
Creating An Editor For The

Implementation of WorkFlow+: A

Framework for Developing

Assurance Cases

By

Thomas Chiang

A Thesis

Submitted to the School of Graduate Studies

in Partial Fulfillment of the Requirements for the Degree

Master of Applied Science

McMaster University

© Copyright by Thomas Chiang, Jan, 2021

Abstract

As vehicles become more complex, the work required to ensure that they are

safe increases enormously. This in turn results in a much more complicated

task of testing systems, subsystems, and components to ensure that they are

safe individually as well as when they are integrated. As a result, managing

the safety engineering process for vehicle development is of major interest to all

automotive manufacturers. The goal of this research is to introduce a tool that

provides support for a new framework for modeling safety processes, which can

partially address some of these challenges. WorkFlow+ is a framework that was

developed to combine both data flow and process flow to increase traceability,

enable users to model with the desired granularity safety engineering workflow

for their products, and produce assurance cases for regulators and evaluators

to be able to validate that the product is safe for the users and the public.

With the development of an editor, it will bring WorkFlow+ to life.

ii

Acknowledgments

A large thank you goes to Dr. Alan Wassyng, Dr. Mark Lawford, and Dr.

Richard Paige for the aid in the creation of this thesis.

iii

Contents

Abstract ii

Acknowledgments iii

Table of Contents vi

List of Figures vii

List of Acronyms x

Declaration of Academic Achievement xii

1 Introduction 1

1.1 Motivation . 2

1.2 Contributions . 3

1.3 Outline . 3

2 Previous Work 5

2.1 Assurance Cases . 5

2.2 WorkFlow+ (WorkFlow+ (WF+)) 9

2.3 Domain-Specific Languages (DSL) and Graphical Editors 11

2.4 Eclipse Modeling Framework (EMF), Epsilon Object Language

(EOL), and Sirius . 14

2.5 Deep Metamodeling . 15

3 Iteration 1 of Tool 17

3.1 The Requirements . 17

iv

3.1.1 Business Event 1: Engineer wants to create new WF+

definition . 18

3.1.2 Business Event 2: Engineer wants to create new WF+

definition from WF+ templates 21

3.1.3 Business Event 3: Engineer wants to create new WF+

model mixing both templates and new definitions 22

3.1.4 Business Event 4: Engineer wants to edit an already

existing WF+ model that has been saved as a template . 25

3.1.5 Business Event 5: Engineer wants to edit an already

existing WF+ model that has been saved as a diagram . 26

3.1.6 Business Event 6: Engineer wants to instantiate a model

to create a safety case 27

3.2 The Metamodel . 28

3.2.1 The UML Models . 28

3.2.1.1 Platform Independent Model 1 28

3.2.1.2 Platform Independent Model 2 30

3.2.2 The Ecore Models . 30

3.2.2.1 Ecore Model Iteration 1 32

3.2.2.2 Ecore Model Iteration 2 32

3.2.2.3 Ecore Model Iteration 3 35

3.3 Sirius Implementation . 38

3.4 Final Thoughts . 39

4 Iteration 2 of Tool 40

4.1 The Requirements for Iteration 2 40

4.1.1 Engineer wants to create new WF+ metamodel 40

4.1.2 Engineer wants to derive assurance from WF+ metamodel 41

4.1.3 Engineer wants to connect WF+ metamodels to each other 42

4.1.4 Engineer wants to transform WF+ metamodel to a GSN-

type viewpoint . 43

4.1.5 Engineer shall be able to edit GSN viewpoint 44

4.2 The Metamodel . 45

4.2.1 Ecore Model Iteration 1 45

4.2.2 Ecore Model Iteration 2 48

v

4.2.3 Ecore Model Iteration 3 51

4.2.4 Ecore Model Iteration 4 53

4.2.5 Ecore Model Iteration 5 56

4.2.6 Ecore Model Iteration 6 - February 11, 2021 56

5 Tool Specification 59

5.1 The Visual Specification Model 61

5.2 The Syntax . 68

5.2.1 Data, Process, and Attributes 68

5.2.2 References and Constraints 72

5.3 Conventions . 78

6 Evaluation 79

6.1 Creating a Hazard Analysis and Risk Assessment Metamodel . . 80

6.2 Results & Future Work . 95

7 Conclusion 97

Bibliography 103

vi

List of Figures

2.1 In this figure from [5] we can see the general trends of strengths

and weaknesses of the surveyed tools when compared against

the specified metrics . 7

2.2 A high level view of an example WF+ model from [1] 10

3.1 This figure was the first rough draft we used to map out how

the user can interact with the tool and was further refined as

we learned from implementing these use cases. 19

3.2 In this figure is the very first attempt to create a meteamodel

for WF+ that can be used for tool implementation 29

3.3 This figure show specifically how Processes in WF+ should be-

have independent of how Data behaves 31

3.4 The first attempt at modeling in Ecore 33

3.5 The attempt to make it more clear how the Process and Data

can interact with one another 34

3.6 Third iteration on the model to add some structure for Data

classes to allow for more formal descriptions 36

3.7 The final attempt with this iteration of the requirements and

metamodel before we gave up. 37

4.1 This is the first version of the tool after redefining the require-

ments. This iteration focused solely on the abstract syntax of

how data and process can be connected to one another. 46

4.2 The addition of formal definitions for references being created . 50

4.3 More formal definitions of reference classes as well a a parent

abstract class of Node . 52

vii

4.4 More attributes for the reference classes and some minor refine-

ments . 55

4.5 Comments added and more attributes added for the reference

classes. 57

4.6 At the time of this thesis this is the latest working version of

the metamodel. 58

5.1 A top level view of the VSM project in Sirius 60

5.2 A more detailed view of how all the Data classes have been

specified . 63

5.3 A more detailed view of how all the Process classes have been

specified . 64

5.4 A more detailed view of how all the Reference classes have been

specified . 66

5.5 A more detailed view of how the Attribute and Constraint

classes have been specified . 67

5.6 This is the concrete syntax for Data classes and their Attributes. 69

5.7 This is the concrete syntax for Process classes and their Attributes 71

5.8 How Data and Process classes are put together as input and

output . 72

5.9 The Composition class syntax 74

5.10 The Aggregation class syntax 74

5.11 The Inheritance class syntax . 75

5.12 The Association class syntax . 76

5.13 The Reify Association class syntax 76

5.14 How the Constraint class looks 77

6.1 Overall view of the HARA standard set by ISO 26262, defined

using the WF+ methodology. 81

6.2 A closer look at the input to the HARA. 82

6.3 Item, system, element, component, hardware part and software

unit hierarchy as defined in [19], section 4.2, pg 4 84

6.4 A closer look at the top half of the processes of the HARA. . . . 85

6.5 A closer look at the bottom half of the processes of the HARA. 86

6.6 A closer look at the output of the HARA. 87

viii

6.7 Overall view of the HARA standard set by ISO 26262, defined

using the WF+ methodology showcasing the increase in granu-

larity. 89

6.8 A closer look at the top half of the processes of the HARA with

a more granular approach . 90

6.9 A closer look at the bottom half of the processes of the HARA

with a more granular approach 91

6.10 A closer look at the output of the HARA with a more granular

approach . 92

6.11 The drop down menu that we have leveraged to allow the user

to select which elements they would like to hide. 93

6.12 The drop down menu that we have leveraged to allow the user

to select which elements they would like to hide. 94

ix

List of Acronyms

MDE Model-Driven Engineering . 1

WF+ WorkFlow+ . iv

EMF Eclipse Modeling Framework . 1

DSL Domain Specific Language . 5

GSN Goal Structured Notation . 6

CAE Claim-Argument Evidence . 6

EOL Epsilon Object Language . 14

MOF Meta-Object Facility . 14

OMG Object Management Group . 14

ETL Epsilon Transformation Language 14

EML Epsilon Merging Language . 14

GMF Graphical Modeling Framework 15

DSM Domain Specific Model . 15

x

SEP Safety Engineering Process . 8

VSM Visual Specification Model . 38

AQL Acceleo Querying Language . 51

HARA Hazard Analysis and Risk Assessment 79

SACM Structured Assurance Case Metamodel 8

xi

Declaration of

Academic Achievement

The contributions of this thesis apply to the development of tools for safety

engineering in the automotive industry, the application of model driven engi-

neering strategies for software engineering, and the application of both in a

practical industry example.

xii

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

Chapter 1

Introduction

In this thesis we explore topics that are related to the development of soft-

ware tools for safety engineering. This topic includes the physics of notation

for graphical editors, the development of assurance cases, model management,

model traceability, modeling, and Model-Driven Engineering (MDE). These

topics are being explored through the development of a tool that implements

the WF+ framework, an approach to modeling assurance cases through safety

engineering processes and workflows, developed at McMaster University [1].

The first step in the development for a tool for WF+, or any language for

that matter, is to develop the abstract syntax for that language. The ab-

stract syntax is usually specified before the concrete syntax, defined using a

meta-language or metamodel. In the case of development for WF+, which is a

modeling framwework, the abstract syntax is defined using a metamodel. To

create the metamodel for this language we used the Eclipse Modeling Frame-

work (EMF) for its rich tools that allow for the development of metamodels

and the instantiation of those metamodels into usable graphical editors.

1

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

After completing a usable metamodel we then instantiated it to define the

concrete syntax and the semantics of the model. This was done using Sirius,

a tool that can plugin into Eclipse that enables the development of graphical

editors. In this layer we can start adding in more constraints to the model

such as how the abstract syntax will be represented, which is the concrete

syntax. It is also where we develop the semantics for the model and allows us

to implement queries that will help with model management, validation and

verification, and ultimately, the derivations of assurance claims which will lead

to Assurance Cases.

1.1 Motivation

The main motivation for this project was to provide a tool that could sup-

port traceability between all elements within a defined safety process when

working on safety critical solutions. As this is the first step in creating a fully

functioning development environment for users there are 3 main objectives:

the development of the abstract syntax (the metamodel), the development of

the concrete syntax (the model), and the development of constraints on the

workspace of the editor (some semantics and some syntax). Furthermore we

did this in conjunction with industry partners to ensure that we did not veer

off of the practical world into the academic one. In this way we were also

able to ensure that the tool would be more easily adaptable to industry users;

this was a direct influence for the design of the concrete syntax (ease of use

requirement). The tools used for development were decided upon based on

industry standards and leading edge technologies for MDEs. We decided that

it would be best to make this tool in an MDE as when dealing with safety crit-

2

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

ical systems it is also very likely to be working with very complex systems. In

this type of environment, modeling using graphical notation has many distinct

advantages over a textual notation: the ability to take advantage of parallel

processing of humans, the ability to reduce the need for redundant coding, and

the ability to abstract away unimportant information depending on the con-

text. These advantages, in conjunction with already existing modeling tools,

led us to create a tool using a graphical notation rather than a textual based

one.

1.2 Contributions

The contributions of this thesis are as follows:

� Analysis of the theory for specifying syntax for a MDE editor.

� Test the limits of what the WF+ framework can handle for modeling

engineering workflows.

� Lay the foundations for the tool for WF+ as it continues to grow.

� The development of a metamodel environment for WF+

1.3 Outline

This thesis is organized into 7 chapters: Introduction, Previous Work, Iteration

1 of Tool, Iteration 2 of Tool, Tool Specification, Evaluation, Conclusion. As

this is the beginning of development for the tool this thesis aims to cover

the foundations for it to enable a smooth development path for it moving

forwards. Having a proper requirements document is crucial to ensure this,

3

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

regardless of an AGILE or Waterfall development strategy (both of which

were used with the development of this tool). Next the metamodel is likely

the most crucial part of the implementation of the requirements as it is where

the entire tool starts to take shape. If the metamodel is not correct then

it becomes a practically insurmountable task to implement the requirements

properly for the tool. Finally the development of the syntax is the next most

crucial element for this tool as it is a graphical one, and is what will determine

the usability of the tool. If the notation makes no sense to anyone other than

the developer then no one will want to use the tool. In this chapter we explored

many design decisions and reasoning for current and past implementations of

graphical editors so as to avoid some common mistakes, while also doing our

best to maintain some similarity so that users can more easily adapt to the new

tool. Finally the evaluation of the tool in its current form, as well as immediate

steps for its continued development are discussed in the conclusion.

