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Abstract  

The triboelectrification of powders, which is typically caused by interparticle collisions and 

particle-wall interactions is often known as a nuisance phenomenon, especially during the 

powder handling process in different industries. Particularly in the pharmaceutical 

industry, wall-fouling occurs due to the electrostatic charging of particles during transport 

in particle-laden pipe flows, leading to inconsistencies in final product dosage. Dust 

explosions due to excessive powder charging also pose a severe hazard causing damages 

to personnel, infrastructure, and equipment. In the polyolefin industry, sheet formation on 

the reactor walls due to particle charging combined with extremely exothermic 

polymerization reactions negatively affect the reactor's performance resulting in reactor 

shutdown. Electrostatic charge generation in particle-laden pipe flows has been broadly 

studied throughout the years; however, little attention has been paid to utilizing this natural 

phenomenon as a tool for the characterization of powders' physical and chemical 

properties, which is the focus of this study. Modeling particle tribocharging based on 

the chemical and physical properties of particles and the hydrodynamic of the system 

would considerably help provide insight into the influence of different parameters on the 

charging behavior of powders. Integrating a computational fluid dynamics (CFD) model for 

simulating particles motion in a carrier fluid with a tribocharging model can be used not 

only as a predictive tool in the industry but as a rapid and cost-effective method for powder 

characterization.  

In this research, a tribocharging model based on the prominent condenser model was used 

in combination with an Eulerian-Lagrangian CFD model to simulate particle tribocharging 

in particle-laden flows. The influence of different parameters on particle-wall interactions 

during particle transport in a particle-laden pipe flow was elucidated. An artificial neural 

network was developed for predicting particle-wall collision numbers based on a database 

obtained through CFD simulations. The particle-wall collision number from the CFD model 

was validated against experimental data in the literature.  The tribocharging and CFD 

models were coupled with the experimental tribocharging data to 

estimate the contact potential difference of powders, which is a function of contact 

surfaces' work functions and depends on the physicochemical properties 

of materials. While the contact potential difference between the particles and wall 
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is an essential parameter in the tribocharging models, the accurate measurement 

of the property is a complex process requiring a highly controlled environment and special 

equipment. The results from this research also confirm that particle tribocharging is very 

much dependant on the particle-wall collision number influenced by various 

parameters, such as particle size and density, air velocity, and pipe dimensions. Plotting 

the experimentally measured charge-to-mass ratios against the calculated contact potential 

differences for samples with different protein contents uncovered a linear trend, which 

opens a novel approach for protein quantification of powders for a given particle 

size. Therefore, an algorithm is proposed for rapid quantification of protein content and 

particle size determination of samples during transport in particle-laden flows based 

on the triboelectric charge measurement. The algorithm requires a CFD-based artificial 

neural network to estimate the particle-wall interactions based on the hydrodynamic 

characteristics of the particles and flow systems.  
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Chapter 1. Introduction 

 

During powder transport in particle-laden pipe flows, electrostatic charge buildup 

occurs on contact surfaces due to particle-wall collisions. This phenomenon is known 

as triboelectrification or "tribocharging". Powder tribocharging is often referred to as 

a destructive phenomenon in various industries due to its catastrophic consequences. 

Dust explosions triggering by electrostatic discharge during the powder handling 

process are examples of these unwanted implications resulting in tremendous 

economic complications for industries, specifically those dealing with powders. In the 

pharmaceutical industry, powder tribocharging during transport in particle-laden 

pipe flows results in wall-fouling leading to inconsistencies in final product dosage. 

Therefore, there is considerable global interest in understanding the 

triboelectrification of powders and investigating the parameters influencing this 

phenomenon to mitigate drawbacks and take advantage of its potential benefits. 

1.1. Background 

Tribocharging is the phenomenon of electric charge transfer between different 

materials after any kind of contacting process such as rolling, sliding, and impact (S 

Matsusaka et al., 2010). Triboelecticity has been known since 600 B.C., when the 

Greeks observed that amber, when rubbed with silk, attracted small pieces of straw 

(Pai and Springett, 1993). In Ancient Greek, the word 'tribo' refers to rubbing, and 

'electron' describes amber. Triboelectric charging has been noticed in numerous 

natural phenomena such as volcanic eruptions (Miura, Koyaguchi and Tanaka, 2002), 

the creation of geological patterns such as razorbacks on Mars (Shinbrot, Lamarche 

and Glasser, 2006), and triboelectrification in dust storms (Kamra, 1972). 

From an industrial perspective, triboelectric charging has drawn substantial attention 

over the years due to its beneficial and hazardous effects on production lines. Dust 

explosion is a severe issue in industries dealing with powder transport in high 
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volumes. In Germany, at least one dust explosion occurs every day, and electrostatic 

discharge is the root cause of 10% of these explosions (Glor, 2003). Moreover, 70% of 

industrial disasters that occurred over the past 50 years in Japan were related to 

electrostatic discharge (Ohsawa, 2003). In the pharmaceutical industry, wall-fouling 

due to deposition of charged particles on the inner wall of conveying lines results in 

inconsistencies of final product dosage, leading to rejection by regulations and 

enormous economic loss (Wong, Kwok and Chan, 2015).  

Electrostatic separation of different materials is a promising application taking the 

advantage of triboelectrification of particles in the laboratory and indusrial scales. In 

the recycling industry, tribocharging has been used for electrostatic separation of 

plastics (Laurentie, Traoré and Dascalescu, 2013). The application of electrostatic 

separation for dry beneficiation of coal has been addressed (Dwari and Rao, 2007). A 

tribo-electrostatic separation method was developed for dry fractionation of protein- 

and carbohydrate-enriched particles in organic powders (Tabtabaei et al., 2016).  

Electrophotography also benefits from triboelectrification of toner (Schein, 1999). 

The toner includes thermoplastic particles ranges from 5 to 10 microns in diameter, 

which triboelectrically gain charge due to contact with carrier beads. Charged toner 

adheres to the image charge deposited on the paper with a corona discharge, and 

consequently, thermoplastic particles melt due to high temperature and create the 

copy. 

Tribocharging mainly occurs where particles are transported, such as fluidized beds, 

dry powder mixing, pneumatic conveying systems, and particle-laden flows. In 

fluidized beds, triboelectrification is a function of particle size, bubble size, and gas 

velocity (Luo et al., 2003). It was confirmed that adding large particles to fluidized 

beds does not influence electrostatic charge generation. Conversely, based on the 

number of small particles added to the fluidized bed, an increase or decrease in charge 

generation was observed (Yu et al., 2010). In the dry powder mixing, particles 

repeatedly collide with each other, leading to triboelectric charging, which disturbs 
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the mixing process and should be controlled (Karner and Urbanetz, 2012). 

Researchers examined the influence of powder triboelectrification in pharmaceutical 

powder blending processes, and the feasibility of triboelectric charge measurement 

for probing the blending uniformity of pharmaceutical powders was confirmed (Hao 

et al., 2013). Many researchers have studied electrostatic charge generation during 

particle transport in pneumatic conveying systems (Cangialosi et al., 2006; Korevaar 

et al., 2014; Schwindt et al., 2017). The conveying air velocity was recognized as a 

critical parameter in particle tribocharging during transport in pneumatic lines. An 

increase in the air velocity results in a higher turbulent dispersion and more particle-

wall interactions, leading to high triboelectrification in pneumatic conveying systems 

(Grosshans and Papalexandris, 2017). However, in higher air velocities, the 

magnitude of charge generated due to tribocharging is insignificant as particles have 

a shorter residence time in the conveying pipes (Cangialosi et al., 2006). In pneumatic 

systems, triboelectrification is an obstacle and is tried to be prevented due to its 

adverse effects on powder flowability. 

Overall, tribocharging is a fairly unknown phenomenon, and a better understanding 

of this phenomenon not only helps to prevent the drawbacks, such as the risk of fire 

explosion and wall-fouling but could also help to improve current powder handling 

processes and develop new applications such as powder characterization and online 

monitoring of powder constituents, which is the scope of this thesis. 

1.2. Thesis objective 

The objectives of this thesis are: 

• Examining the influence of different parameters such as particles diameter 

and density, pipe diameter and length, and fluid velocity on the particle-wall 

interactions using Computational Fluid Dynamics (CFD) methods. 

• Predicting the particle-wall mean collision numbers based on the gas and solid 

phase properties using a CFD-based artificial neural network.  
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• Numerical modeling of particle tribocharging in particle-laden pipe flows 

based on particle-wall collision numbers obtained through CFD and the 

experimental charge measurement results. 

• Investigating the influence of particle size and protein content on the charging 

behavior of samples. 

• Proposing a method for rapid quantification of protein content and particle 

size characterization based on the generated charge during tribocharging in 

particle-laden pipe flows. 

1.3. Thesis outline 

Chapter 1. In this chapter, the triboelectrification of particulate materials in various 

fields is described. The specific objectives of this study are addressed, and the chapter 

closes with the outline of this thesis. 

Chapter 2. This chapter describes the concepts and theoretical background for 

particle tribocharging in particle-laden pipe flows. Different approaches for modeling 

particle tribocharging are discussed. Current numerical methods for simulation of 

two-phase flows, such as Eulerian-Eulerian and Eulerian-Lagrangian approaches, are 

compared. Finally, the application of artificial neural networks in predicting particle 

motion in particle-laden flows is discussed. 

Chapter 3. In this chapter, numerical simulation of particle-laden flow in turbulent 

and laminar pipe flows is studied using COMSOL Multiphysics® (Version 5.5). The 

influence of various parameters such as particle diameter and density, air velocity, 

and pipe dimensions on the number of particle-wall interactions 

is elucidated. A neural network model for estimating the particle-wall collision 

numbers based on physical parameters of particles and flow is proposed in this 

chapter. A tribocharging model is proposed for predicting particle charge to mass ratios 

based on particle-wall mean collision numbers. 

Chapter 4. This chapter is a summary of the results obtained in the previous chapter.  
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Chapter 2. Literature Review 
 

2.1. Triboelectrification of powders 

Powders play a vital role in different industries as raw materials, excipients, or final 

products (S Matsusaka et al., 2010) and are likely to accumulate electrostatic charge 

via handling processes such as sieving, grinding, pouring, and conveying. Powder 

transport in gas-solid pipe flow is the major cause of powder charging in industries 

(Gibson, 1997). Various phenomena occur due to powder electrostatic charging 

during transport in conveying lines; for instance, pharmaceutical powders often 

acquire charge due to repeated impacts with the pipe wall during conveying 

operations. Tribocharging contributes to powder adhesion and cohesion, leading to 

inconsistent powder flow and non-uniform dosage of the final product (Rowley, 

2001). According to tight regulations of the pharmaceutical industry, the acceptable 

content uniformity of final products has a narrow range. Therefore, if the active 

ingredient(s) variations do not meet the pharmacopeial standards, the final product 

will not qualify by regulations, and hundreds of thousands of dollars could be wasted 

(Wong, Kwok and Chan, 2015). Hence, control of powder electrostatic charging during 

transport in conveying lines is essential to certify that the final product is uniform and 

safe to use. 

Dust explosion is a severe issue in industries dealing with powder transport in high 

volumes. Bulk powders are excessively charged during industrial applications, which 

increases the chance of an electrostatic discharge. Specifically, in fine powders where 

particles have large surface-to-volume ratios, the accumulated charge is high enough 

to ignite fires and cause massive explosions due to electrostatic discharge (Ohsawa, 

2011). In Germany, at least one dust explosion occurs every day, and electrostatic 

discharge is the root cause of 10% of these explosions (Glor, 2003). Moreover, 70% of 

industrial disasters that occurred over the past 50 years in Japan were related to 

electrostatic discharge (Ohsawa, 2003). 
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On the positive side, several industries, such as electrostatic powder coating (Bailey, 

1998), electrostatic separation (Tabtabaei et al., 2019), powder flow rate 

determination (Matsusaka and Masuda, 2006), and electrophotography (Schein, 

1999) relies on triboelectric charging. Table 1 reviews the application of 

tribocharging in other research fields such as electrostatic separation, triboelectric 

nanogenerators (TENG), pharmaceutical, and indoor air quality (IAQ). 

The influence of different parameters such as powder mass loading, carrier gas 

velocity, and material of powder and pipes on the charging behavior of particles has 

been investigated through numerous experimental and numerical studies. Tanoue et 

al. (2001) conducted a numerical simulation of triboelectrification of particles in a 

gas-solids two-phase flow and addressed the influence of particle size, air velocity, 

and pipe diameter on the particle tribocharging and validated the results with 

experimental data. The static electrification of powders during transportation in 

pneumatic conveying and the correlation between the acquired charge and 

transportation velocity and distance is addressed in several studies (Nifuku and 

Katoh, 2003). Watano et al. (2003) compared numerical results achieved for particle 

electrification in a pneumatic conveying process with experimental results to study 

the effect of particle-wall collision velocity and the number of collisions on 

tribocharging.  

Unfortunately, most experimental tribocharging studies are not convincing due to 

inconsistent results, and the large scatter of measurements has made it difficult to 

fully understand the tribocharging process. These inconsistencies are attributed to 

various challenging factors that are difficult to control in experiments, such as 

environmental conditions and powder boundary conditions such as electric charging 

of samples during handling process of powders before feeding into an experimental 

charge measurement facility. Moreover, the non-uniformity of charge distribution on 

particles' surfaces leads to complications in electrostatic charge estimation and 

control (Matsusaka et al., 2002).  
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The influence of environmental conditions on the tribocharging process was 

elucidated by experimental investigations by Schwindt et al. (2017), who studied the 

accumulation of static electricity during powder transport in a test rig that facilitated 

a high degree control of ambient conditions via a climate chamber. They confirmed 

that controlling ambient conditions enhance the reproducibility of experimental 

charge measurement results. 

Some researchers investigated the influence of initial conditions such as particles' 

initial charge on charge transfer. They measured particle charge before and after 

impact on a wall and confirmed that the charge exchange between contact bodies 

strongly depends on the initial charge of particles before the impact (Yamamoto and 

Scarlett, 1986). It was also observed that along with the initial charge of particles, 

charge distribution on the surface of the particles also plays a vital role in charge 

exchange (Matsuyama et al., 2003). Generally, powder handling before running 

experiments often results in unintended electric charging of sample powders, often 

overlooked by researchers, which could explain the large scatter of results observed 

in different experimental charge measurements.  

Understanding the powder tribocharging process not only helps to prevent the 

drawbacks, such as the risk of fire explosion and wall-fouling in different industries 

but could also improve current powder handling processes and develop new 

applications such as powder characterization and online monitoring of powder 

constituents, which is the focus of this research. 

 

Table 1. Application of tribocharging in different research fields. 

