IDENTIFYING CIRCULATING MEDIATORS OF CEREBROVASCULAR DISEASE

IDENTIFYING CIRCULATING MEDIATORS OF

CEREBROVASCULAR DISEASE

By MICHAEL R. CHONG, B.ASc (Hons.), MSc.

A Thesis Submitted to the School of Graduate Studies in Partial Fulfillment of the

Requirements for the Degree of Doctor of Philosophy

McMaster University © Copyright by Michael R. Chong, June 2021

McMaster University DOCTOR OF PHILOSOPHY (2021) Hamilton, Ontario, Canada. (Biochemistry)

TITLE: Identifying circulating mediators of cerebrovascular disease

AUTHOR: Michael R. Chong BASc, MSc (McMaster University)

SUPERVISOR: Dr. Guillaume Paré, MD, MSc

NUMBER OF PAGES: xx, 256

LAY ABSTRACT

Current stroke medications work by targeting circulating molecules. Our aim was to discover new drug candidates by combining genetic and circulating biomarker data using a technique called "Mendelian Randomization". In Study 1, we screened 653 circulating proteins and found evidence supporting causal roles for two novel candidates, SCARA5 and TNFSF12. Prior experimental studies suggest an important role for mitochondria in stroke recovery. Accordingly, in Study 2, we characterized the genetic basis of an emerging biomarker, mitochondrial DNA copy number (mtDNA-CN). Analyses of 395,781 participants revealed 71 associated genetic regions, representing a 40% increase in our knowledge. In Study 3, we measured mtDNA-CN in 3,498 acute patients and observed that lower levels predicted elevated risk of worse post-stroke functional outcomes. Furthermore, Mendelian Randomization analysis suggested a likely causal relationship. Overall, this work uncovered several novel therapeutic leads for preventing stroke onset and progression that warrant further investigation to verify therapeutic utility.

ABSTRACT

Many current drugs for stroke act by targeting circulating molecules, yet these have not been exhaustively evaluated for therapeutic potential. A central challenge is that while many molecules correlate with stroke risk, only a subset cause stroke. To disentangle causality from association, a statistical genetics framework called "Mendelian Randomization" can be used by integrating genetic, biomarker, and phenotypic information. In Study 1, we screened 653 circulating proteins using this technique and found evidence supporting causal roles for seven proteins, two of which (SCARA5 and TNFSF12) were not previously implicated in stroke pathogenesis. We also characterized potential side-effects of targeting these molecules for stroke prevention and did not identify any adverse effects for SCARA5. The remaining two studies focused on investigating the role of an emerging marker of mitochondrial activity, leukocyte mitochondrial DNA copy number (mtDNA-CN). Mitochondria have long been known to play a protective role in stroke recovery; however, a mitochondrial basis for stroke protection has not been extensively studied in humans. In Study 2, we first sought to better understand the genetic basis of mtDNA-CN in a series of genetic association studies involving 395,781 UK residents. We identified 71 loci which represents a 40% increase in our knowledge. In Study 3, epidemiological analyses of 3,498 acute stroke demonstrated that low mtDNA-CN was associated with higher risk of subsequent mortality and worse functional outcome 1-month after stroke. Furthermore, Mendelian Randomization analyses corroborated a causative relationship for the first time, implying that interventions that increase mtDNA-CN levels in stroke patients may represent a novel strategy for mitigating post-stroke complications. Ultimately, this work uncovered several novel therapeutic leads for preventing stroke onset and ameliorating its progression. Future investigations are necessary to better understand the underlying biological mechanisms connecting these molecules to stroke and to further interrogate their validity as potential drug targets.

ACKNOWLEDGEMENTS

First, I would like to extend my gratitude to my family. To my partner, Adrienne: thank you for your endless support. While research can be a solitary endeavour, we went through the lows and highs together – from frustrating nights of code debugging to the elation of manuscript acceptance. To my parents: thank you for being constant beacons of wisdom. Your food care packages allowed me to focus on my work, and home-made butter tarts distracted and "buttered up" my committee members. To my grandparents: thank you for instilling in your grandsons the primacy of education, which inspired us to become a teacher, veterinarian, and researcher. To my brothers: thank you for keeping me grounded and for reading my papers (or at least pretend to).

Second, I would like to thank my committee members, Drs. Andrew McArthur and Ashkan Shoamanesh. Andrew: thank you for asking the tough questions, giving me opportunities to lecture, and being a role model bioinformatician; your leadership in the genomic surveillance of COVID-19 is truly inspiring. Ashkan: thank you for being my friendly work neighbour, answering my naïve questions about stroke, and showing me that old guys can still hoop.

Finally, I would like to thank the Genetic and Molecular Epidemiology Laboratory (GMEL) who have been like a second family to me. To all of my GMEL colleagues: your friendship, guidance, and the moments we shared together defined my graduate student experience. A special thanks to the best supervisor and mentor anyone could ask for, Dr. Guillaume Paré. You showed me by example what it takes to be an exceptional researcher – dedication, perseverance, and hard work. You gave me the confidence and encouragement to pursue my own ideas, which showed me the value of having the freedom to explore one's own curiosities. Above all else, you have taught me countless life lessons beyond research that I am forever grateful for. Merci beaucoup!

TABLE OF CONTENTS

LAY ABSTRACT ii	i
ABSTRACTiv	7
ACKNOWLEDGEMENTS	7
LIST OF FIGURES	K
LIST OF TABLES xii	i
LIST OF ABBREVIATIONSxiv	7
DECLARATION OF ACADEMIC ACHIEVEMENT xvi	i
CHAPTER 1: INTRODUCTION	l
1.1 STROKE OVERVIEW	2
1.1.1 STROKE AND ITS IMPACT ON SOCIETY	2
1.1.2 STROKE SUBTYPES	2
1.1.3 TREATMENT	1
1.1.3.1 IMPORTANCE OF STROKE SUBTYPING	1
1.1.3.2 ACUTE STROKE TREATMENT	1
1.1.3.3 PRIMARY AND SECONDARY STROKE PREVENTION	5
1.2 STROKE BIOMARKERS	7
1.2.1 RATIONALE FOR STUDY OF STROKE BIOMARKERS	7
1.2.2 BIOMARKERS FOR STROKE RISK PREDICTION	7
1.2.3 BIOMARKERS FOR STROKE PROGNOSTICATION)
1.2.4 NEW HORIZONS FOR STROKE BIOMARKER RESEARCH	l
1.2.4.1 MITOCHONDRIAL DNA COPY NUMBER (MTDNA-CN)	l
1.2.4.2 ADVANCES IN MULTIPLEX PROTEIN DETECTION ENABLE	
PROTEOME-WIDE DISCOVERY	3
1.3 INTEGRATING GENETICS & BIOMARKERS FOR TARGET DISCOVERY	5
1 2 1 ENHANCING TARGET DRIORITIZATION WITH CENETICS 14	,
1.3.1 ENHANCING TARGET FRIORITIZATION WITH GENETICS	י ד
1.3.2 WENDELIAN KANDOWIZATION (WK) ANALISIS	' 1
1.3.3 GENOME-WIDE ASSOCIATION STUDIES (GWAS)	י ו
1.3.3.1 GWAS FOR CIRCULATING DIOMARKERS	L 1
1.3.3.2 UWAS FUK SIKUKE	Ł

1.3.4 EMERGING STROKE THERAPIES WITH MR SUPPORT	24
1.4 REFERENCES	25
CHAPTER 2: GENERAL HYPOTHESIS, OBJECTIVE, RATIONALE, AND APPROACH	42
2.1 GENERAL HYPOTHESIS	43
2.2 GENERAL OBJECTIVE	43
2.3 RATIONALE AND APPROACH	43
2.4 REFERENCES	45
CHAPTER 3: Novel drug targets for ischemic stroke identified through Mende Randomization Analysis of the Blood Proteome	lian 46
CHAPTER 4: GWAS and ExWAS of blood Mitochondrial DNA copy number identifies 71 loci and highlights a potential causal role in dementia	59
CHAPTER 5: Mitochondrial DNA copy number as a marker and mediator of stroke prognosis: Observational and Mendelian Randomization analyses	101
CHAPTER 6: DISCUSSION	135
6.1 GENERAL OVERVIEW	136
6.2 CHAPTER SUMMARIES	137
6.2.1 STUDY 1 (CHAPTER 3) SUMMARY	137
6.2.3 STUDY 2 (CHAPTER 4) SUMMARY	137
6.2.4 STUDY 3 (CHAPTER 5) SUMMARY	138
6.3 SIGNIFICANCE OF FINDINGS	138
6.3.1 CLINICAL IMPLICATIONS	138
6.3.2 BIOLOGICAL IMPLICATIONS	139
6.3.3. RESEARCH IMPLICATIONS	140
6.4 DISCUSSION OF PUTATIVE STROKE TARGETS	141
6.4.1 SCAVENGER CLASS A RECEPTOR MEMBER A5 (SCARA5)	141
6.4.1.1 NEW STUDIES IMPLICATE SCARA5 AS A THROMBOSIS REGULATO	OR 141
6.4.1.2 ADDITIONAL CONSIDERATIONS FOR THE INTERPETATION OF SCARA5 MR RESULTS	142
6.4.2 TUMOR NECROSIS FACTOR LIGAND SUPERFAMILY MEMBER 12 (TNFSF12)	143

6.4.2.1 EMERGING EVIDENCE FOR TNFSF12 AS A PROGNOSTICATOR OF POST-STROKE OUTCOME	.143
6.4.2.2 ADDITIONAL CONSIDERATIONS FOR THE INTERPETATION OF	144
6.4.3 MITOCHONDRIAL DNA COPY NUMBER (MTDNA-CN)	.145
6.4.3.1 MTDNA-CN RECOVERY AS A POTENTIAL THERAPEUTIC AXIS FOR CEREBROVASCULAR DISEASE	.145
6.4.3.2 NUCLEOSIDE-BASED SUPPLEMENTATION FOR TREATMENT OF MTDNA DEPLETION	.145
6.4.3.3 EXPERIMENTAL EVIDENCE FOR NEUROPROTECTIVE EFFECTS OF NAD+ UPREGULATION	.147
6.4.3.4 CLINICAL TRIALS OF NAD+ SUPPLEMENTATION	.148
6.5 STRENGTHS, LIMITATIONS, AND FUTURE DIRECTIONS	.148
6.5.1 STRENGTHS	.148
6.5.2 LIMITATIONS	.149
6.5.3 FUTURE DIRECTIONS FOR POTENTIAL THERAPEUTIC TARGETS	.151
6.5.3.1 SCARA5	.151
6.5.3.2 TNFSF12	.151
6.5.3.3 MTDNA-CN RECOVERY FOR STROKE PROTECTION	.152
6.5.3.4 NEW HORIZONS FOR MTDNA-CN RESEARCH	.153
6.6 CONCLUSION	.154
6.7 REFERENCES	.155
APPENDIX A: Supplementary Data for Study 1	.160
APPENDIX B: Supplementary Data for Study 2	.178
APPENDIX C: Supplementary Data for Study 3	.237

LIST OF FIGURES

CHAPTER 1: INTRODUCTION	1
Figure 1.1. OLINK PEA technology overview. (Screenshot from https://www.olink.com/data-you-can-trust/technology/)	15
Figure 1.2. Comparison between randomized controlled trials and MR. Adapted from Bowden <i>et al.</i> (2019).	19
Figure 1.3. Visualization of the underlying premise for MR as a causal inference method. Each point represents an independent genetic variant.	20
Figure 1.4. A pictorial representation of the 32 stroke loci identified by the MEGASTROKE study and the overlap with vascular risk factors and traits.	23
CHAPTER 3: Novel drug targets for ischemic stroke identified through Mendelian Randomization Analysis of the Blood Proteome	46
Figure 1. Overview of Mendelian randomization (MR) analyses. The study consists of a 3-stage design that employs MR at all stages. First, we evaluated causal roles for 653 circulating biomarkers in mediating risk of 3 ischemic stroke subtypes (large artery atherosclerosis, cardioembolic stroke, and small artery occlusion). Second, for the 7 identified biomarkers found to be significantly associated with risk of at least 1 ischemic subtype, we examined causal roles in mediating risk for hemorrhagic stroke subtypes (subarachnoid and intracerebral hemorrhages). Third, we explored a broad spectrum of side effects associated with targeting identified biomarkers for ischemic stroke treatment by expanding the previous analysis to 679 disease traits, belonging to 1 of 16 different International Classification of Disease–9 chapters. At each stage, a Bonferroni-corrected <i>P</i> -value threshold was applied, accounting for both the number of biomarkers and the outcomes analyzed.	50
Figure 2. Association between identified biomarkers and risk for ischemic stroke subtypes. Associations above the black midline represent risk-conferring effects, and those below the black midline represents protective effects. CI values are truncated at odds ratios greater than 1.30 and less than 0.70. *Nominally significant (P <0.05). **Bonferroni significant (P <0.05/(653×3)=2.55×10–5). ABO indicates histo-blood group ABO system transferase; CD40, cluster of differentiation 40; CES, cardioembolic stroke; F11, coagulation factor XI; LAA, large artery atherosclerosis; LPA, apolipoprotein(a); MMP12, matrix	52

Figure 3. Association between identified biomarkers and risk for hemorrhagic stroke subtypes. Associations above the black midline represent risk-conferring effects, and those below the black midline represents protective effects. *Nominally significant (*P*<0.05). **Bonferroni significant (*P*<0.05/(7×2)=0.004). ABO indicates histo-blood group ABO system transferase; CD40, cluster of differentiation 40; F11, coagulation factor XI; ICH, intracerebral hemorrhage; LPA, apolipoprotein(a); MMP12, matrix metalloproteinase-12; SAH, subarachnoid hemorrhage; SCARA5, scavenger receptor class A5; and TNFSF12, tumor necrosis factor–like weak inducer of apoptosis.

Figure 4. Potential on-target side effects associated with biomarker intervention revealed by Phe-Mendelian randomization analysis. Only Bonferroni-significant disease associations are illustrated ($P < 0.05/(7 \times 697) = 1.07 \times 10 - 5$). Simply, the results can be perceived as on-target side effects for a hypothetical drug that reduces risk of a given ischemic stroke subtype by 10% through intervention of circulating biomarker levels. Specifically, risk of disease is expressed per 10% reduction in risk for the specific ischemic subtype that each biomarker was associated with in the primary Mendelian randomization analysis. For ABO, which was associated with 2 ischemic stroke subtypes (large artery atherosclerosis and cardioembolic stroke), the results were standardized to a 10% reduction in risk of large artery atherosclerosis. Associations above the horizontal black midline represent deleterious side effects. Conversely, associations below this line represent beneficial side effects. The horizontal red line (odds ratio=1.10) represents the point at which decreased ischemic stroke risk is counterbalanced by an equal increase in disease risk. ABO indicates histo-blood group ABO system transferase; CD40, cluster of differentiation 40; F11, coagulation factor XI; LPA, apolipoprotein(a); MMP12, matrix metalloproteinase-12; and TNFSF12, tumor necrosis factor-like weak inducer of apoptosis.

CHAPTER 4: GWAS and ExWAS of blood Mitochondrial DNA copy number identifies 71 loci and highlights a potential causal role in dementia

Figure 1. Analyses of common genetic loci associated with mtDNA-CN. (A) Manhattan plot illustrating common genetic variant associations with mtDNA-CN. (B) Size distribution of 95% credible sets defined for 80 independent genetic signals. (C) GENE-MANIA-mania protein network interaction exploration (D) "MitoPathway" counts corresponding to 27 prioritized MitoCarta3 genes encoding proteins with known mitochondrial localization.

Figure 2. Rare variant gene burden association testing with mtDNA-CN and disease risk. (A) QQ plot illustrating expected vs. observed -log₁₀(p) values for exome-wide burden of rare (MAF<0.001) and nonsynonymous mutations. (B) Manhattan plot showing phenome-wide significant associations between *SAMHD1* carrier status and cancer-related phenotypes.

54

59

77

82

Figure 3. Graphical summary of mitochondrial genes and pathways implicated by genetic analyses. Colour-coding indicates through which set(s) of analyses genes were identified. The image was generated using BioRender (https://biorender.com/).	83
Figure 4. Coefficient plots for Mendelian Randomization analyses of mitochondrial disease traits. In the absence of heterogeneity (Egger-intercept $P \ge 0.05$; MR-PRESSO global heterogeneity $P \ge 0.05$), the inverse-variance weighted result was reported. In the presence of balanced pleiotropy (MR-PRESSO global heterogeneity $P < 0.05$), the weighted median result was reported. No set of analyses had evidence for directional pleiotropy (Egger-intercept $P < 0.05$).	85
CHAPTER 5: Mitochondrial DNA copy number as a marker and mediator of stroke prognosis: Observational and Mendelian Randomization analyses	101
Figure 1. mtDNA-CN is associated with stroke severity at baseline. (A) Stacked bar plots illustrate the proportion of each (i) ordinal mRS and (ii) consciousness level category per mtDNA-CN quartile. (B) Forest plots illustrate the association between mtDNA-CN quartile and risk of having (i) more severe strokes as indicated by ordinal mRS and (ii) reduced consciousness. The highest (4 th) mtDNA-CN quartile was used as the reference group.	116
Figure 2. mtDNA-CN is associated with 1-month prognosis after stroke. (A) Stacked bar plots illustrate the proportion of individuals belonging to (i) ordinal mRS, (ii) functional outcome status, and (iii) mortality categories per mtDNA-CN quartile. (B) Forest plots convey the association between mtDNA-CN quartile and post-stroke outcomes with the fourth quartile as the reference for comparison.	118
Figure 3. Subgroup analyses for mtDNA-CN associations with 1-month post-stroke outcomes including (A) poor functional outcome (mRS 3-6) and (B) mortality status. Except for the subgroup variable used to stratify, regression models were adjusted for age, sex, region, education level, country income level, household income level, primary stroke type and OCSP classification, Charleson comorbidity index, cardiovascular risk factors, pre-stroke disability, and baseline mRS.	119
Figure 4. Genetic predisposition to low mtDNA-CN, but not blood cell counts, is associated with higher risk of 3-month outcomes after stroke. Effect estimates for mtDNA-CN are expressed per 1 SD decrease in genetically predicted mtDNA-CN, whereas those for blood cell traits were expressed per 1 SD increase in genetically predicted blood cell counts (or neutrophil to lymphocyte ratio). Causal effect estimates obtained by the inverse variance weighted method are	121

xi

displayed as there was no significant heterogeneity or directional pleiotropy detected for any analysis (S. Tables 6 & 7).

CHAPTER 6: DISCUSSION

135

Figure 6.1. Sources of mtDNA-CN within whole blood. Created with	154
https://biorender.com/.	

