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Abstract
In this thesis, we focus on linear online power control policies for the energy har-

vesting communications. In the first part of the thesis, greedy policy is investigated

as a special case of linear policies. The tight upper and lower bounds on the greedy

threshold (c∗) are provided in semi-universal settings where few parameters are

known from the actual arrival distribution and clipped arrival distribution. Then

the optimality region of the greedy policy is discussed. In the second part, various

notions of optimal slope (s∗) linear policy are discussed. The numerical results

show the existence of optimal linear policy with strictly better performance than

the conventional fixed fraction policy in terms of the multiplicative ratio.
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Chapter 1

Introduction

1.1 Background

Due to recent advances in wireless communication, wireless network services have

become vital as they provide accessibility to distant locations or provide sensor

measurements for different applications. Most of the wireless nodes rely on batteries

for their operations instead of connecting to the power line. The lifetime of the

wireless network is limited by the lifetime of batteries in the network. When

a sufficient number of batteries are exhausted, the network will not achieve its

designated goal and need to replace the batteries every few months which causing

the increase of maintenance cost [1]. Thus, the ability to harvest energy from the

environment highly increases the lifetime of the node and enhances its independence,

self-reliance, and self-sustainability.

There are some energy harvesting technologies that have been developed suc-

cessfully for the wireless network. In addition, there are two main types of energy

harvesting system [2]. One is the Harvest-Use-Store architecture and the other is
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the Harvest-Store-Use architecture. In the first one, wireless nodes will use the

energy from the energy harvesting system directly until there is no sufficient energy

left. In the second one, the harvested energy is stored in a battery and the system

consumes stored energy to power the wireless network. In this thesis, we focus on

the Harvest-Store-Use architecture.

A particular problem in the energy harvesting communication systems is to find

the optimal policy for energy consumption which has been studied intensely during

recent years [3–21]. For the energy arrival, two different scenarios are considered

while studying the energy consumption: offline and online. In the offline scenario,

the energy-arrival time and the quantity of harvested energy are known in advance,

so the energy arrival distribution does not have much significance when considering

power control policy. In this case, the optimal policy is much easier to find and is

mostly to keep the battery level at a fixed value to avoid overflow [4,5, 12,18].

In contrast to that, in the online scenario the wireless node does not have prior

knowledge of the energy arrivals. Therefore, the distribution of energy arrival

is critical, and the optimal policy highly depends on it. Although theoretically,

the optimal policy can be found by solving the associated Bellman equation, it

often does not have an explicit characterization. One exception is that under the

condition of low battery capacity, the explicit solution of the Bellman equation is

known, which is the greedy policy [20,21].

As for the power control policy problem, the idea is to maximize the long-term

average reward of the system, which is calculated based on the reward function

depending on the type of the task assigned to node. By definition, the reward

2
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function r is a non-decreasing, Lipschitz and concave function from [0,+∞) to

[0,+∞) and r(0) = 0 [21]. The concavity of the function is the main reason

behind the need for power control policies, as if the reward function was linear,

greedy policy would be always the optimal policy. The fact that reward’s first-order

derivative function r′(.) saturates for large inputs demands that node splits the

energy consumption between time slots. On the other hand, the limited battery

capacity is the other bottleneck which demands that energy consumes as soon as

possible to avoid battery overflow and loss of energy. Many of the existing works

assume the AWGN channel capacity as their reward function which models a node

transmitting information through a wireless channel [12–21].

Besides, the optimality of the greedy policy is discussed thoroughly in [20]. By

using the Bellman equation in an indirect approach, they established necessary

and sufficient conditions for the optimality of greedy policy, which translates to a

threshold c ≤ c∗ on the battery capacity as a function of energy arrival distribution.

They also provide an easier way to evaluate upper and lower bounds for the value

of c∗. Furthermore, they find a pair of semi-universal upper and lower bounds for

threshold c∗ when only x, x and µ parameters are given from the arrival distribution.

The greedy policy and constant policy are two policies that become optimal

in the limits when battery capacity goes to zero and to infinity respectively.

However, neither of them can provide optimal performance in other non-asymptotic

scenarios [18]. Hence, a simple fixed fraction policy is introduced in [18] that only

uses p fraction of the battery level at each time slot where p is the (effective) mean

of the arrival distribution. They further prove that for the AWGN capacity reward

function, the Bernoulli distribution incurs the worst-case performance when using

3
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fixed fraction policy and also prove that its performance is within an additive and

multiplicative gap from a universal upperbound. This proves that fixed fraction

policy is universally near optimal for the given reward function. Later, [11] extends

this result to the general case of concave and non-decreasing reward functions and

provides the multiplicative and additive gaps.

In [21] authors discuss the general reward function and prove that for any

stationary policy with given set of conditions (normal policies), the Bernoulli

distribution is the worst-case scenario, i.e., all other distributions have better

performance when using the same policy. Then for the general reward function

they provide the optimal policy for the Bernoulli distribution, and prove that it

is in fact a normal policy meeting the conditions. This concludes that the given

policy is maximin optimal. They further prove that this policy is within a tighter

multiplicative ratio than the aforementioned fixed fraction policy.

Although the maximin policy has strictly better performance than fixed fraction

policy, it is a piece-wise linear policy with different parameters and thus has more

complexity and computational cost than simply using a fixed fraction in every time

slot.

1.2 Thesis Structure

Chapter 1 presents the introduction of the thesis.

Chapter 2 gives the problem statements and essential background.

4
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In Chapter 3.1 we find the optimal semi-universal bounds c, c for the case where

parameters x, x, µ are known from the arrival distribution. The obtained bounds

match the bounds in [Proposition 4,5 [20]] which proves that they are in fact the

tightest possible semi-universal bounds with the given parameters. Moreover, in

Chapter 3.2 we find another pair of optimal bounds c′, c′ based on the parameters

x, x, µc of the clipped energy distribution as well. In Chapter 3.3 we find the

upperbound on the value of c∗ when the parameters c, p are known from the clipped

arrival distribution, and also show which distribution achieves the bounds provided.

It turns out that the expression of bounds and the boundary distributions change

in different intervals of p.

In Chapter 4 we discuss how to optimize the slope of a linear policy based on

battery capacity(c) and effective mean to capacity ratio (p). We then provide

numerical results to show that suitably optimized linear policies can have strictly

better multiplicative ratio, compared to fixed fraction policy.

