
SD Draw: A State Diagram Tool including Elm

Code Generation for Interactive Applications

SD DRAW: A STATE DIAGRAM TOOL INCLUDING ELM CODE

GENERATION FOR INTERACTIVE APPLICATIONS

BY

PADMA PASUPATHI, M.Sc .

a thesis

submitted to the department of computing and software

and the school of graduate studies

of mcmaster university

in partial fulfilment of the requirements

for the degree of

Master of Science

© Copyright by Padma Pasupathi, September 2021

All Rights Reserved

Master of Science (2021) McMaster University

(Computer Science) Hamilton, Ontario, Canada

TITLE: SD Draw: A State Diagram Tool including Elm Code

Generation for Interactive Applications

AUTHOR: Padma Pasupathi

M.Sc. (Computer Science)

McMaster University, Hamilton, Ontario, Canada

SUPERVISOR: Dr. Christopher Anand

NUMBER OF PAGES: xiv, 57

ii

Abbreviations

BMC Bramptom Multicultural Community Centre.

CAL Coding as Another Language.

CDF Cumulative Distribution Function.

CL Checklist.

CSE Computer Science Engineering.

DD Double Diamond.

DT Design Thinking.

EDP Event-Driven Programming.

ElmJr Elm Junior.

FIFO First in First out.

FSM Finite State Machine.

HCI Human-Computer Interaction.

iii

HMW How Might We.

HTML Hypertext Markup Language.

IDE Integrated Development Environment.

IHP Integrated Haskell Platform.

K-12 from kindergarten to grade 12.

MDD Model Driven Development.

NFA Non-deterministic Finite State Automaton.

PAL Petri App Land.

PDF Probability Distribution Function.

RQ Research Question.

STEM Science, Technology, Engineering and Mathematics.

SVG Scalable Vector Graphics.

iv

Dedication page

To my supervisor Dr. Christopher Anand and my husband Vijay.

I couldn’t have this done with you both. Thank you for always supporting and

believing me!

And most importantly, to the God Almighty!

Abstract

To make computational thinking appealing to young learners, initial programming

instruction looks very different now than a decade ago, with increasing use of graph-

ics and robots both real and virtual. After the first steps, children want to create

interactive programs, and they need a model for this. State diagrams provide such a

model, as observed previously by other researchers.

This thesis documents the design and implementation of a Model Driven Engineering

tool, SD Draw, that allows even primary-aged children to draw and understand state

diagrams, and create modifiable app templates. We have tested this with grade 4 and

5 students. In our initial test, we discovered that children very quickly understand

the motivation and use of state diagrams using this tool, and will independently

discover abstract states even if they are only taught to model using concrete states.

To determine whether this approach is appropriate for children of this age we asked

three questions: do children understand state diagrams, do they understand the role of

reachability, and are they engaged by them. We found that they are able to translate

between different representations of state diagram, strongly indicating that they do

understand them. We found with confidence p = 0.001 that they do understand

reachability by refuting the null hypothesis that they are creating diagrams randomly.

And we found that they were engaged by the concept, with many students continuing

to develop their diagrams on their own time after school and on the weekend.

vi

Acknowledgements

Thank you to Ms. Celia Anand and Ms. Cohen, and especially her students at

Saginaw Public School for their excellent feedback while creating and testing the

SD-Draw application.

Thank you Chris, Nicole, Sarah for being a co-authors of the conference paper.

Thank you to the McMaster Computer Science Outreach members over the last

several years who have worked, and continue to work, towards increasing student

exposure and confidence in Computer Science topics.

I would also like to thank Department of Computing and Software for the

opportunity and financial support.

Finally, last but not least, thank you to Dr. Christopher Anand for his patience,

guidance, and confidence in my work over the last two years.

Contents

Abbreviations iii

Abstract vi

Acknowledgements vii

Contents x

List of Tables xi

List of Figures xii

1 Introduction 1

1.1 Purpose: . 2

1.2 Scope: . 3

1.3 Contribution: . 3

2 Background/ Literature Review 5

2.1 McMaster Start Coding Program . 5

2.1.1 NewYouthHack . 6

2.1.2 Petri App Land . 8

viii

2.1.3 Lesson 8: State Diagrams and Adventure Games 9

2.1.4 Design Thinking . 9

2.2 Functional Programming . 10

2.3 Elm Language . 12

2.4 Elm Architecture . 12

2.5 Algebraic Datatypes . 14

2.6 Related Work . 15

2.6.1 Coding, Literacy, and State Diagrams 15

2.6.2 Visual Learning and Education 16

2.6.3 Event-Driving Programming in Education 17

2.6.4 State Diagrams in Computer Science Education 17

3 Motivation 19

4 State Diagrams 21

4.1 State Diagrams in General . 21

4.2 State Diagram in SD Draw . 21

4.3 Formal Definition . 22

4.4 Graphical Representation and Tool 24

4.4.1 Software Design . 24

4.4.2 Norman’s Principles . 28

4.4.2.1 Visibility . 28

4.4.2.2 Feedback . 28

4.4.2.3 Signifier . 29

4.4.2.4 Mapping . 31

ix

4.4.2.5 Constraints . 31

4.4.2.6 Consistency . 32

4.4.3 Code Generation . 33

4.4.4 Adding Graphics with Elm . 34

4.5 Tool Improvements . 34

4.6 Self-Hosting . 36

4.7 Recursive States, Nested States and User-Defined Algebraic Data Types

. 37

4.8 Keyboard Shortcuts . 39

4.9 Semantic Versioning . 39

5 Design of the Teaching Experiment 40

5.1 Lesson Design . 40

5.2 Challenge Design . 41

6 Results of Evaluation 43

6.1 Quantitative Analysis of State Diagrams 43

6.2 Qualitative Analysis of Challenges . 49

7 Discussion 53

7.1 Pedagogical Improvements . 54

7.2 Limitations . 54

7.3 Design Checklist . 55

8 Conclusion 57

Bibliography 58

x

List of Tables

4.1 Components of a State Diagram. 23

4.2 Norman’s Principles. 28

6.1 Probability Distribution functions for the number of reachable states

based on simulation of 4000 random diagrams with 11 states. The

observed column has the number of reachable states in the students’

state diagrams with 11 states and its corresponding transitions. . . . 47

6.2 Probability Distribution functions for the number of reachable states

based on simulation of 4000 random diagrams with 9 states. The ob-

served column has the number of reachable states in the students’ state

diagrams with 9 states and its corresponding transitions. 48

6.3 Probability Distribution functions for the number of reachable states

based on simulation of 4000 random diagrams with 23 and 30 states.

The observed column has the number of reachable states in the stu-

dents’ state diagrams with 23 and 30 states and its corresponding tran-

sitions. 48

xi

List of Figures

2.1 New Youth Hack application . 7

2.2 Customizable Avatar of a user and Resume template 7

2.3 Example of a PAL using the PALDraw application. 8

2.4 PALDraw application . 9

2.5 Double Diamond with the key process of Design Thinking. 10

2.6 The State Diagram representing a game. 13

4.1 State diagram for a light bulb. Note that the transition functions are

partial. 22

4.2 The interface of our web-based state diagram editor, with a diagram

representing navigation through a school. 25

4.3 Visibility: buttons are visible when active. 29

4.4 Feedback messages in SD Draw. 30

4.5 Signifier of transition start. 30

4.6 Signifier of transition creation. 30

4.7 Mapping: Trash bin opens when a transition is dragged into it. 31

4.8 Mapping: Type sticks to the mouse when it is selected. 31

4.9 Constraints: Error message displayed when naming convention is vio-

lated. 32

xii

4.10 Consistency: Instruction and code-generation pages with close buttons. 32

4.11 From the state diagram in Figure 4.2, a basic Elm application can

be generated using the GraphicSVG library. Shown here are the four

different “pages” the app can be in, one for each state in the dia-

gram. Each place is given by default a basic title text and buttons for

each transition, with the appropriate logic to transition to the correct

state when clicked. Students can use existing knowledge from previous

lessons to design graphics for each page, or even change the buttons

themselves. 35

4.12 State diagram of SD Draw. 37

6.1 A scatter plot of the numbers of transitions and number of states for

each diagram. The line y = x is plotted as a dashed line, and y = 1.5x

plotted as a dotted line. Points below y = x indicate more states than

transitions and a disconnected graph. The points near the x-axis are

likely abandoned diagrams. Points near y = x indicate diagrams with

close to one transition per state, e.g. a tree. Points above y = x

indicate more complex games with multiple paths. 6.2. 44

6.2 A scatter plot of reachable versus total states in students’ diagrams.

Points on the diagonal (y = x) indicate that all states are reachable

from the starting state. The points on the line y = 1 probably corre-

spond to abandoned diagrams, since only the starting state is reach-

able. 45

xiii

6.3 A scatter plot of concrete versus abstract states in students’ diagrams.

The dotted line has slope −2.9 which suggests that the effort required

to add an concrete state is three times the cost of adding an abstract

state. 46

6.4 Anderson-Darling Test Statistic Distribution for 4 diagrams each with

11 states and 16 transitions, approximated using 4000 randomly gener-

ated sets of 4 diagrams. The horizontal axis shows A2, the Anderson-

Darling test statistic, and the vertical axis shows the probability. The

black triangle shows the test statistic for the 4 diagrams produced

by children with 11 states and 16 or fewer transitions (33.8). Since

4000 sets were used to generate the histogram, and 33.8 is well outside

the randomly generated tests, we estimate that the confidence value

p < 0.001. 49

6.5 Median result for challenge 1a. Note the extra EmergencyExit state. . 50

6.6 Median result for challenge 2a matches expectation. 50

6.7 Median result for challenge 4b matches expectation. 51

6.8 Median result for challenge 1b with an extra state emphasizing the

start of the dragon flying around. 52

6.9 Median result for challenge 2b without a circuit. Linear narratives do

not have circuits, and the additional states include interpretation be-

yond the specification which serve to make the narrative more interesting. 52

xiv

Chapter 1

Introduction

McMaster Start Coding (http://outreach.mcmaster.ca) has introduced over 25,000

children in Grades 4 to 8 to computer science over the last 5 years. Over time, we

have adopted programming in Elm and socially constructive learning that includes

Design Thinking.

Design Thinking is a problem-solving process particularly suited to ill-defined prob-

lems involving people. This thesis is the report on a cycle of design thinking to

improve our K-8 teaching. Following the Design Council’s Double Diamond [Council,

2019], we must first define the right problem by observing users in their environment

and interviewing them, as well as identifying best practices, competitors and lessons

from the scientific literature. In place of direct observation and interview we inter-

viewed instructors in our outreach program. They said, interaction is much harder

for children to learn than animation, and the connection to the math curriculum is

harder to explain to teachers, but children in Grades 4-8 whom we teach are highly

motivated to learn interaction, and prior to COVID-19, we had some success using

game maps (graphs). Consulting the literature, we found research on Event-Driven

Programming (EDP), the importance of visualization while learning, the relationship

between coding and other forms of literacy, advantages in using drawing as part of

teaching and learning, and of team-based learning. This led to the How might we?

(HMW) statement: How might we better teach children in Grades 4 - 8 to

design, implement, explain and modify programs with user interaction?

Translating game maps into code was too difficult for beginning programmers, and

hard for mentors to support. Nevertheless, there is no reasonable alternative mathe-

matical structure for describing interaction. Inspired by the EDP and model-driven

1

http://outreach.mcmaster.ca

M.Sc. Thesis - Padma Pasupathi McMaster - Computer Science

development literature, we decided to make a better tool for state diagramming in-

cluding code generation. The new tool adheres better to Norman’s principles ([Nor-

man, 2013]), generates complete programs (with working buttons for all transitions),

and went through many iterations internally before we tried to use it with children

from Grades 4 and 5. Most of our outreach activities are constrained, so our ini-

tial test was restricted to 3.5 hours per class of instruction, followed by one hour of

challenges a week later. Surprisingly, we could answer affirmatively all of our ques-

tions about student understanding in this short intervention, including statistically

significant results on their understanding of reachability, and the observation that

they could both translate between different representations of state diagrams and

spontaneously use abstract states states like “DragonIsDead” or “GameOver” versus

concrete states like “Park” or “Mountain”) in their diagrams.