LIST OF TABLES

CHAPTER 1: INTRODUCTION Table 1.1. The modified Rankin Scale as a measure of disability and dependence.	1 10
CHAPTER 3: Novel drug targets for ischemic stroke identified through Mendelian Randomization Analysis of the Blood Proteome	46
Table 1. Summary of Significant Biomarkers Representing Causal Mediators for Ischemic Stroke Subtypes. All displayed results surpassed correction for multiple hypotheses testing ($P < 2.55 \times 10-5$). Odds ratios are expressed in terms of risk per 1–standard deviation increase in biomarker levels. ABO indicates histo-blood group ABO system transferase; CD40, cluster of differentiation 40; CES,cardioembolic stroke; F11, coagulation factor XI; LAA, large artery atherosclerosis; LPA, apolipoprotein(a); MMP12, matrix metalloproteinase-12; SCARA5, scavenger receptor class A5; SNP, single-nucleotide polymorphism; and TNFSF12, tumor necrosis factor–like weak inducer of apoptosis.	51
Table 2. Descriptive Summary of Significant Phenome-Wide Mendelian Randomization Findings Representing On-Target Side Effects of Biomarker Intervention. Reported in this table are the number of significant disease associations ($P < 1.07 \times 10-5$), the number of beneficial and deleterious side effects, the ICD-9 disease chapters comprising greater than 20% of significant associations, and the most significant disease association for each biomarker. ABO indicates histo-blood group ABO system transferase; B, beneficial; CD40, cluster of differentiation 40; D, deleterious; F11, coagulation factor XI; ICD, International Classification of Disease; LPA, apolipoprotein(a); MMP12, matrix metalloproteinase-12; SCARA5, scavenger receptor class A5; and TNFSF12, tumor necrosis factor–like weak inducer of apoptosis.	53
CHAPTER 4: GWAS and ExWAS of blood Mitochondrial DNA copy number identifies 71 loci and highlights a potential causal role in dementia	59
CHAPTER 5: Mitochondrial DNA copy number as a marker and mediator of stroke prognosis: Observational and Mendelian Randomization analyses	101
Table 1. Demographic characteristics, comorbidities, and stroke characteristics for 3498 INTERSTROKE cases included in this study. *Percentage of ischemic stroke patients, not total number of participants.	113

LIST OF ABBREVIATIONS

ABC – age, biomarker, and clinical history score

ABO – Histo-blood group ABO system transferase

APOE – apolipoprotein E

ATP – adenosine triphosphate

AutoMitoC – automatic mitochondrial DNA copy number estimation pipeline

B2M – beta 2 microglobulin

CATIS – China Antihypertensive Trial in Acute Ischemic Stroke

CCL2 – chemokine ligand 2

CD40 – cluster of differentiation 40

CD163 – cluster of differentiation 163

CHI3L1 – chitinase-3-like protein 1

CI – confidence interval

COMPASS – Cardiovascular Outcomes for People using Anticoagulation Strategies CoVasc-ICH – Colchicine for the prevention of vascular events after an acute IntraCerebral Hemorrhage

COX1 – D Cyclooxygenase

CRP – C-reactive protein

CST3 – cystatin C

CT – computed tomography

DEPICT – Data-driven Expression-Prioritized Integration for Complex Traits

DGUOK - deoxyguanosine kinase

DNA – deoxyribonucleic acid

dNTP – deoxynucleoside triphosphate

ENCODE – Encyclopedia of DNA elements

eQTL – expression quantitative trait loci

ExWAS – exome-wide association study

F11 - coagulation factor XI

FDR - false discovery rate

Fn14 – fibroblast growth factor inducible-14

GDF15 – growth differentiation factor 15

GISCOME - Genetics of Ischemic Stroke funCtional Outcome study

GMEL – Genetic and Molecular Epidemiological Laboratory

GTPBP3 – mitochondrial GTP binding protein 3

GWAS – genome-wide association study

HR – Hazard Ratio

IL1 – Interleukin 1

IL6 – Interleukin 6

IMPROVE – multicenter, longitudinal carotid intima-media thickness and IMT

progression as predictors of vascular events in a high-risk European population

INTERSTROKE – Importance of Conventional and Emerging Risk Factors of Stroke in

Different Regions and Ethnic Groups of the World

ISGC – International Stroke Genetics Consortium

KB – kilobases

KORA F4 – cooperative health research in the region of Augsburg F4

 $L2R - log_2$ relative ratio

LD – linkage disequilibrium

LDLR – low-density lipoprotein receptor

LONP1 – mitochondrial lon peptidase 1

LPA or LP(a) – lipoprotein(a)

LRPPRC – leucine rich pentatricopeptide repeat containing

MGME1 – mitochondrial genome maintenance exonuclease 1

MIEF1 – mitochondrial elongation factor 1

MMP9 – matrix metalloproteinase 9

MMP12 – matrix metalloproteinase 12

MR – Mendelian randomization

MRI – magnetic resonance imaging

MR-PRESSO - Mendelian Randomization Pleiotropy RESidual Sum and Outlier

mRS – modified Rankin Scale

MRPS35 – mitochondrial ribosomal protein S35

MT – mitochondrial

mtDNA - mitochondrial DNA

mtDNA-CN - mtDNA copy number

NAD – nicotinamide dinucleotide

NAMPT – nicotinamide phosphribosyltransferase

Nfl-Neurofilament light chain protein

NIHSS – National Institute of Health Stroke Scale

NLRP3 – NACHT, LRR, and PYD-domain containing protein 3

NMN - nicotinamide mononucleotide

NR - nicotinamide riboside

NRI - net reclassification index

NT-proBNP – N-terminal fragment B-type natriuretic peptide

OCSP – Oxfordshire community stroke project

OPA1 – mitochondrial dynamin-like GTPase

OR – odds ratio

ORIGIN – outcome reduction with initial glargine intervention

OXA1L – OXA1L mitochondrial inner membrane protein

PACIFIST - Preventing cArdiovascular Complications aFter Ischemic STroke

PCR – polymerase chain reaction

PCSK9 – proprotein convertase subtilin/kexin type 9

PEA – proximity extension assay

Phe-MR – phenome-wide MR

PNPT1 – polyribonucleotide nucleotidyltransferase 1

POLG – DNA polymerase subunit gamma

POLG2 – DNA polymerase subunit gamma-2

PP – posterior probability

PPRC1 – PPARG related coactivator 1

pQTL – protein quantitative trait loci

QMDiab – Qatar metabolomics study on diabetes

qPCR – quantitative polymerase chain reaction

RCT - randomized controlled trial

RRM2B – ribonuclease reductase regulatory TP53 inducible subunit M2B

rt-PA – recombinant tissue plasminogen activator

 $SAIGE-Scalable \ and \ Accurate \ Implementation \ of \ GEneralized \ mixed \ mode \ SAMHD1-SAM \ and \ HD \ domain \ containing \ deoxynucleoside \ triphosphate$

triphosphoydrolase 1

SCALLOP – Systematic and Combined AnaLysis of Olink Proteins

SCARA5 – scavenger receptor class A5

SCO2 – synthesis of cytochrome C oxidase 2

SD – standard deviation

SiGN – Stroke Genetics Network (SiGN)

siRNA – small interfering ribonucleic acid

SNP - single nucleotide polymorphism

SLC25A10 – solute carrier family 25 member 10

STREGA – strengthening the reporting of genetic association studies

STROBE – strengthening the reporting of observational studies

TBRG4 – transforming growth factor beta regulator 4

TFAM – mitochondrial transcription factor A

TNFSF12 - tumor necrosis factor-like weak inducer of apoptosis

TNFRSF12A – tumor necrosis factor receptor superfamily member 12A

TOAST – trial of org 10172 in acute stroke treatment

tRNALeu – transfer ribonucleic acid leucine

TWNK – twinkle mtDNA helicase

TYMP – thymidine phosphorylase

TK2 – thymidine kinase 2

UK – united kingdom

UTR – untranslated region

WES – whole exome sequencing

YFS – young Finns study

DECLARATION OF ACADEMIC ACHIEVEMENT

FORMAT AND ORGANIZATION OF THESIS

This thesis is prepared in the "sandwich" format as outlined in the School of Graduate Studies' Guide for the Preparation of Theses. It includes a general introduction, an overview of hypotheses and objectives, three independent studies prepared in journal article format, and an overall discussion. The candidate is the first author on all manuscripts. At the time of thesis preparation, Chapter 3 was published, and Chapters 4 and 5 were submitted for review in peer-reviewed journals.

CONTRIBUTION TO PAPERS WITH MULTIPLE AUTHORSHIP

Chapter 3 (Study 1)

Chong M, Sjaarda J, Pigeyre M, Mohammedi-Shemirani P, Lali R, Gerstein H, Shoamanesh A, Paré G. Novel drug targets for ischemic stroke identified through Mendelian Randomization analysis of the blood proteome. Circulation. 140(10):819-830. (2019)

Author Contributions:

MC and GP contributed to the conception and design of the study. **MC**, JS, HG, and GP contributed to data acquisition. **MC**, JS, MP, and PM conducted data analysis. GP facilitated project administration and supervision. **MC** was the principal writer of the manuscript. All authors contributed to the drafting and revision of the final article. All authors approved the final submitted version of the manuscript.

Chapter 4 (Study 2)

Chong M, Mohammadi-Shemirani P, Nelson W, Perrot N, Morton R, Machipsa T, Lali R, Narula S, Khan M, Khan I, Judge C, Pigeyre M, Akhabir L, O'Donnell M, Paré G. GWAS and ExWAS of blood Mitochondrial DNA copy number identifies 71 loci and highlights a potential causal role in dementia. eLife. Under Review. (2021)

Author Contributions:

MC and GP contributed to the conception and design of the study. **MC**, WN, and GP contributed to methodological development. **MC**, PM, NP, GP, SN, IK RL, MK, and TM conducted bioinformatic and/or statistical analyses. GP, MO, and NC contributed to funding or data acquisition. GP facilitated project administration and supervision. **MC** was the principal writer of the manuscript. All authors contributed to the drafting and revision of the final article. All authors approved the final submitted version of the manuscript.

Chapter 5 (Study 3)

Chong M, Narula S, Morton RW, Judge C, Akhabir L, Cawte N, Pathan N, Lali R, Mohammadi-Shemirani P, Shoamanesh A, O'Donnell M, Yusuf S, Langhorne P, Paré G. Mitochondrial DNA copy number as a marker and mediator of stroke prognosis: Observational and Mendelian Randomization analyses. JAMA Neurology. Submitted. (2021).

Author Contributions:

MC and GP contributed to the conception and design of the study. **MC**, WN, and GP contributed to methodological development. **MC**, PL, SN, RM, CJ, LA, NC, NP, RL, PM, AS, MO, SY, and GP contributed to data acquisition, analysis, and/or interpretation of data. GP, MO, and SY obtained funding for this project. CJ, MO, and PL contributed to data acquisition. GP facilitated supervised this project. **MC** was the principal writer of the manuscript. All authors contributed to the drafting and revision of the final article. All authors approved the final submitted version of the manuscript.

CHAPTER 1:

INTRODUCTION

CHAPTER 1: INTRODUCTION

1.1 STROKE OVERVIEW

1.1.1 STROKE AND ITS IMPACT ON SOCIETY

Stroke, an acute neurological deficit caused by decreased blood supply to the brain, represents the second leading cause of death (11.8% of all deaths) and the third most common cause of disability (4.5% of all life years lost to disability) worldwide¹. In addition to the tremendous toll on quality-of-life, stroke carries a substantial economic burden with reported costs of \$74,353 (CAD) per patient and totals of nearly \$2.8 billion annually in Canada alone². Management and treatment are resource intensive as stroke patients carry a significantly higher life-time risk of recurrent stroke and other cardiovascular disease, infection, disability, and dementia^{3–6}. A deeper understanding of the molecular risk factors mediating stroke may lead to better risk stratification, prevention, and treatment.

1.1.2 STROKE SUBTYPES

Acute neurological deficits may arise from several mechanisms that cause reduced cerebral perfusion. Approximately 70% of all strokes involve vessel blockage and are classified as "ischemic" strokes, and the remaining 30% of strokes are caused by the rupture of cerebral blood vessels leading to intracranial bleeding, also known as "hemorrhagic" stroke^{7,8}. The diagnostic workup for determining stroke subtypes is extensive and encompasses a combination of neurological assessment, vascular imaging, neuroimaging (CT or MRI), structural and electrophysiological cardiac testing, and laboratory testing⁹. Most analyses performed in this thesis will focus on ischemic stroke, which will be the focus of the following sections.

Primary stroke types can be further subtyped based on etiology and location. Subtypes of ischemic stroke entail small artery occlusion, large artery atherosclerosis, cardioembolic stroke, stroke of other determined etiology, and strokes of undetermined sources¹⁰. Small artery occlusion arises from lipohyalinosis or microatheromas within the small penetrating cerebral arteries that directly perfuse brain parenchyma¹¹. Lipohyalinosis is a consequence of chronic hypertension and is defined by endothelial dysfunction, local inflammation, and vessel wall thickening which culminate in vascular narrowing¹¹. Large artery atherosclerosis refers to the presence of atherosclerotic plaques occluding larger intracranial and/or extracranial arteries or serving as a proximal atherothrombotic embolic source¹². Cardioembolic stroke is characterized by blood clots originating from cardiac chambers or valves (e.g. left atrium) that subsequently migrate (embolize) to occlude cerebral arteries¹³. Strokes of other determined etiology consist of identifiable albeit rare causes of stroke (e.g. vascular dissection)¹⁰. Strokes of undetermined source are an active area of investigation but are suspected to be caused by various mechanisms including but not limited to embolism from overlooked cardiac sources (e.g. left ventricular thrombi), paradoxical embolism, and non-occlusive atherosclerosis¹⁴. In contrast to ischemic stroke subtypes, hemorrhagic stroke subtypes are defined based on whether bleeding occurs in the brain parenchyma (intracerebral hemorrhage) or the space surrounding the brain tissue (subarachnoid hemorrhage).

1.1.3 TREATMENT

1.1.3.1 IMPORTANCE OF STROKE SUBTYPING

Accurate diagnosis of subtypes is important because it informs both acute and secondary treatments. In the acute setting for example, recombinant tissue plasminogen activator (rt-PA) is used to degrade clots present in ischemic stroke patients; however, rt-PA also increases the risk of bleeding, and thus is strongly contraindicated for hemorrhagic strokes¹⁵. For stroke prevention, antithrombotic agents are mainstay therapies since they target a common etiological pathway in thrombosis; however, considerations for the specific class of drug prescribed, timing, and dosage, are made in context of ischemic subtype^{16,17}. For example, oral anticoagulation is recommended over antiplatelet therapy in atrial fibrillation patients at high risk of thromboembolism¹⁸.

1.1.3.2 ACUTE STROKE TREATMENT

The adage, "time is brain", is often used to stress the urgency with which stroke patients should be treated to avoid substantial neuronal loss. It has been estimated that patients with large artery occlusion lose approximately 120 million neurons for every hour that passes by without treatment, which is equivalent to 3.6 years of "brain aging" ¹⁹. As such, the acute phase of ischemic stroke is extremely important to salvage neurons and is centered around timely restoration of blood supply through the disintegration or removal of the blood clot. Thrombolytic therapy entails administration of rt-PA intravenously within 4.5 hours of stroke onset⁹. rt-PA catalyzes the conversion of plasminogen to plasmin, which degrades the fibrin mesh that stabilizes the blood clot²⁰. Beyond the 4.5-hour therapeutic window, rt-PA is not effective. However, a subset of strokes with proximal large artery

occlusions affecting the anterior circulation are eligible for mechanical thrombectomy within 24 hours of stroke onset²¹. Mechanical thrombectomy consists of the physical removal of the blood clot from circulation using a stent-retriever device²². Major challenges associated with both thrombolysis and thrombectomy include a greater risk for intracranial bleeding and restrictive therapeutic windows^{23,24}.

1.1.3.3 PRIMARY AND SECONDARY STROKE PREVENTION

In patients with vascular risk factors or who have already suffered a stroke, prevention of future strokes consists of risk factor management and antithrombotic therapy. The importance of controlling stroke risk factors was delineated by the "Importance of Conventional and Emerging Risk Factors of Stroke in Different Regions and Ethnic Groups of the World (INTERSTROKE)"^{25,26}. INTERSTROKE found that 10 established risk factors account for approximately 90% of stroke risk globally. These 10 risk factors include hypertension, diabetes mellitus, smoking, alcohol consumption, physical inactivity, dyslipidemia, a diet low in fruits and vegetables, obesity, psychosocial factors, and heart conditions (atrial fibrillation or flutter, myocardial infarction, rheumatic valve disease or prosthetic heart valve). Hypertension is one of the strongest risk factors for stroke overall, and its presence is associated with three and four-fold increased odds of ischemic stroke and intracerebral hemorrhage, respectively²⁶.

While some risk factors are shared across stroke types, others are more strongly associated with specific subtypes. For example, atrial fibrillation is a common arrhythmia defined by irregular and intermittently stagnant blood flow within the left atria of the heart²⁷. Atrial fibrillation potentiates cardiac thrombus formation thereby increasing risk of

cardioembolic stroke by approximately 16-fold²⁸. Treatment of atrial fibrillation consists of medical interventions to sustain proper sinus rhythm and use of anticoagulation to prevent future embolic events²⁹. Similarly, dyslipidemia is an important risk factor for atherosclerosis, and cholesterol-lowering medication in the form of statins (HMG-COA reductase inhibitors) are employed to treat large artery atherosclerosis³⁰.

Antithrombotic therapies block the formation of new blood clots, which are composed of (i) an aggregate of platelets known as the "platelet plug" and (ii) a fibrin mesh that stabilizes the platelet plug³¹. The most common antiplatelet therapy is acetylsalicylic acid (aspirin) acts by inhibiting platelet cyclooxygenase (COX1) to impede platelet activation and aggregation³². In contrast, anticoagulants block components of the coagulation cascade which constitutes a series of enzymatic cleavages involving protein coagulation factors that ultimately lead to the production of fibrin¹⁸. For example, a reduced form of vitamin K acts as a cofactor for multiple coagulation factors, and some anticoagulation strategies (e.g. warfarin) work by blocking hepatic vitamin K epoxidase reductase complex³³. However, inhibition of vitamin K blocks several coagulation factors (II, VII, IX, and X) resulting in impaired hemostasis and greater risk for bleeds³⁴. Newer anticoagulants (direct oral anticoagulants) directly target specific coagulation factors, such as factors II (dabigatran) and X (rivaroxaban, apixaban, edoxaban)¹⁸. Additionally, combined antiplatelet and anticoagulant therapy has recently shown efficacy for stroke prevention in patients with stable atherosclerotic disease³⁵. As compared to aspirin monotherapy, the Cardiovascular Outcomes for People using Anticoagulation Strategies (COMPASS) trial observed superiority for the combination of low-dose rivaroxaban and aspirin for a reduced risk of recurrent ischemic stroke by 67%³⁶.

1.2 STROKE BIOMARKERS

1.2.1 RATIONALE FOR STUDY OF STROKE BIOMARKERS

Despite current antithrombotic therapies and risk factor management, the residual risk for recurrent stroke is high (1 to 15% annually)^{37–40}. As such, there is a need to uncover novel therapeutic targets. Biological markers (biomarkers) are objective, measurable parameters that can be used for disease prediction, diagnosis, and prognosis⁴¹. Notably, biomarkers also represent therapeutic targets; for example, many current stroke medications target circulating molecules such as rt-PA (plasmin), aspirin (platelet COX1), and oral anticoagulants (coagulation factors) ^{18,20,32,42}. In the hours and days following stroke, there are quantifiable changes in thousands of circulating proteins including pro-inflammatory cytokines, chemokines, adhesion molecules, and brain injury markers⁴³. Among these circulating biomarkers, there may be a subset that causally mediate stroke pathogenesis and recovery which represent strong candidates for therapeutic targeting. Therefore, elucidating the biomarkers that causally mediate stroke recurrence is likely to reveal novel therapeutic targets for stroke management. In the following sections, we will summarize relevant literature regarding stroke biomarker research.

1.2.2 BIOMARKERS FOR STROKE RISK PREDICTION

Stroke risk stratification informs clinical decision making, and biomarkers may help to refine an individual's risk assessment. Circulating C-reactive protein detected through a high sensitivity assay (hsCRP) is a well-established marker of systemic inflammation and is associated with greater incidence of both ischemic and hemorrhagic stroke^{44–46}. Similarly, higher circulating levels of the pro-inflammatory cytokine, Interleukin-6 (IL6), predict greater incidence of ischemic stroke though this increased risk is entirely mediated by differences in risk factor profiles^{46,47}. LP(a) is a highly atherogenic, pro-inflammatory, and pro-thrombotic circulating lipoprotein. A large cohort study including more than 60,000 Danish individuals showed a strong association between elevated LP(a) and stroke incidence (HR=1.60; 95% CI, 1.24-2.05) after adjustment for known risk factors including LDL cholesterol⁴⁸. An even larger study of 283,540 British individuals confirmed this relationship and showed modest improvement in discrimination of atherosclerotic cardiovascular disease events by incorporating Lp(a) (c-index 0.640 vs. 0.642)⁴⁹.

A novel set of risk scores that integrate circulating biomarkers has shown promise for stroke and bleeding risk prediction in atrial fibrillation patients, known as the "age, biomarker and clinical history" (ABC) scores^{50,51}. The ABC-stroke score incorporates two circulating cardiac biomarkers associated with incident ischemic stroke: N-terminal fragment B-type natriuretic peptide (NT-proBNP) and cardiac troponin T⁵¹. NT-proBNP is secreted by cardiomyocytes in response to myocyte stretch and is a marker of heart failure and an independent predictor of cardioembolic stroke⁵². Cardiac troponin T is released into circulation acutely after myocardial injury and elevated levels are used to diagnose myocardial infarction⁵³. The ABC-stroke risk score better discriminates stroke risk when compared to the established CHA₂DS₂-VASc risk score which does not incorporate biomarkers (c-index 0.66 vs. 0.58) and performs well in both anticoagulated and noncoagulated patients with atrial fibrillation ^{51,54}. Complementary to the ABC-stroke score is the ABC-bleeding score for the prediction of major bleeding, a key adverse side-effect of anticoagulation therapy^{50,55}. The biomarkers incorporated into the ABC-bleeding score are growth differentiation factor 15 (GDF15), cardiac troponin T, and hemoglobin. Circulating GDF15 is often upregulated in response to stressors, and levels are prognostic for major bleeding and death^{50,56}. The ABC-bleeding score outperforms the conventional HAS-BLED score for risk discrimination of major bleeds (c-index 0.68 vs. 0.61)⁵⁰.

1.2.3 BIOMARKERS FOR STROKE PROGNOSTICATION

Several circulating proteins have been reported to be associated with stroke prognosis including those implicated in inflammation (IL6, hsCRP, S100A8/A9), vascular remodelling (matrix metallopeptidase 9 [MMP9]), and brain injury (neurofilament light chain [NFI]). The modified Rankin Scale (mRS) is an ordinal metric used to capture post-stroke functional outcome and ranges from "no symptoms at all" (mRS 0) to "death" (mRS 6) (Table 1.1)⁵⁷. Circulating IL6 is predictive of both stroke incidence and prognosis, and higher levels at hospital admission portends worse functional outcome (mRS 3-6 vs. 0-2) at 3-months in both ischemic and hemorrhagic stroke patients⁵⁸. Serum levels of another inflammatory mediator, complement C3, correlate with poor functional outcome 3-months post-ischemic stroke and improve reclassification of individuals with poor (mRS 3-6) vs. good (mRS 0-2) functional outcomes (NRI=0.09)⁵⁹. The prognostic utility of a multibiomarker risk score was investigated in 3,575 participants from the China Antihypertensive Trial in Acute Ischemic Stroke (CATIS) trial⁶⁰. Specifically, the addition of hsCRP, GDF15, MMP9, and S100A8/A9 to conventional risk factors (age, sex, fasting

plasma glucose, lipids, systolic blood pressure, time from onset to hospitalisation, cigarette smoking status, alcohol drinking status, baseline stroke severity [NIHSS], ischemic stroke subtype, and antihypertensive medication post-admission) significantly improved reclassification of poor functional outcome at 3-months post-stroke (mRS 3-6 vs. 0-2; NRI=0.33). MMP9 plays an important role in remodelling of the extracellular matrix following stroke, and S100A8/A9 is abundantly present in neutrophils and monocytes which are the first responders of the immune defence to inflammation^{61,62}. Finally, NFI is exclusively expressed in the axonal cytoskeleton of neurons and is only released into circulation after brain injury, and thus has been dubbed as the "neurologist's troponin"⁶³. NFI shows prognostic utility for multiple neurodegenerative disorders and stroke⁶³. Elevated plasma NFI predicts poor functional outcome (mRS 3-6) at 3-months for patients with cardioembolic stroke, strokes of undetermined source, subarachnoid hemorrhage, and intracerebral hemorrhage⁶⁴.

