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Lay Abstract 

 Solid food introduction to the infant diet brings new glycans to the gut 

environment, driving the selection of bacteria that are able to digest these 

compounds.  Studying the gut microbiome during this timepoint is essential to 

deciphering how and when beneficial bacteria colonize, how they evolve, and how 

the infant gut matures to an adult-like state. A widely used method to characterize 

microbial identity and metabolic function in the gut is metagenomic sequencing. 

However, dominant bacterial genera in the infant gut often have multiple closely 

related species and strains, making it difficult to decipher the essential metabolic 

differences between them. In this study, we simulated an infant gut metagenomic 

dataset to understand how the structure of the infant gut impacts commonly used 

metagenomic tools, and to quantify the quality of genomes and metabolic 

predictions at the end of common metagenomic analyses. We found that gut 

microbial community composition and metagenomic assembler choice both impact 

the quality of final genomes retrieved from the data, and the accuracy of metabolic 

gene predictions. Based on these results, we make several recommendations to 

use ensemble methods to improve metagenomic data analysis, and additionally 

propose a metagenomic pipeline to analyze infant gut data over the period of solid 

food introduction. 
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Abstract 

Background: Studying the infant gut microbiome during the period of solid food 

introduction may provide valuable insight into gut colonization, microbial evolution, 

and the ecological role of bacterial metabolic pathways in microbial succession. 

However, since infant gut microbial communities are made of bacterial genera with 

high relative abundance, within-genus and within-species diversity, the efficacy of 

current computational tools in elucidating strain-specific differences is not known.  

 

Methods: 34 infant gut metagenomic samples were simulated with the CAMI-

Simulator, using 16S rRNA gene profiles from subjects of the Baby & Mi study as 

a reference. Raw simulated reads were trimmed, assembled, and binned into 

metagenome-assembled genomes (MAGs) using mg_workflow, a Snakemake-

based pipeline of current metagenomic analysis protocols. Results were compared 

to gold-standard references in order to benchmark the success of current 

computational methods in retrieving strain-level MAGs from the gut, and in 

predicting bacterial carbohydrate active enzymes. Real metagenomic samples 

from the Baby, Food & Mi cohort were processed through the bfm_mg_flow 

pipeline to study the taxonomic and metabolic changes in the infant gut 

microbiome during the solid food introduction period. Post-pipeline analyses were 

conducted in R.  
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Results: Misassemblies were significantly impacted by sample community 

composition, including Shannon diversity, number of strains in the sample, and 

relative abundance of the most dominant strain. MAG completeness, 

contamination, quality, and reference coverage were significantly impacted by 

choice of assembly software, and choice of single- or co-sample assembly. 

Different assemblies yielded different MAGs from the same samples. Reference 

coverage of MAGs recovered from co-assemblies were lower than for those from 

single assemblies and CAZyme predictions were more accurate from MetaSPAdes 

than from MEGAHIT assemblies at both the assembly-level and the MAG-level. 

Based on these results, we propose the MetAGenomic PIpelinE (MAGPIE), with 

recommendations for ensemble methods for assembly, binning, and gene 

predictions. Using these methods, we identified changes in microbial community 

composition before and after solid food introduction in real Baby & Mi infant gut 

samples. These changes included an increase in bacteria that can digest a wide 

variety of carbohydrates, such as Bacteroides, and a decrease in Bifidobacterium.  

 

Conclusions: In this study, we characterized the current state of tools for genome-

resolved metagenomics, and contributed a framework to tailor metagenomic data 

analysis for the unique composition of the infant gut microbiome. We further used 

this framework to study bacterial metabolism in the infant gut microbiome before 

and after the introduction of solid foods. 
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1 Introduction 

With the rise of metabolic and immune-related disorders, a growing body of 

research is pointing towards the role of the human microbiota in host health (Gilbert 

et al., 2018; Ogurtsova et al., 2017; Toniolo et al., 2019). Commensal gut 

microorganisms, which collectively harbor more genetic diversity than the human 

genome, have been found to contribute to host metabolism, immune development, 

and obesity (Duranti et al., 2017a; Turnbaugh et al., 2006; Turroni et al., 2014a). 

The human genome contains fewer than 20 unique enzymes for the breakdown 

and metabolism of complex carbohydrates, whereas gut microbes encode a 

variety of Carbohydrate Active Enzymes (CAZymes) to metabolize diverse 

complex carbohydrates and fiber from the host and the diet (Cantarel et al., 2012; 

Kaoutari et al., 2013). Established during infancy, bacterial communities in the gut 

continue to mature throughout the first three years of life, with the introduction to 

solid foods and new dietary carbohydrates being an important checkpoint in this 

process (Koenig et al., 2011). As such, studying the infant gut microbiome during 

the solid food introduction period may provide valuable insight into gut colonization, 

bacterial selection, and the ecological role of CAZymes and bacterial metabolic 

pathways in bacterial succession. With the continued rise of chronic metabolic 

disorders, understanding the contribution of specific microbial genes and pathways 

in human metabolism may serve as a crucial step towards the innovation of 

personalized treatment options.   
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Given the large amount of within-species variation in the infant gut 

microbiome, mapping the activity and evolution of gut bacteria over time is both a 

challenging and essential task (Van Rossum et al., 2020). The task is essential 

because different strains of the same species often display high phenotypic 

variance, and within-microbiome evolution and strain identity are known to 

contribute to host health (Van Rossum et al., 2020; Zhao et al., 2019). However, 

the challenge arises due to the high level of genomic sequence similarity between 

strains belonging to the same species, which cause significant errors in the 

bioinformatics analysis of  these samples (Lugli et al., 2019a; Maguire et al., 2020). 

Unfortunately, it is not known how much strain diversity is retained or lost during 

standard metagenomic workflows for infant gut metagenomic data, or which types 

of community composition are likely to cause bioinformatics tools to underperform. 

Understanding and quantifying the limitations of current in silico workflows is an 

important step prior to using these tools for the infant gut microbiota, which has a 

unique microbial community composition. 

 

1.1 The Infant Gut Microbiome 

The gut microbiota encompasses microorganisms from any of the three 

domains of life—Bacteria, Archaea, and Eukarya—in addition to viruses, with 

complex ecological relationships that extend from competition to commensalism 

(Milani et al., 2017a). The majority of the gut microbiota is made up of Bacteria 

with estimates of 100 trillion microbial cells (Qin et al., 2010) in the gut. The 



MSc Thesis – B. Singh; McMaster University – Chemical Biology INTRODUCTION 

 3 

coordinated activity and function of these microorganisms include the breakdown 

of incoming food substances, the modulation and development of the immune 

response, and protection from harmful pathogens (Duranti et al., 2017a; Laforest-

Lapointe and Arrieta, 2017; Milani et al., 2017a; Turnbaugh et al., 2006; Turroni et 

al., 2014a).  

The past decade has witnessed a remarkable increase in research involving 

gut microbial community dynamics and human health, attributed to the 

technological advancements in high-throughput sequencing, leading to the drastic 

decrease in sequencing costs (Gilbert et al., 2018). While the adult microbiota is 

typically dominated by bacteria of the phyla Firmicutes and Bacteroidetes, the 

infant gut is initially populated by the phyla Proteobacteria and Actinobacteria 

(Milani et al., 2017a). There is a high amount of variability in bacterial abundance 

across infants, with dominant bacterial groups in the gut including Bifidobacterium, 

Veillonella, Streptococcus, Citrobacter, Escherichia, Bacteroides, and Clostridium 

(Milani et al., 2017a).  Bifidobacterium and Lactobacillus are commonly found in 

breastfed infants, while formula-fed infants have higher relative abundances 

of Clostridium spp., Bacteroides spp, and members of the Enterobacteriaceae 

family (Favier et al., 2002; Koropatkin et al., 2012). The introduction of solid food 

shifts bacterial abundances to an adult-like microbiota, dominated by Bacteroides, 

Firmicutes, and members of the Actinobacteria phylum other than Bifidobacterium 

(Milani et al., 2017a). However, the microbial profiles of gut bacteria vary 

depending on geographical location, diet, and environmental factors, making it 
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difficult to make generalizations about bacterial abundances (David et al., 2014; 

Milani et al., 2017a; Sharon et al.; Yatsunenko et al., 2012).  

 

1.1.1 Colonization 

The first three years of life are characterized by rapid changes to microbial 

species and communities in the gut, until the microbiota reaches an adult-like state 

of stability and maturation. As per the defined patterns in community ecology and 

population genetics, colonization of the infant gut can be divided into four 

categories; dispersal of bacterial species into the environment, selection based on 

gene-level fitness traits, drift, and diversification of the individual species and the 

overall community. First, metabolic niches within a newborn infant are colonized 

by microbial species through the process of dispersal (Sprockett et al., 2018). Initial 

dispersal of these species into the gut is impacted by the maternal microbiota, 

mode of delivery, the infant’s gestational age, and the physiological and genetic 

characteristics of the infant’s gut (Laforest-Lapointe and Arrieta, 2017; La Rosa et 

al., 2014; Sprockett et al., 2018). For example, 50% of microbes found in the infant 

gut one day after birth are also found in the microbiota of various maternal body 

sites, such as the vagina, skin, and oral cavity (Ferretti et al., 2018). After this initial 

dispersal, selection drives the differences in bacterial species reproduction due to 

fitness and ecological niches, with major influences including the infant diet and 

immune system (Sprockett et al., 2018; Vellend, 2010).  One example of selection 

is breast-feeding; breast milk contains several hundred complex human milk 
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oligosaccharides (HMOs) that select for the growth of lactic acid bacteria, such as 

Bifidobacterium, Lactobaccilus, and Bacteroides (German et al., 2008; Martín et 

al., 2012). Breast milk drives bacterial dispersal by contributing to the initial 

colonization for microorganisms in the infant gut, while also promoting selection of 

species that are able to digest the human milk oligosaccharides that it is composed 

of (Martín et al., 2012; Sprockett et al., 2018). Dispersal is followed by drift, which 

is characterized by altered species abundances caused by random changes or 

events that are not impacted by the identity of the species (Sprockett et al., 2018). 

Lastly, diversification of the gut community is the rapid gene-level evolution and 

adaptation of microbial species to selective forces (Sprockett et al., 2018; Vellend, 

2010). In this phase, the shifts in the species abundance—which are a result of 

selection based on gene-level fitness traits—can impact community diversity as a 

whole.  

These ecological patterns collectively influence the colonization of the infant 

gut microbiome, with the host’s external and internal environment often impacting 

multiple patterns at the same time. The introduction of solid food to the infant diet, 

which occurs between 4-6 months of age, is an example that leads to the rapid 

selection and diversification of the microbiota (Bäckhed et al., 2015; Sprockett et 

al., 2018). The solid food diet, which contains novel substrates for bacterial 

breakdown such as fiber, impacts selection of bacteria in the gut (Koropatkin et al., 

2012). 
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1.1.2 Solid Food Introduction, Carbohydrate Active Enzymes, and Bacterial 

Metabolism 

Glycans, or polysaccharides, are defined as monosaccharides linked by 

glycosidic bonds, and include the carbohydrate regions of glycoproteins, 

glycolipids, and other glycoconjugates (Dwek, 1996; Koropatkin et al., 2012; Varki, 

2017). Dietary glycans are glycans derived from food (Koropatkin et al., 2012). The 

transition from breast milk to solid food is a major event in microbiome succession, 

causing a drastic increase in the diversity of new dietary glycans, including 

complex carbohydrates and fibers (Koropatkin et al., 2012). Prior to solid food 

introduction, available food glycans in the infant gut include commensal 

microorganisms, HMOs, and host mucus (Koropatkin et al., 2012). Solid food 

introduces additional glycans from plants and mammalian sources, including 

resistant starches, non-starch polysaccharides, unabsorbed sugars, sugar 

alcohols, oligosaccharides, and proteins (Ramakrishna, 2013). Some examples of 

resistant starches include starches encapsulated by indigestible plant matrices, 

while others include starches with high amylose content found in rice and maize. 

Furthermore, non-starch polysaccharides refer to compounds such as pectin, 

cellulose, and xylan, while unabsorbed sugars and sugar alcohols include maltitol, 

sorbitol, fructose, and more (Ramakrishna, 2013).  

Carbohydrate-active enzymes (CAZymes) encoded by both humans and 

bacteria are able to break down the aforementioned compounds, enabling the 

transfer of ATP from the carbon-based food source to bacteria, as well as to the 
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anaerobic cells in the gut (Kaoutari et al., 2013). CAZymes include glycoside 

hydrolases, polysaccharide lyases, glycosyltransferases, and carbohydrate 

esterases (Kaoutari et al., 2013).   

 

1.1.3 Types of CAZymes 

 Carbohydrates harbor immense structural and functional variation, 

attributed to the sheer magnitude of theoretically possible structures that can be 

created by the rearrangement of glyosidic linkages by CAZymes (Bourne and 

Henrissat, 2001). Glycoside hydrolases (GHs), which represent enzymes that 

hydrolyze the O-glycosidic bond in the carbohydrates, are present in almost every 

living organism (Naumoff, 2011). The specificity and structure of bacterial GHs 

depends heavily on the substrates available in the environment, and their activity 

may often confer competitive advantage to the bacteria that have them (Naumoff, 

2011). Even small changes in the structure of GHs can impact their substrate 

specificity (Naumoff, 2011). Currently, there are 167 GH families classified in the 

CAZy database, in addition to 18 clans of related families (Cantarel et al., 2009). 

Families within a clan tend to share an evolutionary origin, in addition to having 

significantly similar functional and structural characteristics, such as conserved 

tertiary structures and mechanism of enzymatic action (Naumoff, 2011). GHs 

within the same family typically have high sequence similarity and similar catalytic 

activity, but different substrate specificity (Van Den Broek and Voragen, 2008). 
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 Glycosyltransferases (GTs) are responsible for forming glycoside bonds by 

transferring glycosyl groups from activated sugar phosphates to specific acceptors 

(Lairson et al., 2008). As such, GTs are essential for the biosynthesis of new 

carbohydrates. In contrast to the diversity of folds seen in glycoside hydrolases, 

the 110 classified GT families only have three potential folds; GT-A, GT-B, and 

GT-C (Gloster, 2014; Lairson et al., 2008; Schmid et al., 2016).  

 Due to the number of unique GHs and GTs, new families are characterized 

through bioinformatics methods, using sequence alignment and Hidden Markov 

Models. While this is an incredibly useful and powerful technique of finding new 

CAZymes, many gene classifications have not been biologically validated.  

 Polysaccharide Lyases (PLs) are also responsible for breaking down 

glyosidic bonds, and are evolutionarily related to GHs; however, unlike GHs, the 

catalytic mechanism involves an elimination as opposed to a hydrolytic bond 

cleavage(Lombard et al., 2010). PLs and GHs can often break down the same C-

6 carboxylated polysaccharides to yield different products. While GHs break the 

glyosidic bonds through the addition of water, PLs instead utilize β-elimination 

(Lombard et al., 2010). Furthermore, both GHs and PLs can have additional 

modular structures, where the main catalytic region can be attached to supporting 

modules (Boraston et al., 2004; Lombard et al., 2010). This includes carbohydrate-

binding modules (CBMs), which promote the initial recognition of the carbohydrate, 

along with its subsequent attachment to the enzyme’s active site (Boraston et al., 
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2004; Guillén et al., 2010). There are 40 PL families currently on the CAZy 

database, along with 86 CBM families(Cantarel et al., 2009).  

  Carbohydrate esterases (CEs) carry out the de-O or de-N-acylation of 

carbohydrates by removing the ester from the given polysaccharide (Cantarel et 

al., 2009; Nakamura et al., 2017). Since an ester is derived from an alcohol and 

an acid, CEs are divided into two classes, where the polysaccharide may play the 

role of the acid or the alcohol (Nakamura et al., 2017). Lastly, auxiliary activities 

(AA), or auxiliary redox enzymes, act in synchrony with other CAZymes to primarily 

degrade plant cell walls(Levasseur et al., 2013). This allows other CAZymes, such 

as GHs and CEs, to access the carbohydrates within the cell wall(Levasseur et al., 

2013).    

 

1.1.4 Relevance of CAZymes in the Gut Microbiota and Health 

The human genome contains a limited number of CAZymes specific to the 

digestion of food glycans; out of the 97 glycoside hydrolases encoded by humans, 

fewer than 20 are responsible for the breakdown of complex carbohydrates 

(Cantarel et al., 2012; Koropatkin et al., 2012). Comparatively, a single gut 

bacterium like Bacteroides thetaiotaomicron contains 260 glycoside hydrolases 

(Cantarel et al., 2012). Even the carbohydrates in breast milk—which are not used 

by infants for nutrition—are utilized by lactic acid bacteria as energy sources. The 

carbohydrates in human milk include several hundred glycan structures and 

complex human milk oligosaccharides (HMOs), which are made of lactose, 
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galactose, fucose, glucose, and N-acetylglucosamine (Gnoth et al., 2000; 

Koropatkin et al., 2012).  

Complex carbohydrate digestion by CAZymes is a multi-step process 

involving trophic interactions between microbes, such as competition and 

cooperative sharing of resources (Milani et al., 2017a). For example, complex 

carbohydrates may be detected by bacteria known as primary degraders, which 

break down these glycans and provide oligosaccharides and monosaccharides to 

be broken down by other microbes in the gut (Milani et al., 2017a). Metabolites 

produced by primary degraders can then serve as substrates for microbial 

secondary degraders (Milani et al., 2017a).  

Bacterial metabolism of carbohydrates leads to the production of molecules 

that have bioactive roles in the human body, including short-chain fatty acids 

(SCFAs) such as butyrate, acetate, and propionate (Bhattacharya et al., 2015). 

While butyrate serves as an energy source for gut epithelial cells and colonocytes, 

acetate and propionate are carried to the liver to serve as substrates for 

gluconeogenesis and lipogenesis (Tremaroli and Bäckhed, 2012). SCFAs play 

further roles in protein and cholesterol synthesis, in addition to impacting gene 

expression in the colon by regulating the enzyme histone deacetylase (HDAC) and 

certain G-protein-coupled receptors (GPRs) (Laforest-Lapointe and Arrieta, 2017; 

Tremaroli and Bäckhed, 2012). Consequently, the diversity and activity of bacterial 

CAZymes has important consequences for human nutrition, energy balance, and 
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the regulation of adiposity (Bellahcene et al., 2013; Cantarel et al., 2012; Gnoth et 

al., 2000; Lin et al., 2012; Ramakrishna, 2013; Tremaroli and Bäckhed, 2012).  

 

1.2 Bifidobacterium 

Bifidobacterium are among the dominant members of the infant gut 

microbiota, and can make up to 90% of the relative abundance of infant stool 

samples. They are characterized as Gram-positive, anaerobic bacteria without 

motility or spore-forming activity (Duranti et al., 2020). Bifidobacteria were first 

isolated from infant feces in 1899 by H. Tissier, and were initially named Bacillus 

bifidus (Turroni et al., 2014b), Throughout the 20th century, bifidobacteria were 

classified under Lactobacillus, and were finally characterized as their own genus 

in 1974 (Buddingh, 1975).  The genus consists of 80 taxa, which are comprised of 

73 species and 7 subspecies, although some metagenomic studies have found 

over 89 novel bifidobacterial species in addition to the presently-described 

members (Duranti et al., 2017b, 2020; Laureys et al., 2016; Lugli et al., 2018; 

Michelini et al., 2016a, 2016b, 2018; Milani et al., 2017b; Modesto et al., 2018b, 

2018a; Pechar et al., 2017). Based on sequence similarity, Bifidobacterium taxa 

typically cluster into ten distinct phylogenetic groups (Lugli et al., 2019b).  

As gut commensals, bifidobacterial species carry Carbohydrate Active 

Enzymes (CAZymes) to metabolize incoming human milk oligosaccharides 

(HMOs) and other carbohydrates into human-digestible sugars. Although the 

relative abundance of Bifidobacterium species in infancy decreases as the 
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microbiota transitions to an adult-like state, they persist in the gut throughout life 

(Laforest-Lapointe and Arrieta, 2017),(Arboleya et al., 2016a; Odamaki et al., 

2016). It is consistently reported in the literature that B. longum ssp. infantis is one 

of the key colonizers of the infant gut, while B. adolescentis is found primarily in 

adults (Avershina et al.; Underwood et al., 2015). In infancy, breastfeeding is 

strongly associated with B. longum spp. infantis, while formula-fed infants are often 

seen to have adult-like microbiotas with different bifidobacterial species, such as 

B. adolescentis and B. longum spp. longum (Davis et al., 2020). Different B. 

longum subspecies, B. catenulatum, B. bifidum, and B. breve  are detected at all 

ages, with the exception of centenarians, who are often colonized by B. dentium 

(Kato et al., 2017).  

The curious survival of this genus throughout life has led to the hypothesis 

that bifidobacteria may be keystone species in the gut, potentially conferring 

positive benefits to the gut microbiota in both infancy and adulthood (Garcia et al., 

2019; Gotoh et al., 2019). Keystone groups in the microbiota exert major effects 

on the microbial community in a manner that is disproportionate to their 

abundance; the loss of these groups can be positive or negative, and can have 

cascading impacts, such as decreased diversity, extinction of microbial taxa, or 

disrupted ecosystem functions (Laforest-Lapointe and Arrieta, 2017). As keystone 

species, Bifidobacterium may be important for the survival of other species, 

particularly by producing SCFAs that are used by other microbes, or by acting 

against pathogenic species (Laforest-Lapointe and Arrieta, 2017). The majority of 
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Bifidobacterium species are isolated from the gastrointestinal tracts of humans, 

social insects, non-human mammals, and birds; surprisingly, all aforementioned 

habitats represent animals whose offspring receive greater parental care (Turroni 

et al., 2018a).  

Bifidobacteria are detected in all mammalian species, with their overall 

average relative abundance in mammalian adults being roughly 3.5% (Milani et al., 

2017b). This suggests that while bifidobacteria are not necessarily the dominant 

genera in adult mammals, they are widespread. The four most abundant and 

prevalent bifidobacterial species (B. adolescentis, B. longum, B. pseudolongum, 

and B. bifidum) have a wide range of adaptive capabilities, leading to their 

prevalence in the guts of 85% to 95% of mammalian species, at different 

abundances (Milani et al., 2017b). In contrast, there are other bifidobacterial 

species that are less abundant, but highly host-specific (Milani et al., 2017b). The 

prevalence of these species in gastrointestinal habitats suggests that their primary 

mode of ecological transmissions occurs from the maternal microbiota to the 

offspring (Turroni et al., 2018a). Importantly, studies suggest that Bifidobacterium 

species have coevolved to confer protective advantages to the infant microbiota, 

such as competitively excluding Gram negative enteropathogenic bacteria, in 

addition to inhibiting a variety of virulence factors (Delcaru et al., 2016; Vazquez-

Gutierrez et al., 2016).  Bifidobacteria produce metabolites like lactate and acetate 

that encourage the growth of other microorganisms through cross-feeding (Turroni 

et al., 2018a; Underwood et al., 2015).   
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1.2.1 Bifidobacterium metabolic activity in host health 

Bifidobacterium species carry glycoside hydrolases to metabolize a large 

variety of carbohydrates, increasing the availability of nutrients to both the host and 

other gut microbes(Bottacini et al., 2014). In doing so, they also produce bioactive 

compounds—including SCFAs, vitamins, and fatty acids—that help lower intestinal 

pH, enable sodium and water absorption by the host, increase bioavailability of 

calcium and magnesium, and protect epithelial cells from pathogens(Bottacini et 

al., 2014; Scott et al., 2013). 

During infancy, members of B. longum spp. infantis break down HMOs into 

acidic products, such as lactate and the SCFA acetate (Duar et al., 2020a). B. 

longum spp. infantis is the only known bacteria that has complete metabolic 

pathways to break down all HMO structures in human milk into acidic compounds 

(Duar et al., 2020a). Lactate and acetate go on to lower the pH of the gut, and 

increase colonization resistance to maintain a protective gut environment, which 

reduces the risk of enteric inflammation and autoimmune disorders (Duar et al., 

2020a; Sela et al., 2008; Underwood et al., 2015). In the absence of B. infantis, 

HMOs are actually passed into stool, indicating that they are not used as a dietary 

resource. As a result, energy sources are not provided to the infant or to secondary 

degraders(Duar et al., 2020b). Acetate production by bifidobacteria is also 

important for anti-inflammatory activity through T-cell and cytokine regulation, in 

addition to improved protection of the gut mucosal epithelium (Fukuda et al., 2012; 
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Smith et al., 2013).  On the other hand, lactate is transported by gut epithelial cells 

to the brain, where it is responsible for regulating neural activity (Duar et al., 

2020b). By producing acetate and lactate, bifidobacteria engage in cross-feeding 

interactions that lead to the production of butyrate, which has a pivotal role as the 

preferred energy source of epithelial cells (Alessandri et al., 2019). Butyrate also 

encourages anti-inflammatory responses in the gut(Alessandri et al., 2019).  

After the introduction of solid foods, the cross-feeding activities previously 

conducted by infant strains of bifidobacteria are subsequently handed off to adult 

strains (Roy et al., 2006; Turroni et al., 2018b). In addition to HMOs, bifidobacteria 

also degrade diet-derived sugars (glucans, fructans, xylans, resistant starches, 

pectins, etc), and mucins, which are the glycoprotein on the gut epithelial layer 

(Alessandri et al., 2019). As the gut microbiota matures, there is a transition 

towards adult metabolic pathways for SCFA production. For example, adult strains 

of B. bifidum begin breaking down mucins to produce acetate (Turroni et al., 

2018b).  B. bifidum strains such as PRL2010 are also known to be particularly 

altruistic by engaging in cross-feeding activities that encourage the growth of other 

Bifidobacterium species (Turroni et al., 2020). By breaking down mucin, 

bifidobacteria also encourage the secretion and recovery of more colonic mucin, 

which favorably thickens the gut epithelial barrier(Caballero-Franco et al., 2007). 
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1.2.2 The Bifidobacterium pan-genome and strain-level CAZyme activity 

Selective pressure in the gut has led bifidobacteria to have a very large pan- 

genome of over 24,000 clusters of orthologous genes (COGs)(Milani et al., 2014, 

2015; O’Callaghan and van Sinderen, 2016; Rodriguez and Martiny, 2020). In 

comparison, the strict bifidobacterial core genome that is found in 100% of species 

is comprised of just 438 genes, with 115 additional “soft core” genes that are found 

in 95% of species. Notably, while the Bifidobacterium core genome only contains 

the partial Embden-Meyerhof Parnas (EMP) pathway for glycolysis, it has all the 

genes necessary for the Bifidobacterium-specific “fructose-6-phosphate-shunt” (or 

“bifid-shunt”) to break down glucose and fructose to lactic acid and acetate (Milani 

et al., 2014; O’Callaghan and van Sinderen, 2016). During the conversion of 

pyruvate to acetate, these pathways allow bifidobacteria to synthesize an 

additional ATP molecule per glucose, which means that the bifid-shunt produces 

more energy than the EMP pathway during glycolysis (Fushinobu, 2010; De Vuyst 

et al., 2014). In the gut microbiota, the bifidobacterial energetic yield is thus higher 

than that of lactic acid bacteria (Milani et al., 2014). Consequently, the bifid shunt 

may contribute to bifidobacterial persistence in the gut after infancy, and 

particularly after the introduction of solid foods.  

