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Lay Abstract 

Overheating, accelerated aging, and eventual early failure of the distribution transformers 

caused by EV charging stress is a pressing concern that needs to be addressed. This thesis 

proposes two new vehicle-directed smart charging strategies and a concept of solar-charged 

electric vehicle (SEV) to help reduce the accelerated aging of distribution transformers. 

System level analysis of the mitigation of transformer aging using these two approaches with 

added driver and environmental benefits warrants the manufacturing and design challenges 

of the SEVs. Thus, this thesis proposes a fast and novel global maximum power point 

tracking algorithm well suited to fast moving vehicles for maximum solar power extraction 

at all times, especially during partial shading conditions, and an optimization process of the 

on-board PV cell dimension and number of such cells in series and parallel in the array based 

on power electronic converter for higher efficiency, lower cost, and lower mass.  
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Abstract 

Electric vehicles (EV) have become very popular in recent years because they are 

a more sustainable, efficient, and environmentally friendly transportation option 

than traditional fossil-fuel vehicles. Increased EV charging can cause overheating, 

accelerated aging, and eventual early failure of the distribution transformers, as the 

distribution networks have not been established foreseeing a large number of EVs 

as loads. This thesis makes contributions in two main areas to help reduce the 

accelerated aging of distribution transformers as the number of EVs on the road 

continues to rise.  

Firstly, vehicle smart charging is investigated to spread out the EV charging 

loads and hence decrease transformer heating and aging. Most EV smart charging 

algorithms require the use of extensive and costly infrastructure, including sensors, 

communication networks, controllable chargers, and central smart agents. This 

thesis proposes a new vehicle-directed smart charging strategy, called Random-In-

Window (RIW) which allows individual vehicles to spread out their charging 

without any costly additional infrastructure. Detailed simulation results prove the 

advantages of this proposed algorithm. 

Secondly, to further reduce EV charging loads on the grid, a large-scale 

solar-charged electric vehicle (SEV) is proposed. While RIW smart charging has 

only grid benefits, SEVs can contribute to grid benefit, driver benefit, and 

environmental benefit, as shown through detailed simulation results, making it a 
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viable solution to transformer aging mitigation. To turn the SEV concept into 

reality, this research also proposes a fast maximum power point tracking algorithm 

for partially shaded conditions, and an algorithm which optimizes photovoltaic 

(PV) cell size and arrangement along with the power electronic converter design 

for on-board solar charging. Thus, the proposed solutions in this research can help 

reduce distribution transformer aging as EV penetrations continue to rise and 

increase the environmental benefits of EVs through optimized solar charging.  
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Chapter 1: Introduction 

1.1. Background and Motivation 

The demand of electric vehicles (EVs) is rapidly increasing due to diminishing 

fossil fuel reserves, greenhouse gas emissions from transportation, and local urban 

air pollution [1]. Even though range issues and high costs have restricted the 

adoption of EVs to date, the recent introduction of long-range EVs at reasonable 

prices [2], [3] has the potential to accelerate the transition to EVs in the near future. 

Despite the many advantages of transitioning to EVs, there is a concern that EV 

charging could severely affect the electric grid if many EVs charge at the same time 

as the grid is already overloaded at times. Although increased EV charging will 

have an impact on many aspects of the grid, studies have shown that local 

distribution systems, particularly distribution transformers, are the most vulnerable 

[4]-[9] as the distribution networks have not been developed foreseeing high 

numbers of EV loads. Depending on the charging rate, adding an EV charging load 

to a local distribution circuit is equal to adding one or more households to the 

system. Overloading induced by EV charging can cause overheating, leading to 

faster aging and eventual early failure of the distribution transformers, because 

most of them are only sized for the peak loads of the connected residences [4]-[9]. 

Considering the distribution transformers are not ready to accept these large loads, 

some suitable charging strategy is needed to reduce the need to replace distribution 

transformers as EV penetration rates rise. 
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Any plug-in vehicle charging strategy that varies the charging time and/or 

rate from the default approach of charging, i.e., charging at full rate as soon as the 

plug is connected is referred to as "smart-charging." There are two types of smart-

charging strategies: centralized and distributed. Centralized strategies transmit car 

and grid data to a central server, which can determine which vehicles to charge at 

any given time using a variety of methods. Recently proposed methods include 

controlling EV charging to: match the aggregate load to a pre-determined power 

profile to improve grid stability [10], optimize the cost or speed of charging [11], 

minimize and flatten network peak loads, [4],[6],[12]-[14] or simultaneously 

minimize network loads and the number of on-off switchings of EV charging power 

[15].  

Centralized smart-charging methods are computationally expensive and 

may not scale effectively to large numbers of EVs. As a result, several distributed 

strategies have been developed [16]-[18], in which local smart agents make 

charging decisions based on transmitted car and grid data. Both centralized and 

distributed smart-charging require grid sensors, communication networks, local or 

centralized smart agents, connected and controllable electric vehicle supply 

equipment (EVSE), and a method to obtain often proprietary vehicle battery state-

of-charge (SOC) data from a variety of EV models [7] to function, which make 

both of these smart charging strategies very complicated and sometimes unfeasible 

for implementation. Hence, with the increase of long-range EVs either worldwide 

or in neighborhood clusters, it is crucial to develop alternative but effective 
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charging strategies which can play a vital role in mitigating the distribution 

transformer aging without requiring any extra intelligent sensors, smart agents, or 

communication networks. This thesis focuses on two ways to reduce the 

distribution transformer heating and aging: Random-in-window (RIW) smart 

charging and large-scale on-board solar charging. Combining the advantages of 

RIW and on-board solar charging, mitigation of transformer aging can be helped to 

a great extent with added driver and environment benefits.  

1.2. Research Contributions 

1.2.1  Contribution 1 

To address the necessity of a charging schemes to reduce distribution 

transformer aging under increasing EV loads, this research proposes Random-in-

window (RIW) smart charging strategy. RIW is a vehicle-directed smart charging 

concept, which automatically smooths out charging peaks by taking advantage of 

the inherent randomness already present within a group of EVs, i.e., a variety of 

next-day departure times and a variety of energy needs to be fully charged by the 

departure time. RIW performs approximately as good as a fully controlled 

centralized smart-charging algorithm at EV penetration rates up to 60% for long-

range EVs and 70% for short-range EVs in the event of distribution transformer 

aging reduction. Yet it can easily be implemented as the EV just needs a software 

update. 
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1.2.2 Contribution 2 

While RIW can benefit the grid to a great extent, this research further 

contributes to improve the scenario by introducing means to benefit the driver and 

environment in addition to reducing transformer aging. The full environmental 

benefits of EVs can only be realized when charging energy is generated with zero 

or low CO2 emissions, e.g., wind, solar, hydro, etc. Thus, renewable energy 

generation and increased EV adoption must go together. Solar energy has become 

a dependable source of renewable energy because of seldom maintenance and no 

waste production, making it an entirely environment-friendly process. Thin-film 

solar panels can be installed on the vehicle body, which can charge the EV battery 

throughout the day, resulting in less charging energy required from the grid. Thus, 

this research proposes the concept of a large-scale solar-charged electric vehicle 

(SEV) with low-cost flexible thin film PV cells integrated directly onto the steel of 

all upwards-facing body panels of the vehicle i.e., roof, hood, and trunk. 

The surface of the vehicle upward-facing body might not be that large, so the 

charging power could be low. But the low charging power is multiplied by the long 

length of daytime the vehicle is outside. As a result, the resulting charging energy 

is not low anymore and can be a significant portion of the daily energy use of the 

vehicle. With the analyses of solar energy capture of 150 drivers to realize grid, 

driver, and environmental benefits in Los Angeles and Detroit over the course of a 

full year, the simulations predict net annual vehicle energy use reductions of 21.5% 

in Los Angeles and of 17.5% in Detroit and 50% transformer aging reduction in 
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either city at 80% EV penetration for average cloud conditions, compared to a non-

solar EV. The peak solar range extension is 47 km/day in Detroit on a sunny day in 

May and charging costs are reduced by about 20% for average cloud conditions. 

1.2.3 Contribution 3 

The system level analysis of real benefits to grid, driver, and environment 

motivates the further research to focus on the design and manufacturing challenges 

of SEVs. One of the main challenges of making a SEV concept into reality is 

extracting maximum solar energy under partial shading conditions (PSCs) on a fast-

moving vehicle. 

PSCs can often occur from shadows of clouds, buildings, trees, etc. PSCs 

produce multiple peaks on respective the I-V and P-V curves. Finding the global 

maximum power point (GMPP) is difficult in this case for conventional maximum 

power point tracking (MPPT) algorithms like hill-climbing [19] due to the 

possibility of getting trapped at a local peak, or like particle swarm optimization 

(PSO) [20] due to slow convergence. High GMPP convergence speeds to minimize 

energy loss during PSCs are critical for emerging mobile PV applications such as 

solar-charged electric vehicle [21] or aircraft [22]. This research proposes a 

completely new approach of a software-based GMPPT algorithm that analytically 

calculates the GMPP near-exactly during PSCs using exactly S current 

measurements, where S is the number of series modules in the array, and hence 

only S steps are required. The proposed algorithm's performance has first been 

evaluated using MATLAB/Simulink simulations, followed by experimental 
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verification. The results reveal very fast GMPP tracking with minimal tracking 

energy loss, with an experimental tracking efficiency over 99.6% for all PSC 

patterns tested. 

1.2.4 Contribution 4 

Optimization of PV cell interconnections, i.e., series and parallel connections 

in the array and power electronics design for on-vehicle solar charging is also an 

equally important design requirement. The upper body mounted PV panel should 

have the optimum cell size with optimum number of such cells in series and parallel 

to ensure maximum power extraction, especially in the event of PSCs. As PV cells 

come in different sizes, the optimum number of such cells and their possible 

interconnection depend on a couple of factors, e.g., current density of the cell 

(mA/cm2), area of the upward facing PV panel, DC-DC converter efficiency, and 

partial shading modeling, etc. As there could be numerous combinations of these 

factors, an optimization algorithm needs to be used to find the optimum cell size 

and their possible interconnection configurations. This research proposes a novel 

approach to optimize the PV array interconnection considering power electronic 

converter efficiency using Genetic Algorithm (GA) for higher system efficiency, 

lower cost, and lower mass. This study has shown the proposed design solution 

could save up to 3% PV energy compared to the assumed random unoptimized 

array. 

It is evident that RIW is an excellent and easily implementable decentralized 

vehicle directed smart charging strategy comparable to a fully controlled 
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centralized smart-charging algorithm at moderate EV penetration rates in the event 

of distribution transformer aging reduction. While this certainly benefits the grid, a 

solar-charged electric vehicle can add advantages such as charging cost savings, 

range extension, and CO2 emission reduction. Combining RIW and the SEV 

concept and providing solutions to the design and engineering problems related to 

SEV, this research can help the grid, drivers, and the environment. 

1.3. Publications 

The thesis has been written in the “Sandwich Thesis” format, where the 

chapters correspond to individual journal articles. The articles have been slightly 

modified to comply with the thesis format keeping the main contents of the articles 

unchanged. The next section shows the manuscripts published or submitted in 

reputed journals and conferences from this thesis research. Chapter 2, 3, and 4 have 

been prepared from journal publications 1, 2, and 3 respectively and Chapter 5 has 

been prepared from the “In-progress” article 4 from Section 1.3.1. 

1.3.1 Journal Publications 

1. M. H. Mobarak and J. Bauman, "Vehicle-Directed Smart Charging Strategies to 

Mitigate the Effect of Long-Range EV Charging on Distribution Transformer 

Aging," in IEEE Transactions on Transportation Electrification, vol. 5, no. 4, pp. 

1097-1111, Dec. 2019, doi: 10.1109/TTE.2019.2946063. 

2. M. H. Mobarak, R. N. Kleiman* and J. Bauman, "Solar-Charged Electric 

Vehicles: A Comprehensive Analysis of Grid, Driver, and Environmental 



   
Ph.D. Thesis – M.H. Mobarak                     McMaster University – Electrical Engineering 

8 
 

Benefits," in IEEE Transactions on Transportation Electrification, vol. 7, no. 2, pp. 

579-603, June 2021, doi: 10.1109/TTE.2020.2996363. 

*Fig. 10 and the corresponding description in Section IIIB is contributed by Dr. R. Kleiman. 

3. M. H. Mobarak and J. Bauman, " A Fast Parabolic-Assumption Algorithm for 

Global MPPT of Photovoltaic Systems Under Partial Shading Conditions," in IEEE 

Transactions on Industrial Electronics, Early Access. 

4. M. H. Mobarak and J. Bauman, "Optimization of PV Array and Power 

Electronics Design for On-Vehicle Solar Charging," In progress to be submitted in 

IEEE Transactions on Transportation Electrification. 

1.3.2 Conference Publications 

1. M. H. Mobarak, R. Kleiman and J. Bauman, "Investigation of Grid Benefits from 

a Solar-Powered Electric Vehicle Using Real-World Driving Data," 2019 IEEE 

Transportation Electrification Conference and Expo (ITEC), 2019, pp. 1-6, doi: 

10.1109/ITEC.2019.8790519. 

1.4. Thesis Organization 

This thesis presents a combination of system-level and device-level research 

used to propose vehicle directed smart-charging and on-board solar charging to 

mitigate distribution transformer aging. The thesis is organized as follows: 

Chapter 2 describes the issues surrounding smart charging, the impact of 

various charging schemes on transformer aging, and proposes a vehicle-directed 
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smart charging strategy, namely Random-In-Window (RIW), which has two 

variants: fixed rate charging (RIW-FR) and variable rate charging (RIW-VR) that 

require no additional infrastructure or communication networks compared to the 

usual centralized or distributed smart-charging schemes. A detailed modeling of an 

EV in MATLAB & Simulink, modeling of transformer aging, and use of driving 

patterns of 150 unique drivers over a summer week have been used to carry out the 

outlined research. 

Chapter 3 proposes a large-scale SEV concept that can provide significant 

benefits to the grid, drivers, and the environment. Detailed modeling is described, 

including modeling different solar radiations at different latitudes over a year, 

dealing with various vehicle directions, and partial shading. Furthermore, detailed 

driving data of 150 drivers is used to get realistic results. This detailed analysis of 

the advantage of using SEVs shows significant benefits, indicating that further 

research is justified to address the design and manufacturing challenges of SEVs. 

One challenge with SEVs is extracting the maximum solar energy at all 

times, even when a vehicle is moving with partial shading conditions. Since many 

global maximum power point tracking (GMPPT) algorithms take numerous steps, 

and related time, to reach the GMPP, Chapter 4 proposes a totally novel approach 

to very quickly find the GMPP under partial shading conditions with a low fixed 

number of steps. This chapter includes both simulation and experimental results 

supporting the effectiveness of this novel GMPPT algorithm, which can be used on 

commercial SEVs, and also has general advantages for grid applications.  
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To further optimize the design of a large-scale SEV, Chapter 5 proposes a 

novel method using genetic algorithm (GA) to optimize the PV array while also 

considering the current density of the cell (mA/cm2), area of the upward facing PV 

panel, DC-DC converter efficiency as functions of input and output voltages and 

currents, and partial shading modeling, etc. to ensure optimum cell size and cell 

interconnections for high system efficiency, lower cost, and lower mass. 

Chapter 6 concludes the thesis with a summary of the entire research and 

provides recommendations for future research work.  
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Chapter 2: Vehicle-Directed Smart Charging Strategies to Mitigate 

the Effect of Long-Range EV Charging on Distribution 

Transformer Aging 

2.1.   Introduction 

Electric vehicles have the potential to significantly reduce greenhouse gas 

emissions, regulated emissions which cause local air pollution and negative health 

effects [1], and society’s reliance on fossil fuels. Though range concerns and high 

costs have somewhat limited the adoption of electric vehicles (EVs) to date, the 

recent introduction of long-range EVs with moderate costs [2], [3] has the potential 

to trigger a more widespread transition to EVs in the near future. Although 

increased EV charging will affect multiple aspects of the grid, research has shown 

that local distribution systems, especially distribution transformers, are of primary 

concern [4]-[9]. Adding an EV charging load to a local distribution circuit is 

equivalent to adding one or more homes to the system, depending on the charging 

rate. Since most distribution transformers are sized for only the peak loads of the 

connected homes, overloading caused by EV charging can cause overheating, 

leading to accelerated aging and eventual early failure [4]-[9]. This chapter 

investigates the effect of long-range EV charging on distribution transformer aging 

using real world driving data, and proposes an effective smart-charging strategy 

that does not require any additional distribution system infrastructure or 

communication networks. 
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The term “smart-charging” refers to any plug-in vehicle charging strategy 

that changes the charging time and/or rate from the default strategy: charging at the 

full rate as soon as the plug is connected. Smart-charging strategies can be 

categorized as centralized or distributed. Centralized strategies transmit vehicle and 

grid data to a central server that can use a variety of methods to determine which 

vehicles to charge at any given time. Some recently proposed algorithms include 

controlling EV charging to: match the aggregate load to a pre-determined power 

profile to improve grid stability [10], optimize the cost or speed of charging [11], 

minimize and flatten network peak loads [4],[6],[12]-[14] or simultaneously 

minimize network loads and the number of on-off switchings of EV charging power 

[15].  Furthermore, [16] uses genetic algorithms to minimize both charging cost 

and transformer peak-to-average load ratio and [17] uses game theory to determine 

optimal charging schedules to maximize transformer lifetime. However, centralized 

smart-charging schemes are computationally expensive, and may not scale well to 

large numbers of EVs. Thus, numerous distributed strategies have also been 

proposed, where local smart agents use transmitted vehicle and grid data to make 

charging decisions. For example, [18] uses local transformer temperature data in 

addition to vehicle data to control EV charging to limit transformer aging, [19] 

measures the capacity of the local network in real time to ensure EV charging does 

not cause an overload, and [20] uses a multi-agent scheme to limit transformer 

loading and stabilize local voltages. Furthermore, [21] uses a decentralized strategy 
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based on the Frank-Wolf algorithm to minimize cost while respecting voltage and 

substation capacity limits. 

However, these centralized and distributed smart-charging strategies 

require significant infrastructure to operate [7], including: grid sensors, 

communication networks, local or centralized smart agents, connected and 

controllable electric vehicle supply equipment (EVSE), and a method to obtain 

often proprietary vehicle battery state-of-charge (SOC) data from a variety of EV 

models. As the smart grid evolves, this infrastructure may become available if 

viable business models are developed; however, if long-range EV adoption 

increases either globally or in neighborhood clusters before these fully-controllable 

charging systems are in place, what is the best alternative? This chapter defines 

Vehicle-Directed Smart Charging as charging strategies that can be implemented 

by individual EVs without the need for grid sensors, communication networks, 

smart agents, connected and controllable EVSEs, and vehicle battery SOC 

measurements. This chapter uses a real-world dataset of 150 unique drivers to 

investigate the effects of long-range EV charging on distribution transformer aging, 

using both known Vehicle-Directed Smart Charging strategies, and two newly 

proposed Vehicle-Directed Smart Charging strategies based on randomness. 

Obtaining detailed driving data for smart-charging studies has been 

notoriously difficult [9]. Many previous studies have used the 2009 National 

Household Travel Survey (NHTS), creating probability distribution functions to 

represent daily mileage and home arrival times [9],[18],[21], with many works 
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using Monte Carlo simulations to generate individual trips [6],[8],[9],[22],[23]. The 

limitation to using large driving surveys like the NHTS for smart-charging studies 

is that individual driving habits get absorbed into probability distribution functions, 

erasing the link between when a person actually drove, how fast they drove, how 

far they drove, and when they returned home. Other studies have used a German 

driving survey of 500 households [10], a Copenhagen driving survey of 18 vehicles 

[12], a Netherlands driving survey with 25 drivers extracted [13], and a Denmark 

driving survey [24]. These smaller surveys still do not provide any information on 

how each driver drove (i.e., city or highway) meaning estimates of energy use must 

be based on assumptions of constant kWh/km rates. However, calculating accurate 

energy use while driving is critical since this will directly affect the battery SOC 

upon arrival home, and thus the amount of charging energy required. Other work 

has used even more general assumptions: [19] assumes departure after 6am and 

arrival after 4pm with Poisson distributions with all EVs having fully discharged 

batteries, [15] assumes a charging window from 6pm to 8am with all EVs needing 

6 hours of charging at 3.3kW, and [16] assumes daily mileage with normal 

distribution around a mean of 55km. Furthermore, [25] assumes a normal 

distribution around 8am work start time and 5pm work end time with NHTS 

average daily driving distance, [26] uses an EPRI report based on stochastic 

modeling of NHTS data, and [27] builds stochastic models based on logging two 

EV charging stations. 
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The highest-quality vehicle data for smart-charging studies is logged 

vehicle data, as individual driving times are precise, and linked to the individual’s 

driving habits. Vehicle models can be used to simulate the logged driving speed 

profile, so that accurate ending SOCs can be calculated for each day. Reference [5] 

uses logged data from 9 drivers, [7] uses logged data from 8 drivers, [14] uses 

stochastic modeling based on 11 logged drivers and a UK Travel Survey, and [28] 

uses logged data for 10 drivers. Reference [29] uses the largest set of logged data 

in the prior work with 76 drivers, but considers only short-range plug-in vehicles 

(Toyota Prius with 4kWh battery, Chevrolet Volt with 16kWh battery, and Nissan 

Leaf with 24kWh battery) and only studies the effect of uncontrolled charging on 

the grid. In this chapter, 150 drivers were logged for one week in Toronto, Canada 

to obtain a large detailed dataset for a very accurate smart-charging analysis. The 

logged vehicles were conventional internal combustion engine (ICE) vehicles, 

meaning the drivers could drive exactly as they normally would with no EV range 

limitations. It is common in other works, such as all studies using NHTS data, to 

assume driving habits remain the same from ICE vehicles to EVs. This assumption 

is especially relevant in this chapter since the focus is on long-range EVs, which 

people can drive more like ICE vehicles due to reduced range concerns compared 

to shorter-range EVs. Thus, this chapter takes a forward-looking approach by 

analyzing the charging needs of the long-range Chevrolet Bolt [2] with a 60kWh 

battery, in contrast to most studies that use EV battery sizes from 4kWh to 24kWh 

[5], [7], [9], [12]-[15], [19], [21], [22], [25]. 
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The main contributions of this chapter are: 

1) Investigation of long-range EV (60kWh battery) charging impacts on 

distribution transformer aging, with a comparison to the often-considered short-

range EV (20kWh battery), 

2) Two proposed Vehicle-Directed Smart Charging strategies (see Section 2.2) 

that require no additional infrastructure or communication networks compared 

to centralized or distributed smart charging schemes, and 

3) Analysis of the above scenarios using a real world logged dataset of 150 unique 

drivers over one week. 

Section 2.2 describes the research methodology, including the vehicle data 

and model, the grid data, the smart-charging strategies considered, the transformer 

aging model, and the simulation process. Section 2.3 presents the simulation results 

and discussion, and Section 2.4 summarizes and concludes the chapter. 

2.2. Research Methodology 

2.2.1 Vehicle Data and Model 

This study uses one week of logged vehicle data from 150 drivers of ICE 

vehicles in Toronto, Canada. The logged data consists of time and date-stamped 

trips along with the second-by-second vehicle speeds of each trip. The data is 

obtained from a logger plugged into the on-board diagnostic port of each 

participant’s vehicle to log CANbus (controller-area-network) signals. Since GPS 

and altitude data is not available, it is assumed that road grade is zero and that the 

last trip of the day returned the vehicle home, where all charging occurs. MATLAB 
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scripts were used to organize the data into driving days, which were assumed to 

start at 12am. Figs. 2.1 and 2.2 show the driving habits of the group for the 5 

weekdays and 2 weekend days logged along with curves modeled to fit each 

dataset. The simulated energy use is based on a Chevrolet Bolt vehicle model 

driving the logged cycles; this vehicle model is described in detail below. 

 

 

 

Fig. 2.1. Distribution of departure and arrival times, daily distance travelled, and simulated daily energy 

requirement for 150 logged drivers over 5 weekdays. 

 

 

 

Fig. 2.2. Distribution of departure and arrival times, daily distance travelled, and simulated daily energy 

requirement for 150 logged drivers over 2 weekend days 
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The departure times are best represented by a t location-scale distribution, 

which is useful for modeling data distributions with heavier tails (more prone to 

outliers) than the normal distribution. The probability density function of the t 

location-scale distribution is shown in (1): 
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where Γ is the gamma function, and all other parameters are listed in Table 2.1. 

The arrival times are best represented by MATLAB’s extreme value distribution, 

with the probability density function defined as 
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Both the daily driving distance and simulated per-day battery energy use 

data are best represented by MATLAB’s generalized extreme value distribution, 

given as 
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Table 2.1 provides all parameters to model the eight distributions, plus a 

scaling factor, m. Since each probability distribution function sums to one, a scaling 

factor is used on each plot to scale the curve to the units shown in Figs. 2.1 and 2.2. 

The probability distribution equations in (1)-(3) are widely known equations and 
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have been used in this research in MATLAB & Simulink for distribution pattern 

generation as directed by MathWorks webpage. Note that the simulated battery 

energy use for this base case assumes a 2 kW accessory power load, and a useable 

battery capacity of 54 kWh, thus there is a spike in the histograms at 54 kWh energy 

use to account for the ICE vehicles that drove further than the Chevrolet Bolt model 

could drive.  

A forward-looking vehicle model of the Chevrolet Bolt EV was created in 

MATLAB/Simulink, as described below. The model was validated to be within 

1.6% of EPA energy consumption test data on city and highway drive cycles, as 

described in [30]. Fig. 2.3 shows a block diagram of the three top-level blocks in 

the model: driver, controller, and vehicle plant. 

Table 2.1. Summary of Curve Fitting Parameters for Driving Data 

Dataset Distribution Type 
Weekday 

Parameters 

Weekend 

Parameters 

Departure Time (h) T location-scale 

μ = 8.2 

σ = 1.3 

v = 1.2 

m = 250 

μ = 10.1 

σ = 2.26 

v = 2.5 

m = 95 

Arrival Time (h) Extreme value 

μ = 21 

σ = 2.1 

m = 250 

μ = 20.45 

σ = 2.77 

m = 97 

Daily Driven Distance (km) Generalized extreme value 

μ = 33.45 

σ = 27.19 

k = 0.3339 

m = 3500 

μ = 28.2 

σ = 26.9 

k = 0.41 

m = 1400 

Daily Simulated Energy Use 

(kWh) 
Generalized extreme value 

μ = 9.83 

σ = 7.19 

k = 0.289 

m = 800 

μ = 8.18 

σ = 7.18 

k = 0.348 

m = 290 
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The driver is modeled as a PI feedback loop so that the driver torque request 

ensures that the simulated vehicle speed closely follows the speed reference from 

the logged drive cycles. The controller block generates the motor torque demand 

and friction brake demand subject to the driver torque request and the motor speed-

torque limits. In the plant model, the vehicle speed in m/s at the next simulation 

step, vchas(t+1), is calculated from the force out of the wheel block and the chassis 

aerodynamic losses, as shown in (4): 

1

2

_

1 1
( 1) ( ) ( )

2

t

chas chas out wheel air d chas

t

v t v t F AC v t dt
m


+  

+ = + −  
  
                  (4)   

where m is vehicle mass in kg, ρair is air density (1.23 kg/m3), A is vehicle frontal 

area in m3, and Cd is the coefficient of drag. 

