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Lay Abstract
The complexity of automotive software has increased dramatically in recent years.
New technological advances as well as increasing market competitiveness create a
high cost-pressure environment. As a result, improving the development of auto-
motive software and its maintainability has become an increasingly critical issue to
solve. This thesis uses a Hybrid Vehicle Controller Model developed within MAT-
LAB Simulink to investigate the possible improvements that can be made to software
modularity. The system decomposition is modified using the Simulink Module Tool,
and is analyzed regarding improvements to information hiding, interface complexity,
and specifically minimizing change propagation. The modular improvements made
to the Simulink Model resulted in significant improvements in system changeability
and information hiding, providing a useful framework for future EcoCAR students.
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Abstract
The complexity of automotive software has increased dramatically in recent years.
New technological advances as well as increasing market competitiveness create a high
cost-pressure environment. This thesis seeks to apply established modular principles
to a Simulink Model to increase information hiding to improve the maintainability
of controls software. A Hybrid Supervisory Controller (HSC) model, developed as
part of the McMaster EcoCAR Competition, is used throughout this thesis. The
software design process followed during the HSC model development is detailed, as
well as providing an example of the application of the Simulink Module Tool, a
Simulink add-on developed by Jaskolka et. al. The HSC System decomposition was
restructured based on an analysis of the likely changes to the vehicle software, as well
the system secrets contained within the model.

This thesis also presents an analysis of the original and modular system decom-
positions, comparing several common software indicators of information hiding, cou-
pling, cohesion, complexity, and testability. The modular decomposition led to a
significant improvement in information hiding, both in system changeability and in-
ternal implementation. Likely changes to the system propagate to fewer modules
and components within the new decomposition, with hardware data separated from
behavioral algorithms, and all modules grouped based on shared secrets. The redis-
tribution of algorithms based on separation of concern also led to improvements in
coupling, cohesion, and interface complexity. The resulting software design process
and modular system decomposition provides a framework for future EcoCAR stu-
dents to focus on correct design and implementation of hybrid vehicle software. The
benefits provided by the application of the Simulink Module Tool also contributes
additional data and supporting evidence to the improvements that can be realized
within Simulink Models by introducing the concepts of information hiding and mod-
ularity.
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Chapter 1

Introduction

In recent years, the extent to which software design has propagated to other technical
domains is increasing rapidly. In particular, the automotive industry has seen a
dramatic increase in features and complexities, with modern cars often having up to
80 separate embedded controllers requiring programming [5], [1, page 2], [41, page
3]. New technological innovations such as Advanced Driver Assistance, Advanced
Energy Management, as well as increased safety protocols have resulted in a drastic
increase in vehicle controls complexity [6], with up to 2000 software-based functions
deployed on premium cars in 2007 [6, page 9]. This increased controls complexity
has a direct impact on the amount of software developed and deployed on embedded
hardware within the vehicles. Current challenges faced in the automotive software
industry include an insufficient level of software quality, as well as low reusability
of vehicle controls code. With most functionality within a vehicle implemented as
proprietary software, a lot of functionality is not reused, as there is no established
standard software structure and design process which can be implemented within
multiple vehicles across all manufacturers [5],[17].

1.1 Trends in Automotive Software
The increased complexity in vehicle software can be attributed to several factors,
including the increased size of overall software, as well as the increased complexity
of the internal functions and algorithms [5], [1], [14]. The expansion of software
within vehicles was expected to increase for another two decades in 2007 [6, page 8],
and continues in that trend to this day. Complexity coming from advanced vehicle
functionality includes increased crash prevention and crash safety, primarily relying
on software diagnostics and mitigation to reduce the frequency and severity of vehicle
malfunctions and accidents [6, page 8]. The advancement of hybrid and electric
vehicle architectures are also a large contributing factor to the increase in automotive
software complexity [14, page 2], [42]. As the methods of energy management and
powertrain electrification become more advanced, a larger reliance has been placed
on software to facilitate these complex relationships [6, page 8]. Finally, advances
in Driver Assistance such as lane keep assist, cruise control and even self-driving
capabilities have drastically increased the complexity of software, and have added
new challenges in torque and power arbitration [6, page 8].

As software requirements increase for vehicle development, the development time
and cost increase as well. With software playing an increasingly critical role in the
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successful design and production of new vehicles, increased quality standards are re-
quired [14, page 2]. Furthermore, the highly competitive nature of the automotive
industry means development cycles for new vehicle software are often very short,
providing little time for a software design process to be followed accurately. Fur-
ther exacerbating this cost and time pressure is the heterogeneity of the software
developed within the vehicle ECUs [6, page 12], [15, page 1]. Much of the software
deployed within a vehicle is developed by various hardware suppliers, which do not
share their internal implementations with OEMs. The level to which software is de-
veloped by Automotive manufacturers in-house or contracted to external suppliers
varies between company and vehicle model [14, page 3]. As the complexity of ve-
hicle software increases, the importance of cooperation and efficient work between
automotive companies and hardware suppliers becomes increasingly critical.

1.2 Software Principles within Model Based Develop-
ment

Despite the increased demand for software development within the Automotive do-
main, the principles followed within traditional software frameworks [40], [37], [39] are
not prevalent within automotive embedded design. In order to handle the increased
complexity of vehicle software and to increase its reusability, a system decomposi-
tion based on separation of concerns and information hiding is needed, to create
a uniform way of automotive software development [6, page 12]. Model based de-
sign is the primary method in which automotive software controls are developed and
tested, using industry standard tools such as MATLAB Simulink to model compo-
nents, and perform automatic code generation [6, page 11], [17], [14, page 4]. The
Mathworks Advisory Board (MAB) has existing guidelines for model structuring,
but fails to properly address the issues of system decomposition practices to increase
modularization and improved information hiding [21]. If complexity and prevalence of
software development within the automotive industry continues to increase without
establishing traditional software safe practices, system design errors could increase
in prevalence and impact. Propagation of errors within embedded controls systems
have potential to cause major damage to both persons and property [47], establishing
a need for modular guidelines and practices to follow when developing automotive
vehicle software.

Work has been done in [18] to analyze the existing Simulink modeling constructs
in regards to their ability to implement information hiding and increased modularity.
The structure of a Simulink Module has also been developed and discussed in detail
in [35], [36], and [19], with guidelines established for implemented modularization
in Simulink MBD. The Simulink Module Tool was developed by Jaskolka [43]; a
Simulink tool add-on that can generate interfaces, convert between constructs, as
well as evaluate a model’s compatibility with modular guidelines. While the need for
modularization and information hiding within Simulink models is well understood,
there exists a limited amount of real-world applications of this modularization process,
particularly in the case of the Simulink Module Tool. In addition, these guidelines
have not been applied to a large number of systems, or examined in regards to their
impact on a Simulink vehicle controls model. In order to further prove the benefits
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of using the Simulink Module Tool to improve information hiding in automotive
software, additional examples and data should be established. This demonstration
of the modularization process, as well an analysis of the benefits introduced, are the
primary research objectives of this thesis.

1.3 Introduction to the EcoCAR Mobility Challenge
A notable source of innovation regarding the development of hybrid vehicles comes
from the Advanced Vehicle Technology Competitions (AVTC), a set of competitions
sponsored by the U.S. Department of Energy in conjunction with the North Ameri-
can Automotive Industry. The EcoCAR Mobility Challenge is an AVTC competition
organized by the Argonne National Laboratory and sponsored by major automo-
tive industry partners including General Motors and The MathWorks [4]. McMaster
University is a participant in the EcoCAR Challenge, which is a four year long com-
petition extending from 2018 - 2022 (referred to as Year 1 - Year 4 throughout this
thesis). Year 1 of the competition focused on the initial vehicle architecture design,
component selection, vehicle plant modeling, as well as testing bare bones controls in
a MIL environment. In Years 2 and 3, the focus was put on Vehicle Integration as
well as development and testing of vehicle controls software. Testing and validation
in Year 2 was primarily in the MIL, and HIL environments, with Year 3 shifting
focus to VIL testing. The final Year of the competition is meant for refinement of
the vehicle controls software, and implementation of additional functionality such as
diagnostics and robust fault detection, CAVS integration, and increased complexity
in control strategy [20].

The McMaster EcoCAR Team is comprised of six major sub-groups, namely the
Propulsion, Electrical, PCM (Propulsion Controls Modeling), CAVS (Connected and
Autonomous Vehicle Systems), System Safety, and Communications teams. The
Propulsion and Electrical sub-teams are primarily responsible for vehicle architec-
ture design, vehicle integration, and vehicle CAD/Circuit Modeling. The PCM team
is responsible for the design, implementation, and testing of the vehicle controls soft-
ware, as well as performing system simulations to evaluate the degree to which the
hybrid vehicle model meets performance targets. The CAVs team develops the ad-
vanced driver assistance functionality required in the competition vehicles, including
cruise control and lane keep assist, as well as sourcing and programming relevant
sensors. The System Safety team is primarily concerned with the definition of safety
requirements for the vehicle, as well as analysis and mitigation of potential faults and
hazards. Finally, the Communications team is responsible for maintaining an active
social media presence throughout the duration of the competition, as well as perform-
ing analysis and decisions related to the high level customer goals and requirements.
The research performed for this thesis was in part done during Year 2 of the Eco-
CAR Competition (2019-2020), during the author’s time as the PCM Team Lead.
The Energy Management Strategy (referred to as the PCSM in future Chapters) was
primarily developed by Mike Haussmann during Year 1 of the competition, and is
discussed at length in his masters thesis titled Development of a Control System for
a P4 Parallel-Through-The-Road Hybrid Electric Vehicle [16].
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1.4 Research Objective and Scope
The research presented in this thesis was done, in large part, to fulfill EcoCAR Mobil-
ity Challenge deliverables and develop vehicle controls to meet competition objectives.
The remaining research involved the design of a modular system decomposition for the
EcoCAR Model, and the application of the Simulink Module Tool and Simulink mod-
ular guidelines to improve information hiding and system changeability. The increase
in software complexity outlined in Section 1.1, as well as the lack of existing guidelines
to improve fundamental software design principles within MBD provide motivation
for the development of a modular automotive controls model. This thesis presents
the development of a hybrid vehicle controls model within MATLAB Simulink, and
applies the Simulink Module Tool in an attempt to increase modularity and informa-
tion hiding. The primary contributions of this thesis and the associated work that
was performed by the author from 2019 - 2021 are summarized below.

1. Development of Hybrid Vehicle Controls software for the McMaster EcoCAR
competition vehicle, in joint effort with the McMaster EcoCAR PCM Team.

(a) Design and development of vehicle component and power moding controls
for the EcoCAR Hybrid Vehicle.

(b) Deployed vehicle control software on target embedded hardware, performed
HIL bench testing and VIL CAN communication testing.

(c) Developed CAN gateway software for the HSC to GM Hardware interface,
successfully validated software on target vehicle.

2. Development of a Software Design Process followed by the McMaster EcoCAR
PCM Team during Years 2 and 3 of the competition (2019-2020).

3. Providing a large scale example of the application of the Simulink Module Tool
on a Vehicle Controls Model. Data has been collected regarding the possible
benefits provided by the adoption of this decomposition method, motivating a
transition to modular Simulink Software within the embedded hardware and
automotive industries.

(a) Creation of a modular system decomposition for the EcoCAR HSC Model,
providing a framework for future McMaster EcoCAR students to use in
later competitions. The information covered in this thesis, as well as the
finalized modular model (Section 7.2) should provide future EcoCAR PCM
students with the tools they need to significantly improve the information
hiding and changeability of the HSC software.

(b) Performed an analysis on the original and modular decomposition, evaluat-
ing their ability to meet established modularity metrics including change-
ability, interface complexity, coupling, cohesion, and testability.

1.5 Thesis Outline
The remainder of this thesis will be structured as follows. Chapter 2 contains a
review of existing literature regarding model based design and modularization, as
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well as important terms and constructs used in the Simulink Environment. Chapter
3 provides more context to the EcoCAR Mobility Challenge, providing a brief de-
scription of the vehicle architecture, VTS goals, and competition vehicle model. The
original EcoCAR HSC model is described in Chapter 4, outlining the software design
process followed and providing details on the initial system decomposition. Chap-
ter 5 describes the changes made to the HSC system decomposition and resulting
Simulink model in order increase modularity and improve information hiding. Guide-
lines defined in Chapter 2 were used as a primary reference, along with utilization of
the Simulink Module Tool to apply modular conversions. The resulting changes to
modularity and various software metrics are discussed in Chapter 6, answering the
questions of whether application of the Simulink Module Tool to a Hybrid Vehicle
Controller Model can result in improved information hiding and system changeability.
Chapter 7 concludes this thesis, providing a summary of results as well as future work
planned.

5
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Chapter 2

Background Information and
Literature Review

Chapter 2 presents a literature review and provides the reader with the necessary
background information needed to understand the remaining sections of the the-
sis. Section 2.1 introduces the concept of Model-based Design (MBD), and discusses
common development frameworks used within the automotive domain. Section 2.2
provides an overview of MATLAB Simulink, the primary application framework used
throughout this thesis, including common constructs and terminology. Section 2.3
discusses fundamental modular principles and terminology, outlining the importance
of information hiding within software systems. Section 2.4 summarizes existing work
that has been done to analyze the Simulink constructs in regards to their ability to
implement information hiding, as well as developing a modular framework for MBD
within Simulink. The resulting modular guidelines and Simulink Module definition
are summarized in Section 2.5, along with a description of the Simulink Module
Tool, a MATLAB Add-on which helps facilitate modularity within the Simulink En-
vironment.

2.1 Model-Based Design
Model Based Design (MBD) is becoming increasingly prevalent within software pro-
cesses, particularly in the automotive industry. One of the most recognized and
widely used software development processes within MBD is the V-Model, shown in
Figure 2.1 and described in detail in [17]. It is composed of an iterative process in-
volving Requirements Definition, System Architecture Development, Algorithm and
Functional Development, Code Generation, Unit Testing, Component Testing, Sys-
tem Testing, and Requirements Verification and Maintenance. The solid arrows in
Figure 2.1 represent the order in which steps should be completed, while the dashed
arrows represent the verification of previous steps in the V-model.

The first step of the MBD V-model process is to identify and document software
requirements. High-level system requirements describe what larger systems need to
accomplish, and are then further broken down to as granular of a level as needed.
The consolidation of these requirements are typically documented within a software
requirements specification (SRS), which is maintained and referenced throughout the
remaining software development process [17, page 5]. Once requirements are com-
plete, the architecture and software design phase can begin, starting with a decom-
position of the system into smaller, manageable subsystems or modules [17, page 12].
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Several different methods of system decomposition exist and are followed in industry;
this thesis focuses on the decomposition concepts involving design for change. This
method is discussed in more detail in Section 2.3, and refers to the decomposition of a
system into groupings based on the anticipated changes to the system, while seeking
to minimize the propagation of changes throughout the system hierarchy [40]. Soft-
ware design decisions are recorded within a software design document (SDD), acting
as a translation of the requirements within the SRS into a meaningful set of software
components and interfaces [17, page 13].

The next step in the V-model process is software implementation and code gener-
ation. Code generation within most MBD environments is automatic (most notably
MATLAB Simulink). The graphical models describing system and component be-
haviour are translated into code designed to deploy directly on the target embedded
hardware [17, page 16]. This allows for rapid prototyping in different XIL environ-
ments, particularly in the HIL and VIL stages. Once software is fully designed and
implemented, the testing and validation stages begin, starting with unit testing [17,
page 17]. For a given system component, test cases are developed and run against
the target software to determine the degree to which their associated requirements
are met. This individual testing process is ideally applied to all software components
within the system, but is typically restricted based on availability of equipment and
external dependencies. Additional forms of testing have been identified in Figure 2.1,
namely integration and acceptance testing. The degree to which multiple components
are tested together is entirely dependent on the system under question and what is
feasible within the project timeline and equipment availability. In the context of au-
tomotive systems, integration and acceptance testing would include the combination
of several major software systems (propulsion, thermal management, power moding
etc) and the validation of safe and functional vehicle operation. Software testing
should always seek to validate the corresponding set of requirements defined at the
beginning of the V-model development process [17, page 18-19]. Software systems
within the automotive industry are typically very large and complex, requiring many
modifications to the functionality and structure throughout the software development
life cycle. As a result, the V-model must represent an iterative process, where changes
needed in the system are first analyzed in regards to the impact they will have on
the SRS. Changes required are then propagated throughout the architectural design,
software design, testing, and validation stages [17, page 7].

Similar to the V-model, the notion of a rational design process is discussed in
[38] and outlines the need to adhere as closely as possible to this unattainable ideal
when developing software. A diagram outlining the major steps of the rational design
process can be seen in Figure 2.2. Creating a requirements document facilitates the
translation of a user or customer’s product request to a set of functionalities that
can be designed and implemented in software [38, page 4-5]. Similar to the archi-
tecture and software design stages of the V-model, the rational design process has
the Module Structure stage in which the larger system is decomposed into smaller,
manageable modules [38, page 6]. This is followed by the design and implementation
of the module interfaces as well as the uses hierarchy, which captures the depen-
dencies and interactions between the components of the software system. Specifying
the external dependencies of each module facilitates independent development with
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Figure 2.1: V-cycle Model, taken from [17, page 5]

minimal collaboration needed to implement functionality [38, page 6-7]. The uses hi-
erarchy will capture correctness dependencies between modules (Module A depends
on functionality of Module B), providing a clearer picture on potential roadblocks or
issues that may come up during development.

The structures of the internal modules identified in previous stages are then de-
signed, and captured within a module design document [38, page 7]. This documenta-
tion is followed by the software implementation stage, where the programs identified
within each module are developed, tested, and verified against requirements [38, page
8]. The final stage is maintenance, a continuous process in which any changes to
the system are applied to each step of the rational design process and propagated
throughout, depending on the impact. It is worth noting that both the V-model and
rational design process outlined in [17] and [38], respectively, are ideals that should be
striven for but are not fully realizable in practical applications. Often the information
needed to properly document or complete a design process stage is not available at the
time, or is not yet known. As a result, designers should seek to follow the processes
as closely as possible, and produce incomplete documentation if necessary. Once the
missing information is found or new issues come up, it is then possible to reiterate the
V-model or Rational design process, and update the corresponding documentation
[38, page 2].
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Figure 2.2: Rational Design Process, derived from [38]
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2.2 Simulink and Stateflow Modeling Basics
MBD is applied throughout this thesis using MATLAB Simulink, a powerful modeling
tool used throughout industry to develop embedded software and controls. Much of
the content of this thesis relies on the user having a basic understanding of the MAT-
LAB Simulink Environment as well as the various common constructs and processes
involved in modeling. Sections 2.2.1 and 2.2.2 provide an overview of the Simulink
and Stateflow constructs referenced throughout this thesis and are used extensively
in the models under discussion.

2.2.1 Simulink Constructs and Overview

This section seeks to provide a brief overview of each construct used and its purpose
within Simulink model development. Constructs which are leveraged to modularize
and structure the model include Model References, Model Variants, Virtual Subsys-
tems, and Simulink Functions. There are also several data and interface constructs
used throughout this thesis, namely Simulink Bus objects, Goto/From Tags, and Data
Dictionaries.

2.2.1.1 Project Model Root

The inclusion of multiple models within a Simulink project introduces a hierarchical
structure during development and simulation [31, page 369]. Simulink Documentation
gives the example shown in Figure 2.3, where the top model contains model references
which can extend to lower hierarchical levels. This top model is referred to as the root
model, or root level throughout this thesis. Modules lower in the model hierarchy
cannot refer to models at higher levels as indicated by the red X’s on arrows from
lower models to higher models. The two Simulink projects that are used for analysis
in Chapters 4 and 5 contain a root model with multiple model references to create a
hierarchical structure.

2.2.1.2 Model References

A Model Reference block is used within Simulink to include one model in another,
establishing a model hierarchy [31, page 368]. The root model containing the model
reference block is referred to as the parent model, and the model associated with the
reference block is the child. An example of a model reference can be seen in Figure
2.4, with the CAVS Module (child) shown defined within the HSC root level (parent).
Model References have several advantages, most notably the increased modularity
during software development [31, page 369]. Decomposing a large system into model
reference blocks allows for independent development and testing of software. Changes
to the child model are hidden from the parent, allowing for increased information
hiding. Model references are used extensively throughout this thesis, both in the
initial EcoCAR Model Development, as well as during the modularization process.
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Figure 2.3: Simulink Model Hierarchy, taken from [31, page 369]

Figure 2.4: CAVM implemented as a model reference within the
HSC root model
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Figure 2.5: Simulink Model Variant

2.2.1.3 Model Variants

Another common construct used within the Simulink Environment is the Model Vari-
ant Subsystem. A model variant subsystem allows for the selection of multiple dif-
ferent model references or subsystem blocks. Control variables and identifiers are
applied to each model variant, and determine which reference is active during simula-
tion [31, page 779]. Several control modes are available within the block parameters
dialog (shown in Figure 2.5), however the Expression option was used exclusively
throughout this thesis. The expression control mode indicates that the active variant
choice is determined prior to simulation of signal propagation within the model [31,
page 799]. At run-time, only the chosen variant will be active and the remaining
options will be commented out. Model variants have many advantages, including
the ability to create a multitude of varying implementations of the same function,
and allow for the dynamic switching between them during development and testing
[31, page 779]. Figure 4.13 shows an example of a Simulink Model variant used to
implement XIL testing, and is discussed in detail in Section 4.3.2.

2.2.1.4 Virtual Subsystems

Subsystems are fundamental Simulink constructs used for grouping blocks together
based on functionality. Subsystems are categorized as virtual if they provide graphical
organization without have an impact on model execution [31, page 246]. Figure
2.6 shows a simple example of a virtual subsystem, grouping together three input

12

https://www.mcmaster.ca
https://www.eng.mcmaster.ca/cas


Master of Applied Science– Augustino Fella Pellegrino; McMaster University–
Department of Computing and Software

Figure 2.6: Example of three signal addition hidden within a virtual
subsystem.

signals added together to form one output signal. Regardless of whether the virtual
subsystem is present or the addition occurs at the root level, the functionality remains
identical (Figure 2.7).

2.2.1.5 Simulink Functions

A Simulink Function is a construct which receives a set of input signals, performs a
computational task, and produces a set of output signals. Its behaviour is comparable
to that of a traditional software function written in MATLAB or C++ [31, page 587].
Simulink functions can be implemented within various constructs including Simulink
Function Blocks, Exported Stateflow graphical functions, Exported Stateflow MAT-
LAB functions, and S-functions. As it relates to this thesis, only the Simulink Func-
tion block was used within the HSC Model Development, an example of which can
be seen in Figure 2.8. The example Test _Function() is implemented as a Simulink
function (highlighted orange), and is invoked via its corresponding Simulink function
caller block, highlighted blue.

Each Simulink Function must have a corresponding Simulink Function caller
block, which is responsible for invoking function execution wherever needed within
the model hierarchy. The function prototype defined within the Simulink Function
caller block specifies the external interface, including relevant signal attributes such as
size, data type, complexity, and unit. The contents of the Function prototype param-
eter for the corresponding function caller blocks must match the interface specified in
the Simulink Function Block [31, page 590]. Some of the benefits of Simulink Func-
tion Blocks include decreasing the number of routed signal lines, allowing for multiple
function callers to the same function block, as well as separating the function interface
from the internal implementation [31, page 592]. As will be shown in Section 2.4 and
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Figure 2.7: Functionality remains the same after virtual subsystem
removal

2.5, the Simulink Function Block is particularly useful in implemented modularity
within the Simulink framework.

2.2.1.6 Bus Objects

The predominant composite signal types used within the Simulink Environment in-
clude the virtual, and non-virtual Bus. A virtual Bus object is simply a visual group-
ing and organization of a set of Simulink signals, typically used to reduce visual
complexity and increase model organization [31, page 3506] . A model or subsystem
with a large number of output signals can be consolidated to a single Bus signal using
a Bus Creator Block, reducing the signal routing needed to pass information within
the model hierarchy. A corresponding Bus Selector block can be used to decompose a
given Bus signal into its comprising elements [31, page 3512]. Despite the visual ap-
pearance, signals are not grouped in any functional sense and do not affect simulation
or code generation.

In contrast, a non-virtual Bus object groups signals both visually and functionally.
A Simulink Bus Object must be defined for each non-virtual bus, including a speci-
fication of each signal within the grouping. A key difference between these methods
of Bus creation is that in the case of a Simulink Bus Object, all signals contained
within it must explicitly define their name, data type, size, and complexity. Any
Bus creator or selector block which includes a non-virtual bus must explicitly set
the corresponding Simulink Bus data type, as well as ensure that all incoming and
outgoing signals match the interface specifications within the Bus Object definition
[31, page 3555 - 3557]. The Bus Editor within Simulink is used to create Bus Object
definitions, and define the Bus Hierarchical structure. Bus Objects can be defined
within the base workspace, model workspace, or within a Simulink Data Dictionary.
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Figure 2.8: Example of Simulink function with corresponding func-
tion caller block
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Figure 2.9 shows an example of a non-virtual bus within the EcoCAR HSC Model.
The Bus Object, HSECOLAN_In is decomposed into its various signal elements us-
ing a Bus Creator block, with the output as virtual bus option disabled (shown in
Figure 2.10). The definition of the HSECOLAN_In Bus Object can be seen within
the Simulink Bus Editor, shown in Figure 2.11. The overall Bus object hierarchy
shown is defined within the Global.sldd Simulink Data Dictionary. Details regarding
the use of Simulink Bus Objects within the EcoCAR Model are discussed in Sections
4.3.5 and 5.3.2.

2.2.1.7 Goto/From Tags

One of the most common blocks used within the Simulink Environment is the Goto
and From Tags. The Goto block accepts a single signal input, and must be connected
to a corresponding From Tag block, which has a single output signal. Tags are
primarily used as a method of signal routing that avoids direct line connections.
Removing signal lines and routing can greatly increase visual organization of the
model, and lead to cleaner, easily understandable model design [25]. Figure 2.12 shows
an example of signal routing using Goto/From Tags. The Goto Tag (highlighted in
blue) receives the input signal, In_1 , which is passed to the corresponding From Tag
(highlighted in purple). Goto/From Tag combinations can also be used to pass data
implicitly within the model hierarchy, by defining a specified Tag scope. The Tag
Visibility parameter can be used to limit access to a particular Goto/From Tag; the
visibility is defaulted to local, meaning that for a given Goto Tag, the corresponding
From Tag is only valid if it is located within the same model hierarchical level [24].
Visibility can also be set to Global, in which case a From Tag can be valid anywhere
within the model hierarchy. There are limitations to the implicit passing of data using
Goto/From Tags, which are further discussed in Section 2.4.

2.2.1.8 Data Dictionaries

A Simulink Data Dictionary is a repository of persistent data within the Simulink
Model Environment. Relevant signals and parameters can be defined within a data
dictionary and used throughout a model as a replacement for the MATLAB Base
workspace. The dictionary can be linked to individual models, providing the primary
data source during simulation and code generation [31, page 3368-3369]. Data dic-
tionaries can be further broken down into sub-dictionaries through the use of Data
Dictionary references. This capability introduces a data dictionary hierarchy and
further refines the organization and grouping of relevant data. The use of data dic-
tionaries within the EcoCAR model is described in detail in Section 4.3.3 and Section
5.3.2.

2.2.1.9 MATLAB Base Workspace

The MATLAB workspace contains the set of all imported variables as well as those
defined through the MATLAB command line [22]. All variables defined within the
base workspace have a global scope, and are accessible anywhere in a Simulink model
hierarchy. The benefits provided by the base workspace are most notable in systems
with a low number of models, as all relevant model data is consolidated to a single
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Figure 2.9: Non-virtual Bus Object
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Figure 2.10: Bus Selector Block Parameters
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Figure 2.12: Goto/From Tags

location allowing for ease of access. As the number of models increases, the global
scope of the base workspace poses significant issues including lack of information
hiding as well as increasing the chances of errors in variable modification propagating
throughout the model hierarchy.

2.2.1.10 Simulink Model Workspace

In addition to a MATLAB base workspace, each model within a Simulink Project
has an individual model workspace. The signals and parameters defined within a
model workspace are locally scoped within their corresponding Simulink model, and
are not accessible from higher Model hierarchical levels [31, page 3025]. The model
workspace provides a local name space in which data only required within a given
model can be grouped together, facilitating information hiding and reducing chances
of variable conflicts. The source of data for a given model workspace can be a Model
file, MAT-file, MATLAB file, or MATLAB code stored within a model file [31, page
3027]. The use of model workspaces as opposed to the base workspace is critical in
the process of modularity used throughout this thesis. The role of model workspaces
within the Simulink Modularity Guidelines are described in Section 2.5.3, and the
application of these guidelines are described in Chapter 5.

2.2.2 Stateflow Constructs and Overview

Stateflow is an environment within Simulink used primarily for timed and decision-
based logic and state machine design [32]. This type of construct was particularly
useful during the construction of the hybrid vehicle model as it allowed for component
functionality to be modeled by state behavior and transitions.