The conclusion is provided in Chapter 5.

5
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Chapter 2

Problem Statement

The problem is about a discrete-time energy harvesting communication node with

battery capacity c. In this system, the energy is first harvested at each time-slot

and stored in the battery with the energy arrival Et = {E1, E2, ..., Et}. Then the

energy is consumed by the node based on the power control policy to transmit data

over AWGN wireless communication channel.

bt+1 = min{bt + Et, c} − gt t = 1, 2, ... (2.1)

where bt and gt are the battery level and the consumed energy at time-slot t

respectively. The energy arrival Et follows an i.i.d probability distribution Q. We

also use these notations µc = E [min{Q, c}], µ = E [Q], x ≤ infx{Q(x) > 0} and

x ≥ supx{Q(x) < 1} for the clipped mean, actual mean and range lower and upper

bounds respectively. Also, p is defined as the (effective) mean-to-capacity ratio
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(MCR) of the clipped arrival distribution

p = MCRc(Q) = µc
c
. (2.2)

The consumed energy gt at each time-slot is the result of the power control policy

which is a sequence of mappings:

gt : Et −→ R+, t = 1, 2, ...

The reward function is defined as a mapping which indicates how much reward

does the system gain in each time-slot as a function of the consumed energy at

that time-slot. For the AWGN channel capacity, the reward function is defined as

r(x) = 1
2 log(1 + γx) (2.3)

where γ is the fixed fading coefficient. With no loss of generality we assume γ = 1

as its effect can be absorbed in the other parameters of the problem. Therefore,

the n-horizon expected throughput is defined as

Tn(gn) = 1
n
E
[
n∑
t=1

1
2 log(1 + gt(Et))

]
(2.4)

and the long-term average throughput is obtained at the limit when n → ∞.

Therefore, the optimal policy problem is expressed in the following format:

Θ = sup
g

lim
n→∞

inf Tn(gn) (2.5)

7
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where g = {gt}∞t=1 is the policy. Because of bt fully representing the state of the

device, and Et being an i.i.d process, and considering (2.1) and (2.3), the problem

is a Markov Decision Process and its optimal policy is Markovian g∗t (Et) = g∗t (bt)

[18, 22]. Furthernote that Et is a non-delayed regenerative process. Therefore,

in [18] using [Lemma 1 [18]] and Fatou’s lemma [23] they provided a more practical

lowerbound for the infinite-horizon expected throughput

lim
n→∞

inf Tn(gn) ≥ Γ(g) = 1
E [L]E

[
L∑
t=1

1
2 log(1 + gt(Et))

]
(2.6)

where L is the random variable representing the time it takes the system to reset.

The summation is also on one duration of the epoch with mentioned properties.

Moreover, the long-term expected throughput is further upperbounded by the

following expression [Proposition 1 [18]]:

lim
n→∞

inf Tn(gn) ≤ Γ(µc) = 1
2 log(1 + µc). (2.7)

A subclass of time-invariant Markovian policies are called the stationary policies.

As discussed in the previous section, we are further interested in a subclass of

stationary policies called linear policies expressed as

gt(bt) = sbt (2.8)

where s is the slope of the line and the main parameter of the policy. Both greedy

and fixed fraction policies are special cases of the above with s = 1 and s = p

respectively.

8

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece


Chapter 3

Greedy Policy

First, we study the special case of linear policy where s = 1. In [20] authors

determine the region in which the greedy policy maximizes the long-term average

throughput which depends on the arrival distribution. They prove that given the

reward function r(x) the greedy policy is optimal iff c ≤ c∗, where

c∗ = sup {c ≥ 0, r′(c) ≥ ρ(c)E [r′(x)|x ≤ c]} (3.1)

with ρ(x) = P(Q < x). In the special case where the reward function is the AWGN

channel capacity, r(x) = 1
2 log(1 + x) for x ≥ 0, the threshold is given by:

c∗ = sup
{
c ≥ 0, 1

1 + c
≥
∫

[0,c)

1
1 + x

dQ

}
. (3.2)

Because the inequality in (3.2) might not be easy to solve, a pair of lower

and upper bounds was provided in [20] as a function of the cdf of energy arrival

distribution ρ(x).

9
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3.1 Semi-Universal Bounds on c∗ given x, x, µ of

Actual Arrival Distribution

Our goal is to find the boundaries for the threshold of greedy policy’s optimality

(c∗) among all distributions with given x, x and µ parameters. Therefore, in order

to find the lower(upper) bounds of c∗, one must maximize(minimize) the RHS of

the inequality condition of set in (3.2). Thus, define:

f(x, x, µ, c) = max
Q∈Qx,x,µ

∫
[0,c)

1
1 + x

dQ, (3.3)

f(x, x, µ, c) = min
Q∈Qx,x,µ

∫
[0,c)

1
1 + x

dQ. (3.4)

Then the expressions for the above optimization problems is given as follows:

Proposition 1. Having the integral function
∫

[0,c)
1

1+xdQ where Q is the set of

actual arrival distributions with given parameters Q ∈ Qx,x,µ, the integral function

is bounded below by the following function:

f(x, x, µ, c) =



1
1+µ µ < c−1

2

4(c−µ)
(c+1)2 x < c−1

2 ≤ µ

c−µ
(1+x)(c−x) x ≥ c−1

2


µ < c

0 µ ≥ c

(3.5)

10
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Furthermore, the integral function is also bounded above by the following function:

f(x, x, µ, c) =



x−µ
(1+x)(x−x) c ≤ x− x− 1

1+x+c−µ
(1+x)(1+c) c > x− x− 1

 µ < c

x−µ
(1+x)(x−x) c ≤ x− x− 1

x−µ
(1+c)(x−c) c > x− x− 1

 µ ≥ c

(3.6)

Proof. We aim to simplify the infinite dimensional optimization problem into a

simpler one. With no essential loss of generality we assume that Q is a probability

mass function with support x0 ≤ ... ≤ xN . Further, assume x0, ..., xM ∈ [x, c) and

xM+1, ..., xN ∈ [c, x]:

∫
[0,c)

1
1 + x

dQ =
M∑
i=0

1
1 + xi

Q(xi). (3.7)

Therefore, the optimization problem is reformulated as follows:

(max) or min
Q(xi),i=0,1,...,N

M∑
i=0

1
1 + xi

Q(xi) (3.8)

s.t.
N∑
i=0

xiQ(xi) = µ

N∑
i=0

Q(xi) = 1

Q(xi) ≥ 0, i = 0, 1, ..., N.