 

Fig. 2.3. Block diagram of vehicle model. 
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The force out of the wheel block is calculated from the torque into the wheel 

block (in_wheel, positive for propulsion), the friction braking torque (friction_brake, 

negative for braking), and the rolling resistance losses, as shown in (5): 

_ _

_ 1 2( )
in wheel friction brake

out wheel chas

wheel

F v mg
r

 
 

+
= − +

                         (5) 

where rwheel is the wheel radius in meters, μ1 and μ2 are rolling resistance 

coefficients, and g is gravitational acceleration (9.81 m/s2). The torque into the 

wheel block is equal to the motor output torque (motor) multiplied by the final drive 

ratio (rfd) and the final drive efficiency (ηfd), as shown in (6): 

_in wheel motor fd fdr  =
                                          (6) 

The motor speed in rad/s is calculated using (7): 

chas fd

motor

wheel

v r

r
 =

                                                    (7) 

The motor and inverter are modeled as a lumped 2-dimensional efficiency 

table, with inputs of motor speed and motor torque. The motor/inverter block 

calculates the DC input current required from the battery using (8): 

_

( , )motor motor motor motor motor
in motor

batt

I
V

    
=

                           (8) 

The total battery current (Ibatt) is the sum of the required motor current 

(Iin_motor) and the required electrical accessory current, as shown in (9): 
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_

accessory

batt in motor

batt

P
I I

V
= +

                                               (9) 

The battery model uses the battery current and an initial state-of-charge 

(SOC) value to determine the SOC and battery terminal voltage at the next 

simulation step. The SOC is the integral of the battery current divided by the total 

battery capacity (Cbatt) as shown in (10). The battery open circuit voltage (Vbatt_oc) 

is determined from a look-up table using the current SOC value. The terminal 

voltage (Vbatt) is calculated from Vbatt_oc and the internal battery resistance (Rbatt), as 

shown in (11). 

1
1

( 1) ( )

t

batt

batt t

SOC t SOC t I dt
C

+

+ = + −
                          (10) 

_batt batt oc batt battV V I R= −
                                      (11) 

This study focuses on transformer aging during the peak summer loads, and 

thus a 1.7 kW air conditioning load is added to the baseline Paccessory load of 300W 

for a total accessory load of 2 kW, in order to better represent summer driving 

energy usage. A 6.6 kW charging rate is assumed for all vehicles unless otherwise 

stated, and the EV on-board charger efficiency ηobc is set to 95% to account for 

losses during the charging process. For each driver, the logged vehicle speed is fed 

into the Bolt EV Simulink model as a reference speed, so that the vehicle model 

“drives” the speed profile of each trip of the logged days. At the end of each trip, 

the simulated ending SOC of that trip is saved and then fed back into the model as 
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the starting SOC for the next trip on that day. For example, Fig. 2.4 shows the 

driving pattern of Driver #1 on the logged Tuesday, where the final SOC is 

determined by all trips in the day. This daily final SOC value indicates how much 

energy is needed from the grid to fully charge the battery by the departure time of 

the first trip on the next day. 

 

The Bolt EV has a 60 kWh battery, yet the usable energy is somewhat less. 

This study approximates the usable energy as 90% of the total energy, meaning 54 

kWh of energy is available between 5% and 95% SOC. For drivers who would need 

more than 54 kWh in a day, the vehicle energy use is saturated to 54 kWh per day. 

As indicated in Figs. 2.1 and 2.2, this battery size is capable of meeting the needs 

of drivers on 1017 out of 1050 logged days (96.9%). In order to quantify the extra 

charging needed for long-range EVs in this study, a similar analysis is also 

performed for short-range EVs similar to those used in previous smart-charging 

studies: 20 kWh battery × 90% = 18 kWh usable energy, and only 62% of the 

logged driving days would have been completed with this smaller battery. This 

means that by considering only short-range EVs with a 20 kWh battery, 38% of the 

driving days would have erroneously low charging energy needs. 

 

Fig. 2.4. Logged vehicle speed and simulated battery SOC for one example logged day. 
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2.2.2 Grid Data 

This study assumes a North American distribution grid with 10 houses per 

distribution transformer, and a maximum of one EV per house. Thus, 15 

transformers are considered, meaning at 100% EV penetration, each of the 150 

unique drivers is assigned to one house. For EV penetration rates less than 100%, 

EVs are assigned randomly within the group of 150 houses to mimic actual EV 

uptake within a neighborhood, from 0% to 100% EV penetration, in steps of 10%. 

Fig. 2.5 shows the per house average residential load profiles for July and 

January without EV charging, as obtained from [31]. These profiles were generated 

based on detailed electricity consumption data from 200 houses in Florida, and 

averaged over the months of July and January, respectively. Thus, the July late 

afternoon peak is due to air conditioning, which is independent of people’s home 

arrival times. Though individual homes will exhibit a noisier load profile with peaks 

and dips, it is assumed that when the loads from the 10 homes on the distribution 

circuit are summed together, many of these small peaks and dips will be cancelled 

out so that the sum can be approximately represented by the smooth average profile. 

 

Fig. 2.5. Per house load profile without EV charging [31]. 
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This study uses the July load profile as the worst-case scenario for EV charging 

stress on the distribution transformers. 

Fig. 2.5 shows an average household load of 2.7 kW and a peak of 3.8 kW 

in July, and an average load of 1.6 kW and a peak of 2.2 kW in January. Two factors 

are considered while sizing transformers: (i) yearly aging factor [32], and (ii) 

maximum overloading [32]. The load cycle is very important for estimating the 

yearly aging factor. A daily variable load cycle consists of both variable loads and 

ambient temperatures. In the summer, high ambient temperatures and peak loads 

are expected during the day and reduced temperatures and loads are expected at 

night. The transformer modeling details in Section 2.2.4 show how an equivalent 

aging factor (FEQA) is calculated for each load cycle. The FEQA for summer is 

averaged with the FEQA for winter to get yearly transformer aging. If the yearly FEQA 

= 1, the transformer is considered correctly sized [32]. Transformer sizing must 

also limit short-term maximum overloading to 200% for power transformers and 

300% for distribution transformers [32]. This study will mainly focus on the case 

of a correctly-sized transformer for a residential distribution grid that has not been 

oversized for potential future EV charging, as this is the case where new EV 

charging loads are of the most concern. A 25 kVA transformer is selected for each 

group of 10 homes, as this gives a summer FEQA of 1.07, a winter FEQA below one, 

and thus a yearly aging factor below one. With an assumed power factor of 0.98 

[33], the peak summer load is 38.8 kVA or 155% loading, which is below the 

overloading limits. The analysis is then rerun for the case of a larger transformer, 
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37.5 kVA for 10 homes, to investigate the relative performance of each charging 

strategy when a transformer is oversized for the base residential load. Finally, the 

analysis is rerun for a 75kVA transformer servicing 30 homes, to investigate the 

relative performance of the charging strategies if the same ratio of homes to kVA 

rating is used, but with a larger transformer. 

2.2.3 EV Charging Strategies 

Until now, the term smart charging was typically used to describe a 

centralized or distributed method of controlling EV charging using significant 

infrastructure such as grid sensors, communication networks, central or local smart 

agents, connected and controllable EVSEs, and a measurement system to obtain 

vehicle SOC data. This chapter herein defines an alternative term, Vehicle-Directed 

Smart Charging, which describes methods that allow a standalone vehicle to more 

intelligently charge itself without requiring daily charging instructions from people 

or smart agents. Many current plug-in vehicles already provide drivers with some 

of these charging options. Table 2.2 summarizes the seven charging strategies 

analyzed in this study, including two Vehicle-Directed Smart Charging strategies 

already available in some vehicles, two proposed Random-In-Window (RIW) 

Vehicle-Directed Smart Charging strategies (with fixed or variable charging rates), 

and a centralized smart charging scheme representing the optimal case of flattening 

the transformer load from the literature [4],[6].  For all charging strategies, it is 

assumed that the battery will be fully charged by the driver-programmed departure 
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time of the following day – this is necessary for driver buy-in, and is how the two 

currently available Vehicle-Directed Smart Charging strategies operate. 

Some prior work has considered randomness in smart-charging algorithms. 

Reference [23] proposes a centralized smart agent that monitors load congestion 

and grid voltage constraints in real-time, and when there is capacity to charge, EVs 

are selected randomly from the queue to charge. However, this strategy still 

requires the entire infrastructure needed for conventional centralized or distributed 

smart-charging systems. In [26], a centralized smart agent is recommended to 

assign random charging start times to EVs, meaning charging can occur during 

Table 2.2. Summary of Investigated EV Charging Methods 

Category Name Status Description 

Uncontrolled 

Charging 

Charge Right 

Away (CRA) 
Default 

Charging begins as soon as vehicle is 

plugged in. 

Vehicle-

Directed Smart 

Charging 

Time-of-Use 

(TOU) 

Available in 

current vehicles 

Driver sets charging start time, usually 

based on low electricity rates. This chapter 

investigates TOU start times of 7pm and 

12am, meaning any vehicles plugged in at 

this time will start charging at 7pm or 

12am, respectively. 

Charge by 

Departure (CBD) 

Available in 

current vehicles 

Driver does one-time programming of 

daily departure times in vehicle. Vehicle 

starts charging when battery will be 

exactly fully charged by next day’s first 

departure. 

Random (R) 

From literature 

[26] – not 

implemented 

Vehicle selects random charge start time 

between plug-in time and latest time that 

will give a full charge by next day’s first 

departure. 

Random-In-

Window Fixed 

Charge Rate 

(RIW-FR) 

Proposed 
Vehicle selects random charge start time 

within allowable window (details in text). 

Random-In-

Window 

Variable Charge 

Rate (RIW-VR) 

Proposed 

Vehicle selects random charge start time 

within allowable window, then selects 

random charging rate (details in text). 

Centralized 
Centralized 

Smart Charging 

From literature 

[4][6] - not 

widely 

implemented 

Uses full smart-grid infrastructure to 

flatten the aggregate EV+ household load. 
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times of peak household loads. Furthermore, this algorithm is only tested using 

normal distributions of arrival time with randomly assigned arrival SOCs, not real 

driving data. Reference [5] is the only chapter to the authors’ knowledge to propose 

that the EV itself generate the random charging schedule rather than a connected 

smart agent. Yet [5] proposes that the EV generates random segments of charging 

time in 15 or 30 minute intervals, and that these charging intervals are randomly 

assigned anytime between plug-in time and departure time, as long as the vehicle 

calculates it will be fully charged by the departure time. This algorithm is 

unnecessarily complex, but more importantly, it did not show promising results in 

[5] because charging is still allowed to occur during times of peak household load 

early in the evening. For example, at 100% EV penetration, [5] shows a transformer 

lifetime of 1.36 years using its random charging strategy compared to over 100 

years for a more optimal centralized smart-charging scheme. 

This chapter proposes a simple but effective Vehicle-Directed Smart 

Charging concept, RIW, which automatically smooths out charging peaks by 

capitalizing on the inherent randomness already present within a group of EVs: a 

variety of next-day departure times and a variety of energy needs to be fully charged 

by the departure time. The proposed RIW strategy has two variants: fixed charging 

rate (FR) and variable charging rate (VR), which adds two additional calculation 

steps to the RIW-FR algorithm. The RIW algorithm first specifies a time window 

which defines the allowable charging start time. The window start-time (A) is 

constant and is set to be past the usual peak residential load. This window start-time 



   
Ph.D. Thesis – M.H. Mobarak                     McMaster University – Electrical Engineering 

31 
 

A could be hard-coded into the vehicle as 10 pm local time by the vehicle 

manufacturer, or allowed to be set to a constant value by the driver based on the 

local utility’s recommended time for regions with different residential load profile 

peak times. The window end time B specifies the latest time that the vehicle can 

begin charging and still be fully charged by the first departure of the next day – thus 

the window end time B will change day-to-day, and will be equal to the charging 

start time of the CBD strategy described in Table 2.2. Upon plug-in, the vehicle 

knows time A and calculates time B to define the window. If the vehicle arrives 

home after time B, it must charge right away to get the most charge possible by the 

next day departure time, and thus smart charging cannot be applied in this case. If 

time B is earlier than time A (which is unusual based on the logged data), then the 

vehicle must start charging at time B in order to be fully charged by the next day 

departure. This case means the vehicle needs more time to charge than allowed by 

starting after time A, and includes scenarios such as: a highly depleted long-range 

EV, a lower charging rate, and/or a very early departure time the next morning. By 

far the most common scenario from the logged data is that time A is earlier than 

time B, creating a window where a random number generator (rand) randomly 

selects a charge start time C between times A and B. Since time A is after the peak 

household load times, the calculation of rand(A,B) will select a charging start time 

after the peak household load, and the charge start time will be different for each 

vehicle running the algorithm, thus helping to smooth the charging load. This 

completes the calculations for RIW-FR, as all charging occurs at the fixed rate, 6.6 
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kW in this case. The RIW-FR algorithm is summarized in the blocks above the red 

dashed line in Fig. 2.6, and an example is shown in Fig. 2.7. 

Two additional calculation steps are required for the second variant, RIW-

VR, to also randomize the charging rate in addition to randomizing the charging 

start time. Let D represent the next day departure time. Thus, the minimum allowed 

charging rate E (in kW) for the already-selected charge start time C is: 

 

Fig. 2.6. Proposed RIW charging algorithm with RIW-FR and RIW-VR variants. 
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Battery Energy Required

(Maximum Charging Duration D-C)obc

E


=
                              (11) 

Lastly, the charging rate is selected randomly between the maximum rate 

(assumed as 6.6 kW in this case) and the minimum rate E as rand(E,6.6). These 

additional steps are shown in the lower portion of Fig. 2.6. The effect of the RIW-

VR strategy is to lower the charge rate randomly and thus lengthen the charge 

duration compared to RIW-FR, while always adhering to the driver constraints of 

total battery energy required and next day departure time. The main difference 

between the proposed RIW strategies and a basic random strategy that can start 

charging anytime the vehicle is plugged in, is that in RIW, charging is automatically 

avoided during the peak household load times due to not allowing charging to start 

before time A, unless it is absolutely needed to fulfill the charging requirement by 

the next day’s first departure (a rare scenario based on the logged data). This simple 

change makes a measurable difference in the associated distribution transformer 

aging, as will be shown in the next section. 

 

Fig. 2.7. Example of an RIW-FR charging algorithm for one driver on one day. 
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The transformer load profiles generated by the RIW strategies are compared 

to the theoretically optimal transformer load profiles that could be generated by a 

centralized smart-charging scheme using full smart-grid infrastructure (smart 

agent, grid sensors, communication network, vehicle SOC and departure time data, 

and controllable EVSEs). This important comparison will indicate how close the 

proposed infrastructure-less Vehicle-Directed Smart Charging strategies can come 

to the optimal performance of a centralized smart-charging strategy. Reference [4] 

compared a complex genetic algorithm-based smart-charging strategy, which 

minimized transformer aging, to a strategy that flattened the transformer load (i.e., 

filled the valley of the overnight household load), and found virtually identical 

transformer aging results. Follow-up work in [6] further validated that flattening 

the total EV plus household load leads to minimization of transformer aging. 

Though previous research has focused on precisely how to flatten this load in real-

time, including how to predict the overnight household load [4], the optimal end 

result is the same: flattening the transformer load as much as possible given the EV 

energy charging requirements. Thus, this chapter assumes the optimal case for the 

centralized smart-charging strategy: the charging start time and charging rate can 

be varied to precisely flatten the total transformer load. All future household loads 

are assumed precisely known so that no prediction is required. This creates an 

idealized version of a centralized smart-charging strategy to compare to the 

Vehicle-Directed Smart Charging strategies.  
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2.2.4 Transformer Aging Model 

The primary concern in overloading distribution transformers with 

residential and EV charging loads is accelerated transformer aging, and thus the 

equivalent aging factor, FEQA, is a useful metric for comparing EV charging 

strategies. Transformer aging specifically refers to deterioration of the insulation, 

which is dependent on temperature, moisture, and oxygen content. In modern oil-

cooled transformers, the effect of moisture and oxygen content on insulation 

deterioration is negligible, and thus, the hottest-spot insulation temperature is the 

primary factor of accelerated aging [32]. The overhead distribution transformer 

aging model from IEEE C57.91-2011 provides a formulation of the hottest-spot 

insulation temperature through a series of non-linear equations, which contain a 

combination of modeled equations and parameters based on empirical test data. 

Based on the temperature, this document develops a transformer insulation life 

curve relating transformer insulation life to winding hottest-spot temperature that 

is equally valid for power and distribution transformers using the same type of 

 

Fig. 2.8. Daily ambient temperature profile used for transformer aging model (from Toronto, Canada in 

July [37]). 
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insulation. It also demonstrates transformer life cycle calculation based on 

transformer loading test data. Thus, a computer program developed based on the 

transformer aging calculation guide [32] can provide a reasonable prediction of the 

transformer insulation aging rate and remaining life of the insulation. The overhead 

distribution transformer aging model used in this chapter from [32] is briefly 

described below. Full details can be accessed from [32]. Ambient temperature 

profiles for one week in July in Toronto, Canada were obtained from [34] for use 

in the model, as shown in Fig. 2.8. 

The total household and EV charging load profile for each EV charging 

strategy is converted to an equivalent load, Lequiv, using (12): 

2 2 2

1 1 2 2

1 2

...

...

n n
equiv

n

L t L t L t
L

t t t

 +  + + 
=

 +  + + 
                                 (12) 

where L1, L2,…, Ln are the kVA values of household plus EV charging loads in the 

time intervals ∆t1, ∆t2, …, ∆tn. In this study, these time intervals are set to 1 minute 

so that high resolution charging patterns are used in the thermal analysis.  

The hottest-spot temperature, θH, in a transformer winding is directly related 

to the insulation life of a transformer, and the loading of a transformer is restricted 

by θH. With temperature and time, the cellulose insulation experiences a 

depolymerization process [35]. In this process, the average molecular weight of the 

cellulose decreases, which results in shorter cellulose chains, and degraded tensile 

strength and elasticity of the insulation paper. In the long run, the insulation paper 



   
Ph.D. Thesis – M.H. Mobarak                     McMaster University – Electrical Engineering 

37 
 

becomes weak and cannot withstand regular short circuit forces and vibrations that 

are part of transformer operation. This process is termed “transformer aging” [35]. 

As the rise of temperature in the winding is mostly dependent on loading, and load 

management algorithms such as vehicle smart charging strategies help redistribute 

the loads to minimize overloading, load management algorithms can reduce θH  and 

thus reduce aging. θH is the summation of three temperature components in °C [32] 

as shown in (13): ambient temperature, θA, delta between the top-oil temperature 

and the ambient, ∆θTO, and the delta between the hottest-spot temperature and the 

top-oil temperature, ∆θH. 

H A TO H   = +  + 
                                       (13) 

∆θTO and ∆θH are dependent on the equivalent loads in each time interval, 

Lequiv and other variables as described in [32]. The equation of aging acceleration 

factor, FAA, is an exponential function of the hottest-spot temperature θH as shown 

in (14). 

383 273H

B B

AAF e


 
− 

+ =
                                            (14) 

In (14), B is the cellulose aging rate constant, with a value of 15000 obtained 

from the transformer insulation life curve in [32]. Transformer specification data 

are obtained from [36]. The equivalent aging factor, FEQA, is a useful result as it 

represents how much faster than normal a transformer ages based on its thermal 

profiles. For example, FEQA = 1 means the transformer aged 1 week over the test 
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week period, and FEQA = 2 means the transformer aged at double the normal rate, 

or 2 weeks over the test week period. FEQA is described by (15), where ∆tn is each 

time interval, N is the total number of time intervals, and FAAn is the aging 

acceleration factor during the time interval, ∆tn. 

1

1

N

AAn n

n
EQA N

n

n

F t

F

t

=

=



=






                                             (15) 

2.2.5 Simulation Process 

Fig. 2.9 summarizes the simulation process. The transformer aging model 

block calculates aging for each of the 15 transformers, and then averages these 

values to get one representative summer FEQA value to use in comparing the various 

EV charging methods. The process is repeated for all EV penetration rates from 0% 

to 100%, in steps of 10%. 

 

Fig. 2.9. Simulation process summary. 
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2.3. Results And Discussion 

2.3.1 Charging Profiles 

To investigate the importance of considering the effects of long-range EVs 

on the grid, the total household plus EV charging loads are compared for the 

simulated cases of long-range EVs (60kWh battery) and short range EVs (20kWh 

batteries) for the logged 150 drivers at 100% EV penetration (one EV per house). 

Figs. 2.10 to 2.15 show the results for the logged Monday for each of the charging 

strategies discussed in Table 2.2. This real-world data is crucial to show how often 

drivers make use of the longer range of 60 kWh battery EVs, as Figs. 2.1 and 2.2 

show that only 62% of driving days will be satisfied with the 20 kWh battery EV. 

Since the daily simulated energy use is saturated to a much lower level for the short 

range EV, Figs. 2.10 to 2.15 show that less charging energy is needed from the grid 

for the 150 short-range EVs (1.77 MWh) compared to the 150 long range EVs (2.31 

MWh). The difference is 541 kWh, or a 30.5% increase for long-range EVs. Table 

2.3 shows charging energy difference between long- and short-range EVs on each 

day of the logged week. As expected, more long-range driving occurs on Friday, 

Saturday, and Sunday. The average increase in energy usage based on long-range 

EVs compared to short-range EVs is 35%. 
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Fig. 2.10. Long-range EV and short-range EV simulated Monday load for 150 logged drivers (CRA 

charging strategy). 

 

 

 

Fig. 2.11. Long-range EV and short-range EV simulated Monday load for 150 logged drivers (TOU 7pm 

& 12am charging strategy). 
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Fig. 2.12. Long-range EV and short-range EV simulated Monday load for 150 logged drivers (CBD 

charging strategy). 

 

 

 

 

Fig. 2.13. Long-range EV and short-range EV simulated Monday load for 150 logged drivers (Random 

charging strategy from [26]). 
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Fig. 2.14. Long-range EV and short-range EV simulated Monday load for 150 logged drivers (RIW-FR 

and RIW-VR charging strategies). 

 

 

 

 

Fig. 2.15. Long-range EV and short-range EV simulated Monday load for 150 logged drivers (Idealized 

centralized smart-charging strategy [4],[6]). 

 

 Table 2.3. Comparison of Charging Energy Demand For Long- And Short-Range EVs For 150 Drivers 

Day of Week 

Short-Range EV 

Charging Energy 

(MWh) 

Long-Range EV 

Charging Energy 

(MWh) 

Increase in Charging 

Energy Required For 

Long-Range EVs (%) 

Monday 1.77 2.31 30.5  

Tuesday 1.85 2.52 36.2 

Wednesday 1.83 2.43 32.8 

Thursday 1.69 2.18 29.0 

Friday 1.86 2.62 40.9 

Saturday 1.80 2.43 35.0 

Sunday 1.53 2.16 41.2 
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Figs. 2.16 and 2.17 compare all charging strategies for short-range EVs and 

long-range EVs, respectively, for all 15 transformers (150 houses) at 100% EV 

penetration (150 EVs) for the logged Monday evening. Both the figures show that 

CRA and TOU charging strategies create the highest loading peaks. This is 

unfortunate because TOU charging is a common way for EV drivers to reduce their 

charging costs. However, if many EV drivers choose the same starting times, 

undesired aggregate peaks will be formed. The TOU 12am peak is higher than the 

TOU 7pm peak (even though the household load is lower at 12am) because all or 

nearly all of the vehicles have arrived home by this time, and they all start charging 

at once. At 7pm, many vehicles are not home yet (as per Fig. 2.1), so the surge of 

charging power is lower. Of the charging strategies currently available in vehicles 

(CRA, TOU, and CBD), the CBD strategy creates the lowest charging peak. The 

strategies from the literature (random and centralized smart-charging), and the 

proposed RIW (both variants) produce charging peaks lower than CBD, and will 

be analyzed in detail with respect to transformer aging. To illustrate the unique 

loading profiles on each of the 15 transformers, Fig. 2.18 shows the detailed 

charging load on one of the transformers for 100% EV penetration on the logged 

Monday for long-range EVs. 
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Fig. 2.16. Comparison of all charging strategies for 150 EV drivers on logged Monday evening for short-

range EVs. 

 

 

 

 

Fig. 2.17. Comparison of all charging strategies for 150 EV drivers on logged Monday evening for long-

range EVs. 

 

 

 

Fig. 2.18. Detailed charging load on Transformer 1 for logged Monday evening (long-range EV). 
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2.3.2 Average Aging of 25 kVA Transformers 

The weekly loading profiles for the 15 transformers are used to calculate 

transformer equivalent aging factors, FEQA, for each 25 kVA transformer. These 15 

values are then averaged to get a single FEQA value which represents the average 

transformer aging factor in the distribution system for a given EV penetration rate. 

Firstly, the pure random charging strategy [26] is compared to the proposed RIW 

strategies with different window start times, A. For the RIW-FR strategy, the results 

are shown in Fig. 2.19 for short-range EVs and in Fig. 2.20 for long-range EVs. For 

the RIW-VR strategy, the results are shown in Fig. 2.21 and Fig. 2.22 for short-

range and long-range EVs, respectively. Since the pure random strategy allows EV 

charging during times of household peak load, it results in the highest equivalent 

aging factor for most EV penetration rates. When the RIW window start time is 

earlier (7pm to 9pm), there is still some overlap between EV charging and peak 

household load. For both variants, RIW with a window start time of 10pm provides 

the best balance between pushing the EV charging load later in the evening, yet still 

leaving enough time for the vehicles to charge overnight without creating high 

overnight loading peaks (which occur for window start times of 11pm and later). 

Thus, 10pm local time is proposed as the optimal RIW window start time for the 

given household load profile and logged driver dataset, and thus 10pm will be used 

as the window start time for both RIW-FR and RIW-VR strategies for the remainder 

of the analysis. 
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Fig. 2.19. Average weekly equivalent aging factors for random charging and RIW-FR with different 

window start times (A) for short-range EVs. 

 

 

 

 

Fig. 2.20. Average weekly equivalent aging factors for random charging and RIW-FR with different 

window start times (A) for long-range EVs. 

 

 

 

 

Fig. 2.21. Average weekly equivalent aging factors for random charging and RIW-VR with different 

window start times (A) for short-range EVs. 
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Fig. 2.23 shows the FEQA for all charging strategies for both short-range and 

long-range EVs. As expected based on the charging profiles, CRA and TOU 

produce the highest FEQA, with unfeasibly high values at high EV penetration rates. 

Fig. 2.24 shows a zoomed-in version of Fig. 2.23 to more clearly illustrate the 

equivalent aging factors at low EV penetration rates. For no EV charging (0% 

penetration), FEQA = 1.07, which is as expected for a transformer that has been 

suitably sized for the household load. At most EV penetration rates, CRA and TOU 

7pm create unsustainably high aging rates, yet the TOU 12am strategy limits aging 

to 2 times the normal rate up to 60% EV penetration. This occurs despite the high 

charging peaks because these peaks occur during the cooler overnight hours, which 

lessens transformer aging. However, when the EV penetration rate of the 

neighborhood rises to 100%, TOU 12am is worse than CRA since the EV charging 

peaks get very high. 

 

Fig. 2.22. Average weekly equivalent aging factors for random charging and RIW-VR with different 

window start times (A) for long-range EVs. 
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The CBD, RIW, and centralized smart-charging strategies are the superior 

charging options across all EV penetration rates. For each of these strategies, Fig. 