4

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

Chapter 2

Previous Work

This chapter aims to introduce some key terminologies for MDE work and

Domain Specific Language (DSL). This chapter also covers contributions made

by other publications towards advancing techniques for the creation of DSLs,

as well as explores other MDE tools that tackle the assurance of safety in

safety-critical systems.

2.1 Assurance Cases

An ever growing aspect for the development of safety-critical products is how

to assure regulators that a product is indeed safe to use in its intended use

cases. The most common approach to this task is the use of an Assurance Case.

While perhaps originally these assurance cases were done textually, there are

many key issues with using a textual based approach, most notable among

them being the use of imprecise language when creating a textual safety argu-

ment [2]. Consequently, where natural language may struggle, one can turn to

modeling instead. Along with being able to define safety cases more precisely,

5

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

modeling also allows for the recognition of patterns in safety cases, allowing

for a more mechanical approach to the development of an assurance case as

opposed to textual based assurance cases which rely more heavily upon the

intuition of the engineers in charge of development. There are two widely

adopted methods for modeling assurance cases, one of them being Goal Struc-

tured Notation (GSN), while the other is Claim-Argument Evidence (CAE)

[3]. However, though the use of modeling does enable pattern recognition,

there is still a lot of experience and intuition required to develop an assurance

case. This problem was also identified by Ewen Denny et al. [4] as they imple-

mented their own solution in the form of AdvoCATE. In their publication for

their tool they specify the formal methods done to show how they formulate

their safety arguments so that they are well-founded.

Modeling strategies for assurance cases are constantly growing as the de-

mand for more rigorous testing of software and embedded systems increases.

However assurance cases themseleves are still relatively young compared to

safety-critical industry, as such the tools available for development, while grow-

ing, are still relatively young. A survey done by the University of Toronto [5]

took a look at 37 currently available tools for this domain and attempted to

grade them on 6 metrics: creation, maintenance, assessment, collaboration,

reporting, and integration.

� Creation measures the ability to develop assurance cases.

� Maintenance measures how easy it is to maintain an assurance case dur-

ing a product life-cycle.

� Assessment measures the ability to assess syntactic and semantic ele-

ments of the assurance case.

6

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

� Collaboration measures the ability for multiple users to work on an as-

surance case concurrently.

� Reporting measures the ability to create a report of the assurance case

for stakeholder.

� Integration measures the ability for the tool to interact with third-party

tools.

Figure 2.1: In this figure from [5] we can see the general trends of strengths and
weaknesses of the surveyed tools when compared against the specified metrics

Each metric got an alphabetical score from D to A, with D being the lowest

and A being the highest. A look at the results from this survey shows that most

of the tools have some ability to create and maintain assurance cases, however

there was little to no support for collaboration, reporting, and integration,

7

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

with some support for assessment. Thus, as concluded in the survey, it is

clear that there is still a lot of room for improvement for tool support in this

domain.

A different approach to the creation of assurance cases was explored in

a publication by Ran Wei et. al [6]. Structured Assurance Case Meta-

model (SACM) is a standard specified by the OMG and while it boasts a

more mechanical approach to the creation of GSN and CAE assurance cases,

there is no tool support currently for it to enable users to create metamodels

that adhere to SACM. It is currently dependent on the user to ensure that

the metamodels created are correct and conform to the SACM framework.

SACM uses a similar approach as WF+; it attempts to simplify the method

to creating assurance cases so that it can be done more mechanically as op-

posed to intuitively. SACM however is not a metamodel for GCN or CAE, it

is an independent metamodel for assurance case creation and argumentation

that can be used as a reference for creating GSN and CAE assurance cases.

As a result, what SACM currently lack is tool support; a concrete syntax for

the creation of SACM models that can then be transformed to GSN or CAE

assurance cases. The main difference between SACM and WF+ lies in the way

that the argumentation is created. SACM is a metamodel for the creation of

arguments; a structure for users to follow to create argument. The goal of

WF+ is to derive argumentation directly from the modeled Safety Engineering

Process (SEP) that the user defines.

8

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

2.2 WorkFlow+ (WF+)

WF+ is a formal mathematical framework, developed at McMaster University,

which introduces a formal method for the development of assurance cases for

software and embedded systems [1]. The WF+ framework allows for the model-

ing and development of assurance cases by providing the mechanisms to model

all aspects of SEPs. This is done through multiple levels of modeling strate-

gies. The editor that was created during this thesis is in fact an editor that

allows for the development of WF+ metamodels. The reason this is important

is because while WF+ is aiming to address the complexity of safety cases and

engineering across not just a product, but a product family. Thus, some of

the goals beyond this thesis include the instantiation of WF+ metamodels into

executable models, each one representing a specific product, while all sharing

the same parent WF+ metamodel. This will likely have a higher upfront cost,

as users will have to define their SEP template as a WF+ metamodel, with

the aim being to reduce the cost of generating assurance cases further down

the production line as they will be able to instantiate their templates as many

times as they want. In addition, it presents the SEP in a model that uni-

fies both the process-flow and data-flow, allowing for a more complete picture

compared to when they are disjoint. The reason we believe this makes a more

complete model is because of the increased traceability that can be modeled

with the input/output relationship that is modeled between process and data

elements within a single model. This is where the ”+” comes from in WF+.

The advantage of this type of modeling is that we can have traceability at

a much higher granularity between all work-products and the processes that

produce them. This increased traceability, in turn, enables WF+ to derive its

9

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

Figure 2.2: A high level view of an example WF+ model from [1]

10

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

safety arguments directly from the SEPs that are defined, thus ensuring that

the safety-claims are directly tied to the evidence that produces them. Thus,

rather than having to form the safety arguments after the SEPs are executed,

we are able to generate them directly from the SEPs themselves. This reduces

the intuition required to both develop and maintain assurance cases by provid-

ing a more mechanical approach, therefore reducing some of the subjectivity

that is involved in determining when a solution is “safe enough”.

The idea of having a generic model from which assurance cases can be iter-

atively worked on and improved is not a novel idea. However the management

of those models, with everything from maintenance to reuse, is a much more

complex task than just the generation of an assurance case for a specific in-

stance. A prior exploration of the topic of the management of assurance cases,

among other criteria, was conducted by Kokaly et. al [7]. In the publica-

tion they used a formal approach to introduce a generic modelling framework,

within which they were able to specify a model management reuse algorithm

that used know model management operators to produce a solution to the

issue of incremental assurance and the reuse of portions of an assurance case.

2.3 Domain-Specific Languages (DSL) and Graph-

ical Editors

While there are different tools that support the creation and, to varying de-

grees, the maintenance, assessment, collaboration, reporting, and integration

of assurance cases, the one thing that they all have in common is that they

are domain specific languages. That is, they are languages and tools that have

11

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

been created as a solution of a very specific problem that general purpose

languages (such as python, Java, or C++) cannot easily satisfy. While these

DSLs may inherit from the larger the more general languages from which they

are created, they are specialized enough to the point that they hardly resem-

ble their parent language. This is even more true with the specification of a

graphical language and editor, which comes with its own challenges.

Work done by Moody in [8] sets about laying a scientific foundation based on

work done in cognitive psychology, graphic design, software engineering, and

many more. Based on the previous work, he has defined design principles for

creating a meaningful graphical syntax. These principles are:

� Semantic Transparency

� Complexity Management

� Cognitive Integration

� Graphic Economy

� Cognitive Clarity

� Semiotic Clarity

While the work done by Moody was just the start, there have been some

attempts to define implementation strategies by Harald Störrle and Andrew

Fish [9]. They discovered that while the Physics of Notation is a good start,

there is much more work to be done to formalize it before it can be used as a

concrete tool for the evaluation and creation of graphical syntax.

Another approach to the development of graphical syntax can be reasoned

from the work of Nicolas Genon, Patrick Heymans, and Daniel Amyot [10].

12

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

They use the concepts introduced in the Physics of Notation to analyze the

cognitive effectiveness of the syntax of BPMN 2.0. In their conclusion they

surmised that the task of defining a perfect syntax for everyone, while nice, is

nigh impossible. While much of the analysis looks at the problem from a purely

syntactic point of view, this also ignores how heavily semantics and syntax are

tied together. Thus it requires some major creative critical thinking to generate

a syntax that meets the concepts introduced in the Physics of Notation.

Another aspect of WF+ that makes it unique is that it is used to specifi-

cally model engineering processes and their related data. While for the sake of

assurance we are using it to model safety engineering processes, the domain of

modeling engineering processes is one that has limited tool support. In a pub-

lication by Teng et. al [11], they introduce a framework for benchmarking risk

and safety programs to achieve compliance with a regulatory guideline using

Business Process Modeling. While this is an example of modeling programs to

check compliance, it does not fall within the same domain as WF+, which is

to model executable processes and generate assurance. While there are other

publications that explore the topic of modeling business processes, there are

not many of the modeling of engineering processes. One other such metamodel

that exists is [12], a process engineering metamodel developed by OMG. This

meta-model focuses primarily on process engineering, with some references to

work-products and data elements. The reason we decided to develop WF+ was

to be more specific to the domain of assurance cases and safety engineering,

focusing equally on process process engineering and data engineering.

13

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

2.4 Eclipse Modeling Framework (EMF), Ep-

silon Object Language (EOL), and Sirius

While developing in a MDE environment, it is not just important to have tools

that can support the development, it would be impossible without tool support.

EMF [13] is an industry leader for the development of model driven DSLs

and Epsilon Object Language (EOL) is an excellent tool from the framework.

EMF is a framework famed for its ability to implement model management

solutions, as well as the creation of metamodels and their instantiations using

its built-in metamodel; Ecore. EMF implements a custom metamodel that

was partially inspired by the Meta-Object Facility (MOF) which is a standard

model management framework created and set by the Object Management

Group (OMG). EOL [14] is a custom language that was created to aid in

the development. It was inspired by OCL but replaced the type system and

added features more specific for the development of metamodels and their

instances. EOL is also reused as a base layer for more domain specific languages

depending on the required use case (model validation, model transformation,

etc).

As WF+ matures, the plan is to leverage the Epsilon Transformation Lan-

guage (ETL) for its model to model transformation abilities, which can help

address the lack of integration support. The Epsilon Merging Language (EML)

will be useful for model merging which can be used to help address collabora-

tion support for WF+.

As the development of WF+ progresses, all the facilities provided by EMF

will be crucial to addressing the areas where current tool support is lack-

14

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

ing. This was main driving force behind the decision to use EMF. Further-

more, in order to specify the editor for this DSL we use Sirius [15], an open

sourced specification tool that was partially inspired the now less widely used

Graphical Modeling Framework (GMF). The main strengths of Sirius, as

stated by Vladimir et al, [15] are as follows:

� Foundation on the open and widely used industry standard - EMF

� Adaptability to any EMF-compatible Domain Specific Model (DSM) (es-

pecially helpful when it comes to addressing integration)

� A strong separation between semantic and syntactic models

� Easy to use and allows for rapid development

� A high level of extensibility

On top of the features listed above, Sirius is also being used to develop other

tools such as Papyrus, a modeling environment that allows for development

in both UML and SysML. Sirius also now has a web implementation based

on cloud services that allows users to interact with Sirius through their web

browser.

2.5 Deep Metamodeling

Another part of the problem creating and maintaining assurance cases appears

when trying to maintain assurance cases across a product family. While we

have mentioned some methods for assurance case reuse, these do not solve

the main issue of having to redo an assurance case for every product within

a product family. One approach that we are proposing with the development

15

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

of WF+ as a framework and tool is the use of deep metamodeling, a concept

that is explored by Juan de Lara and Esther Guerra [16]. In their research

they used the EMF framework to show the effectiveness of deep metamodeling

and the effective use of inheritance of actions and constraints through the

multiple model layers. While we are not using the framework they proposed,

the concept of using more than just 2 layers of models is one that we believe is

an effective approach to solving the issue of applying an assurance case across

a product family. In the case of WF+ specifically, it is currently working within

3 layers; the Ecore metamodel, the WF+ metamodeling editor, and eventually

the instantiation of the WF+ metamodel into a WF+ model editor.

