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Abstract

Loss systems are of great importance for price optimization and revenue management

even after more than a century since their first appearance. In this thesis, we ana-

lyze the optimal pricing problem for an M/M/1/1 Erlang-loss systems, and apply the

model to inspect the impacts of vacancy tax regulations on short-term rental hosts.

We then work on M/M/N/N loss systems while considering both advance reservation

and multinomial logit (MNL) choice-model for the customers. We develop a simu-

lation for this system and then train a machine learning (ML) model based on the

outputs of this simulation to predict the utilization of each server based on different

queueing parameters. Finally, we train another ML model for price optimization when

the decision-maker sets the price for all servers to maximize the revenue of the whole

system. We show that the presence of advance reservation decreases the utilization,

consequently reducing the profit in the corresponding system.
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Chapter 1

Introduction

Price optimization problems are of great importance for managing many service sys-

tems. For example, restaurants, short-term rental platforms, and ride-hailing sys-

tems all need to set a reasonable price to achieve profits and customer satisfaction.

In many cases, customers are impatient and will opt for alternative options if not

served promptly. In this thesis, we study price optimization problems in the context

of stochastic loss systems, in which customer demand is lost unless it is fulfilled (or

guaranteed to be fulfilled) upon arrival.

There are two main motivations in our study that has shaped our thesis charac-

teristics. In the following we will briefly describe each of them.

First, we are intrigued to study the impacts of tax policies on short-term rentals’

pricing strategies. Recently, specific tax regulations have been levied in some coun-

tries, which have affected the decision-making of the hosts in short-term housing

systems. On the other hand, it is important to see what the government’s goals (or,

in more general terms, the regulator) are by imposing these different types of tax.

Therefore, we would like to determine how much control the government can have on
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the decision-making process by setting these tax policies over short-term rentals and

analyzing how the hosts in short-term rentals will react to these regulations.

The second motivation is to make classic loss systems more realistic by adding

several modifications. Therefore, we assumed that advance reservation is included

in the traditional loss system; not all the customers will receive service upon their

arrival. Some of them may reserve for some time in the future, which is common

in real-world cases. On the other hand, in loss systems, the customer choice model

is also an essential factor for customers’ decision-making process. Therefore, we will

consider a choice model that is popular in literature for our loss systems as well. As a

result, we would like to see the impacts of adding these modifications to the optimal

prices and, consequently, the optimal profits.

For the first part of the thesis, we will try to be more in-depth in the tax policies

that we mentioned and after that, we will do some price analysis. As an introduction

to those taxing regulations, we can mention British Columbia as one of the pioneers.

There has been a Speculation and Vacancy tax policy to assist British Columbians

in housing expenses as of 2018 (Government of British Columbia, 2018). Based on

this regulation, if a home is not a principal residence, it needs to be rented for at

least six months in a year to be exempted from paying the vacancy tax. Moreover,

short-term units renting for less than a month will not be counted as those minimum

six months of occupancy. As of 2019, the vacancy tax value is considered 2% of the

assessed value of one’s residential property if they are foreigners and 0.5% if they are

Canadian (Government of British Columbia, 2020).

The aforementioned regulation will be applied in Toronto city as of January 2022

(Rocca, 2021). The tax rate will be equal to 1% of that corresponding home’s current

2
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value. It is not yet known how many houses are vacant based on this rule; however,

assuming only 1% of the homes are empty, the Toronto city could gain $55 to $65

million yearly. This indicates that setting this policy needs much prior study as it is

dealing with a large value of money.

Similar regulation is happening in other countries as well. For example, in Hong

Kong, the vacancy tax has been dictated with the same rule; if a unit is vacant more

than 183 days a year, they are to pay the vacancy tax. Nevertheless, the tax value is

200% on the annual rental value of the house, and the target is developers, not home-

owners. Australia has formulated a similar policy as of 2017 (Australian Government,

2021). As another example, in Malaysia, there was a proposal for developing vacancy

tax on vacant houses for a specific period during a year, which is still on hold for

further decision (Chong, 2020). Finally, Paris has started collecting tax on empty

homes since 2015 and tripled the tax value to 60% worth of the unit in 2017 (Better

Dwelling, 2017).

Besides the vacancy tax, there is another tax regulation, specifically in Ontario,

Canada, called Municipal Accommodation Tax (MAT) which has to be paid by any

short-term rental operator as of 2017 (Government of Ontario, 2017). The tax value

is 4% of the rental revenue for any short-term unit under 28 consecutive days (City

of Toronto, 2021). This could be a great concern for anyone who is deciding to share

her unit in the short-term rental housing in Ontario.

Since most of the regulations mentioned earlier are recent and new, there has not

been much study over these fields and the impacts of these policies on the decision-

making process of the stakeholders in short-term rentals or the hosts in long-term

housings. The first article that provides an evaluation only on vacancy tax (and not

3
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on MAT) is Segú (2020). She showed there was a 13% decrease in vacant units after

formulating the vacancy tax in France in 1999, proving regulation’s efficiency. She

also mentioned that most of the vacant units turned into the principal residence after

the regulation.

However, except for the above article, to the best of our knowledge, there is no

other article that analyzes these two different types of regulation on the housing

units in the form of queueing systems. In Chapter 3 of this thesis, we work on

price optimization in short-term rentals as a loss system of M/M/1/1 with the single

server in this system being a focal host operating accommodation service and compare

those above two taxing policies with the case of no regulation. Then, we try to give

some insights into the strategies for both the government and the hosts in short-term

rentals.

For the second part of the thesis, based on the second motivation that we earlier

mentioned, we start working on larger scale loss systems, e.g., M/M/N/N, however,

with more realistic assumptions in our computations. In other words, we decided to

explore the gaps that currently exist in revenue management of loss systems literature

which prevent the model from being close to real-world problems. As an example,

one of the extensions that we can add to our current loss system is the advance

reservation.

Advance reservation is typical in many queueing systems. For example, in a short-

term rental system such as Airbnb, a customer reserves her favorite unit (among the

available ones) in advance for some time in future. Thus, she is assigned to a server

without entering the system yet. Then, she needs to wait until the beginning of the

reserved time; she will enter the system, stays there until her trip is over, and then

4
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she will leave. As another example, ride-sharing systems such as Uber let the riders

reserve a ride 5 minutes to one month in advance (Uber Help, 2016). Lyft also has

this option but for shorter periods, i.e., reserve for only seven days ahead (Lyft Help,

2017). Another example for reservation systems, as previously mentioned, can be

car-sharing organizations such as Zipcar where customers can book a car from one

hour up to 14 days in advance (Zipcar Support, 2021). This option lets customers

(tourists and riders in our cases) more flexibility for their future planning, which is

necessary for almost any queueing system. There have been numerous studies on

queueing systems that support the users to reserve a server in advance.

A closely related paper is Chen et al. (2017), who worked on revenue management

in loss networks while accepting advance reservations. One of the differences in the

assumptions is that in this article, the goal is to set policies to either accept new

customers to the system or not. In contrast, in our work, we assume customers are

accepted unless all the servers in the system are occupied. Instead, we focused more

on finding the optimal price for servers based on the demand function. In fact, we

assume there is a third-party who is a decision-maker in the system and is willing to

maximize the total revenue of the system. A similar to what Zhu et al. (2019a) did

in their study. Moreover, we decided to use a choice-based model for the customers’

selection process in our price optimization problem, i.e., multinomial logit choice

model (MNL).

MNL defines a utility function for each customer based on each alternative (in

our model, each server). Then, a customer will choose the alternative which leads to

the highest utilization for her. Also, another advantage of this model is the random

utility variable that is different for each option and makes the model more realistic by

5
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showing that the servers does not bring identical utility for each customer. Moreover,

the use of MNL in revenue management problems is common in literature as Strauss

et al. (2018) proposes a review of the choice-based models in the revenue management

literature, including the MNL choice model.

Finally, motivated by the advance of machine learning (ML) techniques in recent

years, we decided to use a simulation to create the queueing system environment to

overcome the complexities in this modified loss system due to its intractability. Then,

we trained a machine learning model based on the simulation to derive our numerical

results and pricing policies in a shorter time. The usage of ML in price optimization

has been increasing recently. An example could be the article by Helseth and Sveen

(2020). They combined machine learning techniques to forecast prices in a price

optimization problem, which inspired us to utilize a similar approach, i.e. using ML

techniques to predict the effective utilization for our model.

To the best of our knowledge, there has not been any work combining ML tech-

niques with price optimization in Erlang-loss systems while considering advance reser-

vation and MNL choice models in the queueing system. We, therefore, decided to fill

this gap by proposing our model with the following structure throughout our thesis.

Chapter 2 will provide a review of what similar works have been done so far in

the literature. Chapter 3 will analyze the M/M/1/1 loss system while considering

the two taxing policies for short-term rentals as an application. We will then give

some valuable insights for the decision-makers in that specific context. Chapter 4

will work on a general case of M/M/N/N but with considering advance reservation

and MNL choice model. We will also introduce our simulated queueing environment

and compare the impacts of different parameters on the effective utilization of each

6



M.A.Sc. Thesis – M. Hashemi McMaster University – Comput Sci & Engineering

server in a loss system. Chapter 5 will compare three proposed ML models to predict

the modified Erlang-loss system’s utilization and choose the best one among those.

Chapter 6 will work on the price optimization in the aforementioned queueing system.

Finally, Chapter 7 will be the conclusion and the suggestions for future work. The

work breakdown structure has been illustrated in the next page:

7
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Figure 1.1: The structure of the thesis
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Chapter 2

Literature Review

In this chapter, we classify the relevant literature into several categories; these do-

mains are as the following. We first start with reviewing the literature for the first

part, i.e., the first motivation of our thesis by defining the queueing theory princi-

ples, and then we will focus on the literature of loss systems among all the queueing

systems. After that, we mention the applications of queueing systems to real-world

problems in the literature. The next part will focus on the literature over the price

optimization and revenue management in these kinds of systems. We then proceed

to follow the literature based on our second motivation, starting with reviewing the

related literature in advance reservation, and customer choice models. Finally, we

will dig the literature on simulations and machine learning techniques.

Queueing Theory

Queueing systems are the types of systems in which servers provide service to cus-

tomers seeking different service categories; customers enter the system, receive service

9
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and then leave. Then, there might be a time when servers are all occupied, and cus-

tomers need to wait for some time to receive service; that is when queues are formed

(Bose, 2013). Thus, the queueing theory will be defined as studying the character-

istics of the waiting lines mentioned above to find the corresponding possibilities of

different states of queues and then find the optimal value for queueing parameters

(Thomopoulos, 2012). The parameters which are of interest to the analysts are cus-

tomers arrival processes to the systems, the service process in the queueing system,

the capacity of the system in terms of the number of servers, and the number of

available waiting slots in queues (Bose, 2013). Hence, there are many types of queue-

ing models based on different values for each of these parameters, which have led to

the definition of Kendall’s notations for queueing systems (Kendall, 1953). Based on

Kendall’s notation, the most common form is A/B/C/K/N/D which shows a system

in which the arrival process is A, the service process follows B. Also, the number of

servers is C, the number of queue capacity is K, the potential population is N, and

the service discipline, e.g., the way different classes of customers are served in the

system, is D (Kendall, 1953).

Loss Systems

Of the various types of queueing systems based on different queueing parameters, the

M/M/N/N Erlang-loss queueing system is one of the most popular (Medhi, 2006)

where customers’ arrival pattern is the Poisson process. Moreover, the service time

distribution is exponential. Devised by Erlang, a Danish mathematician motivated

to work on the telephone network queues (Erlang, 1917), there have been many other

10
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works on this type of loss system afterwards (Medhi, 2002, Isguder and Uzunoglu-

Kocer, 2014, and Shortle, J. F., Thompson, J. M., Gross, D., & Harris, 2018). For

example, Palm (1943) proved that Erlang’s model could be used for the cases when

the arrival process follows any arbitrary distribution. Later, Brumelle (1978) showed

that Erlang’s model could be even extended to the systems with their arrival and

service rates being state-dependent. Almost a century since the first time Erlang

proposed his model, Kingman (2009) provided a history of achievements in Erlang’s

model and how it evolved in the area of queueing theory.

One of the reasons these kinds of queues are of significant importance is that they

illustrate states in which there is customer loss. As Garnett, O., Mandelbaum, A.,

& Reiman (1998) referred to the customers in M/M/N/N queues as very impatient

customers, if a customer arrives and all the servers are busy, there will be no queue,

and she will leave. In other words, she has been blocked upon her arrival, which leads

to the name of blocking systems as an alternative name for loss systems. Subsequently,

the effective utilization of the servers in this system which is smaller than the nominal

utilization due to the customer loss is essential for further analysis. Due to the

importance of impatient customers in queueing theory, Wang et al. (2010) provided

a review for these types of customers in the literature by first introducing different

behaviours in impatient customers, then providing analysis of various queues with

such customers and finally optimizing for both sides of the queue.

Applications of Queueing Systems to Real-World Problems

There are many contexts in which different models of queueing theory can be uti-

lized. For example, there have been many works in healthcare systems that there is

11
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a literature review only for categorizing healthcare management problems related to

queueing principles by their topics (Lakshmi, C., & Iyer, 2013). The goal in these

papers is mainly to study the patients’ waiting times in queues and improve the

utilization, e.g., the percentage of the time when servers are not idle in a queueing

system (Palvannan and Teow, 2012). As another example, Xiao and Zhang (2010) ap-

plied queueing theory techniques to improve the long queues in banking systems and

successfully decreased the waiting time and increased customer satisfaction. Later,

Cowdrey et al. (2018) also worked on the same topic but analyzed various queue-

ing disciplines and determined that the shortest job first (SJF) discipline results in

the best customer satisfaction. Moreover, transportation-related problems are also

solvable with the techniques of queueing theory. Van Woensel and Vandaele (2007)

provided a review for traffic flows with queueing theory approach including both fi-

nite and infinite buffer size (e.g., queue length) and concluded that with a sufficiently

large enough queue capacity, both finite and infinite buffer sizes lead to almost the

same results.