This is a linear programming problem and its minimum(maximum) is attained at

a certain vertex of the domain. Since the domain is given by the intersection of

the probability simplex and the hyperplane ∑N
i=0 xiQ(xi) = µ, its vertices must lie

11
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on the edges of the probability simplex. Therefore, it suffices to consider Q of the

form:

Q(a) = b− µ
b− a

, Q(b) = µ− a
b− a

, with x ≤ a ≤ µ < b ≤ x.

Therefore, the optimization problem reduces to the following simplified forms

corresponding to the upper and lower bounds of c∗ threshold:

f(x, x, µ, c) := min
a,b

b− µ
(1 + a)(b− a)1a<c + µ− a

(1 + b)(b− a)1b<c (3.9)

s.t. x ≤ a ≤ µ < b ≤ x,

f(x, x, µ, c) := max
a,b

b− µ
(1 + a)(b− a)1a<c + µ− a

(1 + b)(b− a)1b<c (3.10)

s.t. x ≤ a ≤ µ < b ≤ x,

where 1x<c =


1, x < c,

0, x ≥ c.

Next we solve the above simplified optimization problems to find the upper and

lower bounds for the integral function. Thus, define:

f(a, b) = b− µ
(1 + a)(b− a)1a<c + µ− a

(1 + b)(b− a)1b<c. (3.11)

12
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(I) If a ≤ µ < b < c, then f(a, b) = 1+a+b−µ
(1+a)(1+b) . We have

∂f

∂a
= µ− b

(1 + a)2(1 + b) < 0,

∂f

∂b
= µ− a

(1 + a)(1 + b)2 ≥ 0,

∂2f

∂a2 = −2(µ− b)
(1 + a)3(1 + b) > 0,

∂2f

∂b2 = −2(µ− a)
(1 + a)(1 + b)3 ≤ 0.

Thus, f(a, b) is a convex monotonically decreasing function of a and a concave

monotonically non-decreasing function of b, throughout the given intervals.

Therefore,

min
a,b

f(a, b) = 1
1 + µ

attained when a = µ, b ↓ µ,

max
a,b

f(a, b) = 1 + x+ c− µ
(1 + x)(1 + c) attained when a = x, b ↑ c.

(II) If a ≤ µ < c ≤ b, then f(a, b) = b−µ
(1+a)(b−a) , which implies

∂f

∂a
= (µ− b)(b− 2a− 1)

(1 + a)2(b− a)2 ,

∂f

∂b
= µ− a

(1 + a)(b− a)2 ≥ 0,

∂2f

∂a2 = −2(µ− b)[(1 + a)(b− a) + (b− 2a− 1)2]
(1 + a)3(b− a)3 > 0,

∂2f

∂b2 = −2(µ− a)
(1 + a)(b− a)3 ≤ 0.

Thus, f(a, b) is convex function of a and monotonically non-decreasing

function of b.

13
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Minimum is attained by setting b = c. Then by using ∂f
∂a

formula, the global

minimum is obtained as follows:

min
a,b

f(a, b) =



1
1+µ if µ < c−1

2 , at a = µ,

c−µ
(1+x)(c−x) if x ≥ c−1

2 , at a = x,

4(c−µ)
(c+1)2 if x < c−1

2 ≤ µ, at a = c−1
2 .

(3.12)

Likewise, the maximum is attained by setting b = x. Then by using ∂f
∂a

formula, the global maximum is obtained as follows:

max
a,b

f(a, b) =


x−µ

(1+x)(x−x) if µ ≤ x− x− 1, at a = x,

1
1+µ if µ > x− x− 1, at a = µ.

(3.13)

(III) If a < c ≤ µ < b, then similarly to section II, f(a, b) is a convex function of

a and monotonically non-decreasing function of b.

To attain the minimum, set b = limε↓0 µ + ε, then according to ∂f
∂a
, f(a, b)

the global minimum for this case is zero:

min
a,b

f(a, b) =



0 if c ≤ µ−1
2 , as a ↑ c,

0 if x > µ−1
2 , at a = x,

0 if x ≤ µ−1
2 < c, at a = µ−1

2 .

(3.14)

14
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Also, to obtain maximum, set b = x, then due to ∂f
∂a
, when a = x−1

2 , f(a, b)

reaches the global maxima. It is clear that

max
a,b

f(a, b) =


x−µ

(1+x)(x−x) if c ≤ x− x− 1, at a = x,

x−µ
(1+c)(x−c) if c > x− x− 1, as a ↑ c.

(3.15)

(IV) If c ≤ a ≤ µ < b, then f(a, b) = 0.

Combining sections I, II, III and IV gives the results of f(x, x, µ, c) and

f(x, x, µ, c) as shown in (3.5), (3.6).

Corollary 1. The upperbound and lowerbound values for the c∗ are found using the

following expressions and are the tightest possible bounds covering all distributions

with given x, x, µ parameters of the arrival distribution:

c(x, x, µ) := sup
{
c ∈ (x, x) : 1

1 + c
≥ f(x, x, µ, c)

}
(3.16)

c(x, x, µ) := sup
{
c ∈ (x, x) : 1

1 + c
≥ f(x, x, µ, c)

}
(3.17)

Further, we find the expressions for these bounds:

15
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Theorem 1. The lowerbound for the threshold c∗ among all arrival distributions

with given x, x, µ parameters is:

c(x, x, µ) =


µ µ ≥ x− x− 1,

(1+x)(x−x)
x−µ − 1 µ < x− x− 1.

(3.18)

Proof. To prove this theorem, we combine (3.16) with the result of f(x, x, µ, c) in

Proposition 1. We have:

(I) if c ≤ x− x− 1:

1
1 + c

≥ x− µ
(1 + x)(x− x) =⇒ c ≤ (1 + x)(x− x)

x− µ
− 1,

which together with the condition c ≤ x− x− 1 gives:

c ≤ min
{
x− x− 1, (1 + x)(x− x)

x− µ
− 1

}
.