2.2.2.1 Stateflow Charts

A Stateflow chart is a Simulink construct used to include sequential and combinato-
rial logic within a model [32, page 36]. The internals of a Stateflow chart can include
Simulink functions, MATLAB functions, or graphical functions composed of states
and transitions [34, page 37], an example of which can be seen in Figure 2.13. State-
flow charts are used to model state machines within the Simulink environment, and
are particularly useful within the automotive industry for representing component
and hardware operating modes.
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2.2.2.2 States and Transitions

State machines can be created within a Stateflow Chart or graphical function using
state and transition blocks. Each State has an associated functional output and tran-
sitions between states occur if the conditional statement for transition is true [32, page
36]. Transitions are represented by arrows connecting state blocks within a Stateflow
Chart, and are typically associated with a condition that must be met in order to
move from one state to another. In the case of the example given, if the condition:
BASAvail == 0 is true, the system will transition from the Shutdown state to the
FrontPwrtrnDisable State. Within the context of this thesis, a state is typically used
to describe an operating mode of a particular vehicle component or hardware. States
can either be active or inactive at any given time step, based on whether its associ-
ated entry condition (transition) has been met [32, page 151]. Once an event drives
a transition away from a particular state, it will transition from active to inactive.
A hierarchical structure can also be implemented by encapsulating one state within
another. The Power Moding Module shown in Figure 2.13 contains the Conventional
State, which is a parent to the ModeCheck, Shutdown, and FrontPwrtrnDisable sub-
states. Grouping states into a hierarchical structure can allow for the decomposition
of state machine functionality and selectively activate or deactivate groups of states
based on system events [32, page 48 - 49].

2.2.2.3 Stateflow Boxes

Boxes are primarily used for organization of Stateflow functions and state machines
within a given Stateflow chart [32, page 272]. There also exists the added benefit
of introducing a local namespace within each Box, allowing for the separation of
functions and states. The ability of Stateflow Box objects to locally scope functions
through encapsulation allows for the possibility of increased information hiding within
a given Stateflow Machine [34, page 37]. The visibility of functions and states encap-
sulated by a Box object is restricted to that particular Stateflow chart, and cannot
be exported to higher model hierarchical levels. If a particular set of functions or
states need to be accessed outside of the Stateflow chart, the Export chart level
functions and Treat exported functions as globally visible options must be
selected within the Chart properties dialog box [32, page 293].

2.3 Modular Software Principles
Modular software principles are the design decisions which separate a larger system
into independent modules [40, page 2]. Traditional software decomposition criteria
separates each step in the system process as an individual module. Modeling Software
such as Simulink follows a similar approach, with each model executing its blocks from
left to right, following the data flow process. The primary motivation for decomposing
a large system into modules is to minimize the software cost through independent
development and testing [38, page 4]. Additional benefits of modular programming
include shortened development time, ease of change, and comprehensibility.
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Figure 2.13: Power Moding Stateflow
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2.3.1 Information Hiding

When information hiding is used as a criterion for decomposing software, modules
are determined by the design decisions and secrets they hold. Likely changes to the
system which occur independently should be grouped into separate modules [38, page
3]. Algorithms which share common data or functionality are grouped together, irre-
spective of their position or prevalence within the overall system process [40, page 4].
Unique data structures as well as the functions that access and modify them should be
consolidated within a single module. Future changes in the data structure will be pre-
vented from propagating to all the modules that depend on the information contained
within it [40, page 4]. Process order should not dictate the grouping of algorithms
within modules, but instead should make multiple calls to modules containing similar
design decision secrets [40, page 4]. Modular decomposition also improves the system
changeability, which refers to the level of impact that a likely change will create. It
is useful to examine the extent to which a design decision change propagates outside
of its given module. A successfully modularized system would minimize the change
propagation of design decisions, allowing for independent development and testing of
modules without external conflicts [40, page 3].

2.3.2 Coupling and Cohesion

Coupling refers to the connections between modules within a software system [44, page
2]. It is desirable to minimize the number of connections between modules, as well as
the complexity of the connections themselves. Reducing connections between modules
will allow for easier understanding and debugging of individual functions, as well as
reducing the system propagation of module errors [44, page 3]. A primary cause for
high coupling within software systems comes from the use of common data areas, or
global variable namespaces. Low coupling among modules leads to a simpler, more
modular system, allowing for independent development and testing. High coupling
increases the chances of error propagation as well as increases the complexity of
module interfaces [44, page 4]. One of the most reliable ways of reducing coupling
is regrouping the elements within each module such that their internal connections,
or module cohesion, is maximized [44, page 7]. Functional cohesion represents the
strongest form of connection existing between two components within a module, and
occurs when each module encapsulates closely related secrets and algorithms [44, page
7]. High cohesion results in likely software changes being restricted to a lower number
of individual modules, as opposed to propagating throughout a low cohesion system.
A primary indicator of a well modularized software system is one in which coupling
is minimized, and cohesion is maximized.

2.3.3 Interface Complexity

Interface complexity refers to the number of connections and dependencies needed
to fully define the external interactions involved with a given Module [44, page 5].
An interface which exposes details regarding the module internal implementation will
have a higher complexity and increase the coupling unnecessarily [44, page 5]. To
facilitate independent development, the interface complexity between modules should
be simplified as much as possible. Designing Module interfaces with complex data
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structures that have a high number of dependencies will result in a large amount
of development time spent on coordination between modules [40, page 4]. Proper
system functionality will require a high level of collaboration between developers of
each connected module and will increase overall complexity and time of development.
An interface should consolidate to as abstract of a level as possible, ideally only
including names of exported functions as well as input and output parameters. The
interface specification should provide a user with just enough information to run the
program, and an implementer just enough information to complete the program [39,
page 1].

2.4 Simulink Construct Comparison
Limited work has been done to determine the extent that information hiding, reusabil-
ity, and separation of concern can be achieved within Simulink. The most rigor-
ous analysis has come from [18], which performs a Simulink Construct comparison.
Jaskolka et. al notes that general decomposition guidelines exist within the Simulink
User’s Guide, but do not address the subject of modularity or information hiding
directly [31, pages 1047-1089]. A more detailed and modularity focused analysis was
performed in this paper and provided the framework for development of modularity
guidelines and the Simulink Module Tool [36]. This paper provides a unique analysis
of Simulink constructs, and seeks to determine the extent to which each facilitates
modularity, encapsulation, and information hiding. The analysis is comprised of five
different Simulink constructs: the virtual subsystem, the atomic subsystem, Simulink
function, Library, and Model Reference. These commonly used constructs were com-
pared according to four distinct categorizations: reusability, sharing of program state,
encapsulation, and code generation [18, page 3-4]. A brief description of Simulink
constructs relevant to this thesis can be found in Section 2.2. The results of analysis
performed in [18] can be seen in Table 2.1.

Constructs which are not reusable include Virtual subsystems and Atomic sub-
systems. Virtual subsystems are merely graphical encapsulations to increase model
aesthetics and organization, and therefore cannot be reused throughout the model
without duplicating all the blocks and signals contained within it. The virtual sub-
system example from Figure 2.6 cannot be reused multiple times without the three
way addition block also being duplicated. This does not represent reuse, as copying
subsystems would greatly increase the duplicated code within the system [18, page
6]. Model references can be used multiple times throughout a system and therefore
are reusable. Similarly, blocks or functions created within a library can be reused
throughout multiple models. Functionality provided by a Simulink Library construct
can be included in any model that imports the related block library. Finally, a
Simulink Function shares similar reusability to a C function. In the Simulink func-
tion example shown in Figure 2.8, Test_Function() can be invoked as many times
as needed, simply by created multiple different Simulink function caller blocks. This
allows for an algorithm defined within a Simulink function to be used throughout a
system without introducing duplicate code [18, page 6].

The constructs were also compared in regards to their sharing of program state,
where multiple instances of a construct sharing the same set of data may increase
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Figure 2.14: Implicit Goto/From Tag Input test results, taken from
[18]

complexity and likelihood of unexpected changes propagating throughout the model
hierarchy. Libraries, virtual, and atomic subsystems are not reusable and therefore
do not share program state between duplicate copies [18, page 7]. Both Simulink
Functions and Model references do not share program state across instances. However,
program state sharing can be implemented under certain parameter configurations
[18, page 7].

In order to analyze the level of information hiding that can be created with each
construct, a series of tests were created in [18] to analyze both limitation of use,
as well as restriction of data flow. The restriction of data flow was analyzed using
both Goto/From Tags, as well as Data store Read/Write blocks. The results of the
implicit input and output tests for Goto/From Tags performed in [18] can be seen in
Figures 2.14 and 2.15, respectively. In the case of implicit input using Goto/From
tags with a global scope, only Simulink functions, and model references successfully
restricted access to internal data within the constructs. Implicit tag output testing
resulted in Simulink Functions, Model References, and atomic subsystems successfully
restricting data flow [18, page 8]. The implicit passing of data store Read and Write
blocks was also investigated, with Model References being the only construct that
can restrict data store reading and writing through its interface [18, page 8]. Looking
at the analysis results from Table 2.1, the Simulink Function construct was identified
as the best suited for implementation of information hiding within Simulink Models.
The ability to scope a Simulink Function and export it to higher model hierarchical
levels introduces the ability to limit access to the secrets contained within modules.
The results of the Simulink construct comparison described in [18] is used extensively
throughout this thesis, and provides the foundation for further Simulink Module
development outlined in Section 2.5.

2.5 Modularity within Simulink
The construct comparison results outlined in Section 2.4 were a primary determinant
in the modular structure designed by Jaskolka et. al in [36] and [35]. This structure
along with the accompanying modularity guidelines are outlined in Sections 2.5.1 -
2.5.3. The MATLAB tool developed by Jaskolka to implement these modular guide-
lines is outlined in Section 2.5.4.

25

https://www.mcmaster.ca
https://www.eng.mcmaster.ca/cas


Master of Applied Science– Augustino Fella Pellegrino; McMaster University–
Department of Computing and Software

Table 2.1: A comparison of Simulink constructs, derived from [18]

Figure 2.15: Implicit Goto/From Tag Output test results, taken
from [18]
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Table 2.2: Simulink and C construct Comparison, taken from [36]

2.5.1 Definition of a Simulink Module

A process for developing a Modular structure within Simulink is defined in [19], [35],
and [36]. The process of defining modules within Simulink began with a comparison
between Simulink and C Constructs [36, page 9]. An excerpt of the resulting similar-
ities can be seen in Table 2.2, and shown graphically in Figure 2.16. The structure
of a software module within the C environment is shown on the left, and was used
as a framework for developing a Simulink Module, shown on the right [36, page 11].
Other modules can be imported using Model References, which can act similar to an
#include statement within C. The Simulink Function construct has the ability to be
scoped both locally and globally, thus allowing for precise control over access to its
internals. A similarity can be drawn to the public and static functions within the C
language. A static function is accessible only within the module it is defined, and
cannot be exported or accessed externally. Similarly, by encapsulating a Simulink
Function within a virtual subsystem, its scope remains local to the Model in which
it is defined and cannot be accessed at higher hierarchical levels. Much like a public
function, a Simulink function defined at the root level of a model can be exported
and used by other modules within the model hierarchy.

2.5.2 Definition of a Simulink Module Interface

A module interface consists of inputs, outputs, and exports. A well designed inter-
face will fully describe a modules external dependencies, while minimizing access to
internal module implementation [36, page 12]. Traditional Simulink Interfaces as de-
fined by the Simulink Interface Display view only shows the combination of inport
and outport blocks defined within the model [33]. A critical deficiency of this tool
is its inability to display implicit communication constructs used within the model.
Most notably, the Interface Display View fails to show any Simulink Function exports,
which leads to an inaccurate interface definition. The Simulink Interface developed
in [36, page 12] contributes additional information and is shown in Figure 2.17. The
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Figure 2.16: Simulink and C module comparison, taken from [36]
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addition of exports to the interface definition allows for the representation of Simulink
functions being used by other modules within the Simulink project. The constructs
highlighted in gray are recommended for finalized models ready for code generation
and hardware deployment. Constructs crossed out in red are often useful and valid
during development and testing stages, but are not recommended or supported for
inclusion in Simulink Modules that will undergo code generation or hardware deploy-
ment [36, page 21].

As it relates to this thesis, the constructs that were primarily used include inports,
outports, exported Simulink functions, Model Workspaces, and Data Dictionaries.
The remaining constructs outlined in Figure 2.17, and discussed in detail in [36] were
not particularly relevant to the Models discussed in Chapters 4 - 6. An example of a
module interface within the EcoCAR Model is the MCM.slx (Motor Control Module)
model, consisting of 0 inports, 0 outports, and 6 exports. If the Simulink Interface
display view was used for analysis, no information would be able to be extracted
due to the absence of inports or outports. Figure 2.18 shows the interface generated
by the Simulink Module Tool (discussed in Section 2.5.4), using the definition
from [36]. The 6 exported Simulink Functions are correctly represented within the
Module Interface, while restricting access to the function internals. It is clear that the
interface definition from [36] provides more information than just inport and outport
signals, and defines the dependencies related to a given module while not exposing
the internal implementations.

2.5.3 Guidelines for Modularization

Jaskolka et. al continues work on development of a Simulink Module by defining a
set of modeling guidelines to follow during the modularization process [36, page 17
- 19]. The development of these guidelines was the result of a thorough analysis of
existing modeling standards, including those defined by The MathWorks Advisory
Boards [21]. The four primary guidelines for development of modules using Simulink
functions from [36, page 18] are shown below, and are used extensively throughout
the modularization of the EcoCAR Model discussed in Chapter 5. In addition to
the four explicitly defined guidelines, additional rules concerning modularization of
Stateflow charts were inferred from the work done by Jaskolka in [34, page 37 - 39],
as well as the Stateflow Documentation [31], and are represented by Guidelines 5 - 7.
Guideline 1 (Simulink Function Placement): Place the Simulink Function block
in the lowest common parent of its corresponding Function Caller blocks. Do not po-
sition the Simulink Function in the top layer for no reason. Avoid placing Simulink
Function blocks below their corresponding Function Caller blocks.
Guideline 2 (Simulink Function Visibility): Limit the Function Visibility pa-
rameter of the Simulink Function block’s trigger port to scoped if possible.
Guideline 3 (Simulink Function Shadowing): Do not place Simulink Functions
with the same name and input/output arguments within each others scope.
Guideline 4 (Use of the Base Workspace): Do not use the base workspace for
storing, reading, or writing data that a module is dependent on. Instead, place data
in either the model workspace, if it is used in a single module, or a data dictionary if
it is shared across modules.
Stateflow Guideline 5: Group all algorithms within a Stateflow Chart as either
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Figure 2.17: Simulink Module Interface, taken from [36]
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Figure 2.18: EcoCAR Module Interface using Simulink Module Tool
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graphical state machines, MATLAB Functions, or Simulink Functions.
Stateflow Guideline 6: Make a private subset of graphical, MATLAB, or Simulink
functions by encapsulating their blocks within a Stateflow Box object.
Stateflow Guideline 7: Make an exported subset of graphical, MATLAB, or
Simulink functions by placing them outside of any Stateflow Box objects at the root
level of the chart, and set the export chart level functions, and treat exported functions
as globally visible property to be enabled.

2.5.4 Simulink Module Tool

The Simulink Module Tool is an open source MATLAB add-on [7] developed by
Jaskolka and described in [36, page 20 - 21]. The purpose of the tool is to provide
support during the application of the Simulink Module Structure outlined in Sections
2.5.1 - 2.5.3. Conversion between subsystems and Simulink functions is easily facil-
itated through the menu options provided by the Simulink Module Tool. Selecting
the Convert Subsystem menu option on a previously created subsystem will fa-
cilitate the conversion to either a global or scoped Simulink function [43, page 8].
Furthermore, a corresponding function caller block can be created by right-clicking
within a given Simulink Module, and selecting the Call function menu option [43,
page 7]. A complete list of the functions within the scope of the current model will be
shown, giving the developer a clear picture of which functionality they have access to
and allowing for reduced complexity in modular development. The representation of
Simulink Module Interfaces as discussed in Section 2.5.2 can be generated using the
Simulink Module Tool context menu. The Show Interface and Print Interface
context menu options can be selected within a given module and will either print
the interface to the MATLAB command window in text form, or insert the interface
graphically within the model [43, page 9]. Finally, the Simulink Module Tool can
check compliance to the Guidelines for Modularity developed in [36] and discussed in
Section 2.5.3 using the Check Guidelines context menu option. A Guideline selec-
tor screen initializes, allowing for the testing of one or more of the Modular Guidelines
[43, page 13].

2.6 Simulink Design Verification
The Simulink Design Verifier (SDV) Tool utilizes formal methods to perform model
analysis. The tool can be run in various different modes, providing analysis of test
generation, design error detection, property proving, and testing coverage [29].

2.6.1 Model equivalence using SDV Property Proving

The SDV can be leveraged to prove functional equivalence between two Simulink
Models. Simulation can be run in Property-Proving Mode, where requirements can
be specified using Proof Blocks. Functional equivalence between two models can be
determined by comparing inputs using an equality logical operator fed into a Proof
Objective Block [29, page 444]. If all inputs are the same the Proof Objective will
be true, and the two models are functionally equivalent. This method is used in
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Figure 2.19: Model Advisor Property Window

Section 6.1 to ensure that the HSC Model before and after modularization remained
functionally the same.

2.6.2 Model checks using Simulink Model Advisor

The Simulink Model Advisor tool is used to check compliance to established modeling
guidelines and industry standards, as well as verify model correctness [23]. The
Model Advisor can be accessed through the Modeling tab of the Simulink editor,
which launches the System Selector - Model Advisor dialog box [31, page 312].
Within the context of this thesis, the Simulink Model Advisor was primarily used to
evaluate modeling metrics needed for modularity analysis, specifically block counts
and Cyclomatic Complexity [31, page 310]. The Model Advisor check selection screen
can be seen in Figure 2.19, with both the model count and cyclomatic complexity
metrics enabled.

2.6.3 SDV Test Generation and Coverage Analyzer

The SDV can also automatically generate test cases to satisfy model coverage objec-
tives when ran in Test Generation Mode [29, page 258]. Several different types
of coverage objectives are available including decision, condition, and modified condi-
tion decision coverage (MCDC). Decision coverage objectives examine decision points
within a model. Common sources of decision objectives includes switch and satura-
tion blocks, where the input can either be greater or less than a given threshold value
[29, page 281]. Condition coverage objectives analyze logical outputs coming from
Simulink logic blocks or Stateflow transitions [29, page 281]. The test generation ca-
pabilities provided by the SDV are used in Section 6.6 when analyzing the changes in
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Figure 2.20: Test Coverage Model Configuration Parameters

model testability. An example of the test generation model configuration parameters
that were set during analysis can be seen in Figure 2.20.

2.7 Summary
The preceding sections have provided the background information necessary to pro-
vide context for the remainder of this thesis. This included a discussion on the concept
of MBD and various design processes mentioned in the literature. An overview of the
MATLAB Simulink environment was also included, giving background information
into the various common constructs and concepts used during model development
in Chapters 4 and 5. The fundamental concepts of modularity were also discussed,
reviewing the importance of decomposing large systems with information hiding in
mind. Finally, the work done by Jaskolka et. al to apply modularity principles to the
Simulink environment was summarized, with the resulting modular guidelines and
Simulink Module Tool providing the basis for the EcoCAR Model changes outlined
in Chapter 5, and the corresponding analysis in Chapter 6.
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Chapter 3

Overview of EcoCAR
Competition

The research presented in this thesis is primarily based on Simulink Models developed
as contributions to the McMaster Engineering EcoCAR Team. McMaster is one of
twelve North American universities participating in the EcoCAR Mobility Challenge,
an Advanced Vehicle Competition sponsored by the U.S. Department of Energy, Gen-
eral Motors, and The Mathworks [8]. Prior to describing the Simulink Models and
software development process, it is first necessary to introduce the EcoCAR Mobil-
ity Challenge and highlight important vehicle background information. Section 3.1
introduces the vehicle architecture used by the McMaster Team during the EcoCAR
competition, as well its comprising components and hardware. Section 3.2 outlines
the team VTS goals, defining the performance targets that drove both hardware and
software design decisions. Finally Section 3.3 introduces the competition hybrid ve-
hicle model developed in MATLAB Simulink, providing context for the existence and
functionality of the HSC Controller model described in detail in Chapters 4 - 6.

3.1 Vehicle Architecture
During Year 1 of the EcoCAR Mobility Challenge (2018), the McMaster Team went
through the architecture selection process, where different combinations of compo-
nents were designed and analyzed together to determine the degree to which they
met the team’s end competition vehicle goals (Section 3.2). Figure 3.1 shows the
vehicle architecture which was selected by the McMaster Engineering EcoCAR team,
and is classified as a P4 Parallel-Through-The-Road Hybrid Electric Vehicle [16]. The
vehicle powertrain has front, rear, and all wheel drive capability, depending on the
engagement status of the clutch. The Front powertrain is composed of the GM 1.5L
LYX Engine [2], the GM 9-speed M3U transmission [3], and the Valeo i-STARS BAS
[46]. The electrical powertrain components are located on the rear drivetrain, provid-
ing torque by feeding power from the Malibu 300V Battery Pack [11] to the YASA
P400 Electric Motor [49]. The final component chosen within the vehicle architec-
ture is the Tilton Racing Clutch [45], which connects the combustion and electrical
powertrains depending on what vehicle drive mode has been requested. A Table
summarizing the final components chosen within the Team’s vehicle architecture can
also be seen in Figure 3.1. This data was collected by the McMaster EcoCAR team
in 2018 during the Year 1 architecture selection process, where different components
were analyzed both in terms of cost and ability to meet VTS targets.
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P4 Parallel Through the Road Hybrid 1.5L Engine(from ASR) 

 Figure 3.1: Vehicle Architecture developed by the McMaster Eco-
CAR Team in 2018

3.2 Vehicle Technical Specifications
Another process completed during Year 1 of the EcoCAR competition was the defi-
nition of the McMaster Team’s Vehicle Technical Specification (VTS) Goals. These
goals are outlined in Table 3.1 and represent the team built vehicle performance
targets that should be reached by the competition end date. The VTS goals along
with the competition rule set formed the basis of the High level system requirements
and resulting vehicle design process (discussed in Chapter 4). In particular, the Fuel
Economy target played a dominant role in driving the Vehicle Architecture selection
outlined in Section 3.1, as well the resulting Energy Management and Propulsion con-
trol strategies. Reaching the desired fuel economy during simulation and in vehicle
led to decisions related to component selection such as the addition of the Valeo BAS,
as well as changes to torque splitting strategies within the HSC [16, page 90]. The
impacts that the VTS goals had on the team designed energy management strategy
are discussed at length in [16], as well as the methods used for vehicle architecture
selection.

3.3 Competition Sponsored Hybrid Vehicle Model
To aid in the development of vehicle controls and vehicle architecture selection, a
MATLAB Simulink Vehicle Model was provided to each University participating in
the EcoCAR competition. Simulink was selected as the primary modeling environ-
ment used by the McMaster PCM Team, with the abundance of software tools and
libraries offered resulting in a unified development environment with simplified inte-
gration between components. Another benefit provided by MATLAB Simulink was
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Table 3.1: Vehicle Technical Specifications developed by the McMas-
ter EcoCAR Team in 2018

Specification Competition  
Target 

Stock AWD  
Blazer RS  

Team Target  

Acceleration,  
IVM-60 mph (s) 

7 7.45 7 

  Acceleration,  
50-60 mph (Passing) (s) 

6.5 3.4 6.5 

Braking,  
60-0 mph (ft) 

Stock 120 120 

Cargo Capacity Stock Stock Stock 

Passenger Capacity  
(persons) 

Stock Stock Stock 

Curb Mass (kg) N/A 2004.4 <2542 

Starting Time (s) <=2 <=2 <=2 

Ground Clearance (in,) N/A 7.87 7 

Total Vehicle Range (mi.) 250 330 250 

Fuel Economy (MPG) Stock + 15% 24.9 34 

Emissions Stock 120 120 

Braking,  
60-0 mph (ft) 

Stock Stock Stock 

 

its compatibility with the dSPACE MicroAutobox II [10], the hardware that the team
needs to deploy on the vehicle. This allows for the Simulink models to be code gener-
ated and deployed on embedded hardware with reduced issues, eliminating any bugs
related to development framework conversion. Library add-ons such as the Pow-
ertrain Blockset [28] can be leveraged to develop model representations of physical
propulsion and drivetrain hardware, providing the tools needed to develop a robust
Vehicle Plant Model, improving the MIL testing procedure.

3.3.1 Driver Plant Model

The driver plant model is shown in Figure 3.3, and consists of a Drive Cycle Source
block (highlighted in blue), and a longitudinal driver model variant subsystem (high-
lighted in green). The Drive Cycle Source block is part of the Powertrain Blockset,
and generates a velocity output signal based on a specified set of input points [28,
p. 133]. The drive cycle can be implemented in several file formats, including .mat,
.txt, and .csv, and is uploaded via the drive cycle source block parameter window
(shown in Figure 3.4). Figure 3.5 shows the HWFET drive cycle, which was used
extensively by the team throughout MIL testing in Year 1. It is meant to represent
typical highway driving conditions under 60 mph and was used along with other drive
cycles to evaluate the vehicle control system performance [12]. The resulting speed
output is received by the Longitudinal Driver Model Variant Subsystem, which is also
a block within the Powertrain Blockset. It is designed to implement a speed-tracking
controller which adjusts the output speed command based on both the vehicle request
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Figure 3.3: Driver Plant within EcoCAR Model, with Drive cycle
input

generated by the Drive Cycle source block, as well as the Vehicle Speed feedback signal
sent by the Vehicle Plant Model (Section 3.3.4) [26].

3.3.2 Vehicle Controller Model

The speed command generated by the Driver Plant model is passed to the Hybrid
Supervisory Controller (HSC) Model shown in Figure 3.2. The controller model pro-
cesses the speed command as well as plant model feedback, and generates command
control signals for each of its comprising components. The internals and functional-
ity of the HSC is the primary subject of Chapters 4 and 5, and therefore will not be
elaborated on here further. The controller model is named XIL Controller Model
as it contains the various Simulink models necessary to simulate and test in the MIL,
HIL, and VIL environments. The development and use cases of this model variant
system are described in detail in Section 4.3.2.

3.3.3 Vehicle Plant Model

The Vehicle Plant Model receives an input representing environmental conditions dur-
ing simulation, Env, as well as the component control signals, Ctrl_Cmd, sent from
the HSC. The component control request signals generated within the HSC Model
include torque requests to the various powertrain components, as well as power man-
agement and drivetrain specific parameters necessary for the Vehicle Plant Model to
function correctly during simulation. The vehicle architecture described in Section 3.1
was modeled in the Simulink Environment primarily using the Powertrain Blockset.
The majority of major propulsion and drivetrain components such as the engine, bat-
tery, motor, wheels, and driveshaft all require modeling of their physical parameters
within the Simulink environment to produce accurate MIL simulation results.

The YASA P400 Electric Motor was modeled within the Vehicle Plant using the
Mapped Motor Block, shown in Figure 3.6. The Mapped motor block receives Bat-
tery Voltage, Motor Speed Feedback, and a Torque Command, and produces a corre-
sponding Motor torque output, motor current, and power loss data [27]. The generic
structure of the mapped motor block can be further parameterized to more accurately

39

https://www.mcmaster.ca
https://www.eng.mcmaster.ca/cas


Master of Applied Science– Augustino Fella Pellegrino; McMaster University–
Department of Computing and Software

Figure 3.4: Drive Cycle Source Block used to import drive cycle files
passed to Driver Plant Model

Figure 3.5: HWFET Drive Cycle taken from EPA website [12]
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Figure 3.6: Example of Mapped Motor Block used from Powertrain
Blockset to simulate motor functionality.

model a specific motor hardware component by providing a unique torque-speed en-
velope. This provided a significant benefit during the architecture selection process,
where several motors which were being considered could be modeled using the same
block, simply by changing the torque-speed envelope parameter, and retrying the
simulation.

3.3.4 Visualization and Data Logging

The final major component within the competition vehicle model is the visualization
and data logging block, seen in Figure 3.2. The inputs to the system include the
Vehicle Plant Feedback signals, Diagnostic signals generated by the HSC, as well
as the initial Driver speed command. These signal bundles are decomposed into
various scopes and measurement blocks in order to provide readable and meaningful
simulation output results. An example of simulation output results can be seen in
Figure 3.7, using a competition provided highway drive cycle as input to the Driver
Plant Model. The simulation of the competition vehicle model involved the analysis
of how closely the vehicle plant speed feedback (highlighted in blue) matched the
generated trace velocity target (highlighted yellow).
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Figure 3.7: Simulation output of vehicle model using competition
provided drive cycle.
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Chapter 4

Model Development Process

This chapter is meant to provide the reader with an understanding of the software
development process followed by the author during Years 2 and 3 of the EcoCAR
Mobility Challenge. Additionally, an overview of the various model components is
provided, as well as their modular structure within the system decomposition. The
HSC Simulink Model introduced within this chapter is the primary focus of the re-
mainder of this thesis, including the modular changes applied in Chapter 5, and the
resulting modularity analysis in Chapter 6. The rest of this chapter is as follows:
Section 4.1 describes the process of requirements definition and documentation. Sec-
tion 4.2 describes the HSC architecture derived from the vehicle requirements set,
and demonstrates examples of software interface definition as well as implementation
of control algorithms. Section 4.3 introduces the method of modularization that was
initially used based on conventional Simulink methods (discussed in Chapter 2), as
well as methods suggested by the EcoCAR competition (discussed in Chapter 3).
Finally, Section 4.4 discusses the process of requirements verification through XIL
environment testing and presents examples of test results.