Another benefit to deep metamodeling, and modeling in general, comes

with the ability to aid with software interoperability. A topic discussed across

several chapters in Model-Driven Software Engineering in Practice, Second

Edition [17], they discuss the benefits that come from using models in practice,

and one of the benefits comes with the interoperability of software. Using a

model to model transformation implements a semantic mapping between 2

domains, allowing for the equivalent expression of one model using the syntax

of another. Metamodels A and B can be manually generated, derived from

the corresponding format description (e.g., an XML schema when the input or

output are XML documents), or automatically created if the formats to bridge

conform to a meta-format for which a bridge at the metametalevel is already

available.” [17]pg35.

16

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

Chapter 3

Iteration 1 of Tool

As with any large software development project, the first step to address is

the requirements of the tool. The development strategy that we used for this

project was an Agile development methodology. The reason for this was to

allow for iteration on every aspect of the project, from the requirements to the

WF+ itself as we suspected implementation of the mathematical framework

would provide many challenges. Thus, no matter what shape the first version of

requirements would take, there was no way that it would be correct on the first

attempt. Naturally as mentioned in previous chapters, the first requirement

and constraint was that we develop this tool in EMF.

3.1 The Requirements

The derivation of the requirements for the tool was difficult at first as our

industry partners did not have a clear concept of what they would want out

of a tool that could support something like WF+. As a result the requirement

had to be defined as how we would like to use a tool that would support

17

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

WF+. While this may have introduced some confirmation bias with regards to

how the tool should behave, we figured it was the best starting point for the

creation of the first prototype so that we could then show it to our industry

partners and get more concrete feedback in terms of their requirements for

the tool that we may not have been able to generate ourselves. We chose

to use natural language to define the requirements for the tool. This was

because we already had a formal specification for the framework of WF+, thus

the main use for the tool was to provide a method for engineers to interact

with the framework. As a result we took a business event approach to the

requirements since that would allow us to most easily define what actions the

user (for this tool the assumed user is an engineer) can take and how the tool

will respond. Version one of the requirements was then roughly based on this

use case diagram.

3.1.1 Business Event 1: Engineer wants to create new

WF+ definition

� Engineer Viewpoint

1. Engineer shall be able to create new project for WF+. Names

project as desired process definition

2. Engineer shall be able to browse WF+ GUI palette for Process Def-

inition Class. Selects diagram element and places it in the project

canvas

3. Engineer shall be able to fill out attributes of Process Definition

Class such as name, process rules etc.

18

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

Figure 3.1: This figure was the first rough draft we used to map out how the
user can interact with the tool and was further refined as we learned from
implementing these use cases.

19

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

4. Engineer shall be able to browse WF+ GUI palette for Data Defi-

nition Class. Selects diagram element and places it in the project

canvas

5. Engineer shall be able to connect the data definition as input to the

process definition.

6. Engineer shall be able to define input data definition attributes. (Is

this to be done graphically with elemental classes or is this going

to be text based attributes?)

7. Engineer shall be able to select another Data Definition Class from

the palette and places it in the canvas. Connects the new data

definition as the output from the process definition

8. Engineer shall be able to define output data definition attributes

(Same question from point 6)

9. Engineer shall be able to save WF+ model into template library so

that it can be reused in other WF+ models and go through V&V

at a later date

� Tool Viewpoint (n/a)

The first requirement was centered around the creation of a new WF+ model

from scratch. This is under the assumption that there are no prior defined

models to work from. The requirements here conflict with one another as some

of the are high level, while other are defining specific actions taken by the user.

Some of them are still incomplete as we did not have all the answers that we

wanted yet to concretely decide on how to approach the requirement and were

intentionally left as a question for further discussion within the research group.

20

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

As we will see with the second business event, a strong emphasis was being

placed on the re-usability of models created by the user and how they can be

saved and go through V&V for later re-use.

3.1.2 Business Event 2: Engineer wants to create new

WF+ definition from WF+ templates

� Engineer Viewpoint

1. Engineer shall be able to create new WF+ project

2. Engineer shall be able to browse WF+ template library for desired

process templates, and select the templates desired and place them

in the project

3. Engineer shall be able to specify how the output data of one process

relates to the input data of another process

4. Engineer shall be able to connect all the data between processes

together into a cohesive WF+ model

5. Engineer shall be able to save WF+ model into template library so

that it can be reused and so that it can go through V&V at a later

date (manual V&V)

� Tool Viewpoint

1. Templates shall be able to auto generate all of their required input

and expected output data templates

2. Tool shall be able to ensure that the WF+ model is syntactically and

semantically correct before being able to be saved into the template

library

21

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

3. WF+ template library is updated to reflect addition of a new tem-

plate

This is the business event where we started to look at re-use a little more

closely. We wanted to be able to browse all of the already made WF+ models

in a sort of library catalog so that the models themselves could behave as

modules and could be plugged into one another in order to create a larger

WF+ model. Our thought process behind this requirement was that this way

the user could develop all of the SEPs separately and connect them together

at a later date. Alternatively, the user could develop smaller subsections of an

SEP and then put the SEP together afterwards. The biggest problem with this

business event however, was that it forced a bottom-up development strategy

on the user. It is unrealistic to expect the user to have a full idea of the SEP

they wish to define from the bottom up all the time. In fact, it is much more

common to use a top-down approach as many users will define a black box

process in an SEP to be further refined at a later date. This was recognized

as a problem during the development of the first version of the metamodel for

WF+ as it added unintended restrictions to users and how they can interact

with WF+.

3.1.3 Business Event 3: Engineer wants to create new

WF+ model mixing both templates and new defi-

nitions

� Engineer Viewpoint

1. Engineer shall be able to create new WF+ project

22

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

2. Engineer shall be able to browse WF+ template library for desired

process templates

3. Engineer shall be able to specify how the output data of one process

relates to the input data of another process

4. Engineer shall be able to connect all the data between processes

together into a cohesive WF+ model

5. Engineer shall be able to notice that a process is missing from model

and is not available as a template within the library

6. Engineer shall be able to browse WF+ GUI palette and select a

Process Definition Class

7. Engineer shall be able to fill out attributes of Process Definition

Class such as name, process rules etc.

8. Engineer shall be able to browse WF+ GUI palette for Data Defi-

nition Class

9. Engineer shall be able to connect the data definition as input to the

process definition.

10. Engineer shall be able to define input data definition attributes. (Is

this to be done graphically with elemental classes or is this going

to be text based attributes?)

11. Engineer shall be able to select another Data Definition Class from

the palette and places it in the canvas

12. Engineer defines output data definition attributes (Same question

from point 11)

13. Engineer shall be able to save WF+ model into template library so

23

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

that it can be reused and so that it can go through V&V at a later

date (manual V&V)

� Tool Viewpoint

1. Templates shall be able to auto generate all of their required input

and expected output data templates

2. Tool shall be able to ensure that the WF+ model is syntactically and

semantically correct before being able to be saved into the template

library

3. WF+ template library is updated to reflect addition of a new tem-

plate

With this business event we tried to mitigate another issue that we had with

how the first two business events were defined; at this point the user could only

create a new model, or connect already existing models together. This disjoint

development method seemed needlessly restrictive as if a user was halfway

through connecting some already existing templates together, and then found

that one was missing from the template library, they would have to start a

whole new project to create that template. Then upon completing the missing

template, they would have to return to their original project and then import

it. This business event was an attempt to define the requirements around let-

ting a user mix and match between creating new WF+ models on the fly while

also being able to use existing templates.

While this makes sense in theory, at this stage in the product life-cycle for

WF+ we later determined that this added an exponential amount of complex-

ity to the tool that we were ill-equipped to implement. While this is a business

24

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

event that we want to implement at some point for the tool, it was decided to

be added to an expected change to the requirements to be implemented in a

later version of the tool.

3.1.4 Business Event 4: Engineer wants to edit an al-

ready existing WF+ model that has been saved as

a template

� Engineer Viewpoint

1. Engineer shall be able to open the WF+ model that is to be edited

2. Engineer shall be able to select individual elements of the model

that are to be changed

3. Engineer shall be able to save changes made to model as a template

only if changes are syntactically and semantically correct.

4. Engineer shall be able to save changes made to model as a diagram

that is a work in progress if changes are not complete or model is

not syntactically and semantically correct.

� Tool Viewpoint

1. Tool shall not allow WF+ template that is open for editing to be

used in other WF+ projects.

2. Tool shall not allow the engineer to use other WF+ templates that

are partially composed of the template that is being edited in any

WF+ projects.

25

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

3. Tool shall lockdown instances of a WF+ template that is being

edited to prevent instantiation.

This business event was to decided on for the situation where there is a change

to the environment around which an SEP was originally defined. Thus the

user would have to be able to edit already defined WF+ models. Ideally this

change would also propagate through all of the project that use the template

that has been updated. This set of requirements was set to tackle the issue of

maintenance with assurance cases and WF+ specifically. This business event

was never properly completed as it was quickly decided that this would need

a complete reworking of this set of requirements. The reasoning for this was

because of the unclear requirements that were created around this business

event.

3.1.5 Business Event 5: Engineer wants to edit an al-

ready existing WF+ model that has been saved as

a diagram

� Engineer Viewpoint

1. Engineer shall be able to open WF+ model that is to be edited.

2. Engineer shall be able to select individual elements in diagram that

are to be edited.

3. Engineer shall be able to save changes to model as a template only

if changes are syntactically and semantically correct.

4. Engineer shall be able to save changes to model as a diagram that

is a work in progress if changes are not complete or model is not

26

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

syntactically and semantically correct.

� Tool Viewpoint

1. Tool shall not allow WF+ template that is open for editing to be

used in other WF+ projects.

2. Tool shall not allow the engineer to use other WF+ templates that

are partially composed of the template that is being edited in any

WF+ projects.

3. Tool shall shall lockdown instances of a WF+ template that is being

edited to prevent instantiation.

3.1.6 Business Event 6: Engineer wants to instantiate

a model to create a safety case

� Engineer Viewpoint

1. Engineer shall be able to compile model in order to create an in-

stance of said model.

2. Engineer shall be able to input concrete data values (as specified

by the model the instance was compiled from) into data entries

for/from processes.

3. Engineer shall be able to complete the process rules of the instance

as specified by the model the instance was compiled from.

4. Engineer shall be able to validate data in the instance through cus-

tom validation rules.

� Tool Viewpoint

27

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

1. Tool shall be able to populate the GUI palette based on the speci-

fications from the model that was instanced.

3.2 The Metamodel

Once a rough idea of the requirements for the tool were laid out we started

with the development of the metamodel for the tool. As at this stage in the

project we were still new to Ecore, we decided to start with developing a

platform independent model in UML. This was done for 3 main reasons; UML

was easily understood by everyone thus improving collaboration between team

members, it would be easily translated to Ecore when we decided we were

starting development in the EMF environment, and there would be no bias

towards implementation tool or constraints.

3.2.1 The UML Models

3.2.1.1 Platform Independent Model 1

From 3.2, we determined that there was insufficient detail with regards to how

Process and Data interact with one another, as well as the hierarchy between

Processes. This lack of hierarchy makes it difficult to ensure that the users

would be able to specify the WF+ models at their desired level of granularity

for their SEPs. Thus this was a point of focus for development that we were

sure we needed to improve. The Correspondence Span class was created as

a means to identify overlap between different WF+ models. Thus it would

become apparent to the user what work was redone in different WF+ models

(Perhaps some SEP uses the same input data, but it is named differently

28

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

F
ig

u
re

3.
2:

In
th

is
fi
gu

re
is

th
e

ve
ry

fi
rs

t
at

te
m

p
t

to
cr

ea
te

a
m

et
ea

m
o
d
el

fo
r

W
F
+

th
at

ca
n

b
e

u
se

d
fo

r
to

ol
im

p
le

m
en

ta
ti

on

29

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

by different teams). As this was all still being done at a high level, actual

implementation of this class was still unclear, but while we were still unsure

of how to implement it, we recognized the usefulness that it could provide to

users for collaboration across different teams.

3.2.1.2 Platform Independent Model 2

At this point in the development lifecycle we had created a PIM for how Process

should behave independent of Data. The reason we did this was to simplify

and focus purely on the behavior we want to achieve with how Processes are

constructed and relate to one another. It is known that there needs to be a

hierarchy, as Processes can be composed of other Processes, and there also

needs to be a way of sequencing those Processes. This model achieves the

former through association composition property. While the sequencing of

Processes was still somewhat vague in this model, we decided that we had

enough of a base to begin development in Ecore, our tool of choice.

