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Abstract
Trimap-free natural image matting problem is an important computer vision task

in which we extract foreground objects from given images without extra trimap

input. Compared with trimap-based matting algorithms, trimap-free algorithms

are easier to make false detection when the foreground object is not well defined.

To solve the problem, we design a novel structure (SegMatting) to handle fore-

ground segmentation and alpha matte prediction simultaneously, which is able to

produce high-quality mattes based on RGB inputs alone. This entangled struc-

ture enables information exchange between the binary segmentation task and the

alpha matte prediction task interactively, and we further design a hybrid loss to

adaptively balance two tasks during the multitask learning process. Additionally,

we adopt a salient object detection dataset to pretrain our network so that we

could obtain a more accurate foreground segment before our training process. Ex-

periments indicate that the proposed SegMatting qualitatively and quantitatively

outperforms most previous trimap-free models with a significant margin, while

remains competitive among trimap-based methods.
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Chapter 1

Introduction and Problem

Statement

1.1 Introduction

In natural image matting, our goal is to extract the target foreground object out

from an image with background using the predicted alpha matte, and the whole

process is shown in Fig. 1.1. There are a large amount of industrial natural image

matting applications, including image synthesis, video editing, and film produc-

tion. More precisely, we could formulate the problem as the following equation:

Ii = αiFi + (1− αi)Bi, αi ∈ [0, 1], (1.1)

where Ii represents the composite image at pixel i, on the right side of the equation,

Fi is the foreground (FG) image, Bi is the background (BG) image, and αi is the

alpha estimation at pixel i. Since Fi and Bi are unknown, the matting problem is

mathematically ill-posed.
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Master of Applied Science– Chengqi Li; McMaster University– Department of
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(a) Original Image (b) User Specified Trimap (c) User Specified Scribble

(d) Alpha Matte (e) Estimated Foreground Object (f) New Composite

Figure 1.1: A matting example. We use predicted alpha matte
to cut the FG object out and composite to a new BG.

(a) SHM (b) Boost (c) LF

(d) HAtt (e) Ours (f) Ground Truth

Figure 1.2: Artifacts in trimap-free algorithms.
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To make Eq. 1.1 solvable, early works on image matting (Smith and Blinn 1996)

resort to use solid color in the BG to constraint alpha value, yet such approaches

are strictly limited by the object color and transparency in practice. Following this,

a number of hand-crafted algorithms were proposed that attempted to learn the

alpha value from the correlation between pixels within a local region in the image.

In these affinity-based algorithms (Aksoy et al. 2017; Grady et al. n.d.; Levin et al.

2007; Sun et al. 2004), for instance, alpha mattes are derived on the assumption

that F and B values are locally smooth. To estimate the alpha value of an unknown

region, sampling-based methods (Chen et al. 2013; Feng et al. 2016; He et al. 2011;

Shahrian and Rajan 2012; Wang and Cohen 2007) use information from the FG

and BG patches. Unfortunately, these handcrafted methods, both affinity-based

and sampling-based, suffer from performance degradation when applied to images

with complicated BGs.

A series of data-driven matting algorithms (Cho et al. 2016; Xu et al. 2017; Li

and Lu 2020; Lu et al. 2019; Hou and Liu 2019) have been introduced in recent

years that are capable of generating high-quality alpha mattes with trimaps as

user input. Nevertheless, creating user inputs is rather time-consuming and not

feasible for real-time applications like video matting. Therefore, there has been

an increasing interest in trimap-free approaches (Zhang et al. 2019; Chen et al.

2018; Qiao et al. 2020; Liu et al. 2020; Sengupta et al. 2020) that can determine

alpha matte based exclusively on origin images. However, in most cases, trimap-

free matting methods (Chen et al. 2018; Liu et al. 2020; Sengupta et al. 2020)

are custom-designed for one certain type of object (e.g., humans). Moreover, even

if trimap-free algorithms produce good mating results for certain natural images

3
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with complex FGs, there is no reason to believe that they can generalize well in

the real world because of the absent user input and the missing definition of FG

objects associated with it (see Fig. 1.2).

In this thesis, we introduce SegMatting, an entangled network to handle the

trimap-free matting problem. There are a few ideas behind our work design.

First, since salient object detection (binary segmentation) and matting (alpha

prediction) are highly correlated in our setting, we tackle these two tasks via

multitask learning and let them reinforce each other through the communication

mechanism integrated inside our network. Second, we argue that it is essential

to adaptively balance two correlated tasks during different stages of the training

process. Generally, in multitask learning, different tasks are uniformly weighted,

but we design a hybrid loss which contains learnable parameters to adjust the focus

throughout the training process. Lastly, we believe that extra prior knowledge on

object saliency would be beneficial, since the problem is highly ill-posed and lacks

location clue. Pre-training on a salient object detection dataset would enable our

model to pinpoint the FG object.

In summary, the main contributions of this paper are:

• By utilizing the entangled decoder and task switcher module of the network

structure, we employ multitask learning to tackle both alpha prediction and

binary segmentation tasks concurrently and optimize the information flow

in-between the tasks.

• A hybrid loss function is designed that allows adaptive multitask learning in

terms of binary segmentation and alpha prediction on a multi-scale basis.
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• Using salient object detection data as a pre-training dataset, we exploit the

correlation between trimap-free matting and salient object detection to refine

our model for trimap-free natural image matting.

In addition to all the features mentioned above, our network performs better

qualitatively and quantitatively than most existing trimap-free algorithms while

still being competitive with trimap-based mating algorithms.

