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Abstract 

Level of Traffic Stress (LTS) is a four-level system that classifies the stress experienced 

by cyclists on road segments and at intersections. While LTS has been used in past studies to assess 

cycling connectivity, accessibility, and safety, very little is known concerning its influence on 

cycling preferences. This study investigates this topic using a dataset containing 323,163 unique 

GPS trajectories of Hamilton Bike Share (HBS) users collected over a 12-month period (January 

1st to December 31st, 2019). A GIS-based map-matching algorithm is used to generate users’ routes 

from these trajectories along with attributes such as route length, number of intersections, and 

number of turns. Unique routes and their use frequencies are then extracted from all routes. The 

most popular routes between bike share hub (station) pairs are then identified as dominant routes 

while shortest distance routes are derived by minimizing distance traveled. Weighted level of 

traffic stress (WLTS), a novel measure of impedance (travel cost) developed for this study, is used 

to derive the least stressful routes between hub pairs. The three types of routes are compared 

statistically. The comparison finds that HBS users tend to choose longer routes with bicycle 

infrastructure in an effort to reduce their traffic stress. However, they do not choose to minimize 

traffic stress in its entirety by choosing the lowest WLTS routes. In other words, dominant routes 

are not the least stressful routes in a bike share system. Likewise, minimizing distance is not the 

sole consideration of HBS users. The findings suggest that other factors also influence route 

choice. This study not only enhances our understanding of cyclist route preferences with respect 

to LTS, it also presents a novel measure of impedance – WLTS – that could be used when planning 

new cycling infrastructure or as an alternative means to route cyclists between origins and 

destinations. 

Keywords: Active travel; Bike Share; Cycling; Dominant Route; Level of Traffic Stress; Route 

Choice 
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1. Introduction 

Studies have shown that regular physical activity has significant health benefits and can help 

prevent various chronic diseases (Burtin and Hebestreit, 2015; Colberg et al., 2016; Rhodes et al., 

2017), some mental illnesses (Vancampfort et al., 2015), and improve an individual’s well-being 

and quality of life (Spinney et al., 2009). Cycling, a form of physical activity, has grown in 

popularity in recent years in part due to investments in cycling infrastructure (bike lanes) and bike 

share programs (Fishman, 2016; Shaheen et al., 2010; Shaheen et al., 2013). In Canada, for 

example, bike share programs have emerged and grown in popularity in several cities including 

Hamilton, Montréal, Ottawa-Gatineau, Toronto, and Vancouver (Hosford and Winters, 2018). 

While cycling has well-recognized benefits, injuries and deaths, do occur. Between 2006 and 2017, 

890 cyclists died in Canada, averaging 74 deaths per year. Collisions with motor vehicles made up 

73% of these fatal cycling events. In addition to deaths, about 7,500 cyclists were seriously injured 

every year during the same period (Statistics Canada, 2019). Given grim statistics such as these, 

transportation agencies have sought to improve cyclist safety by focusing on traffic stress (Chen 

et al., 2017; Ferenchak and Marshall, 2020;), which is a combination of perceived dangers and 

stressors to cyclist safety associated with cycling close to vehicular traffic. The first scheme 

developed for classifying road segments based on the traffic stress tolerance of cyclists is Level of 

Traffic Stress (LTS) developed by Mekuria et al. (2012). This scheme is an ordinal system with 

four levels. These levels depend on cycling infrastructure, road attributes (e.g., road width, traffic 

speed, presence of a parking lane), and intersection characteristics (Harvey et al., 2019; Mekuria 

et al., 2012). The four levels of traffic stress are: LTS 1 – safe for children, LTS 2 – tolerable by 

the mainstream adult population, LTS 3 – tolerable by cyclists who are ‘enthused and confident’ 

but still prefer having their own dedicated space for riding, and LTS 4 – tolerable only by those 

characterized as ‘strong and fearless’ riders (Mekuria et al., 2012). Adaptations of this original 

LTS method have been developed to overcome data deficiencies and to account for differences in 

roadway infrastructure between cities. While researchers have used LTS to assess cycling 

connectivity, accessibility, and safety, little research has been done to ascertain whether LTS 

influences the route choice behavior of cyclists. One study compared the distance traveled between 

low stress (exclusively LTS 1 or 2 road segments), shortest, and observed cycling routes (Crist et 
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al., 2019). The authors concluded that while cyclists choose slightly longer routes to travel on 

lower stress roads, they are unwilling to travel an excessive distance to remain on low stress roads. 

Their analysis was based on a small sample of individual cycling trips, taken primarily by 

experienced, male cyclists. The study did not assess other predictors of route choice including 

cycling infrastructure, number of turns, and topography, to name a few. Additionally, a low stress 

route did not exist for over half of all trips analyzed. Building on earlier work by Crist et al. (2019) 

and Lu et al. (2018), this study generates routes for all trips taken in 2019 between bike share hubs 

using the GPS data of Hamilton Bike Share users.  

In this study, a route is a particular path between an OD hub pair. A trip is the physical movement 

between an OD hub pair along a route. Multiple trips can take the same route. Lima et al. (2016) 

introduced the idea of dominant routes to describe frequent trips along the same route. They found 

that car drivers prefer one route over another between an OD pair. Lu et al. (2018) extended the 

use of dominant routes to cycling by demonstrating that unique routes are often chosen by multiple 

cyclists in a bike share system between OD hub pairs. In this case, a dominant route could be 

considered the route that captures the preferred path of travel for cyclists since the usage frequency 

of a dominant route is greater than that of all other routes. Alternatively, the least stressful route 

could be considered to capture the safest path of travel between each OD hub pair since the 

combination of perceived dangers and stressors to cyclist safety is minimized. This poses the 

question: are dominant routes the least stressful routes? In other words, are the preferred routes of 

bike share users the safest routes in a bike share system according to their perceptions? 

This study evaluates whether dominant routes are equivalent to the lowest traffic stress routes 

between OD hub pairs in Hamilton, Ontario’s bike share system. This is achieved by comparing 

the Weighted Level of Traffic Stress (WLTS) of each type of route. WLTS is a novel distanced-

weighted value of LTS developed in this study to capture the traffic stress of a route. Routes are 

equivalent if the WLTS of a dominant route is the same as the WLTS of a lowest traffic stress 

route (lowest WLTS route) between an OD hub pair – that is, the routes follow the same path of 

travel. If the WLTS of dominant routes differs from the WLTS of their lowest WLTS counterparts, 

comparing other attributes that have been found to influence route choice decisions in past studies 

(e.g., Khatri et al., 2016; Scott et al, 2021; Ton et al., 2017; Ton et al., 2018) can be used to 

understand factors that influence route choice behavior other than LTS. Additionally, dominant 
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routes are also compared to their shortest distance alternatives to reveal additional factors that may 

affect bike share users’ route choices. 

The remainder of this paper is organized as follows. Section 2 reviews briefly the literature on 

LTS. It summarizes various LTS methods and the use of LTS to analyze network connectivity, 

accessibility, safety, and route choice. Section 3 describes the study area, the cycling network, and 

the GPS dataset. Section 4 describes how routes are derived using a GIS-based map-matching 

algorithm, and the workflow developed for identifying dominant, lowest WLTS, and shortest 

distance routes between OD hub pairs. Results from the analysis are found in Section 5 compares 

the attributes relating to cycling infrastructure, road attributes, route characteristics, and network 

topography between routes using paired t-tests. Section 6 summarizes the major findings of this 

study, as well as limitations, and recommendations for future areas of research. Section 7 outlines 

the digital deliverable that accompanies this study.  