(II) if c > x− x− 1 and µ < c:

1
1 + c

≥ 1 + x+ c− µ
(1 + c)(1 + x) =⇒ c ≤ µ.

The above obtained condition does not have any intersection with the case’s

condition, therefore, this set is empty.

16
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(III) if c > x− x− 1 and µ ≥ c:

1
1 + c

≥ x− µ
(1 + c)(x− c) =⇒ c ≤ µ.

By finding the intersection of the above condition and the case’s condition,

we have:

x− x− 1 < c ≤ µ.

Thus, combining I, II and III cases, we find the interval for c as:

{
c ≤ min

{
x− x− 1, (1 + x)(x− x)

x− µ
− 1

}}
∪

∅ ∪

{x− x− 1 < c ≤ µ} .

Thus, under the following conditions, we have:

(i) if µ > x− x− 1 the set reduces to:

{c ≤ x− x− 1} ∪ ∅ ∪ {x− x− 1 < c ≤ µ} = {c ≤ µ}

(ii) if µ ≤ x− x− 1 the set reduces to:

{
c ≤ (1 + x)(x− x)

x− µ
− 1

}
∪ ∅ ∪ ∅ =

{
c ≤ (1 + x)(x− x)

(x− µ) − 1
}

which proves the formula of the theorem.
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Theorem 2. The upperbound for the threshold c∗ among all arrival distributions

with given x, x, µ parameters is:

c(x, x, µ) =


µ+x+
√

(µ+x)2−4(x2+x−µ)
2 µ < 3x+1

2 ,

4µ+1
3 µ ≥ 3x+1

2 .

(3.19)

Proof. To find the upper-limit, we combine (3.17) with the result of f(x, x, µ, c) in

Proposition 1. Therefore, we form the expressions for all cases:

(I) if µ < c and µ < c−1
2 :

1
1 + c

≥ 1
1 + µ

=⇒ µ ≥ c.

The derived condition does not match with the case’s assumptions. Therefore,

this case is an empty set.

(II) if µ < c and x < c−1
2 ≤ µ:

1
1 + c

≥ 4(c− µ)
(c+ 1)2 =⇒ c ≤ 4µ+ 1

3 ,

which together with the case’s assumptions results into:

max{µ, 2x+ 1} < c ≤ 4µ+ 1
3 .
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(III) µ < c and x ≥ c−1
2 :

1
1 + c

≥ c− µ
(1 + x)(c− x) =⇒

µ+ x−
√

(µ+ x)2 − 4(x2 + x− µ)
2 ≤ c

≤
µ+ x+

√
(µ+ x)2 − 4(x2 + x− µ)

2 .

Next we find the intersection of above condition and the case’s assumptions.

But because the smaller root of the above quadratic function is less than µ,

then it simplifies to:

µ < c ≤ min

2x+ 1,
µ+ x+

√
(µ+ x)2 − 4(x2 + x− µ)

2

 .
Then we find the interval in which, each of the two terms are minimum:

• if x ≥ 2µ−1
3 :

µ < c ≤
µ+ x+

√
(µ+ x)2 − 4(x2 + x− µ)

2 .

• if x < 2µ−1
3 :

µ < c ≤ 2x+ 1.

(IV) if c ≤ µ: no constraint for this case.
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Therefore, by combining the above cases I, II, III and IV, the region of c according

to (3.17) is found:

∅ ∪{
max{µ, 2x+ 1} < c ≤ 4µ+ 1

3

}
∪µ < c ≤ min

2x+ 1,
µ+ x+

√
(µ+ x)2 − 4(x2 + x− µ)

2


∪

{c ≤ µ}.

Finally, we find the union of the above sets under the following conditions:

(i) if 2x+ 1 < µ:

∅ ∪
{
µ < c ≤ 4µ+ 1

3

}
∪ ∅ ∪ {c ≤ µ} =

{
c ≤ 4µ+ 1

3

}
.

(ii) if µ ≤ 2x+ 1 < 4µ+1
3 :

This translates to µ−1
2 ≤ x < 2µ−1

3 . Therefore, the union is:

∅ ∪
{

2x+ 1 < c ≤ 4µ+ 1
3

}
∪ {µ < c ≤ 2x+ 1} ∪ {c ≤ µ} =

{
c ≤ 4µ+ 1

3

}
.

(iii) if 2x+ 1 ≥ 4µ+1
3 :
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This translates to x ≥ 2µ−1
3 , thus the union is:

∅ ∪ ∅ ∪

µ < c ≤
µ+ x+

√
(µ+ x)2 − 4(x2 + x− µ)

2

 ∪ {c ≤ µ}

=

c ≤ µ+ x+
√

(µ+ x)2 − 4(x2 + x− µ)
2

 .

With the above cases and the given c thresholds for each of them, (3.19) is resulted

and the theorem is proved.

3.2 Semi-Universal Bounds on c∗ given x, µc of

Clipped Arrival Distribution

In addition to bounds found on the greedy threshold (c∗) based on the parameters

of actual arrival distribution in previous section, it is also possible to examine the

bounds based on parameters of the clipped arrival distribution; i.e. the amount of

energy stored in battery which cannot exceed the value c.

Therefore, we first define Q′x,µc as set of clipped distributions with given param-

eters, where µc is the clipped (effective) mean:

µc = E [Q′] = E [min(Q, c)] .

Note that according to [Theorem 1 [20]], the greedy threshold c∗ is bounded with

x < c∗ ≤ x. Therefore, we don’t need to consider parameter x in this case.
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Proposition 2. Having the integral function
∫

[0,c)
1

1+xdQ
′ where Q′ is the set of

clipped arrival distributions with given parameters Q′ ∈ Q′x,x,µc, the integral function

is bounded below by the following function:

g(x, µc, c) =



1
1+µc µc <

c−1
2

4(c−µc)
(c+1)2 x < c−1

2 ≤ µc

c−µc
(1+x)(c−x) x ≥ c−1

2

(3.20)

Furthermore, the integral function is bounded above by the following function:

g(x, µc, c) = 1 + x+ c− µc
(1 + x)(1 + c) (3.21)

Proof. Using the similar procedure in the previous section, we assume that Q′ is a

probability mass function with support x ≤ x0 ≤ ... ≤ xN ≤ c:

∫
[0,c)

1
1 + x

dQ′ =
N−1∑
i=0

1
1 + xi

Q′(xi). (3.22)

Therefore, the optimization problem is reformulated as follows:

(max) or min
Q′(xi),i=0,1,...,N

N−1∑
i=0

1
1 + xi

Q′(xi) (3.23)

s.t.
N∑
i=0

xiQ
′(xi) = µc

N∑
i=0

Q′(xi) = 1

Q′(xi) ≥ 0, i = 0, 1, ..., N.
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Similarly, this is a linear programming problem and its (maximum) minimum

is attained at a certain vertex of the domain. Since the domain is given by the

intersection of the probability simplex and the hyperplane ∑N
i=0 xiQ

′(xi) = µc. Its

vertices must lie on the edges of the probability simplex. Therefore, it suffices to

consider Q′ of the form (with different intervals from Q):

Q′(a) = b− µc
b− a

, Q′(b) = µc − a
b− a

, with x ≤ a ≤ µc < b ≤ c.