Application  Research objective  Results  Reference  

  

E
le

ct
ro

st
at

ic
 

se
p
ar

at
io

n
 

Developing a novel solvent-free 

triboelectrification-based method for 

production of protein-enriched fractions 

from navy bean flour  

The protein content of navy 

bean flour was increased by 

22% after triboelectric 

separation.  

(Tabtabaei et al., 

2016)  

Investigating the impact of electric field 

strength and flow rate on triboelectric 

separation of a starch-protein mixture  

Different gas flow rates in 

the charging tube did not 

change the separation 

(Landauer & 

Foerst, 2018)  
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characteristics, but 

increasing electrical field 

strength increased the 

separation efficiency of 

protein particles.  

Developing a new system for mineral 

separation by providing the required electric 

potential to the electrodes of a separator 

using triboelectric charging.  

The results showed that 

static electric charge could 

be increased to a maximum 

of ± 35 kV on an electrode 

by tribocharging. 

Furthermore, the separation 

test results revealed that 

non-conductive and 

conductive particles could 

be separated in an 

electrostatic separator using 

the high voltage directly 

produced by tribocharging.  

(Dizdar et al., 2018) 

Assessing the effectiveness of 

aluminum- and 

polypropylene- made tribocharging chamber 

on electrostatic 

separation of polyethylene/polyvinyl 

chloride mixture  

 Aluminum and P.P. were 

found to be equally 

effective for the tribo 

electrostatic separation of 

the 50% PVC 50% P.E. 

sample. For the other two 

samples (10% PVC 90% 

PE, 90% PVC 10% P.E.), 

the best results were 

obtained with the 

P.P. tribocharging chamber.  

(Calin et al., 2008)  

Electrostatic separation of polyethylene and 

polyvinylchloride after tribocharging  

The average recovered 

content of the P.E. fractions 

was > 90% at a mass yield 

of > 60%. The average 

recovered content of PVC 

was > 40%, with an average 

mass yield of > 30%  

(Yanar & Kwetkus, 

1995)  

Investigating the effect of triboelectric 

charging time and electric-field strength on 

the separation 

efficiency of polyvinylchloride (PVC) and 

polyethylene terephthalate (PET), using a 

separator consisting of a vibratory conveyor 

equipped with two plate electrodes  

High purity and recovery of 

PVC and PET was obtained. 

The separation efficiency 

depends on the triboelectric 

charging time and electric-

field strength.  

(Saeki, 2006)  

 

Triboelectric belt separator for beneficiation 

of fine minerals  

Triboelectric belt separator 

is ideally suited for 

separation of very fine 

(<1 μm) to moderately 

coarse (300 μm) materials 

with very high throughputs.  

(Bittner et al., 

2014)  

T
ri

b
o

el
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tr
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o
g
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at
o
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(T
E

N
G

) 

Developing a galloping triboelectric 

nanogenerator (GTENG) based on contact 

electrification between two flexible beams 

for energy harvesting under low wind 

speed.  

The GTENG achieved an 

output voltage of over 200V 

at a low wind speed of 1.4 

m/s  

  

Proposing a multi-plate triboelectric 

nanogenerator for harvesting hydro energy  

The maximum output power 

of this nanogenerator was 

(Yin et al., 2019)  
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about 225µW, which can 

lighten 106 LEDs at a water 

flow rate of 55L/min.  
 

P
h

ar
m

ac
eu

ti
ca

l 
 

Investigating the effect 

of tribocharging behavior of pharmaceutical 

granules on the drying process in a fluidized 

bed dryer.    

The research indicates that 

the amount of 

triboelectric charge is 

directly indicative of 

moisture content in the 

fluidized bed dryer, 

and monitoring its dynamic 

changes could be used to 

monitor the drying process 

in the pharmaceutical 

industry.  

(Taghavivand et al., 

2017)  

Understanding the triboelectrification of 

binary mixtures of drug and excipient  

The electrostatic model 

suggests the inter-particle 

charge transfer is dominant 

and the drug particles 

charge positively at 

higher excipient:drug ratios 

in the blends  

(Naik et al., 2016)  

In
d
o
o
r 

ai
r 

q
u
al

it
y

 
 

Developing two new electrostatic 

techniques for controlling domestic dust and 

allergenic particles in the domestic 

environment by tribocharging.  

1. Electrostatically charged 

sprays removed up to 45% 

of the total mass of airborne 

dust particles.  

2. Using charged powder 

applied to carpets results in 

dust removal of up to 99%, 

15% more than when no 

powder was applied.  

(Gaunt et al., 2003)  

Development and application of 

triboelectrically charged nonwoven electrets 

for air filtration.  

The nonwoven electret 

media showed higher 

filtration efficiency 

compared to the uncharged 

media.  

(Das & Waychal, 

2016)  

 

2.1.1. Basic concepts of triboelectrification 

Tribocharging is the phenomenon of electric charge transfer between different 

materials after any kind of contacting process such as rolling, sliding, and impact (S 

Matsusaka et al., 2010). Triboelecticity has been known since 600 B.C., when the 

Greeks observed that amber, when rubbed with silk, attracted small pieces of straw 

(Pai and Springett, 1993). In Ancient Greek, the word 'tribo' refers to rubbing, and 

'electron' describes amber. Although triboelectricity has been studied for more than 

2500 years, many aspects of this phenomenon remain unknown due to its complexity. 

There is still no compromise in the literature on the factor responsible for the charge 

transfer (S Matsusaka et al., 2010). While most researchers acknowledge electron 

transfer as the primary charge transfer mechanism (Bailey, 1984; Shirakawa et al., 
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2010), others believe in ion transfer (Diaz and Fenzel-Alexander, 1993; McCarty, 

Winkleman and Whitesides, 2007). The material transfer was first introduced as a 

charge transfer mechanism when it was observed that the impact between two bodies 

could result in a transfer of material fragments or surface impurities, and charge 

transfer occurs between contact bodies via these charged fragments (Robins, Lowell 

and Rose-Innes, 1980).  

2.1.2. Electron transfer 

Many researchers have addressed the fundamental of the charge transfer mechanism 

(Robins, Lowell and Rose-Innes, 1980; Bailey, 1984; S. Matsusaka et al., 2010). 

Electron transfer is the most recognized charge transfer model for metal-metal 

contacts and has subsequently been used to describe metal-insulator contacts (Wong, 

Kwok and Chan, 2015). According to this model, electrons are transferred from a 

surface with a lower work function to a surface with a higher work function. The work 

function is the amount of energy required to take away an electron from the surface 

of a material and is strongly affected by the chemical composition of the surface. 

Electron transfer continues until two surfaces reach a uniform electron energy level 

(Bailey, 1984). At the separation moment, each contact surface gets an equal 

magnitude of charge with the opposite polarity (Figure 1). The contact potential 

difference between the contact surfaces, Vc, is given by  

 

 𝑉𝑐 =  
(𝜙1 −  𝜙2)

𝑒
 (2.1) 

 

where 𝝓𝟏 and 𝝓𝟐 are the work functions of contact surfaces, and e is the elementary 

charge (Matsusaka and Masuda, 2003). The amount of the net charge transferred 

between contact surfaces, 𝚫𝒒, is estimated by the following equation 
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 Δ𝑞 = 𝐶𝑉𝑐 (2.1) 

 

where C is the capacitance between the contact bodies and depends on the contact 

area of surfaces and the charge cut-off distance at which no charge transfer occurs. 

 

 

Figure 1. Schematic illustration of charge transfer during the contact process, adapted from S. 
Matsusaka et al., 2010. 

 

Triboelectric series is a ranking table that categorizes materials according to the work 

function and could be used to predict the net charge and the relative charge polarity 

of contact surfaces. Electrons transfer from higher placed materials to materials in a 

lower position at the contact time based on triboelectric series. Therefore, higher 

positioned materials in triboelectric series are likely to charge positively, whereas 

materials in lower positions demonstrate negative charge. The triboelectric series has 

been frequently revised over time (Coehn, 1898; Hersh, Sharman and Montgomery, 

1954; Henniker, 1962). Unfortunately, the consistency of this ranking profoundly 

depends on the experimental conditions (Gallo, Lama and Lama, 1976). Hence, 
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researchers struggled to achieve a trustworthy ranking by combining different 

qualitative triboelectric series from literature reports (Diaz and Felix-Navarro, 2004). 

Zou et al. (2019) announced a universal standard method to establish a reliable 

triboelectric series for a wide range of polymers. The surface triboelectrification of 

tested materials was considered using liquid metal mercury as the reference material 

under well-defined environmental conditions. Figure 2 shows the triboelectric order 

of over 50 materials measured by this method. 
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Figure 2. The triboelectric series proposed by Zou et al. (2019). Error bars indicate the range 
within a standard deviation. 
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2.1.3. Ion transfer 

There is a general agreement on the charging mechanism of metals 

and semiconductors, but insulators' charging mechanism is less understood. The 

electron transfer model and other extensions of this model were used to elaborate the 

charge transfer between metals and semiconductors. However, electron transfer 

models consider the charge as a point charge and do not consider the chemical 

composition of the materials in the charging mechanism (Diaz, 1998). The first 

researches on insulators' contact charging mechanism, specifically polymers, were 

related to investigating the charging behavior of "toners" utilized in 

electrophotography. These studies confirmed that the chemical structure of the ions 

on the surface of polymers (toners) determines the sign and magnitude of the charge 

on them. These results proposed that an ion transfer model can correctly describe the 

charging mechanism on polymers containing ions, and there is no need to use electron 

transfer models (Diaz, 1998). According to the ion transfer model, a particle 

containing an immobile cation and a mobile anion will transfer the anion to the 

contacted surface, and consequently, the contacted surface develops a negative 

charge, and the particle develops a positive charge due to excess cations. Therefore, 

there would be no or little charge transfer in the absence of mobile ions on particles 

and contact surfaces (Diaz and Fenzel-Alexander, 1993). 

2.1.4. Material transfer 

During contact, a certain amount of material is likely to transfer from one surface to 

another surface. Bonds are broken during the separation of material from the main 

bodies. Therefore, these nanometer-sized fragments are considered charged and 

contribute to charge transfer during tribocharging (Lacks and Mohan Sankaran, 

2011). The direction of material transfer between contact surfaces depends on the 

relative softness of contact bodies. Experimental results achieved through 

spectroscopic methods have confirmed charge transfer via material transfer during 

contact (Baytekin et al., 2011).   



15 
 

2.1.5. Mode of contact 

Three types of contact are defined between contact surfaces during the charge 

transfer process: sliding, rolling, and collision. Although the term tribocharging 

encompasses all these contact modes, the charging characteristic of each mode is 

divergent, resulting in different ultimate charges of contact surfaces. Hence, it is 

essential to understand how different types of contact affect triboelectrification.  

During the sliding process, charge transfer occurs due to friction at the contact 

interface. It is confirmed that the potential generated between contact surfaces during 

tribocharging is a function of the surface material friction coefficient (Jing et al., 2014). 

Material transfer due to sliding friction between surfaces results in changing the 

original surface compositions, altering the contact surfaces' work functions and 

friction coefficients, consequently affecting the tribocharging process (Chang, Chu and 

Chou, 2007). 

In rolling contact mode, particles roll over the wall, and the contacting surface is much 

larger. On the other hand, the friction coefficient between surfaces is lower compared 

to the sliding mode. During rolling contact mode, the charge transfer process could 

not be justified by the well-known condenser model as the contact surfaces are not 

identical to the plates of a capacitor. Therefore, the charge accumulation on particles 

rolling on a flat surface is modeled based on the contact area of rolling particles and 

the contact time (Ireland, 2010). Moreover, the tilt angle of the target wall essentially 

influences the contact area and charging process during the rolling mode. Ema et al. 

(2003) investigated the influence of contact angle () on tribocharging of particles. 

They explained their experimental results by a rolling-slipping model. It was observed 

that the contact area increases for  ≤ 60° (Figure 3a) due to the rolling of particles on 

the wall, and tribocharging is enhanced sequentially. Whereas, for  > 60° (Figure 3b), 

the contact area decreases as the slipping pattern became the dominant contact mode 

resulting in less efficient tribocharging.  
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Figure 3. Influence of contact angle on the effective contact area (S. Matsusaka et al., 2010). 

 

Collision or impaction mode is the most effective contact process during 

tribocharging. The collision force generated at the interface in this mode is far more 

significant than the forces generated during the sliding and rolling process. The 

efficiency of tribocharging due to particle-wall collisions is firmly influenced by the 

elastic properties of contact surfaces affecting the contacting area (Thornton, 1997). 

Moreover, it was observed that in addition to the elastic properties of contact 

surfaces, the particle shape and surface roughness also affected the contact area 

during collisions (Watanabe et al., 2007). The surface roughness of contact bodies and 

the irregularities in particle shape result in contact area alterations during each 

collision leading to the high variation of measured charge during experimental 

tribocharging studies. Overall, tribocharging is a surface-physics phenomenon that 

significantly depends on contact surfaces' physical and chemical properties.  

In the next section of this chapter, different charge transfer models developed for 

describing electron transfer between contact bodies are discussed. 
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2.1.6. Condenser charge transfer model 

The condenser model describes the electron transfer process between contact 

surfaces in terms of a capacitor. The contact surfaces are considered the plates of a 

capacitor in which charge transfer occurs due to the potential difference between the 

two plates. Figure 4 illustrates the condenser model for charge transfer during 

contact. According to the condenser model, the transferred charge caused by particle 

impact on a wall, 𝚫𝒒, is given by (Matsusaka, Ghadiri and Masuda, 2000) 

 

 Δ𝑞 =  𝑘𝑐𝐶𝑉, (2.2) 

 

where 𝒌𝒄 is the charging efficiency, C is the capacitance between the two materials, 

and V, is the total potential difference between contact surfaces. The capacitance 

between contact surfaces is given by 

 

 𝐶 =  
𝜀0𝑆

𝑧0
 (2.3) 

 

where 𝜺𝟎 is the permittivity of carrier gas, S is the contact area between contact 

bodies, and 𝒛𝟎 is the critical gap between surfaces which depends on the surface 

roughness and geometry of surfaces. The total potential difference, V, between 

contact surfaces is given by 

 

 𝑉 =  𝑉𝑐 − 𝑉𝑒 − 𝑉𝑏 + 𝑉𝑒𝑥 (2.4) 
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where 𝑽𝒄 is the potential difference based on the work function of contact materials 

and is calculated by equation 2.1. 𝑽𝒆, is the potential difference come from the image 

charge, and is given by  

 𝑉𝑒 =  𝑘𝑒𝑞 (2.5) 

 

where 𝒌𝒆 is the image charge efficiency, and q is the charge carried on the particle 

before contact. When the electric field from a point charge induces a charge on its 

surrounding, it is called image charge. 𝑽𝒃 is the potential difference produced by 

neighboring charged particles, which is known as space charge and is given by 

 

 𝑉𝑏 =  𝑘𝑏𝑞 (2.6) 

 

 Space charge happens when several point charges perform together to establish a 

cloud of charge. Finally, 𝑽𝒆𝒙 is the potential difference triggered by external electric 

fields.  