2. Background 

2.1 Cycling Traffic Stress Methods 

Multiple scoring methods exist for classifying road segments and intersections according to the 

traffic stress they impose on cyclists. The score is based on attributes related to cycling 

infrastructure, road attributes, and intersection characteristics either as input to a mathematical 

model or as criteria in a decision table. Davis (1987) pioneered the Bicycle Safety Index Rating 

(BSIR), a mathematical model that requires attributes to be combined and factored based on two 

indices, the Roadway Segment Index (RSI) used for roadways and the Intersection Evaluation 

Index (IEI) used for intersections. Each index is used in combination to classify road segments and 

intersections as either excellent, good, fair, or poor for cycling (Callister and Lowry, 2013). Both 

indices require a substantial amount of manually collected data including pavement condition, 

width of the outside traffic lane, and driveway frequency, making it a tedious and expensive model. 

Also, BSIR has never been validated against observed cycling behaviour, leading to questions 

regarding its accuracy in practical use (Turner et al., 1997). 

Over time, simpler and more intuitive methods have been developed requiring less data to better 

support the development of traffic stress networks for cycling. Sorton and Walsh (1994) developed 

the Bicycle Stress Level (BSL) method to determine the bicycle compatibility between roadways 
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and cyclists. Using traffic volume, speed limit, and curb lane width, bicycle stress levels ranging 

from 1 (no problem for cyclists) to 5 (a major problem for cyclists) were established. Similarly, 

Turner et al. (1997) created a Bicycle Suitability Score (BSS) for all state-maintained roadways in 

Texas using shoulder width, average daily traffic volume, speed limit, and shoulder pavement 

conditions. Harkey et al. (1998) published the Bicycle Compatibility Index (BCI), a linear equation 

comprised of 9 attributes including curb lane width, traffic volume, and vehicle speed, to assess 

the ‘bicycle friendliness’ of roadways excluding major intersections. Other traffic stress 

classification methods include the Bicycle Environmental Quality Index (BEQI), the Bicycle 

Interaction Hazard Score (BIHS), the Bicycle Suitability Assessment (BSA), and the Rural Bicycle 

Compatibility Index (RBCI) (Callister and Lowry, 2013; Pritchard et al., 2019). Though each 

method uses similar attributes, many do not experience mainstream application due to their niche 

uses, which include classification specific to rural areas or intersections, and intensive attribute 

requirements. For example, BSA requires 27 attributes while BEQI requires 22 attributes 

(Ferenchak and Marshall, 2020). 

The best-known method for classifying road segments according to the stress they impose on 

cyclists is the Bicycle Level of Service (BLOS) method (Mekuria et al., 2012). BLOS is a non-

linear, discontinuous equation used to evaluate cycling conditions of shared roadway environments 

using an alphabetic score between A to F (Callister and Lowry, 2013; Pritchard et al., 2019). 

Though BLOS does experience mainstream application, the immense data requirements are a 

critical barrier against its practical use in most jurisdictions (Callister and Lowry, 2013). 

Alternatively, Level of Traffic Stress (LTS) has become a widely used method for analyzing traffic 

stress on road segments and at intersections. By adopting Geller’s ‘Four Types of Cyclists’ 

methodology, cyclists are divided based on their level of traffic tolerance, with group 1 being the 

least tolerant and group 4 being the most tolerant (Geller, 2006; Mekuria et al., 2012). A 

corresponding classification for road segments, intersection approaches, and intersections reflects 

traffic tolerance by categorizing the stress imposed on cyclists into scores of LTS ranging from 1 

to 4. Criteria for calculating the level of traffic stress depends on road attributes (e.g., road width, 

speed limit, number of lanes, on-street parking availability) and whether cyclists ride in mixed 

traffic, on cycling infrastructure (e.g., bike lane), or on segregated paths (e.g., paved multi-use 

paths) (Mekuria et al., 2012) (see Table 1). 
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Researchers and municipalities have adopted LTS over other classification methods as it is a 

simple, data-driven approach requiring little input, and it is relatively easy to implement compared 

to mathematical methods like BCI and BLOS (Griswold et al., 2018; Harvey et al., 2019; Ralph & 

Von Hagen, 2019). LTS has become popular amongst jurisdictions like Maryland, Washington, 

and Delaware (Furth et al., 2018; Kittelson & Associates, 2019; Prabhakar & Rixey, 2017) to 

assess and propose improvements to cycling infrastructure. 

Table 1. Description of LTS classifications and their corresponding Geller classifications 

LTS 

Classification 

Geller Classification Description 

LTS 1 Interested but concerned  Novice cyclists, including children, physically 

separated from traffic, or next to slow traffic 

where intersections are easy to approach and 

cross 

LTS 2 Interested but concerned Adult cyclists, excluding children, either 

physically separated from traffic, or in an 

exclusive cycling zone (e.g., bike lane), next to 

slow traffic where crossings are not difficult 

LTS 3 Enthused and confident Experienced adult cyclists, comfortable with 

varying levels of traffic stress in an exclusive 

cycling zone (e.g., bike lane), next to moderate 

traffic 

LTS 4 Strong and fearless  Most experienced cyclists, capable of cycling 

on high speed and mixed traffic roadways 

Note: No way no how (Geller Classification) is not classified into any LTS level. 
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2.2 Adaptations of LTS for Connectivity, Accessibility, and Safety Analysis 

Variations of the original LTS method have been developed to overcome data deficiencies for 

small- and medium-sized jurisdictions and to account for differences in roadway infrastructure 

between cities. Additionally, cycling connectivity, accessibility, and safety have been assessed 

using adaptations of the original LTS classification scheme. The Conveyal LTS method extracts 4 

widely available attributes from OpenStreetMap (OSM). The difference between each LTS level 

is reduced because of fewer data requirements. However, the simplified approach can be 

implemented in almost all cycling networks across the world (Harvey et al., 2019). Similarly, 

People for Bikes (PFB) developed a two-level (low and high stress) method, calculating LTS using 

6 attributes extracted from OSM. The simple output dilutes differences in LTS levels that are 

present in more data-intensive methods (Harvey et al., 2019). 

Furth et al. (2018) developed LTS 2.0 using 9 attributes, drawing on average daily traffic, number 

of lanes, and speed limit as key inputs to respond to traffic situations common in Delaware. This 

includes reclassifying high traffic 2-lane roads with 25 miles per hour (mph) speed limits as LTS 

3 instead of 2. Similarly, Bearn et al. (2018) introduced the adapted LTS quality of service 

measure. This metric incorporates readily available data in the City of Atlanta to assess cycling 

connectivity. The adapted LTS method re-classifies protected cycle paths and side paths as LTS 2 

instead of 1 due to the presence of conflict zones such as driveways (Bearn et al., 2018). Imani et 

al. (2019) did not include attributes like the width of cycling lanes or the presence of medians when 

calculating LTS because it was not available in the City of Toronto’s Open Data Portal. Instead, 

an alternative LTS classification method was developed based on speed limits in kilometers per 

hour (kph) to examine job accessibility. They created 30-minute isochrones of LTS 1 to 4 for each 

dissemination area (DA) using a consistent travel speed of 15 kph. The cumulative counts of jobs 

were then calculated for each DA at each LTS level. Their results showed that road segments with 

low levels of traffic stress (LTS ≤ 2) access less than 5000 jobs across the city. Only at an LTS of 

3, does cycling accessibility rise above 15,000 jobs (Imani et al., 2019). 

