
Camera Based Deep Learning Algorithms

with Transfer Learning in Object Perception

Camera Based Deep Learning Algorithms

with Transfer Learning in Object Perception

By

YUJIE HU, B.ENG.

A Thesis Submitted to the School of Graduate Studies

in Partial Fulfillment of the Requirements for the Degree

Master of Applied Science

McMaster University

© Copyright by Yujie Hu, September 2021

Master of Applied Science (2021)

McMaster University (Mechanical Engineering)

Hamilton, Ontario

TITLE: Camera Based Deep Learning Algorithms

with Transfer Learning in Object Perception

AUTHOR: Yujie Hu

B.Eng. (McMaster University)

SUPERVISORS: Dr. Saeid Habibi, Dr. Ryan Ahmed

NUMBER OF PAGES: xiv, 150

ii

Abstract

The perception system is the key for autonomous vehicles to sense and understand

the surrounding environment. As the cheapest and most mature sensor, monocular

cameras create a rich and accurate visual representation of the world. The objective of

this thesis is to investigate if camera-based deep learning models with transfer learning

technique can achieve 2D object detection, License Plate Detection and Recognition

(LPDR), and highway lane detection in real time. The You Only Look Once version 3

(YOLOv3) algorithm with and without transfer learning is applied on the Karlsruhe

Institute of Technology and Toyota Technological Institute (KITTI) dataset for cars,

cyclists, and pedestrians detection. This application shows that objects could be

detected in real time and the transfer learning boosts the detection performance. The

Convolutional Recurrent Neural Network (CRNN) algorithm with a pre-trained model

is applied on multiple License Plate (LP) datasets for real-time LP recognition. The

optimized model is then used to recognize Ontario LPs and achieves high accuracy.

The Efficient Residual Factorized ConvNet (ERFNet) algorithm with transfer learning

and a cubic spline model are modified and implemented on the TuSimple dataset

for lane segmentation and interpolation. The detection performance and speed are

comparable with other state-of-the-art algorithms.

iii

Acknowledgements

First and foremost, I would like to express my sincere gratitude to my supervisors

Dr. Saeid Habibi and Dr. Ryan Ahmed. Dr. Saeid Habibi provided me with an

opportunity to pursue my Master’s degree in the autonomous driving research field.

This journey opened a whole new world for me to automotive AI technology. His

technical support and patient guidance were essential to the completion of this thesis.

I also appreciate Dr. Ryan Ahmed for his valuable advice from modern industries.

His contributions of time and ideas made my Master experience more productive.

My sincere thanks also go to Cam Fisher, Zeina Tawakol, Nicole McLean, and

my colleagues. Without their cooperation in the CMHT lab or remotely, my overseas

studies and work would not be motivated and smooth as it is now.

Last but not the least, I would like to thank my families and T.Q for their endless

love and support during this difficult time of the COVID-19 pandemic.

iv

Contents

Abstract iii

Acknowledgements iv

List of Figures xii

List of Tables xiii

Declaration xiv

1 Introduction 1

1.1 Background Overview . 1

1.2 Research Motivation and Objective 3

1.3 Lab Vehicle Sensors Setup . 4

1.4 Thesis Contributions and Outline . 5

2 Autonomous Vehicle Perception and Cameras 7

2.1 Autonomous Driving . 7

2.1.1 Systems of Autonomous Vehicles 8

2.1.2 Computer Vision in Autonomous Vehicles 9

v

2.1.3 Datasets for Autonomous Vehicles 10

2.2 Perception . 12

2.2.1 Sensors . 12

2.2.2 Computing Devices . 15

2.3 Camera Types in Autonomous Vehicles 16

2.3.1 2D Cameras . 16

2.3.2 3D Cameras . 17

2.3.3 Event Cameras . 20

3 Deep Learning and Perception Applications 21

3.1 Deep Learning Neural Network Basics 21

3.1.1 Artificial Neural Network (ANN) 22

3.1.2 Convolution Neural Network (CNN) 23

3.1.3 Recurrent Neural Network (RNN) 25

3.1.4 Activation Functions . 26

3.2 Image-based Object Detection . 28

3.2.1 Anchor-based Detectors . 28

3.2.2 Anchor-free Detectors . 33

3.2.3 Datasets and Evaluation Metrics 34

3.2.4 Deep Learning Libraries and Transfer Learning 37

3.3 License Plate Detection and Recognition 39

3.3.1 Deep Learning Algorithms . 39

3.3.2 Datasets . 41

3.4 Lane Detection . 42

vi

3.4.1 Deep Learning Algorithms . 42

3.4.2 Datasets and Evaluation Metrics 45

4 Object Detection 48

4.1 YOLOv3 Algorithm . 49

4.2 KITTI Data Mining . 56

4.3 Experiments and Evaluation . 58

4.3.1 Keras YOLOv3 . 59

4.3.2 PyTorch YOLOv3 . 66

4.3.3 Comparisons and Discussions 72

5 License Plate Detection and Recognition 76

5.1 Multiple Datasets . 77

5.2 License Plate Detection . 80

5.3 License Plate Recognition . 82

5.3.1 Models Comparison . 83

5.3.1.1 Tesseract OCR Engine 83

5.3.1.2 CRNN . 87

5.3.1.3 Attention OCR . 93

5.3.2 Optimization Experiments . 97

5.3.3 Ontario License Plate Recognition 101

5.3.3.1 Camera Setup . 102

5.3.3.2 Ontario License Plates Collection and Pre-processing 103

5.3.3.3 Results and Discussions 104

vii

6 Lane Detection 105

6.1 Algorithm Explanation . 106

6.1.1 Segmentation-based CNN . 106

6.1.2 Curve Interpolation . 111

6.2 TuSimple Data with Transfer Learning 113

6.2.1 CULane Pre-trained Model 113

6.2.2 TuSimple Pre-processing . 114

6.3 Experiments and Optimization . 116

6.3.1 Loss Function Optimization 118

6.3.2 Outliers Optimization . 121

6.4 Evaluation and Discussions . 123

7 Conclusion and Future Work 126

7.1 Conclusion . 126

7.2 Future Work . 129

A Object Detection Supplementary 132

A.1 PyTorch YOLOv3 Hyperparameters 132

A.2 PyTorch YOLOv3 Training and Validation 135

A.3 Keras YOLOv3 vs PyTorch YOLOv3 136

References 137

viii

List of Figures

1.1.1 Autonomous driving system architecture 2

1.3.1 Sensors on CMHT lab vehicle . 5

2.3.1.1 Monocular camera models . 16

2.3.2.1 Depth of stereo vision . 18

2.3.2.2 ToF camera and depth estimation 19

2.3.2.3 RGB-D camera configuration . 19

2.3.3.1 Disk rotation captured by standard and event cameras 20

3.1.1.1 Deep artificial neural network . 22

3.1.1.2 Neuron mechanism . 23

3.1.2.1 Convolutional layer . 24

3.1.2.2 Pooling layer . 24

3.1.2.3 Fully connected layer . 25

3.1.3.1 RNN expansion . 26

3.1.4.1 Activation functions . 27

3.2.1.1 Feature pyramids models . 31

3.2.1.2 Algorithms performance in COCO dataset 33

3.2.3.1 IoU . 36

ix

3.3.1.1 Text recognition algorithms architectures 40

3.4.2.1 Lanes annotation . 46

4.1.1 YOLOv3 network architecture . 50

4.1.2 DarkNet-53 architecture . 51

4.1.3 Residual block basic structure . 51

4.1.4 YOLOv3 output attributes . 53

4.1.5 Binary Cross-Entropy loss curves . 55

4.1.6 Non-Maximal Suppression example 56

4.2.1 KITTI data format description . 57

4.3.1.1 Flow chart of anchors generation 60

4.3.1.2 YOLOv3 anchors computation . 61

4.3.1.3 KITTI image adjustment for YOLOv3 input 62

4.3.1.4 Adaptive learning rate . 65

4.3.2.1 Genetic algorithm for hyperparameters optimization 67

4.3.2.2 L2 vs IoU . 69

4.3.2.3 IoU metric weakness . 70

4.3.2.4 Mosaic in the training batch 0 . 71

4.3.3.1 Keras YOLOv3 Average Precision (AP) 74

4.3.3.2 PyTorch YOLOv3 Average Precision (AP) 74

5.1.1 AOLP scenarios . 78

5.1.2 OpenALPR samples . 78

5.1.3 UFPR-ALPR vehicles . 79

5.1.4 Stanford Cars dataset sample . 80

x

5.2.1 License plate detection FP and FN examples 81

5.3.1.1.1 Flow chart of Tesseract OCR engine architecture 83

5.3.1.1.2 Otsu’s thresholding visualization 84

5.3.1.1.3 Connected Component Analysis 85

5.3.1.1.4 Word segmentation . 86

5.3.1.2.1 Feature maps to sequence . 88

5.3.1.2.2 Structures of original RNN and LSTM 89

5.3.1.2.3 LSTM architecture in CRNN . 90

5.3.1.2.4 CTC decoder . 91

5.3.1.2.5 Synth dataset . 92

5.3.1.3.1 Encoder-decoder structure . 93

5.3.1.3.2 Attention mechanism . 95

5.3.1.3.3 Encoder-decoder architecture with attention 96

5.3.2.1 Image augmentation approaches . 97

5.3.2.2 Image augmentation samples . 98

5.3.2.3 Nearest vs Bilinear vs Bicubic interpolation 99

5.3.3.1.1 Logitech Brio webcam . 102

5.3.3.2.1 Ontario LP samples . 103

5.3.3.3.1 Ontario LP recognition errors . 104

6.1.1.1 Segmentation visualization example 107

6.1.1.2 Dilated convolutions with kernel size 3 x 3 109

6.1.1.3 ERFNet variant . 110

6.1.2.1 Cubic spline boundary conditions 112

xi

6.2.1.1 CULane scenes example . 114

6.2.2.1 TuSimple data scenes and annotations 116

6.3.1 Lane segmentation predictions and interpolations 117

6.3.1.1 Before and after adding the dice loss 119

6.3.1.2 Problem 1: lane ends segmentation 120

6.3.1.3 Problem 2: textures on roads . 120

6.3.2.1 Lane points fitting and residuals . 122

6.3.2.2 Lane detection problem 1 before and after removing outliers 123

6.3.2.3 Lane detection problem 2 before and after removing outliers 123

A.1.1 Hyperparameters optimization in experiment 1 133

A.1.2 Hyperparameters optimization in experiment 2 134

A.2.1 Training and validation results . 135

A.3.1 Testing results visualization . 136

xii

List of Tables

2.2.2.1 Summary of sensors’ qualification 14

3.2.3.1 Dataset examples for object detection 35

3.2.4.1 Transfer learning implementation 38

4.3.2.1 PyTorch YOLOv3 hyperparameters 71

4.3.3.1 Keras YOLOv3 testing result . 72

4.3.3.2 PyTorch YOLOv3 testing result . 72

5.3.2.1 LP recognition accuracy of image resampling techniques 100

5.3.2.2 Confused alphabets and integers in LP recognition 101

6.1.1.1 ERFNet architecture . 108

6.4.1 TuSimple lane detection testing results 124

6.4.2 State-of-the-art results on TuSimple 125

xiii

Declaration

I hereby declare that I am the sole author of this thesis work, with advice and guidance

provided by supervisors Dr. Saeid Habibi and Dr. Ryan Ahmed. This is a true copy

of the thesis, including any required final revisions, as accepted by the examiners.

And I understand that my thesis may be made electronically available to the public

by McMaster University Libraries Institutional Repository: MacSphere.

xiv

Chapter 1

Introduction

This chapter briefly introduces the background of autonomous vehicles. The research

motivation and objective are described, followed by sensors setup on the lab vehicle.

Finally, the thesis contributions in seven chapters are outlined.

1.1 Background Overview

A fully realized autonomous vehicle is a vehicle capable of sensing the surrounding

environment and operating without human involvement. This concept has been un-

der active research and development since the 1980s and has experienced accelerated

growth in both academia and industry worldwide. One of the key considerations for

the autonomous driving technology is to reduce car accidents in daily life by develop-

ing a vehicle that can drive by itself in all environments. The reason is that around

94% of traffic accidents are due to human errors [1]. After decades of development,

this technology not only could potentially prevent road accidents but also aid in re-

1

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

ducing pollutant emissions. Moreover, it can render driving time more useful and

improve traffic mobility. Furthermore, new industries and opportunities are emerging

such as logistics and shipping, and notably Mobility as a Service (MaaS). About $800

billion per annum in social benefits are expected by 2050 if driverless cars can be

manufactured and applied to markets [1].

The autonomous driving system blueprint is shown in Figure 1.1.1. In terms of

connectivity, self-driving cars can be ego-only systems or connected systems. An ego-

only system is an “ego-car” that refers to an independent autonomous vehicle. A

connected system is also called “vehicle to everything” (V2X), including Vehicle to

Vehicle (V2V), Vehicle to Infrastructure (V2I), and Vehicle to Device (V2D). Due

to the complexity of system design and security concerns, no connected systems are

practical so far. Thus, ego-only systems are the mainstream application. In terms of

algorithm design, two types of design are as follows: modular systems mainly consist

of perception, localization and mapping, planning and decision making, and vehicle

control; end-to-end driving systems work from perception to vehicle control directly.

End-to-end approaches have not yet been fully implemented due to safety concerns.

Figure 1.1.1: Autonomous driving system architecture [1]

2

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

1.2 Research Motivation and Objective

In the autonomous driving system architecture, the indispensable component is the

perception which works as the first stage of autonomous driving. It is intended to

act as a human’s sense, and to collect and process diverse information from the sur-

rounding environment by using different types of sensors. The accuracy of perception

significantly affects the performance of vehicle operations. For example, one Tesla

crash in 2016 was caused by false recognition of a white truck being classified as sky

in perception. Commonly used sensors for perception are cameras, Light Detection

And Ranging (LiDARs), and radars.

Optical cameras collect colorful information and are passive sensors that do not

actively rely on emitted signals and use ambient light without interfering with other

sensors. With advanced computer vision technologies, optical cameras are the most

commonly used devices in autonomous vehicles with the smallest size and lowest

cost. However, in monocular implementations, they have no depth information and

are affected by weather and illumination conditions. Other types of cameras could be

used for complementary capabilities, for instance, infrared (IR) cameras can detect

pedestrians in low light condition.

As further complements to cameras, LiDARs utilize laser emission and reflection

to generate cloud points of surrounding objects with depth information. They are

robust to poor illumination conditions but are affected by severe weather conditions.

They have high accuracy but large size and high cost. Their size and price have been

decreasing in recent years, making them tangible sensors for autonomous operabil-

ity. Radars employ radio waves to capture depth information and are stable under

3

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

different lighting and weather conditions. They have lower accuracy than LiDARs.

With the evolution of Artificial Intelligence (AI) technology, deep learning models

have been widely used in computer vision and natural language processing fields to

generate outputs with high accuracy and fast speed. In addition, transfer learning

technique could improve deep learning algorithms performance by sharing related in-

formation from a pre-trained model in one application domain to another application.

Accordingly, the objective of this thesis is to investigate if camera-based deep

learning algorithms with transfer learning technique can achieve high performance on

three perception tasks in real time:

(i) 2D object detection

(ii) license plate detection and recognition

(iii) highway lane detection

1.3 Lab Vehicle Sensors Setup

Sensors for perception research are installed and operated on a lab vehicle in the

Centre for Mechatronics and Hybrid Technologies (CMHT) which focuses on advanced

automotive technology in its research on autonomous driving, connected vehicles,

electrification, and shared mobility solutions.

On the CMHT lab vehicle, as shown in Figure 1.3.1, optical cameras (CalmCar),

IR camera (FLIR A65), LiDAR (Velodyne HDL-32E), and radar (Delphi ESR) are

installed to work independently and corporately by sensor fusion. For this thesis

research, only the monocular camera (highlighted by a red box in the figure) inside

4

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

the front windshield will be used for image data collection.

Figure 1.3.1: Sensors on CMHT lab vehicle

1.4 Thesis Contributions and Outline

Further to the background overview of autonomous driving that is presented in this

Chapter, a more detailed discussion of research literature is provided in Chapter

2. Chapter 2 reviews autonomous driving, perception system, and camera types.

Chapter 3 provides a literature review of deep learning neural network basics, and

three perception applications: image-based object detection, License Plate Detection

and Recognition (LPDR), and lane detection. The You Only Look Once version 3

5

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

(YOLOv3) algorithm is applied on the Karlsruhe Institute of Technology and Toyota

Technological Institute (KITTI) dataset for the object detection in Chapter 4. The

mechanism of YOLOv3 and the data mining of KITTI are explained in details. The

detection results of Keras and PyTorch version YOLOv3 are evaluated and compared.

Multiple experiments are designed to investigate the impacts of transfer learning and

severe object occlusion/truncation on the detection performance. In Chapter 5, im-

ages are filtered from multiple datasets for the LPDR research. PyTorch YOLOv3

is used for detection and three models are explored for recognition: the Tesseract

Optical Character Recognition (OCR) engine, the Convolutional Recurrent Neural

Network (CRNN) with transfer learning, and the attention OCR without transfer

learning. The CRNN method achieves the best performance so multiple experiments

are then designed to optimize the algorithm. License Plates (LPs) are collected by

a monocular camera on the CMHT lab vehicle and used for Ontario LP recogni-

tion testing via the optimized model. The Efficient Residual Factorized ConvNet

(ERFNet) algorithm with transfer learning and a cubic spline model are analyzed

and optimized for highway lane detection on TuSimple dataset in Chapter 6. The

results are discussed and compared with other state-of-the-art algorithms. Finally,

Chapter 7 concludes the research efforts in this thesis and discusses some future work.

6

Chapter 2

Autonomous Vehicle Perception

and Cameras

This chapter provides a literature review in three aspects: autonomous driving, per-

ception hardware, and camera types used in autonomous vehicles.

2.1 Autonomous Driving

The Society of Automotive Engineers (SAE) generated six levels of driving automa-

tion: level 0 (no automation), level 1 (driver assistance), level 2 (partial automa-

tion), level 3 (conditional automation), level 4 (high automation), and level 5 (fully

autonomous). The current technology has achieved level 3. For example, Honda

launched the world’s first certified level 3 self-driving technology in 2021.

7

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

The benefits of autonomous vehicles include reduction in traffic accidents, trans-

portation costs via ride sharing, and urban CO2 emissions due to less traffic conges-

tion; increase in human activity and parking space. On the other hand, the chal-

lenges consist of artificial intelligence technology development, weather and lighting

conditions, traffic laws in different regions, internet security (malicious hacking and

customers’ information leakage) and software failure.

2.1.1 Systems of Autonomous Vehicles

According to the review paper from Badue et al. [2], a self-driving car has two main

components: the perception system and the decision-making system. The former is

to perceive the surrounding environment with multiple sensors and estimate the state

of the car and its surrounding. The latter is to navigate and control the vehicle’s mo-

tion. The perception system includes localization, obstacle mapping, road mapping,

dynamic objects tracking, traffic sign detection and recognition. The decision-making

system focuses on route planning, motion planning, and control.

The function of each task in two systems are briefly summarized. In perception,

localization is used to estimate the position and orientation of the ego-car; obstacle

mapping is to produce a map that represents the surrounding environment and can

provide guidance for driving in free spaces; road mapping provides information of

roads and lanes; dynamic objects tracking is implemented to track moving things to

avoid collisions; traffic sign detection and recognition are able to detect and recognize

human-defined traffic signs in order to follow traffic laws. In decision making, route

planning is designed to compute an optimized path between start and end points;

motion planning is applied to predict path or trajectory from the current to next

8

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

states of vehicles to understand and decide the driving actions; and control is to

control and actuate vehicles automatically.

2.1.2 Computer Vision in Autonomous Vehicles

One important reason why autonomous vehicles have difficulty in achieving level

5 autonomous driving is that most existing computer vision technologies are not

very accurate and are prone to errors in perception. Robust perception from visual

information is required to reach human-level reliability. Janai et al. [3] provide an

overview of computer vision researches in autonomous driving. Four applied fields

of computer vision techniques are briefly introduced here: object detection, semantic

segmentation, reconstruction, motion and pose estimation.

Object detection is to classify and localize objects in the environment, which is

necessary to avoid accidents. The challenges include the variety of objects’ appear-

ance, occlusion and truncation, distant objects, weather and illumination conditions.

Current computer vision researches involve 2D object detection from images by op-

tical or thermal cameras; 3D object detection from 3D point clouds by LiDARs, or

from 2D images of cameras by extruding 2D predicted bounding boxes to 3D boxes

via depth estimation, or from both LiDAR and camera data via sensor fusion.

Semantic segmentation is to classify each pixel into a class, which is essential for

autonomous vehicles to understand the surroundings, such as identifying lanes from

background. The challenges come from the scene’s complexity, the number and size

of segments, small or occluded objects, varying weather and illumination conditions.

Object segmentation classifies individual object in pixel level so that information of

9

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

object pose and shape can be collected. Road segmentation segments roads or lanes

so that drivable space can be recognized and vehicles could be kept between lanes.

Reconstruction reconstructs 3D models from 2D images to understand the scene

better, and it also benefits the map building of the environment. Stereo reconstruc-

tion technology uses stereo cameras to extract 3D information from 2D images for

the depth estimation. However, the technology could fail in shiny and reflective re-

gions. Multi-view 3D reconstruction technologies are applied for complete 3D scene

reconstruction through images captured from multiple (more than two) viewpoints.

Motion and pose estimation have many research directions as follows. Optical flow

leverages the 2D motion of brightness patterns between two images from monocular

cameras to estimate objects’ motions. It is affected by illumination conditions and

occlusions. Scene flow integrates optical flow and depth information to estimate 3D

motions using stereo cameras. Ego-motion estimation is to estimate the motion and

pose of the car itself by cameras or LiDARs. The estimation has difficulties in rush

hours or large turns of vehicles. Simultaneous Localization And Mapping (SLAM)

simultaneously estimates the location of vehicle and builds the surrounding map. The

main challenge is the large-scale environment mapping in real time.

2.1.3 Datasets for Autonomous Vehicles

The development of self-driving vehicles needs extensive data collected on roads,

therefore, datasets with ground truth annotations perform a key role for algorithms’

training and evaluation. Due to the extreme time consumption of data collection

and pixel-level labeling of images, some synthetic datasets are created, but they may

10

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

lack information compared to the real-world data. Some real-world datasets for au-

tonomous vehicles have been produced and are summarized below.

For objection detection and semantic segmentation, ImageNet [4], PASCAL Visual

Object Classes (VOC) [5], Microsoft Common Objects in Context (COCO) [6], and

Cityscapes [7] are popular datasets. For 3D reconstruction, the Middlebury stereo

benchmark [8], the Middlebury Multi-View Stereo (MVS) benchmark [9] and the

Technical University of Denmark (TUD) MVS dataset [10] are commonly applied.

For motion estimation, the Middlebury flow benchmark [11] and a dataset with 160

diverse real-world sequences of scenes [12] are built for optical flow algorithms. For

tracking, the Performance Evaluation of Tracking and Surveillance (PETS) [13] and

Multiple Object Tracking (MOT) [14] benchmarks are common evaluation tools. The

Karlsruhe Institute of Technology and Toyota Technological Institute (KITTI) Vision

Benchmark [15] is created for all of the above tasks to develop challenging real world

computer vision benchmarks for autonomous driving. In addition, Yin and Berger

[16] present an overview of 27 existing driving datasets in terms of generation time,

size, traffic condition, used sensors, data format, and provided information.

11

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

2.2 Perception

As the first stage of intelligence vehicles, the perception is required to perceive and

understand the surrounding environment in real time accurately. The most important

activities in perception are vehicle detection and tracking, road and lane detection,

traffic sign recognition, and scene understanding. Current challenges are due to com-

puter vision technical level, real-time requirements, and environment complexity, such

as severe occlusion of objects, diversities of lane and road appearances, weather and

lighting conditions.