 

 

Figure 4. Schematic diagram of the condenser model, adapted from S. Matsusaka et al., 2010. 
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2.1.7. Charge relaxation model 

After the collision in the tribocharging process, the contact surfaces initiate a 

separation process from each other, and consequently, the gap between surfaces is 

filled by the surrounding gas. The capacitance of contact surfaces is inversely related 

to the distance between them. Therefore, during separation, the capacitance reduces 

by the gap distance. Based on the condenser model, the amount of charge maintained 

on the surfaces is a function of capacitance and the potential difference. Since the 

amount of charge on contact surfaces is constant, the total potential difference 

between these two surfaces increases instantly with increasing the gap distance 

during the separation process(Matsuyama and Yamamoto, 1995). When the potential 

difference between surfaces surpasses the gaseous breakdown limit, the charge 

relaxation occurs.  

The Paschen curve is applied to determine the gas breakdown limit between surfaces 

(Paschen, 1889). The Paschen curve illustrated in Figure 5 describes the correlation 

between the distance of the contact surfaces and the potential breakdown limit 

between them. When a particle with a nominal initial charge approaches a wall, 

charge transfer occurs due to contact. If the amount of transferred charge is high 

enough to cause an intersection between the Paschen curve and the potential curve, 

the charge relaxation occurs, and the potential curve leaves the Paschen curve with a 

lower level of potential. Accordingly, the total remaining charge on the particle is 

more significant compared to the initial charge. Conversely, if the amount of initial 

charge is significant on the approaching particle, the potential curve intersects with 

the Paschen curve before impact, and due to the gas break down, the particle releases 

the extra charge.  However, the remaining charge on the particle is preserved after 

contact because the potential curve of the particle does not intersect with the Paschen 

curve.  
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Figure 5. The relationship of contact gap and gaseous potential breakdown limit in Paschen's 
law (Matsuyama and Yamamoto, 1997). 

 

2.1.8. Charge transfer model for repeated impacts 

In particle-laden flows, particles repeatedly collide with the channel wall, and charge 

transfer occurs. Since the boundary conditions such as the initial charge on particles 

and the state of the collisions before every collision are different, it is essential to 

monitor the particle's charge variation during transport in particle-laden flows. 

Therefore, Matsusaka and the research team studied the charge accumulation on 

particles due to repeated impacts on a wall (Matsusaka, Ghadiri and Masuda, 2000). 

They used a large sphere with 31 mm in diameter attached to a fine string to control 

the collisions with the wall. The sphere was made of synthetic rubber. The sphere was 

dropped onto the plate, pulled up using the attached string, and dropped again at 

different intervals. The initial charge of the sphere and the transferred charge were 

measured before and after each collision using a Faraday cage. Figure 6 shows the 
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variation of the sphere accumulated charge based on the number of impacts with 

different intervals between impacts. It can be observed from the graph that the 

accumulated charge of the sphere increases with the number of collisions and 

approaches a limiting value. Moreover, the accumulated charge will likely decrease by 

increasing the time interval between collisions, contributing to electrostatic charge 

leakage. 

 

 

Figure 6. Variation of accumulated charge on a sphere by repeated impacts (Matsusaka, Ghadiri 

and Masuda, 2000). 

 

To acquire the charge of a particle (qc) as a function of the number of contacts with a 

wall (n), a continuous quantity (dqc/dn) could be defined based on the condenser 

model 
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𝑑𝑞𝑐

𝑑𝑛
=  𝑘𝑐𝐶𝑉, (2.7) 

 

The electrostatic charge leakage significantly affects the final charge of particles after 

collisions. The charge leakage is triggered by the redistribution of charge on the 

particle surface and is approximated by (Itakura et al., 1996) 

 

 
𝑑𝑞𝑟

𝑑𝑛
=  −

𝑘𝑟

𝑓
𝑞, (2.8) 

 

where 𝒌𝒓 is a constant related to the effect of charge leakage, and f is the frequency of 

particle collisions. Therefore, the total charge transfer (dq/dn) is given by 

 

 
𝑑𝑞

𝑑𝑛
=  

𝑑𝑞𝑐

𝑑𝑛
+

𝑑𝑞𝑟

𝑑𝑛
=  −𝛼𝑞 + 𝛽, (2.9) 

 

where 𝜶 is a constant contributes to the effects of charge relaxation, image charge, 

and space charge, and 𝜷 accounts for the effect of external electric fields and work 

functions. 

Finally, assuming the initial conditions, n = 0 and q = q0, the total charge of particle 

could be approximated by the following exponential equation 

 

 𝑞 =  𝑞0 𝑒𝑥𝑝 (−
𝑛

𝑛0
) + 𝑞∞ {1 − 𝑒𝑥𝑝 (−

𝑛

𝑛0
)}. (2.10) 
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where 𝒒𝟎 is the initial particle charge, 𝒒∞ is the particle equilibrium charge, and 𝒏𝟎 is 

the characteristic number of collisions associated with the particle-wall system. 

2.1.9. Tribocharging in particle-laden pipe flows 

In particle-laden pipe flows, charge transfer occurs due to continuous particle-wall 

interactions. In the dilute phase, particles repeatedly collide with the pipe wall due to 

negligible inter-particle collisions, enhancing charge transfer efficiency. In the dense 

phase, particle-particle interactions reduce the chance of charge transfer through 

particle-wall collisions (S Matsusaka et al., 2010). It was confirmed that in dilute 

particle-laden flows, the electric current generated in pipes during charge transfer is 

proportional to the mass flow rate of particles in the system (Masuda et al., 1998). 

Later, Matsusaka and coworkers observed that the value of generated current per unit 

mass flow rate equals the transferred charge-to-mass ratio of particles (Matsusaka et 

al., 2008). They measured the charge-to-mass ratio of particles at the inlet and outlet 

of the tribocharger pipe using a Faraday cup, and the generated current in the pipe 

was measured using an oscilloscope simultaneously. Results are described in Figure 

7, indicating that the current per unit mass flow rate (I/Wp) generated in the system 

is equal to the difference of charge-to-mass ratios at the inlet and outlet of the pipe 

(qmIN - qmOUT). They proposed that the amount of transferred charge between particles 

and the wall could be approximated by the generated electric currents using the 

following equation 

 

 

𝐼

𝑊𝑃
=  −

∆𝑞

𝑚𝑃
 

= (𝑞𝑚0 −  𝑞𝑚∞) {𝑒𝑥𝑝 (−
𝑛(𝑥)

𝑛0
)} {1 − 𝑒𝑥𝑝 (−

𝑛(∆𝑥)

𝑛0
)}. 

(2.11) 
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where 𝑾𝑷 and 𝒎𝑷 are the mass flow rate and total mass of particles, respectively. 𝒒𝒎𝟎 

is the initial charge-to-mass ratio of particles at the inlet (x=0), and 𝒒𝒎∞ is the specific 

charge-to-mass ratio of particles after traveling the pipe length (∆𝑥).  

 

 

Figure 7. Balance of generated electric current (a) and the difference of charge-to-mass ratios 
at the inlet and outlet of the tribocharger pipe (b)(Matsusaka and Masuda, 2006). 

 

2.2. CFD modeling of particle-laden flows 

Particle transport in wall-bounded flows has many applications in different fields of 

engineering. Measuring and predicting the particle-wall collision frequency is 

essential in various areas of engineering such as pneumatic conveying, powder 

transport, pipes wear erosion, and powder tribocharging. This study is motivated by 

particle-wall interactions of solid, dense particles in smooth wall-bounded turbulent 
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and laminar pipe flows. The target here is estimating the number of particle-wall 

collisions under different boundary conditions for modeling particle tribocharging in 

chapter 3 of this thesis.  

Tsuji and Morikawa (1987) performed a numerical simulation of gas-solid two-phase 

flow to study the particle trajectories in a two-dimensional horizontal channel. The 

gas-phase was simulated using a finite-difference method, and particle trajectories 

were calculated using the Lagrangian approach. The experimental results achieved 

through a horizontal channel flow were used to validate the simulation results. 

Yamamoto (2001) performed the numerical simulation of particle transport in a 

turbulent vertical channel to investigate the interaction between fluid turbulence and 

particle motion. Large-eddy simulation (LES) and Lagrangian methods were utilized 

to solve the fluid and solid phases. They confirmed that inter-particle collisions impact 

the motion of high-inertia particles near the channel wall and small-inertia particles 

at the center of the channel. For the first time, Sommerfeld and Huber (1999) 

considered the influence of wall roughness and particle shape on the particle-wall 

collision process. They used various particle and wall materials in their experiments 

to modify a Lagrangian model which can solve particle trajectories with high accuracy. 

They explained that wall roughness increases wall collision frequency by enhancing 

the irregular particle bouncing. An Eulerian-Lagrangian model was developed for the 

characterization of turbulent gas-solid flows in pipe systems (Huber and Sommerfeld, 

1998). The influence of turbulent structures, wall roughness, and particle-particle 

collisions on gas-solid flows was investigated in pipes with different materials. Phase 

Doppler anemometry was utilized for validating numerical simulation results. 

Uijttewaala and Oliemans (1996) studied the motion of particles in a turbulent gas 

flow using direct numerical simulation (DNS) and Large Eddy Simulation (LES) for the 

single-phase pipe flow and Lagrangian approach for the particle phase. They 

concluded that small particles are susceptible to the turbulent fluctuations that occur 

in near-wall regions. At the same time, the motion of large particles is more affected 

by the overall turbulent characteristics than near-wall turbulence fluctuations. 
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Generally, particles' inertia and fluid's turbulent structures affect particles' motion, 

consequently governing particle-wall interactions (Young and Leeming, 1997). Chan 

et al. (2020) defined three different particle transport regimes based on direct 

numerical simulation of particles with various Stokes numbers in a turbulent pipe 

flow. At a very low Stokes regime, particles' motion is entirely governed by the 

turbulent structures, and particles act like tracers that follow fluid streamlines. The 

transport of particles with very large Stokes numbers is not affected by turbulent 

fluctuations. Inertia and mass forces such as gravity influence the motion of particles 

in the high Stokes regime. At the intermediate Stokes regime, particles' motion is 

governed by both turbulent structures and particle inertia.  

2.2.1. Continuous phase and solid phase modeling 

The CFD models for simulating gas-solids flows are grouped into two main categories 

according to how the solid phase is treated; Eulerian-Lagrangian, and Eulerian-

Eulerian models. In Eulerian-Lagrangian models, the fluid is modeled in the Eulerian 

cell-based framework through the solution of mass and momentum conservation 

equations. In contrast, the movement of the solid phase is determined by solving the 

equation of motion for a certain number of computational particles (Curtis and Van 

Wachem, 2004). In Eulerian-Lagrangian models, the individual particles are tracked 

through the representation of their Lagrangian trajectories. In Eulerian-Eulerian 

models, both the fluid and the solid phases are described in the Eulerian cell-based 

framework through the solution of their mass and momentum conservation 

equations. Consequently, only a fictitious fluid representing the local behavior of the 

ensemble particles is modeled. For this reason, the Eulerian-Eulerian models are also 

referred to as two-fluid models (Capecelatro and Desjardins, 2013).  

Several aspects should be considered to select the most appropriate modeling 

approach for a particle-laden flow system, such as the level of detail of the information 

required and the computational cost (Pai and Subramaniam, 2009). Eulerian-

Lagrangian models are helpful to simulate phenomena occurring at the scale of 
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particles, such as, for instance, the material removal due to collisions between the 

particles and the solid surfaces, impact erosion, or charge transfer (Desjardins, Fox 

and Villedieu, 2008). Eulerian-Eulerian models are suitable to investigate processes 

governed by the particles as a whole, for instance, to predict the distribution of the 

solids and the frictional losses in pipelines (Gidaspow, 2012).  

2.2.2. Phase coupling 

The computational burden of Eulerian-Lagrangian models is strongly affected by the 

number of calculated trajectories and the number of particles in the flow (Patankar 

and Joseph, 2001). If the solid concentration is deficient, the one-way coupling regime 

occurs, in which the fluid flow field is not affected by the particles (Elghobashi, 1994). 

The fluid flow field is solved first, and then the particle trajectories are calculated 

sequentially. The computational burden of these simulations is generally low and 

increases proportionally to the number of computational particles (Capecelatro and 

Desjardins, 2013). In a two-way coupling regime, the particles also affect the fluid flow 

field (Elghobashi, 1991). Therefore. The fluid flow equations and the particle 

equations of motion are solved within a loop. After solving the fluid flow equations, 

the trajectories of the particles are calculated one by one, and the fluid flow equations 

are modified according to the calculated trajectories, and the whole loop is repeated. 

Consequently, the computational cost might be significant in a two-way coupling 

regime (Ferrante and Elghobashi, 2003). In a four-way coupling regime, also particle-

particle interactions must be considered. In this regime, the particle trajectories are 

no longer calculated one by one but simultaneously (Laín, Sommerfeld and Kussin, 

2002). The reason is that particles' trajectory is affected by other particles via inter-

particle collisions (Crowe et al., 2011). In this case, the computational burden 

becomes huge and generally unaffordable for complex flows.  

In Eulerian-Eulerian models, mass and momentum conservation equations are solved 

for both phases in a coupled manner. This implies that the influence of the solids on 

the fluid flow is always accounted for, even when this effect is minimal (Kartushinsky 
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et al., 2016). Eulerian-Eulerian models are either two-way coupled or four-way 

coupled. Particle-particle interactions are modeled through the formulation of the 

momentum conservation equation of the solid phase. As a result, Eulerian-Eulerian 

models are computationally cheaper than Eulerian-Lagrangian models, and their 

computational burden is substantially unaffected by the coupling regime and the 

number of particles in the flow (Chiesa et al., 2005). Practically, Eulerian-Eulerian 

models are the only CFD models applicable to dense particle-laden flows 

(Subramaniam, 2013). 

2.2.3. Turbulent flow modeling 

Most particle-laden flows of engineering interest are turbulent. Therefore, CFD 

models are also classified according to the approach to turbulence modeling. 

Turbulence develops across multiple scales, spanning from the integral scale (large 

eddies), to the Kolmogorov scale (small eddies). The direct numerical simulation 

models (DNS) involve the direct solution of Navier-Stokes equations and resolve all 

turbulence scales (Friedrich et al., 2001). In large eddy simulation models (LES), all 

turbulence scales are resolved down to a certain level, and the more minor scales are 

modeled (Moin, 1997).  