Prior research has explored the correlation between LTS and cyclist safety. Ferenchak and 

Marshall (2020) developed LTS scores and collected cycling rates for 612 roadway scenarios to 

determine the suitability of LTS to the cycling behaviour of children. They validated that road 

segments of LTS 1 are safe for children of all ages. Using ten years of adult vehicle-cyclist collision 
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data for four New Hampshire cities, Chen et al. (2017) showed some geospatial correlation 

between higher LTS road segments and injuries. Results from a mixed logit model using 

independent variables including road attributes, vehicle volumes, and collision history, show that 

LTS can effectively predict crash severity (Chen et al., 2017). Though LTS has been used to assess 

cycling connectivity, accessibility, and safety, there is little research that uses LTS to understand 

the route choice behaviour of cyclists. 

2.3 Route Choice Analysis using LTS 

Both stated preference (SP) and revealed preference (RP) surveys have been used to collect route 

choice data (Broach et al., 2012; Yang & Mesbah, 2013). SP surveys ask participants to rank their 

preference of different route options, meaning large datasets can quickly be collected (Scott et al., 

2021). Though easy and inexpensive to collect, SP data depends on the quality of the survey 

questions. A mistake by the respondent when ranking preferred routes or matching their usual 

routes to a generated choice set in the survey may lead to a loss of information (Abraham et al., 

2002; Lu et al., 2018; Stinson & Bhat, 2003). Meanwhile, RP surveys gather information based on 

observed (actual) routes chosen by participants. The collection of RP data has benefitted greatly 

from the ubiquity of GPS technology. In many RP cycling studies, GPS is the most common means 

by which observed routes have been captured (Scott et al., 2021). Though complete routes are 

accurately collected using GPS technology, it can be costly to acquire GPS devices, and can 

present challenges with respect to converting GPS point data to observed linear routes within a 

cycling network (Scott et al., 2021). 

Harvey et al. (2019) collected crowd-sourced GPS data using a mobile application called Ride 

Report to compare LTS scores of each road segment in Portland and Austin to the cyclist 

satisfaction scores of each trip. Satisfaction scores were recorded using a thumbs up or thumbs 

down in the Ride Report app. Using a grouped regression model, routes with bike lanes, paved 

multi-use paths, separated bike lanes, and low-traffic streets, increased cyclist satisfaction. 

However, Ride Report misidentified transportation modes in some cases. For example, it would 

estimate that a user was riding a bicycle when riding a bus. Ride Report relies on aggregations of 

binary ratings across partially overlapping trips, making it an imprecise metric with response bias 

(Harvey et al., 2019). While crowd-sourced mobile applications have seen a dramatic increase in 

popularity, samples of contributors tend to be a small subset of tech savvy, younger participants 
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compared to actual cycling populations. This also makes crowd-sourcing prone to user-selection 

bias and geographic bias (Romanillos et al., 2016). 

Despite GPS crowd-sourced data being prone to potential biases, Crist et al. (2019) compared the 

distances of lowest stress, shortest, and observed routes using GPS trip data from 104 cyclists 

making 1038 unique cycling trips in San Diego. Though a low stress route (composed of LTS 1 or 

2 road segments) did not exist for more than half of all trips, they were 56% longer than observed 

routes and 74% longer than shortest routes. Cyclists chose longer routes to travel on lower traffic 

stress roads but were unwilling to travel an excessive detour distance to remain on a low traffic 

stress route (Crist et al., 2019). Aside from distance, other predictors of route choice, including 

cycling infrastructure, road attributes, route characteristics, and network topography were not 

assessed. 

3. Data 

3.1 Study Area 

Hamilton is a major city in the province of Ontario, Canada, with a population of 536,917 in 2016 

(Statistics Canada, 2016). Hamilton is located at the westernmost end of Lake Ontario. Residents 

of the city rely on personal motor vehicles (e.g., cars), public transit, and active transportation 

modes to travel. In March 2015, the Hamilton Bike Share (HBS) program was launched. HBS 

provides bikes and software that allow riders to use 825 smart bikes across over 20 square 

kilometers of Hamilton. With 132 hubs across the city, bikes can be reserved and released using 

an active membership and returned to any hub. The HBS service area has two parts. The core 

(shown in Figure 1) extends across downtown Hamilton, below the Niagara Escarpment. A 

secondary, smaller service area extends along Van Wagner’s Beach. It stretches along the Queen 

Elizabeth Way (QEW) between Hamilton Harbour and Lake Ontario. 
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Figure 1. Hamilton Bike Share’s core service area 

3.2 Building the Cycling Network 

A cycling network was created for this study using road and trail data to capture accurate cycling 

routes using the GIS-based Episode Reconstruction Toolkit (GERT) (Dalumpines & Scott, 2018) 

and a GIS-based map matching algorithm (Dalumpines & Scott, 2011). Open data from Hamilton’s 

Open Data Portal was used for the cycling network, which was subsequently enriched with another 

open dataset containing information (i.e., bikeway classification) (see Figure 2) (Open Hamilton, 

2018). Data sets provided by the City of Hamilton and McMaster Library’s Maps, Data & GIS 

Centre were added to further enrich the network with accurate trail features. Road segments from 

the 2018 Ontario Road Network (ORN) (Ontario GeoHub, 2018) and DMTI Spatial (2019) were 

used to enrich the network with the number of lanes and speed limits in kph, respectively. Further, 

manual digitization of the network using satellite imagery as reference was done in high traffic 

areas (e.g., McMaster University) to create trail features that were commonly used by HBS users, 

but not captured in any previous dataset. Finally, slope and elevation for each road segment were 

calculated in ArcGIS Pro using a 30m digital elevation model. 
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Figure 2. Examples of cycling infrastructure in Hamilton, Ontario 

Before calculating WLTS for each route, LTS was calculated for each road segment comprising 

the cycling network based on LTS criteria. LTS criteria are defined separately for different street 

types – roads with mixed traffic, roads with cycling infrastructure along parking lanes, and roads 

with cycling infrastructure not along parking lanes (Furth et al., 2018; Imani et al., 2019). Paved 

multi-use recreational trails and park trails were assigned the lowest level of traffic stress, LTS 1. 

Highways and expressways were assigned LTS 0 and removed from the cycling network because 

cyclists are prohibited from using high-speed, high-volume roads. For the remaining road 

segments, the LTS criteria applied was an adaptation of LTS 2.0, published by Furth et al. (2018). 

An adapted LTS classification scheme was developed to accommodate the Canadian metric system 
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and to supplement missing network data. Changes included the following: speed limits in mph 

were converted to kph; it was assumed that all bike lanes were not adjacent to parking lanes; bike 

lane widths were converted from feet to meters; it was assumed that bike lanes were not frequently 

blocked; the bike lane width of all bicycle infrastructure, regardless of infrastructure type, was set 

to 1.5 meters according to Hamilton’s Cycling Master Plan (City of Hamilton, 2009; 2013); and 

one-way roads were used to represent streets without a centerline while all two-way roads were 

used to represent streets with a centerline. 

LTS for road segments with bicycle infrastructure was determined using the number of lanes, bike 

lane width, and speed limit. For example, a 2-lane street per direction with a bike lane and a speed 

limit between 41 to 50 kph was assigned LTS 2 (see Table 2). LTS for road segments in mixed 

traffic was determined using the number of lanes, travel direction, annual average daily traffic 

(AADT), and speed limit. For example, a 2-lane major road with a centerline, AADT between 751 

and 1500 vehicles per day, and a speed limit between 51 to 60 kph was assigned LTS 3 (see Table 

3). LTS 2 makes up 67% of all network links, followed by LTS 3 (13%), LTS 1 (10%), and LTS 

4 (5%). LTS at intersections was not derived. WLTS was calculated by multiplying the LTS of 

each network segment by its length in meters. WLTS and length were then used as impedance 

attributes to develop lowest WLTS routes and shortest distance routes between OD hub pairs. 