2.2.1 Sensors

The sensors in autonomous vehicles consist of internal and external types. Internal

sensors measure information of the car itself such as engine temperature and battery

charge. External sensors are also called exteroceptive sensors and measure items of

interest that surround the car such as lanes, vehicles and pedestrians. Rosique et al.

[17] have completed a detailed review of sensors. External sensors will be discussed

in this section in terms of their properties and applications.

Cameras are commonly classified into visible, infrared (IR), and Time-of-Flight

(ToF) categories. Monocular cameras are the most common and the cheapest opti-

cal cameras with single lens and produce 2D color images. Stereo cameras use two

lenses to capture depth information and generate 3D images. Omnidirectional cam-

eras can provide panoramic views to maximize information about the surrounding

environment. Aforementioned visible cameras, are highly affected by lighting, rain,

12

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

snow, or fog conditions. Thermal cameras measure the infrared energy of objects and

create images using infrared radiation. They are not affected by weather or lighting

conditions. ToF cameras are active sensors and employ time-of-flight techniques to

estimate objects’ depth by measuring Near-Infrared (NIR) light signals’ travel time.

LiDARs emit laser waves to compute the distance to objects. A 2D LiDAR with

a single laser beam only collects 2D data; a 3D LiDAR with multiple laser beams can

receive 3D data. Moreover, 3D LiDARs operate with 360 degrees Horizontal Field of

View (HFoV) and 20-45 degrees Vertical Field of View (VFoV), and they can be used

in object detection and 3D mapping. Unlike traditional scanning LiDARs, solid-state

LiDARs are built entirely on a silicon chip with less cost and do not require moving

parts, so they improve the robustness to vibration. Also, in order to change directions,

traditional LiDARs have to be physically moved, re-calibrated, and re-mounted back

onto vehicles; whereas solid-state LiDARs’ directional focus can be adjusted via a

technique called optical phased array. The phased array is a row of transmitters

that change directions of laser beams by adjusting relative phases of signals between

transmitters. A 2D optical phased array can be designed by passing the emitted light

along one axis through a grating array and guiding the light in different directions

along another axis [18]. LiDARs are robust to lighting conditions, and less affected

by various weather conditions. However, typical LiDARs cannot capture the objects’

subtle textures, and their resolutions become sparse with distant objects. Flash

LiDARs can produce detailed object information by illuminating the entire field of

view with a diverging laser beam in a single pulse. Furthermore, Frequency Modulated

Continuous Wave (FMCW) LiDARs can estimate the velocity of objects by splitting

lasers into two portions, only sending one portion to target objects, and measuring

the frequency difference between returned portion and retained portion.

13

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

Radars emit radio waves to calculate the range, angle, or velocity of objects by the

Doppler effect. They have multiple applications: Blind Spot Detection (BSD), Lane

Change Assistant (LCA), Rear Cross Traffic Alert (RCTA), Forward Cross Traffic

Alert (FCTA). Radars work well in all weather conditions; but are limited by their

lack of accuracy due to low resolution, restricted FoV, and errors due to bouncing

of signals. Ultrasonic sensors are used to measure short distances to obstacles, and

commonly found in parking assist systems. They have low cost and are robust in

dusty or humid environments. However, they produce errors by having blind zones.

Global Positioning Systems (GPS) provide the absolute location information of ve-

hicles using the Global Navigation Satellite System (GNSS) network and are applied

in localization and path planning.

Camera, 3D LiDAR, radar, and ultrasonic are evaluated according to FoV, oper-

ation range, accuracy, frame rate, resolution, color perception, sensor size, weather

affections, maintenance, visibility, price by Rosique et al. [17] in Table 2.2.2.1. The

qualification scores 0-3 refer to none, low, medium, and high. According to the table,

different types of sensors can be selected depending on customized applications.

Table 2.2.2.1: Summary of sensors’ qualification [17]

Ultrasonic Radar 3D LiDAR Camera
Rotating Solid state VIS IR ToF

FoV 1 2 3 2 3 3 2
Range 1 3 3 3 2 3 2

Accuracy 1 2 3 3 3 2 2
Frame rate 2 2 2 2 2 3 3
Resolution 1 1 2 2 3 1 1

Colour perception 0 0 1 2 3 1 1
Size 1 1 2 1 1 1 1

Weather affections 1 1 2 2 3 1 3
Maintenance 2 1 2 1 2 2 2

Visibility 2 1 3 2 2 2 2
Price 1 2 3 1 1 3 2

14

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

2.2.2 Computing Devices

In addition to perception sensors, real-time computing platforms are also critically

important. Graphics Processing Units (GPUs) are designed for graphical processing

tasks such as the NVIDIA GTX 1080 Ti and RTX 2080 Ti. Also, several paral-

lel programming platforms such as Compute Unified Device Architecture (CUDA)

[19] and Open Computing Language (OpenCL) [20] have been developed for GPUs.

A Field-Programmable Gate Array (FPGA) [21] is an electronic circuit that builds

reconfigurable digital circuits. It is more energy-efficient than CPUs or GPUs. More-

over, Tensor processing units (TPUs) by Google [22] is specially designed for deep

learning algorithms.

15

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

2.3 Camera Types in Autonomous Vehicles

Cameras have diverse applications in each stage of autonomous driving. The Charge-

Coupled Device (CCD) [23] and the Complementary Metal Oxide Semiconductor

(CMOS) [23] are current dominant technologies for image sensing. In this section,

the mechanisms and utilization of these camera technologies are explained.

2.3.1 2D Cameras

Monocular cameras imitate one eye in human vision and collect data at high resolution

via a single image sensor. They are the most mature sensor technology with the lowest

cost and smallest size, compared to other exteroceptive sensors. Two frequently used

models are perspective and fisheye lens cameras. Perspective cameras convert spatial

points from objects onto a 2D plane through perspective projection (Figure 2.3.1.1a).

Fisheye lens cameras are designed to increase the field of view by deflecting light and

distorting images (Figure 2.3.1.1b). Monocular cameras are commonly implemented

in computer vision applications.

(a) Perspective camera projection [24] (b) Fisheye camera projection [25]

Figure 2.3.1.1: Monocular camera models

16

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

IR cameras detect the infrared radiation of objects and focus the infrared energy

onto a senor chip that contains pixels, and convert energy to electronic signal at

each pixel. After computation, a color map of object temperature is generated as a

thermal image. The main types are cooled and uncooled infrared detectors. Cooled

IR cameras use a cryogenically-cooled system to cool to 0 degrees C or lower, in

order to hide their own infrared emissions. Uncooled IR cameras have no cooling

unit and operate at ambient temperature. Cooled IR cameras are more sensitive to

temperature and produce higher image quality, but are more expensive and heavier

than uncooled IR cameras. As a complementation to optical cameras, IR cameras

can better detect pedestrians and animals in darkness or fog weather.

Omnidirectional cameras create a 360 degree Field of View (FoV) in the horizontal

plane. Some types of omnidirectional cameras are described as follows: dioptric

cameras [26] combine different shape of lenses; catadioptric cameras [26] use one

standard camera with different mirrors (e.g. parabolic, hyperbolic) for the reflection

of light; polydioptric cameras [26] overlap FoV from several cameras to generate

panoramic images. Omnidirectional cameras can be used for traffic monitoring around

an ego-car and mapping.

2.3.2 3D Cameras

3D cameras can measure the depth of objects and generate 3D information about the

surrounding environment. Applications include 3D object detection, motion tracking,

3D reconstruction, Simultaneous Localization And Mapping (SLAM).

17

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

Stereo cameras act like a pair of human eyes with two separated image sensors.

This type of cameras calculates the depth of an object by finding the disparity (pixel

location difference) between the left and right cameras’ images for the same point.

According to Figure 2.3.2.1, Ol and Or are optical centers of the two cameras, Pl

and Pr are target points in two images, T is the baseline of stereo vision system,

and f is the focal length of the cameras. Then, xl
f

= X
Z

and xr
f

= X−T
Z

, and thus,

Z (depth) = f×T
xl−xr

= f×T
d

where d (disparity) = xl − xr.

Figure 2.3.2.1: Depth of stereo vision [27]

Optical Time of Flight (ToF) methods are divided into direct ToF (dToF) and

indirect ToF (iToF). The dToF measures time directly, such as LiDAR (pulsed light).

The iToF computes time indirectly by measuring the phase shift between emitted and

reflected signals, such as Continuous-Wave modulated light ToF (CW-ToF) camera

in Figure 2.3.2.2a. For the depth calculation of iToF, as shown in Figure 2.3.2.2b,

d (distance) = c×t
2×π × arctan(q3−q4

q1−q2), where c refers to the speed of light, t refers to

the length of the signal, and q1 to q4 are the amount of electric charge for each phase.

18

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

(a) CW-ToF camera [28] (b) Depth measurement [29]

Figure 2.3.2.2: ToF camera and depth estimation

A RGB-D (“D” refers to “depth” or “distance”) camera uses structured light

technology to predict the depth of objects. It consists of one RGB camera, one IR

projector, and one IR camera. For example, in Figure 2.3.2.3, the RGB camera (cam-

era 1) is responsible for collecting color images, the IR emitter projects a predefined

pattern of light, and the IR camera (camera 2, also called depth camera) receives

data of the deformed pattern on the surface of the object. Depth is computed via the

disparity between patterns before and after deformation.

Figure 2.3.2.3: RGB-D camera configuration [30]

19

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

2.3.3 Event Cameras

Different from standard frame-based cameras, event cameras (also called neuromor-

phic vision sensors) are frameless and operate each pixel independently and asyn-

chronously. They only record pixel-level brightness changes as sparse “events” (ON

or OFF) due to movement and do not store intensity information. One event has

three outputs: the pixel coordinate (x, y), the timestamp of event t, and the polarity

of event p (+ for brightness increase, - for brightness decrease). Event cameras do

not suffer from motion blur, latency, and low dynamic range. Figure 2.3.3.1 illus-

trates that when a disk rotates with high speed, a frame-based camera has motion

blur issue, but an event-based camera works well. There is increasing research on the

use of event-based vision [31] for object detection and tracking, object and motion

segmentation, optical flow estimation, 3D reconstruction, and SLAM.

Figure 2.3.3.1: Disk slow and fast rotation captured by standard and event cameras
[32]

20

Chapter 3

Deep Learning and Perception

Applications

This chapter provides a literature review of deep learning neural network basics, and

three perception applications: image-based object detection algorithms, license plate

detection and recognition methods, and lane detection approaches.

3.1 Deep Learning Neural Network Basics

Artificial Intelligence (AI) is a research field that enables computer systems to mimic

human intelligence processes. Machine learning is a subfield of AI that automates

data analysis via various computer algorithms. Deep learning is a method of machine

learning that extracts information from inputs via deep neural networks. With the

rapid development of deep learning, diverse neural network types are emerging. In

this research, three types of neural networks are reviewed: Artificial Neural Network

21

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

(ANN), Convolution Neural Network (CNN), and Recurrent Neural Network (RNN).

ANN mimics the biological neural networks in human brains. CNN and RNN are

more complex neural networks and extensively used in Computer Vision (CV) and

Natural Language Processing (NLP) fields, respectively. In this thesis, CNNs are

used in all projects, and RNNs are applied in the license plate recognition research.

3.1.1 Artificial Neural Network (ANN)

As Figure 3.1.1.1 is shown, an ANN consists of one input layer, multiple hidden layers,

and one output layer. Any layer between input and output layers is known as a hidden

layer. ANN is also referred to as Feed-Forward Neural Network (FFNN), because of

the way information processes through the network from its input to its output layer

in a sequential forward direction. Inside each layer, the circle unit is called a neuron.

A common strategy in ANN (referred to as fully-connected or dense) is to connect a

neuron in a current layer to all neurons in the next layer.

input

layer

hidden

layer 1

hidden

layer 2

hidden

layer 3

output

layer

Figure 3.1.1.1: Deep artificial neural network

22

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

Figure 3.1.1.2 represents the structure of a single neuron. It works as a com-

putational function that combines the sum of all weighted inputs and a bias term:∑
i

wixi+ b. Inside the function, x, w, and b denote to input signal, weight, and bias.

The weight parameter w controls the influence of an input signal on the output, and

the bias constant b is applied to offset the neuron computation result. An activation

function f is utilised to control the transformation of the neuron information before

being passed to the next layer.

Figure 3.1.1.2: Neuron mechanism

3.1.2 Convolution Neural Network (CNN)

ANN works well in tabular and text data, but for image data, it has a limited capa-

bility and effectiveness. Use of ANN in image processing requires high dimensionality

as the intensity of each pixel in an image is used as an input to the network. In

addition, ANN loses the spatial relation in adjacent pixels after flatting of an image

to a column of pixels as per the above. To maintain the spatial structure, CNN is

designed to process the image data using convolutional layers (denoted by CONV),

pooling layers (denoted by POOL), and fully connected layers (denoted by FC).

In a CONV, as an example, Figure 3.1.2.1 shows how a 3x3 kernel (also named

filter or window) is used to scan a 6x6 input image and convolution operations are

23

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

applied to generate a 4x4 output which is called feature map (also named activation

map). The kernel starts at the top left of the input and moves one step each time

from left-to-right and top-to-bottom.

Figure 3.1.2.1: Convolutional layer

The POOL is designed to compress the spatial information and down-sample the

size of feature maps. It is typically applied after a CONV. The commonly used types

are max pooling and average pooling. For the max pooling in Figure 3.1.2.2a, a

2x2 filter (dashed box) scans a 4x4 feature map and the max value from the region

covered by the filter is selected as an output. The ultimately generated 2x2 feature

map contains the most prominent features from the previous 4x4 feature map. The

process is the same for average pooling, except that the average value is calculated.

(a) Max pooling (b) Average pooling

Figure 3.1.2.2: Pooling layer

24

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

The FC is an added structure in CNN depending on applications, and it is usually

implemented in the end of CNN as output layer. In Figure 3.1.2.3, a 2x2 feature map

is flatten to a 4x1 layer and all neurons are fully connected with next layer neurons.

Figure 3.1.2.3: Fully connected layer

3.1.3 Recurrent Neural Network (RNN)

Both ANN and CNN have fixed input and output lengths, and they do not memo-

rize previous processed information. However, sequential data (e.g. sentences) has

arbitrary lengths, and output prediction needs historical information. Thus, RNN is

designed to have memory and to solve this problem by feeding previous information

back into a model via recurrent connections.

RNN processes sequential data in a time series. In Figure 3.1.3.1, the expression

to the left of the equal sign represents a RNN in time step t. The input Xt is fed into

the RNN as a vector by encoding the input text using a word embedding algorithm

such as Word2Vec [33]. The generated hidden state ht is a “memory” of the RNN

and is sent back into the RNN as an additional input for next time step operation.

The ht is equal to f(UXt + Wht−1 + b). U is a shared weight for input X across all

time steps, and W is also a shared weight for hidden state h. Besides, b is a bias

term. And the function f is an activation function.

25

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

By unfolding the expression to the right of the equal sign in the figure, it clearly

demonstrates that the hidden states h0, h1, h2, ..., ht−1 are passed to the RNN at

time steps 1, 2, 3, ..., t as previous information to predict future information.

Figure 3.1.3.1: RNN expansion

3.1.4 Activation Functions

As mentioned in ANN, a neuron cell computation z =
∑
i

wixi + b is sent as an input

to an activation function f(z) to reshape the neuron output. Four commonly used

activation functions are introduced here.

The first one is the sigmoid function [34] sigmoid(z) = 1
1+e−z and it is also called

the logistic function. As shown in Figure 3.1.4.1, it returns values in the range of

0 to 1, so the function is often used for binary classification. The second one is the

softmax function [35] softmax(zi) = ezi∑K
j=1 e

zj
, i = 1, ..., K. K in the function refers

to the number of classes in a data. The softmax function normalizes the output

to the range of 0 to 1, and all softmax(zi) sum to 1. Thus, it is widely used for

multi-class classification. The third one is the tanh function [36] tanh(z) = ez−e−z

ez+e−z

that outputs values in the range of -1 to 1. The function is also plotted in the figure

below. Many RNNs use the tanh function because it can generate both positive

and negative outputs that could increase or decrease values of hidden states in the

26

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

process of sequential information propagation. The last one is the Rectified Linear

Unit (ReLU) function [37] ReLU(z) = max(0, z). In Figure 3.1.4.1, ReLU outputs

zero when z is negative and z itself when z is positive. It is simple and fast for matrix

computation operations, and commonly used in both CNN and RNN applications.

Figure 3.1.4.1: Activation functions

27

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

3.2 Image-based Object Detection

Image-based object detection is applied for 2D object classification and localization.

Traditional models first search regions which potentially contain objects using slid-

ing windows, and then extract features by hand-engineered feature descriptors such

as Histogram of Oriented Gradients (HOG) [38]. They finally distinguish objects

by classifiers, such as Supported Vector Machines (SVM) [39] or Deformable Part-

based Model (DPM) [40]. Traditional methods are inefficient, time-consuming, and

have limited learning capacity. Today, with the significant evolution of deep learn-

ing algorithms, robust deep object detection networks have been widely implemented

which can learn complex features more efficiently. The overall architecture of object

detectors includes: input (images), backbone (network for feature extraction), neck

(optional part for feature map collection from different stages), and head (class and

bounding box predictions for objects). The latest detectors are categorized into two

groups according to the type of head: anchor-based and anchor-free as follows.

3.2.1 Anchor-based Detectors

Anchors (also named priors) are boxes with predefined widths and heights based

on the sizes of objects in a dataset. Instead of randomly predicting the dimensions

of bounding boxes, anchors can be used as references to accelerate bounding boxes

regression. Anchor-based detectors dominate the object detection field, and produce

the top detection performances in common benchmarks. They overlay a large amount

of predefined anchor boxes with varying aspect ratios, scales, and spatial locations

on an image. The classes of objects are predicted and the anchors with the highest

28

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

scores are selected for the final bounding boxes prediction around objects.

Two-stage algorithms are region proposal based, the first stage is to identify the

Regions of Interest (RoIs), and the second stage is to classify and localize objects.

A RoI is a region in an image that may contain an object and it is represented as a

rectangular box. One-stage algorithms are regression based, they avoid using RoIs and

map features directly for object classification and localization. Two-stage detectors

achieve better precision due to multiple times anchors’ refinement. However, they

result in longer inference time and more complex architectures. One-stage detectors

refine anchors once in order to enable real-time and more straightforward structures.

In order to be competitive in accuracy as two-stage detectors, one-stage detectors

rely on more dense anchor boxes in an image.

The following two-stage algorithms are introduced: Region-based Convolutional

Neural Network (R-CNN) family and Region-based Fully Convolutional Network (R-

FCN, 2016). R-CNN family includes R-CNN (2014), fast R-CNN (2015), and faster

R-CNN (2015). Anchors were first used in faster R-CNN, but R-CNN and fast R-CNN

will be mentioned as the family members. Besides, mask R-CNN (2017) was invented

for instance segmentation and mesh R-CNN (2019) was proposed for 3D object mesh

generation from a 2D image. They are out of the object detection scope and will not

be reviewed here. The following one-stage algorithms are discussed: You Only Look

Once (YOLO) family, Single Shot MultiBox Detector (SSD, 2016), and RetinaNet

(2017). YOLO family contains YOLO (2016), YOLOv2 (2017), and YOLOv3 (2018).

YOLO does not use anchors, but it will be explained in the YOLO family.

R-CNN [41] creates RoIs using the selective search method [42] and sends each

RoI to individual CNN for object classification and bounding box regression. N RoIs

29

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

would need N CNNs for feature extractions. Fast R-CNN [43] accelerates the image

processing speed significantly by generating RoIs and feature maps in parallel via the

selective search method and one CNN, then projecting RoI boxes onto feature maps

and utilizing the projected regions of feature maps for object detection. Compared

with fast R-CNN, faster R-CNN [44] replaces the selective search method by a CNN

named Region Proposal Network (RPN) for RoIs generation. The RPN takes feature

maps from the first CNN as inputs and uses predefined anchors to predict RoIs.

R-FCN [45] improves faster R-CNN by replacing fully connected layers with fully

convolutional layers in the architecture to retain the spatial information.

YOLO [46] is one of the earliest real-time algorithms. It divides an input image

into S x S (S = 7) grids and each grid cell predicts one object by generating bounding

box coordinates, object existence confidence, and class probabilities. The architec-

ture of YOLO is a variant of GoogleLeNet [47] and contains 24 convolutional layers

followed by 2 fully connected layers. YOLO has high localization errors because it

initially random guesses bounding boxes in the training process. In addition, YOLO

has poor performance in small object detection and it fails to detect crowded objects

because of the rule that one grid cell focuses on one object.

SSD [48] starts to use manually designed anchors to improve object localization

and leverage multi-scale feature maps to improve small object detection. In a CNN,

convolutional layers in a forward pass reduce spatial dimension and resolution of fea-

ture maps. YOLO detects objects using the final layer feature map (Figure 3.2.1.1b:

single feature map), the small spatial dimension and low resolution of the feature

map result in poor performance in small object detection. SSD predicts objects using

multiple layers’ feature maps (Figure 3.2.1.1c: pyramidal feature hierarchy) and this

strategy can detect small objects better. For the algorithm architecture, SSD uses

30

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

VGG-16 [49] as the backbone for feature extraction and multiple convolutional layers

as the head for object classification and localization.

Figure 3.2.1.1: Feature pyramids models [50]

YOLOv2 [51] is the second version of YOLO and improves both object detection

accuracy and prediction speed. In terms of accuracy improvement, some methods are

adopted as follows: the batch normalization method normalizes outputs of activation

functions per layer in the network to stabilize the training process; images with higher

resolution are used for the network training; 5 anchors are predefined for object

localization and their shapes are decided by the K-means clustering technique; the

algorithm head consists of convolutional layers rather than dense layers; similar to

the pyramidal feature hierarchy method in SSD, YOLOv2 applies a method named

passthrough that reshapes an earlier layer’s feature map and concatenates it with the

final layer’s feature map to achieve multi-scale object detection; multi-scale training

is attempted by randomly choosing input image size every ten batches and resizing

the training network. In terms of speed improvement, YOLOv2 customizes a light-

weighted backbone named DarkNet-19 that is composed of 19 convolutional layers

and it reduces the floating point operations when running the neural network.

31

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

RetinaNet [52] has two key innovations: Featurized Pyramid Network (FPN) and

focal loss. The FPN (Figure 3.2.1.1d) is a backbone to detect objects at different

scales, which is more accurate than the pyramidal feature hierarchy in SSD. Its struc-

ture combines low-resolution and semantically strong features with high-resolution

and semantically weak features via bottom-up and top-down pathways and lateral

connections, thus, it has rich semantics at all levels. The focal loss is a type of loss

functions that compute errors between predicted and true object classes and loca-

tions. It is designed to solve the issue of extreme class imbalance by adding more

weights for classes which have a small number of objects or are hard to be detected,

and assigning less weights for classes which have more objects or are easier to be

detected. RetinaNet achieves higher accuracy but lower speed than YOLOv2.

YOLOv3 [53] has some updates based on YOLOv2 and more details will be de-

scribed in Chapter 4. The main changes are as follows: 9 anchors are used rather

than 5 anchors; the backbone replaces DarkNet-19 by DarkNet-53 that consists of 53

convolutional layers; due to the deep neural network performance degradation prob-

lem, ResNet-alike structure is added into the backbone to improve its performance;

FPN-alike structure is applied into the head for three-scale object detection (small,

medium, large). Overall, YOLOv3 performs better than previous versions and SSD,

similar to RetinaNet but several times faster, as shown in Figure 3.2.1.2.