1.2 Thesis Structure

First, we will review several alpha matting algorithms and discuss their connections

with our work in chapter 2. In the same chapter, there is a short derivation of

our hybrid multitask loss. Then, chapter 3 will describe the proposed method in

detail, including the encoder, the tangle decoder, the task switcher, the refinement

module, the loss function, and the pretrain strategy. In chapter 4, qualitative and

quantitative results are provided to demonstrate the superiority of our network as

well as the effectiveness of network modules and training strategies. Finally, in

chapter 5, there will be a conclusion about the proposed method, its performance,

and a potential future solution to problems found in experiments.

5
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Chapter 2

Background and Previous Work

2.1 Natural Image Matting

Natural Image matting aims to make a pixel-wise prediction for object opacity.

It has been a popular computer vision task for few decades. The natural image

matting algorithms could be divided into two major categories, the probability

model based traditional methods and the convolutional neural network (CNN)

based methods.

Tradition matting algorithms branch into two categories, namely, affinity-based

methods and sampling-based methods. Affinity-based methods make assumptions

on the smooth color distribution on the local area, and propagate this clue to solve

an optimization system in the closed form (Aksoy et al. 2017; Grady et al. n.d.;

Levin et al. 2007; Sun et al. 2004). In the closed-form matting (Levin et al. 2007),

authors first established a linear relation between the alpha value and the RGB

value from Equation 1.1, and then an objective function is derived based on the

local smoothness assumptions inside a small kernel. Starting from pixels given by

6
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scribbles, the alpha values are solved by minimizing the objective function, and the

process is carried out gradually throughout the entire image. On the other hand,

sampling based methods (Chuang et al. 2001; Wang and Cohen 2007; He et al.

2011; Shahrian and Rajan 2012; Chen et al. 2013; Feng et al. 2016) collect samples

(image patches) from FG and BG areas to find the given pixel’s FG and BG color

and use those to solve alpha value based on Equation 1.1. For example, with

user markups, KNN matting (Chen et al. 2013) uses FLANN to find K nearest

neighbors for each pixel in feature space, and then apply the nonlocal principle

to obtain a closed-form solution. Though different sampling methods are used in

these works, they are all performed in certain areas located by trimaps.

The field of computer vision has witnessed the rapid development of deep learn-

ing in recent years. Learning-based matting algorithms dominate the natural image

matting tasks because they could deliver better results even if they don’t require

prior assumptions adopted by traditional algorithms. DCNN (Cho et al. 2016)

was the first work that introduced deep learning methodology into natural image

matting, but it only used a deep neural network to refine alpha mattes generated

by traditional methods. Utilizing the newly introduced Adobe Composition-1k

dataset, DIM 2.1 proposed an encoder-decoder network to generate the alpha

matte from scratch, and its novelty also includes the hybrid loss (weighted sum of

the alpha loss and the composition loss). Based on the encoder-decoder structure,

(Lu et al. 2019; Hou and Liu 2019; Li and Lu 2020) try to improve the matting

performance by indexing the pooling process, adding attention mechanism, and

even duplicating the structure respectively. Similar to most matting algorithms,

our model utilizes encoder-decoder structure with modification in the decoder, and

7
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it can also be trained in an end-to-end manner.

Figure 2.1: The architecture of DIM. (Image originally used in
Xu et al. 2017)

2.2 Trimap-free Matting

Despite the different underlying assumptions and methodologies, the aforemen-

tioned algorithms all rely on user inputs (e.g. trimaps or scribbles) to solve the

extremely ill-posed problem in which we need to compute seven unknown values

with only three given ones.

Fig. 1.1 shows examples of user input trimap and scribble. The trimap is a sin-

gle channel mask in which FG, BG, and unknown region pixels are labeled 0, 255,

and 128 respectively. Since a precise trimap usually requires hours of human effort,

the real time implementation of trimap-based algorithms is impossible. Compared

with trimaps, scribbles are hand-drawn lines that indicate approximate locations

of the FG and the BG, and they are much easier to generate. Even though it

takes only a few seconds to create input scribbles, it is unrealistic to allow people

to do so when implementing massive image matting (millions of images). Because

8
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scribbles offer limited information, algorithms that utilize them frequently perform

worse than those that use trimaps.

Due to the inconvenient process of generating user inputs in certain applica-

tions (e.g. real-time video matting), people resort to trimap-free matting which

using only the RGB image to predict the opacity. Since matting without the user

input is extremely difficult, some works start to replace the precise-labeled trimap

with other user inputs that could be obtained more easily. Boosting matting (Liu

et al. 2020) proposed a series of networks which takes coarse annotated trimaps

in and refines them with the quality unification module before re-joining the nor-

mal matting backbone. Though coarse annotated trimaps are easier to get, it is

impossible to do so in real-time. A further step is taken by background matting

(Sengupta et al. 2020), it utilizes multiple priors to replace the trimap, but it still

requires some effort in gathering such priors (pre-obtained background images and

automatically calculated soft segmentation).

Different from the aforementioned algorithms which partially get rid of trimaps,

a few works (Chen et al. 2018; Zhang et al. 2019; Qiao et al. 2020) attempt to

compute the opacity map by embedding the localization logic into the network

architecture so that user input could be avoided. Semantic human matting(Chen

et al. 2018) leverages CNN to segment the image content first, and then uses the

segmentation information to guide the alpha prediction. Furthermore, late fusion

matting (Zhang et al. 2019) branches out two segmentation decoders, one for lo-

cating the foreground and the other for the background, and then fuses foreground

and background information to get an accurate alpha matte. HAttMatting (Qiao

et al. 2020) designs a hierarchical attention module to guide the alpha prediction.

9
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Nevertheless, the lack of object location clues can introduce false detection when

extracting foreground from complex background. To solve the problem, we re-

inforce the location information by an entangled network structure in which the

segmentation task and alpha matting task are interacting with each other at every

sampling level, and also by pretraining our network on a salient object detection

dataset.