Bifidobacterial species exhibit a large diversity of GHs for the breakdown of 

carbohydrates, with some GHs being a part of the core genome, and others being 

a part of the pan-genome (O’Callaghan and van Sinderen, 2016). For example, 

GH2 is a β-galactosidase that is predicted to be found in nearly all bifidobacterial 
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genomes.  For bifidobacterial species that reside in mammalian guts, GH13 is the 

most commonly-found glycoside hydrolase(O’Callaghan and van Sinderen, 2016). 

GH13 encodes α-1,4-glucosidases, amylopullanases, and α-amylase, and is 

responsible for breaking down a diverse range of carbohydrates, including plant-

derived glycans such as starch, amylose, amylopectin, stachyose, raffinose, and 

melibiose(Katoh et al., 2020; Kumar, 2010; Turroni et al., 2019). The broad 

bifidobacterial glycobiome also consists of GH29 (fucosidases, exo-sialidase), 

GH95 (exo-sialidase), GH20 (hexosaminidase), GH112 (lacto-N-biosidases), 

GH38 (α-mannosidases), GH125 (mannosidases), and GH129 (α-N-

acetylgalactosaminidases)(Katoh et al., 2020; Milani et al., 2015).  

Bifidobacterial species also have their own core glycobiomes. For example, 

members of the B. bifidum species are known to have a large number of mucin-

degrading GHs, due to their crucial roles in breaking down the gut epithelial 

layer(Turroni et al., 2018b). As such, some GHs responsible for the metabolism of 

host-derived glycans are always found within the B. bifidium species, including 

GH33 (exo-sialidases), GH34 (exo sialidases), GH29 (fucosidases, exo-sialidase), 

GH95 (fucosidases, exo-sialidases), and GH20 (hexosaminidase)(Turroni et al., 

2018b).  

While there have been many studies characterizing the GHs and other 

CAZymes in the Bifidobacterium pan-genome, all pan-genomic analyses indicate 

that there are a high number of COGs that are unknown(O’Callaghan and van 

Sinderen, 2016; Rodriguez and Martiny, 2020). Current knowledge points to the 
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fact that the Bifidobacterium pan-genome has not yet been completely 

characterized, since rarefaction curves plotting the identification of new genes are 

yet to level off for the genus(Duranti et al., 2016; Milani et al., 2014).  

 

1.2.3 Beyond Bifidobacterium: The importance of identifying strains in the 

gut microbiome  

With the immense selective pressure in the gut microbiota, bacteria are 

constantly evolving to persist in the environment, especially during key timepoints 

such as solid food introduction. Since these changes are happening at a strain-

level, many previously uncharacterized COGs and CAZymes are likely to be found 

in the pan-genome rather than the core genome. To fully understand the 

interactions and activity of bacteria in the infant gut—along with the impact of these 

bacterial interactions on host health—we must be able to identify known and 

unknown COGs in specific bacterial strains in a variety of genera. As we have 

outlined with Bifidobacterium, similar levels of diversity exist in all other major 

genera found in the infant gut microbiome, such as Bacteroides and Lactobacillus 

(Truong et al., 2017; Zhao et al., 2019). Given the close link between strain-level 

activity and host health, a species-level analysis is insufficient to fully understand 

how microbial communities are connected to disease states(Van Rossum et al., 

2020).  
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1.3 Culture-independent methods of characterizing variation in the 

infant gut microbiome 

The gut microbiota, which is represented by fecal stool samples in most 

studies, can be profiled using various approaches. While initial studies primarily 

involved culture-based techniques, it was formerly presumed that the majority of 

the microbiota is un-culturable, prompting an increase in culture-independent 

profiling techniques(Milani et al., 2017a; Walker et al., 2014). Although this theory 

has since been refuted, culture-independent techniques continue to provide an 

efficient, low cost mechanism to profile microbial communities (Browne et al., 

2016; Lau et al., 2016; Walker et al., 2014). Given the sheer number of bacterial 

strains present in each sample, it is not possible to culture and sequence each 

isolate. While the challenges and  limitations of purely in silico analyses have 

been extensively discussed in the gut microbiome research community, these 

protocols continue to be an invaluable tool for strain-level analysis(Maguire et al., 

2020; Quince et al., 2017; Van Rossum et al., 2020).  Two widespread 

methodologies to profile the microbiota include 16S ribosomal RNA gene 

sequencing and metagenomics.  

 

1.3.1 16S ribosomal RNA gene Profiles 

16S rRNA gene profiling involves high-throughput sequencing of the 16S 

rRNA gene, which serves as a conserved marker to profile microbial communities 
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(Milani et al., 2017a). PCR primers can bind to conserved DNA sequences 

bordering one of the nine hypervariable regions, V1 to V9, of the 16S rRNA gene; 

the amplification and analysis of these regions can be used to identify the microbial 

genomes they belong to (Chakravorty et al., 2007). While 16S rRNA gene profiling 

is a highly-characterized and tested approach, there are several caveats to relying 

solely on this methodology. Firstly, the V1 to V9 regions can vary based on their 

level of conservation across microbial taxa; as a result, it is essential to choose a 

PCR primer pair that can reliably differentiate between different taxa (Chakravorty 

et al., 2007). For example, while sequencing the V3 region is most suitable for 

profiling bacterial genera, V4 to V7 are less useful for genus or species-level 

differentiation (Chakravorty et al., 2007). Secondly, some bacteria can have 

multiple copies of the 16S rRNA gene, making the method less reliable for 

elucidating species abundances(Milani et al., 2017a).  Lastly, this is a low-

resolution method for characterizing within-species variation; while oligotyping, 

amplicon sequence variants (ASVs), and full gene single-nucleotide variants 

(SNVs) can sometimes capture within-species strains, the method is not optimized 

for high resolution profiling(Van Rossum et al., 2020). However, despite these 

caveats, 16S rRNA gene profiling remains to be one of the best methods for 

taxonomically profiling the gut microbiota(Milani et al., 2017a).   
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1.3.2 Shotgun Metagenomics 

Shotgun metagenomic sequencing involves sequencing all DNA extracted 

from complex environmental samples, including microbes that have not been 

previously classified or cultured (Milani et al., 2017a). With the increased ease-of-

access and lowering costs of sequencing technology, the past decade has made 

shotgun metagenomics an established protocol to study the gut microbiome. 

Unlike 16S rRNA gene profiling, metagenomic sequencing does not require 

primers or DNA amplification. Furthermore, metagenomic sequencing provides 

significantly more information about the microbiota, including functional information 

about metabolic processes and antibiotic resistance(Milani et al., 2017a). This data 

can also be assembled to extract full-length genome sequences of abundant 

bacteria, making it a highly valuable approach for microbial profiling(Milani et al., 

2017a).  

Unfortunately, while metagenomic sequencing is a powerful tool to profile 

the microbiome, analyzing metagenomic data is a highly variable and multi-step 

process, introducing potential for diversity in conclusions at every individual 

step(Quince et al., 2017). The nature and complexity the environmental sample, 

chosen sequencing platform, sequencing depth, and outputted data amount and 

length can all  impact the choice of tools used to analyze the data (Quince et al., 

2017). Choice of analysis software further impacts the quality of results(Quince et 

al., 2017).  A summary of bioinformatics protocols for processing shotgun 

metagenomic sequencing data is outlined in Figure 1. 
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Figure 1: Bioinformatics genome-resolved metagenomics workflow for shotgun 
metagenomics data 
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1.3.3 Metagenomic sequencing 

Sequencing platforms differ in the amount of data generated, and the 

maximum read lengths of the outputted DNA sequences (Quince et al., 2017). 

Currently, the most widely-used platforms are the Illumina sequencing instruments, 

including the Illumina MiSeq series and the Illumina NextSeq benchtop instrument, 

with previous studies also utilizing the now discontinued Illumina HiSeq series 

(Illumina, 2021; Quince et al., 2017). The Illumina MiSeq instrument is able to 

generate a maximum read length of 2 X 300 bp per read, with the other instruments 

being limited to 2 X 150 bp(Illumina, 2021; Quince et al., 2017). The NextSeq 1000 

and 2000 can generate a maximum of 1.1 billion reads per run, while the others 

can generate up to 4 million, 25 million, or 400 million reads per run. Production-

scale Illumina products, such as the NovaSeq 6000, can generate up to 20 billion 

reads per run, at a read length of 2 X 250 bp (Illumina, 2021). The maximum read 

length of DNA fragments greatly impacts the assembly process; for example, 

larger read lengths are easier to assemble than smaller read lengths(Quince et al., 

2017). The aforementioned platforms can perform both single-end (SE) and 

paired-end (PE) sequencing;  PE-sequencing is more commonly used, since it 

allows researchers to elucidate the distance between DNA fragment ends 

(Almeida and De Martinis, 2019). The amount of data generated is impacted by 

sequencing depth, which refers to the number of times that a DNA fragment may 

be sequenced in a sample. Differences in coverage and sequencing depth 
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determine the tools that can be used for data processing; for example, high 

coverage sequencing data can be both computationally intensive and time-

consuming to analyze, which influences the type of metagenomic assemblers that 

would be most compatible for analysis (Quince et al., 2017).  

 

1.3.4 Metagenomic quality control and assembly 

DNA fragments generated with shotgun metagenomics are processed for 

quality control, by removing adapters and trimming low-quality reads(Ghurye et al., 

2016). Data quality is assessed with tools such as FASTQC, and trimmed with 

tools such as Trimmomatic,, Cutadapt, and Trim Galore (Andrews, 2010; Bolger et 

al., 2014; Krueger, 2015; Martin, 2011). These tools use the PHRED score 

algorithm to assess quality, which determines the probability that a nucleotide has 

been inaccurately incorporated into sequencing reads (Almeida and De Martinis, 

2019). Other parameters of quality control include GC-content, levels of sequence 

duplication, and sequence lengths (Andrews, 2010). 

Trimmed data can be assembled into contiguous segments, or contigs, in a 

method known as assembly (Breitwieser et al., 2017). There are several 

advantages to using metagenomic assemblies as opposed to short-read analyses. 

Assemblies can be used to distinguish open reading frames, thus providing 

genomic context, and better predictions of phenotypes and metabolic activity. 

There are two types of metagenomic assembly methods, known as de novo or 

reference-based assembly. The former reconstructs the metagenome using only 
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overlapping reads from raw sequencing data, and the latter uses previously-

sequenced genomes as a reference for comparative assembly (Ghurye et al., 

2016). De novo genomic assembly is a computational problem that cannot be 

solved efficiently, and thus requires heuristic methods (Ghurye et al., 2016). The 

three paradigms of de novo genomic assembly are Greedy, Overlap-Layout-

Consensus, and de Bruijn graph. While Greedy algorithm assembly is not 

commonly used, Overlap-Layout-Consensus assembly is typically used for low 

coverage, longer reads with higher error rates, such as those produced by Pacific 

Biosciences or Oxford Nanopore sequencing instruments (Ghurye et al., 2016).  

De Bruijn graph assemblers are currently the most commonly used, and are 

well-suited for the high coverage, short reads produced by Illumina sequencing 

instruments (Ghurye et al., 2016). This method is relatively more computationally 

efficient, which is an important factor when analyzing large amounts of sequencing 

data. The de Bruijn graph algorithm uses the overlaps and relationships between 

fixed-length substrings, or k-mers, found in the sequence reads (Ghurye et al., 

2016). Shared k-mers are used to infer overlapping sequences and create a de 

Bruijn graph, which can then be resolved by finding a Eulerian path(Ghurye et al., 

2016). Essentially, these overlapping reads are assembled into multiple branches 

of contiguous sequences, or contigs, which are then aligned into consensus 

sequences; gaps between different contigs are known as scaffolds, which can be 

used to order the contigs (Almeida and De Martinis, 2019). K-mer sizes impact the 

quality of the contigs and the finally assembly, with short k-mer sizes being ideal 
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for extracting low-abundance genomes, and long k-mer sizes being ideal for higher 

quality contigs (Quince et al., 2017). Most metagenomic assemblers—such as 

IDBA-UD, MegaHit, and MetaSPAdes—use multiple k-mer sizes, thus 

circumventing the problem of having to choose the ideal k-mer size (Li et al., 2015; 

Nurk et al., 2017; Quince et al., 2017). Notably, the ability of assemblers to 

accurately create contigs is influenced by the relative abundances of microbial 

genera in these samples, in addition to the strain diversity of the species (Quince 

et al., 2017). 

Reference-based assembly takes advantage of the fully-sequenced 

genomes available in genomic databases (Ghurye et al., 2016), used as reference 

sets, against which raw sequencing reads are aligned to create a consensus 

sequence. This kind of assembly is useful for datasets with low coverage or with 

many low-abundance organisms since these include many incomplete genomes 

that would be difficult to assemble (Ghurye et al., 2016). The quality of reference-

based assembly relies on the quality of reference datasets, limiting its 

effectiveness for microbes where no reference genomes are available (Ghurye et 

al., 2016). Despite this, reference datasets can be a powerful tool to validate the 

quality of a de novo assembly, with the two approaches complementing each other 

when analyzing metagenomic data. 

 In addition to the different types of assembly algorithms and methods, there 

are also different strategies for employing these assembly methods. The two 

strategies for metagenomic assembly are single-sample assembly, where each 
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sample is assembled individually, or co-assembly, where multiple samples are 

assembled together. While there is a lack of consensus on which of these two 

methods is beneficial, previous work has shown that co-assembling can be a useful 

technique when the experimental design includes multiple samples from the same 

site or organism, at either different time points or under different experimental 

conditions (Brown et al., 2013; Chen et al., 2020). In this case, time-series samples 

can provide additional data for bacterial strains unique to the community, 

potentially making it easier to resolve low abundance strains in the assembly.  

While co-assembly is a useful strategy in some instances, a 2019 study 

reported that sample co-assembly can lead to consensus genomes, where strain-

specific differences are often lost (Pasolli et al., 2019). For this reason, the authors 

reported that that co-assembly is less useful for cross-sectional data, and most 

useful for longitudinal data when there are more than five time-series samples from 

the same subject (Pasolli et al., 2019). Even in this case, if the goal of a study is 

to evaluate strain-specific evolution over time, co-assembly may not be the best 

strategy. However, co-assembly remains a widely used tool for metagenomic 

assembly, especially to recover genomic information from low abundance 

organisms in microbial communities.  

 

1.3.5 Metagenomic assemblers and strain diversity  

Metagenomic assembly is difficult due to a number of challenges. First, 

assembly algorithms cannot differentiate between genetic repeats from 
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sequencing errors and repeats due to genuine biological differences (Ghurye et 

al., 2016). Secondly, less abundant organisms will have lower coverage in the 

sequencing data and may often be lost during the assembly process. One solution 

to this problem is to conduct depth normalization to correct for uneven coverage 

(Brown et al., 2012; Ghurye et al., 2016). Third, metagenomic assembly is 

computationally intensive, requiring a large amount of memory and generating 

large amounts of data that need to be stored (Ghurye et al., 2016). And lastly, the 

quality of assemblies is difficult to determine since it relies on assembly statistics, 

such as length of contigs, which do not necessarily equate with how well the 

assembly is representing the true genomic sequence. Conventionally, assembly 

quality has been determined using assembly statistics that rely on the length of 

assembled contigs. One such assembly statistic is the N50 value, or the median 

contig size, which represents the size of the largest contig in the genomic sample, 

such that all the contigs larger than the N50 are the sum of the genome size 

(Ghurye et al., 2016). However, assembly statistics that rely on contig size assume 

that longer contigs have better quality, which may not necessarily be true.  

Furthermore, metrics such as the N50 cannot be applied to metagenomic samples, 

since the size of the metagenome is not known(Ghurye et al., 2016).  

 

1.3.6 Metagenomic assembly-based and reads-based analyses  

The raw metagenomic sequences and assemblies can be used for a 

number of reads-based and assembly-based analyses. Taxonomic annotation is 
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used to elucidate the relative abundances of microbial species in the microbiota 

sample (Prakash and Taylor, 2012). In the context of the infant gut microbiota, 

conducting these analyses at different time-points could shed light on the 

progression in microbial colonization throughout infancy. For example, this could 

include variances in the levels of keystone taxa, such as Bifidobacterium species. 

Taxonomic profiling is typically conducted on raw reads rather than the assembled 

metagenome (Quince et al., 2017). Lowest common ancestor (LCA) strategies are 

used to provide taxonomic classifications or functional annotations for 

metagenomic datasets with short reads, and include tools such as MEGAN (Huson 

et al., 2007). Reads are run through BLAST, and each identified gene is matched 

to a node on the NCBI taxonomy; reads are then assigned to the lowest common 

ancestor of the species known to have the identified gene. Marker gene-based 

approaches, such as mOTU and MetaPhlAn, enable phylogenetic and taxonomic 

analysis of a community by using conserved marker genes found in 

microorganisms(Sunagawa et al., 2013; Truong et al., 2015). Profilers such as 

Kaiju and Diamond instead use protein-coding sequences(Buchfink et al., 2015; 

Menzel et al., 2016).  On the other hand, tools such as Kraken and LMAT(Ames et 

al., 2013; Quince et al., 2017; Wood and Salzberg, 2014) use k-mer based 

identification in order to determine the taxonomy within a sample. Taxonomic 

classification prior to assembly can circumvent challenges such as the potential 

loss of low-abundance organisms caused by metagenomic assembly. However, 

since this approach relies entirely on reference databases, it can also make it 
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difficult to profile microbes that have not been previously characterized(Quince et 

al., 2017).  

Functional profiling is typically done after reads have been assembled into 

contiguous sequences. Functional annotation assigns known functions to genes in 

the metagenome and can be used to understand the activity of the 

microbiota(Prakash and Taylor, 2012). For example, the number and type of 

CAZymes in a metagenomic profile from an infant stool sample might differ 

between exclusive breastfeeding and consuming solid food. Most tools for 

functional annotation use homology-based approaches, while others use motif- or 

pattern-based approaches (Prakash and Taylor, 2012). When this data is 

combined with taxonomic information, genes can be linked to specific gut microbes 

(Prakash and Taylor, 2012). Predicted taxonomic, functional, and metabolic 

profiles can be combined with clinical data about each individual in order to 

understand the impact of different variables on the gut microbiome composition 

(Prakash and Taylor, 2012).  Common post-assembly functional profiling tools 

include Prokka, Prodigal, and dbCAN, while reads-based profiling tools include 

HUMAnN3, MEGAN, and MG-Rast (Beghini et al., 2021; Beier et al., 2017; Hyatt 

et al., 2010; Meyer et al., 2019; Seemann, 2014; Yin et al., 2012). 
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1.3.7 Obtaining metagenome-assembled genomes from metagenomic 

assemblies 

An assembled metagenome can be “binned” to computationally isolate full 

bacterial genomes from metagenomic data. Binning refers to the approach of 

assigning assembled contigs to draft genomes, or bins, based on identifying 

characteristics or signals within the genome (Chen et al., 2020; Roumpeka et al., 

2017). Characteristics that are used for accurate binning include read coverage, 

sequence or tetranucleotide composition, or the taxonomic identity of single-copy 

bacterial marker genes within each scaffold (Chen et al., 2020).  Binning highly 

abundant organisms in a sample is sometimes a relatively simple task, given the 

large number of fragments that share the same genomic characteristics, such as 

similar coverage within the sample, unique tetranucleotide frequencies, similar GC 

content, and consistent phylogenetic identities (Chen et al., 2020). However, 

binning becomes more complicated where there is increased within-species 

diversity, making it difficult to separate closely related genomes from each other. 

Often, if an experimental design includes multiple samples from the same site or 

organism at different timepoints, the time-series samples can provide a unique 

strategy for binning, where the shared patterns can be taken advantage of (Brown 

et al., 2013; Chen et al., 2020). Most binning tools use a combination of these 

aforementioned sample features; some examples of binning tools include 

CONCOCT, MetaBat, and MaxBin (Kang et al., 2015; Lu et al., 2017). With 

software pipelines such as Das Tool and MetaWrap, it is also possible to use 



MSc Thesis – B. Singh; McMaster University – Chemical Biology INTRODUCTION 

 32 

multiple binning tools, evaluate the quality of bins from each tool, and aggregate 

the results into the best possible bins (Sieber et al., 2018; Uritskiy et al., 2018).  

High-quality bins that may serve as draft genomes are known as 

metagenome-assembled genomes, or MAGs. The method of retrieving MAGs from 

metagenomic data is known as genome-resolved metagenomics. There are no 

strict rules in the field regarding when a “bin” becomes a “MAG”, or when a “MAG” 

becomes a “complete MAG” (CMAG).  Many studies report complete genomes if 

their MAGs contain all the essential marker genes expected to be found within the 

microbe that the MAG belongs to (Chen et al., 2020). However, using this metric 

to evaluate genome completeness disregards other important quality factors, such 

as fragmentation, gaps, or mis-assemblies. A recent 2020 paper attempted to 

formulate guidelines for MAG reporting (Chen et al., 2020). According to the 

authors, a MAG should be considered complete if it has (1) a single, circular 

chromosome, (2) “perfect” read coverage support, and (3) no gaps (Chen et al., 

2020). If the reported MAG meets these criteria, it is a complete MAG, or a CMAG.  

It is very rare to obtain a CMAG from metagenomic data, especially when using 

short paired-end reads. As such, as of 2019, there were only 59 microbial CMAGs 

reported in publicly available datasets, with 36 of those belonging to microbes that 

have smaller than average genomes (Chen et al., 2020).  

Genome-resolved metagenomics provides irreplaceable benefits in 

allowing for the study of genes and metabolic pathways in low-abundance 

organisms, and in previously uncultivated bacteria. This protocol has offered a 
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solution to the bottleneck of culture-dependent approaches, where organisms had 

to be isolated and cultured prior to sequencing (Chen et al., 2020). MAGs can be 

a good alternative to the time-intensive task of sequencing bacterial isolates. 

Furthermore, good quality MAGs have led to various scientific breakthroughs, such 

as the discovery of “Candidate Phylum Rokubacteria”, a previously unknown 

lineage on the tree of life (Becraft et al., 2017; Chen et al., 2020). Another example 

is the characterization of the complete nitrification pathway of the genus Nitrospira, 

made possible by the identification of a single gene from a MAG (Chen et al., 2020; 

Daims et al., 2015). Furthermore, binning to retrieve MAGs is an important part of 

metagenomic data analysis, since using assembly-level data as a proxy for 

microbial communities can lead to incorrect interpretations (Chen et al., 2020). For 

example, a 2017 study that conducted a contig-level analysis erroneously claimed 

to have identified “hundreds” of novel microbes in the human blood metagenome, 

using single-copy genes (Chen et al., 2020; Kowarsky et al., 2017). Analysis of the 

same data after binning revealed that the single-copy genes clustered around a 

small number of contigs, belonging to the superphylum Parcubacteria (Chen et al., 

2020). Rather than hundreds of novel microbes, the dataset contained just one.   

However, to obtain biologically relevant information, a genome must be as 

complete as possible. Due to gaps in metagenomic assemblies, errors or 

misassemblies, chimeras, contamination, and strain diversity, achieving a fully 

complete MAG from metagenomic data is not only challenging, but also rare (Chen 

et al., 2020). Some limitations of using incomplete, draft MAGs include missing 
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information about genes, loss of gene order, and difficulty in differentiating 

between chromosomes and plasmids (Chen et al., 2020). Furthermore, MAGs may 

be “composite” or “consensus” genomes, without the representative within-species 

variation that exists in the complex community that they were reconstructed from 

(Chen et al., 2020; Pasolli et al., 2019).  Low quality, fragmented, or composite 

genomes are more common when the samples are complex and heterogenous, 

and less common when the within-sample diversity is low (Chen et al., 2020). 

There is also the danger of contigs being mis-binned, or genomic sequences being 

inserted into a bin belonging to the incorrect organism (Chen et al., 2020). The 

standard way to determine a bin’s quality is with the CheckM software package, 

which uses the occurrence of genus-specific bacterial single-copy genes to 

determine the % completeness of a bin, along with the % contamination within the 

bin (Parks et al., 2015). Unfortunately, this is not a robust method to determine 

MAG quality, and relying solely on single copy genes can lead to erroneous 

conclusions. For example, if the MAG contains mis-binned regions that do not 

contain any single-copy genes, this contamination would never be detected (Chen 

et al., 2020). 

 

1.3.8 Challenges of studying the infant gut microbiome 

 Compared to most environmental or adult gut microbiome samples, the 

infant gut microbiome is relatively simple, with a few abundant microbial species 

in each sample (Milani et al., 2017a). While this may initially appear as an 
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advantage, it amplifies one of the previously mentioned challenges of 

metagenomic assembly and binning. The abundant microbial species in the infant 

gut often have many species variants, predictably causing confusion between 

sequence repeats and creating multiple assembly graphs that must be reconciled 

(Breitwieser et al., 2017). These challenges are caused by the abundance and 

diversity of genera such as Bifidobacterium (Milani et al., 2017a) and Bacteroides 

in the gut. 

 Specifically, Bifidobacterium species have a large pan-genome. As a result, 

in addition to the conserved regions of high similarity in each Bifidobacterium 

strain, they also have pan-genomic regions with many unique genes. This can 

potentially cause errors in metagenomic assembly, where unique regions may be 

un-assembled or misassembled. Lastly, highly abundant taxa in the infant gut 

microbiota can often mask low-abundance species.    