32

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

Figure 3.2.1.2: Algorithms performance in COCO dataset [53]

3.2.2 Anchor-free Detectors

Anchor boxes have multiple disadvantages. First, all predefined anchors are used to

predict bounding box for an object, but only one anchor is finally responsible for the

bounding box optimization and generation, so the process decelerates the training

speed. Next, anchors’ design may result in numerous parameters that take a long

time and much complexity for training. Furthermore, anchors’ aspect ratios and sizes

depend on datasets, so they have to be re-designed if datasets are different.

Anchor-free detectors directly detect objects without predefined anchor boxes.

They predict bounding boxes around objects using keypoints or centers. Keypoints

are points that can determine a box, such as two corners of a box. Centers refer to the

centers of objects. The keypoint-based methods detect objects using keypoints and

then predict the boundary of objects by grouped points. The center-based methods

predict the center of an object and the width and height of a bounding box, or the

distance from the center to four sides of a bounding box. So far, most anchor-free

detectors are one-stage algorithms and some of them are briefly introduced below.

33

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

CornerNet [54] detects an object as a pair of keypoints (the top-left corner and

bottom-right corner), then groups them to form the final predicted bounding box.

CenterNet [55] improves the precision and recall of CornerNet by detecting each ob-

ject as a triplet (top-left, center, bottom-right). YOLO is a center-based method, it

predicts centers of objects in the grid cells and widths and heights of bounding boxes.

Fully Convolutional One-Stage (FCOS) [56] predicts centers of objects and four dis-

tances (center-to-left, center-to-right, center-to-top, center-to-bottom) to boundaries

of bounding boxes. Overall, most current anchor-free detectors may not achieve real-

time inference speed (no speed information mentioned in papers).

3.2.3 Datasets and Evaluation Metrics

For generic object detection, four popular datasets are summarized: PASCAL VOC

[5], ImageNet [4], MS COCO [6] and Open Images [57]. Liu et al. [58] compared

these datasets as reproduced in Table 3.2.3.1.

PASCAL VOC is a benchmark dataset for object detection with standardized

evaluation metric and annual competitions. Its object categories include aeroplane,

bicycle, bird, boat, bottle, bus, car, cat, chair, cow, dining table, dog, horse, motor-

bike, person, potted plant, sheep, sofa, train, TV/monitor. ImageNet Large Scale

Visual Recognition Challenge (ILSVRC) is derived from ImageNet and is much more

extensive than PASCAL VOC in terms of the number of images and objects. Ima-

geNet1000, a subset of ImageNet with 1.2 million images and 1000 object categories,

provides a benchmark for the ILSVRC image classification challenge. MS COCO con-

tains complex scenes in a natural environment, and objects are labeled as instance

segmentation to provide more accurate evaluation. The COCO object detection chal-

34

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

lenge includes two tasks: object detection using bounding box or pixel-level instance

segmentation. The Open Image Challenge Object Detection (OICOD) is derived from

Open Images, and is one of the largest publicly available object detection datasets.

Its annotation contains bounding boxes and segmentation masks.

Table 3.2.3.1: Dataset examples for object detection [58]

Name
Total

images
Categories

Images per
category

Objects
per image

Image size
Started

year
PASCAL

VOC
11,540 20 303-4087 2.4 470x380 2005

ImageNet
14

millions+
21,841 - 1.5 500x400 2009

MS
COCO

328,000+ 91 - 7.3 640x680 2014

Open
Images

9
millions+

6000+ - 8.3 varied 2017

Three frequently used criteria are precision, recall, and F1 score. One commonly

used metric is Average Precision (AP) for each class of objects. Mean Average Pre-

cision (mAP) is computed to represent the performance over all object categories.

All parameters related to the object detection evaluation are explained below:

• Intersection over Union (IoU): a number that measures the overlap of a predicted

and ground truth box (Figure 3.2.3.1), IoU = Area of Overlap
Area of Union

.

• Confidence threshold β: a number that indicates the confidence that an object

is detected.

• True Positive (TP): correct detection (IoU ≥ threshold).

• True Negative (TN): correct identification of non-object regions.

• False Positive (FP): miss-classification or incorrect localization

(IoU ≤ threshold).

• False Negative (FN): missed detection.

35

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

• Precision: the ratio of correct detection and all predictions,

precision = TP
TP + FP

.

• Recall: the ratio of correct detection and all ground truths, recall = TP
TP + FN

.

• F1 score: the harmonic mean of the precision and recall in order to balance

them, F1 = 2× Precision × Recall
Precision + Recall

.

• Average Precision (AP): the area under the precision-recall curve,

AP =
∫ 1

0
p(r)dr.

• mean Average Precision (mAP): the average of all APs of objects’ classes.

Figure 3.2.3.1: IoU

Precision and recall are sensitive to the confidence threshold and IoU. Confidence

threshold β determines how likely a bounding box contains an object. Predicted

boxes with scores below the value of β will be ignored, otherwise they will be kept

for evaluation later. The selection of β is a trade-off between false positive and false

negative. IoU measures how well the predicted box matches the ground truth box.

The remaining predicted boxes with IoU values beyond the threshold are set as true

positive, otherwise they are false positive.

36

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

3.2.4 Deep Learning Libraries and Transfer Learning

TensorFlow was the first and most used open-source library for deep learning, but its

low-level API is difficult for users to create deep learning models directly. In recent

years, Keras and PyTorch libraries have become more popular due to their simpler

usage interfaces than TensorFlow.

Keras is a high-level API on top of TensorFlow, Theano, and CNTK. It is the

most user-friendly framework to learn and operate for beginners. PyTorch stands

between Keras and TensorFlow. It has more flexibility and control than Keras, and

it has less complicated programming than TensorFlow. For building architectures of

algorithms, Keras is more accessible to setup because it directly provides sequential

and functional API to define neural network layers; functions have to be defined

by users in PyTorch classes, but the overall structure is cleaner and more elegant.

For training, a model is simply trained using “model.fit()” with built-in parameters

in Keras; but multiple steps need to be implemented in PyTorch: the gradients

initialization, the forward pass, the backward pass, the loss computation, and the

weights update. For computing speed, Keras is written in python and supports CPU

by default, it could enable GPU if Tensorflow-GPU is installed; PyTorch is written

in python, C++, CUDA and supports GPU for every tensor and NumPy (stands

for Numerical Python, a python library worked for arrays and matrices) variable, so

PyTorch is faster than Keras when running code.

In deep learning neural networks, the beginning layers extract general features

such as edges and the final layers extract specific features. It would be more beneficial

and efficient if the information of general features from one application can be shared

37

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

with another that is different but in a related application. Therefore, transfer learning

technique is proposed that at first trains a network with a dataset from one application

and saves the pre-trained weights, then transfers the learned features to another

application by training the same algorithm with another dataset and using the pre-

trained weights as the initial weights. Transfer learning works well if the transferred

features have high similarity between the base and target datasets.

Network training benefits from transfer learning when the dataset size is not large,

the overfitting issue and training time can be significantly reduced. How to best use

transfer learning depends on the target data size and the similarity between base and

target datasets. According to Table 3.2.4.1, if a large target data is similar to the

base data, all network layers are fine-tuned; if a large target data is different from

the base data, the model is trained without transfer learning; if a small target data

is similar to the base data, higher layers of the model are fine-tuned; if a small target

data is different from the base data, lower layers of the network are fine-tuned.

Table 3.2.4.1: Transfer learning implementation

Data similarity −→

Data size
x Train model from scratch Fine tune the whole pre-trained model

Fine tune the lower layers Fine tune the higher layers

38

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

3.3 License Plate Detection and Recognition

License Plate Detection and Recognition (LPDR) combines object detection tech-

nology for plate detection and Optical Character Recognition (OCR) technology for

plate recognition. LPDR can be used for vehicle tracking in autonomous driving. Its

challenges mainly come from two parts: plate and environment variations. Plates

have different sizes, colors, fonts in different countries and regions; plates’ characters

could be standardized or customized with different length and formats; plates’ qual-

ities (clear or blur) are varying due to vehicles’ motion, camera resolution, distance

from the ego-car; plates can also be occluded, tilted, installed with frame and painted

with other patterns. Environment challenges include bad weather (e.g. rainy, snowy)

and illumination conditions (e.g. cloudy, cars’ headlights).

3.3.1 Deep Learning Algorithms

Deep learning methods contain two main stages: (i) License Plate (LP) detection; and

(ii) recognition. The LP detection can be achieved using object detection algorithms,

which have been briefly summarized in the previous section. Thus, only deep learning

algorithms for image text recognition will be introduced here.

Optical Character Recognition (OCR) was primarily invented to scan and recog-

nize text in images or printed documents using traditional computer vision techniques.

It has developed maturely since the 20th century, but is still challenging in an uncon-

strained environment, including illumination, different fonts, geometrical distortion,

object motion in captured images. Therefore, deep learning algorithms are applied

39

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

to this field to improve the unstructured text recognition.

Most algorithms are segmentation-free, because the performance of character seg-

mentation is sensitive to illumination, shadows, complex background, and noise.

Two famous text recognition algorithms are Convolutional Recurrent Neural Net-

work (CRNN) with Connectionist Temporal Classification (CTC) [59] and attention

OCR [60]. As shown in Figure 3.3.1.1a, in the architecture of CRNN with CTC,

images are fed into a CNN to extract features, and then the feature sequence from

the CNN is fed into a RNN to calculate the probability of each character class, finally

CTC is used to decode and generate the output of text. In Figure 3.3.1.1b, attention

OCR also has a CNN for feature extraction and RNN for feature encoding. Instead

of using CTC for decoding, a visual attention model is applied as a decoder to predict

the output. More details of these two algorithms will be explained in Chapter 5.

(a) CRNN architecture [59] (b) Attention OCR architecture [60]

Figure 3.3.1.1: Text recognition algorithms architectures

40

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

3.3.2 Datasets

Most publicly available LP datasets are collected from traffic monitoring (captured

images from the front-top of cars), toll station (captured images from the rear-top of

cars) or parking lots (captured images close to the stationary cars). Most of them

have no annotations of LPs’ locations (bounding boxes) on vehicles and numbers (text

labeling). There are very limited published datasets for autonomous driving scenarios.

One reason is that significant time is required to collect a large number of distinct LPs

from moving cars on roads. Another reason is that some jurisdictions have privacy

laws about gathering and using personal information including LP numbers.

Only a few datasets, whose LPs are applicable for autonomous driving research

and consist of English letters and digits, are summarized here. Application Oriented

License Plate (AOLP) [61] is a Taiwanese dataset that was created in 2013. It con-

tains images for access control, road patrol, and traffic law enforcement applications.

And images are collected in various locations/time/traffic/weather conditions. Only

the traffic law enforcement subset is suitable to be used here and it includes total 757

images with various resolutions. Open Automatic License Plate Recognition (Ope-

nALPR) [62] was generated in Europe, Brazil and United States in 2016. Only parts

of US license plates are appropriate for the autonomous driving scenario, and it con-

tains 222 images with various resolutions. Federal University of Paraná - Automatic

License Plate Recognition (UFPR-ALPR) [63] is a Brazilian dataset that was pub-

lished in 2018. All images are captured by moving cars with 1920 x 1080 resolution.

It has a total of 150 images for buses, cars, or motorcycles at different locations.

41

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

3.4 Lane Detection

Lane detection is a computer vision research application in the Advanced Driver-

Assistance Systems (ADAS) and autonomous driving. Lane markings are classified

and their locations (coordinates) are inferred in the detection process. It is helpful in

operations involving lane keeping, departure warning, lane changing, and trajectory

planning decision. Real-time lane detection is vital for full autonomous driving. At

present, cameras are the dominant type of sensors used for lane detection, because

the visual cues from cameras are the same as the human eye’s capture, and it has the

lowest cost compared with other sensors. However, vision-based algorithms still have

various challenges, related to low illumination, bad weather, variability of road surface

conditions, shapes/types/quality of lane markings, shadows, and severe occlusion by

driven vehicles.

3.4.1 Deep Learning Algorithms

Deep learning algorithms can learn high-level features, handle various conditions, or

even work in real time. Most algorithms are in two stages, including lane segmen-

tation and lane fitting. The fitting stage is primarily affected by the segmentation

stage. Few methods are one-stage in order to achieve end-to-end learning. Two-stage

algorithms are summarized into three categories: segmentation-based CNN, Genera-

tive Adversarial Network (GAN), a combination of CNN and RNN. The architectures

of one-stage algorithms are mainly regression-based CNNs. Some popular models will

be discussed below, some of them are designed for specific problems.

42

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

Segmentation is a computer vision research topic that partitions each image into

multiple segments to understand the surrounding environment better. It is divided

into two types: semantic segmentation and instance segmentation. Semantic seg-

mentation groups pixels into defined object classes and marks objects in the same

class using the same color. Instance segmentation segments objects individually and

assigns a unique color for every single object. It is a combination of object detection

and semantic segmentation. Both two types of segmentation have applications in lane

detection research.

Segmentation-based CNN structures can be a fully convolutional network (e.g.

Spatial CNN (SCNN) [64] and Vanishing Point Guided Network (VPGNet) [65]), an

encoder-decoder (e.g. LaneNet [66]), and a base CNN with attention mechanism (e.g.

Self Attention Distillation (SAD) [67]). To address the occlusion issue, SCNN rein-

forces the spatial information of scenes via inter layer propagation. It learns features

by fully convolutional layers along four directions (downward, upward, rightward,

leftward) in input images to generate semantic segmentation masks and then cubic

splines are applied for lane fitting. VPGNet focuses on the challenge of weather scenes

(i.e. rain and night). It predicts vanishing points of lanes so that these points can

guide the convergence of lane patterns. Point sampling, clustering, and lane regres-

sion techniques are exploited in curve fitting for different lane types. In LaneNet,

the encoder extracts high-level features from images and the decoder predicts lane

instance segmentation. Subsequently, in order to alleviate the problem of road surface

slope change, a second neural network named HNet is trained to dynamically estimate

the transformation matrix coefficients for the “bird-eye view” of images and lanes are

fitted via 3rd order polynomials on the ortho view of images before re-projecting

them back to the original images. SAD adds activation-based attention maps into a

43

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

base CNN model to refine the extracted features quality. It improves the semantic

segmentation performance without increasing the inference time of lane detection.

Finally, cubic splines are also used for lane fitting like SCNN.

GAN [68] contains a Generator (G) and a Discriminator (D). G learns to generate

plausible data and deceive D. D learns to distinguish the fake data from real data

(ground truth) and penalize the difference between them. In lane detection, GAN

uses its generator to predict lanes, and its discriminator to evaluate the detection

performance (e.g. Embedding Loss GAN (EL-GAN) [69]). EL-GAN is designed to

improve the performance of conventional segmentation-based CNNs. CNNs classify

lanes by calculating class probabilities for each single pixel independently in an image,

thus, the detected lanes may not achieve high qualities of thinness, smoothness, and

consistency. Instead, EL-GAN trains its network with embedding loss to minimize

the difference between predicted lane segments and ground truth labels (thin poly-

lines connected lane points). Its predicted lanes are thinner and smoother than that

by segmentation-based CNNs. Presently, no published code for GAN algorithms can

be found and used online.

CNN and RNN can work together as independent networks or can be fused as

a whole architecture. Li et al. [70] pre-processed an input image as a sequence of

image parts, next, a CNN was applied for feature extraction from each part, then a

RNN was used to predict lanes from the features along time series. Most deep learning

methods work on single images in their training process. The lack of information from

single frames results in partial or false direction detection. Zou et al. [71] proposed

an algorithm that trains one current image with multiple previous sequential images.

The architecture is a “sandwich” structure: the encoder of a CNN extracts features

from multiple continuous frames, next, the feature maps are fed into a RNN as a time-

44

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

series sequence for analysis, and the output is fed into the decoder of the CNN for

lane segmentation. No curve fitting models are implemented in these two algorithms.

Regression-based CNNs directly regress lanes at the end of network, such as CNN

with regression [72] and differentiable least-squares fitting [73]. Most two-stage meth-

ods are based on semantic segmentation and are not effective because if the generated

lane segments are fragmented, the lane fitting performance will be degraded. Thus,

CNN with regression was proposed as an end-to-end network to improve lane detec-

tion’s robustness. The network architecture has an encoder part for feature extraction

followed by fully connected layer branches for lane points coordinates and lane classes

prediction. However, there is no detailed description on how the outputs are generated

in the algorithm and no open-source code has been provided online. The differentiable

least-squares fitting algorithm generates weight maps for each lane via the Efficient

Residual Factorized ConvNet (ERFNet) [74], then all weighted pixel coordinates are

fed into a least-squares fitting model to output parameters (a, b, c) of the best inter-

polating curve (parabolic curve y = ax2 + bx+ c) per lane. An incomplete code was

published for this model [73].

3.4.2 Datasets and Evaluation Metrics

Some small-scale lane detection datasets are published for applications such as the

Cambridge-driving Labeled Video Database (CamVid) [75] with 367 training, 101 val-

idation, and 233 testing images; Caltech Lanes Dataset [76] with total 1225 frames;

and KITTI-road [77] with 289/290 training/testing images. However, they are not

suitable for deep neural network learning. Here, three popular large-scale annotated

datasets with evaluation metrics will be concisely summarized as follows: TuSimple

45

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

[78], CULane [64], and BDD100K [79]. In addition, unlike object detection annotation

using bounding boxes, lanes are labeled as pixel coordinates at equally spaced inter-

vals. Figure 3.4.2.1 visualizes labeled lane points by green color circles and equally

spaced intervals by horizontal red color lines.

Figure 3.4.2.1: Lanes annotation [78]

TuSimple lane dataset has been collected on US highways in the San Diego area

at different daytimes, consisting of 3626 training and 2782 testing images with 1280

x 720 resolution. There are no severe weather conditions and heavy occlusion. Most

frames contain between 2 and 4 lanes, the rest of frames have 5 lanes. The evaluation

metrics include accuracy, False Positive (FP) rate, and False Negative (FN) rate.

Accuracy is the ratio of the number of correct points and the number of ground

truth points per image (acc =
∑

im
Cim

Sim
). FP rate is equal to the number of wrongly

predicted lanes divided by the total number of predicted lanes (FP =
Fpred

Npred
). FN

rate is the division of the number of missed lanes in prediction and the total number

of ground truth lanes (FN =
Mpred

Ngt
).

46

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

CULane dataset has been collected by six vehicles driven in urban, rural, and

highway areas of Beijing, China. It accommodates 88880 training, 9675 validation,

and 34680 testing 1640 x 590 resolution images. It has nine environment scenarios:

normal, crowded, night, no line, shadow, arrow, dazzle light, curve, and crossroad.

There are no more than 4 lanes in each frame. It uses precision, recall, and F1 score as

evaluation metrics. Under an assumption that lane width is 30 pixels (no explanation

about the reason of lane width value setting in the paper), the Intersection-over-Union

(IoU) between ground truth and prediction is calculated as the threshold. If IoU is

equal or larger than 0.5, the predicted lane becomes True Positive (TP), otherwise,

the prediction becomes False Positive (FP). A missed lane is viewed as False Negative

(FN). Hence, precision = TP
TP+FP

, recall = TP
TP+FN

, and F1 = 2× precision×recall
precision+recall

.

BDD100K dataset was gathered from New York, Berkeley, San Francisco, Bay

Area in the United States under various weather conditions and at different times. It

labeled not only lane markings, but also road objects, drivable areas, and full-frame

segmentation. Compared with previous two datasets’ annotation, BDD100K is much

more complex as it classifies lanes by solid or dashed, double or single, white, yellow,

or other colors. It has a total of 100K images with 1280 x 720 resolution and 70K of

the data is used for training. In this dataset, some images contain more than 5 lanes.

BDD100K does not have its own lane detection benchmark.

47

Chapter 4

Object Detection

2D object detection in autonomous driving is used for classifying objects categories

and localizing their positions in each video frame over time. Objects’ information

helps autonomous navigation to avoid traffic collisions. As reviewed in Chapter 3

Section 2.1, the top-performing deep learning algorithms include two-stage models

(e.g. R-CNN family) and one-stage models (e.g. YOLO family). In comparing these

two types of algorithms, one-stage models have lower accuracy but are faster in speed

to achieve real-time inference than two-stage models. Therefore, one-stage methods

are more applicable to the autonomous driving domain.

As one of the most prominent real-time object detection algorithms, YOLOv3

is implemented on the KITTI dataset for car, pedestrian, and cyclist classification

and localization. Also, the results of two different algorithm versions based on Keras

and PyTorch deep learning frameworks with NVIDIA GeForce RTX 2080 Ti GPU

support are compared. Moreover, multiple experiments are designed to investigate

the impacts of transfer learning technique and severe object occlusion/truncation

48

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

condition on the object detection performance.

4.1 YOLOv3 Algorithm

YOLOv3 is the deep learning algorithm used in this 2D object detection project. In

this section, the details of the original YOLOv3 architecture are explained, including

the algorithm backbone for feature extraction and the algorithm head for object clas-

sification and localization. In addition, the loss function that measures the detection

error between predictions and ground truths is discussed. Furthermore, how the final

bounding box for an object is filtered out from all predictions is analyzed.

YOLOv3 is an anchor-based algorithm and designed for multi-scale object detec-

tion. It makes detection at three scales for small, medium, large objects. And each

scale uses three bounding boxes in different shapes for prediction. Thus, YOLOv3

creates a total of 9 anchors as references using the K-mean clustering method and pre-

dicts bounding boxes for objects by adjusting anchors’ attributes (box center, width,

height) in the training process. As shown in Figure 4.1.1, the main components of

YOLOv3 architecture are the feature extractor (grey region) and the feature detector

(yellow, purple, blue regions). The extractor (also named backbone) has 75 layers

and the detector (also named head) has 31 layers; hence, there are a total of 106

layers in the model.

49

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

Figure 4.1.1: YOLOv3 network architecture [80]

DarkNet-53 is the backbone of YOLOv3 and “53” refers to its 53 convolutional

layers. Its architecture is shown in Figure 4.1.2. Except the final average pool layer,

fully connected layer, and softmax layer, all rest layers (highlighted in the figure) are

used in YOLOv3 to extract image features. The main components are convolutional

blocks (only contains convolutional layers) and residual blocks (contains convolutional

layers with residual connections). With more convolutional layers, the deeper neural

network accuracy starts to degrade significantly. Thus, the residual connections are

applied to solve the deeper network degradation problem. To illustrate its mecha-

nism, a basic residual block is presented in Figure 4.1.3. A curve arrow connects

the beginning and the end of a network. This residual connection (also named skip

50

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

connection) output called identity mapping x, which is the same as the input of the

network. After passing all layers, the output in the end of the network called residual

mapping F(x). The network learns from both residual mapping F(x) and identity

mapping x and the final output becomes F(x) + x. If the network achieves its optimal

result and continues to go deeper, it is hard to learn and the residual mapping may

reduce to zero, then the identity mapping will maintain the performance of the deep

network. In this way, DarkNet-53 can have much more layers to extract features than

DarkNet-19 in YOLOv2.

Figure 4.1.2: DarkNet-53 architecture [53]

Figure 4.1.3: Residual block basic structure [81]

51

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

The multi-scale detector in YOLOv3 leverages an FPN-alike structure, as dis-

cussed in Chapter 3 Section 2.1, to detect objects at three scales (small, medium,

big). According to Figure 4.1.1, feature maps from later layers are up-sampled and

concatenated with feature maps from earlier layers in the backbone, next, they are fed

into the detector for small and medium object detection. The concatenation operation

is to stack (combine) feature maps with the same size. The purpose of feature map

concatenation is as followed: feature maps become smaller but more detailed when

layers are deeper, large feature maps can “see” small objects but small feature maps

are hard to “see” them because small object features are lost in the down-sampling

process; hence, feature map concatenation between shallower and deeper layers can

improve small object detection performance. Each of the three detection branches

in the detector outputs a tensor that contains information about object class and

location. The tensor has a dimension N x N x [B x (4 + 1 + C)]. Each attribute in

the tensor dimension is interpreted below and visualized in Figure 4.1.4:

• N x N is the amount of grid cells in one output feature map, i.e. feature map

scale size of each detection branch output.