Price Optimization and Revenue Management

On the other hand, one of the other areas of great interest to the authors of operations

management fields is price optimization and revenue management. Cross et al. (2011)

mentions that price optimization led to increased profits for various types of companies

without changing the customer types or system’s products.

Furthermore, price optimization and revenue management techniques have been

extensively studied in various contexts and systems. Vives et al. (2018) provided

a comprehensive review on explaining these techniques and the current trends of

12
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research of revenue management in hotel systems. Guillet and Mohammed (2015)

brought a critical review of the studies that have been done on revenue management

in the hospitality and tourism industry. For revenue management in the car rental

industry, Oliveira et al. (2017) presented a literature review. Tekin and Erol (2017)

delivered a broad review study on price optimization and revenue management in

retail stores. Finally, Ammirato et al. (2020) brought an in-depth literature review

for revenue management in passenger transportation systems.

Based on the wide range of studies in both queueing systems and price optimiza-

tion techniques, some have combined these two methods, and have done researches

for price optimization in queueing systems. One of the pioneers in this topic is Naor

(1969), who introduced a cost structure for M/M/1 queueing systems and optimized

the corresponding revenue. Other noteworthy related works are Miller, B. L., &

Buckman (1987), who considered capacity cost in M/M/N/N systems while propos-

ing optimal pricing policies, and Mendelson, H., & Whang (1990), who categorized

the classes of customers in an M/M/1 queueing setting while maximizing the expected

profit for the system. Moreover, Ziya et al. (2006) worked on finding optimal prices

under a specific price elasticity assumption for M/M/1/m and M/GI/N/N queues.

The latter is a broader version of the Erlang-loss system accepting any independent

general distribution for service time (including Markovian). Later he proved that the

results could be extended for different classes of customers while assuming the price

is static (Ziya et al., 2008).

Further achievements have been reached in static pricing strategies in queueing

systems, such as the works of Cachon and Feldman (2011), who tried to compare the

profit gained from subscription payment of customers or per-use fees. Also, Haviv
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and Randhawa (2014) worked on the queueing systems in which setting price is done

without knowing the demand information and concluded that demand-independent

pricing works reasonably well. In more recent years, however, dynamic pricing in

queueing systems attracted more attention. For instance, Kim and Randhawa (2018)

focused on dynamic pricing with observable queues and price-sensitive customers, e.g.,

arrivals can see the waiting line and the price before deciding to join the queue and

concluded that dynamic pricing outperforms static pricing. In contrast, some other

works stated that dynamic pricing, in the long run, has negative impacts on customer

demand (Ziya et al., 2008). Nonetheless, despite these adverse effects, static pricing

does pretty well, and the loss of profit compared to dynamic pricing is relatively

small (Paschalidis and Tsitsiklis, 2000, Paschalidis, I. C., & Liu, 2002, and Hassin

and Koshman, 2017).

More specifically, optimization for ride-sharing platforms in queueing systems is

also of great significance. As an example, Jacob and Roet-Green (2021) developed a

queueing model in ride-sharing platforms to compare the system’s revenue when the

customers are sharing their ride with other customers and when they are not doing

so. The queueing system that Jacob and Roet-Green (2021) proposed for optimizing

the profit was the Erlang-loss model of M/M/N/N. As another example, Afeche

et al. (2018) studied the problem of matching customers and riders in ride-sharing

platforms in loss network of the queueing system. In this study, they assumed there

are two options of 1) being able to reject the demand of the customers despite the

supply of the drivers, and 2) being able to reposition the drivers. Afeche et al. (2018)

modeled the problem as the loss system and concluded that it might be optimal for

the profit gained by the system to ignore the demands (customers) in the low-demand
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locations despite the high supply of the drivers and make them reposition to high-

demand locations. These studies show that it is important to know the context of

the queueing system prior to the problem modeling.

Advance Reservation

There have been some works about studying advance reservation in different sys-

tems. For example, Shajin et al. (2020) worked on advance reservation for queueing-

inventory problems and later, they expanded their model by adding cancellation poli-

cies in their system (Shajin and Krishnamoorthy, 2021). Then they defined cost

functions for the items they were to sold in their system. Moreover, the advance

reservation was possible only among K specific time frames.

The impacts of the advance reservation have also been studied in ride-sharing

systems. As an example, Bilali et al. (2019) compared the system in which riders

can schedule a ride only for 2 minutes ahead with the system without the advance

reservation option and showed a 30% increase in the chance of finding a shareable

trip in the former. The increase in shareable trips is advantageous for the system as

it influences the price of the ride, and hence, it will win in the market competition,

which will lead to a higher profit subsequently.

Customer Choice Models

In queueing systems, one of the other essential factors to consider, as previously

mentioned, is the customer choice, e.g., how the customers are going to choose among

the servers upon their arrival. As one of the most recent works, we can mention

Pender et al. (2020), who studied the impacts of the delayed knowledge of the queue
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length for the customers while considering the MNL model as the customer choice

model. They concluded that the delay value has some threshold that needs to be

calculated based on different queueing contexts and that policies should be based

on that specific threshold. As another study considering the MNL choice model, we

can refer to Farhoodi (2019). He studied the welfare distribution in different systems

such as ride-sharing and short-term rental housings with the MNL customer choice

model. He then showed that in the former, the location and time of the service, and

in the latter, the location, time, and the characteristics of a unit are the key factors

in shaping the surplus values. These studies show that customer choice is valuable

for accounting for the servers’ heterogeneities.

Simulations and Machine Learning Techniques

Since we deal with random systems and queues, we may utilize methods to analyze

and solve them more easily. Based on Jain (1990), discrete-event simulation (DES)

has been a powerful tool for studying dynamic systems which work in random. Specif-

ically, for simulating queues for further analysis, DES has been extensively utilized

(Insua et al., 2012). Furthermore, the use of discrete-event simulation has increased

in different areas of study, such as in health systems, as Jun et al. (1999) suggests

in their review of simulation applications in health care clinics. As another exam-

ple, Wang, Y. B., Qian, C., & Cao (2010) utilized simulation to optimize an M/M/c

queue in the banking systems. Later, he mentioned that the results could be extended

to other queueing contexts such as selling tickets or hospital wait-rooms. Moreover,

Kambli et al. (2020) used discrete-event simulation to reallocate the existing servers

(and not just expand the current workforce) to decrease the queue lengths and reduce
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the waiting time, hence increasing customer satisfaction.

Moreover, simulation has also helped to solve and analyze price optimization prob-

lems. As in (Mariello et al., 2020), they have studied the different pricing policies in

hotel systems. They have also considered cancellation and reservation in their simula-

tion to make the model more realistic. With simulation, they reached a %19 increase

in revenue in comparison to the original pricing policies. Petricek et al. (2021) studied

the same general idea.

One of the common methods of discrete-event simulation is using the SimPy li-

brary in Python (SimPy 4.0.1 Documentation, 2020). There is also a more detailed

introduction to discrete-event simulation and SimPy in Matloff (2008). Recent works

have also been optimizing queues in SimPy, such as Holden (2017), who studied in-

ventory optimization in SimPy or Corgozinho et al. (2018), who studied the scaling

of hospital queues, specifically in Brazil. They concluded that the simulation helps

the user better understand the queueing system they are working on and aid them in

making improvements such as reallocating the servers.

Another way of overcoming the heavy computations in mathematical models is

using machine learning (ML) techniques. Recently, the studies of price optimization

with these algorithms have vastly increased. Some of these studies focus on the price

prediction. For example, works such as Greenstein-Messica and Rokach (2020) used

ML methods to forecast product price elasticity effects for the products that there

is no historical information regarding their price elasticity. They used the gradient

boosting method based on the data derived from 18 months in a European online store

and showed that their proposed method greatly improved accuracy in forecasting.

Others focus on predicting the solutions to large-scale problems instead of directly
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solving them. For example, Abbasi et al. (2020) trained four popular ML models,

i.e., CART, kNN, RF, and MLP artificial neural network, based on a limited number

of optimization problems with their optimal solution. They showed that the trained

model works well in the decision-making process of blood supply chain systems.

There have been many reviews for ML models in the literature. One of the recent

ones is Ray (2019), which gives insight into the most popular methods and compares

their performance based on different parameters. This study will help a reader first

be familiar with the general ideas of each of these methods and second, help them

identify which algorithm to choose when facing a new problem.

Finally, there have also been studies regarding how to improve ML methods,

namely hyperparameter tuning. Bergstra and Bengio (2012) explained the random

search for hyperparameters in an ML model, a technique mainly used to optimize ML

trained models’ performance.
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Chapter 3

Price Optimization under

Utilization Constraint: M/M/1/1

Erlang-Loss Model

In this chapter, we work on a price optimization problem for an M/M/1/1 loss system.

We first do the optimization without any penalties for the server given a demand rate

for the system; then, we will study two possible tax policies that can be utilized by

a regulator to manipulate the pricing strategies of the system. A related real-world

case would be the queueing system in short-term rentals; however, we can generalize

the conclusions to other similar contexts.

We start this chapter by first describing the benchmark problem without any con-

straints on utilization; we then state the two possible scenarios for dictating taxes,

referring to them as Model I (benchmark model), Model II, and Model III, respec-

tively. Finally, we will compare the results in these three models and analyze the

decision-making process by both the server in the loss system and the regulator.
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3.1 Assumptions

The decision-makers in all three models are as the following: 1) Server - the server

needs to decide if she has to enter the M/M/1/1 loss system and offer short-term

service (a system with more uncertainty in its demand and with a more potential

profit; will be referred to as short-term system) or choose the outside alternative and

offer long-term service (a more stable system but with a less potential profit; will be

referred to as long-term system) to maximize her profit; from now on, we will use the

pronoun of she/her for servers, 2) Regulator - the regulator controls the tax policies

and regulation; the municipal accommodation tax, e.g., the fixed value tax that all

the servers have to pay in Model II, and the vacancy tax, e.g., the tax that has to be

paid if the server is vacant more than a specific threshold in Model III, 3) Outside

Alternative (exogenous) - suppose that each server’s average yearly income is πL if

she chooses the outside alternative and provides service there, 4) Customers - they

arrive at the system with the arrival rate of λ and we assume it decreases linearly in

the price; inspired by works such as Pedro Aznar et al. (2019), Zhu et al. (2019a),

and Farhoodi (2019) where they assumed the demand or the utility of each customer

linearly reduces when price increases. Thus, the normalized arrival rate, e.g., the

demand of the customers seeking service will be λ = 1 − PS where PS is the offered

price by the server in the loss system for using the service for one time unit.

3.2 Model I (Benchmark): No Regulation

As mentioned earlier, we are dealing with an M/M/1/1 loss system where M refers

to the exponential distribution of service time and the Poisson process of customer
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arrivals. Moreover, the first 1 refers to the number of servers and the second 1

states the maximum capacity of the system. It conveys the meaning that if the

server is occupied, and a new customer has just arrived, she will leave the system.

The following figure illustrates the state of the system in which there is already a

customer in the system:

Figure 3.1: Π1 state in M/M/1/1 loss system
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As can be seen, the customer has been blocked since the server is already busy;

therefore, she will leave the system and we will have a customer loss at t = t0.

For the next step, we need to define the profit function of the server. Therefore,

the decision variable will be the offered price by the server and the parameters that

are going to affect the profit value are the arrival rate of customers, the service rate

of the server, and the fixed costs. Hence, the annual profit will be defined as:

πSα = Y ρePS − u (3.1)

Where Y is a constant that could be equal to 365, the number of days in a year

(note that the arrival and service rates are both defined as people per day). However,

without loss of generality, we assume Y = 1. Moreover, the index α shows this variable

is related to Model I (this is for making the future comparison of different models

more convenient). Similarly, the corresponding indices for Model II and Model III will

be β and γ. Furthermore, u is the fixed costs incurred by the system during a fixed

period of time, i.e., a year. If we assume the system as a short-term rental, these costs

include, but are not limited to, cleaning fees, service fees and the fees for providing

some essential supplies and amenities for tourists. As a result, the average value for

these costs should be deducted from the profit of the host in our system. Finally,

throughout the thesis, we assume that u < πL, where πL is the average yearly income

of the outside alternative. Finally, ρe is the effective utilization, e.g., the percentage

of the time that the unit is occupied, which is smaller than the nominal utilization

(ρ = λ
µ
). In fact, effective utilization considers the probability of customer loss which
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based can be derived as below (see, e.g., equation A.2 in Dunlop et al., 1999):

ρe =
λ

λ+ µ
(3.2)

Based on what have been said, the modified profit function will be as follows:

πSα =
λ

λ+ µ
PS − u→ πSα =

PS − PS2

1− PS + µ
− u (3.3)

Which is a quadratic function of PS. The following lemma will find the best price

to offer by the host to gain the maximum profit:

Lemma 3.1. In the M/M/1/1 loss system when there is no regulation, the profit

function is concave and it has one maximum over the feasible values of the offered

price; that happens when the server chooses P ∗
Sα

= µ+ 1−
√
µ (µ+ 1) to offer. The

optimal profit (the profit based on P ∗
Sα

) will be π∗
Sα

= 2µ+ 1− 2
√
µ (µ+ 1)− u.