Table 1.1. The modified Rankin Scale (mRS) as a measure of disability and dependence⁵⁷.

Score	Definition
0	No symptoms at all
1	No significant disability: despite symptoms, able to carry out all usual duties and activities
2	Slight disability: unable to perform all previous activities but able to look after own affairs without assistance
3	Moderate disability: requiring some help but able to walk without assistance
4	Moderately severe disability: unable to walk without assistance and unable to attend to own bodily needs without assistance
5	Severe disability: bedridden, incontinent and requiring constant nursing care and attention
6	Death

1.2.4 NEW HORIZONS FOR STROKE BIOMARKER RESEARCH 1.2.4.1 MITOCHONDRIAL DNA COPY NUMBER (MTDNA-CN)

Mitochondria are semi-autonomous organelles that have important roles in stroke pathogenesis and recovery^{65,66}. In the presence of ischemia, hypoxic neurons transition from oxidative to anaerobic phosphorylation, which eventually fails to meet the energy demands of the cell. As a result, ATP-dependent ion channels which normally maintain the electrochemical gradient between intracellular and extracellular compartments lose their function. An influx of sodium and calcium ions ensues, triggering mitochondrial swelling and the release of pro-apoptotic factors from the mitochondrial membrane (cytochrome C) which then induces neuronal cell death.

A seminal proteomics study by Garcia-Berrrocoso *et al* (2018) further highlights the critical role of mitochondrial pathways in the response to cerebral ischemia⁶⁷. Laser microdissection was used to isolate the neurovasculature of deceased ischemic stroke patients, and proteomic changes in infarcted brain tissue were compared to contralateral tissue. Mitochondrial dysfunction and oxidative phosphorylation constituted the top pathways that were differently expressed between infarcted and non-infarcted neurons. Additionally, a novel neuroprotective mechanism involving the intercellular transfer of mitochondria has been described in a rodent stroke model⁶⁸. During stroke, astrocytes transfer their mitochondria to oxygen-deprived neurons, eliciting pro-survival signals. As a result, this is accompanied by several beneficial effects including smaller infarcts (less severe strokes) and better functional outcomes. A separate protective mechanism has also been described in endothelial progenitor cells, which release functionally viable mitochondria into circulation⁶⁹. These extracellular mitochondria are then taken up by damaged brain endothelium which partially restores the integrity of the blood brain barrier.

Despite evidence supporting a strong role for mitochondria in stroke pathogenesis and recovery, mitochondrial biomarkers are seldom studied in human stroke patients. An emerging and inexpensive marker of mitochondrial activity is mitochondrial DNA copy number (mtDNA-CN)^{70,71}. In the blood, most mitochondria are located in white blood cells, platelets, and various extracellular sources. Hitherto, investigations have measured mtDNA-CN predominantly from buffy coat samples, in which case, mtDNA-CN denotes the ratio between mitochondrial and autosomal DNA copies within white blood cells (and platelets if platelet-depletion is not performed). Sometimes viewed as a simple marker of mitochondrial abundance, lower white blood cell mtDNA-CN levels are thought to represent states of general mitochondrial dysfunction, oxidative stress, and inflammation⁷².

While all three phenomena are relevant to stroke, evidence from genetic, experimental, and epidemiological studies also support a direct role of mtDNA-CN in stroke. First, patients with rare genetic disorders characterized by very low mtDNA-CN, known as "mtDNA depletion syndromes", experience leukoencephalopathy and stroke-like episodes^{73,74}. mtDNA depletion syndromes are caused by genetic defects in enzymes involved in nucleotide metabolism, mtDNA replication, and mtDNA repair⁷⁵. Second, experimental studies suggest that mtDNA-CN is a mediator of ischemia reperfusion injury and stroke recovery^{76–78}. Indeed, rats with experimentally induced ischemic stroke (middle cerebral artery occlusion) experience a precipitous drop in mtDNA-CN levels, and prestroke mtDNA-CN levels can be recovered by injection of a cleavage-resistant form of a

key mtDNA regulator, Optic Atrophy 1 (OPA1)⁷⁷. The recovery in mtDNA-CN levels via OPA1 also attenuated stroke severity and improved functional outcomes in rats. Third, epidemiological analyses demonstrate that low leukocyte mtDNA-CN is associated with stroke risk in humans. A retrospective case-control study found that stroke cases have lower leukocyte mtDNA-CN than controls and that this coincides with higher levels of oxidative stress markers⁷⁹. A large meta-analysis of four prospective cohorts totalling 20,163 participants including 1,583 incident stroke events (mean follow-up of 13.5 years) showed that low mtDNA-CN levels at baseline predicted higher risk for incident stroke⁸⁰. In other disease settings (heart disease, peripheral artery disease, chronic kidney disease, and sudden cardiac death), low leukocyte mtDNA-CN is associated with incident risks of secondary hospitalization, infection, and mortality^{80–83}. Hitherto, mtDNA-CN has not been extensively studied as a prognostic marker nor as therapeutic target for stroke in humans⁸⁴.

1.2.4.2 ADVANCES IN MULTIPLEX PROTEIN DETECTION ENABLE PROTEOME-WIDE DISCOVERY

Most biomarker studies have evaluated only a select subset of proteins with prior evidence of (i) mediating stroke pathogenesis in animal models (e.g. MMP9), (ii) being associated with related neurological diseases in epidemiological studies (e.g. NFI), or (iii) capturing established risk factor pathways (e.g. hsCRP). However, this "candidate" biomarker approach is inherently limited in discovery potential and overlooks thousands of unique circulating proteins with less well-characterized functions. Surveying the entire circulating proteome is met by several challenges including (i) a wide dynamic range of concentration spanning 12 orders of magnitude (femtomolar to milligram), (ii) the vastness of the circulating proteome encompassing ~10,000 unique proteins, and (iii) the nonspecificity of traditional immunoassays due to antibody cross-reactivity. Innovative technological breakthroughs have increased the number of measurable proteins from up to hundreds of proteins using traditional multiplex immunoassays to thousands. For largescale epidemiological investigations, two high-throughput proteomics technologies have been widely adopted, SOMAlogic's Slow Off-rate Modified Aptamers (SOMAmers) technology and OLINK's Proximity Extension Assay (PEA) technology^{85,86}.

SOMAmer technology currently offers the broadest coverage of the proteome enabling detection of 7,000 unique circulating proteins (https://somalogic.com/somascandiscovery/). Aptamers are short oligonucleotides with high affinity towards a specific protein epitope that are generated through an iterative amplification process: a pool of random oligonucleotides encounters a target protein, and the aptamer with the highest affinity to a specific protein epitope is amplified⁸⁶. After multiple rounds of aptamer selection and amplification, chemical modifications to stabilize the aptamer are added in the form of chemical modifications that behave like amino acid side chains⁸⁶. The resulting molecule is a SOMAmer. SOMAmers are conjugated to fluorophores, which renders them amenable to multiplex protein quantification on a fluorescent microarray. Key limitations of SOMAmer technology include non-specificity (cross-reactive binding to non-target human proteins or even non-human proteins given that SOMAmers are not "natural" human antibodies) and variable detection depending on SNP variation (35% of SOMAmers display altered binding affinity in the presence of SNPs)⁸⁷.

The OLINK PEA technology transduces protein quantification into a DNA quantification problem (Figure 1.1)⁸⁵. Each protein is targeted by a pair of antibodies, and each antibody is labelled by a single-stranded DNA probe whose sequence is complementary to the cognate antibody's single-stranded DNA probe. When antibody pairs bind the target protein, their complementary single-stranded DNA labels come into close proximity, forming a double-stranded DNA complex that primes an extension reaction. The resulting full-length DNA barcode is amplified by PCR and can then be quantified via quantitative PCR or next-generation sequencing (Figure 1.1). While more limited in proteomic coverage (up to ~1500 proteins) as compared to the SOMAmer detection method, the main advantage of PEA technology is its specificity (https://www.olink.com/products/olink-explore/). High specificity is maintained in the presence of cross-reactive antibody binding since the DNA labels of mismatching antibodies do not form double-stranded DNA complexes and thus cross-reactive events do not contribute to quantifiable signal.

Figure 1.1. OLINK PEA technology overview. (Screenshot from https://www.olink.com/data-you-can-trust/technology/)
1.3 INTEGRATING GENETICS & BIOMARKERS FOR TARGET DISCOVERY

1.3.1 ENHANCING TARGET PRIORITIZATION WITH GENETICS

Recent advances in multiplex protein assay technology have equipped researchers with the ability to interrogate thousands of plasma proteins in large epidemiological studies, and while this greatly expands the scope for therapeutic discovery, a central challenge remains in being able to pinpoint true drug targets among disease-associated biomarkers. The steep cost of developing new medications (\$1.2 billion CAD per drug) and high attrition rates (> 50% drug candidates fail for lack of efficacy in RCTs) emphasize the utility of effective drug prioritization strategies since not all disease-associated biomarkers cause disease^{88,89}. For example, hsCRP is an acute phase reactant protein whose circulating levels increase in response to activation of the NLRP3 inflammasome-IL1-IL6 axis⁴⁶. Essentially, CRP is a downstream product of this inflammation pathway, thus serving as a clinically useful surrogate for inflammation levels. However, interventions reducing hsCRP levels *per se* are not expected to mitigate inflammation. Genetic studies provide evidence against a causal role for hsCRP in vascular inflammation, and conversely, support for a causal role for an upstream regulator of CRP, IL690-93. A single nucleotide polymorphism (SNP; rs7553007) proximal to the CRP gene is associated with serum CRP concentration (i.e. cis pOTL) but not risk of heart disease or stroke⁴⁶. In contrast, SNPs within the IL6 pathway are associated with increased inflammation as well as increased risk of heart disease and stroke^{91,92}. Indeed, a seminal randomized controlled trial showed that canakinumab, a monoclonal antibody that blocks the upstream activator of IL6, IL1 β , reduces recurrent risk of cardiovascular events and death in myocardial infarction patients with elevated hsCRP⁹⁴. RCTs are currently planned to test pharmacologic agents (Anakinra and colchicine) to target the NRLP3-IL1 inflammasome axis for secondary cardiovascular disease prevention in ischemic stroke (Preventing cArdiovascular Complications aFter Ischemic STroke [PACIFIST]; Colchicine for prevention of Vascular Inflammation in Non-CardioEmbolic Stroke [CONVINCE]) and intracerebral hemorrhage (Colchicine for the prevention of vascular events after an acute IntraCerebral Hemorrhage [CoVasc-ICH]) patients (private communication with Dr. Askhan Shoamanesh). In summary, genetic associations can be used to clarify causality between disease-biomarker associations, thereby providing a means to prioritize causal mediators as potential therapeutic targets.

Therapeutic potential is hinted at in contexts where the genetic determinants of biomarkers and stroke risk overlap⁹⁵. The intuition is that if a biomarker causally affects stroke risk, then genetic variants that influence biomarker levels should also have a corresponding and proportional effect on stroke risk. By using genetic evidence to infer causality of biomarker-stroke relationships, the subset of associated biomarkers causally mediating risk of stroke likely represents stronger drug candidates. Indeed, a review by Nelson *et al.* (2015) showed that pharmacological compounds with support from genetic association studies are more than twice as likely to reach market approval as compared to those without genetic support⁹⁶.

1.3.2 MENDELIAN RANDOMIZATION (MR) ANALYSIS

Mendelian Randomization (MR) analysis is a statistical genetics framework for causal inference that uses genetic variants as "instruments" to approximate the unconfounded effect of an exposure (e.g. biomarker) on an outcome (e.g. stroke) ^{97,98,99}.

Similar to how RCTs randomize interventions, MR leverages the natural randomization of genetic alleles that occurs during meiosis (i.e. Mendel's second law of independent assortment)¹⁰⁰ (Figure 1.2). While epidemiological associations may be susceptible to confounders and reverse causation, the randomization of exposure-associated alleles ensures that confounders are balanced between allele carriers and non-carriers. Furthermore, because genetic variants are inherited, the flow of cause-and-effect is unidirectional from genetic variant to change in biomarker level to disease consequence thus conferring some protection against reverse causation. In relation to stroke, MR has been mainly used to clarify whether a causal relationship exists between well-established clinical risk factors and risk of stroke. Such studies demonstrate causal roles for blood pressure and total stroke, adiposity and ischemic stroke, atrial fibrillation and ischemic stroke, type 2 diabetes and small artery occlusion, and LDL cholesterol and large artery atherosclerosis^{101–103}. Candidate blood biomarkers have also been assessed through the MR framework with positive findings for lipoprotein(a) and matrix-metalloproteinase-12 (MMP12) but not hsCRP, cystatin C, or YKL- $40^{90,91,104-107}$.

Figure 1.2 A comparison of randomized controlled trials with the Mendelian Randomization study design.

Causality is supported when the effects of multiple, independent genetic variants on biomarker levels are directionally consistent and proportional to their effects on stroke risk (Figure 1.3). The inputs necessary to conduct MR analysis are two sets of genetic effects: (A) the effect of genetic variants on biomarker levels and (B) the effect of genetic variants on stroke risk. Understanding the relationship between these effects permits triangulation of the causal effect of biomarker levels on stroke risk (C). Genetics effects can be derived through a genetic study design known as a genome-wide association study (GWAS) allowing for comprehensive interrogation of common variants dispersed across the genome. Notably, only summary-level data, in the form of effect estimates and their standard errors, is required to perform MR analysis^{98,108}. This statistical methodological advance in the MR field has led to an explosion in the number of studies of this kind

conducted in the past 5 years.

Figure 1.3. Visualization of the underlying premise for MR as a causal inference method. Each point represents an independent genetic variant.

1.3.3 GENOME-WIDE ASSOCIATION STUDIES (GWAS)

GWAS are systematic and agnostic surveys of common variant associations that allows for the identification of specific genetic determinants of traits and more specifically, an approximation of the effect of each genetic variant on the trait in question¹⁰⁹. Following a similar trajectory as biomarker investigations, genetic studies began with "candidate" gene approaches but were supplanted by GWAS once multiplex SNP detection technology was developed, namely, the SNP microarray¹¹⁰. Microarrays contain millions of microwells that each harbour an individual assay for a unique SNP site, and as such, genotypes for hundreds of thousands to several millions of SNPs can be measured simultaneously in multiple samples¹¹⁰. Statistical genetics advances in the form of imputation techniques leverage the correlation structure (linkage disequilibrium) between variants in large aggregates of sequencing data (imputation referenc) to boost the number of detectable genetic variants (genomic coverage) to approximately 10 million common SNPs^{111–113}.

1.3.3.1 GWAS FOR CIRCULATING BIOMARKERS

Recent large-scale studies combining multiplex genomics and proteomics technologies highlight a major role for genetics in the regulation of circulating protein levels. A seminal study by Sun *et al.* (2018) investigated genetic determinants for 3,622 plasma proteins using SOMAmer technology in 3,301 healthy blood donors from the INTERVAL study¹⁰⁵. This study identified 1,927 associations for 1,104 unique proteins which represented a four-fold increase in the number of protein quantitative trait loci (pQTL) known at that time. Approximately 30% of pQTLs were located within or nearby the genes encoding for the circulating protein, also known as cis-pQTLs. Considering the vastness of the genome, this reinforces a strong role for proximal genetic regulation. Since the publication of this study, international research collaborations have been convened to exhaustively characterize the genetic determinants of circulating proteins. Most notably, the Systematic and Combined AnaLysis of Olink Proteins (SCALLOP) consortium has recently published GWAS of PEA-detected proteins associated with cardiovascular diseases including up to 30,000 study participants¹¹⁴.

1.3.3.2 GWAS FOR STROKE

Finding robust genetic associations for stroke through GWAS was initially challenging. The very first GWAS for ischemic stroke was conducted in 2009 by Ikram *et al.* in 19,602 participants (1164 ischemic strokes) and revealed *NINJ2* as a putative stroke

locus, but this association has never been replicated¹¹⁵. This failure was attributed to overlooking the vast phenotypic heterogeneity of stroke and relatively small sample sizes. As Hacke *et al.* expressed in a GWAS commentary, many studies have fallen victim to the fact that stroke represents an umbrella term for etiologically distinct stroke subtypes¹¹⁶. Essentially, stroke is a syndrome encompassing many distinct clinical entities with a shared predisposition for thromboembolism.

Since the first stroke GWAS in 2009, several collaborative initiatives have been convened to conduct large GWAS meta-analyses including METASTROKE (N=90,648) and the NINDS Stroke Genetics Network (SiGN) (N=435,001) for ischemic stroke subtypes^{117,118}. A seminal GWAS of stroke (N=521,612) was published in March 2018 by the MEGASTROKE consortium¹¹⁹. This study represented a major leap forward in our understanding of the genetic architecture of ischemic stroke subtypes. Prior to this study, only 10 reliable stroke loci were known. MEGASTROKE not only replicated these loci but also uncovered 22 new loci for a total of 32 loci. Of the 32 loci, 13 (41%) demonstrated subtype specificity and the remaining loci were either associated with multiple ischemic subtypes independently or broader stroke types (ischemic stroke or any stroke). A followup analysis by Traylor *et al.* (2019) further investigated subtype specificity for a subset of 16 MEGASTROKE loci and concluded that the pattern of subtype association for loci was highly heterogeneous, though seven (44%) of the 16 loci were found to influence both hemorrhagic and ischemic stroke risk suggesting a shared etiology between the major stroke types¹²⁰. Furthermore, many MEGASTROKE loci were also associated with wellestablished vascular risk factors including venous thromboembolism, lipids, coronary artery disease, blood pressure, carotid plaque, and atrial fibrillation (Figure 1.4). Intriguingly, 11 loci were not known to influence classic risk factors suggesting novel mechanisms for stroke pathophysiology and are now being investigated more closely. For example, Traylor *et al.* (2020) further investigated the *PDE3A* variant in an independent study and observed that mutation carriers had impaired flow-mediated dilatation, a marker of endothelial reactivity¹²¹.

Figure 1.4. A pictorial representation of the 32 stroke loci identified by the

MEGASTROKE study and the overlap with vascular risk factors and traits¹¹⁹.

Post-MEGASTROKE, GWAS have focused on underrepresented stroke subtypes (e.g. small vessel disease), radiological markers (e.g. perivascular dilated spaces), and stroke outcomes (e.g. 3-month mRS)^{122–125}. Indeed, stroke outcome genetics is one of the major research priorities for future stroke genetics research according to the International Stroke Genetics Consortium (ISGC)¹²⁶. To this end, the Genetics of Ischaemic Stroke Functional Outcome (GISCOME) performed the first international GWAS of 3-month

mRS and identified the first GWAS locus for ischemic stroke outcome, an intronic variant in the *LOC105372028* locus (rs1842681)¹²⁵. A second phase GWAS meta-analysis is under way to uncover additional genetic determinants of post-stroke outcome and therapeutic response (private communications).

1.3.4 EMERGING STROKE THERAPIES WITH MR SUPPORT

GWAS is the backbone of MR analysis as they are used to identify genetic variants associated with human traits, which can then be used as genetic instruments to evaluate causality with outcomes. Advances in GWAS for both circulating biomarkers and stroke provide an exciting opportunity for drug target discovery at an unprecedented scale^{105,114,119,127–130}. Indeed, several new stroke therapies targeting coagulation and dyslipidemia have been recently supported by MR evidence⁴². For example, antisense oligonucleotide molecules blocking coagulation factor XI have been developed and are undergoing testing in RCTs for secondary stroke prevention and safety profiling in atrial fibrillation patients (NCT04304508, NCT03582462, NCT04218266). Complementary to these ongoing RCTs is a MR analysis by Georgi et al. (2020) showing that genetically lower FXI levels is associated with reduced risk of venous thrombosis and cardioembolic stroke¹³¹. Proprotein convertase subtilin/kexin type 9 (PCSK9) is an enzyme that facilitates the endocytosis and degradation of membrane-bound low-density lipoprotein receptor (LDLR) which clears LDL cholesterol from circulation^{132–137}. Several monoclonal antibodies have been developed to inhibit PCSK9 production as a novel means of cholesterol lowering, and two RCTs have demonstrated that when PCSK9 inhibition is added to statin therapy, risk of recurrent stroke risk is further reduced by 25%^{138,139}. MR also supports a causal role for genetically reduced PCSK9 in ischemic stroke risk reduction⁹⁹. Intriguingly, RCTs also observe that PCSK9 inhibition is associated with a reduction in another independent atherogenic mediator, Lipoprotein(a) (Lp(a)), suggesting potentially pleiotropic effects of PCSK9 inhibition beyond cholesterol-lowering^{140,141}. A hepatocyte-directed antisense oligonucleotide therapy for Lp(a) (AKCEA-APO(a)-L_{Rx}) reduces circulating Lp(a) by approximately 80% as shown in a recent phase II trial, but whether this translates to clinical benefit remains to be determined in ongoing phase III trials. One of the earliest stroke MR studies evaluated LP(a) due to its high heritability and the fact that a single cis-pQTL (rs10455872) accounted for a significant proportion (~30%) of the variance in plasma concentrations^{48,104}. MR analyses substantiate a strong role for genetically lower Lp(a) in protecting against atherosclerosis¹⁴². Altogether, the fact that MR supports a causal role for several emerging therapeutic targets is both reassuring for ongoing phase III trials and corroborates the utility of MR as a drug prioritization tool.