• B is the number of predicted bounding boxes per grid cell and is set as 3 in

YOLOv3, namely, YOLOv3 generates 3 bounding boxes in each grid cell of a

feature map for prediction.

• Dimension 4 refers to the bounding box offsets [tx, ty, tw, th] against the corre-

sponding anchor box: tx and ty are box centroid location offsets, tw and th are

box width and height offsets.

• Dimension 1 refers to the objectness score po, which infers how likely an object

center is inside a grid.

• C is the number of class probabilities (p1, p2, ..., pc), i.e. C classes in a dataset.

52

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

Figure 4.1.4: YOLOv3 output attributes

As illustrated above, YOLOv3 detector output predicts three bounding boxes

with three predefined anchors for each grid cell in a feature map, but finally only

one bounding box with its anchor is selected for the object location prediction and

box offset calculation. The strategy is that all bounding boxes with object confidence

scores that are less than the confidence threshold are removed; then in the remaining

bounding boxes, only one box, whose anchor has the largest IoU with the ground

truth box, is retained.

In neural networks, the output errors called losses. A loss function (also named

cost function or error function) is designed to quantify losses between predictions

and ground truths. The loss function of YOLOv3 includes three main sub-functions:

localization loss function, classification loss function, and objectness loss function.

The localization loss function measures a bounding box center coordinates (x, y)

loss, width and height loss. The classification loss function computes an object class

prediction loss. The objectness loss function calculates an object existence prediction

53

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

loss. Redmon et al. [53] only mentioned that the Squared Error (SE) loss function is

used to calculate a box center (x, y) and width and height losses, and the Binary Cross-

Entropy (BCE) loss function is applied to compute the objectness and classification

losses. There is no loss function formula published in the paper. Afterward, diverse

variants of the loss function of YOLOv3 are designed and written into programs to

improve the algorithm detection performance.

The SE loss function calculates squared difference between predicted (i.e. offsets

[tx, ty, tw, th] between predicted bounding box and anchor) and actual (i.e. offsets [tx′ ,

ty′ , tw′ , th′] between ground truth and anchor) values. The BCE loss function, also

named binary log loss function, is used for binary classification tasks (i.e. objectness:

if a bounding box contains object or not; and, classification: if an object belongs

to a class or not). Before using BCE, the network outputs would be passed into a

sigmoid function to convert their values into probabilities in the range of 0 and 1.

Then, the prediction probabilities are passed into the BCE loss function BCEloss =

−(y ∗ log(x)+(1−y)∗ log(1−x)) to compute losses between prediction x and ground

truth y. The x refers to the predicted objectness probability po or class probabilities

p1, p2, ..., pc. Its value is between 0 and 1. The y refers to the true value of objectness

or class. Its value is 0 or 1. The BCE loss curves for ground truth y at 0 and 1

are visualized in Figure 4.1.5. To conclude, the loss function is created to measure

errors in object detection, and objects could be localized and classified accurately by

optimizing the loss function (i.e. minimizing the loss value).

54

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

Figure 4.1.5: Binary Cross-Entropy loss curves

YOLOv3 prediction in each grid cell results in multiple detections on the same

object in an image, and these bounding boxes are highly overlapped. Thus, the Non-

Maximal Suppression (NMS) is used in inference to remove (suppress) redundant

predictions per class according to the predicted boxes’ overlapping conditions. The

NMS is a method that selects a single entity out of many overlapping entities. Its

basic logic is as follows: bounding boxes are retained if their objectness confidences are

larger than the confidence threshold, so bounding boxes that are unlikely containing

objects are removed; next, for each class (e.g. person), the box with the highest

confidence is set as a reference box (e.g. Figure 4.1.6a); then, IoUs are computed

between the reference box and all other boxes, and boxes with IoUs that are larger

than the IoU threshold are removed (e.g. Figure 4.1.6b). All steps above filter out

bounding boxes that have lower confidence and too much overlap. After that, the

box with the second highest confidence is selected and the same steps are repeated

(e.g. Figure 4.1.6c-d). The process will stop until all boxes are “scanned” and no

more boxes can be suppressed. The NMS also has different variants in the present

research field, here, the original NMS technique is applied in YOLOv3 algorithm.

55

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

Figure 4.1.6: Non-Maximal Suppression example

4.2 KITTI Data Mining

KITTI object detection dataset [15] is used for the YOLOv3 algorithm training and

testing in this research. It was created in 2012 for autonomous driving research. Its

2D object data consists of 7481 training images and 7518 testing images with total

80256 labeled objects. However, only objects in the training images are annotated;

thus, only the training data with labels are used here.

The object labelling has three levels of difficulties in terms of bounding box size

(box size around an object), occlusion (an object is occluded by other things), and

truncation (an object is only captured partially in an image). The KITTI Vision

Benchmark Suite quantifies the difficulty levels as follows:

• Easy: the minimum bounding box height is 40 pixels, the maximum occlusion

level is fully visible, and the maximum truncation is 15%.

• Moderate: the minimum bounding box height is 25 pixels, the maximum occlu-

sion level is partly occluded, and the maximum truncation is 30%.

• Hard: the minimum bounding box height is 25 pixels, the maximum occlusion

level is difficult to see, and the maximum truncation is 50%.

56

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

The labelling information description for each object is provided in Figure 4.2.1

and comprises of the following: class, truncation percentage, occlusion level, 2D

bounding box coordinates, angle alpha, 3D object dimension, 3D object location,

rotation (tilt forward/backward), and score. For 2D object detection, only the first

four elements of annotation information will be used in this project. Other labels are

created for object orientation estimation, 3D object detection, and bird’s eye view.

Class refers to object category and is used for object classification task; truncation

percentage reflects how many percent of object body is not inside an image and oc-

clusion level indicates the condition of object occlusion, these two labels are used to

determine the detection difficulty level; and, 2D bounding box defines the top-left

and bottom-right corners pixel coordinates in an image and it is used for object lo-

calization. Classes and 2D boxes were labeled by KITTI customized labelling tool,

while the truncation percentage and occlusion level were labelled manually by people.

Figure 4.2.1: KITTI data format description [15]

KITTI data has 8 classes of objects: car, van, truck, pedestrian, person sitting,

cyclist, tram, and DontCare. KITTI designed a benchmark that only evaluates detec-

tors’ performance on car, pedestrian, and cyclist detection. Therefore, in this project,

only car, pedestrian, and cyclist are considered, and car/van/truck are combined as

57

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

car, pedestrian/person sitting are combined as pedestrian, and tram/DontCare are

ignored. Finally, the KITTI classes are consolidated into three categories as car,

pedestrian, and cyclist.

In addition, due to much more cars than other classes’ objects, images that only

have cars inside are removed to reduce the unbalance issue. After that, around 2500

images are retained. 90% of data is allocated for training and validation, and 10%

of data is assigned for testing. In addition, the training and validation data is split

using a ratio of 80% : 20%.

4.3 Experiments and Evaluation

In this section, the YOLOv3 algorithm variants that are written using Keras library

[82] and PyTorch library [83] are implemented and their mechanisms are discussed.

For each YOLOv3 version, multiple experiments are designed to investigate how the

transfer learning technique, severe object occlusion and truncation conditions affect

the object detection performance. In terms of the transfer training experiments,

YOLOv3 are trained with and without transfer training. In terms of the severe

object occlusion and truncation experiments, YOLOv3 are trained using KITTI data

with and without its hard level. Finally, all experiments’ testing results are evaluated

and compared. Furthermore, PASCAL VOC criteria [5] is selected for KITTI 2D

object detection performance evaluation. It contains the following metrics: precision,

recall, F1, F2, Average Precision (AP) per class, and mean Average Precision (mAP)

for all classes with IoU threshold at 0.5. Their definitions have been discussed in

Chapter 3 Section 2.3.

58

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

4.3.1 Keras YOLOv3

Keras YOLOv3 is attempted first and three experiments are designed as follows.

When discussing the training process of Keras YOLOv3, the related parameters of

these experiments are mentioned.

(i) Training without transfer learning using KITTI data with its hard level

(ii) Training with transfer learning using KITTI data with its hard level

(iii) Training with transfer learning using KITTI data without its hard level

As an anchor-based algorithm, YOLOv3 needs to predefine nine anchors before

training. All anchor widths and heights are computed for the KITTI dataset using

the K-means clustering. The K-means clustering is a method that identifies k number

of centroids in a data and partitions each data point to its nearest cluster. By using

this method, all labelled object bounding boxes in KITTI can be partitioned into

nine clusters and the centroids (the mean of clusters) become YOLOv3 anchors. The

anchors generation flow chart is illustrated in Figure 4.3.1.1.

At the beginning, object bounding box widths and heights are computed using the

labelled top-left and bottom-right pixel coordinates in KITTI data. A box (width,

height) can be regarded as a 2D point. In all data points, nine points are randomly

picked as initial centroids for clusters. Next, for each data point, distances between the

point and centroids are calculated and the point is assigned to its nearest centroid’s

cluster. A distance is computed as 1 minus IoU between a bounding box and a centroid

bounding box. Afterwards, each centroid is updated as the mean per cluster. The

above steps are iterated until centroids have no change. The final centroids [(width1,

height1), ..., (width9, height9)] are defined as anchors for YOLOv3.

59

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

Start

KITTI bounding box labelling (top-left
and bottom-right pixel coordinates)

Bounding box
widths and heights

2D points

Initial centroids Clusters

Updated centroids

Current centroids =
Previous centroids?

Anchor widths
and heights

Stop

conversion

(width, height)

random pick nine points

calculate distances between

data points and centroids

calculate the mean

per cluster

yes

no

Figure 4.3.1.1: Flow chart of anchors generation

One example of anchors generation iterations is created for visualization in Fig-

ure 4.3.1.2. The horizontal axis represents the labeled bounding box width, and the

vertical axis represents the labeled bounding box height. The top, middle, bottom

sub-figures are plotted for the initial, middle, and final iteration of centroids gener-

ation. In each sub-figure, the major blue points are KITTI data and nine colorful

points are the centroids of clusters. For KITTI data without its hard level, the gen-

erated anchors (width, height) are [(14, 34), (23, 60), (33, 25), (39, 93), (59, 38),

(75, 163), (102, 55), (162, 94), (277, 178)]. For KITTI data with its hard level, the

computed anchors are [(12, 30), (19, 50), (30, 72), (32, 24), (46, 111), (59, 37), (76,

167), (116, 66), (223, 144)].

60

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

Figure 4.3.1.2: YOLOv3 anchors computation by K-means clustering in KITTI data

61

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

The input image size for YOLOv3 also needs to be determined before training.

An image size is inversely proportional to the algorithm inference speed. To achieve

real time operation, the inference speed has to be equal or faster than 30 frames per

second, namely, the inference time is equal or less than around 33 milliseconds. In

Figure 3.2.1.2, YOLOv3 compared three input image sizes in terms of accuracy and

time. The larger image size produces higher accuracy but requires a longer prediction

time. Under the premise of real-time inference, the 416 x 416 image size generates

the highest accuracy. Therefore, in this project, the network input image is resized

to 416 x 416 without changing the original width and height ratio. Besides, grey

boundaries are added around a resized image to maintain the designed input size.

The coordinate shifts dx and dy are also added to the labelled boxes because the grey

boundaries change image pixel locations. For example, in Figure 4.3.1.3, the KITTI

original image size is 1242 x 375 and the resized image size is 416 x 416.

(a) KITTI original image

(b) KITTI resized image

Figure 4.3.1.3: KITTI image adjustment for YOLOv3 input

62

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

Besides anchors and input image size, hyperparameters are set before starting

the algorithm training. Here are two types of hyperparameters. The model related

hyperparameters are variables who determine a neural network structure, such as

network architecture and loss function. The training related hyperparameters are

variables who determine how a neural network is trained, such as batch size and

number of epochs. The model related hyperparameters are kept as default values in

Keras YOLOv3, but the training related hyperparameters are adjusted by trial and

error to achieve an optimized result.

For Keras YOLOv3 training strategy, some terminologies are explained first.

“Freeze layers” means layers are not learning, their weights and biases do not up-

date in the training process. “Batch size” refers to the number of images that are fed

into the neural network simultaneously. The larger the batch size, the more features

would be learned each time at the expense of higher computational power. Thus, the

batch size setting depends on the computer work load (i.e. GPU quality and quan-

tity). “Number of epochs” indicates how many times that all images in a dataset are

learned by a network. The number of epochs used in training depends on the model

loss convergence performance.

In this research, for training without transfer learning, all neural network layers are

unfrozen, the batch size and number of epochs are set at 8 and 80. For training with

transfer learning, DarkNet-53 layers are frozen and the detector layers are unfrozen

from epoch 1 to 15 with a batch size of 16; after the training loss becomes stable, all

backbone layers are unfrozen for fine-tuning from epoch 16 to 80 with a batch size of

8. Early-stopping is set to stop the training process by monitoring the validation loss

when its fluctuation remains within 0.1 in six epochs. Therefore, the program does

not have to run 80 epochs if the learning of the network has converged.

63

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

The loss function of Keras YOLOv3 includes Binary Cross-Entropy (BCE) func-

tions for bounding box center (x, y), objectness, classification losses computation,

and Squared Error (SE) function for box width and height losses computation. To

optimize the loss function (minimize losses), various optimization methods are pro-

posed for deep learning, and they use a parameter called learning rate to control the

speed of optimization process. The learning rate determines the step size of weight

adjustment at each iteration while moving toward a reduction in the loss function.

Keras YOLOv3 uses an adaptive gradient descent optimization method named

Adam [84]. Its adaptive learning rate can adjust itself in the training process instead

of keeping constant, so it can accelerate the training loss convergence. As shown in

Figure 4.3.1.4, the horizontal axis w is the weight of a neural net and the vertical

axis J(w) is a loss function. The learning steps (arrows) get shorter when the loss

function value approaches to a minimum. This means that the learning rate (speed)

decreases in the learning process.

For training without transfer learning, the initial learning rate is set as 1e-3.

For training with transfer learning, the initial learning rate is set as 1e-3 when the

backbone is frozen, and reduced to 1e-4 when the backbone is unfrozen. Moreover, a

learning rate scheduler is designed as follows: the learning rate is reduced by a factor

of 10 via monitoring the validation loss fluctuates within 0.0001 in three epochs. It

can help to keep the network learning and to improve the loss convergence.

64

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

Figure 4.3.1.4: Adaptive learning rate

Online data augmentation, which represents image transformations in batches,

is adopted in the training data. The purpose is to increase the amount of data

by adding modifications on the existing data. It saves a lot of time and work by

avoiding collecting new data and annotating them. Also, it acts as a regularizer to

reduce overfitting in the training process. In Keras YOLOv3, augmentation methods

applied on input images include resizing with random ratio, shifting, flipping, adding

color space distortion, and adding salt-and-pepper noise.

The resizing is to change an image size. The shifting is to translate an image in any

direction. The flipping is to flip an image left and right. The color space distortion

is to change an image’s HSV values. HSV refers to Hue, Saturation, and Value, they

are the color properties of an image. The salt-and-pepper noise is a form of noise seen

on an image. All image transformation hyperparameter values are kept as default.

For each augmentation method, Keras YOLOv3 programming code generates 50%

probability to apply it on input images in the training process.

65

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

4.3.2 PyTorch YOLOv3

Given the experimental results from Keras YOLOv3, the transfer learning technique

reinforces the performance and effectiveness of object detection. Moving forward,

only two cases will be considered, namely:

(i) Training with transfer learning using KITTI data with its hard level

(ii) Training with transfer learning using KITTI data without its hard level

PyTorch YOLOv3 has the same anchors and input image size as Keras YOLOv3.

Rather than manually altering the training related hyperparameters’ values in Keras

YOLOv3, a simplified variant of genetic algorithm is applied in PyTorch YOLOv3 to

automatically optimize hyperparameters in a certain range of values. As the flowchart

shown in Figure 4.3.2.1, the three main components of the optimization algorithm

are fitness, selection, and mutation (yellow blocks). In the fitness process, the fitness

score is computed as 0.0precision + 0.01recall + 0.99mAP + 0.0F1. The coefficient

values are kept as default, and the evaluation metric values are generated by running

YOLOv3. In the selection process, the default method is to select a single parent

that has the highest fitness score from previous generations to create off-springs and

to use them in the next iteration. In the mutation process, the mutation probability

is set to 10%. For each hyperparameter in the parent, if the mutation happens, its

value is multiplied by a random number. The number of iterations is the termination

criterion and when all iterations are completed, the hyperparameters that generate

the highest fitness score would be the optimized hyperparameters.

The genetic algorithm optimization requires long GPU hours with hundreds of

generations to produce good results. However, due to the expensive computation

66

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

and large time consumption of the algorithm, the number of iterations is set as 40.

In addition, the mutation probability is increased from 10% to 50% to accelerate

the search (mutation) process and generate an acceptable result within 40 iterations.

The final hyperparameter values in PyTorch YOLOv3 for the two experiments are

provided in Appendix A.

Start

Initial hyperpa-
rameter values

Fitness score evaluation

Single parent selection

Iterations complete?

Mutation

Optimized hyper-
parameter values

Stop No

Yes

Figure 4.3.2.1: Genetic algorithm for hyperparameters optimization

Unlike the training strategy of Keras YOLOv3, all layers in PyTorch YOLOv3

are unfrozen for fine-tuning at the beginning of model training with transfer learning.

The batch size and number of epochs are also customized as 8 and 80. The default

optimizer is still the Adam algorithm, but the learning rate scheduler changes to

reduce the learning rate by a factor of 10 when the number of epochs reaches 40%

(i.e. epoch 32) and 90% (i.e. epoch 72) of the total number of epochs (i.e. epoch 80).

67

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

In the loss function of PyTorch YOLOv3, as discussed in Chapter 4 Section 1, the

objectness and classification losses are still calculated using Binary Cross-Entropy

(BCE) loss functions. One hyperparameter called positive weight is added into a

function BCEloss = −(positive weight ∗ y ∗ log(x) + (1− y) ∗ log(1−x)) to reduce

the sample imbalance issue. The positive weight is a weight of positive examples and

is equal to negative examples
positive examples

per class. If the weight is larger than 1, more negative

examples than positive examples are in dataset and the network tends to predict

an object as negative example to gain higher accuracy. By adding the weight into

the loss function, the False Negatives (FNs) will be reduced and the recall will be

improved. Contrarily, if the weight is less than 1, there are fewer negative examples

than positive examples and the network tends to predict positive examples. After

considering the weight, the False Positives (FPs) will be decreased and the precision

will be enhanced.

For the bounding box center (x, y), width and height losses computation, PyTorch

YOLOv3 replaces the Squared Error (SE) loss function in the original YOLOv3 by

the Generalized Intersection over Union (GIoU) loss function [85]. Before introducing

the GIoU loss function, the IoU loss function is illustrated first. IoU measures how

well the predicted bounding box fits the ground truth box, and it is equal to I
U ,

where I and U refer to the intersection and union areas. Accordingly, the IoU loss

function LIoU = 1− IoU . As mentioned in Chapter 4 Section 1, the SE loss function

calculates the squared difference between predictions and ground truths. Compared

the two loss functions, the IoU loss function can represent losses better than the

SE loss function. As shown in Figure 4.3.2.2, green rectangles represent three same

ground truth boxes and black rectangles represent three different predicted bounding

boxes. The L2 norms (the square root of the squared difference) between predictions

68

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

and ground truths are [8.41, 8.41, 8.41], so the SE loss could be derived as [70.73,

70.73, 70.73]. It indicates that the SE loss function generates the same detection

losses for different predictions. The IoUs between predictions and ground truths are

[0.26, 0.49, 0.65], so the IoU loss can be computed as [0.74, 0.51, 0.35]. It shows that

the IoU loss function produces different detection losses for different predictions.

Figure 4.3.2.2: L2 vs IoU [85]

However, the IoU loss function has a disadvantage: it cannot represent the pre-

diction performance difference if there is no overlap between the bounding box and

ground truth, as shown in Figure 4.3.2.3. In this example, the blue box is ground

truth of an object, yellow and green boxes are predicted bounding boxes. Here, the

green box prediction is better than the yellow box because it is closer to the ground

truth. However, IoU has no difference in both cases because there is no intersection

between the prediction and target. GIoU is designed for addressing the weakness

of IoU. Its value is equal to IoU − Ac−U
Ac , where Ac refers to the smallest convex

hull that encloses both the bounding box and the ground truth. Ac is the region

that a red box covered for each case in the figure. Therefore, the GIoU loss function

LGIoU = 1−GIoU . PyTorch YOLOv3 selects the GIoU loss function for its bounding

box localization regression.

69

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

Figure 4.3.2.3: IoU metric weakness

For the online data augmentation, PyTorch YOLOv3 programming code also gen-

erates 50% probability to apply a method on input images in the training process.

The augmentation methods include resizing, shifting, flipping (left-right), rotating,

shearing, and adding color space distortion. An additional data augmentation tech-

nique named mosaic is added. It combines four random images into one composite

image in the training process to improve the model’s learning ability by increasing

features at one time and to reduce the requirement for larger batch sizes. The training

batch 0 is displayed as an example in Figure 4.3.2.4 (8 composite images and each of

them contains 4 sub-images).

After all discussions of PyTorch YOLOv3, the hyperparameters related to the loss

function, learning rate, data augmentation, IoU are listed in Table 4.3.2.1. And their

values are represented in Appendix A. In addition, PyTorch YOLOv3 visualizes the

training and validation results in one figure. Figures for the two experiments are also

represented in Appendix A.

70

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

Figure 4.3.2.4: Mosaic in the training batch 0

Table 4.3.2.1: PyTorch YOLOv3 hyperparameters

Hyperparameters Definitions

Loss function related

giou GIoU loss weight

cls Classification loss weight

cls pw Positive weight for data imbalance in classification loss

obj Objectness loss weight

obj pw Positive weight for data imbalance in objectness loss

Learning rate related lr0 Initial learning rate

Data augmentation related

hsv h Image hue

hsv s Image saturation

hsv v Image value

degrees Image rotation degree

translations Image shifting distance

scale Image resizing scale

shear Image shear degree

IoU related iou t IoU threshold

71

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

4.3.3 Comparisons and Discussions

In the inference process, the confidence/IoU thresholds in the Non-Maximal Sup-

pression (NMS) are manually fine-tuned at 0.2/0.4 for Keras YOLOv3 and 0.1/0.3

for PyTorch YOLOv3 to produce good bounding box predictions. In addition, the

prediction speed with one NVIDIA GeForce RTX 2080 Ti GPU is about 28 FPS for

Keras YOLOv3 and 27 FPS for PyTorch YOLOv3, both of them are able to approach

real-time operation (approximately 30 FPS). Common cameras capture videos at 30

FPS, so an algorithm is real-time if its prediction speed is synchronous with or faster

than a camera recording speed. The testing results of the three experiments in Keras

YOLOv3 are performed in Table 4.3.3.1 and that of the two experiments in PyTorch

YOLOv3 are represented in Table 4.3.3.2. Two tables include precision, recall, F1

score, F2 score for car, cyclist, and pedestrian classes. Moreover, the Average Preci-

sion (AP) per class is plotted in Figures 4.3.3.1 and 4.3.3.2.

Table 4.3.3.1: Keras YOLOv3 testing result

Experiments
Precision Recall F1 score F2 score

Car Cyclist Pedestrian Car Cyclist Pedestrian Car Cyclist Pedestrian Car Cyclist Pedestrian

Train from scratch 1 78% 60% 59% 79% 62% 57% 78% 61% 58% 79% 62% 57%

Transfer learning 1 85% 69% 67% 82% 69% 58% 84% 69% 62% 83% 69% 60%

Transfer learning 2 83% 70% 73% 83% 72% 70% 83% 71% 72% 83% 71% 71%

Note: 1 refers to KITTI data with the hard level and 2 refers to KITTI data without the hard level.