There are two primary systems provided as examples throughout Chapter 4,
namely the Accelerator Pedal Processing Subsystem, and the Power Moding Mod-
ule. The pedal processing subsystem is a relatively small component within the
HSC model, and is used to show requirement specification (Section 4.1.4), as well
as validation through XIL testing (Section 4.4.3). The Power Moding Module is a
relatively large and complex system, controlling the wake-up and shutdown of all ex-
ternal propulsion hardware. This increased complexity is used to shown an example
of algorithm development, and Stateflow implementation (Section 4.2.4.1). The soft-
ware design process outlined below was designed by the author during the EcoCAR
Competition. The implementation of this process (resulting requirements, architec-
ture diagrams, simulink models) were completed by the author in a joint effort with
the McMaster EcoCAR Team. In cases where a figure or table was not directly de-
veloped by the author, an indication of this is present within the headings, indicating
the main persons responsible.

4.1 Requirements Development Process
Similar to the V-cycle outlined in Section 2.1, the first step of the hybrid vehicle
development process is to define the requirements for the control system. To organize
the requirements for future changes and documentation, a hierarchical categorization
was implemented. Four major abstraction levels have been defined, namely high-level
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Figure 4.1: Requirements Categorization Diagram

vehicle, system, component, and software implementation requirements. In addition,
at each level of abstraction the set of all requirements are further categorized by the
specific purpose they hold within the overall vehicle design. These subcategories are
safety, functional, interface, and performance requirements. Please see Figure 4.1 for
a graphical representation of this categorization. The requirement subcategories are
briefly described in section 4.1.1, as well as a deeper analysis of the four levels of
abstraction within the functional requirements set in section 4.1.2.

4.1.1 Requirement Categorization

4.1.1.1 Safety Requirements

While safety requirements are arguably the most critical step of the vehicle software
development process, they were not a focus of the EcoCAR competition during the
development of the HSC model discussed in this thesis. All hazard analysis and the
corresponding safety requirements were developed in later years of the competition
by the McMaster EcoCAR System Safety Team, coordinating with the PCM Team
when internal knowledge of the system and component functionality was required.

4.1.1.2 Functional Requirements

Functional requirements describe the necessary operations of the systems, compo-
nents, and their associated software implementation within the HSC model. This
requirement set is particularly relevant to the primary discussion of this paper, which
is the modularization of the model, and as such they will be the primary requirement
set referenced throughout the remaining sections.
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4.1.1.3 Performance Requirements

The set of performance requirements form the guidelines for design such that each
system, component, and component function within the HSC meets the VTS goals
defined in Section 3.2. Additional performance limits on the system such as data
transmission rate and function caller frequency are also defined within this require-
ment set.

4.1.1.4 Interface Requirements

While each system and its corresponding components can be individually analyzed
in regard to functional, performance, and safety requirements, it is critical to also
consider the interactions between the different subsystems and components. This
interaction is captured within the interface requirements and provides the foundation
for defining explicit software interfaces (see Section 4.1.3).

4.1.2 Functional Requirements Set

4.1.2.1 High-Level Vehicle Requirements

The high-level vehicle requirements are primarily derived from an analysis of the
Vehicle Technical Specifications as well as the Customer or Stakeholder Requirements.
In the case of the EcoCAR competition, the stakeholder requirements are defined
according to the Competition Non-Year Specific Rules (omitted from this thesis due
to NDA restrictions) for proper operation of team vehicles. Please see Chapter 3 for
further information.

4.1.2.2 System and Component Requirements

Each high-level requirement is broken down and considered in terms of the major sys-
tems within the vehicle software. The system level requirements and their associated
components were primarily defined according to the physical hardware and software
components within the Hybrid vehicle powertrain. The breakdown of the HSC into
systems can be seen in Figure 4.2, and the further breakdown of the Propulsion
System into individual components is shown in Figure 4.3.

4.1.2.3 Software Implementation Requirements

While the component level requirements pertain to an individual feature or function-
ality of a given system, its software specific implementation must be further broken
down and analyzed. All component level requirements are defined in terms of real
software and hardware signals, as well as specific values or calibration values. The
process of model design and testing begins with these software implementation re-
quirements, and the metric for a complete implementation is their verification.

4.1.3 Requirements Specification Document

The requirement categorization described above has been defined and documented
within a Requirements Specification Document. A documentation and maintenance
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Figure 4.2: HSC System Categorization
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Figure 4.3: Propulsion System Component Categorization

47

https://www.mcmaster.ca
https://www.eng.mcmaster.ca/cas


Master of Applied Science– Augustino Fella Pellegrino; McMaster University–
Department of Computing and Software

process has been developed to organize the defined requirements at the beginning of
the software development cycle as well as ensuring that future changes or modifica-
tions to requirements were able to be facilitated in an efficient manner which could
be tracked and maintained. The format Abstraction.System.Component.Software was
used to assign each requirement a unique identifier, making it possible to track a low-
level requirement all the way up to its high level VTS requirements. Changes to
the RSD must be approved by the PCM Team Lead, and new documentation must
be produced before any model or software changes are approved. Regarding doc-
ument maintenance, bi-weekly meetings were established in which all members of
the Controls Team who were currently making model and/or software changes would
need to analyze and discuss what effects these had on the master requirements docu-
mentation. Furthermore, the requirements which require model validation have been
implemented into the GM Blazer Model via the Simulink Requirements toolbox and
verified via a set test case. The process of requirements verification via Simulink
Requirements is discussed in Section 4.4.1.

4.1.4 Example: Accelerator Pedal Processing

An excerpt from the requirement specification document can be seen in Table 4.1,
where the accelerator pedal processing system is considered. Component require-
ments were created based on the E-GAS standard [48], which defines the safe design
and operation of an ECM (Engine control module). An overview of the system con-
sidered within the E-GAS standard can be seen in Figure 4.4. The HSC acts as the
torque arbitrator within the hybrid vehicle system and must be developed to handle
acceleration input and make the conversion to output torque, which is distributed to
the relevant powertrain components.

Table 4.1 shows requirement II.4.1, which states that the HSC Propulsion Sys-
tem must prevent unintended acceleration at all times. In order for this higher level
system requirement to be met, several component requirements must be fulfilled, in-
cluding a plausibility check on the Accelerator pedal value sensors PVS1 and PVS2.
This involves insuring that the difference between the two sensor voltage readings
stays within a specified threshold. Another requirement of the component is that if a
non-plausibility between PSV1 and PVS2 occurs, the vehicle shall transition to Limp-
Home Mode, during which vehicle acceleration is restricted to a predefined threshold
allowing the driver to get assistance [48, page 36]. The resulting accelerator voltage
will be the minimum non-zero value of PVS1 and PVS2 [48, page 36 - 38]. These
have been defined as requirements III.4.1.1 and III.4.1.2, respectively. Voltage input
signals S1_Voltage and S2_Voltage, threshold value thresh_p, as well as an output
signal Limp_Home_Mode are explicitly defined within software implementation re-
quirements IV.4.1.2.1 and IV.4.1.2.2, respectively. Lastly, component requirements
III.4.1.3 and III.4.1.4 describe the required system response in the event of a max
signal fault on one or both sensors. A max signal fault occurs when a given sensor
voltage output exceeds a predefined threshold [48, page 36 - 38]. The verification of
these requirements are discussed in detail in Section 4.4.3.
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Table 4.1: Accelerator Pedal Processing Requirements
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Figure 4.4: E-GAS Standard Component Diagram, taken from [48]
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Table 4.2: HSC Serial Data Interface

4.2 Software Design and Implementation

4.2.1 Controller and Serial Data Architecture

The embedded hardware used for code deployment and vehicle testing of the HSC is
the dSPACE MicroAutobox II [10]. There are six available CAN channels within the
hardware interface, which have been separated into the HS GM_LAN, HS GMChas-
sisLAN,HS ECO_LAN,HS BATT_LAN, LS GM_LAN, andHS CAVS_HSC_LAN.
Each network has been given a unique identifier which aids in the organization of
data flow and signal routing during the software development process (Table 4.2).
The controller and serial data architecture diagram can be seen in Figure 4.5. In
addition, all the hardware controllers used in the vehicle architecture are summarized
in Table 4.3. The stock GM network is connected to the HSC via CAN_1, which
includes messages from the TCM, BCM, PSCM, and EBCM. Third-party and team-
programmed controllers are connected on a separate high-speed CAN bus (CAN_3 )
to avoid bus overload on the main GM network, as well as avoid potential message
conflicts. These controllers, namely the Rinehart Motor Controller, Front Control
Module (FCM), Rear Control Module (RCM), and BAS Controller (LV BAS) will
primarily communicate with each other and with the HSC. The RCM and FCM are
team-built boards responsible for minor control action, including rear clutch and cool-
ing fan actuator control. Additionally, the GM Battery System Manager (BSM) is
placed on a separate LAN (CAN_4 ). The high volume of assumed CAN messages
related to Battery control and diagnostics require a seperate network to avoid bus
overload. The GM Chassis LAN was added into the HSC serial architecture as back-
up high-speed LAN (CAN_2) in the event that the volume of CAN messages on the
main GM network gets too large. The CAVs controllers use a dedicated high-speed
LAN in order to separate lateral and longitudinal command signals from the rest of
the propulsion system (CAN_6 ).

4.2.2 Hybrid Supervisory Controller Architecture

The Functional Supervisory Controller (FSC) or Hybrid Supervisory Controller (HSC)
architecture is composed of five distinct layers, namely the input/conversion, applica-
tion, and output/conversion layers. The functional supervisory controller architecture
diagram is shown in Figure 4.6 and can be used as a reference for the following de-
scriptions of module functionality and organization.
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Table 4.3: EcoCAR Controller Specifications
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Figure 4.5: Serial Data Architecture Diagram created by McMaster
EcoCAR Team (2019)

4.2.2.1 Input Conversion Layer

The input conversion layer receives incoming signals, decodes necessary CAN mes-
sages, and forwards them in the application layer. Contained in this layer are also
any functions or modules that are needed to convert input signals from the outer
HSC interface into input signals defined within the interface of the application layer
modules. An input fault detection and Diagnostic Module is also contained within
the input conversion layer and is designed to determine the validity of incoming data
and detect corrupt or unusable signals before reaching the application layer modules.

4.2.2.2 Operation Mode Loop

The application layer contains the set of all modules within the HSC related to vehicle
functionality. Systems within the application layer include Power Moding, Longitudi-
nal and Lateral Determination, the Operation Mode Loop, and Component Control.
The purpose of the operation mode loop is to receive incoming signals from the input
conversion layer as well as power moding and CAVS information, and calculate the
command signals necessary for each component within the propulsion system. Sev-
eral modules are included in the operation mode loop, namely Drive Mode Selection,
Energy Management, and Regenerative Braking Determination. Once component
control signals have been generated, they are passed to various modules within the
Component Control Ring, where each powertrain component is defined as a separate
module with a distinct software interface.
Power Moding: This module will be discussed in more detail in Section 4.2.4.1. Its
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primary purpose is to coordinate the start-up and shutdown procedures of all com-
ponents within the vehicle based on external driver inputs.
Longitudinal and Lateral Determination: The design and implementation of
this module is an ongoing process and not particularly relevant to this paper other
than to demonstrate its location within the Functional Supervisory Controller. In
future years of the competition, this module will be designed to receive inputs from
the CAVS system related to vehicle propulsion, and act as a torque arbitrator in the
event Longitudinal or Lateral Control is Enabled by the driver.
Energy Management Strategy Ring: The primary function of the drive mode
selection module is to change active driving states based on input signals from the
driver of the vehicle. These modes have been defined according to the method of
propulsion that results, namely ICE (engine only), EV (electric motor only), or HEV
(hybrid propulsion). As of the writing of this paper, HEV Mode is defined as the
default driving state, and will likely remain the primary drive mode throughout the
remainder of the vehicle development. Its purpose is to determine a power command
for each powertrain component for a given driver acceleration pedal command.

4.2.2.3 Component Controls

The Components Control ring receives component control requests from the oper-
ation mode loop, and in turn calculates component control commands to send to
the physical powertrain hardware. The Engine Control ring calculates the Engine
Torque Command based on Engine Speed and Internal Combustion Engine (ICE)
Power Command. The BAS Control ring will determine the BAS Operation mode
and calculate the BAS Torque Command. The BAS Control Ring is used to either
start the engine, assist the torque output, or provide a brake torque to the engine.
The EM Control Ring will determine EM torque command based on EM Speed, Ve-
hicle Speed and EM Power Command. The Transmission Control Ring will select the
Transmission Mode based on PRNDL State, Operation Mode and Engine Mode. The
Rear Clutch Control Ring determines rear clutch operation based on the Clutch Com-
mand signal. Lastly, the pedal position conversion is used to convert engine torque
signals and brake signals into faked acceleration and brake pedal signals feeding back
to the ECM.

4.2.2.4 Output Conversion Layer

The output conversion layer contains a Hardware Limit and Fault Detection Module
which performs torque security checks and determines whether the torque commands
generated by each component control module are safe and accurate in regard to real-
time vehicle propulsion. The outgoing signals are then passed to any functions or
modules that are needed to convert output signals from the application layer into
output signals defined within the outer HSC interface. The final signals leaving the
output layer are passed to the various vehicle controllers communicating with the
HSC.
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4.2.3 Software Interface Development

Once the software implementation requirements have been defined for a given system
and its associated components, the next step in the model development process is
to develop and define an explicit data interface. Performing this interface definition
before any modeling or software work has begun ensures that the interaction between
components and larger systems remains unchanged regardless of changes in internal
functionality. To demonstrate this process of interface definition, an example is dis-
cussed below. The system under consideration is the software interface between the
CAVS and HSC Hardware. This was chosen as it represents one of the most critical
interface interactions and separates the two largest software systems within the ve-
hicle model. The signal transmission diagram for the CAVS-PCM Interface is shown
in Figure 4.7.

Signal identifications have been developed for all signals within a given software
interface. Signals originating from a CAN Network are prefixed with the associated
CAN_ID defined in Table 4.2. Signals which are commands or requests for certain
functionality are suffixed with Cmd andReq respectively. Feedback signals or values
measured from sensors and hardware are either suffixed with Stat, for status, or have
a suffix omitted depending on the specific situation. The final software interface defi-
nition is explicitly defined by combining the developed high-level signal transmission
diagram, as well as the signal identification system mentioned above. The software
interfaces of the HSC have been defined in separate documents and contain critical
information regarding the data flow of a given system or component. The final inter-
face definition for the CAVS-PCM systems can be seen in Table 4.4, and contains the
Signal ID, Signal Name, a description of the signal’s purpose, the signal type (I/O),
the units used inside the model, and the data type of the Simulink signal.

4.2.4 Example: Power Moding Algorithm and Implementation

For a given system component, the corresponding functional requirements set and
software interface definition are used as a basis for the algorithm development and
resulting software implementation. The implementation specifics of all systems and
components are too extensive to include in this thesis and are not particularly relevant
to the subject of model modularization. A single system is considered as an example of
the vehicle control algorithm development and software implementation processes that
were followed. The Power Moding System was chosen to demonstrate this process due
to its relative complexity and involvement of several other software modules within
the HSC.

4.2.4.1 Algorithm Development

Normal vehicle operation is only possible by reaching the Propulsion System Ac-
tive state, which is dependent upon a successful wake-up and startup procedure. To
achieve successful power moding functionality within the vehicle system, it was first
necessary to develop the high level system power moding strategy, and identify the
major functions needed. These were identified as the power moding functionalities for
each powertrain component, namely the YASA Motor, GM LYX Engine, Valeo BAS,
and GM Malibu Battery Pack (shown in Figure 4.8). Figure 4.9 shows the resulting
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Figure 4.7: Signal Transmission Diagram created by McMaster PCM
Team, 2019
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Table 4.4: CAVS-PCM Interface
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vehicle power moding module algorithm implemented within the HSC Model. The
startup procedure for the ICE and Electric systems can be executed in parallel or indi-
vidually, depending on the Drive Mode that has been selected by the driver when they
initiate cranking. During the electrical powertrain startup, the motor inverter must
first be initialized, and then commands are sent to the GM Battery System Manager
to begin the contactor closing procedure. Once contactors have closed, the motor in-
verter can be fully enabled, making it ready to produce torque. The internal specifics
of each component wake-up and shutdown procedure were developed within the in-
dividual component control modules (closing contactors inside the BSMM etc). The
corresponding component power moding algorithms have been placed in Appendix A
and show the algorithms developed for the BAS, Battery, Motor, and Engine (A1.1 -
A1.4).

4.2.4.2 Stateflow Implementation

The vehicle and component power moding algorithms shown in Section 4.2.4.1 and
Appendix A were used to develop the software needed to meet their associated func-
tional requirements set. The software implementation for the Power Moding Control
was performed within the Simulink environment using Stateflow, and can be seen in
Figure 4.10. An introduction to Stateflow design as well as details on some commonly
used blocks and concepts can be seen in section 2.2.2.

The power moding functionality was represented by a Stateflow Chart object,
with states and transition objects defining the control path. The controller begins
in the VehicleOFF state and transitions to Vehicle Start depending on the system
power mode, determined by the driver of the vehicle. The parallel algorithm paths
between ICE and Electrical startup is reflected in the parallel states Conventional and
Electrified, which each handle the startup coordination of their respective propulsion
components. A successful startup from the Conventional and Electrified control se-
quences will result in an enablement of the FrontPwrtrnAvail and RearPwrtrnAvail
signals, respectively. The third control loop at the bottom of Figure 4.10, Vehicle-
PowerON receives the final enablement from the Front and Rear Powertrains, and
makes the determination on whether the propulsion system should be active or not.

Several component level Stateflow implementations are also provided in Appendix
A, including the shutdown vehicle power moding procedure A1.5, and Motor com-
ponent power moding A1.6. Certain component control software implementations
were omitted from this thesis due to NDA restrictions, specifically the Battery (GM
restricted), BAS (Valeo Restricted), and Engine (GM restricted). The power moding
algorithm and software development was included to provide an example of the pro-
cess that was followed by the author for all major vehicle functions throughout Year
2 of the EcoCAR Competition, and is not meant to be an extensive representation of
the software work performed.

4.2.5 Model Version Control

GitLab was used as the primary version control tool throughout the development of
the vehicle controller model [13], with the model version control process outlined in
Table 4.5. Simulink has built in Git tools, which aid in the creation and merging of
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Vehicle Power Moding

Motor Power Moding Engine Power Moding Battery Power Moding BAS Power Moding

Figure 4.8: High Level Power Moding Algorithm

branches, as well as the ability to push to a remote repository. Each new feature is
developed within a seperate branch created from the master model. Seperating each
independent task into a branch allows multiple developers to implement changes to
the vehicle plant or controller simulataneously. The changes made in the component
or feature branch will be periodically committed and pushed to the Team’s GitLab
server repository. Each commit requires an accompanying message indicating the
name of the developer, the major changes made to the branch, and the estimated
time to complete. When model changes have been completed and unit tested, they
are merged with the master branch and pushed to the master repository.

4.2.6 Software Version Control

The HSC model was developed by the author during Year 2 of the EcoCAR compe-
tition, which focused on the transition from developing controls software in a strictly
MIL environment to developing code which was deployed on target embedded hard-
ware. The transition to HIL and VIL environments increases risk of potential errors
or incompatibilities between software releases. Mistakes made within the modeling
environment pose minimal risk, typically increasing development time and complex-
ity. In contrast, an error in software deployed on embedded hardware has potential
to cause major setbacks, including damage to both equipment and persons interact-
ing with the vehicle and/or test bench. The added software complexity as well as
the increased risk provided the motivation to develop a more robust software version
control and tracking system.

A software version control document was developed during Year 2 of the Eco-
CAR competition, shown in Table 4.6. This document contains a record of each new
software release within the HSC system and tracks useful properties. The Software
Environment column indicates the XIL environment the code was developed for,
as the interfaces and configuration parameters are distinct between HIL test benches
and in vehicle deployment (VIL). Each software release is assigned a version number
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Figure 4.10: Vehicle Startup Stateflow Implementation
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Table 4.5: Model Version Control Process

identification, using the Major.Minor.Patch format. Finally, the HSC Compat-
ibility field indicates the HSC software release which is compatible with a given
software module. For example, the HSC software release 1.0.10 is compatible with
the BATTCR release 1.0.1 as its corresponding HSC Compatibility field matches
the HSC version number. In contrast, the BASCR and MCM are only compatible
with the older HSC software release 1.0.9. Table 4.4 outlines the software version
control process, including the main persons responsible for each step. Using this
process allows the team to independently develop and test software modules, while
ensuring that a full HSC system software build contains only those modules which
are compatible with one another.

4.3 Conventional Model Modularization
Throughout the software development process, an importance has been placed on
software structuring and partitioning to modularize the system for independent de-
velopment, testing, and verification. The Simulink constructs that can be used to
accomplish this structural decomposition are Simulink Model References, Model Vari-
ants, and virtual subsystems. The supervisory controller (HSC) Model has been im-
plemented as a Simulink Model Reference within the hybrid vehicle model (discussed
in Section 3.3). Furthermore, the HSC internal system components have also been
implemented primarily with Model References, in order for the developer or small
group of developers to be assigned a single component or feature, which they will
independently develop and test. Once the functionality of an individual component
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Table 4.6: Excerpt from Software Version Control Document

has been validated, the model changes can be reflected in the overall HSC system by
updating the Model Reference file path to point to the updated software component.
This structure also provides improved system changeability in models with high co-
hesion. A likely change to the system would ideally affect only one of the various
model references within the HSC, and could be modified independent from the root
level software.

4.3.1 Software Partitioning via Model References

Model partitioning within the HSC model creates a modular structure encouraging
independent development and testing. The Model Reference Simulink construct can
be leveraged to aid in this model partitioning, simplifying system decomposition
and separating areas of concern. Major software features and components can be
developed, tested, and validated independently, allowing multiple developers to be
productive simultaneously with minimal collaboration. The set of components and
features associated with the vehicle Soft ECUs, HSC, and Vehicle Plant components
were primarily implemented as seperate Simulink Models, included in the root HSC
software via Model Reference Blocks. This process of partitioning via model references
can continue to as granular of a level as is desired. The largest factor in determining
this level of granularity is a) The size and complexity of a given component or feature,
and b) the effect that changes in each component or feature would have on the other
elements in its model. If the complexity is high and/or changes would have a large
effect, the component or feature is moved to a separate model and pointed to in the
hybrid propulsion system as a model reference. The software partitioning process
outlined above has been represented graphically by Figure 4.11, showing the top
level HSC System Implemented as a model reference. The model reference construct
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Table 4.7: Software Version Control Process
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is also a useful tool for introducing additional software functionalities. Updating
existing software features, or integrating new ones simply requires a modification of
the interface at the top hierarchical level. The significant portion of change can occur
within the given reference module and can have virtually no effect on the behaviors
of the modules it interacts with.

4.3.2 XIL Functionality via Model Variants

The transition between XIL environments was facilitated with the use of Model Vari-
ant constructs. Section 2.2.1.3 provides an overview on the basic functionality of
model variants, which are primarily used to develop a selectable set of model refer-
ences which can only be active one at a time during simulation. This functionality
was used to address the issue of XIL interface development. The transition from
model development and MIL testing to software deployment and vehicle testing (HIL
& VIL) requires distinct interfaces and model configuration parameters. Examples of
differences between XIL interface designs include the use of dSPACE RTI CAN and
I/O block sets within the HIL and VIL environment in order to transmit and receive
serial data from a physical network. In the MIL environment, these CAN receivers
and transceivers are not present, and are primarily represented by Simulink inports
and outports. Models which utilize the dSPACE MicroAutobox II specific Simulink
block libraries must also adhere to the modeling configuration limitations of the hard-
ware. This includes a specified sample time, as well as many hardware specific code
generation and simulation settings. These changes must remain unique to the HIL
and VIL environment, and are not compatible with MIL simulation settings.

As a result, the three primary XIL interfaces used throughout the model devel-
opment process were placed in individual Simulink Models, and created as variant
choices within a Model Variant Object. The input and output XIL interfaces can
be seen at a high level in Figure 4.12, while the internals of the input and output
interface model variants can be seen in Figures 4.13 and 4.14, respectively. A primary
advantage resulting from this model design is that the MIL, HIL, & VIL interfaces can
remain separate from one another and the model configuration parameters required
for hardware deployment can be internal to the corresponding Model Reference. In
addition, the internal functionality of the HSC and its resulting modules remain con-
stant and do not require additional models or code to represent all possible XIL
environments. Code can be independently distributed and developed across the soft-
ware team, while testing can be performed in the target XIL environment by selecting
the appropriate interface and configurations (step-time, code generation etc.).

4.3.3 Program State Design via Data Dictionaries

The Simulink Data dictionary construct was utilized to define and organize program
state constants for modeling and simulation. Several data dictionaries were defined
for the major software and hardware components and organized in a hierarchical
manner to facilitate more efficient calibrations and handling of changes to model
constants. The top level of the data hierarchy contains the System Data dictionary
(SystemDD.sldd). To add lower levels of hierarchy, referenced dictionaries were added
to the system dictionary and organized according to the modeling components which
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1)	Add	Subsystem	or	Model	blocks	as	valid	variant	choices.
2)	You	cannot	connect	blocks	at	this	level.	At	simulation,	connectivity	is	automatically	
determined,	based	on	the	active	variant	and	port	name	matching.
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Figure 4.13: XIL Input Model Variant

use or reference the calibrations and constants. Currently, a data dictionary has been
added for the BAS, Battery, Drivetrain, Engine, Low Voltage System, and Motor
Data. Figure 4.15 shows the System Data dictionary within the Vehicle Simulink
Model, and its associated referenced dictionaries.

4.3.4 HSC Internal Modularization

As mentioned in Section 3.3, the competition vehicle model is composed of four
distinct components: the driver source, the vehicle controllers, the Blazer vehicle
plant, and the virtualization block. The Simulink model and virtual CAN I/O have
been organized in a modular fashion to create a fast and repeatable transition between
XIL Testing, as well as allow for simultaneous software development and deployment
among multiple team members. The controller model has been organized into an
input conversion layer, an HSC application layer, and an output conversion layer.
Inputs coming from the vehicle plant and driver source block have been decomposed
into 7 virtual buses within the Controller to HSC Subsystem (Figure 4.16). Six of
these outputs represent the six CAN Channels present in the Hybrid Supervisory
Controller’s serial data interface (see section 4.2.1). The seventh output is reserved
for any additional I/O which is not transmitted via CAN. The HSC Model interface
has been designed to receive these seven virtual buses, process the signals within
them, and transmit them back into the rest of the vehicle model (Figure 4.17).
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Figure 4.14: XIL Output Model Variant
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Figure 4.15: Model Explorer view of Data Dictionary Global.sldd
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The internal HSC model has been organized in a modular fashion based on the
Functional Supervisory Controller Architecture discussed in Section 4.2.2. A high-
level view of the model can be seen in Figure 4.18. The seven bus inputs of the outer
HSC interface are redistributed into separate Simulink Bus Objects for each software
module within the operation mode and component control layers. This design decision
was made for changes to the number of signals required by each module to occur
independently and have virtually no effect on the outer interface of any individual
feature or component.

All major software modules within the HSC have been organized as model refer-
ences and all minor modules have been implemented as virtual subsystems. Major
modules have been defined as functions or features with high algorithmic complexity,
a high number of blocks, and/or functions that will require extensive changes through-
out the development process. Model references allow for independent development,
testing and verification of these large systems. Minor modules have been defined as
functions or features with low algorithmic complexity, low number of blocks required,
functionality that does not need to be repeated throughout the model, and/or does
not require extensive changes throughout the design process. An example of a major
module is the Power Moding Module, and an example of a minor module is the Pedal
Interpretation Module, seen in Figures 4.19 and 4.20 respectively. The output of each
control module is transmitted to the HSC to Controller subsystem and is condensed
back into the six CAN channels and one I/O channel. All outputs from the HSC
Model are finally transmitted to the controller to plant subsystem, where they com-
bined with the Soft ECU outputs and condensed into a single Control virtual bus.
This single output is passed along to the vehicle plant at the top level of the model
where it can be used and distributed as needed.