3.2.2 The Ecore Models

Rather than directly importing the UML models, we decided to recreate them

in Ecore so that we could fully explore what functionality was present when

developing in Ecore. This was to determine the ease of developing directly

in Ecore versus in UML. Another benefit of recreating the metamodel rather

than importing was that we weren’t sure if we wanted to import UMLs infras-

tructure and superstructure as it may have had unexpected consequences as

development continued. The exercise quickly showed that Ecore had a very

intuitive interface to work with that enabled quick and comprehensive devel-

30

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

Figure 3.3: This figure show specifically how Processes in WF+ should behave
independent of how Data behaves

31

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

opment. It was also easy to understand by everyone involved due to its similar

syntax to UML Class Diagrams.

3.2.2.1 Ecore Model Iteration 1

At this point in the development lifecycle of WF+, it was determined that we

have lost the ability to do top-down designing of instances. With this current

iteration, shown in 3.4, it relies heavily on the assumption that a full library

of Data and Process elements to be able to construct models and instances.

This goes against the intuitive method of building a black box with inputs

and outputs, then later refining that black box to see what it would actually

be built of. Furthermore, in this model how to implement Data Library and

Process Library classes as we intend. Rather than being a container that is

present within the editor, we intended them to behave more like a workspace

folder. The concept of the libraries is to allow the re-usability of WF+ models.

The next steps taken were to edit this model so that we can have Process

and Data refinement, have a clearer picture of how Data and Process should

interact with each other (likely through the Data Metamodel class), And also

ensure that we can have explicit sequencing through process elements, as well

as traceability between Data elements, especially as they have been refined.

3.2.2.2 Ecore Model Iteration 2

In this iteration of the Ecore model for WF+ we identified that Data Metamodels

are in fact separate from other data nodes. This is because the Data Metamodel

class is the effective bridge between the Data and Process halves of WF+. The

idea of Data Metamodel is to allow the user to pic and choose with whatever

32

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

F
ig

u
re

3.
4:

T
h
e

fi
rs

t
at

te
m

p
t

at
m

o
d
el

in
g

in
E

co
re

33

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

F
ig

u
re

3.
5:

T
h
e

at
te

m
p
t

to
m

ak
e

it
m

or
e

cl
ea

r
h
ow

th
e

P
ro

ce
ss

an
d

D
at

a
ca

n
in

te
ra

ct
w

it
h

on
e

an
ot

h
er

34

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

granularity they want the type, size, and amount of data that they want to

define and inputs and outputs of processes. As such it cannot be owned by

Data as it behaves much more like a pointer to nodes that Data contains.

Using this version of the metamodel I have tried modeling some parts of the

SEP from GM. I hope to glean some ideas of what kind of constraints might

be needed. The first constraint that comes to mind is on Data Elements and

how they can be put together.

At this point in development we determined that we needed to define a

structure that can allow users to create formal class diagrams in Data struc-

tures so that they can define how the data should look when it is instantiated.

By enabling such a feature the user would then be able to define exactly what

the data should look like when it is produced as an output from a process or

used as an input to a process. This resulted in the creation of the model in 3.6

With the addition of the Arrow abstract class we have the basis for recreat-

ing Associations, Compositions, Inheritances, and other UML based reference

classes as needed to define Data more formally.

3.2.2.3 Ecore Model Iteration 3

In this iteration we added the composite pattern to both Data Library and

Data Metamodels. As they were added, we realized this reflects how Pro-

cess body is defined as well and this addition improved the symmetry of the

model. However, it was discovered that there was a crucial failing for this iter-

ation. There is a very large bias in this iteration for a bottom up approach to

creating WF+ models. It requires the user to first define the libraries (process

and data) to create templates and how they connect with each other. Next it

35

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

F
ig

u
re

3.
6:

T
h
ir

d
it

er
at

io
n

on
th

e
m

o
d
el

to
ad

d
so

m
e

st
ru

ct
u
re

fo
r

D
at

a
cl

as
se

s
to

al
lo

w
fo

r
m

or
e

fo
rm

al
d
es

cr
ip

ti
on

s

36

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

F
ig

u
re

3.
7:

T
h
e

fi
n
al

at
te

m
p
t

w
it

h
th

is
it

er
at

io
n

of
th

e
re

q
u
ir

em
en

ts
an

d
m

et
am

o
d
el

b
ef

or
e

w
e

ga
ve

u
p
.

37

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

requires the user to instantiate those libraries to then be able to start creating

WF+ models. While mathematically it makes complete sense to do it that

way, as a user it introduces many more stages to the workflow that they would

need to complete for their engineering process. This runs against the natural

efficiency that WF+ is seeking to provide; using a modeling tool that enhances

the engineers workflow. And so it was at this point that we returned to the

requirements stage of the development process to be more concise with the re-

quirements. We decide to think more critically on what the core functionality

was to first enable the tool to create WF+ models, and then after that has

been achieved, work towards of functionality for the tool.

3.3 Sirius Implementation

During this stage of the tooling, as the metamodel created in Ecore was ex-

tremely volatile it was difficult to maintain pace with the Visual Specification

Model (VSM) in Sirius. As such the VSM was only updated to test specific

functionality that was created in the Ecore model. This did enable us to

explore the functionality that is provided by Sirius when it comes to rapid

deployment and maintainability of VSM when dealing with a volatile Ecore

metamodel. The biggest hurdle when implementing in Sirius is the lack of doc-

umentation on the more custom features that are available in the tool. When

trying to deploy something like an element based edge relationship (such as

the Association class that we have defined) there is very little documentation

on how implement the creation tool for it.

38

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

3.4 Final Thoughts

With this first attempt many issues became apparent with our naive approach

to the development.

1. Complete and concise requirements are a must to ensure that we take

into account all the stakeholders when developing this tool. This includes

user workflows and user interfaces.

2. Due to constraints with modeling in Ecore and Sirius, some compromises

to the mathematical model might have to be made in order to allow

implementation and ease of use for the users. These compromises were

not to be done in a way to forsake the formal approach that is being

done to the development and maintainability of assurance cases.

3. A feature diagram or product family tree is critical to determining what

are need-to-haves for the tool and what are nice-to-haves.

39

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

Chapter 4

Iteration 2 of Tool

While keeping in mind all the lessons learned from 3, we restarted the devel-

opment cycle, beginning with the requirements for the tool, with an emphasis

on core functionality and what requirements can be implemented at a later

date.

4.1 The Requirements for Iteration 2

4.1.1 Engineer wants to create new WF+ metamodel

� Engineer Viewpoint

1. Engineer shall be able to create new project for WF+. Names

project as safety engineering workflow.

2. Engineer shall be able to browse WF+ GUI palette for desired ele-

ments to build WF+ model (process, data, arrows).

3. Engineer shall be able to save WF+ model.

40

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

4. Engineer shall be able to validate syntax of created WF+ meta-

model.

5. Engineer shall be able to add custom constraints to WF+ meta-

model (syntactic and semantic, BE2).

� Tool Viewpoint

1. Tool shall have unique syntax for all of its elements.

2. Tool shall have a bijective relationship between its syntax and se-

mantic elements.

3. Tool shall provide basic syntax checking for errors.

4. Tool shall provide useful error codes to aid the user in debugging

model.

The first requirement for this second iteration was defined around the func-

tionality of the tool; it should allow users to create a WF+ metamodel. During

the first iteration we lost sight of this in favor of other features and as a result

the Ecore models grew increasingly complex without a benefit to the editor.

This is the main requirement where we started development for iteration 2 of

the tool.

4.1.2 Engineer wants to derive assurance from WF+

metamodel

� Engineer Viewpoint

1. Engineer shall be able to create both syntactic and semantic con-

straints on WF+ metamodel(s).

41

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

2. Engineer shall be able to create review checks on processes.

3. Engineer shall be able to generate assurance claims when combining

at least 1 syntactic and at least 1 semantic constraint together.

4. Engineer shall be able to generate assurance claims from other as-

surance claims.

� Tool Viewpoint

1. Tool shall provide traceability from assurance claims to the process

and data used to derive it.

This requirement definition is to focus solely on how we can derive assurance

that a product is safe from the SEPs that are defined in the WF+ metamodel.

The idea is that so long as the WF+ metamodel is complete and well defined,

we can derive the assurance case claims and evidence from it. Then by the

transitive property of instantiating the WF+ metamodel, the instances will

also have the assurance claims and evidence baked into them.

This is one aspect that go lost during the first iteration of the tool. Because

the original requirements were not well defined nor complete we lost track of

some of the core functionality for WF+ which is ultimately a tool to enable

more efficient development of assurance cases for safety critical solutions.

4.1.3 Engineer wants to connect WF+ metamodels to

each other

� Engineer Viewpoint

1. Engineer shall be able to connect the outputs of one WF+ meta-

model as the input to another WF+ metamodel(s).

42

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

2. Engineer shall be able to create WF+ metamodels within another

WF+ metamodel.

3. Engineer shall be able to create WF+ metamodels separately and

connect them together at a later time.

4. Engineer shall be able to view how all the WF+ metamodels interact

with each other (whether they are connected or isolated).

� Tool Viewpoint

1. Tool shall provide an interface to view an abstract level of WF+

metamodels.

This requirement is focused on the modularization of WF+ to allow for easier

development. Rather than having one giant WF+ metamodel that might be

extremely intimidating to deal with, being able to develop the WF+ meta-

model is smaller chunks is much easier, not to mention standard developing

practice. This is also reminiscent but not exactly the same as the concept of

using templates. While both allow for a modular design, there are no tem-

plates in this iteration that allow for re-use of WF+ models. Instead this

modularization is meant to be an approach to abstraction; a way of zooming

out to get a look at the big picture to make sure that the user is able to keep

track of what is currently being done and how it relates to what has been done,

and what needs to be done.

4.1.4 Engineer wants to transform WF+ metamodel to

a GSN-type viewpoint

� Engineer Viewpoint

43

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

1. Engineer shall be able to select an option to generate GSN viewpoint

of WF+ metamodel.

� Tool Viewpoint

1. Tool shall provide useful errors if the WF+ metamodel is not com-

plete enough to generate GSN viewpoint.

2. Tool shall provide traceability between GSN viewpoint and WF+

metamodel.

3. Tool shall be able to transform back from GSN to WF+ after user

edits GSN version of WF+.

This requirement is a first attempt at defining how we want inter-operation to

work for this tool. As GSN is a commonly used tool for the development and

maintenance of assurace cases, having some way of transforming WF+ to GSN

would be a natural advantage for users to adapt to working in WF+. This

would also allow for easy visualization of how the derived is working based on

the defined SEPs. It would also make it easier for regulators to understand

what has been done as they wouldn’t need to learn a whole new modeling

methodology to be able to judge whether a product is safe enough.

4.1.5 Engineer shall be able to edit GSN viewpoint

� Engineer Viewpoint

1. Engineer shall be able to edit generated GSN viewpoint of WF+

metamodel.

2. Engineer shall be able to transform in the reverse direction back to

WF+ metamodel after making changes

44

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

� Tool Viewpoint (n/a)

This requirement is a follow-up to the previous one as this would allow the

user to further edit the generated GSN version of the assurance case. Being

able to transform back also ensures that there is no loss in traceability between

the two versions, ensuring that they can remain reflections of one another. By

enabling this bi-directional transformation it also allows for multiple assurance

case development strategies.

4.2 The Metamodel

At this point in the project, rather than develop in UML we decided to develop

right away in Ecore. This was because at this point in the development life-

cycle I was more comfortable in the Ecore environment, it allowed for a faster

implementation time, and the rest of the research team was more accepting of

the technology.

4.2.1 Ecore Model Iteration 1

For this iteration the main goal was to implement the most core requirement;

being able to create WF+ models. Thus we had to consider the rules about

how WF+ is built; data input and output to process. Since WF+ is a kind

of unified modeling framework between data modeling and process modeling

we had to consider how those two very different types would interact with one

another. Thus we focused solely on developing the abstract syntax for that

in this iteration of the tool. In this iteration, shown in 4.1, of WF+ a few

decisions have been made. For one the issue of re-usability of WF+ graphs

45

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

F
ig

u
re

4.
1:

T
h
is

is
th

e
fi
rs

t
ve

rs
io

n
of

th
e

to
ol

af
te

r
re

d
efi

n
in

g
th

e
re

q
u
ir

em
en

ts
.