Generally, the most widely used engineering modelings are based on the Reynolds 

averaged Navier-Stokes (RANS) method due to their lower computational burden. 

RANS-based models resolve only the integral scale of the turbulence using the RANS 

equations, and all other turbulence scales are modeled (Kalitzin et al., 2005). RANS-

based Eulerian-Lagrangian models are a category of CFD models utilized to simulate 

turbulent particle-laden flows, which combine the Eulerian-Lagrangian approach to 

describe the motion of the two phases. RANS models allow solving the flow at the 

integral scale of turbulence. All other scales (Kolmogorov scale) are not resolved but 

indirectly accounted for via the turbulence model (Duraisamy, Iaccarino and Xiao, 

2019). The integral scale governs the required size of the computational mesh. The 

relatively coarse meshes required by RANS-based models cause a low computational 
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burden even for complex flows, explaining why RANS is the most widely used 

approach in engineering (Xiao and Cinnella, 2019). 

Combining the standard k-ε turbulence model with Lagrangian particle tracing 

methods is relatively easy because of its fast convergence and low memory 

requirements (Lew, Buscaglia and Carrica, 2001). In addition, the k-ε turbulence 

model directly allocates degrees of freedom for k (turbulent kinetic energy) and ε 

(turbulent dissipation rate), which are essential for modeling the turbulent dispersion 

of particles accurately. The k-ε turbulence model introduces dependent variables and 

transport equations for the turbulent kinetic energy (k) and the turbulent dissipation 

rate (ε). The turbulent kinetic energy (SI unit: m2/s2) represents the energy per unit 

mass associated with eddies in the flow, and the turbulent dissipation rate (SI unit: 

m2/s3) indicates the rate at which turbulent kinetic energy in the eddies is converted 

to thermal energy. Using turbulent kinetic energy and turbulent dissipation rate 

makes it possible to define two new dependent variables, which provide an in-depth 

look at the size and lifetime of the eddies in the flow. The ratio of turbulent kinetic 

energy to turbulent dissipation rate (k/ε) indicates the average eddy lifetime, 

whereas the length scale (size) of the largest eddies in the flow is defined as k3/2/ε. 

The terms turbulent kinetic energy and dissipation rate are used for solving the RANS 

equations. 

2.2.4. Anisotropic turbulence in wall-bounded flows 

Particle transport in homogeneous and isotropic turbulent flows has been widely 

studied by researchers (Squires and Eaton, 1991), whereas wall-bounded turbulent 

flows have not attracted the same attention. Turbulent in wall-bounded flows is 

inhomogeneous and anisotropic, making them more complicated than isotropic flows 

in modeling the random velocity fluctuations that affect particle trajectories during 

transport (Dehbi, 2008). In the Continuous Random Walk (CRW) model, the velocity 

perturbations are integrated over time, whereas in other models such as the Discrete 

Random Walk (DRW) model, unique velocity perturbations are added to the mean 
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velocity field at discrete times (Gosman and Ioannides, 1983). CRW models are based 

on the Langevin equation, and deliver more accurate predictions of turbulent particle 

dispersion than DRW models, especially in studies where inhomogeneous effects are 

significant (Dehbi, 2008).  

The particle transport and dispersion in turbulent flows highly affected by the carrier 

fluid velocity fluctuations. The well-known Langevin equation has been used 

massively to describe the fluid velocity fluctuations continuously. This equation was 

first proposed by Langevin (1908) for modeling the Brownian motion of very small 

particles. Later, other researchers modified this equation for describing the fluid 

velocity fluctuations in homogeneous turbulence (Obukhov, 1959; Di Anibal, Callao 

and Ruisánchez, 2011). For a homogeneous isotropic turbulence flow, the classical 

Langevin equation is 

 

 𝑑𝑢𝑖 =  −𝑢𝑖(𝑡)
𝑑𝑡

𝜏𝑖
+ 𝜎𝑖√

2

𝜏𝑖
𝑑𝜉𝑖 , (2.12) 

 

The subscript i indicates the three components of the fluid velocity field, 𝝉𝒊 is a 

timescale, 𝒅𝝃𝒊 is a succession of uncorrelated random numbers with zero mean, and 

σ is the RMS fluid velocity fluctuation with a similar value in any direction when the 

flow is assumed isotropic, and is given by 

 

 𝜎 =  𝜎1 =  𝜎2 =  𝜎3 =  √
2𝑘

3
. (2.13) 

 

Where k is the turbulent kinetic energy. In wall-bounded flows like pipe flows, the 

turbulence becomes inhomogeneous as the turbulent kinetic energy is heavily 
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damped near the walls. Furthermore, as wall-bounded flows are anisotropic, the 

velocity component normal to the wall is more heavily damped than the velocity 

components in the streamwise and spanwise directions (Dehbi, 2008). Therefore, 

some corrections should be applied to the classic Langevin equation in the region 

𝑦+ < 100, where 𝒚+ is the wall distance in viscous units, 

 

 𝑦+ =  𝑥2

𝑢𝜏

𝑣
 (2.14) 

 

where 𝒙𝟐 (m) is the normal distance to the nearest wall, v (m2/s) is the fluid kinematic 

viscosity, and 𝒖𝝉 (m/s) is the friction velocity, and is given by 

 

 𝑢𝜏 =  
𝜏𝑤

𝜌
 (2.15) 

 

where 𝝉𝒘 (N/m2) is the wall shear stress. The normalized Langevin equations in three 

different directions are as follows (Iliopoulos, Mito and Hanratty, 2003),  

 

 

𝑑 (
𝑢1

𝜎1
) =  − (

𝑢1

𝜎1
)

𝑑𝑡

𝜏1
+ √

2

𝜏1
𝑑𝜉1 +

𝜕(𝑢1𝑢2/𝜎1
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)

𝜕𝑥2

𝑑𝑡

1 + 𝑆𝑡𝑘
 

𝑑 (
𝑢2

𝜎2
) =  − (

𝑢2

𝜎2
)

𝑑𝑡

𝜏2
+ √

2

𝜏2
𝑑𝜉2 +

𝜕𝜎2

𝜕𝑥2

𝑑𝑡

1 + 𝑆𝑡𝑘
 

(2.16) 
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𝑑 (
𝑢3

𝜎3
) =  − (

𝑢3

𝜎3
)

𝑑𝑡

3
+ √

2

𝜏3
𝑑𝜉3 

 

where u1, u2, and u3 are the streamwise, wall-normal, and spanwise components of 

the turbulent velocity perturbation. The RMS fluid velocity fluctuations (𝜎𝑖) in 

anisotropic wall-bounded flows are obtained via DNS fits by (Dreeben and Pope, 

1997), 

 

 

𝜎1
+ =  

𝜎1

𝑢𝜏
=  

0.40𝑦+

1 + 0.0239(𝑦+)1.496
 

𝜎2
+ =  

𝜎2

𝑢𝜏
=  

0.0116(𝑦+)2

1 + 0.0203𝑦+ + 0.00140(𝑦+)2.421
 

𝜎3
+ =  

𝜎3

𝑢𝜏
=  

0.19𝑦+

1 + 0.0361(𝑦+)1.322
 

(2.17) 

 

Bocksell and Loth (2006) proposed that the Lagrangian timescales are the same in all 

three directions ( 𝜏1, 𝜏2, 𝜏3) and are equal to 𝝉𝑳, 

 

 𝜏𝐿 =  
𝐶𝐿𝑘

𝜀
 (2.18) 

 

where 𝑪𝑳 is a dimensionless constant called the Lagrangian time scale coefficient, k is 

the turbulent kinetic energy, and 𝜺 is the turbulent dissipation rate. 
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The Lagrangian time scale in the anisotropic flow boundary layer is approximately 

the same in all directions but calculated differently. The following polynomial fit for 

the time scale is proposed by Kallio and Reeks (1989). 

 

 
𝜏𝐿

+ =  𝜏𝐿

𝑢𝜏
2

𝑣

= {
10                                                                                  𝑦+ < 5

7.122 + 0.5731𝑦+ − 0.00129(𝑦+)2                  5 ≤ 𝑦+ ≤ 100   
 

(2.19) 

 

 

where v (m2/s) is the fluid kinematic viscosity. 

 

2.3. Application of Artificial Neural Network (ANN) in predicting particle-wall 

interactions 

Particle transport in particle-laden flows is affected by various parameters related to 

the solid phase properties (particle size, density, shape) or the conveying line 

properties (gas velocity, gas pressure, pipe geometry). A novel idea to predict particle-

wall collision numbers in particle-laden flows is to use artificial neural networks 

(ANN). Latest advances in artificial neural networks have offered a potent tool for 

analyzing non-linear systems, such as particle-laden flows. ANNs are competent in 

learning the complicated correlations between various variables by assigning weights 

and biases attached to the neurons (Clarkson, 1996). 

ANN is widely used in various fields such as turbulence modeling (Gamahara and 

Hattori, 2017; Duraisamy, Iaccarino and Xiao, 2019), predicting particle trajectories 

in turbulent flows (Grossi, Kubat and Özgökmen, 2020), flow regime identification 

(Mi, Ishii and Tsoukalas, 2001), and friction factor prediction (Yuhong and Wenxin, 

2009). The hydrodynamic behavior of particle motion in a three-phased fluidized bed 
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was modeled using an artificial neural network (Otawara et al., 2002). Pandya et al. 

(2017) developed a CFD-based artificial neural network model to estimate solid 

particle erosion due to particle-wall interactions in gas-solid pipe flows. They 

performed a statistical analysis based on output parameters obtained through CFD to 

investigate the influence of various parameters on particle erosion rates. They 

achieved a 25% improvement in estimating cumulative erosion rate error compared 

to a standard erosion model. Gheziel et al. (2021) presented an ANN model to explain 

particle distribution concentration in indoor air with some input variables such as 

particle size and flow velocity. The performance of the presented model was validated 

by experimental results and results determined by the CFD model. Electrostatic 

sensing and neural network techniques were integrated for velocity and mass flow 

rate measurement of particles in pneumatic conveying lines (Yan, Xu and Lee, 2006). 

Results confirmed that this approach could offer a cost-effective method for complex 

flow measurement issues. 

Determining the appropriate network topology for a specific problem is an actual step 

influencing network performance and liability. Therefore, an exemplary network 

architecture requires high expertise in identifying proper hyperparameters for the 

network, such as the number of hidden layers, the number of neurons in each layer, 

and a knowledgeable background in the corresponding field (Anochi and De Campos 

Velho, 2015). Hence, this topic has been the subject of enormous research in recent 

years (Ghanou and Bencheikh, 2016; Ramchoun et al., 2016). 

In the next chapter, the tribocharging model used for modeling the charging behavior 

of particles in a particle-laden flow and the experimental charge measurement results 

used for model validation are discussed. Further, a detailed description of the CFD 

model developed for simulating the hydrodynamic behavior of particles in a particle-

laden flow and calculating the particle-wall collision numbers is presented. Finally, 

the process of training a neural network based on the CFD results is explained for 
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predicting particle-wall mean collision numbers based on various input parameters 

such as air velocity, particle size, particle density, and pipe dimensions.  
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Chapter 3. Methodology 

3.1. Particle-laden flow dynamics 

The particle-laden flow system studied in this thesis comprises of spherical particles 

transported by incompressible air as the carrier fluid. Reynolds Averaged Navier-

Stokes (RANS) equations were used for modeling the particle-laden flow and the 

standard k-ε method was used for turbulence modeling. To solve the RANS equations, 

the Eulerian framework was used for the gas phase, and the solid phase was solved 

using the Lagrangian framework. The particle-laden flow was assumed to be in the 

dilute phase, which means that the volume fraction of the solid phase is very low 

compared to the volume fraction of fluid phase. One-way coupling was used in this 

study, which means that the influence of particles on fluid flow and the interparticle 

interactions are not considered. COMSOL Multiphysics® (version 5.5) was used for 

simulating particle trajectories in a particle-laden flow. 

The following sections will describe the fluid phase and solid phase dynamics, 

followed by the coupling method used for the two phases.  The computation process 

of counting particle-wall interactions is also presented in this chapter. 

3.1.1. Fluid phase modeling 

In this study, a RANS-based Eulerian-Lagrangian model was used to determine 

particle trajectories in turbulent gas-solids pipe flow. The turbulent channel flow is 

modeled using RANS equations, and the fluid velocity is defined as the sum of a 

deterministic mean flow term and a random velocity perturbation, representing the 

eddies.  

The RANS equations for a stationary, incompressible flow are 

 

 𝜌(𝑢. ∇)𝑢 =  ∇ . [−𝑝𝐼 + (𝜇 + 𝜇𝑇)(∇𝑢 + (∇𝑢)𝑇)] + 𝐹, (3.1) 
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𝜌∇. 𝑈 = 0 

 

where u is the fluid velocity vector, p is the pressure, and ρ is the fluid density. µ and 

𝝁𝑻 are the kinematic viscosity of fluid and turbulent viscosity, respectively. F is the 

source term that accounts for the momentum transfer between the two phases. 

The turbulence model used for solving the RANS equations in this study is the 

standard k-ε model, which is one of the most commonly used turbulence models in 

computational fluid dynamics. The standard k-ε model is efficiently combined with 

the Lagrangian particle tracking methods because turbulent variables instantly 

estimate the scale of the velocity perturbations caused by turbulent eddies, and the 

average lifetime of eddies. In the standard k-ε model, two additional transport 

equations and two dependent variables are introduced: the turbulent kinetic energy 

(k), and the turbulent dissipation rate (ε). Consequently, the turbulent viscosity (𝝁𝑻) 

is modeled as 

 

 𝜇𝑇 =  𝜌𝐶𝜇
𝑘2

𝜀
, (3.2) 

 

where 𝐶𝜇 is a model constant as listed in Error! Reference source not found.. 