2.3 Attention Mechanisms

In a variety of deep learning models, attention mechanisms have been used to en-

hance the performance of various tasks, including machine translation (Bahdanau

et al. 2016; Vaswani et al. 2017) and computer vision (Wang et al. 2018; Hu et al.

2018; Woo et al. 2018; Hu et al. 2019).

In (Wang et al. 2018), authors try to establish a non-local dependency using the

pixel-wise correlation matrix, since convolutional and recurrent operations could

only utilize the local information. Such dependency is further developed into an

attention mechanism that helps to guide the contextual information aggregation

spatially. The feature information also distributes over channels, so SEnet (Hu

et al. 2018) proposed a totally different channel-wise attention to weighing the

importance of feature maps in each channel. Later, a series of papers explored

different implementing strategies for attention mechanism. For example, (Woo

et al. 2018) introduced a combination of spatial and channel-wise attention, (Fu et

al. 2019) used dual attention branches, and (Huang et al. 2019) applied attention

sequentially.

10

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece


Master of Applied Science– Chengqi Li; McMaster University– Department of
Electrical and Computer Engineering

In image matting, (Li and Lu 2020) introduces the idea of guided contextual at-

tention that uses low-level features from different areas of the RGB image to guide

the propagation of the alpha feature. Though we have a pretrained entangled

network for our trimap-free matting task, we could further leverage the attention

mechanism to provide extra information. Therefore, we adopt the global contex-

tual block (Cao et al. 2019), which is a simpler and more efficient variation of

non-local attention block, and the SE block for spatial and channel-wise attention

respectively. Illustrations for several attention blocks are given in Fig. 2.2.

2.4 Multi-Task Learning

In a multi-task learning setting, multiple related learning objectives are carried

out simultaneously. Since those objectives share the same representation in the

latent feature space, multi-task learning enables them to reinforce each other, and

thus increases the accuracy of a model while efficiently learning multiple objectives

(Caruana 1997).

In the computer vision area, multi-task learning has been implemented in many

works (Liao et al. 2015; Teichmann et al. 2018; Eigen and Fergus 2015; Uhrig et al.

2016; Zhang et al. 2018b). Many of them focus on the segmentation task since the

segmentation task is a prerequisite of or closely related to many other CV tasks,

such as classification, object detection, depth estimation, and alpha matting. The

connection between classification and segmentation is utilized in (Liao et al. 2015).

Using the shared representation extracted through encoder network, MultiNet (Te-

ichmann et al. 2018) is able to accomplish detection, classification, and semantic

11
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(a) Non-local Block (b) Simplified Non-local Block

(c) SE Block (d) Global Context block

Figure 2.2: Architecture of the attention blocks. C × H × W
represents a feature map with channel number C, height H and
width W . ⊗ denotes matrix multiplication, ⊕ denotes element-wise
addition, and � denotes broadcast element-wise multiplication.
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segmentation. (Eigen and Fergus 2015) attempts to gain an accurate depth esti-

mation based on the information provided from the jointly trained segmentation

and surface normal. However, in these methods, weights of losses are either set

uniformly or be treated as hyperparameters that are fine-tuned manually, such a

naive setting deteriorates the performance of the main task and requires tedious

tuning.

In (Kendall et al. 2018), the author suggests that the performance of a multi-

task learning model is strongly dependent on the relative weighting between each

task’s loss, and he proposed a learned multi-task loss base on the homoscedastic

uncertainty of each task.

In matting task, (Cai et al. 2019) leverages multi-task learning to predict the

trimap and the alpha matte simultaneously. However, we argue that these two

tasks are only loosely connected via the loss at the final output level, and the

main alpha matte prediction branch does not make full use of the task correlation.

More importantly, (Cai et al. 2019) requires a trimap input during the inference

process. Inspired by (Zhang et al. 2018b), we proposed an entangled structure

that facilitates the joint task learning between alpha matte prediction and binary

segmentation and maximizes the information flow between two tasks throughout

the decoder network. Meanwhile, the learned multi-task loss (Kendall et al. 2018)

is adopted in our work, and it is modified to give dynamic supervision on the alpha

prediction task at the binary segmentation task at every sampling level.

Here starts the derivation of the learned multi-task loss for our alpha mat-

ting prediction (regression) and binary segmentation (classification) combination.

13
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Basically, it is to weigh two maximum likelihood objectives and to sum them after-

ward. Assume fW(x) is the output of a neural network with parameter W when

the input is x. For regression task (alpha matte prediction), it follows a normal

distribution, so we define our likelihood function with mean given by the model

output and variance σ2:

p(y | fW(x), σ) = N (fW(x), σ2) = 1
σ
√

2π
exp(−

∥∥∥y− fW(x)
∥∥∥2

2σ2 ). (2.1)

With all ground truth y known, we want to maximize the likelihood function so

that the prediction fW(x) would be more accurate and general. For simplicity, we

rewrite the above equation in a log-likelihood form and remove scalars:

log p(y | fW(x), σ) ∝ − 1
2σ2

∥∥∥y− fW(x)
∥∥∥2
− log σ. (2.2)

For classification (segmentation), a softmax function is often used to normalized

the network output. In our case, there are only two classes, the FG and the BG,

and the likelihood function could be formulated as follow:

p(y | fW(x)) = Softmax(fW(x)) =
exp(fW

y (x))
exp(fW

FG(x)) + exp(fW
BG(x)) . (2.3)

A scalar σ is added in the classification likelihood function with the regression

likelihood function.

p(y | fW(x), σ) = Softmax( 1
σ2f

W(x)) =
exp( 1

σ2f
W
y (x))

exp( 1
σ2fW

FG(x)) + exp( 1
σ2fW

BG(x)) .