1.4 REFERENCES

- Feigin, V. L., Norrving, B. & Mensah, G. A. Global Burden of Stroke. *Circ. Res.* 120, 439–448 (2017).
- 2. Mittmann, N. *et al.* Impact of disability status on ischemic stroke costs in Canada in the first year. *Can. J. Neurol. Sci.* **39**, 793–800 (2012).
- 3. Mohan, K. M. *et al.* Risk and cumulative risk of stroke recurrence: a systematic review and meta-analysis. *Stroke* **42**, 1489–94 (2011).

- 4. Gunnoo, T. *et al.* Quantifying the risk of heart disease following acute ischaemic stroke: a meta-analysis of over 50,000 participants. *BMJ Open* **6**, e009535 (2016).
- Westendorp, W. F., Nederkoorn, P. J., Vermeij, J. D., Dijkgraaf, M. G. & van de Beek, D. Post-stroke infection: A systematic review and meta-analysis. *BMC Neurol.* 11, 110 (2011).
- Leys, D., Hénon, H., Mackowiak-Cordoliani, M. A. & Pasquier, F. Poststroke dementia. *Lancet Neurol.* 4, 752–759 (2005).
- Krishnamurthi, R. V *et al.* Stroke Prevalence, Mortality and Disability-Adjusted Life Years in Adults Aged 20-64 Years in 1990-2013: Data from the Global Burden of Disease 2013 Study. *Neuroepidemiology* 45, 190–202 (2015).
- Thrift, A. G., Dewey, H. M., Macdonell, R. A. L., McNeil, J. J. & Donnan, G. A. Incidence of the major stroke subtypes initial findings from the North East Melbourne Stroke Incidence Study (NEMESIS). *Stroke* 32, 1732–1738 (2001).
- 9. Powers, W. J. et al. Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke a guideline for healthcare professionals from the American Heart Association/American Stroke A. Stroke vol. 50 (2019).
- Adams, H. P. *et al.* Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. *Stroke* 24, 35–41 (1993).
- 11. Regenhardt, R. W. *et al.* Pathophysiology of Lacunar Stroke: History's Mysteries and Modern Interpretations. *J. Stroke Cerebrovasc. Dis.* **28**, 2079–2097 (2019).

- 12. Cole, J. W. Large artery occlusive disease. *Continuum (N. Y).* 23, 133–157 (2017).
- 13. Kamel, H. & Healey, J. S. Cardioembolic Stroke. Circ. Res. 120, 514–526 (2017).
- Hart, R. G. *et al.* Embolic strokes of undetermined source: The case for a new clinical construct. *Lancet Neurol.* 13, 429–438 (2014).
- Fugate, J. E. & Rabinstein, A. A. Absolute and Relative Contraindications to IV rt-PA for Acute Ischemic Stroke. *The Neurohospitalist* 5, 110–121 (2015).
- Yadav, J. S.; Wholey, M. H.; Kuntz, R. E., Fayad, Pierre; Katzen, B. T.; Mishkel,
 G. J.; Bajwa, T. K.; hitlow, P.; Strickman, N. E.; Jaff, M. R.; Popma, J.J.; Snead,
 D. B.; Cutlip, D. E.; Firth, B. G.; Ouriel, K. . Rivaroxaban versus Warfarin in
 Nonvalvular Atrial Fibrillation. *N. Engl. J. Med.* 351, 1493–1501 (2004).
- Kwok, C. S. *et al.* Efficacy of Antiplatelet Therapy in Secondary Prevention Following Lacunar Stroke: Pooled Analysis of Randomized Trials. *Stroke* 46, 1014–1023 (2015).
- Chen, A., Stecker, E. & A Warden, B. Direct Oral Anticoagulant Use: A Practical Guide to Common Clinical Challenges. *J. Am. Heart Assoc.* 9, e017559 (2020).
- 19. Saver, J. L. Time is brain Quantified. *Stroke* **37**, 263–266 (2006).
- Collen, D. Molecular mechanism of action of newer thrombolytic agents. *J. Am. Coll. Cardiol.* 10, 11B-15B (1987).
- Jadhav, A. P. *et al.* Eligibility for Endovascular Trial Enrollment in the 6- to 24-Hour Time Window: Analysis of a Single Comprehensive Stroke Center. *Stroke*49, 1015–1017 (2018).
- 22. Smith, W. S. et al. Mechanical thrombectomy for acute ischemic stroke: Final

results of the multi MERCI trial. Stroke 39, 1205–1212 (2008).

- Miller, D. J., Simpson, J. R., Silver, B. & Silver, B. Safety of Thrombolysis in Acute Ischemic Stroke: A Review of Complications, Risk Factors, and Newer Technologies. *The Neurohospitalist* 1, 138–147 (2011).
- Meinel, T. R. *et al.* Endovascular stroke treatment and risk of intracranial hemorrhage in anticoagulated patients. *Stroke* 892–898 (2020) doi:10.1161/STROKEAHA.119.026606.
- O'Donnell, M. J. *et al.* Risk factors for ischaemic and intracerebral haemorrhagic stroke in 22 countries (the INTERSTROKE study): a case-control study. *Lancet* 376, 112–23 (2010).
- O'Donnell, M. J. *et al.* Global and regional effects of potentially modifiable risk factors associated with acute stroke in 32 countries (INTERSTROKE): a casecontrol study. *Lancet* 388, 761–775 (2016).
- 27. Michaud, G. F. & Stevenson, W. Atrial fibrillation. N Engl J Med 384, 353–361 (2021).
- Griñán, K. *et al.* Cardioembolic Stroke: Risk Factors, Clinical Features, and Early Outcome in 956 Consecutive Patients. *Rev. Invest. Clin.* 73, 023–030 (2020).
- 29. January, C. T. *et al.* 2019 AHA/ACC/HRS Focused Update of the 2014 AHA/ACC/HRS Guideline for the Management of Patients With Atrial Fibrillation: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart R. *Circulation* 140, e125–e151 (2019).

- Safouris, A. *et al.* Statin pretreatment and microembolic signals in large artery atherosclerosis a systematic review and meta-analysis. *Stroke* 49, 1992–1995 (2018).
- Hankey, G. J. Antithrombotic Therapy for Stroke Prevention: What's New?
 Circulation 139, 1131–1133 (2019).
- Hackam, D. G. & Spence, J. D. Antiplatelet therapy in ischemic stroke and transient ischemic attack: An overview of major trials and meta-analyses. *Stroke* 50, 773–778 (2019).
- Wu, S. *et al.* Warfarin and Vitamin K epoxide reductase: a molecular accounting for observed inhibition. *Blood* 132, 647–657 (2018).
- Mijares, M. E., Nagy, E., Guerrero, B. & Arocha-Piñango, C. L. [Vitamin K: biochemistry, function, and deficiency. Review]. *Invest. Clin.* 39, 213–29 (1998).
- Eikelboom, J. W. *et al.* Rivaroxaban with or without Aspirin in Stable Cardiovascular Disease. *N. Engl. J. Med.* NEJMoa1709118 (2017) doi:10.1056/NEJMoa1709118.
- Sharma, M. *et al.* Stroke Outcomes in the COMPASS Trial. *Circulation* 139, 1134–1145 (2019).
- Sps, T. & Group, S. Blood-pressure targets in patients with recent lacunar stroke: The SPS3 randomised trial. *Lancet* 382, 507–515 (2013).
- Dwyer, D. J., Camacho, D. M., Kohanski, M. A., Callura, J. M. & Collins, J. J.
 Stenting versus Aggressive Medical Therapy for Intracranial Arterial Stenosis. 46, 561–572 (2013).

- Brott, T. G., Hobson, R. W. & Howard, G. Stenting versus Endarterectomy for Treatment of Carotid-Artery Stenosis. J. Vasc. Surg. 52, 799 (2010).
- Patel, M. R. *et al.* Rivaroxaban versus Warfarin in Nonvalvular Atrial Fibrillation.
 N. Engl. J. Med. 365, 883–891 (2011).
- 41. Califf, R. M. Biomarker definitions and their applications. *Exp. Biol. Med.* **243**, 213–221 (2018).
- 42. Katsanos, A. H. & Hart, R. G. New Horizons in Pharmacologic Therapy for Secondary Stroke Prevention. *JAMA Neurol.* **77**, 1308–1317 (2020).
- 43. Montaner, J. *et al.* Multilevel omics for the discovery of biomarkers and therapeutic targets for stroke. *Nat. Rev. Neurol.* **16**, 247–264 (2020).
- Kaptoge, S. *et al.* C-reactive protein concentration and risk of coronary heart disease, stroke, and mortality: An individual participant meta-analysis. *Lancet* 375, 132–140 (2010).
- 45. Karim, M. A. *et al.* Systemic inflammation is associated with incident stroke and heart disease in East Asians. *Sci. Rep.* **10**, 1–11 (2020).
- 46. Ridker, P. M. From CRP to IL-6 to IL-1: Moving Upstream To Identify Novel Targets for Atheroprotection. *HHS Public Access* **118**, 145–156 (2016).
- Jenny, N. S. *et al.* Inflammatory cytokines and ischemic stroke risk: The REGARDS cohort. *Neurology* 92, E2375–E2384 (2019).
- 48. Langsted, A., Nordestgaard, B. G. & Kamstrup, P. R. Elevated Lipoprotein(a) and Risk of Ischemic Stroke. *J. Am. Coll. Cardiol.* **74**, 54–66 (2019).
- 49. Trinder, M., Uddin, M. M., Finneran, P., Aragam, K. G. & Natarajan, P. Clinical

Utility of Lipoprotein(a) and LPA Genetic Risk Score in Risk Prediction of Incident Atherosclerotic Cardiovascular Disease. *JAMA Cardiol.* **6**, 287–295 (2021).

- 50. Hijazi, Z. *et al.* The novel biomarker-based ABC (age, biomarkers, clinical history)-bleeding risk score for patients with atrial fibrillation: a derivation and validation study. *Lancet* **387**, 2302–2311 (2016).
- 51. Hijazi, Z. *et al.* The ABC (age, biomarkers, clinical history) stroke risk score: A biomarker-based risk score for predicting stroke in atrial fibrillation. *Eur. Heart J.*37, 1582–1590 (2016).
- 52. Kim, H. N. & Januzzi, J. L. Natriuretic peptide testing in heart failure. *Circulation*123, 2015–2019 (2011).
- Chapman, A. R., Bularga, A. & Mills, N. L. High-Sensitivity Cardiac Troponin Can Be An Ally in the Fight Against COVID-19. *Circulation* 1–8 (2020) doi:10.1161/circulationaha.120.047008.
- 54. Benz, A. P. *et al.* Biomarker-Based Risk Prediction With the ABC-AF Scores in Patients With Atrial Fibrillation Not Receiving Oral Anticoagulation. *Circulation* 143, 1863–1873 (2021).
- 55. Oyama, K. *et al.* Serial assessment of biomarkers and the risk of stroke or systemic embolism and bleeding in patients with atrial fibrillation in the ENGAGE AF-TIMI 48 trial. *Eur. Heart J.* 1–9 (2021) doi:10.1093/eurheartj/ehab141.
- 56. Hijazi, Z. *et al.* A biomarker-based risk score to predict death in patients with atrial fibrillation: The ABC (age, biomarkers, clinical history) death risk score. *Eur*.

Heart J. **39**, 477–485 (2018).

- 57. Banks, J. L. & Marotta, C. A. Outcomes Validity and Reliability of the Modified Rankin Scale : Implications for Stroke Clinical Trials A Literature Review and Synthesis. (2007) doi:10.1161/01.STR.0000258355.23810.c6.
- Mechtouff, L. *et al.* Association of Interleukin-6 levels and futile reperfusion after mechanical thrombectomy. *Neurology* 10.1212/WNL.000000000011268 (2020) doi:10.1212/WNL.000000000011268.
- Yang, P. *et al.* Increased Serum Complement C3 Levels Are Associated with Adverse Clinical Outcomes after Ischemic Stroke. *Stroke* 868–877 (2021) doi:10.1161/STROKEAHA.120.031715.
- Guo, D. *et al.* Prognostic Metrics Associated with Inflammation and Atherosclerosis Signaling Evaluate the Burden of Adverse Clinical Outcomes in Ischemic Stroke Patients. *Clin. Chem.* 66, 1434–1443 (2020).
- 61. Montaner, J. *et al.* Matrix metalloproteinase expression is related to hemorrhagic transformation after cardioembolic stroke. *Stroke* **32**, 2762–2767 (2001).
- 62. Wang, S. et al. S100A8/A9 in inflammation. Front. Immunol. 9, (2018).
- Thebault, S., Booth, R. A. & Freedman, M. S. Blood neurofilament light chain: The neurologist's troponin? *Biomedicines* 8, 1–11 (2020).
- 64. Gendron, T. F. *et al.* Plasma neurofilament light predicts mortality in patients with stroke. *Sci. Transl. Med.* **12**, 19–26 (2020).
- Liu, F., Lu, J., Manaenko, A., Tang, J. & Hu, Q. Mitochondria in ischemic stroke: New insight and implications. *Aging Dis.* 9, 924–937 (2018).

- Chen, W., Guo, C., Feng, H. & Chen, Y. Mitochondria: Novel Mechanisms and Therapeutic Targets for Secondary Brain Injury After Intracerebral Hemorrhage. *Front. Aging Neurosci.* 12, 1–10 (2021).
- García-Berrocoso, T. *et al.* Single cell immuno-laser microdissection coupled to label-free proteomics to reveal the proteotypes of human brain cells after ischemia. *Mol. Cell. Proteomics* 17, 175–189 (2018).
- Hayakawa, K. *et al.* Transfer of mitochondria from astrocytes to neurons after stroke. *Nature* 535, 551–555 (2016).
- 69. Hayakawa, K. *et al.* Protective effects of endothelial progenitor cell-derived extracellular mitochondria in brain endothelium. *Stem Cells* **36**, 1404–1410 (2019).
- Robin, E. D. & Wong, R. Mitochondrial DNA molecules and virtual number of mitochondria per cell in mammalian cells. *J. Cell. Physiol.* 136, 507–513 (1988).
- Malik, A. N. & Czajka, A. Is mitochondrial DNA content a potential biomarker of mitochondrial dysfunction? *Mitochondrion* 13, 481–492 (2013).
- Variations, H., Duan, M. & Tu, J. Recent Advances in Detecting Mitochondrial DNA. 1–18 (2018) doi:10.3390/molecules23020323.
- Paramasivam, A. *et al.* Homozygous R627W mutations in POLG cause mitochondrial DNA depletion leading to encephalopathy, seizures and stroke-like episodes. *Mitochondrion* 48, 78–83 (2019).
- 74. Bonora, E. *et al.* Biallelic variants in LIG3 cause a novel mitochondrial neurogastrointestinal encephalomyopathy. *Brain* 1–17 (2021) doi:10.1093/brain/awab056.

- 75. Gorman, G. S. et al. Mitochondrial diseases. Nat. Rev. Dis. Prim. 2, (2016).
- Varanita, T. *et al.* The Opa1-Dependent Mitochondrial Cristae Remodeling Pathway Controls Atrophic, Apoptotic, Article The Opa1-Dependent Mitochondrial Cristae Remodeling Pathway Controls Atrophic, Apoptotic, and Ischemic Tissue Damage. 834–844 (2015) doi:10.1016/j.cmet.2015.05.007.
- T. Lai, Y. *et al.* Restoration of L-OPA1 alleviates acute ischemic stroke injury in rats via inhibiting neuronal apoptosis and preserving mitochondrial function. *Redox Biol.* 34, 101503 (2020).
- 78. Zhao, M. *et al.* Mitochondrial ROS promote mitochondrial dysfunction and inflammation in ischemic acute kidney injury by disrupting TFAM-mediated mtDNA maintenance. *Theranostics* **11**, (2021).
- Lien, L. *et al.* Significant Association Between Low Mitochondrial DNA Content in Peripheral Blood Leukocytes and Ischemic Stroke. *J. Am. Heart Assoc.* (2017) doi:10.1161/JAHA.117.006157.
- Ashar, F. N. *et al.* Association of Mitochondrial DNA Copy Number With Cardiovascular Disease. **21205**, 1247–1255 (2017).
- Fazzini, F. *et al.* Mitochondrial DNA copy number is associated with mortality and infections in a large cohort of patients with chronic kidney disease. 8, 480–488 (2019).
- Zhang, Y. *et al.* Association between mitochondrial DNA copy number and sudden cardiac death : findings from the Atherosclerosis Risk in Communities study (
 ARIC). 3443–3448 (2017) doi:10.1093/eurheartj/ehx354.

- Song, L. *et al.* mtDNA Copy Number Contributes to All-Cause Mortality of Lacunar Infarct in a Chinese Prospective Stroke Population. (2019).
- Song, L. *et al.* mtDNA Copy Number Contributes to All-Cause Mortality of Lacunar Infarct in a Chinese Prospective Stroke Population. *J. Cardiovasc. Transl. Res.* 13, 783–789 (2020).
- 85. Assarsson, E. *et al.* Homogenous 96-plex PEA immunoassay exhibiting high sensitivity, specificity, and excellent scalability. *PLoS One* **9**, (2014).
- Davies, D. R. *et al.* Unique motifs and hydrophobic interactions shape the binding of modified DNA ligands to protein targets. *Proc. Natl. Acad. Sci. U. S. A.* 109, 19971–19976 (2012).
- Joshi, A. & Mayr, M. In Aptamers They Trust: Caveats of the SOMAscan Biomarker Discovery Platform from SomaLogic. *Circulation* 138, 2482–2485 (2018).
- Wouters, O. J., McKee, M. & Luyten, J. Estimated Research and Development Investment Needed to Bring a New Medicine to Market, 2009-2018. *JAMA - J. Am. Med. Assoc.* 323, 844–853 (2020).
- Arrowsmith, J. & Miller, P. Trial Watch: Phase II and Phase III attrition rates
 2011-2012. *Nat. Rev. Drug Discov.* 12, 569 (2013).
- Prins, B. P. *et al.* Investigating the Causal Relationship of C-Reactive Protein with
 32 Complex Somatic and Psychiatric Outcomes: A Large-Scale Cross-Consortium
 Mendelian Randomization Study. *PLoS Med.* 13, 1–29 (2016).
- 91. Freitag, D. et al. Cardiometabolic effects of genetic upregulation of the interleukin

1 receptor antagonist: A Mendelian randomisation analysis. *Lancet Diabetes Endocrinol.* **3**, 243–253 (2015).

- 92. Georgakis, M. K. *et al.* Genetically Downregulated Interleukin-6 Signaling Is Associated with a Favorable Cardiometabolic Profile: A Phenome-Wide Association Study. *Circulation* 1177–1180 (2021) doi:10.1161/CIRCULATIONAHA.120.052604.
- 93. Thériault, S. *et al.* Genetic Association Analyses Highlight IL6, ALPL, and NAV1 As 3 New Susceptibility Genes Underlying Calcific Aortic Valve Stenosis. *Circ. Genomic Precis. Med.* 12, 431–441 (2019).
- Ridker, P. M. *et al.* Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. *N. Engl. J. Med.* 377, 1119–1131 (2017).
- 95. Gill, D. *et al.* Mendelian randomization for studying the effects of perturbing drug targets. *Wellcome Open Res.* **6**, (2021).
- 96. Nelson, M. R. *et al.* The support of human genetic evidence for approved drug indications. *Nat. Genet.* **47**, 856–860 (2015).
- 97. Smith, G. D. & Hemani, G. Mendelian randomization: Geneticanchorsfor causal inference in epidemiological studies. *Hum. Mol. Genet.* **23**, 89–98 (2014).
- 98. Hemani, G. *et al.* The MR-base platform supports systematic causal inference across the human phenome. *Elife* **7**, 1–29 (2018).
- 99. Rao, A. S. *et al.* Large-Scale Phenome-Wide Association Study of PCSK9
 Variants Demonstrates Protection Against Ischemic Stroke. *Circ. Genomic Precis. Med.* 11, e002162 (2018).