Upon completion, the network was converted into a network dataset to be used with the map-

matching algorithm. The final network dataset had 22,484 links and 18,367 junctions (nodes). The 

cycling network is shown in Figure 3. 
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Table 2. Level of Traffic Stress for network segments with bicycle infrastructure 

  Speed Limit (kph) 

Number of Lanes 

(per direction) 

Bike Lane 

Width (m) 
≤40 41-50 51-60 61-70 71-80 81-90 

1 1.5 1 2 2 3 3 4 

2 1.5 2 2 2 3 3 4 

3+ 1.5 3 3 3 4 4 4 

 

Table 3. Level of Traffic Stress for network segments in mixed traffic 

Number of Lanes 

(per direction) 

Travel 

Direction 
AADT 

Speed Limit (kph) 

≤30 31-40 41-50 51-60 61-70 71-80 80+ 

1* One-way 0-1125 1 1 2 2 3 3 3 

1126-2250 1 1 2 3 3 3 4 

2251-4500 2 2 2 3 4 4 4 

4501+ 2 3 3 3 4 4 4 

1 Two-

way 

0-750 1 1 2 2 3 3 3 

751-1500 2 2 2 3 3 3 4 

1501-3000 2 3 3 3 4 4 4 

3001+ 3 3 3 3 4 4 4 

2 Two-

way 

0-8000 3 3 3 3 4 4 4 

8001+ 3 3 4 4 4 4 4 

3 Two-

way 

Any ADT 3 3 4 4 4 4 4 

Note: * Without centerline. 
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Figure 3. Cycling network showing LTS for each link 

3.3 GPS Dataset 

HBS bicycles are GPS-equipped meaning each bicycle’s XY coordinates are recorded in real-time. 

GPS data of all trips in the year 2019 (from January 1st to December 31st) were obtained from 

HBS. The original 2019 dataset contained 323,163 unique GPS trajectories. Upon processing using 

the GIS-based Episode Reconstruction Toolkit (GERT) (Dalumpines and Scott, 2018) and the 

map-matching algorithm (Dalumpines and Scott, 2011), a total of 252,310 trips remained. 70,853 

GPS trajectories (~22%) were removed during processing. Although most trajectories (~16%) 

were eliminated due to GPS errors, approximately 6% were lost because trips could not be map-

matched (e.g., GPS trajectories did not follow the defined cycling network). 
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4. Methodology 

4.1 Deriving Routes  

The GIS-based Episode Reconstruction Toolkit (GERT) (Dalumpines and Scott, 2018) and the 

map-matching algorithm developed by Dalumpines and Scott (2011) were used to convert cycling 

GPS trajectories into polyline routes on the cycling network. The map-matching algorithm uses 

the shortest path to generate routes using GPS trajectories between an origin and a destination. The 

map-matching process is illustrated in Figure 3. First, the origin and destination points of each trip 

are identified as stops – for example, HBS start and end hubs. A polyline is generated between the 

stops and all intermediate GPS points comprising the trip (Figure 4a). Next, a buffer is created 

around the polyline based on a distance specified by the user. The buffer acts as a barrier, used to 

constrain a route’s generation (Figure 4b). The observed route, which follows the stream of GPS 

trajectories, is then created within the buffer area along the cycling network (Figure 4c). 

Dalumpines and Scott (2011) found that a 50m buffer maximizes the accuracy of the map-

matching algorithm for GPS data. As a result, a 50m buffer was chosen as the default buffer 

distance for this study. 
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Figure 4. The conversion process from GPS trajectories to an observed route using the map-

matching algorithm 

4.2 Identifying Dominant Routes  

Dominant routes capture the preferred travel behavior of cyclists between OD hub pairs given that 

the usage frequency of dominant routes is greater than that of all other routes. In this case, 

dominant routes have the highest number of overlapping trips between OD hub pairs. Overlapping 

trips may be slightly different at their origins and destinations due to, for example, a delay in GPS 
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activation time. However, the routes of such trips should still be considered the same. Lu et al. 

(2018) developed a link signature extraction tool to remove the links at the start and end of each 

route based on their link IDs. As a result, all unique routes from hub-to-hub were extracted from 

all map-matched trips according to their core link signatures. Following this, the use frequency of 

each unique route was calculated according to the number of trips traversing it (Lu et al., 2018). 

This study developed an alternative method to extract the core route of each trip and determine 

dominant routes using python and ArcGIS Pro. The polyline features generated by the map-

matching process were first intersected with the cycling network. This process ‘broke’ each route 

into its constituent links using the network junctions of the underlying cycling network as 

breakpoints. Using a 25m buffer around each hub, the links at the start and end points were 

removed. The remaining links were then merged to generate the core portion of each trip. 

Following this, the unique routes from hub-to-hub were extracted from the set of actual map-

matched routes according to their core route geometry. To determine the dominant route, the use 

frequency of each unique route was calculated using the number of trips traversing it. The route 

with the highest trip count was extracted as the dominant route for each OD hub pair. To compare 

dominant routes with their lowest WLTS and shortest distance counterparts, the first and last links 

of each alternative were also removed using a 25m buffer from each hub. By retaining the core 

route geometry of dominant routes, lowest WLTS routes, and shortest distance routes between 

each OD hub pair, the comparison of attributes remains consistent throughout the study. 

4.3 Paired t-tests  

Paired t-tests were used to compare the mean differences between three sets of observations. In 

this study, paired t-tests were used to compare the differences among dominant routes, lowest 

WLTS routes, and corresponding shortest distance routes. The attributes investigated are listed, 

along with their definitions in Table 4. The paired t-test has been used in past studies to compare 

attributes of observed routes to shortest distance routes (e.g., Lu et al., 2018; Papinski and Scott, 

2013; Winters et al., 2010). 
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Table 4. Attributes and their definitions 

Attribute Definition  

Sum WLTS Weighted level of traffic stress of route 

Mean LTS Weighted mean level of traffic stress of route 

Mean speed (kph) Weighted mean posted speed limit in kilometers per hour of 

route 

Mean number of lanes Weighted mean number of lanes along route 

Mean AADT Weighted mean annual average daily traffic of route 

(vehicles per 24 hours) 

Distance (m) Length of route in meters 

Mean elevation (m) Mean elevation of route 

Mean slope (%) Weighted mean slope of route 

Trail (%) Percentage of route on trails 

Major (%) Percentage of route on roads designated as “major” or 

“collectors” 

Minor (%) Percentage of route on roads designated as “minor” or 

“local” 

MCOS (%) Percentage of route on cautionary un-signed bike routes on 

streets with moderate traffic volumes 

LCOS (%) Percentage of route on cautionary un-signed bike routes on 

streets with low traffic volumes 

HCOS (%) Percentage of route on cautionary un-signed bike routes on 

streets with high traffic volumes 

SBR (%) Percentage of route on signed on-street bike routes 

PMURT (%) Percentage of route on paved multi-use recreational trails 

BL (%) Percentage of route on designated bike lanes 

Number of segments Number of unique road segments that a route travels along 

Left turns Number of left turns 

Right turns Number of right turns 

Sharp left turns Number of turns between 180° and 270° 



M.Sc. Thesis – Rajveer Ubhi       McMaster – School of Earth, Environment & Society 
 

21 

 

Sharp right turns Number of turns between 90° and 180° 

Total turns Total number of turns 

RDI Route directness index (compared to straight line distance) 

Intersections Number of intersections along a route 

5. Results 

5.1 Data Processing  

Table 5 summarizes information concerning the processing of the map-matched dataset to arrive 

at the dataset used in this study. Of the total number of map-matched trips, only 77% (i.e., 195,467 

trips) were between hubs. The trips occurred between 11,869 hub pairs. However, 5834 of them 

were removed for this study. Excluded were hub pairs with round trips only (i.e., same origin and 

destination) and pairs with one trip. The number of unique trips for all hub pairs was 79,736. Of 

these, only 49,784 were between the 6034 hub pairs used in this study. With respect to these hub 

pairs, the average number of unique routes is 7, while the maximum is 152 and the minimum is 1. 