2.24 shows that there is a significant increase in transformer aging for long-range 

EVs compared to short-range EVs – for example, the RIW-FR FEQA and RIW-VR 

FEQA for long-range EVs at 100% EV penetration are 3 and 2.6 respectively, 

compared to RIW-FR FEQA = 1.7 and RIW-VR FEQA =1.6 for short-range EVs, an 

increase in aging of 176% and 163% respectively. Since CBD is the only charging 

method of these three commonly available to EV drivers today, it is recommended 

 

Fig. 2.23. Weekly average transformer aging factors for different charging strategies across all EV 

penetration rates. 

 

 

 

Fig. 2.24. Weekly average transformer aging factors for different charging strategies across all EV 

penetration rates (zoomed in). 
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that EV drivers utilize this charging method until a superior charging method 

becomes available. However, at higher EV penetration rates, which can easily occur 

in neighborhood clusters, the CBD strategy is not ideal due to the larger EV 

charging peak that occurs in the early morning. At 100% EV penetration, the FEQA 

for CBD reaches 8.8 for long-range EVs, which would reduce the life of a 30-year 

rated transformer to 3.4 years. Thus, superior charging methods are clearly 

required. Conversely, the RIW-FR and RIW-VR strategies produce FEQA = 3 and 

FEQA = 2.6 respectively for long range EVs at 100% EV penetration, while pure 

random charging produces FEQA = 5.1 for long range EVs at 100% EV penetration.       

Figs. 2.19 to 2.24 show that the proposed variants of RIW strategy produce 

the lowest transformer aging of all Vehicle-Directed Smart Charging strategies, for 

both long range and short range EVs, and across all EV penetration rates. 

Furthermore, for long-range EVs, the RIW-FR strategy produces similar 

transformer aging as the ideal centralized smart-charging strategy up to 50% EV 

penetration (FEQA = 1.28 and FEQA = 1.23, respectively). For RIW-VR, the aging 

progression is similar to centralized smart-charging strategy for up to 60% EV 

penetration (FEQA = 1.36 and FEQA = 1.26, respectively). For short-range EVs, the 

RIW-FR strategy produces similar transformer aging as the smart-charging strategy 

up to 60% EV penetration (FEQA = 1.25 and FEQA = 1.21, respectively). For short 

range RIW-VR, the aging progression is similar to centralized smart-charging 

strategy for up to 70% EV penetration (FEQA = 1.26 and FEQA = 1.22, respectively). 

This is a very important conclusion, as the variants of RIW strategy, which require 
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no smart-charging infrastructure, performs approximately the same as the 

centralized smart-charging strategy up to EV penetration rates of 60% for long-

range EVs and up to 70% for short-range EVs. Whereas a controlled smart-charging 

strategy requires significant investment in grid sensors, communication networks, 

distributed or centralized smart agents, connected and controllable EVSEs, and a 

method to obtain vehicle SOC data, the proposed variants of RIW algorithm can 

easily be added to vehicle software by automotive manufacturers, either in new 

EVs, or by over-the-air software updates to already-purchased EVs. The on-board 

computation requirement is very low, as just one to three additional calculations are 

required compared to the already-implemented CBD strategy (which is the 

calculation of the random charge start time between times A and B for RIW-FR and 

two additional calculations for minimum charging rate bound and then random 

charge rate determination for RIW-VR). As variants of RIW are Vehicle-Directed 

Smart Charging strategies, the driver’s EVSE and local grid need no updates to 

implement this strategy. Overall, the proposed RIW-FR and RIW-VR charging 

strategies are simple and low-cost methods that can be used in the near future to 

limit transformer aging to that expected from a full smart-charging system at 

moderate EV penetration rates. 

2.3.3 Average Aging of 37.5 kVA Transformers 

The preceding analysis is repeated for long-range EVs plugging into a 

distribution network using larger transformers with 37.5 kVA nameplate ratings for 

the same 10-home groupings per transformer. This scenario represents the case of 
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newer neighborhoods where the potential of future EV charging has been taken into 

account for transformer sizing. Fig. 2.25 shows the average equivalent aging factors 

for the 37.5 kVA transformers. As expected, the FEQA rates are lower compared to 

the 25 kVA scenario. However, the pattern of accelerated aging is similar to that of 

the 25 kVA transformer across the charging strategies: CRA and TOU strategies 

produce by far the highest aging rates. RIW variants produce the lowest aging rate 

of the Vehicle-Directed Smart Charging strategies. RIW-FR produces similar aging 

to the ideal centralized smart-charging strategy up to EV penetration rates of 60% 

(FEQA = 0.67 and FEQA = 0.63, respectively). RIW-VR produces similar aging to the 

centralized smart-charging strategy up to EV penetration rates of 70% (FEQA = 0.70 

and FEQA = 0.65, respectively). Notably, the RIW strategies limit FEQA to 1 even at 

100% EV penetration, whereas all other Vehicle-Directed Smart Charging 

strategies produce FEQA > 1 for 100% EV penetration (ranging from 1.54 to 6.9). 

 

 

Fig. 2.25. Weekly average transformer aging factors for different charging strategies with 37.5 kVA 

transformer. 
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2.3.4 Average Aging of 75 kVA Transformers 

For this analysis, the ratio of homes to transformer kVA is kept the same as 

the original 25 kVA transformer analysis. The purpose is to investigate if the 

relationships between the charging strategies still hold when larger transformers are 

used. Thus, in this section, 30 homes are assigned to each 75 kVA transformer, 

meaning the transformer is precisely sized for the homes and is not oversized for 

any future EV charging (the most concerning real-world case). Fig. 2.26 and Fig. 

2.27 (zoomed in version of Fig. 2.26) show that the transformer aging follows a 

similar pattern to that of a rightly-sized 25 kVA or an oversized 37.5 kVA 

transformer. CRA, TOU-7pm, and TOU-12am produce the highest transformer 

aging rates, whereas CBD produces FEQA = 6.8 at 100% penetration. RIW-FR and 

RIW-VR both produce similar transformer aging rates as the ideal centralized 

smart-charging method up 60% EV penetration (FEQA = 1.77 for both RIW variants 

and FEQA = 1.71 for smart charging). Therefore, the proposed RIW strategies can 

be used to reduce aging in transformers of various sizes and with various base 

loading scenarios. Overall, the RIW strategies are simple and low-cost solutions 

that can be implemented without immediate distribution network upgrades and 

complex smart charging infrastructure installation. 
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2.4. Conclusions 

With the introduction of reasonably-priced long-range EVs, it is crucial to 

investigate and mitigate the effects of the increasing adoption of these vehicles on 

distribution transformers. While there has been much focus on centralized and 

distributed smart-charging strategies, these strategies require significant 

infrastructure, and thus will take time and investment to be implemented. This 

 

Fig. 2.26. Weekly average transformer aging factors for different charging strategies with 75 kVA 

transformer. 

 

 

 

 

Fig. 2.27. Weekly average transformer aging factors for different charging strategies with 75 kVA 

transformer (zoomed-in). 
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chapter defines Vehicle-Directed Smart Charging as strategies that can be 

implemented by a suitably-programmed EV without the need for additional 

infrastructure. This chapter proposes and investigates a new Vehicle-Directed 

Smart Charging concept, Random-In-Window (RIW), which has two variants: 

fixed rate charging (RIW-FR) and variable rate charging (RIW-VR). With two 

additional calculation steps, the RIW-VR is shown to be the slightly superior 

strategy of the two, and is shown to produce a similar transformer aging rate as a 

centralized smart-charging algorithm over a summer week for EV penetration rates 

up to 60% for long-range EVs and up to 70% for short-range EVs. Investigations 

of larger transformers found the same correlations. This study used an extensive 

logged driving dataset of 150 unique drivers over one week and short-range 

(20kWh battery) and long-range (60kWh battery) EV models to support the 

analysis. Based on the driving habits of the logged drivers in this study, it was also 

found that long-range EVs consume approximately 30% more charging energy than 

short-range EVs, and thus should be explicitly considered in future EV charging 

studies. It is recommended that EV manufacturers consider adding the RIW 

charging strategy to their on-board software, as it requires only one to three simple 

additional calculations compared to the already commonly implemented CBD 

strategy, yet it performs significantly better than the CBD strategy, especially at 

higher EV penetration rates.  
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Chapter 3: Solar-Charged Electric Vehicles: A Comprehensive 

Analysis of Grid, Driver, and Environmental Benefits 

3.1. Introduction 

Electric vehicles (EVs) have the potential to significantly reduce greenhouse 

gas emissions, regulated emissions which cause local air pollution and negative 

health effects [1], and society’s reliance on fossil fuels. Though EV adoption has 

been slow in the past, the pace has recently been increasing: 2.1 million plug-in 

vehicles were sold globally in 2018, a 64% increase from 2017 [2]. Yet, in 2018, 

plug-in vehicles accounted for only 2.2% of the global light vehicle market [2]. 

Continuing challenges for EV adoption include cost, charging concerns, and range 

concerns. As EV adoption continues to increase, the generation mix and 

transmission limitations for charging EVs will become a pressing matter. 

With regards to electricity generation, it is well known that the full 

environmental benefits of EVs can only be realized when charging energy is 

generated with zero or low CO2 emissions (e.g., wind, solar, hydro), and that using 

electricity generated from coal will negate most CO2 benefits of EVs compared to 

conventional internal combustion engine (ICE) vehicles. Thus, renewable energy 

generation and increased EV adoption must go hand-in-hand. Current photovoltaic 

(PV) cell technology provides energy conversion efficiency of 26.7% for the 

highest efficiency silicon monocrystalline cells [3], with record 1-sun efficiencies 

of 38.8% for lab demonstrations of multi-junction cells [4] (which are not 
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economically practical to date). Most notably for EVs, recent advances have created 

flexible thin film cells with efficiencies in excess of 20% [5]. Solar deployment has 

been increasing worldwide, particularly in utility-scale deployments; however, its 

impact at the individual level (residential rooftop solar) has been slow due to the 

large upfront cost for installation (e.g. $23,000 for a 7.5 kW system) [6]. 

Furthermore, its intermittency (daily and seasonally) and variability (due to weather 

conditions) makes it an auxiliary source. Its intermittency can be addressed with 

energy storage, which adds additional significant cost and is a further barrier to 

deployment for the average homeowner. Thus, many EV owners rely on charging 

from their local grid, and common evening EV charging adds demand to the grid 

at peak load times, exacerbating grid emissions. 

With regards to electricity transmission and distribution for EV charging, 

losses and load limitations must be considered. There is an average of 12% loss in 

energy from large generating stations to local residential loads [7], so for EV 

charging, it means the EV is actually consuming 12% more generated energy than 

the energy used to drive the vehicle. Furthermore, most grids present today were 

not designed for EV charging. Much research has investigated this issue, and a 

primary concern of having increasing numbers of EVs plugging into the grid to 

charge is the overloading of distribution transformers [8]-[12]. Most distribution 

transformers presently in use have been sized to provide the peak loads of the 

connected homes without EV charging in mind, and thus the additional loading 

from EV charging can cause overheating, accelerated aging, and eventual 
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transformer failure. Some previous research has investigated the effect of EV 

charging on distribution transformers with the use of residential rooftop PV 

generation: [13] and [14] investigated transformer overloading levels only, [15] 

investigated the associated transformer loss-of-life in Australia, and [16] analyzed 

transformer loss-of-life under North American loading conditions, finding that at 

50% EV penetration, transformer replacement could be deferred by nearly 4 years 

when residential rooftop PV was used. Recently, [17] investigated the distribution 

transformer loss-of-life considering residential rooftop solar shingles, fast chargers, 

and second-generation battery energy storage. However, no previous work has 

analyzed distribution transformer overloading and accelerated aging with EVs 

utilizing on-board solar generation. 

To improve both the solar installation cost and storage issues and the EV 

charging and range issues, this chapter proposes the concept of an EV with low-

cost flexible thin film PV cells integrated directly onto the steel of all upwards-

facing body panels of the vehicle (i.e., roof, hood, trunk). The solar intermittency 

issue is resolved because the EV has a large built-in battery already, and thus the 

required energy storage does not represent an additional cost, as it does with 

residential solar systems. PV integration during the vehicle manufacturing process 

opens up the possibility for low-cost mass production, seamless integration, and 

negligible additional mass of the flexible thin film cells, as opposed to the more 

expensive and rigid traditional monocrystalline silicon cells. Copper indium 

gallium selenide (CIGS) cells are currently the best available choice due to their 
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flexibility, proven ability to integrate onto steel [18], and high efficiency: in this 

study, 20% nominal efficiency is assumed, though 23.35% has been demonstrated 

[19], [20]. Though the solar power generated will be low compared to the power 

needed to accelerate a vehicle, this research will show that the energy obtained over 

a full day parked or driving outside is significant in terms of reduced grid charging 

needs at the end of the day, and for driving range extension. With a target mass-

production additional cost of $670 ($620 for the PV cells [21] and integration and 

$50 for power electronics, as discussed in Section 3.4.4), the proposed solar EV 

(SEV) option would be affordable for a large segment of the population buying 

EVs, with mature vehicle financing services making the additional cost much more 

manageable to the average buyer than a residential rooftop installation. 

In the past, solar EVs have generally been considered niche development 

projects, yet some automotive companies are now starting to experiment with solar 

cells on passenger vehicles. For example, the Toyota Prius Prime and the Karma 

Revero both have solar cells integrated onto the roof, which charge the propulsion 

battery [22], [23]. Alta, a maker of thin-film Gallium Arsenide (GaAs) solar cells, 

claims solar cell efficiencies around 30% [24], though GaAs cells are currently 

expensive. Audi plans to integrate these Alta cells on the roof of its 2020 EV line, 

though the solar power will initially only power the low-voltage system, and not 

the propulsion battery [24]. Furthermore, Sono Motors GmbH is currently 

developing the Sion EV, which has monocrystalline silicon PV modules fixed onto 

all vehicle body panels to provide electric range extension [25].  However, this 
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chapter proposes that significant benefits can be achieved using low-cost thin film 

PV cells, even with lower nominal efficiency of 20%. Recent research also shows 

increasing interest in PV on vehicles: [26] proposes EV battery balancing powered 

by vehicle-rooftop solar panels, [27] develops an electrical architecture for charging 

the battery from onboard monocrystalline PV cells, [28] proposes reconfigurable 

PV arrays for on-vehicle use to deal with partial shading, and [29] analyses the 

benefits of adding monocrystalline silicon PV cells to internal combustion engine 

vehicles, though does not use detailed vehicle models nor real world driving data. 

On-board solar has also been investigated for other modes of transportation: [30] 

presents the design of a solar-assisted electric rickshaw, [31] presents a silicon 

carbide-based converter with differential power processing for a solar powered 

aircraft, and [32] presents a switched reluctance motor drive for a solar-assisted 

hybrid electric bus. However, no previous work has examined the potential system-

level benefits of SEVs with low cost and widespread flexible thin film PV cell 

integration. 

The proposed full-scale SEV concept using low-cost, light-weight PV cells 

integrated onto the steel of all upwards-facing vehicle body panels makes sense 

from many other perspectives. Firstly, there is a very direct and efficient path for 

solar energy from PV cell to EV battery, with fewer power conversions than a 

stationary PV panel charging a stationary storage battery, which later transfers 

energy to the EV battery. In terms of EV range extension, the full-scale SEV 

concept is the ultimate wireless charging solution, using free and clean solar energy 
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to charge the battery when driving or parked anywhere outside. Though much 

research has been conducted on dynamic wireless charging through the road, 

obstacles remain including: enormous infrastructure investment needed to retrofit 

roads, peak driving times often coincide with afternoon peak grid loads [33] [34] 

meaning new generation could be needed, local grid generation mix might not 

guarantee low CO2 driving, and grid transmission losses (about 12%) still exist. 

From the perspective of vehicle efficiency, automotive engineers spend much effort 

to increase electric vehicle efficiencies by a few percent: aerodynamic 

improvements, more efficient motors and power electronics, etc., and there are 

diminishing returns in this area for the current generation of highly-efficient EVs. 

However, the proposed full-scale SEV can reduce charging needs by about 20% on 

average, depending on driving scenarios, which is analogous to an increase in 

efficiency of 20%. There is not a single other EV development that has the potential 

for such large grid energy use reductions. 

There are also significant challenges to be overcome before mass-produced 

SEVs can become a reality. Firstly, a low-cost process must be developed to 

integrate PV cells seamlessly onto the automotive steel panels, with good durability 

in harsh weather and over time. Secondly, the configuration of series and parallel 

PV cells must be optimized for maximum power point tracking (MPPT) over the 

curved vehicle surfaces and for generating high voltages which are easier to boost 

to the voltage of the traction battery. Thirdly, MPPT tracking controllers must be 

designed to quickly respond to fast-changing partial shading patterns which can 
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occur when driving. Fourthly, the electrical architecture and associated power 

electronic converters, which transfer the PV energy to the high-voltage traction 

battery, must be designed and optimized for high efficiency, low cost, and low 

mass. Since there is much future work required to solve these challenges, it is 

imperative to first assess the system-level benefits of the proposed SEV concept, in 

order to determine if future design and development effort is warranted – this is the 

goal of this chapter. 

Earlier related work analyzed transformer aging reductions from 10 SEV 

drivers in one summer week [35], and found significant benefits, indicating that 

further analysis of SEV system-level benefits is merited. However, actual 

transformer failures and replacements are based on annual equivalent transformer 

aging, including aging factors that are much lower in cooler months due to the lower 

ambient temperatures – thus, the summer-only analysis does not accurately 

represent annual transformer aging. Furthermore, [35] does not address driver or 

environmental benefits, does not model the effect of panel tilt, vehicle orientation, 

or partial shading, nor does it discuss practical SEV challenges. Thus, the 

contributions of this chapter are: (i) modeling and analyzing the effect of panel tilt, 

vehicle orientation, and partial shading on captured solar energy at different 

latitudes; (ii) adding temperature dependency to the efficiency of the solar cells; 

(iii) investigating grid, driver, and environmental benefits of solar-powered electric 

vehicles (SEVs) using logged driving cycles from 150 drivers; (iv) expanding the 

analysis to an entire year, which yields new results that cannot be obtained from a 
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summer-only analysis; (v) investigating the transformer aging benefit of SEVs in 

the case of delayed charging; (vi) performing a preliminary analysis on the case 

where extra solar energy is fed back to the home, and (vii) discussing practical 

engineering challenges and future trends on the path towards mass-produced SEVs. 

Section 3.2 describes the data sources used in this research. Section 3.3 discusses 

vehicle modeling, solar cell modeling and challenges, SEV electrical architecture 

challenges, and transformer aging modeling. Section 3.4 presents the analysis 

results for 3.4.1) energy use, 3.4.2) grid benefits, 3.4.3) driver benefits, 3.4.4) 

environmental benefits, and 3.4.5) economic analysis. Section 3.5 discusses future 

SEV trends, and Section 3.6 concludes the chapter. 

3.2. Data Sources 

3.2.1 Vehicle Data 

This analysis uses one week of logged vehicle data from 150 drivers of ICE 

vehicles in Toronto, Canada. Dataloggers were connected to the on-board 

diagnostic port of each participant’s vehicle to log CANbus (controller-area-

network) signals including date, time, and second-by-second vehicle speeds of each 

trip. Since altitude signals were not available on the CANbus, the road grade of 

each trip is unknown and thus grade is assumed to be zero. ICE driving data is an 

excellent data source for EV modeling because the logged drivers have no daily 

range limitations and can thus drive as they naturally need to. MATLAB scripts 

were created to organize the driving days, which were assumed to start at 12am. 

Figs. 3.1 and 3.2 show the driving habits of the logged drivers for the 5 weekdays 
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and 2 weekend days logged – the distribution curves of these datasets are described 

mathematically in [36]. The logged speed from driving data is fed directly into the 

SEV Simulink model. The simulated per-day energy use was based on a vehicle 

model of a Chevrolet Bolt driving the logged cycles, which will be described in 

Section 3.3. The simulated battery energy use for this base case assumes a 2 kW 

accessory power load, and a useable battery capacity of 54 kWh, thus there is a 

spike in the histograms at 54 kWh energy use to account for the ICE vehicles that 

drove further than the Chevrolet Bolt model could drive. 

 

 

Fig. 3.1. Distribution of departure and arrival times, daily distance travelled, and simulated daily energy 

requirement for 150 logged drivers over 5 weekdays. 
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3.2.2 Grid Data 

The transformer aging analysis relies on the relationship between the 

quantity and timing of EV charging to the distribution transformer ratings. This 

study assumes a distribution grid with 10 houses per distribution transformer, and 

a maximum of one EV per house. Thus, 15 transformers are considered, meaning 

at 100% EV penetration (ratios of EVs to homes), each of the 150 unique drivers is 

assigned to one house. Thus, in an area that commonly has two cars per home, a 

100% EV penetration rate would mean that 50% of the cars on the road are electric. 

This is considered as the upper limit in this study, which could be approached in 

certain neighborhood clusters or regions in the mid-to-long-term future. For EV 

penetration rates less than 100%, EVs are assigned randomly within the group of 

150 houses to mimic actual EV uptake within a neighborhood, from 0% to 100% 

 

Fig. 3.2. Distribution of departure and arrival times, daily distance travelled, and simulated daily energy 

requirement for 150 logged drivers over 2 weekend days. 
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EV penetration, in steps of 10%. Fig. 3.3 shows the monthly per house average 

residential load profiles without EV charging, as obtained from [37]. In [37], data 

for every second month of the year was gathered from 200 houses in Florida, and 

then averaged. In this study, profiles for every month have been generated by 

averaging the two months around the skipped month. The exception is August, 

where the load profile is set equal to the July profile. Fig. 3.3 shows an average 

household load of 2.7 kW and a peak of 3.8 kW in July, and an average load of 1.6 

kW and a peak of 2.2 kW in January. 

 

Distribution transformers sizes are often chosen based on: (i) yearly aging 

factor, and (ii) maximum overloading. The aging factor will vary month-to-month 

based on changing loads and the ambient temperature.  The transformer is sized so 

that even with planned overloading, the annual equivalent aging factor (FEQA) 

 

Fig. 3.3. Monthly per house load profile without EV charging. 
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equals one, meaning the transformer has aged one year over one year of use. 

Secondly, maximum transformer overloading must not exceed 200% for power 

transformers and 300% for distribution transformers [38]. For the given grid load 

profile, a 25 kVA transformer is selected for each group of 10 houses, and the power 

factor is assumed to be 0.98 [39]. Thus, the July peak is 38.8 kVA, which is 

equivalent to 155% loading. With no EV charging, FEQA is calculated to be 1.37 in 

July in Los Angeles, and 1.07 in July in Detroit, two representative cities that are 

analyzed in the following sections. Winter FEQA is well below one in both cities, 

and thus the annual FEQA is less than one for both cities. Thus, a 25 kVA transformer 

is reasonably sized for the residential load requirements. This study uses a 

transformer sized well for the residential load, and not oversized for potential future 

EV charging needs, as this is the most critical concern in current-day distribution 

systems, as EV penetration rates begin to rise. 

3.2.3 Solar and Temperature Data 

This study investigates the benefits of solar-charged EVs using annual solar 

radiation and temperature data for two major U.S. cities: Los Angeles and Detroit. 

The solar radiation data is obtained from the 1998–2014 National Solar Radiation 

Database produced by the National Renewable Energy Laboratory using the 

Physical Solar Model (PSM) [40]. Figs. 3.4 and 3.5 show the annual solar radiation 

data for Los Angeles and Detroit respectively, both for the case of full sun (as an 

upper bound) and for the average cloud case. Daily solar radiation profiles are 

averaged over a month for 21 years (1998 to 2018) to get a single profile to 
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represent the average daily radiation profile of that month, as shown in Figs. 3.4 

and 3.5. On sunny days, peak solar radiation in Detroit is only 7% less than peak 

solar radiation in Los Angeles. However, on days with average cloud, peak Detroit 

solar radiation is 19% less than that in Los Angeles. Monthly ambient temperatures 

of Los Angeles and Detroit, which are used in the transformer aging model, are 

obtained from [41] and are shown in Fig. 3.6. Temperature profiles for each month 

represent the average daily temperature profile of the respective month. 

 

 

 

 

 

 

Fig. 3.4. Monthly solar radiation in Los Angeles for sunny and average cloud condition days. 
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Fig. 3.5. Monthly solar radiation in Detroit for sunny and average cloud condition days. 

 

 

 

 

Fig. 3.6. Average daily ambient temperature profile for each month of the year in Los Angeles and Detroit. 
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3.3. SEV Modeling 

3.3.1 Vehicle Modeling 

A forward-looking vehicle model of the Chevrolet Bolt EV was created in 

MATLAB/Simulink, as described below. The non-solar EV version was validated 

to be within 1.6% of EPA energy usage from dynamometer testing on city and 

highway drive cycles, as described in [42]. Fig. 3.7 shows a block diagram of the 

model with the proposed on-board solar assembly included. The on-board solar

 

cells are further discussed in Section 3.3.2 and the solar boost converter and 

associated power electronics are further discussed in Section 3.3.4. The driver is 

modeled as a simple PI loop so that the driver torque request is adjusted to follow 

the speed reference, which is input from the logged drive cycles. The controller 

block creates the motor torque command and the friction brake command subjected 

to the driver torque request and the motor speed-torque limits. In the plant model, 

 

Fig. 3.7. Block diagram of SEV vehicle model. 
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the vehicle speed (in m/s) at the next simulation step, vchas(t+1), is calculated from 

the force out of the wheel block and the chassis aerodynamic losses, as shown in 

(1): 

1

2

_

1 1
( 1) ( ) ( )

2

t

chas chas out wheel air d chas

t

v t v t F AC v t dt
m


+  

+ = + −  
  


                      (1) 

where m is vehicle mass in kg, ρair is air density (1.23 kg/m3), A is vehicle frontal 

area in m2, and Cd is the coefficient of drag. The force out of the wheel block is 

calculated from the torque into the wheel block (in_wheel), the friction braking torque 

(friction_brake), and the rolling resistance losses, as shown in (2): 

_ _

_ 1 2( )
in wheel friction brake

out wheel chas

wheel

F v mg
r

 
 

+
= − +

                               (2) 

where rwheel is the wheel radius in meters, μ1 and μ2 are rolling resistance 

coefficients, and g is gravitational acceleration (9.81 m/s2). The torque into the 

wheel block is equal to the motor output torque (motor) multiplied by the final drive 

ratio (rfd) and the final drive efficiency (ηfd), as shown in (3): 

_in wheel motor fd fdr  =
                                                 (3) 

The motor speed in rad/s is calculated using (4): 

chas fd

motor

wheel

v r

r
 =

                                                       (4) 
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The motor and inverter are modeled as a lumped 2-dimensional efficiency 

table, with inputs of motor speed and motor torque. The motor/inverter block 

calculates the DC input current required from the battery using (5): 

_

( , )motor motor motor motor motor
in motor

batt

I
V

    
=

                                      (5) 

The total battery current (Ibatt) is the sum of the required motor current 

(Iin_motor) and the required electrical accessory current, minus the current provided 

by the solar DC/DC boost converter (with efficiency ηsolar_DC/DC = 94%), as shown 

in (6). It is assumed that solar energy is available when the vehicle is driving or 

stationary. 