The transport equation for the turbulent kinetic energy is 

 

 𝜌(𝑢. ∇)𝑘 =  ∇ . [(𝜇 +
𝜇𝑇

𝜎𝑘
) ∇𝑘] + 𝑃𝑘 − 𝜌𝜀, (3.3) 

 

where the term 𝑃𝑘 is the production term that is define as 
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 𝑃𝑘 =  𝜇𝑇[∇𝑢: (∇𝑢 + (∇𝑢)𝑇)]. (3.4) 

 

The transport equation for the turbulent dissipation term is 

 

 𝜌(𝑢. ∇)𝜀 =  ∇ . [(𝜇 +
𝜇𝑇

𝜎𝜀
) ∇𝜀] + 𝐶𝜀1

𝜀

𝑘
𝑃𝑘 − 𝐶𝜀2𝜌

𝜀2

𝑘
. (3.5) 

 

 

The default values of the dimensionless constants in these equations are listed in 

Table 2 and determined from experimental data by (Wilcox, 1993) 

 

Table 2. Model constants 

Constant Value 

𝐶𝜇 0.09 

𝐶𝜀1 1.44 

𝐶𝜀2 1.92 

𝜎𝑘 1.0 

𝜎𝜀 1.3 

 

3.1.2. Solid-phase modeling 

The particle tracing module in COMSOL Multiphysics® was used for modeling 

particle trajectories in particle-laden pipe flow and computing the particle-wall 

interactions.  
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All particles are assumed rigid and spherical, and they are randomly released at the 

inlet. Particle velocities have the same value as the fluid velocity at the particle 

positions.  The particle equation of motion is a mathematical model that describes 

particle movement in a particle-laden flow. It essentially relies on the application of 

Newton's second law to the particle: 

 

 
𝑚𝑝

𝑑𝑣

𝑑𝑡
= 𝐹𝑚 + 𝐹𝑓→𝑝 + 𝐹𝑝→𝑝 

(3.6) 

 

Based on Newton's second law, the product of particle mass (mp) times particle 

acceleration (dv/dt) is equal to the forces exerted on particles. These forces are 

categorized into three main groups; mass forces (Fm), forces exerted by the fluid on 

the particle (𝑭𝒇→𝒑), and forces exerted from the particles on the current particle 

(𝑭𝒑→𝒑). In this study, the particle-particle interactions are neglected as the system is 

in the dilute phase. The total force acting on particles in a fluid flow includes many 

physical phenomena, involving drag force, gravity force, buoyancy force, added mass 

effect, lift force, pressure gradient force, and Brownian force. The buoyancy force is 

due to the hydrostatic pressure over the particle surface and can safely be neglected 

as the particle density is several orders of magnitude greater than the air density. In 

this study, the drag force and gravity are assumed to be the dominant factors in 

determining the particle trajectories. Other types of forces such as the history force, 

the shear lift force, and the rotational lift are insignificant and therefore neglected. 

Thus, the equation of motion for the particles can be reduced to the following equation 

proposed by Crowe & Michaelides (Multiphase Flow Handbook, 2016) for a particle 

that is influenced only by the drag and gravitational force: 
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 𝑚𝑝
𝑑𝑣

𝑑𝑡
= 𝐹𝐷 +  𝐹𝑔. (3.7) 

 

In most engineering applications involving gas-solids flows, the only relevant mass 

force is the gravitational force that causes the particle to move along gravity. Among 

the different forces exerted on a particle by the surrounding fluid, the drag force plays 

the dominant role in most particle-laden flows. The aerodynamic drag force acting on 

a particle is defined as  (Crowe et al., 2011), 

 

 𝐹𝐷 =  
1

𝜏𝑝
𝑚𝑝(𝑢 − 𝑣), (3.8) 

 

where  𝒎𝒑 is the particle mass (kg), u is the fluid velocity at the particle's position 

(m/s), v is the particle velocity, and 𝝉𝒑 is the particle relaxation time (s), which is 

defined as 

 𝜏𝑝 =  
4

3

𝜌𝑝𝑑𝑝

𝜌𝐶𝐷|𝑢−𝑣|
. (3.9) 

 

In the above equation, 𝝆𝒑 is the particle density (kg/m3), 𝒅𝒑 is the particle diameter, 

and 𝑪𝑫 is the dimensionless drag coefficient. The drag coefficient is mainly a function 

of the particle Reynolds number, which determines the appropriate drag law. The 

relative Reynolds number for a spherical particle is calculated as 

 

 𝑅𝑒𝑝 =  
𝜌|𝑢 − 𝑣|𝑑𝑝

𝜇
 (3.10) 
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in which 𝝁 is air dynamic viscosity, 𝒖 is the fluid velocity at particle position, 𝒗 particle 

velocity, and 𝒅𝒑 is the particle diameter.  

The Schiller-Naumann model was used for describing the drag coefficient. This model 

is suitable for dilute flows with rigid spherical particles (Schiller and Naumann, 1935). 

The drag coefficient in this model is defined as 

 

 𝐶𝑑 =  {

24

𝑅𝑒𝑝
(1 + 0.15𝑅𝑒𝑝

0.687
)        𝑅𝑒𝑝 <  1000

0.44                                        𝑅𝑒𝑝 >  1000
 (3.11) 

 

In most engineering cases, the Reynolds-Averaged Navier-Stokes (RANS) approach is 

used where the turbulent eddies are solved by estimating their kinetic energy and 

dissipation rate (Patel, Rodi and Scheuerer, 1985; Chen and Kim, 1987; Kalitzin et al., 

2005). In this approach, the fluid velocity at the particle's position (u') is not given 

deterministically. Instead, it is treated as a linear combination of the mean velocity 

(u) and a turbulent perturbation term (∆𝒖). Therefore, the drag force formulation is 

modified as follows 

 

 

𝐹𝐷 =  
1

𝜏𝑝
𝑚𝑝(𝑢′ − 𝑣), 

𝑢′ = 𝑢 + ∆𝑢 

(3.12) 

 

The kinetic energy and dissipation terms derived by solving the k-ε turbulent model 

determine the amplitude and direction of the velocity perturbations (∆𝒖). 
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3.1.3. Phase coupling 

In order to determine the most proper approach to simulate a particle-laden flow, it 

is crucial to identify the type of coupling between the two phases, which is different 

in dilute and dense flows. In dilute flows, the particles move as individual entities, and 

their motion is dominated by the effect of the fluid, whereas in the dense phase, the 

particle motion is dominated by the interactions between the particles (Crowe et al., 

2011). Dilute flows are often characterized by low particle volume fraction (φ<5%), 

whereas particle-laden flows with concentrations higher than 5% are considered 

dense flows (Patankar and Joseph, 2001). 

Four different coupling regimes are defined for gas-solids flows. In the one-way 

coupling regime, the particles have a negligible effect on the flow of the carrier phase, 

and only flow affects the particle motion. Conversely, in the two-way coupling regime, 

the fluid flow field is affected by the presence of the particles. In the four-way coupling 

regime, the particle-particle interactions play a vital role in the flow dynamics and 

should therefore be considered (Strömgren et al., 2011). 

There is no parameter that clearly establishes a threshold between dilute and dense 

flows. According to the well-known Elghobashi's map, particle volume fraction 

threshold values define the boundaries between the different flow regimes. One-way 

coupling occurs for solid volume fraction lower than 10-6, and two-way coupling 

occurs for solid volume fraction between 10-6 and 10-3. Four-way coupling is 

associated with a solid volume fraction above 10-3 (Elghobashi, 1991). Investigation 

of the particle-wall interactions in a dilute particle-laden flows is of interest in this 

study. Therefore, solid and gas phases are coupled in a one-way manner. 

3.1.4. Geometry and mesh 

Numerical simulations are conducted in a three-dimensional cylindrical coordinate. 

The pipe is assumed horizontal on the x-axis with the inlet on the left and the outlet 

on the right side. The spanwise and wall-normal directions of the particle-laden flow 
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is depicted by the y-axis and z-axis, respectively. The length of the cylinder is 1 m and 

the diameter is 4.76 mm. 

To ensure the accuracy of the CFD model and to reduce the computational time, a grid 

independence test was performed. In this study, particle-wall mean collision number 

was considered as the quantities of interest. The grid independence test was initiated 

from an extra coarse mesh with a low number of elements, and the accuracy of results 

was examined as the mesh elements were increased. The refinement of the mesh was 

done to find a fine enough mesh where the quantities of interest show minimum 

changes for any further mesh refinement. More precisely, the mesh refinement was 

done until the variation of the results between two successive mesh densities were 

less than 5%, confirming that the result is grid-independent, and further 

discretization has no substantial impact on the simulation results.  

The grid independence test was performed for a three-dimensional pipe with 0.00476 

m diameter and 1 m length. Particle-wall collision numbers were calculated for 10-

micron particles. The descriptions of four different grids, including Fine, Normal, 

Coarse, and Extra coarse, with a different number of elements are summarized in 

Table 3. 

 

Table 3. Specifications of used grids. 

Mesh Number of 

elements 

Minimum element 

quality 

Average element 

quality 

Element volume 

ratio 

Fine 2383517 0.1001 0.7405 0.006482 

Normal 1330473 0.1034 0.7385 0.008314 

Coarse 531686 0.1188 0.7135 0.01168 
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Extra coarse 119042 0.1472 0.7235 0.03315 

 

For the four types of mesh, the particle-wall mean collision numbers were computed, 

and numerical results were compared with experimental results proposed by 

(Matsusaka et al., 2002). It is evident from Figure 8 that the numerical results 

obtained using Normal mesh with 1330473 elements are independent of the grid size 

and are in good agreement with experimental results. Increasing the number of 

elements to 2383517 in Fine mesh expanded the computation time, whereas the 

calculated results did not show significant improvement. Therefore, Normal mesh 

was picked as the optimal mesh for our simulations. 

 

 

Figure 8. Comparing calculated particle-wall mean collision numbers using different mesh 
sizes with experimental results. 

 

3.1.5. Computation of particle-wall interactions 

The Auxiliary Dependent Variables (ADV) feature in COMSOL is used to keep track of 

variables like particle residence time, particle trajectory length, and particle collisions 

with surrounding boundaries. A dependent variable was defined on particles, and an 
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additional ordinary differential equation was solved for each particle. Therefore, it is 

possible to calculate the times that each particle collides with the pipe wall.  

In this thesis,   first,  an ADV feature was added to the time-dependent particle tracking 

study. Then, the term 'Collisions' was defined as the dependent variable name and 

selected to calculate the integrated variable over time. It is possible to change the 

value of the ADV whenever a particle interacts with a boundary. For this purpose, an 

expression (Collisions+1) is entered for the new value of the dependent variable. This 

means that every time particles collide with the boundaries, this expression updates 

the value of the dependent variable. 

3.2. Prediction of particle-wall collision number using Artificial Neural 

Networks 

This chapter presents a methodology for machine-learning-based prediction of 

particle-wall collision numbers in particle-laden pipe flows. The developed model 

uses an input data set on various physical parameters of particles and flow systems 

achieved through computational fluid dynamics (CFD) in the previous chapter to 

predict the number of collisions. An artificial neural network with six inputs, namely, 

particle size, particle density, air velocity, the vertical velocity of particles, pipe 

diameter, and pipe length, was designed and trained to predict particle-wall mean 

collision numbers. 

Developing a neural network is a four-step process including database generation and 

preparation, designing network architecture, network training, and network testing. 

3.2.1. Database generation 

The first step for developing a neural network model is to generate a database. In this 

study, the particle-wall mean collision numbers calculated via CFD simulations are 

the targets that are collected for various input parameter combinations, including 

particle size, particle density, vertical particle velocity, air velocity, pipe length, and 
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pipe diameter. A brief summary of the database generated for developing a neural 

network, along with the inputs and output range, is presented in Table 4. 

 

Table 4. Network inputs and output. 

Parameter Range 

Network inputs  

Particle size (micron) 10-600 

Particle density (kg/m3) 1410-7850 

Pipe diameter (m) 0.002-0.006 

Pipe length (m) 0.25-1.5 

Average air velocity (m/s) 6.5-36 

Particle vertical velocity (m/s) 0-1.2 

Network output  

Particle-wall mean collision number 0.6-80 

 

3.2.2. Data preprocessing 

In this study, the values of the input variables are highly scattered by several orders 

of magnitude, which makes it challenging to explore the influence of each parameter 

on particle-wall mean collision numbers, labeled as the model output. Therefore, data 

normalization is a vital step in preparing data for artificial neural networks. For this 

purpose, Min-Max normalization (equation) was used, and all data points were 

normalized between 0 and 1. In this method, the minimum value of each variable is 

transformed into 0, and the maximum values are transformed into 1. Every other 

value between the minimum and maximum values is converted into a decimal 

between 0 and 1. 

 

 𝑥𝑖
′ =  

𝑥𝑖− 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
, (3.13) 
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where  𝑥𝑖
′ is the ith normalized data, and 𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥  are the minimum and 

maximum value of data points, respectively.  

3.2.3. Network topology 

A three-layer neural network was used to train the prepared database. Figure 9 shows 

a schematic of the network topology. The first layer of the network is the input layer 

which contains six neurons equal to the number of input parameters. The second 

layer is the hidden layer, and the number of neurons in this layer is one of the model's 

hyperparameters which needs to be accurately tuned to get a reliable network. The 

detailed information on determining the number of neurons in the hidden layer will 

be presented in chapter 4. The network's last layer is the output layer with one neuron 

corresponding to the particle-wall mean collision number. 

 

 

Figure 9. Network topology . 

 

3.2.4. Network training 

In the training phase of the neural network development, an optimal set of weights 

and bias values are computed for the whole network. The prepared database was 
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randomly split into the training, validation, and testing sets for training a neural 

network. 70% of the database, including 137 data points, was assigned for the training 

set. 15% of the database (30 data points) was employed for the validation of the 

network, and the remaining 15%, including 30 data points, was employed for testing 

the network performance and is called test data. The network was not trained with 

the data in the test set. 

Different algorithms are available for training neural networks. In this study, the 

Levenberg-Marquardt algorithm (Srinivasan and Saghir, 2013, 2014a, 2014b) was 

employed for training the network for its robustness and fast convergence. This 

algorithm typically requires more memory but less time. This algorithm minimizes a 

mean square error function over a multi-dimensional parameter space, and the 

training process automatically stops if generalization stops improving. In the 

Levenberg-Marquardt algorithm, first, the network's response for the training set is 

evaluated using initial random weights and biases produced by Nguyen and Widrow's 

initialization algorithm. In the next step, the values of the weights and biases of the 

neural network are updated based on the error between the desired response and the 

response predicted by the network. This process persists until the error is diminished 

to a preferred level. 

3.2.5. Network testing 

After the training process, the network's performance was evaluated using the test 

set, which contains 15 % of the database, and the model has not trained on them. Root 

Mean Square Error (RMSE) was used for measuring the network's performance. Due 

to the different values of initial weights and biases that each network uses during the 

training process, the performance of generated networks is not identical. Hence, to 

obtain a realistic network performance, 30 neural networks with different initial 

weights and biases were generated using a similar training set, and the average value 

of RMSEs calculated for all the 30 networks was considered the network performance. 
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The results regarding network testing are presented in section 4.7.2 of the Results 

and Discussion chapter. 

3.3. Modeling particle tribocharging 

This section presents the mathematical model of particle tribocharging in particle-

laden flows, along with the experimental powder tribocharging and charge 

measurement procedure. The initial charge on the surface of particles released into 

the pipe flow is assumed to be negligible. The volume fraction of particles was 

considered very low compared to the volume fraction of the fluid phase to satisfy the 

dilute condition. In dilute particle-laden flows, particle-particle interactions are 

negligible, and particle-wall collisions are the leading cause of tribocharging. Particles 

and pipes are assumed to be different in material, and when a collision happens, 

electrostatic charge transfer occurs due to differences in work functions.  