Crist et al. (2019) found only half of all observed routes in their study had an alternative route 

where it was possible to travel exclusively on low stress (LTS 1 or 2) road segments. In this study, 

WLTS was used to find 6,034 low stress routes. Using WLTS to identify low stress routes increases 

the number of routes analyzed compared to the method used by Crist et al. (2019). Of all dominant 

routes, only 544 were identical to lowest WLTS routes (~9%) and 803 were identical to shortest 

distance routes (~13%). These findings suggest that bike share users consider additional attributes 

when choosing their routes between OD hub pairs. Between lowest WLTS routes and shortest 

distance routes, only 153 (~2%) were identical meaning that given the current configuration of the 

cycling network, bike share users are unable to minimize both their level of traffic stress and 

distance at the same time. 
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Table 5. GPS data processing summary 

Description Number Notes 

Map-matched trips 252,310  

Trips between hubs 195,467  

Hub pairs 11,869  

Hub pairs for study 6,034 Excludes 1) Pairs with round trips 

only, 2) Pairs with 1 trip 

Unique hub-to-hub routes 79,736  

Unique hub-to-hub routes for study 49,784  

Average # routes between hub pairs 7  

Maximum # routes between hub pairs  152  

Minimum # routes between hub pairs 1  

Dominant route = lowest WLTS route  544  

Dominant route = shortest route  803  

Lowest WLTS route = shortest route 153  

 

5.2 Paired t-tests Results  

Results for the paired -t-tests are found in Tables 6, 7, and 8. If HBS users were to choose shortest 

distance routes over lowest WLTS routes to travel between OD hub pairs, travel distance would 

decrease by 9%, while traffic stress (Sum WLTS) would increase by 24% (Table 8). Instead, by 

choosing dominant routes over shortest distance routes, HBS users increase their travel distance 

by 7%, but reduce their traffic stress by 11% (Table 7). Interestingly, choosing dominant routes 

over lowest WLTS routes, HBS users decrease their travel distance by only 1%; however, their 

traffic stress is increased by 15% (Table 6). This finding begs the question: Why are HBS users 

choosing dominant routes over lowest WLTS routes when the distances, although statistically 

different, are practically the same? 

Of the 25 attributes compared between dominant routes and lowest WLTS routes, all but one was 

statistically significant at the 0.05 significance level – the exception being trails (Table 6). Since 

only 9% of dominant routes are equivalent to lowest WLTS routes, it is clear that HBS users do 

not choose their routes in terms of minimizing WLTS. Instead, based on the findings in Table 6, it 



M.Sc. Thesis – Rajveer Ubhi       McMaster – School of Earth, Environment & Society 
 

23 

 

appears that other factors may play a role in their route choice decisions. The mean speed (45.79 

kph), mean number of lanes (2.70), and mean AADT (8358.12 vehicles/24 hours) of dominant 

routes are statistically higher than those of lowest WLTS routes. Significant differences are also 

found for turn frequency. The mean number of turns is 5.68 for dominant routes with 2.71 left 

turns and 2.69 right turns, compared to 7.01 for lowest WLTS routes divided between 3.55 left 

turns and 3.36 right turns. While sharp turns are uncommon for both dominant and lowest WLTS 

routes, the number of sharp left and right turns is statistically greater for dominant routes. On 

average, dominant routes have fewer unique road segments (8.86) and cross fewer intersections 

(37.76) compared to lowest WTS routes. With respect to slope, cyclists do not like climbing a 

slope over 4% (Transport Canada, 2010). In this study, the average slope of dominant routes is 

3.85% while the average slope of lowest WLTS routes is 4.01%. Similar to findings by Lu et al. 

(2018), HBS users may seek to avoid slopes as a possible trade-off for other route attributes. 

Likewise, the mean elevation of dominant routes (94.34m) is statistically lower than lowest WLTS 

routes (94.62m). 

Dominant routes tend to follow minor roads, which cover ~58% of a route compared to major 

roads, which comprise ~35% of a route. As expected, lowest WLTS routes are primarily composed 

of minor roads (~78% of a route) instead of major roads (~16% of a route). Figure 5 and Table 9 

show and describe a sample dominant route, lowest WLTS route, and shortest distance route for 

the same OD hub pair, extracted from this study’s dataset. 61% of the dominant route consists of 

major roads while 38% of the route is made up of minor roads. On the other hand, 6% of the lowest 

WLTS route consists of major roads. Instead, it is mostly made up of minor roads - 93%. This 

example illustrates that while the distance of such routes can be similar, the proportions of major 

and minor roads can vary significantly. It also suggests that HBS users may choose to travel longer 

distances on major roads. Preference to travel on major roads may be influenced by the increased 

availability of bike lanes. In the cycling network, about 75% of designated bike lanes are along 

major roads and 25% are along minor roads. Additionally, 100% of signed on-street bike routes in 

medium to high traffic are on major roads. Results from the paired t-tests suggest that it is more 

likely for HBS users to choose higher traffic stress routes with bike lanes or signed on-street bike 

routes instead of lowest WLTS routes. Though paved multi-use recreation trails (segregated paths) 

significantly decrease traffic stress, dominant routes have a lower proportion of such paths because 

these types of facilities are farther away from most OD pairs.   
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Table 6. Attributes of dominant routes compared to those of their corresponding lowest WLTS 

alternatives (n = 6034) 

Attribute Dominant Route Lowest WLTS 

Route 

Difference t-stat 

Sum WLTS 6325.94 5351.06 974.87 *42.58 

Mean LTS 2.24 1.95 0.29 *51.29 

Mean speed (kph) 45.79 44.78 1.01 *28.89 

Mean number of lanes 2.70 2.53 0.17 *23.74 

Mean AADT 8358.12 7525.34 832.78 *20.78 

Distance (m) 2832.21 2859.43 -29.44 *-3.67 

Mean elevation (m) 94.39 94.62 -0.22 *-6.44 

Mean slope (%) 3.85 4.01 -0.16 *-13.96 

Trail (%) 6.18 6.34 -0.15 -1.12 

Major (%) 35.48 15.59 19.89 *63.95 

Minor (%) 57.78 77.94 -20.16 *-67.26 

MCOS (%) 1.14 1.01 0.12 *2.42 

LCOS (%) 1.14 1.58 -0.44 *-7.11 

HCOS (%) 1.65 2.25 -0.60 *-7.34 

SBR (%) 10.16 9.40 0.75 *5.38 

PMURT (%) 7.29 11.57 -4.26 *-22.97 

BL (%) 39.37 36.43 2.94 *10.12 

Number of segments 8.86 11.09 -2.21 *-23.42 

Left turns 2.71 3.55 -0.84 *-28.22 

Right turns 2.69 3.36 -0.67 *-21.57 

Sharp left turns 0.13 0.05 0.08 *14.39 

Sharp right turns 0.14 0.02 0.11 *19.25 

Total turns 5.68 7.01 -1.31 *-23.95 

RDI 1.83 1.33 0.50 *7.02 

Intersections 37.77 38.42 -0.65 *3.60 
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Note. Differences are calculated as attributes of dominant routes minus those of lowest WLTS 

routes. Thus, positive t-statistics correspond to higher values for dominant route attributes, while 

negative t-statistics correspond to higher values for lowest WLTS route attributes. * = 

statistically significant at the 5% significance level. 
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Table 7. Attributes of dominant routes compared to those of their corresponding shortest distance 

alternatives (n = 6034) 

