

part’s wave easily. 

Sample number Laser power (W) Energy density (J/mm3) 
1 75 39.06 
2 100 52.08 
3 150 78.13 
4 180 93.75 
5 200 104.16 
6 220 114.58 
7 250 130.2 
8 300 156.25 
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Table 3-2AE system filtering parameters. 

Threshold Analog Filter Waveform Setup 
Type           dB Lower       Upper Sample Rate      Pre-trigger 
FIXED       40 20kHz       1MHz 5MSPS              16.00 

 

3.2.4 K-Means Clustering algorithm[8] 

One of the most conventional methods for exploratory data analysis is clustering. In this study the 

K-means algorithm was used since it is an efficient classifier for data points with predefined 

number of clusters. It is also fast enough for use on large amounts of data and aids in producing a 

meaningful intuition of the data structure. Furthermore, this method has been used in previous 

acoustic signal research [9]. The K-means objective function is one of the most popular clustering 

analyses within data mining. K-means clustering is a vector quantization method, originally drawn 

from signal processing. In K-means, data is segregated into disjoint sets 𝐶𝐶1, . . . ,𝐶𝐶𝑘𝑘 where a centroid 

denotes each 𝜇𝜇𝑖𝑖, partitioning n observations into K clusters such that each observation fits into the 

cluster with the closest mean. The purpose is to create a cluster prototype, and the result is that 

data space is partitioned. K-Means minimizes the variances within each cluster, which is 

represented as squared Euclidean distances. The assumption is that the input set is embedded 

within some large metric space (𝑋𝑋′,𝑑𝑑)(so that 𝑋𝑋 ⊆ 𝑋𝑋′) and the centroids are members of 𝑋𝑋′. The 

objective function of K-means measures the squared distance between the centroid of the cluster 

and each point in 𝑋𝑋. The centroid of 𝐶𝐶𝑖𝑖 is defined as: 
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The k-means objective is defined as: 
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which can also be rewritten as the following:   
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3.2.5 Deep learning for classification 

Layers, input data, loss functions, and optimizers are all components of neural network training. 

The layers form the network, while the input data targets the network, comprised of chained layers 

to map the input data into predictions. The loss function compares the predictions to its targets and 

produces a loss value, which measures how well the predictions match expectations. The optimizer 

updates the network’s weights by using the loss value [10]. An epoch is the number of times in 

which all training vectors are used, such that it updates the weights. In batch training, all training 

samples simultaneously go through the learning algorithm within one epoch before updating 

weights. In sequential training, all weights are updated after the sequential passing of each vector 

through the training algorithm (Figure 3.2). 

The used model had five layers; all of them were fully connected (Table 3-3). To train the model, 

categorical cross-entropy was the loss function and Adam was the optimizer. Categorical cross-

entropy for K class and n samples can be calculated as: 
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              3.4 

The accuracy of the model is computed by simply counting the number of correct predictions 

divided by the total number of samples, which gives a number in [0,1]. Figure 3.3 shows the 

training’s loss value and accuracy. The test part contained 15% of the data set. 

[10] 

Table 3-3Details of layers, networks in the deep learning model. 

 

 

Layer (type) Output Shape Number of Parameters 

dense_1 (Dense) (None, 2000) 7172000 

dense_2 (Dense) (None, 1000) 2001000 
dense_3 (Dense) (None, 400) 400400 
dense_4 (Dense) (None, 220) 88220 
dense_5 (Dense) (None, 3) 884 

Figure 3.2Schematic of layers. networks, loss function, and optimizer in a deep learning model  

( ) ( )( , ) log( )
n K

k k
true predict true predict

i k
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(b) 
 

 

 

 

Figure 3.3(a) Loss value and (b) accuracy in each epoch in the training part 
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3.3 Results 

3.3.1 Time-domain data responses for the whole printing process 

Time-domain AE signal features are listed in Table 3-4. As shown in Figure 3.5, there is a 

significant difference in time-domain data, such as the number of counts, energy, and rise time 

during the printing of the first layers and the rest of the layers. Based on the time, it was noted that 

the first 20 layers have a significant difference, and accordingly, the data from these layers are not 

reliable to be used in the machine learning methods. This transient behaviour can be explained as 

follows:  

First,  thermal transient behaviour in printing the first few layers can occur due to the difference 

in the cooling rate of these layers and subsequent ones can be caused by various cooling 

mechanisms [11]. To clarify, the initial layers are in direct contact with the cold substrate, which 

acts as a heat sink. However, the subsequent layers are consolidated on the heated layers which 

were previously deposited. Second, the powder layer thickness during the L-PBF processes 

deviates from the initial value due to the difference between the thickness of the deposited powder 

layer before and after consolidation. The liquid formed after the melting of the powder particles 

fills the inter-particle pores and creates a dense layer that is lower in thickness compared to the 

initial deposited layer [12]. The powder layer thickness approaches a constant value known as 

effective powder layer thickness and remains unchanged during the rest of the printing process. 

The third reason behind this transient behaviour, shown in Figure 3.6, is the fact that the travelling 

path of the waves towards the sensor is very different for the first layers compared to the rest of 

the layers. The enhanced dissipation of AE signals occurs due to the presence of powder particles 

surrounding the build which are believed to reduce the intensity of time-domain features. 
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Moreover, as shown in Figure 3.6, the waves travel a longer distance for the first layers to reach 

the sensor. 

Table 3-4Time-domain AE signal features with their definition. 

 

  

 

 

 

 

 

 

                                                    

Feature Definition 

peak amplitude The highest measured voltage in a waveform 

number of counts Numbers that the signal crossed at the threshold 

duration The time difference between the crossing of the first and 
last threshold 

energy The area under the voltage-time graph, specifically within 
a set duration 

rise time The interval time between the first threshold crossing and 
the signal peak 
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Figure 3.4Time-domain AE signal feature  
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3.3.2 Unsupervised results   

Fast Fourier Transform (FFT) converts a signal from its original time-domain to the frequency-

domain. Complex numbers are represented as X0, ..., X(N-1). The Discrete Fourier Transform (DFT) 

is defined by the following formula: 

Figure 3.6. Schematic illustrations of the path that waves travel to reach the AE sensor in the case of (a) first 

layer, and (b) multiple layers. 
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       𝒌𝒌 = 𝟎𝟎, . . .𝑵𝑵− 𝟏𝟏                              

 

where the primitive Nth root of 1 is  𝑒𝑒𝑖𝑖2𝜋𝜋/𝑁𝑁[14]. 

Using FFT, all waveforms were transformed into the frequency-domain. Afterwards, all frequency 

results were clustered into four groups. The elbow method was used to find the optimum number 

of clusters, which [15].  

 In this clustering process, the entire frequency vector was used as the features of each sample. 

This is due to the fact that in most waveforms there are two or more dominant frequencies; 

therefore, using frequency peak can produce errors. From the mechanical perspective, having two 

dominant frequencies is reasonable since during solidification, defects such as cracks, porosities 

and more can make AE signals too.  