- Hemani, G., Bowden, J. & Davey Smith, G. Evaluating the potential role of pleiotropy in Mendelian randomization studies. *Hum. Mol. Genet.* 27, R195–R208 (2018).
- Hopewell, J. C. & Clarke, R. Emerging Risk Factors for Stroke: What Have We Learned from Mendelian Randomization Studies? *Stroke* 47, 1673–1678 (2016).
- 102. Liu, J., Rutten-Jacobs, L., Liu, M., Markus, H. S. & Traylor, M. Causal Impact of Type 2 Diabetes Mellitus on Cerebral Small Vessel Disease. *Stroke* 49, 1325–1331 (2018).
- 103. Hindy, G. *et al.* Role of blood lipids in the development of ischemic stroke and its subtypes: A mendelian randomization study. *Stroke* **49**, 820–827 (2018).
- 104. Helgadottir, A. *et al.* Apolipoprotein(a) genetic sequence variants associated with systemic atherosclerosis and coronary atherosclerotic burden but not with venous thromboembolism. *J. Am. Coll. Cardiol.* **60**, 722–729 (2012).
- 105. Sun, B. B. *et al.* Genomic atlas of the human plasma proteome. *Nature* 558, 73–79 (2018).
- Russi, A. E. & Brown, M. A. Cystatin C and Cardiovascular Disease: A Mendelian Randomization Study. 165, 255–269 (2016).
- 107. Kjaergaard, A. D., Johansen, J. S., Bojesen, S. E. & Nordestgaard, B. G. Elevated plasma YKL-40, lipids and lipoproteins, and ischemic vascular disease in the general population. *Stroke* 46, 329–335 (2015).
- Bowden, J. & Holmes, M. V. Meta-analysis and Mendelian randomization: A review. *Res. Synth. Methods* 10, 486–496 (2019).

- Tam, V. *et al.* Benefits and limitations of genome-wide association studies. *Nat. Rev. Genet.* 20, 467–484 (2019).
- Laframboise, T. Single nucleotide polymorphism arrays : a decade of biological , computational and technological advances. 37, 4181–4193 (2009).
- Browning, B. L. & Browning, S. R. Genotype Imputation with Millions of Reference Samples. *Am. J. Hum. Genet.* 98, 116–126 (2016).
- 112. Durbin, R. Efficient haplotype matching and storage using the positional Burrows-Wheeler transform (PBWT). *Bioinformatics* **30**, 1266–72 (2014).
- 113. Zachary, A. *et al.* Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program. *Biorxiv* 1–46 (2019).
- Folkersen, L. *et al.* Genomic and drug target evaluation of 90 cardiovascular proteins in 30,931 individuals. *Nat. Metab.* 2, 1135–1148 (2020).
- 115. Ikram, M. A. *et al.* Genomewide Association Studies of Stroke. *N. Engl. J. Med.*360, 1718–1728 (2009).
- Hacke, W. & Grond-Ginsbach, C. Commentary on a GWAS: HDAC9 and the risk for ischaemic stroke. *BMC Med.* 10, 70 (2012).
- 117. Traylor, M. *et al.* Genetic risk factors for ischaemic stroke and its subtypes (the METASTROKE collaboration): a meta-analysis of genome-wide association studies. *Lancet. Neurol.* **11**, 951–62 (2012).
- 118. Rosand, J. *et al.* Loci associated with ischaemic stroke and its subtypes (SiGN): A genome-wide association study. *Lancet Neurol.* **15**, 174–184 (2016).
- 119. Malik, R. et al. Multiancestry genome-wide association study of 520,000 subjects

identifies 32 loci associated with stroke and stroke subtypes. *Nat. Genet.* **50**, 524–537 (2018).

- 120. Traylor, M. *et al.* Subtype Specificity of Genetic Loci Associated With Stroke in 16 664 Cases and 32 792 Controls. *Circ. Genomic Precis. Med.* 12, 307–314 (2019).
- 121. Traylor, M. *et al.* Influence of genetic variation in PDE3A on endothelial function and stroke. *Hypertension* 365–371 (2020) doi:10.1161/HYPERTENSIONAHA.119.13513.
- 122. Chung, J. *et al.* Genome-wide association study of cerebral small vessel disease reveals established and novel loci. *Brain* **142**, 3176–3189 (2019).
- 123. Traylor, M. *et al.* Articles Genetic basis of lacunar stroke : a pooled analysis of individual patient data and genome-wide association studies. *Lancet Neurol.* 4422, 1–11 (2021).
- 124. Persyn, E. *et al.* Genome-wide association study of MRI markers of cerebral small vessel disease in 42,310 participants. *Nat. Commun.* **11**, 1–12 (2020).
- Soderholm, M. *et al.* Genome-wide association meta-analysis of functional outcome after ischemic stroke. *Neurology* 0, 1271–1283 (2019).
- 126. Woo, D. *et al.* Top research priorities for stroke genetics. *Lancet Neurol.* 17, 663–665 (2018).
- 127. Yao, C. *et al.* Genome-wide mapping of plasma protein QTLs identifies putatively causal genes and pathways for cardiovascular disease. *Nat. Commun.* **9**, (2018).
- 128. Nath, A. P. et al. Multivariate Genome-wide Association Analysis of a Cytokine

Network Reveals Variants with Widespread Immune, Haematological, and Cardiometabolic Pleiotropy. *Am. J. Hum. Genet.* **105**, 1076–1090 (2019).

- 129. Emilsson, V. *et al.* Co-regulatory networks of human serum proteins link genetics to disease. *Science (80-.).* 361, 769–773 (2018).
- Malik, R. *et al.* Genome-wide meta-analysis identifies 3 novel loci associated with stroke. *Ann. Neurol.* 84, 934–939 (2018).
- Georgi, B. *et al.* Leveraging Human Genetics to Estimate Clinical Risk Reductions Achievable by Inhibiting Factor XI. *Stroke* 50, 3004–3012 (2019).
- Abifadel, M. *et al.* Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. *Nat. Genet.* 34, 154–156 (2003).
- 133. Austin, M. A., Hutter, C. M., Zimmern, R. L. & Humphries, S. E. Genetic causes of monogenic heterozygous familial hypercholesterolemia: a HuGE prevalence review. *Am. J. Epidemiol.* **160**, 407–20 (2004).
- 134. Abul-Husn, N. S. *et al.* Genetic identification of familial hypercholesterolemia within a single U.S. Health care system. *Science* (80-.). **354**, (2016).
- 135. Rousselet, E. *et al.* PCSK9 reduces the protein levels of the LDL receptor in mouse brain during development and after ischemic stroke. *J. Lipid Res.* 52, 1383–1391 (2011).
- 136. Poirier, S. *et al.* The proprotein convertase PCSK9 induces the degradation of low density lipoprotein receptor (LDLR) and its closest family members VLDLR and ApoER2. *J. Biol. Chem.* 283, 2363–2372 (2008).
- 137. Seidah, N. G., Awan, Z., Chrétien, M. & Mbikay, M. PCSK9: A key modulator of

cardiovascular health. Circ. Res. 114, 1022–1036 (2014).

- 138. Marston, N. A. *et al.* Predicting Benefit from Evolocumab Therapy in Patients with Atherosclerotic Disease Using a Genetic Risk Score. *Circulation* 616–623 (2020) doi:10.1161/CIRCULATIONAHA.119.043805.
- GG, S. *et al.* Alirocumab and Cardiovascular Outcomes after Acute Coronary Syndrome. *N Engl J Med* 379, 2097–2107 (2018).
- 140. O'Donoghue, M. L. *et al.* Lipoprotein(a), PCSK9 inhibition, and cardiovascular risk insights from the FOURIER trial. *Circulation* 139, 1483–1492 (2019).
- Szarek, M. *et al.* Lipoprotein(a) lowering by alirocumab reduces the total burden of cardiovascular events independent of low-density lipoprotein cholesterol lowering:ODYSSEY OUTCOMES trial. *Eur. Heart J.* 41, 4245–4255 (2020).
- 142. Larsson, S. C. *et al.* Lipoprotein(a) in Alzheimer, Atherosclerotic, Cerebrovascular, Thrombotic, and Valvular Disease: Mendelian Randomization Investigation. *Circulation* 141, 1826–1828 (2020).

CHAPTER 2:

GENERAL HYPOTHESIS, OBJECTIVE, RATIONALE, AND APPROACH

CHAPTER 2: HYPOTHESIS, OBJECTIVE, RATIONALE, & APPROACH

2.1 GENERAL HYPOTHESIS

We hypothesize that a subset of blood biomarkers causally mediate stroke risk and prognosis.

2.2 GENERAL OBJECTIVE

The overall objective of this PhD thesis is to identify molecular determinants of stroke risk and post-stroke outcomes to generate novel therapeutic targets.

2.3 RATIONALE AND APPROACH

A decade ago, neuroprotective agents were heralded as the incumbent class of stroke medications following antithrombotic therapies; however, compelling animal model findings failed to translate to clinical benefit in human patients¹. This cautionary tale emphasizes the importance of effective drug target prioritization tools that combine evidence from multiple modalities not reliant on a single source. One such promising framework that integrates multiple 'Omics modalities is Mendelian Randomization (MR) analysis². MR analysis has been successfully applied to drug target discovery and validation for numerous diseases via the triangulation of genomic, biomarker, and outcome information³. Accordingly, we will apply MR analysis to identify putative targets for stroke treatment in two ways: (i) systematic identification of novel targets (*a priori* discovery) and (ii) assessment of a single targeted hypothesis (*priori* evaluation).

No study has used MR agnostically to identify novel drug targets for ischemic stroke. The recent emergence of large-scale GWAS for thousands of circulating proteins in combination with GWAS of thousands of stroke patients enables such an investigation for

the first time. Accordingly, we will (i) systematically screen the circulating proteome for novel drug targets, (ii) forecast effects of target manipulation on key safety phenotypes (i.e. intracranial bleeding), and (iii) comprehensively elucidate side-effect profiles (Chapter 3).

Mitochondrial dysfunction has long been known to be a sequala and mediator of post-stroke brain injury⁴. However, only recently has an accessible blood marker of mitochondrial activity (leukocyte mtDNA-CN) emerged for study in human participants⁵. Findings from animal models indicate that circulating mtDNA-CN levels acutely drop following stroke, and that rescuing mtDNA-CN levels attenuates stroke severity and improves post-stroke functional outcomes⁶. In contrast, the role of mtDNA-CN in human stroke patients as both a marker and causal determinant of stroke prognosis has not been extensively investigated. The latter query has not yet been addressed mainly because the genetic determinants of mtDNA-CN remain elusive. To this end, we will (i) develop a novel method for array-based mtDNA-CN estimation to enable convenient estimation of mtDNA-CN from biobank-scale genomic datasets and (ii) apply this method to conduct a large GWAS in the UKBiobank study to find genetic variants associated with mtDNA-CN levels (Chapter 4). Finally, we will (i) characterize the epidemiological association between leukocyte mtDNA-CN measured within one week of stroke onset and post-stroke outcomes in patients from the INTERSTROKE study, and (ii) perform MR analysis using independent datasets (UKBiobank from Chapter 4 and GISCOME) to assess whether there is evidence supporting a causal effect of mtDNA-CN on post-stroke outcomes (Chapter 5).

2.4 REFERENCES

- Chamorro, Á., Dirnagl, U., Urra, X. & Planas, A. M. Neuroprotection in acute stroke: Targeting excitotoxicity, oxidative and nitrosative stress, and inflammation. *Lancet Neurol.* 15, 869–881 (2016).
- 2. Hemani, G. *et al.* The MR-base platform supports systematic causal inference across the human phenome. *Elife* **7**, 1–29 (2018).
- 3. Gill, D. *et al.* Mendelian randomization for studying the effects of perturbing drug targets. *Wellcome Open Res.* **6**, (2021).
- Liu, F., Lu, J., Manaenko, A., Tang, J. & Hu, Q. Mitochondria in ischemic stroke: New insight and implications. *Aging Dis.* 9, 924–937 (2018).
- 5. Fazzini, F. *et al.* Plasmid-normalized quantification of relative mitochondrial DNA copy number. 1–11 (2018) doi:10.1038/s41598-018-33684-5.
- Lai, Y. *et al.* Restoration of L-OPA1 alleviates acute ischemic stroke injury in rats via inhibiting neuronal apoptosis and preserving mitochondrial function. *Redox Biol.* 34, 101503 (2020).

CHAPTER 3:

Novel drug targets for ischemic stroke identified through Mendelian Randomization

Analysis of the Blood Proteome

Published in *Circulation*. 140:819-839 (2019)

Circulation

ORIGINAL RESEARCH ARTICLE

Novel Drug Targets for Ischemic Stroke Identified Through Mendelian Randomization Analysis of the Blood Proteome

Editorial, see p 831

BACKGROUND: Novel, effective, and safe drugs are warranted for treatment of ischemic stroke. Circulating protein biomarkers with causal genetic evidence represent promising drug targets, but no systematic screen of the proteome has been performed.

METHODS: First, using Mendelian randomization (MR) analyses, we assessed 653 circulating proteins as possible causal mediators for 3 different subtypes of ischemic stroke: large artery atherosclerosis, cardioembolic stroke, and small artery occlusion. Second, we used MR to assess whether identified biomarkers also affect risk for intracranial bleeding, specifically intracerebral and subarachnoid hemorrhages. Third, we expanded this analysis to 679 diseases to test a broad spectrum of side effects associated with hypothetical therapeutic agents for ischemic stroke that target the identified biomarkers. For all MR analyses, summary-level data from genome-wide association studies (GWAS) were used to ascertain genetic effects on circulating biomarker levels versus disease risk. Biomarker effects were derived by meta-analysis of 5 GWAS (N≤20 509). Disease effects were derived from large GWAS analyses, including MEGASTROKE (N≤322 150) and UK Biobank (N≤408 961) studies.

RESULTS: Several biomarkers emerged as causal mediators for ischemic stroke. Causal mediators for cardioembolic stroke included histo-blood group ABO system transferase, coagulation factor XI, scavenger receptor class A5 (SCARA5), and tumor necrosis factor-like weak inducer of apoptosis (TNFSF12). Causal mediators for large artery atherosclerosis included ABO, cluster of differentiation 40, apolipoprotein(a), and matrix metalloproteinase-12. SCARA5 (odds ratio [OR]=0.78; 95% CI, 0.70-0.88; P=1.46×10⁻⁵) and TNFSF12 (OR=0.86; 95% CI, 0.81–0.91; P=7.69×10⁻⁷) represent novel protective mediators of cardioembolic stroke. TNFSF12 also increased the risk of subarachnoid (OR=1.53; 95% CI, 1.31-1.78; P=3.32×10⁻⁸) and intracerebral (OR=1.34; 95% CI, 1.14-1.58; P=4.05×10-4) hemorrhages, whereas SCARA5 decreased the risk of subarachnoid hemorrhage (OR=0.61; 95% CI, 0.47–0.81; $P=5.20\times10^{-4}$). Multiple side effects beyond stroke were identified for 6 of 7 biomarkers, most (75%) of which were beneficial. No adverse side effects were found for coagulation factor XI, apolipoprotein(a), and SCARA5.

CONCLUSIONS: Through a systematic MR screen of the circulating proteome, causal roles for 5 established and 2 novel biomarkers for ischemic stroke were identified. Side-effect profiles were characterized to help inform drug target prioritization. In particular, SCARA5 represents a promising target for treatment of cardioembolic stroke, with no predicted adverse side effects.

Circulation, 2019;140;819-830, DOI: 10.1161/CIRCULATIONAHA.119.040180

Michael Chong, MSc Jennifer Sjaarda, PhD Marie Pigeyre, MD, PhD Pedrum Mohammadi-Shemirani, BSc Ricky Lali, MSc Ashkan Shoamanesh, MD Hertzel Chaim Gerstein, MD. MSc Guillaume Paré, MD, MSc

Key Words: biomarkers = genetics

- intracranial hemorrhages Mendelian randomization analysis
- proteomics = stroke

Sources of Funding, see page 828

© 2019 American Heart Association, Inc.

https://www.ahajournals.org/journal/circ

Downloaded from

http://ahajournals.org by on June 1, 202

Mendelian Randomization Identifies Stroke Targets

original research Article Chong et al

Clinical Perspective

What Is New?

- Among 653 proteins, 7 were causal mediators of ischemic stroke including 2 established targets, apolipoprotein(a) and coagulation factor XI, and 2 novel mediators of cardioembolic stroke: scavenger receptor class A5 (SCARA5) and tumor necrosis factor weak inducer of apoptosis.
- Targeting SCARA5 was predicted to also protect against subarachnoid hemorrhage with no evidence of adverse side effects.
- Some biomarkers mediated risk of multiple nonstroke disorders.

What Are the Clinical Implications?

- Findings provide confirmatory evidence for pursuing clinical trials of coagulation factor XI and apolipoprotein(a).
- SCARA5 represents a new therapeutic target.
- Integrating genomic, proteomic, and phenomic data through Mendelian randomization facilitates discovery of drug targets and their side effects.

roke is a leading cause of death and disability worldwide, and its global burden continues to grow.¹ Randomized controlled trials (RCTs) reveal high stroke recurrence rates among ischemic stroke patients ranging from 1.0% to 14.9% per year, depending on the underlying subtype (ie, large artery atherosclerosis, cardioembolic stroke, or small artery occlusion).²⁻⁴ As such, novel therapies for treatment of ischemic stroke are warranted. Epidemiological studies have identified several circulating proteins that correlate with stroke risk,⁵⁻⁷ thus representing potential therapeutic targets. However, high attrition rates associated with drug development prompt the need for further investigation of stroke-associated biomarkers before clinical testing.⁸ Nelson et al⁸ demonstrated that a protein drug target whose link with disease is supported by genetic association is twice as likely to reach market approval.⁸ Furthermore, recent technological advances in high-throughput protein quantification have enabled genome-wide association studies (GWAS) to uncover genetic determinants for thousands of blood proteins simultaneously.^{9–13} Accordingly, we sought to discover new and effective drug targets for ischemic stroke by integrating genetic and proteomic data through Mendelian randomization (MR) analysis.

MR is a statistical genetics framework used to assess causality between an exposure (ie, biomarker) and an outcome (ie, ischemic stroke).¹⁴ Similar to how RCTs randomly allocate an intervention to test its causal effect on an outcome, MR represents a "natural" RCT that leverages the random allocation of exposure-influencing genetic alleles.¹⁵ Previously, MR has been ap-

820 September 3, 2019

plied in a hypothesis-driven manner to assess causality of select biomarkers on stroke risk including C–C motif chemokine ligand 2 (CCL2), Chitinase-3–like protein 1 (CHI3L1), C-reactive protein (CRP), cystatin C (CST3), apo lipoprotein(a) (LPA), matrix metalloproteinase-12 (MMP12), and proprotein convertase subtilisin/kexin type 9 (PCSK9).^{5-7,12,16-19} However, there has been no systematic scan of the human proteome for novel causal mediators of stroke. Beyond drug target prioritization, MR can also be applied to predict target-mediated side effects to reveal unanticipated adverse effects and opportunities for drug repurposing.^{15,19}

In this study, we used MR to (1) systematically screen 653 circulating proteins to identify novel mediators of ischemic stroke subtypes (large artery atherosclerosis, cardioembolic stroke, and small artery occlusion); (2) examine the relationship between identified biomarkers and risk of intracranial bleeding; and (3) predict target-mediated side effects through phenome-wide analysis of 679 disease traits.

METHODS

Data Disclosure Statement

The authors declare that supporting data are available within the article, its online supplementary files, and referenced public data sets.

Deriving Genetic Determinants of Circulating Biomarker Levels

The premise underlying MR is that causality is supported if genetic variants that influence exposure levels (ie, biomarker) also influence the outcome (ie, ischemic stroke) in a proportional and directionally concordant manner. Accordingly, we first identified a subset of genetic variants that were associated with circulating biomarker levels. To accomplish this, we combined 5 different biomarker GWAS analyses for which genome-wide summary statistics were publicly available (YFS/ FINRISK [Cardiovascular Risk in Young Finns Study/FINRISK]; IMPROVE [The Multicentre, Longitudinal Carotid Intima-Media Thickness and IMT-Progression as Predictors of Vascular Events in a High-Risk European Population]; KORA F4/QMDiab [Cooperative Health Research in the Region of Augsburg F4/ Qatar Metabolomics Study on Diabetes]; and INTERVAL) or that we had access to in-house (ORIGIN [Outcome Reduction with Initial Glargine Intervention]).9-13 The 5 study samples consisted of predominantly European individuals in whom biomarker testing was conducted in blood samples using various high-multiplex protein assays. Circulating proteins were measured through bead-based immunoassays in YFS/FINRISK and ORIGIN, modified antibodies conjugated to oligonucleotides in IMPROVE, and slow off-rate modified aptamers in KORA F4/QMDiab and INTERVAL. Specifically, YFS/FINRISK analyzed 41 cytokines detected via the Bio-Rad Bio-Plex Pro human cytokine assay; ORIGIN analyzed 227 biomarkers via the Myriad RBM human Explorer multianalyte profile assay; IMPROVE analyzed 83 cardiovascular disease-related proteins via the O-link ProSeek cardiovascular disease array I; KORA

Circulation. 2019;140:819-830. DOI: 10.1161/CIRCULATIONAHA.119.040180

Downloaded from http://ahajournals.org by on June 1, 202

Chong et al

FR/QMDiab analyzed 1124 proteins via the SOMAScan assay (version 3.2); and INTERVAL analyzed 2994 proteins via the SOMAScan assay (extended panel).9-13 For further details. see Table I in the online-only Data Supplement. To maintain the validity of genetic variants for MR analyses, blood biomarkers possessing any of the following attributes were excluded:

- 1. Biomarker is encoded by a gene that produces multiple proteins
- 2. Biomarker is encoded by multiple genes
- 3. Biomarker is encoded by a nonautosomal gene (eg, X-chromosome encoded)
- 4. Biomarker is not encoded by a gene (eg, biomarker is a steroid hormone)
- 5. Biomarker is known to exhibit substantial structural variation (eg, immunoglobulins).