 

1.3.9 Previous work in assessing metagenomic analysis quality with 

simulated data 

Given the possibility of erroneous and incomplete results at the major stages 

of taxonomic prediction, assembly, binning, and gene annotation, several studies 

have attempted to validate the accuracy of metagenomic tools. The Critical 

Assessment of Metagenome Interpretation (CAMI) challenge benchmarked 

multiple assembly and binning tools with simulated metagenomic data(Sczyrba et 

al., 2017). Unsurprisingly, the study found that the overall quality of final bins varied 
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largely based on community complexity; average genome completeness could be 

as low as 38% (Sczyrba et al., 2017). A recent paper also evaluated the 

performance of different methods specifically on data assembled with 

MetaSPAdes, finding that most binners were not well-optimized for similar strains 

(Yue et al., 2020). There have also been attempts to quantify the performance of 

MAG binning tools for plasmids and genomic islands, with results showing that less 

than 30% of plasmids and 45% of genomic islands could be identified with good 

coverage in the genome they originally belonged to (Maguire et al., 2020). 

Furthermore, when it came to predicting antimicrobial resistance (AMR) genes in 

MAGs, only 53% of chromosomal, 16% of plasmid, and 45% of genomic island 

AMR genes could be identified (Maguire et al., 2020).  

 It is important to note that a major caveat in many benchmarking studies is 

the lack of consideration towards the difference in how values are reported by 

different tools (Sun et al., 2021). One example of this is bacterial abundance 

values, which are not reported the same way across different taxonomic profilers. 

K-mer-based profilers report sequence abundance, while marker gene-based 

profilers report taxonomic abundance (Sun et al., 2021). A recent study used 144 

simulated metagenomic samples to test the performance of taxonomic profiling 

pipelines, finding that k-mer based profilers, such as Centrifuge and Kraken, 

outperformed marker gene-based profilers, such as MetaPhlAn2 (Miossec et al., 

2020). However, given the fact that Centrifuge and Kraken report sequence 

abundance, while MetaPhlAn2 reports taxonomic abundance, these tools cannot 



MSc Thesis – B. Singh; McMaster University – Chemical Biology INTRODUCTION 

 37 

be directly compared. Depending on which abundance value is being evaluated, 

different profilers will outperform each other. These considerations are incredibly 

important when validating protocols, and several tutorials have been published to 

establish best practices for benchmarking bioinformatics tools (Bokulich et al., 

2020; Meyer et al., 2021). 

 

1.4 Research Paradigm  

1.4.1 Purpose 

 The purpose of this thesis is to understand the effectiveness of current 

metagenomic protocols on infant gut samples, and to provide a framework and 

bioinformatics pipeline for future analyses of infant gut metagenomic data. 

Particularly, due to the persistence of Bifidobacterium in the gut both before and 

after solid food introduction, we want to understand the effectiveness of these 

pipelines in samples dominated by Bifidobacterium. By providing a framework for 

analyzing these samples, we aim to provide a consistent protocol for mapping 

functional and metabolic activity for genera with high within-species diversity, in 

addition to low abundance organisms that might be masked by overrepresented 

genera. 
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1.4.2 Research Question 

 Based on the gaps identified in the metagenomic analysis of infant gut 

microbiome data, we had the following research questions:  

 

Research question I: How effective is a standard metagenomic workflow 

in reconstructing high quality metagenome-assembled genomes from infant 

gut metagenomic samples? How do microbial community composition and 

metagenomic assembly quality impact the accuracy of strain-level CAZyme 

predictions in MAGs?    

I. Research question II: Can we build a metagenomic analysis pipeline 

geared towards attaining high quality metagenome-assembled genomes 

and CAZyme predictions from infant gut microbiome data? 

II. Research question III: How does the number and type of predicted 

metabolic genes and pathways of abundant and rare bacteria in the infant 

gut microbiome change over the period of solid food introduction? 

 

1.4.3 Aims 

I. Aim I: Use a simulated metagenomic dataset of infant gut microbiome 

data to understand and quantify the role of community composition, the 

presence of closely related strains, and assembly quality on 1) retrieving 
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high quality MAGs from metagenomic data, and 2) accurately predicting 

CAZymes from assembly-level and MAG-level data. 

II. Aim II: Based on the results of Objective I, build a reproducible and 

computationally feasible standard metagenomic pipeline to analyze 

infant gut microbiome data, and 

III. Aim III: Use real metagenomic data to understand how the metabolic 

activity of bacterial species change over the solid food introduction 

period.  

 

1.4.4 Hypotheses 

I. Hypothesis I: Higher community complexity, as characterized by 

sample Shannon Diversity Index, observed species count, and high 

inter-genus diversity, will lead to lower quality MAGs and less accurate 

CAZyme predictions for abundant genera. 

II. Hypothesis II: Samples obtained after solid food introduction will 

display an increased abundance of bacterial strains with the ability to 

metabolize non-HMO food glycans, and a higher number of 

carbohydrate degrading genes and pathways. 
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2 Methodology  

2.1 Data Usage 

The data used for the completion of this thesis includes 34 metagenomic 

samples that were simulated using 16S rRNA gene profiles from the Baby & Mi 

cohort, and 30 metagenomic samples from 15 infants belonging to the Baby & Mi 

cohort. 

 

2.1.1 Baby, Food & Mi Study 

The majority of the data analysis was conducted on samples from the Baby, 

Food & Mi sub-study, which falls under the Baby & Mi cohort (Dizzell et al., 2021). 

The cohort included 15 infants, who were intensively sampled for approximately 

two weeks following the introduction of solid foods and during weaning from 

breastmilk (Figure 2). Sample collection began 3-4 days before the introduction of 

solid foods, and continued daily for 17 days. To be included in the Baby & Mi study, 

the infants had to be full-term, vaginally born, and breastfed. Exclusion criteria 

included caesarian section at birth, high-risk pregnancies, and exposure to 

antibiotics within 28 days of starting the study (Dizzell et al., 2021). 
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2.1.2 Shotgun metagenomic sequencing 

Paired-end shotgun metagenomic sequencing was conducted on 2 stool 

samples from each of the 15 infants; the first sample was immediately before the 

introduction of solid food, while the second sample was towards the end of the 

collection period (Figure 2). 100mg of solid stool was used during the DNA 

extraction; when applicable, stool was collected from the diaper liner instead 

(Dizzell et al., 2021; Homann et al., 2021; Stearns et al., 2017). The DNA extraction 

was involved mechanical lysis with ceramic beads that were 2.8 mm and glass 

Figure 2: All Baby, Food & Mi samples collected during the introduction to 
solid foods. Green squares represent days on which stool samples were 
collected. Blue squares represent samples that were sent for metagenomic 
sequencing. The red line represents the day that solid foods were introduced 
to the infant diet. 
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beads that were 0.1 mm, for a total of 3 minutes at 3000 rmp, in sodium phosphate 

monobasic and guanidinium thiocyanate EDTA N-lauroylsarcosine buffer 

(Homann et al., 2021; Stearns et al., 2015, 2017). The MagMAX-96 DNA Multi-

Sample Kit was used to purify the DNA extracts, using the MagMAX Express-96 

Deep Well Magnetic Particle Processor (Homann et al., 2021).  

 2 samples belonging to the same infant, JCSA4 and JCSA5, were sequenced 

at the Genomics Core Facility at Dalhousie University, with the Illumina NextSeq 

500 instrument. Paired-end reads were 150 bp in length, and the two samples had 

a read count of 97,762,039 bp for JCSA4 and 21,377,794 bp for JCSA5. The 

remaining 28 samples were sequenced at the McMaster Genome Facility, with the 

Illumina Hiseq1500 instrument. Paired-end reads were 250 bp, and each forward 

and reverse file had a mean read count of 9,809,250 bp. JCSA4 and JCSA5 were 

sub-sampled to 17 million reads to accommodate the differences in read count and 

length.  

 

2.1.3 16S rRNA gene Profiles 

34 infant samples from Baby, Food & Mi study were chosen at random for 

the metagenomic simulation, using 16S microbial profiles from infant stool, which 

were based on the v3 region of the 16S rRNA genes as part of the Baby, Food & 

Mi study (Dizzell et al., 2021). Originally, libraries were sequenced with 2x250 bp 

reads on the Illumina MiSeq instrument. Adapter, primer, and barcode sequences 

were trimmed from sequencing reads with cutadapt and ASVs (amplicon sequence 



MSc Thesis – B. Singh; McMaster University – Chemical Biology METHODOLOGY 

 43 

variants) were inferred with the Divisive Amplicon Denoising Algorithm 2 (DADA2) 

package (Callahan et al., 2016; Homann et al., 2021; Martin, 2011) Taxonomy was 

assigned to ASV sequences using the Divisive Amplicon Denoising Algorithm 2 

(DADA2) package, which used the RDP Bayesian classification method against 

the Silva 2013 full length 16S rRNA gene tree (Callahan et al., 2016; Homann et 

al., 2021; McDonald et al., 2012; Wang et al., 2007). Abundance values and 

taxonomic metadata were exported into BIOM format using QIIME2. Samples were 

rarefied to achieve even sample depth, and relative abundance plots were made 

with the phyloseq package (v1.32.0) in R (McMurdie and Holmes, 2013). 

 

2.1.4 CAMISIM metagenomic simulations from infant gut 16S rRNA gene 

profiles 

The Critical Assessment of Metagenome Annotation (CAMI-) Simulator 

(SIM) was used to simulate the 34 metagenomes, using taxonomic profiles derived 

from the 16S rRNA gene profiles (Fritz et al., 2019; Sczyrba et al., 2017). CAMISIM 

inputs included the summary .biom file, along with a configuration file with paths to 

all samples, relevant databases, and additional specifications. Since 16S profiles 

were used for the simulation, CAMISIM was run for both community design and 

read simulation. The ART simulator was chosen within CAMISIM to generate 

Illumina HiSeq 150bp reads (Huang et al., 2012). The mean fragment size for the 

paired-end reads was 270, with a standard deviation of 27, while the genome 

masking 'N' cutoff frequency was one in 150. As a part of the simulation, 
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sequencing errors that are common to the Illumina platform were also introduced 

to the reads. CAMISIM was run without anonymization, with a random seed. A 

maximum of three strains were set to be simulated per ASV. In addition to 

generating raw metagenomic reads, the simulator was also used to generate 

individual gold-standard assemblies and a pooled gold-standard co-assembly 

Once the raw forward and reverse reads of sample-specific genomes had been 

generated, the resulting reads were concatenated together and shuffled for each 

sample using BBMap (Bushnell, 2014). CAMISIM taxonomy, abundance, and 

community data for all samples were formatted with labdsv package in R. Relative 

abundance was calculated using the CAMISIM-generated absolute abundance 

and taxonomy files for each sample. Absolute counts were transformed as a 

proportion of the total counts. To create relative abundance stacked bar charts, the 

data was filtered to the Order level. 

 

2.2 Software availability 

All bioinformatics analyses and pipelines used and created for this thesis are 

outlined in Table 1.  

Table 1: Bioinformatics analyses and GitLab repositories for all analyses 
conducted in this thesis 

METHOD 
SECTION 

RESULTS 
SECTION 

ANALYSIS GITLAB REPOSITORY 

 
2.3 

 
Chapter 1 

mg_workflow, a 
pipeline to analyze 

mg_workflow, accessible 
at: 
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simulated 
metagenomic 
samples 

https://gitlab.com/bhavyasi
ngh/mg_workflow  

 
2.4 

 
Chapter 1 

Documentation for 
post-pipeline 
simulated data 
analysis 

metagenomics_simulatio
n_project, accessible at: 
https://gitlab.com/bhavyasi
ngh/metagenomics_simula
tion_project  

 
2.5 

 
Chapter 2-3 

MAGPIE, a 
minimal and 
customizable 
metagenomic 
pipeline for infant 
gut samples 

MAGPIE (MetAGenomics 
PipelInE), accessible at: 
https://gitlab.com/bhavyasi
ngh/magpie 

 
2.6 

 
Chapter 2-3 

bfm_mg_flow, An 
instance of the 
MAGPIE pipeline, 
modified for Baby, 
Food & Mi 
metagenomic 
samples. 

bfm_mg_flow, accessible 
at: 
https://gitlab.com/bhavyasi
ngh/bfm_mg_flow  

 

2.3 mg_workflow: Snakemake pipeline to derive metagenome-

assembled genomes from simulated data 

The simulated samples were analyzed with a custom pipeline, mg_workflow, 

made with Snakemake (v5.23.0) (Koster and Rahmann, 2012). The Snakefile used 

for the metagenomic data analysis is accessible on GitLab (Table 1).  In addition 

to software-specific outputs, documentation includes software benchmarks, log 

files, and version numbers for each run of the pipeline. Any instances where post-

workflow analysis had to be conducted are documented in the post-processing 

GitLab repository, metagenomics_simulation_project (see section 2.4).  

 

https://gitlab.com/bhavyasingh/mg_workflow
https://gitlab.com/bhavyasingh/mg_workflow
https://gitlab.com/bhavyasingh/metagenomics_simulation_project
https://gitlab.com/bhavyasingh/metagenomics_simulation_project
https://gitlab.com/bhavyasingh/metagenomics_simulation_project
https://gitlab.com/bhavyasingh/magpie
https://gitlab.com/bhavyasingh/magpie
https://gitlab.com/bhavyasingh/bfm_mg_flow
https://gitlab.com/bhavyasingh/bfm_mg_flow
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2.3.1 Snakemake pipeline environments 

Prior to generating the pipeline, Miniconda3 environments were created for 

the various software used in the analysis. Environments were exported as .yaml 

files, which were then used by Snakemake to carry out the individual rules. A total 

of 9 environments were created, for pre-assembly quality control, metagenomic 

assembly with MEGAHIT and MetaSPAdes, post-assembly quality control, 

mapping, binning, post-binning quality control, BLAST alignments, and CAZyme 

predictions. All .yaml files for the mg_workflow pipeline are also accessible on 

GitLab.  

 

2.3.2 Metagenomic assembly 

Forward and reverse reads were first checked for quality with 

FastQC (v0.11.9). Reads were trimmed using Trimmomatic (v0.39) with default 

parameters and all files were again checked for quality with FastQC (Andrews, 

2010; Bolger et al., 2014). The samples were individually assembled with 

MEGAHIT and MetaSPAdes (Li et al., 2015; Nurk et al., 2017). All samples were 

then concatenated for co-assembly with MEGAHIT and MetaSPAdes. Contigs 

from the MEGAHIT, MetaSPAdes, and gold-standard individual assemblies were 

simplified using Anvi’o (v6.2.0) (Eren et al., 2015). Assembly quality was evaluated 

using MetaQUAST, with a custom reference database consisting of all genomes 

used to generate the simulated reads (Mikheenko et al., 2016).  
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2.3.3 Contig binning and identification 

All assemblies, including the gold-standard assemblies, were indexed using 

bowtie2-build (v2.4.1), with bowtie2 also being used to map raw reads back to the 

assemblies (Langmead and Salzberg, 2012). The resulting .sam files were 

converted to .bam format, sorted, and indexed using samtools (v1.11) (Li et al., 

2009). Assembly coverage information and paired contigs were calculated and 

assemblies then binned with MetaBat2 (v2.2.15) (Kang et al., 2015). Finally, the 

checkm lineage_wf (v1.0.16) pipeline was used to identify bin identity, and to 

assess bin completeness, contamination, and strain heterogeneity (Parks et al., 

2015). CheckM results were exported for further analysis in R.  

  

2.3.4 BLAST alignment of bins to references 

 A BLAST database (v2.10.1+) was made using all CAMISIM reference 

genomes, along with a genome mapping file to link contigs to their respective 

accession numbers and taxonomic IDs(Madden, 2013; Ye et al., 2006). Bins were 

queried against the database with BLASTN, with default parameters. The results 

were outputted with output format 6, and included the following output metrics: 

query accession and version, subject accession and version, query length, subject 

length, percent identity, length, mismatches, gaps, length, mismatches, number of 

gap openings, query start, query end, subject start, subject end, e-values, bit 
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scores, taxonomic IDs, scientific names, query coverage, query coverage per 

subject, and query coverage per HSP.  

 

2.3.5 CAZyme predictions 

CAZymes were predicted using dbCAN (v 2.0.11), with default settings (Yin 

et al., 2012), using the 2020 update of the dbCAN databases. Since dbCAN uses 

DIAMOND, Hotpep, and Hmmer for predicting CAZymes in the query sequences, 

the outputs include a concatenated file of predictions from all three methods. The 

confidence of a CAZyme prediction is based on the number of tools that identified 

the gene in the queried contig. For the assembly-level analysis, dbCAN was run 

on all MEGAHIT, MetaSPAdes, and gold-standard single-assemblies. For the 

MAG-level analysis, dbCAN was run on all predicted bins, in addition to all the 

reference genomes used for the simulation. The gold-standard assemblies and 

reference genomes served as positive controls for the CAZyme analysis.  

 

2.4 Post-pipeline data analysis of actual and gold-standard results 

for simulated data 

Once the bins had been retrieved from the simulated data, all post-pipeline 

analyses were carried out in R. This included comparison of assembling, binning, 

and CAZyme prediction performance across samples with different community 

compositions, and across different assembly and binning methods (Figure 3).
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Figure 3: Summary of post-pipeline data processing after retrieving main 
outputs from mg_workflow. Pink boxes refer to raw data outputted from 
CAMISIM. Blue boxes refer to metagenomic tools used for data processing within 
a metagenomic pipeline. Green boxes refer to R scripts used for the analysis. 
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2.4.1 Generating sample and species mapping files 

The unique identifiers for simulated strains included the following: 1) 

accessions of reference genomes used for the simulation, and 2) unique CAMI 

identifiers for each strain created for the reference genomes. The accessions were 

used to download NCBI Taxa IDs and full scientific names for each strain, using 

the Entrez Direct command line tools (Kans, 2010) The CAMISIM output generated 

sample mapping files, which outlined the reference genomes used to create each 

CAMI strain. Abundance files were mapped to taxonomic profiles, Taxa IDs, and 

strain identifiers to create a master sample identification file.  

 

2.4.2 Alpha Diversity and Beta Diversity  

Shannon Diversity Index, Simpson Diversity Index, and Observed Species 

for 1) the whole dataset and 2) the Bifidobacterium genus were calculated with the 

vegan and phyloseq packages (Dixon, 2003; McMurdie and Holmes, 2013). Prior 

to calculating sample diversity, all organisms that were not present in any samples 

were removed from the analysis. Beta diversity was calculated with the phyloseq 

package, using the ordinate function, with the Bray-Curtis Dissimilarity method. 
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2.4.3 Assembly and binning quality metrics 

Assembly quality metrics (total contig numbers, the size of the largest 

contigs, misassembled regions, N50, NA50, etc) were derived from the 

MetaQUAST tabular output, and imported into R. Similarly, binning quality metrics 

(completeness, contamination, strain heterogeneity, number of marker genes 

identified), were derived from the CheckM tabular (.tsv) outputs. Bin quality was 

calculated as the % completeness - % contamination of each bin. All raw tabular 

output files used for the post-pipeline analyses are also accessible in the 

metagenomics_simulation_project GitLab repository.  

 

2.4.4 Calculating bin reference coverage  

The bin reference coverage is defined as the amount that a bin covers the 

reference genome of its identified organism.  BLASTN alignment results were used 

to calculate the coverage of the original reference genomes in the bins, as per 

previous methods (Maguire et al., 2020). The script 

Find_Overlapping_Blast_Hits.R was used to establish the identity of contigs in a 

bin. Regions that aligned to the same taxa were merged, and taxa that represented 

the majority of the query were assigned as that contig’s identity. Overall, if the 

majority of the contigs in a bin belonged to the same taxa, it was classified as such. 

To calculate how much of a reference genome was covered by a bin, the sum of 

the total length of alignments to the reference genome was divided by the length 
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of the reference genome. Since alignments can often be misleading due to the 

number of closely related strains in the database, the highest aligned reference 

genome was only considered to be the identity of the bin if it was directly used to 

simulate a strain in the sample that the bin was constructed from.  

 

2.4.5 Classifying binned and unbinned organisms 

Once bin identity had been established, the bins that had been 

reconstructed for each sample were compared to the abundance and taxonomy of 

all the organisms in the sample, in order to determine which original strains in each 

sample were binned or un-binned.  

 

2.4.6 Filtering MAGs and assigning MAG identities  

Using the CheckM outputs, bins were considered MAGs if: (1) Their overall 

quality (CheckM % completeness - % contamination) was over 50%, and (2) If a 

BLASTN alignment of the bin against our local database of reference genomes 

used in the simulation returned a hit for an organism that was in the same sample 

that the bin came from. 
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2.4.7 Assembly-level and MAG-level comparison of CAZyme prediction 

accuracy 

The script dbCAN.r was used to concatenate all individual dbCAN results, 

and to create a combined output to consolidate the DIAMOND, HMMER, and 

HotPep predictions. Using CAZyme predictions for gold-standard assemblies as 

the reference, the Caret package in R was used to create confusion matrices 

comparing gene predictions between the assemblers. Mean true positives, true 

negatives, false positives, and false negatives for MEGAHIT and MetaSPAdes 

single assemblies were determined using caret’s binary comparisons between 

predicted and reference values. If a particular CAZyme was predicted in both the 

reference (gold standard) and prediction (MEGAHIT or MetaSPAdes), then both 

would have a value of “1”, classifying a true positive prediction. Similarly, if the 

reference had a “0”, while the prediction had a “1”, then the prediction was a false 

positive. Similarly, to compare Bifidobacterium CAZyme predictions, dbCAN 

results for all Bifidobacterium MAGs and references were filtered out from the 

combined output. When confusion matrices were made for each Bifidobacterium 

MAG, the original genome was used as the positive control and reference for the 

matrix. Thus, the CAZyme predictions for each MAG were compared to correct 

CAZyme predictions from the reference genome that the MAG represented. The 

predictions for each MAG were formatted as a tabular output, which included the 

following quality metrics: Prediction Accuracy, Kappa, AccuracyPValue, 

McnemarPValue, Sensitivity, Specificity, Pos.Pred.Value, Neg.Pred.Value, 
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Precision, Recall, F1, Prevalence. The Pos.Pred.Value refers to the percent of 

positive predictions that were true positives, while the Neg.Pred.Value refers to the 

percent of negative predictions that were true negatives.  

 

2.5 MAGPIE: A Snakemake MetAGenomic PIpelinE for infant gut 

microbiome metagenomic metagenomic samples 

MAGPIE, or the Infant Gut MetAGenomic PIpelinE, was modeled after the 

mg_workflow pipeline, which had been created to analyze simulated metagenomic 

data. The trimming, quality check, assembly, binning, and binning quality steps are 

common between MAGPIE and mg_workflow. MAGPIE was based on results from 

Chapter 1: Evaluating current metagenomic protocols on simulated infant 

gut samples, and is outlined in detail in Chapter 2: Development of a 

Metagenomic Pipeline.   

 

2.5.1 Binning and bin aggregation 

Two different binning tools were used in MAGPIE. In addition to MetaBat2, 

contigs are binned with MaxBin2 as well, with DAS Tool being used to integrate 

the results from both binners (Kang et al., 2015; Sieber et al., 2018; Wu et al., 

2016). Prior to binning, contig depth, coverage and pairs are calculated for 

MetaBat2 with the script jgi_summarize_bam_contig_depths. For MaxBin2, 

coverage is calculated with the script pileup.sh from BBMap. To create the final 
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bins with DAS Tool, the MatBat2 and MaxBin2 bins from each sample are 

converted to scaffolds using the Fasta_to_Scaffolds2Bin.sh script. 

 

2.6 Analysis of Real Metagenomic Data 

2.6.1 bfm_mg_flow: A cloned instance of MAGPIE for the Baby, Food & Mi 

Study 

An instance of MAGPIE was cloned and customized for infant gut 

metagenomic samples from the Baby, Food & Mi study, which were longitudinal. 

The following additional analyses were added to the pipeline: 

 

2.6.1.1 Read-level analyses: trimming, taxonomy, and functional predictions 

The first analysis to be added was for read-level trimming, taxonomy, and 

functional predictions, using the bioBakery3 workflows. Raw FASTQ paired-end 

reads were processed through the bioBakery3 Whole Metagenome Shotgun 

(wmgx) pipeline (Beghini et al., 2021). The environment and rules used to run the 

pipeline is available in the bfm_mg_flow GitLab repository. Within the pipeline, 

reads were trimmed using KneadData, which uses Trimmomatic (v0.36), Bowtie2, 

TRF, and FastQC. Taxonomic profiles for the trimmed reads were determined 

using MetaPhlAn3, and functional profiles were determined using HUMAnN3. The 

final outputs included trimmed and original read counts for all samples, merged 
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taxonomic profiles, merged pathway abundance profiles, and HUMAnN3 

alignment and feature counts.  

 

2.6.1.2 Post-processing of read-level analysis 

The outputs from the previous analysis were used in the bioBakery3 Whole 

Metagenome Shotgun Visualization workflow (wmgx_vis) (Beghini et al., 2021). 

The wmgx_vis workflow was run twice, once to compare differences between the 

Baby & Mi infants by participant ID, and once to compare all infants before and 

after the introduction of solid foods.  

 

2.6.1.3 Post-pipeline processing of HUMAnN3 metabolic predictions before 

and after solid food introduction  

BioCyc IDs were downloaded for all bacterial carbohydrate degradation 

genes (Caspi et al., 2020). Merged HUMAnN3 outputs were filtered based on 

metabolic pathways defined by the BioCyc IDs, and visualized before and after 

solid food introduction using the humann_barplot program, with participant ID and 

sample timepoint as categorical variables. All outputs were scaled using the 

pseudolog argument. Merged HUMAnN3 outputs were then filtered based on 

organisms of interest. Heatmaps of MetaCyc pathways before and after solid food 

introduction were created with pheatmap. 

 



MSc Thesis – B. Singh; McMaster University – Chemical Biology METHODOLOGY 

 57 

2.7 Statistics 

2.7.1 Comparison of means 

The Shapiro test was used to determine whether data were normally 

distributed. To compare means, we used Analysis of Variance (ANOVA) for 

parametric data, and Kruskal-Wallis for non-parametric data. After each ANOVA, 

if the residuals were not normally distributed, we did a Kruskal-Wallis for 

confirmation of significance.  