4.3.5 Interface Implementation via Bus Objects and Signal Tags

All module interfaces have been consolidated into Simulink Bus objects, with each
object representing the consolidation of all inputs/outputs from a given module. The
Propulsion Control Strategy module can be looked at as an example of this decom-
position. As mentioned in Chapter 3, the energy management strategy requires data
from several different components and modules, namely the Motor, Engine, and BAS
HSC Modules, as well as sensor feedback from the Vehicle Plant, represented by the
Bus signal ECMS_Ctrl_In. Goto/From tags have been used extensively throughout
the application layer to facilitate a more organized visual layout and avoid complex
signal routing. The Tag Visibility parameter for all tags have been set to local, to
avoid sharing of program state. To avoid algebraic loops, initial outputs were created
within modules using the Simulink Unit Delay Block. Figures 4.21 - 4.24 demonstrate
the data flow involving the PCSM interface. The initial input signal ECMS_Ctrl_In
coming from the input conversion layer is highlighted in yellow (Figure 4.21). The ad-
ditional three input signals to the PCSM interface come from the MCM (highlighted
in teal), the BASCM (highlighted in green), and the ECMR (highlighted in orange) of
the component control layer (Figure 4.22). The single output signal generated by the
PCSM (highlighted in red) is routed to each of the powertrain components requiring
a torque command, namely the MCM, BASCM, and ECMR (Figure 4.23). Figure
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Figure 4.17: Top level view of HSC Model Interface

4.24 shows all four of these signals passed to the output conversion layer, which in
turn passes them to the top level HSC interface.

4.4 Model and Software Testing
The third step of the vehicle design process is to test the software modules within the
target Simulink model, and validate the corresponding requirements set. Testing per-
formed in the MIL environment is discussed in Section 4.4.1, where the Simulink Re-
quirements software package is used to facilitate functional validation. Components
which have been successfully validated in the MIL environment are then deployed to
target hardware for HIL and/or VIL testing. Section 4.4.2 provides an example of a
bench test that was performed in the HIL environment, demonstrating the process
for validating requirements.

4.4.1 Requirements Validation via Simulink Requirements

Simulink provides the tools necessary for keeping track of validation through the
Simulink Requirements software package. Simulink Requirements supports the cre-
ation, testing, and validation of requirements associated with a given Simulink Model
[30]. A previously created requirements specification document (RSD) can be up-
loaded and linked to specific model components and blocks throughout the system
hierarchy. Figure 4.25 shows the requirements editor view of the HSC Model. The
rsd document shown on the left is the requirements set (slreqx file) defined within
Simulink. This requirement set is directly taken from an external RSD excel doc-
ument, rsd_doc_link which has been imported into Simulink. Once defined, re-
quirements at any abstraction level (system, component, software etc) can be directly
linked to the model component or block which implements them. In the example given
in Figure 4.25, the Links section in the bottom right shows the system requirement
II.1 as Related to: the corresponding II.1 requirement within the master RSD, as
well as Implemented by: the Input Data Processor Subsystem within the HSC Model.
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Figure 4.19: Example of Major Module implemented as Model Ref-
erence

Figure 4.20: Example of minor module implemented as a virtual
subsystem
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Figure 4.21: Data flow originating from Input conversion layer of
HSC model
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Figure 4.22: Data Flow of Propsulsion Control Strategy Module
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Figure 4.23: Data flow within the Component control layer
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Figure 4.24: Data flow within the Output Conversion Layer

79

https://www.mcmaster.ca
https://www.eng.mcmaster.ca/cas


Master of Applied Science– Augustino Fella Pellegrino; McMaster University–
Department of Computing and Software

Figure 4.25: Requirements Editor view for the HSC Model RSD

Documenting and maintaining an RSD through Simulink Requirements helps facili-
tate accurate tracking of requirements implementation, testing, and validation.

4.4.2 Accelerator Pedal Processing: Fault Analysis and Test Bench

The accelerator pedal processing module discussed in section 4.1.4 was developed
and tested by the author in Year 1 of the competition. To perform a unit test on the
module, it was separated from the input conversion layer of the HSC model, and a
test bench and harness were created. The developed model used for unit testing can
be seen in Figure 4.26, and the signal interface can be seen in Table 4.8. Before the
unit test was designed, a fault tree analysis was performed on the accelerator pedal
processing system to understand potential system failures and determine a method of
risk mitigation. Please note that fault analysis on all modules within the team vehicle
is an ongoing and iterative process. As modules are tested in the VIL environment,
their fault analysis and corresponding software implementation will change. Figure
4.27 shows the fault tree analysis performed at the time of the unit test discussed
below.

Using the fault tree analysis combined with the functional requirement set dis-
cussed in Section 4.2.1, as well as the software interface shown in Table 4.8, a test
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Figure 4.26: Accelerator Pedal Processing Test Harness Model

bench was developed. A physical accelerator pedal was wired into the HSC hard-
ware (MABXII). To accurately simulate a difference in pedal sensor voltages, two
separate 12V power supplies were connected to PVS1 and PVS2 of the pedal, respec-
tively. Finally, a workstation laptop running ControlDesk [9] and MATLAB Simulink
was connected to the HSC hardware via Ethernet and was used to simulate the test
and validate the results. Please see Figure 4.28 for a graphical representation of the
developed test bench.

4.4.3 Accelerator Pedal Processing: Test Results

The test results described below were performed to validate Requirements III.4.1.3
and III.4.1.4 shown in Table 4.1. The expected test results for requirement III.4.1.3
are shown in Table 4.9. The power supply associated with the input S1_Voltage was
gradually increased until it surpassed the value defined as thresh_v. This led to a
successful system reaction of the Sensor 1 Fault signal (APP_S1_Fault) becoming
active (shown in Figure 4.29). At the point of the Sensor 1 Fault, the module also
successfully outputs a Limp Home Mode Command and switches the active sensor to
PVS2 (shown in Figure 4.30). Once Limp Home Mode has been activated, the system
also restricts acceleration pedal position to 25% of its max torque or less, indicated
in Figure 4.31; this completes the verification of requirement III.4.1.3.
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Table 4.8: Accelerator Pedal Test Harness Interface
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Figure 4.27: Accelerator Pedal Processing Fault Tree Analysis
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Workstation
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ControlDesk &
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MABXII Power
Supply

dSPACE MABXII
Hardware

Accelerator Pedal
Value Sensor

Figure 4.28: Pedal Interpretation Test Bench Setup
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Table 4.9: Expected Test Results for Requirement III.4.1.3 valida-
tion

Figure 4.29: Sensor Voltage Input, Fault reaction output

The expected test results for requirement III.4.1.4 are shown in Table 4.10. The
power supply associated with the input S2_Voltage was gradually increased until it
surpassed the value defined as thresh_v. This led to a successful system reaction
of the Sensor 2 Fault signal (APP_S2_Fault) becoming active (shown in Figure
4.32). At the point of the Sensor 2 Fault, the module also successfully outputs a
Idle Speed Command and switches the active sensor to 0, indicating both sensors
are faulty (shown in Figure 4.33). Once Idle Speed Demand has been activated, the
system fully disables propulsion by restricting the acceleration pedal position to 0%,
indicated in Figure 4.34; this completes the verification of requirement III.4.1.4.

Table 4.10: Expected Test Results for Requirement III.4.1.4 valida-
tion
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Figure 4.30: System output response to Sensor 1 Fault

Figure 4.31: Verification of Requirement III.4.1.3
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Figure 4.32: Sensor Voltage Input, Fault reaction output

Figure 4.33: System output response to Sensor 1 & 2 Fault
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Figure 4.34: Verification of Requirement III.4.1.4

4.4.4 Test Plan Documentation

Before a XIL Test Case is performed, a test plan document is created. Figures 4.35 -
4.37 show an example of a Test Plan Document created by the EcoCAR PCM Team,
under supervision of the author. This test plan was selected as it was extensive and
demonstrates the verification of multiple requirements of a given module. Each test
plan document must include the name of the test, the start and end date, the author
of the document, and a general description and purpose for the test. A description of
all the hardware and software must also be included, as well as a full set-up procedure,
and exact instructions on how to perform the test. This ensures that the author of the
test does not necessarily need to perform it and allows multiple PCM Team members
to gain experience with using the various XIL environments. To update the status
of a test case, a section of the test plan has been reserved in which all the major
functions and requirements that need validation are included. Each requirement
has a general description as well as a checkbox which indicates whether it has been
validated through testing or not. As different requirements are complete, the test plan
document is updated periodically. Once all requirements have been met, the PCM
Lead reviews the test plan document and approves the final version. This document
is exported to a pdf and saved with a unique identification number permanently on
the team’s secure server.

4.5 Summary
Chapter 4 has demonstrated the four major steps of the model development process
followed during the design of the EcoCAR Controls System. Requirements for the
system are first defined, starting from the VTS and competition rules, and refined
until the software implementation level. These requirements are then used to create a
serial data network and functional supervisory controller architecture. The controller
architecture in combination with the software requirements are used to derive the
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GENERAL INFORMATION 

Test Name BAS Modes HIL Test 

Test Date 

Started 

Dec. 20, 2019 

Test Date 

Complete 

TBD 

Author (s) Lucas Rajotte 

Description This test will use the MABx and the HIL simulator to test our BAS control ring 

functionality within a HIL environment. 

Purpose This test will validate the interactions between the HSC BAS Control Ring and the 

Valeo BAS Controller. It will validate start-up and shutdown procedures, transitioning 

the Valeo ECU between its internal states, and safely producing torque in both 

generating, and assisting states.  

Test Method MIL     SIL      HIL       On-Lift Dynamometer      On-Road      

Hardware • MABx: D1513 

• HIL Mid-Sized Simulator: DS1006 

Software • Control Desk 

• Matlab Simulink R2019a 

 PROCEDURE 

Set Up 

Procedures 

1. Plug in MABx dongle to the laptop 

2. Turn on MABx 

3. Open accelerator pedal model in Matlab Simulink 

4. In top right corner of model there is a ‘build’ button, select this to create C-

code 

5. Debug code until build completes with no diagnostic errors 

6. Access “.sdf” file in Control Desk and flash code onto MABx 

7. Plug in HIL Simulator dongle to the laptop 

8. Turn on HIL Simulator 

9. Open existing Control Desk project from Soft ECU Code Deployment Test 

10. Connect HIL Simulator to Control Desk 

11. Build Soft ECU code 

12. Flash code onto HIL Simulator 

13. Plug in test harness from accelerator pedal to MABx 

14. Accel Pin A to DC – 

15. Accel Pin C to DC + 

16. Accel Pin D to DC – 

17. Accel Pin F to DC + 

18. Accel Pin B (Accel Pedal Signal 2) to MABx U3 (AnalogIn ch 2 in) 

19. Accel Pin E (Accel Pedal Signal 1) to MABx V3 (AnalogIn ch 1 in) 

Figure 4.35: HIL Test Plan Part 1
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20. DC – to MABx V1 (GND in) & MABx U1 (GND in) 

21. Plug in test harness from MABx to HIL Simulator 

22. MABx C2 (CAN 1 high i/o) to HIL ECU 2 C17(CAN1H CAN bus interface 1 high) 

23. MABx C3 (CAN 1 low i/o) to HIL ECU 2 D17 (CAN1L CAN bus interface 1 low) 

24. Turn on power supply to accelerator pedal 

Test Procedure 1. Go online in Control Desk 

2. Start Measuring in Control Desk 

3. Set ignition switch signal variable to ‘1’ 

4. Transition from neutral to torque assist state in soft ECU 

5. Once torque assist state is reached, send positive torque from MABx 

6. Press accelerator pedal from 0-100% 

7. Depress pedal from 100-0% 

8. Transition from torque assist state to generating state in soft ECU 

9. Once generating state is reached, send negative torque from MABx 

10. Press accelerator pedal from 0-100% 

11. Depress pedal from 100-0% 

12. Transition from generating to neutral state 

13. Set ignition switch signal variable to ‘0’ 

Stop 

Procedures 

1. Stop measuring on Control Desk 

2. Go offline on Control Desk 

3. Turn off power supply for accelerator pedal 

4. Turn off MABx 

5. Close model in Control Desk 

6. Disconnect test harnesses 

7. Document test data 

8. Disconnect MABx dongle 

Test Status/Results 

Requirement 1  If the wakeup signal is set from 0 to 1, the 

BAS ECU shall transition from the Sleep 

to Awake State. 

Validated      

Requirement 2 If the ignition switch is turned, the BAS 

Control Ring shall send a BAS_State_Req 

of 2. 

Validated      

Requirement 3 During the Engine Start state, the BAS 

Control Ring shall provide a maximum 

positive torque of 65 N*m. 

Validated      

Requirement 4 Once the Engine Speed is above its 

desired threshold for a calibrated period 

Validated      

Figure 4.36: HIL Test Plan Part 2
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of time, the Engine_Running signal shall 

be set from 0 to 1. 

Requirement 5 When the BAS Control Ring is in its 

Torque Assisting State, the  

Validated  

 BAS_Trq_Cmd Signal shall not exceed its 

maximum value of 65 N*m 

 

Requirement 6 When the BAS Control Ring is in its 

Torque Generating State, the 

BAS_Trq_Cmd Signal shall not exceed a 

maximum value of -21.1 N*m 

Validated 

APPROVAL 

Approved by Augustino (PCM Lead) 

 

Figure 4.37: HIL Test Plan Part 3

software interface definitions for each module, and the system has been broken down
in a modular fashion as suggested within the competition design process as well as the
Simulink and MATLAB documentation. Software modules with defined functionality
and interfaces are developed and tested with the aid of Simulink Requirements and a
Test Plan validation system. Finally, the software modules continue to be periodically
updated and refined with the use of a documentation and version control system.
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Chapter 5

Application of the Simulink
Module Tool

The modular guidelines and functionalities provided by the Simulink Module Tool
outlined in Chapter 2 have been applied to the EcoCAR HSC Model. Section 5.1 gives
a summary of the guidelines used throughout the model modification process. The
initial system decomposition analysis is shown in Section 5.2, where all module secrets
and likely system changes are identified and organized into a modular structure.
Section 5.3 defines the resulting changes in system decomposition using a comparison
to the original structure. The remaining sections (5.4 - 5.8) describe in detail the
model changes made to each model component and shows the full extent of model
work done to increase the modularity of the HSC. The modification, addition, and/or
removal of modules are explained using the secrets they hold as well as the effect that
likely changes to the system have.

5.1 Review of Simulink Modular Guidelines
The guidelines for modularization defined by Jaskolka et. al in [36], and summarized
in Section 2.5.3, were applied throughout the HSC model discussed in this chapter.
The creation of both local and exported Simulink functions was prevalent throughout
the HSC system, as well as the use of local functions within Stateflow Chart objects.
As a result, Guidelines 1 – 6 were applied extensively throughout the HSC Model,
using the Simulink Module Tool to aid in implementation. The HSC system did not
have any instances of exported Stateflow functions; the Stateflow charts were used
primarily for individual component control logic, not providing functionality for other
modules to access. The application of Guideline 7 was therefore not required, but still
presents important guidance in the event that a future change would require exported
Stateflow functions.

5.2 Overview of Likely Changes and System Secrets
To provide motivation for a new system decomposition, a list of likely model changes
was developed, described in detail in Appendix B, Tables A2.1 and A2.2. Ideally, each
likely change would only affect one module within the new HSC system, or even one
function. To ensure that each major likely change identified was contained within
at least one module, the modules affected by the change were added to a second
column in Appendix B. For example, changes 1 - 3 in Table A2.1 all involve changes
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to the Data Interface and can be handled by a newly created Data Interface Module.
Changes to the Propulsion Control Strategy, such as the torque splitting method could
be handled within the existing Propulsion Control Strategy Module. The remainder
of this change list will be referenced throughout Chapter 5, providing motivation
for the various changes in decomposition. This list of likely changes is also used in
Section 6.2.1 to compare change propagation throughout the HSC system before and
after application of the Simulink Module Tool.

5.2.1 System Module Secrets

The complete list of Simulink Modules as well as the secrets they contain have been
summarized in Tables 5.1 and 5.2. The secrets each module contains were also clas-
sified in terms of the specific changes that were likely to occur throughout the model
development cycle. The changes that would be required are classified into three types:
hardware, software design (a change in the data structure), and behavioral (changes
to functional requirements) [35, page 12], [37]. The list of secrets was created based
on knowledge of the existing system as well as analyzing the likely changes described
in Appendix B. The PCSM is affected by likely change 16 (change in torque splitting
strategy) in Table A2.1, which would propagate to one or more of the corresponding
module secrets defined in Table 5.1. The system modules have been organized based
on shared groupings of secrets and algorithms, and formed the initial structure needed
to design the system decomposition in Section 5.3.

5.3 System Decomposition
Prior to applying modularity guidelines to the HSC model, it is necessary to per-
form an analysis of the existing model system decomposition. The original system
decomposition is described in Section 5.3.1, where the data flow process was the pri-
marily determinant of module organization. The system decomposition for a modular
Simulink Model should be designed primarily by grouping algorithms based on both
the secrets they hold and the model sample time [35, page 162]. Section 5.3.2 utilizes
the system module secrets as well as the guidelines from Section 5.1 to describe the
modified system decomposition.

5.3.1 Original Model Decomposition

The system decomposition of the original EcoCAR HSC model is summarized in
Figures 5.1 - 5.4 below. For all figures, gray represents model references, orange
represents virtual subsystems, green represents Stateflow Charts, and blue represents
Simulink Functions. The model decomposition follows directly from the Hybrid Su-
pervisory Controller Diagram and software design discussed in Sections 4.2 and 4.3,
respectively. The models and subsystems are primarily grouped together based on
their role and position in the data flow process, resulting in a flat and unorganized
system hierarchy. The majority of algorithms are located in subsystems within the
HSC root model, resulting in likely changes having potentially large propagation
throughout the system.
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Figure 5.2: System decomposition of the Input Conversion Layer
(original model)
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Figure 5.3: System decomposition of the Output conversion layer
(original model)
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5.3.2 Modular Decomposition

The modified system decomposition was determined based on the algorithms and
secrets that each module should hold and the likely changes that may occur, following
directly from Tables 5.1 - 5.2 and Appendix B. A graphical representation of the new
system decomposition can be seen in Figures 5.5 – 5.10. The guidelines described in
Section 5.1 were applied to the original system decomposition, with modules defined
based on a grouping of related secrets and algorithms. Most changes occurred in the
Input and Output conversion layers, where the various subsystems were organized
into both existing modules within the original HSC, as well as newly created ones.

The modularization of the HSC system resulted in the creation of additional mod-
ules and corresponding Simulink models, outlined in Table 5.3. Separating hardware
secrets from control algorithms motivated the creation of 3 additional hardware mod-
ules (BHM, MHM, THM), and 5 additional behaviour modules (DIM, PPM, CCM,
FHM, HLCM). Likely changes to the HSC such as modifications to the vehicle ar-
chitecture and overall energy management system provided the motivation to create
2 final behavioural modules, namely the EMM and PSCM. The full extent of model
changes needed to implement the new system decomposition are described in sections
5.4 - 5.8.

5.4 Introduction to Model Changes
The following sections describe the changes that were made to the EcoCAR HSC
Model during the modularization process. To draw parity to the data flow process
outlined in Section 4.2, Sections 5.5 - 5.8 have been broken into the input conversion
layer, operation mode loop, component control loop, and output conversion layer,
respectively. For all changes mentioned below, the Simulink Module Tool was uti-
lized, both for creating Simulink Modules as well as verifying and testing modularity
guidelines. Section 5.4.1 describes limitations for modularization within the Simulink
Environment, while section 5.4.2 discusses modification of the data storage system.

5.4.1 Limitations for Simulink Modularization

A model reference cannot export functions as well as have a fixed sample time; mean-
ing all modules requiring Stateflow charts with specified sample times could not also
contain exported Simulink functions. This limitation had a significant impact on the
system decomposition, an example being the inability for the Hardware Limit Con-
trol Module to be located within the Energy Management Module (see Figure 5.7
for reference). Both the PCSM and PMM contain Stateflow charts which require a
specified sample time, thus restricting the ability of the EMM to export the required
hardware limit functions. It was deemed a better design decision to encapsulate
the exported hardware limit functions in a separate module (HLCM) and keep the
Stateflow Chart functions within the EMM. Modules cannot export functions in both
the root model and another model reference. For example, if the BSMM contains
Simulink functions which are called in the root level, it cannot export functions to
any model reference within the HSC. Breaking this guideline results in a MATLAB
internal error which prevents simulation and requires an application restart. This
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Figure 5.6: System decomposition for DIM, PPM, CAVM Models
(modular model)
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Figure 5.7: System Decomposition of Energy Management Module
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Figure 5.8: System decomposition for Propulsion System Control
Module (modular model)
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Figure 5.9: System decomposition of Fault Handler and Hardware
Limit Control Modules (modular model)

102

https://www.mcmaster.ca
https://www.eng.mcmaster.ca/cas


Master of Applied Science– Augustino Fella Pellegrino; McMaster University–
Department of Computing and Software

G
ea

r R
at

io
C

on
ve

rs
io

n

Ba
tte

ry
 P

ow
er

Li
m

it
C

al
cu

la
tio

n

M
ot

or
 T

or
qu

e
Li

m
it 

C
he

ck

Tr
an

sm
is

si
on

 M
od

ul
e

M
ax

 M
ot

or
To

rq
ue

C
al

cu
la

tio
n

Ba
tte

ry
 P

ow
er

Li
m

it 
C

he
ck

El
ec

tri
ca

l
Po

w
er

Es
tim

at
io

n

En
gi

ne
 A

xl
e

To
rq

ue
C

al
cu

la
tio

n

 M
ax

 E
ng

in
e

To
rq

ue
C

al
cu

la
tio

n

En
gi

ne
 T

or
qu

e
Pe

da
l O

ut
pu

t
C

al
cu

la
tio

n

Ba
tte

ry
 H

ar
dw

ar
e

M
od

ul
e

M
ot

or
 H

ar
dw

ar
e

M
od

ul
e

En
gi

ne
 H

ar
dw

ar
e 

M
od

ul
e

Im
po

rt
ed

 M
od

ul
es

M
ax

 E
ng

in
e

W
he

el
 T

or
qu

e
C

al
cu

la
tio

n

F
ig

ur
e

5.
10

:
Sy

st
em

de
co
m
po

sit
io
n
of

im
po

rt
an

t
ha

rd
wa

re
M
od

ul
es

(m
od

ul
ar

m
od

el
)

103

https://www.mcmaster.ca
https://www.eng.mcmaster.ca/cas


Master of Applied Science– Augustino Fella Pellegrino; McMaster University–
Department of Computing and Software

Table 5.3: Module structure changes, showing added, modified, and
removed models.

Module Change 

Data Interface Module Added 

Pedal Processing Module Added 

CAVs Module Modified 

Energy Management Module Added 

    Propulsion Control Strategy Module Modified 

    Power Moding Module Modified 

    Regen Power Module Modified 

Propulsion System Control Module Added 

    Motor Control Module Modified 

    Battery System Manager Module Modified 

    BAS Control Module Modified 

    Clutch Module Added 

Fault Handler Module Added 

Hardware Limit Control Module Added 

Engine Hardware Module Modified 

Battery Hardware Module Added 

Motor Hardware Module Added 

Transmission Hardware Module Added 

Input Conversion Subsystem Removed 

Output Conversion Subsystem Removed 
 

104

https://www.mcmaster.ca
https://www.eng.mcmaster.ca/cas


Master of Applied Science– Augustino Fella Pellegrino; McMaster University–
Department of Computing and Software

prevents the development of a module capable of being imported as well as imported
other modules.

5.4.2 Data Storage Modifications

Following Guideline 4 from Section 2.5.3, the use of data storage in the base workspace
and global data dictionaries was restricted as much as possible. The original Eco-
CAR model had all information defined within the the System.dd dictionary and its
referenced sub dictionaries (discussed in section 4.3.3). This data was reorganized
based on which modules required read/write access, and transferred to the respective
model workspaces. Data which was required by multiple modules was consolidated to
a single global data dictionary, Global.sldd. This change in data storage is discussed
further in Section 6.3, providing an analysis of the change in interface complexity.

5.5 Input Conversion Layer
The input conversion layer virtual subsystem represents a step in the data flow process
and does not group together functions and algorithms sharing common secrets. Each
subsystem encapsulated within the Input Conversion Layer was analyzed to determine
what secrets were contained within the function and what likely changes may occur.
Please refer to Tables 5.1 and 5.2 for a full overview of all functions and the secrets
identified, including the resulting module organizational structure.

5.5.1 Data Interface Module

The top-level interface of the controller can be seen in Figures 5.11 and 5.12 below.
The HSC root level model interface consists of 7 input and output bus signals, repre-
senting the six CAN I/O channels present in the vehicle serial data architecture, and
1 additional input and output port for all signals not utilizing CAN. A new model,
the Data Interface Module, has been created to group together the input and out-
put data processor subsystems. This new module contains the blocks necessary to
interpret incoming CAN signal data and distribute it as Simulink signals to the rest
of the modules. This represents a shared secret which would be affected by changes
in the outer CAN interface as well as the changes to the signals that other hardware
passes to the HSC (changes 1 - 3 in Table A2.1). Figure 5.13 shows the input data
(highlighted in blue), and output data (highlighted in orange) Simulink functions,
defined within the Data Interface Module. Function caller blocks for the input and
output data processor functions can be seen in Figures 5.14 and 5.15, respectively.