_ /

_

accessory solar solar DC DC

batt in motor

batt batt

P P
I I

V V


= + −

                                     (6) 

The battery model uses the battery current and an initial state-of-charge 

(SOC) value to determine the SOC and battery terminal voltage at the next 

simulation step. The SOC is the integral of the battery current divided by the total 

battery capacity (Cbatt) as shown in (7). The battery open circuit voltage (Vbatt_oc) is 

determined from a look-up table using the current SOC value. The terminal voltage 

(Vbatt) is calculated from Vbatt_oc and the internal battery resistance Rbatt, as shown 

in (8). The Bolt EV has a 60 kWh battery, yet the usable energy is somewhat less. 

This study approximates the usable energy as 90% of the total energy, meaning 54 

kWh of energy is available between 5% and 95% SOC. Two grid-connected 

charging methods are considered: (i) charging is assumed to start at home after the 
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last trip of the day, known as Charge Right Away (CRA), and (ii) charging is 

delayed until the overnight and early morning times using an available in-vehicle 

charging method called Charge By Departure (CBD). All charging is assumed to 

occur at a rate of 6.6 kW with an on-board charger efficiency of 95%. 

1
1

( 1) ( )

t

batt

batt t

SOC t SOC t I dt
C

+

+ = + −
                                     (7) 

_batt batt oc batt battV V I R= −
                                              (8) 

Though vehicle heating and air conditioning (HVAC) loads will vary 

driver-to-driver due to personal preferences and weather conditions, it is important 

to create a model that realistically captures the differences in vehicle energy use 

across seasons and locations. Maximum continuous heating power is estimated at 

4 kW and maximum continuous air conditioning power is estimated at 2 kW. In 

order to get realistic values of vehicle energy, a look-up table (Fig. 3.8) is added to 

the Bolt model to approximate HVAC loads based on the external ambient 

temperature data. An additional 300 W load is added to the HVAC loads for other 

accessories such as controllers, lights, power steering, etc. 
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3.3.2 On-Board Solar Cell Modeling 

For the solar cell modeling and analysis of the proposed SEV concept, this 

section uses parameters from currently available technology to evaluate the 

plausibility and benefit of a fully integrated SEV, with the understanding that work 

remains to be done to demonstrate its technical and economic viability. While fixed 

PV installations are typically installed tilted at latitude in a southward facing 

direction, a mobile SEV creates new and unique challenges. For a SEV, all 

directions must be considered equally likely, leading to a strong preference for 

horizontal and near horizontal surfaces in overall energy capture. However, since 

vehicles have body panel sections tilted at various angles from horizontal to 

vertical, the effect of panel tilt on energy capture is an important design 

consideration. At a high level, the proposed approach is to calculate the energy 

 

Fig. 3.8. Modeled relation between HVAC power use and trip average ambient temperature. 
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capture for a certain panel tilt, 𝜃𝑡, and then convert this to an energy capture ratio 

relative to a horizontal (zero tilt) panel. In order to estimate the effect of panel tilt 

on the energy captured by a SEV panel, calculation of the energy impinging on a 

tilted solar panel must be averaged over all panel rotation angles 𝛷, because it is 

equally likely that a vehicle is facing any direction relative to the sun. This 

corresponds to a uniform distribution of vehicle orientations.  The first step is to 

calculate the angle 𝛹, between the panel normal and the solar direction, and find 

based on spherical trigonometry that [43] 

cos sin sin sin cos cost z t z    =  +                                         (9) 

The function cos𝛹 is the projection of the incident solar flux onto the tilted 

solar panel. Referring to Fig. 3.9, the solar direction is given by the solar zenith 

angle, 𝜃𝑧, and the solar azimuth angle (not shown). The panel direction is given by 

its tilt with respect to the horizontal, 𝜃𝑡, and its rotation angle, 𝛷, around the zenith. 

The solar zenith angle is the angle between the sun’s direction and the zenith, a 

fictitious point infinitely far away, normal to the earth’s surface at the position 

under consideration. With this definition, the zenith angle is 0° when the sun is 

directly overhead and 90° when the sun is at the horizon. The solar azimuth angle 

is the rotation angle around the zenith direction, relative to an arbitrary reference 

angle (such as north), of the vector from the observer to the sun. This angle is not 

required in the present calculations because of the angle averaging over 𝛷 [43]. 
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The projection cosine, cos𝛹, is then averaged over all angles 𝛷 such that 

the sun is impinging on the front side of the solar panel to give a function 𝐶( 𝜃𝑧 , 𝜃𝑡). 

Next, for a given latitude, 𝜃𝐿, the distribution function, 𝑃(𝜃𝑧 , 𝜃𝐿), is calculated for 

all zenith angles throughout the year (for 0 < 𝜃𝑧 < 90°) to weight the projection 

cosine average in arriving at an annual average [43].  Since the air mass increases 

as the zenith angle increases, and with it the optical absorption increases, the optical 

transmission versus zenith angle is also used as a weighting function [43].  The 

Kasten and Young formulation [44] for the air mass dependence on zenith angle is 

used, with a function 𝐴𝑀(𝜃𝑧), and the Meinel and Meinel treatment [45] of the 

dependence of the optical transmission with a function 𝑇(𝐴𝑀) is also used. 

 

Fig. 3.9. Diagram of the spherical coordinate system used for calculating the projection cosine, 𝑐𝑜𝑠 𝛹.  

The vector 𝑉1
⃗⃗  ⃗ points from the observer, O, towards the sun and is tilted by an angle 𝜃𝑧 from the zenith 

direction.  The vector 𝑉2
⃗⃗  ⃗ is normal to the solar panel, which is tilted by an angle 𝜃𝑡 from the horizontal 

and rotated by an angle 𝛷 around the zenith. The angle 𝛹 is the angle between 𝑉1
⃗⃗  ⃗ and 𝑉2

⃗⃗  ⃗. 
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Together, this gives an expression for the annual average solar energy impinging 

on a tilted solar panel, averaging over all panel presentation angles (because the 

vehicle is equally likely to face in any direction), as shown in (10) [43]. 

2

0

2
( , ) ( , ) ( , ) ( ( ))t L z t z L z zE C P T AM d



       


=  
                         (10) 

For simplicity, the assumption is made that all solar illumination is direct, 

neglecting the more complex dependence of the small diffuse component on zenith 

angle and also neglecting variations in aerosol and other atmospheric components. 

Finally, to facilitate correction of modelled global horizontal irradiance, the energy 

capture, 𝐸(𝜃𝑡, 𝜃𝐿), is referenced to that for an untilted panel, 𝐸(0, 𝜃𝐿), with the 

results plotted in Fig. 3.10 [43]. While this treatment does not include cloud cover, 

as a relative quantity it is expected that this energy capture will provide a reasonable 

estimate of the dependence on panel tilt. 
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Fig. 3.10 shows that for any latitude and panel tilt, the relative energy 

capture exceeds the cos 𝜃𝑡 dependence shown for reference [43].  At low tilt angles, 

the decreased power when the panel rotation is such that the panel is tilted further 

away from the sun is exactly compensated for by the increased power when the 

panel rotation is such that the panel is tilted towards the sun, leading to a slow 

(cosine) variation with panel tilt angle [43]. At higher tilt angles, the energy capture 

falls more slowly than a cosine function with tilt angle because the sun is at high 

zenith angles that impinge on the tilted solar panel at many times of the day and 

year [43]. While the absolute energy capture (not shown) decreases with latitude, 

the relative energy capture as shown in Fig. 3.10 increases with latitude, since the 

 

Fig. 3.10. Energy capture on an annual basis vs. tilt of a SEV panel (relative to horizontal) and vs. 

latitude, with latitude legend in degrees. The energy capture is referenced to the values for horizontal 

panels (i.e., 0° tilt) [43].  
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average zenith angle increases with latitude, making the tilted panels relatively 

more effective [43].  

In this work, the Chevrolet Bolt is used as the reference vehicle, as shown 

in Fig. 3.11. In order to apply the results obtained in Fig. 3.10 to the vehicle model, 

equivalent horizontal solar surface areas are calculated for each city studied, and 

used in the main simulation. The physical dimensions of the Bolt show an 

approximately horizontal surface area of 2.33 m2 (most of the roof) and an 18° 

slanted surface area of about 1.05 m2 (including the hood and a slanted portion at 

the front of the roof). For the locations considered in this work, the relative energy 

capture for a tilt of 18° is 0.9566 in Los Angeles (downrating of 4.3%) and 0.9583 

in Detroit (downrating of 4.2%). For the Bolt, an equivalent effective surface area 

is calculated as 3.334 m2 in Los Angeles and 3.336 m2 in Detroit, corresponding to 

total downrating factors of 1.35% and 1.30%, respectively. 

 

This calculation also permits the evaluation of using vertical solar panels in 

an SEV context.  Fig. 3.10 shows that the relative energy capture for vertical panels 

 

Fig. 3.11. Reference Chevy Bolt as solar-charged electric vehicle (SEV). 

 

 

 

 

 

 

 



   
Ph.D. Thesis – M.H. Mobarak                     McMaster University – Electrical Engineering 

82 
 

is 0.386 for Los Angeles and 0.444 for Detroit.  Due to the significantly lower 

energy capture for vertical panels and their greater susceptibility to shading in 

normal traffic conditions, their inclusion would not be justifiable from a cost 

standpoint and thus have been omitted in the proposed SEV concept. Similarly, it 

is possible to consider the integration of a transparent PV module into the vehicle’s 

front windshield, but the lost power in the visible part of the spectrum would greatly 

diminish the potential benefit. Finally, a comparison of the energy capture of a 

horizontal SEV panel to an optimally tilted fixed PV installation gives a ratio of 

0.88 in Los Angeles and 0.81 in Detroit, indicating that SEVs would make a 

contribution comparable to rooftop installations on a per area basis. 

The global PV market is dominated by flat PV modules comprised of 

monocrystalline or multicrystalline silicon solar cells which achieve high efficiency 

at low cost. Thin film solar cell technologies are also implemented in flat modules 

for utility-scale deployment. For the SEV application, this work proposes that a thin 

film technology with proven mechanical flexibility is the better choice to take full 

advantage of the benefits of PV integration in a SEV. While other thin film options 

may emerge in the future, this chapter suggests that copper indium gallium selenide 

(CIGS) cells are currently the best available choice due to their flexibility, proven 

ability to be integrated onto steel, and high efficiency [46]. With respect to other 

thin film PV technologies currently available, CdTe is unlikely to be permitted [47] 

in new automotive applications due to the chemical toxicity of cadmium, while 

amorphous silicon has a substantially lower efficiency than CIGS. CIGS cells are 
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manufactured in moderately high volumes and flexible versions have been 

successfully deployed for roof applications. A record energy conversion efficiency 

of 23.35% has recently been demonstrated [19][20] for a research-scale 1.043 cm2 

area, and 19.2% for a fully integrated module, 841 cm2 in area [48]. Based on the 

record performance module, for illustrative purposes, typical module performance 

would be Voc = 0.7 V, Jsc = 38 mA/cm2 and FF = 75% under the standard AM1.5G 

testing spectrum and at 25°C, where Jsc is the short circuit current density and Voc 

is the open circuit voltage.  The fill factor FF is defined by 𝐹𝐹 = (𝐽𝑚𝑉𝑚)/(𝐽𝑠𝑐𝑉𝑜𝑐), 

where Vm and Jm, are the voltage and current density at the maximum power point, 

such that the efficiency, 𝜂𝑠𝑜𝑙𝑎𝑟 = 𝐽𝑚𝑉𝑚/𝑃0, where P0 is the incident solar flux. 

PV efficiency decreases as cell temperature increases. CIGS cells have a 

relative efficiency downrating of 0.36% per °C, referenced to 25°C [49]. In this 

study, 20% module efficiency (ηsolar) at the nominal 25°C is assumed as a realistic 

number attainable over the next 5 years. The resulting PV efficiency as a function 

of cell temperature is shown in Fig. 3.12. The cell temperature is calculated based 

on the ambient temperature (TAir) and the solar insolation (S) in W/m2, as shown in 

(11) [50]. In order to find an approximate peak solar power for sizing the electrical 

system, Psolar, S should be set high such as 1000 W/m2, and TAir should be set low, 

such as 10°C. Using the effective horizontal solar area of 3.334 m2 in Los Angeles, 

this results in a cell efficiency of 18.6%, with peak generated solar power, Psolar, 

equal to 620 W. 
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0.035Cell AirT T S= +
                                                 (11) 

 

As a fairly mature technology, the environmental impact of CIGS cell 

manufacture and deployment through its life cycle is well understood [51]. While 

the cells are comprised of gallium and indium, which are neither inexpensive nor 

earth abundant, their use in a thin film format is believed to be feasible for SEV 

applications even at global scale [52], particularly if CIGS is not widely deployed 

in the utility-scale market and if recycling is implemented. Selenium is also 

moderately rare and since its compounds are toxic in high doses it must be recycled 

and disposed of with appropriate caution. CIGS cells commonly include a very thin 

layer of CdS, but can be made cadmium- and lead-free.  Solar panels of any type 

have not yet been in production for long enough at scale to have an established 

recycling protocol in all countries [53]. Outside of Europe, discarded PV panels are 

considered ‘general waste’ whereas within Europe panel disposal falls under the 

Waste Electrical and Electronic Equipment (WEEE) Directive [54]. Laws and 

 

Fig. 3.12. Estimated CIGS cell efficiency as a function of cell temperature. 
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regulations governing end of life recycling of automobiles are expected to be 

sufficient to ensure that CIGS cells are properly recycled or disposed of, such as 

the European Union’s End of Life Vehicles (ELV) Directive [55]. Recycling of the 

rare elements in CIGS cells has been demonstrated, and due to the high cost of 

gallium and indium is considered economically very advantageous [56]. Via 

accelerated testing protocols, CIGS cells have been demonstrated to have usable 

lifetimes in the field, with typical power degradation of less than 10% over 10 years 

and less than 20% over 25 years, a standard warranty requirement for utility-scale 

PV [57]. While high temperature processing is used in the manufacture of CIGS 

cells, as a thin film technology the energy input is low, leading to an energy payback 

time of less than 1 year, depending on manufacturing process and location of 

deployment [58]. 

In the manufacture of a CIGS module, the device layers are deposited in a 

batch fabrication process, sectioned into multiple electrically isolated cells which 

are then interconnected into a series string via a set of patterning processes [59]. 

This architecture is generally referred to as monolithic cell interconnection and 

requires an insulating layer or substrate in order to enable electrical isolation of the 

cells. Without this sectioning, a single 1 m2 CIGS cell would have Voc = 0.70 V and 

Isc = 380 A. By sectioning into 100 cells, with a series interconnection, this becomes 

a much more manageable Voc = 70 V and Isc = 3.8 A, which is typical for rooftop 

and utility scale applications. Such series-connected panels are then combined in 

parallel to provide more overall power.  There are several potential benefits to a 
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greater level of sectioning for the SEV application under consideration. Firstly, the 

voltage can be increased to be closer to the EV battery voltage (250 to 450 V), 

meaning less voltage boost is needed in the DC/DC converter and thus higher 

DC/DC converter efficiency can be obtained. Secondly, by achieving a higher 

voltage and lower current, losses associated with series resistances are reduced.  

This also permits the use of thinner wires, reducing cost and weight. A real 

advantage of thin film PV is that there is tremendous flexibility in the level of 

sectioning and even the opportunity to adapt the cell size and interconnection 

pattern to take full advantage of curved surfaces on automotive sections.  This is in 

contrast to silicon PV technology where individual cells are batch fabricated in a 

fixed size format, such as 15  15 cm2. A novel approach to boosting voltage via 

series-connected PV strings is by stacking cells vertically with cell thicknesses 

adjusted to maintain a current-matched condition.  This concept has been 

demonstrated in monolithically-grown GaAs photoreceivers with stacks of over 20 

lattice matched cells [60], employed for telecommunications applications. For SEV 

applications, some optimization in cell size and interconnection pattern will be 

required to achieve the best overall energy yield.  The flexibility provided by thin 

film sectioning and/or cell stacking provides additional degrees of freedom to do 

so. 

CIGS cells are most typically grown on a rigid glass substrate that also 

serves as mechanical support for the PV module.  However, commercial CIGS cells 

are also made on flexible substrates, using roll-to-roll manufacturing [59].  In order 
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to implement monolithic cell interconnection as described above, the flexible 

substrate must either be insulating or a flexible metal foil with an intervening 

insulating layer.  In the latter case, the insulating layer can also serve as a source of 

sodium dopants and/or as a diffusion barrier from impurities in the metal substrate.  

High quality CIGS cells have been grown on stainless steel using SiO2, Al2O3 or 

Si3N4 insulating layers [59]. The record efficiency to date for CIGS on stainless 

steel is 20.56% for a research-scale 0.86 cm2 area [61]. More recently, high quality 

CIGS cells have also been demonstrated on mild steel substrates [62], suggesting 

that CIGS cells could be grown directly on automotive steel parts with suitably 

optimized layers for insulation, doping, corrosion protection and for inhibiting 

impurity diffusion. CIGS cell growth is typically followed by a polymer 

encapsulant such as EVA, providing long term hermeticity. In an SEV context, the 

encapsulant needs to be replaced with an automotive paint that is hermetic, provides 

mechanical protection and is optically transparent over the relevant part of the 

spectrum (~350-1100 nm for CIGS), which includes the entire visible spectrum. 

This constraint would likely limit the aesthetic design flexibility and may limit 

consumer acceptance; however, creative marketing, such as what Tesla has done 

for EVs in general, may minimize this issue.  For a CIGS cell fully integrated onto 

the automotive steel and encapsulated as described, the incremental mass from the 

CIGS layers would be only ~40 g/m2, for a total mass of 133 g. The overall mass 

increase is likely to be dominated by wiring, bypass diodes and DC/DC conversion 

components, which are estimated to be less than 4 kg for a 700 W system. 
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This analysis assumes low-cost 20% efficient (nominal) CIGS thin film PV 

cells because this approach is currently feasible for the proposed SEV application. 

However, the resulting benefits will increase if more efficient cells are used, such 

as GaAs thin film PV cells with 29% efficiency. The manufacturing cost of GaAs 

thin film cells is currently very high, but cost reduction is an active area of III-V 

semiconductor PV research [63]. The high cost is due to contributions from an 

expensive GaAs growth substrate and the high cost of ownership of the metal-

organic chemical vapor deposition (MOCVD) reactors used to grow the cells, due 

to the relatively slow growth process [64]. The substrate costs can be substantially 

mitigated by epitaxial lift-off from the parent wafer and subsequent wafer reuse. 

The MOCVD-related costs can be reduced by the development of higher growth 

rate processes [63], the use of larger wafers and larger batch sizes, and improved 

precursor utilization. Thus, higher efficiency GaAs thin film cells may become 

viable options for SEVs in the future. Alta Devices, which holds the GaAs 

efficiency record [65], is currently developing GaAs cells for a number of high-end 

transportation applications. 

3.3.3 Modeling of Partial Shading 

The range of potential partial shading scenarios is wide and will depend on 

each driver’s unique environment (urban, country, nearby buildings and/or trees). 

Thus, this research will study one representative case that can offer insight into the 

effects of typical shading scenarios. In this case, a vehicle is parked 5 ft away from 

a 15 ft tall structure, where the vehicle and structure direction are set to the worst 
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case where the sun rises directly behind the structure. To represent changing vehicle 

positions over a day, the case is modeled such that in each hour of the day, the 

structure is on the left side of the vehicle for 20 minutes, the structure is on the right 

side of the vehicle for 20 minutes, and the structure is absent for 20 minutes. This 

pattern is repeated through the day, as the sun changes position. 

Fig. 3.13 shows the case with the structure on the left side of the vehicle, 

where the average height of the vehicle’s solar panels is estimated at 5 ft. The sun 

will start shining on the far side of the vehicle when the zenith angle, 𝜃𝑧1 decreases 

to 42.98°. As the sun moves, the radiation on the vehicle solar panels will increase 

– the solar panels will be in full sun when the zenith angle, 𝜃𝑧2, decreases to 26.57°. 

 

This analysis leads to two important findings: (i) since the peak solar radiation 

 

Fig. 3.13. Example case for partial shading modeling (structure on left side of vehicle). 
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occurs around midday, when the zenith angle is the lowest, partial shading will have 

little or no impact on the solar energy captured during this peak solar energy time 

(i.e., when the sun is high in the sky, more directly above the vehicle), and (ii) since 

the zenith angle does not reach 26.57° in the winter and some spring and fall  

months of the year (as shown in Fig. 3.14), there will be zero solar energy captured 

in these months when the structure is between the sun and the vehicle. 

When the partial shading hourly pattern is repeated as described over a day, 

the solar radiation pattern becomes choppy and variable, as shown in Fig. 3.15. The 

monthly solar energy generated decreases the most in the winter months due to the 

high zenith angles – by about 33% in January in both Los Angeles and Detroit. 

However, in July, the solar energy reductions are only 13.8% and 17.3% in Los 

Angeles and Detroit respectively, due to the lower zenith angles of the sun. The 

 

Fig. 3.14. Monthly average zenith angle profile for Los Angeles and Detroit. 
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solar radiation curves shown in Fig. 3.15 are based on average cloud conditions, 

and will be used for the partial shading simulations in this work. 

3.3.4 SEV Electrical Architecture and Challenges 

Though this chapter focuses on the system-level benefits of SEVs to 

investigate if further detailed engineering work is warranted, it is also important to 

understand the technical challenges of designing a low-cost and high-efficiency 

SEV electrical architecture. The optimal design of the electrical architecture for a 

SEV is a multi-faceted problem because it depends on the PV cell size and 

connection scheme, the PV cell voltages, and the power electronic converters, 

where optimal converter choices can change depending on the first two variables. 

This section will discuss design issues on the path towards a low-cost, low-mass, 

and high-efficiency SEV electrical architecture.  

 

Fig. 3.15. Monthly partial shading solar radiation models for Los Angeles and Detroit. 
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With regards to PV cell size, the proposed thin-film CIGS material can be 

used to effectively make cells of various sizes. Larger cell sizes mean fewer 

interconnections are needed, but lower voltage is produced from a string of cells 

connected in series. A related challenge is to decide how many cells should be 

connected in series and parallel. More cells in series connection boosts the resulting 

voltage, but if any shading occurs in the series string, the solar power will be 

reduced for the entire string. Since much of the harvested solar energy may be 

obtained while the vehicle is parked, an optimal design should allow for maximum 

solar power production even when parts of the vehicle body are in the shade. 

However, if fewer cells are connected in series, the low resulting voltage will 

require high boost to the traction battery voltage, which generally leads to poor 

efficiency. Previous research on MPPT for partially shaded PV cells indicates that 

the most common methods for dealing with partially shaded cells are to use bypass 

diodes (low cost) or to add DC/DC converters to each cell (higher efficiency, higher 

cost) [66]-[68]. Also related to MPPT is the issue of the slightly curved nature of 

some vehicle surfaces, such as the hood. Since PV panels are generally considered 

as flat surfaces, further research is required to determine how to extract the 

maximum solar power from PV cells distributed over a curved surface. However, 

the problem is similar to that of partial shading in that each cell along the curve will 

have a different maximum power point, so similar techniques may be able to be 

applied to this problem. In this research, it is assumed that MPPT is used in the 

system, meaning the full available solar energy can be captured. 
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The main power electronic challenge is to boost the PV voltage to the high 

traction battery voltage, which commonly varies between 250 V and 450 V in EVs. 

Though a 12 V battery is used in EVs for low-voltage accessories, the energy 

capacity of these often lead-acid batteries is not sufficient to store solar energy 

gathered over long periods of time. Many architectures can be considered and Fig. 

3.16 shows two potential strategies: (1) keep the PV voltage low (by using a low 

number of cells in series) and reuse the bidirectional high-voltage to 12 V DC/DC 

converter already present in most EVs, or (2) create high PV voltages using 

vertically stacked cells and/or more cells connected in series, and then boost the 

voltage to the traction battery voltage using dedicated DC/DC converters. The 

advantage of Option 1 is that cost is reduced by re-using the existing DC/DC 

converter for the main voltage boost to the traction battery voltage. The 

disadvantage of Option 1 is that lower efficiency is expected due to: (i) higher 

currents in each MPPT converter due to the lower input voltage, (ii) the existing 

bidirectional DC/DC converter is usually sized between 2 kW and 4 kW, and thus 

may have poor efficiency at the 200 W to 620 W level of solar power in the 

proposed SEV, and (iii) solar power must be processed by two DC/DC converters 

before reaching the traction battery. The advantages of Option 2 are: (i) higher 

voltages are used, generally leading to higher efficiency, and (ii) the dedicated 

DC/DC converters will be higher efficiency due to less voltage boost required and 

the possibility to optimize the design solely based on the lower solar power levels. 

Yet the high step-up MPPT boost converters in Option 2 will add additional cost 
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compared to Option 1. For a system-level analysis, it is not critical to design the 

details of the SEV electrical architecture, yet a reasonable approximation of losses 

in the architecture must be used so that harvested solar energy is correctly 

estimated. In this work, Option 2 is assumed and the total efficiency of the power 

electronic converters in the path from the PV cells to the traction battery is 

estimated at 94% based on similar high step-up boost converters [69], [70]. 

3.3.5 Transformer Aging Model 

The main concern in overloading distribution transformers with household 

and EV charging loads is accelerated transformer aging. Thus, the equivalent aging 

factor, FEQA, is a useful metric for comparing the EV charging effect on 

transformers. Transformer aging is mostly due to the degradation of the insulation; 

this depends on temperature, moisture, and oxygen content. In modern oil-cooled 

transformers, the effect of moisture and oxygen content on insulation deterioration 

can be neglected. Thus, transformer accelerated aging is mainly related to the 

  

 

Fig. 3.16. Two potential electrical architecture options for the proposed SEV. 
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hottest-spot insulation temperature [38]. This study uses the overhead distribution 

transformer aging model from IEEE C57.91-2011 [38], as summarized below (full 

details are given in [38]). 

The total household load plus the simulated EV charging load are converted 

to an equivalent load, Lequiv, using (12): 

2 2 2

1 1 2 2

1 2

...

...

n n
equiv

n

L t L t L t
L

t t t

 +  + + 
=

 +  + + 
                                   (12) 

where L1, L2,…, Ln are various kVA load values including the baseline household 

load and the EV charging load that has been simulated for that particular driver on 

each day of the logged week, and for each month where HVAC loads vary by the 

month. These L1, L2,…, Ln, loads are specified in one-minute intervals ∆t1, ∆t2, …, 

∆tn respectively, so that high resolution charging patterns are used in the 

transformer aging analysis. 

The hottest-spot temperature, 𝜃𝐻, is the summation of three temperature 

components in °C [38] as shown in (13): ambient temperature, 𝜃𝐴, delta between 

the top-oil temperature and the ambient, ∆𝜃𝑇𝑂, and delta between the hottest-spot 

temperature and the top-oil temperature, ∆𝜃𝐻. 

H A TO H   = +  + 
                                           (13) 

𝜃𝐻 is directly related to the insulation life of the transformer. ∆𝜃𝑇𝑂 and ∆𝜃𝐻 

are dependent on Lequiv and other variables as described in [38]. FAA is defined as 
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the aging acceleration factor, and is an exponential function of the hottest-spot 

temperature 𝜃𝐻 as shown in (14). 

383 273H

B B

AAF e


 
− 

+ =                                                (14) 

In (14), B is the cellulose aging rate constant, with a value of 15,000 based 

on the transformer insulation life curve in [38]. The transformer specification data 

were obtained from [71]. 