 

2.7.2 Linear regressions and comparison of correlations 

Multiple linear regression analyses were carried out using the lme4 package 

(Bates et al., 2014). The R2 values for multiple regressions were determined using 

the MuMIn package. To compare correlations between groups in linear models, 

we did a Fisher’s Z transformation of Spearman correlations for non-parametric 

data, and Pearson correlations for parametric data (Berry and Mielke, 2000; 

Bishara and Hittner, 2017).   
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3 Chapter 1: Evaluating current metagenomic 

protocols on simulated infant gut samples 

Given the infant gut community structure of samples dominant in abundant 

genera with high inter-genus diversity, our first aim was to quantify the 

effectiveness of standard metagenomic workflows in infant gut metagenomic 

samples with high within-species diversity of abundant genera. We aimed to 

answer our first research question: (I) How effective is a standard metagenomic 

workflow in reconstructing high quality metagenome-assembled genomes 

belonging to (i) abundant organisms, and (ii) rare organisms, and how do microbial 

community composition and metagenomic assembly quality impact the accuracy 

of strain-level CAZyme predictions in MAGs? The research design for this aim was 

to process simulated reads with a general metagenomic workflow, and to compare 

Figure 4: Research design to quantify the performance of standard 

metagenomic analysis workflows for the infant gut microbiome 
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the actual results of the pipeline to the “gold-standard” reference results (Figure 

4). We simulated infant gut metagenomic samples using 16S rRNA gene profiles, 

and created a general metagenomic data analysis pipeline, mg_workflow. The 

simulation included raw metagenomic reads, taxonomic and abundance profiles 

for each sample, gold-standard single sample assemblies and co-assemblies, and 

gold-standard MAGs, represented by the reference genomes used to simulate the 

raw reads. We hypothesized that higher community complexity, observed species 

count, and high inter-genus diversity would lead to lower quality MAGs and less 

accurate CAZyme predictions for abundant genera.  

 

3.1 34 infant gut metagenomic samples were simulated from 16S 

rRNA gene profiles 

34 infant gut metagenomic samples were simulated with CAMISIM, using 

16S rRNA gene profiles from real infant samples (Figure 5). 255 reference 

genomes were used to simulate 405 strains in the simulation, with a maximum of 

three strains being simulated per species. Within the simulated metagenomic 

samples, 11 samples were dominant in Bifidobacterium angulatum, nine were 

dominant in Bifidobacterium longum subsp. infantis ATCC 15697 = JCM 1222 = 

DSM 20088, one dominant in Bifidobacterium longum subsp. infantis 157F, five 

dominant in Escherichia coli O111:H- str. 11128, four dominant in Eubacterium 

eligens ATCC 27750, and four samples dominant in Akkermansia muciniphila, 

Bacteroides fragilis, Clostridium aceticum, and Parabacteroides distasonis ATCC 
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8503 (Table 2). 21 samples were dominant in Bifidobacterium (Supplementary 

Table 1). The relative abundance of the most dominant strain was over 60% in 

nine samples, between 40% and 60% in 13 samples, and under 40% in 12 samples 

(Table 2). The observed species count for the simulated metagenomes ranged 

Figure 5: Relative abundances of original 16S rRNA profiles and the 
simulated metagenome. A. Order-level relative abundance of ASVs from original 
16S rRNA profiles derived from infant gut stool samples, and B. Order-level relative 
abundance of organism in metagenomes simulated using the CAMI-Simulator. 
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from 21 to 82, with a mean observed species count of 50. The Shannon Diversity 

Index for the simulated metagenomes ranged from 0.24 to 2.88, with a mean of 

1.74. Lastly, the Simpson Diversity Index for the metagenomes ranged from 0.07 

to 0.92, with a mean of 0.68 (Table 2). Along with raw metagenomic reads for the 

34 samples, the simulation output also included gold-standard single- and co-

assemblies per sample. 
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Table 2: Microbiome composition for each simulated metagenomic sample 

SAMPLE 
SHANNON 
DIVERSITY 

SIMPSON 
DIVERSITY 

NUMBER 
OF 

OBSERVED 
STRAINS 

MOST ABUNDANT STRAIN IN 
SAMPLE 

RELATIVE 
ABUNDANCE 

OF MOST 
ABUNDANT 

STRAIN 

sample_0 1.27 0.58 56 
Bifidobacterium longum subsp. 

longum BBMN68 
60.98 

sample_1 2.79 0.88 82 Bacteroides fragilis 27.59 

sample_10 1.83 0.76 50 Clostridium aceticum 38.93 

sample_11 0.91 0.47 28 Escherichia coli O111:H- str. 11128 67.91 

sample_12 0.55 0.26 31 Escherichia coli O111:H- str. 11128 84.94 

sample_13 1.99 0.80 42 
Bifidobacterium longum subsp. 

infantis ATCC 15697 = JCM 1222 = 
DSM 20088 

33.21 

sample_14 0.93 0.49 30 Bifidobacterium angulatum 65.87 

sample_15 1.89 0.77 50 Bifidobacterium angulatum 40.94 

sample_16 1.46 0.65 41 Bifidobacterium angulatum 53.38 

sample_17 1.99 0.73 49 Bifidobacterium angulatum 47.12 

sample_18 2.76 0.87 62 Bifidobacterium angulatum 30.85 

sample_19 1.30 0.62 21 
Bifidobacterium longum subsp. 

infantis ATCC 15697 = JCM 1222 = 
DSM 20088 

52.76 
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sample_2 0.24 0.07 25 Escherichia coli O111:H- str. 11128 96.17 

sample_20 1.42 0.67 30 
Bifidobacterium longum subsp. 

infantis ATCC 15697 = JCM 1222 = 
DSM 20088 

51.27 

sample_21 1.52 0.68 23 
Bifidobacterium longum subsp. 

infantis ATCC 15697 = JCM 1222 = 
DSM 20088 

48.48 

sample_22 1.10 0.56 22 
Bifidobacterium longum subsp. 

infantis ATCC 15697 = JCM 1222 = 
DSM 20088 

59.82 

sample_23 1.09 0.52 28 Escherichia coli O111:H- str. 11128 65.25 

sample_24 2.60 0.86 67 
Bifidobacterium longum subsp. 

infantis 157F 
26.96 

sample_25 1.75 0.75 59 
Bifidobacterium longum subsp. 

infantis ATCC 15697 = JCM 1222 = 
DSM 20088 

34.74 

sample_26 1.87 0.73 64 Bifidobacterium angulatum 45.99 

sample_27 2.15 0.78 65 Bifidobacterium angulatum 41.34 

sample_28 2.06 0.74 63 Bifidobacterium angulatum 46.23 

sample_29 2.33 0.81 72 Bifidobacterium angulatum 36.34 

sample_3 2.14 0.76 58 Bifidobacterium angulatum 44.29 

sample_30 1.94 0.74 72 
Bifidobacterium longum subsp. 

infantis ATCC 15697 = JCM 1222 = 
DSM 20088 

46.47 

sample_31 2.13 0.80 71 Akkermansia muciniphila 35.28 

sample_32 1.15 0.57 45 
Bifidobacterium longum subsp. 

longum BBMN68 
60.07 

sample_33 1.35 0.57 59 Escherichia coli O111:H- str. 11128 61.82 
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sample_4 2.89 0.92 58 
Parabacteroides distasonis ATCC 

8503 
13.42 

sample_5 1.43 0.67 69 Bifidobacterium angulatum 50.52 

sample_6 1.50 0.60 58 [Eubacterium] eligens ATCC 27750 60.58 

sample_7 2.47 0.88 61 [Eubacterium] eligens ATCC 27750 21.04 

sample_8 2.22 0.82 55 [Eubacterium] eligens ATCC 27750 36.07 

sample_9 2.16 0.81 44 [Eubacterium] eligens ATCC 27750 38.40 
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3.2 The effect of assembly tools and microbial community diversity 

on metagenomic assembly 

In order to determine the impact of microbial diversity and closely related 

species on both single- and co-assembly quality, we first assembled simulated 

metagenomic data with MEGAHIT and MetaSPAdes, and subsequently compared 

the quality of these assemblies based on sample community composition. 

MetaQUAST results for single-sample assemblies by MEGAHIT (MHSA) and 

MetaSPAdes (MSSA) were compared against CAMISIM gold-standard single 

assemblies (GSSA), which served as a positive control to determine the impact of 

assembler on overall assembly quality (Table 3) Similarly, the MEGAHIT co-

assembly (MGCA) was compared to the CAMISIM gold-standard co-assembly 

(GSCA). Co-assembling with MetaSPAdes failed due to memory requirements 

(>1TB RAM).  

The mean total single-assembly length and largest contig size for both MHSA 

and MSSA were significantly lower than the GSSAs (p < 0.05) (Table 3). 

Misassembled regions were identified by aligning the assemblies to the original 

reference genomes with MetaQUAST. Overall, the misassemblies made up a 

mean of 4.8% (+/- 0.7) and 0.7% (+/- 0.2) of the total MHSA and MSSA assemblies 

respectively. As expected, zero misassemblies were reported for all GSSAs, which 

served as a positive control when comparing assembly quality (Table 3). From 

both the mean percent of misassemblies and the number of misassemblies per 
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simulated sample, it is clear that MHSA assemblies had more misassemblies than 

MSSA (Figure 6A). For the co-assemblies, the length of the MHCA was roughly 

half that of the GSCA, and with misassembled regions making up 6.5% of the total 

MHCA. (Figure 6B).   

In terms of the role of community composition on misassemblies, assemblers 

performed best with low-Shannon Diversity samples. Higher number of strains per 

sample was positively associated with more misassemblies for both MHSA (ρ = 

0.48, p < 0.001) and MSSA (ρ = 0.64, p < 0.001) (Figure 6C-D). Furthermore, a 

higher relative abundance of the most dominant strain in each sample was 

correlated with fewer number of misassemblies for MEGAHIT (ρ = -0.83 p < 0.001) 

and MetaSPades (ρ = -0.59, p < 0.001), with the association being significantly 

stronger for MEGAHIT than for MetaSPAdes (z=3.19) (Figure 6E-F). The sample 

Shannon Diversity Index was also correlated with higher number of misassemblies 

per sample for both MEGAHIT (ρ = 0.86, p < 0.001) and MetaSPAdes (ρ = 0.71, p 

< 0.001), with the association being significantly stronger for MEGAHIT than for 

MetaSPAdes (z=3.8) (Figure 6G-H). This demonstrates that samples with lower 

community diversity with one clearly dominant strain—as opposed to a dominant 

genus with multiple strains—had fewer misassemblies, with this relationship being 

significantly impacted by the metagenomic assembler of choice. 
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Table 3: Raw assembly quality metrics from MetaQUAST to compare MEGAHIT, MetaSPAdes, and gold-
standard single- and co-assemblies 

 CO-ASSEMBLY SINGLE ASSEMBLY 

Metric MHCA GSCA MHSA MSSA GSSA 

Total length of 
assembly bp 
(95% CI) 

291,698,138 624,020,247 28,962,308 
(5,396,646) 

27,542,948 
(5,013,836) 

45,38,0295 
(9,504,826) 

Total length of 
assembly as a 
proportion of 
expected (95% 
CI) 

0.50  1 0.67 (0.03) 0.64 (0.03) 1 

Longest contig 
bp (95% CI) 

766,344 6,475,289 607,155.65 
(87883.19) 

712,688.59 
(107053.30) 

4,721,608.77 
(396648.61) 

N50 bp (95% CI) 8,140 69,764 26,430.71 
(10031.07) 

34,612.27 
(15164.79) 

691,983.61 
(478,068.79) 

NA50 bp (95% 
CI) 

7,873 69,764 25,389.91 
(9,683.46) 

34,590.24 
(15,169.72) 

691,983.62 
(478,068.79) 

% 
Missassemblies 
(95% CI) 

6.50 0 4.82 (0.69) 0.71 (0.23) 0 
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Figure 6: Metagenomic assembly quality metrics for 104 metagenomic assemblies from 34 
CAMISIM-simulated metagenomic samples.  A. Misassembled lengths of total MSSA and MHSA 
assemblies. B. Mean misassembled assembly length as a percent of the total MSSA 
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3.3 Accuracy of assembly-level CAZyme predictions compared to 

the gold standard 

dbcAN was used to predict CAZymes for MEGAHIT, MetaSPAdes, and 

GSSA single-sample assemblies, showing that predictions were more reliable for 

MSSAs than for MHSAs. The GSSA predictions were used as a reference to 

determine the accuracy of MEGAHIT and MetaSPAdes predictions. MHSAs had a 

significantly higher false positive rate at 18%, compared to 12.4% in MSSAs 

assemblies (p < 0.05) (Figure 7A). Overall, CAZyme predictions in MHSAs were 

Figure 7: MEGAHIT and MetaSPAdes single assembly-level CAZyme 
predictions compared to the gold-standard control. A. Distribution of true 
positive (TP), false negative (FN), false positive (FP), and true negative (TN) 
CAZyme predictions for MHSA and MSSA. B. Bar plot of mean prediction accuracy 
for CAZyme predictions in MHSA and MSSA across samples. C-D. Linear 
regression model of sample Shannon Diversity and CAZyme prediction accuracy 
for MHSA and MSSA. E. Number of true positive, false negative, false positive, 
and true negative CAZyme predictions in a confusion matrix. 
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80.1% (+/- 0.03) accurate compared to the gold-standard, while MSSAs were 

85.2% accurate (+/- 0.01), with a significant difference between the two (p < 0.05) 

(Fig 4B). For both MEGAHIT and MetaSPAdes, increased Shannon Diversity was 

positively associated with the percentage of true positives (p < 0.05), and 

negatively associated with the percentage of false positives (p < 0.05) (Figure 7 

C-D). A distribution of the total number of FP, FN, TP, and TN are outlined in 

Figure 7E.   

 

3.4 Differences in bin and MAG quality by assembly method 

Our next research question was to determine the impact of the assemblers, 

assembly quality, and single and co-assemblies on the resulting MAGs. All single- 

and co-assemblies were binned with MetaBat2, including the GSSAs and GCSAs, 

which served as positive controls to determine the impact of the binning software 

alone, without the added effect of the assemblers. The identity of each bin was 

determined by aligning bins to a database of the reference genomes used to 

simulate the metagenomic samples.  Bins were considered MAGs if: (1) Their 

overall quality (CheckM % completeness - % contamination) was over 50%, and 

(2) If a BLASTN alignment of the bin against our local database of reference 

genomes used in the simulation returned a hit for an organism that was in the same 

sample that the bin came from. The reference coverage of each MAG, or the 

percent alignment of the MAG to its reference, was also used as a quality metric. 
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A total of 2,049 bins were filtered down to 1,026 MAGs. The total number of 

bins obtained for all samples was the highest for MHCA at 429, followed by 378 

for GSCA, 319 for GSSA, 242 for MHSA, and 232 for MSSA (Table 4). Overall, 

GSSAs yielded an average of 6.74 MAGs per sample (+/- 0.55) and 210 in total, 

and GSCAs yielded 6.17 MAGs (+/- 0.42) per sample and 229 in total. MEGAHIT 

co- and single-sample assemblies yielded 7.8 (+/- 0.7) and 5 (+/- 0.42) per sample, 

and 265 and 170 in total (Table 4, Figure 8).  Lastly, MetaSPades single-sample 

assemblies yielded 4.47 (+/- 0.35) MAGs per sample, and 152 in total. The number 

of bins yielded by the MEGAHIT coassembly and the gold-standard coassembly 

were both significantly higher than the number of bins yielded by the MEGAHIT 

and MetaSPAdes single-sample assemblies (p < 0.05). There was no significant 

difference in the number of organisms that were not binned by any of the assembly 

methods. Interestingly, the MEGAHIT co-assembly also yielded more bins than the 

gold-standard (Table 4, Figure 8).  
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Table 4: Bin and MAG quality metrics from CheckM, alignment to reference 
genomes, and abundance of organisms reconstructed as MAGs 

 CO-ASSEMBLY SINGLE ASSEMBLY 

 
METRIC 
 

 
MHCA 

 
GSCA 

 
MHSA 

 
MSSA 

 
GSSA 

Total Bins 429 378 242 232 319 

Total MAGs 265 229 170 152 210 

Mean number of 
MAGs per sample 
(95% CI) 

7.8 (0.7) 6.74 
(0.55) 

5 (0.42) 4.47 
(0.35) 

6.17 
(0.42) 

 

Mean CheckM quality 
of MAGs % (95% CI) 

86.5 (1.7) 95.1 (1.3) 90.5 (1.9) 92.8 
(1.7) 

92.1 
(1.7) 

Mean CheckM 
contamination of 
MAGs % (95% CI) 

3.3 (0.5) 1.8 (0.7) 1.4 (0.4) 1.3 (0.6) 2.1 
(0.8) 

Average % CheckM 
strain heterogeneity 
of all MAGs (95% CI) 

30.37 
(3.78) 

11.00 
(3.81) 

26.15 
(4.93) 

16.36 
(4.61) 

8.08 
(3.06) 

Mean reference 
coverage of all bins 
% (95% CI) 

30.9 (1.6) 76.5 (3.6) 38.1 (2.2) 44.8 
(3.3) 

68.5 
(3.9) 

Mean reference 
coverage of final 
MAGs % (95% CI) 

38.9 (1.4) 93.4 (1.8) 44.6 (2.2) 57.8 
(3.3) 

88 (2.1) 

Sensitivity:  
Average lowest, 
average highest 
relative abundance of 
organisms 
reconstructed in 
MAGs (95% CI) 

0.21 
(0.1), 
19.89 
(5.22) 

0.69 
(0.3), 
42.9 

(7.52) 

4.00 
(5.75), 
23.24 
(6.01) 

7.62 
(6.1), 
40.21 
(7.44) 

4.6 
(5.69)- 
44.41 
(6.77) 

Avg relative 
abundance of 
organisms 
reconstructed in 
MAGs  
(95% CI) 

5.35 (1.1) 10.66 
(2.2) 

5.35 
(1.11) 

14.8 
(2.87) 

12.32 
(2.36) 
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Figure 8: The number of bins and MAGs obtained in total and per sample 
from each assembly. A. Bar plot of the total number of bins obtained per 
assembly, B. Bar plot of the total number of MAGs retrieved per assembly, C. 
Bar plot of the mean number of bins retrieved per sample, with 95 % CI, and D.  
Bar plot of the number of MAGs retrieved per sample, with 95% CI.  
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3.4.1 MAG reference coverage and CheckM quality metrics  

For each reference genome, there could be multiple sub-strains simulated 

by CAMISIM, at different relative abundances. Since each sample had multiple 

closely related species and strains, there could be more than one organism in each 

MAG. Given the importance of obtaining high quality, strain-level MAGs to 

accurately map the metabolic differences between organisms, we chose to 

evaluate the following quality metrics: quality (CheckM % completeness - % 

contamination), CheckM % contamination by itself, Checkm % strain 

heterogeneity, and mean coverage of the reference genome in each MAG. As 

expected, MAGs reconstructed from the GSCA and GSSAs had the highest quality 

MAGs, at 95.1% and 92.1%. This was followed by the MSSAs, MHSAs, and 

MHCAs, at 92.8%, 90.5%, and 86.5%. There was a significant difference between 

the quality of MAGs from the gold standard assemblies and all MEGAHIT 

assemblies. However, there was no significant difference between the quality of 

the gold standard single assembly and the MetaSPAdes single assembly, and 

between the MetaSPAdes and MEGÅHIT single assemblies (Figure 9).   

MAGs reconstructed from the MHCA had the highest mean contamination 

at 3.3%, while MAGs constructed from the MSSAs had the lowest mean 

contamination at 1.4%. The GSSA, GSCA, and MHSA had mean contamination 

values of 2.1%, 1.8%, and 1.4% respectively. The MHCA and MHSA had the 

highest strain heterogeneity, at 30.37% and 26.15%, compared to 11.00% for 

GSCA, 8.08% for GSSA, and 16.36% for MSSA (Table 4).  
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It is worth noting that while MAGs from all assemblies had quality scores 

above 85%, these CheckM-based quality metrics were not consistent with MAG 

reference coverage, or the amount that each MAG covered its reference genome. 

MAGs reconstructed from the GSCA and GSSAs had the highest mean reference 

coverage, at 93.4% and 88%. In comparison, the mean reference coverage values 

for MAGs from MSSAs, MHSAs, and the MHCA were 57.8%, 44.6%, and 38.9%. 

Thus, while a MAG may be considered complete by CheckM, it may not be fully 

complete when considering its alignment rate to the original reference genome it 

represents.  

 

 

Figure 9: Mean reference coverage, CheckM contamination, and quality for 
MAGs reconstructed from GSCA, GSSAs, MHCA, MHSAs, and MSSAs. A. 
Mean % of reference genome covered by the MAG, B. Mean % CheckM 
contamination in MAG, and C. Mean MAG quality (% completeness - % 
contamination), for MAGs retrieved from the GSCA, GSSA, MHCA, MHSA, and 
MSSA. 
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3.4.2  The impact of relative abundance on MAG completeness and 

reference coverage 

To understand how the relative abundance of a strain may play a role in 

MAG quality, we plotted the distribution of MAG completeness and reference 

coverage versus the relative abundance of the original strain that the MAG 

belonged to. For the MSSAs, MHSAs, and MHCA, most strains with a relative 

abundance more than 25% had MAGs with consistently high levels of 

completeness, ranging from 90% to 100%, with little difference in MAG 

completeness distribution between the three assemblies (Table 4). However, for 

the same strains, higher relative abundances did not guarantee high reference 

coverage for the MHSA and MSSA assemblies (Figure 10A-D), and lower 

reference coverage values (less than or equal to 50% reference coverage) could 

be seen even for strains with relative abundances over 25%. From these results, 

it is once again evident that while CheckM completeness and contamination 

metrics are a very useful tool to gauge MAG completeness, a MAG that may seem 

“complete” for having all the core marker genes may still have gaps and missing 

genes.  

For MAGs that have high CheckM completeness but low reference 

coverage, it could be possible that while the core genome is assembled and 

binned, the species- and strain-specific pan-genome is not assembled and binned. 

If we compare the distribution of MAG completeness and reference coverage for 
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the GSSAs (Supplementary Figures 2A-C, 3A-C), they look very similar. Most 

MAGs that are 100% complete also have 100% reference coverage. Furthermore, 

the density graphs of the proportion of MAGs as per their % completeness and 

reference coverage are also similar (Supplementary Figures 2D, 3F). Since 

achieving this overlap in completeness and reference coverage is possible given 

perfect single- and assemblies, it is likely that gaps in the MAGs are a product of 

the assembly step rather than the binning step.  

It is also evident that each assembler was binning organisms of different 

relative abundances, as demonstrated by Figure 11E, showcasing that the MHCA 

had the highest proportion of MAGs from lower-abundance strains, followed by 

GSSAs and MSSAs. Furthermore, Figure 11F also demonstrates that the MHSA 

yielded more MAGs with lower reference coverage, with most MHSA MAGs falling 

below 50% coverage of their reference genomes. In comparison, the majority of 

MAGs reconstructed from the GSSAs had reference coverage higher than 80%.  
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Figure 10: Distribution of MAG reference coverage as a function of the relative 
abundance of original strains. Distribution of the reference coverages of MAGs 
from A. just GSSA, B. MHSA, C. MSSA, or D. all three assemblers plotted against 
the relative abundance of the original strains reconstructed within the MAGs. E. 
Density plot of the number of MAGs yielded by GSSA, MHSA, and MSSA by relative 
abundance. F.  Density plot of the number of MAGs yielded by the three assemblies 
by their reference coverage.  
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Assembly strategy impacts binning of low- and high-abundance organisms 

into MAGs 

MAGs constructed from the MEGAHIT assemblies, MHCA and MHSA, 

captured more low-abundance species (Table 4, Figure 11). As expected, the 

GSSAs and GSCAs captured the largest range of strains of different relative 

abundances; the average relative abundance of strains reconstructed as a MAG 

was between 0.69% and 42.9% for the GSCA, and between 4.6% and 44.41% for 

the GSSA. The MSSA was less sensitive, capturing organisms with an average 

relative abundance of between 7.62% and 40.21%. The average relative 

abundance of organisms captured by MHCA was between 0.21% and 19.89%, 

and between 4% and 23.34% for the MHSA (Figure 11A, 11C). MEGAHIT co-

assembly was thus able to capture very low abundance organisms but not high 

abundance organisms, whereas MetaSpades single assembly was best for high 

abundance organisms but missed many low abundance strains (Figure 11B). 

MEGAHIT assemblies yielded the highest number of bins and MAGs, however, 

bins from the MEGAHIT assemblies also had the lowest reference coverage, 

highest contamination, and highest strain heterogeneity. This contamination was 

also reflected in the false positive CAZyme predictions (section 3.3).  
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3.4.3 Difference in MAGs retrieved from single-sample assemblies and 

coassembly 

To strictly determine the impact of single- and co-assemblies on 

reconstructing high-quality bins, we can compare the performance of the GSCA 

and GSSAs, without looking at any of the assemblers. Given a perfect assembly, 

both the co-assembly and single-sample assemblies yield qualitatively similar 

MAGs, with the GSCA conferring a mild advantage (Table 4). Overall, the GSCA 

yielded more bins and MAGs (378 and 229) compared to the GSSAs (319 and 

210), with higher reference coverage (93.4% compared to 88%), higher quality 

(95.1% compared to 92.1%), lower contamination (1.8% compared to 2.1%), and 

Figure 11: The mean reference coverage, number and relative abundance of 
organisms reconstructed or not reconstructed as MAGs for each assembly 
type. A. Scatter plot highlighting the distribution of MAGs by the relative abundanc 
of their represented strain versus the % reference coverage. B. Bar plot comparing 
the number of organisms recovered or not recovered as MAGs by the different 
assembly types. C. The mean relative abundance of organisms recovered or not 
recovered as MAGs by the different assembly methods. 
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with more sensitivity to low abundance strains (average lowest abundance MAG 

retrieved was 0.69% abundance compared to 4.6%). The only metric where the 

GSSAs outperformed the coassembly was strain heterogeneity, where MAGs from 

the single-sample assemblies had 8.08% strain heterogeneity, compared to 11% 

for the coassembly. In theory, the coassembly was superior in MAG reconstruction. 