1.1 Purpose:

As a part of our Outreach program, we provide a list of lessons that cover basic draw-

ing, animations, interactions, comics, and adventure games using Elm programming

language. State diagrams are taught as Lesson 8 in the syllabus, which introduces

user interaction using states (state of the application) and transitions (responses to

user actions). This helps children to visualize how a game is created with multiple

interactions and changes in its state. Initially we taught these state diagrams on

a (physical) white board, then we designed PALdraw for advanced developers who

could use Petri nets, but children seemed to enjoy working with it as a simple Model

Driven Development (MDD) tool. But mentors found teaching state diagrams using

PALdraw awkward due to the complicated interface.

The main purpose of this app is to re-introduce the state diagram tool with a new

user interface with familiar controls leveraging Norman’s design principles for user

interfaces. In addition to this, all the major operations like drawing, code generation

are performed on the client end leaving less interaction with the server, and increasing

scalability.

We also wanted to think about the place an improved tool could have in our outreach

efforts, which can be summarized by the following research questions:

RQ1 Do grade 4-5 students demonstrate an understanding of State Diagrams by

being able to translate between different representations?

2

M.Sc. Thesis - Padma Pasupathi McMaster - Computer Science

RQ2 Do grade 4-5 students demonstrate equal facility for translating between differ-

ent representations of state diagrams?

RQ3 Can grade 4-5 students understand the role of reachability? Assuming that

students who did not understand the role of reachability would generate random

graphs, what confidence do we have that the graphs are more reachable than

random graphs?

RQ4 Are grade 4-5 students engaged by state diagrams and their applications to

adventure games?

RQ5 Do grade 4-5 students understand abstract and concrete states equally well?

Will students presented with concrete states generalize to abstract states with-

out prompting?

1.2 Scope:

The scope of this thesis includes new UI/UX of the state diagram drawing tool with

fewer buttons and keyboard interactions but adding mouse controls and drag and drop

features. This version of the state diagram tool should also explore the presentation

of associated data types.

1.3 Contribution:

Application contributions: The design and implementation of the Elm appli-

cation is the work of the thesis candidate. The server back-end and serialization

implementation is the work of undergraduate student Christopher W. Schankula.

Test: The lesson was taught and the tests were conducted by the thesis candidate,

grad student Akshay A., undergrad students Christopher W. Schankula, Larry Yao

and the thesis supervisor Christopher K. Anand.

Working Paper Contributions : A working paper was drafted including prelimi-

nary results of the study, written by the thesis candidate, Christopher W. Schankula,

Nicole DiVincenzo, Sarah Coker and Christopher K. Anand. Many subsections from

the working paper have been adopted for this thesis, such as Background (McMas-

ter Start Coding Program, Functional Programming, Elm language, Related work,

Event-driven programming in Education), State Diagrams (Formal Definition, Code

3

M.Sc. Thesis - Padma Pasupathi McMaster - Computer Science

generation, Adding Graphics with Elm), Results of Evaluation (Qualitative Analysis,

and Qualitative Analysis other than the reachability analysis), Discussion (Limita-

tions, Pedagogical Improvements), State Diagram (Tool improvements).

(Sub)sections added for this thesis by the thesis candidate include Purpose, Scope,

Background (NewYouthHack, Petri App Land, Lesson 8, Design Thinking, Elm Ar-

chitecture, Algebraic Datatypes), Motivation, State Diagrams (State Diagram in Gen-

eral, State Diagram in SD Draw, Software Design, Norman’s Principles, Self hosting,

Recursive states, Nested states and User-Defined Algebraic Data types, Keyboard

Shortcuts, Semantic versioning), Results of Evaluation (Reachability analysis), Dis-

cussion (Design Checklist), Conclusion.

4

Chapter 2

Background/ Literature Review

In this section we provide background of our program as well as relevant research on

which we built our tool and instruction.

2.1 McMaster Start Coding Program

This McMaster University Outreach Program has been operating for the past decade.

A mainly volunteer group of undergraduate and graduate students develop lesson

plans and deliver free workshops to schools, public libraries, and community cen-

tres in the Hamilton, Ontario, Canada area [O’Farrell and Anand, 2017]. Before

focusing on Elm programming, we used different approaches in teaching computer

science fundamentals, including the development of iPad apps “Image 2 Bits” and

“MacVenture” ([Brown, 2016]), which allowed children to create an adventure game

by drawing a game map, which is in fact a state diagram, although described using

different vocabulary (“places” and “ways” rather than “states” and “transitions”).

During the COVID-19 pandemic, the program has shifted online and has taught a

record number of students. Since 2016, we have taught over 25,000 students in nearly

1,000 classrooms. The goal of the program is to foster interest and ability in STEM

subjects through coding, especially for those groups who are underrepresented in

STEM subjects, such as girls and underprivileged youth.

To support these workshops, we have developed several tools, including:

1. An open-source Elm graphics library, GraphicSVG [Schankula and Anand,

5

M.Sc. Thesis - Padma Pasupathi McMaster - Computer Science

2016-2019] which was recently updated in 2021.

2. An online mentorship and Elm compilation system incorporating massive col-

laborative programming tasks, including the Wordathon1 and comic book sto-

rytelling2.

3. A curriculum for introducing graphics programming designed to prepare chil-

dren for algebra [d’Alves et al., 2018].

4. A type- and syntax-error-free projectional iPad Elm editor, ElmJr [Optimal

Computational Algorithms, Inc., 2018].

In addition to local outreach, we have partnerships with post-secondary institutions

in India and Iraq to establish similar outreach programs, such as Narasus Sarathy

Institute of Technology, Vellore Institute of Technology, Cihan University.

To be successful in the long term, these programs must engage undergraduate stu-

dents, who are interested in creating web applications. The long-term goal of this

work is to create a tool which makes the specification and development of interactive

web applications simple enough for children, but powerful enough to create the types

of web applications of interest to potential undergraduate mentors.

2.1.1 NewYouthHack

In association with the Brampton Multicultural Community Centre (BMC) and Im-

migration, Refugees and Citizenship Canada, we built a project called NewYouthHack

[Schankula et al., 2020] as shown in fig 2.1, which applied Design Thinking (DT) to

reimagining settlement services in Canada. We also wanted to expose the youth to

career pathways involving Software Design and Development. In the process, we built

a technology platform which supports iterative development and the integration of

novice programmers.

NewYouthHack started with a two-day hackathon program where participants were

asked to use DT to improve the experience of settling in Canada. The hackathon

activities were modelled as per the DT process, where they conducted interviews of

each other, used How Might We (HMW) questions to frame a problem and iterated

through their ideation process to refine a solution for the user. Since the youth

involved were mostly high school students, they benefited by being able to apply DT

1http://outreach.mcmaster.ca/#wordathon2019
2http://outreach.mcmaster.ca/#comics2019

6

M.Sc. Thesis - Padma Pasupathi McMaster - Computer Science

to their own learning. This is more of a designathon than a hackathon where each

team came up with their own self-contained app ideas along with the prototypes for

the ideas built during the coding workshops followed by the hackathon.

Figure 2.1: New Youth Hack application

At the coding workshop, the youth used their coding skills to code illustrations and

animations that were incorporated into the app. For instance, students developed

new features for an avatar creator, such as glasses and jewelry, and helped prototype

the resume format, see fig 2.2. These coding sessions gave the students a means to

directly apply their feedback on the app by coding their own contributions.

Figure 2.2: Customizable Avatar of a user and Resume template

Initially, the idea was to build multiple standalone applications as a result of practicing

DT process. That could be achieved with skills from our existing Elm coding work-

shops (as discussed in the Elm architecture section). But most of their ideas required

mentorship, sharing, communicating, and commenting on resumes which depends on

client-server interaction. Thus we created a client-server framework called Petri App

7

M.Sc. Thesis - Padma Pasupathi McMaster - Computer Science

Land (PAL) which is an expansion of normal state diagrams (which is discussed in

next section).

2.1.2 Petri App Land

PAL [Schankula et al., 2020] is an open-source framework, which is the expanded

version of state diagrams including the client server interaction. On the client-side

PAL generates code which handles connecting to the server, encoding and decoding

the outgoing and incoming messages respectively. On the server-side PAL uses a

FIFO queue which is read in a state loop, processing the messages and updating the

state automatically.

Figure 2.3: Example of a PAL using the PALDraw application.

Figure 2.3 shows a PAL drawn using the PALDraw application. Here, all circles rep-

resent places, the rectangles represent transitions and the directed arrows represent

the relationship between the places and transitions. In this diagram, we have three

places called ForestPath, EmeraldLake, Volcano and two transitions called Col-

lectWater, LeaveForest. Here we do not have an obvious notation for the start

place and upon LeaveForest, clients could be transitioned to EmeraldLake or Volcano

places.

The Figure 2.4 shows the PALDraw application, with a State Diagram embedded in

a place called Lesson8Demo. The graphical notation is similar to the notation for the

overarching PAL, but transitions can only have single entry and exit tentacles. PAL-

Draw has multiple buttons to create or delete states and transitions. Also, renaming

or deleting a state or transition is accomplished using the text box on the right side

of the screen after selecting the required state or transition. The Save button must

be clicked to save the new name.

8

M.Sc. Thesis - Padma Pasupathi McMaster - Computer Science

Figure 2.4: PALDraw application

2.1.3 Lesson 8: State Diagrams and Adventure Games

As a part of McMaster Start Coding club syllabus, we teach State diagrams and

Adventure games in Lesson 8 (Youtube link) This lesson begins with explaining the

animal sound game. Students are asked to make different animal noises based on

number of arms raised by the mentor. A sample adventure game is explained with

respect to a state diagram, comparing states and transitions of a diagram with a real

adventure game. Then, introduction to PALDraw2.1.2 is provided to the students

with a small example of moving to different places like Forest, Mountain etc. In

this example, physical places like Forest, Mountain, Cabin, Island etc are considered

as states and verbs like Walk, Swim, Hike etc are considered as transitions. After

explaining this example, students were explained how Elm code can be generated

from the PALDraw application and can be compiled in macoutreach.rocks website.

Finally students were asked to add graphics to each place based on their previous

lessons.

2.1.4 Design Thinking

Design Thinking (DT) [Council, 2019] is a human-centred methodology that focuses

on the end-user and iterates rapidly through conceptual prototyping to produce in-

novative and creative solutions to complex problems. The DT process is designed

to avoid the creation of technically perfect but unwanted or incomprehensible prod-

ucts by focusing on the end-user while creating the product, while considering three

dimensions: technical feasibility, economic viability, and desirability to the user.

DT assumes that the end-user is complex and that an understanding of their needs

requires experiment and inquiry. Working with end-users is not a validation process.

9

https://www.youtube.com/watch?v=8fH-0Nf8Tbw
https://macoutreach.rocks

M.Sc. Thesis - Padma Pasupathi McMaster - Computer Science

It is a discovery process. Hypotheses are not formulated as precisely, and are not

about natural phenomena, but about the user’s needs and experience.

Figure 2.5: Double Diamond with the key process of Design Thinking.

DT can be viewed as double diamond process model developed at the British Design

Council in 2005, see Fig.2.5. There are divergent thinking stages followed by conver-

gent stages where ideas are narrowed down towards the best one. When designing,

some people ignore the left side of the diamond, which leads them to focus on solving

the wrong problem. This is why, in DT, discovering the problem through empathiz-

ing and research, as well as defining the right problem, are integral to the process.

The develop stage involves developing prototype, testing, and iterating. Finally, the

deliver stage is when the product is finalized, produced, and launched

2.2 Functional Programming

Functional programming [Krishnamurthi and Fisler, 2019] is a value-oriented pro-

gramming paradigm, consisting of functions. Functions consume and produce values.

There are no loops, and conditional expressions replace conditional statements, but

functions are first-class values and can, e.g., be passed as parameters. There are two

variations in functional programming languages: (1) typed or not and (2) eager or

lazy. These variations lead to differences in programming style.

10

M.Sc. Thesis - Padma Pasupathi McMaster - Computer Science

Many non-functional programming languages are adopting functional features, in-

cluding Scala, Swift and Python.