Proof. Please see the appendix.

Knowing the result of the above lemma, it will be easy for a server to decide

whether to participate in the short-term system or opt for the long-term one. She

needs to compare π∗
Sα

with πL and choose the one which gives her the higher profit.

Based on different values of u for different hosts, one may choose the former, and the

other might prefer the latter.

In the next section, we will work on Model II where the server who enters the

short-term system needs to pay some extra money as the tax.
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3.3 Model II: Regulation by a Fixed Amount of

Tax

This section will be dedicated to the MAT policy that have been formulated in Ontario

as mentioned earlier, the type of tax that every short-term rental host must pay.

Although, based on this regulation, the tax value has to be equal to 4% of the revenue

that the host gains (City of Toronto, 2021), since we are dealing with an M/M/1/1

system, we are only having one server; therefore, we can assume that the value of tax

can be constant. In other words, what is more important in this model is that the

server (host) has to pay some value of money as a tax regardless of the utilization of

the system. Furthermore, most of the assumptions and calculations will be the same

as the previous section, with a slight difference in the definition of the profit function.

We assume that the amount of tax that should be deducted from the profit of the

server is denoted by ∆ in this model. Hence, we can say:

πSβ = Y ρePS − u−∆→ πSβ = πSα −∆ (3.4)

Based on the above equation, and the fact that ∆ is a constant parameter, we

define the following lemma:

Lemma 3.2. In the M/M/1/1 loss system when there is regulation by a fixed amount

of tax, the profit function is concave and it has one maximum over the feasible values

of the offered price; that happens when the server chooses P ∗
Sβ

= P ∗
Sα

= µ + 1 −√
µ (µ+ 1) to offer. The optimal profit (the profit based on P ∗

Sβ
) will be π∗

Sβ
= 2µ +

1− 2
√
µ (µ+ 1)− u−∆ or in other words, it will be π∗

Sβ
= π∗

Sα
−∆.

Proof. Please see the appendix.
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The same as the previous section, the server needs to compare π∗
Sβ

with πL and

choose the better one.

3.4 Model III: Tax Based on Utilization

In this section, we work on the vacancy tax policy, the one which has been formulated

in several countries such as Canada (BC), Hong Kong and Australia stating that a

host should pay the tax if the unit is vacant more than some specific time in a year.

Contrary to the previous two sections, the model is more complicated. As mentioned

earlier, the tax has to be paid, only if the utilization is below a certain threshold, θ,

stated by the regulator. Thus, we start by modifying the profit function:

πSγ = Y ρePS − u− kδ → πSγ = πSα − u− kδ (3.5)

Where k is a binary variable that will be equal to 1 if the utilization is below the

threshold and will remain zero otherwise, and δ is the amount of tax that has to be

paid in this policy.

Contrary to the previous model, P ∗
Sα

does not necessarily lead to the best possible

profit since we have a discontinuity caused by δ in the πSγ . In other words, since

the utilization decreases by the increase in price (when price increases, the arrival or

demand rate will decrease and consequently, utilization will also decrease), there will

be a specific price which will lead to a utilization exactly equal to the threshold. We

call this point the threshold price, and we denote it by P θ
Sγ

; the price that if the host

offers, her unit’s utilization will be equal to θ. Note that in this state, the host still

does not need to pay the tax. However, if she offers PS = P θ
Sγ

+ ε for any positive
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value of ε, she will need to pay the tax.

Based on the above discussion, we will reach the following lemma:

Lemma 3.3. In the M/M/1/1 loss system when there is a tax based on utilization,

if a server is willing not to pay the tax, she should set her price in a way that PS ≤

P θ
Sγ

= 1−θ(1+µ)
1−θ

Proof. Please see the appendix.

Moreover, we call the region in which the utilization is equal to or above the

threshold value the untaxed region.

Now, we define a maximization problem for finding the optimal value of profit

gained by a server in the short-term rental system:

max πSγ =
(

1−PS
µ+1−PS

)
PS − u− kδ

s.t. : PS − P θ
Sγ
≤ kM

PS ≥ 0

k ∈ {0, 1}

(3.6)

In the objective function, 1−PS
µ+1−PS

comes from equation (3.2) that we have replaced

the value of λ with 1−PS. The first constraint comes from Lemma 3.3. As a reminder,

k is a binary variable which indicates whether the utilization is above or below the

threshold. The first constraint, assuming M is a big positive constant, means that

whenever PS is smaller than or equal to P θ
Sγ

(the conditions in Lemma 3.3), k could

be both 0 or 1 because the left-hand side will be a negative number and the right-

hand side will be 0 or M , respectively. In both situations, the constraint will be met;

nevertheless, since we are dealing with a maximization problem, k = 0 will always be
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the better choice since by choosing this value, we are removing the term −kδ from

the objective function. In other words, this means that the host does not need to pay

the tax in this case. On the other hand, if PS is bigger than P θ
Sγ

, k can only be equal

to 1 which will result in paying the tax by the host in the objective function.

The following lemma will be a solution to the above optimization problem under

certain circumstances:

Lemma 3.4. In the M/M/1/1 loss system when there is a tax based on utilization,

if the utilization threshold is smaller than or equal to 1−
√

µ
µ+1

, the best strategy will

be offering P ∗
Sγ

= P ∗
Sα

= µ + 1 −
√
µ (µ+ 1) to gain the maximum profit. Under

these conditions, the server does not need to pay the vacancy tax either. However, if

θ > 1−
√

µ
µ+1

then P ∗
Sα
> P θ

Sγ
.

Proof. Please see the appendix.

According to the above lemma, when we are no longer under the conditions of

Lemma 3.4, e.g., the utilization threshold is larger than 1−
√

µ
µ+1

, based on the

results of this lemma, P ∗
Sα
> P θ

Sγ
. Nonetheless, if the server persists in offering P ∗

Sα
,

based on Lemma 3.3, she needs to pay the tax. Therefore, if the host is still willing

to escape from paying the tax, she should offer a smaller price (the lower the price is,

the higher the utilization will be). Previously, we mentioned that the profit function

in Model I is concave (Lemma 3.1). In this model, however, there is a discontinuity

in the profit function, and it happens when the utilization gets equal to the threshold

value. Based on this fact, there may be three different scenarios which have been

depicted below:
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(a) P θSγ ≤ P
∗
Sα

, πθSγ ≥ π
∗
Sα

(b) P θSγ < P ∗
Sα

, πθSγ < π∗Sα (c) P θSγ > P ∗
Sα

Figure 3.2: The three different states that can happen for the server; based on the
values of δ and θ, sometimes paying the tax still leads to a higher profit. On the

other hand, whenever P θ
Sγ

is greater than P ∗
Sα

, it will always be better for the server
to offer P ∗

Sα

As can be seen in the above figure, when the tax constraint is added to the profit

function, it will not affect the overall behavior of the profit function and only creates

a gap in the discontinuity point (when ρe = θ); the reason is that δ, the same as ∆,

is a constant parameter.

Based on what has been said, we may notice that a server can have two strategies

if she is not in the conditions of Lemma 3.4:

• Strategy 1: offer P θ
Sγ

in order to escape from paying the tax by offering a lower

price

• Strategy 2: offer P ∗
Sα

while not considering the tax penalty

Thus, according to the above strategies, we have to find out when π∗
Sα

will be

higher than πθSγ despite paying the vacancy in the former one. For this purpose, we
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have to compare the following values:

πθSγ < π∗
Sα
⇔ ρθeγP

θ
Sγ
− u < ρ∗eαP

∗
Sα
− u− δ ⇔

(
ρθeγ

1+ρθeγ

)
P θ
Sγ
<
(

ρ∗eα
1+ρ∗eα

)
P ∗
Sα
− δ

⇔ θ
(

1−θ(1+µ)
1−θ

)
<
(
µ+ 1−

√
µ (µ+ 1)−

√
µ (µ+ 1) + µ

)
− δ

⇔ δ <
(

2µ+ 1− 2
√
µ (µ+ 1)− θ−θ2(1+µ)

1−θ

)
(3.7)

Now, we can define the following lemma with the above inequality:

Lemma 3.5. In the single-host model when there is a tax based on utilization, if the

utilization threshold is larger than 1−
√

µ
µ+1

: if the condition (3.7) is met, Strategy

2 is the winner. Otherwise, Strategy 1 is the winner.

Proof. Please see the appendix.

Finally, using Lemma 3.4 and Lemma 3.5, we can define the following proposition:

Proposition 3.1. In the M/M/1/1 loss system when there is a tax based on utiliza-

tion, the optimal price function (e.g., the price which leads to the best possible profit)

and the best possible profit gained by the server based on different values of θ and δ

will be as below:

The optimal price function:

P ∗
Sγ =


P θ
Sγ

= 1−θ(1+µ)
1−θ , θ > 1−

√
µ
µ+1

, and

δ > 2µ+ 1− 2
√
µ (µ+ 1)− θ−θ2(1+µ)

1−θ

P ∗
Sα

= µ+ 1−
√
µ (µ+ 1), otherwise

(3.8)

29



M.A.Sc. Thesis – M. Hashemi McMaster University – Comput Sci & Engineering

The best possible profit gained by the server:

π∗
Sγ =


2µ+ 1− 2

√
µ (µ+ 1)− u, θ ≤ 1−

√
µ
µ+1

π
′
, θ > 1−

√
µ
µ+1

(3.9)

where:

π
′
=

 2µ+ 1− 2
√
µ (µ+ 1)− u− δ, δ ≤ 2µ+ 1− 2

√
µ (µ+ 1)− θ−θ2(1+µ)

1−θ

θ
(

1−θ(1+µ)
1−θ

)
− u, δ > 2µ+ 1− 2

√
µ (µ+ 1)− θ−θ2(1+µ)

1−θ

Proof. Please see the appendix.

3.5 Impacts of the Tax Payment: An Application

to Short-Term Rentals

In this section, we analyze the effects of paying tax by the servers on their pricing

strategies. Moreover, for the next following two sections, we assume that the system

we are analyzing the decisions for is the short-term rentals system which can be later

generalized to other similar systems. Subsequently, the server in the system will be

referred to as the host, the customers will be referred to as the tourists, the service

rate will be equal to the length of the stay in the system, the tax in Model III will

be referred to as the vacancy tax, and finally, the regulator will be referred to as the

government.
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3.5.1 Model II: Tax Sensitivity Analysis

For this model, since paying the tax is mandatory for every participant in the short-

term rental system, the hosts cannot change their strategy in a way to improve their

profit; even if they offer their price for free, they need to pay the tax. Therefore,

the pricing strategies in Model II are the same as Model I, and the only difference

is that the hosts are going to gain less profit in the former. On the other hand, the

government can act strictly and set ∆ in a way to make π∗
Sβ

less than πL. Under

these circumstances, the hosts will opt for long-term rentals. Consider the following

figure:

Figure 3.3: Tax analysis in Model II, Single Host

According to Figure 3.3, the difference between π∗
Sα

and πL, the green region, is

the range for the tax value, called ∆∗, that the host will still choose the short-term

rental, but she will have less profit than π∗
Sα

. As an example, if the tax amount is
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∆ (the black dotted line), the corresponding best profit will be π∗
Sβ

which is equal

to π∗
Sα
− ∆. Thus, when ∆ < ∆∗, the hosts will remain in the short-term rentals,

and when ∆∗ ≥ ∆, they will prefer long-term rentals. The disadvantage with this

model is that the government does not have any control over changing the prices;

hosts either enter the short-term rentals and offer P ∗
Sβ

= P ∗
Sα

or do not enter the

short-term rentals. Not being able to change the prices with this policy means not

being able to change nor control the demand of tourists for the short-term rentals.

In fact, this policy is more for controlling the supply of long-term rentals rather

than controlling the demand for hotels and short-term rental systems. Nevertheless,

if the government is too strict in this model, it will reduce the short-term supply.

Therefore, it will decrease the competition for hotels as the most crucial competitor

of hotel industries are short-term rentals, and their number have been decreased now.

3.5.2 Model III: Tax Sensitivity Analysis

In Model III, however, as can been seen in Figure 3.2, usually, the offered price by the

host should be lowered if a host wants to gain the maximum profit from the short-

term rentals system. Nonetheless, as we have noticed, for some specific values of θ,

e.g., the utilization threshold for paying the vacancy tax, and δ, e.g., the tax amount

in Model III, despite the existence of the vacancy tax penalty, the best strategy of

the host will not differ from the case where there is not a penalty for the vacancy of

the units (when the corresponding scenario to Figure 3.2c happens, similar to Model

I). This means that a host will not need to reduce her offered price in order to set

the utilization above the threshold as it is already so. Sometimes, even the maximum

profit gained by that host will not decrease despite the vacancy tax limitation.
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Based on these facts, we have named three different possible outcomes in Model

III based on values of δ and θ: 1) Effective Tax Region with Price Change, 2) Effective

Tax Region without Price Change, and 3) Ineffective Tax Region; all of which have

been illustrated in Figure 3.4.
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Figure 3.4: Various tax regions based on different values of θ, the utilization
threshold and δ, the tax amount in Model III

According to the above graph, we have plotted δ = 2µ + 1 − 2
√
µ (µ+ 1) −

θ
1−θ (1− θ (1 + µ)) which comes from the second condition of choosing P θ

Sγ
in equation
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(3.8) while the x-axis is θ and the y-axis is δ. Moreover, the intersection of the graph

with each axis has been calculated. By increasing the value of µ, the dotted black

line will move towards the left-hand side meaning the effective tax region will expand

which is in accordance to our previous observations; the shorter the average length

of stay for tourists, the lower the utilization will be and in return, the easier it will

be for the government to make its tax penalty effective. Finally, three different colors

illustrate the three different potential policies which are going to be described in the

following.