Table 4.3.3.2: PyTorch YOLOv3 testing result

Experiments
Precision Recall F1 score F2 score

Car Cyclist Pedestrian Car Cyclist Pedestrian Car Cyclist Pedestrian Car Cyclist Pedestrian

Transfer learning 1 86% 79% 81% 76% 72% 67% 81% 75% 73% 78% 73% 69%

Transfer learning 2 85% 84% 86% 91% 81% 78% 88% 83% 82% 90% 82% 79%

72

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

From Table 4.3.3.1, training with transfer learning from a pre-trained model on

the COCO dataset has distinctly better performance than training without trans-

fer learning (train from scratch). Besides, prediction without severe occlusion and

truncation (without the hard level data) has a better result than that with heavy

occlusion and truncation (with the hard level data), especially in the recall metric

(less missing detection). Furthermore, the detection performance of object classes in

descending order is car, cyclist, pedestrian. It can be caused by the size of objects

(better detection for larger object), the shape of objects (e.g. people sitting, walking),

and the dataset class unbalance issue (more cars than others). When the YOLOv3

algorithm learns features from the KITTI data, it prefers to classify an object as car

to achieve a higher accuracy because cars are more than cyclists and pedestrians.

Comparing results pertaining to transfer learning experiments between Table

4.3.3.1 and Table 4.3.3.2, PyTorch YOLOv3 has a significantly better detection per-

formance compared to Keras YOLOv3. It may be due to three main modifications in

PyTorch YOLOv3, namely: initial hyperparameters optimization by using a genetic

algorithm rather than by manual adjustments; the SE loss function is replaced by the

GIoU loss function for the bounding box localization loss computation; and, mosaic

technique is used in data augmentation to improve object classification, particularly

small objects.

Additionally, the confidence and IoU thresholds in the NMS are set for redundant

bounding boxes filtration, and their values affect the precision (TP
TP + FP

) and recall

(TP
TP + FN

) by experimental observations. For the confidence threshold, its increasing

results in precision increasing and recall decreasing, vise versa. The reason is that

more predicted bounding boxes are removed with higher confidence threshold, this

results in more TP and less FP, but also more FN, vise versa. For the IoU threshold,

73

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

its effect depends on objects overlapping conditions in each class. Generally, the

IoU threshold increasing generates more FP and this results in lower precision, vise

versa. If there are crowded objects from one class (e.g. pedestrians congregation) in

an image, lower IoU threshold may cause the deletion of TPs and this results in the

reduction of both precision and recall.

Figure 4.3.3.1: Keras YOLOv3 Average Precision (AP)

Note: 1 refers to KITTI data with the hard level and 2 refers to KITTI data without the hard level.

Figure 4.3.3.2: PyTorch YOLOv3 Average Precision (AP)

74

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

The values of AP per object class in Figures 4.3.3.1 and 4.3.3.2 visualize the

object detection performances of experiments and also support the same analysis

results from the two tables above, namely: transfer learning boosts the detection

performance; severe object occlusion and truncation conditions worsen the object

detection; PyTorch YOLOv3 has better detection performance than Keras YOLOv3;

and, KITTI data bias results in YOLOv3 detection bias (higher AP of cars than that

of cyclists and pedestrians). In addition, small objects are harder to be detected

than moderate or large objects. Some testing images with predicted bounding boxes,

ground truth boxes, missing or misclassification boxes are provided in Appendix A.

In conclusion, it should be noted that anchors computation (size and quantity)

for custom datasets via the K-means algorithm before neural network training affects

the final localization accuracy of a model. The K-means algorithm is very sensitive

to the initial picked centroids. Furthermore, all object detection metrics used here

are based on IoU and its reliability still needs to be considered. As mentioned earlier,

GIoU is designed to compensate a drawback of IoU.

75

Chapter 5

License Plate Detection and

Recognition

In the License Plate Detection and Recognition (LPDR) research, license plates are

detected and plate numbers are recognized as texts. It is valuable for traffic-related

tasks, such as traffic control, vehicle tracking, parking automation and security. For

the detection stage, the real-time object detection technique in Chapter 4 is also used

here to localize LPs. For the recognition stage, as reviewed in Chapter 3 Section 3.1,

deep learning methods for image text recognition are mainly Connectionist Temporal

Classification (CTC)-based and attention-based. Therefore, both types of algorithms

are applied.

LPDR research does not have a large published dataset. This research therefore

has to rely on multiple small datasets with bounding box and plate number labelling.

In conjunction with these, the YOLOv3 algorithm is implemented to detect LPs.

After the license plate detection, three models for the license plate recognition are

76

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

investigated and compared, namely: Tesseract OCR engine, CRNN, and attention

OCR. The CRNN algorithm achieves the best performance and is optimized by data

augmentation, input image resampling methods, input image size adjustments, and

by adding a classifier. Finally, standard license plates in Ontario, Canada are collected

in urban areas using a camera installed on the lab vehicle, and the optimized model

is tested on the dataset. As a goal in this research, within a range of 10 meters, the

Ontario LP recognition performance is acceptable, high, or utmost when the accuracy

achieves above 90%, 95%, or 99%.

5.1 Multiple Datasets

Multiple datasets include Application Oriented License Plate (AOLP) [61], Open

Automatic License Plate Recognition (OpenALPR) [62], Federal University of Paraná

- Automatic License Plate Recognition (UFPR-ALPR) [63], and Stanford Cars [86].

Most of them were introduced in Chapter 3 Section 3.2, and more details for each

dataset are provided in this section.

AOLP was collected from Taiwan in 2013 and it has three types of images for

different applications: access control, road patrol, and traffic law enforcement. Figure

5.1.1 gives a sample image for each scenario. Access control is to capture a vehicle

when it enters a location by fixing a camera facing the location. Road patrol is

to capture stationary cars from close distance via a camera on a patrolling vehicle.

It is used for parking security or lost vehicle searching. Traffic law enforcement

is to capture driving vehicles if they exceed the speed limits, and the camera is

installed on a car. By comparing the three scenarios, only the traffic law enforcement

77

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

data is suitable for the LPDR research because it captures driving vehicles on roads.

Therefore, images in this scenario are used here. It contains a total of 757 images

taken at different times, most of them have a resolution of 640 x 480 pixels, and the

rest of the images have a resolution of 320 x 240 pixels.

(a) Access control (b) Road patrol (c) Traffic law enforcement

Figure 5.1.1: AOLP scenarios

OpenALPR was generated from Brazil, Europe, and United States in 2016. As

shown in Figure 5.1.2, both Brazil and Europe LPs are captured from stationary

vehicles in parking lots. Some US LPs are captured when the ego-car is driven on

roads, and they also have a similar size compared to Canadian LPs. Therefore, only

images that were collected from the US are applied in the LPDR research. There are

222 images with different resolutions such as 1920 x 1080 pixels, 1280 x 720 pixels,

and 720 x 480 pixels.

(a) Brazil LP (b) Europe LP (c) US LP

Figure 5.1.2: OpenALPR samples

78

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

UFPR-ALPR was created from Brazil in 2018. Its images were captured in differ-

ent urban areas by cameras installed on driven cars, and all of them have a resolution

of 1920 x 1080 pixels. In the dataset, 150 vehicles are tracked at 30 FPS recording

speed and 30 images (in 1s video) are generated for each vehicle, so it contains a

total of 4500 images. For the LPDR research, it is not necessary to use 30 almost

repetitive images for one plate number recognition. Thus, only one image per ve-

hicle is extracted from the dataset. In addition, UFPR-ALPR collected three types

of vehicles: cars, buses, and motorcycles. For instance, Figure 5.1.3 presents how

the license plate frame looks like for each vehicle type. License plates of motorcycles

(square-like shape with two rows of words) are not only different from that of cars

and buses (rectangular shape with one row of words), but also have significant dis-

similarity from LPs in Ontario, Canada (rectangular shape with one row of words).

Hence, motorcycle images are filtered out, and 120 images are retained for use.

(a) Car (b) Bus (c) Motorcycle

Figure 5.1.3: UFPR-ALPR vehicles

Stanford Cars dataset was originally designed for car brand classification and it

contains 16185 images of 196 classes of cars with various resolutions. The dataset

labeled the bounding boxes and brand types for cars. In order to increase the data

size for the license plate recognition research, some images which have clear license

plates are extracted from this dataset. The reason why selecting the Stanford Cars

dataset is that no Canadian LP dataset has to date been published online, US LPs

79

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

are similar to Canadian LPs and can be used for a model training. A total of 93

images are selected and their car plates are manually labelled. One car example is

shown in Figure 5.1.4.

Figure 5.1.4: Stanford Cars dataset sample

A total of 1192 images are selected from the four published datasets (757 from

AOLP, 222 from OpenALPR, 120 from UFPR-ALPR, 93 from Stanford Cars). All

images’ annotation format is unitized, comprising image size, license plate text, and

license plate bounding box pixel coordinates (min x, min y, max x, max y).

5.2 License Plate Detection

The license plate detection stage has the same training process as 2D object detection

and the PyTorch YOLOv3 algorithm with transfer learning is used as described in

Chapter 4 Section 3.2. The data is split into 90% and 10% for training/validation

and testing. Furthermore, the training/validation part consists of 80% training images

and 20% validation images. So the number of training/validation/testing images are

858/215/119. Some minor changes of the detection model are made specific to license

plates. In terms of annotation, only one class (i.e. LP) is labeled in this training.

Nine predefined anchors for YOLOv3 are re-computed using the training images, the

generated anchor widths and heights are [(45,24), (60,32), (73,36), (81,43), (92,50),

80

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

(107,59), (113,36), (132,68), (188,86)]. For data augmentation, the flip (left-right)

operation is removed because LP rectangular shape feature does not change after

flipping.

The evaluation metrics obtained in testing are as follows: 83% precision, 87%

recall, 85% F1 score, 86% F2 score, and 86% Average Precision (AP). Examples of

False Positive (FP) and False Negative (FN) are presented in Figure 5.2.1. Green

boxes refer to correct detection and red boxes refer to incorrect predictions. The left

sub-figure shows that YOLOv3 detector predicts logos and text prints on the back

of a truck as license plates. Furthermore, the right sub-figure shows that one license

plate (middle left in figure) fails to be detected mainly because it is far away from

the ego-car.

All considered, the limited amount of labelled data is not large enough to fine-

tune the YOLOv3 model to achieve a better detection performance. In addition,

small object detection (e.g. LPs) is still a challenge for deep learning algorithms.

Moreover, logo prints on vehicle surfaces and traffic occlusion also significantly impact

the detection result.

(a) False Positive (FP) (b) False Negative (FN)

Figure 5.2.1: License plate detection FP and FN examples

81

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

5.3 License Plate Recognition

In the license plate recognition stage, all license plate numbers are combinations

of alphabets and digits, so the recognition process is to classify each character on

a plate into one of 36 classes: A to Z (26 alphabets), and 0 to 9 (10 digits). To

prepare the recognition data, LPs are cropped from images using their bounding

box coordinates in the annotation files. Most images have one LP inside, and few

images have two LPs inside, resulting in a total of 1226 LPs extracted for use. The

training/validation/testing data percentage distribution is set as 75%/15%/10%, in

other words, 920 images for training, 200 images for validation, and 106 images for

testing.

In this section, three methods are explored: Tesseract OCR engine, CRNN, and

attention OCR. Each method is explained and the testing results are presented in

subsection 5.3.1. Next, four experiments are designed to optimize the algorithm pre-

diction in subsection 5.3.2: data augmentation, input image scaling methods inves-

tigation, input image size adjustment, and a classifier for prediction post-processing.

To apply the optimized model on LPs in Ontario, some standard license plates are

captured in the Greater Toronto Area (GTA) using a Logitech Brio webcam installed

on the Centre for Mechatronics and Hybrid Technologies (CMHT) lab vehicle. The

camera setup, data collection and pre-processing, and testing result are discussed in

subsection 5.3.3.

82

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

5.3.1 Models Comparison

5.3.1.1 Tesseract OCR Engine

As an Optical Character Recognition (OCR) engine, Tesseract [87] was originally a

doctoral project in HP Lab between 1985 and 1994. After testing at the University of

Nevada, Las Vegas (UNLV) in 1995, it was released as an open-source model in 2005.

Since 2006 until now, Tesseract has been developed by Google. The OCR engine is not

a deep learning algorithm, the reason for investigating it is that Tesseract is considered

as one of the most accurate open-source OCR engines. The basic architecture of

Tesseract OCR engine is presented as a flow chart in Figure 5.3.1.1.1.

Input image Otsu’s thresholding Connected component analysis

Line and words finding
Word segmentation and
character classification

Recognized text

Binary image

“Blobs”

Words

Figure 5.3.1.1.1: Flow chart of Tesseract OCR engine architecture

At the beginning, an input gray-scale image (pixel values are between 0 and 255) is

converted to a binary image (pixel values are either 0 or 255) via Otsu’s thresholding.

Thresholding is to polarize image pixel values by assigning 0 (black color) to pixels

whose intensity values are below a threshold and assigning 255 (white color) to pixels

whose intensity values are above the threshold. Otsu’s method assumes image pixel

values can be classified into two clusters, one cluster approaches 0 and another towards

255. So the generated histogram would also have two peaks. The method is to find

the optimal threshold value iterating over the numbers from 0 to 255 by minimizing

83

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

the sum of the intra-class variance per cluster, or equivalently, by maximizing the

inter-class variance among two clusters.

Figure 5.3.1.1.2 visualizes the Otsu’s thresholding. The x axis represents pixel

intensity values (0-255) and the left y axis represents the number of pixels at each

intensity value. The red curve displays the inter-class variance and the right y axis

shows its value at each pixel intensity. The black vertical line refers to the threshold, it

iterates (horizontally moves) from 0 to 255, and its left and right sides are assigned to

two clusters. The optimal threshold is located at the maximum inter-class variance.

The inter-class variance equation is wclass0 wclass255 (µclass0 − µclass255)
2, where w

represents
∑
pixel count in a class

the total number of pixels
and µ refers to

∑
(pixel count)(pixel intensity)∑

pixel count in a class
.

Figure 5.3.1.1.2: Otsu’s thresholding visualization [88]

After generating a binary image, Connected Component Analysis (CCA) is applied

to detect connected regions inside the image. Connected regions are described as

“blobs”, and each “blob” is assigned with an unique label. Figure 5.3.1.1.3 is drawn

as an example. In (a), an 8x8 binary image contains background (white area) and

foreground (black area). For background pixels, they are assigned with 0 as their

84

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

labels. For foreground pixels, their labels are set as question marks temporarily and

will be updated later. In (b), pixels are scanned from left-to-right and top-to-bottom.

When reaching a foreground pixel, its label is determined by its left and top pixel

labels. There are three conditions: first, if both left and top labels are 0, the pixel

is assigned with a non-zero label whose value is one larger than the maximum label

in the image; second, if one of the left or top labels is 0 and another is a non-zero

label, then the pixel is set as the non-zero label; third, if both left and top labels

are non-zero labels, the pixel is assigned as min(two non-zero labels). In (c), after

all foreground pixels are scanned, the larger one between the two non-zero labels in

the third condition in (b) would be reduced to min(two non-zero labels). In (d), two

“blobs” are formed according to pixel labels and they are plotted with red and green

colors in the image.

Figure 5.3.1.1.3: Connected Component Analysis

Next, line and words finding techniques are used to fit a baseline for text and

separate words according to white spaces between blobs along the baseline direction.

The paper of Tesseract OCR [87] does not describe the details of their techniques,

but the basic idea is as follows: for line finding, noise blobs are filtered out first if

85

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

their heights are smaller than a fraction of the median height of all blobs in the image

and a baseline under text blobs is constructed by a least median of squares fit; for

word finding, white spaces are estimated between blobs for words separation.

The output words are segmented as characters by a trained chopper, and char-

acters are approximated as polygons by polygonal approximation which represents

boundaries of characters by straight line segments. For instance, Figure 5.3.1.1.4

shows a chopped word “mountains” and polygonal featured characters. For each

character, the similarity between its polygonal feature and prototypes of all classes

are then computed. Finally, each character is classified into a class with the highest

similarity. There are no details about the chopper training and feature similarity

calculation process in the paper.

Figure 5.3.1.1.4: Word segmentation [87]

To implement Tesseract OCR on the license plate recognition, a python library

named pytesseract (Python-tesseract) is used. It is a wrapper of Google’s Tesseract-

OCR Engine, LPs can be read and printed directly by calling a function “pytesser-

act.image to string()” without training mode. Therefore, 106 testing images are used

here to evaluate the model accuracy. The testing result is that only 10 out of 106

LPs are recognized correctly, namely, the recognition accuracy is about 9.43%. In

summary, Tesseract OCR engine generates low accuracy for scene text whose images

are captured in both outdoor environment and motion condition with lower quality

compared with printed text such as PDF documents.

86

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

5.3.1.2 CRNN

Convolutional Recurrent Neural Network (CRNN) with Connectionist Temporal Clas-

sification (CTC) loss [59] is a deep learning algorithm for image text recognition. As

Chapter 3 Section 3.1 mentioned, it contains three components in order: a CNN for

image feature extraction; a RNN for characters prediction per time step in the feature

sequence output from the CNN; a CTC for final text decoding and generation from

the RNN predicted character class probabilities. The mechanism of them will be

explained below. In addition, input images are gray-scale, their heights are resized to

32 pixels and widths are resized to W pixels according to image width/height ratios.

The CNN is designed as a combination of seven convolutional layers, four max

pooling layers and one fully connected layer. Convolutional layers generate feature

maps, max pooling layers down-sample feature map sizes, and the dense layer converts

feature maps to a feature sequence. Each input image is fed into the CNN with width

W and height 32. After convolutional and max pooling layers, 512 feature maps are

generated, the width and height of feature maps are reduced from (W, 32) to (W/4

- 1, 1). So the output shape becomes (W/4 - 1) x 1 x 512.

The dense layer works as shown in Figure 5.3.1.2.1. It “slices” all feature maps

(bottom part in the figure) along the width direction, and turns them to columns

arranged in alignment from left to right (top part in the figure). Each column contains

all image features at one time step. Therefore, feature maps output with shape (W/4

- 1) x 1 x 512 is converted to a feature sequence with shape (W/4 - 1) x 512.

87

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

Figure 5.3.1.2.1: Feature maps to sequence

The RNN includes two bi-directional LSTMs. Long Short Term Memory (LSTM)

[89] is a type of RNN, the structures of original RNN and LSTM are shown in Figure

5.3.1.2.2. The original RNN was reviewed in Chapter 3 Section 1.3, its current hidden

state ht is computed using a single activation function (e.g. tanh in the figure) with the

information of the last hidden state ht−1 and current input Xt. If a data sequence is

long, the original RNN becomes unable to learn to connect the information between

current hidden state and very early hidden states. This problem called vanishing

gradient and results in the memory degradation.

LSTM is designed to address the problem of original RNN and improve informa-

tion connections during long time intervals. The core of LSTM is the cell state C

(the top horizontal line in Figure 5.3.1.2.2b). It transports information all the way

though entire network units. To remove or add information to the cell state C, three

gates are designed in LSTM architecture: forget gate, input gate, and output gate.

They are highlighted by orange boxes in the figure. The forget gate (left) removes old

information out from C; the input gate (middle) adds new information into C; and

the output gate (right) computes current hidden state ht using the information of last

88

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

hidden state ht−1, current input Xt, and current cell state Ct. To control the amount

of information flowed, each gate has a sigmoid function σ that produces a number

in a range of 0 to 1. As shown in the figure, all sigmoid outputs are multiplied by

information that pass in or out the cell state C. As an example of sigmoid outputs,

zero would stop all information flow, one would allow all information flow, and 0.5

would accept half information flow.

(a) Original RNN

(b) LSTM

Figure 5.3.1.2.2: Structures of original RNN and LSTM [90]

89

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

A bi-directional LSTM is visualized in Figure 5.3.1.2.3a. It combines two inde-

pendent LSTMs in parallel. The input sequence is fed into both LSTMs, then the

information flows in opposite directions, and outputs from two LSTMs are concate-

nated as the final output. This kind of architecture allows network to learn and

predict current information from both past and future, rather than only previous in-

formation. The two bi-directional LSTMs structure in CRNN can be seen in Figure

5.3.1.2.3b. They are connected in series followed by a dense layer and output proba-

bilities for 36 (A to Z and 0 to 9) + 1 (blank character ε) = 37 classes at each time

step. If there is no character at a time step, the model uses the blank character class

as its prediction. The output sequence shape becomes (W/4 - 1) x 37.

(a) One bi-directional LSTM

(b) Two bi-directional LSTMs [59]

Figure 5.3.1.2.3: LSTM architecture in CRNN

90

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

Connectionist Temporal Classification (CTC) [91] is a method to generate and

optimize text output via its decoder and loss function. For the decoder, the most

simple and fastest approach is best path decoding. As shown in Figure 5.3.1.2.4a,

blue colored grids represent predicted probabilities of characters per time step from

the RNN and the darker the color, the larger the probability. The best path decoding

is to pick the character with the largest probability per time step, and connect all

picked characters as a label sequence (e.g. orange dashed lines in the figure). After

decoding, text output is generated in three steps which are illustrated as an example

in Figure 5.3.1.2.4b: firstly, adjacent repeated characters are merged; next, blank

characters ε are removed; finally, all rest characters are connected as the output text.

(a) CTC decoding (b) CTC text generation

Figure 5.3.1.2.4: CTC decoder

To optimize the CRNN recognition result, the probability P =

t=W
4
−2∏

t=0

Pt from the

decoder in CTC needs to be maximized. Therefore, the CTC loss function is designed

as −log(P) and the negative log probability is minimized in the algorithm training

process.

91

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

PyTorch version CRNN algorithm code [92] is open-source, it allows transfer learn-

ing and also provides a pre-trained model from a synthetic word dataset (Synth) re-

leased by Jaderberg et al. [93]. This dataset contains 9 million images covering 90K

English words, and its sample images are shown in Figure 5.3.1.2.5. According to the

figure, the license plate dataset is not similar to the synthetic dataset, and therefore,

the CRNN algorithm with the pre-trained weights will be fine-tuned using the license

plate data.

Figure 5.3.1.2.5: Synth dataset [93]

In the training process, with only one NVIDIA GeForce RTX 2080 Ti GPU com-

putation power, the original batch size in the code is reduced from 64 to 32, and

the number of epochs is manually adjusted from 25 to 60. Also, the initial learning

rate lr is reduced from 0.01 to 0.001 for slower fine-tuning. A learning rate scheduler

is added to decrease the learning speed by a factor of 10 when the training process

completed 80% and 90% of the number of epochs. It helps the loss convergence in

the end.

In the testing process, LPs are predicted by the CRNN algorithm at about 72 FPS,

so the prediction speed satisfies the real-time recognition. 93 out of 106 testing LPs are

identified correctly, and thus, the model achieves 87.74% accuracy. Compared with

Tesseract OCR engine, CRNN with transfer learning has a much higher recognition

accuracy for scene text recognition.

92

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

5.3.1.3 Attention OCR

Attention OCR [60] is also a deep learning algorithm for image text recognition. It

combines a CNN and a sequence-to-sequence (seq2seq) model with attention. Its

CNN has the same mechanism and architecture as that in CRNN. Its seq2seq model

with attention encodes the feature sequence from the CNN and decodes information

to final text outputs directly. The mechanism and architecture of seq2seq model and

attention are explained below. Moreover, input images have the same formats as that

in CRNN.