5.5.2 Input Accelerator Pedal Processing

The subsystem shown in Figure 5.16 performed the conversion between two pedal
sensor voltages, PVS1 & PVS2, into a single Pedal Command signal (%), AccelPdl.
The sensor voltages were first converted into individual pedal command percentages,
then passed to the pedal sensor arbitrator, highlighted in orange. The resulting Pedal
command signal was passed to the 2D Lookup Table, highlighted in yellow, which
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Figure 5.11: Input Data Processor subsystem in original model

106

https://www.mcmaster.ca
https://www.eng.mcmaster.ca/cas


Master of Applied Science– Augustino Fella Pellegrino; McMaster University–
Department of Computing and Software

Component	ControlOperation	Mode	Loop

Input	&	Conversion	Layer Output	&	Conversion	Layer

Outports

Outputs

Inports

Inputs InportsInputs

5
GM_Chassis_LAN_Out

3
HS	BattLAN_Out

1
HS	GMLAN_Out

Transmission	Control	Module	Ring

Power	Mode	Selection	Ring

Motor	Control	Module	Ring

MIL_BAS_Control_Ring

HS	GMLAN	

HS	ECOLAN_In

HS	Batt	LAN_In

HS_CAVS_HSC	LAN_In	

GM_Chassis	LAN_In

LS_GMLAN_In

HSC_Input

CAN_ECMS_In

CAN_Regen_In

CAN_BAS_In

CAN_MCM_In

CAN_Eng_In

CAN_Batt_In

CAN_TCM_In	

CAN_PMSR_In

CAN_Clutch_In

CAN_ACC_In

CAN_Lat_In

Input	Data	Processor

[Inverter_Discharge_State]

[DC_Bus_Voltage]

[MotTrq_Fdbk]

[Batt_Run_State]

[CAN_Regen_In]

[VehSpd]

[Goto_HSC_Output]

[Eng_Ctrl_Out]

[PMSR_Ctrl_Out]

[EMSC_Ctrl_Out]

[Mot_Ctrl_Out]

[CAN_EMSR_In]

[ResetMsg]

[Inverter_Dischrg]

[Spd_Mode_En]

[Goto_LSGMLAN_Out]

[Inverter_En]

[BSM_State]

[Trans_Ctrl_Out]

[Goto_HSBattLAN_Out]

[Batt_Full_Vlt_Valid]

[Goto_HS_ECOLAN_Out]

[Batt_Accessory]

[BSM_Running]

[Batt_Neg_Vlt_Valid]

[Batt_Pos_Vlt_Mask]

[Batt_SOC]

[Batt_Pos_Vlt]

[Batt_Full_Vlt]

[BAS_State_Req]

[CAN_Lat_In]

[Min_BAS_Voltage]

[Batt_Ctrl_Out]

[Batt_Cntr_Req]

[BAS_Ctrl_Out]

[Goto_LS_GMLAN_In]

[PropSysActv_Out]

[BSM_Wakeup]

[Goto_HSBattLAN_In]

[MotTrqCmd]

[EngOnReq]

[ECM_En]

[MCM_En][CAN_PMSR_In]

[Gear_Ratio]

[Neutral]

[BASPwrCmd]

[OpMode]

[MCM_Avail]

[CAN_TCM_In]

[Range]

[WhlTrqCmd]

[AccelPdl]

[CAN_Clutch_In]

[PVS2_Out]

ECMS_Out

PMSR_Out

Eng_Out

BAS_Out

Mot_Out

Regen_Out

Trans_Out

Cltch_Out

Batt_Out

PVS1_Out

PVS2_Out

HSC_Output

HS	GMLAN_Out

HS_ECOLAN_Out

HS	BattLAN_Out

HS_CAVS_HSC	LAN_Out

GM_Chassis_LAN_Out

LS	GMLAN_Out

Output	Data	Processor

[Post_Fault_Hi]

[HV_Cntctr_Stat]

[LV_Voltage]

[Run_Fault_Hi]

[BAS_Current]

[BAS_Spd]

[Clutch_State]

[BAS_En]

[SysPwrMd]

[PVS1_Out]

[MCM_En_State]

2
HS_ECOLAN_Out

[Inv_Volt]

[BAS_State]

[Inverter_En_State]

[EngOnReq]

[EngSpd_Fdbk]

[LV_SOC]

[Goto_HSECOLAN_In]

[HV_Bus_Volt]

[MotPwrCmd]

[Neutral]

[Drv_DecelPdl]

[Goto_GM_ChassisLAN_In]

[TransGear]

[PropSysAtv]

[CAN_BAS_In]

[Goto_HSGMLAN_In]

[MotSpd]

[MCM_En]

[Inverter_Discharged]

[HVBatPrcdCrnt]

[BSM_En]

[HV_Cntctr_Stat]

[BAS_Voltage]

[BAS_Spd]

[Eng_Ctrl_Out]

[Clutch_State]

[BAS_En_State]

[Command_Cntr]

[Drv_Mode]

[VehSpd]

[DecelPdl]

[BSM_En_State]

[Park_Active]

[EngOnReq]

[MotTrq_Fdbk]

[EngSpd_Fdbk]

[EngTrq_Fdbk]

[BASTrq_Fdbk]

[Goto_GM_Chassis_LAN_Out]

[VehSpd]

[PropSysAtv]

[Post_Fault_Hi]

[Batt_SOC]

[Inv_Volt]

[BAS_Voltage]

[AccelPdl]

[Goto_HS_CAVS_HSCLAN_In]

[VehSpd]

[BAS_Avail]

[Goto_HSC_Output]

[Goto_GM_Chassis_LAN_Out]

[Goto_HS_CAVS_HSCLAN_Out]

[Eng_Running]

[Goto_HSGMLAN_Out]

[Goto_LS_GMLAN_In]

[MotTrqCmdRegen]

[Goto_GM_ChassisLAN_In]

[CAN_MCM_In]

[Goto_HSBattLAN_Out]

[Goto_HS_CAVS_HSCLAN_In]

[Drv_DecelPdl]

[Drv_Mode_Cmd]

[Steer_Cmd]

[CAN_Eng_In]

[MotSpd]

[Curvature]

[PVS2_Out]

[Trans_Ctrl_Out]

[MotTrqCmdRegen]

[Drv_DecelPdl]

[Run_Fault_Hi]

[Gear_Ratio]

[Mot_Ctrl_Out]

[TransGear]

[CAN_Regen_In]

[CAN_Lat_In]

[CAN_PMSR_In]

[CAN_TCM_In]

[CAN_Batt_In]

[CAN_Eng_In]

[CAN_MCM_In]

[ECM_En]

[CAN_BAS_In]

[MCM_En_State]

7
HSC_Output

[Inverter_En_State]

Comp_RGM

MotSpd

DecelPdl

SOC

VehSpd

MotTrqCmdRegen

[Batt_Run]

[Range]

4
HS_CAVS_HSC	LAN_Out

[WhlTrqCmd]

Energy	Management	Strategy

[BCM_En_State]

[Grad_Active]

[EMSC_Ctrl_Out]

[Batt_Neg_Vlt_Mask]

[BAS_Trq_Cmd]

[Batt_SOC]

[BASTrq_Fdbk]

[BSM_En_State]

[BAS_Current]

[MotSpd]

[MCM_Run]

[MotSpd]

[Eng_Running]

[Goto_HSC_Input]

[BattPwrDischrgLmt]

[EngTrq_Fdbk]

[BSM_Wakeup]
[SysPwrMd]

Clutch	Control	Module	Ring

[LV_SOC]

[AccelPdl]

[Inverter_Discharge_State]

[Steer_Cmd]

[BSM_En]
[Batt_Ctrl_Out]

[Batt_Neg_Vlt]

[MCM_Mode]

[HV_Bus_Volt]

[BASTrq_Fdbk]

[WhlTrqCmd]

[CAN_ACC_In]

[Goto_HSGMLAN_Out]

[CAN_ACC_In]

[Gradient]

[Grad_Active]

[Goto_HS_ECOLAN_Out]

[MotTrq_Fdbk]

[BattPwrDischrgLmt]

[CAN_EMSR_In]

[BAS_Ctrl_Out]

[Drv_Mode]

[DC_Bus_Voltage]

[Grad_Switch]

[EngPwrCmd]

[EngSpdStart]

[Cltch_Ctrl_Out]

[PMSR_Ctrl_Out]

[PVS1_Out]

[Inverter_Discharged]

[Run_Fault_Low]

[AccelPdl]

[Curvature]

[MCM_Run]

[Veh_PwrCmd]

[CAN_Clutch_In]

[Post_Fault_Low]

[Max_BAS_Voltage]

[Eng_Running]

[VehSpd]

[Post_Fault_Low]

[LV_Voltage]

[Batt_Pos_Vlt_Valid]

[BattPwrChrgLmt]

[Cltch2State]

[MCM_En_State]

[BAS_State]

[Goto_HSGMLAN_In]

Battery	Control	Ring

[Batt_Run_State]

[HVBatPrcdCrnt]

7
HSC_Input

[Goto_LSGMLAN_Out] 6
LS	GMLAN_Out

[BASPwrCmd]

[Run_Fault_Low]

[BAS_En]

[Command_Cntr]

[BattPwrChrgLmt]

Comp_ECM
AccelPdl

VehSpd

ECM_En

PVS1_Out

PVS2_Out

[BAS_En_State]

4
HS_CAVS_HSC	LAN_In

6
LS_GMLAN_In

[Park_Active]

5
GM_Chassis	LAN_In

[Goto_HSECOLAN_In]

2
HS	ECOLAN_In

[CAN_Batt_In]

[MotSpd]

1
HS	GMLAN_In

3
HS	Batt	LAN_In

[Goto_HSC_Input]

[Goto_HS_CAVS_HSCLAN_Out]

[Drv_Mode]

[Goto_HSBattLAN_In]

[BASSpd]

[BAS_Pos_Cmd]

<Eng_Running>

<BASTrq_Fdbk>

<LV_SOC>

<DC_Bus_Voltage>

<MotTrq_Fdbk>

<Post_Fault_Hi>

<DecelPdl>

<Inverter_Discharged>

<Inv_Volt>

<Park_Active>

<Inverter_En_State>

<HV_Bus_Volt>

<Run_Fault_Hi>

<Inverter_Discharge_State>

<MCM_En_State><Post_Fault_Low>

<Command_Cntr>

<BSM_En_State>

<PropSysAtv>

<LV_Voltage>

<BAS_En_State>

<HVBatPrcdCrnt>

<VehSpd>

<Drv_Mode>

<HV_Contactor_Status>

<Run_Fault_Low>

<MotSpd_Fdbk>

<BAS_Voltage>

<Batt_Run_State>

<Batt_SOC><BASSpd_Fdbk>

<BAS_State>

<BAS_Current>

<SysPwrMd>

<Grad_Active>

<EngOnReq>

BSM_En

MCM_Run

BAS_En

MCM_En

ECM_En

BAS_Pos_Cmd

BAS_Avail

EngOnReq

Batt_Full_Vlt_Valid

BSM_En_State

Batt_Pos_Vlt_Mask

Batt_Pos_Vlt

Batt_Full_Vlt

Batt_Neg_Vlt_Mask

Batt_Pos_Vlt_Valid

BSM_State

Batt_Accessory

Batt_Neg_Vlt_Valid

BSM_Running

Batt_Neg_Vlt

Batt_Run

Inverter_Dischrg

MCM_Avail

Neutral

BattPwrDischrgLmt

BattPwrChrgLmt

WhlTrqCmd

AccelPdl

<EngTrq_Fdbk>

<EngSpd_Fdbk><AccelPdl>

<Range>

<Curvature>

<WhlTrqCmd>

<BattPwrChrgLmt>

<BattPwrDischrgLmt>

TransGear

Gear_Ratio

<TransGear>

<Ratio>

Figure 5.12: Output Data Processor Subsystem in original model
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Figure 5.14: Data Interface Module as a model reference, with Input
function caller block
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Figure 5.15: Output function caller block at HSC model root level
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Figure 5.16: Internal Algorithm for Input Pedal Processing

contains the Pedal Mapping of the Vehicle Engine Control Module. The resulting
output, EngAxleTrq_In, is passed to the Propulsion Control Strategy, and used in
torque splitting operations.

The existing subsystem was converted into a scoped Simulink function, Calc_Pedal_In(),
defined within the newly created Pedal Processing Module (PPM) (highlighted blue
in Figure 5.19). Several different secrets are contained within Calc_Pedal_In(), and
must be grouped into different modules. In particular, the Engine Pedal Mapping
contains engine hardware related secrets, and was implemented as a scoped Simulink
function, Get_EngAxleTrq(), within the EHM (Figure 5.17). The corresponding func-
tion caller block was defined within Calc_Pedal_In(), highlighted in yellow in Figure
5.18. The EHM was imported using a Model Reference block, allowing the set of ex-
ported engine hardware functions to be accessible within the PPM. The pedal sensor
arbitration subsystem was also moved outside of Calc_Pedal_In(), as it contained
a separate algorithm which could change independently. A local Simulink function,
Pedal_Arb() was created, and encapsulated within a virtual subsystem at the root
level of the PPM (shown highlighted orange in Figure 5.19. Finally, the corresponding
input pedal processing function caller was defined at the HSC level, within the Input
Conversion Layer (Figure 5.20). Changes 4, 5 in Figure A2.1 motivated the creation
of the PPM, and change 7 motivated the separation of engine hardware functions.

5.5.3 Range and Curvature Determination

This subsystem (shown in Figure 5.21) contains the algorithm for determining range
and curvature values integral to the vehicle’s propulsion control strategy, and would
be affected by likely change 16 in Table A2.1. As a result, this subsystem was moved
to the PCSM Model, and converted into a local Simulink function. The scope was
made local by encapsulating the Simulink function within a virtual subsystem (Figure
5.22). The scope was then selected via right-clicking on the Simulink function and
selecting the Change Function Scope property from the Simulink Module Toolbar
options, then To Scoped Local Function, and finally In Existing Subsystem
menu options.
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Figure 5.17: Get_EngAxleTrq() Simulink function defined within
the EHM

5.5.4 Max Vehicle Torque Calculation

The vehicle torque conversion subsystem can be seen in Figure 5.23 below (highlighted
in yellow), and its internal expansion can be seen in Figure 5.25. One algorithm
identified was the calculation of the maximum available motor torque, which holds
secrets regarding the motor hardware limits (highlighted in blue). This subsystem
was moved into the Motor Hardware Module, converted into a scoped Simulink func-
tion (Calc_Max_MotTrq()), and exported from the model (Figure 5.26). Another
algorithm identified in Figure 5.25 was the calculation of the maximum available
engine torque, which held secrets regarding the engine hardware limits (highlighted
in orange). This was converted from a subsystem into a scoped Simulink function,
Calc_Max_EngTrq(), and placed within the Engine Hardware Module (EHM) (Fig-
ure 5.27). The third algorithm was the Calculation of the max Engine wheel torque
which contained secrets regarding temperature and torque breakpoints within the
engine hardware (highlighted in green). The subsystem was converted into a scoped
Simulink Function, Max_EngWhlTrq(), and placed within the EHM (Figure 5.27).
The max engine wheel torque subsystem also contains an algorithm which calcu-
lates the transmission gear ratio, shown in Figure 5.24, highlighted in magenta. This
functionality was deemed more suited for the Transmission Control Module and was
moved out of its previous location in the Engine Hardware Module, defined as a
scoped Simulink function (Figure 5.28).

The subsystem from Figure 5.23 was converted into a scoped Simulink function,
Calc_MaxVehTrq(), and was transferred to the newly created Hardware Limit Con-
trol Module (HLCM), shown in Figure 5.29. This separated the vehicle torque limit
calculation algorithm (HLCM) from the hardware limit secrets it needed to access
(MHM, TCM, EHM). Each of the hardware modules providing information to the
HLCM were imported using model reference blocks, allowing access to the correspond-
ing function caller blocks located within the Calc_MaxVehTrq() function, shown in
(Figure 5.30). Finally, the Calc_MaxVehTrq() function caller was placed within the
Input conversion layer of the HSC model, as seen in Figure 5.31. The separation of
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Figure 5.20: Calc_Pedal_In() function caller block placed at HSC
level

Figure 5.21: Range and Curvature Subsystem located in root model
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Figure 5.22: Subsystem Converted to Local Simulink Function
within PCSM Model

Figure 5.23: Original Max Vehicle Torque Conversion implemented
as one virtual subsystem.

motor, engine, and transmission hardware secrets was motivated by likely changes 12,
7, and 14, respectively (Table A2.1). The creation of the new HLCM was motivated
by likely change 25 in Table A2.2.

5.5.5 CAVs Module

The CAVs module contains two subsystems: the Pedal Switching system and the
Steer Controller. Both algorithms are required by other modules within the HSC and
were converted into exported scoped Simulink Functions within the CAVS Model
(Figure 5.26). Function caller blocks were placed at the root level of the HSC model,
shown in Figure 5.27. While the CAVs Module already existed within the original
EcoCAR Model, its conversion into exported Simulink functions was motivated by
likely changes 23 and 24 in Table A2.2.

5.5.6 Gear Ratio Conversion

The gear to ratio conversion subsystem (seen in Figure 5.34) was moved from the root
model to the transmission control model, as it held secrets regarding the transmission
hardware. The subsystem was then converted to a scoped Simulink function (Figure
5.28, 5.35) and exported to other modules within the HSC model.

5.5.7 Hardware Limit Calculation

The final algorithm contained within the input conversion subsystem was the Battery
Management System (Figure 5.36). This virtual subsystem contains hardware secrets
related to the HV Battery Charge and Discharge limits, as well as algorithms to cal-
culate limits based off SOC (Figure 5.37). The battery hardware specific parameters
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Figure 5.24: Original look of Max_EngWhlTrq Function

Figure 5.25: Algorithms within Max Vehicle Torque Subsystem

Figure 5.26: Max Motor Torque function defined inside MHMModel
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Figure 5.28: Gear Ratio Conversion Simulink Function defined
within THM
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the HLCM

VehSpd

VehSpd

Gear

Gear caller
	ECM.Calc_MaxEngTrq()

Ratio

VehSpd

EngSpd

EngTrq

MotSpd

MotSpd

caller
	ECM.Calc_MaxEngWhlTrq()

Gear

EngSpd

EngTrq

Gear_Ratio

EngTrqMaxWhls

caller
	MHM.Calc_Max_MotTrq()MotSpd Max_MotTrq

MaxVehTrq

MaxVehTrq

f()

Calc_MaxVehTrq

caller
	TCM.Gear_Conversion()Gear Ratio

MaxVehTrq

EngTrqMaxWhls
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[Goto_LS_GMLAN_In]

[CAN_TCM_In]

[Command_Cntr]

[Inverter_Discharged]

[Goto_GM_ChassisLAN_In]

[Batt_Ctrl_Out]
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[Grad_Active]
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[CAN_EMSR_In]
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caller
	HLCM.Calc_MaxVehTrq()

Gear

VehSpd

MotSpd

MaxVehTrq
double

[MCM_En]

[Clutch_State]
double

[EngSpd_Fdbk]

[BattPwrChrgLmt]
double

[MotTrqCmd_Regen]
double

[Eng_Ctrl_Out] CAN_Eng_Out

[MotSpd] double

[Park_Active]
double

[Drv_DecelPdl]
double

[Clutch_State]
double

[Eng_Running] double

[VehSpd]
double

[SysPwrMd]
double

[MCM_En_State]
double

[CAN_EMSR_In]
CAN_ECMS_In

[Clutch_State]
double

[PropSysAtv]
double

[Inv_Volt]
double

[SysPwrMd]
double

[CAN_MCM_In]

PPM

PPM
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double

[EngOnReq]
double

[BAS_Voltage]
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double

[Drv_AccelPdl]
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double

[Inv_Volt]
double

[PropSysAtv]
double

[Drv_Mode]
double

4
HS_CAVS_HSC	LAN_Out

[BASTrq_Fdbk]
double

[MotTrq_Fdbk]
double

[LV_Voltage]

[LV_SOC]
double

[ACC_Mode]

[BattPwrChrgLmt] double

[Steer_Angle]
double

[Batt_SOC]
double

[AccelPdl]
double

[Run_Fault_Low]
double

[EngTrqCmd]
double

[Steer_Req]

[VehSpd]
double

[Drv_Mode]
double

[CAN_Lat_In]

[EMSC_Ctrl_Out] CAN_EMSR_Out

[EngSpd_Fdbk] double

[MaxVehTrq]
double

[MotTrqCmd_Arb]

[EngTrq_Fdbk]
double

[MotTrqCmd_Arb]
double

[BASTrq_Fdbk]
double

[LV_SOC]
double

[BSM_En_State]
double

[ACC_AccelPdl]
double

[BattPwrDischrgLmt]
double

[Batt_SOC]
double

[AccelPdl]
double

[MotSpd]
double

caller
	HLCM.Limit_Calc()Batt_SOC

BattPwrDischrgLmt

BattPwrChrgLmt
double

double

[MotSpd] double

[ECM_En]
double

[Park_Active]
double

[Veh_PwrCmd]

[Steer_Req]
double
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[SteerCmd]
double

[Drv_DecelPdl]
double

[VehSpd]
double

[Post_Fault_Hi]
double

[Goto_LSGMLAN_Out]

[Cltch_Ctrl_Out] CAN_Cltch_Out

[Park_Active]
double

[Drv_DecelPdl]
double

[PMSR_Ctrl_Out] CAN_PMSR_Out

[ACC_Enable]
double

[PVS1_In]
double

[EngTrq_Fdbk]
double

caller
	PPM.Calc_Pedal_In()

PVS1

PVS2

Veh_Spd

AccelPdl

EngAxleTrq_In

double

double

[TransGear]
double

[Batt_Ctrl_Out] CAN_Batt_Out

[Goto_HSC_Output]
HSC_Output

[BASTrq_Fdbk]

[PVS2_Out] double

[Goto_GM_Chassis_LAN_Out]
double

[Goto_HS_CAVS_HSCLAN_Out]
double

[Batt_SOC]

[Goto_HSBattLAN_Out]
HSBattLAN_Out

caller
	CAVM.Steer_Ctrl()

SteerCmd

AccMode

LKASteer

SteerCtrl
double

[AccelPdl]
double

[MotSpd]
double

[WhlTrqCmd]
double

[Goto_LS_GMLAN_In] double

[Goto_HS_CAVS_HSCLAN_In] HS_CAVS_HSC_LAN_In

[CAN_Regen_In]
CAN_Regen_In

[Goto_HSBattLAN_In] HS_Batt_LAN_In

[Goto_HSECOLAN_In] HS_ECOLAN_In

[CAN_Clutch_In]
double

[PVS2_In]
double

[PVS1_Out] double

[BAS_En_State] double

[CAN_Batt_In]
CAN_Batt_In

[CAN_PMSR_In]
CAN_PMSR_In

[CAN_Eng_In]
CAN_Eng_In

[BAS_Ctrl_Out]

[CAN_Regen_In]

[CAN_MCM_In]
CAN_MCM_In

[Mot_Ctrl_Out] CAN_MCM_Out

[BAS_Ctrl_Out] CAN_BAS_Out

caller
	Data_Interface.Data_Out()

ECMS_Out

PMSR_Out

Eng_Out

BAS_Out

Mot_Out

Regen_Out

Trans_Out

Cltch_Out

Batt_Out

PVS1_Out

PVS2_Out

MotTrqCmd_Final

HSC_Output

HSGMLAN_Out

HS_ECOLAN_Out

HSBattLAN_Out

HS_CAVS_HSCLAN_Out

GM_Chassis_LAN_Out

LSGMLAN_Out

HSBattLAN_Out

HS_ECOLAN_Out

HSC_Output

double

double

HS_GMLAN_Out

double

[ACC_Mode]
double

[Goto_HSGMLAN_In] HS_GMLAN_In

caller
	FDM.MotFault_Handler()

POST_FAULT_LOW

POST_FAULT_HI

RUN_FAULT_LOW

RUN_FAULT_HI

Mot_Off

Inv_Off
double

double

FDM

FDM

[MaxVehTrq]
double

[Park_Active]

[ACC_Enable]

[VehSpd]
double

caller
	PPM.Calc_Pedal_Out()

EngAxleTrq_Out

VehSpd

ECM_En

PVS1Voltage

PVS2Voltage

double

double

[Inverter_Discharge_State]

[Run_Fault_Hi]
double

[CAN_TCM_In]
double

EMM
Batt_SOC

LV_SOC

BASTrq_Fdbk

EngTrq_Fdbk

EngSpd_Fdbk

Drv_Mode

MaxVehTrq

MotTrq_Fdbk

EngOnReq

Inv_Volt

MCM_En_State

BSM_En_State

BAS_En_State

SysPwrMd

PropSysAtv

Eng_Running

Clutch_State

DecelPdl

Park_Active

VehSpd

BattPwrChrgLmt

MotSpd

AccelPdl

OpMode

EngPwrCmd

MotPwrCmd

VehPwrCmd

BASPwrCmd

Neutral

MCM_En

BSM_En

BAS_En

ECM_En

Drv_Mode_Cmd

BSM_Wakeup

PropSysActv_Out

MCM_Run

MotTrqCmd_Regen

Mot_Trac_EN

EMM

double

double

double

double

double

double

double

double

double

double

double

double

double

double

double

double

double

double

double

double

double

double

double

double

double

double

double

double

double

double

double

double

double

double

double

double

double

double

double

[BSM_Wakeup]

uint8

[Gear_Ratio]
double

[HV_Bus_Volt]

boolean

[PVS2_In]

int16

[Run_Fault_Low]

[Drv_Mode]

uint16

[CAN_Lat_In]
CAN_Lat_In
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double

[Goto_HSC_Input] HSC_Input

caller
	HLCM.Limit_Check()

BattPwrDischrgLmt

BattPwrChrgLmt

MotSpd

MotTrqCmd

MotTrqCmdRegen

Mot_Trac_EN

MotTrqCmdFinal
double

double

double

double

uint8

[MotOffError]

[Goto_HSC_Output]

double

double

double

double

double

double

double

double

double

double

double

double

double

double

[MotTrqCmd_Regen] double

[MotTrq_Fdbk]
double

uint8

[CAN_Eng_In]

[Batt_SOC]
double

[Drv_DecelPdl]
double

[CAN_BAS_In]

[Goto_HSGMLAN_In]

double

double

double

[Goto_LSGMLAN_Out]
double

Data_Interface

Data_Interface

[Goto_HS_ECOLAN_Out]
HS_ECOLAN_Out

[Goto_GM_ChassisLAN_In] GM_Chassis_LAN_In

[BAS_Spd]

double

double

double

double

double

double

double

double

caller
	CAVM.ACC_Pedal_Switch()

Drv_AccelPdl

Drv_DecelPdl

AccEnbl

ACC_AccelPdl

ACC_DecelPdl

AccelPdl

DecelPdl

double

double

[CAN_BAS_In]
CAN_BAS_In

double

double
CAN_Trans_Out

[EngSpd_Fdbk]
double

double CAN_Eng_Out

double

[VehSpd]
double

[EngOnReq]
double

[CAN_ACC_In]
CAN_ACC_In

double

double

CAVM

CAVM

double

caller
	Data_Interface.Data_In()

HSGMLAN_In

HSECOLAN_In

HSBattLAN_In

HS_CAVS_HSCLAN_In

GM_ChassisLAN_In

LS_GMLAN_In

HSC_Input

CAN_ECMS_In

CAN_Regen_In

CAN_BAS_In

CAN_MCM_In

CAN_Eng_In

CAN_Batt_In

CAN_TCM_In

CAN_PMSR_In

CAN_Clutch_In

CAN_ACC_In

CAN_Lat_In

PVS1

PVS2

CAN_Batt_In

CAN_Eng_In

CAN_Lat_In

CAN_PMSR_In

CAN_MCM_In

CAN_ACC_In

CAN_ECMS_In

CAN_BAS_In

double

CAN_Regen_In

double

double

double

[CAN_ACC_In]

[Goto_HSGMLAN_Out]
HS_GMLAN_Out

[Drv_AccelPdl]
double

[ACC_DecelPdl]
double

[BattPwrChrgLmt]
double

[MotTrqCmd_Final] double

[Inv_Volt]

[Trans_Ctrl_Out] CAN_Trans_Out

[BAS_Current]

[MotSpd]
double

5
GM_Chassis	LAN_In

GM_Chassis_LAN_In

[VehSpd]
double

double

double

double

double

double

double

CAN_EMSR_Out

boolean

4
HS_CAVS_HSC	LAN_In

HS_CAVS_HSC_LAN_In

7
HSC_Input

HSC_Input

[TransGear]

3
HS	Batt	LAN_In

HS_Batt_LAN_In

double

double

double

double

double

double

double

double

CAN_PMSR_Out

[TransGear]
double

double

double

[Mot_Trac_En]
double

[Eng_Running]
double

[Post_Fault_Low]
double

2
HS	ECOLAN_In

HS_ECOLAN_In

1
HS	GMLAN_In

HS_GMLAN_In

[Lat_Enable]

6
LS_GMLAN_In

double

double

double

double

double

double

double

double

double

double

double

double

double

double

TransGear

Gear_Ratio

<CAN_BASSpd_Fdbk>

<CAN_BASTrq_Fdbk>

<CAN_BAS_Current>

<CAN_Grad_Active>

<CAN_BAS_Voltage>

<CAN_BAS_State>

<CAN_LV_Voltage>

<CAN_LV_SOC>

<CAN_Park_Active>

<CAN_Drv_DecelPdl>

<CAN_VehSpd>

<CAN_Drv_Mode>

<CAN_EngOnReq>

<CAN_HV_Bus_Volt>

<CAN_HV_Contactor_Status>
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<CAN_Command_Cntr>

<CAN_HVBatPrcdCrnt>

<CAN_EngTrq_Fdbk>

<CAN_EngSpd_Fdbk>

<CAN_Eng_Running>

<CAN_PropSysActv>

<CAN_Drv_Mode>

<CAN_SysPwrMd>

<CAN_BAS_En_State>

<CAN_BSM_En_State>

<CAN_MCM_En_State>

<CAN_Inv_Volt>
<CAN_MotSpd_Fdbk>

<CAN_Post_Fault_Low>
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<CAN_Run_Fault_Hi>

<CAN_Inverter_Discharged>

<CAN_MotTrq_Fdbk>

<CAN_Inverter_En_State>

<CAN_DC_Bus_Voltage>

<CAN_Inverter_Discharge_State>

<CAN_Lat_Enable>

<CAN_Steer_Req>

<CAN_Steer_Angle>

<CAN_ACC_Enable>

<CAN_ACC_AccelPdl>

<CAN_ACC_DecelPdl>

<CAN_ACC_Mode>

MotTrqCmd

Figure 5.31: Calc_MaxVehTrq() function caller block at root level
of HSC Model

Steer_Ctrl

SteerCmd

AccMode

LKASteer

SteerCtrl
SteerCtrl

Steer_Ctrl

SteerCtrl	=	Steer_Ctrl(SteerCmd,AccMode,LKASteer)

ACC_Pedal_Switch

Drv_AccelPdl

Drv_DecelPdl

AccEnbl

ACC_AccelPdl

ACC_DecelPdl

AccelPdl

DecelPdl

ACC_Pedal_Switch

[AccelPdl,DecelPdl]	=	ACC_Pedal_Switch(Drv_AccelPdl,Drv_DecelPdl,AccEnbl,ACC_AccelPdl,ACC_DecelPdl)

Figure 5.32: CAVs Exported Simulink Functions
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Input
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Outputs
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Inports Inputs

6
LS	GMLAN_Out

4
HS_CAVS_HSC	LAN_Out

3
HS	BattLAN_Out

1
HS	GMLAN_Out

PCCMMotTrqCmd_Cltch

Clutch_State

VehSpd

MotSpd

BAS_Spd

BASTrq_Fdbk

BAS_Current

Grad_Active

LV_Voltage

Eng_Running

Batt_Run_State

MotTrq_Fdbk

MCM_En

Inverter_En_State

MotOffError

InverterOffError

DC_Bus_Voltage

MCM_Run

Inverter_Discharge_State

BASPwrCmd

BAS_En

HV_Cntctr_Stat

HV_Bus_Volt

BSM_En

BSM_Wakeup

HVBatPrcdCrnt

Command_Cntr

MCM_En_State

Inverter_Discharged

MotTrqCmd

Cltch_Ctrl_Out

BAS_Ctrl_Out

Mot_Ctrl_Out

Batt_Ctrl_Out

PCCM

CAN_BAS_Out

CAN_MCM_Out

CAN_Batt_Out

CAN_Cltch_Out

HLCM

HLCM

[Inverter_Discharge_State]

[Inverter_En_State]

[MotSpd]

[MotTrq_Fdbk]

[Run_Fault_Low]

[MotTrqCmd_Arb]

5
GM_Chassis_LAN_Out

[VehSpd]

[Eng_Ctrl_Out]

[PMSR_Ctrl_Out]

[CAN_Clutch_In]

[MaxVehTrq]

[Batt_Run_State]

[CAN_Eng_In]

[BattPwrDischrgLmt]

[SteerCmd]

[DecelPdl]

[ECM_En]

[Neutral]

[BASPwrCmd]

[MotTrqCmd_Cltch]

[OpMode]

[MCM_En]

[Mot_Ctrl_Out]

[BAS_Ctrl_Out]

[PVS1_Out]

[Goto_LSGMLAN_Out]

[Goto_GM_Chassis_LAN_Out]

[Goto_HS_CAVS_HSCLAN_Out]

[Goto_HS_ECOLAN_Out]

[Goto_HSGMLAN_Out]

[Goto_LS_GMLAN_In]

[CAN_TCM_In]

[Command_Cntr]

[Goto_GM_ChassisLAN_In]

[Goto_HSC_Output]

[BAS_En]

[HV_Bus_Volt]

[HV_Cntctr_Stat]

[LV_Voltage]

[BAS_State]

[BAS_Voltage]

[Grad_Active]

[Goto_HSBattLAN_In]

[BAS_Spd]

[Park_Active]

[SysPwrMd]

[BAS_En_State]

[BSM_En_State]

[Drv_AccelPdl]

[Inv_Volt]
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[InverterOffError]

[Steer_Angle]

[ACC_Mode]

[Steer_Req]

[BAS_Current]

[ACC_Enable]
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[Goto_HSGMLAN_In]

[Goto_HS_CAVS_HSCLAN_In]

[Lat_Enable]

caller
	Data_Interface.Data_Out()

ECMS_Out

PMSR_Out

Eng_Out

BAS_Out

Mot_Out

Regen_Out

Trans_Out

Cltch_Out

Batt_Out

PVS1_Out
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MotTrqCmd_Final
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	PPM.Calc_Pedal_In()
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EngAxleTrq_In

[DC_Bus_Voltage]

[Drv_DecelPdl]
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Mot_Off
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caller
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Figure 5.33: Top level HSC layer containing CAVs Model Reference
and function caller blocks

Figure 5.34: Gear Ratio Conversion Subsystem in Original Model
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Figure 5.35: Internals of Gear Ratio Simulink Function
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Figure 5.36: Original Battery Management System virtual subsys-
tem
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Figure 5.37: Internals of Battery Management Simulink Function

and lookup tables were moved to an exported Simulink function, Batt_Lmt_Calc(),
seen in Figure 5.38 defined within the Battery Hardware Module. The overall hard-
ware limit calculation algorithm remained a separate secret, and was defined as a
new Simulink function, Limit_Calc(), within the HLCM (shown highlighted blue in
Figure 5.39. The limit calculation function caller block was defined within the Input
Conversion Layer in the HSC Model, highlighted blue in Figure 5.40. Separating of
battery hardware secrets was motivated by likely changes 9 and 10 in Table A2.1.