Effective Tax Region w/Price Change

If the goal of the government is to reduce the number of host(s) in the short-term

rentals, or in other words, the government wants to channel supply in the short-term

rental market to the long-term housing market, it should define the values of θ and δ

as the following:

 θ > 1−
√

µ
µ+1

δ > 2µ+ 1− 2
√
µ (µ+ 1)− θ

1−θ (1− θ (1 + µ))
(3.10)

Which refers to the red region in Figure 3.4 and its corresponding scenario in the

host’s point of view will be Figure 3.2a; in other words, the host, in this situation,

even with the best possible strategy, is going to gain less profit than the time there

is not a vacancy tax penalty (since we already showed that the profit function in

Model I (without tax) is concave and has only one maximum point; thus, reducing

a positive value of δ from this function will lead to a lower profit than π∗
Sα

). In this

state, based on the value of πL, the average yearly income in the long-term rentals,
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and the value of u, the average fixed costs of staying in the short-term rentals, one

host may compare the value of πθSγ with πL, and if the fixed costs are in a way that

they make the profit in short-term rentals lower than the long-term rentals, the host

will leave the former and utilize her unit in the latter. In this way, the government

has reached its goal as it wanted to reduce the number of short-term rentals’ hosts.

The other outcome for this policy is that since hosts have to reduce their offered

price inevitably, from P ∗
Sα

to P θ
Sγ

, based on the demand rate λ = 1−PS, the demand

for short-term rentals will increase. In other words, tourists will be more encouraged

to use short-term rentals. Thus, for hotels, it reduces competition from the peer-

to-peer (P2P) rental market to a less extent, if at all. Nonetheless, the short-term

rentals supply may decrease if for some host πθSγ < πL, and in return, the long-term

rentals supply may increase.

Effective Tax Region w/o Price Change

The other, however less strict, policy for the government will be setting the values of

θ and δ as the following:

 θ > 1−
√

µ
µ+1

δ ≤ 2µ+ 1− 2
√
µ (µ+ 1)− θ

1−θ (1− θ (1 + µ))
(3.11)

Which refers to the orange region in Figure 3.4 and its corresponding scenario in

the host’s point of view will be Figure 3.2b. The reason why we use the term less strict

(or a moderate) tax condition is that the value of δ is going to be less than before this

time; nevertheless, it will still lead to a profit less than the time there is no vacancy

penalty (Model I). With this policy, since PS will not change, the demand rate for the
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short-term rentals will not differ; thus, there will not be any specific encouragement

for the tourists to join the system than when there were no tax penalties. However,

the government is gaining some money from those hosts who decided to stay in the

system despite paying vacancy taxes. Moreover, the chances of leaving short-term

rentals for a host and opting for long-term rentals will be less than the previous

policy as π∗
Sα
> πθSγ ; this means that hosts’ profit in this state will be more than the

previous policy. Hence, when a host wants to compare her profit in the short-term

rentals with the average yearly income in the long-term rentals, she is more likely

to stay in the short-term rentals than in the previous case. Therefore, there will be

an increase in the supply of long-term rentals (but less increase in comparison to the

previous policy).

As a result, with this policy, the regulator (e.g., the government) is increasing the

long-term supply while also trying to protect the hotel industry from the peer-to-peer

rental platforms by receiving vacancy tax from those P2P platforms who are still

willing to stay in those systems.

Ineffective Tax Region

If the government chooses any threshold less than 1−
√

µ
µ+1

, regardless of the value

of δ, its policy is going to be ineffective as the threshold is not high enough to make

the hosts reduce their price; in other words, the system’s utilization is already above

the threshold value; thus, setting θ below 1−
√

µ
µ+1

will be useless. In Figure 3.4, this

policy will lie in the green region; furthermore, in the host’s perspective, this state

will be Figure 3.2c.

This policy will have no effect on neither tourists nor the hosts’ decision-making
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process as everything remains the same as the case when there is no vacancy tax

penalty. Nevertheless, if we accept the fact that not all the hosts are going to act

professionally as most of the units are usually managed by regular hosts lacking pricing

tools to get help from based on (Hill, 2015), some hosts may reduce their offered price

and set some smaller PS than the time there were no vacancy tax penalties.

In the next chapter, we will try to work on larger scale, modified Erlang-loss

systems, and find the utilization and comparison under different situations

3.5.3 Comparison of Models

As mentioned earlier, the pricing strategies in Model II are the same as Model I

except for the last decision of either staying in the short-term rentals or the long-

term rentals. For Model III, assuming δ = ∆, e.g., assuming the tax values are equal,

when the government chooses the effective tax without price change policy, the effects

on the pricing strategies of the hosts will be the same as the ones in Model II; in both

models, the hosts have to offer P ∗
Sα

to gain the best possible profit while paying the tax

amount of δ = ∆. This means the regulator can reach the exact desired outcomes and

goals derived in Model II by utilizing Model III as well. However, Model III is more

advantageous since the government is also able to control the price and subsequently,

control the demand for the short-term rentals by following the effective tax with price

change policy; something that is not possible in Model II.

In conclusion, we can say utilizing Model III in this model (single host) is more

beneficial since more goals can be achieved based on different values of parameters of

δ and θ in this model.

As a summary of all the three models described in this chapter, we have illustrated
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the following flowchart that summarizes the optimal pricing strategy in each model,

based on different values of µ, the service rate, θ, the utilization threshold, ∆, the

tax amount in Model II, and δ, the tax amount in Model III.
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Figure 3.5: Summary of the optimal price strategies for each taxing regulation in
an M/M/1/1 loss system
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Chapter 4

A Modified Erlang Loss Model

with Advance Reservation and

Multinomial Logit Choice of

Servers

In this chapter, we try to extend the model we discussed in the previous chapter to a

more general model with N servers. We also add the two extensions mentioned previ-

ously to this system; advance reservation (for the arrival process) and the multinomial

logit choice model (for the process of choosing among empty servers by customers).

We develop a simulation in which we can find the utilization and, correspondingly,

the profit for each server based on different queueing parameters. We will finally

analyze the impacts of advance reservation on the productivity of the server.
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4.1 M/M/N/N Erlang-Loss System

The M/M/N/N Erlang-Loss system generally works the same as M/M/1/1 systems

stated previously. The only difference is that there are now N servers, and the

system’s maximum capacity is also N customers. The following figure illustrates this

system:

Figure 4.1: M/M/N/N Erlang-loss system illustration
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Erlang’s Loss Formula

One of the most important equations in the M/M/N/N loss system is ΠN : the steady

state when there are N customers, independent of time, in the system. It will be

derived as the following (see, e.g., equation 3.55 in Gross, 2008):

ΠN =

(λµ)
N

N !

N∑
k=0

(λµ)
k

k!

(4.1)

The above formula is equivalent to the customer loss probability in the system and

is called Erlang’s Loss formula, denoted by B(N, ρ). Thus, if a customer arrives, there

will be a ΠN chance that the system is fully occupied, so that customer cannot enter

the system. That is why effective arrival rate and effective utilization are defined and

equal to:

ρe =
λe
Nµ

, where λe = (1− ΠN)λ (4.2)

Next, we will discuss the extensions to this current loss model.

4.2 Modified Erlang-Loss System

In this section, we consider two extensions to the classic Erlang-Loss system, and we

will state our assumptions for each of them.
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4.2.1 Advance Reservation

In the Erlang-Loss system, customers are limited to be served only upon their arrival.

However, in real-world cases, there are many instances where people reserve in ad-

vance for their desired service. Almost any queueing system with real-world settings

supports advance reservation; queueing systems of restaurants, short-term rentals,

healthcare systems, and so forth. Hence, to include these types of customers with

advance reservations, we need to categorize the arrivals into two types: 1) the ones

who want to be served upon their arrival, 2) the ones who want to reserve for some

time in the future. We assume that the customer of the second type arrives according

to the Poisson process with the rate of λreserve. We then denote the arrival rate of

the first type of customers by λnow to be able to make a distinction between them.

Moreover, for the former, we assume the number of days they reserve in advance

follows an exponential distribution with the mean of τ .

Furthermore, since these two types of customers are independent, the overall

arrival rate to the system will also be a Poisson process with the rate of λ =

λnow + λreserve.

4.2.2 Multinomial Logit Choice Model

In general, the servers in the Erlang-Loss system are identical, meaning that if a

customer arrives, she will choose from the available servers uniformly at random.

However, we want to consider a system in which each server is free to offer their

desired price. In response to the prices, each upcoming customer needs to decide

which available server will maximize her utility. To this end, we try to utilize the

multinomial logit choice model (MNL) and define a utility function for each customer
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i, and server j, inspired by Farhoodi (2019):

U i
j = aj + bjPj + εij (4.3)

Where Pj is the price of server j. Also, εij is customer i’s individual specific

utility of server j. In another point of view based on Train (2009), εij is a utility

that is unknown to us but is observable by customer i and it follows the Gumbel

distribution. Finally, the utility function of the outside option in customer i’s point

of view will be:

U i
0 = a0 + b0P0 + εi0 (4.4)

Based on different contexts for the queueing system, an outside option may refer

to various alternatives. For example, in a short-term rentals system, an outside option

can be hotel systems, whereas, in a food court queueing system, a restaurant outside

that food court is considered the outside option.

With this set of assumptions, whenever a customer arrives at the system, she will

calculate her utility derived from each available server while considering the outside

option. She then chooses an available server that maximizes her utility.

The following figure illustrates the modified M/M/N/N Erlang-loss system, in-

cluding advance reservation and MNL choice model:
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Figure 4.2: Modified M/M/N/N Erlang-loss system with advance reservation and
MNL choice model
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In Figure 4.2, the red spots show that those dates are already reserved, a feature

that is not considered in the classic Erlang-loss system. Also, the upcoming customer

chooses the unit which gives her the highest utility, which refers to the MNL choice

model. Moreover, note that if 1) all the prices are equal to P , 2) for all values of i

and j, εij = 0 are i.i.d., 3) for all values of j, aj and bj are equal, and 4) P0 = P + ε,

where ε is any small positive number, then the corresponding system will turn into

the Erlang-Loss system since this leads to uniform choice over servers.

As one might notice, one of the most significant characteristics of queueing sys-

tems is finding the utilization and, subsequently, the profit gained by that system.

Adding the two extensions of advance reservation and MNL choice model makes our

queueing system intractable for some further analysis. Therefore, we decided to build

a simulation model to find the utilization value of different servers based on various

scenarios. In the next section, we will discuss more.

4.2.3 Applications in Reservation Systems

In some systems, such as Zipcar, the reservation is a core part of the system and can-

not be removed; however, the question is how flexible the system should be regarding

the maximum number of days to reserve in advance for their service. The same

question can be asked when setting pricing strategies for short-term rental systems.

Moreover, policies could be slightly different for some other companies where the

advance reservation is an add-on feature, such as ride-sharing systems (like Lyft or

Uber), companies that recently have added the advance booking to their service. For

example, as previously mentioned, Lyft let the customers reserve up to only seven days

(Lyft Help, 2017) while its competitor, Uber, has the option to book a ride for one
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month ahead (Uber Help, 2016). Therefore, the first question in a price optimization

problem for these kinds of systems is what percentage of the customers should be

among the ones who want to reserve for some time in the future. The second will

be how soon the customers are allowed to book a server (unit, ride, and a car in our

case) to bring the maximum profit for the system. Therefore, we are interested in

finding the answer to these questions, and we will try to explore more in the following

sections.

4.3 Simulation of the Modified Erlang-Loss Sys-

tem

Due to the complexities that we mentioned earlier, we decided to simulate the modi-

fied Erlang-Loss system to find the utilization for each server; moreover, if we consider

prices for each server, we will be able to find the profit for all of them.