Krishnamurthi and Fisler agrees with the common perception that writing programs

in imperative programming languages is much easier as the state provides convenient

communication channels between parts of a program, but this makes reasoning and

debugging harder, whereas on the other hand functional programming has the oppo-

site affordances. Students studying object-oriented programming are taught different

skills and programming styles which reveal that the way of approaching programming

and problem-solving differs in students studying different paradigms. Functional pro-

gramming students perform better[Krishnamurthi and Fisler, 2019] by having high

level structures and and composing solutions out of simpler functions than object-

oriented students who try solving the entire problem in a single traversal of data.

Students who learned Funtional Programming first also use built-in/higher order func-

tions to implement subtasks which performed multiple passes over input data and had

to release unwanted memory for intermediate data. Functional programming students

create short functions for specific tasks, which create intermediate data. They also

use filter and map rather than loops and non-general library functions. Thus, Kr-

ishnamurthi and Fisler say that a student who learns Java after learning functional

programming may well program with different patterns than a student whose prior

experience was entirely imperative.

Note that our experience is that functional programming with appropriate supports

is easier for Grade 4 to 8 students. Before using Elm, our Outreach program taught

using Python, Alice and Haskell. With Python and Haskell, students initial pro-

gramming could easily trigger errors related to features of the languages they did not

actually need causing frustration. With Alice, programming looks nothing like the

mathematics they are learning, so although they enjoyed aspects of it, teachers could

not see connections with other curricula. We also had trouble with bugs in the Alice

environment, working around which required deep understanding of object oriented

programming. Based on these experiences, and initial success with Elm, we designed

GraphicSVG [Schankula and Anand, 2016-2019], a library for vector graphics which

surfaces the concepts they are learning in math (coordinates, transformations, func-

tions).

11

M.Sc. Thesis - Padma Pasupathi McMaster - Computer Science

2.3 Elm Language

Elm (https://elm-lang.org) is a functional language designed for the development of

front-end web applications [Czaplicki, 2012], and sold to front-end developers as a

way of avoiding the many software quality issues which plague JavaScript programs.

Its syntax, based on Haskell, is intentionally simple. For example, it has no support

for user-defined type classes. In addition to strictly enforcing types, the Elm compiler

also forces programmers to follow best practices, such as disallowing incomplete case

coverage in case expressions. Elm apps use a model-view-update pattern in which

users write pure functions and the run-time system handles side effects without the

need for advanced concepts. Elm code compiles to JavaScript simplifying deployment

and visualization.

While many consider that functional programming should be reserved for expert users,

many of the features useful for experts (strict types, pure functions) are very useful

for beginners. In addition to the practical implications of compiling to JavaScript,

Elm’s combination of simple syntax, strict typing, and purity which matches students’

pre-existing intuition about math proves to be an asset to our program [O’Farrell and

Anand, 2017]. These features allow the development of tools and curricula which

would not otherwise be easy or possible in an imperative language with side effects

such as Python.

2.4 Elm Architecture

All Elm programs follow a common architecture, “The Elm Architecture”, with dif-

ferent variations enabling or restricting certain features as they are needed. These

built-in “app” types interact with Elm’s JavaScript-based runtime system, enabling

pure code to interact with the outside world in a predictable manner, without runtime

errors.

Elm’s overall architecture consists of three main components: the model, the view,

and the update.

The model of the program holds all states of the application. Here, state can a place,

page (like pages in a website), level (like multiple levels of a game) or could even be

a value (like score or temperature that keeps updating in an app) that changes upon

interaction. A model could have one or more of all the above types of state. Each of

them can have the same or different data types. The data types can be simple like

Int or String or can be a complex data types. For example, a game that has three

12

https://elm-lang.org

M.Sc. Thesis - Padma Pasupathi McMaster - Computer Science

levels could model the levels as follows,

type Level = Level1

| Level2

| Level3

The next component of the Elm architecture is the View. The View is a function

that is used to visualize the model of the application. This function is used to display

the current state of the application. View function (view : Model -> Html Msg)

renders an HTML view of the application state and includes the mapping of user-

generated events to messages used by the update function.

Figure 2.6: The interactions in an Elm app can be encoded as a state diagram, with circles being the states in the
app and the transitions being the arcs between them, named by the message sent to initiate the transition. When
describing an Elm app this way, the programmer has to take care to follow the state diagram in the logic of the
program as it is not enforceable at the type level.

The final component of the Elm architecture is the update function, update : Msg

-> Model -> Model, which is used to change the current state of application to a

different state of application based on the message received from the run-time system

based on either interaction or a system event (like receiving a network packet). Here

the message Msg type for the game example could be as follows,

type Msg = ReplayLevel1

| GoToLevel2

| ReplayLevel2

| GoToLevel3

13

M.Sc. Thesis - Padma Pasupathi McMaster - Computer Science

From the above type of Model and Msg we can derive the state diagram, where states

represent the model and transitions the messages that trigger the change from one

state to another. Figure 2.6 shows how the corresponding state diagram would look.

From the above diagram 2.6, it is clear that the game starts with Level1. User can

either choose to replay Level1 or can go to Level2. Similarly in Level2, users can keep

playing Level2 or can proceed to Level3. Level3 is the final state because there are

no transitions emerging from the Level3. So, the components of the Elm architecture

are sufficient to create state diagrams and with that state diagram, we can easily

understand the flow of the application at a high level without looking deep into the

code.

2.5 Algebraic Datatypes

The Elm language has algebraic data types. Algebraic Data Types are data types

created using other data types. For example, a List is an algebraic datatype, a list

can be a list of integers, list of strings or could be a list of any other data type. There

are two types of algebraic data types, (1) Product types, and (2) Sum types.

A Product type value contains several values called fields and each value will have a

combination of field types. It is the Cartesian product of the possible values and its

field types. For example, consider a tuple of boolean values, here the boolean type

has two possiblities true or false. As it is a tuple, it is a combination of these two

values. So the values would be, 2× 2 = 4, namely

{(true,true),(true,false),(false,true),(false,false)}.

As we are computing the values by multiplying, we call this a Product type.

A Sum type is often used in Functional programming, but is present in older lan-

guages as enumerated and union types. These are the types where its values must be

one of a fixed set of options. For example, a value of type Boolean is either True or

False.

type Boolean = True

| False

So, the (1 + 1 = 2) values would be {True, False}.
Here the values can only be one of the fixed options provided for this type and we

can count the possibilities by adding them up, so we call this type as Sum type.

14

M.Sc. Thesis - Padma Pasupathi McMaster - Computer Science

2.6 Related Work

Our background research aimed to identify prior work in the area of using state

diagrams to teach computer science to K-12 students, as well as a more sweeping

review of coding education and how it relates to other types of literacies.

2.6.1 Coding, Literacy, and State Diagrams

When it comes to child development and coding, looking at coding as a language is

heavily emphasized in the literature. Again using Piaget’s work, many believe that

coding can change the way we think and experience the world around us [Bers, 2019].

Coding in itself is seen as a language [Bers, 2019]. Goldenberg and Carter believe

that computer programming is just as important as English and should be taught in

elementary school. Monteiro et al. also suggest that “programming can be the third

language that both reduces barriers and provides the missing expressive and creative

capabilities children need.” Coding is a mix of English and math as the words allow

for interaction with feedback [Goldenberg and Carter, 2021]. These two authors also

bring up important facts when looking at programming as a language: “students

can construct viable arguments and critique the reasoning with others, it eases the

process of beginning with concrete examples and abstracting regularity, perseverance,

using the proper tools strategically, and being precise.” Finally, and akin to English,

coding also involves problem-solving, a manipulation of a language, and symbols to

create a shareable product [Goldenberg and Carter, 2021].

As discussed previously by Bers, previous systems for teaching coding based on Sci-

ence, Technology, Engineering and Math (STEM) did not account for the intellectual

maturation of school-age children. “Coding as Another Language (CAL)” consid-

ers coding development alongside language and literacy development. Using similar

stages to those of learning reading and writing (emergent, coding and decoding words,

fluency, new knowledge, multiple perspective, purposefulness), CAL uses literacy as

both a parallel to develop programming curricula and a tool. Knowledge-constructing

concept maps can allow for mental mapping of written stories and allow for a newer

and easier method for students to record their ideas before starting the writing pro-

cess [Anderson-Inman and Horney, 1996]. State diagrams mimic mind-mapping, a

commonly used method of brainstorming in literacy teaching. Previous studies and

curriculum formed around these standards have shown that it is very possible for stu-

dents to have a basic understanding of coding upon leaving elementary school [Vico

et al., 2019], similar to their level of reading and writing when entering high school.

15

M.Sc. Thesis - Padma Pasupathi McMaster - Computer Science

Recent studies show that lessons in coding can also be useful in teaching mathematics

at the elementary level [Suters and Suters, 2020]. By teaching computational think-

ing, or the thinking of a computer scientist, at a young age, students are provided

with a deeper understanding of mathematical relationships necessary to perform al-

gebra and calculus in later grades. All the above mentioned points align with our

motto to get coding literacy to school students.

2.6.2 Visual Learning and Education

Our initial experience teaching basic programming using vector graphics in Elm shows

strong student engagement. We expect that children will always be engaged with

colourful outputs, but some of their engagement could be explained by the way that

connecting textual and visual representations makes learning easier by using multiple

aspects of working memory in parallel. We wanted to know what past research

says about the use of visual information in facilitating learning in general, because

this might help us understand our past success and guide our development of visual

representations of state diagrams. Based on the keywords used, there seemed to

be more literature on learning through drawing than learning through writing in

relation to STEM. In the study done by Ainsworth and Scheiter, they were able to

list advantages of drawing: i) limits abstraction ii) exploits “perceptual processes

by grouping relevant information” iii) draws on problem-solving instead of memory,

iv) provides focus for joint attention/group collaboration, v) increases attention, and

vi) activates prior knowledge [Chang, 2012]. Park et al. also states that learning

through drawings not only takes different perspectives into consideration but also

exposes the child to other subject domains (such as math and literacy) when working

in groups. To add, those who used learning-by-drawing scored higher on a test based

on comprehension [Schmeck et al., 2014]. Chang found that when a child and an

adult are partners in learning through drawing, that communication was associated

with healthy language development and enabled the children to listen, think, and

then speak. Interestingly, Cheng and Beal found that while students who drew had

a significantly higher cognitive load than those who studied pictures, students were

more willing to learn with provided pictures than drawing themselves. That being

said, Kunze and Cromley also noted that drawing-to-learn was slightly less effective in

“early secondary (i.e., children who are around 12-15) than in the bulk of literature.”

16

M.Sc. Thesis - Padma Pasupathi McMaster - Computer Science

2.6.3 Event-Driving Programming in Education

Before considering the visual representation of state diagrams, we wanted to un-

derstand the use of state diagrams explicitly or implicitly in previous teaching ap-

proaches. In the literature, this teaching approach is generically referred to as Event

Driven Programming (EDP). As Lukkarinen et al. state in their literature on EDP in

programming education, event-driven programming and computer programming are

two separate entities; programming relies on organizational characteristics whereas

EDP focuses on behavioural characteristics. For example, while computer program-

ming is more procedural and object orientated, EDP forces the programmer to con-

sider the consequences of the user’s actions and how to react to them [Lukkarinen

et al., 2021]. That being said, the main takeaway is that EDP and computer program-

ming are two different concepts and therefore require two separate ways of teaching.

On a similar note, Lukkarinen et al. also display the challenges of EDP within their

literature review: it is hard to trace the computer programming from beginning to

end which affects students abilities to fully understand, EDP has been linked to nega-

tive transfer effects when associated with event and non-event oriented programming

environments, and ”students who learn to program in an event-fashion do not develop

some algorithmic skills that other students will have” [Lukkarinen et al., 2021]. Fi-

nally, in terms of challenges, Lukkarinen et al. state that no attempt has been made

to alleviate these issues within EDP and learning.

Finally, in this literature review, we learned the most used software tools when teach-

ing and learning EDP. Lukkarinen et al. found that Java was the most popular

language with App Inventor, C++, and Scratch. Other tools for Java include Doo-

dlePad and Squint Library [Lukkarinen et al., 2021].

Lukkarinen et al. questioned if any empirical results were recorded, to which they

concluded that no pedagogical method (i.e., ways we teach EDP through abstract

concepts or through video games for example). However, Lukkarinen et al. cautions

researchers to view EDP and learning as more than “merely claiming in passing that

some method or tool caused students to learn and giving some counts as statistics.”