(2.4)

Such adaptation would affect the output of classification output because it changes

14
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the distribution to the Gibbs distribution, but the influence could be minimized

by making σ learnable. The log-likelihood for this output can then be written as:

log p(y | fW(x), σ) = 1
σ2f

W
y (x)− log[exp( 1

σ2f
W
FG(x)) + exp( 1

σ2f
W
BG(x))]. (2.5)

In the case of multiple outputs, for example, a combination of a continuous output

y1 and a discrete output y2, we will have a joint likelihood function. Let fW(x)

be a sufficient statistics, the joint likelihood function could be factorized:

p(y1,y2 | fW(x), σ1, σ2) = p(y1 | fW(x), σ1, σ2) · p(y2 | fW(x), σ1, σ2). (2.6)

The joint loss in a form of log likelihood L (W, σ1, σ2) is straight forward:

L = − log p
(
y1,y2 | fW(x), σ1, σ2

)
= − logN

(
y1 | fW(x), σ1

)
· p
(
y2 | fW(x), σ2

)
= 1

2σ2
1

∥∥∥y1 − fW(x)
∥∥∥2

+ log σ1 − logSoftmax
(
y2 | fW(x), σ2

)
= 1

2σ2
1
L1(W) + 1

σ2
2
L2(W) + log σ1

+ log
exp( 1

σ2
2
fW
FG(x)) + exp( 1

σ2
2
fW
BG(x))

[exp(fW
FG(x)) + exp(fW

BG(x))]
1

σ2
2

≈ 1
2σ2

1
L1(W) + 1

σ2
2
L2(W) + log σ1 + log σ2,

(2.7)

here we let L1(W) =
∥∥∥y1 − fW(x)

∥∥∥2
, and L1(W) = − logSoftmax

(
y2 | fW(x), σ2

)
.

For simplicity, we make an approximation,

1
σ2

[
exp( 1

σ2
2
fW
FG(x)) + exp( 1

σ2
2
fW
BG(x))

]
≈
[
exp(fW

FG(x)) + exp(fW
BG(x))

] 1
σ2

2 . (2.8)
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Though such approximation is oversimplified and loose, the disadvantage could be

compensated by a learnable σ2. According to this loss function, it would be possible

to optimize the multi-task model with respect to the network on the parameters

W and task weights σ1 and σ2.

2.5 Salient Object Detection

Salient object detection aims to localize the most attention-grabbing FG object in

an image and then make pixel-wise classification to extract the FG segments (Itti

et al. 1998; Pang et al. 2020; Qin et al. 2019; Zhao et al. 2019). Since the matting

problem is extremely difficult to solve, we believe the prior knowledge of object

saliency could be beneficial in fixing the fraud of falsely localizing the target FG

object when it is placed remotely or among other objects. Therefore, we pretrain

our network on a salient object detection dataset (DUTS). In the dataset, there are

some images in which the salient object appears small because objects are located

in a relatively remote position. Also, in other images, the salient object is placed

among distracting objects.
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Chapter 3

Proposed Method

3.1 Overall structure

Our model could be divided into three parts, the encoder, the entangled decoder,

and the refinement module. For the encoder, we use a ResNet (He et al. 2015)

to extract the feature of the input image. Based on the extracted feature infor-

mation, segmenting and matting maps are decoded interactively in the entangled

structure. Finally, we will put our coarse alpha matte prediction into a Unet-like

(Ronneberger et al. 2015) refinement network for further improvement. All sub-

outputs (e.g. segmentation outputs, coarse alpha matte predictions, and refined

alpha matte prediction) of the model are supervised by our hybrid loss. Since

the matting problem is highly ill-posed, we pretrain our model on a salient object

detection dataset. The overall structure of our model is shown in Fig. 3.1, more

details will be described in the following sections.
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Figure 3.1: Overall network structure.

3.2 Network Modules

3.2.1 Encoder

The representational power of the feature extracted by ResNet encoder is promis-

ing since such deep residual architectures are widely studied and adopted by most

matting algorithms (Lu et al. 2019; Hou and Liu 2019; Li and Lu 2020; Chen et al.

2018; Zhang et al. 2019; Qiao et al. 2020). As shown in Fig. 3.2, we adopt a

modified version of ResNet-50 that integrates SE blocks into all stages of residual

blocks as suggested in (Hu et al. 2018). Specifically, there are 50 layers in the

encoder network, includes the starting convolutional layer (kernel size 7× 7), the

normal convolutional layer (kernel size 3 × 3), the bottleneck convolutional layer

(kernel size 1× 1), the downsampling convolutional layer (kernel size 3× 3, stride

2) and the fully connected layer. All layers are followed by batch normalization

and ReLU activation. With SE blocks added to each residual block, the repre-

sentational power is further strengthened by adaptively recalibrating channel-wise

feature attention maps at each layer. The difference between normal residual block

and SE residual block is shown in Fig. 3.2. The encoder module transforms input

images into downsampled feature maps in different sizes, and each feature map
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size stands for a sampling level. We will keep all feature maps and pass them into

the decoder module.

3.2.2 Entangled Decoder

Matting natural images without trimaps is an extremely challenging problem, since

the algorithm needs to find the location of a foreground object while extracting fine

details from the same object. To pinpoint the target object, most of the trimap-free

methods have a two-stage model, the first stage will explicitly generate trimaps and

the second stage includes the normal matting model which requires trimap input.

Different from them, we embed the trimap generation logic into the decoder. More

specifically, we designed an entangled decoder in which feature output from the

encoder will be fed into segmentation decoders and matting decoders. Outputs

from every decoder would be supervised by the corresponding segmentation and

matting ground truth, and there is a multitask loss which regulates both decoders

at the end. To reinforce the feature exchange, a task switcher is adopted to create

a communication path between the segmentation and the matting decoder at every

sampling level. Fig. 3.3 shows the structure of our entangled decoder.