For this purpose, we utilized SimPy (SimPy 4.0.1 Documentation, 2020) and

NumPy 1.19.5 (Harris et al., 2020) packages from Python on free version of Google

Colaboratory notebook (Bisong, 2019). The CPU of Google Colaboratory platform

that we have run the codes on is Intel(R) Xeon(R) CPU @ 2.30GHz with 13GB RAM

. Our proposed simulation accepts the following as the inputs:

• λ: the overall arrival rate of the system

• λnow: the arrival rate of the first type of customers to the loss system (e.g., the

ones who want to be served upon their arrival)

• λreserve: the arrival rate of the second type of customers to the loss system (e.g.,

48



M.A.Sc. Thesis – M. Hashemi McMaster University – Comput Sci & Engineering

the ones who want to reserve a server for some time in the future)

• κ: arrival split rate - as we previously mentioned, λ = λreserve +λnow; therefore,

we can simply assume that κ percent of the overall arrivals are of type 1, e.g.,

λnow = κλ and the rest are of type 2, e.g., λreserve = (1− κ)λ

• µ: the service rate of the system

• N : the number of servers

• Pi, ∀i ∈ {1, 2, ..., N}: the price of each server (if the system is not price-based,

the user can input zero for each of them)

• P0: the price of the outside option (if the system is not price-based, the user

can input zero for this)

• T : the duration of the simulation in days

• t: the duration of the warm-up session in days

• τ : the average number of days that the customers book in advance for the

reservation

• ε: the error threshold for terminating the simulation

• η: the maximum number of iterations if not reached the threshold

When all the inputs are given, simulation starts, and customers arrive based on

the given arrival rates; however, the busy time of servers will not be collected during

the warm-up period to let the system be adapted to the normal conditions based

on the given data. After the warm-up period, the simulation will run for T more
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Algorithm 1 Simulation of the Modified Erlang-Loss System

1: input: (λ, κ, τ, µ,N, Pi, T, t, ε, η)
2: output: (u1, u2, ..., uN)
3: itr ← 1
4: while itr < η do
5: t0, νj ← 0
6: while t < t0 < T + t do . during warm-up, results are not collected
7: for each incoming customer i, let them choose among the servers available

for the requested time interval do
8: if customer i chooses server j then
9: νj ← νj + υi
10: end if
11: end for
12: end while
13: for each server j do
14: u

[itr]
j ← νj

T

15: ū
[itr]
j ←

itr∑
k

u
[k]
j

itr

16: if for any server j, |ū[itr]j − ū[itr−1]
j | > ε then

17: itr ← itr + 1
18: break
19: else
20: for each server j do
21: ûj ← ūitrj
22: end for
23: return (û1, û2, ..., ûN) . desired accuracy reached
24: terminates
25: end if
26: end for
27: end while
28: return (ū

[η]
1 , ū

[η]
2 , ..., ū

[η]
N ) . desired accuracy not reached
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units of time. Each upcoming customer chooses among available servers based on the

MNL choice model, and their service time, υi, will be assigned to their corresponding

server. Moreover, if we assume that the upcoming customer i chooses server j, υi will

be added to νj, the time that server j has been busy up to now during the simulation.

When t0, the system’s current time, reaches T , the simulation will stop, and the

utilization of each server will be calculated. The whole cycle will be repeated for few

more iterations. At the end of each iteration, the average utilization for each server

(from the beginning of the simulation up to the last iteration) will be calculated.

If the difference between two successive average utilization is smaller than the error

threshold, ε, for all the servers, the simulation will terminate. Otherwise, it will

continue until the number of iterations equals η, and then the final average for each

server will be returned.

4.4 Simulation Experiments

Now, we try to solve a couple of problems to evaluate our proposed simulation and do

some experiments to analyze the impacts of the different parameters on the utilization

of the servers. First, we try to run an Erlang-Loss system in our simulation to evaluate

the accuracy of the results. We can do so with the help of Erlang-Loss queueing

systems formulas.

4.4.1 Problem 1: Evaluation of the Simulation with Erlang-

Loss System

Consider the following input:
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λ = 2, κ = 1, τ = 0, µ = 0.1, N = 15, P0 = 0.01, Pi = 0, T = 365, t = 30, ε =

10−4, η = 500. Since we wanted to compare our simulation with the Erlang-Loss

system, we removed the MNL choice model by assuming εij = 0 for all sets of i

and j. With this setting, any nonzero price for the outside option will always lose.

Furthermore, since we have assumed λreserve = 0, we will have λ = λnow + λreserve =

λnow which means that we are dealing with an Erlang-Loss system.

To be able to compare the results of the simulation, we used the iterative Erlang-

Loss formula to calculate the utilization in the aforementioned system (see, e.g.,

equation 3.56 in Gross, 2008):

ΠN = B (N, ρ) =
ρB (N − 1, ρ)

N + ρB (N − 1, ρ)
, N ≥ 1, where ρ =

λ

µ
(4.5)

The results of the comparison are brought in Table 4.1.
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Utilization Simulation Erlang-Loss Formula Absolute Error

Server 1 0.8922 0.8933 0.0012

Server 2 0.8930 0.8933 0.0004

Server 3 0.8913 0.8933 0.0020

Server 4 0.8922 0.8933 0.0011

Server 5 0.8914 0.8933 0.0020

Server 6 0.8944 0.8933 0.0011

Server 7 0.8928 0.8933 0.0005

Server 8 0.8962 0.8933 0.0028

Server 9 0.8953 0.8933 0.0020

Server 10 0.8944 0.8933 0.0011

Server 11 0.8916 0.8933 0.0018

Server 12 0.8916 0.8933 0.0017

Server 13 0.8921 0.8933 0.0012

Server 14 0.8934 0.8933 0.0000

Server 15 0.8955 0.8933 0.0022

Average 0.8932 0.8933 0.0002

Table 4.1: Evaluating our proposed simulation by comparing the utilization results
with the Erlang-Loss formula

As can be seen in Table 4.1, the absolute error is close to zero (considering the error

threshold is 10−4), which validates the accuracy of our simulation. As a reminder,

we have purposefully modified the inputs to the simulation to have an Erlang-Loss

system; thus, we expected to see results similar to those from Erlang-Loss formulas.

The simulation terminated after 275 iterations (13.51 seconds). There is some
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other helpful information that can be derived from the simulation. For example, we

can count the number of blocked customers upon their arrival, e.g., they arrived at

the system while all the servers were busy; hence, they had to leave the system. The

average number of customers who reneged is 241 in the duration of 365 days, while the

number of total arrivals is 490. We have illustrated the customers who were blocked

in each day in the following figure:

Figure 4.3: Number of customers who are blocked in each day

Furthermore, the error convergence for the first four server has been depicted in

Figure 4.4; the rest of the servers follow the same pattern. In each graph, as one can

see, the difference between two successive average utilization is comparably high and

fluctuates often; however, it will be more stable after few iterations until the point

where the difference between two successive average utilization for each server is less

than ε.
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(a) Server 1 (b) Server 2

(c) Server 3 (d) Server 4

Figure 4.4: Error convergence for the first four servers in the simulation - Problem 1

Now that we have made sure our proposed simulation works with comparably high

accuracy, as the next problem, we try to utilize the advantages of this simulation and

compare the effects of advance reservation on servers’ utilization.

4.4.2 Problem 2: The Impacts of λreserve on Utilization

In this problem, we assume the overall arrival rate to the system is fixed and is equal

to 10, e.g., λ = λnow + λreserve = 10. We then run different simulations with various

values of λnow and λreserve. Thus, we can consider the input to be as the following:

λ = 10, κ = k, τ = 7, µ = 1, N = 15, P0 = 0.01, Pi = 0, T = 365, t = 30, ε =
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10−4, η = 500 for k = {0, 0.1, 0.2, ..., 1}. As can be seen, we have once again assumed

that all the prices are equal (i.e., zero) and τ = 7, e.g., on average, the second type of

customers reserve for one week ahead. We then run the simulation for 11 times and

the following table is a summary of the results:

λnow λreserve

# of

Served

Customers

# of Blocked

Customers

# of

Arrivals

Average

System

Utilization

Equivalent

Erlang-Loss

System

10 0 3513 132 3645 0.6385 0.6423

9 1 3507 141 3648 0.6353 0.6423

8 2 3500 150 3650 0.6262 0.6423

7 3 3477 162 3639 0.6142 0.6423

6 4 3450 177 3627 0.6006 0.6423

5 5 3429 202 3631 0.5898 0.6423

4 6 3404 220 3624 0.5774 0.6423

3 7 3384 241 3625 0.5661 0.6423

2 8 3376 252 3628 0.5607 0.6423

1 9 3380 269 3649 0.5599 0.6423

0 10 3380 270 3650 0.5574 0.6423

Table 4.2: Comparison of λnow and λreserve effects on system utilization

The last column, equivalent Erlang-loss utilization, is the system in which λ = 10,

and it does not support advance reservation. Moreover, as can be seen, although the

overall arrival rate to the system is fixed, when the advance reservation increases, the

utilization keeps decreasing. One can interpret it in this way: the more uncertainty
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we have in the loss system, the more loss we will have in the utilization of the system.

The reason can be mainly due to the increase in the number of blocked customers,

e.g., the ones who enter the system but all the servers are either already occupied or

already reserved for that time. As an instance, consider a case in which one customer

reserves for server j from day 10 to day 12. On the other hand, assume a customer

arrives at the system at day 3 and wants to stay there until day 11. In this case,

server j will not be available for this customer as it is already reserved for day 10

to day 12. That is one of the scenarios why the number of blocked customers will

increase when the advance reservation increases. Based on different values of λnow

and λreserve, we depicted the decrease in the utilization and comparison of the served

and blocked customers in Figure 4.5, and Figure 4.6, respectively:

Figure 4.5: The decrease in utilization by increasing the value of λreserve while
keeping λ fixed (decreasing κ)
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Figure 4.6: Comparison of percentage of the served customers with the percentage
of the blocked customers based on different values of λreserve and λnow while λ is

fixed

In the next problem, we try to analyze the impacts of τ in advance reservation

Erlang-Loss systems.

4.4.3 Problem 3: Impacts of τ on Utilization

This time, we aim to see if there is a relation between the value of τ , e.g., the average

number of days that the second type of customers tend to reserve in advance, and the

utilization of the system. For this purpose, we modify the input to the simulation as

below:
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λ = 10, κ = 0.5, τ = k, µ = 1, N = 15, P0 = 0.01, Pi = 0, T = 365, t = 30, ε =

10−4, η = 500 for k = {1, 2, ..., 14}. Thus, we are going to run the simulation for 14

times, each time with a different value of τ . The results are brought in the following

table:

τ

# of

Served

Customers

# of Blocked

Customers

# of

Arrivals

Average

System

Utilization

Equivalent

Erlang-Loss

Utilization

1 3473 170 3643 0.6236 0.6423

2 3462 182 3644 0.6112 0.6423

3 3455 193 3648 0.6047 0.6423

4 3446 198 3644 0.5992 0.6423

5 3435 199 3634 0.5941 0.6423

6 3430 202 3632 0.591 0.6423

7 3424 204 3628 0.5879 0.6423

8 3424 203 3627 0.5872 0.6423

9 3422 203 3625 0.5845 0.6423

10 3431 207 3638 0.5839 0.6423

11 3437 207 3644 0.5814 0.6423

12 3432 210 3642 0.5827 0.6423

13 3435 214 3649 0.5836 0.6423

14 3429 213 3642 0.5801 0.6423

Table 4.3: Comparison of τ effects on system utilization

We have also brought the graph of the utilization based on different values of in
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Figure 4.7:

Figure 4.7: The decrease of the utilization by increasing the value of τ while all
other parameters are fixed

As we can see, with the increase in the value of τ , the utilization tends to decrease

for a fixed value of the arrival rate. This validates our previous observation regarding

the impact of the reservation arrival rate; now, when the value of τ is higher, the

advance reservation impact will be even bolder. In other words, when the value of τ

is comparably high, for example, when τ = 12 compared to when τ = 2, the chances

of losing customers are higher since in the former, there are more days from the date

a customer reserves a unit in advance until the date she enters the system. Thus,

more customers will arrive in this period and more losses we will probably have. This

increase in the number of customer loss can be noticed in the following figure:
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Figure 4.8: Comparison of number of served customers with the number of blocked
customers based on different values of τ

Comparing Figure 4.5 with Figure 4.7, and also, Figure 4.6 with Figure 4.8, one

can see that both parameters generally have a same effect on the utilization. However,

there is a slight difference and that is τ ’s effect is less extreme than λreserve on the

amount of utilization. It can also be validated through Figure 4.7 that the decrease

in the utilization is smoother than Figure 4.5. Nonetheless, for small values of τ , the

utilization loss will be negligible. Therefore, a good policy could be letting a queueing

system support advance reservation but limiting it for small periods of reservation,

e.g., the time from the date they reserve a server until the date they enter it.

Now that we have analyzed the impacts of different parameters of advance reser-

vation on the utilization, we will simulate another loss system in which both advance
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reservation and MNL choice model is included. Also, we consider a state in which

prices are not exactly equal.

4.4.4 Problem 4: Comparison of the Erlang-Loss Model with

our Proposed Modified Erlang-Loss Model

As the last solved problem with simulation, we consider a case where both advance

reservation and MNL choice model are included. Therefore, we modify some param-

eters in Problem 1 and the input to the system will be as follows:

λ = 2, κ = 0.5, τ = 7, µ = 0.1, N = 15, P0 = 100, P1 = 95, P2 = 95, P3 = 97, P4 =

97, P5 = 99, P6 = 99, P7 = 101, P8 = 101, P9 = 103, P10 = 103, P11 = 105, P12 =

105, P13 = 107, P14 = 107, P15 = 109, T = 365, t = 30, ε = 10−4, η = 500. Comparing

the inputs of this current model with the inputs of Problem 1, we can see that we

split the overall arrival rate equally between the two types of customers (now and

reserve). Also, we assumed that there are some differences between prices of the

servers as can be seen. Moreover, to include the MNL choice model, we considered

the utility functions for each customer i and server j be according to equation (4.3)

while assuming aj = 0 and bj = −1 for simplicity. Finally, for εij, we assumed based

on Train (2009) that β = 0.5772 as the location parameter, and µ = 1, as the scale

parameter.

In the following table, we brought the summary of the results:
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Server Price Utilization Profit

Server 1 95 0.8023 27819.2376

Server 2 95 0.8042 27884.195

Server 3 97 0.8243 29183.0278

Server 4 97 0.8248 29201.5381

Server 5 99 0.8303 30002.3038

Server 6 99 0.8307 30019.0855

Server 7 101 0.7477 27564.7728

Server 8 101 0.7467 27527.2045

Server 9 103 0.3764 14150.9058

Server 10 103 0.3861 14516.97

Server 11 105 0.0832 3188.1444

Server 12 105 0.0775 2970.7551

Server 13 107 0.0126 492.9283

Server 14 107 0.013 505.9491

Server 15 109 0.0017 67.0675

Table 4.4: The summary of the utilization and profit for each server

In the above table, we also showed the profit for each server (defined as πj =

Pj × uj × 365). As can be seen, since we have included the MNL choice model

and thus, due to the existence of εij, which creates some randomness for the utility

functions of each customer, the cheapest servers do not necessarily have the highest

utilization. Moreover, if we calculate the average of the utilization values, we will

have ū = 0.4908. Comparing with the results of Problem 1 (Table 4.1), we notice
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that the average utilization has decreased by around 0.4, which is a significant drop.