2.6.4 State Diagrams in Computer Science Education

Another way of arriving at our use of State Diagrams is via Model Driven Engineer-

ing or Development (MDE and MDD). In MDE and MDD, mathematical structures,

such as state diagrams are used to model application behaviour, and code is gener-

ated from these structures, rather than just being used as documentation. This is

17

M.Sc. Thesis - Padma Pasupathi McMaster - Computer Science

our goal for SDDraw. Often these mathematical structures have natural graphical

representations, which ties back to visual learning.

Several authors have used state diagrams to introduce computer science and coding

concepts at both the K-12 and university level. Czejdo and Bhattacharya discusses

lessons using state diagrams to allow students to describe complex behaviours for

robots, which then generated Python code to control the robots. They noted that the

robots increased the students’ engagement with the concepts and that the diagrams

allowed the students to program more complex behaviours than would have been

possible without them.

Kamada similarly used state diagrams to program behaviours of on-screen characters,

for example programming a virtual fire truck to seek out water and then put out fires.

They noted that “Enthusiastic children often run into the combinatorial explosion of

states and transitions. Then it is the time for them to move on to the structured

programming languages where they can use variables to represent states,” which is

aligned with our experience and is discussed in later in this paper. They also noted

that “In some disappointing cases, a series of states are simply chained as if they

continue forever” [Kamada, 2016], which is not something we observed in our albeit

small study. This, however, is continued with the following statement: “We had better

not recommend computer science to those children,” with which we fundamentally

disagree. We believe that this should instead be considered a teachable moment for

the students and an area of improvement for the delivered lesson, instead of jumping

to the rash decision that this indicates a fundamental lack of ability to be a computer

scientist.

In contrast to the statement by Kamada, [Ben-Ari, 1998] instead states that “The

science-teaching literature shows that performance is no indication of understanding.

CSE research like Madison’s, which elicits the internal structures of the student,

is far more helpful than research that measures performance alone and then draws

conclusions on the success of a technique. A student’s failure to construct a viable

model is a failure of the educational process, even if the failure is not immediately

apparent.” Thus, in our evaluations we must keep in mind that failures for students to

apply state diagrams should be considered as important lessons for us as researchers

in how to improve our lessons in the future.

18

Chapter 3

Motivation

In this section, we discuss the motivation for SD Draw. As discussed in the previous

section, we had previously used State Diagrams embedded in coloured Petri Nets

to specify interaction in client-server applications, and while the framework is open-

sourced, the experimental visual editor was not. We soon discovered that children

liked creating state diagrams despite the problems with the original interface. Our

first motivation was simply to rewrite the State Diagram visual editor to simplify the

user interaction. This is summarized by this checklist:

CL1 keyboard/mouse based editing, with a minimal number of buttons

CL2 in-place editing of names for places and transitions (live editing)

CL3 drag-and-drop where possible

CL4 minimize clicking

CL5 leave space for data in states and transitions

CL6 experiment with data types

CL7 snappy app (immediate feedback)

CL8 Elm code generation for buttons

CL9 Validate state and transition names. No two states or transitions can have the

same name.

19

M.Sc. Thesis - Padma Pasupathi McMaster - Computer Science

CL10 Widget and Server implementation

After strictly following these guidelines, we found that some buttons beyond the

minimum were desired for Chromebook users who could not hold a key and move the

mouse at the same time, and users who would forget keyboard+mouse actions. We

realized that allowing, and even supporting, transitions with the same name better

matched the Elm architecture. But overall, the checklist served us well.

20

Chapter 4

State Diagrams

4.1 State Diagrams in General

State diagrams are used to specify the behaviour of a system. For example, the state

of a light bulb can either be ON or OFF, as shown in Figure 4.1. The state depends

on the history of previous events or actions1. If the light switch is turned on, then

the current state of the light bulb is ON, if the switch is turned off, then the current

state of the bulb is OFF. These events are known as transitions. State diagrams can

be used to represent finite state machines.

The components of a basic state diagram are listed in Table 4.1.

4.2 State Diagram in SD Draw

The state diagrams in this work are a type of deterministic finite state machine (FSM),

which contains a set of states, transition labels and a partial function mapping a

state and transition label to another state. Recall that a partial function is not

1The state of an Elm program, or any program for that matter, can be viewed as a fold which
starts with an initial state and continually updates it according to a series of actions. Elm’s ar-
chitecture makes this especially easy to visualize. The series of actions is some arbitrary sequence
of the aforementioned Msg type, and the function used to fold is the update function itself. For
Elm programs without external commands, for a given starting state, update function and series of
messages, the resulting state will always be identical.

21

M.Sc. Thesis - Padma Pasupathi McMaster - Computer Science

Figure 4.1: State diagram for a light bulb. Note that the transition functions are partial.

defined on its complete domain. In our case, if a transition function is not defined

for a (state,transition) pair, it means that the view generated for that state will

not have a button attached to that transition. Only if the user explicitly draws

a transition, including a self-loop, will a button be generated. Also, unlike some

definitions of FSMs, our diagrams do not have final states as they represent programs

which continue to respond to user input until closed, rather than language recognizers.

That being said, in the model-view-update pattern, the presence of buttons is deter-

mined by the view, but the update implements the transition functions, and before

generating the update function, we extend the transition partial functions to total

functions using the identity function. This is required by the Elm compiler, which

does not allow case expressions to represent partial functions.

4.3 Formal Definition

Formally, our FSM is a 4-tuple, N = (Q,Σ,∆, S) where

Q is a finite set of state names

Σ is a finite set of transition names

∆ : Q× Σ→ Q is the transition partial function

S : Q is the starting state

Q ∩ Σ = ∅

22

M.Sc. Thesis - Padma Pasupathi McMaster - Computer Science

State A state in a state diagram is used to represent the cur-
rent state of the application, system or device.
In SD Draw application, states are represented by cir-
cles.

Transition A transition in a state diagram is used to represent an
allowed change from one state to another. In a program-
ming language, it is often implemented by a function
which updates the state. In the case of human-computer
interaction, these transitions may be triggered by a user
interaction like a button click, moving the mouse to cer-
tain position and so on.
Usually it is represented as directed arrows, in SD Draw
application the line goes without an arrow head but its
origin has thick line and it tapers towards its destination
which encodes its direction.

Initial state This state is the starting state of the state diagrams,
which means the app would always start with this state.
It can be represented in different ways; we represent it
using green fill colour.

Final state A state diagram may or may not have a final state. If
the state diagram leads to a state which doesn’t have
any transitions to other states, then this could be called
as Trap state and serves similar purpose of a final state
In SD draw application, we do not have an explicit final
state. If required, a state could be left with no origi-
nating transitions to simulate final state but it has no
separate representation. The lack of final state repre-
sents how Elm programs run indefinitely without halt-
ing until they are closed by the user. Have a final state
would serve no purpose other than to allow users to
mark which of their states they consider final or ”end-
of-game” states.

Table 4.1: Components of a State Diagram.

As part of the code generation process, this FSM is completed by extending the

partial transition functions by the identity, matching the usual definition from Kozen

[2012], except that we do not label final states, since our diagrams represent infinitely

running programs. Having trap states with no arrows out is one way of simulating

a “final state” in the eventual game or application being modeled. Note that this

23

M.Sc. Thesis - Padma Pasupathi McMaster - Computer Science

definition does not include associated data, the incorporation of which we leave to

future work.

4.4 Graphical Representation and Tool

A state diagram can be represented graphically using a diagram where states are

defined as labeled circles with transitions drawn as labeled arrows which define legal

movements from state to state. Figure 4.2 shows an example state diagram repre-

senting the navigation of a school.

4.4.1 Software Design

To facilitate the creation of state diagrams, we have created a tool using the Elm

language with a server backend written using IHP2 in Haskell, which currently allows

diagrams to be saved to a server and accessed later by logging in. Our state diagram

tool allows students to easily draw their state diagrams by defining states and then

attaching them with transitions. Each state and transition can be given a name where

no pair of states or state and transitions can be named the same. Transitions can

be named the same provided that no state has two transitions with the same name

coming from it. Other invariants needed later for code generation are enforced, such

as restricting state names to include only alphanumeric characters starting with a

capital letter.

Figure 4.2 shows the SD Draw app’s user interface. Here the right side of the screen

has most of the controls of the app. (A) To add a new state, the first icon from the

list should be clicked and the new state can be dragged to a desired position on the

screen. By default the first state created will be the start state or initial state of the

state diagram; if use wishes to change the start state, the second icon in the list can

be dragged into the desired state to make it the start state. Only one state can be a

start state in a state diagram.

(B) The upper icon in this section is used to Recenter, where it resets the position

and zoomed in or zoomed out size. The next two icons are used to Zoom in and

Zoom out the state diagram on the screen. One can either use these buttons or can

use “Shift + Drag” on the screen to zoom in and zoom out. The icon with question

mark is used to display the instruction page.

2https://github.com/digitallyinduced/ihp

24

M.Sc. Thesis - Padma Pasupathi McMaster - Computer Science

Figure 4.2: The interface of our web-based state diagram editor, with a diagram representing navigation through a
school. (A) allows users to add states by dragging the “S” onto the canvas, or make a state the starting state by
dragging the “Start”. (B) has functions for recentering the screen, zooming and a help page. (C) allows states and
transitions to be deleted. (D) provides undo / redo and code generation functionality. (E) shows representative data
types which can be dragged to states and transitions, which we have included to get early feedback before completing
the design, but have not explained in our teaching. (F) provides statistics of the state diagram including reachability.
In the diagram, states are represented by circles with arrows (going from wide to narrow) representing transitions
from one state to another. The green state is the starting state of the diagram.

(C) The last icon on the right is the trash bin which is used to delete states and

transitions. If a user wishes to delete a state or a transition, they may drag it to this

bin. When the item reaches the bin, the bin opens and turns into red color indicating

it is ready to delete. Once the mouse lets go in the open trash bin, the dragged item

will be deleted. A state or transition can also be deleted using the keyboard shortcuts

of pressing and holding “Shift + Delete” keys and clicking on a state or transition

to be deleted. This is difficult for children using Chrome-books. While deleting a

transition, only that transition will be deleted from the list of transitions, but when

a state is deleted, all the transitions associated with it will also be deleted along with

the state.

(D) There are three icons on the left. The first icon is to perform Undo and Redo

operations. In this app, Undo and Redo operations are implemented by keeping a

list of undo and redo snapshots of the state of the program. Whenever a change is

made on the diagram, the current state and transition will be inserted into the undo

25

M.Sc. Thesis - Padma Pasupathi McMaster - Computer Science

list as a new entry. When this undo button is clicked, the most recently added item

will be taken out from the undo list and the current state will be added to the redo

list. If a new change is made, then the redo list will be made empty and usual undo

list item will be added. The next blue icon on the left is used to generate the Elm

code for the state diagram. When we click this icon for the first time, the code would

be displayed on the screen. If the user wants to copy the entire code, then user could

use “Ctrl+A” to select all and “Ctrl+C” to copy the selected code. Otherwise, user

can click on this icon again to download the code as a text file. This generated code

can be complied on the game slot of macoutreach.rocks website.

(E) The data types Int, Float, Point, String are the data types available in this

version to add to states and transitions. Here, Point is the type alias for (Float,

Float) to represent a position. Each state or transition has a list of associated

(possibly repeated) data types. They are optional but adding data types to states

or transitions can greatly increase the conciseness of the state diagram, by avoiding

state explosion. For example, consider an example of a game which has different

levels and the points earned in the previous level can be carried over to the next level.

Here we can have an associated Int in the levels to indicate the score. We have not

incorporated associated data types into our initial lessons, but included them so we

can start having discussions with users to understand how they interpret them.

(F) We are currently displaying statistics at the bottom left of the screen including

the number of states and transitions created, the reachability of all states using the

available transitions,and the maximum number of transitions originating from a state.

This information was initially used for debugging purposes and then to aid in test

reporting, but when we worked with kids, this helped some children when their states

were missing (moved off screen). A future iteration of an experiment with this tool

should aim to see if the students can use the statistics to improve their diagrams in

other ways, for example, identifying unreachable states which indicate that they have

inaccessible parts of their app or game.