However, in practice, when comparing the real MEGAHIT coassembly with 

MEGAHIT single assemblies, the MHSA outperformed the MHCA.  

 

3.5 The effect of microbial community diversity on retrieving strain-

level MAGs from abundant genera 

Our next research question was to determine whether samples containing 

abundant genera with high strain diversity would affect the number and quality of 

MAGs for that genus, and whether this effect would be different based on 

assemblers and assembly method. For this, we chose to look at Bifidobacterium, 

since 21 out of 34 simulated metagenomes were dominated by a high relative 

abundance of bifidobacterial species, with most samples having multiple species, 

and often multiple strains per species. To answer this question, we calculated 

overall abundance of the Bifidobacterium genus per sample, the number of 

Bifidobacterium strains per sample, and bifidobacterial inter-genus Shannon 

Diversity per sample (Supplementary Table 1). 

Higher diversity within the Bifidobacterium genus was associated with lower 

MAG reference coverage, demonstrating that MAGs belonging to diverse genera 
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were of lower quality, covering a lesser percent of their reference genome (p < 

0.05) (Figure 12). On the other hand, higher relative abundance of the 

Bifidobacterium genus was associated with higher reference coverage (p < 0.05). 

Figure 12: The effect of within-genus Bifidobacterium Shannon Diversity, 
number of strains, and relative abundance on the number and reference 
coverage of MAGs retrieved. A.  The correlation between higher within-genus 
Shannon Diversity and the number of MAGs was trending for MHSA. There were 
no significant correlations. B. The correlation between higher Bifidobacterium 
strains and the number of MAGs was trending for MHSA C. Higher relative 
abundance of Bifidobacterium was positively correlated with the number of MAGs 
obtained from MSSA (p < 0.05), and trending for MHSA. D. Higher within-genus 
Shannon Diversity was negatively correlated with the reference coverage of MAGs 
obtained from MHSA, MHCA, and MSSA (p < 0.05). E. Higher Bifidobacterium 
observed species was positively correlated with the reference coverage of MAGs 
obtained from MHSA, MHCA, and MSSA (p < 0.05). F. Higher relative abundance 
of the Bifidobacterium genus was positively correlated with the reference coverage 
of MAGs obtained from MHSA, MHCA, and MSSA. (p < 0.05). 
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For MHCA and MHSA, the effect of relative abundance on reference coverage was 

significantly different compared to the gold-standard assemblies (p < 0.05). For 

MHSA, higher relative abundance of Bifidobacterium within the sample was also 

correlated with the number of Bifidobacterium MAGs retrieved. 

Lastly, higher number of Bifidobacterium strains in the sample was 

associated with higher reference coverage. For MHCA, this association was 

significantly different compared to the gold-standard (p < 0.05). 

We thus found that the number and reference coverage of Bifidobacterium 

MAGs were significantly affected by Bifidobacterium relative abundance within the 

sample, along with within-genus Shannon Diversity and number of observed 

bifidobacterial strains and species.  

The same analysis was carried out for exclusively high-quality (HQ) MAGs 

that had a quality score of more than 90%, yielding similar results (Supplementary 

Figure 4). It is worth noting that out of all assemblies, the MHCA yielded the least 

number of HQ Bifidobacterium MAGs, with only 5 HQ MAGs from 34 samples.  

 

3.6 The effect of assembler choice on CAZyme prediction quality of 

strain-level MAGs from abundant genera 

In order to determine the impact assembly quality on MAG-level gene 

predictions, we chose to compare the accuracy of CAZyme predictions across all 

Bifidobacterium strains in all 34 samples. CAZyme prediction profiles for each of 

the 298 Bifidobacterium MAGs from the five assemblies were compared against 
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CAZyme profiles of their respective reference genomes, belonging to one of 33 

Bifidobacterium strains. Out of the 33 Bifidobacterium strains in the original 

sample, we were able to obtain MAGs for 19.   

The mean CAZyme prediction accuracy was 0.98 for Bifidobacterium MAGs 

reconstructed from the GSCA, 0.95 for MAGs from GSSA, 0.93 for MAGs from 

MSSA, 0.87 for MHSA, and 0.76 for MHCA (Table 5, Figure 13). The prediction 

accuracy for MAGs from MHCA was significantly lower than all other assemblers 

(p < 0.05).  The mean sensitivity, which refers to the rate of true positives captured 

by each method, was 0.98 for GSCA, 0.87 for GSCA, 0.86 for MSSA, 0.72 for 

MHSA, and 0.62 for MHCA. The performance of all assemblers was consistent 

across different CAZyme prediction quality metrics, including positive predictive 

value, negative predictive value, precision, specificity, and F1 (Table 5, Figure 

13). The MHCA consistently had the worst performance compared to the gold-

standard, while the MSSA was closest to the gold-standard.  

 

 

 

 

 

 

 

 



MSc Thesis – B. Singh; McMaster University – Chemical Biology RESULTS 

 85 

 

 

 

Table 5: Bifidobacterium MAG-level CAZyme prediction quality metrics 
compared to CAZyme predictions of gold-standard reference genomes 

BIFIDOBACTERIUM 
MAGs FROM:   

CO-ASSEMBLY SINGLE ASSEMBLY 

 
METRIC (95% CI) 
 

 
MHCA 

 
GSCA 

 
MHSA 

 
MSSA 

 
GSSA 

% True positive  45.8 
(5)  

74.7 
 (4.1) 

65.4 
 (5.6) 

69 
(5.6) 

72.7 
(3.95) 

% True negative 30.8  
(3.6) 

24.4  
(3.9) 

21.7 
 (4.9) 

24.2 
(4.8) 

22.7 
(3.95) 

% False positive 16.9  
(2.3) 

0.5  
(0.5) 

8.1  
(2.7) 

4.4  
(2.3) 

2.8 
(1.4) 

% False negative 6.5  
(1.2) 

0.4  
(0.4) 

4.8  
(1.6) 

2.4 (1.3) 1.8 
(1.2) 

Accuracy (0-1) 0.76 
(0.03) 

0.98 
(0.01) 

0.87 
(0.03) 

0.93 
(0.03) 

0.95 
(0.02) 

Pos. Predictive Value 
(0-1) 

0.84 
(0.04) 

0.98 
(0.01) 

0.80 
(0.08) 

0.92 
(0.05) 

0.92 
(0.05) 

Neg. Predictive Value 
(0-1) 

0.71 
(0.04) 

0.99 
(0.01) 

0.89 
(0.03) 

0.94 
(0.03) 

0.96 
(0.02) 

Sensitivity (0-1) 0.62 
(0.05) 

0.99 
(0.01) 

0.72 
(0.08) 

0.86 
(0.06) 

0.87 
(0.06) 

Specificity (0-1) 0.86 
(0.02) 

0.99 
(0.01) 

0.92 
(0.02) 

0.96 
(0.02) 

0.98 
(0.02) 

Precision (0-1) 0.84 
(0.04) 

0.98 
(0.01) 

0.80 
(0.08) 

0.92 
(0.05) 

0.92 
(0.05) 

F1 (0-1) 0.70 
(0.04) 

0.98 
(0.01) 

0.74 
(0.08) 

0.88 
(0.06) 

0.88 
(0.06) 
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Figure 13: Distribution of CAZyme prediction quality metrics across 
Bifidobacterium MAGs from GSCA, GSSA, MHCA, MHSA, and MSSA.  A. 
CAZyme prediction accuracy, B. Positive Predictive Value, C. Negative 
Predictive value, D. Specificity, E. Sensitivity, and F. Precision. Values are 
reported as means, with 95% confidence intervals. 
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Furthermore, conducting 

CAZyme predictions at the 

MAG-level proved to have 

higher accuracy and lower FP 

predictions compared to 

conducting CAZyme 

predictions at the assembly-

level (Figure 14). At the MAG-

level, the percent of predictions 

from MEGAHIT and 

MetaSPAdes assemblies that 

were FP ranged from 4.4% to 

16.9%, while at the assembly-

level, the FP ranged from 12.4% to 18%. In both instances, the MEGAHIT 

assemblies and MAGs had higher FP values.  

 

3.7 The effect of microbial community diversity on CAZyme 

prediction quality of strain-level MAGs from abundant genera  

Given the differences between the GSAs, MEGAHIT, and MetaSPAdes in 

terms of CAZyme prediction quality, our next research question was to determine 

whether the quality of predictions was also impacted by microbiome community 

Figure 14: Distribution of true 
positive, true negative, false positive, 
and false negative CAZyme 
predictions across Bifidobacterium 
MAGs from GSCA, GSSA, MHCA, 
MHSA, and MSSA. The mean % (95% 
CI) of FP, FN, TP, TN in MAGs are 
plotted for each assembly type.   
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composition. For all samples, higher number of Bifidobacterium strains within each 

species was correlated with decreased CAZyme prediction accuracy (Figure 15).  

The relative abundance of the Bifidobacterium strains represented by the MAGs 

was also positively associated with CAZyme prediction accuracy for their 

respective MAGs (p < 0.05). Within-genus Bifidobacterium Shannon Diversity was 

negatively associated with CAZyme prediction (p < 0.05).  Interestingly, while 

Bifidobacterium within-genus Shannon Diversity was negatively associated with 

CAZyme prediction quality, sample Shannon Diversity was generally positively 

correlated with the same quality metrics. 

 Decreased CAZyme prediction accuracy in Bifidobacterium MAGs with 

increased sample complexity is also evident in Figure 16, particularly for MAGs 

Figure 15: The impact of Bifidobacterium within-species diversity on 
Bifidobacterium MAG-level CAZyme prediction quality metrics. A. Mean 
CAZyme negative predictive value, B. mean CAZyme positive predictive value, and 
C. mean CAZyme prediction accuracy are plotted against the number of strains per 
Bifidobacterium species in each sample.  
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from the MEGAHIT coassembly. After ordering samples based on bifidobacterial 

abundance, it was demonstrated that samples with higher abundance of 

Bifidobacterium had a higher number of MAGs with better CAZyme prediction 

accuracy. However, prediction accuracy was also observed to be impacted by 1) 

the assembler, 2) the number of bifidobacterial species and strains in the sample, 

and 3) phylogenetic distance. 

 The number and type of Bifidobacterium strains obtained by MSSA, MHSA, 

and MHCA were unique (Figure 16). Furthermore, despite the presence of multiple 

strains per species, one Bifidobacterium sp. usually only yielded one MAG, as 

opposed to a MAG for each strain. For example, if a sample had three strains of 

B. longum, only one B. longum MAG was retrieved (Figure 16). Given the fact that 

MAGs from the MSSA, MHSA, and MHCA had 16.36%, 26.15%, and 30.37% 

strain heterogeneity respectively, it is possible that these MAGs had multiple 

strains within them for each bifidobacterial species.   
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Figure 16: Heatmap of CAZyme prediction accuracy within Bifidobacterium MAGs reconstructed 
from MSSA, MHSA, and MHCA for each sample. Each cell represents the CAZyme prediction accuracy 
of a MAG retrieved from MSSA, MHSA, or MHCA for one of 34 samples. CAZyme prediction accuracy was 
calculated against the reference genome for the strain that each MAG was identified to be derived from.  
Sample community composition metrics are reported above the heatmap, including the number of 
Bifidobacterium strains in the sample, the relative abundance of the Bifidobacterium genus in the sample, 
number of total species in the sample, and sample Shannon Diversity.  
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Lastly, bifidobacterial strains that were phylogenetically distinct consistently 

had high CAZyme prediction accuracy, regardless of relative abundance. One 

example is B. thermophilium RBL67, which was present as a singular strain in five 

non-Bifidobacterium dominant samples, and was successfully binned in four 

samples, in all three assembly types. B. coryneforme was another lone strain that 

was successfully binned by MHSA and MSSA but not binned at all in MHCA. Both 

lone strains had high CAZyme prediction accuracy (Figure 16), with their CAZyme 

profiles strongly matching with that of their reference genome. This can be seen in 

Figure 17 and Figure 18, which represents CAZyme predictions for all B. 

thermophilium and B. coryneforme MAGs and reference genomes. Curiously, B. 

coryneforme was binned by all assembly types except MHCA.  

In comparison, with some samples having as many as four strains of B. 

longum, high CAZyme prediction accuracy for MAGs belonging to these strains 

was inconsistent, especially for MAGs reconstructed from MEGAHIT assemblies. 

In some occasions, samples had multiple strains of subspecies such as B. longum 

subsp. infantis. Not only did these MAGs have low CAZyme prediction accuracy, 

but CAZyme profiles had missing genes (false negatives), or additional genes that 

did not belong to a particular strain (false positives). Such “hybrid” MAGs can be 

seen in Figure 19, which represents CAZyme predictions for all B. longum subsp. 

infantis MAGs and reference genomes across different samples and assembler 

types.
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Figure 17: CAZyme predictions for all B. thermophilium 
MAGs and reference genomes across different samples 
and assembler types. The bottom axis represents MAGs, 
while the right axis represents predicted CAZymes. Each 
MAG is color-coded with the assembly-type it was derived 
from. 
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Figure 18: CAZyme predictions for all B. coryneforme MAGs and 
reference genomes across different samples and assembler 
types. The bottom axis represents MAGs, while the right axis 
represents predicted CAZymes. Each MAG is color-coded with the 
assembly-type it was derived from. 

Bifidobacterium coryneforme
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Bifidobacterium longum subsp. infantis
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Figure 19: CAZyme predictions for all B. longum subsp. infantis MAGs and 
reference genomes across different samples and assembler types. This 
heatmap includes the visualization of three strains of B. longum subsp. infantis, 
demonstrating the the prevelance of “hybrid” MAGs. MAGs with potentially more 
than 1 strain are highlighted in grey. 
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3.8 Overall comparison of MAGs and MAG-level CAZyme predictions 

and gold-standard reference genome CAZyme predictions 

Given the assembler-specific differences in Bifidobacterium MAG recovery 

and CAZyme prediction accuracy, we decided to broaden this analysis to include 

MAG recovery profiles from each sample, in addition to CAZyme prediction profiles 

for each reference genome and its respective MAGs. Consistent with our previous 

findings from section 3.7, the five assembly methods recovered different MAGs 

within each sample. While this was observed in all samples, two specific examples 

are Sample 19 and Sample 21 (Figure 20A-B).  MAGs from MHCA and MHCA 

had lower reference coverage than GSCA, GSSA, and MSSA. The MSSA 

recovered the fewest MAGs, but with the highest reference coverage. Overall, 

since each assembly method yielded different MAGs, their combined outputs 

recovered a larger share of strains from the metagenome than any single method.   

 A unique example of MAG recovery in samples with high strain diversity is 

Sample 25, where two strains of B. longum subsp. infantis were the first- and 

second-most abundant. Curiously, neither of the two abundant strains were 

binned, while two less abundant but phylogenetically distinct strains of 

Bifidobacterium––B. angulatum and B. breve––were recovered as MAGs instead 

(Supplementary Figure 5). More examples from samples with different sample 

complexities can be seen in Supplementary Figures 6-7.  
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Figure 20: Sample-specific MAG recovery profiles, with relative abundances of all 
strains in each sample and reference coverages of all retrieved MAGs. A. Sample 19. B. 
Sample 21. For each heatmap, the right-most panel represents a list of all strains in the sample. 
The middle heatmap panel represents the relative abundance of samples. Each cell in the left-
most panel represents whether a MAG was recovered for a particular strain by a particular 
assembly. Darker shades of purple and green represent relative abundance and reference 
coverage respectively, between 0% and 100%.  
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CAZyme profiles from non-Bifidobacterium MAGs and strains were also 

consistent with our previous results. MAG CAZyme predictions were most 

complete for species with singular strains that were phylogenetically distinct, such 

as Akkermansia muciniphila (Supplementary Figure 8). Abundant strains of 

dominant species, such as the strain E. coli O111:H− str. 11128, also had complete 

CAZyme profiles. (Supplementary Figure 9). In contrast, rare strains of dominant 

species with high strain diversity had more gaps in their MAGs. Two examples of 

such strains are E. coli BW2952 and E. coli O104:H4 str. 2011C−3493 

(Supplementary Figure 10). Overall, while MAGs from rare strains had the 

advantage of less contamination and fewer false positives, these MAGs were less 

complete, with more false negative CAZyme predictions.  
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4 Chapter 2: Development of a Metagenomic Pipeline 

   Bioinformatics analysis of metagenomic data is a complex process, and 

protocols for such data analysis can rarely be generalized  (Chen et al., 2020). 

Even when studying a relatively simple community such as the infant gut, there 

are different challenges, such as the high within-species and within-strain diversity 

of abundant genera (Van Rossum et al., 2020). Most often, data analysis pipelines 

must be tailored to the research questions, organisms of interest, community 

composition, sample size, and study design. 

After evaluating and quantifying the effects of microbial community 

composition and assembly quality on MAG recovery and CAZyme prediction, our 

objective was to build a reproducible and computationally feasible standard 

metagenomic pipeline to analyze infant gut metagenomic data. The MetAGenomic 

Analysis PIpelinE, or MAGPIE, is a minimal pipeline that can be customized for 

samples of different community composition. An instance of MAGPIE was cloned 

at customized for samples from the Baby & Mi study, which includes samples from 

the Baby, Food & Mi and Baby & Pre-Mi cohorts.  

 

4.1 Rationale for MAGPIE and bfm_mg_flow  

Mg_workflow was designed to evaluate the success of metagenomic tools 

in recovering strain-level MAGs for all organisms. While MAGPIE was modeled 

after mg_workflow, essential changes were made to tailor this pipeline for infant 
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gut microbiome data, based on the results from Chapter 1. Similarly, bfm_mg_flow 

was further adapted for Baby, Food & Mi samples. For the evaluation of Baby, 

Food & Mi metagenomic data, the primary bacterial genus of interest was 

Bifidobacterium, followed by other carbohydrate-degrading bacteria, such as 

Bacteroides. The Bifidobacterium genus was chosen due to the well-established 

role of bifidobacterial species in infant gut microbial succession, and their presence 

in the gut throughout life (Arboleya et al., 2016b; Milani et al., 2017a). 

Consequently, bfm_mg_flow was tailored to recover high quality MAGs and 

CAZymes from abundant carbohydrate-degrading bacterial genera with high levels 

of within-genus diversity, based on the results from Chapter 1.  

 

4.2 MAGPIE: MetAGenomic Analysis PIpelinE 

MAGPIE is an automated metagenomic pipeline, designed to run on high-

performance computing (HPC) environments, with and without a workflow 

management system. The default workflow manager for the pipeline is Slurm, 

although this can be modified in the configuration. MAGPIE is not designed for any 

specific datasets, and is intended to be adapted as per the research questions of 

the user.  As input, the pipeline requires raw forward and reverse FASTQ files, and 

a sample file with at least one column containing sample names.  The rule graph 

for the pipeline can be seen in Figure 21.  The following adaptations were made 

to MAGPIE after mg_workflow: 
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4.2.1 Separation of MetaSPAdes read error correction and assembly 

Prior to running, MAGPIE was tested on a small subset of samples. Unlike 

mg_workflow, since MAGPIE was tested––and intended to be used on––real 

metagenomic samples, additional errors were noted. Metagenomic samples with 

smaller insert sizes were often not assembled, or responsible for causing delays 

in MetaSPAdes’s error correction and k-mer counting steps. After trial and error, 

separating the MetaSPAdes assembly into separate rules of error correction and 

assembly resolved the problem. 

 

4.2.2 Addition of MaxBin2 and Das Tool 

The second major change was the inclusion of three binning tools instead of one. 

This change was made based on the results from Chapter 1 regarding MAG 

completeness and reference coverage metrics for MHCA, MHSA, and MSSA 

(Table 4), in addition to MAG contamination and false positives in CAZyme 

prediction accuracy. While MAGs from the MSSA had the best mean (95% CI) 

reference coverage out of the three at 57.8% (3.3), a higher reference coverage 

could potentially be retrieved with better binning. A second binning tool, MaxBin2, 

was thus added to the workflow. DAS Tool was added to create combined bins 

based on the results from MetaBat2 and MaxBin2.  
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4.3 bfm_mg_flow 

Derived from MAGPIE, bfm_mg_flow is an automated metagenomic 

pipeline, designed to run in HPC environments, with and without a workflow 

management system. Unlike MAGPIE, bfm_mg_flow has been adapted to run 

specifically on the Baby, Food & Mi samples, and has been customized for our 

specific research questions. Bfm_mg_flow has been successfully used on all Baby, 

Food & Mi samples.  The rule graph for the pipeline can be seen in Figure 22.  As 

input, the pipeline requires raw forward and reverse FASTQ files, and a sample 

metadata file with sample groupings, such as participant ID, and date of sample 

collection. The following additions and changes were made to bfm_mg_flow after 

being cloned from MAGPIE: 

 

4.3.1 Addition of reads-based analyses 

The first major change to bfm_mg_flow was the addition of reads-based 

taxonomic and metabolic predictions with the Whole Metagenome Shotgun 

(wmgx) pipeline from the bioBakery3 workflows. Given the high number of false 

positive CAZyme predictions at the assembly- and MAG-level analyses noted in 

Chapter 1, a reads-based marker gene approach was included, in the case that 

metagenomic assemblies and bins would be of lower quality than expected. 

MetaPhlAn3 was added to the pipeline for taxonomic profiling, and HUMAnN3 to 

profile the identity and abundance of microbial metabolic pathways. The inclusion 
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of the latter was also in line with the research goal of identifying bacterial 

carbohydrate degrading genes during the introduction of solid foods to the infant 

diet. 

 

4.3.2 Addition of sample metadata-based statistics 

The second change to the bfm_mg_flow pipeline was the addition of the 

bioBakery3 wmgx_vis workflow, to agglomerate the results from wmgx based on 

Baby & Mi sample meta-data. The two factors included in the analysis were 

participant IDs, to evaluate infant-specific changes, and the time point of sample 

collection, to compare results before and after the introduction of solid food. The 

reason for this change was to answer our original research questions regarding 

the impact of solid food introduction on the infant gut microbiota. 

 

4.3.3 Omission of MEGAHIT single- and co-assemblies 

Lastly, all MEGAHIT assemblies were omitted from the workflow due to the 

high levels of contamination and low reference coverage in MAGs from MHCA and 

MHSA, as noted in Chapter 1. MEGAHIT assemblies had been less successful at 

obtaining rarer strains of our target Bifidobacterium species and had lower overall 

CAZyme prediction accuracy. MHCA and MHSA also had the highest levels of 

false positive gene predictions, which would be a significant disadvantage for 

prediction bacterial metabolism with carbohydrate-active enzymes.  
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While a MetaSPAdes co-assembly could have been included, it was omitted 

due to computational memory requirements, and due to previous results from 

Chapter 1 reporting higher levels of strain heterogeneity in MAGs from co-

assemblies. As such, the assembly strategy used for bfm_mg_flow was MSSA. 

Since the research goal of this project was to study strain-level metabolic and 

CAZyme activity, co-assembling samples by participant ID may hinder the ability 

to recover strain-level MAGs
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Figure 21: Snakemake rule-graph for the MAGPIE metagenomic analysis pipeline 
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Figure 22: Snakemake rule-graph for the bfm_mg_flow metagenomic analysis pipeline 
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5 Chapter 3: The infant gut microbiome during solid 

food introduction  

Prior to the introduction of solid foods, the gut microbiota of breastfed infants 

is composed primarily of bacteria that are able to metabolize and derive energy 

from HMOs. Solid food introduction brings new food glycans to the gut 

environment, including dietary fibers and starches, and drives the selection of 

bacteria that have the CAZymes to degrade these glycans (Katoh et al., 2020; 

Koropatkin et al., 2012). Bacteria that are able to degrade the dietary fibers from 

solid food survive this transitionary period, while others are outcompeted (Ioannou 

et al., 2021).  

With the development of a metagenomic pipeline, our next objective was to 

identify the changes in the infant gut microbiome over the introduction of solids, 

and to specifically understand how the metabolic activity of genera such as 

Bifidobacterium change over the solid food introduction period, allowing them to 

persist from infancy to adulthood. We hypothesized that samples obtained after 

solid food introduction will display an increased abundance of bacterial strains with 

the ability to metabolize non-HMO food glycans, and a higher number of 

carbohydrate-degrading genes.  
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5.1 Baby, Food & Mi: The infant gut microbiome during the 

introduction to solid foods 

  30 samples belonging to 15 infants from the Baby, Food & Mi cohort of the 

Baby & Mi study were processed with the bfm_mg_flow pipeline (Supplementary 

Figure 1, Supplementary Table 2). Two samples were collected for each infant, 

before and after the introduction of solid foods. The samples were analyzed on two 

different levels; firstly, samples were grouped based on participant ID to compare 

the microbiome between infants, and secondly, samples were grouped based on 

their timepoint of collection, to analyze broader changes based on solid food 

introduction.  

 

5.1.1 Read-level taxonomy and abundance over solid food introduction 

At the Order level, samples were primarily dominated by Bifidobacteriales 

and Bacteroidales, in addition to Enterobacterales, Ruminococcus, Clostridia, 

Vellionellales, with some samples having Erysipelotrichales (Figure 23). Before 

the introduction of solid foods, 11 samples were dominant in Bifidobacteriales, two 

samples were dominant in Bacteroidales, one sample was dominant in 

Enterobacterales, and one dominant in Erysipelotrichales. After the introduction of 

solids, eight samples were dominant in Bifidobacteriales, six were dominant in 

Bacteroidales, and one dominant in Clostridiales (Figure 24A). 
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Before solid food introduction, samples had a high relative abundance of 

Bifidobacterium longum, Bifidobacterium bifidum, Bifidobacterium breve, 

Bacteroides fragilis, Bacteroides vulgatus, Erysipelatoclostridium ramosum, and 

Escherichia coli (Figure 24B-C). After the introduction of solids, five samples were 

dominant in B. bifidum, two in B. breve, one in B. longum, two in B. fragilis, two in 

Bacteroides uniformis, one in Bacteroides faecis, one in Bacteroides dorei, and 

one in Ruminococcus gnavus (Supplementary Table 3, Figure 24B-C). Species-

level changes before and after the introduction of solid foods can be seen in Figure 

24B.  