One of the reasons may be the outside price; P0 = 100 is cheaper than half of the

servers; therefore, it will be preferable to those servers most of the time.

Nonetheless, because of the MNL choice model, servers 7 to 15 will not have a

utilization precisely equal to zero; for some customers, their corresponding utility

function may be even higher than the outside option. The other reason is that in this

problem, we have assumed half of the arrivals are the ones who reserve for some time

in future (instead of all the arrivals seeking service upon their arrival, Problem 1).

Based on our previous discussion, the advance reservation will reduce the utilization

of the servers, which is noticeable here.

Now that we have solved several cases and have some insights into the simulation,

we will list its strengths and weaknesses in the following section.

4.5 Advantages and Disadvantages of the Simula-

tion

Although the simulation works fine for small and simple instances (i.e., 13.51 seconds

for Problem 1), when the scale of the problem gets larger, especially for large values

of arrival rate, the computation will slow down. In Table 4.5, we show some various

scenarios (inputs) and the corresponding time to run each of them in order to see

how the number of servers affect the computation speed.
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# of

Servers

Arrival

Rate

Service

Rate
Itr

Average

Utilization

Total

Time

5 10 1 41 0.8721 9.00

5 100 2 13 0.9788 25.28

10 20 1 87 0.9238 38.88

10 100 10 47 0.7857 116.25

25 100 1 20 0.9870 42.29

50 100 2 110 0.8951 319.02

Table 4.5: Computation comparison with different inputs

We need to point out that the other parameters that have not been mentioned

in the above table are assumed to be the same as the ones in Problem 1. As can

be seen, when the arrival rate increases, the elapsed time will increase especially if

it is the case where the utilization is not close to 1. On the other hand, when the

utilization is so close to 1, it means that most of the arrivals are being blocked which

is not a time-consuming process in the simulation; however, if the utilization is not

close to 1, it means that most of the arrivals are being processed by the simulation

(i.e., which available units each arrival has to choose, how long they are going to

stay in those servers, and so forth) that takes some time. Moreover, when we add

advance reservation to it, e.g., λreserve 6= 0, and λreserve and τ are not too small, the

computation will slow down more than before and it will take even more time to

compute the results.

On the other hand, as mentioned before, one of the most significant parameters

in a loss system is the utilization of each server. By knowing the utilization for each
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server, different strategies can be used based on various contexts in which the system

is defined. That is why we have decided to train a machine learning (ML) model

to predict the utilization in the modified Erlang-Loss system to overcome the slow

computation barrier. In the next chapter, we will discuss more.
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Chapter 5

Predicting the Utilization in

Modified Erlang-Loss Systems with

Machine Learning

To build a machine learning model for predicting the utilization of each server, we

first need to create a dataset. We will then try different algorithms to train the ML

model and choose the best among them in terms of accuracy.

5.1 Creating the Dataset

We created 13000 random input tuples, ran the simulation for each, and kept the

outputs as the label for each input. Also, we specified an interval for all the parameters

and picked the random values from those intervals. Table 5.6 gives a brief description

of the inputs:
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λ κ τ µ P0 P1 P2 P3 P4 P5

Mean 5.01 0.5 10.07 5.01 272.95 273.24 274.3 272.77 274.88 275.66

STD 2.9 0.29 5.77 2.88 128.53 129.68 129.12 129.79 129.76 129.67

Min 0 0 0 0 46.71 45.56 47.39 49.41 46.96 46.93

25% 2.52 0.25 5.06 2.53 161.46 160.99 163.17 159.5 162.15 163.16

50% 4.98 0.5 10.07 5.01 272.63 272.94 273.18 272.4 275.87 275.59

75% 7.53 0.75 15.1 7.49 382.77 385.37 385.66 385.76 387.85 388.65

Max 10 1 20 10 504.39 503.4 503.66 503.08 503.47 504.68

Table 5.6: Description of the dataset created for building ML models to predict the
utilization for each server in an M/M/5/5 loss system

As it can be seen, we have fixed the number of servers, N = 5, to make the ML

modeling simpler. Among these 13000 samples, we took 3000 of them with closer

offered prices; in other words, in those 3000 samples, a randomly chosen server, say

Pi was selected randomly from 50 to 500; however, the other prices were chosen

randomly from the interval (Pi − 5, Pi + 5). The reason behind that was to train

the model to be familiar with the cases that the prices are somehow closer to each

other as well; the case that can be more realistic than the time when one server offers

Pi = 50 and the other offers Pj = 500. For the other 10000 samples, each price was

chosen uniformly and separately at random from the range of 50 to 500.

To illustrate the correlation between different parameters in this dataset, we used

the pairplot feature in Seaborn package (Waskom, 2021) with the help of matplotlib

(Hunter, 2007). We brought the pairwise plots of λ, κ, τ , µ and P1 in Figure 5.9 (the

rest of the prices will follow the same pattern as P1).
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Figure 5.9: Pair plots of the features of the dataset including the first server’s price

As can be seen, for each pair of parameters, there is full coverage for both x and y

axes. This shows that the input data has been chosen uniformly at random and they

are independent. On the diagonal, on the other hand, we can see the distribution

plots of each of these parameters which have almost been distributed uniformly over

the specified range.

Moreover, for some further analysis on the dataset, we brought Figure 5.10, the
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pair plots related to P1 and service rate. The P1-related plots show that although

almost every price can reach high utilization in the system, the dots are denser for

smaller prices. It makes sense for when a server is offering a smaller price in a

specified range (in our case, 50 to 500), chances will be higher to be the winner in

the price competition among all the servers. For the relation between service rate

and utilization, we can see that when the service rate is close to zero, the utilization

is almost equal to 1. Moreover, the corresponding profit will also be at its highest.

It makes sense since, for example, when µ = 0.001, an upcoming customer may stay

in the system for 1000 days on average, which is not realistic but happens due to

randomness in the data collection.

Lastly, for the relation between price and the corresponding profit, when price

increases, the profit generally increases; however, the occurrences drop drastically. It

means that setting the highest price does not necessarily lead to the highest profit.
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Figure 5.10: Pair plots of the service rate, first server’s price and profit including its
utilization

Now that we have some insights regarding our dataset, we can start working on

some ML models in the following sections.
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5.2 Predicting the Utilization: Neural Network

In this section, we will start training our model with a neural network algorithm using

TensorFlow 2.5 library (Abadi et al., 2015). We start with assigning 80% of the data

as the training set and the rest as the test set. The feature set has 10 columns, and

the label set has 5 columns: utilization of each server. Since the input data have

different scales (rates, days, prices), we decided to normalize the data by subtracting

the mean values and dividing the result by the standard deviation.

Next, we defined two hidden layers of 64 neurons with the sigmoid activation

function and RMSprop optimizer (learning rate = 0.001). The following figure shows

a straightforward illustration of the model:

Figure 5.11: The setting of the layers in the proposed neural network model for
predicting the utilization of each server

According to Figure 5.11, the input layer has the size of 10 for both its input and
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output since we have 10 features. Then, for the first hidden layer, the input has the

same shape as the previous layer’s output (input layer), and this pattern continues

until the last layer where the output is 5, e.g., the number of labels to be predicted.

Moreover, the None in each layer is the batch size which can vary; that is why it is

indicated as None.

After designing the model, we trained it with 4000 epochs (each sample from the

training set went through the whole network for 4000 iterations) and 20% of the

validation split. The following figure shows the mean absolute error at each epoch

for both the training set and the validation set:

Figure 5.12: MAE in training and validation set
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As can be seen, the MAE decreases when the number of epochs increase. There is

still an improvement for the validation set; however, it is insignificant to be considered.

On the other hand, since the validation error does not increase, we do not have

overfitting for this model.

Moreover, we have also brought the errors at the last five epochs of training in

the following table:

Loss MAE MSE
Validation

Loss

Validation

MAE

Validation

MSE
Epoch

3995 0.0004 0.0097 0.0004 0.001 0.0141 0.001 3995

3996 0.0004 0.0098 0.0004 0.001 0.0136 0.001 3996

3997 0.0004 0.0098 0.0004 0.001 0.0135 0.001 3997

3998 0.0004 0.0098 0.0004 0.001 0.0132 0.001 3998

3999 0.0004 0.0097 0.0004 0.001 0.0135 0.001 3999

Table 5.7: Loss, MAE, and MSE in training and validation sets for the last five
epochs

We then tried our model to predict the test data. For this purpose, we illustrated

the graph of model predictions compared with true values for each instance in test

set:
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Figure 5.13: Comparison of the model prediction and the true value of the test set

Based on Figure 5.13, the closer the dots are to the y = x line, the more accurate

the model will be. As can be seen, there are a few outilers which have slightly more

error than the ones around the line; nevertheless, they happen rarely.

Finally, in the following table, we brought the errors of predicting the test set:

Loss MAE MSE

0.0009 0.0138 0.0009

Table 5.8: The errors for the test set

In the next section, we will try to train few more algorithms and compare the

results.
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5.3 Predicting the Utilization: Random Forest, Ex-

tra Trees and Gradient Boosting

In this section, we will train a model with three multi-output regression algorithms:

random forest, extra trees, and gradient boosting. Since all these three methods are

based on decision trees, we decided to work on them together. Moreover, to build and

compare our proposed models in this section, we use Scikit-learn library (Pedregosa

et al., 2011). For this purpose, same as before, we first split the data into training and

test set with the split of %80. On the contrary, we did not normalize the data as in

decision trees; the normalization does not impact the functionality of the algorithm.

Now, we can train the three above mentioned algorithms and choose the better

values for hyperparameters by tuning. For this purpose, we set a list for some of the

more essential hyperparameters and brought them in the following table:

Hyperpara-

meter/Algorithm

Multi-Output

Random Forest

Multi-Output

Extra Trees

Multi-Output

Gradient Boosting

n estimators [200, 400, ..., 2000] [200, 400, ..., 2000] [200, 400, ..., 2000]

max features [auto, sqrt] [auto, sqrt] [auto, sqrt, None]

max depth [3, 6, ..., 33] [3, 6, ..., 33] [3, 6, ..., 33]

min samples split [2, 5, 10] [2, 5, 10] [2, 5, 10]

min samples leaf [1, 2, 4] [1, 2, 4] [1, 2, 4]

bootstrap [True, False] [True, False] -

learning rate - - [0.1, 0.2, 0.5]

Table 5.9: Hyperparameter tuning - intervals for each hyperparameter
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We have two different alternatives here; either using the GridSearchCV or using

the RandomizedSearchCV. In our case, since we have assumed long intervals for each

hyperparameter, using the GridSearchCV will not computationally be a good idea.

The reason is that there will be too many combinations to be trained. Therefore, we

use the RandomizedSearchCV method for each of these algorithms with the above set

of hyperparameters. We consider 5 iterations for all three algorithms, each with the

5-fold cross-validation. It means that each algorithm will be trained 5×5 = 25 times,

and the best score among all of those will be chosen. The following table summarizes

the results:

Algorithm

/Best Hyperparameter

Multi-Output

Random Forest

Multi-Output

Extra Trees

Multi-Output

Gradient Boosting

n estimators 400 400 1800

max features auto auto sqrt

max depth 27 18 24

min samples split 2 5 10

min samples leaf 2 2 4

bootstrap True True -

learning rate - - 0.1

Score 0.8221 0.8067 0.8002

Table 5.10: Hyperparameter tuning - best scores parameters

Thus, based on the results, we will choose the random forest method with the

suggested hyperparameters in Table 5.10. We then train the model with these settings

with a 5-fold cross-validation and calculate the value of MAE which is 0.0528
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5.4 Choosing the Best Model

Comparing the MAE of the random forest method (the best algorithm among the

two other algorithms in the previous section) with the MAE derived from the neural

network model (Table 5.8), we can see that the latter slightly excels the former one.

Therefore, we can utilize the trained neural network method to predict the utilization

in the specific system mentioned at the beginning of this chapter.

Now that we have built a successful model to predict the utilization, one of the

essential parameters in loss systems, we will utilize different pricing strategies based

on various queueing contexts and optimization goals. The next chapter focuses on a

specific price optimization problem for an M/M/N/N loss system where N is larger

than 1.
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Chapter 6

Price Optimization in Modified

Erlang-Loss System

We begin this chapter by first describing the specific systems for which we want to

find the optimal price. We then build another ML model to find the profit of those

aforementioned loss systems. Finally, we state our proposed algorithm to find the

optimal price.

6.1 Assumptions

Throughout the whole chapter, we will follow these assumptions: 1) Advance

Reservation and MNL Choice Model - the same as the previous chapter, we

include these two extensions, e.g., customers can reserve in advance for the next τ

days (on average) and they will choose among the available servers based on their

utility function, U i
j , equation (4.3), 2) Price Equality - prices are all set equal to-

gether, e.g., Pj = P, ∀j ∈ {1, 2, ..., N}; in fact, inspired by Zhu et al. (2019b), we
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assume that a third party could be the decision maker for this system and he could

be the one who sets all the pricing strategies with a goal of maximizing the whole

system’s revenue; however, we should mention that this pricing tool does not dictate

any prices but it only recommends prices and in our problem, we are assuming all the

servers are going to choose the offered price, 3) Linear Demand almost the same

as our assumption in Chapter 3 for the demand rate, λ = D − P where D is some

constant and not necessarily is equal to 1 and P is the price of each server. The other

assumptions will be the same as what we stated in the previous chapter.