In Figure 3.7, one example of the frequency-domain samples for each cluster is shown. Each 

cluster can be related to the produced parts based on the time of signals. Each cluster can be related 

to the quality of the samples based on their energy density and prior research [16]. The start time, 

end time, waveform and frequency-domain of each signal is available. Clustering of signals was 

on the frequency domain. Based on the recorded time of each signal, cluster No. 0 can be related 

to the effect of the recoating process in each layer. Cluster No. 1 can be related to samples with a 

high-quality, cluster No. 2 to samples with medium-quality, and cluster No.3 to samples with poor-

quality [16]. 
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 Low-quality samples have micro-cracks, voids, and un-melted particles. Medium-quality ones 

show fewer voids and cracks and partially melted particles than low-quality samples. Lastly, high-

quality samples have no voids or cracks and display a stable melting process, where the particles 

are fully melted. For this purpose, the number of cracks, porosities and density of each part help 

to assign parts to their groups. Figure 3.8 shows the top surface of low, medium, and high-quality 

parts. 
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Figure 3.7Cluster results in the frequency domain 
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Figure 3.8Microstructures of the top surfaces of samples 

with (a) low-quality (b) medium-quality and (c) high quality  
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3.3.3 Supervised results 

Each sample is labelled under one of three classes: poor, medium, and high quality. They were 

classified using the deep learning classifier and tested on 15% of the data set, which is the 

frequency-domain of all waveforms (transformed by FFT). The results are shown in Table 3-5 in 

the form of a confusion matrix. In order to evaluate the performance of a model, a confusion matrix 

is used. In this matrix, there are columns and rows which indicate the actual and predicted values 

of the data, respectively. If a diagonal matrix is achieved, the model works perfectly; otherwise, 

errors have been introduced to the model. To quantify the accuracy of the model in each class, the 

number in the diagonal position of that class is divided by its total value[17].  There are 91%, 77%, 

and 70.8% accuracy for class No. 1, No. 2, and No. 3, respectively. In total, an 85.9% accuracy 

level was observed. Also, it took 0.5087 seconds for one layer to be transformed from the time-

domain waveform to frequency-domain and be classified via deep learning with a regular core i7 

computer, all through the parallel process. 

Class No. 1, representing the high-quality samples, has the least amount of errors in comparison 

to the other classes. Since the poor and medium quality samples have both defective layers and 

high-quality layers, these classes have more significant errors. 

Table 3-5. Confusion Matrix. 

 

 

 

 

 Actual value 
Classes       Numbers No.1 No.2 No.3 

Pr
ed

ic
te

d 
va

lu
e  

No.1 1563 73 35 
No.2 58 403 52 
No.3 93 46 211 

Total value of each 
class 

1714 522 298 
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3.4 Conclusion 

In this study, real-time monitoring of L-PBF was investigated via a novel AE-based approach. FFT 

analysis was utilized to extract frequency-domain information. The frequency-time domain 

contained a vast array of processing information, such as pure consolidation, micro-cracks, and 

porosity. By using an unsupervised Machine learning method, the correlation between AE signals 

and processing information was determined. The deep learning method helps to create models 

which predict the quality of printed parts. Thus, AE can be a good output candidate for online 

monitoring systems in L-PBF processing. 
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Chapter 4 

4 On the application of machine learning for defect detection 

in L-PBF additive manufacturing 
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machine learning for defect detection in L-PBF additive manufacturing." Optics & Laser Technology 143 
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Abstract:  

This paper investigates the performance of several Machine Learning (ML) techniques for online 

defect detection in the Laser Powder Bed Fusion (L- PBF) process. The research aims to improve 

the consistency in product quality and process reliability. The applications of acoustic emission 

(AE) sensor to receive elastic waves during the printing process is a cost-effective way of 

materializing such a demand. In this study, the process parameters were intentionally adjusted to 

create three different levels of defects in H13 tool steel samples. The first class was printed with 

minimum defects, the second class had only intentional cracks, and the last class included both 

intentional cracks and porosities. The AE signals were acquired during the samples' 

manufacturing, and three different machine learning (ML) techniques were applied to analyze and 

interpret the dataset. First, a hierarchical K-means clustering is employed for labeling the data, 

followed by a supervised deep learning neural network (DL) to match acoustic signal with defect 

type. Second, a principal component analysis (PCA) was used to reduce the dimensionality of the 

dataset. A Gaussian Mixture Model (GMM) was then employed to enable fast defect detection 

suitable for online monitoring. Third, a variational auto-encoder (VAE) approach is used to obtain 

a general feature of the signal that could be an input for the classifier. A supervised DL trained on 

the H13 tool steel dataset successfully detected quality trends in AE signals collected from 316L 

samples. The VAE approach presents a novel method to detect defects in L-PBF processes that 

eliminate the need for model training in different materials. 
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Highlights:  

• Presented a method in-situ monitoring the L-PBF process using AE signature. 
 

• Classified defect types in L-PBF using a hierarchical K-means clustering approach. 

 

• Demonstrated the effectiveness of PCA and GMM for anomaly detection. 
 

• Developed a generalized machine learning model to classify defects without training. 

 

 

 

 

 

 

https://www.sciencedirect.com/topics/engineering/acoustic-emission
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4.1 Introduction 

Additive Manufacturing (AM) has gained significant attention in the past two decades, where 

complicated parts can be built in a layer-by-layer manner. This is in contrast with the subtractive 

manufacturing techniques whereby the desired part is obtained by removing material [1]. AM has 

several advantages; for example, it offers nearly infinite freedom of design and can create complex 

geometries and lightweight parts created from lattice structures[2]. In addition, the AM process 

does not generate material waste and does not need part-specific tooling [3]. Powder bed fusion 

(PBF) is one type of AM processes that is capable of fabricating metallic components[4]. A 

mechanical re-coater is used to spread a layer of powder evenly, then a power source (laser or 

electron beam) is used to sinter/melt one layer of the part. Then the build platform is lowered, and 

the cycle is repeated  [5]. 

Although AM technologies have already been utilized to manufacture end products, their full 

implementation across industries is hindered by structural defects developed during the process 

resulting in a lack of repeatability in the end products [6]. Experimental optimization of the process 

through the design of experiments is time-consuming and costly. Moreover, numerical 

optimization requires models to be applied on a multiscale level, hence, computationally expensive 

[7]. The need for higher quality assurance represents a significant technological barrier preventing 

AM from being adopted as a widespread manufacturing technique. There is a need to produce parts 

consistently, especially in safety-critical applications such as aerospace and medical industries [8, 

9]. 

One way to achieve better consistent part production is to monitor the build process in real-time 

via sensors to control key process parameters via software use [10]. In this manner, if one of the 
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observed parameters deviates from its specified requirement, it can be adjusted to keep the build 

on track. The ability to adjust build parameters in an in-situ manner drastically increases efficiency, 

saves time, and reduces cost as the scrap rate declines [11]. However, currently, most of the sensor 

data processing occurs post-build, making the control impossible. Moreover, traditional offline 

testing is typically destructive and costly, leading to strong demand for in-situ monitoring and 

control [12]. 