Attribute Dominant Route Shortest Distance 

Route 

Difference t-stat 

Sum WLTS 6327.13 7015.55 -688.41 *-28.06 

Mean LTS  2.24 2.53 -0.29 *51.29 

Mean speed (kph) 45.79 46.34 -0.55 *-14.02 

Mean number of lanes 2.70 2.99 -0.29 *-37.69 

Mean AADT 8358.12 9543.73 -1185.61 *-28.65 

Distance (m) 2832.74 2635.80 194.48 *24.83 

Mean elevation (m) 94.39 94.44 -0.04 -1.23 

Mean slope (%) 3.85 4.04 -0.19 *-15.32 

Trail (%) 6.18 2.32 3.86 *30.64 

Major (%) 35.50 49.91 -14.40 *-41.39 

Minor (%) 57.76 47.94 9.81 *30.24 

MCOS (%) 1.14 1.23 -0.08 -1.70 

LCOS (%) 1.14 1.25 -0.11 *-2.52 

HCOS (%) 1.65 4.27 -2.61 *-28.15 

SBR (%) 10.16 8.82 1.33 *9.33 

PMURT (%) 7.29 4.41 2.87 *19.73 

BL (%) 39.38 27.16 12.22 *40.94 

Number of segments 8.96 7.07 1.88 *21.94 

Left turns 2.72 2.69 0.03 1.19 

Right turns 2.71 2.22 0.48 *15.87 

Sharp left turns 0.13 0.04 0.08 *14.72 

Sharp right turns 0.15 0.03 0.11 *20.20 

Total turns 5.73 5.00 0.72 *12.79 



M.Sc. Thesis – Rajveer Ubhi       McMaster – School of Earth, Environment & Society 
 

27 

 

RDI 1.36 1.25 0.11 *11.04 

Intersections 38.77 37.03 1.73 *10.34 

Note: Differences are calculated as attributes of dominant routes minus those of shortest distance 

routes. Thus, positive t-statistics correspond to higher values for dominant route attributes, while 

negative t-statistics suggest higher values for shortest distance route attributes. * = statistically 

significant at the 5% significance level. 
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Table 8. Attributes of lowest WLTS routes compared to those of their corresponding shortest 

distance alternatives (n = 6034) 

Attributes Shortest 

Distance Route 

Lowest 

WLTS 

Route 

Difference t-stat 

Sum WLTS 7015.55 5351.06 1663.22 *81.02 

Mean LTS 2.53 1.95 0.58 *108.32 

Mean speed (kph) 46.34 44.78 1.56 *50.23 

Mean number of lanes 2.99 2.53 0.58 *74.34 

Mean AADT 9543.73 7525.34 2018.39 *39.67 

Distance (m) 2635.80 2859.43 -224.18 *-70.04 

Mean elevation (m) 94.44 94.62 -0.18 *-8.54 

Mean slope (%) 4.04 4.01 0.03 *3.23 

Trail (%) 2.32 6.34 -4.01 *-39.24 

Major (%) 49.91 15.59 34.33 *110.41 

Minor (%) 47.94 77.94 -30.00 *-100.30 

MCOS (%) 1.23 1.01 0.21 *5.12 

LCOS (%) 1.25 1.58 -0.33 *-6.03 

HCOS (%) 4.27 2.25 2.03 *24.19 

SBR (%) 8.82 9.40 -0.58 *-4.68 

PMURT (%) 4.41 11.57 -7.16 *-51.73 

BL (%) 27.16 36.43 -9.27 *-39.70 

Number of segments 7.07 11.09 -4.02 *-32.66 

Left turns 2.69 3.55 -0.86 *-31.67 

Right turns 2.22 3.36 -1.14 *-34.29 

Sharp left turns 0.04 0.05 -0.01 -0.65 

Sharp right turns 0.03 0.02 0.01 1.11 

Total turns 5.00 7.00 2.00 *-35.54 

RDI 1.25 1.33 -0.08 *-13.79 

Intersections 37.03 38.76 -0.73 *-10.94 
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Note: Differences are calculated as attributes of shortest distance routes minus those of the 

lowest WLTS routes. Thus, positive t-statistics correspond to higher values for the shortest 

distance route attributes, while negative t-statistics suggest higher values for lowest WLTS 

route attributes. * = statistically significant at the 5% significance level. 

 

 

Figure 5. Example of a dominant route, lowest WLTS route, and shortest distance route between 

a hub pair. 

Table 9. Descriptive statistics for Figure 5 

Type of Route Distance 

(m) 

Major (%) Minor (%) Mean LTS WLTS 

Shortest Distance Route 1534  59 41 2.5 3835 

Lowest WLTS Route 1580 6 93 2.1 3318 

Dominant Route 1588 61 38 2.3 3652 
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Of the 25 attributes compared between dominant routes and shortest distance routes, all but 3 were 

statistically significant at the 0.05 significance level – the exceptions being MCOS, mean elevation 

and left turns (Table 7). Dominant routes are 7% longer than shortest distance routes. The mean 

route directness index (RDI) of dominant routes is larger than that of shortest distance routes. RDI 

measures the efficiency and circuity of a route by calculating the ratio of a route’s distance to the 

straight-line distance between its origin and destination (Lu et al., 2018). The mean RDI values of 

dominant routes and shortest distance routes are 1.36 and 1.25, respectively indicating that routes 

are 36% and 25% longer than the straight-line distances between hubs. Similar to findings from 

Lu et al. (2018), this means that dominant routes are, on average, 11% less efficient than 

corresponding shortest distance routes. Additionally, shortest distance routes have statistically 

fewer unique road segments (7.07) and cross fewer intersections (37.03). Likewise, the number of 

right turns (2.22) and total turns (5) of shortest distance routes are statistically lower than dominant 

routes. 

Dominant routes are characterized by significantly lower WLTS (6327.13) compared to their 

shortest distance (7015.55) counterparts. As expected, the mean speed (46.34 kph), mean number 

of lanes (2.99), and AADT (9543.73 vehicles/24 hours) of shortest distance routes are significantly 

higher than those for dominant routes. The average slope of shortest distance routes is 4.04%, 

suggesting shorter routes are achieved through somewhat steeper slopes. The proportion of major 

roads (49.91%) along shortest distance routes is statistically greater than dominant routes while 

the proportions of minor roads (47.94%) and trails (2.32%) are statistically lower. Concerning the 

use of bicycle infrastructure between dominant routes and shortest distance routes, it is more likely 

for HBS users to choose routes with longer paved multi-use recreational trails, signed on-street 

bike routes, and bike lanes instead of the shortest distance alternative between an OD hub pair. 

Of the 25 attributes compared between shortest distance routes and lowest WLTS routes, all but 2 

were statistically significant at the 0.05 significance level – the exceptions being sharp left turns 

and sharp right turns. Though WLTS routes are, on average, over 200 meters longer than their 

shortest distance counterparts, their AADT is significantly lower at 7525 vehicles/24 hours 

compared to 9544 vehicles/24 hours. This is to be expected as the proportion of major roads, which 

experience higher levels of daily traffic, along shortest distance routes is significantly higher than 

the proportion of minor roads. In terms of perceived cyclist safety, all other road attributes and 
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route characteristics compared significantly favor lowest WLTS routes, suggesting that shortest 

distance routes are not the safest routes. In other words, the shortest distance between an OD hub 

pair could be the most stressful. The large differences in attributes are further emphasized as only 

2% of shortest distance routes are equivalent to lowest WLTS routes, suggesting that the two types 

of routes are the least equivalent among the three types of routes compared. 