Then, the upper and lower bounds for the integral function can be obtained among

the clipped distributions by solving the following optimization problems:

g(x, µc, c) := min
a,b

b− µc
(1 + a)(b− a) + µc − a

(1 + b)(b− a)1b<c (3.24)

s.t. x ≤ a ≤ µc < b ≤ c,

g(x, µc, c) := max
a,b

b− µc
(1 + a)(b− a) + µc − a

(1 + b)(b− a)1b<c (3.25)

s.t. x ≤ a ≤ µc < b ≤ c.

(I) If b < c, then similar to section (I) in the proof of Proposition 1, the results

are:

min
a,b

f(a, b) = 1
1 + µc

attained when a = µc, b ↓ µc, (3.26)

max
a,b

f(a, b) = 1 + x+ c− µc
(1 + x)(1 + c) attained when a = x, b ↑ c. (3.27)
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(II) If b = c, then f(a, b) changes from (3.11) to

f(a) = c− µc
(1 + a)(c− a) , (3.28)

which is similar to section (II) in the proof of Proposition 1, with constraint

that c = b. Therefore, f(a) is a convex function and:

df

da
= (µc − c)(c− 2a− 1)

(1 + a)2(c− a)2 .

For the minima,

min
a,b

f(a, b) =



1
1+µc if µc < c−1

2 , at a = µc,

c−µc
(1+x)(c−x) if x ≥ c−1

2 , at a = x,

4(c−µc)
(c+1)2 if x < c−1

2 ≤ µc, at a = c−1
2 .

(3.29)

For the maxima,

max
a,b

f(a, b) =


c−µc

(1+x)(c−x) if µc ≤ c− x− 1, at a = x,

1
1+µc if µc > c− x− 1, at a = µc.

(3.30)

Combining section I and II gives the proofs of (3.20) and (3.21).

Corollary 2. The upperbound and lowerbound values for the c∗ are found using the

following expressions and are the tightest possible bounds covering all distributions
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with given x, x, µc parameters of the clipped distributions:

c′(x, x, µc) := sup
{
c ∈ (µc, x) : 1

1 + c
≥ g(x, µc, c)

}
, (3.31)

c′(x, x, µc) := sup
{
c ∈ (µc, x) : 1

1 + c
≥ g(x, µc, c)

}
. (3.32)

Further, we find the expressions for these bounds:

Theorem 3. Assume having the set of all clipped distributions with given x, µc

parameters (Qx,µc). There exists a sequence of clipped distributions

Qn(x) =


µc−x
bn−x x = bn

bn−µc
bn−x x = x

where b1, ..., bn > µc is a sequence of numbers such that limn→∞bn = µc. Thus, a

sequence of greedy thresholds c∗n exists for these distributions which converges to

the infimum bound of greedy thresholds among Qx,µc as

c′(x, x, µc) = µc. (3.33)

Proof. Given c > µc, using supremum value in (3.27) from proof of proposition 2,

we form the inequality of (3.31):

1
1 + c

≥ lim
β↑0

1 + x+ c+ β − µc
(1 + x)(1 + c) =⇒ c ≤ λ(x, β, µc) (3.34)
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where

λ(x, β, µc) =
µc − β − 1 +

√
(µc − β − 1)2 + 4(µc + βx)

2

is strictly greater than µc for β < 0 and converges to it when β → 0, i.e.

(∀ε ∈ R, ε > 0;∃δ ∈ R, δ > 0 and ∃N ∈ N, N > 0; ∀n ≥ N)

(0 < c− bn ≤ δ =⇒ 0 < λ(x, bn − c, µc)− µc ≤ ε) .

The last inequality implies that under given assumptions,

µc < λ(x, bn − c, µc) ≤ µc + ε. (3.35)

Also, from (3.34), we have

cn ≤ λ(x, bn − c, µc)

where cn is the variable representing the battery capacity value corresponding to

the case where arrival distribution is formed by bn. Combining them together and

finding the supremum according to (3.31) suggests that

c∗n = µc + ε

which proves the desired result.
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Theorem 4. The upperbound for the threshold c∗ among all clipped energy distri-

butions with given x, x, µc parameters is:

c′(x, x, µc) =


µc+x+

√
(µc+x)2−4(x2+x−µc)

2 µc <
3x+1

2

4µc+1
3 µc ≥ 3x+1

2

(3.36)

Proof. The mathematical derivation is the same as c(x, x, µ) except for the c ≤ µ

parts.

3.3 Upperbound on c∗ Greedy Threshold

Assuming a family of clipped arrival distributions Q′c,p where c is the battery

capacity (or the clipping point of stored energy distribution) and p is the mean to

capacity ratio as:

MCRc(Q′) = µc
c

= p.

It is tempting to investigate if the greedy policy threshold c∗ is different among

members of the Q′c,p family, and finding its boundary values and corresponding

distributions. For this purpose, we first find the minimum value of the RHS integral

in (3.2).

Proposition 3.

let ν(c, p) = min
Q′∈Q′c,p

∫
[0,c)

1
1 + x

dQ′, then :
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• For p ∈ (0, 1
2):

ν(c, p) =



1− p c ≤ 1,

4c(1−p)
(c+1)2 1 < c ≤ 1

1−2p ,

1
1+cp c > 1

1−2p .

(3.37)

• For p ∈ [1
2 , 1):

ν(c, p) =


1− p c ≤ 1,

4c(1−p)
(c+1)2 c > 1.