There are many variables that affect the AM process, such as laser power, scanning speed, hatch 

spacing, layer thickness, and the type of inert gas. There are two main categories of imperfections 

that occur in AM: surface defects and internal defects [13]. Surface defects include roughness 

caused due to the selection of inappropriate process parameters and the staircase effect [14]. 

Internal defects include porosity and cracks due to the selection of inappropriate process 

parameters as well. In-situ monitoring processes need higher recognition accuracy, faster speeds, 

and less computational cost. Intelligent methods are widely used in defect detection and 

manufacturing process monitoring [15, 16]. Sensors used to detect these types of defects include 

pyrometers, CMOS cameras, High-speed cameras, Acoustic Emission (AE) sensors, and Infrared 

(IR) cameras[17, 18]. These can be either externally mounted on the build unit or mounted within 

the build chamber, although external mounting is often favored due to the harsh build environment 

[13].  

AE sensors are considered an economical solution and have considerably easier installation 

compared to other in situ sensors. Applying artificial intelligence algorithms such as machine 

learning (ML) to AE signals is a common approach that is suitable for classifying wave sources. 

AE sensors quickly spot elastic waves and then convert them to transient electric waves and record 
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information during the process. Fracture, plastic deformation, and crack initiation and growth are 

some examples of this type of activity [19]. AE is a sensitive method, detecting 25 μm crack 

growths compared to the 0.55 mm crack growths detected via ultrasound and radioactive 

testing[20]. Compared to other non-destructive test techniques, AE monitoring also identifies 

flaws developed during the process on much smaller scales [20]. AE setup benefits from ease of 

use in LPBF machines as it can be easily mounted under the subsurface of the build plate.  

Several research groups have recently studied the application of ML techniques with AE signals 

in AM. For example, Wasmar et al. [21] used a convolution neural network to classify the AE 

wavelet-based features captured while manufacturing 316L samples to detect the printed parts' 

quality level. While Shevchik et al. [22] used Fast Fourier Transform (FFT) based features as an 

input to spectral convolutional neural networks to detect CL20ES stainless steel's quality level. 

Eschner et al. [23] used frequency domain AE input in an artificial neural network algorithm to 

classify the AE signature of 316L samples printed using the L-PBF process. Gaja et al. [24] 

implemented a defects monitoring system to detect and classify defects in real-time with the aid 

of an AE sensor and an unsupervised pattern recognition analysis (K-means clustering) along with 

a principal component analysis (PCA) for two defect types. It was noted that very few studies had 

covered the reduction of the AE signals dimensionality of the large dataset collected during the L-

PBF process [24]. Moreover, most of the proposed algorithm is trained to detect defects in a single 

material, and the need to generalize the models to cover different materials is present.  

The main contribution of this work is evaluating three ML techniques to detect the defects in H13 

tool steel parts printed using the L-PBF process. The first algorithm utilizes a hierarchical K-mean 

approach for labeling data with a supervised deep learning neural network (DL) classifier to 
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enhance the classification accuracy. The second algorithm uses a principal component analysis 

(PCA) and anomaly detection technique to reduce the data dimension. By fitting the reduced data 

to a Gaussian Mixture Model (GMM), a fast detection method suitable for online monitoring and 

control systems of L-PBF processes was developed. Finally, a variation auto-encoder (VAE) was 

used for the AE signals as a feature extractor module. Then a DL classifier was used to generalize 

the detection method regardless of the material type. The classifier's accuracy was tested by AE 

signals acquired during the manufacturing of 316L stainless steel samples.  

The article is structured as follows: first, the used AE signal processing and ML algorithm's 

theoretical background is described in section 2. The experimental work and signal acquisition is 

described in section 3. The results and discussion are provided in section 4, and section 5 is the 

conclusion and future recommendations. 
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4.2 Theoretical background 

4.2.1 AE Signal Processing 

Pre-processing of the AE signal is necessary to ensure effective analysis of the collected dataset. 

The first step usually includes removing noises from the raw data by wavelet denoising tools. The 

second step involves converting the waveform from a time-domain to a frequency-time domain 

using a Fast Fourier transform (FFT). Waveform describes the shape of a signal as a function of 

time which in Acoustic emission corresponds to the displacement of piezoelectric in the AE sensor 

in time. Hence, the waveform is a 1-D function of time[25].  Afterward, normalization of the AE 

signals is usually performed to ensure a consistent comparison between different signals acquired 

at different locations and parts.  

4.2.1.1 Fast Fourier Transform 

Using frequency-domain features achieved higher accuracy than raw signals [26] and wavelet-

based features [22]. FFT converts signals from their original time to the frequency domain. Using 

FFT helps to analyze a time-dependent phenomenon and for AE signals waveforms. Complex 

numbers are represented as  𝑥𝑥0, 𝑥𝑥1, … , 𝑥𝑥𝑁𝑁−1. The Discrete Fourier Transform (DFT) is defined as 

follows: 
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4.1 

 

    
The primitive Nth root of 1 is 𝑒𝑒𝑖𝑖2𝜋𝜋/𝑁𝑁[27]. 
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4.2.1.2 Discrete Cosine Transform (DCT)  

Using the DCT and the Inverse DCT (IDCT) helped accomplish a very low loss value and 

improved the DL classification accuracy. A discrete cosine transform (DCT) is widely used in 

signal processing and data compression when transformation techniques are required. The most 

important feature of the DCT method is that it is insensitive to noise, and the amplitude detection 

is not influenced by mutation[28]. Also, DCT is a Fourier-related transform similar to the discrete 

Fourier transform (DFT) but using only real numbers. DCT displays a finite sequence of data 

points as a sum of cosine functions oscillating at different frequencies and is often used in digital 

media, including speech coding.  

The discrete cosine transform is a linear, invertible function.  

𝑓𝑓:ℝ𝑁𝑁 → ℝ𝑁𝑁 
Where ℝsymbolizes a set of real numbers.  

There can be eight types of DCT. "DCT" usually refers to DCT type 2, and "IDCT (known as 

Inverse DCT)" typically refers to DCT type 3. ℕ, real numbers 𝑥𝑥0, . . . , 𝑥𝑥𝑁𝑁−1are transformed into 

the real numbers 𝑋𝑋0, . . . ,𝑋𝑋𝑁𝑁−1, which are known as frequency coefficients.  

DCT-II: 

                          𝑘𝑘 = 0, . . ., 𝑁𝑁 − 1                                                                                                                                    4.2 

                                                                    
Some researchers further multiply the𝑋𝑋0term by 1/√2and then multiply the𝑋𝑋vector by a scale 

factor of �2/𝑁𝑁   . This process makes the DCT-II frequency coefficients orthogonal. In 
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"information compression", cosine is used instead of sine functions as fewer cosine functions are 

required to approximate a typical signal. 