A seq2seq model is a model that translates a sequence of items (e.g. Chinese)

to another sequence of items (e.g. English). An encoder-decoder framework is a

standard structure for a seq2seq model, as shown in Figure 5.3.1.3.1. Both encoder

and decoder are composed of RNNs, and output could have different length from

input. The encoder processes an input sequence and its final hidden state is sent to

the decoder. The final hidden state vector is also named context vector. Next, the

decoder uses that state vector to predict an output sequence.

Figure 5.3.1.3.1: Encoder-decoder structure

Note that the context vector has a fixed size in a model, so it is difficult to store

the entire input information into one fixed-length vector if the sequence is long and

some information are lost in the encoding process. Also, information at all time

93

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

steps in the encoder may have different degrees of connections with information per

time step in the decoder, but the context vector cannot represent all relations in the

decoding process. To address these problems, attention is created and implemented

in the encoder-decoder framework.

Attention is a technique that mimics human visual attention to correlative infor-

mation in a sequence. It allows a model to focus on information from certain encoding

hidden states at each decoding time step by assigning different weights to all encoding

hidden states. The focused hidden states are assigned larger weights. After all, the

weighted encoding hidden states are used in the decoding process. Therefore, atten-

tion utilizes information in all hidden states rather than the final hidden state in the

encoder. In the meantime, at each decoding time step, attention provides correlation

between each encoder state and that decoder state. Figure 5.3.1.3.2 gives a clearer

visualization about the mechanism of attention.

The encoder generates its hidden states hi in a time interval [0, t], and the decoder

produces its hidden states sj in a time interval [0, k]. At the beginning, for a decoder

state sj, the “relevance” between each h and sj is calculated using the attention func-

tion score(hi, sj) = w tanh(whhi + wssj), i = 0, ..., t, which proposed by Bahdanau

et al. [94]. w, wh, ws are learnable weights in the function. Next, scores are scaled to

a range of [0, 1] via the softmax function. The scaled scores are the attention weigths

w. After that, the attention vector cj is computed as the sum of element-wise product

between attention weights and encoder states cj =
t∑
i=0

wihi. Finally, the attention

vector cj is concatenated with the decoder state sj into one vector to generate text

output. One disadvantage of attention is that it is heavily time-consuming, because

at each decoding time step, one attention vector is computed for that decoder state.

94

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

Figure 5.3.1.3.2: Attention mechanism

After explaining the mechanism of seq2seq model and attention, the architec-

ture of seq2seq model with attention in attention OCR is shown in Figure 5.3.1.3.3.

The encoder contains one bi-directional LSTM, and the decoder consists of two uni-

directional LSTMs. Similar to CRNN, the decoder of attention OCR is followed by

a fully connected layer, it produces probabilities for 36 (A to Z and 0 to 9) classes

and the class with the highest probability is selected as the final output at each time

step. The log loss is also used as the algorithm loss function.

95

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

Figure 5.3.1.3.3: Encoder-decoder architecture with attention [95]

Python built-in model aocr is a Tensorflow version attention OCR. It is easy

to implement but does not provide any pre-trained weights from large image text

datasets. Thus, the network will be trained without transfer learning for the license

plate recognition. Furthermore, in the training process, most hyperparameters are

kept at their default values, except for manually adjusting the batch size and the

number of epochs to 32 and 80 to achieve an optimized training result.

In the testing process, LPs are real-time predicted by attention OCR at about

39 FPS, but the speed is slower than that of CRNN. 75 out of 106 testing LPs are

recognized correctly, in other words, the recognition accuracy is around 70.75%. By

comparing all three algorithms: Tesseract OCR engine, CRNN with transfer learning,

and attention OCR without transfer learning; CRNN with transfer learning has the

highest accuracy and the fastest prediction speed. Therefore, in next subsection, four

experiments are implemented to improve the CRNN model recognition performance.

96

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

5.3.2 Optimization Experiments

Four experiments are designed for the CRNN recognition optimization in this re-

search: the first strategy is to augment data via image perspective skewing and dis-

tortion, the second method is to attempt five image scaling filters, the third approach

is to adjust input image size, and the fourth way is to add a post-processing classifier.

The objective and details of experiments will be described below.

By observing the misidentified LPs from the testing result in Section 3.1.2, the

model misclassifies characters which have high similarity in a part of their shapes.

For example, {[D, 0], [B, 8], [M, N]} have little differences in the left or right side

of their contours; and {[Z, 2], [I, 1], [B, R]} pairs are a bit different in the top or

bottom side. Thus, perspective skewing is applied in data augmentation to amplify

the right/left/top/bottom features of characters, as shown in Figure 5.3.2.1a. In

addition, image distortion is also used to reinforce the neural network learning ability,

as seen in Figure 5.3.2.1b.

(a) Perspective skewing

(b) Distortion

Figure 5.3.2.1: Image augmentation approaches [96]

97

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

Some samples of augmented LPs are presented in Figure 5.3.2.2. (a) and (d) are

corresponding images before and after skewing right, the left side of character D is

zoomed in. (b) and (e) are images before and after skewing forward, the top sides of

characters Z and 2 are emphasized. (c) and (f) are images before and after distortion,

it is helpful for recognition if a license plate is old and its plate label sticker has many

wrinkles.

(a) (b) (c)

(d) (e) (f)

Figure 5.3.2.2: Image augmentation samples

By applying data augmentation, the prediction accuracy is increased from 87.74%

(93 out of 106 LPs are recognized) to 95.28% (101 out of 106 LPs are recognized).

This experiment significantly improves the LP recognition performance of the CRNN

model.

LP images need to be scaled to a resolution of W x 32 pixels before feeding into the

deep learning network, and image scaling technique has influence on images’ quality.

Because down-sampling removes pixels from the original images and up-sampling adds

pixels to original images. The original resampling method in the model is bilinear. It

is investigated and compared to other four methods (nearest, bicubic, box, lanczos)

in the second experiment to examine which image scaling technique could generate

the highest LP recognition accuracy.

98

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

The nearest, bilinear, and bicubic methods use adjacent pixels in an original im-

age to interpolate pixels in a target image. In Figure 5.3.2.3, the top three plots

clearly represent how these methods work in 1D dimension before extending to 2D

dimensions. The black and yellow/green/red/blue points refer to a target point and

neighbouring points. The 1D nearest-neighbour mode determines the target point

value according the nearest neighbouring point value; the linear mode decides the

target point value by linear interpolation between two neighbouring points; and the

cubic mode generates the target point by cubic interpolation within four neighbour-

ing points. In the bottom three plots (2D dimensions), all colorful points can be

regarded as pixel center points, and their values refer to pixel values. Thus, for the

pixel generation in target images, 2D nearest-neighbour and bilinear modes leverage

2x2 surrounding pixels, and bicubic mode utilizes 4x4 neighbouring pixels.

Figure 5.3.2.3: Nearest vs Bilinear vs Bicubic interpolation [97]

The box resampling model computes a target pixel value as the average of pixels’

values inside a window, and the window size (sw, sh) is equal to (the scaling ratio of

an image width w, the scaling ratio of the image height h). The lanczos resampling

99

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

approach is to interpolate the whole image pixels in 2D dimensions using sinc function

[98], and pixels in a target image are then sampled from the interpolated surface.

After training and testing the CRNN model with five image scaling methods

respectively, the LP recognition accuracy are listed in Table 5.3.2.1. By comparing

the testing result, the best image resampling method in this experiment is the original

bilinear model, hence, here is no improvement for the CRNN recognition performance.

Table 5.3.2.1: LP recognition accuracy of image resampling techniques

Resampling filters Nearest Bilinear Bicubic Box Lanczos

LP recognition accuracy 84.91% 95.28% 94.34% 87.74% 93.40%

In the input image scaling process, images in each batch have to retain the same

size before entering the network. Their heights are fixed at 32 pixels, but their unified

widths W need to be determined using batch images. The original method in CRNN

algorithm is to calculate the ratio of width and height per image in a batch, then pick

the maximum ratio and multiply it with 32 to produce the image width W for all

images in that batch. This method may have a problem that some images would be

excessively “stretched” horizontally and characters onside would also be misshaped.

Therefore, the third experiment is designed to enhance the original method.

The idea is as follows: the python function random.random() is used to generate

a random number between 0.0 and 1.0, if the returned random number is less than

0.5, the original method in the algorithm is applied to define the image width W for

a batch; if the random number is larger or equal to 0.5, then pick the high median

ratio and multiply it with 32 to produce the image width W for a batch.

100

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

After the input image size adjustment, the CRNN recognition accuracy of this

experiment is increased from 95.28% (101 out of 106 LPs are recognized) to 97.17%

(103 out of 106 LPs are recognized). It indicates that image resizing affects the shape

of characters on the license plates and that further impacts the recognition behaviour.

By analyzing the third experiment result, 3 out of 106 LPs are misidentified in

the prediction. The errors are caused by confusion between alphabets and integers (B

and 8, I and 1). Thus, adding a post-processing classifier to rectify misclassifications

between uppercase letters and numbers is the fourth experiment. The classifier is

implemented in the next subsection for the Ontario license plate recognition. As the

standard Ontario LPs have a fixed length of 7, the first four positions are alphabets,

and the last three positions are integers. If an alphabet (integer) is predicted at a

position of integers (alphabets), the classifier could replace it by a comparable integer

(alphabet). Table 5.3.2.2 includes all confused letters and numbers that appeared in

this research and the classifier works on the basis of this table.

Table 5.3.2.2: Confused alphabets and integers in LP recognition

Alphabets A B D G I S T Z

Integers 4 8 0 6 1 5 7 2

5.3.3 Ontario License Plate Recognition

For Ontario license plate recognition with the optimized CRNN model, the camera

device setup is briefly described. Next, the LPs collection and pre-processing are

depicted. Afterward, the deep learning algorithm is re-trained and the testing results

are discussed.

101

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

5.3.3.1 Camera Setup

As mentioned in Chapter 1, the CalmCar optical camera is installed on the top of the

front windshield inside the lab vehicle, and it is primally used for vehicle perception

tasks such as object detection. The camera has a resolution of 1280 x 720 pixels and

records videos at 30 FPS. However, when testing the hardware on roads, its resolution

is low in capturing plate numbers in both urban and highway scenes.

Consequently, a Logitech Brio webcam (Figure 5.3.3.1.1) is used in this research.

It is installed in the middle of the vehicle hood and connected to a laptop for video

recording. The webcam setting is 1920 x 1080 resolution with 30 FPS recording speed.

After driving trials, the auto focus, auto exposure, and Back Light Compensation

(BLC) functions are disabled. The reasons are that the auto focus mode could result in

focusing on certain non-LP regions and blurring surrounding views; the auto exposure

and BLC modes bring too much light so the captured images become over-exposed.

Therefore, the device focus and exposure values are manually adjusted depending on

the driving environment at each time. Moreover, the webcam works reasonably in

local areas, but fails to clearly capture LPs on highways (farther distance between

two cars and higher car speed).

Figure 5.3.3.1.1: Logitech Brio webcam [99]

102

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

5.3.3.2 Ontario License Plates Collection and Pre-processing

The Ontario LPs are collected at different times of days in the GTA streets. Most

weather conditions are good. LPs from different vehicles are manually cropped from

recorded videos, and the total number of collected LPs are about 230. By recognizing

with human eyes (easy or take some efforts), there are 198 LPs that could be read

and they are regarded as “clear” LPs; the rest are either blur or low-quality, and

they are regarded as “unclear” LPs. Blurring may have been caused by the webcam

shutter speed and exposure settings, distance from the ego-car, or relative motion

between vehicles. Low quality may be due to plate surface damage, dust and dirt,

light reflection by plate plastic shell, characters’ partial block by plate frame, or

environment illumination. Some examples are presented in Figure 5.3.3.2.1, (a) is

easy to be read, (b) can be recognized but take some efforts, (c) is blur, and (d) has

low quality.

(a) clear (easy) (b) clear (hard) (c) blur (d) low quality

Figure 5.3.3.2.1: Ontario LP samples

The texts of 198 LPs are manually labeled. In the annotation process, it is worth

noting that some separator patterns are between the last alphabet and the first integer

in Ontario LPs, such as crown, trillium, and flower shapes. Thus, the optimized

CRNN model needs to be fine-tuned using Ontario LPs and the training/testing data

split ratio is set as about 60% (117 LPs) and 40% (81 LPs).

103

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

5.3.3.3 Results and Discussions

For the testing, the prediction accuracy is 93.83% (76 out of 81 LPs are recognized)

before adding the classifier, and that is increased to 97.53% (79 out of 81 LPs are

recognized) after adding the classifier. Therefore, the Ontario LP recognition meets

the goal setting of high performance. The recognition of two LPs has errors that

misidentify E as F, and these plate images are shown in Figure 5.3.3.3.1. In (a), the

bottom line of E is partially blocked by the thick plate frame. In (b), the error may

be caused by inefficient training of the model with small sized data.

(a) Error 1 (b) Error 2

Figure 5.3.3.3.1: Ontario LP recognition errors

From the license plate recognition application on Ontario LPs, it turns out that

the recognition accuracy is not only determined by a deep learning algorithm, but

also camera device properties and its setup. The camera settings have significant

impacts on license plate quality in the data collection process, and image quality

further affects the model recognition performance. To gather better quality LPs in

both urban and highway regions, a 4K (3840 x 2160 pixels) resolution is needed. Also,

higher frame rates (greater than 30 FPS) can be used for video recording to examine if

the number of blur images are reduced. In addition, the manual settings of camera’s

focus and exposure in the driving process lead to challenges for the collected data

quality optimization.

104

Chapter 6

Lane Detection

Lane detection is to extract lanes information (e.g. coordinates, types) from roads

using a camera and assist vehicle trajectory decisions such as lane keeping and lane

changing. Real-time lane detection is very important to both autonomous driving and

Advanced Driver-Assistance Systems (ADAS). As presented in Chapter 3 Section 4,

segmentation-based deep learning algorithms are the most commonly used models

at present and some of them have complete open-source codes available online that

can be used and implemented in different applications. In addition, some popular

datasets are reviewed such as TuSimple (collected on highways in San Diego, US),

CULane (collected in urban areas, rural areas, highways from Beijing, China), and

BDD100K (collected in urban areas from multiple cities, US).

This research focuses on highway lane detection. Therefore, a real-time algorithm

[100], which consists of a segmentation-based CNN and a curve interpolation model,

is selected and applied on TuSimple highway lane dataset [78]. Also, transfer learning

is used with pre-trained weights from CULane dataset [64]. One NVIDIA GeForce

105

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

RTX 2080 Ti GPU is used for training, validation and testing. In this chapter, the

algorithm is explained and optimized by modifying the loss function in the CNN and

removing outliers before interpolating lane curves. TuSimple data pre-processing is

illustrated. The lane detection results of all experiments are evaluated and discussed.

6.1 Algorithm Explanation

In this section, the architecture of the applied deep learning algorithm is explained.

It includes a segmentation-based CNN and a curve interpolation model. The CNN is

a variant of ERFNet [74] for the lane segmentation, and cubic spline curves are used

for the lane interpolation.

6.1.1 Segmentation-based CNN

Before illustrating the details of the CNN, a visualization of how segmentation works

is represented with an example. In Figure 6.1.1.1, the input image contains 2 classes of

objects: cat and blanket. The “cat” class is labeled as 1 and “blanket” class is labeled

as 2. By feeding the input image into a segmentation-based CNN, it generates two

feature maps for classes prediction. In each class feature map, a binary classification

is calculated to recognize if pixels belong to the class or not (i.e. 1 or 0). After that,

all 1 in each map are replaced by the labelling of the class, and all feature maps are

overlaid together to generate one segmentation mask on top of the input image. In

the segmentation mask, pixels for each class are assigned with a specific color, in this

example, red color represents cat and blue color represents blanket.

106

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

Figure 6.1.1.1: Segmentation visualization example

The CNN is a variant of Efficient Residual Factorized ConvNet (ERFNet) [74].

ERFNet is a real-time segmentation CNN with an encoder-decoder architecture which

is presented in Table 6.1.1.1. In brief, the encoder learns more detailed features

from input images via generating lower resolution feature maps, but it loses spatial

information during the down-sampling process. Then the decoder recovers spatial

information by up-sampling and outputs full resolution segmentation maps.

107

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

Table 6.1.1.1: ERFNet architecture [74]

Layer Type Number of feature maps Output resolution

Encoder

1 Downsampler block 16 W/2 x H/2

2 Downsampler block 64 W/4 x H/4

3-7 5 x Non-bt-1D 64 W/4 x H/4

8 Downsampler block 128 W/8 x H/8

9 Non-bt-1D (dilated 2) 128 W/8 x H/8

10 Non-bt-1D (dilated 4) 128 W/8 x H/8

11 Non-bt-1D (dilated 8) 128 W/8 x H/8

12 Non-bt-1D (dilated 16) 128 W/8 x H/8

13 Non-bt-1D (dilated 2) 128 W/8 x H/8

14 Non-bt-1D (dilated 4) 128 W/8 x H/8

15 Non-bt-1D (dilated 8) 128 W/8 x H/8

16 Non-bt-1D (dilated 16) 128 W/8 x H/8

Decoder

17 Deconvolution (up-sampling) 64 W/4 x H/4

18-19 2 x Non-bt-1D 64 W/4 x H/4

20 Deconvolution (up-sampling) 16 W/2 x H/2

21-22 2 x Non-bt-1D 16 W/2 x H/2

23 Deconvolution (up-sampling) C W x H

From Table 6.1.1.1, the encoder has two types of layers: downsampler and non-

bottleneck 1D; and the decoder also has two types of layers: deconvolution and

non-bottleneck 1D. A downsampler block concatenates one convolutional layer and

one max pooling layer to learn more features and reduce feature map size. A non-

bottleneck 1D (non-bt 1D) block is a type of residual block, which was discussed

in Chapter 4 Section 1, and it is designed to reduce the computation time and the

number of parameters. A non-bt 1D includes four convolutional layers with one skip

connection to deepen the network and produce higher accuracy. In some non-bt 1D

blocks, dilated convolutions are used to collect richer information. The difference

between standard and dilated convolutions are that a standard convolution extracts

108

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

adjacent pixel information (dilation rate = 1) but a dilated convolution extracts pixel

information with gaps (dilation rate = n means skipping n-1 pixels). For instance,

pixels in yellow color are selected by a 3x3 kernel with dilation rate = 1, 2, 4 are

plotted in Figure 6.1.1.2 top, middle, and bottom. The corresponding pixel gaps are

0, 1, 3. A deconvolution (also named transpose convolution) layer is designed to do

an opposite operation as a typical convolution layer. It up-samples feature map size

and reduces feature map numbers.

Figure 6.1.1.2: Dilated convolutions with kernel size 3 x 3

In ERFNet, the encoder generates 128 feature maps and reduces their width and

height from the input image size (W, H) to (W/8, H/8) using downsampler and non-

bottleneck 1D blocks. And the decoder reduces the number of feature maps from 128

to C (number of classes) and recovers output maps’ size from (W/8, H/8) to (W, H)

via deconvolution layers and non-bottleneck 1D blocks. In the lane detection case,

one lane is defined as one class, so C classes represent C - 1 lanes and one background

(all things except lanes in an image).

109

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

The CNN modifies ERFNet by adding one additional lane existence branch after

the encoder of ERFNet and parallel to the decoder of ERFNet, as shown in Figure

6.1.1.3. The lane existence part combines two convolutional, one max pooling, and

two linear (fully connected) layers to compute the existence probability (confidence)

per lane and classify a lane existence as 0 or 1 with a probability threshold 0.5.

The purpose of adding the lane existence branch is to reduce computation time

in the lane curve interpolation stage. For example, if a dataset contains a maximum

of 4 lanes in each of its images, the decoder of ERFNet will generate 4 lane feature

maps and each of them may contain one lane or nothing. Without the lane existence

branch, every feature map needs to be checked by the lane curve interpolation model

for lane points extraction. It is time consuming if the dataset size is very large.

Therefore, by adding the lane existence part, only feature maps whose lane existence

classification is 1 will be passed into the next curve interpolation step.

Figure 6.1.1.3: ERFNet variant [101]

110

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

6.1.2 Curve Interpolation

After the segmentation-based CNN, lane points’ coordinates are extracted from seg-

mentation feature maps and interpolated using cubic spline curves in the interpolation

model of the algorithm. The cubic spline function S is as follows:

S(x) =

C1(x), x0 ≤ x ≤ x1

...

Ci(x), xi−1 < x ≤ xi

...

Cn(x), xn−1 < x ≤ xn

where xi (also named knot) represents a predefined point on S, i = 0, ..., n; each cubic

function between two knots is Ci = ai + bix+ cix
2 +dix

3 (di 6= 0), i = 1, ..., n. Except

two end knots on S, each knot connects two adjacent cubic functions and satisfies

boundary conditions Ci(xi) = Ci+1(xi), C
′
i(xi) = C

′
i+1(xi), and C

′′
i (xi) = C

′′
i+1(xi),

i = 1, ..., n− 1. The boundary conditions indicate that two adjacent cubic functions

at their connect point have the same value, slope (1st derivative), and rate of change

of slope (2nd derivative).

In order to obtain the lane curve equations and visualize the lanes on roads, the

cubic spline end condition for lane end points needs to be determined. There are

three common end types for a spline function S: natural, clamped, and not-a-knot.

In the natural end condition, the change of the slope of S at its start and end is

constrained as 0: S
′′
start = 0, S

′′

end = 0. It means that S turns into straight lines at the

two ends. In the clamped end condition, the slope of S in both ends is specified as a

constant: S
′
start = A, S

′

end = B. In the not-a-knot end condition, instead of adding

111

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

constrains like natural and clamped, the number of degrees of freedom is reduced

by removing the second knot (after the start) and the second last knot (before the

end) on S: S
′′′
start = S

′′′
start+1, S

′′′

end−1 = S
′′′

end. From this end condition plus previous

boundary conditions, it can be derived that C1 is the same as C2, and Cn−1 is the same

as Cn. So the second and the second last knots can be “ignored” in the coefficients

computation of S and they become “not-a-knot”.

Figure 6.1.2.1 is a visualization example for cubic spline curve interpolation with

natural, clamped, and not-a-knot end conditions. By observing all lane plotting forms

in this research, the natural end type generates the best interpolation performance.

Therefore, cubic spline with the natural end condition is selected for the lane inter-

polation model.

Figure 6.1.2.1: Cubic spline boundary conditions

112

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

6.2 TuSimple Data with Transfer Learning

TuSimple dataset is used in this project and transfer learning is also applied with

a pre-trained model from CULane dataset. Both datasets have been introduced in

Chapter 3 Section 4.2. In this section, the difference between the two datasets in

terms of data collection environments, scenes, annotations, and how TuSimple data

is pre-processed are discussed.

6.2.1 CULane Pre-trained Model

The pre-trained model of the algorithm is generated using CULane, which has a

much larger dataset and more data collection environment scenarios in urban, rural

and highway areas, compared with TuSimple. In Figure 6.2.1.1, a total of nine scenes

with their proportions and example images are shown: normal, crowded, night, no

line, shadow, arrow, dazzle light, curve, and crossroad.

In terms of data annotation, the origin (x0, y0) is the left-top of an image, x axis

is along the horizontal direction from left to right, and y axis is along the vertical

direction from top to bottom. CULane labels lane coordinates (x, y) consecutively

without considering occluded locations. In addition, the end points of all lanes in

one image are labeled at the same y value. In other words, all lane end points in one

image are labeled equally far from the ego-car. The additional lane existence (0 or 1)

labelling for CULane is based on the relative position between lanes and the ego-car

(second to left, left, right, second to right).

113

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

The reason why some annotation features of CULane are described here is that

they affect the fine-tuning of the deep learning algorithm, lane detection and eval-

uation on TuSimple. These will be discussed in the “Evaluation and discussions”

section.