T
h
is

it
er

at
io

n
fo

cu
se

d
so

le
ly

on
th

e
ab

st
ra

ct
sy

n
ta

x
of

h
ow

d
at

a
an

d
p
ro

ce
ss

ca
n

b
e

co
n
n
ec

te
d

to
on

e
an

ot
h
er

.

46

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

and elements has been shelved for a future change (thus getting rid of the

library classes). In this metamodel we focused on core functionality of the

editor; being able to create data and process elements while grouping them

and connecting them to form a workflow. This metamodel allows that precise

functionality. We kept the three types of process definitions that existed in

the previous version (composed, atomic, and automatic) while getting rid of

the process invocation class. This now creates ownership of a process in the

container that it is defined it but does not allow for its re-usability by other

processes. This also makes defining the hierarchy much easier as we now have

clear leaf nodes that can be used for the transitive closure (atomic and au-

tomatic). We also have a flag in atomic process to define if the process is a

review or not. This may be changed later if the reviews are too complex to be

held within an atomic process element.

On the data side we got rid of the data metamodel class entirely and just kept

data elements and data definitions. As defined in the metamodel, the data

element class is the leaf node for the transitive closure. Finally, an addition

here that was not present in any other iterations is the Attribute class. This

class was added to allow us to treat the instantiation of the metamodel more

similarly to class diagrams. As of right now every class can have attributes

but this may be amended in future iterations.

The references in this metamodel are also quite simple. The only references

between data and processes are handled by the abstract classes. This simpli-

fies defining the input and output relationship. The reference definitions are

also bidirectional to allow for the instantiation models to allow defining the

relationship from either side of the reference. The multiplicities may change

as the project progresses. Also, there are association that are capable between

47

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

data classes and process definition classes. This was to enable reified associa-

tions later if still desired.

There are also some basic constraints in this iteration as we wanted to see how

they affect the instantiation. We predict that constraints will likely be added

in Sirius as opposed to Ecore, but some of the advantages of having it in the

Ecore level would be the centralizing of everything for one level in one model.

This iteration is much simpler than the previous ones, but also much more

focused. As we redefined the requirements it allowed us to determine what

features are critical to the tool and what features can be pushed off to a later

date. This metamodel was specifically designed to enable the immediate cre-

ation of WF+ models and to allow for the definition of constraints for the

editor. At this stage we were still developing the concrete syntax for the edi-

tor and figuring out what other constraints might be needed before we could

begin on figuring out how to evaluate the editor.

4.2.2 Ecore Model Iteration 2

In the iteration shown in 4.2, we removed some of the associations to the

Attribute class that we discovered were unnecessary while developing the con-

crete syntax, specifically to Data Definition and Composed Process Definition.

Since those classes are intended to be used as containers for the hierarchy we de-

cided to confine the Attributes class to the Element classes that are contained

so as not to pollute the concrete syntax. We have also added the Constraint

class in this version so that the user will be able to place constraints into the

instantiated model. Currently the EType that is used to define the constraints

is EString so it will have to be interpreted by something in order to function

48

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

as an actual constraint; ideally OCL since it is the most commonly used by

the modeling community.

Finally we have also added the Reference and Node abstract classes. The

Reference class was created in order to define the Associations class and the

Reify Associations class. This was done so that in the instantiation the user

can define associations with multiplicities that can be displayed in the editor.

The Reify Association class was also created so that as the name implies, the

users will be able to draw associations from Reference elements to Node Ele-

ments. This brings up the Node class. This class was created so that it would

be easier to have Constraints be able to constrain both Data and Process with

one reference in the metamodel. It also has the bonus of doing the same thing

for the Reference class and the classes that inherit from it, thus making the

model easier to maintain for future revisions. For now it is easier to maintain

the editor by having the root element of this metamdoel, WorkFlowPlus, be

composed directly of Process and Data rather than Node. As a result we did

not change the composition relationship.

The introduction of the Reference class also leaves the metamodel open to

adding other types of references in the future if they are deemed necessary for

creating WF+ models. Thus creating a metamodel in Ecore that is robust

with respect to anticipated changes. During the analysis of some examples

with this version of the metamodel it was discovered that there were a couple

of flaws with previously defined WF+ models due to a conflict of the ownership

of classes due to different ways of defining it. This brought up the discussion

of whether or not to implement Aggregation in the metamodel.

This brought up an interesting point because there is an inherent limitation

49

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

F
ig

u
re

4.
2:

T
h
e

ad
d
it

io
n

of
fo

rm
al

d
efi

n
it

io
n
s

fo
r

re
fe

re
n
ce

s
b

ei
n
g

cr
ea

te
d

50

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

in the tools that are being used (Ecore, Sirius). This is because there is no

Aggregation currently defined in these tools, thus it would have to be manually

defined by us. Further analysis will have to be done on the WF+ framework to

determine if Aggregation is indeed needed, which is why having the Reference

abstract class is so important to the robustness of this metamodel.

Another thing worth noting here is that we removed the Ecore constraints from

this metamodel. We decided that we would instead implement constraints in

Sirius, in the specification file. This way we can avoid adding to the complex-

ity of the metamodel and keep all the definition for the editor in one place,

thus reducing the coupling between Ecore and Sirius. This also increases the

cohesion in Sirius as it means we can use the native language of Sirius as well

which is Acceleo Querying Language (AQL). While this does mean that we

will need to learn another flavor of OCL, we believe this is the right design

decision to maintain low coupling and high cohesion between the two tools.

4.2.3 Ecore Model Iteration 3

In 4.3 we see some significant changes, primarily in how all the elements can be

connected together. It was determined that in order to remain faithful allow

for easy translation and understanding a composition arrow is required along

with inheritance. At this point, all the reference classes are connected at the

Node abstract class, but are only drawable between Data classes due to how it

is specified in Sirius. Having the references connect to Node helps to improve

robustness if it was decided in the future that we wanted to allow some of the

references to work the Process classes as well.

Next there are 2 new classes on the left of the model: Work Product and

51

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

F
ig

u
re

4.
3:

M
or

e
fo

rm
al

d
efi

n
it

io
n
s

of
re

fe
re

n
ce

cl
as

se
s

as
w

el
l

a
a

p
ar

en
t

ab
st

ra
ct

cl
as

s
of

N
o
d
e

52

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

Normative Data. Work Product was introduced as we ran into ownership

issues with Data classes as they were produced from Process classes. It was

possible for an output piece of data to be owned by both the input to a process,

as well as a work product, which was a collection of output data pieces that

would be used for V&V or other tools to check milestones and quality. As

such, Work Product was created, with a weak ownership association to the

abstract Data class; Aggregation. This is reserved solely for Work Product as

we only want to show that it is a special type of Association and don’t want

to open the option to use it up to the rest of the model at this stage. Finally

there is Normative Data. This class is to allow for the definition of standards

and other pieces of data that are necessary for the SEP, but are not in direct

control of the SEP. For now it is defined as a sub-part of the Data abstract

class so that it can be easily defined, though this will need to be reviewed

moving forward in order to ensure that it actually makes sense. From this

stage there are a few key steps to be completed; a transformation method to

elevate the instances of this model into something that can be executed, a way

to query the models, a way to explicitly sequence Process items, and a way to

derive assurance from the model.

4.2.4 Ecore Model Iteration 4

In 4.4 there were some minor adjustments made after some preliminary testing.

The first difference is that now the Work Product class inherits from Data so

that it can be a part of the hierarchy if needed. This was done because we

are still struggling to figure out how we want ownership to work syntactically.

Aggregation was also made into a formal class so that the possibility to make

53

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

it apply to more than just Work Product is feasible. The ability to explicitly

state the sequence that processes should be executed in was also introduced

with the self-referencing association to/from Process with next/previous. This

also allows for the ability to define parallel processes. Finally, I defined the

Input and Output classes between Data and Process so that we can have

multiplicities on those connects, as well as labels if desired later in the project

as well. Furthermore, by making them into classes it simply allows for an

easier way of editing those classes if needed in the future, thus making the

metamodel more robust. They inherit directly from the Reference abstract

class instead of from Association because we want them to remain independent

of the Association class so as not to pollute them with whatever changes might

be made to the Association class in the future. Aggregation still inherits

from the Association class as it is simply a special form of Association with a

stronger sense of ownership. Moving forward, we will be working on testing

what models can be made from this metamodel. This is to test the editor

to make sure that we can at least make some base level WF+ models. This

will provide us with the baseline that we need so that we can start to make

more decisions with the direction that we want to take this tool in. The

likely directions are in the constraints and review nodes. Currently, they are

a single class, respectively, but in discussions we have come to the conclusions

that there is a lot of information that needs to be sorted through with those

classes. Constraints will eventually be used as the building blocks of assurance,

while reviews have much to do with how those constraints come to fruition.

Thus, there is a high level of dependency between reviews and constraints, and

ultimately, with how assurance can be generated from a WF+ model.

54

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

F
ig

u
re

4.
4:

M
or

e
at

tr
ib

u
te

s
fo

r
th

e
re

fe
re

n
ce

cl
as

se
s

an
d

so
m

e
m

in
or

re
fi
n
em

en
ts

55

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

4.2.5 Ecore Model Iteration 5

In figure 4.5 we have attributes specified for all of the reference classes so that

we can specify the multiplicities and end labels within the VSM. They are

also unique so that there is no inheritance issues with redundant information

and naming being inherited by children classes. Comments have been added

to help keep track of design decisions that have been made, as well as keep

track of future work. This version is also the one that is used to show the

Specification of the editor and the evaluation of the tool.

4.2.6 Ecore Model Iteration 6 - February 11, 2021

Finally in figure 4.6 we have the latest revision of the metamodel at the time

of writing the main body of this thesis. There are two major changes in this

revision, both to the data side of the model. The first change was the removal

of the Normative Data class as it was replaced witha boolean attribute in both

Data definition and element. This was done to declutter both the metamodel

and the editor since normative data is effectively no different from any other

data; the only difference being the source of the data. The second change was

the addition of the Performance Data class. This is a unique class as it is

used to show the resources that will be required/used for the execution of a

process; personnel, their education, experience etc. This class is unique as it

does not fall into the usual input/output relationship that all other data has

with process. It is meant to be used more for the sake of reviewing executions

to generate assurance.

56

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

F
ig

u
re

4.
5:

C
om

m
en

ts
ad

d
ed

an
d

m
or

e
at

tr
ib

u
te

s
ad

d
ed

fo
r

th
e

re
fe

re
n
ce

cl
as

se
s.

57

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

F
ig

u
re

4.
6:

A
t

th
e

ti
m

e
of

th
is

th
es

is
th

is
is

th
e

la
te

st
w

or
k
in

g
ve

rs
io

n
of

th
e

m
et

am
o
d
el

.

58

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

Chapter 5

Tool Specification

Due to our choice in technology, the specification of the editor, as defined

in the VSM, can only happen after a metamodel has been defined. Sirius is

heavily dependent on an Ecore model to be defined in order to generate all

of the files needed for specifying an editor. One of the great things about

Sirius and Ecore is that this is a one click process and so we were able to start

creating the editor immediately after specifying the Ecore model. For the sake

of remaining concise we will only be looking at the evolution of the VSM for

the second iteration of the metamodel. 5.1 shows a look at the whole VSM

file for the tool. In this section we will take a deeper look at all the aspects

of this file to see how the tool been specified and to explore design decisions

were made to implement the requirements of the tool and previous research

that has been done on graphical editors and DSLs.

59

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

Figure 5.1: A top level view of the VSM project in Sirius
60

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

5.1 The Visual Specification Model

The basic functionality for the tool was built based on the metamodel from

4.1. Despite how the metamodel has changed over the different iterations,

this specified the basic functionality for being able to define Process and Data

classes and how they connect with one another. In figures 5.2 and 5.3 we show

a few more details about how the Data and Process classes have been specified

for their concrete syntax. Despite the Physics of Notation design principles

still being relatively young, we used those principles as guiding question when

deciding on the concrete syntax for the tool. The principles that we paid the

most attention to were semiotic clarity, semantic transparency, and graphic

economy.