5.6 Operation Mode Loop
The three major modules within the operation mode loop are the Propulsion Control
Strategy Module(PCSM), Power Mode Module (PMM), and the Regenerative Power
Module (RPM). These modules all collectively hold the secret of the method of energy
management implemented within the HSC model, and would be affected by likely
change 15 shown in Table A2.1. As a result, they were all consolidated within the
newly created Energy Management Module (EMM), which can be seen at a high level
in Figure 5.41.

5.6.1 Propulsion Control Strategy Module

The most significant change within the PCSM was improving the modularization
of the PCSR Stateflow Chart shown in Figure 5.42. The original chart contains a
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Figure 5.38: Battery Management Simulink Function defined within
the BHM
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Figure 5.39: Battery Management Simulink Function caller at HSC
root level
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Figure 5.40: Battery Management Simulink Function caller at HSC
root level
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Figure 5.41: EMM Model Reference at HSC root level

121

https://www.mcmaster.ca
https://www.eng.mcmaster.ca/cas


Master of Applied Science– Augustino Fella Pellegrino; McMaster University–
Department of Computing and Software

graphical function comprised of states representing each of the possible vehicle drive
modes: Initial, Start/Stop, HEV, EV, ICE, and Performance. Each drive mode state
contains a unique Simulink function to calculate the total power needed from each
powertrain component. Calls to the Simulink functions are contained within each of
the respective Drive Mode states (Figure 5.43). The HEV Mode is shown in Figure
5.44 as an example, where both the PowerCmd() function and function caller are
contained within the State Object.

During the reorganization of the PCSR Stateflow chart, it was determined that
the PowerCmd() Simulink functions should be separated from the internal states of
the drive mode loop. The drive mode states as well as the conditional statements for
transition between them represent one algorithmic secret contained within a single
graphical function. The algorithm for calculating power commands within each drive
state also represent distinct model secrets and could all potentially require changes
independent of one another. In each of the Drive Mode states, the Simulink func-
tion was removed, and placed at the root level of the Stateflow chart. All Simulink
functions were then encapsulated within a Stateflow Box Object (Figure 5.45). Func-
tion calls within the states and transitions were adjusted to properly reference the
Stateflow box object, as well as giving each drive mode function a unique name. The
graphical function was also encapsulated within a Stateflow box object and remained
at the root level of the Stateflow chart (Figure 5.47). An example of a power cal-
culation function being called within the HEV State can be seen in Figure 5.46.

5.6.2 Power Moding Module

The PMM contains the algorithm for coordinating the startup and shutdown of the
various hardware components interacting with the HSC. The control module was de-
signed using a Stateflow chart primarily due to the unique timing transitions required
between control states (Figure 5.48). The original PMSR Stateflow chart already en-
capsulates a single algorithm for coordinating component operation and was not fur-
ther broken down or modularized. Furthermore, it was determined that the original
Stateflow implementation was required to maintain controller functionality.

5.6.3 Regen Power Module

All functions containing secrets or algorithms related to regenerative braking have
been organized within the RPM. In the original model, the Regen Torque Calculation
Subsystem is responsible for determining the regenerative motor torque command,
MotTrqCmdRegen, that is passed to the motor torque arbitrator subsystem. The
subsystem within the Regen Power Model can be seen in Figure 5.49 (highlighted in
yellow), and the internal implementation can be seen in Figure 5.50. Several different
algorithms are contained within the subsystem, including the secret of calculating the
battery charge limit based on SOC, highlighted in orange. This algorithm contains
secrets related to the battery hardware limits and is already contained within the
Battery Hardware Module. The blocks performing the charge limit calculation were
removed from the Regen Power Module, and the BattChrgLmt signal was passed as
an input into the subsystem (Figure 5.51). Similarly, the algorithm for calculating the
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Figure 5.42: PCSR Stateflow Chart within the PCSM Model
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HEV_Mode
OpMode	=	2;
entry,	during:	
[MotPwrCmd,BASPwrCmd,EngPwrCmd]	=	PowerCmd(WhlPwrCmd,EngSpd,SOC,LV_SOC,Curvature,Range,Acc_Pdl_Pos);
PwrCmd	=	WhlPwrCmd;

		

[MotPwrCmd,BASPwrCmd,EngPwrCmd]	=	PowerCmd(PwrCmd,EngSpd,SOC,LV_SOC,Curvature,Range,Acc_Pdl_Pos)
Simulink	Function

ICE_Mode
OpMode	=	1;
entry,	during:
[MotPwrCmd,BASPwrCmd,EngPwrCmd]	=	PowerCmd(WhlPwrCmd);
PwrCmd	=	WhlPwrCmd;

		

[MotPwrCmd,BASPwrCmd,EngPwrCmd]	=	PowerCmd(PwrCmd)Simulink	Function

EV_Mode
OpMode	=	5;
entry,	during:
[MotPwrCmd,BASPwrCmd,EngPwrCmd,Neutral]	=	PowerCmd(WhlPwrCmd);
PwrCmd	=	WhlPwrCmd;

		 [MotPwrCmd,BASPwrCmd,EngPwrCmd,Neutral]	=	PowerCmd(PwrCmd)
Simulink	Function

Start_Stop_Mode
OpMode	=	0;
[MotPwrCmd,BASPwrCmd,EngPwrCmd]	=	PowerCmd(WhlPwrCmd,EngSpd);
PwrCmd	=	WhlPwrCmd;

		
[MotPwrCmd,BASPwrCmd,EngPwrCmd]	=	PowerCmd(PwrCmd,EngSpd)Simulink	Function

HEV_Mode_Performance
OpMode	=	3;
entry,	during:	
[MotPwrCmd,BASPwrCmd,EngPwrCmd]	=	PowerCmd(WhlPwrCmd,EngSpd,SOC);
PwrCmd	=	WhlPwrCmd;

		

[MotPwrCmd,BASPwrCmd,EngPwrCmd]	=	PowerCmd(PwrCmd,EngSpd,SOC)Simulink	Function
[Acc_Pdl_Pos	>=	0.95]

1

[VehSpd	<=	7	&&	EngOnReq	==	3	&&	WhlTrqCmd	>	0]

2

[VehSpd	>	7	&&	EngOnReq	==	3	&&	Mode	==	1]

3

[Acc_Pdl_Pos	<	0.95]

[VehSpd	<=	7	&&	EngOnReq	==	3	&&	WhlTrqCmd	<=	0]

[Mode~=2	]

[EngOnReq	==	3	&&	Mode	==3]
2

[Mode	==	2]
1

Figure 5.44: State Object implementing the Functionality for the
HEV Drive Mode

Drive	Mode	Selection	Ring

HEV_Mode
OpMode	=	2;
entry,	during:
	[MotPwrCmd,BASPwrCmd,EngPwrCmd]	=EMSR.PowerCmd_HEV(WhlPwrCmd,EngSpd,SOC,LV_SOC,Curvature,Range,Acc_Pdl_Pos);
	PwrCmd	=	WhlPwrCmd;

ICE_Mode
OpMode	=	1;
entry,	during:
	[MotPwrCmd,BASPwrCmd,EngPwrCmd]	=	EMSR.PowerCmd_ICE(WhlPwrCmd);
	PwrCmd	=	WhlPwrCmd;

HEV_Mode_Performance
OpMode	=	3;
entry,	during:
	[MotPwrCmd,BASPwrCmd,EngPwrCmd]	=	EMSR.PowerCmd_Perf(WhlPwrCmd,EngSpd,SOC);
	PwrCmd	=	WhlPwrCmd;

Start_Stop_Mode
OpMode	=	0;
[MotPwrCmd,BASPwrCmd,EngPwrCmd]	=	EMSR.PowerCmd_Start(WhlPwrCmd,EngSpd);
PwrCmd	=	WhlPwrCmd;

EV_Mode
OpMode	=	5;
entry,	during:
	[MotPwrCmd,BASPwrCmd,EngPwrCmd,Neutral]	=	EMSR.PowerCmd_EV(WhlPwrCmd);
	PwrCmd	=	WhlPwrCmd;

[Acc_Pdl_Pos	>=	0.95]

2

[VehSpd	>	7	&&	EngOnReq	==	3	&&	Mode	==	1]

3

[VehSpd	<	2	&&	EngOnReq	==	3	&&	WhlTrqCmd	<=	0]

1

[Mode	==	2]
2

[VehSpd	<	7	&&	EngOnReq	==	3	&&	WhlTrqCmd	>	0]

3

[VehSpd	<	2	&&	EngOnReq	==	3	&&	WhlTrqCmd	<=	0]

[Mode~=2	]

[Acc_Pdl_Pos	<	0.95]

[EngOnReq	==	3	&&	Mode	==3]

1

EMSR

[MotPwrCmd,BASPwrCmd,EngPwrCmd]	=	PowerCmd_Perf(WhlPwrCmd,EngSpd,SOC)Simulink	Function

[MotPwrCmd,BASPwrCmd,EngPwrCmd]	=	PowerCmd_ICE(WhlPwrCmd)Simulink	Function

[MotPwrCmd,BASPwrCmd,EngPwrCmd]	=	PowerCmd_HEV(WhlPwrCmd,EngSpd,SOC,LV_SOC,Curvature,Range,Acc_Pdl_Pos)
Simulink	Function

[MotPwrCmd,BASPwrCmd,EngPwrCmd]	=	PowerCmd_Start(WhlPwrCmd,EngSpd)Simulink	Function

[MotPwrCmd,BASPwrCmd,EngPwrCmd,Neutral]	=	PowerCmd_EV(WhlPwrCmd)Simulink	Function

Figure 5.45: Stateflow Box containing all local Simulink functions

Drive	Mode	Selection	Ring

HEV_Mode
OpMode	=	2;
entry,	during:
	[MotPwrCmd,BASPwrCmd,EngPwrCmd]	=EMSR.PowerCmd_HEV(WhlPwrCmd,EngSpd,SOC,LV_SOC,Curvature,Range,Acc_Pdl_Pos);
	PwrCmd	=	WhlPwrCmd;

ICE_Mode
OpMode	=	1;
entry,	during:
	[MotPwrCmd,BASPwrCmd,EngPwrCmd]	=	EMSR.PowerCmd_ICE(WhlPwrCmd);
	PwrCmd	=	WhlPwrCmd;

HEV_Mode_Performance
OpMode	=	3;
entry,	during:
	[MotPwrCmd,BASPwrCmd,EngPwrCmd]	=	EMSR.PowerCmd_Perf(WhlPwrCmd,EngSpd,SOC);
	PwrCmd	=	WhlPwrCmd;

Start_Stop_Mode
OpMode	=	0;
[MotPwrCmd,BASPwrCmd,EngPwrCmd]	=	EMSR.PowerCmd_Start(WhlPwrCmd,EngSpd);
PwrCmd	=	WhlPwrCmd;

EV_Mode
OpMode	=	5;
entry,	during:
	[MotPwrCmd,BASPwrCmd,EngPwrCmd,Neutral]	=	EMSR.PowerCmd_EV(WhlPwrCmd);
	PwrCmd	=	WhlPwrCmd;

[Acc_Pdl_Pos	>=	0.95]

2

[VehSpd	>	7	&&	EngOnReq	==	3	&&	Mode	==	1]

3

[VehSpd	<	2	&&	EngOnReq	==	3	&&	WhlTrqCmd	<=	0]

1

[Mode	==	2]
2

[VehSpd	<	7	&&	EngOnReq	==	3	&&	WhlTrqCmd	>	0]

3

[VehSpd	<	2	&&	EngOnReq	==	3	&&	WhlTrqCmd	<=	0]

[Mode~=2	]

[Acc_Pdl_Pos	<	0.95]

[EngOnReq	==	3	&&	Mode	==3]

1

EMSR

[MotPwrCmd,BASPwrCmd,EngPwrCmd]	=	PowerCmd_Perf(WhlPwrCmd,EngSpd,SOC)Simulink	Function

[MotPwrCmd,BASPwrCmd,EngPwrCmd]	=	PowerCmd_ICE(WhlPwrCmd)Simulink	Function

[MotPwrCmd,BASPwrCmd,EngPwrCmd]	=	PowerCmd_HEV(WhlPwrCmd,EngSpd,SOC,LV_SOC,Curvature,Range,Acc_Pdl_Pos)
Simulink	Function

[MotPwrCmd,BASPwrCmd,EngPwrCmd]	=	PowerCmd_Start(WhlPwrCmd,EngSpd)Simulink	Function

[MotPwrCmd,BASPwrCmd,EngPwrCmd,Neutral]	=	PowerCmd_EV(WhlPwrCmd)Simulink	Function

Figure 5.46: : Example of function call within HEV state using
Stateflow Box Identifier
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Input Control Output

[BAS_En]

[BSM_En]

[MCM_En]

[BAS_En_State]

[Inv_Volt]

[BSM_En_State]

[MCM_En_State]

[BAS_En]

[BSM_En]

[MCM_En]

1
Inv_Volt

2
MCM_En_State

3
BSM_Enabled_State

4
BAS_Enabled_State

5
SysPwrMd

6
Drv_Mode_Btn

7
PropSysAtv

[Inv_Volt]

[MCM_En_State]

[BSM_En_State]

[BAS_En_State]

[SysPwrMd]

[Drv_Mode_Req]

[PropSysActv_In]

[SysPwrMd]

[Drv_Mode_Req]

[MCM_En]

[BSM_En]

[BAS_En]

[Drv_Mode_Cmd]

[Drv_Mode_Cmd]

SysPwrMd

EngineRunning

InverterVoltage

MCMAvail

BSMAvail

BASAvail

ClutchAvail

ParkActv

DrvModeReq

InverterAvail

PropSysActv_In

PropSysActv

ECMEnable

MCMEnable

BSMEnable

BASEnable

BSM_Wakeup

DrvModeCmd

MCMWakeup

	Power	Moding	Algorithm

[ECM_En]

[ECM_En]

8
Eng_Running

[Eng_Running]

[Eng_Running]

[PropSysActv_Out]

[PropSysActv_Out]

[BSM_Wakeup]

[MCM_Wakeup]

[PropSysActv_In] [MCM_Wakeup]

[BSM_Wakeup][Park_Active]

[Clutch_State]

[Clutch_State]

[Park_Active]

1
MCM_En

2
BSM_En

3
BAS_En

4
ECM_En

5
Drv_Mode_Cmd

6
BSM_Wakeup

7
PropSysActv_Out

9
Clutch_State

10
Park_Active

8
MCM_Run

[InverterAvail]

[InverterAvail]11
InverterAvail

Figure 5.48: The PMSR Stateflow chart located within the PMM

Maximum Motor torque (highlighted in blue) contains secrets regarding the motor
hardware limits. The algorithm was removed from the RPM, and the max torque
signal, Max_MotTrq was passed in as an input to the Regen Torque Subsystem
(Figure 5.51). The virtual subsystem was converted into a scoped Simulink function
and placed within the RPM (Figure 5.52). A corresponding function caller block was
placed within the root level of the EMM Model (Figure 5.53).

5.7 Component Control Layer
The modules located within the component control ring in the original model included
the BASCM, MCM, BSMM, and EHM. With the exception of the EHM, these mod-
ules collectively hold the propulsion controls algorithm secret. Changes to the vehicle
architecture would potentially impact all propulsion control components, and as a
result, the BASCM, MCM, and BSMM have been grouped within the newly created
Propulsion System Control Module (PSCM). These component control modules all
contain Stateflow charts which require a shared sample time, providing further mo-
tivation for their grouping. A high level view of the PSCM within the HSC root
level can be seen in Figure 5.54. The Clutch Control Module (CCM) has also been
grouped within the PSCM, and is discussed in detail in Section 5.8.4.

5.7.1 BAS Control Module

The BASCM Model in its current state consists solely of the BAS Control Stateflow
Chart, which is responsible for controlling startup, shutdown, and managing torque
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Figure 5.49: Original Regen Torque Calculation Subsystem

1
VehSpd

2
MotSpd

3
BattSoc

1
	MotTrqCmdRegen
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ChrgLmt
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RegenBrakingCutoff

4
DecelPdl

1-D	T(u)

MaxMotTrqVsSpd1

MotTrqRegen

RegenFactor

DecelPdl

MotTrqMax

Figure 5.50: Original Regen Torque Calculation Subsystem Internals
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	MotTrqCmdRegen

MotSpd

VehSpd1
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MotTrqRegen
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Figure 5.51: Modified Regen Torque Calculation Algorithm
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Mot_Trq_Arb

AccelPdl

DecelPdl
Mot_Trac_EN

Mot_Trq_Arb()

Mot_Trac_EN	=	Mot_Trq_Arb(AccelPdl,DecelPdl)

Brake_Pressure

DecelPdl

Park

BrkPrsReq

Brake_Pressure

BrkPrsReq	=	Brake_Pressure(DecelPdl,Park)

RegenBrakingCutoff

	MotTrqCmdRegen

VehSpd1

DecelPdl

BattChrgLmt

VehSpd

Calc_RegenTrq

MotTrqRegen

RegenFactor

DecelPdl

	Calc_RegenTrq()

MotTrqCmdRegen	=	Calc_RegenTrq(VehSpd,BattChrgLmt,DecelPdl,MotSpd)

MHM

MHM

Figure 5.52: Scoped Simulink function within Regen Power Module

requests. The stateflow structure is shown in Figure 5.55, but much of the inter-
nal functionality has been redacted due to Valeo NDA restrictions. The BASCM
functionalities were represented within a graphical function made up of states and
transitions and did not require further modularization. The only change that was
made, was encapsulating the BAS control function within a Stateflow Box object in
order to reduce its scope to be local to the Stateflow Chart. As the vehicle software is
further developed, additional functionality such as fault detection and hardware limit
checking will need to be added for teh BAS component. These additional modular
secrets will then need to be separated from the controller functions via a BAS Hard-
ware Module, and provide necessary data to the BASCM through the use of scoped
Simulink Functions. The final Stateflow chart can be seen in Figure 5.56, where
the single graphical function is contained within a Stateflow box object; no other
subsystems exist within the module, therefore no exported functions are required.

5.7.2 Motor Control Module

The original MCM structure can be seen in Figure 5.57. The model consists of two
main sections, the Motor Control Stateflow chart (highlighted blue) and the Fault
Detection and Fault Mitigation subsystems (highlighted in orange and green, respec-
tively). To apply the modularization techniques discussed in Section 5.1, subsystems
must be converted into Simulink functions, and scoped according to which hierarchi-
cal levels they are being used in. The Fault Detection subsystem receives four input
CAN signals: Post_Fault_Low, Post_Fault_Hi, Run_Fault_Low, Run_Fault_Hi,
and determines whether or not a fault has been detected by the Rinehart Motor
Controller. The Fault Mitigation subsystem contains the information necessary to
determine what action the motor controller must take based on which faults are
active.
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Figure 5.53: Calc_RegenTrq() function caller defined in EMM
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Figure 5.54: Propulsion System Control Module Implemented as a
model reference within the HSC
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Figure 5.56: BAS Control logic locally encapsulated within a Box
Object
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Both algorithms were converted to local Simulink functions using the Simulink
Module Tool and defined within the newly created Fault Handling Module (FHM).
Rather then being defined directly within the same module as the motor controller,
it was deemed more appropriate to group together all fault handling algorithms in
a separate module, and pass in relevant fault information as inputs. This was also
motivated by handling likely changes 26 and 27 in Table A2.2 The Fault detection
and mitigation Simulink function callers are located within the FHM function, Mot-
Fault_Handler(), seen highlighted orange and green, respectively in Figure 5.58. The
MotFault_Handler() function is defined at the root level of the FHM, accessing the
local Fault_Detection() and Fault_Mitigation() functions defined within the virtual
subsystem seen in Figure 5.59. The resulting output signals (highlighted in yellow
and magenta) from the fault handler function call shown in Figure 5.60 are passed as
inputs to the Motor Control Module (Figure 5.61).

5.7.3 Battery System Manager Module

The BSMM contains a Stateflow Chart which hides the secret of battery control logic.
The original Stateflow chart consists of a graphical function in the form of states
and transitions, as well as a Simulink Function, set_Voltages(), defined at the root
level of the Stateflow Chart. The Stateflow Chart is shown in Figure 5.62, and the
set_Voltages() Simulink function is shown in Figure 5.63. Confidential Battery signals
and control logic have been removed from the image due to NDA restrictions. In order
to improve the modularization of this model, a Stateflow Box object was created to
encapsulate both the graphical control logic function, as well as the Simulink function
set_Voltages(). The scope of the Simulink function remains local, as it is not required
at higher hierarchical levels of the model and does not need to be exported from the
Stateflow Chart. The improved battery control Stateflow Chart can be seen in Figures
5.64 and 5.65, with each function separated into distinct Stateflow Box objects.

5.7.4 Engine Hardware Module

Much of the fault detection and algorithmic complexity of the GM provided Engine
has been hidden from the HSC software and is located within the GM factory ECM
hardware. While the internal engine controls are not present within the HSC, there
does exist a need for the EHM, which is composed of functions containing the various
engine hardware parameters needed by other modules within the HSC. The EHM was
implemented without the use of Stateflow Chart Objects and is entirely composed of
engine hardware secrets implemented as scoped Simulink functions. As a result, it did
not share a component control secret with the other modules within the component
control layer and did not get grouped into the PCSM.

The internal structure of the EHM can be seen in Figure 5.66, containing the
Input Pedal Mapping function, Get_EngAxleTrq(), highlighted in blue. The Output
Pedal Mapping function, Get_Pdl_Out(), is also contained within the EHM, high-
lighted in yellow. The EHM also contains two engine related Simulink functions,
Calc_WhlTrq() and Calc_MaxEngTrq(), discussed in sections 5.5.2 and 5.5.4, re-
spectively. The EHM is imported throughout the HSC system hierarchy using model
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Figure 5.60: MotFault_Handler() function caller defined within the
HSC Input Conversion Layer
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Figure 5.61: Fault Inputs passed to MCM within the PSCM

reference blocks. Function caller blocks are defined within other HSC system mod-
ules if any engine hardware related information is required. While all engine related
functions have been grouped within the same model, their function calls appear in
very different areas throughout the data flow process; this is a key benefit of modu-
larization with the use of scoped Simulink Functions.

5.8 Output Conversion Layer
The Output Conversion Layer subsystem was decomposed, with each individual com-
ponent analyzed to determine what secrets it held. Similar to the Input Conversion
Subsystem described in Section 5.5, the original decomposition was not based on
shared algorithm secrets but rather the components role in the data flow process.
This decomposition was improved significantly by converting subsystems to Simulink
functions, and redefining them within the HSC hierarchy according to the secrets
they hold, and the likely changes that would affect them.

5.8.1 Motor Torque Arbitration and Power Management

The subsystem shown in Figures 5.67 and 5.68 contains two algorithms: torque ar-
bitration between traction and regenerative modes (highlighted in blue), as well as
a power management algorithm for the motor output (highlighted in orange). These
algorithms are distinct functions from one another and therefore should not be imple-
mented within the same subsystem. In preparation for the application of the Simulink
Module Tool, the torque arbitration algorithm was removed from its current subsys-
tem and placed higher in the model hierarchy, within the Output Conversion Layer.
The Power Management algorithm was already implemented within a subsystem,
which was brought to the output conversion layer of the model hierarchy (Figure
5.69).