After these exclusions, 3090 unique protein biomarkers remained, of which 899 (29.1%) were assayed by multiple studies. Meta-analysis was subsequently performed using a fixedeffect inverse-variance weighted model in METAL.²⁰ For each biomarker, common single-nucleotide polymorphisms (SNPs; minor allele frequency > 0.01 in 1000Genomes Europeans) with a combined P value below 0.01 were retained. Furthermore, SNPs located beyond 200 kilobases of the encoding gene transcript of the protein biomarker were removed to maximize the likelihood that SNP-biomarker associations were directly mediated through the biomarker itself, thereby mitigating the potential for pleiotropy. This resultant set of biomarker-associated SNPs were used as "genetic instruments" to estimate genetically determined biomarker levels in all subsequent MR analyses. Genetic instruments for all identified biomarkers are available in Table II in the online-only Data Supplement.

Systematic MR Screening for Causal Mediators of Ischemic Stroke Subtypes

The relationship between biomarker-associated SNPs (identified in the previous GWAS meta-analysis) and ischemic stroke subtypes was assessed using summary-level data from the MEGASTROKE study.²¹ Specifically, effect size and standard error estimates were extracted from Europeanonly MEGASTROKE analyses for large artery atherosclerosis (N_{case}=4373; N_{control}= 200 618), cardioembolic stroke (N_{case}=7193; N_{control}=314 957), and small artery occlusion (N_{case}= 5386; N_{control}=249 172). Because genetic instruments for circulating biomarker levels were derived from Europeans (because of the lack of available non-European biomarker GWAS), European-only MEGASTROKE analyses were used in lieu of transethnic analyses. Essentially, ethnic composition of exposure and outcome data sets was harmonized to satisfy the presumption that genetic instruments approximated similar biomarker effects in both exposure and outcome data sets. Ischemic stroke subtyping was based on the TOAST (Trial of Org 10172 in Acute Stroke Treatment) criteria.⁴ Biomarkerassociated SNPs that were not present in MEGASTROKE were excluded. For the remaining SNPs with available effect size estimates for both biomarker levels and risk of stroke. linkage disequilibrium-pruning (r²<0.10 in 1000Genomes Europeans) was performed to generate an independent set of genetic variants.²² Analyses in which genetic variants collectively explained less than 0.5% of variance in biomarker levels were excluded to ensure that only robust associations would withstand multiple hypothesis testing.

Circulation 2019:140:819-830 DOI: 10 1161/CIRCUI ATIONAHA 119 040180

Statistical Analysis

The MR-robust adjusted profile scoring method was chosen for MR testing because of its resilience to violations of key MR assumptions, such as horizontal pleiotropy.23 Furthermore, MR-robust adjusted profile scoring enables inclusion of many weak instruments by accounting for the precision of SNP-exposure associations in addition to SNP-outcome associations. Odds ratios were expressed per SD increase in genetically determined circulating biomarker levels. A Bonferroni-corrected P value threshold accounting for both the number of biomarkers and outcomes analyzed was implemented (Figure 1; P=0.05/(653×3)=2.55×10⁻⁵).

Standard sensitivity analyses were employed to assess the validity of MR findings, including verification with orthogonal MR methods (inverse variance weighted, MR-Egger, and median weighted MR), as well as diagnostic tests for pleiotropy (MR-Egger intercept), directionality (Steiger), and SNP outliers (leave-one-out analysis). All MR analyses were completed using the "MRBase for TwoSample MR" package (version 0.4.09).²⁴ The plots were generated using various R (version 3.4.1) packages including ggplot2, MRBase, and PheWAS. It should be noted that the same statistical analysis framework, incorporating MR-robust adjusted profile scoring and the aforementioned sensitivity analyses, was employed in all subsequent MR analyses as well.

Targeted MR Analysis of Hemorrhagic Stroke Subtypes

Next, given that ischemic and hemorrhagic stroke subtypes share common clinical and genetic risk factors with evidence for both concordant and antagonistic effects,^{21,25} using MR, we sought to characterize the causal effects of ischemic stroke biomarkers on 2 hemorrhagic subtypes: subarachnoid and intracerebral hemorrhage (Figure 1). SNP-biomarker effects were derived from the same GWAS meta-analysis as in the primary analysis for ischemic stroke subtypes (N=20 509). SNP-outcome effects were derived by performing association testing of genetic instruments within British participants from the large, prospective UK Biobank study who consented for genetic analysis (application 15255). Quality control of the genetic data set was performed as previously mentioned by Sjaarda et al,13 except that related individuals were retained in the present analysis. Association testing was conducted using the SAIGE (Scalable and Accurate Implementation of GEneralized mixed model; version 0.29) method developed by Zhou et al²⁶ to account for unbalanced case-control ratios. Subarachnoid hemorrhage (N=1064) and intracerebral hemorrhage (N=845) cases were classified using algorithmic definitions based on a combination of hospital admission, self-reported, and death register data (UK Biobank Field IDs: 42010 and 42012).27 Controls (N=398 736) for this analysis consisted of stroke-free individuals (UK Biobank Field ID: 42006). Covariates and model parameters followed those in Zhou et al.²⁶ The results were expressed as odds ratios per SD increase in genetically determined circulating biomarker levels. As a secondary analysis, intracerebral hemorrhage subtypes (lobar and nonlobar) were also investigated using GWAS summary statistics from Woo et al²⁸ (N_{lobar}=664; N_{nonlobar}=881; N_{control}=1481).

Downloaded from http://ahajournals.org by on

June 1, 202

September 3, 2019 821 original research Article

Downloaded from http://ahajournals.org by on June 1, 202

Figure 1. Overview of Mendelian randomization (MR) analyses.

The study consists of a 3-stage design that employs MR at all stages. First, we evaluated causal roles for 653 circulating biomarkers in mediating risk of 3 ischemic stroke subtypes (large artery atherosclerosis, cardioembolic stroke, and small artery occlusion). Second, for the 7 identified biomarkers found to be significantly associated with risk of at least 1 ischemic subtype, we examined causal roles in mediating risk for hemorrhagic stroke subtypes (subarachnoid and intracerebral bemorrhages). Third, we explored a broad spectrum of side effects associated with targeting identified biomarkers for ischemic stroke treatment by expanding the previous analysis to 679 disease traits, belonging to 1 of 16 different International Classification of Disease-9 chapters. At each stage, a Bonferroni-corrected value threshold was applied, accounting for both the number of biomarkers and the outcomes analyzed.

Phenome-Wide MR Analysis of 679 **Disease Traits**

Lastly, we expanded the previous exploration of side effects to include nonstroke phenotypes by performing an agnostic phenome-wide MR (Phe-MR) analysis of 679 disease traits (Figure 1; Table III in the online-only Data Supplement). The primary purpose of the Phe-MR analysis was to elucidate potential on-target side effects (beneficial or adverse) associated with hypothetical interventions that reduced ischemic stroke risk by targeting identified biomarkers. SNP-biomarker effects were derived from the same GWAS meta-analysis as in the primary ischemic stroke analysis (N≤20 509). SNPoutcome effects were derived from the same UK Biobank cohort (N≤408 961) as used in the previous analysis but using a set of publicly available summary statistics provided by Zhou et al.²⁶ Disease outcomes were defined based on "PheCodes," a system developed to organize International Classification of Diseases and Related Health Problems codes into phenotypic outcomes suitable for systematic genetic analysis of numerous disease traits.^{26,29} Sex-specific outcomes and outcomes with fewer than 500 cases were excluded because of the lack of data availability and statistical power, respectively. In contrast to previous results, Phe-MR findings were standardized to a change in biomarker level corresponding to a 10% reduction in ischemic stroke subtype risk (derived based on stage 1 associations). The results were standardized in this manner to (1) frame results in a clinical context (ie, what side effects might occur if identified biomarkers are therapeutically targeted for

September 3, 2019 822

ischemic stroke?); (2) harmonize directionality among identified biomarkers that could either increase or decrease stroke risk; and (3) enable direct comparison of side effects (magnitude and directionality) between biomarkers. Also, given the inherent redundancy between PheCodes, we strived to improve interpretability of results by systematically selecting representative phenotypes. Parent disease categories were prioritized over individual disease entities when appropriate. For example, in the scenario that pulmonary heart disease and its constituents (primary pulmonary hypertension and chronic pulmonary heart disease) all surpassed Bonferroni significance, only pulmonary heart disease would be reported.

Research Ethics Board Approval

The ORIGIN study received approvals from the local ethics committees at all participating sites, and all participants provided written informed consent. The UK Biobank study received approval from the National Health Service National Research Ethics Service North West.

RESULTS

Screening the Proteome for Causal Mediators of Ischemic Stroke Subtypes

Overall, 653 unique circulating biomarkers were tested for causal associations with 3 ischemic stroke sub-

Circulation. 2019;140:819-830. DOI: 10.1161/CIRCULATIONAHA.119.040180

Chong et al

ORIGINAL RESEARCH ARTICLE

types, representing 1959 distinct analyses (Bonferroni *P*=0.05/1959=2.55×10⁻⁵). For a complete list of specific proteins analyzed, see Table IV in the onlineonly Data Supplement. At Bonferroni significance, MR analyses revealed causal relationships between 8 biomarker-stroke subtype pairs, encompassing 7 unique biomarkers (Table 1). Genetically determined levels of histo-blood group ABO system transferase. coagulation factor XI (F11), and LPA were associated with greater risk of ischemic stroke, whereas cluster of differentiation 40 (CD40), tumor necrosis factorlike weak inducer of apoptosis (TNFSF12), MMP12, and scavenger receptor class A5 (SCARA5) were associated with lower risk of ischemic stroke. Specifically, LPA increased the risk of large artery atherosclerosis (odds ratio [OR]=1.22; 95% CI, 1.14-1.30; P=3.19×10-9), whereas CD40 (OR=0.73; 95% CI, 0.66-0.80; P=1.90×10⁻¹⁰) and MMP12 (OR=0.83; 95% CI, 0.77-0.90; P=7.69×10-7) decreased the risk of large artery atherosclerosis. ABO increased the risks of both large artery atherosclerosis (OR=1.08; 95% CI, 1.05–1.12; *P*=2.43×10⁻⁷) and cardioembolic stroke (OR=1.06; 95% CI, 1.04-1.09; P=4.54×10-7). F11 increased risk of cardioembolic stroke (OR=1.25; 95% CI, 1.16-1.36; P=1.34×10-8), whereas TNFSF12 (OR=0.86; 95% CI, 0.81-0.91; P=7.69×10-7) and SCARA5 (OR=0.78; 95% CI, 0.70-0.88; P=1.46×10-5) were associated with decreased risk of cardioembolic stroke. No significant biomarker associations were found for small artery occlusion. MR sensitivity analyses were consistent with primary analyses, without evidence of directional pleiotropy or outliers driving associations (see Table V and Figures I-III in the online-only Data Supplement). Although ABO was the only biomarker associated

with multiple ischemic subtypes at Bonferroni significance, CD40, MMP12, and SCARA5 exhibited nominal associations (*P*<0.05) with other ischemic subtypes. All nominal associations with secondary subtypes exhibited the same direction-of-effect as the primary subtype (Figure 2) including CD40 with decreased risk of small artery occlusion (OR=0.91; 95% CI, 0.83–0.99; P=0.03); MMP12 with decreased risks of cardioembolic stroke (OR=0.94; 95% CI, 0.90–0.99; P=0.01) and small artery occlusion (OR=0.93; 95% CI, 0.89–0.99; P=0.01); and SCARA5 with decreased risk of small artery occlusion (OR=0.86; 95% CI, 0.76–0.87; P=0.02). Associations between identified biomarkers and aggregate phenotypes (all ischemic stroke and any stroke) are also present in Table VI in the online-only Data Supplement.

Mendelian Randomization Identifies Stroke Targets

Characterizing the Effects of Ischemic Stroke Biomarkers on Intracranial Bleeding

Next, we sought to investigate whether identified biomarkers mediated risk of hemorrhagic stroke subtypes (Figure 3). After multiple hypotheses testing correction, significant associations were found for MMP12, SCARA5, and TNFSF12. Genetically determined levels of MMP12 increased risk of intracerebral hemorrhage (OR=1.22; 95% CI, 1.09-1.36; P=4.84×10⁻⁴), and TNFSF12 increased risks of both subarachnoid hemorrhage (OR=1.37; 95% CI, 1.20–1.56; P=3.12×10⁻⁶) and intracerebral hemorrhage (OR=1.37; 95% CI, 1.18-1.59; P=2.84×10-5). In contrast, SCARA5 decreased the risk of subarachnoid hemorrhage (OR=0.67; 95% CI, 0.52-0.85; P=0.001). For these associations, there was no evidence of imbalanced pleiotropy, and other MR methods yielded consistent effect estimates (Table VII in the online-only Data Supplement). Significant associations were not observed for either lobar or nonlobar intracerebral hemorrhage subtypes (Table VIII in the online-only Data Supplement).

Downloaded from http://ahajournals.org by on June 1, 2021

Table 1. Summary of Significant Biomarkers Representing Causal Mediators for Ischemic Stroke Subtypes

Stroke Subtype	Number of SNPs	Variance in Biomarker Levels Explained	Odds Ratio	95% Cl	P Value
LAA	23	0.06	0.73	0.66-0.80	1.90×10 ⁻¹⁰
LAA	31	0.12	1.22	1.14-1.30	3.19×10-9
CES	6	0.01	1.25	1.16-1.36	1.34×10-8
LAA	39	0.30	1.08	1.05-1.12	2.43×10 ⁻⁷
CES	39	0.30	1.06	1.04-1.09	4.54×10-7
CES	17	0.05	0.86	0.81-0.91	7.69×10 ⁻⁷
LAA	33	0.14	0.83	0.77-0.90	6.56×10 ⁻⁶
CES	14	0.02	0.78	0.70-0.88	1.46×10⁻⁵
	Stroke Subtype LAA LAA CES LAA CES LAA CES CES LAA CES CES CES CES	Stroke Subtype Number of SNPs LAA 23 LAA 31 CES 6 LAA 39 CES 39 CES 17 LAA 33 CES 14	Stroke Subtype Number of SNPs Variance in Biomarker Levelss LAA 23 0.06 LAA 31 0.12 CES 6 0.01 LAA 39 0.30 CES 39 0.30 CES 17 0.05 LAA 33 0.14 CES 14 0.02	Stroke Subtype Number of SNPs Wariance in Biomarker Levels Explained Odds Ratio LAA 23 0.06 0.73 LAA 31 0.12 1.22 CES 6 0.01 1.25 LAA 39 0.30 1.08 CES 39 0.30 1.06 CES 117 0.05 0.86 LAA 33 0.14 0.83 CES 14 0.02 0.78	Stroke Subtype Number of SNPs Variance in Biomarker Levels Explained Odds Ratio 95% Cl LAA 23 0.06 0.73 0.66-0.80 LAA 31 0.12 1.22 1.14-1.30 CES 6 0.01 1.25 1.16-1.36 LAA 39 0.30 1.08 1.05-1.12 CES 39 0.30 1.06 0.81-0.91 CES 117 0.05 0.86 0.81-0.91 LAA 33 0.14 0.83 0.77-0.90

All displayed results surpassed correction for multiple hypotheses testing (P<2.55×10⁻⁵). Odds ratios are expressed in terms of risk per 1–standard deviation increase in biomarker levels. ABO indicates histo-biood group ABO system transferase; CD40, cluster of differentiation 40; CE5, cardioembolic stroke; F11, coagulation factor XI; LAA, large artery atherosclerosis; LPA, apolipoprotein(a); MMP12, matrix metalloproteinase-12; SCARA5, scavenger receptor class A5; SNP, single-nucleotide polymorphism; and TNFSF12, tumor necrosis factor–like weak inducer of apoptosis.

Circulation. 2019;140:819-830. DOI: 10.1161/CIRCULATIONAHA.119.040180

September 3, 2019 823
Mendelian Randomization Identifies Stroke Targets

Chong et al

original research Article

Downloaded from http://ahajournals.org by on June 1, 2021

Figure 2. Association between identified biomarkers and risk for ischemic stroke subtypes. Associations above the black midline represent risk-conferring effects, and those below the black midline represents protective effects. CI values are truncated at odds ratios greater than 1.30 and less than 0.70. *Nominally significant (P<0.05). **Bonferroni significant (P<0.05/(653×3)=2.55×10-5). ABO indicates histo-blood group ABO system transferase; CD40, cluster of differentiation 40; CES, cardioembolic stroke; F11, coagulation factor XI; LAA, large artery atherosclerosis; LPA, apolipoprotein(a); MMP12, matrix metalloproteinase-12; SAO, small artery occlusion; SCARA5, scavenger receptor class A5; and TNFSF12, tumor necrosis factorlike weak inducer of apoptosis.

Phe-MR Analysis of Identified Biomarkers for Risk of 679 Diseases

depict side-effect profiles for each biomarker. Unlike the previous MR analyses, Phe-MR results were standardized to a 10% reduction in ischemic stroke subtype risk mediated through a given biomarker. As such, resultant associations can be interpreted as concomitant side effects

After identifying roles for some ischemic stroke biomarkers in intracranial bleeding, we conducted a broader analysis of 679 disease traits to more comprehensively

Figure 3. Association between identified biomarkers and risk for hemorrhagic stroke subtypes.

Associations above the black midline represent risk-conferring effects, and those below the black midline represents protective effects. *Nominally significant (P<0.05). **Bonferroni significant (P<0.05/(7×2)=0.004). ABO indicates histo-blood group ABO system transferase; CD40, cluster of differentiation 40; F11, coagulation factor XI; ICH, intracerebral hemorrhage; LPA, apolipoprotein(a); MMP12, matrix metalloproteinase-12; SAH, subarachnoid hemorrhage; SCARA5, scavenger receptor class A5; and TNFSF12, tumor necrosis factor–like weak inducer of apoptosis.

824 September 3, 2019

Mendelian Randomization Identifies Stroke Targets

expected to arise if each biomarker is targeted therapeutically. Overall, 71 significant associations were identified (Table 2; Figure 4; Figure IV in the online-only Data Supplement), of which 53 (75%) exhibited beneficial side effects. This enrichment in beneficial vs. deleterious side effects was statistically significant (P=6.26×10⁻⁶).

Examining individual biomarkers, 6 of the 7 biomarkers were associated with multiple diseases except for SCARA5, which was associated with none (Figure 4). ABO was associated with the most disease traits (28), followed by LPA (21), TNFSF12 (11), CD40 (5), F11 (3), and MMP12 (3). All disease associations with F11, LPA, and MMP12 were protective, followed by a lower proportion for CD40 (80%), ABO (71%), and TNFSF12 (18%). Grouping individual phenotypes based on disease category, the circulatory system was most commonly implicated for ABO, F11, LPA, and TNSF12 (Table 2). The most significant disease association for each biomarker was phlebitis or thrombophlebitis for ABO (OR=0.67; 95% CI, 0.62–0.71; P=1.36×10⁻²⁹), umbilical hernia for CD40 (OR=0.93; 95% CI, 0.90-0.96; P=1.07×10⁻⁶), pulmonary heart disease for F11 (OR=0.82; 95% CI, 0.78-0.86; $P=2.90\times10^{-16}$), ischemic heart disease for LPA (OR=0.89; 95% CI, 0.88-0.90; P=9.18×10-110), cardiac shunt/heart septal defect for MMP12 (OR=0.82; 95% CI, 0.76-0.88; $P=1.02\times10^{-7}$), and hypertension for TNFSF12 (OR=1.06; 95% CI, 1.04–1.07; P=1.39×10⁻¹⁵). Sensitivity analyses expressed in terms of SD biomarker increase are presented in Table IX in the online-only Data Supplement.

DISCUSSION

In this report, we used MR to systematically screen 653 circulating proteins and identified causal mediators for large artery atherosclerosis (ABO, CD40, LPA, and MMP12) and cardioembolic stroke (ABO, F11, SCARA5,

and TNFSF12). MR was further applied to predict ontarget side effects associated with potential ischemic stroke treatment via intervention of identified biomarkers. In addition to ischemic stroke, MMP12, SCARA5, and TNFSF12 were found to influence risk of hemorrhagic stroke subtypes. Beyond stroke, all identified biomarkers except for SCARA5 were found to mediate the risk of multiple nonstroke disorders.