3.2.3 Basic Block

The basic block serves as a strong feature processor in the segmentation decoder,

the matting decoder, and the task switcher. Inspired by the residual structure from

(Zhang et al. 2018a), we use residual dense blocks (RDBs) followed by channel and

spatial attention blocks as our main processing units. Inside the RDB, each layer

is directly connected to the previous layers, leading to a dense feature input into
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(a) Encoder

(b) Original Residual Block (c) SE Residual Block

Figure 3.2: The detail structure of the SE-ResNet encoder (a).
The schema of the original residual block (b) and the SE residual
block(c).
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Figure 3.3: The detail structure of the entangled decoder.

the current layer. After dense layers, we use concatenation and 1×1 convolutional

layer to fuse the local dense feature and then sum the fused dense feature and the

input feature to give a residual feature output. With such architecture, connections

are further established between RDBs, which means the current layer is able to

leverage the information extracted from every other layer even if they are in other

preceding RDBs.

3.2.4 Task Switcher

In image matting, alpha matte can be treated as an extension of binary segmenta-

tion map as it contains alpha values along with the solid FG information. Thus, we

use the task switch module to exploit the correlation between binary segmentation
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Figure 3.4: The Task Switcher.

and alpha prediction to improve the alpha matte quality. As shown in Fig. 3.4, in-

side the task switcher, we first use the pyramid pooling operation to construct and

aggregate the features under different kernel sizes, since local features from small

receptive fields are useful in generating an accurate alpha matte while perceptual

information from larger fields is beneficial in classification. Later, the decoded

information will be branched into segmentation steam and matting steam where

spatial and channel-wise attentions are added to locate the focus of the feature

maps for each steam.

3.2.5 Refinement Module

Although we could obtain a coarse alpha matte prediction from the encoder-

decoder structure mentioned above, such prediction is far from satisfactory since

it may have holes and an over-smoothed boundary. Therefore, we attach a UNet
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Figure 3.5: The detail structure of the refinement module.

as a residual refinement module at the end of our network to enhance the result.

The refinement module is effective, and refined alpha matte predictions usually

have filled holes and sharpened edges when compared to the direct outcome of

the encoder-decoder network. During the training stage, the refinement module is

jointly trained with all other modules. However, strong supervisions are added to

both coarse and refined opacity prediction with respect to the alpha matte ground

truth, so that we could restrict the refinement module to make small-scale changes

to the coarse output. Details of our refinement module are illustrated in Fig. 3.5,

and further discussions on the refinement module are in the ablation study section.

3.3 Loss function and Pretraining Strategy

Since our network has an entangled structure in which the binary segmentation

decoder and the alpha matte decoder interact with each other, we designed a loss

function to supervise each task depending on the distribution of that task, and

then combine losses from all sampling levels to form a hybrid loss.
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For the segmentation task, we adopt the loss combination from (Qin et al.

2019) due to its promising performance on the salient object detection task. The

segmentation loss lseg is defined as:

Lseg = `bce + `ssim + `iou (3.1)

where `bce, `ssim, and `iou indicate the Binary Cross-Entropy (BCE) loss (De Boer

et al. 2005), the Structural Similarity (SSIM) loss (Wang et al. 2003), and the

Intersection over Union (IoU) loss (Máttyus et al. 2017) respectively.

The BCE loss is the most popular target function among binary classification

and segmentation tasks. In our work, it could be formulated as:

`bce = 1
n

n∑
i=1

[Si · log(Ŝi) + (1− Si) · log(1− Ŝi)] (3.2)

where Ŝi is the predicted probability that pixel i is a foreground pixel, and Si

denotes the corresponding ground truth.

Generally, the SSIM loss is a measurement frequently used in low-level computer

vision tasks such as super-resolution, dehaze, and derain. The SSIM uses the pixel

correlation between ground truth and prediction to represent the similarity in

structure. Assume there is a patch of predicted segmentation mask x = {xi | i =

1, 2, 3, ..., n}, and its corresponding ground-truth y = {yi | i = 1, 2, 3, ..., n}, the

SSIM and the SSIM loss are defined as follow:

SSIM(x,y) = (2µxµy + C1)(2σxy + C2)
(µ2

x + µ2
y + C1)(σ2

x + σ2
y + C2) , (3.3)
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`ssim = 1− SSIM(x,y), (3.4)

where µx, µy are means, σx, σy are standard deviations, and σxy is the covariance

between the prediction and the ground truth. C1 and C2 are small values (e.g.

0.0001 and 0.0003) added to avoid dividing by zero. Note that the SSIM is 1

when the prediction is exactly the same as the ground truth (covariance equals

self variance), and simple shifting or rotation could also lead to a high value.

The IoU loss is introduced to supervise the foreground segmentation task at an

image level since it is usually utilized in high-level computer vision tasks such as

object detection and segmentation:

`iou = 1−
∑n
i=1 Si · Ŝi∑n

i=1(Si + Ŝi − Si · Ŝi)
, (3.5)

where Ŝi is the prediction, and Si denotes the corresponding ground truth at pixel

i. Our hybrid loss Lseg is a comprehensive target function for the task, since it

carries out supervision on the pixel, patch, and image-level (Qin et al. 2019).