The equivalent aging factor, FEQA, is a useful parameter because it 

represents how fast a transformer ages based on its thermal profiles compared to 

the normal condition. For example, FEQA = 1 means the transformer has aged 1 

week over the test week period, and FEQA = 2 means the transformer has aged at 

double the normal rate, or 2 weeks over the test week period. FEQA is described by 

(15), where ∆tn is each time interval, N is the total number of time intervals, and 

FAAn is the aging acceleration factor during the time interval, ∆tn. 
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3.3.6 Simulation Process 

The first step in the simulation process is to consolidate individual logged 

trips into driving days, where the end of the last trip before 12am constitutes the 

end of a driving day, with the next driving day starting on the next trip after 12am. 
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For each trip, the logged data gives the actual date and start time of the trip – using 

this data, the correct “day of the week” is assigned to each driving day, as, for 

example, the driving patterns on a Wednesday will differ significantly from those 

on a Saturday. Thus, the logged driving data gives a very accurate account of an 

actual week of driving for each of the 150 participants. For each driver, the Bolt 

EV model is simulated on the speed profiles of each trip of the logged days and the 

simulated ending battery state-of-charge (SOC) of one trip is fed back into the 

vehicle model as the starting SOC for the next trip that day. 

To create an annual analysis, this work assumes that the driving pattern of 

an individual will remain static across all weeks of the year. The simulation process 

is summarized in Fig. 3.17, where “LUT” represents a look-up table. For each of 

the 12 months of the year, the driving week for each participant is simulated under 

ambient temperature and solar radiation conditions (full sun, average cloud, and 

average cloud with partial shading) for Los Angeles and Detroit. The result is 12 

unique monthly values for vehicle energy used and grid charging energy needed for 

 

 

Fig. 3.17. Summary of simulation process. This process is looped: for 150 drivers, for each day of the week, for each month 

of the day, for full sun, average cloud, and average cloud with partial shading conditions, and in two cities. This is also then 

rerun with solar radiation = 0 to represent the non-solar EV case. 
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each driver in each city, which are used in the transformer aging model to obtain 

an annual transforming aging estimate. These simulation results are also used in the 

solar range extension and CO2 savings calculations, as part of the driver and 

environmental analysis. For all simulations, a case is also run with solar radiation 

set to zero to represent the non-solar EV case. 

To illustrate the simulation result details, Fig. 3.18 shows the driving pattern 

and resulting battery SOC of Driver #1 on one logged day, both with and without 

using on-board solar energy. The results show that the battery pack cannot start 

storing solar energy until the vehicle starts driving for the day (with the assumption 

that full charge is obtained from the grid overnight), and that significant solar 

energy can be stored during the parked times of the day thereafter. On a sunny July 

day, if both EVs start at 95% SOC, the SEV SOC ends at 80.54% and the non-solar 

EV SOC ends at 73.31%. Thus, at the end of the day, the SEV needs 8.68 kWh of 

charge from the grid and the non-solar EV needs 13.01 kWh, a reduction of 4.33 

kWh or 33.3%. Solar charging stops in the late afternoon due to sunset. 

 

 

Fig. 3.18. Vehicle speed and battery SOC for driver #1 over one example day, both for an EV without on-board solar, and the 

proposed SEV. 
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3.4. Simulation Results and Discussion 

3.4.1 Energy Use 

All grid, driver, and environmental benefits ultimately stem from the 

reduced net vehicle energy consumption of SEVs compared to non-solar EVs. For 

the proposed large-scale integrated SEV concept in average cloud conditions, the 

annual vehicle energy consumption is reduced by 21.5% in Los Angeles and by 

17.5% in Detroit. For comparison purposes, the sun rich location of Solar Village, 

Saudi Arabia (latitude 24.91° and relative energy capture 0.9555) is also analyzed, 

as it has excellent solar radiation data available [72]. A combination of high 

incident solar energy and high ambient temperatures, as shown in Fig. 3.19 

[41][72], result in high vehicle HVAC energy use during most of the months and 

an annual vehicle energy consumption reduction of 22.7% in average cloud 

conditions compared to a non-solar EV in Saudi Arabia. Furthermore, the analysis 

was also performed for Los Angeles using a small vehicle rooftop solar panel such 

as that on the Toyota Prius Prime [22]. With a peak claimed output of 180 W [22], 

the panel size is estimated at 1 m2 assuming the same efficiency as the cells modeled 

in this study. For comparison purposes, this vehicle rooftop solar panel would result 

in 7.6% reduction in annual vehicle energy consumption in Los Angeles under 

average cloud conditions, compared to a non-solar EV. 
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3.4.2 Grid Benefits 

The main grid benefit of utilizing SEVs instead of non-solar EVs is the 

reduction in load during peak times of the day – this will lead to lower loads on 

distribution transformers (and thus lower aging), lower loads on transmission lines 

(and thus lower losses and lower potential for overload), and lower peak energy 

generation. This research focuses on modeling the reduction in aging of distribution 

transformers with the use of SEVs, as this is a pressing concern as EV adoption 

rises in neighborhoods with older distribution grids. EV charging has been 

simulated based on the simulated energy use of each logged driver and the unique 

arrival time home of each logged driver. The total load (residential + EV charging 

load) for 150 EV drivers (100% EV penetration) using CRA charging is shown in 

Fig. 3.20 for the logged Wednesday in July. The temperature profiles in this hot 

month are similar for both the cities, and therefore the vehicle energy consumption 

  

Fig. 3.19. Average daily radiation and ambient temperature profile for each month of the year in Saudi Arabia. 
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due to HVAC is similar for both cities. The total charging energy consumed by 150 

EVs at the plug in Los Angeles and Detroit on a typical Wednesday in July is 2.20 

MWh and 2.14 MWh, respectively. When these EVs are replaced by SEVs, the 

charging energy consumption is reduced to 1.61 MWh, 1.63 MWh, and 1.68 MWh 

for full sun, average cloud, and average cloud with partial shading cases in Los 

Angeles, and 1.53 MWh, 1.59 MWh, and 1.66 MWh, for the same cases in Detroit. 

The peak power reduces from 817 kW to 735 kW in Los Angeles and from 810 kW 

to 732 kW in Detroit for the SEV full sun case. The main effect of the SEV is that 

although charging start times remain the same compared to the case of non-solar 

EVs, the charging end times are earlier (though unique for each driver) due to the 

higher ending SOC of the vehicle at the end of the driving day for SEVs. As shown 

in Fig. 3.20, this reduced charging duration significantly lowers the total load in the 

evening. 

 

Fig. 3.20. Household and EV charging load for 150 EVs and 150 houses for non-solar EV, SEV on a day with full sun, average 

cloud conditions, and average cloud conditions with partial shading (CRA charging). 
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The 15 distribution transformers are not evenly loaded as every EV has its 

own charging requirement. Fig. 3.21 shows the detailed charging profile of one 

transformer feeding 10 homes simulated with 10 SEVs and with 10 non-solar EVs 

using CRA charging on a Wednesday for Los Angeles in the month of July. Since 

the transformer aging equations for FEQA are non-linear, a moderate difference in 

the transformer charging energy makes a large difference in FEQA. For example, in 

Los Angeles, the energy required from the grid to charge the 10 non-solar EVs on 

the simulated Wednesday is 168.5 kVAh, and the energy needed to charge the SEVs 

on the same day is 137.5 kVAh (full sun), 138.5 kVAh (average cloud), and 141.2 

kVAh (average cloud with partial shading). Thus, the use of the SEVs has reduced 

grid energy charging needs by 18.4%, 17.8%, and 16.2% respectively. However, 

when considering the transformer FEQA for the same day, the non-solar EV 

 

Fig. 3.21. Household and EV charging load for one transformer for non-solar EV, SEV on a sunny day, 

SEV on a day with average clouds, and SEV on a day with average clouds and partial shading (CRA 

charging). 
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transformer has FEQA = 35 and the SEV transformer has FEQA = 19.3 (full sun), FEQA 

= 19.4 (average cloud), and FEQA = 19.6 (average cloud with partial shading) which 

is about a 45% reduction in transformer aging using SEVs for this day. The peak 

transformer power for the case of SEVs is equal or 6.6 kW less than for the case of 

the non-solar EVs – thus, transformer aging is not solely dependent on peak power, 

but has a more complex relationship with the whole charging profile and associated 

heating. A moderate reduction in charging energy during peak load times of the day 

results in a significant reduction in transformer aging. 

Depending on the variable temperatures throughout the year as shown in 

Fig. 3.6, the vehicle HVAC energy consumption varies from month to month, and 

the EV charging energy thus varies accordingly. Furthermore, the grid energy 

generated at the generator is about 12% higher than the distribution demand at the 

point of load due to transmission and distribution losses [7]. Fig. 3.22 shows the 

generated grid energy required to charge 150 EVs per month for the cases 

considered in Los Angeles and Detroit. It can be seen that the required grid charging 

energy is lowest in the winter months and highest in the summer months in Los 

Angeles. The reason is that the winters in Los Angeles are mild, and generally do 

not require cabin heating, whereas the summers are hot and will often require the 

use of cabin air conditioning. Conversely, in Detroit, the winter months have the 

highest EV charging loads due to the high energy consumption required to heat the 

cabin in cold ambient temperature. In spring and fall, vehicle energy consumption 

decreases due to milder temperatures not requiring any cabin HVAC, and then 
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cabin air conditioning increases the energy use again in the summer, but to a lower 

value than the heating required in the winter. SEVs can reduce the energy 

generation demand in a sunny July month in Los Angeles by 25% and in Detroit by 

27%, which is an important time for reducing energy use due to the otherwise 

peaking grid load. The annual average monthly generated grid energy required to 

charge 150 EVs is summarized in Fig. 3.23. In the presence of moderate partial 

shading, the average reduction in grid energy generation is 17.5% in Los Angeles 

and 13.5% in Detroit.  

 

Fig. 3.22. Generated grid energy required to charge 150 EVs in each month of the year in Los Angeles 

and Detroit (CRA charging). 
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 Based on the charging profiles for each day of the week, the equivalent 

aging factors, FEQA, are calculated for each of the 15 transformers in each city and 

in each month of the year. The average monthly aging factors for all 15 transformers 

for 4 months for each EV penetration rate are shown in Fig. 3.24. Fig. 3.24 shows 

 

Fig. 3.23. Annual average monthly generated grid energy required to charge 150 EVs (CRA charging). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.24. Average monthly equivalent aging factors for non-solar EVs and SEVs in Detroit and Los Angeles (LA) (CRA 

charging). 

 

 

 

 



   
Ph.D. Thesis – M.H. Mobarak                     McMaster University – Electrical Engineering 

106 
 

that for non-solar EVs, the equivalent transformer aging factor is less than one for 

100% EV penetration in the colder month of January, for both Los Angeles and 

Detroit. Thus, the cooler ambient temperatures are a larger factor in transformer 

aging than the high charging energy needed in the coldest months due to vehicle 

HVAC use. In the warmer months, SEVs offer significant improvement in 

transformer aging compared to the non-solar EV. To quantify the annual effect on 

transformer aging of SEVs, Fig. 3.25 shows the corresponding average annual 

aging factors. For moderate and high EV penetration rates, which can occur even 

today in neighborhood clusters, the reduction in transformer aging from using SEVs 

is significant. For example, at 80% EV penetration, the proposed SEV concept 

would reduce transformer aging by around 50% in either city compared to the non-

solar EV case, effectively doubling the lifetime of distribution transformers. 

Specifically, at 80% EV penetration, the Los Angeles annual FEQA would reduce 

 

Fig. 3.25. Average annual equivalent aging factors for non-solar EVs and SEVs in Detroit and Los 

Angeles (LA) (CRA charging). 
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from 3.6 to 1.8 (with standard deviation across the 15 transformers equal to 1.1), 

and the Detroit annual FEQA would reduce from 2.2 to 1.0 (with standard deviation 

across the 15 transformers equal to 0.54).  

While the preceding analysis assumes drivers charge their EVs immediately 

upon arriving home from their last trip of the day, it is well known that delaying 

EV charging events can reduce stress on distribution transformers by spreading out 

the EV load away from the hours of the peak household load [9]-[12],[36]. Many 

current EVs provide a Charge By Departure (CBD) charging option which allows 

drivers to set a standard daily departure time, and the vehicle calculates the 

overnight time that the vehicle must start charging to be fully charged by the 

programmed next-day departure time. This charging start time will vary day-to-

day, and vehicle-to-vehicle, depending on the amount of energy needed by each 

vehicle on each night. The CBD strategy reduces transformer aging the most out of 

the currently-available in-vehicle options [36], without the need for grid sensors, 

smart agents, communication networks, connected and controllable EV chargers, 

or a method to obtain proprietary vehicle battery SOC data from a variety of EV 

models. Thus, the CBD charging strategy is studied here to analyze its effect 

compared to, and combined with, SEVs.  
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Fig. 3.26 shows the household and EV charging load for 150 EVs and 150 

homes using the CBD charging strategy on a Wednesday night in July. The amount 

of charging energy reduction from SEVs is the same as with the previous CRA 

approach, but the EV charging has been shifted to occur mainly overnight and in 

the early morning. This shift has a large beneficial effect on the associated 

transformer aging, as the EV load is more spread out, has a lower peak, and occurs 

during the cooler overnight and early morning hours. The resulting annual average 

FEQA is shown in Fig. 3.27. CBD charging with non-solar EVs reduces transformer 

aging slightly more than the use of SEVs with CRA charging; for example, in Los 

Angeles at 80% EV penetration, FEQA = 3.6 for CRA with non-solar EVs, FEQA = 

1.8 for CRA with SEVs, and FEQA = 1.2 for CBD with non-solar EVs. The best case 

is to combine SEVs with CBD charging, which results in average FEQA = 0.83 (with 

standard deviation 0.61 across the 15 transformers). In Detroit, SEVs combined 

with CBD charging reduced FEQA to 0.53 (with standard deviation 0.38) at 80% EV 

 

Fig. 3.26. Household and EV charging load for 150 EVs and 150 houses using CBD charging strategy. 
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penetration. While charging strategy selection is the personal choice of each driver, 

and is thus difficult to enforce, it is clear that SEVs can make a significant reduction 

in transformer aging with either charging strategy. 

3.4.3 Driver Benefits 

A driver driving a SEV or a user having the advantage of an autonomous 

SEV- the main benefits they both can obtain from SEVs are the range extension 

and reduced charging costs. Therefore, the word “Driver” would mean both a driver 

in case of a SEV and a user in case of an autonomous SEV in the rest of this thesis. 

Both of these driver benefits stem from an increase in vehicle efficiency in terms 

of driving distance possible per unit of grid energy charged from the plug. EV 

energy consumption is commonly expressed in terms of kWh/100km. In the case 

of SEVs, the solar energy gained over a day can be considered “free”, and thus a 

more useful measure of vehicle energy consumption is “grid kWh/100km”. Fig. 

 

Fig. 3.27. Average annual equivalent aging factors for non-solar EVs and SEVs for CRA and CBD EV charging strategies. 
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3.28 shows the grid kWh/100km results for non-solar and solar EVs in Los Angeles 

and Detroit, where the results are calculated using each driver’s particular logged 

drive cycles. This means that these results account for the fact that if a driver does 

not leave home until late in the morning or in the afternoon, their vehicle will have 

been unable to absorb solar charging energy until it begins driving (since in this 

study, each vehicle is assumed to be fully charged from the grid overnight).  

Fig. 3.28 shows that in both cities, vehicle energy consumption is high in 

the summer months due to higher HVAC loads. Fortunately, the most solar energy 

is also available during these months, meaning the use of SEVs has a significant 

impact in these months. Fig. 3.29 summarizes the annual average grid kWh/100km. 

The percentage charging reduction is, as expected, the same as the grid generated 

energy reductions in Fig. 3.23. The interesting perspective for the driver is to 

benefit from essentially a more efficient vehicle. For example, in Los Angeles, the 

 

Fig. 3.28. Simulated average grid energy consumption in grid kWh/100km in Los Angeles and Detroit. 
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annual energy consumption drops from 15.4 kWh/100km for a non-solar EV to 

12.7 kWh/100km for a SEV with average cloud conditions with partial shading, or 

equivalently, fuel economy rises from 136 MPGe to 165 MPGe. 

The gained solar energy allows for range extension during the day’s drive, 

given the fixed amount of grid energy from the plug from the previous overnight 

charging session. For the range extension analysis only, it is assumed that the driver 

leaves in the morning so that full solar energy can be captured during the day, in 

order to find the upper bound of range extension in each month. Range extension 

will vary by month because of varying solar radiation, and also because the vehicle 

energy consumption varies by month due to varying HVAC loads. Thus, daily solar 

range extension is calculated per month using (16), where the units are shown in 

square brackets. FCnon-solarEV is the fuel consumption of the non-solar EV as shown 

in Fig. 3.28, and Esolar is the total daily solar energy available to the EV battery each 

 

Fig. 3.29. Simulated annual average grid energy consumption in grid kWh/100km. 
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day, after considering temperature-dependent PV cell efficiency (20% nominal) 

from Fig. 3.12 and the 94% power electronic converter efficiency. The average 

daily per-driver solar range extension results are shown in Fig. 3.30. 

100

100

solar

non solarEV

kWh
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daykm
Solar Range Extension

kWhday
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km
−

 
 

   =  
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The solar range extension in Los Angeles is highest in April, May, and June 

because a significant amount of solar radiation is available and the base EV energy 

consumption is low since air conditioning use is not yet high. Though more solar 

radiation is available in July and August, the solar range extension is lower because 

the vehicle is using more energy due to higher air conditioning use. In average cloud 

conditions, all the months of the year give a solar range extension of at least 15 km 

in Los Angeles. Interestingly, the maximum solar range extension of either city 

 

Fig. 3.30. Daily solar energy range extension in Los Angeles and Detroit. 
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occurs in Detroit in May, and the extensions in April and June are also higher than 

even the peak solar range extension in Los Angeles. The reason is that in the spring 

months, Detroit has high solar radiation, but moderate temperatures, meaning 

HVAC use is low or zero. Since the vehicle is obtaining large amounts of extra 

solar energy, but also driving in a very efficient way due to low HVAC use, the 

solar range extension is highest at this time. In average cloud conditions, 8 months 

of the year give a solar range extension of at least 15 km in Detroit. On an annual 

average, the daily solar range extensions for Los Angeles are 30 km for full sun, 26 

km for average cloud conditions, and 19 km for average cloud conditions with 

partial shading. On an annual average, the daily solar range extensions for Detroit 

are 29 km for full sun, 20 km for average cloud conditions, and 14 km for average 

cloud conditions with partial shading. 

The second driver benefit of SEVs is charging cost reduction. Time-of-Use 

(TOU) electricity billing has been assumed for all drivers in each state. In Los 

Angeles, there are three TOU billing rates: base, low-peak, and high-peak. In 

Detroit, there are two TOU billing rates known as off-peak and on-peak. Table 3.1 

summarizes the TOU billing rates across all months in both Los Angeles and 

Detroit [73] [74]. 

EV charging cost is calculated using (17): 

1 1 2 2 3 3Charging Cost = TOU TOU TOU TOU TOU TOUE C E C E C+ +                      (17) 
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where ETOU1 is the energy consumed in kWh by the charging vehicles in the first 

TOU category (i.e., base rate for Los Angeles), CTOU1 is the $/kWh cost for the first 

TOU category as per Table 3.1, and subscripts 1, 2, 3 refer to each TOU category  

(with only two categories used for Detroit). Taxes of the respective cities are then 

added to this consumption charge (10% for Los Angeles [75] and 4% for Detroit 

[76]). Fig. 3.31 shows the monthly EV charging cost savings per driver for using 

SEVs in place of non-solar EVs. Summer months provide the highest cost savings 

for SEVs because there is higher solar incident energy. For days with average cloud 

conditions, the annual projected charging cost savings are $182 in Los Angeles and 

$73 in Detroit, which are 21.6% and 19.3% of total EV charging costs respectively, 

as shown in Fig. 3.32. 

Table 3.1. Electricity Price Rate In LA & Detroit [73] [74] 

 
            Los Angeles Consumption Charge 

(USD/kWh) 

           Detroit Consumption Charge 

(USD/kWh) 

Month 

Base 

M-F 8pm-

10am, 

Sat, Sun 

Low-peak 

M-F 10am-

1pm & 5pm-

8pm 

High-peak 

M-F 1pm-

5pm 

Off-peak 

M-F 7pm-

7am, Sat, Sun 

On-peak 

M-F 7am-7pm 

January - 

March 
0.17051 0.17405 0.17405 0.05818 0.27710 

April – May 0.17463 0.17817 0.17817 0.05818 0.27710 

June 0.17073 0.19446 0.25657 0.05818 0.27710 

July - 

September 
0.17542 0.20286 0.26126 0.05818 0.27710 

October - 

December 
0.16788 0.17142 0.17142 0.05818 0.27710 
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Fig. 3.31. SEV effect on monthly EV charging costs per driver in Los Angeles and Detroit. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.32. SEV effect on annual EV charging costs per driver. 
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3.4.4 Environmental Benefits 

The main environmental benefit of widespread SEV use is a reduction in 

electricity-related emissions due to the displacement of grid charging with on-board 

solar charging. This analysis quantifies the reduction in CO2 emissions specifically, 

as it is a prevalent greenhouse gas. The carbon intensity for the current grid mix in 

California is 215 kg/MWh, and the carbon intensity in Michigan is currently 520 

kg/MWh [77]. California has a much lower carbon intensity than Michigan because 

its grid mix consists of 37% natural gas and 63% non-emitting sources (nuclear, 

hydroelectric, solar, and wind), whereas the Michigan grid is powered by 37% coal 

and 27% natural gas, with non-emitting sources providing the other 36% [78]. Fig. 

3.33 shows the amount of CO2 produced monthly to meet the charging demand of 

150 EVs for the non-solar EV and SEV cases in Los Angeles and Detroit. Fig. 3.34 

shows the comparison of annual CO2 production in both the cities to charge 150 

non-solar EVs and 150 SEVs in case of full sun, average cloud conditions, and 

average cloud conditions with partial shading. Annually, the use of SEVs instead 

of non-solar EVs would reduce CO2 emissions approximately by 239 kg per driver 

in California (21.5%) and by 484 kg per driver in Detroit (17.5%) considering 

average cloud conditions throughout the whole year. California currently has about 

500,000 EVs on the road [79]. If SEV emission reductions are projected across this 

fleet, the annual CO2 reduction for this state is 119,500 tonnes. 
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3.4.5 Economic Analysis 

The cost of PV integration is a crucial factor in the viability of the SEV 

concept.  Utility-scale PV costs are useful for these estimates, where silicon module 

costs have fallen to <$0.25/W [80] with installed costs <$0.89/W [81].  Cell and 

 

Fig. 3.33. CO2 production to charge 150 EVs monthly in Los Angeles and Detroit. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.34. Annual CO2 production to charge 150 EVs. 
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module costs have fallen for decades due to the experience curve and this trend is 

expected to continue for some time. Full integration of the cell manufacture brings 

the installation costs into a highly automated vehicle manufacturing environment, 

with opportunities for significant cost reduction as compared to highly labor-

intensive PV installation. Furthermore, the energy intensive racking components 

for PV installation are not required. From this point of view, the manufactured cost 

of PV for SEVs could be reduced well below the installed cost for utility-scale PV. 

This study conservatively estimates the PV cell and integration costs to be $1.00/W, 

based on an estimated CIGS cell cost of $0.50/W [21] and an additional $0.50/W 

for the PV integration with the automotive steel, totaling $620 for a 620 W peak 

power system.  While this delineation is artificial in an integrated process, the latter 

cost recognizes the process development and infrastructure updates with respect to 

the conventional automotive manufacturing process.  For this SEV application, the 

PV balance of system costs are from the DC/DC converters required to control and 

step-up the solar power. The DOE has set a target of $50/kW in 2020 for 

automotive-grade DC/DC converters [82]. Thus, this study estimates the cost of a 

620 W DC/DC converter at $31 plus $19 for wiring, for a total of $50. This brings 

the total mass-produced cost premium for a SEV to $670, which is on par or less 

than many other options offered on new vehicles. These rough cost estimates are 

predicated upon achieving the full benefits of a fully integrated process 

implemented at scale. 
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By considering only the driver’s charging costs, the payback period for the 

driver assuming a $670 premium for the SEV is 3.7 years in Los Angeles and 9.2 

years in Detroit. However, these metrics do not fully capture the other SEV 

benefits, such as driving range extension, reduction in CO2 emissions, and benefits 

to the grid. This fact highlights one current difficulty in moving towards mass-

produced SEVs: the benefits are widespread across numerous players, so 

motivation for investment by single parties, such as vehicle manufacturers, is not 

yet high. This is analogous to the high current payback periods for drivers 

considering EVs compared to ICE vehicles – the environmental benefits add 

additional purchase incentive beyond traditional payback periods. 

3.5. SEV Future Trends 

This chapter has focused on analyzing system-level SEV benefits for a typical 

passenger vehicle under the standard one-driver model. Future SEV applications 

could also include autonomous and ride-sharing EVs. For a fully autonomous EV, 

the vehicle auxiliary electrical load is expected to increase by a few kilowatts for 

powering sensors and additional on-board computers [83]. This additional load 

would increase EV charging power needs and reduce driving range. For a one-

driver autonomous vehicle, low-cost integrated PV cells are an attractive option 

because the harvested solar power could help offset the increased energy 

consumption of the vehicle compared to a baseline EV. Ride-sharing of a non-

autonomous vehicle would change the drive cycle dramatically such that the vehicle 

would likely drive for much more time in the day compared to the one-driver data 
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used in this analysis. This could increase the vehicle energy expenditure 

significantly over a 24-hour period, with a potential for near-constant driving 

conditions. For a ride-sharing SEV, even though the solar energy captured would 

be equal to that in a one-driver SEV, the percentage of SEV energy use reduction 

(and the associated benefits) would be smaller due to the larger energy expenditure. 

Overall, autonomous vehicles and ride-sharing models increase vehicle energy use 

– SEVs can play an important role in partially mitigating these increases, though 

the percentage of SEV benefits will reduce with larger and larger vehicle energy 

consumption requirements. 

There has been recent industry interest in using thin-film solar panels on Class 

8 tractors and trailers [84]. For both diesel and electric tractors, the energy savings 

percentage from using on-board solar is small due to the large size and mass of the 

truck, and the fact that it can drive for the majority of the day, leading to enormous 

daily energy needs. However, on-board solar can help with idle reduction and jump-

start reduction (from drained batteries) by powering electrical loads like trailer 

refrigerators, lift-gates, and HVAC. This use of on-board solar with diesel trucks 

can increase driver convenience and extend battery life. 

SEVs also present the opportunity to use EVs as decentralized solar generation 

systems if a bidirectional on-board charger is included in the vehicle. Much prior 

work has focused on the design and control of bidirectional on-board chargers for 

EVs for the purpose of providing power from the EV battery to the grid for V2G 

functionality [85-88], but no work has considered its use in solar-charged EVs. 
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Bidirectional chargers are more expensive than unidirectional chargers because 

switches must be used in place of the AC/DC rectifying diodes. A further difficulty 

is that the control complexity is increased. For the proposed SEV concept with a 

bidirectional on-board charger, vehicles fully charged overnight and at home for 

part or all of the following day could power the house, reducing electricity costs 

and acting as a decentralized solar generation system with built-in energy storage. 