(3.38)

Proof. The first part of the proof is similar to the one in proof of Proposition 2.

We assume that the support of Q′ is given as 0 = x0 ≤ ... ≤ xN = c. Therefore,

with the hyperplane ∑N
i=0 xiQ

′(xi) = pc, consider Q′ of the following form:

Q′(a) = b− pc
b− a

, Q′(b) = pc− a
b− a

, with 0 ≤ a ≤ pc < b ≤ c.

This reduces the optimization problem to the following simplified form:

ν(c, p) := min
a,b

b− pc
(1 + a)(b− a) + pc− a

(1 + b)(b− a)1b<c (3.39)

s.t. 0 ≤ a ≤ pc < b ≤ c,

where 1x<c =


1, x < c,

0, x ≥ c.
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Furthermore, the result of this optimization problem is also similar to g(x, µc, c)

(3.20) in Proposition 2, which is:

ν(c, p) =



1
1+cp

c−1
2 > cp, attained when a = cp, b = c or b ↓ cp,

4c(1−p)
(c+1)2 0 < c−1

2 ≤ cp, attained when a = c−1
2 , b = c,

1− p c−1
2 ≤ 0, attained when a = 0, b = c.

Then, split the result with respect to the value of p. When p ∈ (0, 1
2), ν(c, p)

reformulates into 3.37 and when p ∈ [1
2 , 1), ν(c, p) reformulates into 3.38.

Thus, using the above proposition, the boundaries can be found:

Theorem 5. The highest possible threshold for the battery capacity in which the

greedy policy is optimal (c∗) among the set of Q′c,p clipped arrival distributions

depends on the range of p (MCR) as follows:

• p ∈ (0, 1
2): The highest possible threshold is p

1−p achieved by B̃p. No non-

constant clipped distribution Q′ has a greedy threshold above that.

• p ∈ [1
2 ,

3
4): The highest possible threshold is 1

3−4p achieved by the following

distribution. No non-constant clipped distribution has a greedy threshold above

that value.

Q′(x) =


2c(1−p)
c+1 x = c−1

2 ,

2pc−c+1
c+1 x = c.

• p ∈ [3
4 , 1): There is no uniform upperbound on the greedy policy threshold

among the set of all non-constant distributions.
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Proof. To obtain the greedy threshold, we form the inequality in (3.2), and replace

the RHS with the values from Proposition 3.

• For p ∈ (0, 1
2):

1
1 + c

≥ ν(c, p) =



1− p c ≤ 1,

4c(1−p)
(c+1)2 1 < c ≤ 1

1−2p ,

1
1+cp c > 1

1−2p ,

=⇒



c ≤ p
1−p c ≤ 1 =⇒ p ≤ 1

2 (valid),

c ≤ 1
3−4p 1 < c ≤ 1

1−2p =⇒ 3
4 < p ≤ 1 (invalid),

p ≥ 1 c > 1
1−2p (invalid),

∴ c ≤ p

1− p.

Also, to find the boundary distribution, recall the values of a, b under different

condition interals in proof of Proposition 3:


Q′(a) = 1− p a = 0,

Q′(b) = p b = c,

which is the same as B̃p Bernoulli distribution:

B̃p(x) =


1− p x = 0,

p x = c.
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Combining the equations 3.2 and 3.7, the threshold condition for B̃p reduces

to c ≤ p
1−p .

• For p ∈ [1
2 , 1):

1
1 + c

≥ ν(c, p) =


1− p c ≤ 1,

4c(1−p)
(c+1)2 c > 1,

=⇒


c ≤ p

1−p c ≤ 1,

(3− 4p)c ≤ 1 c > 1,

=⇒



p ≤ 1
2 c ≤ 1 (invalid),

c ≤ 1
3−4p p < 3

4 ; c > 1 =⇒ p > 1
2 (valid),

c ≥ 0 p ≥ 3
4 ; c > 1 (valid),

∴


c ≤ 1

3−4p
1
2 ≤ p < 3

4 ,

no upperbound 3
4 ≤ p ≤ 1.

Again, to find the boundary distribution, recall the values of a, b corresponding

to the conditions from proof of Proposition 3:


Q′(a) = 2c(1−p)

c+1 a = c−1
2 ,

Q′(b) = 2pc−c+1
c+1 b = c,

which gives the proof of Theorem 5.
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Chapter 4

Optimal Linear Policy

We will study the optimal slope s among the family of the linear policies as described

in (2.8). As proved in [Proposition 5 [18]], the n-horizon expected throughput of

any i.i.d distribution is higher than the throughput of i.i.d Bernoulli case with

the same clipped mean for any power control policy. Therefore, finding the linear

policy with highest possible throughput for the Bernoulli arrivals, will establish the

optimal linear policy, as it is guaranteed that the performance would be at least as

good as the Bernoulli case.

Further, under the condition of Bernoulli(p) energy arrivals, the epoch length

in (2.6) is distributed as L ∼ Geometric(p). Also, the linear policy (2.8) can be

written in the following format:

g(Et) = cs(1− s)n−jt (4.1)

where jt is the most recent time in which system reset to bjt = c. With these

settings, for the Bernoulli(p) energy arrivals and when using the linear policies, the
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lowerbound in 2.6 reduces to:

Γ(c, p, s) = p
∞∑
l=1

p(1− p)l−1
l∑

i=1

1
2 log(1 + cs(1− s)i−1)

= p

2

∞∑
n=0

(1− p)n log(1 + cs(1− s)n) (4.2)

= 1
2EN [log(1 + cs(1− s)N)] (4.3)

where expectation is over N ∼ Geometric Failure(p). The universal upperbound

in (2.7) can be written as

Γ(c, p) = 1
2 log(1 + cp). (4.4)

To find the optimal linear policy, one can maximize (4.2) by finding the optimal

s∗ as a function of c > 0 and p ∈ (0, 1]:

s∗(c, p) = arg max
s∈(0,1]

Γ(c, p, s). (4.5)

Although it is not easy to find the analytical expression for s∗(c, p), it is possible to

find it numerically as this is a one-time calculation as a part of the initial process.

Thus, under the following conditions the optimal s∗ is obtained:

• if c ≤ p
1−p : The optimal value s∗(c, p) = 1 which means greedy policy is

optimal. This was discussed in Chapter 3.
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Figure 4.1: Optimal value of s∗. The upper corner shows the
region in which the greedy policy is optimal. The plot shows that
s∗(c, p) ≥ p and converges to p when c→∞.