4.2.2 Machine learning algorithms: 

This section discusses the theoretical background of the different ML techniques used in this 

work.  

4.2.2.1 K-Means Clustering Algorithm 

Clustering is among the most conventional methods for exploratory data analysis [29]. The K-

means algorithm is an efficient classifier for data points with a predefined number of clusters. Also, 

it goes through large amounts of data quickly and helps to produce a meaningful intuition of the 

data structure. The K-means objective function is a popular clustering analysis within data mining. 

K-means clustering is a vector quantization method drawn from signal processing. In the K-means 

algorithm, data is segregated into disjoint sets 𝐶𝐶1, … ,𝐶𝐶𝑘𝑘 where a centroid denotes each 

𝜇𝜇𝑖𝑖Partitioning 𝑛𝑛 observations into K clusters. Thus, each observation fits into the cluster with the 

closest mean. The purpose is to create a cluster prototype so that the data space is partitioned. K-

means minimizes variances in each cluster, which is represented as squared Euclidean distances. 

The assumption is that the input set is embedded within some large metric space(𝑋𝑋′,𝑑𝑑) (so that 

𝑋𝑋 ⊆ 𝑋𝑋′ ), and the centroids are members of 𝑋𝑋′ . The K-means measures the squared distance 

between the centroid of the cluster and each point in 𝑋𝑋. The centroid 𝐶𝐶𝑖𝑖 is defined as: 

2( ) arg min ( , )
i

i i
X C

X

C d x

µ

µ µ
∈

′∈

= ∑  4.3 

The k-means objective is defined as: 
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𝐺𝐺𝑘𝑘−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚((𝑋𝑋,𝑑𝑑), (𝐶𝐶1, . . . ,𝐶𝐶𝑘𝑘)) = � � 𝑑𝑑(𝑥𝑥, 𝜇𝜇𝑖𝑖(𝐶𝐶𝑖𝑖))2
𝑋𝑋∈𝐶𝐶𝑖𝑖

𝑘𝑘

𝑖𝑖=1

 
4.4 

which can also be rewritten as the following:   

𝐺𝐺𝑘𝑘−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚((𝑋𝑋,𝑑𝑑), (𝐶𝐶1, . . . ,𝐶𝐶𝑘𝑘)) = 𝑚𝑚𝑚𝑚𝑚𝑚
𝜇𝜇1,...,𝜇𝜇𝑘𝑘∈𝑋𝑋 ′

� � 𝑑𝑑(𝑥𝑥, 𝜇𝜇𝑖𝑖)2
𝑋𝑋∈𝐶𝐶𝑖𝑖

𝑘𝑘

𝑖𝑖=1

 
4.5 

4.2.2.2 PCA- GMM 

Gaussian Mixture Models (GMM) are a time-efficient approach to classify data since they use 

expectation-maximization algorithms [30]. GMM algorithm is built with the gaussian probability 

distribution (normal distribution) to quantify data and decompose it into several parts based on the 

Gaussian probability distribution. In the case of AE signals, the data dimension is large; it might 

become difficult or even impossible to apply GMM [31].  The reduction in data dimensions can 

be obtained through applying the principal component analysis (PCA) algorithm. The most 

important feature about the PCA application is that the inevitable loss of data information is 

prevented [32].  

Assume that we are given a 𝑛𝑛 × 𝑚𝑚 data matrix, where X has n samples of m-dimension vectors𝑥⃗𝑥𝑖𝑖 ∈

ℝ𝑚𝑚.  First, the mean and covariance of the data matrix are computed. X's covariance matrix is 𝑆𝑆 ∈

ℝ𝑚𝑚×𝑚𝑚 and is defined by: 

           
1

1 ( )( )
n

T
i i

i
x x x x

n =

Σ = − −∑  
 

4.6 

  

 
where 𝑥̄𝑥𝑖𝑖 ∈ ℝ𝑚𝑚is the mean of each row in X and is defined by: 
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4.7 

  

Then the singular vector decomposition (SVD) of S is used to extract principal components and 

directions via the following equation: 

                       𝑆𝑆 = 𝑈𝑈∑𝑉𝑉𝑇𝑇 
4.8 

where   𝑈𝑈 ∈ ℝ𝑛𝑛×𝑛𝑛,∑ ∈ ℝ𝑛𝑛×𝑚𝑚,𝑉𝑉 ∈ ℝ𝑚𝑚×𝑚𝑚  

In the implementation process, the matrix𝑉𝑉 = [𝑢𝑢1𝑢𝑢2. . .𝑢𝑢𝑚𝑚]  was used, where the vector 𝑢𝑢𝑖𝑖 ∈

ℝ𝑚𝑚represents a primary component direction. 

Afterward, the data matrix X can be projected into 𝑌𝑌 ∈ ℝ𝑘𝑘×𝑚𝑚a new matrix by multiplying a matrix 

𝑃𝑃𝑇𝑇 

                       𝑌𝑌 = 𝑃𝑃𝑇𝑇𝑋𝑋 
4.9 

                                                                                                                                                            
where 𝑃𝑃 = [𝑢𝑢1𝑢𝑢2. . .𝑢𝑢𝑘𝑘],𝑘𝑘 ≤ 𝑚𝑚. The proper number of principal components 𝑘𝑘 is selected before 

the projection of the data matrix. 

Anomaly detection algorithms are beneficial within manufacturing and industry settings as they 

aid in catching potentially severe problems at early stages. Manufacturing organizations have used 

statistical change detection algorithms for quality control for a long time. When the quality of 

sampled output characteristics of a product falls below expected constraints, alarms are triggered. 

Generally, fluctuations in the underlying process are detected by drastic changes within specific 

sensor data measurements. These algorithms are known as simple anomaly detection algorithms. 

1

1 n

i
i

x x
n =

= ∑ 



M.A.Sc Thesis – M. Ghayoomi Mohammadi                      
                                   

                                                                          McMaster University- Mechanical Engineering Department 
 
 

66 
 

Moreover, anomaly detection applies to data from various sensors located at multiple points in the 

monitored manufacturing environment. Anomalies can be detected after they have occurred and 

when unusual patterns of various sensor data occur, which indicates the location of possible faults 

or failures in the manufacturing environment. For example, suppose the "normal" behavior of two 

adjacent sensors depicts a linear relationship over time. In that case, a significant variation in this 

relationship is marked as an anomaly and triggers further investigation. 

The simplest anomaly detection algorithms are based on data distribution assumptions; here, data 

is two-dimensional and normally distributed with a mean of μ and standard deviation of ∑. A large 

distance from the center of the distribution implies a low probability of observing such a data point. 