 

Figure 23: Order-level taxonomic profiles of all Baby, Food & Mi 

metagenomic samples, before and after the introduction of solid foods. 
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Figure 24: Taxonomy changes in microbiome composition before and after the 
introduction of solid foods. A. Order-level, B. species level, and C. species level per 
sample.  
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 Despite Bifidobacterium being dominant in 11 samples prior to solid food 

introduction, they were only dominant in 8 after solid food introduction 

(Supplementary Table 4, Figure 24C). Within the genus, the number of samples 

dominant in B. longum dropped from six to one, the dominance of B. bifidum 

increased from three to five, while the number of samples dominant in B. breve 

remained the same. The relative abundance of most Bifidobacterium species 

decreased after the introduction of solids. The diversity of Bifidobacterium 

remained the same.  

 While the abundance of Bifidobacterium decreased, the abundance of 

Bacteroides increased after the introduction of solids. Prior to the introduction of 

solid food, two samples were dominant in in B. fragilis and B. vulgatus respectively. 

After solid food introduction, six samples were dominant in Bacteroides. This 

change in distribution is also evident in Figure 24. The mean abundance of B. 

fragilis, B. uniformis, B. fragilis, B. faecis, B. dorei all increased after the 

introduction of solid foods.  

 There was also an overall decrease of abundance in Erysipelatoclostridium 

and Escherichia. The samples that had the highest abundance of by E. ramosum 

and E. coli showed increased abundance of Bacteroides and Bifidobacterium after 

the introduction of solids. The presence of Veillonella stayed consistent at both 

timepoints. In addition, there were few Lactobacillus species identified in this study.  
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 Principal 

Coordinates Analysis 

(PCoA) plots were 

calculated for the 

taxonomic profiles of all 

samples, using Bray 

Curtis Dissimilarity. In 

Figure 25A, samples are 

labeled based on whether 

stool collection occurred 

before or after solid food 

introduction, while in 

Figure 25B, samples are 

labeled based on 

participant ID. The PCoA 

demonstrated that there 

was no significant 

separation of samples 

based on their time point, 

although the taxonomic profiles of individual participants were significantly different 

from each other (p < 0.001, PERMANOVA).  

 

Figure 25: PCoA plots of all samples in the Baby, 
Food & Mi cohort, labeled by participant IDs and 
stool collection time points (before and after the 

introduction of solid foods) 
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5.1.2 Read-level metabolic predictions over solid food introduction 

Humann3 was used to calculate the abundance of bacterial metabolic 

pathways in all samples. As a starting point, the top bacterial metabolic pathways 

across all samples were calculated and compared before and after solid food 

introduction (Supplementary Table 5; Supplementary Figure 11). While 

differences based on sample timepoint were not immediately clear, the predictions 

were consistent with our expectations of characterized bacterial carbohydrate 

degradation pathways. Among the top abundant pathways were the various steps 

of the superpathway of branched chain amino acid biosynthesis, and pathways for 

Uridine Monophosphate biosynthesis, starch degradation, glycolysis III (from 

glucose), glycolysis IV (plant cytosol), glycogen degradation, and sucrose 

degradation IV (sucrose phosphorylase).  

Since the mean abundant pathways primarily included core microbial 

metabolic genes, we subsequently extracted the top pathways for our genera of 

interest. Based on these results, metabolic predictions of interest were also filtered 

to specifically characterize bacterial carbohydrate degrading genes and metabolic 

pathways of interest. All MetaCyc carbohydrate degrading pathways identified in 

the samples can be seen in Appendix D. 

Our first genus of interest was Bifidobacterium, due to the high abundance 

and dominance of bifidobacterial species in our samples (Figure 26). Predictably, 

the most abundant Bifidobacterium pathway across all samples was the bifid-

shunt, or the “fructose-6-phosphate-shunt”, to break down glucose and fructose to 
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lactic acid and acetate (Milani et al., 2014; O’Callaghan and van Sinderen, 2016) 

(Figure 27). The bifid-shunt was detected in B. longum, B. dentium, and B. 

pseudocatenulatum, and partially in B. breve (Figures 27-28, Supplementary 

Figures 12-13). Consistent with the overall reduction in abundance of 

bifidobacterial species after solid food introduction, the bifid-shunt pathway also 

decreased in abundance. The starch degradation VI pathway was seen in B. 

longum, B. bifidum, and B. breve. There was a decrease in abundance of B. 

longum species carrying this pathway after solid food introduction, with a 

corresponding increase of abundance of the pathway in an unclassified species of 

bacteria.  

B. breve, B. longum, B. bifidum, and B. adolescentis had the pathway for 

pyruvate fermentation to the SCFAs acetate and lactate. In addition, B. breve was 

the only Bifidobacterium to have the glucose and glucose-1-phosphate 

degradation pathway (Figures 28-32). More pathways of interest included the 

presence of the sucrose degradation IV pathway, which is a part of the bifid-shunt 

pathway, in B. bifidum, B. dentium, and B. breve. The glycogen degradation I 

pathway was also one of the most abundant in B. breve and B. bifidum.  
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Figure 27: 20 most abundant microbial metabolic pathways predicted for Bifidoabacterium, before and after 
the introduction of solid foods. The p_id refers to each individual study participant. Blue represents zero 
pathway abundance, in a gradient to higher pathway abundance in red. 
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P124−PWY: Bifidobacterium shunt

PWY−5384: sucrose degradation IV (sucrose phosphorylase)|g__Bifidobacterium.s__Bifidobacterium_bifidum

PWY−7111: pyruvate fermentation to isobutanol (engineered)|g__Bifidobacterium.s__Bifidobacterium_bifidum

PWY−7111: pyruvate fermentation to isobutanol (engineered)|g__Bifidobacterium.s__Bifidobacterium_longum

ILEUSYN−PWY: L−isoleucine biosynthesis I (from threonine)|g__Bifidobacter ium.s__Bifidobacterium_bifidum

VALSYN−PWY: L−valine biosynthesis|g__Bifidobacterium.s__Bifidobacterium_bifidum

PWY−6737: starch degradation V|g__Bifidobacterium.s__Bifidobacterium_longum

PWY−6737: starch degradation V|g__Bifidobacterium.s__Bifidobacterium_bifidum

COA−PWY−1: coenzyme A biosynthesis II (mammalian)|g__Bifidobacter ium.s__Bifidobacterium_bifidum

PWY−5686: UMP biosynthesis|g__Bifidobacter ium.s__Bifidobacterium_bifidum

PWY−7220: adenosine deoxyribonucleotides de novo biosynthesis II|g__Bifidobacterium.s__Bifidobacterium_bifidum_CAG_234

PWY−7222: guanosine deoxyribonucleotides de novo biosynthesis II|g__Bifidobacterium.s__Bifidobacterium_bifidum_CAG_234

PWY−6936: seleno−amino acid biosynthesis|g__Bifidobacter ium.s__Bifidobacterium_bifidum

HSERMETANA−PWY: L−methionine biosynthesis III|g__Bifidobacter ium.s__Bifidobacterium_bifidum

BRANCHED−CHAIN−AA−SYN−PWY: superpathway of branched amino acid biosynthesis|g__Bifidobacter ium.s__Bifidobacterium_bifidum

PWY−6151: S−adenosyl−L−methionine cycle I|g__Bifidobacter ium.s__Bifidobacterium_bifidum

COA−PWY−1: coenzyme A biosynthesis II (mammalian)|g__Bifidobacter ium.s__Bifidobacterium_longum

PWY−7219: adenosine ribonucleotides de novo biosynthesis|g__Bifidobacterium.s__Bifidobacterium_bifidum

UDPNAGSYN−PWY: UDP−N−acetyl−D−glucosamine biosynthesis I|g__Bifidobacter ium.s__Bifidobacterium_bifidum

PWY−5103: L−isoleucine biosynthesis III|g__Bifidobacter ium.s__Bifidobacterium_bifidum
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Figure 26: Abundance of the 
bifid-shunt pathway before and 

after solid food introduction. 
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Figure 28: 20 most abundant microbial metabolic pathways predicted for B. longum, before and after the 
introduction of solid foods. The p_id refers to each individual study participant. Blue represents zero pathway 
abundance, in a gradient to higher pathway abundance in red. 
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PWY−7111: pyruvate fermentation to isobutanol (engineered)|g__Bifidobacterium.s__Bifidobacterium_longum

PWY−6737: starch degradation V|g__Bifidobacterium.s__Bifidobacterium_longum

COA−PWY−1: coenzyme A biosynthesis II (mammalian)|g__Bifidobacter ium.s__Bifidobacterium_longum

PWY−7220: adenosine deoxyribonucleotides de novo biosynthesis II|g__Bifidobacterium.s__Bifidobacterium_longum_CAG_69

PWY−7222: guanosine deoxyribonucleotides de novo biosynthesis II|g__Bifidobacterium.s__Bifidobacterium_longum_CAG_69

PWY−6151: S−adenosyl−L−methionine cycle I|g__Bifidobacter ium.s__Bifidobacterium_longum

PWY−5686: UMP biosynthesis|g__Bifidobacter ium.s__Bifidobacterium_longum

PWY−6737: starch degradation V|g__Bifidobacterium.s__Bifidobacterium_longum_CAG_69

VALSYN−PWY: L−valine biosynthesis|g__Bifidobacterium.s__Bifidobacterium_longum

ILEUSYN−PWY: L−isoleucine biosynthesis I (from threonine)|g__Bifidobacter ium.s__Bifidobacterium_longum

PWY−5100: pyruvate fermentation to acetate and lactate II|g__Bifidobacter ium.s__Bifidobacterium_longum

PWY−7111: pyruvate fermentation to isobutanol (engineered)|g__Bifidobacterium.s__Bifidobacterium_longum_CAG_69

SER−GLYSYN−PWY: superpathway of L−serine and glycine biosynthesis I|g__Bifidobacter ium.s__Bifidobacterium_longum

PWY−7220: adenosine deoxyribonucleotides de novo biosynthesis II|g__Bifidobacterium.s__Bifidobacterium_longum

PWY−7222: guanosine deoxyribonucleotides de novo biosynthesis II|g__Bifidobacterium.s__Bifidobacterium_longum

GLUCOSE1PMETAB−PWY: glucose and glucose−1−phosphate degradation|g__Bifidobacterium.s__Bifidobacterium_longum

PWY−7221: guanosine ribonucleotides de novo biosynthesis|g__Bifidobacterium.s__Bifidobacterium_longum

THRESYN−PWY: superpathway of L−threonine biosynthesis|g__Bifidobacter ium.s__Bifidobacterium_longum

PWY−6386: UDP−N−acetylmuramoyl−pentapeptide biosynthesis II (lysine−containing)|g__Bifidobacter ium.s__Bifidobacterium_longum
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Figure 29: Abundance of the 
starch degradation V/VI pathway, 
before and after solid food 

introduction. 
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Figure 30: 20 most abundant microbial metabolic pathways predicted for B. bifidum, before and after 
the introduction of solid foods. The p_id refers to each individual study participant. Blue represents 
zero pathway abundance, in a gradient to higher pathway abundance in red. 
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PWY−5384: sucrose degradation IV (sucrose phosphorylase)|g__Bifidobacterium.s__Bifidobacterium_bifidum

PWY−7111: pyruvate fermentation to isobutanol (engineered)|g__Bifidobacterium.s__Bifidobacterium_bifidum

ILEUSYN−PWY: L−isoleucine biosynthesis I (from threonine)|g__Bifidobacter ium.s__Bifidobacterium_bifidum

VALSYN−PWY: L−valine biosynthesis|g__Bifidobacterium.s__Bifidobacterium_bifidum

PWY−6737: starch degradation V|g__Bifidobacterium.s__Bifidobacterium_bifidum

COA−PWY−1: coenzyme A biosynthesis II (mammalian)|g__Bifidobacter ium.s__Bifidobacterium_bifidum

PWY−5686: UMP biosynthesis|g__Bifidobacter ium.s__Bifidobacterium_bifidum

PWY−7220: adenosine deoxyribonucleotides de novo biosynthesis II|g__Bifidobacterium.s__Bifidobacterium_bifidum_CAG_234

PWY−7222: guanosine deoxyribonucleotides de novo biosynthesis II|g__Bifidobacterium.s__Bifidobacterium_bifidum_CAG_234

PWY−6936: seleno−amino acid biosynthesis|g__Bifidobacter ium.s__Bifidobacterium_bifidum

HSERMETANA−PWY: L−methionine biosynthesis III|g__Bifidobacter ium.s__Bifidobacterium_bifidum

BRANCHED−CHAIN−AA−SYN−PWY: superpathway of branched amino acid biosynthesis|g__Bifidobacter ium.s__Bifidobacterium_bifidum

PWY−6151: S−adenosyl−L−methionine cycle I|g__Bifidobacter ium.s__Bifidobacterium_bifidum

PWY−7219: adenosine ribonucleotides de novo biosynthesis|g__Bifidobacterium.s__Bifidobacterium_bifidum

UDPNAGSYN−PWY: UDP−N−acetyl−D−glucosamine biosynthesis I|g__Bifidobacter ium.s__Bifidobacterium_bifidum

PWY−5103: L−isoleucine biosynthesis III|g__Bifidobacter ium.s__Bifidobacterium_bifidum

GLYCOCAT−PWY: glycogen degradation I (bacterial)|g__Bifidobacterium.s__Bifidobacterium_bifidum

PEPTIDOGLYCANSYN−PWY: peptidoglycan biosynthesis I (meso−diaminopimelate containing)|g__Bifidobacter ium.s__Bifidobacterium_bifidum

PWY−7400: L−arginine biosynthesis IV (archaebacter ia)|g__Bifidobacterium.s__Bifidobacterium_bifidum

ARGSYN−PWY: L−arginine biosynthesis I (via L−ornithine)|g__Bifidobacterium.s__Bifidobacterium_bifidum
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Figure 31: Abundance of the 
pyruvate fermentation to acetate 
and lactate II pathway, before  
and after solid food 

introduction. 



MSc Thesis – B. Singh; McMaster University – Chemical Biology RESULTS 

 117 

 

 

Figure 32: 20 most abundant microbial metabolic pathways predicted for B. breve, before and after the 
introduction of solid food. The p_id refers to each individual study participant. Blue represents zero pathway 
abundance, in a gradient to higher pathway abundance in red. 
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VALSYN−PWY: L−valine biosynthesis|g__Bifidobacterium.s__Bifidobacterium_breve

ILEUSYN−PWY: L−isoleucine biosynthesis I (from threonine)|g__Bifidobacter ium.s__Bifidobacterium_breve

GLYCOCAT−PWY: glycogen degradation I (bacterial)|g__Bifidobacterium.s__Bifidobacterium_breve

PWY−7221: guanosine ribonucleotides de novo biosynthesis|g__Bifidobacterium.s__Bifidobacterium_breve

PWY−6737: starch degradation V|g__Bifidobacterium.s__Bifidobacterium_breve

PWY−7111: pyruvate fermentation to isobutanol (engineered)|g__Bifidobacterium.s__Bifidobacterium_breve

BRANCHED−CHAIN−AA−SYN−PWY: superpathway of branched amino acid biosynthesis|g__Bifidobacter ium.s__Bifidobacterium_breve

PWY−7220: adenosine deoxyribonucleotides de novo biosynthesis II|g__Bifidobacterium.s__Bifidobacterium_breve
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PWY−6151: S−adenosyl−L−methionine cycle I|g__Bifidobacter ium.s__Bifidobacterium_breve

PWY−5097: L−lysine biosynthesis VI|g__Bifidobacter ium.s__Bifidobacterium_breve
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PWY−5384: sucrose degradation IV (sucrose phosphorylase)|g__Bifidobacterium.s__Bifidobacterium_breve
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 Our next genus of interest was Bacteroides, due to their increase in 

abundance, dominance, and diversity after the introduction of solid foods. 

Consistent with the taxonomic profiles, there was an increase in abundance of 

microbial metabolic predictions after solid food introduction in B. dorei, B. fragilis, 

B. uniformis, and B. vulgatus (Supplementary Figures 14-16). Unlike 

Bifidobacterium, two separate species of Bacteroides––B. dorei and B. vulgatus–

–had the pathway for glycolysis IV. B. uniformis additionally had a pathway for L-

histidine degradation. 

Interestingly, multiple species of Bacteroides, E. coli, and Ruminoccocus 

gnavus all had an L−rhamnose degradation pathway, which is a deoxy-hexose 

sugar that is commonly found in pectins and hemicelluloses (Rodionova et al., 

2013). Consistent with the increased dominance of Bacteroides after solid food 

introduction, the pathway also increased in abundance in B. uniformis, B. 

thetaiotaomicron, B. ovatus, and B. faecis (Figure 33). B. fragilis was also involved 

Figure 33: Abundance of L-rhamnose degradation I pathway, before and after solid 
food introduction. 
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in dTDP-β-L-rhamnose biosynthesis and dTDP-N-acetylviosamine biosynthesis, 

which are important for the formation of bacterial lipopolysaccharides (Coyne et 

al., 2000).  

 E. coli contained pathways for D−galactarate and D−galactarate 

degradation into pyruvate. In addition, both E. coli and Lactobacillus rhamnosus 

contained pathways for hexitol fermentation to lactate, formate, ethanol and 

acetate (Figure 34). Hexitols include sugar alcohols such as D-mannitol, D-

sorbitol, and galactitol (Lengeler, 1975). The abundance of the hexitol fermentation 

pathway was higher prior to the introduction of solid foods. Both organisms also 

included a pathway for the homolactic fermentation of sugars into lactate. 

 

Figure 34: Abundance of the hexitol fermentation to lactate, formate, ethanol, and 

acetate pathway, before and after solid food introduction 
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6 Discussion 

 

When studying complex microbial communities such as the gut microbiota, 

having access to bacterial genomic information is crucial to understanding the 

overall community function and activity in the context of their environment (Chen 

et al., 2020). With the technological advances in sequencing, the limiting step of 

culturing and sequencing individual isolates from environmental and metagenomic 

samples has largely been eliminated (Van Rossum et al., 2020; Tyson et al., 2004) 

However, the various shortcomings of metagenomic analysis—such as errors in 

assembly due to closely-related strains, and loss of genetic information due to un-

assembled regions—are a major caveat when using MAGs to derive biologically-

relevant conclusions (Chen et al., 2020; Marbouty and Koszul, 2015). While 

various efforts have been made to quantify the extent that assembly, binning, and 

gene prediction tools are impacted by sample complexity, and how much they 

individually impact the accuracy of the final predictions, previous benchmarking 

efforts have not typically focused on the infant gut microbiome.  

The objective of this thesis was to quantify the performance of standard 

bioinformatics tools on infant gut metagenomic data, build a robust pipeline to 

obtain high quality metagenome-resolved genomes and bacterial metabolic 

pathways, and to use the pipeline to evaluate the infant gut microbiome and 

carbohydrate-active enzymes over the period of solid food introduction.  
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6.1 Assembly and binning performance in simulated infant gut 

metagenomic samples 

Often dominated by very few highly abundant genera, with high levels of 

inter-genus species and strain diversity, the infant gut poses a unique challenge to 

metagenomic data analysis (Milani et al., 2017a). While computational tools for 

metagenomic datasets have previously been benchmarked, their performance has 

not previously been evaluated specifically for infant gut microbiome data. 

Furthermore, the accuracy of strain-level CAZyme predictions in genome-resolved 

metagenomics has not previously been quantified, especially in the context of 

sample diversity.  

Our research demonstrates that there is a relationship between infant gut 

microbial community composition and the performance of the computational tools 

that are used to study those very communities. Assembly tools are impacted by 

sample Shannon Diversity, the number of strains in the sample, and the relative 

abundance of the most dominant strain. In turn, assemblies impact the quality of 

recovered MAGs and strain-level CAZyme prediction accuracy, proving our initial 

hypothesis that higher community complexity leads to lower quality MAGs and less 

accurate CAZyme predictions for abundant genera. 

We found a significant difference in assembler performance between 

MetaSPAdes and MEGAHIT, with assemblies and MAGs from the latter having a 

significantly higher number of misassemblies and false positive gene predictions 

respectively. However, the MHSA assembly was also larger than the MSSA, likely 
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recovering a higher proportion of the original metagenome. This was consistent 

with previous findings from the Critical Assessment of Metagenomic Challenge, 

where MEGAHIT had the highest number of misassemblies, but also the largest 

assembly length, ultimately recovering the larges total number of MAGs per 

assembly (Sczyrba et al., 2017). While we did not experiment with assembly 

parameters, the authors of the CAMI Challenge found that changing MEGAHIT 

parameters did not significantly impact assembly length or genome fraction 

(Sczyrba et al., 2017).   

Consistent with previous work, strain diversity posed a challenge for 

assemblers (Sczyrba et al., 2017; Yue et al., 2020). Higher sample Shannon 

Diversity was correlated with higher number of misassemblies, while higher within-

genus Bifidobacterium Shannon Diversity had a significant negative impact on the 

number and quality of final MAGs for MEGAHIT and MetaSPAdes assemblies, but 

not the gold-standard assemblies. In our results, MEGAHIT assemblies were also 

disproportionally impacted by sample strain diversity, showcased by the inferior 

performance of the MHCA and MHSA in recovering Bifidobacterium MAGs of 

higher CAZyme accuracy and higher reference coverage, especially in samples 

with abundant and diverse bifidobacterial strains. One potential reason for this 

could be additional read-correction step employed by the MetaSPAdes assembler 

(Nurk et al., 2017). However, it is important to note that other studies have 

demonstrated results where MEGAHIT outperformed MetaSPAdes in recovering 

MAGs with higher reference coverage (Maguire et al., 2020), and it may thus be 
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possible that our results are specific only to the infant gut microbiome, due to its 

unique community composition.  

Given a realistic assembly of simulated samples with MEGAHIT or 

MetaSPAdes, MAG-level CAZyme prediction quality decreased with every 

additional strain belonging to the same genus. In comparison, given a perfect 

assembly, MAG CAZyme prediction quality metrics stayed consistently high even 

with added inter-genus strain diversity. This implied that the assembly step, rather 

than the binning step, has a larger role in the correct prediction of metabolic genes. 

However, while we did not specifically compare the performance of binning tools, 

previous research has found significant differences between binning tools in 

generating MAGs with higher completeness and lower contamination (Yue et al., 

2020). Yue et al additional found that binning performance was better for unique 

strains compared to closely related strains. The CAMI project similarly found that 

binning performance varied based on high- versus low-complexity datasets 

(Sczyrba et al., 2017). This is consistent with our comparison of Bifidobacterium 

MAGs across samples, where MAGs from unique bifidobacterial species such as 

B. coryneforme, B. thermophilium, and B. angulatum had higher CAZyme 

prediction accuracy compared to MAGs from similar strains of B. longum, such as 

different strains of B. longum subsp. infatis. Similarly, organisms with no or low 

within-species strain diversity, such as A. municiphilia, were observed to have 

more complete CAZyme predictions compared to organisms with high within-

species diversity. 
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When comparing gold-standard, “ideal” co-assemblies to single-sample 

assemblies in overall assembly and MAG quality metrics, we found that the GSCAs 

modestly outperformed the GSSAs in every metric, except for the strain 

heterogeneity in recovered MAGs. But in practice, when comparing the ”real” 

MEGAHIT co-assembly to single-sample assembles, the MHSA and MSSA 

dramatically outperformed the MHCA, recovering MAGs of higher reference 

coverage and lower strain heterogeneity. While there have not been many 

comparisons of the merits of co-assembly versus single-sample assembly, 

previous work has reported that improvements from the co-assembling are 

moderate, and are most useful when co-assembling a larger number of samples 

(>5) from the same site, or alternately, a larger number of longitudinal samples 

from the same subject (Pasolli et al., 2019). Pasolli et al. have additionally reported 

that co-assembling does potentially recover more low-abundance strains, those 

MAGs tend to be consensus genomes, lacking strain-specific differences. They 

concluded that co-assembly may be most advantageous when the goal is to extract 

a larger amount of information from metagenomic samples, rather than when 

studying strain-specific differences (Pasolli et al., 2019).    

Importantly, for all metagenomic samples, we found that the five different 

types of assemblies recovered a different subset of strains as MAGs. In general, 

MEGAHT assemblies recovered strains of lower relative abundance, while 

MetaSPAdes assemblies were biased towards strains of higher relative 

abundance.  For example, despite being present in 22 samples, B. coryneforme 
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was never reconstructed as a MAG from the MHCA assembly. In contrast, B. 

coryneforme MAGs were retrieved from the MHSA and MSSA assemblies in ten 

separate samples each. Similarly, the Bifidobacterium MAGs retrieved for most 

samples differed based on the assembler. One example is sample 25, which 

contained eight Bifidobacterium strains, including B. angulatum and B. angulatum 

DSM 20098 = JCM 7096. Binning the MSSA assembly for sample 25 yielded only 

B. angulatum DSM 20098 = JCM 7096, while both MHCA and MSSA yielded only 

B. angulatum. In addition, MHCA and MSSA yielded a B. breve DSM 20213 = JCM 

1192 strain that was missed by MSSA. In both of the above cases, certain strains 

were only reconstructed into MAGs by certain assemblers. 

 

6.2 Improvements and recommendations for infant gut 

metagenomic data analysis  

Based on our results in the context of current metagenomic research in the 

literature, our first proposed recommendation for analyzing gut metagenomic data 

is to use multiple assembly and binning methods, contingent on the availability of 

computational resources. Since different assemblies yielded different MAGs from 

the same samples, the advantage of using multiple assemblers is that combined 

collection of MAGs would recover a larger share of strains from the original 

metagenomes than any singular output. Furthermore, while we did not use multiple 

binning tools, other studies have showcased improvements in binning when 
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ensemble approaches are used and agglomerated (Maguire et al., 2020; Yue et 

al., 2020).   