Figure 6.2.1.1: CULane scenes example [64]

6.2.2 TuSimple Pre-processing

Compared with CULane, TuSimple has a much smaller data size and is collected

only on US highways in day times. The dominant scene types are normal (Figure

6.2.2.1a) and curve (Figure 6.2.2.1b). A few of image scene types are shadowed when

the ego-car is driven under bridges or in crowded conditions during rush hours. Thus,

the pre-trained model needs to be fine-tuned using TuSimple data.

For data annotation, TuSimple also labels the origin (x0, y0) at the left-top of

an image, x axis is from left to right horizontally, and y axis is from top to bottom

vertically. TuSimple considers the occlusion of lanes by vehicles and does not label

coordinates if a part of a lane is occluded. In addition, lane end points in one image

are labeled at different y values depending on how far lanes can be visualized per

image, rather than selecting a fixed y value as the end labeled point for all lanes per

image in CULane. Moreover, as a part of this research, the lane existence annotation

114

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

is manually added for TuSimple based on the absolute position of lanes from left to

right on roads, rather than the relative position between lanes and the ego-car.

The ground truth masks of TuSimple are annotated for the error computation of

predicted segmentation masks from the decoder in the algorithm. For example, the

ground truth masks of normal and curve scenes are created in Figures 6.2.2.1c and

6.2.2.1d. To generate ground truth masks, lanes are plotted with different colors and

non-lane areas (i.e. background) are plotted with black color. Firstly, the original

image’s width (W) and height (H) information are extracted and one zero matrix is

created with shape (W x H x 3), where 3 refers to red, green, and blue channels.

Black color is encoded as (0, 0, 0) in the RGB scheme. Thus, this zero matrix

represents a black image. Next, lane point coordinates are extracted from annotation

files and plotted with different colors. Finally, the matrix data is displayed as an

image. Figures 6.2.2.1e and 6.2.2.1f show the overlays between original images and

ground truth masks.

The number of lanes per image in CULane is less than or equal to 4. Most images

in TuSimple have at most 4 lanes, except a very few images that have 5 lanes. Thus,

images which are annotated and have at most 4 lanes in TuSimple will be filtered out

for use in this research. The number of training/validation/testing images are set as

2858/358/172. In addition, TuSimple images are resized from 1280 x 720 pixels to

1640 x 590 pixels as CULane.

115

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

(a) Normal scene (b) Curve scene

(c) Normal mask (d) Curve mask

(e) Normal overlay (f) Curve overlay

Figure 6.2.2.1: TuSimple data scenes and annotations

6.3 Experiments and Optimization

In this section, a total three of experiments are designed: the first is to fine tune the

original model using TuSimple data; the second is to optimize the lane segmentation

by changing the original algorithm’s loss function; and, the third is to optimize the

lane interpolation by removing outliers from predicted lane points before interpolating

lanes. The optimization experiments are discussed in subsections 6.3.1 and 6.3.2.

116

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

In the first experiment, all hyperparameters in the deep learning algorithm are

kept as default, except adjusting the initial learning rate lr and adding a learning

rate scheduler. The hyperparameter definition and types have been summarized in

Chapter 4 Section 3.1. The initial lr is set to 0.01 to accelerate the algorithm learning

speed, and the lr scheduler adjusts the learning speed by reducing lr by a factor of 10

when the number of epochs reaches at 20%, 50%, 90% of the total number of epochs.

These values are manually selected by observing the loss and accuracy convergence

performance in the training process.

Figure 6.3.1 visualizes the lane segmentation prediction and interpolation results

of the first experiment in normal and curve scenes. The lane segmentation masks are

outputs of the segmentation-based CNN of the algorithm, and lane point coordinates

are extracted from the masks according to pixel values. After that, lane points are

interpolated as cubic splines onto the original lane images.

(a) Normal scene interpolation (b) Curve scene interpolation

(c) Normal mask prediction (d) Curve mask prediction

Figure 6.3.1: Lane segmentation predictions and interpolations

117

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

6.3.1 Loss Function Optimization

The original loss function for lane segmentation in the algorithm is the Negative

Log-Likelihood (NLL) loss. It is used for classification tasks with multiple classes.

NLL loss calculates the negative log of softmax of the predicted output NLLloss =

−log(σ(yi)). The softmax function σ(yi) re-scales output to the range of [0, 1]. As

a type of distribution-based losses, NLL loss measures classification for each pixel,

so it has a disadvantage when classes are extremely unbalanced. In case of the lane

detection, as shown in Figure 6.3.1, the pixel amount of background class (black color

area) is much larger than that of lane classes (colored lines), so the class imbalance

exists in this research.

Therefore, region-based losses are considered in this case, which only maximize

the overlap between predicted and ground truth lanes. One popular loss function

named tversky loss is selected to be used here. It is equal to TP
TP + α×FP + β×FN . [TP,

FP, FN] refer to [True Positive, False Positive, False Negative], which were introduced

in Chapter 3 Section 2.3. The hyperparameters α and β are used to penalize FP and

FN, and α + β is equal to 1. When α = β = 0.5, the tversky loss becomes equivalent

to another loss function named dice loss, which gives equal weights for FP and FN.

To optimize lane segmentation, the original NLL loss is combined with the tversky

loss as a compound loss, and 9 sub-experiments are conducted with [α, β] at [0.1,

0.9], [0.2, 0.8], [0.3, 0.7], [0.4, 0.6], [0.5, 0.5], [0.6, 0.4], [0.7, 0.3], [0.8, 0.2], [0.9, 0.1].

Different combinations of α and β give different weights for FP and FN in the tversky

loss, so they relate to the trade-off between precision and recall. The testing result

performs the best when [α, β] is [0.5, 0.5] (i.e. the tversky loss becomes the dice loss).

118

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

As an example, in Figure 6.3.1.1, before changing the algorithm loss function, the

right lane (shown in yellow color) in the predicted segmentation mask has a significant

pixel classification error and a part of pixels in background are classified as lane. The

error from lane segmentation also reduces the accuracy of lane interpolation, because

incorrect lane points are extracted from the predicted lane mask for interpolation. Af-

ter applying the compound loss, the right lane is segmented from background better,

and the lane interpolation performance is also improved.

(a) Lane interpolation (b) Lane interpolation (dice loss)

(c) Lane predicted mask (d) Lane predicted mask (dice loss)

Figure 6.3.1.1: Before and after adding the dice loss

Even though the compound loss has been applied, two notable issues can still be

observed. The first problem is that in some curve lanes, lane ends segmentation do

not perform well. For instance, in Figure 6.3.1.2, after combining the dice loss with

the NLL loss, the end of the middle lane (red color) has better segmentation, but

the end of the left lane (blue color) still diverges from the correct trajectory. The

next problem is that when some textures are painted on roads, such as former and

unused lanes, the algorithm may miss-classify them as part of lanes. For example, in

Figure 6.3.1.3, the left lane (green color) segmentation is improved by the compound

loss, but the middle lane (blue color) still contains miss-segments due to white dashed

119

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

textures on the road.

To alleviate these issues, points outside of the lane end in problem one and points

that belong to road surface textures in problem two need to be removed in the lane

post-processing after segmentation. They can be regarded as “outliers” in lane points.

Thus, a method that removes outliers is added before the lane curve interpolation

stage as follows.

(a) Lane interpolation (b) Lane interpolation (dice loss)

(c) Lane predicted mask (d) Lane predicted mask (dice loss)

Figure 6.3.1.2: Problem 1: lane ends segmentation

(a) Lane interpolation (b) Lane interpolation (dice loss)

(c) Lane predicted mask (d) Lane predicted mask (dice loss)

Figure 6.3.1.3: Problem 2: textures on roads

120

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

6.3.2 Outliers Optimization

The strategy is to fit a curve on lane points without being significantly effected by

outliers, and then remove points which far away from the fitted curve. At the begin-

ning, a quadratic polynomial ax2 + bx + c is selected for lane points fitting because

TuSimple lanes are mainly straight or curved. Note that the least square fitting tech-

nique is sensitive to outliers, as these extreme points generate much larger square

residuals in the error calculation and impact the coefficients of fitted curve. A robust

fitting method called “bisquare weights” is applied to reduce the effect of outliers by

minimizing a weighted sum of square residuals. To be specific, points nearer to the

fitted curve are assigned more weights and points farther from the fitted curve are

assigned less weights. Note that outliers can also result in excessive curvature in curve

fitting, for instance, a straight lane could be “bent” by outliers in fitting process. To

avoid this problem, the maximum absolute value of the coefficient a for the second

degree term x2 is constrained. Finally, the residual per point is calculated and points

are regarded as outliers if their residuals are larger than a predefined threshold.

By observing lanes curvature and fitting performance in all testing data, the max-

imum absolute value of the coefficient a for the second degree term x2 in the quadratic

polynomial is manually set as 5, and the predefined residual threshold is also manually

set as 60. Figure 6.3.2.1 represents the lane points, curve fitting, residual distribution,

and outliers for the blue colored lanes in problem 1 and 2 as discussed in previous sub-

section. After removing the outliers using this method, subsequent lane interpolations

in problem 1 and 2 are improved, as shown in Figures 6.3.2.2 and 6.3.2.3.

121

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

(a) The left lane in problem 1

(b) The middle lane in problem 2

Figure 6.3.2.1: Lane points fitting and residuals

122

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

(a) Lane interpolation after adding dice loss(b) Lane interpolation after removing outliers

Figure 6.3.2.2: Lane detection problem 1 before and after removing outliers

(a) Lane interpolation after adding dice loss(b) Lane interpolation after removing outliers

Figure 6.3.2.3: Lane detection problem 2 before and after removing outliers

6.4 Evaluation and Discussions

In the testing process, lanes are segmented at around 80 FPS with one NVIDIA

GeForce RTX 2080 Ti GPU and therefore the algorithm could be implemented in

real-time lane detection.

A lane detection evaluation benchmark designed for CULane is used to assess the

lane detection performance for TuSimple. It contains precision, recall, and F1 score.

All experimental results are presented in Table 6.4.1. For comparison, Table 6.4.2

lists testing results from other published algorithms as follows.

Spatial CNN (SCNN) [64], as reviewed in Chapter 3 Section 4.1, learns features

along an input image width (rightward/leftward) and height (downward/upward)

to increase the spatial information of lanes and outputs lane segmentation masks.

It then interpolates lane points using cubic splines. Efficient Neural Network - Self

123

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

Attention Distillation (ENet-SAD) [67] adds attention to ENet to enforce the network

learning ability for segmentation. It also uses cubic splines for lane interpolation.

ResNet-34 [102] divides an input image into grid cells, trains the ResNet-34 for feature

extraction and a classifier for lane location prediction in each cell. ResNet-18 [102] is

a light weight version based on the same method. PolyLaneNet [103] regards lanes as

polynomial curves and lane detection as a polynomial regression problem, it directly

predicts the polynomial coefficients for lanes.

Table 6.4.1: TuSimple lane detection testing results

Experiments Precision Recall F1 score

Original model fine-tuning 92.08% 89.77% 90.91%

Tversky loss with α 0.1 and β 0.9 91.77% 89.77% 90.75%

Tversky loss with α 0.2 and β 0.8 91.93% 89.93% 90.92%

Tversky loss with α 0.3 and β 0.7 91.79% 90.10% 90.94%

Tversky loss with α 0.4 and β 0.6 91.30% 89.77% 90.52%

Tversky loss with α 0.5 and β 0.5 (dice loss) 92.12% 90.27% 91.19%

Tversky loss with α 0.6 and β 0.4 91.94% 89.93% 90.92%

Tversky loss with α 0.7 and β 0.3 92.40% 89.77% 91.06%

Tversky loss with α 0.8 and β 0.2 91.75% 89.60% 90.66%

Tversky loss with α 0.9 and β 0.1 91.79% 90.10% 90.94%

Outliers removing 92.75% 90.10% 91.40%

According to Table 6.4.1, the compound loss (NLL + tversky) improves the lane

segmentation from ERFNet by increasing F1 score from 90.91% to maximum 91.19%

when [α, β] is [0.5, 0.5]. And removing outliers from predicted lanes points improves

the lane interpolation by increasing F1 score from 91.19% to 91.40%.

124

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

Table 6.4.2: State-of-the-art results on TuSimple with available source code [104]

Algorithms F1 score FPS

SCNN (2018) 95.97% 7.5

ENet-SAD (2019) 95.92% 75.0

ResNet-18 (2020) 87.87% 312.5

ResNet-34 (2020) 88.02% 169.5

PolyLaneNet (2020) 90.62% 115.0

Comparing the F1 score and the prediction speed FPS with the state-of-the-art

algorithms in Table 6.4.2, the lane detection result (91.40% F1 score and 80 FPS)

obtained in this research are comparable. ENet-SAD has the best performance when

considering both accuracy and speed.

The challenges and limitations of the deep learning algorithm associated with

this research should be noted. In terms of FP, TuSimple ground truth does not

label occluded lane points but occluded lane points are predicted in lane detection.

This may affect IoU values and further affect FP. The difference between lane end

points in ground truth and prediction also affects IoU calculation and FP. Moreover,

road boundaries or boundaries between different colored road surfaces result in lane

misclassification and FP increasing. In terms of FN, the pre-trained model from

CULane only labels a maximum of two lanes on two sides of the ego-car. It would

miss one lane prediction if a car is driven on the rightmost (leftmost) of a 4-lane

highway and its left (right) side has three lanes. Thus, the lane existence labelling

method is changed from the relative position between lanes and the ego-car to the

absolute position of lanes on roads in TuSimple pre-processing. But the pre-trained

model is hard to be fine-tuned and this still results in lanes missing and FN increasing.

In addition, unclear painted lanes and heavily occluded lanes also increase FN.

125

Chapter 7

Conclusion and Future Work

This chapter provides the conclusions on this research about camera-based deep learn-

ing algorithms with transfer learning for 2D object detection, license plate detection

and recognition, and highway lane detection. In addition, future research directions

are discussed and recommended.

7.1 Conclusion

As overviewed, autonomous vehicles are inevitable elements of our future world. Their

benefits include the reduction in traffic crashes and congestion, and in turn the reduc-

tion of fuel consumption and carbon emissions. They also provide greater flexibility

for elderly and people with disabilities. To sense and understand the surrounding

environment as the first stage of autonomous driving, the perception system uses dif-

ferent sensors independently or cooperatively for information collection. Monocular

cameras are commonly used and the cheapest and the smallest sensors with the most

126

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

mature technology that mimics one eye of human vision to collect data. The most

important computer vision tasks in perception include object detection/tracking, li-

cense plate recognition, and lane/road detection. Deep learning and transfer learning

techniques are increasingly being used with advanced sensors to improve the percep-

tion accuracy in real time. Therefore, this thesis focuses on applying and optimizing

camera-based deep learning algorithms with transfer learning in relation to: 2D object

detection, license plate detection and recognition, and highway lane detection.

For the 2D object detection, the YOLOv3 algorithm variants that are written

using Keras and PyTorch libraries are implemented on the KITTI dataset for car,

cyclist, and pedestrian detection. In terms of the detection speed, Keras and Py-

Torch YOLOv3 achieve about 28 and 27 FPS using one NVIDIA GeForce RTX 2080

Ti GPU. Therefore, they are able to approach real-time operation (approximately 30

FPS). In terms of the detection performance, PyTorch YOLOv3 outperforms Keras

YOLOv3. It may be due to three techniques that added in the PyTorch YOLOv3

architecture: initial hyperparameters optimization using a genetic algorithm instead

of manually adjustment by trial and error; GIoU loss replaces SE loss in the loss

function to improve bounding box localization; and, the mosaic technique in data

augmentation is applied to reinforce object classification. In addition, the algorithm

training with transfer learning has distinctly better performance than that without

transfer learning. It represents that the transfer learning technique boosts the object

detection performance. Also, the detection without severe object occlusion and trun-

cation is better than that with heavy occlusion and truncation. It reflects that severe

occlusion and truncation conditions significantly affect the detection performance.

Furthermore, KITTI data bias, namely, more cars than cyclists and pedestrians in

images, results in better prediction of cars than that of other object classes.

127

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

For the license plate detection and recognition, multiple datasets (AOLP, Ope-

nALPR, UFPR-ALPR, Stanford Cars) are pre-processed for use. In the detection

stage, the PyTorch YOLOv3 model is implemented and the detection achieves 86%

average precision. Small object detection (e.g. license plates far from the ego-car)

is still a challenge for deep learning algorithms. In addition, logo prints on vehicle

surfaces and traffic occlusion also impact the detection performance. In the recogni-

tion stage, the Tesseract OCR engine, CRNN (with transfer learning), and attention

OCR (without transfer learning) algorithms are explored and compared: their recog-

nition [accuracy, speed] are [9.43%, NA], [87.74%, 72 FPS], and [70.75%, 39 FPS],

respectively. The CRNN model produces the best recognition accuracy in real-time

operation. It is optimized by augmenting images via perspective skewing and distor-

tion (accuracy is increased to 95.28%), adjusting input image resized width (accuracy

is increased to 97.17%), and adding a post-processing classifier to switch confused

alphabets and integers in License Plates (LPs). By applying the optimized model

on Ontario LP recognition, the accuracy achieves 97.53%. In Ontario LP collection

process, the monocular camera properties and its setup have significant impacts on

LPs quality, and in turn affect the final LP recognition performance.

For the highway lane detection, a variant of the ERFNet algorithm with a cubic

spline interpolation model is applied on TuSimple dataset for the highway lane seg-

mentation and interpolation. The pre-trained weights from CULane dataset is used

for transfer learning. The lane segments are predicted at about 80 FPS and F1 score

achieves 90.91%. To improve the lane segmentation, the original NLL loss function

is replaced by a compound loss function of NLL and tversky losses, and F1 score is

increased to 91.19%. To improve the lane interpolation, an outlier removing strategy

that filters out incorrect segmented lane points is applied before interpolating lanes,

128

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

and F1 score is increased to 91.40%. The detection performance and speed of the

optimized model are comparable with other state-of-the-art algorithms. According to

the observations, unclear lane painting, lane occlusions by vehicles, and road surface

textures lead to challenges for the lane prediction. Furthermore, the annotation dif-

ference between TuSimple and CULane datasets results in the difficulty of fine-tuning

the pre-trained weights in training process.

Overall, camera sensors play a vital role in the perception system of autonomous

vehicles. And camera-based deep learning algorithms with transfer learning work well

in real time for the 2D object detection, license plate detection and recognition, and

highway lane detection tasks in autonomous driving research. Current challenges in-

clude deficiencies of image datasets and algorithms design, complex road environment,

and harsh weather/illumination conditions.

7.2 Future Work

For the 2D objection detection, three components are considered. The first one is the

data bias in the dataset which contains much more cars than cyclists and pedestrians.

Objects in the minority classes need to be collected more to improve the detection

performance. The second one is the K-means algorithm for anchors generation. K-

mean is sensitive to the initial selection of anchor sizes (widths and heights), and it

produces different anchors every time it runs. The anchor sizes can be calculated in

future by averaging multiple runs to increase anchors’ robustness. The third one is

the genetic algorithm for hyperparameters optimization. It requires a large number of

iterations and high computation power for training. Alternative strategies or parallel

129

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

computing implements that are more efficient for optimization should be considered.

For the license plate recognition, the CRNN model with transfer learning has

achieved a high recognition accuracy. One that should be further investigated is

the decoding approach of CTC. The greedy search is a simple and fast method that

picks only one class with the highest probability per time step in the decoding pro-

cess. However, the most likely class may not be the ground truth class. Thus, other

methods such as beam search and prefix beam search [105] can be implemented and

compared with the greedy search in terms of the LP recognition accuracy and predic-

tion speed. Besides the deep learning algorithm, larger Ontario license plate dataset

is needed most to assure the reliability of recognition accuracy. To create a large

dataset in both urban and highway regions, better camera settings are required. The

recommend industrial camera properties are 4K (3840 x 2160 pixels) resolution and

at least 30 FPS recording speed.

For the highway lane detection, the major cause of errors is the deep learning

algorithm architecture deficiency. The ERFNet segmentation is an encoder-decoder

structure, its encoder learns and produces lower resolution feature maps while down-

sampling input images. Only feature maps from the last layer in the encoder is

sent to the decoder for full resolution segmentation maps generation by up-sampling.

The final encoding features are not able to store all information of input images, so

part of the information is lost in the encoding process. To address this problem,

attention techniques should be inserted. In addition, highway exit lanes have much

worse detection performance than normal lanes. Highway exits rarely appear in the

dataset, and some of them are not annotated. Therefore, highway exits could be

collected and labeled more to strengthen the detection capability. Moreover, current

lane detection is based on image training, but lanes are continuous objects in time

130

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

series. In future, video-based training would be worth investigating because videos

contain the temporal information for lanes.

Furthermore, as an emerging research direction in computer vision, transformer

is briefly mentioned here. The transformer neural network was initially invented

by Google researchers in 2017 [106]. Its architecture could purely rely on attention

mechanisms without recurrence or convolutions. Transformers have been successfully

applied for natural language processing and are an order of magnitude faster than

RNN. This technique in computer vision research has also produced some remarkable

outcomes since 2020. For example, the DEtection TRansformer (DETR) proposed

by Facebook AI in 2020 [107] successfully combined CNN and transformer for object

detection and segmentation applications. The model can pay attention to the ex-

tremities of objects to accurately localize bounding boxes. Extending to the LPDR

and lane detection research, this ability of the transformer can also be leveraged to

focus on license plate character contours and highway lane boundaries to optimize

the training results. Therefore, the transformer technique is recommended as a new

research direction for camera-based perception tasks.

Finally, AI technique safety is crucial for the safety-critical perception in au-

tonomous vehicles. Methods that mitigate AI safety issues need to be considered

as future work to ensure that perception models are robust and reliable as human

sensing. For instance, to reduce algorithm processing latency between object detec-

tion and lane detection tasks, the two deep learning algorithms can share the same

backbone for feature extraction.

131

Appendix A

Object Detection Supplementary

A.1 PyTorch YOLOv3 Hyperparameters

Figures A.1.1 and A.1.2 show PyTorch YOLOv3 hyperparameters optimization gen-

erations in the two experiments. The horizontal axis represents the value of hyperpa-

rameters and the vertical axis represents the fitness score of all iterations. The value of

each hyperparameter is determined at the highest fitness score. The hyperparameters

used in this object detection research are listed in Table 4.3.2.1.

132

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

Figure A.1.1: Hyperparameters optimization in experiment 1

133

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

Figure A.1.2: Hyperparameters optimization in experiment 2

134

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

A.2 PyTorch YOLOv3 Training and Validation

Figure A.2.1 plots the training (top row) and validation (bottom row) results vs

epochs for the two experiments. GIoU, Objectness, Classification refer to the local-

ization loss, objectness loss, and classification loss for both training and validation;

Precision, Recall, mAP, F1 are evaluation metrics on validation data.

(a) Experiment 1

(b) Experiment 2

Figure A.2.1: Training and validation results

135

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

A.3 Keras YOLOv3 vs PyTorch YOLOv3

Two testing samples between Keras and PyTorch YOLOv3 are visualized in Figure

A.3.1. The green, blue, red boxes refer to predicted bounding boxes, ground truth

boxes, and missing/misidentified boxes.

(a) Keras YOLOv3 sample 1

(b) PyTorch YOLOv3 sample 1

(c) Keras YOLOv3 sample 2

(d) PyTorch YOLOv3 sample 2

Figure A.3.1: Testing results visualization between Keras and PyTorch YOLOv3

136

References

[1] Ekim Yurtsever et al. “A Survey of Autonomous Driving: Common Practices

and Emerging Technologies”. In: IEEE Access 8 (2020), pp. 58443–58469.

[2] C. Badue et al. “Self-Driving Cars: A Survey”. In: ArXiv abs/1901.04407

(2021).

[3] J. Janai et al. “Computer Vision for Autonomous Vehicles: Problems, Datasets

and State-of-the-Art”. In: ArXiv abs/1704.05519 (2020).