• if c > p
1−p : Optimal value can be obtained by numerically solving the following

transcendental equality:

∂Γ(c, p, s)
∂s

∣∣∣∣
s=s∗

= 1
2EN

[
c(1− (N + 1)s∗)(1− s∗)N−1

1 + cs∗(1− s∗)N

]
= 0

=⇒ EN
[
s∗(N + 1)− 1

1 + cs∗(1− s∗)N

]
= s∗

p
− 1. (4.6)

A 3-d plot of the surface of s∗(c, p) is shown in figure 4.1.
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Note 1. By examining the numerical results and plot, we note that the optimal

s∗(c, p) is a monotonically non-decreasing function of p for any given c, and is a

monotonically non-increasing function of c for any given p.

Proposition 4. The asymptotic regimes of s∗(c, p) among capacity c is as follows:

lim
c→∞

s∗(c, p) = p (4.7)

lim
c→0

s∗(c, p) = 1. (4.8)

Proof. • when c ↓ 0:

– if c ≤ p
1−p : then s(c, p) = 1 according to Chapter 3.

– if c ≥ p
1−p : this forces p→ 0 as well.

∂Γ(c, p, s)
∂s

= p

2

∞∑
n=0

(1− p)n c(1− s)
n−1(1− (n+ 1)s)

1 + cs(1− s)n ⇒

lim
c→0

∂Γ(c, p, s)
∂s

= cp

2

∞∑
n=0

(1− p)n
[
(1− s)n − ns(1− s)n−1

]
= cp

2

[
1

p+ s− ps
− s(1− p)(1− s)

(1− s)(p+ s− ps)2

]
> 0

=⇒ Γ(c, p, s) is a increasing function,

∴ lim
c→0

s∗(c, p) = 1.
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• when c ↑ ∞:

lim
c→∞

p

2

∞∑
n=0

(1− p)n log(1 + cs(1− s)n) = lim
c→∞

log(cs) + 1− p
p

log(1− s)

∂

∂s
= c

cs
+ 1− p

p

−1
1− s = 0

∴ lim
c→∞

s∗(c, p) = p.

Corollary 3. Combining the monotonicity of s∗ and the above proposition, it

follows that s∗(c, p) ≥ p for any c > 0.

Proposition 5. In the asymptotic scenario when c → +∞ and p → 0 simulta-

neously, assume s := ap, where a is a fixed real number in a ∈ [1,+∞). Also,

let b := cp be a fixed non-zero number b ∈ (0,+∞). The lowerbound Γ(c, p, s)

converges to:

Γasym(a, b) = 1
2

∫ ∞
0

e−x log(1 + abe−ax)dx (4.9)

= 1
2EX

[
log(1 + abe−aX)

]
(4.10)

where X is a continous random variable with X ∼ exp(1).

36

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece


Master of Applied Science– Zikai Dou; McMaster University– Department of
Electrical & Computer Engineering

Proof.

lim
c→∞
p→0

b=cp;s=ap

Γ(c, p, s) = lim 1
2

∞∑
n=0

p(1− p)n log(1 + ab(1− ap)n)

= lim 1
2

∞∑
n=0

p(1− p)
1
p
.np log(1 + ab(1− ap)

1
p
.np)

= lim 1
2

∞∑
n=0

pe−np log(1 + abe−a.np)

=
∫ ∞

0
e−x log(1 + abe−ax)dx.

4.1 Multiplicative Ratio Optimal Linear policy

Next we form the multiplicative ratio by using the optimal s∗, and express the

lowerbound on it as follows:

F ∗ = inf
c>0,p∈(0,1]

Γ(c, p, s∗(c, p))
Γ(c, p)

. (4.11)

A 3-d plot of the multiplicative ratio when using s∗ is shown in figure 4.2 as a

function of c > 0 and p ∈ (0, 1].

The numerical results show that the infimum of F (s∗) happens at c→∞, p→ 0,

which using Proposition 5 simplifies to:

F ∗ = inf
b∈(0,+∞)

∫∞
0 e−x log(1 + a∗be−a

∗x)dx
log(1 + b) . (4.12)

By numerically solving optimization problem (4.12), the multiplicative ratio is

37

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece


Master of Applied Science– Zikai Dou; McMaster University– Department of
Electrical & Computer Engineering

0.65

0.7

0.75

0

0.8

0.85

0.9

F
(s

* )

0.95

1

Multiplicative Ratio when using Optimal Fraction

c>0

1500 0.8

p  (0,1]

0.6
0.4

0.21000 0

X: 1000

Y: 0.001743

Z: 0.6534

Figure 4.2: The multiplicative ratio when using optimal s∗.
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F ∗ ≈ 0.65, which is 30% improvement over the fixed fraction policy F ffp = 1
2 in [18].

The infimum happens when b ≈ 1.8 as c → +∞ and p → 0. The plot of cp at

infimum points versus c is shown in figure 4.3a. Furthermore, at the same infimum

curve of multiplicative ratio, where c→ +∞, p→ 0, the optimal s∗(c, p) converges

to s∗(c, p) ≈ 2.29p (i.e. a∗ = 2.29) which differs from optimal value in (4.7). The

plot of convergence of a∗ over the infimum curve versus c is shown in figure 4.3b.

4.2 c-Universal Mult-Ratio Optimal Linear Pol-

icy

We are further interested in obtaining the optimal slope s that maximizes the

multiplicative ratio, when the value of c is the worst-case possible. This provides a

c-universal max-min optimal s×(p) that would be available regardless of the value

of c to ensure a minimum attainable performance for any battery capacity.

s×(p) = arg max
s∈(0,1]

inf
c>0

Γ(c, p, s)
Γ(c, p)

. (4.13)

The plot in figure 4.4 shows s× as a function of p. Also, the infimum for the multi-

plicative ratio of worst-case c when using s× is given by the following minimization.