Before beginning the specification for the model however, it is important to

remember what we are trying to achieve with this editor. Keeping in mind that

with iteration 2 of the metamodel our main requirements that were guiding

our design decisions were defining the input/output relationship between the

process classes and the data classes, and usability. Since those are our main

2 requirements, our goal with the editor was to make an easily usable editor

that allowed the end user to be able to specify the workflows that they want

from the beginning input of the workflow to the final output.

To begin we will look at the different types of data classes. There are 4

main data classes: Data Definition, Data Element, Work Product, and Per-

formance Data. The Work Product class has a different shape than all the

other Data classes, while all the other Data classes that share a similar shape

have different colors depending on what they mean; Sub Data Element is light

yellow, and Data Definition is a gradient from white to light yellow for exam-

61

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

ple. This allows for extra differentiation despite them all have a rectanglular

shape. The color yellow was chosen for data primarily because we thought it is

still easy to see black text on top of it, while the grey color was chosen because

it can contrast easily from the yellow. Another simple difference is rounded

corners vs. sharp corners. The main reason why decided to keep them all

as rectangles and had to look for other ways to differentiate the syntax was

so that when users use the tool they would be able to intuitively understand

what the shapes mean based on previous experience with other graphical lan-

guages, such as UML. This design decision was made so that implementing

the requirement of ease-of-use was reflected in the design of the editor, while

trying to also minimize the propagation of unexplained design decisions that

were made in previous graphical languages.

The Data Definition class has the option of being nested within it itself

while Data Element classes can only be nested within Data Definition classes.

This enables the user to draw hierarchies as defined in the metamodel. This

is reflected in the Composed Process Definition class as well. Furthermore all

of these classes have been defined as containers so that the user can create

attributes within them to allow for those classes to own those attributes. We

will show how these behave in the evaluation of the tool.

Second after the data classes we have the process classes. In figure 5.6

one can see the rounded corners for the Data classes compared to figure 5.7

where the process classes have sharp ones, along with also have different colors.

This goes to show how we strived to reduce the syntax redundancy for the

unique classes, while still remaining similar enough to the UML syntax so

that users with experience in modeling can still understand that they are class

diagrams. The Work Product class is unique in how it is an object that act

62

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

Figure 5.2: A more detailed view of how all the Data classes have been specified

63

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

Figure 5.3: A more detailed view of how all the Process classes have been
specified

64

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

similar to a head to aggregate a bunch of other Data classes together, hence it

has an entirely different shape from the rest of the classes, further showing its

difference as it is not a class diagram. Data classes that are a darker shade of

yellow have the boolean attribute ’isNormative’ set to true to signify that it is

normative data. This difference is then highlighted by the color change. This

is done via the Conditional Style specification in the Data classes. The same

approach is used for Atomic Process. If the process is meant to be a review, by

setting the boolean attribute ’isReview’ to true, the editor triggers a change

in color for the concrete syntax of the class from light green to light blue as

shown in 5.7. The last class of the process classes is the Automatic Process.

The concept for this process is to allow engineers to specify processes that

would not require human intervention. Currently this class does not have the

ability to hold commands for automation, however the hope is that moving

forward in the project we will be able to specify a simple editor that would

allow for a user to place OCL commands so that the process could be formally

specified, and executed by a machine.

Next we have the Reference classes as shown in 5.4. As shown in the last

metamodel in 4.5 we have defined classes for the most commonly used UML

edge constructs; Association, Aggregation, Composition, Inheritance. This

allows us to be able to have more control over the semantics and syntactic

behavior of these classes, decoupling from the built in semantics and syntax of

the edges available in Ecore and Sirius. This decision was made to once again

make the tool a little easier to use as most users would already be familiar

with UML syntax and can thus be instantly familiar with what the syntax

mean, increasing the semantic transparency of the syntax. This does however

come with a cost as we now have some syntactic redundancy in how we define

65

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

Figure 5.4: A more detailed view of how all the Reference classes have been
specified

66

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

Figure 5.5: A more detailed view of how the Attribute and Constraint classes
have been specified

ownership/composition of classes.

Finally we have the specifications for the Attribute and Constraint classes.

There are relatively simple specifications when compared to all the other syn-

tax. There is only one syntax for Attributes which is to be listed in an element

class (data or process), while constraints also only have a conditional syntax;

they change color depending on if the constraint created is a syntactic one or

a semantic one. This differentiation is up to the user and is changed with a

boolean value ’syntactic’, just as the two previous classes.

One thing to note is that all of the syntax relies on different colors to

denote different meanings for each element. While using colors is less than

ideal as it has inherent accessibility issues, such as for end users that may be

color blind, it was a necessary decision to take as without using color it would

have been impossible to continue use the rectangle shape while maintaining

semantic differences in the syntax. Furthermore, the main reason we wanted to

keep using the rectangle shape as much as possible was so that it would make

the tool more familiar to end users who are already used to other languages

67

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

like UML since it would have some similarities with the syntax, thus working

towards satisfying our usability requirement. One work around that we have

to the issue of accessibility for people who may be color blind is the ability to

change the color of any of the classes as-hoc, though we will see later on in

the Conventions section that while it is feasible, we don’t currently have a way

to enforce consistency throughout the model if the end user decides to start

changing the colors of the classes.

5.2 The Syntax

In this section we will showcase the syntax of the tool. We will show some of

the basics of how the components can be combined together, as well as a simple

WF+ model to show the usability of the tool at this stage of development.

5.2.1 Data, Process, and Attributes

This tool inherits much of it graphical syntax from UML despite the lack

of design rationale that is present in order to reasonably satisfy the require-

ment of usability and intuitiveness. As a result we the Data Element and

Atomic Process classes both look like classes that would normally appear in

a UML class diagram. The differences between the two are color and shape

(Data classes have rounded corners instead of sharp corners using 2 of the 3

syntactic tools to create a distance between the two classes) as shown in figures

5.6 and 5.7. The Automatic Process class does not currently have the ability

to hold attributes as for now the plan is for a process that can be automated

to have a formal OCL definition instead of attributes to define how the process

is supposed to run. Work Product is a special type of Data class as it cannot

68

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

Figure 5.6: This is the concrete syntax for Data classes and their Attributes.

hold attributes either, and is instead intended to be used as a header to aggre-

gate many data classes. This is because a work product might not necessarily

own the data that it is composed of. As a result an aggregation works better

here as there is a stronger sense of ownership between a work product and

what it consists as opposed to a regular association.

Since the Work Product class can not hold attributes, it doesn’t qualify as

a class in the same way that Data Element and Atomic Process do so it has

an entirely different shape than both of them; a triangle. It is still yellow to

show that it is part of the Data family, but has a different shade of yellow

to further differentiate it from the other Data classes. Finally, the dark yel-

low variants of Data Defintion and Data Element is the way that normative

data is currently represented in WF+. A data class can be considered as nor-

mative if it is used to show data that is used within a workflow that comes

from an external source such as a standard (ISO 26262) or another engineering

process (design documentation for example). As this is still considered to be

a class diagram element it can therefore hold attributes, thus earning it the

same shape as Data Element. However as it comes from a different place (an

external source to the SEP) it instead has a darker shade of yellow to show

the difference between the two classes. While using only color to differentiate

69

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

classes comes with some flaws such as usability for people who are color blind,

it is a compromise that makes the most sense to remain consistent with the

other syntactic designs that have been made and still follows the design phi-

losophy put forward in the Physics of Notation. Another unique Data class

is Performance Data, which has the same shape as other data classes, but a

very different color scheme. For WF+, by default the Process classes are set

to a green color. Performance Data is a data class that is used to specify

data about a process, rather than the input and output of a process that we

have been describing so far. This unique class was created so that users could

specify things like who is performing the process, how long the process is,

qualifications required for the people executing the process etc. The rationale

for creating this class is that it will eventually be used as part of the assurance

generation from the SEP. If the process is executed properly, and done by the

right people, then the output should also be valid. The way this class will be

used is still subject to change with future iterations of the tool.

Finally for the Data family, we have the Data Definition class, whose purpose

is to provide a composition hierarchy for Data. Data Definition can be com-

posed of Data Element or more Data Definition, allowing for a lot of depth

when creating Data classes. This allows for the use of the built in constraints

for operations like the transitive closure when analyzing the created WF+

models. Further more it allows for compact designs without the needs for

more edges. One downside is that it doesn’t allow for the multiplicity of the

composition relationship to be shown right away. It must first be defined as an

attribute in the metamodel (Ecore) and then specified in the VSM for there

to be a multiplicty with this relationship.

As previously mentioned, the Atomic Process class behaves the same way

70

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

Figure 5.7: This is the concrete syntax for Process classes and their Attributes

that a class would in UML so it has the same shape as one, though it has a

specific color to denote that it is a Process class specifically. Composed Process

is behaves the same way at Data Definition except it can only hold Process

classes instead of Data classes, hence it also having the Process coloration.

Finally there is the Automatic Process class. This class is a special class as

it cannot hold any attributes at this time. Instead the plan for it is to hold

a formal OCL definition for what the process is supposed to do. If it cannot

be defined using an OCL definition then it is likely that it is in fact not an

automatic process and should be changed to a different class. Furthermore, in

order to help with the differentiation between the Process and Data classes, the

Process classes have been stereotyped as well. That is, they automatically have

the type <<Process>>or <<Review>>placed above whatever title is given to

the Process class. This is to further help show the difference between a regular

process and a review when the user chooses to set the boolean attribute to

true; on top of the color change that occurs as well to a light blue.

71

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

Figure 5.8: How Data and Process classes are put together as input and output

5.2.2 References and Constraints

As previously stated, within the WF+ metamodel we have defined 4 common

UML edges; Association, Composition, Aggregation, and Inheritance. Along

with those four classes, we also have two special types of associations call Input

and Output. As one might suspect, those two special classes are used specif-

ically for defining the input/output relationship between data and processes

within an SEP. As show in figure 5.8 one can see how that syntax is repre-

sented. The Input edge can only be drawn with Data classes as the source and

Process classes as the target, which is also supported by the direction of the

arrow. Naturally, the Output edge is drawn opposite to the Input edge; from

Process to Data. These two edges are further differentiated by the colors that

they use which are the same colors as their source nodes.

Next are the more general edges that have been defined. These have been

taken directly from UML and have the same syntax from UML as well. This is

to ensure that it is very easy to understand the meaning of these edges which

72

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

works towards the satisfaction of the usability requirement for the tool. Some

minor things to note about these edges however is that since they have been

redefined for the purposes of this tool, their semantics also need to be redefined

which has not been completed at this time. For example, in figure 5.9 we can

see that we have a composition edge that connects Element9 to Element1,

which according to the previously defined syntax, is held within Definition2.

This introduces conflicting forms of syntax for the same semantics, and in

this specific case, conflicting semantics as well since it is now ambiguous as to

which node actually owns Element1; Definition2 or Element9. The concrete

definitions of these conflicting semantics however are outside the scope of this

thesis and will need to be addressed in future work for this tool. At this time

the Composition edge seems to be the only Reference class that has conflicts

with the built in semantics of Ecore and Sirius.

Another Reference class that was redefined to allow for flexibility with the

syntax is the Inheritance class. While the syntax is the same as in UML,

there are no semantics that have been defined for it yet that actually force the

inheritance of the attributes and incoming/outgoing edges from the parent to

the child. As a result in the current state of the tool the Inheritance class

behaves in a similar way to the Association class, but with different names for

the source and target nodes.

Despite the increased complexity that comes with redefining these classes,

the advantages to having them defined is that it decouples the classes from

Sirius. That is to say, we have more flexibility with the attributes that these

classes would have, such as multiplicities and end labels shown in figure 5.12,

as well as being able to define more actions that a user might want to do with

them. For example, a reified association becomes possible, as show in figure

73

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

Figure 5.9: The Composition class syntax

Figure 5.10: The Aggregation class syntax

74

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

Figure 5.11: The Inheritance class syntax

75

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

Figure 5.12: The Association class syntax

Figure 5.13: The Reify Association class syntax

5.13. Being able to connect edges to edges is not something that is directly

supported in Sirius or Ecore and must be defined in order to be able to specify

the syntax and semantics of such an action.