When a state is selected, the state will be highlighted in blue to show that it is

selected and a small arrow will be displayed next to it. This little arrow is used to

create the transitions from one state to another. When this arrow is clicked, a curve

will start appearing on the screen and move as the mouse pointer moves. When this

curve points to a state, the state will be highlighted in blue to indicate that this state

would be the destination of the transition. A transition can be between two different

states or can be a self transition (origin and destination of the transition would be the

same state). In SD Draw, a transition is indicated using a curve whose originating end

would be thicker and the destination end would be thinner. This design of curve was

26

M.Sc. Thesis - Padma Pasupathi McMaster - Computer Science

chosen over conventional directed arrows because when the complexity of the diagram

increases with a large number of states and transitions and the diagram is completely

zoomed out, the direction of the transition will still be visible when the arrowhead is

too small to see. We can also create a new transition using keyboard shortcuts, by

holding the “Shift” key, clicking a source state and dragging. This creates the curve

which looks for the destination state, then release over the destination state and let

go the “Shift” key to create a transition between two states.

Each state and transition will be created with a default name appended with a number

as a count. Every name can be renamed by simply selecting the state or transition.

When it is selected, a blue cursor will appear at the end of its name, this indicates that

the name can be edited by typing. We can delete the letters by pressing backspace

and can type the new desired name. To make the eventual generated code compatible

with Elm, there are few restrictions for the naming conventions as follows:

• Names can have only letters and numbers, no special characters or spaces are

allowed

• Every name must start with an uppercase letter

• There are no character limitations for state and transition names but state

names are drawn along the inside of the circle. It is recommended to use a

maximum of 30 characters for a state to cover a full circle and 15 or fewer

characters to have a better visibility of state names. Similarly, for a transition

name it is better to have a verb that transitions between the two states on the

transition.

• No two states can have the same name.

• States and transitions cannot have the same name.

• No two transitions originating from the same state can have the same name. If

the user renames a transition from a state to an existing transition name from

the same state, then the old transition will be deleted and the edited transition

will be updated with the new name. So it is advised not to attempt to create

two transitions with the same name starting from a state.

• Transitions from different states can have the same name, but if multiple tran-

sitions have the same name, when one transition is edited (like renaming or

adding data types) all other transitions with same name will be similarly mod-

ified. This may be surprising to users at first, but was a design decision chosen

27

M.Sc. Thesis - Padma Pasupathi McMaster - Computer Science

to make renaming groups of transitions easier. In order to ”detach” a transition

from the other ones named the same, the user must delete the transition and

re-add it.

4.4.2 Norman’s Principles

As per Don Norman’s Design of Everyday Things, every app should follow the fol-

lowing design principles (Table:4.2) to improve user interaction and user experience.

These principles were assessed by observing mentors using iterations of the app, re-

sulting in many small improvements.

Visibility The user should know the options available by simply
looking at the application.

Feedback Every action performed in the application should gener-
ate a visible response.

Signifier It is the relationship between how something looks and
how it is used.

Mapping It is the spatial or temporal relationship between the
control and its effect.

Constraints These are the limits to an interaction or interface of the
application.

Consistency In an application, the same action should cause same
reaction every time.

Table 4.2: Norman’s Principles.

4.4.2.1 Visibility

In SD Draw, there are a minimum number of buttons and user can understand each of

its functionality by clicking or dragging them like new state icon, Download button,

Undo and Redo buttons, Zoom in and Zoom out buttons, etc. The visibility of these

buttons are shown in the Figure 4.3.

4.4.2.2 Feedback

In SD Draw, every time we rename a state or transition, if the key pressed is in the

allowed list of keys then it will be displayed on the screen immediately. There is no

28

M.Sc. Thesis - Padma Pasupathi McMaster - Computer Science

Figure 4.3: Visibility: buttons are visible when active.

need to have a separate save button to save and display like we had on the PALDraw

application as seen in 2.1.2. Similarly whenever any other buttons or controls are

clicked or dragged, it gives an appropriate response immediately. Similarly in the

statistics section, we can see the number of states and transitions is updated upon

creating or deleting them from the state diagram, which is represented in Figure 4.4.

4.4.2.3 Signifier

As mentioned above, we have a very limited number of icons whose display indicates

their purpose. For example, a small arrow next to a state appears when a state

is selected, as shown in Figure 4.5. It indicates that a transition can be create,

originating from that state. And when the arrow is clicked, a curve is drawn out,

which sticks to the mouse pointer and moves around the screen along with the mouse

pointer as shown in Figure 4.6. This will create a transition if the curve is dragged

to any state on the screen.

29

M.Sc. Thesis - Padma Pasupathi McMaster - Computer Science

Figure 4.4: Feedback messages in SD Draw.

Figure 4.5: Signifier of transition start.

Figure 4.6: Signifier of transition creation.

30

M.Sc. Thesis - Padma Pasupathi McMaster - Computer Science

4.4.2.4 Mapping

Mapping is the spatial or temporal relationship between the control and its effect. In

SD Draw, the canvas mimics a physical plane, making it easy for children to learn.

Here when we click and drag a state or a transition, it moves to the position where

we move our mouse pointer on the screen. Similarly, when we select the start state

button or any of the datatype listed, it sticks to the mouse pointer and it is moved

across the screen as we move the mouse pointer until we drop them in a state or

transition. See Figure 4.8 where the datatype is dragged to the screen as mentioned

as start state button. In addition, when a state or transition is dragged to the trash

bin’s position, the bin opens and it turns to red in color indicating that it can be

deleted, as shown in Figure 4.7. The dragged state or transition will be deleted only

upon letting go of the mouse point when the bin is open, otherwise it would just

treated as a regular dragging action.

Figure 4.7: Mapping: Trash bin opens when a transition is dragged into it.

Figure 4.8: Mapping: Type sticks to the mouse when it is selected.

4.4.2.5 Constraints

These are the limits to an interaction or interface of the application. In SD Draw,

each state and transition name should start with only upper-case letters and can have

31

M.Sc. Thesis - Padma Pasupathi McMaster - Computer Science

alphanumeric in the rest of its name. When a name starts with a number or if it is

left empty, an error message will be displayed, as shown in Figure 4.9. Similarly, a

state and transition cannot have the same name, two states cannot have the same

name but two or more transitions originating from different states can have the same

name. The user is prevented from creating names violating these rules.

Figure 4.9: Constraints: Error message displayed when naming convention is violated.

4.4.2.6 Consistency

In an application, the same action should cause the same reaction every time. The

position of the icons is consistent in all states of the application. When the application

enters into the information states like the instruction page or code download page, a

close button is provided on top to have a consistent feel of closing a popup in other

applications (Figure 4.10).

Figure 4.10: Consistency: Instruction and code-generation pages with close buttons.

32

M.Sc. Thesis - Padma Pasupathi McMaster - Computer Science

4.4.3 Code Generation

With Elm’s algebraic data types, generating the code from a state diagram is straight-

forward. The set of possible transitions is mapped to the Msg type and the set of

possible states is mapped to the State type. Here, messages are transition labels and

the curve is the transition. For instance, for the diagram shown in Figure 4.2, the

data types generated are respectively:

type Msg = Tick Float GetKeyState

| GoInside

| EnterMusicRoom

| LeaveMusicRoom

| EnterGym

| EnterHallway

| TakeEmergencyExit

| GoOutside

type State = Outside

| Hallway

| MusicRoom

| Gym

Care must be taken not to generate duplicate transitions in the case where the same

name is used for multiple transition arrows. The Tick message is platform-specific

and sends the current time and keystrokes every 1/30th of a second, for easily making

animations and taking keyboard input.

The update function is also generated based on the structure of the diagram which

includes the logic for transitioning from state to state. Since all transitions are put

into the singular algebraic data type Msg as constructors, there is no type-level safety

for restricting which messages can be sent from which states. Instead, this logic is

generated in the update, which pattern matches on the current state to determine

which state to go to and defaults to keeping the current state the same if the message

is sent from a state where it should not be according to the diagram. There is, of

course, nothing stopping the users from modifying the code so as to no longer match

the diagram, but generally beginners do not need to understand the update function

to start creating their games.

Below is a snippet of the update function generated for the example in Figure 4.2:

update msg model =

case msg of

33

M.Sc. Thesis - Padma Pasupathi McMaster - Computer Science

GoInside ->

case model.state of

Outside ->

{ model | state = Hallway }

otherwise ->

model

The view function is generated to display the correct state when in that state, as well

as pre-populating each place with a basic text field to identify the current state and

basic buttons for transitioning from state to state. Using knowledge from previous

workshops, students can add graphics to each “page” of the app or change the buttons

into more interesting objects, such as door handles or levers. See Figure 4.11 for an

example of how the compiled code looks by default.

4.4.4 Adding Graphics with Elm

Once the code is generated, students can compile the code to get a bare-bones app

with titles for each state and buttons representing each transition out of that place.

Figure 4.11 shows the generated app for the example in Figure 4.2. Students can use

their existing graphics knowledge to create pictures and/or animations for each place.

4.5 Tool Improvements

Given that most of our teaching has been forced online due to the ongoing COVID-19

pandemic, more features are planned for improving distance education. Instructors

can currently view and make changes to students’ state diagrams, but live editing and

viewing and shared control by teams would significantly improve distance learning

and teamwork.

The next step towards model-driven engineering requires the integration of the state

diagram editor with our Web IDE, allowing the code generation button to automati-

cally open a game slot with the generated code. Full model-driven development would

add the ability to make changes in the state diagram and have them mirrored in the

code. This is more work, but is important to support an iterative design thinking

approach to development.

Collaboration could also be supported by allowing sub- or nested- state diagrams;

that is, allowing an entire state diagram to exist within a state of a larger diagram.

34

M.Sc. Thesis - Padma Pasupathi McMaster - Computer Science

Figure 4.11: From the state diagram in Figure 4.2, a basic Elm application can be generated using the GraphicSVG
library. Shown here are the four different “pages” the app can be in, one for each state in the diagram. Each place
is given by default a basic title text and buttons for each transition, with the appropriate logic to transition to the
correct state when clicked. Students can use existing knowledge from previous lessons to design graphics for each
page, or even change the buttons themselves.

Students are interested in designing mini-games as part of a larger game, and in fact

we encourage this with a summer camp. Nested state diagrams would allow students

to integrate mini-games without mentor involvement, as is currently required3. This

would require that sub-diagrams can be tested independently, similar to the support

we already provide for individual frames in animated comics.

Beginner students can get very far with data-less states and transitions but eventually

fall prey to what is known as a “state explosion,” where students create many states

and transitions to represent data which would make more sense as a data type like

a Boolean, integer, etc. Even in our first 2.5-hour workshop we saw students making

such diagrams, with states representing things like the amount of health an enemy

has left and transitions for dealing with different damage values. We believe that

students do benefit from the discussion and problem-solving that went into making

3http://outreach.mcmaster.ca/#camps and https://macoutreach.rocks/escapemathisland/

35

http://outreach.mcmaster.ca/#camps
https://macoutreach.rocks/escapemathisland/

M.Sc. Thesis - Padma Pasupathi McMaster - Computer Science

such complex diagrams, based on discussions we overheard during the session. Fur-

thermore, generally students are not ready for things like integers being added to

their states and transitions until they have had the chance to design their diagrams,

generate the code, and discover the state explosion problem on their own. However,

especially (or perhaps, only) when these tools are used in longer-term settings like a

summer camp, eventually the basic “untyped” diagram is no longer powerful enough

to support the students’ ideas. Thus, future work includes finding the best way to

introduce and teach these concepts, as well as support for user-defined algebraic data

types and an interface to model such data. As previously mentioned, the lesson in-

tended to introduce the concept of associating data with states and transitions must

first motivate its need in the form of a student-generated problem and then present

its solution as a much simpler diagram, even if this complicates handwritten (and

generated, for that matter) Elm code.

One category of statistics evaluated above revealed that most of the children were

able to use a transition to reach each state they created (see Figure 6.2). However, a

few outliers showed that some of the students had difficulty with this, leaving certain

states unreachable. In the future we should not allow code generation when some

states are unreachable (or we could just warn them), but explain to the user that

each state needs a transition leading to it.

4.6 Self-Hosting

Self-hosting means implementing a tool using the tool itself. Eventually, we would

like to self host SD Draw. To discover the features we would need, we drew a state

diagram based on the current implementation, see Figure 4.12 and made the following

observations:

• Each drag state can be drawn as a state.