3.3.1. Experimental charge measurement 

For validating the numerical simulation results of tribocharging, the experimental 

data was obtained from a research team at Howard University.  

The experimental setup consists of three sections, including a sample feeder, a 

tribocharging tube, and a Faraday cup connected to an electrometer, as illustrated in 

Figure 10. The sample feeder is a 50 ml container that is connected to a high-

pressurized air supply, and the airflow rate is adjusted using a flowmeter before 

introducing dry air at the bottom of the sample feeder. The tribocharging unit is a 

PTFE tube with 150 cm length and 4.76 mm inside diameter.  At the inlet, the 

tribocharger tube is connected to the sample feeder and at the outlet to a Faraday cup 

(Monroe Electronics Inc., Lyndonville, NY, USA) that is connected to an electrometer 

(Model 6514, Keithley Company, Cleveland, OH, USA) for charge measurements.  
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Figure 10. Experimental set up for powder tribocharging and charge measurements (Howard 
university). 

 

Samples are organic flours (yellow pea) that are sieved with different sieve numbers, 

and the range of particle size prepared for charge analysis is between 25 and 380 

microns. (The protein content of each particle size group was determined using a 

chemical protein digestion method to investigate the influence of powder chemical 

composition on the charging behavior of particles). Twenty grams of samples were 

initially placed inside the sample feeder, and dry air was introduced at the bottom of 

the sample feeder at the adjusted airflow rate of 7 LPM. Particles were fluidized in the 

feeder, and only a few of them enter the charging tube at a time, which satisfies the 

dilute condition. During transfer in the charging tube, particles repeatedly collide with 

the wall, and charge transfer occurs due to different work functions of contact 

surfaces. Charged particles are directly dispensed into the Faraday cup, where an 

electrometer measures the potential difference that occurred between the inner wall 

and the outer wall of the Faraday cup.  The mass of the particles accumulated in the 

Faraday cup was measured with an analytical balance, and the measurements were 

reported as charge per mass ratio of the samples. All charge measurements were 

performed with ten replicates at room temperatures for each particle size group, and 
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the entire apparatus was flushed with dry air between each measurement to avoid 

any inaccuracy through tribocharging analysis. 

3.3.2. Tribocharge modeling 

Two different types of contacts may occur during particle transport in particle-laden 

flows: particle-particle interaction and particle-wall interaction (Crowe et al., 2011). 

In the dilute phase, inter-particle collisions are negligible; consequently, the amount 

of charge transfer via particle-particle collisions is insignificant. Therefore, the 

primary mechanism of charge transfer in dilute particle-laden flows is particle-wall 

interactions. The calculation of transferred charge between particles and the wall 

could be described based on the condenser model, which considers particle and wall 

surfaces as the two plates of a capacitor where charge transfer occurs due to different 

work functions of two materials in contact (Masuda, Komatsu and Iinoya, 1976; 

Itakura et al., 1996; Masuda et al., 1998; Matsusaka, Ghadiri and Masuda, 2000; 

Tanoue et al., 2001; Ema et al., 2003; S. Matsusaka et al., 2010). 

In particle-laden pipe flows, particles repeatedly collide with the inner wall, due to 

which tribo-charging takes place. Based on the condenser model, it is possible to 

formulate the particle charge generated by repeated impacts in gas-solids pipe flow. 

In this study, a tribocharging model is used based on repeated particle impacts on the 

wall, as proposed by (Matsusaka and Masuda, 2003). According to this model, when a 

particle moves from point x to point x+∆x along the pipe axis, the variation of charge 

per mass ratio of particles as a function of the number of particle-wall collisions (n) is 

derived from the exponential equation 3.14: 

 

 

∆𝑞

𝑚𝑝

= 𝑞𝑚(𝑥 + ∆𝑥) − 𝑞𝑚(𝑥) 

= (𝑞𝑚∞ − 𝑞𝑚0) {𝑒𝑥𝑝 (−
𝑛(∆𝑥)

𝑛0
)} {1 − 𝑒𝑥𝑝 (−

𝑛(∆𝑥)

𝑛0
)}, 

(3.14) 
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where 𝒒𝒎𝟎  and 𝒒𝒎∞ are the particle charge per mass ratios at x = 0 and x = ∞, 

respectively, and 𝒏𝟎 is the dimensionless characteristic number of particle 

electrification given by (Masuda, Komatsu and Iinoya, 1976) 

 

 𝑛0 =  
𝜋𝐷𝑝

2

2𝑘𝑆(1+𝛼)
, (3.15) 

 

and the particle charge per mass ratio at x = ∞ is given by 

 

 𝑞𝑚∞ =  
3𝜀0𝑉𝑐

𝜌𝑝𝐷𝑝𝑧0(1+𝛼)
, (3.16) 

 

where Dp is particle diameter, k is dimensionless charging efficiency, S is the contact 

area, 𝜺𝟎 is the absolute permittivity of gas (8.854*10-12 F m-1), 𝑽𝒄 is the contact 

potential difference between the surfaces, 𝒛𝟎 is the critical gap between the particle 

and the wall. This is the cut-off distance for charge transfer and, according to 

literature, considered to be 10-9 m (Grosshans and Papalexandris, 2017). 

 𝜶 is the ratio of space charge effect to image charge effect derived as 

 

 𝛼 =  
3

4
𝑚

𝜌𝑔𝐷𝑖𝑢

𝜌𝑝𝐷𝑝𝑣̅
, (3.17) 

 

where m is the mass flow ratio of particles to gas (dimensionless), 𝝆𝒈 is gas density, 

𝝆𝒑 is particle density, 𝑫𝒊  is the inner diameter of the pipe, 𝑫𝒑 is particle diameter, 𝒖̅ 

and 𝒗̅ are average velocities of gas and particle, respectively.  
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For dilute phase flow where 𝛼 ≪  1, Eq. (Error! Reference source not found.) is 

revised as 

 

 
∆𝑞

𝑚𝑝
=  −𝑎𝑞𝑚0 − 𝑏, (3.18) 

 

where 

 

 𝑎 =  
2𝑛(∆𝑥)𝑘𝑆

𝜋𝐷𝑝
2 , (3.19) 

 

and 

 

 𝑏 =  −
6𝜀0𝑉𝑐𝑛(∆𝑥)𝑘𝑆

𝜋𝐷𝑝
3𝜌𝑝𝑧0

. (3.20) 

 

Assuming that the initial charge per mass of particles is negligible (𝑞𝑚0 ≈ 0), the total 

transferred charge per mass is calculated by 

 

 
∆𝑞

𝑚𝑝
=  

6𝜀0𝑉𝑐𝑛(∆𝑥)𝑘𝑆

𝜋𝐷𝑝
3𝜌𝑝𝑧0

. (3.21) 

 

It must be noted that the value of transferred charge per mass depends on both 

physical properties and the material of contacting surfaces. Collision number, pipe 

length, and particle size are physical properties that influence the tribocharging of 
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particles. On the other hand, contact potential difference and charging efficiency are 

essential factors that are determined by the chemical composition and morphology of 

the contacting surfaces.  

The contact potential difference (𝑽𝒄) between contact surfaces depends on their work 

functions which is determined by the material composition. Therefore, calculating 

contact potential difference requires the values of work functions for both the particle 

and the wall, which are not available in this study. Another way of calculating the 

contact potential difference between contact bodies is Kelvin-Zisman method, an 

experimental procedure that determines the contact potential difference of materials 

compared with Au or Pt as reference materials (Masuda et al., 1995). Since this 

method was not accessible to this study, the contact potential differences was 

calculated as a fitting parameter. 

Triboelectrification is a surface phenomenon, and the amount of charge transfer 

during the contact process significantly depends on the properties of the contact 

surfaces, such as surface roughness and surface material which determines the 

mechanical properties of the surfaces. For instance, Young's modulus and Poisson's 

ratio of contact surfaces determine the elasticity of contact bodies, and the total 

contact area engaged in the tribocharging process is estimated considering the 

deformation of contact bodies. According to the Hertzian theory of contact, the contact 

surface's relative velocity and the contact area's elasticity influence the contact area 

(Johnson, 1989).  

Assuming that particles are spherical and elastic with a smooth surface, the maximum 

contact area during impact with a wall can be calculated based on the equation 

proposed by (Matsusaka and Masuda, 2003), 

 

 𝑆 = 1.36𝑘𝑒
2/5

𝜌𝑝
2/5

𝐷𝑝
2𝑣𝑖

4/5
, (3.22) 
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where ke is the elasticity parameter, ρp is the particle density, Dp is the particle 

diameter, and vi is the impact velocity of the particle. The elasticity parameter is 

calculated based on the following equation, 

 

 
𝑘𝑒 =  

1 − 𝑣1
2

𝐸1
+

1 − 𝑣2
2

𝐸2
 (3.23) 

 

where E is the Young's modulus, v is the Poisson's ratio, and subscripts 1 and 2 

indicate the particle and the wall, respectively. Table 5 shows Young's modulus and 

Poisson's ratio for the wall material (PTFE) and particles used in this study according 

to (Molenda et al., 2006). 

 

Table 5. Particle and wall mechanical properties. 

Material Young's modulus (GPa) Poisson's ratio 

PTFE (wall) 0.390-0.750 0.460 

Wheat flour (particles) 17.1-18.5 0.22-0.26 

 

In summary, in this section, a dilute particle-laden flow is considered wherein 

spherical particles with zero initial charge enter the pipe and become electrically 

charged due to the collision with the pipe wall. The total amount of charge generated 

depends on various physics-based and material-based variables. The number of 

particle-wall collisions is a physics-based parameter that will be calculated via CFD 

simulations. Material-based parameters such as contact potential difference between 

particle and pipe wall and charging efficiency will be estimated as fitting parameters 
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using the particle-wall collision numbers achieved via CFD and experimental charge 

measurement data.  

In the ensuing chapter, results regarding particle-wall collision numbers obtained 

through CFD are presented, and the performance of the neural network proposed for 

predicting mean collision numbers based on different properties of the solid and the 

gas phase is presented. Finally, a tribocharging model based on the particle-wall mean 

collision numbers is developed and validated with experimental results.  
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Chapter 4. Results and discussion 
 

In this chapter, the results of the numerical simulations for the fluid phase and particle 

tracking of the solid phase are presented followed by the results regarding the 

validation of the proposed neural network for predicting the particle-wall collision 

numbers. Subsequently, the results of particle tribocharging based on particle-wall 

interactions are discussed and compared with the results obtained through 

experimental charge measurements. A considerable number of physical parameters 

affect the particle-wall interactions in two-phase pipe flows. Therefore, this study 

focuses on the influence of particle size and density, particle Stokes number, the 

velocity of fluid and particles, pipe diameter and length on particle-wall collision 

numbers. The influence of particle-wall interactions on the tribocharging of particles 

are discussed at the end of this chapter. 

A dilute turbulent particle-laden flow was considered in the simulation. The gas-

phase flow was assumed to be incompressible and was described with Reynolds 

Averaged Navier-Stokes equations in an Eulerian framework. The particulate phase 

was assumed spherical particles with the same material and density. Each particle 

was treated as a point mass whose trajectory was calculated in a Lagrangian 

framework. The volume fraction of the solid phase was low compared to the volume 

fraction of the gas phase to satisfy the dilute condition. As a result, the particle-particle 

interactions and the influence of particles on the gas phase were neglected, and 

therefore, one-way coupling was used for coupling the solid and gas phases. 

4.1. Continuous phase modeling 

Figure 11a shows the velocity field implemented by the Eulerian solver for the fluid 

phase with Re = 2700 (average air velocity = 8.4 m/s). As the pipe has an extremely 

high aspect ratio, the coordinate axes are scaled independently to better visualize the 

geometry. It is clear that the magnitude of fluid velocity decreases in near-wall 

regions.  
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Figure 11b shows the turbulence time scale, which is the ratio of turbulent kinetic 

energy (k) to turbulent dissipation rate (ε) in the modeling domain. According to this 

graph, the turbulent time scale is more significant at the center of flow (red zone), and 

it decreases near the wall (blue zone), implying that eddy lifetimes are much shorter 

near walls. Before proceeding with the particle tracing simulation, it is beneficial to 

plot the turbulent time scale as it shows the minimum resolution in the time needed 

to capture the particle-eddy interactions accurately. In this study, the minimum 

turbulent time scale near the wall is 1 × 10−3𝑠, and the time step selected for the time 

dependent particle tracing simulation was 1 × 10−5 which guarantees to capture all 

particle-eddy interactions. 

 

  

a) b) 

Figure 11. The velocity magnitude and streamlines of turbulent flow with Re=2700 (a) and 
turbulence time scale profile (b). 

 

 4.2. Number of released particles into the system 

 It is crucial to determine how many particles will need to be released through 

simulations to investigate the influence of various parameters on the particle-wall 

interactions. Therefore, the first set of analyses examined the impact of released 
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particles number on the mean particle-wall collision numbers. Particles are randomly 

released into the pipe flow with different initial positions, determining the particle's 

trajectory during transport. The particle's initial position affects the particle velocity, 

which consequently affects particle-wall collision numbers. The term Mean Collision 

Number has been used to depict a realistic number of collisions per particle. For 

calculating the mean collision number of particles, the number of released particles 

should be determined to get a reasonable average of collision numbers and reduce 

the computation time as much as possible. 

For this purpose, several simulations were performed with different numbers of 

released particles, and the mean collision number and the computation time for each 

case were compared. All simulations were performed by releasing 100-micron 

particles into a pipe with 0.00476 m diameter and 1 m length, and the air velocity was 

8.4 m/s. Table 6 provides the results obtained from the simulations with various 

numbers of released particles. Every recorded mean collision number is the average 

of four simulation runs. It was evident that particle-wall collision number calculated 

by releasing only one particle into the system is unreliable because it only represents 

a particular particle released from a specific position. Therefore, the calculated 

collision number is reliable only when a particle is released from a similar position. It 

can be seen from the data in Table 6 that the computation time increases as the 

number of released particles increases. Figure 12 demonstrates that the mean 

collision number decreases as the number of released particles increases. Since 

particles are randomly released into the pipe flow, it is expected to record a slightly 

different mean collision number for each simulation. As a result, four simulations 

were performed for each condition, and the means and the standard deviations were 

reported in Table 1. Based on the data presented in Table 1, only four mean collision 

is recorded by releasing one single particle into the system and the computation time 

is minimum, as it was expected. Increasing the number of released particles to 10 

particles results in a dramatic increase of mean collision number to 7.6 collisions per 

particle. When releasing 100 particles into the system, the mean collision number 
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does not significantly change compared to 10 released particles, and it takes almost 6 

minutes for computation. While a further increase in the number of released particles 

substantially increases the computation time, no significant difference is observed for 

the calculated mean collision numbers. Therefore, releasing 100 particles would be a 

viable choice with a reasonable computation time. As a result, the release of 100 

particles was considered as the base number for all other simulations to investigate 

the influence of various parameters on particle-wall mean collision numbers. 