F× = inf
c>0,p∈(0,1]

Γ(c, p, s×(p))
Γ(c, p)

. (4.14)

Proposition 6. When using the sub-optimal s×(p) linear fraction, the multiplicative

ratio will still have the same infimum as when using the optimal linear fraction
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(a) Value of cp at the infimum points versus c. It appears in the
plot that cp converges to a non-zero value as c goes to infinity. It
specifically converges to cp→ 1.80
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(b) Value of s∗/p at the infimum points versus c. Although the
optimal s∗ converges to p when c → ∞ for larger values of p, but
when p → 0 as well, and specifically at the infimum points, the
optimal fraction converges to s∗(c, p) ≈ 2.29p

Figure 4.3: asymptotic regimes of cp and s∗/p at infimum points
of multiplicative ratio F (s∗) versus c.
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Figure 4.4: s×(p) is the slop of c-Universal Mult-Ratio Optimal
Linear Policy which maximizes the throughput multiplicative ratio
for the worst-case c. It is the best possible fraction in case of
unknown or worst-case capacity c which is a function of p.

policy. i.e.

F ∗ = F×.

Proof. By using the formula (4.13), we can rewrite the definition for s× as

s×(p) = arg max
s

Γ(c×, p, s)
Γ(c×, p)

, (4.15)

where

c×(s, p) = arg min
c

Γ(c, p, s)
Γ(c, p)

. (4.16)

Next we have that for any given fixed c, p values that maximizes the multiplicative

ratio is the same value that maximizes the throughput (s∗(c, p)). Because the
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denominator does not depend on variable s:

arg max
s

Γ(c, p, s)
Γ(c, p)

= arg max
s

Γ(c, p, s)

= s∗(c, p). (4.17)

Therefore, looking back at (4.15), although c×(s, p) is a function of s, p, but when

we fix it as an unknown value, the above property (4.17) still holds, which means

s×(p) = s∗(c×, p). (4.18)

Next, we form the two multiplicative ratio gaps. For the suboptimal s× we have by

definition

F× = inf
c,p

Γ(c, p, s×(p))
Γ(c, p)

= inf
c,p

Γ(c, p, s∗(c×, p))
Γ(c, p)

= inf
p

Γ(c×, p, s∗(c×, p))
Γ(c×, p)

.

In addition, for the optimal multiplicative ratio, we have by definition

F ∗ = inf
c,p

Γ(c, p, s∗(c, p))
Γ(c, p)

= inf
p

inf
c

Γ(c, p, s∗(c, p))
Γ(c, p)

= inf
p

Γ(c×, p, s∗(c×, p))
Γ(c×, p)

,
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where the third equality holds from the definition of c× in (4.16). Thus, comparing

above results F× = F ∗.

The numerical results of F× also indicate that the infimum happens approxi-

mately at 0.65 which is the same as F ∗ and confirm the above proposition.

4.3 Additive Gap Optimal Linear policy

In addition to above ratio, one can also consider the additive gap for the above

policies and find the point in which the maximum gap occurs.

G
∗ = sup

c>0,p∈(0,1]
Γ(c, p)− Γ(c, p, s∗(c, p)). (4.19)

It is obvious that the gap should be upperbounded by G∗ ≤ 1
2 which is obtained

using p fixed fraction policy as in [Proposition 3 [18]] (Note the difference is that

we use natural logarithm instead). But because supremum happens at cp→ +∞

and the fact that limcp→+∞ s
∗(c, p) = p (i.e. it converges to fixed fraction policy)

suggests that

G
∗ = 1

2 .

Besides, consider that both the fixed fraction policy and linear fraction policy are

suboptimal whereas the maximin optimal policy in [21] is optimal for Bernoulli

but still it achieves the upperbound 1
2 . This again proves that the additive gap

will not be improved, and it achieves 1
2 for both fixed fraction policy and linear

fraction policy.
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Note 2. Although the extremum points of both additive gap G∗ and multiplicative

ratio F ∗ happen at c→ +∞ and p→ 0, they occur at different asymptotic regimes.

As the supremum of G∗ happens when c→ +∞ for any given p, and then p→ 0

afterwards, thus cp→∞. But the infimum of F ∗ happens when c→ +∞, p→ 0 at

the same time while their relation converges to cp→ 2.29 as shown in 4.3b.

4.4 c-Universal Additive-Gap Optimal Linear Pol-

icy

Similar to section 4.2, we also introduce the c-universal policy which attempts to

minimize the additive gap of performance at worst-case value of c.

s+(p) = arg min
s∈(0,1]

sup
c>0

Γ(c, p)− Γ(c, p, s) (4.20)

It turns out that the policy is similar to fixed fraction policy, which is s+(p) = p.

The plot of this policy is shown in figure 4.5.
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Figure 4.5: s+(p) is the slope of c-Universal Additive-Gap Optimal
Linear Policy which minimizes the throughput additive gap for the
worst-case c. The plot shows that this policy coincides with the
fixed fraction policy
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Chapter 5

Conclusion

In this thesis, we investigated optimality and near-optimality of linear policies for

energy harvesting communications. In Chapter 3, we found the optimality region of

the greedy policy and obtained tight semi-universal bounds on the greedy threshold

c∗ based on given parameters of arrival distributions. A pair of semi-universal

optimal bounds on c∗ were obtained, when parameters x, x, µ are known from the

arrival distribution (Qx,x,µ). The semi-universal bounds matches the bounds in

[proposition 4,5 [20]] which proved them to be optimal. Moreover, similar semi-

universal bounds were obtained for the case where same parameters are available

from the clipped energy distribution. Furthermore, the bounds on Qc,p showed

that the previously known greedy threshold c ≤ p
1−p and its corresponding arrival

distribution are not always the largest possible interval of optimality of greedy

policy, but only true when p ≤ 1
2 . The importance of these bounds on the greedy

policy is that the lowerbound ensures that for any arrival distribution with given

parameters, if battery capacity is less than the lowerbound, then the greedy policy

is optimal regardless of the distribution. Also, in the upperbounds’ case, it ensures
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that given the known parameters, if battery capacity is larger than the upperbound,

then the greedy policy is definitely not optimal regardless of the distribution.

Then, in Chapter 4 we considered the problem of optimizing linear policies based

on the (effective) mean of the energy arrivals and the battery capacity of the node.

The numerically solvable transcendental equation for finding the optimal slope was

given. The asymptotic regimes showed that the conventional fixed fraction policy

is only optimal when the value of c→ +∞ while p is fixed. We also showed that

the multiplicative ratio could be improved over the fixed fraction policy.
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