5.8.2 Power Management Subsystem Decomposition

Prior to decomposing the individual algorithms within the power management sub-
system, it was useful to first consider the overall function that was held secret; the
process for checking the hardware limits of the electrical powertrain and validating
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BCR_Logic

RUNNING
BCM_Run_State		=	1;
BCM_State	=	5;
[HVBusPosToChsGVlt,HVBusNegToChsGVlt,HVBusNegToChsGVltM,HVBusNegToChsGVltV,HVBusPosToChsGVltM,HVBusPosToChsGVltV,HVInvRatVlt,HVInvRatVltV]	=	BCR.set_Voltages(HV_Bus_Volt);
%[running_fault,	char_power,	dischar_power]	=	runDetect(cell_voltage,charging_current,charging_power,discharging_power,temp_input,SOC_input,voltage,discharging_current);

SAFETY_CHECKS
PTHVCntctrReq	=	0;	%undetermined
BCM_State	=	2;
[HVBusPosToChsGVlt,HVBusNegToChsGVlt,HVBusNegToChsGVltM,HVBusNegToChsGVltV,HVBusPosToChsGVltM,HVBusPosToChsGVltV,HVInvRatVlt,HVInvRatVltV]	=	BCR.set_Voltages(HV_Bus_Volt);
%[temp_up_fault,	temp_lo_fault,	SOC_up_fault,	SOC_lo_fault,	severity_out,	module2_malf_out	,fault	]=	detect(temp_input,SOC_input,Severity,module2_malf);

ON
BCM_En_State	=	1;
BCM_Run_State	=	0;
BCM_State	=	1;
[HVBusPosToChsGVlt,HVBusNegToChsGVlt,HVBusNegToChsGVltM,HVBusNegToChsGVltV,HVBusPosToChsGVltM,HVBusPosToChsGVltV,HVInvRatVlt,HVInvRatVltV]	=	BCR.set_Voltages(HV_Bus_Volt);

FAULT_DETECTED
Batt_Run	=	false;	%Turn	off	BSM	Functionality
Batt_Fault	=	1;
BCM_Run_State	=	0;
BCM_State	=	8;

SHUTDOWN
Batt_Run	=	false;	%Run/Crank	=	0
Batt_Accessory	=	true;	%Keep	Accessory	on
BCM_State	=	6;
[HVBusPosToChsGVlt,HVBusNegToChsGVlt,HVBusNegToChsGVltM,HVBusNegToChsGVltV,HVBusPosToChsGVltM,HVBusPosToChsGVltV,HVInvRatVlt,HVInvRatVltV]	=	BCR.set_Voltages(HV_Bus_Volt);

BUS_BLEEDDOWN
Batt_Run	=	false;	%Turn	off	BSM	Functionality
Batt_Accessory	=	true;	%Keep	accessory	on
[HVBusPosToChsGVlt,HVBusNegToChsGVlt,HVBusNegToChsGVltM,HVBusNegToChsGVltV,HVBusPosToChsGVltM,HVBusPosToChsGVltV,HVInvRatVlt,HVInvRatVltV]	=	BCR.set_Voltages(HV_Bus_Volt);
BCM_Run_State	=	0;
BCM_State	=	7;

CLOSE_CONTACTORS
Batt_Fault	=	0;
BCM_State	=	3;
PTHVCntctrReq	=	1;	%closed
Batt_Accessory	=	true;	%Send	accessorry	wakeup	to	BSM
Batt_Run	=	true;	%Send	Run/Crank	to	BSM
[HVBusPosToChsGVlt,HVBusNegToChsGVlt,HVBusNegToChsGVltM,HVBusNegToChsGVltV,HVBusPosToChsGVltM,HVBusPosToChsGVltV,HVInvRatVlt,HVInvRatVltV]	=	BCR.set_Voltages(HV_Bus_Volt);

OFF
BCM_En_State	=	0;
BCM_Run_State	=	0;
Batt_Run	=	false;
Batt_Accessory	=	false;
BCM_State	=	0;
[HVBusPosToChsGVlt,HVBusNegToChsGVlt,HVBusNegToChsGVltM,HVBusNegToChsGVltV,HVBusPosToChsGVltM,HVBusPosToChsGVltV,HVInvRatVlt,HVInvRatVltV]	=	BCR.set_Voltages(HV_Bus_Volt);

PRECHARGING
[HVBusPosToChsGVlt,HVBusNegToChsGVlt,HVBusNegToChsGVltM,HVBusNegToChsGVltV,HVBusPosToChsGVltM,HVBusPosToChsGVltV,HVInvRatVlt,HVInvRatVltV]	=	BCR.set_Voltages(HV_Bus_Volt);
BCM_State	=	4;
%[temp_up_fault,	temp_lo_fault,	SOC_up_fault,	SOC_lo_fault,	severity_out,	module2_malf_out	,fault	]=	detect(temp_input,SOC_input,Severity,module2_malf);

[HVCntctrStat	==	2]

[HVCntctrStat	==	1]

1

[fault	>	0]
[Command_Cntr	==	0]

2

[HV_Bus_Volt	>=	0	&&	BCM_Run_Req	==	1]

1

[HVCntctrStat	~=	0]{Shutdown_Flt	=	1;}

1

[BCM_En_Req	==	1]

[fault	>	0]

[HVCntctrStat	==	0]

2

[HV_Bus_Volt	<	48]

1

[Command_Cntr	==	1]
1

[running_fault>0	||	bender_input	==1]

[after(10,sec)	||	HVCntctrStat	==	0	]

[BCM_Run_Req	==	0	&&	HVBatPrcdCrnt	==	0]

[BCM_En_Req==0]

2

[BCM_Run_Req	==	0]

2

[(BCM_Run_Req	==	0	&&	HVBatPrcdCrnt	==	0)	||	Command_Cntr	==	0]

PRECHARGING

CLOSE_CONTACTORS

SAFETY_CHECKS

BCR

[Redacted_1,	Redacted_2,	Redacted_3,	Redacted_4,	Redacted_5,	Redacted_6,	Redacted_7,	Redacted_8]	=	set_Voltages(HV_Bus_Volt)Simulink	Function

SHUTDOWN

BUS_BLEEDDOWNOFF

FAULT_DETECTED

ON

[HVBusPosToChsGVlt,HVBusNegToChsGVlt,HVBusNegToChsGVltM,HVBusNegToChsGVltV,HVBusPosToChsGVltM,HVBusPosToChsGVltV,HVInvRatVlt,HVInvRatVltV]	=	set_Voltages(HV_Bus_Volt)
Simulink	Function

RUNNING

[running_fault>0	||	bender_input	==1]

[fault	>	0]

[Redacted	==	1]
1

[HV_Bus_Volt	>=	0	&&	BCM_Run_Req	==	1]
1

[BCM_Run_Req	==	0]

2

[fault	>	0]

[after(10,sec)	||	Redacted	==	0	]

[BCM_En_Req==0]

2

[Redacted	<	48]

2

[Command_Cntr	==	1]
1

[BCM_Run_Req	==	0	&&	Redacted	==	0]

[Redacted	~=	0]{Redacted	=	1;}

1

[Redacted	==	2]

[(BCM_Run_Req	==	0	&&	Redacted==	0)	||	Redacted	==	0]

[Redacted	==	0]

2

[BCM_En_Req	==	1]

[Command_Cntr	==	0]

2

Figure 5.63: set_Voltages() Simulink function within modified
Stateflow Chart

outgoing control signals. This functionality fell within the behavior contained in the
Hardware Limit Control Module, and would be affected by likely change 25 in Table
A2.2. As a result the subsystem was transferred to the HLCM Model and converted
to a scoped Simulink function, Limit_Check(). Prior to Simulink function conversion,
the subsystem contained several different algorithms, one of which was the subsystem
that converted Motor Torque to an Electrical Power Estimate, shown highlighted in
blue in Figure 5.70. The internal algorithm (shown in Figure 5.71) contains secrets
regarding the motor hardware and efficiency values and was moved accordingly into
the MHM Model after being converted into a scoped Simulink Function (Figure 5.72).

The second algorithm located in the Power management subsystem (highlighted
orange in Figure 5.70) checked whether the requested electrical power fell within ac-
ceptable battery power limits and adjusted the command accordingly. The subsystem
contained secrets regarding the Battery Hardware and was converted into a scoped
Simulink function within the Battery Hardware Model, seen highlighted in orange in
Figure 5.73. The final algorithm contained within the power management subsystem
is the Motor Torque Limit Check (highlighted green in Figure 5.70), which contains
secrets regarding the motor hardware components. The Motor Torque Limit Check
subsystem was transferred to the MHM Model, and then converted into a scoped
Simulink function, highlighted in green in Figure 5.72. The internal structure of the
Limit_Check() function can be seen in 5.74, with the function caller blocks for the
three hardware algorithms highlighted in blue, orange, and green. References to the
relevant hardware modules are defined at the root level of the HLCM, at the same
level as the Limit_Check() function (shown highlighted green in Figure 5.75).

5.8.3 Motor Torque Arbitration Decomposition

The original subsystem contains the algorithm for determining whether regenerative
torque command signals are present and should be honored, before sending the fi-
nal arbitrated signal to the motor hardware. This algorithm groups well within the
Regen Power Module as it is affected by likely change 18 in Table A2.2. The sub-
system was transferred to the RPM model and implemented as a scoped Simulink
Function, shown in Figure 5.76. A corresponding function caller block was placed
within the EMM (highlighted orange Figure 5.53). The newly added output signal,
Mot_Trac_En, is passed from the EMM to the Output Conversion layer, where it
is used within the Limit_Check() function to determine final output motor torque.
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Figure 5.65: Modularized Battery Control Module
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Test_In
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Get_EngAxleTrq

Eng_Axle_Trq_In	=	Get_EngAxleTrq(Accel_Pdl_In,Veh_Spd)

Calc_Max_EngWhlTrq

EngTrqMaxWhls	=	Calc_MaxEngWhlTrq(Gear,EngSpd,EngTrq,Gear_Ratio)
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Calc_Max_EngTrq

[EngSpd,EngTrq]	=	Calc_MaxEngTrq(Ratio,VehSpd)

Figure 5.66: Function callers Calc_Eng_Axle_Trq() and
Calc_Pedal_Out(), located in output layer
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Figure 5.67: Original subsystem layout within output conversion
layer

Figure 5.68: Internals of original subsystem containing two distinct
algorithms

Figure 5.69: Output conversion layer view of the separated virtual
subsystems
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Figure 5.70: Power Management Algorithm in original virtual sub-
system

Figure 5.71: Motor Torque to Electrical Algorithm in original virtual
subsystem
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Calc_Max_MotTrq

MotTrqMaxWhls

Max_MotTrq	=	Calc_Max_MotTrq(MotSpd)

Pelec_req	=	Pmech_req*Eff^k,
k	=	-1	if	Motoring	>=	0,
k	=	1	if	Generating	<	0

Using	an	Efficiency	Map,	we	can	estimate	the
Electric	Power	from	the	Mechanical		Torque	Request.

Check	if	Motoring
or	Generating

Eff	Map
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MotTrqCmd
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MotTrqCmd

MotTrqCmd	=	Trq_Lmt_Check(MotTrq,MotSpd)

Figure 5.72: Exported Simulink functions located in the MHM
Model

Figure 5.73: Batt_Lmt_Check() Simulink function defined in the
BHM Model
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Figure 5.75: Limit_Check() Simulink function defined within the
HLCM

This restructuring allowed for the Regen torque arbitration algorithm to be grouped
within a more appropriate module, while maintaining its execution point within the
Output Conversion Layer.

5.8.4 Clutch Control Module

The original CCM contained two algorithms defined within the Output Conversion
Layer; the Clutch Speed Matching and Clutch Check Subsystems. The speed match-
ing subsystem contains the algorithm for matching the speed of the motor to the speed
of the driveshaft to prepare for a clutch engagement. This function would typically be
called if the driver wanted to provide torque requests, both traction and regenerative
to the electric motor (Figure 5.77). It was determined that this subsystem was more
accurately categorized as a component control module, and as a result was moved
inside the PSCM (Section 5.7).

The virtual subsystem containing the algorithm was then converted to a scoped
Simulink function using the Simulink Module Tool, highlighted blue in Figure 5.79.
The Clutch check subsystem was also implemented as a scoped Simulink function
and was placed within the CCM Model, highlighted in orange in Figure 5.79. The
absolute time used within the Simulink PID controller block in Figure 5.78 cannot be
located within a Simulink function. In order to maintain the algorithm functionality
while keeping the contents within a Simulink function, the PID controller was moved
outside of the Simulink function, and placed as an input to the function caller blocks
within the PSCM (highlighted magenta in Figure 5.80).

5.8.5 Output Accelerator Pedal Processing

The internal algorithm of the output pedal processing subsystem is shown in Fig-
ure 5.81, with the conversion of the Engine Torque Command to a output pedal
command highlighted in yellow. This lookup table contains engine hardware secrets,
and was redefined as a Simulink function, Get_Pdl_Out(), within the EHM Model
(highlighted yellow in Figure 5.66. The remaining content in Figure 5.81 contains
the output pedal processing algorithm secret, and was converted into a new function,
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Figure 5.76: Regen Torque Arbitration Simulink Function defined
within the RPM
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Figure 5.79: Clutch Simulink functions located in CCM Model
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Figure 5.80: Clutch function caller blocks and PID block defined
within PSCM
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Figure 5.82: Calc_Pedal_Out() Simulink function defined within
the PPM

Calc_Pedal_Out(), defined within the Pedal Processing Module (PPM) (highlighted
green in Figure 5.82. The corresponding function caller block was defined within
Calc_Pedal_Out(), highlighted yellow in Figure 5.83. Finally, the corresponding
output pedal processing function caller was defined at the HSC level, within the Out-
put Conversion Layer (Figure 5.84). Similar to the input pedal processing, separation
of engine hardware secrets was motivated by changes 7 and 8 in Table A2.1.

5.9 Summary
This Chapter has described the application of the Simulink Module Tool, as well as
the redesign of the system decomposition and internal components. The motivation
for changing the system decomposition came from a list of likely changes, described
in Tables A2.1 and A2.2, as well as identifying all the system secrets contained within
the existing HSC. The resulting change in system decomposition was discussed, con-
solidating modules based on shared secrets rather than role in the data flow process.
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Figure 5.84: Output Pedal Processing Function caller defined within
HSC Output Conversion Layer

The remainder of the Chapter reviewed in detail the model changes made throughout
the HSC, including any additional modules that were created.
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Chapter 6

Model Comparison

In this Chapter, a comparison is performed between the two models described in
Chapters 4 and 5, respectively. The HSC model is evaluated before and after ap-
plication of the Simulink Module Tool to determine the degree to which modularity
was improved. A similar evaluation approach to that used in [35] and [36] was fol-
lowed, with modularity being compared according to well known software metrics.
Evaluation results will potentially determine faults within the modularization sys-
tem followed, as well as indicate the potential impact that application of Simulink
modular principles could have as the HSC Model development progresses. The re-
mainder of this Chapter is as follows: Section 6.1 outlines the process used to prove
functional equivalence between the original and modified models, prior to compar-
ison. Section 6.2 describes the changes in information hiding, both in the system
changeability as well as the hidden internal implementation. A comparison of the
interface complexities is then discussed in Section 6.3, with a specific focus put on
changes in Data Dictionaries, Model references, and exported Simulink functions.
Section 6.4 evaluates changes in coupling and cohesion between the two models, and
determines whether modularization led to decreased coupling and increased cohesion.
The changes in cyclomatic complexity and testability are discussed in Sections 6.5
and 6.6, respectively. Finally, the results of the model comparison are summarized in
Section 6.7.

Several software metrics are evaluated throughout this Chapter. In some cases,
MATLAB provided tools which aided in the facilitation of this analysis, and in other
cases a manual method was required. When determining system changeability, the
primary analysis was performed by manually analyzing the two decompositions and
Simulink modules to determine the level of propagation for a likely change. Simi-
larly for the coupling and cohesion, a manual analysis was required involving looking
at each module within the system and determining both the interdependence it had
with other modules, as well as within its internal components. Cyclomatic complexity
was analyzed using existing MATLAB tools, specifically the Simulink Model Advi-
sor, which provides a detailed report of model block counts, as well as complexity.
Lastly, the level of testability within each system was determined using the Simulink
Design Verifier. The test generation mode of the SDV was leveraged to determine
the number of objective and their level of satisfaction. The testing coverage was also
determined using the SDV, providing a detailed breakdown of the condition, decision,
and execution objective coverage.
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6.1 Model Equivalence Verification
Using the Simulink Design Verifier to prove equivalence between the original EcoCAR
and Modularized Models requires all model conditions to be met according to the SDV
Documentation [29]. Certain blocks used throughout both models are not supported
within the SDV Environment and were replaced with compatible alternatives [29,
page 93]. While this replacement process changed the original functionality of the
control system, they were necessary to provide an accurate analysis of the two models,
and for the purposes of verification analysis are equivalent to the original versions.
Copies of both the original EcoCAR and modular models were created for the purpose
of performing the equivalence analysis while maintaining the functional integrity of
the original control systems. Design Verifier test models were created for the model
root and associated model references, an example of which can be seen in Figure 6.1.
Functional equivalence was proven using logical equivalence operators to compare the
outputs from the original EcoCAR and Modularized Models.

6.2 Information Hiding
The extent to which the two Simulink Models implement information hiding is an-
alyzed within this section. Section 6.2.1 discusses likely model changes, and the
resulting impact they have on the software system. Section 6.2.2 discusses hidden
internal implementation within the models and uses a test probe model to analyze
and compare them.

6.2.1 System Changeability

System Changeability evaluates the impact that a software change can have on its
larger system and other modules. In a modular system with strong information hid-
ing, changes within a given module should have little to no impact on the rest of the
modules within the software system [40, page 3]. A system with poor information
hiding would likely experience changes that propagate throughout several modules,
resulting in increased development time and complexity. The likely changes from
Tables A2.1 - A2.2 have been analyzed to determine the change propagation before
and after modular decomposition. An example of changing motor hardware limits
is presented in Section 6.2.1.1, and shows the process of analyzing system change-
ability in detail. The remainder of the analysis results can be seen in Appendix C,
Tables A3.1 - A3.3, outlining the change in both modules as well as components.
The term component refers to any Simulink Subsystem, function, or data dictio-
nary that could potentially require modifications as a result of a particular software
change. Changes to engine, motor, battery, and transmission hardware secrets result
in reduced propagation throughout the model hierarchy after the creation of separate
hardware modules. Another improvement comes from the creation of the Pedal Pro-
cessing Module which prevents a change in engine pedal maps from propagating to
the pedal behavioral algorithms, instead handling all engine hardware secrets within
a singular Engine Hardware Module. The creation of the Data Interface Module re-
stricts propagation of changes to the outer interface or network protocol from affecting
the root level of the model, where previously both the input and output conversion
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Figure 6.2: Root level components requiring changes within EcoCAR
Model

layers would require modifications. Overall, system changeability was improved sub-
stantially, with the majority of benefits coming from the separation of component
hardware and behavioral secrets.

6.2.1.1 Changing Motor Hardware Limits: Old Decomposition

To perform a system changeability analysis on the Simulink models discussed in
Chapters 4 and 5, it is first necessary to identify a likely change to the system.
Throughout the EcoCAR Competition, new information and data regarding the ve-
hicle hardware components is frequently updated. As a result, a likely change to the
HSC system would be the modification of the Motor hardware limits and parameters
(likely change 12 in A2.1). If more accurate limit data was obtained, either through
bench testing or information received from the supplier, it is a reasonable expecta-
tion that the Simulink parameters and data associated with these motor hardware
limits will need to be modified in order for the system to continue to operate cor-
rectly. The propagation of changes required throughout the original EcoCAR model
are shown in Figures 6.2 – 6.4. Components requiring changes are highlighted in
red, and untouched components are white. Overall, four root level components re-
quired changes: the Input and Output conversion modules (virtual subsystems), the
Regenerative Power Module (model) as well as the HSC root model itself. Within
the input conversion layer (Figure 6.3) two virtual subsystems required modification,
with the Max Vehicle Torque Calculation Algorithm being affected by the Max Motor
Torque Calculation. The Regen Torque Calculation subsystem within the RPM also
contains motor hardware limits and would be affected by the change (Figure 6.4).
Lastly the output conversion layer also contains several subsystems containing mo-
tor hardware limits, including the Power Management Algorithm, Electrical Power
Estimation, and Motor Torque Limit Check. The summary of change propagation
in the EcoCAR Model can be seen in Table 6.1 in the Original Columns. In total,
the propagated changes affected 3 modules: the input conversion, output conversion,
and Regen Power Modules. In addition, eight separate components were affected,
the specifics of which can be seen in Table 6.2. The original system changeability
included two models, nine virtual subsystems, and four components located at the
root HSC level.
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Table 6.1: Motor Hardware System Changeability

Table 6.2: Change Propagation before and after Modularization

6.2.1.2 Changing Motor Hardware Limits: New Decomposition

The propagation of changes required in the modular decomposition can be seen in
Figures 6.5 and 6.6. Within the new model, all motor hardware secrets have been
moved from their role within the data flow process and are contained within the Motor
Hardware Module. Any changes to hardware limits or parameter values only require
changes within a single Simulink Module. Additionally, each of the three hardware
algorithms contained within the MHM (shown in Figure 6.6) are contained within a
Simulink Function. Changes required to just the Max Motor Torque, for example,
would only propagate to the Calc_Max_MotTrq() Simulink Function, leaving the
remaining hardware algorithms within the MHM unaffected.

The summary of changes required in the modularized model can be seen in Table
6.1, in the After Column. The number of modules was reduced to just one (Motor
Hardware Module), and the number of components was reduced by 4. The details of
the change propagation in the modularized model is shown in Table 6.2. The number
of models requiring changes was reduced by one, as the Regenerative Power Module
no longer contains any motor related secrets. Three of the virtual subsystems from
the original model were converted into Simulink Functions (Figure 6.6) and require
changes. The remaining subsystems are not present in the modular decomposition,
as the motor hardware secrets are only accessed with the use of Simulink function
caller blocks, reducing the amount of repeated code. Finally, the number of root level
components affected by the change was reduced from 3 to 0, with the removal of
hardware secrets from the input and output conversion layers, as well as the transfer
of hardware related parameters from a global data dictionary to a local MHM model
workspace. Overall, the modularization of the Simulink Model clearly improved the
system changeability and reduced the number of changes that propagate throughout
the HSC.
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Figure 6.5: Changes required within the imported hardware modules
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6.2.2 Hidden Internal Implementation

An approach based on the construct comparison outlined in Section 2.4 was adopted
to determine the degree to which each model hides internal implementation. A test
model was created for both the EcoCAR and Modular HSC Models, and probes
were inserted to record test results. A total of three tests were performed and are
outlined below. The first and second tests were performed to determine whether data
can be implicitly passed as inputs or outputs to the Max Vehicle Torque Calculation
Subsystem. The third test analyzed the degree to which components within each
model exposed their internal parameters. The expected results are that implicit input
and output data will be successfully passed to the virtual subsystem located within
the EcoCAR Model but will not be successfully passed to the Simulink Function
located within the Modularized Model. In addition, the use of global data dictionaries
within the EcoCAR Model will likely expose more data then with the use of model
workspaces within the Modularized Model.

6.2.2.1 Goto/From as Implicit Input

The first test performed involved the implicit passing of input data using global
Goto/From tags. A constant block was inserted into the root level of the EcoCAR
Model, and used as a test input to a Global Goto Tag Test_In, highlighted in magenta
in Figure 6.7. A corresponding Global From Tag, Test_In, was placed within the
internal Max Vehicle Torque Calculation virtual subsystem. The Global From Tag
was then connected to a Simulink display block, highlighted in magenta in Figure 6.8.
Simulation of the test model was successful, with the output display block showing
the value sent by the constant block test input. This confirms that data can be passed
implicitly within the EcoCAR Model using a global Goto/From Tag combination.

Identical constant test inputs and Global Goto/From tags were placed in the Mod-
ularized Model, and within the Calc_MaxEngTrq() Simulink function. The test input
connected to the Global Goto Tag, and the display output connected to the Global
From Tag are highlighted in magenta in Figures 6.9 and 6.10, respectively. Simulation
of the test model resulted in an error, shown in Figure 6.11. The Goto/From Tags
crossed non-virtual subsystem boundaries, which is not permitted using non-state
output ports. This test is sufficient to show that any instance of Simulink Functions
will restrict implicit data flow using Global Goto/From Tags.

6.2.2.2 Goto/From as Implicit Output

The second test performed involved the implicit passing of output data using global
Goto/From tags. The constant test input and Global Goto Tag were placed within
the Max Engine Torque Calculation virtual subsystem, highlighted in magenta in
Figure 6.12. The Global From Tag and display output were placed at the root level
of the EcoCAR Model, highlighted in magenta in Figure 6.13. The EcoCAR test
model was run successfully, and the test output displayed the correct input value.
This test confirmed that data can be passed implicitly as output from within internal
subsystems.

The test was also performed on the modularized model, with data being passed
implicitly from within the Calc_MaxEngTrq() Simulink Function. The test input
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Figure 6.7: Implicit Input passed to Max Vehicle Torque Calculation
within EcoCAR Model
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Figure 6.11: Error received when attempted to pass implicit input
to a Simulink Function

connected to the Global Goto Tag, and the display output connected to the Global
From Tag are highlighted in magenta in Figures 6.13 and 6.14, respectively. Simula-
tion of the output test model also resulted in an error, shown in Figure 6.15. For both
input and output data flow, Simulink Functions successfully restrict the implicit pass-
ing of data using Global Tags. It is clear from these test results that the conversion
from virtual subsystems to Simulink functions resulted in an increased restriction to
implicit data flow.

6.2.2.3 Accessing Internal Data

The third and final test that was performed involved attempting to access internal
data parameters within HSC system components. Within the EcoCAR Model, the
calculation of maximum engine torque is in the Max Vehicle Torque Calculation vir-
tual subsystem. The Modularized Model converted this virtual subsystem into a
Simulink function, Calc_MaxEngTrq(), which is located within the EHM Model. In
both cases, the max engine torque is determined using a 1-D Lookup table Simulink
Block, highlighted yellow in Figures 6.17 and 6.18, respectively. This Lookup Table is
dependent upon the parameter f_tbrake_n_bpt to output the correct engine torque
value. A test procedure was developed to determine whether the f_tbrake_n_bpt
parameter could be accessed at the root level of both the EcoCAR and Modularized
Models. If access is permitted, then the level of information hiding is reduced signifi-
cantly. Data used within a given module or component should have as local of a scope
as possible to restrict root level model change propagation. Exposing a parameter
used locally within a module also increases the possibility of unintended modification.
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Figure 6.12: Implicit Output passed from Max Engine Torque Cal-
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tion boundaries
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Figure 6.16: Error received when attempted to pass implicit output
from a Simulink Function

This problem would be particularly prevalent in large scale models where multiple de-
velopers are accessing the root level parameters simultaneously. Accidental changes
to parameters with a global scope could result in a multiple functions or modules
producing inaccurate results.

In both models a constant block was created as a test input at the root level, and
connected to theMaxEngineTorque Lookup Table block, highlighted yellow in Figures
6.19 and 6.20, respectively. The output engine torque value of the Lookup Table was
connected to a display block and used as an indication of whether the f_tbrake_n_bpt
was successfully accessed. Simulation of the EcoCAR Model was successful and re-
sulted in an output engine torque value of 0.1019. The f_tbrake_n_bpt parameter
is defined within a Simulink Data Dictionary linked to the root model. As a result,
the scope of the parameter is global, and can be referenced or modified in any model
which uses the data dictionary. In the case of the Modularized Model, Simulation
resulted in an error, shown in Figure 6.21. The f_tbrake_n_bpt parameter was not
recognized at the root level of the model, and therefore the Lookup Table could not
produce an engine torque output. The parameter was defined within the EHM model
workspace, and as a result its scope is restricted. An attempt to access or modify the
f_tbrake_n_bpt parameter from anywhere outside of the EHM model will result in an
error, preventing unwanted changes and conflicts. By following modularization guide-
lines outlined in Section 2.5.3, local data within each module has been restricted from
external access through definition in the model workspace. All parameters previously
defined within Data Dictionary Objects were either redefined within a module model
workspace, or added to the single global data dictionary, Global.sldd. These model
changes resulted in increased restriction to internal data, and as a result, improved
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MaxEngineTorque
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Figure 6.17: Engine Lookup Table containing Parameter defined in
Data Dictionary (Original EcoCAR Model)

Figure 6.18: Engine Lookup Table containing Parameter defined in
model workspace of EHM (Modularized Model)

information hiding.

6.3 Interface Complexity
The interface and dependency information for both the EcoCAR and Modularized
versions of the HSC Model can be seen in Figure 6.22. The seven inputs and outputs
represent the six CAN channels communicating with the HSC as well as an addition
physical signal output. Following Guideline 4 (use of base workspace), the
number of data dictionary dependencies reduced from 5 to 1. The data dictionary
objects linked within the MCM, BSMM, PCSM, and BASCM were removed, and all
the containing signals were defined within each module’s respective model workspace.
Any signal values which were required in multiple Simulink modules were defined
within a single data dictionary, Global.sldd. This reduced the interface complexity
of all modules that previously required a separate data dictionary, an example of
the motor modules can be seen in Figure 6.23. The creation of the MHM reduced
the Inputs of the MCM by 2, and created 3 additional exports via scoped Simulink
functions. Overall, the use of the Simulink Module Structure resulted in reduced data
storage dependencies but increased the number of model references. This increase in
model references is expected, due to the nature of the modularization process. The
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Figure 6.19: Internal Data accessible outside of virtual subsystem
within EcoCAR Model
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Figure 6.20: Internal Data inaccessible outside of EHM within Mod-
ularized Model
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Figure 6.21: Error received when referencing parameter defined
within EHM Model Workspace

original EcoCAR system had much of its functionality defined within subsystems
placed within the root Comp_HSC.slx Model, thus resulting in a small number of
model references used. The benefits provided by separating areas of concerns drove
the decision to create additional modules, and as a result increased the number of
model reference dependencies. Furthermore, despite the addition of 12 additional
modules to the system, the number of root level model dependencies only increased
by 1 (Figure 6.22). This increase in model dependencies was deemed acceptable and
still provides value in increasing Simulink model modularization.

6.4 Coupling and Cohesion
Another critical metric for evaluating a modular system is the coupling and cohe-
sion contained within it. A well modularized system typically results in a low level
of coupling between modules, and a high cohesion of functions within each module.
This section evaluates whether changes made to the EcoCAR Model resulted in in-
creased cohesion among modules and decreased coupling between them. Section 6.4.1
describes the changes to coupling before and after application of the Simulink Mod-
ule Tool and discusses the interdependence between modules. Section 6.4.2 looks at
the overall change in cohesion and resulting interdependence of components within a
given Simulink module.
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Figure 6.22: Interface and Dependencies Before and After Modular-
ization
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Figure 6.23: Motor Interface Before and After Modularization
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MCMBSMM PCSMBASCMPMMRPM

Figure 6.24: Model References with high data coupling to Data
Dictionaries

6.4.1 Coupling

The data coupling was reduced significantly through the use of model workspaces as
opposed to global data dictionaries. In the original EcoCAR Model, the Simulink
modules used several Simulink Data Dictionaries as their primary data source, shown
in Figure 6.24. The data dictionaries were all placed within a reference hierarchy
and as a result were highly coupled with one another. Changes made to parameters
in one data dictionary could potentially affect multiple Simulink modules, leading to
increased system complexity and instability. The modularized model removed 4 of
the 5 data dictionaries by using model workspaces as the primary data source for
the Simulink modules, seen in Figure 6.25. Despite the increase in total Simulink
modules from 6 to 18, data coupling between them was reduced, with 15 out of the
total 19 models using the model workspace for data storage. Data utilized in multiple
Simulink modules was consolidated to a single global Data Dictionary, Global.sldd.