• Each message can be drawn as a transition.

• The actual application uses a product of states, i.e., drag state, trash bin state,

code generation and information states. There is no way to support multiple

state types in the current version. We will propose a solution to this problem

using algebraic data types, including recursive types, in the next section.

• Currently mouse events encoded using notifyTap, notifyMouseDown, etc. are

recorded as transitions. There is no way to support the keyboard interaction as

36

M.Sc. Thesis - Padma Pasupathi McMaster - Computer Science

Figure 4.12: State diagram of SD Draw.

the app is currently implemented. This is partly because the app is implemented

using GameApp, and a reimplementation as an html app would partly solve this

problem.

• Undo and redo cannot be represented in the current SD Draw state diagram,

because they use lists of the underlying state, and an error state is implemented

as a constructor in the drag state with a reference to the underlying state. These

would be handled by adding algebraic data type support, but users may benefit

from standardized support for undo and error states, or more generic modal

dialog windows.

4.7 Recursive States, Nested States and User-Defined

Algebraic Data Types

As mentioned earlier, state diagrams with data like integers or booleans associated

with states and transitions are more powerful than data-less state diagrams. In order

37

M.Sc. Thesis - Padma Pasupathi McMaster - Computer Science

to gather feedback from users, our application currently supports four data types Int,

Float, String and Point (a type alias for (Float,Float)). We propose to support

user-defined data types by allowing users to use the type associated with another

state diagram in the associated data for states and transitions. This would allow

nested state diagrams, including sums and products, without adding to the visual

language.

While theoretically interesting, this would be like programming without using li-

braries. For example, consider the case where the programmer is required to get

list of inputs from the user. It would better practice for the programmer to use the

existing List library in Elm. Other situations are best handled using Dict or Set.

So these should be provided, but this raises the question: Should we allow for “state

diagram constructors” which take type parameters or state diagram parameters, in

the same way as List takes a type parameter? This is an interesting question for

future research.

Currently we have the Error state, where the user can go back to the previous state to

avoid the cause of the error or else the user cannot go to other states. As mentioned in

the discussion of self-hosting, this requires the use of recursive data types, including

embedding the state type for the current state diagram within the diagram itself. If

this feature is added, we could add standard support for dialogs with different buttons

leading to different states, such as a warning state, where the user will have OK and

CANCEL buttons. Upon clicking the OK button, the user would be taken to another

state, upon clicking the CANCEL button, the user would return to the previous state.

The data constructor for such a Warning state could be defined as shown below,

type State = Start

| OtherStates

| WarningMessage

String -- message to display in modal dialog

State -- state to go back to if cancel

State -- state to go forward to if ok

To summarize, a state diagram defines two algebraic data types, one for states and

one for messages. We should be able to refer to the types associated with the current

state diagram, creating a recursive data type. We should be able to refer to the types

associated with other state diagrams, creating nested state diagrams. Since we are

only defining the structure in the state-diagram editor, we do not need to refer to

individual transition functions, only types, at this level. In the generated code, the

programmer will need to refer to the individual state and message constructors and

functions implementing the transitions.

38

M.Sc. Thesis - Padma Pasupathi McMaster - Computer Science

Also currently we may only add the datatypes to the states and transitions, we cannot

edit the order or delete the types added to them. This will be a priority task when

implementing algebraic datatypes.

4.8 Keyboard Shortcuts

Support for keyboard alternatives to buttons and drag operations is limited in both

user-generated code and in SD Draw itself. This could be addressed by changing the

structure of generated code. The generated update function includes state-updating

logic. We could instead separately generate the user interface related code as a

dedicated functions called twice from the update function, i.e., once for handling

mouse events (via transitions named in the state diagram) and once for keyboard

events (in the Tick message required by GameApp). We could also use the recursive

call of update function if necessary in future.

The handling of keyboard events could be automatically generated if the SD Draw

app allowed users to specify keyboard shortcuts in the transitions.

4.9 Semantic Versioning

In the current SD Draw app, state diagrams are not saved with versioning. This could

become a problem when state diagrams can include each other via their associated

types. We could save the state diagrams with different versions that could either be

versioned using timestamps or by manual naming conventions. The best method of

doing this is a question for future research.

39

Chapter 5

Design of the Teaching Experiment

This section discusses the design of the lesson and the challenges given to students.

5.1 Lesson Design

We developed a lesson plan prior to teaching the Grade 4 students and radically

simplified it when teaching Grade 5 group based on feedback from the classroom

teacher that it was too long and included too many examples. For Grade 4, we

introduced the concept of a state diagram using the Moo-Quack game (see [d’Alves

et al., 2018]). Here, the instructor shows a state diagram in which the states are

animal noises and transitions number of raised arms. Students are often confused

at first but catch on quickly when classmates start making animal noises. We then

explained the concepts of a states (places) and transitions (actions) using examples

drawn in our tool of states of matter, Canadian provincial land borders, and school

navigation (see Figure 4.2). Finally, we showed the children how to generate and run

the code in a game slot in our Web IDE. We then split the class into groups, assigned

each to a breakout room, and challenged them to make their own game.

We then received feedback from the classroom teachers. For the Grade 5 class, we

focused on presenting state diagrams as the map of a concrete adventure game and

used the vocabulary of “places” and “ways.” From there, we split the children up

into groups and asked each group to chose one person to edit the map while sharing

their screen, and we gave them a Google Slides template to use in identifying tasks

and then assigning them to group members. One of the teachers asked them to think

40

M.Sc. Thesis - Padma Pasupathi McMaster - Computer Science

about the scale of their game in terms of enjoyment in reading a story. We found

that if it is too long, people will lose interest.

After class, we were able to retrieve the state diagrams, and approximately assign

them to the two grades (i.e., Grade 4 and 5). Due to the fact our program uses

randomly generated logins, we do not keep identifying information, and many of the

students continued working on their state diagram after class, we expected to report

on the two classes as a whole. Statistics on the state diagrams are reported below.

5.2 Challenge Design

We visited the Grade 5 students the next week for an additional hour and gave them

four challenges to measure the impact of our teaching on their understanding on

state diagrams and their ability to translate from one representation/implementation

to another. Each challenge had two variations; the first one, based on the state

diagram in Figure 4.2, contained only concrete place names. The second variation

had abstract states: a closed box with a scratching noise, an open box with a dragon

flying around, and a closed box. The challenges were to:

1. Draw a state diagram using our tool from an English paragraph:

a Your task is to make a state diagram to help a new classmate find their

way around inside your school. The classmate starts Outside. From the

Outside, they can go inside to the Hallway. From the Hallway, they can

enter the Music Room. From the Music Room they can leave and go back

into the Hallway. From the Hallway they can also enter the Gym. From

the Gym they can leave the Gym and go back to the Hallway, or in an

emergency they can take the emergency exit to go back Outside. Your

classmate cannot enter the school through the emergency exit.

b You are designing a state diagram for a video game about a dragon. The

game starts with a Closed Chest, with a scratching noise inside. The player

can open the chest, which will cause a dragon to start flying around. The

player can then close and open the chest as many times as they want, but

the dragon will still be flying around and the chest will remain empty.

There are many correct answers: remember, just do your best!

2. Draw a state diagram using our tool from English bullet points.

a • One place you can be is Outside.

41

M.Sc. Thesis - Padma Pasupathi McMaster - Computer Science

• One place you can be is in the Hallway.

• One place you can be is in the Music Room.

• One place you can be is in the Gym.

• From Outside you can go inside to the Hallway.

• From the Hallway you can go back Outside.

• From the Hallway you can also go into the Music Room.

• From the Music Room you can go back into the Hallway.

• From the Hallway you can also go into the Gym.

• From the Gym you can go back into the Hallway.

• From the Gym you can also go through the emergency exit to go back

Outside.

• You cannot enter through the emergency exit.

• You start Outside.

b • One thing that can happen in the game is the chest is open and a

dragon flies out of it.

• One thing that can happen in the game is the chest is closed but the

dragon is still flying.

• If the chest is closed and you hear a scratching sound, you can open

the chest.

• If the chest is open and the dragon is flying, you can close the chest,

but the dragon will still be flying.

• If the chest is closed and the dragon is flying, you can open the chest

again.

• The dragon never enters the chest again.

• The game starts with the closed chest with the scratching noise.

3. Describe a state diagram using English based on a diagram drawing using our

tool.

4. Draw a state diagram using our tool given a generated (and compiled) game,

e.g. Figure 4.11.

42

Chapter 6

Results of Evaluation

In this chapter, we analyze the results of our test both quantitatively and qualita-

tively. Quantitatively, we use descriptive statistics for reachability, and test the null

hypothesis that the diagrams created by children come from the distribution of ran-

domly generated directed (multi-)graphs, and can say with confidence p = 0.001 that

this is not true, so children do understand the concept of reachability, and can design

it into their diagrams. Qualitatively, we present the “median” results of the eight

different translation exercises. We also note that students who received the abbre-

viated introduction to state diagrams based on adventure game, without examples

showing travel between provinces of Canada and states of matter, came up with bet-

ter diagrams. To understand the prevalence of abstract states, we also use descriptive

statistics.

6.1 Quantitative Analysis of State Diagrams

Figure 6.1 shows a scatter plot of the total number of transitions versus states. The

line y = x is plotted as a dashed line, and y = 1.5x plotted as a dotted line. Points

below y = x indicate more states than transitions and a disconnected graph. The

points near the x-axis are likely abandoned diagrams. Points near y = x indicate

diagrams with close to one transition per state, e.g. a tree. Points above y = x

indicate more complex games with multiple paths. The line y = 1.5x represents

the visual centre of the diagrams with multiple choices, and represents having three

transitions for every two states. There are eight above the line (with more transitions)

43

M.Sc. Thesis - Padma Pasupathi McMaster - Computer Science

and eleven below the line (with fewer), so the visual centre is actually slightly above

the median.

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35

N
um

be
r o

f T
ra

ns
iti

on
s

Number of States

Figure 6.1: A scatter plot of the numbers of transitions and number of states for each diagram. The line y = x
is plotted as a dashed line, and y = 1.5x plotted as a dotted line. Points below y = x indicate more states than
transitions and a disconnected graph. The points near the x-axis are likely abandoned diagrams. Points near y = x
indicate diagrams with close to one transition per state, e.g. a tree. Points above y = x indicate more complex games
with multiple paths. 6.2.

Figure 6.2 shows a scatter plot of reachable vs total states. Points on the diagonal

(y = x) indicate that all states are reachable from the starting state. The points on

the line y = 1 probably correspond to abandoned diagrams, since only the starting

state is reachable.

Figure 6.3 shows a scatter plot of abstract versus concrete states. The dotted line

has slope −2.9 which suggests that the effort required to add a concrete state is three

times the cost of adding an abstract state.

Consistent with our observation that many diagrams (10 out of 38) were abandoned

after students realized that only one of the diagrams created by their group could be

used in the next step, we note a cluster of disconnected diagrams, but otherwise the

diagrams indicate strong understanding of and engagement with the material. There

was widespread adoption of abstract states, even though most students were only

44

M.Sc. Thesis - Padma Pasupathi McMaster - Computer Science

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35

Re
ac

ha
bl

e
St

at
es

Total States

Figure 6.2: A scatter plot of reachable versus total states in students’ diagrams. Points on the diagonal (y = x)
indicate that all states are reachable from the starting state. The points on the line y = 1 probably correspond to
abandoned diagrams, since only the starting state is reachable.

taught to think about and create concrete states. In fact, the most productive groups

produced many more abstract than concrete states.

To answer RQ3, we have tested the hypothesis that the diagrams created come from

the distribution of randomly generated diagrams. To use the Anderson-Darling single-

sample test, we need to know the cumulative probability distribution (CDF) for the

number of states reachable from the starting state. We approximate this discrete by

generating random diagrams. Using the empirical CDF, we can randomly generate

samples of diagrams and evaluate the Anderson-Darling statistic to approximate its

distribution, and estimate the p-value for the child-created diagrams.

In Tables 6.1, 6.2, and 6.3, we display the probability distribution for reachability for

each diagram with respect to the number of states and transitions in the diagram.