The primary MR analysis revealed 7 causal mediators for ischemic stroke, and 5 of these have been previously implicated by genetic studies.^{16,18,30–32} F11 is a coagulation factor whose inhibition has been hypothesized to reduce thrombosis without increasing bleeding tendency.33 In our study, genetically determined F11 levels increased the risk of cardioembolic stroke without affecting risk of subarachnoid or intracerebral hemorrhage (P>0.10; Table VII in the online-only Data Supplement). This is consistent with initial RCT findings demonstrating less bleeding in 150 patients assigned to F11 inhibition vs. enoxaparin.³⁴ A phase II RCT for secondary ischemic stroke prevention is currently planned (NCT03766581). LPA is a well established causal risk factor for cardiovascular disease.¹⁶ Phe-MR analysis predicted LPA inhibition to be safe with few adverse side effects and to be particularly effective for large artery atherosclerosis prevention. Indeed, a potent LPA inhibitor elicited no safety concerns in a phase II trial and will be tested for secondary prevention (NCT03070782). ABO is a glycosyltransferase enzyme whose activity determines ABO blood type. Consistent with our findings, epidemiological studies suggest that individuals with O blood type, devoid of any enzymatic activity, are protected from thrombosis.³⁵ However, therapies targeting ABO may be complicated given their uncertain effect on blood type and numerous side effects predicted by Phe-MR. CD40 is a member of the tumor necrosis factor receptor superfamily, and MMP12

Downloaded from http://ahajournals.org by on June 1, 2021

Table 2. Descriptive Summary of Significant Phenome-Wide Mendelian Randomization Findings Representing On-Target Side Effects of Biomarker Intervention

Biomarker	Number of Significant Disease Associations	Number of Beneficial/ Deleterious Side Effects (%)	Top ICD-9 Disease Chapters (%)	Most Significant Disease (Beneficial or Deleterious)
ABO	28	20/8 (71)	Circulatory system (32); digestive (29)	Phlebitis and thrombophlebitis (B)
CD40	5	4/1 (80)	Respiratory (40)	Umbilical hernia (B)
F11	3	3/0 (100)	Circulatory system (100)	Pulmonary heart disease (B)
LPA	21	21/0 (100)	Circulatory system (67)	lschemic heart disease (B)
MMP12	3	3/0 (100)	Sense organs (33); congenital anomalies (33); injuries and poisonings (33)	Cardiac shunt/heart septal defect (B)
SCARA5	0	_	_	_
TNFSF12	11	2/9 (18)	Circulatory system (55); digestive (27)	Hypertension (D)
Total	71	53/18 (75)	Circulatory system (45)	—

Reported in this table are the number of significant disease associations (P<1.07×10⁻⁵), the number of beneficial and deleterious side effects, the ICD-9 disease chapters comprising greater than 20% of significant associations, and the most significant disease association for each biomarker. ABO indicates histo-blood group ABO system transferase; B, beneficial; CD40, cluster of differentiation 40; D, deleterious; F11, coagulation factor XI; ICD, International Classification of Disease; LPA, apolipoprotein(a); MMP12, matrix metalloproteinase-12; SCARA5, scavenger receptor class A5; and TNF5F12, tumor necrosis factor-like weak inducer of apoptosis.

original research Article

Downloaded from http://ahajournals.org by on June 1, 2021

Figure 4. Potential on-target side effects associated with biomarker intervention revealed by Phe–Mendelian randomization analysis. Only Bonferroni-significant disease associations are illustrated (P<0.05/(7x697)=1.07×10⁻⁵). Simply, the results can be perceived as on-target side effects for a hypothetical drug that reduces risk of a given ischemic stroke subtype by 10% through intervention of circulating biomarker levels. Specifically, risk of disease is expressed per 10% reduction in risk for the specific ischemic subtype that each biomarker was associated with in the primary Mendelian randomization analysis. For ABO, which was associated with 2 ischemic stroke subtypes (large artery atherosclerosis and cardioembolic stroke), the results were standardized to a 10% reduction in risk of large artery atherosclerosis. Associations above the horizontal black midline represent deleterious side effects. Conversely, associations below this line represent beneficial side effects. The horizontal red line (odds ratio=1.10) represents the point at which decreased ischemic stroke risk is counterbalanced by an equal increase in disease risk. ABO indicates histo-blood group ABO system transferase; CD40, cluster of differentiation 40, F11, coagulation factor XI; LPA, apolipoprotein(a); MMP12, matrix metalloproteinase-12; and TNESF12, tumor necrosis factor-like weak inducer of apoptosis.

826 September 3, 2019

Mendelian Randomization Identifies Stroke Targets

is a member of the matrix metalloproteinase family that contributes to vascular remodeling. For both biomarkers, the relationship between circulating biomarker levels and cardiovascular disease risk remains uncertain because studies report conflicting direction-of-effects.^{18,32,36} In our study, genetically determined circulating levels of CD40 and MMP12 were protective for large artery atherosclerosis. Future studies are warranted to clarify the directionality of these associations.

SCARA5 and TNFSF12 represent novel, protective mediators for cardioembolic stroke. SCARA5 is a scavenger receptor that exports ferritin-bound iron from circulation to parenchymal tissues, including the heart and brain.37 Along with a recent MR analysis suggesting that genetically lower serum iron decreases cardioembolic stroke risk, our findings indicate a broader role for iron homeostasis in cardioembolic stroke pathogenesis.³⁸ SCARA5 significantly reduced risk for subarachnoid hemorrhage, and a consistent albeit nonsignificant effect was observed for intracerebral hemorrhage. Notably, acute administration of iron chelators is currently being tested in hemorrhagic stroke patients to improve recovery (NCT02175225 and NCT02875262). The utility of iron chelation for secondary prevention of hemorrhagic stroke is currently unknown, although iron restriction has been shown to attenuate aneurysm formation in mice.³⁹ Additionally, Phe-MR analysis did not reveal any deleterious side effects for SCARA5, and the current literature supports its safety, because SCARA5 has been reported to be protective for multiple cancers and retinopathy.^{40–42} Overall, SCARA5 represents a promising therapeutic target for cardioembolic stroke and subarachnoid hemorrhage, and further research is warranted to decipher the mechanisms through which it protects against both ischemic and hemorrhagic strokes.

TNFSF12 encodes for tumor necrosis factor-like weak inducer of apoptosis, a pleiotropic cytokine that requlates numerous biological processes through binding of its receptor, tumor necrosis factor receptor superfamily member 12A (TNFRSF12A).43 We found TNFSF12 to be protective against cardioembolic stroke, and Phe-MR results suggested that this may be mediated by lower risk for atrial fibrillation. Indeed, TNFSF12 is a well established marker of atrial fibrillation as corroborated by genetic, epidemiological, and animal investigations.44,45 Beyond atrial fibrillation, there are also indications that TNFSF12 plays a distinct role in the brain's response to stroke. Serum TNFSF12 concentrations have been shown to be higher in stroke patients than stroke-free individuals.⁴⁶ Additionally, in mice, poststroke administration of a decoy receptor for TNFSF12 reduces infarct sizes, prevents blood-brain barrier leakage, and improves functional outcomes.46,47 Consistent with these results, we found that genetically determined levels of TNFSF12 significantly increased risk for intracerebral and subarachnoid hemorrhages. As such, potential adverse side effects on intracranial bleeding should be considered in gauging the therapeutic utility of TNFSF12 for cardioembolic stroke treatment. Notably, TNFSF12 has been reported to interact with cluster of differentiation 163 (CD163), a scavenger receptor for circulating hemoglobin.⁴⁸ In an intracerebral hemorrhage mouse model, CD163 mitigated hematoma expansion by reducing free circulating hemoglobin.⁴⁹ This protective effect may be partially mediated by reduced TNFSF12 signaling because CD163 is known to act as a decoy receptor for circulating TNFSF12. Together, SCARA5 and TNFSF12 implicate iron and hemoglobin sequestration as potential therapeutic pathways for cardioembolic stroke and hemorrhagic stroke treatment.

Study findings have several implications. First, many additional drug targets may be uncovered as biomarker testing becomes more comprehensive. Although we evaluated causal roles for 653 proteins, the most by any stroke MR study to date, these only represent ~3% of all known proteins. Second, a subtype-specific approach was found to be effective for identifying novel drug targets because most identified biomarkers generally exhibited strong specificity for a single subtype. In fact, had all-cause ischemic stroke been used as the primary outcome, 3 biomarkers would not have been identified at Bonferroni significance. Consequently, more detailed phenotyping within ischemic subtypes (eg, lipohyalinosis vs. branch atheromatous small artery occlusion) may also enhance drug target discovery. Third, Phe-MR results suggest that biomarkers affecting stroke may also mediate the risk of many nonstroke diseases including circulatory and noncirculatory disorders. Auspiciously, most (75%) predicted side effects were beneficial and not deleterious, suggesting that if drugs were developed to treat ischemic stroke through the identified biomarkers, most side effects would be beneficial. Fourth, Phe-MR analysis serves as a powerful preclinical tool for drug target prioritization and to help anticipate target-mediated side effects. Further investigation of identified biomarkers is necessary, and study of associated proteins may aid in the identification of more direct mediators that are better targets in terms of both effectiveness and safety.

The interpretation and generalizability of study findings are limited by several factors. The following considerations relate to the derivation of genetic instruments and thus generally apply to all analyses conducted. First, specificity of protein quantification may be reduced in the presence of genetic variation and qualitative protein changes (eg, amino acid substitutions, post-translational modifications, splice variations). Qualitative changes may unpredictably affect binding affinity between detection molecules (eg, aptamers or antibodies) and protein targets leading to misinterpretation of qualitative effects as quantitative.⁵⁰ Granted, the inclusion of studies incorporating different protein quantification technologies and the use of multiple independent genetic instruments

Circulation. 2019;140:819-830. DOI: 10.1161/CIRCULATIONAHA.119.040180

September 3, 2019 827

original research Article

Downloaded from http://ahajournals.org by on June 1, 2021

for each biomarker reduce the likelihood that reported associations are driven by technology-specific artefacts. Second, most study participants included in the current analyses were of European ancestry because of limitations in data availability. Future biomarker GWAS in non-Europeans are necessary to enable transethnic MR analyses, which are expected to lead to more generalizable findings.²¹ Third, to mitigate the possibility that genetic instruments acted through alternative pathways (ie, horizontal pleiotropy), we excluded variants distal to the encoding gene, but this approach may also exclude valid genetic instruments as in the work of Georgakis et al.¹⁷ Conversely, stroke-associated biomarkers lacking causal support from previous MR studies (ie, CHI3L1, CRP, and CST3) were also nonsignificant (P>0.05) in our analyses, which supports the specificity of this approach (Table X in the online-only Data Supplement). A limitation of the primary analysis of ischemic stroke subtypes was the inability to replicate results in the UK Biobank study because of incompatibility of subtype classification systems (ie, TOAST vs. International Classification of Diseases and Related Health Problems) and sparse subtyping. For similar reasons, subtypes of intracerebral hemorrhage were not investigated in the second stage analysis within UK Biobank, despite evidence for distinct genetic architectures between lobar and nonlobar hemorrhages by Woo et al.²⁸ Accordingly, future studies should address whether the observed TNFSF12 and MMP12 associations with intracerebral hemorrhage are subtype-specific. Lastly, although the PheCode system enables systematic assessment of a many disease traits, there are several shortcomings. Because PheCodes rely on hospital diagnoses, diseases less likely to result in hospital admission may be poorly represented. Moreover, validity of PheCodedefined diagnoses as compared with the gold standard is unknown for many traits.

Conclusions

Systematic MR analysis of the circulating proteome revealed 7 causal mediators for ischemic stroke. SCARA5 and TNFSF12 represent 2 novel protective biomarkers, which also affect risk for intracranial bleeding. Phe-MR analysis suggests important roles for stroke biomarkers in many other disorders, involving both cardiovascular and noncardiovascular systems. LPA, F11, and SCARA5 are particularly attractive drug targets with no adverse side effects predicted. Further research is warranted to assess the viability of these protein biomarkers as drug targets for stroke treatment.

ARTICLE INFORMATION

Received February 10, 2019; accepted June 3, 2019. The online-only Data Supplement is available with this article at https://www. ahajournals.org/doi/suppl/10.1161/circulationaha.119.040180.

828 September 3, 2019

Correspondence

Guillaume Paré, MD, MSc, 237 Barton St East, Rm C4-126, Hamilton, Ontario L8L 2X2, Canada. Email pareg@mcmaster.ca

Affiliations

Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Thrombosis and Atherosclerosis Research Institute, Hamilton Health Sciences, Ontario, Canada (M.C., J.S., M.P., P.M.-S., R.L., A.S., H.C.G., G.P.). Departments of Biochemistry (M.C., G.P.), Medical Sciences (P.M.-S.), Clinical Epidemiology and Biostatistics (H.C.G., G.P.), Pathology and Molecular Medicine (G.P.), and Medicine, Division of Neurology, McMaster University, Hamilton, Ontario, Canada (A.S.).

Acknowledgments

The authors acknowledge the important contributions of the many publicly available data sets used in this report's analyses including the UK Biobank (application 15255, "Identification of the shared biological and sociodemographic factors underlying cardiovascular disease and dementia risk"), MEGASTROKE (International Stroke Genetics Consortium), Stroke Genetics Network (SIGN), YFS/FINRISK, IMPROVE, KORA F4/QMDiab, and INTERVAL.

Sources of Funding

None

Disclosures

Dr Paré has received consulting fees from Sanofi, Bristol–Myers Squibb, Lexicomp, and Amgen; has received support for research through his institution from Sanofi; and has received support from the Canada Research Chair in Genetic and Molecular Epidemiology, CISCO Professorship in Integrated Health Systems. Dr Gerstein holds the McMaster–Sanofi Population Health Institute Chair in Diabetes Research and Care; has received research grant support from AstraZeneca, Eli Lilly, Merck, Novo Nordisk, and Sanofi; has received honoraria for speaking from AstraZeneca, Boehringer Ingelheim, Eli Lilly, Novo Nordisk, and Sanofi; and has received consulting fees from Abbott, AstraZeneca, Boehringer Ingelheim, Eli Lilly, Merck, Novo Nordisk, Janssen, Cirius, Kowa, and Sanofi. Dr Shoamanesh is part of the steering committee for ANNEXA-1; has received honoraria from Bayer AG and ServierCanada Inc; has received grant support from Bayer AG, Bristol–Myers Squibb, and ServierCanada Inc; and has received consulting fees from Dalichi Sankyo, Bayer AG, Boehringer Ingelheim, Bristol–Myers Squibb, ServierCanada Inc, and ApoPharma Inc. The other authors report no conflicts.

REFERENCES

- Roth GA, Johnson C, Abajobir A, Abd-Allah F, Abera SF, Abyu G, Ahmed M, Aksut B, Alam T, Alam K, et al. Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. J Am Coll Cardiol. 2017;70:1–25. doi: 10.1016/j.jacc.2017.04.052
- SPS3 Study Group, Benavente OR, Coffey CS, Conwit R, Hart RG, McClure LA, Pearce LA, Pergola PE, Szychowski JM. Blood-pressure targets in patients with recent lacunar stroke: the SPS3 randomised trial. *Lancet.* 2013;382:507–515. doi: 10.1016/S0140-6736(13)60852-1
- Dwyer DJ, Camacho DM, Kohanski MA, Callura JM, Collins JJ. Stenting versus aggressive medical therapy for intracranial arterial stenosis. N Engl J Med. 2013;46:561–572. doi: 10.1056/NEJMoa1105335
- Adams HP Jr, Bendixen BH, Kappelle LJ, Biller J, Love BB, Gordon DL, Marsh EE 3rd, Classification of subtype of acute ischemic stroke: definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke. 1993;24:35–41. doi: 10.1161/01.str.24.1.35
- 5. Prins BP, Abbasi A, Wong A, Vaez A, Nolte I, Franceschini N, Stuart PE, Guterriez Achury J, Mistry V, Bradfield JP, et al; PAGE Consortium; International Stroke Genetics Consortium; Systemic Sclerosis consortium; Treat OA consortium; DIAGRAM Consortium; CARDIoGRAMplusC4D Consortium; ALS consortium; International Parkinson's Disease Genomics Consortium; Autims Spectrum Disorder Working Group of the Psychiatric Genomics Consortium; CKDGen consortium; GERAD1 Consortium; International Consortium for Blood Pressure; Schizophrenia Working Group of the Psychiatric Genomics Consortium. International meeting and the Paschart Consortium; International Consortium, International Consortium,

Mendelian Randomization Identifies Stroke Targets

Chong et al

Downloaded from http://ahajournals.org by on June 1, 202

reactive protein with 32 complex somatic and psychiatric outcomes: a large-scale cross-consortium Mendelian randomization study. *PLoS Med.* 2016;13:e1001976. doi: 10.1371/journal.pmed.1001976

- van der Laan SW, Fall T, Soumaré A, Teumer A, Sedaghat S, Baumert J, Zabaneh D, van Setten J, Isgum I, Galesloot TE, et al. Cystatin C and cardiovascular disease: a Mendelian randomization study. J Am Coll Cardiol. 2016;165:255–269. doi: 10.1016/j.jacc.2016.05.092r
- Kjaergaard AD, Johansen JS, Bojesen SE, Nordestgaard BG. Elevated plasma YKL-40, lipids and lipoproteins, and ischemic vascular disease in the general population. *Stroke*. 2015;46:329–335. doi: 10.1161/STROKEAHA.114.007657
- Nelson MR, Tipney H, Painter JL, Shen J, Nicoletti P, Shen Y, Floratos A, Sham PC, Li MJ, Wang J, et al. The support of human genetic evidence for approved drug indications. *Nat Genet.* 2015;47:856–860. doi: 10.1038/ng.3314
- Ahola-Olli AV, Würtz P, Havulinna AS, Aalto K, Pitkänen N, Lehtimäki T, Kähönen M, Lyytikäinen LP, Raitoharju E, Seppälä I, et al. Genome-wide association study identifies 27 loci influencing concentrations of circulating cytokines and growth factors. Am J Hum Genet. 2017;100:40–50. doi: 10.1016/j.ajhg.2016.11.007
- Folkersen L, Fauman E, Sabater-Lleal M, Strawbridge RJ, Frånberg M, Sennblad B, Baldassarre D, Veglia F, Humphries SE, Rauramaa R, et al; IMPROVE study group. Mapping of 79 loci for 83 plasma protein biomarkers in cardiovascular disease. *PLoS Genet.* 2017;13:e1006706. doi: 10.1371/journal.pgen.1006706
- Suhre K, Arnold M, Bhagwat AM, Cotton RJ, Engelke R, Raffler J, Sarwath H, Thareja G, Wahl A, DeLisle RK, et al. Connecting genetic risk to disease end points through the human blood plasma proteome. *Nat Commun.* 2017;8:14357. doi: 10.1038/ncomms14357
- Sun BB, Maranville JC, Peters JE, Stacey D, Staley JR, Blackshaw J, Burgess S, Jiang T, Paige E, Surendran P, et al. Genomic atlas of the human plasma proteome. *Nature*. 2018;558:73–79. doi: 10.1038/s41586-018-0175-2
- Sjaarda J, Gerstein H, Chong M, Yusuf S, Meyre D, Anand SS, Hess S, Paré G. Blood CSF1 and CXCL12 as causal mediators of coronary artery disease. J Am Coll Cardiol. 2018;72:300–310. doi: 10.1016/j.jacc.2018.04.067
- Davey Smith G, Hemani G. Mendelian randomization: genetic anchors for causal inference in epidemiological studies. *Hum Mol Genet*. 2014;23:R89–R98. doi: 10.1093/hmg/ddu328
- Bennett DA, Holmes MV. Mendelian randomisation in cardiovascular research: an introduction for clinicians. *Heart.* 2017;103:1400–1407. doi: 10.1136/heartjnl-2016-310605
- Helgadottir A, Gretarsdottir S, Thorleifsson G, Holm H, Patel RS, Gudnason T, Jones GT, van Rij AM, Eapen DJ, Baas AF, et al. Apolipoprotein(a) genetic sequence variants associated with systemic atherosclerosis and coronary atherosclerotic burden but not with venous thromboembolism. J Am Coll Cardiol. 2012;60:722–729. doi: 10.1016/j.jacc.2012.01.078
- Georgakis MK, Gill D, Rannikmäe K, Traylor M, Anderson CD, Lee JM, Kamatani Y, Hopewell JC, Worrall BB, Bernhagen J, et al. Genetically determined levels of circulating cytokines and risk of stroke. *Circulation*. 2019;139:256–268. doi: 10.1161/CIRCULATIONAHA.118.035905
- Traylor M, Makela KM, Kilarski LL, Holliday EG, Devan WJ, Nalls MA, Wiggins KL, Zhao W, Cheng YC, Achterberg S, et al; METASTROKE, International Stroke Genetics Consortium, Wellcome Trust Case Consortium 2 (WTCCC2). A novel MMP12 locus is associated with large artery atherosclerotic stroke using a genome-wide age-at-onset informed approach. *PLoS Genet.* 2014;10:e1004469. doi: 10.1371/journal.pgen.1004469
- Rao AS, Lindholm D, Rivas MA, Knowles JW, Montgomery SB, Ingelsson E. Large-scale phenome-wide association study of PCSK9 variants demonstrates protection against ischemic stroke. *Circ Genom Precis Med.* 2018;11:e002162. doi: 10.1161/CIRCGEN.118.002162
- Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of genomewide association scans. *Bioinformatics*. 2010;26:2190–2191. doi: 10.1093/bioinformatics/btq340
- 21. Malik R, Chauhan G, Traylor M, Sargurupremraj M, Okada Y, Mishra A, Rutten-Jacobs L, Giese AK, van der Laan SW, Gretarsdottir S, et al; AFGen Consortium; Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium; International Genomics of Blood Pressure (IGEN-BP) Consortium; INVENT Consortium; STARNET; BioBank Japan Cooperative Hospital Group; COMPASS Consortium; PIC-CVD Consortium; ISTARLET; BioBank Japan Cooperative Hospital Group; COMPASS Consortium; BPIC-InterAct Consortium; International Stroke Genetics Consortium (ISGC); METASTROKE Consortium; Neurology Working Group of the CHARGE Consortium; NINDS Stroke Genetics Network (SIGN); UK Young Lacunar DNA Study; MEGASTROKE Consortium. Multiancestry genome-wide association study of 520,000 subjects Identifies 32 loci associated

Circulation. 2019;140:819-830. DOI: 10.1161/CIRCULATIONAHA.119.040180

with stroke and stroke subtypes. Nat Genet. 2018;50:524–537. doi: 10.1038/s41588-018-0058-3