To summarize, the findings suggest that while HBS users favor bicycle infrastructure, they do not 

choose to minimize their overall level of traffic stress by choosing the lowest WLTS routes 

between OD hub pairs. Likewise, minimizing distance is not their sole consideration as only 13% 

of dominant routes are also shortest distance routes. When comparing attributes between dominant, 

lowest WLTS, and shortest distance routes, HBS users prefer traveling longer distances on major 

roads, which have higher speeds, more bike lanes, and higher AADT, cycling across fewer 

intersections, using bike lanes or signed on-street bike routes along higher traffic stress roads, 

taking fewer turns, and cycling below slopes of 4%. Cycling in Hamilton, especially for utilitarian 

trips, requires the use of major roads, accessways, and large connector streets that provide critical 

links between origins and destinations. Preferred bicycle infrastructure such as bike lanes and 

signed on-street bike routes are found predominately along major roads in Hamilton. Additionally, 

located along such roads are popular cyclist destinations. In this case, the built environment may 

influence cyclist route choice, as preferred bicycle infrastructure and the destination of most trips 

are located on high traffic stress roads, explaining why dominant routes are characterized by higher 

traffic stress than their lowest WLTS counterparts. 

6. Conclusion 

Level of Traffic Stress (LTS) is a four-level classification system that classifies the stress 

experienced by a cyclist on road segments and at intersections. Based on road attributes and 

whether cyclists ride in mixed traffic, on cycling infrastructure, or on segregated paths, each road 

segment is categorized into LTS scores ranging from 1 to 4. Researchers and municipalities have 

adopted LTS over other classification methods as it is a simple, data-driven approach requiring 

little input, and is relatively easy to implement (Griswold et al., 2018; Harvey et al., 2019; Ralph 

& Von Hagen, 2019). Though most studies have used LTS to assess cycling connectivity, 

accessibility, and safety, very little research has been undertaken that uses LTS to understand the 

travel behavior of cyclists. Past research by Crist et al. (2019) compared the distance between low 
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stress, shortest, and observed cycling routes, but user bias, a small sampling size, and a lack of 

analyzing other route predictors of traffic stress limited their findings. To address this research 

gap, this study used an entire year’s worth of GPS trajectories from users of a bike share system 

to analyze cyclists’ route choices. A GIS-based map-matching algorithm was used to produce 

routes between OD hub pairs, and a new method for identifying dominant routes between OD hub 

pairs was introduced, building on past research from Lu et al. (2018). Additionally, a novel 

impedance attribute based on LTS and segment length called Weighted Level of Traffic Stress 

(WLTS) was developed to measure the overall traffic stress of a route between cycling origins and 

destinations, which, in this study, corresponded to bike share hub pairs. By comparing dominant 

routes to lowest WLTS and shortest distance alternatives, this study identified route attributes that 

could contribute to cyclists’ route choices. 

Only 9% of dominant routes chosen by HBS users are lowest WLTS routes. Additionally, only 

13% of dominant routes are shortest distance routes. This suggests that HBS users do not choose 

routes to minimize only traffic stress or distance traveled. In other words, dominant routes are not 

the least stressful routes in a network. Instead, users likely choose dominant routes taking into 

consideration a combination of several attributes. While the findings of this study show that 

dominant routes and lowest WLTS routes have similar distances, the former have higher posted 

speed limits, more lanes, and AADT. Dominant routes are characterized by major roads followed 

by minor roads. The fact that HBS users prefer traveling longer distances on major roads is likely 

influenced by the greater availability of preferred cycling infrastructure such as bike lanes and 

signed on-street bike routes on such roads compared to minor roads. Moreover, although paved 

multi-use recreational trails reduce traffic stress, on average a very small percentage of a route 

takes place on such infrastructure because, in the study area, it is quite peripheral to the locations 

of bike share hubs. The number of unique road segments, intersection crossings, and total turns on 

dominant routes are less than those pertaining to lowest WLTS routes. Hub-to-hub dominant routes 

are 11% less efficient than their corresponding shortest distance routes, suggesting that shortest 

distance routes are not the optimal choice for HBS users. Additionally, since only 2% of shortest 

distance routes are equivalent to lowest WLTS routes, the two types of routes are the least 

equivalent between all routes compared. This suggests shortest distance routes are not the safest 

routes, as the shortest distance between an OD hub pair may be the most stressful. By choosing 

dominant routes over shortest distance routes, HBS users increase their travel distance by 7% and 
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decrease traffic stress by 11%. When compared to lowest WLTS routes, HBS users choose to 

increase traffic stress by 15% while decreasing travel distance by only 1%. A possible explanation 

for such behavior is that popular cyclist destinations including schools, recreational facilities, 

businesses, and stores, are located along major roads characterized by higher traffic stress. 

The validity of the LTS attribute developed for each road segment of the cycling network depends 

on the accuracy of the data available and the assumptions made for missing data. As mentioned in 

section 3.2, it was assumed that all bicycle infrastructure is not adjacent to parking lanes, bike 

lanes are not frequently blocked, and that the width of infrastructure, regardless of type, is 1.5-

meters wide in accordance with Hamilton’s Master Cycling Plan (City of Hamilton, 2009). The 

implication of these assumptions is that WLTS could be over or underestimated compared to the 

true traffic stress of each route. This can be overcome by incorporating missing data into the 

cycling network. GPS devices inherently contain a margin of error when reporting locations. 

Though routes with unrealistic distances (300m) from either hub pair were removed, the HBS GPS 

tracking units are accurate to within a 10m horizontal diameter. Though over and undershooting 

the origin or destination hubs by 10m for any particular trip could affect the WLTS of that route, 

it was assumed that by removing all start and end links of a route within a 25m buffer of all OD 

hub pairs, GPS inaccuracies would be overcome. While efforts were made to incorporate unofficial 

links into the cycling network according to GPS data and manual editing, it is possible that some 

links were missed. The assumption to assign multi-directional travel on the cycling network was 

made because cyclists are not constrained by the same level of regulation as automobile travel. 

One issue that affects further interpretation of the results is the absence of demographic data. It 

has been shown in other studies that route choice decisions are influenced by the characteristics of 

cyclists (e.g., age, gender, income, cycling experience) (Winters et al., 2010; Dey et al., 2018; 

Vidana-Bencomo et al., 2018) 

While this study provides an alternative method to identify and extract dominant routes from a 

large dataset of trips between origins and destinations, its primary contribution to the cycling 

literature is the introduction of a new impedance attribute, Weighted Level of Traffic Stress 

(WLTS), to measure the overall traffic stress of routes. While dominant routes and WLTS are used 

to explore the route choices of HBS users in an effort to better understand their behavior, the 

concepts can be used to further understand the route choices of cyclists in general. By identifying 
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the spatial distribution of dominant routes, city planners could make changes to specific network 

segments that are part of existing popular cycling routes. In other words, the goal would be to 

make existing routes safer by adding new or improved cycling infrastructure to them. In fact, 

network segments could be prioritized for improvement by aggregating the usage frequencies of 

all dominant routes. In this case, multiple routes would be improved at once. However, this may 

result in a limited improvement to the overall level of traffic stress along a route if the posted speed 

limit is more than 40 kph. As shown in this study, dominant routes in Hamilton tend to follow 

major roads that have speed limits much greater than 40 kph. WLTS routes, on the other hand, 

offer another alternative for adding or improving cycling infrastructure as they tend to follow 

minor roads at a cost of an increase of 1% travel distance, on average. It could be that reducing 

traffic stress on the parts of such routes with higher levels of traffic stress, at least in the case of 

Hamilton, is a more effective solution than focusing on dominant routes if the goal is to minimize 

traffic stress in a cycling network. Further improving an already safer route may induce traffic 

along that route by diverting traffic from other routes, including dominant routes, and generating 

new traffic. It is also important to note that the results of this study are for one bike share program 

– Hamilton Bike Share. Future work should focus on comparing dominant routes to WLTS routes 

in different cities and exploring the underlying attributes that influence cyclists’ route choices. In 

this way, it can be determined the extent to which the findings in this study are generalizable. 