For the alpha matte prediction task, the matting loss Lm contains two parts,

the alpha-prediction loss `α and the composition loss `comp:

Lm = `α + `comp. (3.6)
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The alpha-prediction loss proposed in (Xu et al. 2017) uses
√

(αi − α̂i)2 + ε2 to

replace the absolute difference which is non-differentiable:

`α =
n∑
i=1

√
(αi − α̂i)2 + ε2, (3.7)

where α̂i is the predicted alpha value at pixel i, and αi is the ground truth value

at the same location. With ε set a fixed value, the above equation is differentiable,

and its derivative with respect to α̂i could be explicitly written as:

∂`α

∂α̂i
=

n∑
i=1

αi − α̂i√
(αi − α̂i)2 + ε2

. (3.8)

Let F be a foreground image associated with the ground truth alpha matte α

and the predicted alpha matte α̂. According to equation 1.1, we could add the

foreground image onto a random background image B using ground truth and

predicted alpha matte:

c = α� F + (1− α)�B, (3.9)

ĉ = α̂� F + (1− α̂)�B, (3.10)

where � denotes the pixel-wise multiple calculations. Then the composition loss

could be obtained by computing the absolute difference between c and ĉ:

`comp =
n∑
i=1
‖ci − ĉi‖. (3.11)
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Since our network have an entangled architecture, we carry out supervision on

different downsampling level j (different feature map scale), and thus the total loss

is defined as follow:

LTotal =
k∑
j=1
Lsegj +

k∑
j=1
Lmj . (3.12)

To further balance the two tasks, we use the strategy proposed in (Kendall

et al. 2018), and derive a specific loss function for our segmentation and matting

combination in Chapter 2. Our loss function will supervise the network in a multi-

scale way. Suppose we have k scales of outputs, the final loss function is defined

as:

L(σ1, σ2) =
k∑
j=1

[
1

2σ2
1
Lsegj + 1

σ2
2
Lmj + log σ1 + log σ2

]
(3.13)

where σ1 and σ2 are learnable task priorities which weights the importance of each

task. Here, we make a simplification that all levels of the network share one pair

of σ1 and σ2. To avoid division by zero, we define γ = log(σ2) so that the total

loss can be revised as:

L(γ1, γ2) =
k∑
j=1

[1
2exp(−γ1)Lsegj + exp(−γ2)Lmj + 1

2γ1 + 1
2γ2

]
. (3.14)

Such loss function could balance weights of tasks, and thus accelerate the train-

ing process.

To further address the problem of how to locate the FG object, we let the

network acquire some prior knowledge before proceeding to the matting task by

pre-training our network on the DUTS dataset (Wang et al. 2017). This pre-

training enables the network to identify the salient objects and further facilitates

27

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece


Master of Applied Science– Chengqi Li; McMaster University– Department of
Electrical and Computer Engineering

the alpha prediction task in the later stage. More implementation details could be

found in the subsequent section.
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Chapter 4

Implementation and

Experimental Results

4.1 Implementation details

Our model is trained on three Nvidia GTX 1080 Ti GPUs using PyTorch 1.2.0

deep learning framework.

In the pretraining stage, the ImageNet pretrained weight is loaded into our

backbone encoder module to initiate the training. Then, we train our network on

DUTS salient object detection dataset where input images are resized to 256×256

and then randomly cropped to 224 × 224. During the pre-training stage, 50k

iterations of training are carried out.

In the formal training stage, our network is trained on the Adobe Composition-

1k dataset, and input images would be directly resized or randomly cropped. Our

random cropping process begins by arbitrarily selecting a cropping window size
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from 320× 320, 480× 480, 640× 640, 720× 720, and 940× 940 as smaller patches

reveal more fine details and larger ones have more semantic information. The

window would be located along the unknown regions(semitransparent areas), and

we resize all cropped images to 320 × 320. During training process, we train our

network for 100 epochs.

To further avoid overfitting, both stages use vertical, horizontal, and diagonal

flipping as an additional augmentation strategy. Also, we apply Adam optimizer

(Kingma and Ba 2017) with β1 = 0.9, β2 = 0.999, and polynomial learning rate

decay, where lr = lrstart × (1 − iter
totaliter

)p (starting learning rate lrstart and decay

rate p are set to 1e−4 and 0.9, respectively in our case).

4.2 Datasets

4.2.1 DUTS dataset

The DUTS dataset is adopted in our pretraining stage. It is a salient object

detection dataset with 10,553 training images and 5,019 test images, and most of

its images are collected from the ImageNet dataset.

4.2.2 Adobe Composition-1k dataset

The Adobe Composition-1k Dataset from (Xu et al. 2017) is adopted in our main

training stage. The training dataset consists of 431 foreground images and their

corresponding alpha mattes ground truth. We combine each foreground image

with 100 unique randomly selected background images from the MS COCO dataset

(Lin et al. 2014), and thus we have 43100 different training images in total. As for
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testing, another 50 foreground images and their corresponding alpha mattes would

be given. Then we combine 20 arbitrary background images from the PASCAL

VOC dataset (Everingham et al. 2010) with each foreground image to form a test

set with 1000 images.

4.3 Evaluation metrics

Following (Rhemann et al. 2009), we use four quantitative metrics to evaluate the

performance of our matting algorithm: the Mean Squared Error (MSE), the Sum

of Absolute Differences (SAD), the Gradient Error (Grad), and the Connectivity

Error (Conn).

In deep learning and computer vision, the Mean Squared Error (MSE) is

the most popular metric, and it is defined as follow:

MSE = 1
n

n∑
i=1

(αi − α̂i)2 (4.1)

where αi and α̂i are the ground truth and the predicted alpha matte value at

pixel i respectively. Statistically, the MSE represents the variance of the unbiased

estimator, meaning it represents the quality of the estimation. Note that the MSE

is the average error among all pixel points, thus is not dependent on the size of

the output.