6.4.1.1 Example of Functional Coupling Reduction

The Voltage to Pedal Conversion and Pedal to Voltage Conversion subsystems were
highly coupled within the EcoCAR Model (highlighted purple in Figures 6.29 and
6.30, respectively). Both subsystems contained secrets regarding the engine pedal
maps and pedal voltage limits to interface with the accelerator pedal and engine
hardware. Despite their interdependence, the Voltage to Pedal Conversion subsystem
was placed in a separate component (input conversion layer) from the Pedal to Voltage
subsystem (output conversion layer). In the Modularized Model, both pedal functions
Calc_Pedal_In() and Calc_Pedal_Out() are defined within the PPM (Figure 6.26),
reducing the coupling in the root model. In addition, the engine hardware secrets
have been removed and are accessed using EHM function caller blocks.

6.4.2 Cohesion

The input conversion layer contained within the original EcoCAR Model can be seen
in Figures 6.28 and 6.29, and the output conversion layer is shown in Figure 6.30.
The virtual subsystems have been color coded based on the functional secrets they
hold (details shown in Figure 6.27). Subsystems with the same color contain algo-
rithms which share secrets with one another, and subsystems with different colors are
functionally independent. In total, there were nine different groupings of functional-
ity within the input layer, and five different groupings within the output layer. In
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Figure 6.25: Reduced data coupling after Module Data defined in
Model workspaces
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AccelPdl	=	Pedal_Arb(AccelPdl1,AccelPdl2)
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[AccelPdl,EngAxleTrq_In]	=	Calc_Pedal_In(PVS1,PVS2,Veh_Spd)

Figure 6.26: Interdependent Functions placed within singular Mod-
ule to reduce coupling

both cases, the large variation of functionality contained within the same components
results in low cohesion within the HSC root model. The input and output conver-
sion layers after application of the Simulink Module Tool can be seen in Figures 6.31
and 6.34, respectively. The virtual subsystems were decomposed and converted into
Simulink functions, with function caller blocks placed at the model root level. In the
case of the Range and Curvature Calculation, it was determined that the function
caller block could be placed outside of the root model, and locally scoped within the
PCSM Model (shown in Figure 6.32). The Brake Conversion Algorithm was also con-
verted to a Simulink function, and redefined within the Regenerative Power Module
(shown in Figure 6.33). All root level functions were grouped based on functionality
and defined within a corresponding Simulink module. Examples demonstrating the
increased module cohesion can be seen in Figures 6.35 and 6.36, where model refer-
ences are color coded based on the secrets they hold. Comparing the functionality
groupings to those shown in Figures 6.28-6.30, the cohesion was greatly increased at
the root level of the model, as well as within each Model Reference.

6.5 Cyclomatic Complexity
The Simulink Model Advisor was leveraged to evaluate the EcoCAR and Modular
Models block composition and resulting cyclomatic complexity. The Model Advisor
was run with the Model Metrics check enabled (shown in Figure 6.37). More specifi-
cally, the number of Simulink Blocks, Subsystems, Library Links, and Stateflow Chart
objects were evaluated. In addition, the cyclomatic complexity check was evaluated
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Figure 6.27: Legend for Figures 6.28 - 6.33
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Figure 6.28: Low Cohesion among virtual subsystems in Input Con-
version Layer (Original EcoCAR Model)
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Figure 6.29: Low Cohesion among virtual subsystems in Input Con-
version Layer, continued (Original EcoCAR Model)
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BSM_En_StateBSM_En_StateFigure 6.30: Low Cohesion among virtual subsystems in Output
Conversion Layer (Original EcoCAR Model)

to determine the impact that modularization had on overall program intricacy. The
results of Model Advisor checks ran on the EcoCAR and Modular Models are shown
in Table 6.3 and 6.4, respectively. The count and complexity metrics for the root
HSC Model as well all system models have been included.

In total, the original EcoCAR system contained 6 model references (7 total mod-
els), 1612 blocks, 105 subsystems, 164 Stateflow objects, with an overall cyclomatic
complexity of 300. After model restructuring and modularization, the system had 20
model references (19 total models), 2013 blocks, 115 subsystems, 162 Stateflow ob-
jects, with an overall cyclomatic complexity of 338. The comparison of these metric
totals can be seen in Table 6.5. The Modular Model resulted in a 70% increase in
model references, which was expected due to the addition of new Simulink Modules
to the system decomposition. Various algorithms originally implemented at the root
level of the HSC were grouped based on functionality and moved into newly created
Simulink Models, thus increasing the total count. The number of blocks and subsys-
tems also increased by 19.9% and 8.7%, respectively. The increase in blocks can be
attributed to the conversion of all virtual subsystems within the model to Simulink
functions. This conversion introduces addition Simulink function caller blocks, func-
tion input and output port blocks, as well as GoTo/From Tags for organized data flow.
Furthermore, certain subsystems in the original model contained multiple algorithms
which limited the number of subsystems used. During modularization, these algo-
rithms were separated and placed within their own Simulink function and executed
with a corresponding Simulink function caller block. The number of Stateflow objects
stayed relatively the same, but the slight decrease can be attributed to the addition

176

https://www.mcmaster.ca
https://www.eng.mcmaster.ca/cas


Master of Applied Science– Augustino Fella Pellegrino; McMaster University–
Department of Computing and Software

Propulsion	System	ControlInput	Conversion

Energy	Management

Input

OutputOutput	Conversion

Input

Outports

Outputs

Inports

Inputs

Inports Inputs

7
HSC_Output

6
LS	GMLAN_Out

4
HS_CAVS_HSC	LAN_Out

2
HS_ECOLAN_Out

1
HS	GMLAN_Out

PPM

PPM

HLCM

HLCM

[DC_Bus_Voltage]

[Inverter_En_State]

[MotSpd]

[Run_Fault_Hi]

[Eng_Ctrl_Out]

[Trans_Ctrl_Out]

[PMSR_Ctrl_Out]

[Gear_Ratio]

[BattPwrChrgLmt]

[Post_Fault_Low]

[AccelPdl]

[BSM_Wakeup]

[MotOffError]

[ECM_En]

[MCM_En]

[MotTrqCmd_Final]

[BASPwrCmd]

[InverterOffError]

[MotTrqCmd_Cltch]

[Mot_Ctrl_Out]

[PVS2_Out]

[BAS_Ctrl_Out]

[PVS2_In]

[Goto_LSGMLAN_Out]

[Goto_GM_Chassis_LAN_Out]

[Goto_HS_CAVS_HSCLAN_Out]

[Goto_HSC_Input]

[CAN_TCM_In]

[Command_Cntr]

[HVBatPrcdCrnt]

[Goto_GM_ChassisLAN_In]

[HV_Bus_Volt]

[HV_Cntctr_Stat]

[PVS1_In]

[LV_Voltage]

[BAS_State]

[BAS_Voltage]

[Batt_SOC]

[Grad_Active]

[Goto_HSBattLAN_In]

[BAS_Spd]

[Park_Active]

[Clutch_State]

[Eng_Running]

[PropSysAtv]

[Goto_HSECOLAN_In]

[Batt_Ctrl_Out]

[SysPwrMd]

[PVS1_Out]

[BSM_En_State]

5
GM_Chassis_LAN_Out

[VehSpd]

[EngOnReq]

[Drv_Mode]

[EngSpd_Fdbk]

[EngTrq_Fdbk]

[BASTrq_Fdbk]

[ACC_DecelPdl]

[Drv_DecelPdl]

[TransGear]

[CAN_ACC_In]

[CAN_EMSR_In]

caller
	Data_Interface.Data_Out()

ECMS_Out

PMSR_Out

Eng_Out

BAS_Out

Mot_Out

Regen_Out

Trans_Out

Cltch_Out

Batt_Out

PVS1_Out

PVS2_Out

MotTrqCmd_Final

HSC_Output

HSGMLAN_Out

HS_ECOLAN_Out

HSBattLAN_Out

HS_CAVS_HSCLAN_Out

GM_Chassis_LAN_Out

LSGMLAN_Out

caller
	HLCM.Limit_Calc()Batt_SOC

BattPwrDischrgLmt

BattPwrChrgLmt

[Inverter_Discharge_State]

[Goto_HSGMLAN_In]

caller
	PPM.Calc_Pedal_In()

PVS1

PVS2

Veh_Spd

AccelPdl

EngAxleTrq_In

caller
	Data_Interface.Data_In()

HSGMLAN_In

HSECOLAN_In

HSBattLAN_In

HS_CAVS_HSCLAN_In

GM_ChassisLAN_In

LS_GMLAN_In

HSC_Input

CAN_ECMS_In

CAN_Regen_In

CAN_BAS_In

CAN_MCM_In

CAN_Eng_In

CAN_Batt_In

CAN_TCM_In

CAN_PMSR_In

CAN_Clutch_In

CAN_ACC_In

CAN_Lat_In

PVS1

PVS2

[Mot_Trac_En]

[MotTrqCmd_Arb]

[MotTrqCmd_Regen]

[Goto_HS_CAVS_HSCLAN_In]

[Command_Cntr]

[Eng_Ctrl_Out]

[Batt_Run_State]

[BSM_Wakeup]

[DC_Bus_Voltage]

[DecelPdl]

[Goto_HSBattLAN_Out]

[Drv_AccelPdl]

[PropSysAtv]

[SysPwrMd]

[BAS_En_State]

[LV_Voltage]

[MCM_En_State]

[MCM_En_State]

[MCM_En]

[Inv_Volt] [PMSR_Ctrl_Out]

[Goto_HSC_Output]

[CAN_Batt_In]

[MotTrq_Fdbk]

[MaxVehTrq]

[Drv_Mode]

[EngSpd_Fdbk]

[Grad_Active]

[BattPwrDischrgLmt]
[LV_SOC]

caller
	FDM.MotFault_Handler()

POST_FAULT_LOW

POST_FAULT_HI

RUN_FAULT_LOW

RUN_FAULT_HI

Mot_Off

Inv_Off

[ACC_AccelPdl]

[BAS_En]

[Goto_HSGMLAN_Out]
[Steer_Angle]

[CAN_MCM_In]

caller
	HLCM.Calc_MaxVehTrq()

Gear

VehSpd

MotSpd

MaxVehTrq

[BAS_Current]

[VehSpd]

[MotSpd]

[BAS_Spd]

[VehSpd]

[MotSpd]

[VehSpd]

[MotTrq_Fdbk]

[BattPwrChrgLmt]

[BattPwrDischrgLmt]

[BAS_Current]

[MotTrqCmd_Cltch]

[Run_Fault_Hi]

[LV_SOC]

[MotSpd]

[BASPwrCmd]

[MotTrqCmd_Arb]

caller
	HLCM.Limit_Check()

BattPwrDischrgLmt

BattPwrChrgLmt

MotSpd

MotTrqCmd

MotTrqCmdRegen

Mot_Trac_EN

MotTrqCmdFinal

PCCMMotTrqCmd_Cltch

Clutch_State

VehSpd

MotSpd

BAS_Spd

BASTrq_Fdbk

BAS_Current

Grad_Active

LV_Voltage

Eng_Running

Batt_Run_State

MotTrq_Fdbk

MCM_En

Inverter_En_State

MotOffError

InverterOffError

DC_Bus_Voltage

MCM_Run

Inverter_Discharge_State

BASPwrCmd

BAS_En

HV_Cntctr_Stat

HV_Bus_Volt

BSM_En

BSM_Wakeup

HVBatPrcdCrnt

Command_Cntr

MCM_En_State

Inverter_Discharged

MotTrqCmd

Cltch_Ctrl_Out

BAS_Ctrl_Out

Mot_Ctrl_Out

Batt_Ctrl_Out

PCCM

CAN_MCM_Out

CAN_Batt_Out

CAN_Cltch_Out

CAN_BAS_Out

[Run_Fault_Low]

[PVS2_In]

[CAN_Eng_In]

[EMSC_Ctrl_Out]

[SteerCmd]

[BAS_En_State]

[MotTrqCmd_Final]

[Inverter_Discharged]

[Clutch_State]

[Batt_Ctrl_Out]

[MotTrqCmd_Regen]

[Park_Active]

[Mot_Trac_En]

[ACC_Enable]

[Cltch_Ctrl_Out]

[ACC_DecelPdl]

[PVS1_In]

[TransGear]

[Goto_LSGMLAN_Out]

RPM

RPM

[Goto_GM_Chassis_LAN_Out]

[Goto_HSBattLAN_Out]

caller
	CAVM.Steer_Ctrl()

SteerCmd

AccMode

LKASteer

SteerCtrl

[Gear_Ratio]

[Mot_Ctrl_Out]

[TransGear]

[MCM_En_State]

[Goto_HS_ECOLAN_Out]

[Batt_SOC]

[AccelPdl]

[MaxVehTrq]

[EngTrqCmd]

[Goto_HSC_Input]

[Goto_HS_CAVS_HSCLAN_Out]

[Goto_LS_GMLAN_In]

[Goto_GM_ChassisLAN_In]

[CAN_Regen_In]

[BASTrq_Fdbk]

[CAN_Lat_In]

[ACC_Mode]

[CAN_ACC_In]

[CAN_PMSR_In]

[PVS1_Out]

[Goto_HSC_Output]

[Eng_Running]

[Inverter_En_State]

[CAN_Batt_In]

[BattPwrChrgLmt]

[CAN_Eng_In]

[VehSpd]

[Goto_HS_ECOLAN_Out]

[CAN_MCM_In]

[Goto_HSGMLAN_Out]

[MCM_Run]

[Goto_HSGMLAN_In]

[MotOffError]

[Drv_AccelPdl]

[Inv_Volt]

caller
	PPM.Calc_Pedal_Out()

EngAxleTrq_Out

VehSpd

ECM_En

PVS1Voltage

PVS2Voltage

[InverterOffError]

[BSM_En]

[Goto_HS_CAVS_HSCLAN_In]

[Run_Fault_Low]

[EMSC_Ctrl_Out]

[MCM_Run]

[HV_Cntctr_Stat]

[MotTrqCmd_Regen]

[CAN_EMSR_In]

[CAN_BAS_In]

[CAN_Clutch_In]

[Cltch_Ctrl_Out]

Data_Interface

Data_Interface

[Goto_HSECOLAN_In]

[CAN_TCM_In]

[Post_Fault_Hi]

[Trans_Ctrl_Out]

caller
	CAVM.ACC_Pedal_Switch()

Drv_AccelPdl

Drv_DecelPdl

AccEnbl

ACC_AccelPdl

ACC_DecelPdl

AccelPdl

DecelPdl

[HV_Bus_Volt]

[Post_Fault_Hi]

[Goto_HSBattLAN_In]

3
HS	BattLAN_Out

[BSM_En_State]

[EngTrq_Fdbk]

[HVBatPrcdCrnt]

[EngTrqCmd]

[Inverter_Discharged]

[CAN_PMSR_In]

[BASTrq_Fdbk]

[Drv_DecelPdl]

[Steer_Req]

[MotSpd]

[Drv_DecelPdl]

[BAS_En]

[EngOnReq]

[Eng_Running]

[EngAxleTrq_In]

[BAS_Ctrl_Out]

[Steer_Angle]

[ECM_En]

[EngAxleTrq_In]

[ACC_Mode]

double

double

CAN_Trans_Out

[PVS2_Out]

[Clutch_State]

[Goto_LS_GMLAN_In]

double

double

double

double

double

double

double

double

CAN_PMSR_Out

[CAN_Clutch_In]

[Lat_Enable]

[CAN_Lat_In]

[CAN_Regen_In]

[Batt_SOC]

double

double

double

CAN_EMSR_Out

double

double

double

[ACC_Enable]

[MotTrq_Fdbk]

[CAN_BAS_In]

CAVM

CAVM

[Steer_Req]

6
LS_GMLAN_In

double

[Inverter_Discharge_State]

FDM

FDM

EMM

Batt_SOC

LV_SOC

BASTrq_Fdbk

EngTrq_Fdbk

EngSpd_Fdbk

Drv_Mode

MaxVehTrq

MotTrq_Fdbk

EngOnReq

Inv_Volt

MCM_En_State

BSM_En_State

BAS_En_State

SysPwrMd

PropSysAtv

Eng_Running

Clutch_State

DecelPdl

Park_Active

VehSpd

BattPwrChrgLmt

MotSpd

AccelPdl

EngAxleTrq_In

OpMode

EngPwrCmd

MotPwrCmd

VehPwrCmd

BASPwrCmd

Neutral

MCM_En

BSM_En

BAS_En

ECM_En

Drv_Mode_Cmd

BSM_Wakeup

PropSysActv_Out

MCM_Run

MotTrqCmd_Regen

Mot_Trac_EN

EMM

7
HSC_Input

HSC_Input

3
HS	Batt	LAN_In

HS_Batt_LAN_In

5
GM_Chassis	LAN_In

GM_Chassis_LAN_In

4
HS_CAVS_HSC	LAN_In

HS_CAVS_HSC_LAN_In

2
HS	ECOLAN_In

HS_ECOLAN_In

[AccelPdl]

[VehSpd]

[Post_Fault_Low]

[Batt_Run_State]

double

double
CAN_Eng_Out

[BSM_En]

[ACC_AccelPdl]

[SteerCmd]

1
HS	GMLAN_In

HS_GMLAN_In

EngTrqCmd

Drv_AccelPdl

TransGear

Gear_Ratio

<CAN_BASSpd_Fdbk>

<CAN_BASTrq_Fdbk>

<CAN_BAS_Current>

<CAN_Grad_Active>

<CAN_BAS_Voltage>

<CAN_BAS_State>

<CAN_LV_Voltage>

<CAN_LV_SOC>

<CAN_Park_Active>

<CAN_Drv_DecelPdl>

<CAN_VehSpd>

<CAN_Drv_Mode>

<CAN_EngOnReq>

<CAN_HV_Bus_Volt>

<CAN_HV_Contactor_Status>

<CAN_Batt_SOC>

<CAN_Command_Cntr>

<CAN_HVBatPrcdCrnt>

<CAN_EngTrq_Fdbk>

<CAN_EngSpd_Fdbk>

<CAN_Eng_Running>

<CAN_PropSysActv>

<CAN_Drv_Mode>

<CAN_SysPwrMd>

<CAN_BAS_En_State>

<CAN_BSM_En_State>

<CAN_MCM_En_State>

<CAN_Inv_Volt>
<CAN_MotSpd_Fdbk>

<CAN_Post_Fault_Low>

<CAN_Post_Fault_Hi>

<CAN_Run_Fault_Low>

<CAN_Run_Fault_Hi>

<CAN_Inverter_Discharged>

<CAN_MotTrq_Fdbk>

<CAN_Inverter_En_State>

<CAN_DC_Bus_Voltage>

<CAN_Inverter_Discharge_State>

<CAN_Lat_Enable>

<CAN_Steer_Req>

<CAN_Steer_Angle>

<CAN_ACC_Enable>

<CAN_ACC_AccelPdl>

<CAN_ACC_DecelPdl>

<CAN_ACC_Mode>

<ECM_En>

<BSM_En>

<BAS_En>

<Drv_Mode_Cmd>

<BSM_Wakeup>

<PropSysActv_Out>

<MCM_Run>

<MCM_En>

<Neutral>

<BASPwrCmd>

<PwrCmd>

<MotPwrCmd>

<EngTrqCmd>

<OpMode>

MotTrqCmd

Figure 6.31: Input Subsystems replaced by Simulink function calls
at HSC Root level (Modularized Model)
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Figure 6.32: Range Curvature function moved to PCSM, improving
cohesion

Table 6.3: Model Advisor Results for Original EcoCAR Model

of Simulink Box objects to locally scope functions within each module’s Stateflow
Chart, reducing certain instances of repeated functionality. Finally, the change in
modular structure resulted in a 11.2% increase in cyclomatic complexity. The addi-
tional 38 complexity added to the Modular Model is a result of the added Simulink
functions, as well as the addition of new models needed to group algorithmic secrets
more accurately. The increase in cyclomatic complexity was relatively small and was
deemed necessary to greatly improve the information hiding and modular structure.

6.6 Testability
The SDV Tool was applied to both the original EcoCAR and Modularized Mod-
els, and configured to simulate in Test Generation Mode. Test objectives within
each model system were identified, and test cases were automatically generated to
maximize structural coverage. The test generation analysis results before and after
modularization can be seen in Table 6.6. The total number of objectives increased by
4.6% from 581 to 608, which can be attributed to newly added Simulink Functions
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Figure 6.33: Brake Calculation function moved to RPM, improving
cohesion
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Figure 6.34: Output Subsystems replaced by Simulink function calls
at HSC Root level

Table 6.4: Model Advisor Results for Modularized Model
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Figure 6.35: Modularized Model with High cohesion within Simulink
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Figure 6.37: Model Advisor showing checks run on both HSC Models

Table 6.5: Comparison of Block count and Cyclomatic Complexity
before and after changes
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Table 6.6: SDV Test Generation Analysis Results Before and After
Modularization

and Modules increasing the complexity and block count (previously discussed in Sec-
tion 6.5). Despite the increase in system complexity and total objectives needed, the
number of satisfied objectives increased by 2.4%, from 517 to 562, as well as reducing
the number of unsatisfied and undecided objectives by 0.2% and 3.3%, respectively.
These changes in test generation are small and did not seem to be impacted by
changes in modular structure.

Once test objectives were identified, a test harness was created from the origi-
nal EcoCAR and Modular Models, shown in Figure 6.38. The Simulink Coverage
Analyzer was used to provide code coverage analysis and testing completeness us-
ing the decision and condition metric (discussed in Section 2.6.3). Simulations were
performed for both the root model as well as all its associated model references.
The summary of testing coverage results can be seen in Table 6.6, while the detailed
breakdown of each model can be seen in Tables 6.7 and 6.8, respectively. The original
root model, Comp_HSC_Logic.slx had 24 condition, 52 decision, and 132 execution
objectives, which can be attributed to the numerous virtual subsystems located in
the input and output conversion layers. After restructuring of the model took place,
these subsystems were converted to Simulink Functions and placed outside of the
root model within an appropriate Simulink Module. As a result, the restructured
root model, Mod_HSC_Logic.slx, has reduced its total objectives to 0 condition,
0 decision, and 123 executions. These execution objectives represent the Simulink
function calls present throughout the input conversion, operation mode, component
control, and output conversion layers. Overall, there were no significant changes in
testability, other than the total number of objectives increasing. This increase was
expected with the addition of new blocks, Simulink functions, and model references.
The separation of algorithmic concern led to the redistribution of objectives from
within the HSC root level to its associated Model references, but did not significantly
impact the level of testability.
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Figure 6.38: Test Harness created for coverage analysis

Table 6.7: Original Model Coverage Analysis
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Table 6.8: Modularized Model Coverage Analysis

6.7 Summary
Chapter 6 has provided a comparison between the models described in Chapters 4
and 5. An evaluation was performed based on several commonly-used modularity
metrics including information hiding, coupling and cohesion, cyclomatic complexity,
and testability. In regards to system changeability, information hiding was greatly
improved. Likely changes to the system propagate throughout the original EcoCAR
Model, but are restricted to within a single module in the improved version. Hid-
den internal implementation is also increased within the modular model. Parameters
defined within the individual model workspaces have a local scope and cannot be
accessed in the root model, preventing unwanted changes propagating throughout
the model hierarchy. After making changes to the original EcoCAR model, the data
coupling between modules was decreased by grouping together subsystems and func-
tions which shared common secrets. The reduction of global data dictionaries also
reduced the data coupling and dependency between modules. The cohesion within in-
dividual modules was also greatly increased, with functions previously located within
the root HSC model transferred to their respective modular groupings. Despite im-
provements in modular structure, the cyclomatic complexity was slightly increased,
which was mainly attributed to the addition of new modules, and Simulink function
caller blocks. Finally, a slight change in testability was observed, with the num-
ber of objectives increasing proportional to the additional blocks needed within the
system. The testing coverage results slightly improved after making model changes,
but were mostly insignificant. Overall, the improvements to information hiding as
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well as coupling and cohesion created a more modular HSC model, while slightly
increasing the interface and cyclomatic complexity. These increases in complexity
were deemed acceptable and far outweighed by the benefits resulting from increased
modularization.

186

https://www.mcmaster.ca
https://www.eng.mcmaster.ca/cas


Chapter 7

Conclusions and Future Work

7.1 Summary of Thesis Content
This thesis began with a brief introduction to trends in software complexity within
the automotive industry, as well as some shortcomings in the software quality within
MBD frameworks. This was followed by a literature review and description of im-
portant background information in Chapter 2, which included the prevalent Simulink
Constructs used throughout the model development, as well as important modularity
and design process principles. An overview of the EcoCAR Mobility Challenge was
provided in Chapter 3, giving context to the HSC Model discussed throughout the
remaining Chapters, as well as describing the vehicle architecture and VTS targets.
The software design process followed during the creation of the original EcoCAR
Model is described in Chapter 4, providing relevant examples of modeling compo-
nents to show the steps of requirement definition, software design, implementation,
testing, and validation. Chapter 5 describes the modular system decomposition, us-
ing guidelines established in the literature as well as the Simulink Module Tool to
apply relevant Simulink modifications. The potential benefits provided by the new
modular decomposition are analyzed in Chapter 6, providing a comparison of several
important software metrics including coupling, cohesion, interface complexity, and
testability. Most importantly, the system changeability is compared, determining the
degree to which change propagation was reduced by forming a modular decomposition
based on shared secrets as opposed to role in the data flow process.

7.2 Future Work
This thesis has applied modular principles to hybrid vehicle controls development,
providing a template for future EcoCAR teams or students to use as a guideline. The
model decomposition outlined in Chapter 5 and analyzed in Chapter 6 contains a
multitude of confidential data and parameters which are restricted from public ac-
cess due to competition NDA restrictions. In order for the modular decomposition
to be free for public use, a significant amount of model work must be done to re-
move all instances of confidential information, and implement black box functionality
throughout the system hierarchy. Once these changes have been implemented, the
HSC modular model will be uploaded to a remote git repository and made available
for public use. Providing a real-world example of Simulink Module Tool application
will hopefully provide useful insight to future EcoCAR Teams looking to begin vehicle
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software development, as well as demonstrating the benefits of applying modularity
to a Simulink model.

The second task scheduled for future work is the formalization of the established
EcoCAR Vehicle design process into a document that can be available to future
EcoCAR teams. One of the biggest challenges faced during the author’s time as
PCM lead was the lack of clearly defined vehicle development process, which resulted
in increased development time, and confusion with software version incompatibilities.
After establishing a software design process, changes were made more efficient and
fewer corrections were needed to the original functional requirements and system
architecture. By providing an example of a vehicle software design process, future
students can use this as a guiding framework or starting point for adapting to new
competition requirements and changes in the automotive design standards. Efforts are
being made to remove all NDA sensitive information from the model, and improve
the formatting to better illustrate the modularity. Work on both the model and
documentation is ongoing and expected to be complete by October 2021.

7.3 Conclusion
The Hybrid vehicle controller model developed during the McMaster EcoCAR Mo-
bility Challenge has been presented in this thesis, giving both an overview of the
model functionality as well as the software design process followed. An application
of the Simulink Module Tool has also been demonstrated, restructuring the system
decomposition based on separation of concerns as opposed to execution order. The
two system decompositions were then analyzed and compared according to com-
monly used Software indicators . It was determined that new modular decomposition
significantly improved the system’s ability to gracefully handle likely changes and
consolidate them to as few modules as possible. A primary example is provided in
Chapter 6 to illustrate this improvement, but the complete list of analyzed changes
can be seen in Table A3.1 - A3.3. Furthermore, the information hiding within the
HSC system was greatly improved, with additional modules created to separate com-
ponent hardware and behaviour secrets. Simulink Design Verification demonstrated
a relatively acceptable increase in the software complexity, as well as minimal changes
to test generation and coverage.

Overall, the research presented in this thesis provides evidence to suggest that the
application of the Simulink Module Tool resulted in an improved system decomposi-
tion of the HSC model. This evaluation also provides further evidence that application
of the Simulink Module Tool can be successfully applied to vehicle controller Simulink
models, and improve the information hiding and system changeability. As software
complexity continues to grow within the automotive industry, the need for proper
software design will increase; larger systems will require a greater level of modular-
ization. By following a unified software design process as closely as possible, as well as
applying separation of concerns during system decomposition, the information hiding
and changeability of vehicle software can be improved dramatically. Developers of au-
tomotive controller models must step up to the task of adapting to changes in system
complexity and adopt new decomposition methods to greatly improve the efficiency
and quality of vehicle software.
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Figure A1.1: BAS Power Moding Algorithm
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Figure A1.2: Battery Power Moding Algorithm
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Figure A1.3: Motor Power Moding Algorithm

192

https://www.mcmaster.ca
https://www.eng.mcmaster.ca/cas


Master of Applied Science– Augustino Fella Pellegrino; McMaster University–
Department of Computing and Software

OFF: Engine
Propulsion Disabled

ON: Engine
Propulsion Enabled

No

Yes

System Power
Mode ==

Cranking?

ECM Executes
Cranking Procedure

HSC monitors Harwired
Signals indicating System

Power Mode and
Propulsion System Active

No

Yes

Engine
Running?

ECM Changes System Power
Mode to "Run", Propulsion

System Active to "True"

Yes

No

Fault Detected? OFF: Engine
Inoperable

Figure A1.4: Engine Power Moding Algorithm
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System Changeability
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