Finally there is the Constraint class. The syntax of this class if fairly

straightforward. It has its own color and shape; red and a circle with a dashed

line border. This shape is unique to the Constraint class and should therefore

be extremely easy for a user to be able to understand. The only difference

within the Constraint class is if it is a semantic or syntactic constraint, in

which case the color of the circle will change; red for syntactic and pink for

76

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

Figure 5.14: How the Constraint class looks

semantic. This condition is set by the user and can be toggled back and forth

by setting the boolean attribute ’Syntactic” to either true or false.

Another attribute of the Constraint class is the description; what is the

constraint? Moving forward this attribute is to hold an in-line OCL editor

so that users can define their constraints formally and without the ambiguity

of natural language. This will eventually also lead to the formulation of the

formal assurance case that is to be generated from the WF+ metamodel that

is being defined by the user.

77

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

5.3 Conventions

As the timeline for this work was limited there are some constraints on the

editor that have not yet been able to be put into place. As previously shown

in figure 5.9, there is the ability to draw models that contain semantic conflicts

using the composition class. As a result, there are some conventions that have

established to inform users so that they can make well founded models despite

the lack of constraints on the syntax. While the list is relatively short at the

moment, we also rely heavily on the users previous experience with modeling

to apply similar conventions that are present in other modeling languages.

Convention 1: Ensure that any hierarchy built using containers or the composition edge

do not have conflicting ownership.

Convention 2: Ensure that associations edges are only connected between nodes of the

same type. That is Process to Process and Data to Data.

Convention3: Ensure that classes can only inherit from one other class, and do not

conflict with the composition hierarchy.

Convention 4: While all the classes can have their color changed as the user desires,

ensure consistency with color coding between classes of the same type.

Convention5: Input/Output edges to/from container items apply to all of the contained

items as well.

Convention6: Associations between two items apply only to those items and not to any

contained elements.

78

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

Chapter 6

Evaluation

In order to evaluate the usability of the tool at this current stage we aimed to

satisfy the primary requirement of this tool; can we successfully build WF+

metamodels. This requirement was broken down to the two requirements

that were guiding the design decisions for the specifications of the editor; in-

put/output relations between process and data, and usability. In order to test

this we did both unit testing and integration testing. First we had to test to

make sure that each individual node class could be created the way that we

wanted them to be represented (see 5.2). After testing all of the individual

node classes we had to check that we could connect them together using the

Reference classes. Finally, after checking that we were able to integrate all of

the classes together to a satisfactory degree, we decided to recreate the Hazard

Analysis and Risk Assessment (HARA) standard, as set by ISO 26262 [18],

in the editor for WF+. This would allow us to test the usability of the tool,

as well as further stress the unit and integration testing to make sure that we

would be able to create a model that could be understood.

79

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

6.1 Creating a Hazard Analysis and Risk As-

sessment Metamodel

As this model is very large, we split it up into smaller sub pictures to analyze

the effectiveness of the WF+ editor as a tool for creating WF+ metamodels. To

start with, we have figure 6.2 which shows a metamodel that depicts the input

to the HARA as defined within ISO 26262. We show in the meatmodel that a

requirements specification data class composed of requirements, which can be

further specified into functional and non-functional requirements, as well as

constraints, all items that should be found within a requirement specification.

This requirement specification is then associated with an item. According to

ISO-26262, there needs to be an item boundary defined as part of the input

to the HARA. However what this boundary actually contains/aggregates is

left ambiguous and open to interpretation. Therefore when it came to our

interpretation for this model, figure 6.3, we used the figure from ISO 26262

Volume 10 [19], which shows how items interact with other components of a

vehicle.

On top of the figure from volume 10, we also used the definitions of item

and vehicle function that are defined in ISO 26262 Volume 1 [20], along with

their references. Taking these definitions, the model, and putting it together

with the description of what the boundary of an item is, as defined in 5.4.2

of ISO 26262 Volume 3 [18] we ended up with the hierarchy that we have as

the input to the HARA shown within figure 6.2, which we believe is a very

accurate representation of the input. Thus, the requirement specification and

item boundary have been successfully drawn and shown to aggregate to the

work product that is the ’Item Definition’, which is an input to the actual

80

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

F
ig

u
re

6.
1:

O
ve

ra
ll

v
ie

w
of

th
e

H
A

R
A

st
an

d
ar

d
se

t
b
y

IS
O

26
26

2,
d
efi

n
ed

u
si

n
g

th
e

W
F
+

m
et

h
o
d
ol

og
y.

81

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

Figure 6.2: A closer look at the input to the HARA.

82

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

processes of the HARA.

Item: system (3.163) or combination of systems (3.163), to which ISO 26262 is

applied, that implements a function or part of a function at the vehicle

level

Vehicle Function: behaviour of the vehicle, intended by the implementation of one or more

items (3.84), that is observable by the customer

Next we follow the input line from the Item Definition Work Product to

the top half of the composed process that is the HARA, shown in figure 6.4.

However, while creating the representation for the processes that are found

in a HARA, we realized that 6.4.1 not an actual executable process so much

as it is a statement that the HARA has formally begun. We left it in the

metamodel but we are unsure as to how it would actually interact with the

input or output data that is defined. Thus we have the input data skip and

head straight towards 6.4.2, which does specify what the outputs should be.

Interestingly, it also seems to define a constraint on the output, the identified

hazards. Process 6.4.2.3 specifies that hazards caused by the malfunctions

shall be defined at the vehicle level. To us, this sounded more like a review

than an actual executable process; there should be a review of the generated

outputs to ensure that they are all defined at the vehicle level so make sure

that the process has been executed correctly. As a result we extracted that

atomic process and treat it as a review of 6.4.2 to ensure that it is valid.

Furthermore, we show that this review has performance data which would be

where users could specify the requirements they may wants for the resources

that are reviewing the process and its output. The output of 6.4.2 is shown in

figure 6.6. This output of 6.4.2 is then used as input to 6.4.3.

83

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

Figure 6.3: Item, system, element, component, hardware part and software
unit hierarchy as defined in [19], section 4.2, pg 4

The pattern of output data of one process becoming the input data to

another continues to the final process shown in figure 6.5, which shows the

final executable process along with two review nodes. These review nodes

are defined in ISO 26262, but according to our interpretations, rather than

being processes they seem to behave more as reviews to verify the process that

have come prior. Therefore we have them defined as reviews within the WF+

metamodel that share performance data as we assumed that it would be the

same team that would perform both reviews, though this is heavily dependent

on whatever the engineer/team/company wants.

Finally we have the output data that is shown in figure 6.6. The ’Valid’

data class is the output of the review from figure 6.4, which also has a con-

straint on what its boolean attribute need to be in order for it to be valid.

The ’Malfunction’ data class shows how for every association between an op-

erational situation and a correlated hazard there must be a malfunction via

a reification of the association. We also show that every safety goal must be

associated to one or more vehicle level hazards. Finally The ’HARA Report’

and the ’Validation&Verification’ classes are then aggregated to the ’HARA

Work Product’.

One thing to note about this metamodel is that there is a lack of granularity

as to which process is actually responsible for creating which output data. This

84

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

F
ig

u
re

6.
4:

A
cl

os
er

lo
ok

at
th

e
to

p
h
al

f
of

th
e

p
ro

ce
ss

es
of

th
e

H
A

R
A

.

85

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

F
ig

u
re

6.
5:

A
cl

os
er

lo
ok

at
th

e
b

ot
to

m
h
al

f
of

th
e

p
ro

ce
ss

es
of

th
e

H
A

R
A

.

86

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

Figure 6.6: A closer look at the output of the HARA.

87

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

was intentionally done to show some of the limitations of the tool, which is the

heavy reliance on the engineer that is designing the metamodel. If they have a

clearer understand of the workflow they want to define, in this case a HARA,

they would be able to be more specific about how the process and data classes

are connected. Despite this lack of granularity in the metamodel shown in

this thesis however, it is still granular enough so that it is relatively easy to

understand the overall relationship between the input data, the output data,

and the processes that connect them. However, one of the main point of WF+

is introducing an increase to the granularity with which engineers can define

workflows and the input/output relationships between data/work products,

and the processes that consume and produce them. In figure 6.7, we can see

a much more detailed model of the HARA process.

By separating out all of the processes into individual classes, it then be-

comes possible to determine specifically which sub-process is responsible for

the production of which specific data node. This increase in process granularity

can be seen in figures 6.8 and 6.9.

As a result of this increase in the granularity for the processes, it forces

an increase in granularity for the output data as well, as shown in figure 6.10.

This allows of a more complete model of the engineering process as defined

in ISO 26262. It also shows more specifically which process is responsible for

which output data. This increase in granularity introduces a massive increase

in traceability between produced data, the processes that produce them, and

the input data that is required as well, thus satisfying the claim that WF+ can

increase the traceability in workflow management.

As there are more processes to which input and output arrows can be

attached, there is now more to the model overall. As this was foreseen however

88

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

Figure 6.7: Overall view of the HARA standard set by ISO 26262, defined
using the WF+ methodology showcasing the increase in granularity.

89

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

F
ig

u
re

6.
8:

A
cl

os
er

lo
ok

at
th

e
to

p
h
al

f
of

th
e

p
ro

ce
ss

es
of

th
e

H
A

R
A

w
it

h
a

m
or

e
gr

an
u
la

r
ap

p
ro

ac
h

90

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

F
ig

u
re

6.
9:

A
cl

os
er

lo
ok

at
th

e
b

ot
to

m
h
al

f
of

th
e

p
ro

ce
ss

es
of

th
e

H
A

R
A

w
it

h
a

m
or

e
gr

an
u
la

r
ap

p
ro

ac
h

91

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

Figure 6.10: A closer look at the output of the HARA with a more granular
approach

92

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

Figure 6.11: The drop down menu that we have leveraged to allow the user to
select which elements they would like to hide.

we have leveraged a couple of tricks from Sirius to make the created model

a little easier to digest despite the increase in the number of model elements.

One of these tricks comes in the form of hide functions that allowed us to hide

the sub elements to declutter the model without losing the overall workflow, as

shown in figure 6.12. As users can dynamically resize all of the model elements

they can then easily resize the containers to make a more compact model. The

only downside is that when they want to revisit the complete model they have

to again resize all of the containers and manually arrage all of the elements as

they want them to be displayed. We are looking at way to improve this user

experience with future iterations.

The functionality of hiding sub model elements was deemed as a necessity

for the tool in order to help satisfy the requirement of usability for the tool.

It becomes very difficult to understand the overall workflow when all of the

smaller details are included within the model. However not having the smaller

details makes the tool lose the granularity and traceability that is necessary

for the future work of generating assurance. Thus the decisions to allow the

user to flip between having smaller details and hiding was made in order to

satisfy both conditions; ease of use and increase in traceability.

93

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

F
ig

u
re

6.
12

:
T

h
e

d
ro

p
d
ow

n
m

en
u

th
at

w
e

h
av

e
le

ve
ra

ge
d

to
al

lo
w

th
e

u
se

r
to

se
le

ct
w

h
ic

h
el

em
en

ts
th

ey
w

ou
ld

li
ke

to
h
id

e.

94

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

6.2 Results & Future Work

We believe that with this evaluation we have shown that we have mostly met

the requirement of being able to draw WF+ metamodels with our tool. We

have shown that we are able to interpret safety engineering workflows that are

defined by ISO and represent them faithfully within our framework and editor

without compromise. While still rough around the edges we believe that we

have shown enough with this metamodel that we have satisfied the requirement

of drawing WF+ metamodels. This iteration however has not implemented all

of the requirements that we generated at the start of development. Some of

the requirements that we have not implemented yet are:

� Engineer wants to derive assurance from WF+ metamodel

� Engineer wants to transform WF+ metamodel to a GSN-type viewpoint

� Engineer wants to connect WF+ metamodels to each other

Other requirements were also identified for this tool during the development

of this iteration, such as being able to interface with other tools that are

commonly used in safety engineering (Excel, Simulink). Moving forward it is

highly likely the requirements that we started iteration 2 with will continue to

evolve as we being iteration 3 and onward.