From now on, we will refer to loss systems with the above assumptions as equally

priced modified Erlang-loss systems. In the following section, we will work on building

ML models to find the optimal pricing strategy.

6.2 Predicting the Profit in Equally Priced Modi-

fied Erlang-Loss System

The same as how we defined the profit equation in Chapter 3, equation (3.1), we

define the modified profit function as below:

π = ρ̄e × P × T (6.1)

Where T is the time during which the simulation has been run, i.e., 365 days in our

case (indicating a year) and ρ̄e, is the average effective utilization of the queueing

system derived from the simulation (since we do not know the exact value).

As mentioned previously, due to computational barriers for using our simulation

in large problems, we utilized machine learning to predict the utilization instead of
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calculating it directly. Here, the same thing will be true for finding the utilization in

an equally priced system too. Assuming the demand rate for the system is λ = D−P ,

if we are dealing with large values of D such as D = 100 or D = 1000, to be able to

find the price leading us to the optimal profit, we need to try large values of λ in the

simulation. However, according to our earlier discussion, it will be time-consuming

for our simulation to run those instances. Therefore, we still need an ML model to

predict the utilization in the first step and then find the profit in the next one.

To this end, we will create another dataset, the same as what we made before

(Table 5.6) with the same range of intervals for parameters. The only difference is

that we set the prices all equal together, meaning that the first price will be chosen

randomly from the range of 50 to 500, and the other servers’ price will be the same

as the first one. Moreover, there will be no outside option in the model either due

to the assumption of λ = D − P . In fact, the outside option is already modeled in

the demand function in this new model; when the price is set higher, lambda will

decrease under this demand function, which means that more customers are pushed

to the outside option. It is also good to mention that now, the label in the dataset

is the average system utilization, and it is a single value rather than a five-tuple that

we used to deal with in the previous chapter.

For training the model, since we have already worked with quite the same dataset

and the neural network method outperformed, in this chapter, we only train the

models with neural network algorithm and then utilize the Keras Tuner for hyper-

parameter tuning. We have run this tuning process for 20 trials and each trial for

2 executions. We then put the objective function of our network to minimize the

validation set’s MAE. We also assumed that the input layer has 64 neurons (the same
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as the previous chapter), and the output layer has the size of 1 as it is supposed to

predict only a single value. For hidden layers, we randomly chose from 2 to 5 number

of hidden layers in each trial. Moreover, each hidden layer will have a random number

of neurons within a range of 32 to 512 with the step of 32. All the activation functions

are sigmoid, and the optimizer is RMSprop with the learning rate of 0.001. Moreover,

we set the default value of epochs equal to 1000; however, to prevent overfitting, we

used the callback of early stopping function with the patience of 10 to terminate the

learning if considerable improvement has not been noticed. Figure 6.1 shows the best

trained network structure in this hyperparameter tuning session.

Figure 6.1: The best hypermodel derived from the keras tuner library; a model for
predicting the utilization in an equally priced modified Erlang-loss system
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Moreover, the errors are as follows:

Loss MAE MSE

0.0074 0.0074 1.2165× 10−4

Table 6.1: The errors for the test set; hypermodel for predicting the utilization in an
equally priced modified Erlang-loss system

6.3 Price Optimization: Ternary Search

Now that we have a trained ML model which works acceptably well, we can utilize this

model and run a ternary search algorithm to find the optimal price (the price which

leads to the highest possible profit) inspired by Grigoriadis, M. D., & Khachiyan

(1994) who proposed the ternary search algorithm as one of the fast approximation

methods for solving convex optimization problems. Based on Bajwa et al. (2015),

time complexity in this method is O(log3 n) which is fairly acceptable in our case.

For this purpose, according to the definition of the profit function in equation

(6.1), and according to the fact that the increase in price reduces the demand (arrival

rate) as in λ = D − P , there will be a maximum point for the profit. Our goal here

is to find that optimal point; hence, we define the modified ternary search algorithm

to be compatible with our ML model as stated in Algorithm 2.

In Algorithm 2, f̂ is the trained ML model to predict the utilization, and ε∗ is the

absolute precision of the ternary search.

Now, we can compare the optimal price and subsequently, the optimal profit in

the equally priced modified Erlang-loss system with the optimal profit in the equally
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Algorithm 2 Ternary Search Algorithm

1: input: (λnow, λreserve, τ, µ, P, T, ε
∗, D, κ, f̂)

2: output: P ∗

3: PL ← 0, PR ← D
4: while TRUE do
5: if |PL − PR| < ε∗ then
6: return P ∗ ← PL+PR

2

7: end if
8: PL/3 ← 2PL+PR

3
, PR/3 ← 2PR+PL

3

9: fL/3 ← f̂(κ, 1
µ
, D − PL/3)× PL/3 × T

10: fR/3 ← f̂(κ, 1
µ
, D − PR/3)× PR/3 × T

11: if fL/3 < fR/3 then
12: PR ← PR/3
13: else
14: PL ← PL/3
15: end if
16: end while

priced classic Erlang-loss system and investigate the impacts of the advance reserva-

tion and MNL choice model on pricing strategies.

6.4 Comparing the Optimal Price and Profit

To compare the optimal price and profit in these two aforementioned systems, we can

utilize Algorithm 2 for the equally priced Erlang-loss system too. The only difference

will be the function of f̂ ; we have to use the Erlang-loss formula for finding the

effective utilization, e.g., equation (4.5).

6.4.1 Comparison of the Profit and Price Value: κ Effect

In this part, we tried to find the optimal profit and the corresponding price based

on different values of D in the classic Erlang-loss system, and then, we compared the
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results with two different scenarios: 1) τ = 7 and κ = 0.1, e.g., 10% of the arrival

rate are the ones who seek for service upon their arrival and the other 90% are for

advance reservation; 2) τ = 7 and κ = 0.9. For all three scenarios, we assumed µ = 1

and T = 365, e.g., we are interested in comparing the profits gained in a year. We

then plotted the yearly optimal profit in terms of D for these three scenarios:

Figure 6.2: The comparison of the yearly optimal profit in modified Erlang-loss
system with the Erlang-loss system based on two different values of κ

A more detailed summary can be found in Table 6.2.
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D P ∗ π∗ P ∗
κ=0.1

Absolute

Profit

Loss

κ = 0.1

Relative

Profit

Loss

κ = 0.1

P ∗
κ=0.9

Absolute

Profit

Loss

κ = 0.9

Relative

Profit

Loss

κ = 0.9

25 18.79 5325.382 18.93 737.1098 0.1384 19.24 158.1367 0.0297

75 64.53 20699.5302 64.17 2708.8845 0.1309 65.91 1191.1576 0.0575

125 111.79 37037.0862 112.09 4819.4855 0.1301 114.19 2554.8635 0.069

175 159.61 53750.6409 160.75 7080.9387 0.1317 163.03 4098.5529 0.0763

225 207.76 70680.1759 209.77 9452.3454 0.1337 212.16 5761.4336 0.0815

275 256.11 87754.4235 258.99 11906.5279 0.1357 261.45 7511.1612 0.0856

325 304.62 104934.3134 308.34 14425.6591 0.1375 310.86 9328.0154 0.0889

375 353.24 122195.6943 357.79 16997.452 0.1391 360.33 11198.878 0.0916

425 401.96 139522.4068 407.3 19613.0646 0.1406 409.9 13114.4927 0.094

475 450.75 156903.011 456.87 22265.8818 0.1419 459.49 15068.0408 0.096

525 499.61 174329.0576 506.49 24950.8312 0.1431 509.13 17054.2882 0.0978

575 548.52 191794.0968 556.12 27663.8725 0.1442 558.82 19069.1589 0.0994

625 597.48 209293.0724 605.8 30401.7959 0.1453 608.51 21109.3254 0.1009

675 646.49 226821.9345 655.48 33161.914 0.1462 658.25 23172.1318 0.1022

725 695.53 244377.379 705.22 35942.065 0.1471 707.98 25255.3144 0.1033

775 744.6 261956.669 754.96 38740.3225 0.1479 757.75 27356.9863 0.1044

825 793.7 279557.5069 804.69 41555.1318 0.1486 807.52 29475.5838 0.1054

875 842.84 297177.9418 854.46 44385.1176 0.1494 857.31 31609.6712 0.1064

925 891.99 314816.3005 904.25 47229.1438 0.15 907.12 33758.0796 0.1072

975 941.17 332471.135 954.02 50086.0936 0.1506 956.93 35919.7857 0.108

1025 990.37 350141.1822 1003.83 52955.0886 0.1512 1006.77 38093.7936 0.1088

Table 6.2: Summary of the comparison of optimal profit and price: κ effect
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Based on Table 6.2, we can see that the absolute profit loss and, subsequently, the

relative profit loss will increase when κ decreases; this validates our observations in

previous chapters. When κ decreases, the advance reservation will appear more often

in the system, and thus the profit received will drop. In Figure 6.2, one can observe

that the blue line lies below the pink line and conveys the same conclusion. Moreover,

the difference between the red line (Erlang-loss system) and the pink line (modified

Erlang-loss) comes from two reasons: a small effect of advance reservation (since κ is

comparable high) and also the existence of the MNL choice model. Moreover, from

Table 6.2, we can also notice that the optimal price happens in a larger value for the

time when we consider the MNL choice model and advance reservation. With the

increase in κ, the optimal price gets higher while the profit will be smaller.

6.4.2 Comparison of the Profit and Price Value: τ Effect

In this part, we assumed two different scenarios: 1) τ = 1, and 2) τ = 20 while in

both scenarios we assumed κ = 0.5 and the other parameters are the same as before.

In the following figure, we showed the impacts of τ in the profit loss comparing to

the optimal profit received in the Erlang-loss system.
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Figure 6.3: The comparison of the optimal profit in modified Erlang-loss system
based on two different values of τ with the Erlang-loss system

As can be seen in Figure 6.3, the difference of profit loss between different values

of τ is less than what we observed in Figure 6.2 for the values of κ. This validates

our previous observation that τ has lower effects on the utilization of the system, and

hence, lower impacts on the profit. In the following table, we showed more details of

these two scenarios comparing to the Erlang-loss system.
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D P ∗ π∗ P ∗
τ=20

Absolute

Profit

Loss

τ = 20

Relative

Profit

Loss

τ = 20

P ∗
τ=1

Absolute

Profit

Loss

τ = 1

Relative

Profit

Loss

τ = 1

25 18.79 5325.382 18.97 534.4759 0.1004 19.41 189.2917 0.0355

75 64.53 20699.5302 64.75 2133.5199 0.1031 65.9 1400.026 0.0676

125 111.79 37037.0862 112.8 3936.2197 0.1063 114.09 2913.6346 0.0787

175 159.61 53750.6409 161.55 5900.9718 0.1098 162.86 4597.4422 0.0855

225 207.76 70680.1759 210.64 7981.094 0.1129 211.95 6396.1599 0.0905

275 256.11 87754.4235 259.92 10147.602 0.1156 261.2 8279.5719 0.0943

325 304.62 104934.3134 309.32 12381.8034 0.118 310.59 10228.9591 0.0975

375 353.24 122195.6943 358.82 14670.9023 0.1201 360.05 12231.7218 0.1001

425 401.96 139522.4068 408.39 17005.719 0.1219 409.6 14278.8785 0.1023

475 450.75 156903.011 458.0 19379.3953 0.1235 459.21 16363.79 0.1043

525 499.61 174329.0576 507.67 21786.6414 0.125 508.83 18481.317 0.106

575 548.52 191794.0968 557.36 24223.2951 0.1263 558.5 20627.4443 0.1075

625 597.48 209293.0724 607.08 26686.0109 0.1275 608.22 22798.9162 0.1089

675 646.49 226821.9345 656.83 29172.0173 0.1286 657.94 24993.0368 0.1102

725 695.53 244377.379 706.59 31679.0352 0.1296 707.69 27207.6185 0.1113

775 744.6 261956.669 756.37 34205.101 0.1306 757.46 29440.8062 0.1124

825 793.7 279557.5069 806.19 36748.594 0.1315 807.25 31690.9516 0.1134

875 842.84 297177.9418 856.0 39308.0806 0.1323 857.04 33956.7293 0.1143

925 891.99 314816.3005 905.82 41882.3154 0.133 906.84 36236.8719 0.1151

975 941.17 332471.135 955.67 44470.231 0.1338 956.66 38530.3838 0.1159

1025 990.37 350141.1822 1005.51 47070.8424 0.1344 1006.5 40836.3395 0.1166

Table 6.3: Summary of the comparison of optimal profit and price: τ effect
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The summary in Table 6.3 also validates our previous observation. Also, compar-

ing to the results of Table 6.2, we can see that the reduction in profit is comparably

lower. To illustrate this idea better, we showed all the relative errors in the following

figure:

Figure 6.4: The relative error of profit loss in modified Erlang-loss system based on
different values of κ and τ

As can be seen in Figure 6.4, the relative errors generally have the same pattern;

they will increase when D increases. However, the slope gets smoother. Also, regard-

ing the brown line, the reduction in the relative error for some small values of D may

come from errors in the prediction of the value of utilization. Nonetheless, in larger

90



M.A.Sc. Thesis – M. Hashemi McMaster University – Comput Sci & Engineering

D values, it follows the same pattern. Finally, as can be noticed, the levels of the

lines’ occurrence mainly depend on the value of κ rather than τ which again indicates

the higher impacts of κ than τ .