Another frequently used metric is the Sum of Absolute Differences (SAD),

which calculates the accumulated absolute difference between the ground truth and
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the prediction:

SAD =
n∑
i=1
|αi − α̂i|. (4.2)

Note that the SAD value is related to the size of the prediction (e.g. larger output

image would usually have a larger SAD value), and thus SAD values are compa-

rable only if they are obtained under the same test condition.

Though MSE and SAD are widely used in pixel-level performance evaluation,

they are not always consistent with human perceptions (e.g. over smoothing and

big inconsistency in a small region), and thus the gradient and the connectivity

are introduced to establish perceptual evaluations (Rhemann et al. 2009).

To avoid over smoothing, we introduce the Gradient Error (Grad) metric

which could be formulated as follow:

Grad =
n∑
i=1

(∇αi −∇α̂i)2 (4.3)

where ∇ denotes the Gaussian gradient operator, and the gradient error is the sum

of squared gradient difference. Notice that the gradient error is also a measurement

dependent on the size of the prediction.

On the other hand, the Connectivity Error (Conn) is adopted to reflect the

small sudden pixel-level inconsistencies which are perceptually catastrophic. First,

we need to define the connectivity. Let ϕ(αi,Ω) denotes the degree of connectivity

at pixel i to a source region Ω. Here we define the largest area, which is composed of

the absolute foreground pixels (with alpha value 1), as the source region. Assume

there is a maximum threshold li at pixel i which determines whether the pixel is
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connected to the source region, and the threshold is no larger than the alpha value

αi at pixel i.

Figure 4.1: Connectivity

For example, in Fig. 4.1, there is one row of pixels from a picture. Starting from

the source region Ω and going right, we update the threshold li with the minimum

alpha value that we passed. Therefore, we will have αx = lx at pixel x and a full

connection from the pixel to the source region. Otherwise, like in pixel y and z,

the threshold ly = lz = lmin, and we will have αy > ly and αz > lz. In these cases,

those pixels are not connected to the source region, and the connectivity decreases

when the gap between αi and li widens. Thus we could formulate the degree of

connectivity as:

ϕ(αi,Ω) = 1− [λi · δ(αi − li ≥ θ) · (αi − li)]. (4.4)

There is a full connection when ϕ = 1, and a completely disconnection when ϕ = 0.
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The measurement becomes robust to small variants with the introduction of the δ

function, and distance-related scalar λi is added base on the intuition that distant

disconnection is more distracting visually. As the connectivity is defined, we could

easily compute the connectivity error as:

Conn =
n∑
i=1

[ϕ(αi,Ω)− ϕ(α̂i,Ω)]2. (4.5)

Note that all four metrics are computed among transition areas indicated by the

trimap. Therefore, even though our method is trimap-free, we would still generate

the trimap for calculating the above metrics along unknown region.

4.4 Qualitative and quantitative results

Adobe Composition-1k dataset. Since trimaps are commonly used in mat-

ting algorithms and they often provide a more accurate solution, six trimap-based

matting algorithms are selected for comparison, namely, KNN (Chen et al. 2013),

Closed (Levin et al. 2007), DIM (Xu et al. 2017), IndexNet (Lu et al. 2019), GCA

(Li and Lu 2020), CA (Hou and Liu 2019). Also, we compare our SegMatting

with five trimap-free methods (SHM (Chen et al. 2018), LF (Zhang et al. 2019),

BGM (Sengupta et al. 2020), Boosting (Liu et al. 2020), HAtt (Qiao et al. 2020)).

More precisely, SHM, LF, Boosting, HAtt, and our method only need RGB inputs;

BGM requires the BG image as an additional input; and others need both RGB

and trimap images, produced according to the procedure described in (Xu et al.

2017). Note that Boosting, BGM, and SHM are designed specifically for human

34

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece


Master of Applied Science– Chengqi Li; McMaster University– Department of
Electrical and Computer Engineering

Methods MSE (10−2) SAD Grad Conn
KNN (Chen et al. 2013) 9.44 170.3 128.4 67.5
Closed (Levin et al. 2007) 7.66 150.6 111.2 61.4
BGM (Sengupta et al. 2020) 2.17 56.8 74.8 56.2
DIM (Xu et al. 2017) 1.31 47.1 25.4 46.1
IndexNet (Lu et al. 2019) 1.05 39.5 17.3 36.2
GCA (Li and Lu 2020) 0.79 32.9 15.3 29.6
CA (Hou and Liu 2019) 0.67 32.6 13.9 28.9
SHM† (Chen et al. 2018) 5.38 102.8 56.1 111.6
Boosting† (Liu et al. 2020) 3.44 85.8 78.9 90.3
Late Fusion† (Zhang et al. 2019) 2.34 60.9 77.6 61.5
HAtt† (Qiao et al. 2020) 1.46 51.2 30.7 51.1
Ours† 2.19 63.1 31.7 63.7

Table 4.1: Numerical results on the Adobe Composition-1k
dataset calculated on the unknown region indicated by the trimap.
“†" indicates that the corresponding method takes only RGB im-
ages as inputs.

matting, but we still involve them in our experiments to compare the model effec-

tiveness. We predict alpha mattes with full-scale image inputs and calculate the

aforementioned four metrics along with the whole image as well as the unknown

region indicated by the trimap.