The benefit would depend on the amount of time the vehicle is parked at home 

while fully-charged, which would change driver-to-driver. 

To quantify the potential benefit, an additional analysis was run on the 150 

unique drivers using a 94% efficient bidirectional on-board charger, where a fully 

charged SEV provides power to the house before the first departure of the day. In 

this case, the annual projected net charging cost savings are $218 in Los Angeles 

and $99 in Detroit, which are 25.8% and 26.0% respectively of the total charging 

costs. Though the amount of energy gained by the home is relatively small, the high 

TOU electricity prices in the daytime mean a reasonable benefit is achieved, on 

average. Of course, for drivers who regularly leave early in the morning, the benefit 

of bidirectional power flow would be negligible, and for drivers who regularly leave 

later in the day, the benefit would be significant. An error analysis shows that across 

the 150 drivers, the standard deviation of total charging cost savings in Los Angeles 

is $56.50 and, in Detroit, $37.60 with the availability of SEV2G feature. To analyze 

the economic feasibility, the approximate cost increase of a bidirectional on-board 

charger compared to a unidirectional on-board charger is calculated as follows: 
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Infineon switches IPW65R080CFDA ($10.78 each) are assumed to replace 8 

diodes (IDFW40E65D1E at $5.55 each) in an on-board charger, 100% of the switch 

cost is added for gate drivers and thermal management of the switches, and the total 

cost difference is halved to account for the large purchasing volumes of the 

automotive sector. The resulting hardware cost increase is $64 per charger, meaning 

the average payback period in Los Angeles is 3.5 months and in Detroit, 7.8 

months, for the bidirectional charger. This does not account for the extra initial 

development costs of the bidirectional on-board charger. Overall, this analysis 

shows that adding a bidirectional charger to a SEV to further reduce net charging 

costs reduces the total payback period (3.4 years in Los Angeles and 7.4 years in 

Detroit). 

When considering the environmental benefits, a bidirectional solar power V2G 

feature would reduce the total annual CO2 emissions by 290 kg per driver in Los 

Angeles (standard deviation 70.6 kg across 150 drivers) and by 563 kg per driver 

in Detroit (standard deviation 129.5 kg across 150 drivers), compared to non-solar 

EVs. This V2G concept can be further extended to a smarter SEV2G energy 

management system. With the usual V2G framework, a vehicle discharges its 

battery to provide services to the grid – this involves a trade-off between battery 

energy needed by the driver and the value of the energy provided to the grid. For a 

SEV, this trade-off changes because the vehicle is a mobile solar energy generating 

station, and thus could be more able to exchange power with the grid with minimal 
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impact to the driver. Thus, future research on reducing the cost and complexity of 

bidirectional on-board chargers would be valuable to SEVs. 

Though the fully-integrated SEV concept proposed here has been shown to 

have promising benefits on a system level, there are numerous practical challenges 

to be considered in the future. Firstly, one concern is how to deal with automobile 

accidents which damage one or more of the solar body panels. For damaged body 

panels, it is currently common for whole panels to be replaced with new panels 

from the vehicle manufacturer. For the SEV case, the difference would be that the 

new panel with integrated solar cells would be slightly more expensive than the 

non-solar panel. However, if the mass production of solar cells integrated onto the 

steel is able to reduce costs to a reasonable level for whole vehicle purchase, then 

the cost of a solar replacement panel could similarly be in a reasonable range. 

Secondly, there will be a challenge of developing a marketing strategy for 

SEVs. The environmentally-friendly aspect of SEVs will be important, just as 

people buy EVs today that cost more than their ICE counterparts, often for 

environmental reasons. The aesthetics of a SEV may also be a marketing challenge, 

but there is potential to turn it around as a positive point if the SEV can be made a 

desirable status symbol – this is similar to the Tesla EV marketing strategy. 

Furthermore, SEVs will be less suitable, and less popular for drivers that routinely 

park indoors during the day, and may be less desirable to drivers living in more 

northern and/or cloudy cities – this will affect the marketing plan and business 

model. 
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Thirdly, since the proposed SEV concept includes many critical parts from 

different fields, it is important that the cross-functional team working on its 

production perform a Failure Mode Effects Analysis (FMEA) to identify potential 

failures in a wide range of areas, including solar-steel integration, PV durability in 

harsh weather and over time, and power electronic converter reliability. Finally, a 

major challenge is the investment needed to develop the process to integrate the PV 

directly onto the steel, including smooth adhesion over curved surfaces and 

durability concerns over many years of use in potentially harsh weather. As 

described in this chapter, many parties can benefit from SEVs, but one party must 

ultimately become motivated enough to invest in this integration process. 

3.6. Conclusions 

The big-picture benefits of SEVs have not yet been realized because the thinking 

has been small (vehicle rooftop panels) and limited in scope (considering only 

driver benefit). This study has modeled the effect of panel tilt, vehicle direction, 

and partial shading on solar generation, and has shown that the proposed low-cost 

SEV concept offers real benefits to the grid, the driver, and the environment, 

indicating that further research is warranted to address the design and 

manufacturing challenges of SEVs. For the given dataset of 150 drivers over one 

week, the use of SEVs (compared to non-solar EVs) would reduce the annual net 

vehicle energy consumption by 21.5% in Los Angeles and by 17.5% in Detroit 

under average cloud conditions, and including temperature-dependent PV 

efficiency. The peak solar range extension is 47 km/day in Detroit on a sunny day 
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in May and charging costs are reduced by about 20% for average cloud conditions. 

Though each benefit is useful alone, the real potential of SEVs is clear when 

considering the combination of these results together. Thus, a low-cost SEV has the 

potential to empower a massive transition to solar power on a distributed scale of 

individual car owners. 
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Chapter 4: A Fast Parabolic-Assumption Algorithm for Global 

MPPT of Photovoltaic Systems Under Partial Shading Conditions 

4.1. Introduction 

When considering the practical challenges related to optimizing and 

manufacturing the large-scale SEV concept proposed in Chapter 3, one main 

concern is to maximize the capture of solar energy at all times of the day, even 

under partial shading conditions when the vehicle is driving. Though much work 

has been done to utilize maximum power point tracking (MPPT) in large scale or 

distributed stationary solar generation to maximize the solar energy captured in 

varying radiation conditions [1], there has not been much focus on very fast 

algorithms suitable for a moving vehicle. Thus, this chapter proposes a new MPPT 

algorithm that is much faster than prior algorithms, for use with the proposed large-

scale SEV.  

A PV module’s maximum power point (MPP) is situated at the knee of the 

current-voltage (I-V) characteristic curve, which is unique to each module, and 

changes with ambient or environmental disturbances. Since PV module voltages 

are typically low, multiple modules are often connected in series to create a higher-

voltage PV array. A bypass diode is connected across each module to allow that 

module to be bypassed when partial shading conditions (PSCs) occur. 

When all modules in an array get the same solar radiation, the I-V curve of the 

PV array has a single knee, and the power-voltage (P-V) characteristic curve 
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produces a single peak, meaning conventional MPPT algorithms can easily find the 

MPP. However, if the radiation levels on the PV modules are not uniform, meaning 

partial shading is occurring, the I-V and P-V curves have multiple peaks. Finding 

the global MPP (GMPP) is difficult in this case for conventional MPPT algorithms 

like hill-climbing [2], perturb and observe [3], and incremental conductance [3], 

because they can easily get “trapped” at one of the multiple local MPPs. PSCs can 

often occur from shadows of clouds, buildings, trees, etc. For example, [4] studied 

rooftop PV systems in Germany and found that 41% of PV arrays had been affected 

by shading resulting in up to 10% energy loss. Further, [5] found up to a 70% energy 

loss from partially shaded PV arrays due to failure in detecting the GMPPT. 

GMPPT techniques for PSCs can be categorized into two groups: hardware-

based and software-based techniques. Some hardware methods include adding a 

small buck converter to each PV module [6], switching-based reconfigurations of 

PV modules [7], [8], and voltage equalizer circuits [9]. Furthermore, [10] proposes 

a hardware-based distributed maximum power point tracking (DMPPT) strategy 

based on a multi-winding forward-based converter, which acts as a current 

balancing differential power processing converter. The converter is configured so 

that each port is connected in parallel with an individual PV module to ensure 

module-level maximum power extraction. Reference [11] proposes a new DMPPT 

control algorithm by introducing coordination between the distributed and 

centralized control to improve dynamic performance while dealing with PSCs. A 

novel approach in [12] uses the image of the shaded and unshaded PV modules 
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from an optical camera to calculate the GMPP, though infrastructure cost is high 

and the optimal camera itself may add shading. Though many of these hardware 

methods are good in terms of GMPPT efficiency (meaning how close they operate 

to the true GMPPT) and convergence speed, the practical usefulness is limited due 

to the cost and complexity of the additional hardware required.  

Software GMPPT methods operate based on setting different duty cycles at the 

DC-DC converter until the GMPP is reached. The event of setting a single duty 

cycle at the converter will be called a “step” in this chapter. As no literature 

proposed to date as per the authors’ knowledge can calculate the position of the 

GMPP during any PSC, every software-based GMPPT method proposed to date 

has tried to minimize both the number of steps and search space along the P-V curve 

to reach the GMPP by proposing various techniques for faster convergence. These 

methods can be categorized into two groups: modifications to conventional MPPT 

algorithms and optimization-based algorithms. In the first group, [13] presents a 

modified hill climbing (HC) algorithm that measures the PV array current at 

multiples of 80% of the module’s open circuit voltage, calculates the number and 

length of segments in the I-V curve to find the local MPPs, then uses hill climbing 

to find the GMPP. The main drawbacks are the slow convergence speed due to the 

need to scan a major portion of the P-V curve with several steps, and the fact that 

with an increase in the number of series-connected modules, the algorithm can miss 

the GMPP. This occurs when the algorithm’s predicted position for the last peak 

moves to the left of the actual position of the last peak, due to the right shifting 
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property of peaks under PSCs. For S series modules in an array, there is a chance 

that the algorithm will scan for the Sth peak in (S-1)th zone of the I-V curve. Further 

examples include a scanning technique with separate controllers for each level 

module [14], the use of a cubic spline algorithm [15], the combination of the hill-

climbing algorithm with detection of dP/dV sign change [16], a fast GMPPT 

algorithm that requires additional current sensors for each PV module [17], the 

combination of the perturb and observe (P&O) algorithm with variation of the ramp 

of the duty cycle change during P-V curve sampling [18] (though the GMPP may 

be missed for a higher ramp of duty cycle changes), and a skipping mechanism to 

improve convergence speed by discarding unwanted search areas in the scan which 

requires two sensors, increasing cost [19]. Overall, these modified GMPPT 

techniques are efficient but have slow convergence speeds due to numerous steps 

and/or require additional sensors, increasing cost.  

Optimization-based GMPPT algorithms include conventional and modified 

particle swarm optimizations (PSOs) [20], [21], [22], artificial been colony (ABC) 

[23], genetic algorithm based fuzzy-MPPT [24], greywolf optimization [25], 

crowded plant height optimization [26], team game optimization [27], fusion firefly 

algorithm [28], chaotic flower pollination [29], and artificial neural network 

algorithm [30]. Many of these cannot differentiate between uniform radiation and 

PSCs, so [31] proposes a combination of the hill-climbing (HC) algorithm in 

uniform radiation conditions and ABC algorithm in PSCs. Similarly, [32] proposes 

another hybrid tracking algorithm that combines conventional P&O to track GMPP 
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in uniform radiation and moderate PSCs, and flower pollination algorithm to track 

GMPP during extreme PSCs. However, all optimization-based GMPPT algorithms 

for PSCs suffer from slow convergence speed because of the use of numerous steps 

due to their heuristic nature.  

Modern PV systems require high GMPP convergence speeds to minimize 

energy loss during partial shading conditions. This is especially critical for 

emerging mobile PV applications such as on-board solar generation for electric 

vehicles [33] or aircraft [34]. Also, low sensor cost and high GMPPT efficiency is 

required for successful practical implementation. Thus, this chapter proposes a 

totally new approach of a software-based GMPPT algorithm that does not fit into 

the usual categories of modified GMPPT algorithms that blindly search the I-V 

curve or heuristic optimization algorithms. Instead, the proposed method 

analytically calculates the GMPP near-exactly during PSCs using exactly S current 

measurements, where S is the number of series modules in the array, therefore 

requiring only S steps. The I-V curve of each module is divided into two zones 

(constant current and parabola), and the algorithm calculates the position of the 

GMPP using the basic conical geometric equation of the parabola, thus the 

algorithm is named Parabolic Assumption (PA). The idea of using parabolic 

progression to find the MPP of a single PV module or a uniformly shaded array has 

been suggested in [35] – [37]. However, these methods are similar to conventional 

P&O or HC, where three points are assumed on the P-V curve to fit a parabola, and 

after several iterations, the point with the maximum power is set as the MPP. These 
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methods are not designed to be used in PSCs as they can get trapped at local peaks 

(LPs), just like other P&O or HC methods. Conversely, the proposed PA algorithm 

in this chapter addresses the more complex problem of PSCs by using the PA on 

the I-V curve to calculate the amount of right shift of the LPs during PSCs. 

Compared to contemporary GMPPT algorithms for PSCs, the proposed PA 

algorithm has the following advantages: 

1) Due to its analytical nature, the convergence speed is significantly higher than 

any existing GMPPT algorithm, setting a new standard for GMPPT speed. It 

always uses exactly S measurement steps to calculate the GMPP, where S is the 

number of series modules in the PV array. In this chapter four modules are used 

as the test case, so four steps are required, compared to a hundred or more for 

some optimization-based algorithms. 

2) The S measurement steps are inherently used to determine if PSC has occurred, 

so no extra steps are needed. 

3) Low hardware costs: uses a single current sensor and a simple microcontroller 

with low computational burden. 

4) Guaranteed to find the GMPP in all PSCs with high tracking efficiency (where 

tracking efficiency is equal to or better than that of comparison algorithms). 

Overall, the fast convergence speed, accuracy, low cost, and simplicity of the 

entirely unique proposed PA algorithm puts it in a class of its own and sets a new 
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standard for GMPPT algorithms for PSCs. This chapter is organized as follows: 

Section 4.2 describes PV system modeling, Section 4.3 presents the PA algorithm 

in detail, Section 4.4 presents simulation results, Section 4.5 presents experimental 

results, and Section 4.6 concludes the chapter. 

4.2. PV System Modeling 

4.2.1 Single Diode Model 

Fig. 4.1 shows the single diode model of a PV cell. Multiple cells are 

connected in series in a PV module. If V is the terminal voltage of a single cell, the 

current provided by the cell can be written using KVL and KCL as: 

pv s

pv ph d

p

V I R
I I I

R

+
= − −

 

(1) 

where Rs and Rp are the series and parallel resistances in the cell model, 

respectively. The diode current, Id, diode saturation current, I0, and the photocurrent 

Iph can be expressed as [38], [39]:  

0

( )
[exp( ) 1]

pv s

d

q V I R
I I

akT

+
= −

 
(2) 

 

Fig. 4.1. Single-diode model of a solar cell. 
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where “a” is the diode ideality factor, k is Boltzmann’s constant (1.3806503×10-23 

J/K), T is the panel temperature (in K), and q is the electron charge (1.60217646×10-

19 C). In (3) and (4), GSTC and Iph_STC are the radiation and photocurrent at standard 

test conditions (STC), i.e., 1000 W/m2 at 25°C, respectively, G is the present 

radiation, KI and Kv are the temperature coefficients of current and voltage 

respectively from the manufacturer, and ΔT is the temperature difference from STC. 

If nc number of cells are connected in series to make a PV module, the open circuit 

voltage, Voc of the module at Ipv=0 can be written as [40]: 

0

ln( )
ph

oc c

IakT
V n

q I
=

 
(5) 

Though a change in radiation can be sudden, a change in temperature 

happens more slowly over time [39]. This results in a change in the photocurrent 

proportional to the change in radiation during PSCs [39]. Also, though Rp>>Rs, the 

short-circuit current Isc eventually satisfies Isc≈Ipv≈Iph during a short-circuit event. 

The MPP voltage and current satisfy Vmpp≈0.8Voc and Impp≈0.9Isc [41] respectively. 

Therefore, the relation between different currents and radiations can be written as 

(6). The proposed PA algorithm measures each module’s Isc, then uses the right half 

of (6) to calculate the corresponding radiation, G, on that module, since Isc_STC and 
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GSTC are known from the datasheet. In this study, the solar module SunPower SPR-

200-WHT-U is used for analysis, with specifications shown in Table 4.1. 

_ _ _

ph mpp sc

ph STC mpp STC sc STC STC

I I I G

I I I G
  

 

(6) 

 

4.2.2 I-V & P-V Characteristics of PV Array Under PSCs 

Fig. 4.2 shows a PSC on a 4S1P solar array, where S is equal to four. Fig. 

4.3 shows the I-V and P-V curves of this PV array along with those for an unshaded 

array. During PSCs, the bypass diodes are activated by the radiation difference 

between two modules, diverting the current away from the partially shaded 

modules. As a result, a staircase I-V curve is formed, while the corresponding P-V 

curve generates multiple local peaks. The goal of GMPPT algorithms is to find the 

GMPP, without getting trapped at any of the local peaks. 

Table 4.1. Specifications of Sunpower SPR-200-WHT-U 

Parameters Variable Value Unit 

Open-circuit voltage Voc 47.8 V 

Short-circuit current Isc 5.4 A 

Voltage at maximum power Vmpp 40 V 

Current at maximum power Impp 5 A 

Maximum power Pmpp 200 W 

Temperature coefficient of Voc Kv -0.2919 %/°C 

Temperature coefficient of Isc KI 0.043 %/°C 

Diode saturation current I0 1.2832e-11 A 

Diode ideality factor a 0.96675 N/A 

Cells per module nc 72 N/A 

Series resistance Rs 0.4427 Ω 
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4.3. Proposed Parabolic Assumption Algorithm 

4.3.1 Mathematical Description of Parabolas 

A parabola is defined as a set of all points on a plane equally distant from a 

given line, L, called the directrix and a given point, focus not on the line, L, as 

shown in Fig. 4.4(a). The distance between directrix and focus is known as the focal 

parameter, p and given by p=2f, where f is the distance between the vertex and the 

directrix or the focus. Depending on where the parabola is located on the coordinate 

system, the parabola equations also change, as shown in Fig. 4.4(b) and 4.4(c). The 

 

Fig. 4.2. Example of partial shading condition on a 4S1P PV array. 

 
 
 

 

Fig. 4.3. Multiple local peaks during partial shading condition. 
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standard equation of a parabola having the y-axis as the main axis is x2=4fy. A 

parabola having its vertex at the coordinate (α,β) and having negative y-axis as its 

axis has an equation of (x-α)2=-4f(y-β). 

4.3.2 Parabolic Assumption for Partial Shading 

The trend of the I-V characteristic curve of an unshaded PV array is that the 

current is almost constant up to a certain voltage, and then the current decreases 

almost in an exponential fashion. This exponential progression is almost identical 

to a parabolic progression imagining the vertex is located at the MPP, like Fig. 

4.4(c). This idea of the parabolic progression helps calculate the amount of right-

shift of the local peaks during PSC and compute the positions of those peaks near-

exactly to avoid the problems with missing the peak that could happen with GMPPT 

techniques such as [13]. Other geometrical progressions were also evaluated (linear 

and ellipse), as show in Fig. 4.5. Hyperbola was excluded from consideration as 

vertices of hyperbolas are not at the intersection of their conjugate and transverse 

axis, which means further unknown parameters would be required, complicating 

 

Fig. 4.4. Parabolas at different positions and their respective equations. 
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the algorithm. Fig. 4.5 shows that the parabolic progression most closely mimics 

the real I-V curve. The root-mean-square errors between the I-V curve and each 

progression are 0.045 for the parabola, 0.883 for linear, and 0.747 for ellipse, which 

justify the choice of parabolic expression for the proposed MPPT algorithm. 

 

To illustrate this process, Fig. 4.6 shows a typical PV system with a solar 

array, a DC-DC converter, and a battery. The proposed PA algorithm must scan the 

PV current at S precise voltages, shown as Vpv in (7), and thus requires a steady DC 

voltage at the output of the DC-DC converter (Vo in (7)) so that setting a certain 

duty cycle, D, will give the corresponding desired Vpv. This constant output voltage 

can be from a storage battery, which is often used due to the variable nature of solar 

power, or a DC-link capacitor in a grid-connected system without a storage battery. 

This chapter focuses on the algorithm application in a battery-based PV system. 

 

Fig. 4.5. Justification of Parabolic Assumption (PA). 
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(1 )
pv o

V V D= −
 

(7) 

 

 

Fig. 4.6. Schematic of the PV system. 
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Fig. 4.7 summarizes the proposed PA GMPPT algorithm and Fig. 4.8 shows 

the example of a 4S1P array I-V curve with the PSC pattern of Fig. 4.2, excluding 

 

Fig. 4.7. Flowchart of the proposed PA GMPPT algorithm. 
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the voltage drops of the bypass diodes. On a timed loop, the controller checks for a 

change in current, Δi, which indicates a change in radiation ΔG using (6). Once ΔG 

is higher than ΔGcrit =50 W/m2 [39], a large radiation change is considered to have 

taken place. The controller then scans currents at S steps at the voltage points of (N-

1)Voc,m, where Voc,m is a module’s standard open circuit voltage and N ranges from 

1 to S. Therefore, the ideal voltage points to scan are 0 V, Voc,m, 2Voc,m, and 3Voc,m. 

However, the first scan is done at a relatively higher voltage, e.g., 30 V, as the 

current is almost constant up to 38 V in this module. The obtained currents, i.e., 

Isc1, Isc2, Isc3, and Isc4 are converted to G1, G2, G3, and G4 respectively using (6), and 

the new radiation pattern is mapped out. If G1- G4≤ Gcrit, the controller confirms 

that the system is under uniform radiation and activates the Hill Climbing (HC) 

algorithm [13], which is not the focus of this chapter. If G1- G4>Gcrit, a PSC is 

confirmed, and the PA GMPPT algorithm is activated. The PA algorithm is unique 

from all other methods in the literature because other methods will now try several 

blind steps to reach the GMPP, but the proposed PA algorithm will calculate the 

position of the GMPP just by knowing the PSC pattern, and move there right away. 

In other words, the PA algorithm uses the current measurements required to detect 

a PSC for direct calculation of GMPP, without requiring any additional 

steps/measurements. 
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The actual open circuit voltages of modules 1 to 4, Voc,m1, Voc,m2, Voc,m3, and 

Voc,m4, vary based on the incident radiations of G1, G2, G3, and G4, therefore, are 

calculated using scanned short-circuit currents Isc1, Isc2, Isc3, and Isc4, using (5). In 

(8), the ratio of Vmpp to Voc from the datasheet is used, which is 0.837 in this case as 

shown in Table 4.1. Also from the datasheet, the ratio of Impp to Isc is 0.926. Q 

denotes the number of the local peak that can range from 1 to S. 

, ,

, ,

mpp

mpp mQ oc mQ

oc

mpp

mpp mQ sc mQ

sc

V
V V

V

I
I I

I

=

=

 

(8) 

For Q=1, the 1st apparent local peak (ALP), VALP1, is equal to the Vmpp of 

module 1 as in (9). But for Q≥2, the ALPs are shifted to the right by Vshift(Q-1) as 

shown in Fig. 4.8 and (10).  

1 , 1ALP mpp m
V V=

 
(9) 

 

Fig. 4.8. Application of Parabolic Assumption (PA) method on I-V characteristic curve during PSC. 
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( 1) ( 1) ,
2

ALPQ ALP Q shift Q mpp mQ
V V V V if Q

− −
= + + 

 
(10) 

To calculate Vshift(Q-1), a parabola is assumed through each ALP on the I-V 

curve having the parabolic equation (11), where the coordinates of all the points on 

these parabolas belong to the set (xQ,yQ). 

2

,
( ) 4 ( )

Q ALPQ Q Q mpp mQ
x V f y I− = − −

 
(11) 

These parabolas are also considered to go through the open circuit voltage 

of the activated modules on the I-V curve, as described in (12). For example, Q=1 

means the 1st parabola which goes through (Voc,m1,0) and Q=3 means the 3rd 

parabola which goes through (Voc,m1+Voc,m2+Voc,m3,0). 

,

1

( , 0) ( , )

Q

oc mZ Q Q

Z

V x y
=


 

(12) 

Substituting (VALP1,Impp,m1) from (8) and (9) and (x1,y1)= (Voc,m1,0) from (12) 

in (11), focus, f1 can be calculated. It is also clear from Fig. 4.8 that every parabola 

intersects with the short circuit current curve of the next module. For example, the 

1st parabola intersects with Isc2 and the 3rd parabola intersects with Isc4. Hence, the 

coordinate of the intersection point can be described as shown in (15) and (16). 

( )
ALPQ shiftQ Q

V V x+ 
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( 1)sc Q Q
I y

+


 
(14) 
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For the 1st parabola where Q=1, (14) becomes y1=Isc2. Substituting y1, f1, 

and (VALP1, Impp,m1) in (11), x1 is solved. Replacing the value of x1 and VALP1 in (13), 

Vshift1 is calculated, by which the 2nd peak is shifted to the right. Therefore, for Q=2, 

Vmpp,m2 is added with Vshift1 and VALP1 as in (10) and VALP2 is near-exactly calculated. 

The current at this point is Impp,m2. 

To calculate the third peak, a 2nd parabola with its vertex at (VALP2,Impp,m2) 

having equation (11) is considered, where Q=2. It also goes through (Voc,m1+ 

Voc,m2,0) as described in (12). Thus, f2 is calculated by substituting (VALP2,Impp,m2) 

and (x2,y2)= (Voc,m1+ Voc,m2,0) in (11). Assuming the same parabola intersects with 

y2=Isc3, x2 is solved from (11), which eventually gives the 2nd right shift Vshift2 using 

(13). Therefore, for Q=3, Vmpp,m3 is added with Vshift2 and VALP2 as in (10) and VALP3 

is near-accurately calculated. The current at this point is Impp,m3. (VALP4, Impp,m4) can 

also be found in similar way. 

Once all the apparent local peaks are known, the algorithm finds the actual 

local peaks VLPQ and their corresponding powers PLPQ as shown in (15) and (16) by 

subtracting the required bypass diode voltage drop Vd_drop per diode. 

_( ( ) )
LPQ ALPQ d dropV V S Q V= − −

 (15) 

,LPQ LPQ mpp mQ
P V I=

 (16) 

By comparing the power levels at these peaks, the algorithm finds the 

GMPP and sets the appropriate duty cycle at the DC-DC converter. If there is a 
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situation where multiple modules have the same radiation during PSC, this 

algorithm assumes a single parabola at the single peak for all the similarly shaded 

modules and adjusts the algorithm accordingly. 

4.3.3 Effect of Temperature Variation 

The two PV parameters used in the algorithm which are dependent on 

temperature are Voc and I0. These can be updated once the temperature is known. 

As discussed in [39], temperature change is a relatively slow process which may 

take spans of hours. Thus, the HC algorithm can be periodically run (e.g., every 10 

or 20 minutes) around the present assumed MPP to check if the actual MPP has 

shifted to a new voltage point, indicating a temperature change. From any 

difference of the two voltages, the new temperature value can be found using the 

temperature coefficient of voltage, Kv, provided by the manufacturer. This 

temperature can then be used to update the diode saturation current, I0 using (3). 