7. Dissemination  

Copenhagen has increasingly embraced the benefits of cycling as 36% of all commuter 

destinations can be reached by bicycle. Over 80% of the Danish population uses a bicycle for 

utility cycling (Neilsen et al., 2013). Since 1996, cycling in the city has gradually increased as data 

on cycling trends is collected using surveys and publicly shared through bi-annual cycling 

indicators. Cyclist user groups and stakeholders are frequently consulted by the municipality on 

cycling conditions. The municipality also leverages digital technologies by inviting cyclists to 

submit electronic suggestions for improving urban design to reduce cycling inconveniences 

(Neilsen et al., 2013). As a result, Copenhagen is one of the leaders in cycling across the world 

(Neilsen et al., 2013). A similar approach to cycling can be adopted by the City of Hamilton to 

increase public engagement and help steer decision-making for bicycle infrastructure projects 

(Desjardins et al., 2021). Additionally, publicizing local research made available to decision-

makers may promote stronger advocacy campaigns for better planning and cycling infrastructure. 
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To the knowledge of the author, this study is the first to develop a digital deliverable using ArcGIS 

to summarize and publicly share key findings, visualize level of traffic stress for the City of 

Hamilton, and develop an online survey to promote engagement between the cycling community 

and municipality. 

ArcGIS StoryMaps is a web-based application that can be used to share maps, images, 

applications, and surveys. The digital architecture makes it easy to share and host content publicly 

(Esri, 2021). For this study, an ArcGIS StoryMap titled Level of Traffic Stress and Dominant 

Routes was created. It is separated into the following sections: Background, Methods, Results, 

Infrastructure, Policy, Collaboration, Conclusion, References. The first three sections summarize 

the objective of this study, LTS network development for the City of Hamilton, route analysis 

using WLTS, and key findings. Also embedded in the story map is a web application developed 

using ArcGIS Web AppBuilder called LTS Hamilton. ArcGIS Web AppBuilder includes widgets 

and pop-ups to display, analyze, and edit data on any web browser (Esri, 2021). LTS Hamilton is 

an interactive web application developed to visualize LTS along major and minor roads. Road and 

bicycle infrastructure data for this application were downloaded from the City of Hamilton’s Open 

Data Portal in June 2021. Widgets on the top ribbon and left corner can be used to: change the 

basemap, turn the LTS network on or off, view the legend, and share the application. The pop-up 

functionality allows users to view additional road characteristics of each road segment by clicking 

on it (e.g., speed limit (kph), bicycle infrastructure, number of lanes) (Figure 6). The City of 

Hamilton can use the web-based LTS network to plan new bicycle infrastructure projects along 

road corridors categorized with high traffic stress. The LTS network in the web application can 

also be regularly updated with new road and bicycle infrastructure data to best reflect the most up 

to date datasets available from the city. Additionally, LTS Hamilton can be used to visualize 

individual routes between hub pairs and compare route characteristics between dominant, lowest 

WLTS, and shortest distance routes. Using the Filter widget, a start and end hub can be selected 

from a drop-down list. This filters through over 40,000 routes from this study and displays the 

relevant routes on the map (Figure 7). The Chart widget can then be used to compare route 

characteristics on a bar graph (e.g., weighted level of traffic stress, percent minor roads, weighted 

average speed) (Figure 8). Route visualization and comparison using LTS Hamilton is a novel 

approach to accessing data used in a study, allowing users to further analyze cycling patterns and 

cyclist route preferences for individual hub pairs. Access to cycling routes through LTS Hamilton 
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may influence additional research across the city. Also integrated into the web application and 

accessible through the story map under the Collaboration section is an online survey. The survey 

was built using ArcGIS Survey 123, a form-centric add-on for collecting data through a web or 

mobile device (Esri, 2021). The survey is developed to capture cyclist demographics, experiences, 

and opinions using multiple choice questions, short answers, images, and maps. Cyclists can plot 

points on a map to specify areas that they perceive have the most traffic stress across the city. 

Points can also be captured and geolocated using a smartphone or tablet with GPS services enabled. 

Short descriptions and images can be attached to each point to further explain how the current or 

lack of cycling infrastructure and policy causes traffic stress. Optionally, cyclists can suggest ways 

to improve cycling safety and reduce traffic stress at the identified points. Survey results are 

automatically transferred to LTS Hamilton and can be toggled on or off from the map view. The 

pop-up for each point includes responses to the survey questions and any images taken by the 

respondent (Figure 9). By integrating a cycling survey into LTS Hamilton, the web application 

promotes engagement between cyclists and the municipality. It functions as a platform for sharing 

cycling experiences and opinions while also collecting geolocated data that the municipality can 

use to plan new cycling infrastructure projects based on public suggestions.  

 

Figure 6. Pop-up functionality using LTS Hamilton 
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Figure 7. Route visualization using LTS Hamilton 

 

 

Figure 8. Route comparison using LTS Hamilton 
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Figure 9. Visualizing survey results using LTS Hamilton 

LTS Hamilton was developed to publicly share key findings from this study. It includes an 

interactive web based LTS network and dominant, lowest WLTS, and shortest distance routes. The 

integrated survey invites cyclists to submit electronic suggestions for improving cycling safety and 

reducing traffic stress. Similar to Copenhagen, the City of Hamilton can leverage the experiences 

and opinions of cyclists, collected using LTS Hamilton, to gradually improve cycling and to 

develop new cycling infrastructure that can impact more of the cycling community. An alternative 

to developing new cycling infrastructure projects may be to better rank proposed cycling 

infrastructure projects. The Transportation Planning Section within the City of Hamilton is 

responsible for managing the implementation of new cycling projects. Scheduling of these projects 

depends on project rankings and opportunities for coordination with other projects. As of 2018, 

there are 202 ranked cycling infrastructure projects that the city intends to implement (City of 

Hamilton, 2018). The Infrastructure section of the story map uses multiple web maps to detail how 

dominant routes developed in this study can be used as an alternative ranking system to rank 

proposed cycling infrastructure projects listed in the City of Hamilton’s Master Cycling Plan. This 

approach prioritizes bicycle infrastructure on road segments most used by cyclists. As a result, 

proposed cycling infrastructure projects can have a faster impact on more of the cycling 

community.  



M.Sc. Thesis – Rajveer Ubhi       McMaster – School of Earth, Environment & Society 
 

39 

 

Findings from studies can be publicly shared as community deliverables through simple and 

interactive applications like ArcGIS StoryMaps and Web AppBuilder. The dynamic text, media 

and embedded content used within these applications may be the preferred platform to share 

research with the public. Engagement and communication between cyclists, city planners, and 

researchers through digital deliverables can become a routine practice that may help improve 

cycling planning and infrastructure.  
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