If computational resources are a limiting factor and only a few approaches 

can be used, our second recommendation is to tailor assemblers and assembly-

methods based on organisms of interest in a metagenomic sample.  Our results 

showed that assembly methods were impacted differently by sample community 

composition, including Shannon diversity, number of strains in the sample, and 

relative abundance of the most dominant strain. Furthermore, MAG completeness, 

contamination, quality, and reference coverage were significantly impacted by 

choice of assembly software. Consequently, if the goal is to study strain-specific 

differences and evolution in longitudinal samples, co-assembling will not be useful 

due to the reconstruction of composite genomes across samples (Pasolli et al., 

2019). If the goal is to amass a strain-level catalog of microbial genomes from 

different sites and individuals, single-assembly would be the preferred approach 

(Xie et al., 2021). On the other hand, if the data belongs to different individuals or 

sites, but with high levels of similarity between sites, then co-assembly may be 

beneficial if the goal of the study is to amass a large number of MAGs specific to 

sites, but not if the goal is to study individual-specific differences (Hofmeyr et al., 

2020).  Based on our own results, if the strains of interest are of lower abundance, 

MEGAHIT assemblies would be more useful than MetaSPAdes, although the 

resulting MAGs would have lower reference coverage.    
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Our third proposed recommendation is to conduct multiple levels of 

analysis––read-based, assembly-based, or MAG-based––when appropriate for 

the research question. Based on our results, when making broad comparisons 

between sites or individuals, we found that assembly-level predictions can often 

have higher false positive gene predictions than MAG-level predictions. As such, 

when applying assembly-level predictions, it may be appropriate to take measures 

to protect against predictions errors due to misassemblies. This may include 

stringently removing low-quality or small contigs, or it may include a second read-

level analysis for comparison to the assembly-level predictions. Similarly, when 

conducting a MAG-level analysis, it is useful to have access to isolate genomes 

from the same site, or general reference genomes for comparison. 

Our last proposed recommendation is to conduct manual curation of MAGs 

when possible. While genome-resolved metagenomics has greatly reduced the 

bottleneck of culture-dependent sequencing, it comes with the disadvantages of 

incomplete, or incorrectly assembled MAGs. CMAGs, or complete MAGs are 

incredibly rare. A 2020 paper reported that as of September 10, 2019, there were 

only 59 CMAGs on GenBank (Chen et al., 2020). In comparison, it is not 

uncommon to see studies reporting thousands of MAGs at time, which may be of 

high quality, but are not necessarily complete (Parks et al., 2017).  

Furthermore, quality for most MAGs is calculated with the CheckM bin 

quality software, which our results have shown to be useful, but not entirely 

accurate for regions of the MAGs that do not contain core marker genes (Parks et 
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al., 2015). CheckM statistics are determined based on the number and identity of 

multi-copy marker genes detected in a MAG (Parks et al., 2015). Thus, a 

Bifidobacteriaceae MAG that is 100% complete would imply that it has 100% of 

the marker genes that one would expect to find in a genome belonging to the family 

Bifidobacteriaceae. If the same MAG is reported to have 0% contamination, that 

implies that no marker genes outside of the expeced set were found in the MAG. 

However, the genome could still be contaminated with sequences that do no 

belong to the set of marker genes from the CheckM database.  Alternately, if the 

MAG has 30% contamination, this would mean that 30% of the single-copy marker 

genes are present more than once in the MAG, or that 30% of the MAG has marker 

genes belonging to a different bacterial family (Parks et al., 2015). Lastly, if the 

MAG had 50% strain heterogeneity, that would be imply that half of the 

contamination can be explained by the presence of closely-related strains in the 

MAG. Strain heterogeneity is separated from contamination if the detected 

“contaminant” marker gene has more than 90% amino acid similarity to the 

expected marker gene (Parks et al., 2015). Thus, when evaluating MAGs with 

CheckM metrics, it is important to note that quality estimates are not based on 

whole-genome comparisons, but marker gene presence, counts, and amino acid 

similarity.  This may unfortunately lead to erroneous conclusions regarding MAG 

completeness and contamination. As a solution to this problem, the manual 

curation of genomes with comparisons to reference genomes may be necessary. 
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For predictions of gene function, culture-based approaches on strains of interest 

may also be necessary. 

On the MAG-level, manual curation may include discarding misassembled 

regions and contaminations, filling gaps with un-assembled reads, and matching 

paired reads to newly assembled regions (Nadalin et al., 2012). If gaps are not 

filled, then the sample may have to be re-assembled with different parameters to 

generate a new scaffold (Chen et al., 2020). While manual curation is an intensive 

task, it may be necessary for the evaluation of strain-level MAGs when cultured 

isolates are not available.  

 

6.3 The gut microbiome and bacterial metabolism over the period of 

solid food introduction  

In characterizing the gut microbiome of 15 vaginally born, breastfed infants 

from the Baby, Food & Mi cohort, we found changes in the taxonomic and 

metabolic profiles of infants before and after the introduction of solid foods. We 

had initially hypothesized that samples obtained after solid food introduction would 

display an increased abundance of bacterial strains with the ability to metabolize 

non-HMO food glycans, and a higher number of carbohydrate degrading genes. 

We had further expected to see a continued persistence of Bifidobacterium after 

the introduction of solids, with the aim to potentially characterize metabolic 

pathways that contribute to their persistence. 
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In analyzing the taxonomy of samples before and after solid food 

introduction, it was observed that all Bifidobacterium decreased in abundance after 

solid food introduction, except B. breve, which increased, and all Bacteroides 

increased in abundance.  Prior to solid food introduction, 11 samples had been 

dominant in Bifidobacterium, two dominant in Bacteroides, one in E. coli, and one 

in E. ramosum. After solid food introduction, 6 samples were dominant in 

Bifidobacterium, 8 in Bacteroides, and 1 in Ruminococcus.  

Both the increase of Bacteroides and decrease of Bifidobacterium are 

consistent with the literature. Bacteroides belong to the phylum Bacteroidetes, 

which are known for using thousands of enzyme combinations for glycan 

degradation (Lapébie et al., 2019). Bacteroidetes have clusters of CAZymes called 

polysaccharide utilization loci, or PULs, with each PUL having the functionality to 

degrade a specific glycan.  PULs will generally have a few GHs, PLs, and susC/D 

gene pair (Lapébie et al., 2019). Typically, CAZymes are secreted by 

Bacteroidetes for glycan binding and partial glycan breakdown (by amylases such 

as SusG, or GH13), transported to the bacterial periplasm, and subsequently 

broken down in the periplasm by other enzymes (such as SusB, or GH97) 

(Koropatkin et al., 2012). In comparison, Bifidobacterium initially colonize the infant 

gut due to their HMO-degrading abilities, and are known to persist due to their non-

HMO glycan degrading abilities, although the exact reason for their persistence is 

not known. Certain infant bifidobacterial of B. longum and B. bifidum that are able 

to directly degrade HMOs (Koropatkin et al., 2012; Turroni et al., 2018b) are 
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generally replaced by adult bifidobacterial strains after solid food introduction. For 

example, B. bifidum strains in adults are known for their mucin-degrading abilities 

(Roy et al., 2006; Turroni et al., 2018b). The short timeframe in which the taxonomy 

of the infant gut microbiome changed before and after solid food introduction is 

because non-HMO degrading bacteria already exist in the gut during exclusive 

breastfeeding. Certain bacteria like B. thetaiotaomicron––which increased after 

solid food introduction in our samples––are known as “glycan generalists” and 

harbor the ability to degrade a variety of glycans, allowing them to adapt and 

survive. B. thetaiotaomicron alone contain 260 glycoside hydrolases, contributing 

to their persistence (Cantarel et al., 2012). This suggests  that samples after solid 

food introduction may be characterized by an increased abundance of bacterial 

strains with the ability to metabolize non-HMO food glycans. 

In evaluating read-level metabolic predictions, the top predicted pathway 

across all samples was pyruvate fermentation to isobutanol (BioCyc ID: PWY-

7111), which is an engineered pathway that is not supposed to naturally occur in 

bacteria, since isobutanol is a fuel source. However, this same pathway has been 

previously found in other gut microbiome studies, including in the human gut 

microbiome, mouse maternal microbiome, pig microbiome, and the human salivary 

microbiome (Deng et al., 2021; Haque et al., 2021; Huang et al., 2021; Yan et al., 

2021). Species-specific versions of this pathway were also frequently detected, 

including for B. dorei, B. fragilis, B. vulgatus, B. bifidum, and more. Given that 

fermentation of pyruvate is a common reaction in the infant gut, in addition to the 
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degradation of pyruvate to butyrate (also known as butanoate), it is possible that a 

different pathway that uses similar genes is being predicted as PWY7111 (Silva et 

al., 2020). If this is the case, it is not yet possible to know whether bacteria 

predicted to have this pathway actually do, or if uncharacterized bacteria are being 

erroneously being assigned to taxonomic ranks that they do not belong to.  

A major pathway of interest for this study was the bifid-shunt, or the 

fructose-6-phosphate-shunt pathway, which breaks down glucose and fructose to 

acetate and lactate (Devika and Raman, 2019). In the read-level analysis of our 

samples, the bifid-shunt was the most abundant pathway in the Bifidobacterium 

genus, followed by sucrose degradation IV, which is also a part of the bifid-shunt 

pathway. According to previous research, the presence of HMOs in the 

environment causes an upregulation of enzymatic activity related to the bifid shunt 

pathway (Walsh et al., 2020). This was consistent in our own data, where the 

majority of Bifidobacterium in the breastfed infants harbored the bifid shunt 

pathway as their most abundant pathway. B. breve, which were the only 

bifidobacteria without a detectable bifid-shunt pathway, instead had the highest 

abundance of the glycogen degradation I pathway out of all bifidobacteria. It was 

also the only bifidobacteria to have the glucose and glucose-1-phosphate 

degradation pathway. However, given that the bifid-shunt pathway is a core 

carbohydrate degradation mechanism of Bifidobacterium, its absence from the B. 

breve genome is unlikely. One alternative explanation for these results may be that 

B. breve pathways are being mis-characterized as unclassified bacteria. 
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Bifidobacterium also had pathways for L−isoleucine biosynthesis I and 

L−valine biosynthesis, which has also been previously seen in the literature (Liu et 

al., 2021; Senizza et al., 2020; Zhang et al., 2020). The continued, but decreased, 

presence of bifidobacterial species in the infant gut after solid food introduction, 

implies that bifidobacteria are able to adapt to the changing gut environment.   

Bacteroides, which increased in abundance and dominance after the 

introduction of solid foods, had metabolic pathways not seen in Bifidobacterium. 

Such pathways included glycolysis IV and the L−rhamnose degradation pathway, 

the latter of which is used in the degradation of pectins and hemicelluloses 

(Rodionova et al., 2013). R. gnavus, which became the dominant species in one 

sample after solid food introduction, had degradation pathways for L- rhamnose as 

well, in addition to the starch degradation V pathway. 

Overall, the metabolic profiles of bacteria that increased (Bacteroides) or 

decreased (Bifidobacterium) were in line with our initial hypothesis that solid food 

introduction would bring an increased abundance of bacterial strains with the ability 

to metabolize non-HMO food glycans.  

 

6.4 Limitations and Strengths 

 One of the greatest strengths of our simulated infant gut metagenomic 

dataset is that it was simulated using real 16S rRNA gene data from infants, and 

thus it closely resembled the complexity of real metagenomic samples. Access to 

the original reference genomes and gold-standard assembles allowed us to use 
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proper positive controls to compare against the results of computational tools. 

Furthermore, a strength of the analysis is the use of predicted CAZymes as 

practical and relevant gene predictions. We also constructed a pipeline that will be 

publicly available to the research community. A strength of the Baby, Food & Mi 

study is the longitudinal nature of the project, potentially allowing us to sequence 

and compare long-term changes in the taxonomic and functional profiles after solid 

food introduction. Access to sequenced cultured isolates from each infant sample 

broaden the scope of sequencing sample-specific strains of interest in the future. 

Availability of multiple data types––including 16S rRNA gene profiles, genomes 

from cultured isolates, and metagenomic samples––allow for further benchmarking 

and validation of our methods. The limitations of this study include the use of 

Shannon Diversity to determine whether sample diversity was impacting the 

accuracy of final assemblies, MAGs, and CAZyme predictions. This diversity 

metric does not take into account the phylogenetic distance between species and 

strains, which is an important point to consider when evaluating samples with 

different levels of strain diversity. Secondly, the samples simulated for the 

evaluation of computational tools were 3 million reads each. This is relatively low 

compared to our own metagenomic samples, which are usually upwards of 10 

million reads each. Evaluating larger datasets would provide a more accurate 

substitution for real gut metagenomic samples. Thirdly, only Bifidobacterium MAGs 

and genomes were used for strain-level CAZyme and MAG quality analyses in the 

simulated dataset. As such, there are limits to how much we can generalize these 
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strain-level results to other genera. For example, some Bacteroides species often 

have over 200 CAZymes in their genomes, while Bifidobacterium are relatively less 

complex in their CAZyme profiles (Cantarel et al., 2012).  

 

6.5 Future Directions 

All Baby, Food & Mi samples have been processed through the 

bfm_mg_flow pipeline, and the first step after this thesis is to conduct assembly-

level and MAG-level analyses, including the manual curation of MAGs. This may 

allow for CAZyme-level comparison of individual strains over the introduction of 

solid food. Once strains of interest have been identified and analyzed 

computationally, these strains can also be isolated from infant samples to study 

their metabolic activities in culture.  

Given the increase in abundance of Bacteroides, a potential avenue for 

further research is to predict PULs in Bacteroides MAGs, using the dbCAN-PUL 

database (Ausland et al., 2021). For Bifidobacterium, MAGs can be used to 

analyze species-level differences in the bifido-shunt pathway, in addition to unique 

pathways in B. breve that might have contributed to its increased abundance after 

solid food introduction. 

Finally, a major future step would be to compare sample-specific MAGs 

from this study to fiber-utilization profiles of sample-specific strains in culture. 

Furthermore, dietary data from infants can be compared to the subsequent 

changes in CAZyme predictions in the gut microbiome. 
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6.6 Significance  

In recent years, many studies have used metagenome-assembled 

genomes to study bacterial metabolism in complex communities with high strain 

diversity, such as the infant gut microbiome. However, the caveat of de novo 

analysis of highly variable microbial communities without access to isolate or 

reference genomes is that we are often unaware of the extent to which our final 

MAGs and gene predictions are accurate (Sczyrba et al., 2017). Here, we have 

reported the scenarios in which one can expect a generic metagenomic workflow 

to fail, along with scenarios where it is less likely to fail. We have provided a realistic 

outlook of the quality of final MAGs and strain-level CAZyme predictions one can 

expect to receive when using a general metagenomic analysis workflow for infant 

gut data. We have also provided recommendations for creating an appropriate 

metagenomic analysis workflow based on the community composition of samples, 

based on the research questions surrounding the samples.  
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7 Conclusions 

Dominated by abundant genera with high levels of strain diversity, the infant 

gut poses a unique challenge to metagenomic data analysis, especially during the 

highly dynamic timepoint of solid food introduction. To effectively characterize the 

changes in gut bacterial carbohydrate-active enzymes over time, it is essential to 

have access to high quality metagenome-assembled genomes. In this study, we 

used a simulated infant gut metagenomic dataset to report the shortcomings of 

current metagenomic computational tools. Our findings showed that both microbial 

diversity and choice of software impact the number and quality of predicted MAGs 

and genes. Based on these results, a robust bioinformatics pipeline was tailored 

to the specific gut microbial community composition of the breastfed, vaginally born 

infants from the Baby, Food & Mi cohort. Using this pipeline on infant gut samples 

before and after solid food introduction, it was reported that the infant gut 

microbiome after solid food introduction showcased an increased abundance of 

bacterial strains with the ability to metabolize non-human milk oligosaccharide 

dietary carbohydrates. These results show that solid food introduction changes the 

taxonomy and abundance of bacteria in the gut, ultimately selecting for bacteria 

that are able to digest new dietary food glycans. However, further studies are 

required to characterize the specific changes that occur in bacterial genomes as a 

result of the selective pressure induced by solid food introduction. CAZyme 

annotation of complete MAGs from infant samples throughout exclusive 
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breastfeeding, introduction of solid foods, weaning, and exclusive solid food 

consumption would highlight the characteristics of bacteria that are dominant in 

the gut at each stage.  This would contribute to our understanding of bacterial 

colonization and succession, and ultimately how the composition of the infant gut 

impacts health in later life.  

 This study provided a framework for studying longitudinal infant gut 

metagenomic samples, in addition to providing new knowledge regarding the 

characteristics of gut bacterial composition and metabolism over the period of solid 

food introduction. 
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Appendix to Methodology 
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Appendix to Chapter 1 

Supplementary Table 1: The number of total species, total species, and Shannon Diversity of each simulated 
sample, compared to the number of Bifidobacerium strains, species, and bifidobacterial within-genus 
diversiy in each sample 
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of 

Species 

Number 

of Strains 

Bifidobacterium 

dominant 

sample_22 20 23 1.100 0.959 2 4 

sample_14 26 31 0.929 0.950 5 6 

sample_19 19 22 1.298 0.931 2 4 

sample_25 39 60 1.753 0.884 6 12 

sample_5 51 69 1.433 0.881 5 7 

sample_32 39 46 1.151 0.848 5 7 

sample_21 21 24 1.515 0.821 3 4 

sample_0 47 57 1.271 0.809 5 7 

sample_16 32 42 1.458 0.787 3 5 

sample_20 26 31 1.423 0.784 2 3 

sample_17 34 50 1.994 0.764 4 6 

sample_13 35 43 1.991 0.713 4 5 

sample_26 42 65 1.874 0.687 3 8 

sample_28 44 64 2.060 0.686 4 9 

sample_3 43 59 2.141 0.685 4 8 
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sample_30 60 73 1.942 0.638 4 7 

sample_15 35 51 1.887 0.624 4 6 

sample_24 44 68 2.596 0.614 4 9 

sample_27 45 66 2.150 0.610 5 12 

sample_29 52 73 2.326 0.538 6 10 

sample_18 38 63 2.762 0.493 5 7 

Not dominated by 

Bifidobacterium 

sample_31 52 72 2.128 0.318 3 6 

sample_4 38 59 2.886 0.307 3 6 

sample_23 22 29 1.091 0.294 3 7 

sample_33 44 60 1.353 0.244 3 6 

sample_8 43 56 2.223 0.138 3 5 

sample_6 45 59 1.505 0.125 4 7 

sample_9 35 45 2.162 0.088 4 5 

sample_7 49 62 2.471 0.036 5 7 

sample_1 63 83 2.786 0.022 3 3 

sample_11 22 29 0.914 0.007 3 4 

sample_2 22 26 0.242 0.005 3 3 

sample_10 35 51 1.828 0.004 3 4 

sample_12 25 32 0.550 0.003 3 6 
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Supplementary Figure 2: Distribution of MAG completeness as a function of 
the relative abundance of original strains. A. MAGs from GSSA, B. MAGs from 
GSCA, C. MAGs from GSSA and GSCA, plotted against % completeness for each 
MAG. E. Density plot of the number of MAGs yielded by each assembly by MAG 
completeness. 
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Supplementary Figure 3: Distribution of MAG reference coverage as a 
function of the relative abundance of original strains. Distribution of the 
reference coverages of MAGs from A. just GSSA, B. GSCA, C. both GSSA and 
GSCA plotted against the relative abundance of the original strains reconstructed 
within the MAGs. E. Density plot of the number of MAGs yielded by GSSA and 
GSCA by relative abundance. F.  Density plot of the number of MAGs yielded by 
the two assemblies by their reference coverage
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Supplementary Figure 4: The effect of within-genus Bifidobacterium 
Shannon Diversity, observed species count, and relative abundance on the 
number and reference coverage of high quality (> 90% quality) 
Bifidobacterium MAGs. A.  Higher within-genus Shannon Diversity was 
negatively correlated with the number of high-quality MAGs obtained from MHSA, 
MHCA, and MSSA (p < 0.05). B. Higher Bifidobacterium observed species count 
was positively correlated with the number of high-quality MAGs obtained from 
MHSA, MHCA, and MSSA (p < 0.05). C. Higher relative abundance of the 
Bifidobacterium genus was positively correlated with the number of high-quality 
MAGs obtained from MHSA, MHCA, and MSSA (p < 0.05). D. Higher within-genus 
Shannon Diversity was negatively correlated with the reference coverage of MAGs 
obtained from MHSA, MHCA, and MSSA (p < 0.05). E. Higher Bifidobacterium 
observed species was positively correlated with the reference coverage of MAGs 
obtained from MHSA, MHCA, and MSSA (p < 0.05). F. Higher relative abundance 
of the Bifidobacterium genus was positively correlated with the reference coverage 
of MAGs obtained from MHSA, MHCA, and MSSA (p < 0.05). 
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Supplementary Figure 5: Sample 25 MAG recovery profile, with 
relative abundances of all strains in the sample and reference 
coverages of all retrieved MAGs. The right-most panel represents a list 
of all strains in the sample. The middle heatmap panel represents the 
relative abundance of samples. Each cell in the left-most panel represents 
whether a MAG was recovered for a particular strain by a particular 
assembly. Darker shades of purple and green represent relative 
abundance and reference coverage respectively, between 0% and 100%. 
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Supplementary Figure 6: Sample 30 MAG recovery profile. The right-most 
panel represents a list of all strains in the sample. The middle heatmap panel 
represents the relative abundance of samples. Each cell in the left-most panel 
represents whether a MAG was recovered for a particular strain by a particular 
assembly. Darker shades of purple and green represent relative abundance and 
reference coverage respectively, between 0% and 100%.   
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Supplementary Figure 7: Sample 3  MAG recovery profile, with relative 
abundances of all strains in the sample and reference coverages of 
all retrieved MAGs. The right-most panel represents a list of all strains in 
the sample. The middle heatmap panel represents the relative abundance 
of samples. Each cell in the left-most panel represents whether a MAG was 
recovered for a particular strain by a particular assembly. Darker shades of 
purple and green represent relative abundance and reference coverage 
respectively, between 0% and 100%. 
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Supplementary Figure 8: CAZyme predictions for all Akkermansia 
muciniphilia MAGs and reference genomes across different samples and 
assembler types. The bottom axis represents MAGs, while the right axis 
represents predicted CAZymes. Each MAG is color-coded with the assembly-
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Supplementary Figure 9: CAZyme predictions for all Escherichia coli O111:H- str. 11128 MAGs and reference genomes 
across different samples and assembler types. The bottom axis represents MAGs, while the right axis represents predicted 
CAZymes. Each MAG is color-coded with the assembly-type it was derived from.  
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Supplementary Figure 10: CAZyme predictions for all  E. coli BW2952, E. coli O104:H4 str. 2011C−3493, and 
E. coli ER2796 MAGs and reference genomes across different samples and assembler types. The bottom axis 
represents MAGs, while the right axis represents predicted CAZymes. Each MAG is color-coded with the assembly-
type it was derived from. 
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Appendix to Chapter 3 

Supplementary Table 2: Thirty Baby, Food & Mi samples processed with the 
bfm_mg_flow pipeline. Two samples were included for each infant, collected 
before and after the introduction of solid food. 

SAMPLE ID SURETTE 
SAMPLE ID 

PARTICIPANT 
ID 

TIME POINT AGE IN 
DAYS 

JCSA4 JCS35 01-057 Before 182 

JCSA5 JCS36 01-057 After 202 

JCSA62 JCS202 06-023 Before 135 

JCSA65 JCS203 06-023 After 151 

JCSA46 JCS193 06-021 Before 174 

JCSA50 JCS197 06-021 After 195 

JCSA39 JCS187 06-020 After 162 

JCSA35 JCS184 06-020 Before 147 

JCSA18 JCS177 06-019 After 201 

JCSA17 JCS176 06-019 Before 187 

JCSA66 JCS204 04-068 Before 121 

JCSA68 JCS205 04-068 After 136 

JCSA57 JCS199 04-066 Before 178 

JCSA60 JCS201 04-066 After 194 

JCSA42 JCS189 04-061 Before 169 

JCSA47 JCS194 04-061 After 183 

JCSA41 JCS188 03-033 Before 186 

JCSA44 JCS191 03-033 After 201 

JCSA10 JCS171 03-031 Before 241 

JCSA11 JCS172 03-031 After 254 

JCSA49 JCS196 02-049 After 194 

JCSA155 JCS240 02-049 Before 182 

JCSA54 JCS198 02-048 Before 144 

JCSA58 JCS200 02-048 After 159 

JCSA33 JCS182 02-046 Before 165 

JCSA37 JCS185 02-046 After 183 

JCSA48 JCS195 02-045 After 201 
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JCSA43 JCS190 02-045 Before 184 

JCSA34 JCS183 02-043 Before 162 

JCSA38 JCS186 02-043 After 178 

 

Supplementary Table 3: Dominant species in Baby, Food & Mi metagenomic 
samples before and after the introduction of solid foods. 