As there is only a low probability of observing a data point far away from the center, it would be 

labeled an anomaly[33]. The occurrence probability of each data is as follow: 

                    𝑝𝑝(𝑥𝑥; 𝜇𝜇,∑) =
1

(2𝜋𝜋)
𝑚𝑚
2 |∑|

1
2
𝑒𝑒𝑒𝑒𝑒𝑒( −

1
2

(𝑥𝑥 − 𝜇𝜇)𝑇𝑇∑−1(𝑥𝑥 − 𝜇𝜇)) 4.10 

Given a training set of X, μ and ∑ are as the following: 

                     𝜇𝜇 =
1
𝑛𝑛
�𝑥𝑥(𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

 4.11 

                       ∑ =
1
𝑛𝑛
�(𝑥𝑥(𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

− 𝜇𝜇)(𝑥𝑥(𝑖𝑖) − 𝜇𝜇)𝑇𝑇 4.12 
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4.2.2.3 Variational Auto Encoders (VAE) 

Variational Autoencoders (VAEs) are autoencoder-based machine learning algorithms. This 

neural network architecture finds structure in input data to represent it in a compressed form. 

Autoencoders are predominantly made of an encoder, decoder, and loss function [34]. The encoder 

is a symmetric neural network that converts information from an input sample into a vector. The 

encoder takes the high-dimensional data 'x' and converts it to the lower representational space 'z', 

including weights and biases. This conversion process is called a bottleneck. The encoder's goal is 

to compress data into lower-dimensional space efficiently. The decoder is another neural network 

that expands the vector to reconstruct the sample input into an output. The loss function measures 

the amount of data lost during the compression and reconstruction process and, through training, 

seeks to minimize loss [34]. A normal auto-encoder's main goal is to learn an input's hidden 

representation, transform an input into a vector, and minimize reconstruction loss occurring during 

training.   

 

 

 

Figure 4.1VAE architecture with more details illustrated [35] 
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Let x denote the observation and z represent the latent variable in the following descriptions. 

4.2.2.3.1 Encoder (Inference) Network: 

This is an approximate posterior distribution 𝑞𝑞(𝑧𝑧|𝑥𝑥) that takes an observation as input and puts out 

latent representation's set of parameters for the conditional distribution. We can model the 

distribution as a diagonal Gaussian if the problems are mild or if the datasets are unchallenging. 

In this instance, the mean and log-variance parameters of a factorized Gaussian are put out by the 

inference network. Log-variance is used instead of directly using the variance for numerical 

stability.  

4.2.2.3.2 Decoder (Generative) Network: 

The input and output for the generative model are the latent encoding and parameters for a 

conditional distribution of observations, i.e., 𝑝𝑝(𝑥𝑥|𝑧𝑧), respectively. The latent variable used in this 

study was a unit Gaussian prior 𝑝𝑝(𝑧𝑧). 

4.2.2.3.3 Re-parameterization: 

During the optimization process, we can get a sample of 𝑞𝑞(𝑧𝑧|𝑥𝑥) from a unit Gaussian, multiply it 

by the standard deviation, and then add the mean. This ensures that the gradients pass to the 

inference network parameters through the sample. This is represented in Figure1. 

4.2.2.3.4 Loss function: 

Two loss functions can be used to train the model's parameters: a reconstruction loss forcing the 

decoded samples to match the initial inputs and the "KL divergence" (distribution loss) between 

the learned latent distribution and the prior distribution, acting as a regularization term. The "KL 

divergence" can often be neglected, although it reduces overfitting to the training data and helps 

learn well-formed latent spaces and. The concept of "KL divergence" comes originally from 
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information theory and describes the relative entropy between two probability distributions, "p" 

and "q." The "KL divergence" is often conceptualized as measuring some distance between these 

distributions. Minimizing the KL divergence means making the output distribution of the VAE 

sample similar to the input distribution, making VAE desirable property when applied in ML 

models [35]. 

                  𝐷𝐷𝐾𝐾𝐾𝐾(𝑃𝑃||𝑄𝑄) = −�𝑃𝑃(𝑥𝑥) 𝑙𝑙𝑙𝑙𝑙𝑙(
𝑄𝑄(𝑥𝑥)
𝑃𝑃(𝑥𝑥)

)
𝑥𝑥∈𝑋𝑋

 4.13 

The reconstruction loss used in this study is the Mean Squared Error (MSE), as defined by the 

following formula: 

                  𝑀𝑀𝑀𝑀𝑀𝑀 =
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛
 4.14 

 
 

4.2.2.4 Deep learning for classification (DL)  

The DL neural network is a family of ML algorithms that uses multiple processing layers to 

identify complex data features, which is very useful in complex tasks such as audio signal 

processing [36]. The main advantage of DL models is the combination of high accuracy and fast 

response time to detect defects ]37[ . Layers, input data, loss functions, and optimizers are 

components of neural network training. The layers form the network, and the input data targets the 

network, which consists of chained layers to map the input data into predictions. The loss function 

compares predictions to the targets and produces a loss value. This value measures how well 

predictions match expectations. Lastly, the optimizer updates the network's weights using the loss 

value.  
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An epoch is the number of times that all training vectors are used to update the weights. During 

batch training, all samples simultaneously go through the learning algorithm in one epoch before 

weights are updated. During sequential training, weights are updated after each vector's sequential 

passing through the training algorithm[38]. 

The model used had five layers; all were fully connected. The loss function chosen to train the 

model was categorical cross-entropy, and the optimizer chosen was Adam. Categorical cross-

entropy for K class and n samples is calculated as follows: 

                 𝐿𝐿�𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ,𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝� = ��−𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
(𝑘𝑘)

𝐾𝐾

𝑘𝑘

log (𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
(𝑘𝑘) )

𝑛𝑛

𝑖𝑖
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4.3 Experimental setup: 

4.3.1 L-PBF processing    

A 400 W laser-equipped OmniSint-160 LPBF machine was employed to produce the test samples. 

First, gas-atomized AISI H13 tool steel powder with a particle size range of 25–45 μm. The 

powder's particle size distribution (PSD) was measured using a Malvern Master sizer 3000 device 

through the laser diffraction method. Although the individual process parameters have proven to 

be influential in the parts' final quality, the literature is replete with a close correlation between 

defects and volumetric energy density. This work aims to get predefined defects (based on the 

literature) and detect them upon application of ML. Hence, the influence of individual process 

parameters is not the focus of this work.  

In this study, the layer thickness, hatch spacing, and scanning speed were set at 0.04 mm, 0.08 

mm, and 300 mm/sec, respectively, for all samples. The laser power and volumetric energy density 

of each sample have been provided in  

Table 4-1. Eight cylindrical parts with a 10 mm radius and 10 mm height (Figure 3) were produced 

in each run.  In this study, three intentional classes were chosen based on previous work related to 

the process-structure-property of H13 tool steel[39]. The three classes used in this study for 

labeling were parts with minimum defects (class1), parts with cracks only (class2), and parts with 

both cracks and porosities (class 3). The adjusted process parameters to obtain these intentional 

defects are presented in Table 4-2. Figure 4.2 shows how the parts are printed on the build plate 

and the AE sensor's position.  
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Figure 4.2. The process chamber showing the cylindrical samples printed on the build plate 

Table 4-1: Parameters for H13 Tools Steel test experiments 

 

 

 

 

 

 

 

Sample No. Laser Power (W) Energy Density 
(J/mm3) 

1 100 104.1 

2 200 208.3 

3 225 234.3 

4 275 286.4 

5 300 312.5 

6 325 338.5 

7 350 364.0 

8 375 390.6 
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Table 4-2: Different defect classes used for labelling the classifiers. 