Considering that the initial state is always reachable, the minimum reachability is

one. Given a random state diagram, we calculate the reachability using Dijkstra’s

algorithm. We approximate the probability distribution function for the number of

45

M.Sc. Thesis - Padma Pasupathi McMaster - Computer Science

0

5

10

15

20

25

30

0 5 10 15 20 25 30

Ab
st

ra
ct

 S
ta

te
s

Concrete States

Figure 6.3: A scatter plot of concrete versus abstract states in students’ diagrams. The dotted line has slope −2.9
which suggests that the effort required to add an concrete state is three times the cost of adding an abstract state.

states reachable from the initial state using a normalized histogram. Before comput-

ing the Anderson-Darling test, we note that the histograms for randomly generated

diagrams are not consistent with the distribution of student-generated diagrams. In

Table 6.1, we see the probabilities for the diagrams with 11 states, as well as the ob-

served reachability in the five diagrams created by students. In the first three rows,

the maximum probability for any observed reachability is 1% (rounded to the nearest

percent). Although the probability of full reachability grows with the number of tran-

sitions, it is never high. The maximum probability for full reachability is in the third

row of Table 6.2, for diagrams with 9 states and 19 transitions, at 18%. In Table 6.3,

we show two cases with large numbers of states and transitions, which illustrate that

for larger diagrams, a large number of states are needed to make reachable graphs at

all likely to arise randomly.

46

M.Sc. Thesis - Padma Pasupathi McMaster - Computer Science

States Transitions Probability Distribution Function Observed

11 13 10,11

11 14 11

11 16 11

11 21 11

Table 6.1: Probability Distribution functions for the number of reachable states based on simulation of 4000 random
diagrams with 11 states. The observed column has the number of reachable states in the students’ state diagrams
with 11 states and its corresponding transitions.

The formula for calculating the Anderson-Darling test statistic is,

A2 = −n− S, (6.1)

S =
n∑

i=1

(((2i− 1)÷ (n))[logF (Yi) + log(1− F (Yn + 1− i))]). (6.2)

where, A is the Anderson-Darling test statistic, F is the Cumulative Distribution

Function, and n is the number of elements(diagrams). This statistic measures the

47

M.Sc. Thesis - Padma Pasupathi McMaster - Computer Science

States Transitions Probability Distribution Function Observed

9 12 9

9 14 9

9 19 9

Table 6.2: Probability Distribution functions for the number of reachable states based on simulation of 4000 random
diagrams with 9 states. The observed column has the number of reachable states in the students’ state diagrams with
9 states and its corresponding transitions.

States Transitions Probability Distribution Function Observed

23 38 23

30 33 29

Table 6.3: Probability Distribution functions for the number of reachable states based on simulation of 4000 random
diagrams with 23 and 30 states. The observed column has the number of reachable states in the students’ state
diagrams with 23 and 30 states and its corresponding transitions.

match between a sample and a distribution. To use this test statistic, we need a

sample of diagrams from one distribution. We have at most two diagrams with the

48

M.Sc. Thesis - Padma Pasupathi McMaster - Computer Science

same number of states and transitions, but we can reduce our confidence level by

assuming that the diagrams with 11 states and 13, 14 and 16 transitions all have 16

transitions, and hence come from one distribution. The CDF F is displayed in the

third row of Table 6.1, but to compute the next steps we used 40K samples to get a

better approximation of the true distribution. In Figure 6.4, we show the distribution

of test statistics for 4000 sets of 4 randomly generated diagrams, and the test statistic

for the sequence of reachabilities 10, 11, 11, 11, i.e., 33.8. Since this is an empirical

distribution based on 4000 samples, and the test statistic for these four diagrams

is well outside the distribution, we are confident that p < 0.001, refuting the null

hypothesis based on four diagrams. In the future, it would be good to calculate the

confidence value for the full set of diagrams by using Fisher’s combined probability

test to combine the p values for each set of diagrams with a common number of states

and transitions.

Figure 6.4: Anderson-Darling Test Statistic Distribution for 4 diagrams each with 11 states and 16 transitions,
approximated using 4000 randomly generated sets of 4 diagrams. The horizontal axis shows A2, the Anderson-
Darling test statistic, and the vertical axis shows the probability. The black triangle shows the test statistic for the 4
diagrams produced by children with 11 states and 16 or fewer transitions (33.8). Since 4000 sets were used to generate
the histogram, and 33.8 is well outside the randomly generated tests, we estimate that the confidence value p < 0.001.

6.2 Qualitative Analysis of Challenges

We report the results of the challenges qualitatively because (1) to understand where

we needed to improve instruction without asking for too much student time we had 3-

5 students completing each challenge, (2) we asked some children to write paragraphs,

and (3) we asked some children to create state diagrams. In all cases, we could identify

a “median” response, which we report here.

In the concrete school challenges, we found confusion about whether the emergency

49

M.Sc. Thesis - Padma Pasupathi McMaster - Computer Science

exit was a state or a transition, as seen in Figure 6.5 when translating from a para-

graph description.

Figure 6.5: Median result for challenge 1a. Note the extra EmergencyExit state.

Whereas given a point-form description, they were less likely to leave off or add

additional states or transitions, as seen in Figure 6.6.

Figure 6.6: Median result for challenge 2a matches expectation.

When asked to describe the state diagram in English, most students hesitated to get

started, but then used narrative to thread together a description. Many students

50

M.Sc. Thesis - Padma Pasupathi McMaster - Computer Science

asked “when should I stop?” because they realized that the narrative could go on

forever due to a cycle, giving a glimpse into how they were systematically analyzing

the diagrams. Our median response for Challenge 3a was: You start outside the

school. If you go inside through the door, you’ll be at the hallway. Here, you can

access all the different rooms or exit the hallway to go back outside. The music room

is the room labeled ”music,” and you can enter and exit it through the door. From the

hallway, you can also enter the gym room, and exit it back through the door. If you

are in the gym and there is an emergency, you can take the emergency exit instead

of running back to the hallway and exiting that way. There is no emergency exit in

the music room, since there is nowhere to go after you leave. There was not median

response to the final challenge due to miscommunication about the need to work

individually.

The abstract dragon-in-a-box challenge was more difficult, but they did best when

translating a working app into a diagram, see Figure 6.7, perhaps because they did

not have to think about the semantics of the abstract situation. When they had

to reason about the English description, they were uncertain, but still seemed to

understand the basic definitions and task, see Figures 6.8 and 6.9.

Figure 6.7: Median result for challenge 4b matches expectation.

Going the other way, they again showed their understanding of the concept, but

felt the need to add narrative bridges, perhaps because we used narrative in our

descriptions, or because that is how they understand them. Our median solution:

You start with a chest, and you hear a faint scratching noise inside. If you run away,

you will find that the room has no escape, and you have to open the chest. When

you open the chest, The dragon flies out, and all you have to do is to close the chest,

and you win. The inclusion of narrative elements to explain properties of the state

diagram was surprising and shows their understanding of the state diagram model. In

this response, you will find that the room has no escape shows that they understand

how the diagram models the allowable transitions at a given place. The addition

of and you win shows another common observation we saw with their responses:

the student adding their pre-existing knowledge of video games to their responses,

51

M.Sc. Thesis - Padma Pasupathi McMaster - Computer Science

Figure 6.8: Median result for challenge 1b with an extra state emphasizing the start of the dragon flying around.

Figure 6.9: Median result for challenge 2b without a circuit. Linear narratives do not have circuits, and the additional
states include interpretation beyond the specification which serve to make the narrative more interesting.

whether or not that information is encoded in the diagram, which in this case it is

not.

52

Chapter 7

Discussion

The primary purpose of this study was to test the tool and pedagogy of teaching

state diagrams. Our design checklist and identified future work is presented in this

section.

One of the more interesting results of the classes was that the students began to

differentiate between concrete states (places one could go) and abstract states (new

states of being), and apply different levels of both. For example, in a game where

a character can enter a barn, they find a dragon. The character can transition to a

new state by feeding the dragon. The barn itself would be a concrete state, as it is

a place the character can enter. The fed dragon would be an abstract state, as you

cannot return to the state of the dragon being unfed. Both types of states were given

in the examples provided in class; however, it was never explained that there might

be a difference between the two.

Once the results of what the students had created was reviewed, it was hypothesized

that they could be sorted by complexity in two forms: number of states and transi-

tions, and number of concrete and abstract transitions. The results showed few games

of moderate complexity, instead showing that students favoured either high complex-

ity or low complexity. Students who used more abstract states also had higher rates

of states and transitions, while those with more concrete states had less states and

transitions. Further research might be able to explain why this trend was seen.

It was also noted, when checking in on the state diagrams created by the students,

that some continued their work after the classes had ended. Though these results

were not analyzed due to the small participation number, it seemed that those who

showed more complexity by using abstract states and a higher number of states and

53

M.Sc. Thesis - Padma Pasupathi McMaster - Computer Science

transitions overall were the same students who continued working on their projects in

their own time. This showed the investment the students had in their stories that had

not been predicted. As mentioned previously, the ability to visually map out ideas

through concept mapping or state diagrams has been shown to improve the efficiency

of a student’s writing. However, this finding also suggests the potential for higher

engagement, interest and initiative when learning to code, and create culminating

projects fusing coding and other curriculum areas.

7.1 Pedagogical Improvements

We found that students were generally able to translate between different equivalent

specifications of state diagrams, but that they were more successful and (anecdotally)

more comfortable with point-form specifications than paragraphs. This suggests de-

signing and testing a staged curriculum in which translation between diagrams and

point-form specifications should be taught first, followed by paragraph descriptions,

and the advantages of translating from working game to diagram to point-form to

paragraph should be measured. Teachers are always trying to find ways of engaging

reluctant writers, and we hypothesize that this is one way of leveraging children’s

engagement with video games. Different teaching styles should be investigated for

different age groups. Furthermore, demographic information collected beforehand can

allow the foundation for comparing genders, ages and developmental differences.

Knowing that many students created abstract states without prompting, see Fig-

ure 6.2, we should add a follow-up lesson after children have produced one (or more)

state diagrams to introduce abstract states to all children. We should then design new

challenges to evaluate whether all children are able to understand and use abstract

states, and whether there are differences based on developmental level.

7.2 Limitations

Firstly, our results are based on approximately 38 diagrams from a total of 70 students

from an enrichment program. While we cannot draw conclusions about the general

school population, our experience in piloting curriculum with this group over 15

years suggests that this new activity will also work in all classrooms, and for longer

engagements.

54

M.Sc. Thesis - Padma Pasupathi McMaster - Computer Science

Secondly, we did not follow the same lesson plan when teaching the Grade 4s as when

teaching the Grade 5s. After one lesson with the Grade 4 students, a streamlined

teaching plan was used for the Grade 5 students, with the main differences being the

skipping of explanations of state prior to designing a game together, and the reit-

eration of the importance of choosing one team member to share their screen while

creating one shared state diagram. Because we use anonymized accounts, we can-

not segregate and compare their results. Similarly, Grade 5s are both more mature

and cognitively advanced than Grade 4s, and therefore the difference in how they

were taught on days one and two of this study may have contributed to the differ-

ences within our results rather than it being their age or grade. That being said, a

more concrete and tailored lesson plan for both grades would be helpful in increasing

reliability and validity.

Finally, the online platform we used was not compatible with tablets (i.e., a small

number of iPads), and students used a range including Chromebooks, with and

(mostly) without mice. The lack of control around which device was being used may

affect whether a concrete or abstract diagram was created, but device heterogeneity

is more common than not in the classrooms we visit.

7.3 Design Checklist

CL1 Keyboard/mouse based editing, with a minimal number of buttons. The main

goal was to minimize the number of buttons on the application. The PAL-

Draw application had around 15 buttons and around 10 buttons were used for

drawing basic state diagrams without any data types attached. During the first

iteration of the SD Draw we had only 3 buttons to download the generated

code, Undo and Redo. All other functionalities like making a new transition,

deleting a state or transition, zoom-in and zoom-out were carried out using the

keyboard and mouse interactions. When we taught school children to use it,

though they loved making state diagrams for their adventure games, they had

some difficulties accessing some controls using keyboard and mouse interactions

(especially simultaneously). During the next iteration, we introduced a trash

bin for deleting states and transitions by simply dragging them over the trash

bin, a recenter button to bring back all the states and transitions to the orig-

inal scale and position, and in the last iteration, a new small control to click

and drag to make a new transition, Zoom-in and Zoom-out buttons were added

along with the Instructions screen button. Now, SD Draw has 7 buttons which

55

M.Sc. Thesis - Padma Pasupathi McMaster - Computer Science

are fewer and using much less screen space compared to PALDraw.