While changes to requirements may seem vague and difficult to predict,

there are several steps that can be immediately identified to further refine this

tool. The first step would be to add some more constraints on the syntax

to resolve some of the semantic conflicts that have resulted from having a

redundant and crowded abstract and concrete syntax. This may take the

shape of evaluating the ecore metamodel for the tool again to identify any

95

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

possible refinements first, and then apply some OCL/AQL constraints to the

editor.

Another step in further refining this tool would be formalizing the rela-

tionships between review nodes and constraint nodes to be able to actually

generate assurance cases from a WF+ meteamodel. This generated assurance

case could then be evaluated to check if a WF+ metamodel does indeed meet

the requirement for generating assurance cases. Finally what is absolutely

required of this tool is also a method of instantiating the created WF+ meta-

model to an executable model that can be applied to specific products as

opposed to a product family. Being able to do so would be able to show the

true power of what WF+ is trying to achieve, which is a repeatable, formal

process for generating assurance cases across a product family, rather than

having to be redone from scratch for every new product.

Another requirement for this tool is a method for handling incremental

assurance changes on a product. That is, if a product already has an assurance

case, but a change is made, being able to automate some portions of the impact

analysis of the change and aid in updating the assurance case would introduce

huge cost savings for companies when they have regular iterations on existing

products. While this is not a specific issue as it also requires the support of

theory as well, it is something that will need to be researched moving forward.

Finally, within this thesis there was a clear bias towards the automotive

industry as the example to demonstrate the tool was created based on ISO-

26262, moving forward there is no reason why WF+ cannot be used in other

industries for the development of Assurance Cases.

96

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

Chapter 7

Conclusion

WF+ delivers a new solution to the development of Assurance Cases through

the use of thorough documentation of the workflows that the engineers must

go through in order to develop a product. Through this definition, it becomes

much easier to develop the workflow with safety as the primary target. WF+

aims to satisfy this goal by allowing users to define their engineering workflows

and eventually derive the safety assurance claims directly from their processes.

While WF+ is still in its fledgeling stage, our tool has shown ample ability to

define workflows that are in line with ISO 26262 regulations, thus demonstrat-

ing the robustness of the syntax. Some basic semantics are also enabled due

to the way the metamodel is defined. We have also shown how it is still open

to modification without changing its core design, thus demonstrating how it

will be robust with respect to requirement changes and updates in the future.

Some shortcomings are the fact that it does not have support for other en-

gineering applications at this time (such as DOORS, MEDINI, SIMULINK

etc.) though support for these applications and more will be tackled in future

iterations. Due to development timelines, the ability to actually derive the

97

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

Assurance Case claims from constraints has not been fully implemented yet.

This will be done in future work on the tool. In conclusion, WF+ is a tool that

is still young in its development lifecycle, but shows immense promise to en-

able a much more structured approach to modeling engineering workflows, the

development of Assurance Cases, and the flexibility to model many different

types of workflows that adhere to different types of standards. We have shown

that the foundations for a tool that will be relatively easy to maintain are

here, as well as the implementation of the concepts of WF+. Moving forward

the interfacing with third party software will be addresses, as will the ability

to generate a GSN-type of viewpoint. Finally the ability to derive assurance

claims will allow for the generation of Assurance Cases just from having a

well defined workflow, thus providing an excellent tool for engineers to take

advantage of when developing safety-critical products. My contributions to

the WF+ research project include:

� The generation of the requirements for the tool

� The creation of the Ecore metamodels for every iteration of the tool

� The specification of the concrete syntax for the editor for every iteration

of the tool

� The creation of a tool that allows for the development of WF+ meta-

models

These contributions are significant as it provides a true start for WF+ beyond

just a theoretical approach to safety engineering and assurance cases. As it is

impossible to develop in a model driven environment without tool support, by

starting the process of creating a tool for WF+ I have managed to give it a

98

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

platform so that it can continue to develop beyond just theory into practical,

and hopefully industrial usage.

99

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

Bibliography

[1] Nicholas Annable. “A Model-Based Approach to Formal Assurance Cases”.

In: (2020). url: http://hdl.handle.net/11375/25343 (cit. on pp. 1,

9, 10).

[2] Tim Kelly and Rob Weaver. “The Goal Structuring Notation – A Safety

Argument Notation”. In: (2004). url: http://citeseerx.ist.psu.

edu/viewdoc/download?doi=10.1.1.66.5597&rep=rep1&type=pdf

(cit. on p. 5).

[3] Kateryna Netkachiva, Netkachov Netkachov Oleksandr, and Robin Bloom-

field. “Tool Support for Assurance Case Building Blocks”. In: Koorn-

neef F., van Gulijk C. (eds) Computer Safety, Reliability, and Security.

SAFECOMP 2014. Lecture Notes in Computer Science, vol 9338 (2014),

pp. 63–71. url: https://doi.org/10.1007/978-3-319-24249-1_6

(cit. on p. 6).

[4] Ewen Denny and Ganesh Pai. “Tool support for assurance case devel-

opment”. In: Autom Softw Eng 25 (2018), pp. 435–499. url: https:

//doi.org/10.1007/s10515-017-0230-5 (cit. on p. 6).

100

http://hdl.handle.net/11375/25343
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.66.5597&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.66.5597&rep=rep1&type=pdf
https://doi.org/10.1007/978-3-319-24249-1_6
https://doi.org/10.1007/s10515-017-0230-5
https://doi.org/10.1007/s10515-017-0230-5

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

[5] Mike Maksimov et al. “Two Decades of Assurance Case Tools A Survey”.

In: Computer Safety, Reliability, and Security 2 (2018), pp. 49–59 (cit.

on pp. 6, 7).

[6] Ran Wei et al. “Model based system assurance using the structured

assurance case metamodel”. In: Journal of Systems and Software 154

(2019), pp. 211–233. issn: 0164-1212. url: https://www.sciencedirect.

com/science/article/pii/S0164121219301062 (cit. on p. 8).

[7] Sahar Kokaly et al. “A Model Management Approach for Assurance Case

Reuse Due to System Evolution”. In: Proceedings of the ACM/IEEE 19th

International Conference on Model Driven Engineering Languages and

Systems. MODELS ’16. Saint-malo, France: Association for Computing

Machinery, 2016, 196–206. isbn: 9781450343213. url: https://doi.

org/10.1145/2976767.2976792 (cit. on p. 11).

[8] D. Moody. “The “Physics” of Notations: Toward a Scientific Basis for

Constructing Visual Notations in Software Engineering”. In: IEEE Trans-

actions on Software Engineering 35.6 (2009), pp. 756–779 (cit. on p. 12).

[9] Harald Störrle and Andrew Fish. “Towards an Operationalization of the

”Physics of Notations” for the Analysis of Visual Languages”. In: Sept.

2013. isbn: 978-3-642-41532-6 (cit. on p. 12).

[10] Nicolas Genon, Patrick Heymans, and Daniel Amyot. “Analysing the

Cognitive Effectiveness of the BPMN 2.0 Visual Notation”. In: vol. 6563.

Oct. 2010, pp. 377–396. isbn: 978-3-642-19439-9 (cit. on p. 12).

[11] K. Teng, S. A. Thekdi, and J. H. Lambert. “Risk and Safety Program

Performance Evaluation and Business Process Modeling”. In: IEEE Trans-

101

https://www.sciencedirect.com/science/article/pii/S0164121219301062
https://www.sciencedirect.com/science/article/pii/S0164121219301062
https://doi.org/10.1145/2976767.2976792
https://doi.org/10.1145/2976767.2976792

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

actions on Systems, Man, and Cybernetics - Part A: Systems and Hu-

mans 42.6 (2012), pp. 1504–1513 (cit. on p. 13).

[12] Object Management Group. “Software and Systems Process Engineering

Meta-Model Specification”. In: (2008). url: https://www.omg.org/

spec/SPEM/2.0/About-SPEM/ (cit. on p. 13).

[13] Eclipse Modeling Framework. url: https://www.eclipse.org/modeling/

emf/ (cit. on p. 14).

[14] Dimitrios S. Kolovos, Richard F. Paige, and Fiona A.C. Polack. “The Ep-

silon Object Language”. In: Rensink A., Warmer J. (eds) Model Driven

Architecture – Foundations and Applications. ECMDA-FA 2006. Lecture

Notes in Computer Science, vol 4066 (2006). url: https://doi.org/

10.1007/11787044_11 (cit. on p. 14).

[15] V. Viyović, M. Maksimović, and B. Perisić. “Sirius: A rapid development

of DSM graphical editor”. In: IEEE 18th International Conference on

Intelligent Engineering Systems INES 2014. 2014, pp. 233–238 (cit. on

p. 15).

[16] Juan de Lara and Esther Guerra. “Deep Meta-modelling with MetaDepth”.

In: Objects, Models, Components, Patterns. Ed. by Jan Vitek. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2010, pp. 1–20. isbn: 978-3-642-

13953-6 (cit. on p. 16).

[17] Marce Brambilla, Jordi Cabot, and Manuel Wimmer. “Model-Driven

Software Engineering in Practice, Second Edition”. In: (). url: https://

www.morganclaypool.com/doi/10.2200/S00751ED2V01Y201701SWE004

(cit. on p. 16).

102

https://www.omg.org/spec/SPEM/2.0/About-SPEM/
https://www.omg.org/spec/SPEM/2.0/About-SPEM/
https://www.eclipse.org/modeling/emf/
https://www.eclipse.org/modeling/emf/
https://doi.org/10.1007/11787044_11
https://doi.org/10.1007/11787044_11
https://www.morganclaypool.com/doi/10.2200/S00751ED2V01Y201701SWE004
https://www.morganclaypool.com/doi/10.2200/S00751ED2V01Y201701SWE004

M.A.Sc. Thesis – Thomas Chiang McMaster University – Computing and Software

[18] ISO. “ISO 26262: Functional Safety - Concept Phase”. In: 3 (2018) (cit.

on pp. 79, 80).

[19] ISO. “ISO 26262: Functional Safety - Guidelines on ISO 26262”. In: 10

(2018) (cit. on pp. 80, 84).

[20] ISO. “ISO 26262: Functional Safety - Vocabulary”. In: 1 (2018) (cit. on

p. 80).

103

	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Acronyms
	Declaration of Academic Achievement
	Introduction
	Motivation
	Contributions
	Outline

	Previous Work
	Assurance Cases
	WorkFlow+ (WF+)
	Domain-Specific Languages (DSL) and Graphical Editors
	Eclipse Modeling Framework (EMF), Epsilon Object Language (EOL), and Sirius
	Deep Metamodeling

	Iteration 1 of Tool
	The Requirements
	Business Event 1: Engineer wants to create new WF+ definition
	Business Event 2: Engineer wants to create new WF+ definition from WF+ templates
	Business Event 3: Engineer wants to create new WF+ model mixing both templates and new definitions
	Business Event 4: Engineer wants to edit an already existing WF+ model that has been saved as a template
	Business Event 5: Engineer wants to edit an already existing WF+ model that has been saved as a diagram
	Business Event 6: Engineer wants to instantiate a model to create a safety case

	The Metamodel
	The UML Models
	Platform Independent Model 1
	Platform Independent Model 2

	The Ecore Models
	Ecore Model Iteration 1
	Ecore Model Iteration 2
	Ecore Model Iteration 3

	Sirius Implementation
	Final Thoughts

	Iteration 2 of Tool
	The Requirements for Iteration 2
	Engineer wants to create new WF+ metamodel
	Engineer wants to derive assurance from WF+ metamodel
	Engineer wants to connect WF+ metamodels to each other
	Engineer wants to transform WF+ metamodel to a GSN-type viewpoint
	Engineer shall be able to edit GSN viewpoint

	The Metamodel
	Ecore Model Iteration 1
	Ecore Model Iteration 2
	Ecore Model Iteration 3
	Ecore Model Iteration 4
	Ecore Model Iteration 5
	Ecore Model Iteration 6 - February 11, 2021

	Tool Specification
	The Visual Specification Model
	The Syntax
	Data, Process, and Attributes
	References and Constraints

	Conventions

	Evaluation
	Creating a Hazard Analysis and Risk Assessment Metamodel
	Results & Future Work

	Conclusion
	Bibliography