Defect Class Description Laser Power (W) Energy density (J/mm3) 

1 Minimum defects 375 390.625 

2 Cracks only 350 364.583 

3 Cracks and porosities 300 312.5 

In the second experiment, gas-atomized stainless steel 316L powder was used to print eight 

cylindrical parts of a 10 mm radius and 10 mm height. The data collected from these parts were 

analyzed in our previous publication, and the raw AE signals were classified using the DL 

approach [40]. The layer thickness was set at 0.04 mm/sec, the hatch spacing at 0.08 mm/sec, and 

the scanning speed at 600 mm/sec. Table 4-2 contains the laser power and volumetric energy 

density of each sample; for both prints, samples were directly fabricated on the build plate without 

supports and no additional post-processing. The printed cylinders were removed using wire-cut 

Electrical Discharge Machining (EDM).   
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Table 4-3: Parameters for stainless steel 316L test experiments 

 

 

 

 

 

 

 

 

 

 

4.3.2 AE system  

The AE sensor used in this experiment was single-ended, wideband frequency WSα. This 100-900 

kHz wideband frequency sensor was connected to a USB-AE node. The USB-AE-Node is a single 

channel Acoustic Emission (AE) Digital Signal Processor with full AE hit- and time-based 

features, entailing waveforms. With the aid of the USB Connector, the AE Node is readily 

interfaced to a Notebook or PC. The USB AE nodes could be connected to the available USB ports 

of a notebook. The AE Node can accept single-ended or differential sensors amplified by an 

internal low noise preamplifier.  The sensor was attached to the build plate's center and bottom to 

detect the structure-borne acoustic emissions. The build plate was drilled to connect the sensor to 

Sample No. Laser Power (W) Energy Density 

(J/mm3) 

1 75 39.0 

2 100 52.0 

3 150 78.1 

4 180 93.7 

5 200 104.1 

6 220 114.5 

7 250 130.2 

8 300 156.2 
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the PC, and the wire was transferred.  To keep an equal distance between parts and the sensor, all 

parts were placed in a circular 4 cm radius. Before each test, the pencil lead break method was 

used according to the ASTM E976-15 standard to determine the AE sensor's reproducibility. The 

contact surface between specimens and the sensor was covered with vacuum grease to produce 

proper acoustical coupling.  

To easily distinguish each layer from each part's wave, a time gap was allowed for melting each 

part in each layer. The time gap is left between each part and the others to allow a gap in the AE 

data collection to help separate between a part and the others. In other words, the gap may be 

regarded as another part being melted with a laser power of zero. Since the time allocated for the 

gap is relatively small (1.5 s), it is not expected to influence on the part’s thermal behavior.  The 

threshold parameter for the recorded data was 40 dB, with analog filtering of 20KHz as the lower 

bound and 1MHz as the upper bound. The sample rate was 1MSPS, and the pre-trigger was 16.00. 

The pre-Trigger value determines how long to record the wave until a specific threshold. Since the 

nature of the collected waves in this study is “burst,” a threshold of 16 µs was set to capture the 

high importance data only.  

The first step for AE signal processing was removing noises from the raw data by wavelet 

denoising tool in MATLAB toolbox. The second step was to convert the waveform from a time-

domain to a frequency-time domain using a Fast Fourier transform (FFT). Fast Fourier Transform 

(FFT) signals were used to transform the AE signal as an input in the K-means and the GMM. 

Using frequency-domain features achieved higher accuracy than raw signals and wavelet-based 

features.  Afterward, normalization of the AE signals was performed to ensure a consistent 

comparison between different signals acquired at different locations and parts.  
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4.4 Results and discussion:  

4.4.1  K-Means Hierarchical Clustering for labeling 

In this study, the K-means algorithm was used because it is an efficient classifier for data points 

with a predefined number of clusters. Also, it goes through large amounts of data quickly and helps 

to produce a meaningful intuition of the data structure. The role of the hierarchal K-means 

algorithm in this research is to reduce the DL neural network's computational intensity. A 

downside of applying DL techniques for AM quality detection is the high amount of training 

needed and the large amount of noise collected with the data [37]. Therefore, by clustering the 

input, only selected samples from the clustered data schema will be used in the learning process. 

Resulting in reducing the number of samples used, the training time, and the required space while 

maintaining the important information due to its specific distribution. 

 Phase transformation, crack propagation, residual stresses, porosity formation, melting, and 

solidifying metal powders can all produce AE signals [3, 24, 41]. This work assumed all factors to 

be constant and considered only porosity and cracks as variables. Optical microscopy was used to 

examine the three different types of intentional defects in the printed H13 tool parts were observed, 

as shown in Figure 4.3 The FFT was then applied to all the collected signals were then processed 

as described in section 3.1.1.  
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Figure 4.3: The cross-section of the samples along the build height with (a) no defects (class 1), (b) cracks 

only (class 2), and (c) both cracks and porosities (class 3). 
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Figure 4.4  describes the hierarchical K-means approach that was used to separate data based on 

the intentional defects of the H13 dataset. The first category presents AE signals related to the 

reference signal, regardless of the number of clusters the signal contains. The second category 

includes signals coming from parts with cracks only. This category has clusters with centers close 

to the previous one's centers and unique clusters representing cracks. The last category has clusters 

representing signals resulting from parts with porosities and cracks; the new unique clusters of the 

last dataset represent porosities. The optimum number of clusters for each data set is obtained by 

the Elbow method. The elbow method is used in cluster analysis to determine the number of 

clusters in a data set. The method plots the explained variation as a function of the number of 

clusters present and picks the elbow of the curve as the number of clusters to use [42].  
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Figure 4.4: Schematic of the Hierarchal K-Means method 

The three frequency-domain signals related to each type of defect are shown in Figure 4.5.  Each 

frequency-domain signal has different features; afterward, the hierarchal K means will be applied 

to cluster and label them. 
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4.4.2 Deep Learning Classifier  

Each sample is labeled under one of three classes: minimum defect parts without any cracks and 

porosities, parts with only cracks, and parts with cracks and porosities. Waveforms transformed in 

frequency-domain and were used as input for the hierarchical K-Means method. Afterward, all 

data were classified using a DL classifier as described in section 3.2.1. 60 % of the data was used 

for training and 15% validation and tested on 15% of the data set. The DL classifier had five layers; 

more details about the DL model can be found in our previous publication[40]. The results are 

shown in Table 4-4 in the form of a confusion matrix, and in  

Table 4-5, the precision, recall, and F1 score are presented. A confusion matrix is used to evaluate 

the performance of a model in terms of accuracy. The columns and rows in this matrix indicate the 

actual and predicted values of the data, respectively. The model works perfectly If a diagonal 

matrix is achieved; otherwise, errors have been introduced to the model. 