Using the periodically-updated values of Voc and I0, the PA algorithm can run as 

usual eliminating the requirement of a temperature sensor. 

4.4. Simulation Results 

4.4.1 Proposed PA Algorithm 

To evaluate the performance of the proposed PA GMPPT algorithm during 

PSCs, the system in Fig. 4.6 is modeled in MATLAB/Simulink with a 4S1P PV 

array and a boost converter. As the input voltage to the boost converter is the PV 

voltage and the output voltage of the boost converter is the battery voltage, (7) can 
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be written as (17). Table 4.2 shows the modeled parameters. The system is 

simulated under 4 different PSC radiation patterns with different numbers of local 

peaks (LPs) and different positions of the global peaks (GPs), as shown in Table 

4.3. The respective I-V and P-V characteristic curves for these 4 PSC patterns are 

shown in Figs. 4.9 and 4.10. 

(1 )
pv batt

V V D= −
 

(17) 

 

 

Table 4.2. System Modeling Parameters 

Parameters Value 

Array configuration 4S1P 

No. of series connected bypass diodes 4 

Bypass diode voltage drop, Vd_drop 0.8 [13] 

Voc and Isc of  the array (STC) 191.2 V & 5.4 A 

Vmpp and Impp of the array (STC) 160 V & 5 A 

Pmpp of the array (STC) 800 W 

Boost converter inductor, L 650 µH 

Boost converter capacitors, Cin & Cout 20 µF & 20.15 µF 

Switching frequency 40 kHz 

Battery terminal voltage, Vbatt 200V 

 

Table 4.3. Details of PSC Patterns 

PSC 

Pattern 

Radiation (W/m2) Number of 

LPs 

Position of 

GP Module 1 Module 2 Module 3 Module 4 

1 1000 900 800 700 4 4th LP 

2 1000 1000 520 300 3 1st LP 

3 1000 900 750 400 4 3rd LP 

4 1000 200 300 150 4 1st LP 
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Fig. 4.11 shows the performance of the proposed PA GMPPT algorithm for PSC 

patterns 1 and 2, and Fig. 4.12 does the same for patterns 3 and 4. Fig. 4.11 shows 

that the considered PV system starts delivering power at MPP at STC from 0 s. 

Table 4.2 shows that Vmpp=160 V at STC, and Vbatt=200 V. Hence, the duty cycle 

 

Fig. 4.9. I-V characteristic curves for four different PSC patterns. 

 
 

 

Fig. 4.10. P-V characteristic curves for four different PSC patterns. 
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for the boost converter to operate at STC for maximum power extraction is 0.2 

using (17). The PV array experiences the PSC pattern 1 and a sudden change in the 

current at 0.051 s. The current sensor keeps scanning for a current change every 

0.025 s, which is enough time for the PV voltage oscillation to die down after a 

change in duty cycle. By comparing the sensed currents at 0.05 s and 0.075 s, the 

controller detects a large change in the radiation. Hence, the controller activates 

current scanning immediately at 0.075 s to find the shading pattern. Though the 

theoretical order of the current scanning points are 30 V, Voc,m, 2Voc,m, and 3Voc,m, 

the practical scanning starts from either the theoretical 1st or last scanning point, 

whichever is closer to the present operating PV voltage to avoid large oscillations 

in the voltage. In this case, the scanning happens at 3Voc,m, 2Voc,m, Voc,m, and 30 V, 

or 143.4 V, 95.6 V, 47.8 V, and 30 V using duty cycles 0.283, 0.522, 0.761, and 

0.85, respectively as per (17). Hence, the controller measures the currents as 3.74 

A, 4.29 A, 4.84 A, and 5.27 A at 0.1 s, 0.125 s, 0.15 s, and 0.175 s, respectively. At 

0.175 s, the controller converts these currents into radiations using (6), which are 

692.59 W/m2, 794.44 W/m2, 896.30 W/m2, and 975.93 W/m2, respectively. The 

PSC pattern 1 has the actual radiation values of 700 W/m2, 800 W/m2, 900 W/m2, 

and 1000 W/m2. Thus, the error for calculating G for each module using (6) is 

1.06%, 0.70%, 0.41%, and 2.41%. The reason for the slightly higher error of the 

highest current module is that Isc is measured at 30 V instead of 0 V. Nevertheless, 

these calculated estimates of G allow for very high tracking efficiency in the PA 

algorithm, as will be shown below. Comparing these radiation values, the algorithm 
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confirms partial shading has occurred. Thus, the PA GMPPT algorithm is called 

which immediately calculates that the GMPP is at 168.4 V using these four current 

measurements and (8)-(16). Then, the required duty cycle for the boost converter 

to have an input voltage of 168.4 V is calculated as D=0.158 using (17), and 

immediately set at the converter. The current at this point is 3.595 A, so the tracked 

input power is 605.4 W. Fig. 4.10 shows that the expected maximum power for 

PSC pattern 1 is 606.4 W. Hence, the tracking efficiency is 99.84%. Moreover, the 

controller has taken only four steps or 0.1 s at the given current measurement time 

interval to track the GMPP using the PA algorithm. In Fig. 4.11, PSC pattern 2 

occurs at 0.305 s, and the same process ensues, this time with a tracking efficiency 

of 99.9%, and again using only four steps. Fig. 4.12 shows the performance of the 

proposed PA algorithm for PSC patterns 3 and 4. Again, high tracking efficiencies 

of 99.67% and 99.39% are obtained in only four steps per PSC pattern. 

 

 

Fig. 4.11. Simulation of the performance of the proposed PA algorithm under PSC patterns 1 and 2. 
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The proposed PA algorithm as discussed so far uses a single current sensor 

and a single DC-DC converter per PV string. However, if more than one PV strings 

are connected in parallel and hardware costs must be minimized, the proposed PA 

algorithm with a simple modification can work with very high tracking efficiency 

using only one current sensor and one DC-DC converter for multiple parallel PV 

strings. The underlying theory can be explained using a 4S2P example with 

radiations Φ1, Φ2, Φ3, and Φ4 on one string and Ψ1, Ψ2, Ψ3, and Ψ4 on another string. 

The subscripts of Φ and Ψ indicate their ordering of magnitude such that 

Φ1>Φ2>Φ3>Φ4 and Ψ1>Ψ2>Ψ3>Ψ4, and do not necessarily indicate module number 

(i.e., the highest radiation Φ1 can occur on any of the four modules, not necessarily 

module 1). These radiations will produce I-V and P-V curves very similar to a 4S2P 

array with radiations of (Φ1+ Ψ1)/2, (Φ2+ Ψ2)/2, (Φ3+ Ψ3)/2, and (Φ4+ Ψ4)/2 on each 

string. This condition is satisfied for any distribution of radiations between different 

 

Fig. 4.12. Simulation of the performance of the proposed PA algorithm under PSC patterns 3 and 4. 

 



   
Ph.D. Thesis – M.H. Mobarak                     McMaster University – Electrical Engineering 

158 
 

strings. Fig. 4.13 illustrates this concept, where the solid lines show the actual I-V 

and P-V curves when different radiations are on each string (in this case, PSC 2 on 

one string and PSC 3 on the other), and the dashed lines show the approximated 

curves assuming (Φ1+ Ψ1)/2, (Φ2+ Ψ2)/2, etc., on each string (i.e., 1000 W/m2, 950 

W/m2, 635 W/m2, and 350 W/m2). The only required modification to the PA 

algorithm for dealing with multiple parallel strings is that after the current sensor 

measures the PV current of the 4S2P system at 3Voc,m, 2Voc,m, Voc,m, and 30 V, the 

algorithm must then divide the measured current by the number of parallel strings. 

Then, as usual, these current values are converted into radiations using (6) to 

approximate the module-to-module averaged PSC pattern on each string. Then, the 

PA algorithm calculates the GMPP for this averaged PSC pattern on a single string 

using (8)-(16), which ultimately becomes the GMPP of the whole array. 

 

 

Fig. 4.13. Actual and approximated I-V and P-V characteristic curves for a 4S2P array configuration with 

PSC patterns 2 and 3. 
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Fig. 4.14 shows the simulation results of the PA algorithm using a single 

current sensor for a 4S2P array experiencing PSC pattern 2 on one string and PSC 

pattern 3 on the other string, where both patterns occur at 0.051 s. The controller 

measures currents at 0.1 s, 0.125 s, 0.15 s, and 0.175 s, respectively. At 0.175 s, the 

PA algorithm immediately calculates that the GMPP is at 124.86 V using these four 

current measurements and (8)-(16). The required duty cycle for the boost converter 

to operate at input voltage of 124.86 V is calculated as D=0.3757 using (17), and 

immediately set at the converter. The current at this point is 6.53 A, so the tracked 

input power is 815.34 W. Fig. 4.13 shows that the expected maximum power for 

these PSC patterns is 818 W. Hence, the tracking efficiency is 99.67%. The PSC is 

removed at 0.305 s, and the algorithm finds the new tracking power of 1599.68 W, 

with tracking efficiency of 99.98%. The simulation is repeated for a 4S3P system 

using PSC patterns 2, 3, and 4 on each string and a tracking efficiency of 99.68% 

is achieved. Furthermore, simulation results for a 4S4P system using all four PSC 

patterns shows a tracking efficiency of 98.73%. These results show that when 

hardware costs must be minimized, the PA algorithm can be considered for use 

with one current sensor and one DC-DC converter for up to three or possibly four 

strings in parallel. For high numbers of strings, the tracking efficiency worsens so 

an additional sensor and converter are recommended. 
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4.4.2 Comparison to other MPPT Algorithms 

The dynamic performance of the proposed PA algorithm is evaluated using 

the four PSC patterns connected back-to-back, and compared with three other well-

known GMPPT algorithms: particle swarm optimization (PSO) [21], constriction 

factor PSO (CFPSO) [22], and Modified Hill Climbing (HC) [13]. PSO and CFPSO 

are population-based optimization methods inspired by the behavior of bird flocks 

and schooling fish. They generate a population of possible solutions, which are 

known as particles, and move them around in the search space as per a simple 

mathematical formula over their position and velocity to solve a problem. The 

movement of each particle is controlled by its local best-known position, but it is 

also directed toward the best-known positions in the search space, which are 

updated when better positions are discovered by other particles. The swarm is 

predicted to migrate toward the best options because of this. In PSO and CFPSO 

 

Fig. 4.14. Simulation of the performance of the proposed PA algorithm for a 4S2P configuration under PSC 

patterns 2 and 3. 

 
 



   
Ph.D. Thesis – M.H. Mobarak                     McMaster University – Electrical Engineering 

161 
 

based GMPPT algorithms, the duty cycle, D of the DC-DC converter is considered 

as the position of the particle. The duty cycle resulting in the highest tracked power 

is known as the best position of the particle. Thus, reaching the best position with 

highest power needs numerous steps in these optimization-based GMPPT 

algorithms. Fig. 4.15 shows the simulated dynamic results. The proposed PA 

algorithm reaches the GMPPT with only four steps compared to PSO with 84 to 

149 steps, CFPSO with 71 to 148 steps, and Modified HC with 32 to 45 steps. For 

the entire simulation time of 20 s, the proposed PA algorithm stores 8397 J of 

energy, whereas PSO stores 8187 J, CFPSO stores 8094 J, and Modified HC stores 

8264 J. Thus, the PA algorithm stores 1.6% to 3.7% more energy than the compared 

algorithms. Due to the significantly longer converging time of PSO and CFPSO, 

they are likely to fail to track the GMPPT if the PSC pattern changes before their 

convergence. In this case, they would need to reinitiate their MPPT processes, 

which will cause more tracking energy losses. Furthermore, it is well-known that 

the Modified HC algorithm can fail to scan all the LPs for higher numbers of series 

connected modules in an array, as explained in the Introduction, meaning finding 

the GMPP is not guaranteed [39]. Thus, when considering only the compared 

algorithms that will always find the GMPP, the PA algorithm stores 2.6% to 3.7% 

more energy during the simulated test. 
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Table 4.4 summarizes the performance of the proposed PA algorithm 

compared to PSO, CFPSO, Modified HC, and two more popular GMPPT methods, 

artificial bee colony (ABC) and single sensor hill climbing ABC (SSHC-ABC) 

from [31], for the same 4S1P PV array configuration in terms of the simulated 

tracking steps and time, tracking efficiency, voltage track length, tracking energy 

loss (solar energy lost while trying to get to the GMPP), and sensors needed. ABC 

and SSHC-ABC are metaheuristic optimization algorithms like PSO and CFPSO, 

but work based on the food searching process of the bees.  The comparison shows 

that, on average across the different patterns, the proposed PA algorithm is 33 times 

faster than PSO, 30 times faster than CFPSO, 3 times faster than Modified HC, 17 

times faster than ABC, and 10 times faster than SSHC-ABC, while achieving the 

same or better tracking efficiency and the same or less hardware requirements. 

 

Fig. 4.15. Dynamic performance comparison of the proposed PA, PSO, CFPSO, and Modified HC algorithms 

under all 4 PSC patterns. 
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Also, SSHC-ABC is the only other compared method that uses just one sensor, and 

it achieved an average tracking efficiency of 98.5% across the four PSC patterns, 

compared to the average PA algorithm tracking efficiency of 99.7%. 

 

4.4.3 Effect of Sensor Noise/Offset 

Due to the analytical nature of the proposed PA algorithm, it is important to 

investigate the effect of sensor noise and offset on the algorithm performance. 

Sensor noise can be greatly reduced using a digital filter in the microcontroller, and 

Table 4.4. Comparison of Proposed PA Algorithm With Other Methods 

PSC 

Pattern 
Method 

Tracking 

Steps 

Tracking 

Time (s) 

Tracking 

Efficiency 

(%) 

Voltage 

Track 

Length (V) 

Tracking 

Energy Loss 

(J) 

Sensors 

Needed 

Pattern 1 

Proposed 

PA 
4 0.1 99.84 269 27.96 1 

PSO 84 2.1 99.83 755 67.24 2 

CFPSO 71 1.775 99.84 702 57.78 2 

Modified 

HC 
32 0.296 99.42 269 49.28 2 

ABC 24 [31] 1.67 [31] 97.50 [31] 851 217.96 2 

SSHC-ABC 3 [31] 0.26 [31] 98.16 [31] 172 20.29 1 

Pattern 2 

Proposed 

PA 
4 0.1 99.90 187 16.92 1 

PSO 145 3.625 99.89 990 61.3 2 

CFPSO 147 3.675 99.92 1053 115.54 2 

Modified 

HC 
45 0.39 99.26 379 46.39 2 

ABC 23 [31] 1.62 [31] 99.08 [31] 881 238.14 2 

SSHC-ABC 18 [31] 1.3 [31] 99.13 [31] 811 198.68 1 

Pattern 3 

Proposed 

PA 
4 0.1 99.67 273 21.44 1 

PSO 149 3.725 99.65 1357 93.10 2 

CFPSO 107 2.675 99.67 1105 60.96 2 

Modified 

HC 
43 0.375 98.75 376 53.4 2 

ABC 24 [31] 1.71 [31] 98.34 [31] 910 238.35 2 

SSHC-ABC 19 [31] 1.33 [31] 99.17 [31] 823 225.86 1 

Pattern 4 

Proposed 

PA 
4 0.1 99.39 138 7.79 1 

PSO 142 3.55 99.45 1312 81.79 2 

CFPSO 148 3.7 99.41 1351 162.62 2 

Modified 

HC 
37 0.335 99.89 390 22.01 2 

ABC 24 [31] 1.68 [31] 96.85 [31] 929 103.49 2 

SSHC-ABC 18 [31] 1.25 [31] 97.57 [31] 839 79.73 1 
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thus a median/moving average filter has been implemented both in the 

microcontroller (for the experimental results) and in the Simulink model for the 

noise/offset analysis. Fig. 4.16 shows the simulated tracking efficiency for the PA, 

PSO, and CFPSO algorithms under PSC pattern 2 for sensor offset levels of 0, 0.1, 

and 0.2 V, and sensor signal-to-noise (SNR) values of 10, 20, 30, 40, 50, and 80 

dB. Firstly, the results show that the analytical PA algorithm performs similar or 

better than the optimization-based algorithms of PSO and CFPSO, and thus there 

is no particular concern regarding sensor noise/offset for the PA algorithm. 

Secondly, the results show that for all simulated algorithms, high tracking 

efficiency is achieved for SNR > 30 dB. High-quality current sensors will exceed 

this requirement; for example [42] describes a complete sensor system using a LEM 

Hall sensor that achieves SNR > 84 dB. Thirdly, sensor offset of 0.2 V or more 

causes a significant reduction in tracking efficiency for all simulated algorithms. 

However, the PA algorithm has high tracking efficiency at 0.1 V sensor offset as 

long as SNR > 30 dB. Since the LEM Hall sensor in [42] states a current 

measurement accuracy of 0.5% (which corresponds to a possible offset of 0.025 V 

on a 5 V signal into the microcontroller) and the LEM LTS15-NP sensor used in 

this experimental setup [43] has an accuracy of 0.2% (or 0.01 V on a 5 V signal), 

there are multiple quality current sensors available on the market to maintain an 

offset of 0.1 V or less. 
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4.4.4 Effect of PV Module Aging 

Due to the analytical nature of the proposed PA algorithm, it is also 

important to investigate its performance on aged PV cells. Over time, PV cells 

experience optical and electrical degradation due to optical and encapsulating 

losses and deterioration of electrical parts due to temperature [44]. Optical and 

electrical degradation gradually decreases the effective radiation and increases the 

module’s series resistance, Rs, over time [44]. Durastanti et al. modeled PV module 

aging in [45], where the effective radiation reduced by 6% and 12% and the series 

resistance increased by 2.3% and 4.6% after 10 years and 20 years respectively. 

Following the same aging model approach from [45], Fig. 4.17 shows the P-V 

characteristic curves of an aged SunPower SPR-200-WHT-U module, with similar 

 

Fig. 4.16. Sensitivity analysis of the proposed PA algorithm compared to PSO and CFPSO for various noise 

levels and offsets. 
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% changes after 10 and 20 years, which has been modeled and simulated with the 

PA algorithm in Simulink. 

 

The PA algorithm uses the Vmpp/Voc and Impp/Isc ratios (8) of a new module, 

so it is important to understand how these ratios may change as the module ages, 

even as the algorithm continues to use the “new module” values. With regards to 

the Vmpp/Voc ratio, the increase of Rs has minimal impact on the reduction of Voc as 

the Rs itself is very small as per the manufacturer’s datasheet and Table 4.1. As a 

result, the MPP positions of the module for various radiations stay almost at the 

same voltage positions compared to their initial positions for non-aged modules as 

shown in Fig. 4.17. The change in Rs will slightly affect the Impp/Isc ratio: for the 

considered PV module at 20 years aging (4.6% increase in Rs), the new ratio is 

0.925, which is 0.1% smaller than the new module ratio of 0.926. Thus, the change 

 

Fig. 4.17. Impact of aging on PV modules over 10 and 20 years of life. 
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in Rs over time can make a very small decrease in PA algorithm tracking efficiency 

for some PSC patterns. 

  

The other aging effect, a reduction in radiation, does not affect the PA 

algorithm tracking efficiency because the Vmpp/Voc and Impp/Isc ratios remain the 

same. The reduction in radiation will mean the PA algorithm is not correctly 

calculating the values of the incident radiations, but it will calculate the change of 

radiation correctly, and sense the presence of PSC accurately. As it is not the 

radiation, but rather the current which is used in the PA algorithm’s equations to 

calculate the LP positions, this radiation reduction does not affect the algorithm’s 

ability to find the GMPP. The simulation results shown in Fig. 4.18 illustrate this 

point for a 4S1P 20 year aged PV array subjected to PSC patterns 1 and 2. After 

experiencing PSC 1 at 0.051 s, the controller measures the currents as 3.32 A, 3.8 

A, 4.29 A, and 4.68 A at 0.1 s, 0.125 s, 0.15 s, and 0.175 s, respectively. At 0.175 

s, the controller converts these currents into radiations using (6), which are 614.81 

W/m2, 703.7 W/m2, 794.44 W/m2, and 866.67 W/m2, respectively. The PSC pattern 

1 has the actual radiation values of 700 W/m2, 800 W/m2, 900 W/m2, and 1000 

W/m2. Though the calculated radiations are not correct, the sensed current is used 

in the PA algorithm’s equations to find the LP, so the PA algorithm still achieves 

Table 4.5. Tracking Efficiency (%) Comparison of The Proposed PA Algorithm For Non-Aged And Aged 

PV Modules 

PSC Pattern Non-aged 10 Years Old 20 Years Old 

Pattern 1 99.84 99.92 99.90 

Pattern 2 99.92 99.90 99.92 

Pattern 3 99.67 99.92 99.82 

Pattern 4 99.39 99.19 99.08 
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excellent tracking efficiency for aged modules, as shown in Table 4.5. The tracking 

efficiency is over 99% for the simulated PSCs for 10 and 20 year aged cells, thus 

the PA algorithm can work effectively for aged PV modules. 

 

4.5. Experimental Results 

Fig. 4.19 shows a diagram of the experimental setup used to evaluate the 

performance of the PA algorithm. Due to the unavailability of a high voltage battery 

in the lab, a DC load and a DC voltage supply are connected at the output of the 

boost converter as shown in Fig. 4.19 to mimic the steady voltage performance of 

a battery. The resistance of the DC load is set such that the current requirement of 

the resistance is higher than the maximum output current of the boost converter. 

Hence, the additional current required is provided by the DC voltage supply. A 

protection diode is connected in series with the DC supply so that no current flows 

back into the supply. Fig. 4.20 shows the experimental setup. The main components 

 

Fig. 4.18. Simulation of the performance of the proposed PA algorithm for a 4S1P configuration consisting 

of 20 years old modules under PSC patterns 1 and 2. 
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include a solar array simulator (SAS) (ITECH IT6523C), hall effect current sensor 

with excellent noise rejection (LTS 15-NP), boost converter (KIT-CRD-3DD12P), 

DC electronic load (ITECH IT8906E-600-420), microcontroller 

(TMS320F28379D), and DC voltage supply (Sorensen SGX 600-25). The 

experiment is carried out with the same switching frequency as the simulation (40 

kHz). 

 

 

 

Fig. 4.19. Experimental setup with alternate configuration for steady output voltage operation. 
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Fig. 4.20. (a) Experimental Setup, (b) TMS320F28379D Microcontroller, and (c) Boost Converter 

Evaluation Board KIT-CRD-3DD12P. 
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To experimentally validate the proposed PA GMPPT algorithm, the simulated 

PSC patterns are implemented in the SAS. In Fig. 4.21, PSC pattern 1 is applied to 

the SAS at 2.02 s. The microcontroller samples the input PV current every 0.15 s 

from the current sensor. This step time is longer than that used in simulation (0.025 

s) to ensure enough time for the input current provided by the SAS to stabilize after 

a duty cycle change. As the SAS is not a real solar array, it emulates the behavior 

of a solar array by providing current with respect to voltage using I-V and P-V 

characteristic lookup tables, making the current response slower. Had it been a real 

solar array instead of the SAS, the current would have reached the steady state value 

much faster similar to [13]. Thus, a 0.15 s step time is used in the experiment to 

allow settling time for the SAS current, but the number of duty cycle steps required, 

the critical factor, is still shown to be four for a 4S1P system. As all conventional 

and contemporary GMPPT algorithms require significantly more steps compared 

to the proposed PA algorithm, they will all exhibit slower tracking time if 

implemented on the same hardware. 

 

 

Fig. 4.21. Experimental performance of the proposed PA algorithm under PSC patterns 1 and 2. 
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In Fig. 4.21, from the difference between measured currents at 1.9 s and 2.05 

s, the controller detects the occurrence of shading and initiates current scanning at 

3Voc,m, 2Voc,m, Voc,m, and 30 V. Using these current values, the controller confirms 

a PSC at 2.65 s, the PA algorithm calculates the GMPP immediately, and the 

controller applies the required duty cycle at the boost converter. Though the input 

voltage of the boost converter stabilizes at the GMPP voltage quickly at 2.703 s, 

the SAS takes a comparatively longer time to stabilize the input current, at 2.796 s 

in this case. Thus, the system, including the delayed SAS current response, takes 

0.746 s to reach the new GMPP with a tracked maximum power of 605.6 W and a 

99.87% tracking efficiency. At 4.02 s, PSC pattern 2 is applied at the SAS. The 

controller senses the change in radiation from the difference between sampled 

currents at 4 s and 4.15 s and initiates current scanning at the four previously 

defined voltage points. Using these sampled current values, the PA algorithm 

calculates the GMPP position at 4.75 s and the controller applies the required duty 

cycle at the boost converter immediately. The GMPP voltage is reached at 4.767 s 

and the GMPP current from the SAS stabilizes at 4.859 s with a tracking time of 

0.709 s, tracked power of 391.82 W, and a 99.95% tracking efficiency. 
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Fig. 4.22 shows the performance of the PA algorithm for PSC patterns 3 and 

4. Again, the PA algorithm takes only four steps to reach the GMPP for both pattern 

3 and 4, which are actually the four current measurements required anyways to 

determine if PSC has occurred. Fig. 4.23 shows an example of the voltage, current, 

and efficiency from the SAS interface after the PA algorithm has tracked the 

GMPPT under PSC pattern 2. Table 4.6 summarizes the performance of the 

proposed algorithm for both simulation and experiment in terms of tracking time, 

tracking power, tracking efficiency, tracking energy loss, and voltage track length 

for all four patterns. The results show extremely high experimental tracking 

efficiencies (>99.6% for all PSC patterns tested), and fast tracking times due to the 

fixed number of four measurement steps for a 4S1P system. 

 

Fig. 4.22. Experimental performance of the proposed PA algorithm under PSC patterns 3 and 4. 
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4.6. Conclusion 

This chapter proposes a totally new approach to finding the GMPP during PSC 

using a single current sensor: the PA GMPPT algorithm uses a fixed number of 

current scans (steps) equal to the number of solar modules connected in series to 

directly and immediately calculate the GMPP, in contrast to the other contemporary 

algorithms including optimization-based search methods that have significantly 

longer convergence times. The PA GMPPT algorithm uses simple parabolic 

equations to calculate the GMPP near-exactly during PSC. The tracking energy loss 

during scanning is negligible because of the low number of scans and no blind 

 

Fig. 4.23. Example of voltage, current, and efficiency profile from SAS interface. 