[4] Jia Deng et al. “ImageNet: A large-scale hierarchical image database”. In:

2009 IEEE Conference on Computer Vision and Pattern Recognition. 2009,

pp. 248–255.

[5] M. Everingham et al. “The Pascal Visual Object Classes (VOC) Challenge”.

In: International Journal of Computer Vision 88.2 (June 2010), pp. 303–338.

[6] Tsung-Yi Lin et al. “Microsoft COCO: Common Objects in Context”. In:

ECCV. 2014.

137

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

[7] Marius Cordts et al. “The Cityscapes Dataset for Semantic Urban Scene Un-

derstanding”. In: 2016 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR) (2016), pp. 3213–3223.

[8] Daniel Scharstein, Richard Szeliski, and Ramin Zabih. “A taxonomy and eval-

uation of dense two-frame stereo correspondence algorithms”. In: International

Journal of Computer Vision 47 (2002), pp. 7–42.

[9] S.M. Seitz et al. “A Comparison and Evaluation of Multi-View Stereo Re-

construction Algorithms”. In: 2006 IEEE Computer Society Conference on

Computer Vision and Pattern Recognition (CVPR’06). Vol. 1. 2006, pp. 519–

528.

[10] Rasmus Jensen et al. “Large scale multi-view stereopsis evaluation”. In: 2014

IEEE Conference on Computer Vision and Pattern Recognition. IEEE. 2014,

pp. 406–413.

[11] S. Baker et al. “A Database and Evaluation Methodology for Optical Flow”.

In: International Journal of Computer Vision 92.1 (Mar. 2011), pp. 1–31.

[12] Joel Janai et al. “Slow Flow: Exploiting High-Speed Cameras for Accurate

and Diverse Optical Flow Reference Data”. In: 2017 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR). 2017, pp. 1406–1416.

[13] J. Ferryman and A. Shahrokni. “PETS2009: Dataset and challenge”. In: 2009

Twelfth IEEE International Workshop on Performance Evaluation of Tracking

and Surveillance. 2009, pp. 1–6.

[14] A. Milan et al. “MOT16: A Benchmark for Multi-Object Tracking”. In: ArXiv

abs/1603.00831 (2016).

138

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

[15] Andreas Geiger, Philip Lenz, and Raquel Urtasun. “Are we ready for au-

tonomous driving? The KITTI vision benchmark suite”. In: 2012 IEEE Con-

ference on Computer Vision and Pattern Recognition. 2012, pp. 3354–3361.

[16] Hang Yin and Christian Berger. “When to use what data set for your self-

driving car algorithm: An overview of publicly available driving datasets”.

In: 2017 IEEE 20th International Conference on Intelligent Transportation

Systems (ITSC). 2017, pp. 1–8.

[17] F. Rosique et al. “A Systematic Review of Perception System and Simula-

tors for Autonomous Vehicles Research”. In: Sensors (Basel, Switzerland) 19

(2019).

[18] Timothy B. Lee. How the lidar-on-a-chip technology GM just bought probably

works. 2017. url: https://arstechnica.com/cars/2017/10/a-deep-dive-

into-the-tech-behind-gms-new-lidar-on-a-chip-company/.

[19] Michael Garland et al. “Parallel Computing Experiences with CUDA”. In:

IEEE Micro 28.4 (2008), pp. 13–27.

[20] John E. Stone, David Gohara, and Guochun Shi. “OpenCL: A Parallel Pro-

gramming Standard for Heterogeneous Computing Systems”. In: Computing

in Science Engineering 12.3 (2010), pp. 66–73.

[21] Karl Pauwels et al. “A Comparison of FPGA and GPU for Real-Time Phase-

Based Optical Flow, Stereo, and Local Image Features”. In: IEEE Transactions

on Computers 61.7 (2012), pp. 999–1012.

139

https://arstechnica.com/cars/2017/10/a-deep-dive-into-the-tech-behind-gms-new-lidar-on-a-chip-company/
https://arstechnica.com/cars/2017/10/a-deep-dive-into-the-tech-behind-gms-new-lidar-on-a-chip-company/

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

[22] Norman P. Jouppi et al. “In-datacenter performance analysis of a tensor pro-

cessing unit”. In: 2017 ACM/IEEE 44th Annual International Symposium on

Computer Architecture (ISCA). 2017, pp. 1–12.

[23] Teledyne DALSA. CCD vs CMOS. url: https://www.teledynedalsa.com/

en/learn/knowledge-center/ccd-vs-cmos/.

[24] Mahesh Ramachandran, Ashok Veeraraghavan, and Rama Chellappa. “CHAP-

TER 5 - Video Stabilization and Mosaicing”. In: The Essential Guide to Video

Processing. Ed. by Al Bovik. Boston: Academic Press, 2009, pp. 109–140. isbn:

978-0-12-374456-2.

[25] José Marcato Junior, M. Moraes, and Antonio Maria Garcia Tommaselli. “EX-

PERIMENTAL ASSESSMENT OF TECHNIQUES FOR FISHEYE CAM-

ERA CALIBRATION”. In: 2015.

[26] Davide Scaramuzza. “Omnidirectional Camera”. In: Computer Vision: A

Reference Guide. Ed. by Katsushi Ikeuchi. Boston, MA: Springer US, 2014,

pp. 552–560. isbn: 978-0-387-31439-6.

[27] Aish Dubey. “Stereo vision — Facing the challenges and seeing the opportu-

nities for ADAS applications”. In: 2016.

[28] R. Horaud et al. “An overview of depth cameras and range scanners based on

time-of-flight technologies”. In: Machine Vision and Applications 27 (2016),

pp. 1005–1020.

[29] Miles Hansard et al. “Characterization of Time-of-Flight Data”. In: Time-

of-Flight Cameras: Principles, Methods and Applications. London: Springer

London, 2013, pp. 1–28. isbn: 978-1-4471-4658-2.

140

https://www.teledynedalsa.com/en/learn/knowledge-center/ccd-vs-cmos/
https://www.teledynedalsa.com/en/learn/knowledge-center/ccd-vs-cmos/

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

[30] Open Source Imaging. Structured-light 3D scanner. url: https : / / www .

opensourceimaging.org/project/structured-light-3d-scanner/.

[31] Guillermo Gallego et al. “Event-based Vision: A Survey”. In: IEEE transac-

tions on pattern analysis and machine intelligence PP (2020).

[32] UZH Robotics and Perception Group. Event-based, 6-DOF Pose Tracking for

High-Speed Maneuvers using a Dynamic Vision Sensor [Video]. url: https:

//www.youtube.com/watch?v=LauQ6LWTkxM&t=30s.

[33] Jay Alammar. The Illustrated Word2vec. 2019. url: https://jalammar.

github.io/illustrated-word2vec/.

[34] Wikipedia contributors. Sigmoid function. [Online; accessed 01-July-2021].

url: https://en.wikipedia.org/wiki/Sigmoid_function.

[35] Wikipedia contributors. Softmax function. [Online; accessed 24-June-2021].

url: https://en.wikipedia.org/wiki/Softmax_function.

[36] Wikipedia contributors. Activation function. [Online; accessed 04-June-2021].

url: https://en.wikipedia.org/wiki/Activation_function.

[37] Wikipedia contributors. Rectifier (neural networks). [Online; accessed 22-July-

2021]. url: https : / / en . wikipedia . org / wiki / Rectifier _ (neural _

networks).

[38] N. Dalal and B. Triggs. “Histograms of oriented gradients for human detec-

tion”. In: 2005 IEEE Computer Society Conference on Computer Vision and

Pattern Recognition (CVPR’05). Vol. 1. 2005, 886–893 vol. 1.

141

https://www.opensourceimaging.org/project/structured-light-3d-scanner/
https://www.opensourceimaging.org/project/structured-light-3d-scanner/
https://www.youtube.com/watch?v=LauQ6LWTkxM&t=30s
https://www.youtube.com/watch?v=LauQ6LWTkxM&t=30s
https://jalammar.github.io/illustrated-word2vec/
https://jalammar.github.io/illustrated-word2vec/
https://en.wikipedia.org/wiki/Sigmoid_function
https://en.wikipedia.org/wiki/Softmax_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Rectifier_(neural_networks)
https://en.wikipedia.org/wiki/Rectifier_(neural_networks)

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

[39] Corinna Cortes and Vladimir Vapnik. “Support-Vector Networks”. In: Ma-

chine Learning. 1995, pp. 273–297.

[40] Pedro F. Felzenszwalb et al. “Object Detection with Discriminatively Trained

Part-Based Models”. In: IEEE Transactions on Pattern Analysis and Machine

Intelligence 32.9 (2010), pp. 1627–1645.

[41] Ross B. Girshick et al. “Rich Feature Hierarchies for Accurate Object Detec-

tion and Semantic Segmentation”. In: 2014 IEEE Conference on Computer

Vision and Pattern Recognition (2014), pp. 580–587.

[42] J. R. R. Uijlings et al. “Selective Search for Object Recognition”. In: Interna-

tional Journal of Computer Vision 104.2 (2013), pp. 154–171.

[43] Ross B. Girshick. “Fast R-CNN”. In: 2015 IEEE International Conference on

Computer Vision (ICCV) (2015), pp. 1440–1448.

[44] Shaoqing Ren et al. “Faster R-CNN: Towards Real-Time Object Detection

with Region Proposal Networks”. In: IEEE Transactions on Pattern Analysis

and Machine Intelligence 39 (2015), pp. 1137–1149.

[45] Jifeng Dai et al. “R-FCN: Object Detection via Region-based Fully Convolu-

tional Networks”. In: ArXiv abs/1605.06409 (2016).

[46] Joseph Redmon et al. “You Only Look Once: Unified, Real-Time Object Detec-

tion”. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR) (2016), pp. 779–788.

142

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

[47] Christian Szegedy et al. “Going deeper with convolutions”. In: 2015 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR) (2015),

pp. 1–9.

[48] W. Liu et al. “SSD: Single Shot MultiBox Detector”. In: ECCV. 2016.

[49] K. Simonyan and Andrew Zisserman. “Very Deep Convolutional Networks for

Large-Scale Image Recognition”. In: CoRR abs/1409.1556 (2015).

[50] Tsung-Yi Lin et al. “Feature Pyramid Networks for Object Detection”. In:

2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

(2017), pp. 936–944.

[51] Joseph Redmon and Ali Farhadi. “YOLO9000: Better, Faster, Stronger”. In:

2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

(2017), pp. 6517–6525.

[52] Tsung-Yi Lin et al. “Focal Loss for Dense Object Detection”. In: 2017 IEEE

International Conference on Computer Vision (ICCV) (2017), pp. 2999–3007.

[53] Joseph Redmon and Ali Farhadi. “YOLOv3: An Incremental Improvement”.

In: ArXiv abs/1804.02767 (2018).

[54] Hei Law and Jia Deng. “CornerNet: Detecting Objects as Paired Keypoints”.

In: ArXiv abs/1808.01244 (2018).

[55] Kaiwen Duan et al. “CenterNet: Keypoint Triplets for Object Detection”.

In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV)

(2019), pp. 6568–6577.

143

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

[56] Zhi Tian et al. “FCOS: Fully Convolutional One-Stage Object Detection”.

In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV)

(2019), pp. 9626–9635.

[57] A. Kuznetsova et al. “The Open Images Dataset V4”. In: International Journal

of Computer Vision 128 (2020), pp. 1956–1981.

[58] Li Liu et al. “Deep Learning for Generic Object Detection: A Survey”. In:

International Journal of Computer Vision 128 (2019), pp. 261–318.

[59] Baoguang Shi, X. Bai, and C. Yao. “An End-to-End Trainable Neural Net-

work for Image-Based Sequence Recognition and Its Application to Scene Text

Recognition”. In: IEEE Transactions on Pattern Analysis and Machine Intel-

ligence 39 (2017), pp. 2298–2304.

[60] Y. Deng et al. “Image-to-Markup Generation with Coarse-to-Fine Attention”.

In: ICML. 2017.

[61] Gee-Sern Hsu, Jiun-Chang Chen, and Yu-Zu Chung. “Application-Oriented

License Plate Recognition”. In: IEEE Transactions on Vehicular Technology

62.2 (2013), pp. 552–561.

[62] OpenALPR Inc. OpenALPR datasets. 2016. url: https://github.com/

openalpr/benchmarks/tree/master/endtoend.

[63] Rayson Laroca et al. “A Robust Real-Time Automatic License Plate Recogni-

tion Based on the YOLO Detector”. In: 2018 International Joint Conference

on Neural Networks (IJCNN) (2018), pp. 1–10.

144

https://github.com/openalpr/benchmarks/tree/master/endtoend
https://github.com/openalpr/benchmarks/tree/master/endtoend

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

[64] Xingang Pan et al. “Spatial As Deep: Spatial CNN for Traffic Scene Under-

standing”. In: AAAI. 2018.

[65] Seokju Lee et al. “VPGNet: Vanishing Point Guided Network for Lane and

Road Marking Detection and Recognition”. In: 2017 IEEE International Con-

ference on Computer Vision (ICCV) (2017), pp. 1965–1973.

[66] D. Neven et al. “Towards End-to-End Lane Detection: an Instance Segmenta-

tion Approach”. In: 2018 IEEE Intelligent Vehicles Symposium (IV) (2018),

pp. 286–291.

[67] Yuenan Hou et al. “Learning Lightweight Lane Detection CNNs by Self Atten-

tion Distillation”. In: 2019 IEEE/CVF International Conference on Computer

Vision (ICCV) (2019), pp. 1013–1021.

[68] I. Goodfellow et al. “Generative Adversarial Networks”. In: ArXiv abs/1406.2661

(2014).

[69] M. Ghafoorian et al. “EL-GAN: Embedding Loss Driven Generative Adver-

sarial Networks for Lane Detection”. In: ArXiv abs/1806.05525 (2018).

[70] Jun Li et al. “Deep Neural Network for Structural Prediction and Lane Detec-

tion in Traffic Scene”. In: IEEE Transactions on Neural Networks and Learning

Systems 28.3 (2017), pp. 690–703.

[71] Qin Zou et al. “Robust Lane Detection From Continuous Driving Scenes Using

Deep Neural Networks”. In: IEEE Transactions on Vehicular Technology 69

(2020), pp. 41–54.

145

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

[72] S. Chougule et al. “Reliable Multilane Detection and Classification by Utilizing

CNN as a Regression Network”. In: ECCV Workshops. 2018.

[73] Bert De Brabandere et al. “End-to-end Lane Detection through Differen-

tiable Least-Squares Fitting”. In: 2019 IEEE/CVF International Conference

on Computer Vision Workshop (ICCVW) (2019), pp. 905–913.

[74] Eduardo Romera et al. “ERFNet: Efficient Residual Factorized ConvNet for

Real-Time Semantic Segmentation”. In: IEEE Transactions on Intelligent

Transportation Systems 19.1 (2018), pp. 263–272.

[75] G. Brostow, J. Fauqueur, and R. Cipolla. “Semantic object classes in video: A

high-definition ground truth database”. In: Pattern Recognit. Lett. 30 (2009),

pp. 88–97.

[76] Mohamed Aly. “Real time detection of lane markers in urban streets”. In: 2008

IEEE Intelligent Vehicles Symposium. 2008, pp. 7–12.

[77] Jannik Fritsch, Tobias Kühnl, and Andreas Geiger. “A new performance mea-

sure and evaluation benchmark for road detection algorithms”. In: 16th Inter-

national IEEE Conference on Intelligent Transportation Systems (ITSC 2013).

2013, pp. 1693–1700.

[78] TuSimple. TuSimple Lane Detection Challenge. 2017. url: https://github.

com/TuSimple/tusimple-benchmark/tree/master/doc/lane_detection.

[79] F. Yu et al. “BDD100K: A Diverse Driving Dataset for Heterogeneous Mul-

titask Learning”. In: 2020 IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR) (2020), pp. 2633–2642.

146

https://github.com/TuSimple/tusimple-benchmark/tree/master/doc/lane_detection
https://github.com/TuSimple/tusimple-benchmark/tree/master/doc/lane_detection

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

[80] DMP. A Closer Look at YOLOv3. 2018. url: https://blog.dmprof.com/

post/a-closer-look-at-yolov3/.

[81] Kaiming He et al. “Deep Residual Learning for Image Recognition”. In: 2016

IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

(2016), pp. 770–778.

[82] qqwweee. keras-yolo3. 2018. url: https://github.com/qqwweee/keras-

yolo3.

[83] Ultralytics. YOLOv3 in PyTorch. 2018. url: https : / / github . com /

ultralytics/yolov3.

[84] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Opti-

mization”. In: CoRR abs/1412.6980 (2015).

[85] Hamid Rezatofighi et al. “Generalized Intersection over Union”. In: (June

2019).

[86] Jonathan Krause et al. “3D Object Representations for Fine-Grained Cate-

gorization”. In: 4th International IEEE Workshop on 3D Representation and

Recognition (3dRR-13). Sydney, Australia, 2013.

[87] R. Smith. “An Overview of the Tesseract OCR Engine”. In: Ninth Inter-

national Conference on Document Analysis and Recognition (ICDAR 2007).

Vol. 2. 2007, pp. 629–633.

[88] Wikipedia contributors. Otsu’s method. [Online; last edited 30-April-2021].

url: https://en.wikipedia.org/wiki/Otsu%27s_method.

147

https://blog.dmprof.com/post/a-closer-look-at-yolov3/
https://blog.dmprof.com/post/a-closer-look-at-yolov3/
https://github.com/qqwweee/keras-yolo3
https://github.com/qqwweee/keras-yolo3
https://github.com/ultralytics/yolov3
https://github.com/ultralytics/yolov3
https://en.wikipedia.org/wiki/Otsu%27s_method

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

[89] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-Term Memory”. In:

Neural Computation 9.8 (1997), pp. 1735–1780.

[90] Christopher Olah. Understanding LSTM Networks. 2015. url: http://colah.

github.io/posts/2015-08-Understanding-LSTMs/.

[91] A. Graves et al. “Connectionist temporal classification: labelling unsegmented

sequence data with recurrent neural networks”. In: Proceedings of the 23rd

international conference on Machine learning (2006).

[92] Jieru Mei. Convolutional Recurrent Neural Network in Pytorch. 2017. url:

https://github.com/meijieru/crnn.pytorch.

[93] Max Jaderberg et al. “Synthetic Data and Artificial Neural Networks for Nat-

ural Scene Text Recognition”. In: ArXiv abs/1406.2227 (2014).

[94] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. “Neural Ma-

chine Translation by Jointly Learning to Align and Translate”. In: CoRR

abs/1409.0473 (2015).

[95] D. Britz et al. “Massive Exploration of Neural Machine Translation Architec-

tures”. In: ArXiv abs/1703.03906 (2017).

[96] Marcus Bloice, C. Stocker, and Andreas Holzinger. “Augmentor: An Image

Augmentation Library for Machine Learning”. In: ArXiv abs/1708.04680

(2017).

[97] Wikipedia contributors. Nearest-neighbor interpolation. [Online; last edited

03-February-2017]. url: https : / / en . wikipedia . org / wiki / Nearest -

neighbor_interpolation.

148

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://github.com/meijieru/crnn.pytorch
https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

[98] Wikipedia contributors. Sinc function. [Online; last edited 01-July-2021]. url:

https://en.wikipedia.org/wiki/Sinc_function.

[99] Logitech. BRIO ULTRA HD PRO BUSINESS WEBCAM. url: https://

www.logitech.com/en-ca/products/webcams/brio-4k-hdr-webcam.960-

001105.html.

[100] Yuenan Hou. Codes-for-Lane-Detection/ERFNet-CULane-PyTorch. 2019.

url: https : / / github . com / cardwing / Codes - for - Lane - Detection /

tree/master/ERFNet-CULane-PyTorch.

[101] Tong Liu et al. “Lane Detection in Low-light Conditions Using an Efficient

Data Enhancement: Light Conditions Style Transfer”. In: 2020 IEEE Intelli-

gent Vehicles Symposium (IV) (2020), pp. 1394–1399.

[102] Zequn Qin, Huanyu Wang, and Xi Li. “Ultra Fast Structure-aware Deep Lane

Detection”. In: ECCV. 2020.

[103] Lucas Tabelini et al. “PolyLaneNet: Lane Estimation via Deep Polynomial

Regression”. In: 2020 25th International Conference on Pattern Recognition

(ICPR) (2021), pp. 6150–6156.

[104] Lucas Tabelini et al. “Keep your Eyes on the Lane: Real-time Attention-guided

Lane Detection”. In: arXiv: Computer Vision and Pattern Recognition (2020).

[105] Andrew L. Maas et al. “First-Pass Large Vocabulary Continuous Speech

Recognition using Bi-Directional Recurrent DNNs”. In: ArXiv abs/1408.2873

(2014).

149

https://en.wikipedia.org/wiki/Sinc_function
https://www.logitech.com/en-ca/products/webcams/brio-4k-hdr-webcam.960-001105.html
https://www.logitech.com/en-ca/products/webcams/brio-4k-hdr-webcam.960-001105.html
https://www.logitech.com/en-ca/products/webcams/brio-4k-hdr-webcam.960-001105.html
https://github.com/cardwing/Codes-for-Lane-Detection/tree/master/ERFNet-CULane-PyTorch
https://github.com/cardwing/Codes-for-Lane-Detection/tree/master/ERFNet-CULane-PyTorch

M.A.Sc. Thesis - Yujie Hu McMaster University - Mechanical Engineering

[106] Ashish Vaswani et al. “Attention is All you Need”. In: ArXiv abs/1706.03762

(2017).

[107] Nicolas Carion et al. “End-to-End Object Detection with Transformers”. In:

ArXiv abs/2005.12872 (2020).

150

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Declaration
	Introduction
	Background Overview
	Research Motivation and Objective
	Lab Vehicle Sensors Setup
	Thesis Contributions and Outline

	Autonomous Vehicle Perception and Cameras
	Autonomous Driving
	Systems of Autonomous Vehicles
	Computer Vision in Autonomous Vehicles
	Datasets for Autonomous Vehicles

	Perception
	Sensors
	Computing Devices

	Camera Types in Autonomous Vehicles
	2D Cameras
	3D Cameras
	Event Cameras

	Deep Learning and Perception Applications
	Deep Learning Neural Network Basics
	Artificial Neural Network (ANN)
	Convolution Neural Network (CNN)
	Recurrent Neural Network (RNN)
	Activation Functions

	Image-based Object Detection
	Anchor-based Detectors
	Anchor-free Detectors
	Datasets and Evaluation Metrics
	Deep Learning Libraries and Transfer Learning

	License Plate Detection and Recognition
	Deep Learning Algorithms
	Datasets

	Lane Detection
	Deep Learning Algorithms
	Datasets and Evaluation Metrics

	Object Detection
	YOLOv3 Algorithm
	KITTI Data Mining
	Experiments and Evaluation
	Keras YOLOv3
	PyTorch YOLOv3
	Comparisons and Discussions

	License Plate Detection and Recognition
	Multiple Datasets
	License Plate Detection
	License Plate Recognition
	Models Comparison
	Tesseract OCR Engine
	CRNN
	Attention OCR

	Optimization Experiments
	Ontario License Plate Recognition
	Camera Setup
	Ontario License Plates Collection and Pre-processing
	Results and Discussions

	Lane Detection
	Algorithm Explanation
	Segmentation-based CNN
	Curve Interpolation

	TuSimple Data with Transfer Learning
	CULane Pre-trained Model
	TuSimple Pre-processing

	Experiments and Optimization
	Loss Function Optimization
	Outliers Optimization

	Evaluation and Discussions

	Conclusion and Future Work
	Conclusion
	Future Work

	Object Detection Supplementary
	PyTorch YOLOv3 Hyperparameters
	PyTorch YOLOv3 Training and Validation
	Keras YOLOv3 vs PyTorch YOLOv3

	References