The number in each class's diagonal position is divided by its total value to quantify the model's 

accuracy in each class [43]. The accuracy of classes 1, 2, and 3 corresponded to 93.28%, 95.29%, 

and 97.30%. In total, a 94.56% accuracy level was achieved. Also, it took 0.4087 seconds for one 

AE signal to be transformed from the time-domain waveform to frequency-domain and be 

classified via DL with a regular core i7 computer. Class 1, representing the reference signal (AE 

signals coming from parts with minimum defects), has the highest classification errors compared 

to the other classes. Since the data in this class is the most common in the other categories as 

explained by the hierarchal K-means. Class 2 and Class 3 present the signal originating from 

porosities and cracks, respectively. The high accuracy of Class 3 may be attributed to the unique 

signals coming from the porosities in these parts.  
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From Table 5, it can be seen that the highest precision value calculated was for class 1, meaning 

that the model is more accurate in predicting the minimum defect AE signals than AE signals 

coming from cracks and porosities. The highest recall value was found for class 3, attributed to 

AE signals related to the porosities, meaning that there is a small percentage of false negatives in 

this category. That is something preferable in the case of defect detection. In general, the high F1 

score for all 3 cases indicates that the developed model is suitable for the application. 

Table 4-4: The confusion Matrix of using DL model 

Actual Values 

Predicted Values 
Class 1 Class 2 Class 3 

Class 1 10073 217 35 

Class 2 479 8278 40 

Class 3 246 192 2703 

Total number of data of each class 10798 8687 2778 

Accuracy percentage of each class 93.2858 95.2918 97.3002 

 

Table 4-5: Performance parameters used to classify the defect types.  

Class Number Precision Recall F1-score 

1 0.975593 0.932858 0.953747 

2 0.941003 0.952918 0.946923 

3 0.860554 0.973002 0.91333 
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Figure 4.5: Frequency spectrum of H13 samples with intentional defects (a) minimum defects (class 1), 

(b) cracks only (class 2), and (c) porosities (class 3). 

4.4.3 PCA-GMM 

In this study, PCA was used to reduce the waveform dimension to a 2D dataset and fitted using 

GMM as described in section 3.2.2. The number of AE signals related to defects can be considered 

a small portion of the total number of acoustic signals acquired within the L-PBF process. 

Therefore, there is a good potential for anomaly detection based on the normal gaussian model. 

Figure 4.6 illustrates how the data in 2D space after PCA was applied and how the Gaussian model 

fits into it. After reducing dimension to 2D, the mean-variance and the epsilon value (the threshold 

to show if it is anomalist or not) for 2D data is as follows: 
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An example data located in the outermost circle was chosen to show the effectiveness of this 

model. Figure 4.7 shows the waveform of this example data. Example data gaussian probability 

[0.3976, 0.3984] is less than ɛ, so it would be viewed as an anomaly in the model, as observed in 

Figure 4.7. By checking this example data using the developed DL classifier, it was classified as a 

crack signal. This example demonstrates the anomaly detection model's efficiency in detecting the 

cracks and porosities from large data sets.  
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Figure 4.6The reduced data to 2D along with the fit gaussian model. 
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Figure 4.7Waveform of example data chosen for anomaly detection validation. 

4.4.4 VAE  

In this section, a DCT was applied to the raw AE signals and then fed to a VAE followed by a DL 

classification. The main aim of using VAE is to obtain a general feature of the signal that, in turn, 

could be an input for the DL classifier. Therefore, having the ability to generalize the classifier to 

be used for different materials without the need for training. A visualization of the model's 

architecture is presented in Figure 4.8. First, the raw waveform was input to the DCT and the 

dimension reduced from 7168 to 1000, after that was input to the encoder of VAE, which includes 

dense layers to encode the data into a latent (hidden) space (100 dimensions), which is much less 

than 7168 dimensions. This is often called a 'bottleneck' because the encoder performs an efficient 

compression of the data into this lower-dimensional space. Then decoders "decode" the data to the 

previous dimension, and finally, by using Inverse DCT, the raw waveform is achieved.  
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Figure 4.8: The architecture of the combined model. 

Figure 4.9 a) shows the variation in loss value for both training and test step errors based on 

Epoch's number on the H13 data set. The variation in the mean squared error is also provided in 

Figure 4.9 b). This figure shows a very low mean squared error, and loss values are achieved after 

30 epochs. Justifying that the proposed VAE approach can be used for processing the AE signals 

before classifying them using the DL classifier. Figure 4.10 presents the results of reconstructed 

signals for a sample. As it is expected, they should be very similar together due to the low loss 

value.  Even with the noise, graph (a) looks remarkably similar to graph (b) in terms of shape, 

toughs, and peaks. 
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Figure 4.9: a) The loss value and b) the mean squared error versus the number of epochs for the training 

and test step errors when the learning rate is 0.0020. 
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Figure 4.10 The original and reconstructed signal obtained by the proposed VAE structure, a) original 

signal (encoder input) and b) reconstructed signal (decoder's output). 

4.4.5 Generalization of the classifiers 

The main idea of generalizing a classifier in this work is developing a DL model that may be used 

for several materials without training for each material. Two classifiers will be used to test this 

hypothesis. Both classifiers used the K-means hierarchical method and were trained by the 

frequency domain H13 AE signal. The collected 316L dataset will be used on these two classifiers 

to test the generalization concept.  Classifier 1 uses the FFT of the 316L AE signals, while classifier 

2 will use the VAE approach to the DCT of the AE signal.  

The 316L labels are qualitative in nature, which can be categorized as a low, medium, or high-

quality level. The quality is defined based on the visual observation of the present cracks and 
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porosities in the parts' cross-section.  Since Classifiers 1 and 2 are trained on H13 datasets, based 

on the presence of cracks or porosities. Having gone through this training on the H13 dataset, the 

classifiers are expected to predict more defects in low-quality parts than medium-quality parts and 

more defects in medium versus high-quality parts when analyzing 316L datasets. This prediction 

trend would be a useful validation method for the two classifiers.  

Table 4-6and Table 4-7show the percentage of each test 316L data set divided into low, medium, 

and high quality, predicted as a defect by classifiers 1 and 2, respectively. Table 4 shows no trend 

for the no defect signal category as it goes from a high, medium, to low-quality level (61.4%, 

69.7%, and 63.6%, respectively). For Porosities, once again, it shows no trend as it goes from high 

to medium to low quality [21.7%, 28.4%, and 24.1%, respectively]. Lastly, it also exhibits no trend 

for cracks as it goes from high to medium to low quality [16.9%, 1.9%, and 12.3%, respectively]. 

In conclusion, there is no evidence from the results presented in Table 4 as to whether classifier 1 

predicts more defects in low versus high-quality parts within any category.  