 

Table 4.6. Experimental Results of The Proposed PA GMPPT Algorithm 

PSC 

Pattern 
Method 

Tracking 

Time (s) 

Tracked 

Power 

(W) 

Maximum 

Power (W) 

Tracking 

Efficiency 

(%) 

Voltage 

Track 

Length 

(V) 

Tracking 

Energy 

Loss (J) 

Pattern 1 
Simulation 0.1 605.4 

606.4 
99.84 269 27.96 

Experiment 0.746 605.6 99.87 270 128.66 

Pattern 2 
Simulation 0.1 391.5 

392 
99.90 187 16.92 

Experiment 0.709 391.82 99.95 186 109.653 

Pattern 3 
Simulation 0.1 477.3 

478.9 
99.67 273 21.44 

Experiment 0.729 477.1 99.62 223 136.35 

Pattern 4 
Simulation 0.1 186.85 

188 
99.39 138 7.79 

Experiment 0.630 187.38 99.67 143 35.29 
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scans. Only a few mathematical equations make this algorithm computationally 

inexpensive enough to be implemented on a simple microcontroller. A single 

current sensor reduces overall system cost and complexity. Both simulation and 

experimental results confirm that the PA GMPPT algorithm achieves a new 

standard of fast tracking time with a fixed number of steps (on average, 10 to 33 

times faster than other methods guaranteed to find the GMPPT), while also 

achieving excellent tracking efficiency and a low sensor requirement, and thus 

outperforms other contemporary GMPPT algorithms. The proposed PA algorithm 

is an excellent choice for fast-moving applications such as SEVs. 
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Chapter 5: Optimization of PV Array and Power Electronics 

Design for On-Vehicle Solar Charging 

5.1. Introduction 

As Chapter 4 provides a fast-converging solution to the maximum power 

extraction problem for a fast-moving SEV, two major issues still need to be 

addressed to ensure the solar energy reaches the storage battery with highest 

efficiency.  One of them is the selection of the optimum power electronic 

architecture that the PV energy must use to flow from PV panel to storage. As PV 

voltages are generally low, boosting the PV voltage to the high traction battery 

voltage, varying between 250 V and 450 V becomes a real power electronic 

challenge. Though the existing 12 V battery path can be used for solar energy 

capture, the energy capacity of these batteries is not sufficient to store solar energy 

gathered over long periods of time. Thus, the two potential strategies as shown in 

Fig. 5.1 [1] are: (1) using a low number of cells in series to keep the voltage low 

and reuse the bidirectional high-voltage to 12 V DC-DC converter that generally is 

present in most EVs, or (2) connecting more cells in series to create higher PV 

voltages and boosting the voltage to the 250-450V range using dedicated DC-DC 

converters. 
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Option 1 reduces the cost as the existing DC-DC converter is used for boosting 

the voltage to the traction battery voltage range. But the efficiency is expected to 

be lower as higher currents occur in each MPPT converter due to the lower input 

voltage, the high-power (2-4 kW) existing bidirectional DC-DC converter being 

used at the 200-600 W level, and two DC-DC converters processing the power 

before reaching the traction battery. Option 2 may result in higher efficiency as the 

dedicated DC-DC converters will be of higher efficiency due to less voltage boost 

required. Nevertheless, the high step-up dedicated MPPT boost converters in this 

case will incur additional cost compared to Option 1. Thus, this is crucial to 

determine the optimum power electronic architecture for PV energy accumulation.  

Another major issue is to determine the optimum PV interconnections, i.e., 

how many cells should be connected in series and parallel. Larger cell sizes result 

in fewer interconnections, but a lower voltage is produced from such a string of 

cells. This low voltage requires high boost to the traction battery voltage, which 

generally leads to poor efficiency. More cells in series may boost the resulting 

voltage, but any shading in the series string will reduce the solar power for the entire 

 

 

Fig. 5.1. Two potential electrical architecture options for the proposed SEV [1]. 
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string. Though the major portion of the solar energy may be obtained while the 

vehicle is parked, an optimal design is required for maximum solar power 

production even when vehicle body is partially in the shade. Previous research on 

deciding series parallel interconnection [2] only compares the extracted power 

difference for stationary and moving vehicle between two configurations, i.e., 

either connecting all cells in series or in parallel based on fixed cell size available 

at the market. Though connecting all the cells in parallel shows higher solar energy 

extraction in this research, the practical implementation is limited as a separate 

boost converter will be required with each cell to boost the voltage, resulting in 

higher cost. Also, this research has not taken the effect of MPPT DC-DC converter 

efficiency into account.  

Larger PV cell sizes will result in higher PV currents with a fixed PV voltage 

and connecting the cells in series will increase the PV voltages [1]. Various 

combinations of these input voltage and current along with a fixed output voltage 

at the DC-DC converter connected to a battery will result in different efficiency 

values. Thus, it is extremely important to determine the optimum cell size and 

optimum number of such cells in series and parallel taking the effect of the power 

electronic converter efficiency. Thus, this chapter carries out a system level analysis 

of the two PV architectures shown in Fig. 5.1 to find out the optimum power 

electronic architecture for maximum PV energy accumulation. Based on this power 

electronic architecture, this chapter also uniquely determines the optimum PV cell 

size and optimum number of such cells in series and parallel using offline genetic 
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algorithm (GA) to ensure maximum power extraction, specially, in case of partial 

shading. 

Section 5.2 models and determines the optimum power electronic architecture 

from Fig. 1, section 5.3 explains cell size and interconnection optimization based 

on DC-DC converter efficiency modeling, section 5.4 shows the simulation results 

using GA for the optimum cell size and their optimum numbers in series-parallel 

interconnection with the effect of DC-DC converter efficiency, and section 5.5 

concludes this chapter.  

5.2. Optimum Power Electronic Architecture Selection 

To carry out a system level analysis to determine the optimum power electronic 

architecture from Fig. 5.1, a SEV with CIGS PV cells with a current density of 

J=380 A/m2 is considered. Specifications of this cell are described in Table 5.1.  

 

 The cell dimension inside the SEV PV panels has been considered a value 

similar to that of a PV cell currently available at the market [3], i.e., 125mm. The 

roof area of the Chevy SEV is assumed to be 2.33 m2, with a length of 1.79 m and 

a width of 1.302 m. Similarly, the hood area is 1.05 m2 with a length of 0.81 m and 

Table 5.1. Specifications of the considered CIGS PV cell. 

Parameters Variable Value Unit 

Current density J 380 A/m2 

Cell size (square) cell_dimension Variable (1 to 20) mm 

Cell open-circuit voltage Voc,cell 0.7 V 

Short-circuit current Isc J* cell_dimension2 A 

MPP voltage to open circuit voltage ratio Vmpp,cell/ Voc,cell 0.82 N/A 

MPP current to short circuit current ratio Impp/ Isc 0.93 N/A 

Temperature coefficient of Voc Kv -0.36 %/°C 

Temperature coefficient of Isc KI 0.02 %/°C 

Diode saturation current I0 1.8898e-10 A 

Diode ideality factor a 1.1287 N/A 
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a width of 1.302 m. The roof mounted PV panel has a configuration of 2S1P with 

each module having 75 cells in series, and the hood mounted PV panel has that of 

1S1P with each module having 67 cells in series. The array specifications are given 

in Table 5.2. 

 

For Option 1, a buck converter connected to the 12 V bus is assumed to perform 

the MPPT task. Both roof-mounted and hood-mounted PV panels have separate 

buck converters. The average efficiency of this converter is assumed to be 94% [1]. 

A GaN HEMT based bidirectional converter with a rated power of 1kW has been 

considered [4]. The efficiency map is shown in Fig. 5.2. The architecture is 

arranged such that if the PV power is higher that the electrical accessories power 

requirement, the remaining power will flow to the 400 V battery from the 12 V bus. 

If the accessories power requirement is higher than the available PV power, the 400 

V battery will provide power to the 12 V bus through the bidirectional converter.  

Table 5.2. Specifications of the upward facing PV panels. 

Parameters Variable Value Unit 

Cell size (square) cell_dimension 125 mm 

Cells per module on roof nc_roof 75 N/A 

Roof PV configuration N/A 2S1P N/A 

Cells per module on hood nc_hood 67 N/A 

Hood PV configuration N/A 1S1P N/A 
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Option 2 uses dedicated MPPT Boost converters connected to the 400 V bus 

to extract the PV energy. Both roof-mounted and hood-mounted PV panels have 

separate boost converters. The efficiency maps for boost converters connected to 

roof-mounted and hood-mounted PV panels are given in Figs. 5.3 and 5.4 

respectively [5]. 

   

 

Fig. 5.2. Efficiency map for bidirectional converter in Option 1. 

 

 

Fig. 5.3. Efficiency map for dedicated boost converter in Option 2 (Rooftop PV). 
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Fig. 5.5 shows the monthly solar radiation and temperature in Los Angeles. 

Fig. 5.6 shows the simulation performance of the two considered power electronic 

architectures for a SEV driving in Los Angeles on a day in June with average sky 

conditions. The electrical accessories power is considered 400 W. At the end of the 

day, the remaining SOC of the battery is 56.76% for the Option 1 architecture and 

56.77% for the Option 2 architecture, taking the effect of temperature on PV cells 

 

Fig. 5.4. Efficiency map for dedicated boost converter in Option 2 (Hood top PV). 

 

 

 

 

 

Fig. 5.5. Monthly solar radiation and temperature in Los Angeles. 
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into account, as shown in Fig. 3.12. This analysis indicates that the Option 1 with 

the advantage of reusing the existing bidirectional converter is definitely a 

promising architecture, with efficiency comparable to Option 2 and with the 

advantage of lower cost. Therefore, it is imperative to determine the cell size and 

their numbers in series-parallel interconnection in the PV panels with efficiency 

modeling of the buck converter used in this architecture. 

  

5.3. Cell Size and Interconnection Optimization  

5.3.1 Partial Shading Condition (PSC) Modeling on SEV 

Fig. 4.3 shows the effect of partial shading on PV power generation. Due to 

various PSCs, the maximum power voltage and current also varies. Eventually, the 

efficiency of the DC-DC converter also varies. Fig. 5.7 shows a modeled PSC that 

is considered to cover part of the hood and roof of a SEV in LA, as shown in Fig. 

5.8. 

 

Fig. 5.6. Performance comparison of the two considered PV architectures. 
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Fig. 5.8 shows simplified roof and hood of the SEV. The 56cmX89cm area of 

the roof and 56cmX56cm area of the hood are assumed to have PSC profiles as 

shown Fig. 5.7. The rest of the areas will continue to have radiation profiles as 

shown in Fig. 5.5.  

 

Fig. 5.7. Monthly partial shading solar radiation models for Los Angeles. 

 

 

 

 

 

 

Fig. 5.8. Simplified roof and hood of a SEV. 
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5.3.2 DC-DC Converter Efficiency Modeling 

This section models the efficiency of a synchronous buck DC-DC converter in 

Option 1 by calculating corresponding losses. 

• High-side MOSFET conduction loss [6]: 

2
2

_ _( )
12

outL
on h out on h

in

vi
p i R

v


= +  (1) 

• Low-side MOSFET conduction loss [6]: 

2
2

_ _( ) (1 )
12

outL
on l out on l

in

vi
p i R

v


= + −  (2) 

Here, current ripple [6]: 

( )out in out
L

in sw

v v v
i

v f L

−
 =  (3) 

• High-side switching loss [6]: 

_ _ _0.5 ( )sw h in out r h f h swp v i t t f= +  (4) 

• Low-side switching loss [6]: 

_ _ _0.5 ( )sw l D out r l f l swp v i t t f= +  (5) 

• Reverse recovery loss [6]: 

0.5diode in rr rr swp v i t f=  (6) 

• Output capacitance loss in the MOSFET [6]: 



   
Ph.D. Thesis – M.H. Mobarak                     McMaster University – Electrical Engineering 

189 
 

2

cos _ _0.5( )s oss l oss h in swp C C v f= +  (7) 

• Dead time loss [6]: 

_ _( )dead D out d r d f swp v i t t f= +  (8) 

• Gate charge loss [6]: 

_ _( )g g h g l gs swp q q v f= +  (9) 

• Conduction loss in the inductor [6]: 

2
2

_ ( )
12

L
L dcr out

i
p i dcr


= +  (10) 

• Loss in the input capacitor [6]: 

2

_ _ ( ) _c in c in rms c inp i ESR=  (11) 

Here, input capacitor rms current [6]: 

_ ( )

( )out in out

c in rms out

in

v v v
i i

v

−
=  (12) 

• Loss in the output capacitor [6]: 

2

_ _ ( ) _c out c out rms c outp i ESR=  (13) 

Here, output capacitor rms current [6]: 

_ ( )
2 3

L
c out rms

i
i


=  (14) 

• Total power loss [6]: 
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_

_ _ _ _ cos _ _ _

loss total

on h on l sw h sw l diode s dead g L dcr c in c out

p

p p p p p p p p p p p= + + + + + + + + + +
 (15) 

• Converter output power [6]: 

_out in loss totalp p p= −  (16) 

• Efficiency [6]: 

out

in

p

p
 =  (17) 

The detailed descriptions and values of the parameters used in (1)-(17) are given in 

Table 5.3. 

 

Table 5.3. Specifications of synchronous buck converter. 

Parameters Variable Value Unit 

Rated power Prated 400 W 

Inductor L 24 [8] µH 

Input capacitor Cin 470 [9] F 

Output capacitor Cout 100 [9] F 

Switching frequency fsw 40 kHz 

High-side MOSFET on-resistance Ron_h 24 [7] mΩ 

Low-side MOSFET on-resistance Ron_l 24 [7] mΩ 

High-side MOSFET rise time tr_h 38 [7] ns 

High-side MOSFET fall time tf_h 16 [7] ns 

Low-side MOSFET rise time tr_l 38 [7] ns 

Low-side MOSFET fall time tf_l 16 [7] ns 

Forward direction voltage of low-side MOSFET body diode vD 2.5 [7] V 

Peak value of body diode reverse recovery current irr 30 [7] A 

Body diode reverse recovery time trr 17 [7] ns 

Low-side MOSFET drain-source & gate-drain capacitance Coss_l 294 [7] pF 

High-side MOSFET drain-source & gate-drain capacitance Coss_h 294 [7] pF 

Dead time for rising td_r 58 [7] ns 

Dead time for falling td_f 26 [7] ns 

Gate charge of high-side MOSFET qg_h 157 [7] nC 

Gate charge of low-side MOSFET qg_l 157 [7] nC 

Gate drive voltage vgs 5 [7] V 

Inductor DC resistance dcr 2.5 [8] mΩ 

Equivalent series resistance of input capacitor ESRc_in 15 [9] mΩ 

Equivalent series resistance of output capacitor ESRc_out 27 [9] Ω 
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5.4. Simulation and Results 

The solar energy generation from SEV rooftop and hood-top PV panels based 

on the PSC pattern as shown in Fig. 5.8 is simulated taking into account the effect 

of the efficiency of the modeled buck converter from section 5.3.2. The simulation 

runs based on genetic algorithm (GA), a metaheuristic inspired by the biologically 

inspired operators such as mutation, crossover and selection. The resultant is the 

optimum cell dimension, number of series and parallel cells, and number of 

modules indicating how many cells are contained by each module. 

Running two separate GA optimization for roof and hood assuming they both 

have their own buck converter, the outcome of the simulation for roof from 

MATLAB workspace is shown in Fig. 5.9.  

 

 

Fig. 5.9. Outcome of GA for Roof. 
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In Fig. 5.9 for roof, x=2 means optimum cell dimension is 2 cm, rr=5 means 

each module will contain 5 cells in series and there will be 26 modules in series, 

and 89 indicates the number of parallel strings. Fig. 5.10 explains the optimized 

array structure for the roof.  

 

 

Fig. 5.10. Optimized array for Roof. 
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Similarly, Fig. 5.11 shows for the hood that the optimum cell dimension is 1 

cm, each module will contain 65 cells in series, and there will be 2 modules in series 

and 81 parallel strings. Fig. 5.12 explains the optimized array structure for the hood. 

 

 

Fig. 5.11. Outcome of GA for Hood. 
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Assuming the SEV had a trip everyday throughout the year, Table 5.4, 5.5, and 

5.6 show the monthly and annual accumulated energy comparison for the optimized 

cell and array configuration and an unoptimized array configuration, i.e., 4cm cell 

dimension and 4 cells in a module. 

 

Fig. 5.12. Optimized array for Hood. 
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Table 5.4. Energy comparison for optimized and unoptimized array for roof. 

Month Accumulated PV Energy (kWh) Savings (%) 

Optimized Array Chosen Unoptimized 

Array 

January 33.50 32.60 2.68 

February 38.23 37.20 2.71 

March 54.93 53.46 2.68 

April 69.51 67.94 2.26 

May 77.23 75.58 2.13 

June 74.97 73.43 2.06 

July 77.05 75.50 2.02 

August 71.77 70.29 2.06 

September 54.83 53.41 2.59 

October 45.94 44.73 2.64 

November 35.57 34.62 2.67 

December 30.97 30.14 2.67 

Annual 664.51 648.89 2.35 
 

Table 5.5. Energy comparison for optimized and unoptimized array for hood. 

Month Accumulated PV Energy (kWh) Savings (%) 

Optimized Array Chosen Unoptimized Array 

January 14.91 13.89 6.82 

February 17.11 15.90 7.02 

March 24.70 22.96 7.03 

April 31.62 30.54 3.40 

May 35.17 34.32 2.43 

June 34.17 33.37 2.36 

July 35.06 34.26 2.28 

August 32.56 31.71 2.60 

September 24.61 22.94 6.79 

October 20.55 19.15 6.82 

November 15.86 14.77 6.87 

December 13.76 12.83 6.79 

Annual 300.08 286.65 4.48 

 

Table 5.6. Total energy comparison for optimized and unoptimized array. 

Month Accumulated PV Energy (kWh) Savings (%) 

Optimized Array Chosen Unoptimized 

Array 

January 48.40 46.49 3.95 

February 55.34 53.10 4.04 

March 79.63 76.42 4.03 

April 101.13 98.48 2.62 

May 112.40 109.90 2.22 

June 109.15 106.80 2.15 

July 112.11 109.76 2.10 

August 104.33 102.00 2.23 

September 79.44 76.35 3.89 

October 66.49 63.88 3.93 

November 51.43 49.39 3.96 

December 44.73 42.97 3.94 

Annual 964.59 935.54 3.01 
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5.5. Conclusion 

This chapter has performed a system level analysis indicating that the Option 

1 power electronic architecture with 12 V bus is a promising one to use in SEVs for 

maximum solar energy extraction. Based on this decision, the analysis is further 

carried out to find the optimum PV cell dimension, number of such cells in series 

parallel interconnection, and possible module size taking the power electronic 

converter efficiency modeling into account. GA has been used to optimize the array 

structure which shows an annual 3% energy savings compared to an assumed 

random unoptimized array structure. As the occurrence and profile of PSC can 

greatly vary, more real-life partial shading data is needed to improve the 

optimization of the array structure for better energy savings. Moreover, this 

research has simplified the roof and hood structure by eliminating the slight curves 

around the sides. Future research may focus on the curved surface for improved 

optimization results. 

Chapter 5 references 

[1] M. H. Mobarak, R. N. Kleiman, and J. Bauman, "Solar-Charged Electric 

Vehicles: A Comprehensive Analysis of Grid, Driver, and Environmental 

Benefits," in IEEE Transactions on Transportation Electrification, vol. 7, no. 

2, pp. 579-603, June 2021. 

[2] C. Schuss, T. Fabritius, B. Eichberger and T. Rahkonen, "Impacts on the 

Output Power of Photovoltaics on Top of Electric and Hybrid Electric 

Vehicles," in IEEE Transactions on Instrumentation and Measurement, vol. 

69, no. 5, pp. 2449-2458, May 2020. 

[3] Preliminary Specification Sheet CIGS Thin Film Solar Modules, Available 

Online: https://xsunx.com/pdf/CIGSBrochure-draft.pdf 

[4] F. Xue, R. Yu and A. Q. Huang, "A 98.3% Efficient GaN Isolated 

Bidirectional DC–DC Converter for DC Microgrid Energy Storage System 

https://xsunx.com/pdf/CIGSBrochure-draft.pdf


   
Ph.D. Thesis – M.H. Mobarak                     McMaster University – Electrical Engineering 

197 
 

Applications," in IEEE Transactions on Industrial Electronics, vol. 64, no. 

11, pp. 9094-9103, Nov. 2017. 

[5] N. Shafiei, M. Ordonez, M. A. Saket Tokaldani and S. A. Arefifar, "PV 

Battery Charger Using an $L3C$ Resonant Converter for Electric Vehicle 

Applications," in IEEE Transactions on Transportation Electrification, vol. 

4, no. 1, pp. 108-121, March 2018. 

[6] Application Note: Efficiency of Buck Converter, Available Online: 

https://fscdn.rohm.com/en/products/databook/applinote/ic/power/switching_

regulator/buck_converter_efficiency_app-e.pdf 

[7] Silicon carbide Power MOSFET HiP247-4 package, Available Online:  

https://www.mouser.ca/datasheet/2/389/dm00753355-2042264.pdf 

[8] Filter Inductors, High Current, Radial Leaded, Available Online:  

https://www.mouser.ca/datasheet/2/427/ihv-1762807.pdf 

[9] Conductive Polymer Aluminum Solid Electrolytic Capacitors, Available 

Online: https://www.mouser.ca/datasheet/2/293/201904_PCH_e-

1842995.pdf 

 

 

 

 

 

 

 

 

 

 

  

https://fscdn.rohm.com/en/products/databook/applinote/ic/power/switching_regulator/buck_converter_efficiency_app-e.pdf
https://fscdn.rohm.com/en/products/databook/applinote/ic/power/switching_regulator/buck_converter_efficiency_app-e.pdf
https://www.mouser.ca/datasheet/2/389/dm00753355-2042264.pdf
https://www.mouser.ca/datasheet/2/427/ihv-1762807.pdf


   
Ph.D. Thesis – M.H. Mobarak                     McMaster University – Electrical Engineering 

198 
 

Chapter 6: Conclusions and Future Work 

6.1.  Conclusions 

As long-range EVs are becoming more affordable due to reducing price, it is 

most important now to evaluate and minimize the effects of their increasing 

charging demand on distribution transformers. While centralized and distributed 

smart-charging techniques have been the focus of the research trend, they require a 

lot of infrastructure and will take huge investments and time to deploy.  This 

research initially proposes the Vehicle-Directed Smart Charging concept, Random-

In-Window (RIW), with two variants: fixed rate charging (RIW-FR) and variable 

rate charging (RIW-VR) strategies to be implemented by a suitably programmed 

EV without requiring additional infrastructure. RIW results in a similar transformer 

aging rate as a centralized smart-charging algorithm over a summer week for EV 

penetration rates up to 60% for long-range EVs and up to 70% for short-range EVs 

for various transformer sizes. This study has extensively been supported by logged 

driving dataset of 150 unique drivers over one week. 

 Going further to try to help the problem more by reducing the net energy 

the vehicle needs to charge from the grid, a concept of a large-scale solar-charged 

electric vehicle (SEV) with low-cost flexible thin film PV cells integrated directly 

onto the steel of all upwards-facing body panels of the vehicle i.e., roof, hood, and 

trunk is proposed. This research has shown that the proposed low-cost SEV concept 

offers real benefits to the grid, the driver, and the environment, indicating that 

further research is warranted to address the design and manufacturing challenges 
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of SEVs. For the given dataset of 150 drivers, the use of SEVs (compared to non-

solar EVs) would reduce the annual net vehicle energy consumption and eventual 

CO2 emission by 18-22% under average cloud conditions and including 

temperature-dependent PV efficiency. The peak solar range extension is up to 47 

km/day on a sunny day in May and charging costs are reduced by about 20% for 

average cloud conditions. Combining all the results together, the study has shown 

real potential of SEVs in mitigating transformer aging, benefitting drivers, and 

promoting cleaner environment. Thus, the design and manufacturing challenges 

associated with SEVs deserve real attention. 

To ensure maximum solar power extraction in SEVs, Chapter 4 proposes a 

totally new approach to finding the global maximum power point (GMPP) during 

uniform radiation change and PSC using a single current sensor. The proposed 

parabolic assumption (PA) GMPPT algorithm can directly and immediately 

calculate the GMPP, in contrast to the other contemporary algorithms including 

optimization-based search methods that have significantly longer convergence 

times by using a fixed number of current scans (steps) equal to the number of series 

connected solar modules in the array. The PA GMPPT algorithm uses simple 

parabolic equations to calculate the GMPP near-exactly during PSC. Negligible 

tracking energy loss, computationally inexpensive algorithm eligible to be 

implemented on a simple microcontroller, lower cost due to a single current sensor, 

10 to 33 times faster convergence, and excellent experimental tracking efficiency, 
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i.e., minimum of 99.6% make the proposed PA GMPPT algorithm outperform other 

contemporary GMPPT algorithms. 

It is also important to have optimum cell size and optimum number of series 

and parallel connected cells in the array to ensure maximum solar power extraction, 

while also considering the effect on efficiency of the power electronic converters 

in the SEV electrical architecture. Thus, the research proposes a novel method using 

GA to optimize the PV array while also considering the power electronics design. 

The proposed estimation of the possible interconnection of the cells shows a solar 

energy savings of up to 3% during PSCs compared to the assumed random 

unoptimized array. Overall, this thesis has proposed useful strategies for mitigating 

distribution transformer aging in the face of rising EV penetration rates. 

Furthermore, some practical challenges related to the proposed large-scale SEV 

concept are addressed. 

6.2. Recommendation for Future Work 

The recommendations for future work focus on both improving the existing 

studies and further developing the on-board solar charging concept on both large 

scale and small-scale basis. The first recommendation is to formulate the aging 

process of solid-state transformers (SSTs) and analyze the effect of EV charging 

stress on them based on the formulated equivalent aging factor. SSTs can 

accommodate DC and/or AC interfaces with high frequency isolation between 

medium voltage grid and renewables. Thus, they are becoming popular for 

distributed energy storage, EVs, and DC or AC loads and gradually replacing the 
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currently used conventional transformers. As SSTs are different from conventional 

power or distribution transformers in terms of construction and operation, it would 

be necessary to study the effectiveness of the proposed RIW and SEV concept in 

the mitigation of the aging of the SSTs. 

The second recommendation is to make SEVs decentralized solar generation 

systems by incorporating a bidirectional on-board charger in the vehicle. Though 

some prior works have focused on the design and control of bidirectional on-board 

chargers for EVs for V2G functionality, no work to date has considered its use in 

SEVs. With a smart energy management system, a V2G enabled SEV with a 

bidirectional on-board charger can fully charge overnight from the grid and feed 

any extra solar energy back to the grid during the day reducing electricity costs. 

Therefore, future research on the cost and complexity reduction of bidirectional on-

board chargers would be crucial for SEVs. 

The next recommendation would be studying the benefits of on-board solar 

charging on low traction power vehicles, e.g., golf carts, three-wheeler rickshaw, 

city commuters, etc. The solar energy obtained from such vehicles’ on-board solar 

energy generation system will have to be compared to their daily energy 

requirements based on their respective drive cycles to realize the feasibility of 

installing on-board solar charging options on these vehicles. 

The last suggestion for future work is in the area of optimization of PV cell 

size and interconnection and power electronic architecture. The current study has 
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optimized the cell size and interconnections by modeling partial shading and 

assuming upward facing body panel to be flat. The modeled PSC data often could 

be different from actual PSCs on a fast-moving car. The upward facing body panel 

of the car is also slightly curved at some places. Moreover, the power electronic 

MPPT converter efficiency has been modeled based on switches with fixed rating. 

The voltage stress on switches would be different in reality based on different PV 

voltages with different PV cell sizes. Therefore, extensive real-life partial shading 

data from a fast-moving car, inclusion of surface curvature of the SEV, and 

inclusion of the objective of minimizing voltage stress on the MPPT converter 

switches would be useful for a better optimized on-board solar array. The 

optimization process has considered an architecture with 12 V bus system typically 

present in most of the EVs. Vehicles with different bus voltages, e.g., 24 V system 

in commercial and military vehicles, 36 V in tow tractors and Golf carts, etc., also 

have the prospect of reducing their charging requirement from the grid by 

incorporating on-vehicle solar charging. Hence, the PV cell and interconnection 

optimization can be carried out for these vehicles based on their power electronic 

architecture with different bus voltages to maximize the on-board solar energy 

extraction for them.  

   