TIME POINT 
(BEFORE OR AFTER 
THE INTRODUCTION 
OF SOLID FOODS) 

SPECIES NUMBER OF 
SAMPLES WHERE 
SPECIES IS MOST 

ABUNDANT 

Before Bifidobacterium longum 6 

Before Bifidobacterium bifidum 3 

Before Bifidobacterium breve 2 

Before Bacteroides fragilis 1 

Before Bacteroides vulgatus 1 

Before Erysipelatoclostridium 
ramosum 

1 

Before Escherichia coli 1 

After Bifidobacterium bifidum 5 

After Bacteroides fragilis 2 

After Bacteroides uniformis 2 

After Bifidobacterium breve 2 

After Bacteroides dorei 1 

After Bacteroides faecis 1 

After Bifidobacterium longum 1 

After Ruminococcus gnavus 1 

 

Supplementary Table 4: Most abundant microbial metabolic pathways, 
predicted with HUMAnN3 

PATHWAY AVERAGE 
ABUNDANCE 

PWY-7111 Pyruvate fermentation to isobutanol 
(engineered) 

0.013 
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ILEUSYN-
PWY 

L-isoleucine biosynthesis I (from threonine) 0.0121 

VALSYN-
PWY:  

L-valine biosynthesis 0.0121 

BRANCHED-
CHAIN-AA-
SYN-PWY 

Superpathway of branched amino acid 
biosynthesis 

0.0106 

PWY-6737 Starch degradation V 0.0103 

PWY-5103 L-isoleucine biosynthesis III 0.0101 

COA-PWY-1 Coenzyme A biosynthesis II (mammalian) 0.0101 

PWY-3001 Superpathway of L-isoleucine biosynthesis I 0.01 

PWY-7221 Guanosine ibonucleotides de novo 
biosynthesis 

0.00987 

PWY-2942 L-lysine biosynthesis III 0.00981 

PWY-7220 Adenosine deoxyribonucleotides de novo 
biosynthesis II 

0.00961 

PWY-7222 Guanosine deoxyribonucleotides de novo 
biosynthesis II 

0.00961 

PWY-7219 Adenosine ribonucleotides de novo 
biosynthesis 

0.00959 

THRESYN-
PWY 

Superpathway of L-threonine biosynthesis 0.00955 

PWY-5097 L-lysine biosynthesis VI 0.00955 

PWY-5686 UMP biosynthesis 0.00946 

PWY-6386 UDP-N-acetylmuramoyl-pentapeptide 
biosynthesis II (lysine-containing) 

0.00933 

PWY-6387 UDP-N-acetylmuramoyl-pentapeptide 
biosynthesis I (meso-diaminopimelate 
containing) 

0.00925 

PEPTIDOGL
YCANSYN-
PWY 

Peptidoglycan biosynthesis I (meso-
diaminopimelate containing) 

0.00919 

PWY-6122 5-aminoimidazole ribonucleotide biosynthesis 
II 

0.00892 

PWY-6277 Superpathway of 5-aminoimidazole 
ribonucleotide biosynthesis 

0.00892 

PWY-724 Superpathway of L-lysine, L-threonine and L-
methionine biosynthesis II 

0.0089 

DTDPRHAM
SYN-PWY 

dTDP-L-rhamnose biosynthesis I 0.00878 

ANAGLYCOL
YSIS-PWY  

Glycolysis III (from glucose) 0.00873 
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HISTSYN-
PWY 

L-histidine biosynthesis 0.00866 

PWY-6151 S-adenosyl-L-methionine cycle I 0.00866 

PWY-6385  Peptidoglycan biosynthesis III (mycobacteria) 0.00844 

PWY-6121 5-aminoimidazole ribonucleotide biosynthesis I 0.00833 

ARGSYNBS
UB-PWY 

L-arginine biosynthesis II (acetyl cycle) 0.00801 

PWY-5913  TCA cycle VI (obligate autotrophs) 0.00785 

PWY-6936  seleno-amino acid biosynthesis 0.0078 

PWY-3841 folate transformations II 0.00779 

NONMEVIPP
-PWY 

methylerythritol phosphate pathway I 0.00774 

GLYCOCAT-
PWY 

glycogen degradation I (bacterial) 0.00771 

ARGSYN-
PWY 

L-arginine biosynthesis I (via L-ornithine) 0.00768 

PWY-7400: L-arginine biosynthesis IV (archaebacteria) 0.00766 

PYRIDNUCS
YN-PWY 

NAD biosynthesis I (from aspartate) 0.00761 

COMPLETE-
ARO-PWY  

superpathway of aromatic amino acid 
biosynthesis 

0.00742 

ARO-PWY chorismate biosynthesis I 0.00731 

PWY-7229 superpathway of adenosine nucleotides de 
novo biosynthesis I 

0.00729 

HSERMETA
NA-PWY  

L-methionine biosynthesis III 0.00716 

1CMET2-
PWY 

N10-formyl-tetrahydrofolate biosynthesis 0.00714 

PWY-6163 chorismate biosynthesis from 3-
dehydroquinate 

0.00712 

PWY-1042  glycolysis IV (plant cytosol) 0.0071 

GLUTORN-
PWY 

L-ornithine biosynthesis 0.00709 

UDPNAGSY
N-PWY 

UDP-N-acetyl-D-glucosamine biosynthesis I 0.0069 

PWY0-1586 peptidoglycan maturation (meso-
diaminopimelate containing) 

0.00662 

GLYCOGEN
SYNTH-PWY 

glycogen biosynthesis I (from ADP-D-Glucose) 0.00656 

PWY-6123 inosine-5'-phosphate biosynthesis I 0.00636 

PWY-5384 sucrose degradation IV (sucrose 
phosphorylase) 

0.00635 
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PWY−7111: pyruvate fermentation to isobutanol (engineered)

ILEUSYN−PWY: L−isoleucine biosynthesis I (from threonine)

VALSYN−PWY: L−valine biosynthesis

BRANCHED−CHAIN−AA−SYN−PWY: superpathway of branched amino acid biosynthesis

PWY−6737: starch degradation V

PWY−5103: L−isoleucine biosynthesis III

COA−PWY−1: coenzyme A biosynthesis II (mammalian)

PWY−3001: superpathway of L−isoleucine biosynthesis I

PWY−7221: guanosine ribonucleotides de novo biosynthesis

PWY−2942: L−lysine biosynthesis III

PWY−7220: adenosine deoxyribonucleotides de novo biosynthesis II

PWY−7222: guanosine deoxyribonucleotides de novo biosynthesis II

PWY−7219: adenosine ribonucleotides de novo biosynthesis

THRESYN−PWY: superpathway of L−threonine biosynthesis

PWY−5097: L−lysine biosynthesis VI

PWY−5686: UMP biosynthesis

PWY−6386: UDP−N−acetylmuramoyl−pentapeptide biosynthesis II (lysine−containing)

PWY−6387: UDP−N−acetylmuramoyl−pentapeptide biosynthesis I (meso−diaminopimelate containing)

PEPTIDOGLYCANSYN−PWY: peptidoglycan biosynthesis I (meso−diaminopimelate containing)

PWY−6122: 5−aminoimidazole ribonucleotide biosynthesis II
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Supplementary Figure 11: Most abundant bacterial metabolic pathways in 
Baby, Food & Mi samples before and after the introduction of solid foods. 
Samples are separated based on sample collection time point and 
participant ID. 

J
C

S
A

6
2

J
C

S
A

4
6

J
C

S
A

3
5

J
C

S
A

1
7

J
C

S
A

6
6

J
C

S
A

5
7

J
C

S
A

4
2

J
C

S
A

4
1

J
C

S
A

1
0

J
C

S
A

1
5
5

J
C

S
A

5
4

J
C

S
A

3
3

J
C

S
A

4
3

J
C

S
A

3
4

J
C

S
A

4
J
C

S
A

6
5

J
C

S
A

5
0

J
C

S
A

3
9

J
C

S
A

1
8

J
C

S
A

6
8

J
C

S
A

6
0

J
C

S
A

4
7

J
C

S
A

4
4

J
C

S
A

1
1

J
C

S
A

4
9

J
C

S
A

5
8

J
C

S
A

3
7

J
C

S
A

4
8

J
C

S
A

3
8

J
C

S
A

5

PWY−7221: guanosine ribonucleotides de novo biosynthesis|g__Bifidobacterium.s__Bifidobacterium_dentium

PWY−6737: starch degradation V|g__Bifidobacterium.s__Bifidobacterium_dentium

PWY−5686: UMP biosynthesis|g__Bifidobacter ium.s__Bifidobacterium_dentium

PWY−5384: sucrose degradation IV (sucrose phosphorylase)|g__Bifidobacterium.s__Bifidobacterium_dentium

PWY−6151: S−adenosyl−L−methionine cycle I|g__Bifidobacter ium.s__Bifidobacterium_dentium

VALSYN−PWY: L−valine biosynthesis|g__Bifidobacterium.s__Bifidobacterium_dentium

ILEUSYN−PWY: L−isoleucine biosynthesis I (from threonine)|g__Bifidobacter ium.s__Bifidobacterium_dentium

PWY−7111: pyruvate fermentation to isobutanol (engineered)|g__Bifidobacterium.s__Bifidobacterium_dentium

PWY−6122: 5−aminoimidazole ribonucleotide biosynthesis II|g__Bifidobacterium.s__Bifidobacterium_dentium

PWY−6277: superpathway of 5−aminoimidazole ribonucleotide biosynthesis|g__Bifidobacterium.s__Bifidobacterium_dentium

PWY−2942: L−lysine biosynthesis III|g__Bifidobacter ium.s__Bifidobacterium_dentium

PWY−5097: L−lysine biosynthesis VI|g__Bifidobacter ium.s__Bifidobacterium_dentium

PWY−621: sucrose degradation III (sucrose invertase)|g__Bifidobacterium.s__Bifidobacterium_dentium

COA−PWY: coenzyme A biosynthesis I|g__Bifidobacter ium.s__Bifidobacterium_dentium

COA−PWY−1: coenzyme A biosynthesis II (mammalian)|g__Bifidobacter ium.s__Bifidobacterium_dentium

P124−PWY: Bifidobacterium shunt|g__Bifidobacterium.s__Bifidobacterium_dentium

HISTSYN−PWY: L−histidine biosynthesis|g__Bifidobacter ium.s__Bifidobacterium_dentium

BRANCHED−CHAIN−AA−SYN−PWY: superpathway of branched amino acid biosynthesis|g__Bifidobacter ium.s__Bifidobacterium_dentium

PWY−7219: adenosine ribonucleotides de novo biosynthesis|g__Bifidobacterium.s__Bifidobacterium_dentium

DAPLYSINESYN−PWY: L−lysine biosynthesis I|g__Bifidobacter ium.s__Bifidobacterium_dentium
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Supplementary Figure 12: 20 most abundant microbial metabolic pathways 
predicted for B. dentium, before (left) and after (right) the introduction of 
solid foods 
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PWY0−1586: peptidoglycan maturation (meso−diaminopimelate containing)|g__Bifidobacter ium.s__Bifidobacterium_pseudocatenulatum

PWY−6151: S−adenosyl−L−methionine cycle I|g__Bifidobacter ium.s__Bifidobacterium_pseudocatenulatum

PWY−7111: pyruvate fermentation to isobutanol (engineered)|g__Bifidobacterium.s__Bifidobacterium_pseudocatenulatum

PWY−2942: L−lysine biosynthesis III|g__Bifidobacter ium.s__Bifidobacterium_pseudocatenulatum

DAPLYSINESYN−PWY: L−lysine biosynthesis I|g__Bifidobacter ium.s__Bifidobacterium_pseudocatenulatum

ILEUSYN−PWY: L−isoleucine biosynthesis I (from threonine)|g__Bifidobacter ium.s__Bifidobacterium_pseudocatenulatum

VALSYN−PWY: L−valine biosynthesis|g__Bifidobacterium.s__Bifidobacterium_pseudocatenulatum

PWY−5097: L−lysine biosynthesis VI|g__Bifidobacter ium.s__Bifidobacterium_pseudocatenulatum

BRANCHED−CHAIN−AA−SYN−PWY: superpathway of branched amino acid biosynthesis|g__Bifidobacter ium.s__Bifidobacterium_pseudocatenulatum

PWY−3001: superpathway of L−isoleucine biosynthesis I|g__Bifidobacter ium.s__Bifidobacterium_pseudocatenulatum

THRESYN−PWY: superpathway of L−threonine biosynthesis|g__Bifidobacter ium.s__Bifidobacterium_pseudocatenulatum

COA−PWY−1: coenzyme A biosynthesis II (mammalian)|g__Bifidobacter ium.s__Bifidobacterium_pseudocatenulatum

COA−PWY: coenzyme A biosynthesis I|g__Bifidobacter ium.s__Bifidobacterium_pseudocatenulatum

HISTSYN−PWY: L−histidine biosynthesis|g__Bifidobacter ium.s__Bifidobacterium_pseudocatenulatum

PWY−5103: L−isoleucine biosynthesis III|g__Bifidobacter ium.s__Bifidobacterium_pseudocatenulatum

P124−PWY: Bifidobacterium shunt|g__Bifidobacterium.s__Bifidobacterium_pseudocatenulatum

PWY−724: superpathway of L−lysine, L−threonine and L−methionine biosynthesis II|g__Bifidobacter ium.s__Bifidobacterium_pseudocatenulatum

PWY−4242: pantothenate and coenzyme A biosynthesis III|g__Bifidobacter ium.s__Bifidobacterium_pseudocatenulatum

PWY−7221: guanosine ribonucleotides de novo biosynthesis|g__Bifidobacterium.s__Bifidobacterium_pseudocatenulatum

SER−GLYSYN−PWY: superpathway of L−serine and glycine biosynthesis I|g__Bifidobacter ium.s__Bifidobacterium_pseudocatenulatum

time_point
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0

5e−04

0.001

0.0015
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Supplementary Figure 13: 20 most abundant microbial metabolic pathways 
predicted for B. pseudocatenulatum, before (left) and after (right) the 
introduction of solid foods 
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PWY−7220: adenosine deoxyribonucleotides de novo biosynthesis II|g__Bacteroides.s__Bacteroides_dorei

PWY−7222: guanosine deoxyribonucleotides de novo biosynthesis II|g__Bacteroides.s__Bacteroides_dorei

PWY−1042: glycolysis IV (plant cytosol)|g__Bacteroides.s__Bacteroides_dorei

DTDPRHAMSYN−PWY: dTDP−L−rhamnose biosynthesis I|g__Bacteroides.s__Bacteroides_dorei

PWY−7228: superpathway of guanosine nucleotides de novo biosynthesis I|g__Bacteroides.s__Bacteroides_dorei

PWY−7221: guanosine ribonucleotides de novo biosynthesis|g__Bacteroides.s__Bacteroides_dorei

PWY−6125: superpathway of guanosine nucleotides de novo biosynthesis II|g__Bacteroides.s__Bacteroides_dorei

PWY−6700: queuosine biosynthesis|g__Bacteroides.s__Bacteroides_dorei

PWY−7199: pyrimidine deoxyribonucleosides salvage|g__Bacteroides.s__Bacteroides_dorei

PWY−7111: pyruvate fermentation to isobutanol (engineered)|g__Bacteroides.s__Bacteroides_dorei

VALSYN−PWY: L−valine biosynthesis|g__Bacteroides.s__Bacteroides_dorei

1CMET2−PWY: N10−formyl−tetrahydrofolate biosynthesis|g__Bacteroides.s__Bacteroides_dorei

ASPASN−PWY: superpathway of L−aspartate and L−asparagine biosynthesis|g__Bacteroides.s__Bacteroides_dorei

RIBOSYN2−PWY: flavin biosynthesis I (bacteria and plants)|g__Bacteroides.s__Bacteroides_dorei

PWY−6147: 6−hydroxymethyl−dihydropterin diphosphate biosynthesis I|g__Bacteroides.s__Bacteroides_dorei

ARGININE−SYN4−PWY: L−ornithine de novo  biosynthesis|g__Bacteroides.s__Bacteroides_dorei

PWY−6123: inosine−5'−phosphate biosynthesis I|g__Bacteroides.s__Bacteroides_dorei

PWY−6151: S−adenosyl−L−methionine cycle I|g__Bacteroides.s__Bacteroides_dorei

PWY−3841: folate transformations II|g__Bacteroides.s__Bacteroides_dorei

PWY0−1586: peptidoglycan maturation (meso−diaminopimelate containing)|g__Bacteroides.s__Bacteroides_dorei
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Supplementary Figure 14: 20 most abundant microbial metabolic pathways 
predicted for B. dorei, before (left) and after (right) the introduction of solid 
foods 
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DTDPRHAMSYN−PWY: dTDP−L−rhamnose biosynthesis I|g__Bacteroides.s__Bacteroides_fragilis

PWY−6953: dTDP−3−acetamido−3,6−dideoxy−&alpha;−D−galactose biosynthesis|g__Bacteroides.s__Bacteroides_fragilis

PWY−7316: dTDP−N−acetylviosamine biosynthesis|g__Bacteroides.s__Bacteroides_fragilis

DTDPRHAMSYN−PWY: dTDP−L−rhamnose biosynthesis I|g__Bacteroides.s__Bacteroides_fragilis_CAG_47

PWY−7220: adenosine deoxyribonucleotides de novo biosynthesis II|g__Bacteroides.s__Bacteroides_fragilis

PWY−7222: guanosine deoxyribonucleotides de novo biosynthesis II|g__Bacteroides.s__Bacteroides_fragilis

PWY−7219: adenosine ribonucleotides de novo biosynthesis|g__Bacteroides.s__Bacteroides_fragilis_CAG_47

PANTO−PWY: phosphopantothenate biosynthesis I|g__Bacteroides.s__Bacteroides_fragilis

COA−PWY−1: coenzyme A biosynthesis II (mammalian)|g__Bacteroides .s__Bacteroides_fragilis

PWY−5667: CDP−diacylglycerol biosynthesis I|g__Bacteroides.s__Bacteroides_fragilis

PWY0−1319: CDP−diacylglycerol biosynthesis II|g__Bacteroides.s__Bacteroides_fragilis

PWY−7220: adenosine deoxyribonucleotides de novo biosynthesis II|g__Bacteroides.s__Bacteroides_fragilis_CAG_47

PWY−7222: guanosine deoxyribonucleotides de novo biosynthesis II|g__Bacteroides.s__Bacteroides_fragilis_CAG_47

PWY−6123: inosine−5'−phosphate biosynthesis I|g__Bacteroides.s__Bacteroides_fragilis_CAG_47

PWY−6124: inosine−5'−phosphate biosynthesis II|g__Bacteroides.s__Bacteroides_fragilis_CAG_47

HSERMETANA−PWY: L−methionine biosynthesis III|g__Bacteroides.s__Bacteroides_fragilis

PWY−6147: 6−hydroxymethyl−dihydropterin diphosphate biosynthesis I|g__Bacteroides.s__Bacteroides_fragilis

PWY−6936: seleno−amino acid biosynthesis|g__Bacteroides.s__Bacteroides_fragilis

COA−PWY: coenzyme A biosynthesis I|g__Bacteroides.s__Bacteroides_fragilis_CAG_47

PWY−6126: superpathway of adenosine nucleotides de novo biosynthesis II|g__Bacteroides.s__Bacteroides_fragilis_CAG_47
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Supplementary Figure 15: 20 most abundant microbial metabolic pathways 
predicted for B. fragilis, before (left) and after (right) the introduction of solid 

foods 
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DTDPRHAMSYN−PWY: dTDP−L−rhamnose biosynthesis I|g__Bacteroides.s__Bacteroides_vulgatus

PWY−7220: adenosine deoxyribonucleotides de novo biosynthesis II|g__Bacteroides.s__Bacteroides_vulgatus

PWY−7222: guanosine deoxyribonucleotides de novo biosynthesis II|g__Bacteroides.s__Bacteroides_vulgatus

PWY−7228: superpathway of guanosine nucleotides de novo biosynthesis I|g__Bacteroides.s__Bacteroides_vulgatus

PWY−7219: adenosine ribonucleotides de novo biosynthesis|g__Bacteroides.s__Bacteroides_vulgatus

PWY−7229: superpathway of adenosine nucleotides de novo biosynthesis I|g__Bacteroides.s__Bacteroides_vulgatus

PWY−7221: guanosine ribonucleotides de novo biosynthesis|g__Bacteroides.s__Bacteroides_vulgatus

PWY−6126: superpathway of adenosine nucleotides de novo biosynthesis II|g__Bacteroides.s__Bacteroides_vulgatus

DTDPRHAMSYN−PWY: dTDP−L−rhamnose biosynthesis I|g__Bacteroides.s__Bacteroides_vulgatus_CAG_6

PANTO−PWY: phosphopantothenate biosynthesis I|g__Bacteroides.s__Bacteroides_vulgatus

PWY−1042: glycolysis IV (plant cytosol)|g__Bacteroides.s__Bacteroides_vulgatus_CAG_6

PWY−1042: glycolysis IV (plant cytosol)|g__Bacteroides.s__Bacteroides_vulgatus

PWY−6124: inosine−5'−phosphate biosynthesis II|g__Bacteroides.s__Bacteroides_vulgatus

COA−PWY: coenzyme A biosynthesis I|g__Bacteroides.s__Bacteroides_vulgatus

PWY−6700: queuosine biosynthesis|g__Bacteroides.s__Bacteroides_vulgatus_CAG_6

ARGININE−SYN4−PWY: L−ornithine de novo  biosynthesis|g__Bacteroides.s__Bacteroides_vulgatus

PANTOSYN−PWY: pantothenate and coenzyme A biosynthesis I|g__Bacteroides.s__Bacteroides_vulgatus

PWY−6123: inosine−5'−phosphate biosynthesis I|g__Bacteroides.s__Bacteroides_vulgatus

PWY−6125: superpathway of guanosine nucleotides de novo biosynthesis II|g__Bacteroides.s__Bacteroides_vulgatus

PWY−6700: queuosine biosynthesis|g__Bacteroides.s__Bacteroides_vulgatus
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Supplementary Figure 16: 20 most abundant microbial metabolic pathways 
predicted for B. vulgatus, before (left) and after (right) the introduction of 

solid foods 
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Appendix to Chapter 3B: Metabolic Pathway Abundance 

 

Supplementary Figure 17: Abundance of bacteria containing the homeolactic 
fermentation pathway, before (right) and after (left) solid food introduction 

 

Supplementary Figure 18: Abundance of bacteria containing the 
superpathway of branched amino acid biosynthesis pathway, before (right) 
and after (left) solid food introduction 
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Supplementary Figure 19: Abundance of bacteria containing the pyruvate 
fermentation to butanoate, before (right) and after (left) solid food 
introduction 

 

Supplementary Figure 20: Abundance of bacteria containing the coenzyme 
A biosynthesis II pathway, before (right) and after (left) solid food 
introduction 
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Supplementary Figure 21: Abundance of bacteria containing the mixed acid 
fermentation pathway, before (right) and after (left) solid food introduction 

 

Supplementary Figure 22: Abundance of bacteria containing the fucose 
degradation pathway, before (right) and after (left) solid food introduction 
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Supplementary Figure 23: Abundance of bacteria containing the glucose and 
glucose-1-phosphate degradation pathway, before (right) and after (left) 
solid food introduction 

 

Supplementary Figure 24: Abundance of bacteria containing the glycogen 
degradation I pathway, before (right) and after (left) solid food introduction 
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Supplementary Figure 25: Abundance of bacteria containing L-isoleucine 
biosynthesis pathway, before (right) and after (left) solid food introduction 

 

Supplementary Figure 26: Abundance of bacteria containing the lactose and 
galactose degradation I pathway, before (right) and after (left) solid food 
introduction 
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Supplementary Figure 27: Abundance of bacteria containing the pyruvate 
fermentation to propanoate pathway, before (right) and after (left) solid food 
introduction 

 

 

Supplementary Figure 28: Abundance of bacteria containing the heterolactic 
fermentation pathway, before (right) and after (left) solid food introduction 
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Supplementary Figure 29: Abundance of bacteria containing the acetylene 
degradation pathway, before (right) and after (left) solid food introduction 

 

 

Supplementary Figure 30: Abundance of bacteria containing the sucrose 
degradation III pathway, before (right) and after (left) solid food introduction 



MSc Thesis – B. Singh; McMaster University – Chemical Biology APPENDIX D 

 179 

 

Supplementary Figure 31: Abundance of bacteria containing the trehalose 
degradation V pathway, before (right) and after (left) solid food introduction 

 

Supplementary Figure 32: Abundance of bacteria containing the L-lysine 
biosynthesis III pathway, before (right) and after (left) solid food introduction 
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Supplementary Figure 33: Abundance of bacteria containing the 
superpathway of L-isoleucine biosynthesis I pathway, before (right) and after 
(left) solid food introduction 

 

Supplementary Figure 34: Abundance of bacteria containing the sucrose 
degradation II pathway, before (right) and after (left) solid food introduction 
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Supplementary Figure 35: Abundance of bacteria containing the 4-
aminobutanoate degradation V pathway, before (right) and after (left) solid 
food introduction 

 

Supplementary Figure 36: Abundance of bacteria containing the L-lysine 
biosynthesis VI pathway, before (right) and after (left) solid food introduction 
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Supplementary Figure 37: Abundance of bacteria containing the L-isoleucine 
biosynthesis III pathway, before (right) and after (left) solid food introduction 

 

Supplementary Figure 38: Abundance of bacteria containing the sucrose 
degradation IV pathway, before (right) and after (left) solid food introduction 
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Supplementary Figure 39: Abundance of bacteria containing the acetyl-CoA 
fermentation to butanoate II pathway, before (right) and after (left) solid food 
introduction 

 

Supplementary Figure 40: Abundance of bacteria containing the glycogen 
degradation II pathway, before (right) and after (left) solid food introduction 
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Supplementary Figure 41: Abundance of bacteria containing the galactose 
degradation I pathway, before (right) and after (left) solid food introduction 

 

Supplementary Figure 42: Abundance of bacteria containing the stachyose 
degradation pathway, before (right) and after (left) solid food introduction 
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Supplementary Figure 43: Abundance of bacteria containing the chondrltin 
sulfate degradation pathway, before (right) and after (left) solid food 
introduction 

 

Supplementary Figure 44: Abundance of bacteria containing the starch 
degradation III pathway, before (right) and after (left) solid food introduction 



MSc Thesis – B. Singh; McMaster University – Chemical Biology APPENDIX D 

 186 

 

Supplementary Figure 45: Abundance of bacteria containing the 
superpathway of glucose and xylose degradation, before (right) and after 
(left) solid food introduction 

 

Supplementary Figure 46: Abundance of bacteria containing the L-1,2-
propanediol  degradation pathway, before (right) and after (left) solid food 
introduction 
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Supplementary Figure 47: Abundance of bacteria containing the pyruvate 
fermentation to isobutanol (engineered) pathway, before (right) and after 
(left) solid food introduction 

 

Supplementary Figure 48: Abundance of bacteria containing the adenosine 
ribonucleotides de novo biosynthesis pathway, before (right) and after (left) 
solid food introduction 
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Supplementary Figure 49: Abundance of bacteria containing the adenosine 
deoxyribonucleotides de novo biosynthesis II pathway, before (right) and 
after (left) solid food introduction 

 

Supplementary Figure 50: Abundance of bacteria containing the guanosine 
ribonucleotides de novo biosynthesis pathway, before (right) and after (left) 
solid food introduction 
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Supplementary Figure 51: Abundance of bacteria containing the guanosine 
deoxyribonucleotides de novo biosynthesis II pathway, before (right) and 
after (left) solid food introduction 

 

Supplementary Figure 52: Abundance of bacteria containing the xylose 
degradation IV pathway, before (right) and after (left) solid food introduction 
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Supplementary Figure 53: Abundance of bacteria containing the 
superpathway of anaerobic sucrose degradation, before (right) and after 
(left) solid food introduction 

 

Supplementary Figure 54: Abundance of bacteria containing the mannan 
degradation pathway, before (right) and after (left) solid food introduction 
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Supplementary Figure 55: Abundance of bacteria containing the 
superpathway of L-threonine biosynthesis, before (right) and after (left) solid 
food introduction 

 

 

 

Supplementary Figure 56: Abundance of bacteria containing the L-valine 
biosynthesis pathway, before (right) and after (left) solid food introduction 
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