 

Table 6. The particle-wall mean collision numbers and computation times calculated for 

different numbers of released particles into the system. 

Number of released particles Mean collision number Computation time STDEV 

1 4 1 min 13 s 0 

10 7.6 2 min 11 s 0.2 

100 7.3 6 min 15s 0.3 

500 6.97 19 min 0.1 

1000 6.92 31 m 2 s 0.1 

2000 6.8 51 min 52 s 0.1 

5000 6.7 108 min 23 s 0 
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Figure 12. Calculated mean collision numbers for different numbers of released particles. The 
error bars represent the standard deviation. 

 

4.3. Influence of particle Stokes number on particle-wall interactions 

The ratio between the particle response time (𝜏𝑝), and the characteristic time scale of 

the fluid flow (𝜏𝐿) is defined as the particle Stokes number (St). 

 

𝑆𝑡 =  
𝜏𝑝

𝜏𝐿
=  

𝜌𝑝𝑑𝑝
2

18𝜇
𝑘
𝜀

⁄  (4.1) 

 

The particle response time (particle relaxation time) is the time required by the 

particle to respond to eddies in the flow. The value of particle response time depends 

on the particle size (dp), particle density (𝜌𝑝), and fluid viscosity (𝜇). Assuming that 

the turbulent time scale is constant, particles with a larger diameter and higher 

density require a longer time to respond to the fluid structures than particles with 

lower density and smaller sizes. Chan et al. conducted a direct numerical simulation 

of two-phase turbulent pipe flow for investigating the mechanism of particle 

transport within a range of Stokes number (Chan et al., 2020).  They observed three 



62 
 

regimes based on particle Stokes number, and our results are in good agreement with 

the results proposed in this study. Particles are categorized into three different 

groups based on the Stokes numbers, namely, low Stokes (St < 1), moderate Stokes (1 

< St < 10), and high Stokes particles (St > 10). 

At a very low Stokes number (St < 1), particles act like tracers that follow the fluid 

streamlines, but they do not have enough inertia to cross the eddies. The turbulent 

structures govern the transportation of these particles entirely. Therefore, they 

barely collide with the wall (Figure 13a). At intermediate Stokes numbers (1 < St < 

10), particles have enough inertia to cross the eddies but not enough inertia to get 

back to the center streamlines. Therefore, they are trapped at low-velocity zones near 

the wall and repeatedly collide with the wall until they leave the pipe (Figure 13b). 

The transport mechanism of particles with intermediate Stokes numbers is affected 

by the turbulent structures and particle inertia. At very high Stokes number (St > 10), 

the effect of turbulent structures on particle transport is less pronounced than the 

intermediate Stokes values because these particles have very high inertia enables 

them easily cross the eddies and bounce back into the bulk medium after colliding 

with the wall (Figure 13c). Generally, the trajectory of particles with large Stokes 

numbers is unresponsive to the short time scales of the turbulent flow. 
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a) b) 

 

c) 

Figure 13. Particle trajectories for low (a), intermediate (b), and high (c) Stokes numbers. The 
color of trajectory lines shows the velocity magnitude (m/s) of particles. The x-axis points in the 
streamwise direction, the z-axis in the wall-normal direction, and the y-axis in the spanwise 
direction. 

 

Figure 14 compares the number density of particles with different Stokes numbers 

near the pipe wall with the same flow conditions after one second period. The number 

density of particles describes the degree of concentration of particles in the domain. 

For an intermediate value of Stokes number (60-micron particles), the particles 
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cluster near the wall as they have enough inertia to cross the eddies and enter the 

near-wall region. At very low Stokes number (10-micron particles), particles often 

follow the fluid streamlines and do not have enough inertia to cross the eddies. 

Whereas, at high Stokes number (300-micron particles), particles have very high 

inertia, which causes them not to be affected by the turbulence and reflect off into the 

mainstream after hitting the wall. Therefore, particles with low and high Stokes 

numbers show almost similar particle number densities near the wall and have a 

lower value than those with intermediate Stokes numbers. This explains the high rate 

of particle-wall collision numbers recorded for particles in the intermediate Stokes 

regime. 

 

 

Figure 14. Comparison of near the wall particle number densities for different values of particle 
size (Stokes number). 
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For the case of low Stokes number (St = 0.2) the values of particle number density in 

the viscous layer at three different time steps (t1 = 0.02, t2 = 0.05, t3 = 0.15) is depicted 

in Figure 15. This plot confirms that the particle number density in the region 0 < y+ < 

2 is very low, reducing the chance of particle-wall collisions. The reason is that at low 

Stokes numbers, particles exactly follow the fluid streamlines. Therefore, particle 

trajectories are completely parallel to the wall, making it impossible to collide with 

the pipe wall. The particle number density graph shows peaks located between y+ = 2 

and y+ = 5. An interesting finding shown by this graph is that the peak value grows 

over time and gradually gets closer to the wall, which is a sign of turbophoretic drift. 

Turbophoresis is defined as a two-phase process with different time scales. First, 

strong turbulent structures push particles towards the pipe walls and then, particles 

are slowly transported by weak turbulent structures. This phenomenon causes the 

particle concentration to increase near the wall region. Similar results were proposed 

by (Grosshans and Papalexandris, 2017). 
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Figure 15. Evolution of particle number density in the near-wall region for low Stokes particles. 

 

A similar graph was produced for the intermediate Stokes case (St = 2) while keeping 

all parameters constant. At intermediate Stokes numbers, particles no longer follow 

the exact fluid streamlines. They have enough inertia to cross the eddies and collide 

with the wall, but they can not return to the center streamlines. Therefore, they 

cluster near the wall. This phenomenon of particle agglomeration in the viscous 

sublayer is often known as turbophoresis, which is more pronounced for the 

intermediate Stokes regime (Grosshans and Papalexandris, 2017). For very low 

Stokes numbers the turbophoresis effect is less pronounced as particles act like 

tracers, and the fluid phase fully governs particle motion. Figure 16 shows the particle 

number density of moderate Stokes particles near the wall region. Similar to the low 

Stokes case explained, the maximum value of the particle number density increases 
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as time goes by. However, in this case the particle number density in the region 0 < y+ 

< 2 is very high, which enhances particle-wall interactions. Moreover, compared to 

the low Stokes case, the peak value of the particle density number is considerably 

moved towards the wall, and the majority of particles reached the region y+ < 2 at time 

t3, consequently resulting in a substantial increase of particle-wall collisions.  

 

 

Figure 16. Evolution of particle number density in the near-wall region for intermediate Stokes 
particles. 

 

The particle number density of high Stokes particles (St = 36) is depicted in Figure 17. 

At high Stokes numbers, particle trajectories are less affected by the turbulence 

structures and particle dynamics dominated by particles' inertia. Consequently, the 

calculated particle-wall collision numbers are almost constant in every simulation 



68 
 

run. This fact will enhance the constancy of particle tribocharging predictions based 

on particle-wall collision frequency for high Stokes particles.  

Comparing the particle number density profile of high Stokes particles in Figure 17 

with low and moderate Stokes numbers in Figure 15 and Figure 16 confirms that 

particle distribution is more uniform in the region close to the wall for the higher 

Stokes numbers. This implies that the turbophoretic drift is less pronounced for 

particles with a higher Stoke number, and particle agglomeration progresses more 

slowly compares to the cases with low and moderate Stokes numbers. This 

phenomenon could be explained by the term "local Stokes number" that was 

proposed by (Marchioli and Soldati, 2002). They explained that by increasing the 

response time of large particles and decreasing turbulent time scale, the local Stokes 

numbers of high inertia particles increase as they approach the wall. Therefore, the 

trajectories of these particles are not affected by turbulent structures near the wall as 

they have enough inertia to cross these structures and bounce back into distant layers 

without getting trapped in the viscous sublayer. The sudden rise of particle number 

density in different times which are notable in Figure 17 exhibit the particles 

reflections after colliding with the wall. 
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Figure 17. Evolution of particle number density in the near-wall region for high Stokes particles. 

 

4.4.  Influence of particle size and density on particle-wall interactions 

To investigate particle size's influence on particle-wall interactions, particles with the 

same densities but different diameters ranging from 5 to 300 microns were released 

into a pipe with a 1-meter length and 0.00476-meter diameter. The air velocity in the 

pipe was 8.4 ms-1, and 100 particles of each size were released into the system in 

every simulation.  

Simulation results confirmed that small particles (< 10 micron) have a very low Stokes 

number (St <1), which causes them to act like tracers and completely follow the 

turbulent streamlines. Therefore, they show minimum interaction with the wall. 

Particles between 50 to 100 microns in size have intermediate Stokes number (1 < St 

< 10). The motion of these particles depends on both the turbulent effect and inertia 
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of particles. These particles have enough inertia to cross the turbulent eddies and 

collide with the wall, but they do not have enough inertia to reflect the center 

streamlines. Therefore, they repeatedly collide with the wall until they exit the pipe. 

Particles larger than 100 microns have a high Stokes number (St > 10), which means 

the particle response time is much higher than the turbulent time scale, and 

consequently, particles do not respond to the changes in the turbulent flow. 

Therefore, the motion of large particles is entirely governed by their inertia, not the 

turbulent effect (Figure 18). 

 

 

Figure 18. Influence of particle size on particle-wall mean collision numbers. Particles were 
released into a 1-meter pipe with 4.76 mm inner diameter and the air velocity was 8.4 (ms-1). 

 

Five different materials with different densities were selected to investigate the 

influence of particle density on particle-wall mean collision numbers. Table 7 

shows the densities of particles used in simulations. In each density group, the 

mean collision numbers were calculated for 100-micron particles. Figure 19 

shows that for different densities, the particle-wall collision number decreases by 

increasing the particle density. This could be explained by the relation of particle 
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density and particle response time (𝜏𝑝), as they are directly related. As particle 

density increases, they require much more time to respond to the changes in the 

turbulent flow, as is expected for particles with a high Stokes number. Therefore, 

they do not have enough time to follow turbulent streamlines, and their inertia 

mainly governs their motion. 

 

Table 7. Density of materials used in simulations. 

Material Density 

(kg/m3) 

Flour 1440 

PVC 1410 

Glass beads 2420 

Quartz sand 2650 

Steel 7850 

 

 

 

Figure 19. Comparing mean collision numbers of 100-micron particles with different densities. 
All particles assumed spherical particles released into a 1-meter pipe with 4.76 mm inner 
diameter and the air velocity was 8.4 (ms-1). 
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4.5. Influence of pipe diameter and length on particle-wall interactions 

Several simulations were performed using different pipe diameters and lengths with 

a similar average air velocity of 8.4 ms-1 to investigate the influence of pipe diameter 

and pipe length on the particle-wall mean collision numbers. Figure 20 shows that for 

inertial particles larger than 100 microns (high Stokes particles), the mean collision 

numbers decrease by pipe diameter since the distance between particles and the 

walls increases, and consequently, particles have to travel a longer distance to reach 

the wall. Different results were obtained for particles with intermediate Stokes 

number (60-micron). As it is demonstrated in Figure 20, for particles smaller than 

100-micron, particle-wall mean collision numbers increase by pipe diameter because 

in larger pipe diameters, the integral time scale of turbulence (𝜏𝐿) increase and 

turbulent dispersion enhanced for smaller particles which result in more collisions 

with the wall. Similar results were confirmed by (Sommerfeld, 2003). 

 

 

Figure 20. Influence of pipe diameter on particle-wall mean collision number. In all cases 
particles were released into a 1-meter pipe with 8.4 (m/s) air velocity. 
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Four different pipe lengths (0.25, 0.5, 1, and 1.5 meters) were used in simulations to 

investigate the influence of pipe length on the particle-wall mean collision numbers. 

In all simulations, the pipes' diameter and airflow velocity were 4.76 mm and 8.4 ms-

1. For particles with different sizes which released in the pipe with 0.25-meter length, 

the calculated mean collision numbers are almost similar, i.e., less than one collision 

per particle, which means that in such condition, almost all particles exit the pipe 

without colliding with the pipe wall. By increasing the pipe length to 0.5-meter, 

different particle sizes showed different mean collision numbers, but there is still no 

significant difference between various particle sizes in terms of the calculated mean 

collision number. For particles released in a 1-meter length pipe, there is a clear 

difference in recorded mean collision numbers for different particle sizes. Based on 

these results, the minimum pipe length for investigating particle size's effect on mean 

collision numbers is 1-meter pipe length because, in shorter pipes, all particle sizes 

show almost similar interactions with the wall. By increasing the pipe length to 1.5 

meters, the mean collision numbers for particles larger than 100 microns increase as 

the particle's residence time increases. However, for particles smaller than 100 

microns, as particle motion is affected by turbulent structures, the slope of this 

augmentation is very high (Figure 21). 
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Figure 21. Influence of pipe length on particle-wall interactions. In all cases particles were 
released into a pipe with 4.76 mm inner diameter and 8.4 (ms-1) air velocity. 

 

4.6. Influence of air velocity on particle-wall interactions 

For examining the impact of air velocity on particle-wall interactions, particles of 

different sizes were released into pipe flows with different air velocities. The 

calculated mean collision numbers were also compared in a laminar and turbulent 

flow. The pipe dimension used for simulations was 1 meter in length and 0.00476 

meters in diameter in all cases. One hundred particles were released in every 

simulation, and the average collision number was expressed as the mean collision 

number. 

Simulation results confirmed that particle-wall mean collision number and air 

velocity are inversely related (Figure 22). Comparing particles with similar size 

traveling in different air velocities confirmed that more particle-wall interaction 

occurs in lower air velocity, whereas in higher air velocity, particles barely collide 

with the pipe wall before exiting the pipe. These results are likely to be related to 
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particle residence time in the pipe flow. Results also show that particle-wall mean 

collision numbers decrease by particle size expectedly in lower air velocities. 

Interestingly, in very high air velocities (36 ms-1), large particles showed more 

collisions than smaller sizes. The possible reason might be that those smaller particles 

passing through high air velocities trapped at the center eddies of the pipe flow and 

exit the pipe before gravity force pulls them towards the pipe wall. 

Furthermore, to investigate the effect of turbulence on particle-wall interactions, a 

laminar flow with 6.5 ms-1 air velocity was compared with turbulent flows in higher 

velocities. Figure 22 shows that the particle-wall mean collision number in laminar 

flow is higher than the turbulent flows with 15 and 36 ms-1 due to higher particle 

residence time, but it shows fewer interactions than turbulent flow with 8.4 ms-1 air 

velocity. 