CL2 In-place editing of names for places and transitions (live editing). In PALDraw,

we had to select a state or transition on the left window and type its name on

a text box on the right panel to rename it. In SD Draw we can select a state

or transition and can edit its name directly and it gets updated in real-time.

CL3 Drag-and-drop where possible In SD Draw, we cannot just drag and drop the

states and transitions, we can also add a start state, four different data types

to a state or transition by drag and drop. Whereas PALDraw had separate

buttons for changing a start state and to add data types.

CL4 Minimize clicking As mentioned earlier, SD Draw has fewer buttons and most

of its functionality is based on keyboard and mouse interactions, we have fewer

button clicks. For example, saving the name of a state or transition can be done

by pressing the “Enter” key instead of using a separate button like in PALDraw.

CL5 Leave space for data in states and transitions Every state and transition has

some space on it to add and display the data types associated with it.

CL6 Experiment with data types Currently SD Draw application supports four data

types. We better understand the importance of supporting algebraic data types

after trying to self-host the application. Hence we are planning to introduce the

custom data types as discussed in Section 4.7.

CL7 Snappy app (immediate feedback) While editing is snappy for small state dia-

grams, performance still needs to be improved for large diagrams. It may be

necessary to cache some computations in the model so they are not recalculated

on every screen refresh.

CL8 Elm code generation for buttons Unlike PALDraw, SD Draw generates an app

with working buttons. This makes teaching a lot simpler because kids observe

the flow of the diagram matching generated code.

CL9 Validate state and transition names. No two states or transitions can have the

same name. We have added multiple validations for the naming convention of

the states and transitions as mentioned in 4.4.1 and it does not let users create

invalid names which would causes compiler errors in the generated code.

CL10 Widget and Server implementation The SD Draw application is hosted on the

macoutreach.rocks server, and ready to be integrated into the web development

environment.

56

Chapter 8

Conclusion

In this chapter, we will summarize and conclude our work. This was a proof-of-

concept study, but we are satisfied that it already provides enough value to be offered

to a wider school population. That said, we have a plan for improvements and future

studies. Further study is required to match the teaching to the development level of

the students. In Section 4.5, we have outlined the further advancements of SD Draw,

and the ways in which our research group will anticipate using it. This includes our

direction on the additional teacher’s application as introduced throughout this work,

and the general benefits we hope to achieve from our entire system when the teacher’s

application is finished.

The initial goal of SD Draw application is to re-implement the application with a new,

simpler interface, using the screen space better and requiring fewer clicks. We have

completed two main goals so far, (1) re-implemented it with a new interface and (2)

tested it with kids, testing whether they can use it and whether they understand the

underlying state diagrams, giving answers to our main research questions. We have

used Design Thinking methodology to develop this application and we went through

several iterations of application improvement, and are not finished. We came up with

a list of improvements to be made in the new SD Draw application as mentioned in

the chapter 3. We did achieve most of those tasks, as explained in Section 7.3, and

learned a lot.

57

M.Sc. Thesis - Padma Pasupathi McMaster - Computer Science

Research Questions

We have answered all of the research questions:

RQ1 Do grade 4-5 students demonstrate an understanding of State Diagrams by being

able to translate between different representations? Yes, when students were

given different representations and asked to convert them, they were able to do

so. See Section 6.2.

RQ2 Do grade 4-5 students demonstrate equal facility for translating between different

representations of state diagrams? No. When a state diagram is given and

students are asked to write a description about it, students were confused how

much to write, especially in the case of a cycle in the state diagram. Students

also found it easier to interpret point-form specifications rather than paragraphs,

and found the conversion of a working app into a State Diagram easiest of all.

See Section 6.2.

RQ3 Can grade 4-5 students understand the role of reachability? Assuming that

students who did not understand the role of reachability would generate random

graphs, what confidence do we have that the graphs are more reachable than

random graphs? We have a confidence of p < 0.001 that they understand

reachability enough not to draw random diagrams, based on an monte carlo

simulation of the Anderson-Darling statistic for four of the diagrams with 11

states. See Section 6.1.

RQ4 Are grade 4-5 students engaged by state diagrams and their applications to ad-

venture games? Yes, students were engaged by state diagrams. They expressed

interest in creating the state diagrams during class, and showed even more inter-

est in designing the levels or difficulty of the levels of their game than designing

the graphics for their game. Several groups continued working after school. See,

e.g., Table 6.3.

RQ5 Do grade 4-5 students understand abstract and concrete states equally well?

Will students presented with concrete states generalize to abstract states without

prompting? For the grade 5 students, we did not explain about concrete and

abstract states. But when we asked them to draw their own State Diagrams for

their favorite game, some students came up with abstract states. See Figure 6.3.

58

Bibliography

Shaaron E Ainsworth and Katharina Scheiter. Learning by drawing visual repre-

sentations: Potential, purposes, and practical implications. Current Directions in

Psychological Science, 30(1):61–67, 2021.

Lynne Anderson-Inman and Mark Horney. Computer-based concept mapping: En-

hancing literacy with tools for visual thinking. Journal of adolescent & adult liter-

acy, 40(4):302–306, 1996.

Mordechai Ben-Ari. Constructivism in computer science education. Acm sigcse bul-

letin, 30(1):257–261, 1998.

Marina Umaschi Bers. Coding as another language: a pedagogical approach for

teaching computer science in early childhood. Journal of Computers in Education,

6(4):499–528, 2019.

Helen Brown. Macventure: An iPad application design for so-

cial constructivist e-learning. Master’s thesis, McMaster University,

http://hdl.handle.net/11375/20478, 2016.

Ni Chang. The role of drawing in young children’s construction of science concepts.

Early Childhood Education Journal, 40(3):187–193, 2012.

Li Cheng and Carole R Beal. Effects of student-generated drawing and imagination

on science text reading in a computer-based learning environment. Educational

Technology Research and Development, 68(1):225–247, 2020.

British Design Council. What is the framework for innovation? design council’s

evolved double diamond, Sep 2019. URL https://www.designcouncil.org.uk/news-

opinion/what-framework-innovation-design-councils-evolved-double-diamond.

59

https://www.designcouncil.org.uk/news-opinion/what-framework-innovation-design-councils-evolved-double-diamond
https://www.designcouncil.org.uk/news-opinion/what-framework-innovation-design-councils-evolved-double-diamond

M.Sc. Thesis - Padma Pasupathi McMaster - Computer Science

Evan Czaplicki. Elm: Concurrent FRP for Functional GUIs. Senior thesis, Harvard

University, 2012.

Bogdan Denny Czejdo and Sambit Bhattacharya. Programming robots with state

diagrams. Journal of Computing Sciences in Colleges, 24(5):19–26, 2009.

Curtis d’Alves, Tanya Bouman, Christopher Schankula, Jenell Hogg, Levin Noronha,

Emily Horsman, Rumsha Siddiqui, and Christopher Kumar Anand. Using elm to

introduce algebraic thinking to k-8 students. In Simon Thompson, editor, Proceed-

ings Sixth Workshop on Trends in Functional Programming in Education, Can-

terbury, Kent UK, 22 June 2017, volume 270 of Electronic Proceedings in Theo-

retical Computer Science, pages 18–36. Open Publishing Association, 2018. doi:

10.4204/EPTCS.270.2.

E Paul Goldenberg and Cynthia J Carter. Programming as a language for young chil-

dren to express and explore mathematics in school. British Journal of Educational

Technology, 52(3):969–985, 2021.

Masaru Kamada. Islay—an educational programming tool based on state diagrams.

In 2016 International Conference on Advances in Electrical, Electronic and Systems

Engineering (ICAEES), pages 230–232. IEEE, 2016.

Dexter C Kozen. Automata and computability. Springer Science & Business Media,

2012.

Shriram Krishnamurthi and Kathi Fisler. Programming paradigms and beyond. The

Cambridge Handbook of Computing Education Research, 37, 2019.

Andrea Kunze and Jennifer G Cromley. Deciding on drawing: the topic matters

when using drawing as a science learning strategy. International Journal of Science

Education, pages 1–17, 2021.

Aleksi Lukkarinen, Lauri Malmi, and Lassi Haaranen. Event-driven programming

in programming education: A mapping review. ACM Transactions on Computing

Education (TOCE), 21(1):1–31, 2021.

Ana Francisca Monteiro, Maribel Miranda-Pinto, and António José Osório. Coding

as literacy in preschool: A case study. Education Sciences, 11(5):198, 2021.

Don Norman. The design of everyday things: Revised and expanded edition. Basic

books, 2013.

60

M.Sc. Thesis - Padma Pasupathi McMaster - Computer Science

Bill O’Farrell and Christopher Anand. Code the future!: teach kids to program in

elm. In Proceedings of the 27th Annual International Conference on Computer

Science and Software Engineering, pages 357–357. IBM Corp., 2017.

Optimal Computational Algorithms, Inc. ElmJr (1.0). iOS App Stores:

https://apps.apple.com/ca/app/elmjr/id1335011478, 2018.

Joonhyeong Park, Jina Chang, Kok-Sing Tang, David F Treagust, and Mihye Won.

Sequential patterns of students’ drawing in constructing scientific explanations: fo-

cusing on the interplay among three levels of pictorial representation. International

Journal of Science Education, 42(5):677–702, 2020.

Christopher Schankula, Emily Ham, Jessica Schultz, Yumna Irfan, Nhan Thai, Lucas

Dutton, Padma Pasupathi, Chinmay Sheth, Taranum Khan, Salima Tejani, et al.

Newyouthhack: Using design thinking to reimagine settlement services for new

canadians. In International Conference on Innovations for Community Services,

pages 41–62. Springer, 2020.

Christopher W Schankula and Christopher K Anand. Graphicsvg [elm package], 2016-

2019. URL http://package.elm-lang.org/packages/MacCASOutreach/graphicsvg/

latest.

Annett Schmeck, Richard E Mayer, Maria Opfermann, Vanessa Pfeiffer, and Detlev

Leutner. Drawing pictures during learning from scientific text: Testing the gener-

ative drawing effect and the prognostic drawing effect. Contemporary Educational

Psychology, 39(4):275–286, 2014.

Leslie Suters and Henry Suters. Coding for the core: Computational thinking and

middle grades mathematics. Contemporary Issues in Technology and Teacher Ed-

ucation, 20(3):435–471, 2020.

F Vico, M Molina, D Orden, J Ortiz, R Garcia, and J Masa. A coding curriculum

for k-12 education: the evidence-based approach. In Proceedings of the 11th an-

nual International Conference on Education and New Learning Technologies, pages

7102–7106, 2019.

61

http://package.elm-lang.org/packages/MacCASOutreach/graphicsvg/latest
http://package.elm-lang.org/packages/MacCASOutreach/graphicsvg/latest

	Abbreviations
	Abstract
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	Introduction
	Purpose:
	Scope:
	Contribution:

	Background/ Literature Review
	McMaster Start Coding Program
	NewYouthHack
	Petri App Land
	Lesson 8: State Diagrams and Adventure Games
	Design Thinking

	Functional Programming
	Elm Language
	Elm Architecture
	Algebraic Datatypes
	Related Work
	Coding, Literacy, and State Diagrams
	Visual Learning and Education
	Event-Driving Programming in Education
	State Diagrams in Computer Science Education

	Motivation
	State Diagrams
	State Diagrams in General
	State Diagram in SD Draw
	Formal Definition
	Graphical Representation and Tool
	Software Design
	Norman's Principles
	Visibility
	Feedback
	Signifier
	Mapping
	Constraints
	Consistency

	Code Generation
	Adding Graphics with Elm

	Tool Improvements
	Self-Hosting
	Recursive States, Nested States and User-Defined Algebraic Data Types
	Keyboard Shortcuts
	Semantic Versioning

	Design of the Teaching Experiment
	Lesson Design
	Challenge Design

	Results of Evaluation
	Quantitative Analysis of State Diagrams
	Qualitative Analysis of Challenges

	Discussion
	Pedagogical Improvements
	Limitations
	Design Checklist

	Conclusion
	Bibliography