Table 4-6: Percentage of defect detection on 316L test dataset by classifier 1. 
 

Reference Signals High-
quality 

Medium 
quality 

Low-
quality 

Minimum defects 61.4% 69.7% 63.6% 

Porosity 21.7% 28.4% 24.1% 

Cracks 16.9% 1.9% 12.3% 

 
 

In contrast, Table 5 shows that classifier 2 detects more defects in low-quality parts than other 

datasets. This table shows a decreasing reference signal trend as the defect-free signal category 

goes from high to medium to low quality [89.1%, 77.4%, and 63.6%, respectively]. It exhibits an 
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increasing trend of defect detection as the porosity category goes from high to medium to low 

quality [8.7%, 8.4%, and 24.1%, respectively]. Lastly, the cracks category has an increasing 

percentage of defect detection as it goes from high to medium to low-quality parts [2.2%, 14.2%, 

and 12.3%, respectively].  

 

Table 4-7: Percentage of defect detection on 316L test dataset by classifier 2. 
 

Reference Signals High-
quality 

Medium 
quality 

Low-
quality 

Minimum defects 89.1% 77.4% 63.6% 

Porosity 8.7% 8.4% 24.1% 

Cracks 2.2% 14.2% 12.3% 

By comparing both results, classifier 2 proved to have better accuracy classifying the 316L data 

without training. It is assumed that frequency-domain data would be better suited as it has a 

tangible physical meaning, while the VAE hidden layer does not and comes from a numerical 

neural network layer. While frequency-domain data show good results on the H13 data set when 

used as an input for machine learning classifiers, the VAE hidden layer is a better input when there 

is a lack of dataset, such as when new materials are used. 
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4.5 Conclusion: 

Acoustic emissions monitoring is a non-destructive method that can be implemented to monitor 

real-time data in additive manufacturing.  This study investigates several ML techniques for the 

purpose of online defect detection during the L-PBF process.  First, a hierarchal K-Means 

clustering technique was used to train a DL classifier to detect specific LPBF defects. Results 

showed a success rate greater than 90%. Second, the application of anomaly detection as an 

alternative simple and fast machine learning approach was explored by applying a PCA-GMM 

technique. Finally, a generalized ML model was developed and validated to test data without the 

need for training. This model uses a VAE hidden layer as generalized input for a deep learning 

neural network classifier. It was found that the VAE method could classify the 316L dataset 

without training and detect which parts have more defects according to their quality level, 

confirming that this method can be successfully employed for other materials as well. The 

presented study presents the first steps towards optimizing the application of ML techniques for 

online monitoring of the L-PBF process using AE signature. 
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Chapter 5 

5 Summary and Conclusions 
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5.1 Summary and conclusive remarks 

The monitoring of the L-PBF process was summarized within three significant steps: 

First, the AE sensor was set up, the new build-plate, which is compatible with the existing OMNI-

SINT L-PBF machine, was designed and produced. Then, the AE sensor was attached under the 

build-plate, and the AE system parameters were tuned to receive AE signals during each printing 

step. The process parameters, which were based on previous research on each material, were 

designed. Finally, each part in a virtual circle was located with the same distance to the AE sensor 

in mind. 

Second, Time-domain AE signals were studied, and it was found that there is an unsteady state in 

the first 20 layers of printing. The reason behind this initial unsteady state was explained, and 

references with other researchers showed this idea within thermal and particle size studies. 

Third, different machine learning methods were used to investigate the various aspects of AE 

signals and to correlate them to the specific defects in printed parts. K-Means clustering was used 

to recognize the pattern of each significant AE event within the printing process, such as AE 

signals from the recoater or signals from low or high-quality parts. Deep learning was used to 

classify AE signals from the stainless steel 316L printing process into three classes: high, medium, 

and low quality. In total, an 85.9% accuracy level was achieved in this classification process. K-

means hierarchy was used to separate AE signals based on the defect type. The Deep Learning 

model classified the results into three different classes; crack, porosity, and reference signals 

(without cracks or porosities). In total, a 94.56% accuracy level was achieved in this process. An 

anomaly detection method was used so the model would be high-speed and practical. PCA was 
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used to reduce the AE signal dimensions to 2D and enable the ability to illustrate data. GMM was 

fitted to the 2D data and showed the outer circles have the most signals coming from the defects. 

VAE was used as an alternative feature extraction to present the more general features of AE 

signals; this was to eliminate the material dependency seen in Deep Learning Classifier. This 

method was tested on the two material data, SS 316L and Tool steel H13, and showed the potential 

of the independence of numerical feature extraction by VAE Neural networks. 

5.2 Strength, limitations, and future work 

The effect of online monitoring of the L-PBF process investigated in this thesis helps to guarantee 

the reliable fabrication of the printed parts. And in case of defects are present, it can inform the 

system to eliminate the said defect or to stop the process. Acoustic emission enabled individuals 

to detect micro-cracks in the 25 µm size propagation. Also, it should be mentioned that acoustic 

emission is one of the low-cost methods available in online monitoring. Different machine learning 

methods that were used in this thesis help to have a general model for defect detection. Also, using 

a combination of Machine learning on AE signals shows good potential for monitoring 

applications in L-PBF.  

There are some limitations to obtaining results that would invoke the need for further studies in 

this area of research. The VAE model proposed in this thesis was tested on two different types of 

steel; other materials should be investigated as well. In the data collection stage of the project, one 

AE sensor was used, which can make the monitoring system not reliable enough. For the primary 

purpose of monitoring, the system will need at least one more AE sensor as a backup in case of 
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any detaching sensors or other incidents. When having two or more AE sensors, the location of 

each sensor should be considered as well.  

The AE sensor used in this thesis was a wideband frequency sensor, which is very useful for study 

purposes and laboratory use. However, in the case of industry usage, the narrowband frequency 

AE sensor will be recommended after acquiring the desired frequency range. 

The laser power was the only process parameter changing to reach different qualities in the printed 

parts. An interesting topic for future studies could be to collect AE data in various process 

parameters such as changing scan speed or layer thickness. Other outputs for monitoring the L-

PBF process include pyrometers, high-speed cameras, infrared cameras, etc. Having a combination 

of these outputs with AE signals will introduce a reliable monitoring system. In addition, this thesis 

did not study other AI and machine learning methods that might potentially be good in 

classification or pattern recognition, such as Support Vector Machine, discriminant analysis, naive 

Bayesian, k-nearest neighbours, etc. Their potential can be researched in future studies. 
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5.3 Contribution 

This thesis is an essential step in dealing with the online monitoring aspect of the L-PBF process. 

The findings of this study have contributed to analyzing the received Acoustic emission signals 

via various machine learning approaches within the time and frequency domain. This thesis also 

extended the applicability of the acoustic emission for monitoring the L-PBF in more general use 

cases with various materials. Finally, this thesis suggested multiple machine learning algorithms 

for pattern recognition and classification with the goal of defect detection, such as detecting cracks 

and porosities. 
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