 

Figure 22. Influence of air velocity on particle-wall mean collision numbers. All calculations were 
accomplished for a single pipe length (1 m), and diameter (4.76 mm). 
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4.7.  ANN model for predicting particle-wall interactions 

 

4.7.1.  Number of neurons in the hidden layer 

For deciding the optimal number of neurons in the hidden layer (Layer 2) to avoid the 

model from underfitting and overfitting, an optimization analysis was performed in 

MATLAB. In this analysis, the number of neurons in the hidden layer (Layer 2) was 

altered from 1 to 10. The root mean square error (RMSE) of each network was 

calculated five times, and the average value was considered as the performance of the 

generated networks.  

 Figure 23 demonstrates the RMSEs of different networks as a function of the number 

of neurons in the hidden layer. It is clear from the graph that using only one neuron 

in Layer 2 makes the model under-fitted, which means that the model fails to capture 

the key trends during the training process. It can be concluded from the graph that 

using 6 neurons in Layer 2 is good enough to confirm a sufficient accuracy of the 

model performance. 

 

 

Figure 23. Influence of number neurons in the second layer on network performance. 
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4.7.2.  Network testing and model validation 

The test set, which contains 15 % of the database, was employed for evaluating the 

neural network performance. The test set includes new data for the model, and the 

model has not trained on them in the training process. Figure 24a demonstrates the 

model's performance for the training set and the test set. The best validation 

performance of the model is shown in Figure 24b with the mean squared error 

performance function. The best validation performance is 1.98 at epoch 17. 

However, different networks with different performances are created due to different 

initial weights and bias values used for the training process. Therefore, for evaluating 

the model performance, 30 neural networks with various initial weights and bias 

values were generated using the same training data set. The neural network 

prediction values of the test set were expressed as the average output values of all 30 

networks. Figure 25 shows the error of all 30 networks on predicting the test set 

values. The average value of RMSE for all networks is very low (0.94), which shows 

the model's high performance in predicting mean collision numbers for the test set. 

Figure 26 demonstrates the regression analysis chart for the mean square error 

(MSE) performance function. The calculated R for the training set is 0.98, the 

validation error is 0.99, and the testing error is 0.98. Based on this information, it is 

evident that the proposed model can predict particle-wall mean collision numbers 

based on particle and flow physical parameters in particle-laden pipe flows with high 

accuracy. 
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a) 

 
b) 

 

Figure 24. Comparing mean collision numbers calculated with CFD and predictions of the neural 
network (a), performance plot of the model (b). 
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Figure 25. The average performance of the neural network. 
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Figure 26. Regression analysis chart. 

 

4.8.  Tribocharging model 
 

4.8.1.  Experimental charge measurement results 

Table 8 shows the charge to mass ratio of particles with different diameters. These 

data were obtained by the researchers at Howard University using the experimental 
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procedure described in chapter 3 of this thesis. The lowest charge to mass ratio gained 

via tribocharging belongs to the small particles with 25-micron (micrometer) 

diameter, whereas particles with approximately 60-micron (61.7 micon to be exact) 

diameter show an extremely high charge to mass ratio after tribocharging. At the 

same time, the measured charge to mass ratio for 60-micron particles show the 

highest standard deviation during different experimental runs. For particles larger 

than 60-micron, the amount of charge to mass gained by the particles during 

tribocharging drops suddenly for 86-micron particles and gradually decreases for 

particles larger than 200-micron.  

 

Table 8. Experimental charge measurement results for yellow pea powder dispersed into a PTFE 
tribocharger tube (1.5 m length, and 4.76 mm inner diameter) using air (6.5 ms-1 velocity) as 
the carrier fluid. 

Particle Diameter 
(micron) 

Charge to Mass Ratio (nC/g) 
AVG STD 

380.9 157.9 27.8 
252.7 231.2 74.9 
192.7 314.5 71.6 
138.9 323.8 69.1 
86.3 307.8 78.3 
61.7 608.8 151.3 
25 138.2 49.5 

 

4.8.2.  Influence of particle wall interactions on tribocharging in laminar 

particle-laden flows 

The experimental results of charge measurements were obtained by releasing 

particles into a laminar pipe flow with 6.5 ms-1 air velocity. Therefore, a numerical 

simulation was conducted to compute particle-wall interactions in a laminar flow 

with the exact boundary conditions used in the experiments. Accordingly, 100 

particles of identical size were released into a horizontal pipe with 1.5 m length and 

4.76 mm inner diameter, and 6.5 ms-1 air velocity. The drag and gravity were the 
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dominant forces exerted on particles. The number of particle-wall collisions was 

determined by defining an auxiliary dependent variable on each particle that updated 

the collision number every time each particle collided with the pipe wall. The average 

of collisions computed for each particle was reported as the particle-wall mean 

collision number.  

Figure 27 demonstrates the calculated mean collision numbers for different particle 

sizes. Although no turbulence effect exists in this simulation, this graph presents a 

similar trend as reported for particles transported in a turbulent flow (Figure 18).  

Results confirmed that small particles (< 40 microns) have the lowest collision 

number, whereas medium size particles (40 microns < Dp < 100 microns) show 

maximum particle-wall interactions as it was also reported for intermediate Stokes 

particles in a turbulent particle-laden flow. For particles larger than 100 microns, the 

particle-wall mean collision numbers do not show significant deviation by particle 

size. 

 

 

Figure 27. Computed particle-wall mean collision numbers for different particle sizes released 
into a pipe with 1.5 (m) length and 4.76 (mm) inner diameter and 6.5 (m/s) air velocity 
(Reynolds = 1900). 
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Figure 28a describes the influence of particle size on the particle-wall mean collision 

numbers and the experimentally measured charge to mass ratios. The lowest charge 

to mass ratio was reported for small particles with a 25-micron diameter having the 

minimum mean collision number (3.7 collisions per particle) in this graph. 

Conversely, the maximum amount of charge to mass ratio was reported for 60-micron 

particles having the highest rate of particle-wall mean collision number (17 collisions 

per particle). For larger particles, the measured charge to mass ratio decreases 

exponentially due to fewer particle-wall interactions, and for particles larger than 100 

microns, the charge to mass ratios do not change dramatically as the collision 

numbers are almost identical. The correlation between the experimental charge 

measurement values and the computed particle-wall mean collision numbers for 

different particle sizes is illustrated in Figure 28b. These results confirm the 

correlation between particles charging rate and the number of particle-wall 

interactions. Hence, particle-wall collision number computed based on different 

particle and flow properties is a potent parameter for modeling particle tribocharging 

in particle-laden flows. 

 

 

  
a) b) 
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Figure 28. a) Effect of particle size on mean collision number and charge to mass ratio, b) the correlation of experimental 
charge to mass ratios and particle-wall mean collision numbers. Data labels and error bars show the particle size and 
deviation of charge measurements during multiple experimental runs. 

 

4.8.3. Influence of material on tribocharging  

Material of the contact bodies significantly affects the tribocharging process (Itakura 

et al., 1996; Mazumder et al., 2006; Biegaj et al., 2017). This fact has been applied as a 

tool for tribo-separation of macroparticles in the recycling industry (Pearse and 

Hickey, 1978; Dodbiba and Fujita, 2004; Zenkiewicz, Zuk and Markiewicz, 2015; Yang 

et al., 2019) and tribo-separation of microparticles such as protein and starch 

particles on a lab-scale (Tabtabaei et al., 2016; Wang et al., 2016; Landauer and Foerst, 

2018).  

In this study, numerical modeling of particle tribocharging was conducted based on 

the particle-wall collision numbers calculated via CFD at different operating 

conditions. Consequently, the contact potential difference (CPD), which is a function 

of contact surfaces' work functions and depends on the material, was calculated from 

the experimental charge measurement results using equation 3.21 in chapter 3. 

Figure 29 demonstrates the correlation of measured charge-to-mass ratios and 

calculated CPD values for samples with different protein contents. Results also 

confirms that the value of contact potential difference increases by protein content of 

the samples. It is clear from the graph that the charge to mass ratio of particles is 

strongly correlated to the contact potential difference explaining the high charging 

tendency of powders with higher protein content. 
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Figure 29. Correlation of experimentally measured charge-to-mass ratios with calculated 
contact potential difference for samples with different protein content percentages (data labels). 
Error bars address the deviation of charge measurements during multiple experimental runs. 

 

Based on the calculated values of contact potential difference, the charge-to-mass 

ratio of particles was calculated for similar particles sizes but at a different air velocity 

(8.4 ms-1). The number of particle-wall collisions was computed using the CFD model. 

Figure 30 compares the calculated charge-to-mass ratios at the air velocity of 8.4 ms-

1 with the experimentally measured values for different particle sizes at 6.5 ms-1. 

Results show that the calculated charge-to-mass ratios at 8.4 ms-1 follow a similar 

trend to the experimentally measured charge at 6.5 ms-1 air velocity but a higher 

charge value due to higher particle-wall collisions (as was previously shown in Figure 

22). Therefore, for a specific combination of particle-wall material, the charge-to-

mass of particles passing through a pipe could be estimated based on the particle size 

and vice versa. Therefore, particle charge measurement during powder transport in 

particle-laden flows could be used as a novel and yet cost-effective approach for 

online particle size characterization (see the next section for details). This method 

could be used as a predictive tool applying particle-laden flows, including pneumatic 
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conveying of powders in the food and pharmaceutical industries where particle size 

variation due to agglomeration and segregation during transport is a substantial issue 

affecting the quality of the final products. 

 

 

Figure 30. Measured and simulated charge-to-mass ratios for different particle sizes. The pipe 
material is PTFE (l = 1.5 m, d = 4.76 mm) and particles are organic flour (ρ = 1440 kgm-3). 

 

4.8.4.  Application of the numerical model 

As was discussed previously, the numerical model developed for tribocharging of 

particles in particle-laden flows is suitable for simulating the charge generation 

experienced by different particle sizes of similar material. Furthermore, a strong 

correlation was observed between the values of calculated contact potential 

difference for samples with different protein contents and the corresponding 

measured charge-to-mass ratios (Figure 29). Hence, online characterization of 

powders, such as particle size determination and concentration of various 

constituents (for example protein content), during transport in particle-laden pipe 
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flows could be a novel application of the proposed numerical model. Developing a 

rapid, cost effective, and non-destructive method for online monitoring of powder 

concentrations is sought after in the pharmaceutical industry, food fraud assessment, 

and quality control of particulate products. Therefore, investigating the charging 

behavior of powders during tribocharging in particle-laden flows could be a powerful 

technique for identifying the chemical composition and concentration of powders' 

constituents. However, future works are required for understanding the 

tribocharging behavior of powders with different materials and the influence of 

different chemical concentrations on powder charging during transport in pipes with 

different materials. 

Figure 31 illustrates a flowchart describing an algorithm created for particle size 

characterization and powder composition analysis based on the measured charge-to-

mass ratios. For a specific particle size, this algorithm could be used for calculation of 

the contact potential difference which is correlated to the work function and chemical 

composition of powders. In case of an unknown particle size, this algorithm could be 

used as a particle size characterization tool for a particular material with specific 

work function. The algorithm starts with a guessed value for the particle size based 

on the measured charge-to-mass ratio and feeds it into the CFD-based artificial neural 

network model for estimating the number of particle-wall collisions. The ANN model 

search for the best match value of particle-wall collision number based on the model 

inputs such as air velocity, pipe diameter and length. Consequently, the estimated 

collision number is used to calculate the charge-to-mass ratio for the guessed particle 

size. Next, the algorithm compares the calculated and the measured values of the 

charge-to-mass ratio. The optimal criteria for the model is minimizing the error 

percentage between the measured and the calculated values of charge to mass ratio. 

Therefore, if the sum of errors exceeds the predefined threshold, the algorithm 

guesses a new particle size until it reaches the desired accuracy. More studies and 

experiments are required to expand the application of this algorithm for industrial 

cases, such as investigating the influence of different powder materials, pipe geometry 
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and bends, the surface roughness of pipes, impurities, particle shape, and external 

electric fields on tribocharging in particle-laden flows. 

In the next chapter, chapter five, the overall conclusions of this research and the 

potential of charge measurements during tribocharging of powders in particle-laden 

pipe flow for rapid characterization of powders' physical and chemical properties are 

presented. 
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Figure 31. Flowchart describing an algorithm for powder characterization based on particle 
charge-to-mass. 

  



90 
 

Chapter 5. Conclusions 

The mechanism of powder tribocharging due to repeated particle-wall collision 

during transport in dilute particle-laden flows was analyzed. Polydisperse powder 

samples with different protein and starch contents and particle sizes were analyzed 

to understand the influence of powders' physical and chemical properties as well as 

the hydrodynamics characteristics of the system on the generated charge after 

contacting the PTFE pipe wall. Computational fluid dynamics was utilized for 

numerical simulation of particle trajectories in gas-solid two-phase flows, and the 

influence of particle size and density, pipe diameter and length, and air velocity on 

particle-wall mean collision numbers was elucidated. An artificial neural network 

model was developed for predicting the particle-wall mean collision numbers based 

on the database generated via CFD simulations. The potential difference between the 

contact surfaces was calculated according to the experimental charge measurement 

results and the estimated number of particle-wall collisions. 

According to experimental results, there was a nonlinear correlation between the 

particle size and the measured charge-to-mass ratios. The minimum charge-to-mass 

ratio was reported for particles with 25 microns in diameter. The maximum charge-

to-mass ratio was observed for 60-micron particles, but the charge-to-mass ratio 

decreased for larger particles. A similar trend was observed for particle-wall mean 

collision numbers calculated through numerical simulation for different particle 

diameters, explaining the experimental charge measurement results.  

The contact potential difference between the contact surfaces depends on the 

physicochemical properties of the contact material and requires costly laboratory 

equipment and a controlled environment to measure. In this study, the contact 

potential difference was calculated from the experimental charge measurement data 

and the CFD and tribocharging models. The results from this study also revealed a 

strong correlation between the calculated contact potential difference and the protein 
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content of powder samples. Since the charge-to-mass ratio increases directly by the 

contact potential difference, charge measurement during powder transport in 

particle-laden flows could be used as a novel approach for the rapid and cost-effective 

characterization of powders' physical and chemical properties (e.g., particle size or 

protein content). 

To conclude, powder tribocharging during transport in particle-laden flows is 

strongly affected by the physical and chemical properties of powders. Although 

powder tribocharging during transport is often considered a nuisance phenomenon 

such as dust explosion, it could be utilized as an accessible and powerful tool for 

manipulating powders characteristics if well understood and controlled. It is time to 

think of this mysterious natural phenomenon not only as a negative issue that should 

be avoided but as an endless source of energy that could be utilized in various 

applications. 
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