From Table 4.1, we can see that the proposed SegMatting outperforms most

trimap-free methods. Note that the red number denotes the best result for methods

that use additional inputs while the bold number indicates the best result for

methods that use only the RGB image. In the table, we only measure errors

over the unknown region indicated by the trimap. Under this setting, our method

is comparable to trimap-based algorithms considering our method does not rely

on any user input and only makes use of the intrinsic image feature for alpha

prediction. Also, our method is competitive among trimap-based methods shown

in the same table. The qualitative results in Fig. 4.2 and Fig. 4.3 further prove
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SHM

HAtt

SHM

HAtt

Boost

Ours

Boost

Ours

LF

Ground Truth

LF

Ground Truth

Figure 4.2: Qualitative results on the Adobe Composition-1k
dataset. (1) Zoom-in for better views.
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SHM

HAtt

SHM

HAtt

Boost
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Boost
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LF

Ground Truth
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Ground Truth

Figure 4.3: Qualitative results on the Adobe Composition-1k
dataset.(2) Zoom-in for better views.
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Methods MSE (10−2) SAD Grad Conn
Single decoder 5.15 98.4 45.9 104.9
No refinement module 3.80 90.8 32.4 97.0
Normal loss 3.14 76.4 39.9 77.8
No pretrain 2.40 68.0 41.9 68.4
Full model 2.19 63.1 31.7 63.7

Table 4.2: Numerical results given by different model setup on
the Adobe Composition-1k dataset.

the effectiveness of our method in localizing the foreground object. In Fig. 4.2,

other matting methods are confused with foreground and background objects, but

our method could locate the foreground object out of a complicated image.

Real-world image matting. Though deep learning algorithms perform very

well on the toy dataset where the training set and the testing set have a similar dis-

tribution, their capabilities tend to deteriorate on real-world images. As shown in

Fig. 4.4 and Fig. 4.5, we try to generate the alpha matte from several real-world

images from the internet with the weights obtained from previous experiments.

Even without any user input (trimaps and scribbles), our SegMatting is able to

produce accurate alpha mattes for FG images with complex shapes. This imple-

mentation shows the robustness of the model under the real-world situation, and

also re-demonstrates the superiority of our model when user inputs are unavail-

able. However, there are some artifacts in our alpha matte predictions. If the FG

color coincides with the BG color (For example, white hair on the doglegs and the

white floor in Fig. 4.5 row 1), our model may falsely detect the boundary of the

FG object.
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Input Predicted Alpha

Figure 4.4: Results on real-world images.(1) Zoom-in for better
views.
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Input Predicted Alpha

Figure 4.5: Results on real-world images.(2) Zoom-in for better
views.
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4.5 Ablation study

To further demonstrate the effectiveness of our design and training strategy, we test

4 other alternatives: single decoder, no refinement module, no pretrain, and normal

loss. In the single decoder variant, we remove the task switcher and the information

communication between two tasks; In the no refinement module version, we use the

direct coarse outcome of the entangled decoder as final prediction without further

refinement; During the no pretrain process, we skip the pretraining on the DUTS

dataset; For the normal loss variant, we still supervise whole training process at

all sampling levels, but we replace the dynamic weighting on different tasks with

fixed parameter.

Results on the Composition-1k testing set are shown in Table 4.2. The entan-

gled decoder is the most important design of our SegMatting since the performance

of disentangled structure deteriorates by a large margin. Further qualitative illus-

trations are provided in Fig. 4.6 showing that the single decoder model is not able

to distinguish FG objects from complicated BGs without the entangled decoder,

and it also fails to clear up the BG remains.

The refinement module does an excellent job of improving coarse alpha matte

predictions, but does not reduce the gradient error significantly. As shown in Fig.

4.7, the refinement module only reduces the overall noise level, but it sharpen the

boundary. Such modification doesn’t affect the gradient error a lot, because the

outline of foreground objects is already solidated in coarse predictions.

As shown in Table 4.2, both the pretraining on DUTS and the multitask loss

are important training strategies to our model, since they both boost our model.
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Disentangled Decoder Entangled Decoder Ground Truth

Figure 4.6: Disentangled decoder vs Entangled decoder. Zoom-in
for better views.
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Coarse Prediction Refined Prediction Ground Truth

Figure 4.7: Refinement module enhance the coarse prediction.
Zoom-in for better views.
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Pretraining Loss

Figure 4.8: Convergence of different variant.

In Fig. 4.8, we could observe that pretraining on DUTS will provide a better

starting point since the prior knowledge on saliency is utilized. However, the

improvement of the model is not very significant when the model converges. On

the other hand, our model achieves a higher PSNR using the hybrid loss than

using the normal loss, which demonstrates the importance of adaptively balancing

multitasks. Qualitative results are shown in Fig. 4.9 and 4.10.
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Normal Loss Hybrid Loss Ground Truth

Figure 4.9: Normal Loss vs Hybrid Loss. Zoom-in for better
views.
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No Pretraining Pretraining Ground Truth

Figure 4.10: No Pretraining vs Pretraining. Zoom-in for better
views.

46

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece


Chapter 5

Conclusion and Future Work

In this thesis, we have proposed a trimap-free natural image matting algorithm

based on multitask learning. An entangled decoder is designed to combine binary

segmentation with alpha matte prediction to eliminate trimap input. In addition,

we implement a task switcher and a hybrid multitask loss to establish information

flow between two tasks, and adaptively utilize the correlated feature information.

To further improve the performance of our model, the channel-wise attention is

added in the regular deep residual encoder network, and a U-shape refinement

model is also attached to enhance the coarse opacity prediction. Moreover, we find

out that prior knowledge on object saliency would be beneficial to our trimap-free

image matting task since the task is challenging with limited information provided.

Extensive experiments demonstrate that the proposed method outperforms most

trimap-free matting algorithms and achieves comparable results against state-of-

the-art trimap-based algorithms.

Although our model shows a decent performance, we could still identify some

artifacts in our alpha matte prediction, for example, hollows in the supposed FG
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object area and detail losses in the boundary region. In the frequency domain, the

flat area of the definite FG locates in the low-frequency section while the rapidly

changing boundary region has more information in the high-frequency section.

Therefore, we expect that further progress can leverage the frequency information

to guide the generation of alpha matte.
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