6.5 Final Remarks

Based on the conclusions that we had on the impacts of κ and τ parameters on the

utilization and profit, we can state that for some companies like Zipcar where riders

can reserve a car up to 14 days ahead (Zipcar Support, 2021), although the company

is giving the customers more satisfaction by increasing the value of τ , it will lose

some profit. On the other hand, as earlier mentioned, there is no option of removing

the advance reservation in such systems meaning that κ is always almost equal to 1

there. Thus, the alternative of reducing κ is not possible here, which is close to the

case of short-term rental systems. κ is comparably higher in short-term rentals than

a system such as a ride-sharing platform; therefore, the focus should be on limiting

the value of τ and increasing the price for the customers who want to reserve for a

relatively long time ahead.

For ride-sharing companies, the reason why there is a difference between the τ

value in Uber and Lyft, as an example, could be decreasing the value of τ to gain

more profit in Lyft’s point of view. On the other hand, both these companies can

charge more if a user wants to reserve for a longer time in advance; with this policy,

both τ and κ tend to drop while the system is still supporting advance reservation

for their service. Finally, based on the relative profit loss that was depicted in Figure

6.4, the price for the reserved service should be higher than the price for non-reserved

service to obtain the optimal profit.
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Chapter 7

Conclusion

This thesis presents a price optimization analysis in stochastic loss systems while

considering other features such as scheduling in advance or the more sophisticated

customer choice model. Accordingly, the proposed simulation can be applied for vari-

ous loss systems with different parameters and results in the utilization of each server.

Furthermore, the utilization values can help any analyst set their goal and optimize

their problem by correctly identifying their decision variable. Finally, different ML

models can enhance the computations speed and lead to the final answers in a much

shorter amount of time.

Our results in the first chapter showed that among the two different tax poli-

cies that government imposes for short-term rentals, the vacancy and speculation tax

policy gives more flexibility to the regulator. In other words, with this policy, the

government can control the hosts’ pricing strategies and control the supply for differ-

ent streams of housing systems. However, this is not the case in the MAT tax, where

the government cannot encourage the hosts to change their offered price. We also

showed that speculation and vacancy tax already include the MAT tax under specific
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circumstances. As a result, we concluded that the government or the regulator should

use the vacancy tax (the tax based on the utilization).

On the other hand, from the hosts’ point of view, we showed that although some

policies can make the hosts change their offered price, they can still choose short-term

rentals over long-term rentals. However, there will be some cases that offering their

unit in the short-term rental will lead to less profit than long-term rentals. Based on

the summary that we illustrated at the end of this chapter, one can choose the best

possible price based on different values of parameters.

We then proposed a simulation for larger a larger scale, modified M/M/N/N

Erlang-loss systems, including advance reservation and Multinomial Logit (MNL)

choice model. The development of this simulation let us run numerical experiments

based on which one can realize that there are two parameters in the advance reserva-

tion that impact the utilization of the system: the arrival rate of the customers who

reserve in advance and the average number of days they reserve. Both these factors

reduce the utilization while the impacts of the former are much more noticeable.

Finally, different Machine Learning (ML) models helped us reach our goals in a

shorter time while bearing a little error value in their prediction. For example, the

price optimization for an M/M/5/5 system shows that the optimal profit in a modified

Erlang-loss system happens with a higher offered price than the classic Erlang-loss

system. In contrast, the profit itself will be reduced in the former.

There are various ways to extend this current work for future research. One could

be focusing on using general distribution for the arrival process and the service time

of the customers entering the system. It will make the model more applicable for real-

world uses. The other way would be training an ML model with a broader range of
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input data and more servers. With the help of more advanced computing techniques,

using more recent simulation environments, and devoting more time to compile the

simulation, one can extend the range for each queueing parameter to include more

problems. Lastly, for finding the optimal price in price optimization part of this

thesis, one can implement more robust methods such as stochastic gradient descent

instead of ternary search algorithm based on the suggestion of Bertsimas and De Boer

(2005).
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Appendix: Proofs

Lemma 3.1

In the M/M/1/1 model loss system when there is no regulation, the profit function

is concave and it has one maximum over the feasible values of the offered price; that

happens when the server chooses P ∗
Sα

= µ + 1 −
√
µ (µ+ 1) to offer. The optimal

profit (the profit based on P ∗
Sα

) will be π∗
Sα

= 2µ+ 1− 2
√
µ (µ+ 1)− u.

Proof. We first start the proof with reviewing some queueing theory principles. De-

noting the steady-state probability of the two states in M/M/1/1, e.g., either the

server is idle or is occupied, by Π0 and Π1, respectively, we can draw the birth-death

diagram for this system as the following:

Figure 7.1: Birth-Death transition diagram in M/M/1/1 loss system

In Figure 7.1, there should be a balance on the dotted line in the steady-state;
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hence: λΠ0 = µΠ1. Therefore:

Π0 + Π1 = 1→ Π0 +
λ

µ
Π0 = 1→ Π0 =

µ

λ+ µ
→

 Π0 = 1
1+ρ

Π1 = ρ
1+ρ

(7.1)

From which the effective utilization can be derived:

ρe = (1− Π1) ρ = Π0ρ =
ρ

1 + ρ
=

λ

λ+ µ

Getting back to the profit function, the critical point can be derived by taking a

derivative from it in terms of the price variable and put it equal to zero:

dπSα
dPS

= d
dPS

(ρePS − u) = 0→ d
dPS

(
PS−PS2

µ+1−PS

)
= 0

→
(

(1−2PS)(µ+1−PS)+(PS−PS2)
(µ+1−PS)2

)
= 0

(7.2)

Solving the equation above, we get two results for PS. The optimal price value

is either equal to µ + 1 +
√
µ (µ+ 1) or µ + 1 −

√
µ (µ+ 1). However, the first

root is bigger than 1 which is not feasible in our model (the arrival rate is defined

as λ = 1 − PS; therefore, the largest possible amount for PS is 1 which results in

zero arrival rate for short-term rentals). As a result, the only critical point over the

feasible range of price variables will be the latter. On the other hand, in order to

show this point is a maximum, we have to show that the function is concave, e.g., its

second derivative in terms of the price variable is negative over the feasible values.
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Thus:

d2πSα
dPS

2 = d
dPS

(
(1−2PS)(µ+1−PS)+(Pα−PS2)

(µ+1−PS)2

)
=

((−2PS(µ+1−PS)−(1−2PS))+(1−2PS))(µ+1−PS)2−(−2(µ+1−PS))((1−2PS)(µ+1−PS)+(PS−PS2))
(µ+1−PS)4

→
d2πSα
dPS

2 = − 2µ(µ+1)

(µ+1−PS)3
< 0

(7.3)

Above equation shows that the profit function is concave and hence, P ∗
Sα

= µ +

1−
√
µ (µ+ 1) will lead to a maximum profit for the host. The corresponding profit

based on this price will be as follows:

π∗
Sα

= ρeP
∗
Sα
− u→ π∗

Sα
=
(

1−P ∗Sα
µ+1−P ∗Sα

)
P ∗
Sα
− u→

π∗
Sα

=

(
1−
(
µ+1−
√
µ(µ+1)

)
µ+1−

(
µ+1−
√
µ(µ+1)

)
)(

µ+ 1−
√
µ (µ+ 1)

)
− u→

π∗
Sα

=

(√
µ(µ+1)−µ√
µ(µ+1)

)(
µ+ 1−

√
µ (µ+ 1)

)
− u→

π∗
Sα

=
(µ+1)
√
µ(µ+1)−µ(µ+1)−µ(µ+1)+µ

√
µ(µ+1)√

µ(µ+1)
− u→

π∗
Sα

=
(2µ+1)

√
µ(µ+1)−2µ(µ+1)√
µ(µ+1)

− u→ π∗
Sα

= 2µ+ 1− 2
√
µ (µ+ 1)− u

(7.4)

Lemma 3.2

In the M/M/1/1 model loss system when there is regulation by a fixed amount of tax,

the profit function is concave and it has one maximum over the feasible values of the

offered price; that happens when the server chooses P ∗
Sβ

= P ∗
Sα

= µ+1−
√
µ (µ+ 1) to

offer. The optimal profit (the profit based on P ∗
Sβ

) will be π∗
Sβ

= 2µ+1−2
√
µ (µ+ 1)−
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u−∆ or in other words, it will be π∗
Sβ

= π∗
Sα
−∆.

Proof. Based on Lemma 3.1, the profit function in Model II is exactly the same but

also includes the fixed cost parameter which is a constant. Therefore, it does not

appear in any derivatives, and the final solutions will not change. Therefore, the

same price as what stated in Lemma 3.1 maximize the profit function.

Lemma 3.3

In the M/M/1/1 model loss system when there is a tax based on utilization, if a

server is willing not to pay the vacancy tax, she should set her price in a way that

PS ≤ P θ
Sγ

= 1−θ(1+µ)
1−θ

Proof. Assuming the threshold is θ, the server, in order not to pay the vacancy tax,

should have her unit’s utilization higher than θ.

ρe ≥ θ ⇔ ρ
1+ρ
≥ θ ⇔

λ
µ

1+λ
µ

≥ θ ⇔
λ
µ

µ+λ
µ

≥ θ ⇔ λ
µ+λ
≥ θ ⇔ λ ≥ (µ+ λ) θ ⇔

λ (1− θ) ≥ µθ ⇔ 1− PS ≥ µθ
1−θ ⇔ PS ≤ 1− µθ

1−θ ⇔ PS ≤ 1−θ−µθ
1−θ ⇔ PS ≤ 1−θ(1+µ)

1−θ
(7.5)

We can learn from above that if the price offered by the server is smaller than

or equal to P θ
Sγ

= 1−θ(1+µ)
1−θ , the utilization will be higher than the threshold meaning

that there will be no need to pay the vacancy tax.

Lemma 3.4

In the single-host model when there is a tax based on utilization, if the utilization

threshold is smaller than or equal to 1−
√

µ
µ+1

, the best strategy will be offering P ∗
Sγ

=
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P ∗
Sα

= µ + 1 −
√
µ (µ+ 1) to gain the maximum profit. Under these conditions, the

host does not need to pay the vacancy tax either. However, if θ > 1−
√

µ
µ+1

then

P ∗
Sα
> P θ

Sγ
.

Proof. Based on the results in Lemma 3.3, in Model III, if the host offers a price

smaller than or equal to P θ
Sγ

, she does not need to pay the vacancy tax. On the other

hand, based on Lemma 3.1, the profit function in Model I is concave. Therefore, if

P ∗
Sα

happens to be smaller than or equal to P θ
Sγ

, the host gains the maximum profit,

e.g., the results of Model I and Model III will be the same. As a result:

µ+ 1−
√
µ (µ+ 1) ≤ 1−θ(µ+1)

1−θ ⇔ (1− θ) (µ+ 1)− (1− θ)
√
µ (µ+ 1) ≤ 1− θ (µ+ 1)⇔

µ+ 1− (1− θ)
√
µ (µ+ 1) ≤ 1⇔ µ ≤ (1− θ)

√
µ (µ+ 1)⇔ µ2

µ(µ+1)
≤ (1− θ)2 ⇔√

µ
µ+1
≤ 1− θ ⇔ θ ≤ 1−

√
µ
µ+1

(7.6)

All the steps are reversible; hence, we can conclude that if the very last term

in the above inequality holds true, e.g., θ ≤ 1−
√

µ
µ+1

, the host has to offer P ∗
Sα

=

µ + 1 −
√
µ (µ+ 1), she will gain the maximum profit without the need to pay the

vacancy tax.

Proposition 3.1

In the M/M/1/1 loss system when there is a tax based on utilization, the optimal price

function (e.g., the price which leads to the best possible profit) and the best possible

profit gained by the server based on different values of θ and δ will be as below:
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The optimal price function:

P ∗
Sγ =


P θ
Sγ

= 1−θ(1+µ)
1−θ , θ > 1−

√
µ
µ+1

, and

δ > 2µ+ 1− 2
√
µ (µ+ 1)− θ−θ2(1+µ)

1−θ

P ∗
Sα

= µ+ 1−
√
µ (µ+ 1), otherwise

(7.7)

The best possible profit gained by the server:

π∗
Sγ =


2µ+ 1− 2

√
µ (µ+ 1)− u, θ ≤ 1−

√
µ
µ+1

π
′
, θ > 1−

√
µ
µ+1

(7.8)

where:

π
′
=

 2µ+ 1− 2
√
µ (µ+ 1)− u− δ, δ ≤ 2µ+ 1− 2

√
µ (µ+ 1)− θ−θ2(1+µ)

1−θ

θ
(

1−θ(1+µ)
1−θ

)
− u, δ > 2µ+ 1− 2

√
µ (µ+ 1)− θ−θ2(1+µ)

1−θ

Proof. The proof comes directly from the results in Lemma 3.4 and Lemma 3.5.

Based on Lemma 3.4, if θ ≤ 1−
√

µ
µ+1

, the optimal price will be the same as the one

in the benchmark model. On the other hand, based on Lemma 3.5, if both conditions

of θ > 1−
√

µ
µ+1

and δ >
(

2µ+ 1− 2
√
µ (µ+ 1)− θ−θ2(1+µ)

1−θ

)
are met, the optimal

price will be less than the one in the benchmark model and is equal to P θ
Sγ

= 1−θ(1+µ)
1−θ .

The optimal profit will be calculated correspondingly.
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