- Auton A, Abecasis GR, Altshuler DM, Durbin RM, Abecasis GR, Bentley DR, Chakravarti A, Clark AG, Donnelly P, Eichler EE, et al. A global reference for human genetic variation. *Nature*. 2015;526:68–74. doi: 10.1038/nature15393
- Zhao Q, Wang J, Hemani G, Bowden J, Small D. Statistical inference in two-sample summary data Mendelian randomization using robust adjusted profile score. arXiv. 2019. Available from: https://arxiv.org/ abs/1801.09652. arXiv ID: 1801.09652v3. Accessed January 28, 2019.
- Hemani G, Zheng J, Elsworth B, Wade KH, Haberland V, Baird D, Laurin C, Burgess S, Bowden J, Langdon R, et al. The MR-Base platform supports systematic causal inference across the human phenome. *Elife*. 2018;7:e34408. doi: 10.7554/elife.34408
- 25. Sun L, Clarke R, Bennett D, Guo Y, Walters RG, Hill M, Parish S, Millwood IV, Bian Z, Chen Y, et al; China Kadoorie Biobank Collaborative Group; International Steering Committee; International Co-ordinating Centre, Oxford; National Co-ordinating Centre, Beijing; Regional Coordinating Centres. Causal associations of blood lipids with risk of ischemic stroke and intracerebral hemorrhage in Chinese adults. *Nat Med.* 2019;25:569–574. doi: 10.1038/s41591-019-0366-x
- Zhou W, Nielsen JB, Fritsche LG, Dey R, Gabrielsen ME, Wolford BN, LeFaive J, VandeHaar P, Gagliano SA, Gifford A, et al. Efficiently controlling for case-control imbalance and sample relatedness in large-scale genetic association studies. *Nat Genet.* 2018;50:1335–1341. doi: 10.1038/s41588-018-0184-y
- Schnier C, Denaxas S, Eggo R, Patel R, Zhang Q, Woodfield R, Flaig R, Hemingway H, Sudlow C. Identification and validation of myocardial infarction and stroke outcomes at scale in UK Biobank. *Int J Popul Data Sci*. 2017;10:1–6. doi: 10.3923/ijp.2015.327.334
- Woo D, Falcone GJ, Devan WJ, Brown WM, Biffi A, Howard TD, Anderson CD, Brouwers HB, Valant V, Battey TW, et al; International Stroke Genetics Consortium. Meta-analysis of genome-wide association studies identifies 1q22 as a susceptibility locus for intracerebral hemorrhage. Am J Hum Genet. 2014;94:511–521. doi: 10.1016/j.ajhg.2014.02.012
- Denny JC, Bastarache L, Ritchie MD, Carroll RJ, Zink R, Mosley JD, Field JR, Pulley JM, Ramirez AH, Bowton E, et al. Systematic comparison of phenome-wide association study of electronic medical record data and genome-wide association study data. Nat Biotechnol. 2013;31:1102–1110. doi: 10.1038/nbt.2749
- Gill D, Georgakis MK, Laffan M, Sabater-Lleal M, Malik R, Tzoulaki I, Veltkamp R, Dehghan A. Genetically determined FXI (Factor XI) levels and risk of stroke. Stroke. 2018;49:2761–2763. doi: 10.1161/STROKEAHA. 118.022792
- 31. Williams FM, Carter AM, Hysi PG, Surdulescu G, Hodgkiss D, Soranzo N, Traylor M, Bevan S, Dichgans M, Rothwell PM, et al; EuroCLOT Investigators; Wellcome Trust Case Control Consortium 2; MOnica Risk, Genetics, Archiving and Monograph; MetaStroke; International Stroke Genetics Consortium. Ischemic stroke is associated with the ABO locus: the Euro-CLOT study. Ann Neurol. 2013;73:16–31. doi: 10.1002/ana.23838
- Huang HT, Guo J, Xiang Y, Chen JM, Luo HC, Meng LQ, Wei YS. A SNP in 5' untranslated region of CD40 gene is associated with an increased risk of ischemic stroke in a Chinese population: a case-control study. Genet Mol Biol. 2017;40:442–449. doi: 10.1590/1678-4685-GMB-2016-0212
- Zhang H, Löwenberg EC, Crosby JR, MacLeod AR, Zhao C, Gao D, Black C, Revenko AS, Meijers JC, Stroes ES, et al. Inhibition of the intrinsic coagulation pathway factor XI by antisense oligonucleotides: a novel antithrombotic strategy with lowered bleeding risk. *Blood.* 2010;116:4684–4692. doi: 10.1182/blood-2010-04-277798
- Büller HR, Bethune C, Bhanot S, Gailani D, Monia BP, Raskob GE, Segers A, Verhamme P, Weitz JJ; FXI-ASO TKA Investigators. Factor XI antisense oligonucleotide for prevention of venous thrombosis. N Engl J Med. 2015;372:232–240. doi: 10.1056/NEJMoa1405760
- Wu O, Bayoumi N, Vickers MA, Clark P. ABO(H) blood groups and vascular disease: a systematic review and meta-analysis. J Thromb Haemost. 2008;6:62–69. doi: 10.1111/j.1538-7836.2007.02818.x
- Didangelos A, Yin X, Mandal K, Saje A, Smith A, Xu Q, Jahangiri M, Mayr M. Extracellular matrix composition and remodeling in human abdominal aortic aneurysms: a proteomics approach. *Mol Cell Proteomics*. 2011;10:M111.008128. doi: 10.1074/mcp.M111.008128
 Li JY, Paragas N, Ned RM, Qiu A, Viltard M, Leete T, Drexler IR,
- Li JY, Paragas N, Ned RM, Qiu A, Viltard M, Leete T, Drexler IR, Chen X, Sanna-Cherchi S, Mohammed F, et al. Scara5 is a ferritin receptor mediating non-transferrin iron delivery. *Dev Cell*. 2009;16:35–46. doi: 10.1016/j.devcel.2008.12.002

September 3, 2019 829

Mendelian Randomization Identifies Stroke Targets

original research Article Chong et al

- Gill D, Monori G, Tzoulaki I, Dehghan A. Iron status and risk of stroke. Stroke. 2018;49:2815–2821. doi: 10.1161/STROKEAHA.118.022701
- Sawada H, Hao H, Naito Y, Oboshi M, Hirotani S, Mitsuno M, Miyamoto Y, Hirota S, Masuyama T. Aortic iron overload with oxidative stress and inflammation in human and murine abdominal aortic aneurysm. *Arterio*scler Thromb Vasc Biol. 2015;35:1507–1514. doi: 10.1161/ATVBAHA. 115.305586
- Ulker D, Ersoy YE, Gucin Z, Muslumanoglu M, Buyru N. Downregulation of SCARA5 may contribute to breast cancer via promoter hypermethylation. Gene. 2018;673:102–106. doi: 10.1016/j.gene.2018.06.036
- Wen X, Wang N, Zhang F, Dong C. Overexpression of SCARA5 inhibits tumor proliferation and invasion in osteosarcoma via suppression of the FAK signaling pathway. *Mol Med Rep.* 2016;13:2885–2891. doi: 10.3892/mmr.2016.4857
- Mendes-Jorge L, Ramos D, Valença A, López-Luppo M, Pires VM, Catita J, Nacher V, Navarro M, Carretero A, Rodriguez-Baeza A, et al. L-Ferritin binding to scara5: a new iron traffic pathway potentially implicated in retinopathy. *PLoS One*. 2014;9:e106974. doi: 10.1371/journal. pone.0106974
- kner A, Ashkenazi A. TWEAK induces apoptosis through a death-signaling complex comprising receptor-interacting protein 1 (RIP1), Fas-associated death domain (FADD), and caspase-8. J Biol Chem. 2011;286:21546– 21554. doi: 10.1074/jbc.M110.203745
- Hao L, Ren M, Rong B, Xie F, Lin MJ, Zhao YC, Yue X, Han WQ, Zhong JQ. TWEAK/Fn14 mediates atrial-derived HL-1 myocytes hypertrophy via

JAK2/STAT3 signalling pathway. J Cell Mol Med. 2018;22:4344–4353. doi: 10.1111/jcmm.13724

- Roselli C, Chaffin MD, Weng LC, Aeschbacher S, Ahlberg G, Albert CM, Almgren P, Alonso A, Anderson CD, Aragam KG, et al. Multiethnic genome-wide association study for artiral fibrillation. *Nat Genet.* 2018;50:1225–1233. doi: 10.1038/s41588-018-0133-9
- Inta I, Frauenknecht K, Dörr H, Kohlhof P, Rabsilber T, Auffarth GU, Burkly L, Mittelbronn M, Hahm K, Sommer C, et al. Induction of the cytokine TWEAK and its receptor Fn14 in ischemic stroke. J Neurol Sci. 2008;275:117–120. doi: 10.1016/j.jns.2008.08.005
 Zhang X, Winkles JA, Gongora MC, Polavarapu R, Michaelson JS, Hahm
- Zhang X, Winkles JA, Gongora MC, Polavarapu R, Michaelson JS, Hahm K, Burkly L, Friedman M, Li XJ, Yepes M. TWEAK-Fn14 pathway inhibition protects the integrity of the neurovascular unit during cerebral ischemia. J Cereb Blood Flow Metab. 2007;27:534–544. doi: 10.1038/sj.jcbfm.9600368
- Akahori H, Karmali V, Polavarapu R, Lyle AN, Weiss D, Shin E, Husain A, Naqvi N, Van Dam R, Habib A, et al. CD163 interacts with TWEAK to regulate tissue regeneration after ischaemic injury. *Nat Commun.* 2015;6:7792. doi: 10.1038/ncomms8792
- Roy-O'Reilly M, Zhu L, Atadja L, Torres G, Aronowski J, McCullough L, Edwards NJ. Soluble CD163 in Intracerebral hemorrhage: biomarker for perihematomal edema. Ann Clin Transl Neurol. 2017;4:793–800. doi: 10.1002/acn3.485
- Joshi A, Mayr M. In aptamers they trust: the caveats of the SOMAscan biomarker discovery platform from SomaLogic. *Circulation*. 2018;138:2482– 2485. doi: 10.1161/CIRCULATIONAHA.118.036823

Downloaded from http://ahajournals.org by on June 1, 2021

CHAPTER 4:

GWAS and ExWAS of blood Mitochondrial DNA copy number identifies 71 loci and

highlights a potential causal role in dementia

Submitted to *eLife*. (June 1st, 2021)

GWAS and ExWAS of blood Mitochondrial DNA copy number identifies 71 loci and highlights a potential causal role in dementia

Authors: Michael Chong^{1,2,3,4}, Pedrum Mohammadi-Shemirani^{1,2,4}, Nicolas Perrot^{1,2}, Walter Nelson⁵, Robert W. Morton^{1,2,4}, Sukrit Narula^{1,2,6}, Ricky Lali^{1,2,6}, Irfan Khan^{1,2,4}, Mohammad Khan^{1,2,7}, Conor Judge^{1,2,8}, Tafadzwa Machipisa^{1,2,4,9,10}, Nathan Cawte^{1,2}, Martin O'Donnell^{1,8}, Marie Pigeyre^{1,2,7}, Loubna Akhabir^{1,2,7}, Guillaume Paré^{1,2,3,4,6,7*} *Guillaume Paré. Email: pareg@mcmaster.ca

Affiliations:

¹Population Health Research Institute (PHRI), David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton Health Sciences; 237 Barton Street East, Hamilton, L8L 2X2, Ontario, Canada.

²Thrombosis and Atherosclerosis Research Institute; 237 Barton Street East, Hamilton, L8L 2X2, Ontario, Canada.

³Department of Biochemistry and Biomedical Sciences, McMaster University; 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada

⁴Department of Pathology and Molecular Medicine, Michael G. DeGroote School of Medicine, McMaster University; 1280 Main Street West, Hamilton, L8S 4K1, Ontario, Canada

⁵Centre for Data Science and Digital Health, Hamilton Health Sciences; 293 Wellington St. North, Suite 132, Hamilton, L8L 8E7, Ontario, Canada

⁶Department of Health Research Methods, Evidence, and Impact, McMaster University;

1280 Main Street West, Hamilton, L8S 4K1, Ontario, Canada

⁷Department of Medicine, McMaster University, Michael G. DeGroote School of Medicine; 1280 Main Street West, Hamilton, L8S 4K1, Ontario, Canada

⁸National University of Ireland Galway; University Road, H91 TK33, Galway, Ireland.

⁹Department of Medicine, University of Cape Town & Groote Schuur Hospital; Main Road, Observatory, Cape Town, 7925, South Africa

¹⁰Hatter Institute for Cardiovascular Diseases Research in Africa (HICRA) & Cape Heart Institute (CHI), Department of Medicine, University of Cape Town; 41 Chris Barnard Building, Anzio Road, Observatory, Cape Town, 7925, South Africa

Abstract

Background: Mitochondrial DNA copy number (mtDNA-CN) is an accessible bloodbased measurement believed to capture underlying mitochondrial function. The specific biological processes underpinning its regulation, and whether those processes are causative for disease, is an area of active investigation.

Methods: We developed a novel method for array-based mtDNA-CN estimation suitable for biobank-scale studies, called "AutoMitoC". We applied AutoMitoC to 395,781 UKBiobank study participants and performed genome and exome-wide association studies, identifying novel common and rare genetic determinants. Finally, we performed twosample Mendelian Randomization to assess whether genetically low mtDNA-CN influenced select mitochondrial phenotypes.

Results: Overall, genetic analyses identified 71 loci for mtDNA-CN, which implicated several genes involved in rare mtDNA depletion disorders, dNTP metabolism, and the mitochondrial central dogma. Rare variant analysis identified SAMHD1 mutation carriers

as having higher mtDNA-CN (beta=0.23 SDs; 95% CI, 0.18- 0.29; P=2.6x10-19), a potential therapeutic target for patients with mtDNA depletion disorders, but at increased risk of breast cancer (OR=1.91; 95% CI, 1.52-2.40; P=2.7x10- 8). Finally, Mendelian randomization analyses suggest a causal effect of low mtDNA-CN on dementia risk (OR=1.94 per 1 SD decrease in mtDNA-CN; 95% CI, 1.55-2.32; P=7.5x10-4). **Conclusions**: Altogether, our genetic findings indicate that mtDNA-CN is a complex biomarker reflecting specific mitochondrial processes related to mtDNA regulation, and that these processes are causally related to human diseases.

Funding: No funds supported this specific investigation. Awards and positions supporting authors include: Canadian Institutes of Health Research (CIHR) Frederick Banting and Charles Best Canada Graduate Scholarships Doctoral Award (MC, PM); CIHR Post-Doctoral Fellowship Award (RM); Wellcome Trust Grant number: 099313/B/12/A; Crasnow Travel Scholarship; Bongani Mayosi UCT-PHRI Scholarship 2019/2020 (TM); Wellcome Trust Health Research Board Irish Clinical Academic Training (ICAT) Programme Grant Number: 203930/B/16/Z (CJ); European Research Council COSIP Grant Number: 640580 (MO); E.J. Moran Campbell Internal Career Research Award (MP); CISCO Professorship in Integrated Health Systems and Canada Research Chair in Genetic and Molecular Epidemiology (GP)

Introduction

Mitochondria are semi-autonomous organelles present in nearly every human cell that execute fundamental cellular processes including oxidative phosphorylation, calcium storage, and apoptotic signalling. Mitochondrial dysfunction has been implicated as the underlying cause for many human disorders based on mechanistic *in vitro* and *in vivo* studies (Burbulla *et al.*, 2017; Desdín-micó *et al.*, 2020; Sliter *et al.*, 2020). Complementary evidence comes from recent epidemiological studies that measure mitochondrial DNA Copy Number (mtDNA-CN), a marker of mitochondrial activity that can be conveniently measured from peripheral blood. Since mitochondria contain their own unique set of genomes that are distinct from the nuclear genome, the ratio of mtDNA to nuclear DNA molecules (mtDNA-CN) in a sample serves as an accessible marker of mitochondrial quantity (Longchamps *et al.*, 2020). Indeed, observational studies suggest that individuals with lower mtDNA-CN are at higher risk of age-related complex diseases, such as coronary artery disease (Tin *et al.*, 2016; Ashar *et al.*, 2017; Zhang *et al.*, 2017; Hägg *et al.*, 2020). Conversely, higher mtDNA-CN levels have been associated with increased cancer incidence (Kim *et al.*, 2015; Hu, Yao and Shen, 2016).

While previous studies demonstrate that mtDNA-CN is a biomarker of mitochondrial activity associated with various diseases, evidence suggests that it may also play a direct and causative role in human health and disease. For example, in cases of mtDNA depletion syndrome, wherein rare defects in nuclear genes responsible for replicating and/or maintaining mtDNA lead to deficient mtDNA-CN (Gorman *et al.*, 2016), patients manifest with severe dysfunction of energy-dependent tissues (heart, brain, liver, and cardiac and skeletal muscles). So far, 19 genes have been reported to cause mtDNA depletion (Oyston, 1998). In addition to these rare monogenic syndromes, the importance of common genetic variation in regulating mtDNA-CN is an active area of research with

approximately 50 common loci identified so far (Cai *et al.*, 2015; Guyatt *et al.*, 2019; Longchamps, 2019; Hägg *et al.*, 2020).

To interrogate mtDNA-CN as a potential determinant of human diseases, we performed extensive genetic investigations in up to 395,781 participants from the UKBiobank study (Sudlow *et al.*, 2015). We first developed and validated a novel method for biobank-scale mtDNA-CN investigations that leverages SNP array intensities, called "AutoMitoC". Leveraging AutoMitoC-based mtDNA-CN estimates, we performed large-scale GWAS and ExWAS to identify common and rare genetic variants contributing to population-level variation in mtDNA-CN. Various analyses were then conducted to build on previous publications regarding the specific genes and pathways underlying mtDNA-CN regulation (Cai *et al.*, 2015; Guyatt *et al.*, 2019; Longchamps, 2019; Hägg *et al.*, 2020). Finally, we applied Mendelian randomization analyses to assess potential causal relationships between mtDNA-CN and disease susceptibility.

Materials and Methods

The UKBiobank study

The UKBiobank is a prospective cohort study including approximately 500,000 UK residents (ages 40-69 years) recruited from 2006-2010 in whom extensive genetic and phenotypic investigations have been and continue to be done (Sudlow *et al.*, 2015). All UKBiobank data reported in this manuscript were accessed through the UKBiobank data showcase under application #15525. All analyses involve the use of genetic and/or phenotypic data from consenting UKBiobank participants.

Genetic Analysis of Common Variants

Data acquisition and quality control

Imputed genotypes (version 3) for 488,264 UKBiobank participants were downloaded through the European Genome Archive (Category 100319). Detailed sample and variant quality control are described in the supplementary methods. In special consideration of mtDNA-CN as the GWAS phenotype, we also removed variants within "NUMTs", which refer to regions of the nuclear genome that exhibit homology to the mitochondrial genome due to past transposition of mitochondrial sequences (Simone *et al.*, 2011). After quality control, 359,689 British, 10,598 Irish, 13,189 Other White, 6,172 South Asian, and 6,133 African samples had suitable array-based mtDNA-CN estimates for subsequent GWAS testing.

Association testing

GWAS were initially conducted in an ethnicity-stratified manner for common variants (MAF > 0.005). To allow for genetic relatedness between participants, GWAS were conducted using the REGENIE framework (Mbatchou *et al.*, 2020). GWAS covariates included age, age², sex, chip type, 20 genetic principal components, and blood cell counts (white blood cell, platelet, and neutrophil counts). After ethnicity-specific GWAS were performed, results were combined through meta-analysis using METAL (Willer, Li and Abecasis, 2010). European (N=383,476) and trans-ethnic (N=395,718) GWAS meta-analyses were performed. Sensitivity analyses testing for cryptic NUMT interference was conducted as per Nandakumar *et al.* (2021) (Nandakumar *et al.*, 2021). See supplementary methods for further details.

Fine-mapping of GWAS signals

We followed a similar protocol to Vuckovic *et al.* (2020) for fine-mapping mtDNA-CN loci (Vuckovic *et al.*, 2020). Genome-wide significant variants were consolidated into genomic blocks by grouping variants within 250kb of each other. LDstore was used to compute a pairwise LD correlation matrix for all variants within each block and across all samples included in the European GWAS meta-analysis (Benner *et al.*, 2017). For each genomic block, FINEMAP was used to perform stepwise conditional regression (Benner *et al.*, 2016). The number of conditionally independent genetic signals per genomic block was used to inform the subsequent fine-mapping search parameters. Finally, the FINEMAP random stochastic search algorithm was applied to derive 95% credible sets constituting candidate causal variants that jointly contributed to 95% (or higher) of the posterior inclusion probabilities (Benner *et al.*, 2016).

Mitochondrial expression quantitative trait loci (mt-eQTL) and heteroplasmy look-ups

Among GWAS hits, we searched for mt-eQTLs using information from Ali *et al.* (2019), "Nuclear genetic regulation of the human mitochondrial transcriptome"(Ali *et al.*, 2019). All variants in both Tables 1 and 2 were queried in the mtDNA-CN summary statistics. When mt-eQTLs also had reported effect estimates, the consistency in direction-of-effects between mt-eQTL and mtDNA-CN associations was reported (S2. Table 3). GWS variants associated with mean heteroplasmy levels were extracted from Nandakumar *et al.* (Nandakumar *et al.*, 2021).

Gene prioritization & pathway analyses

The Data-driven Expression-prioritized Integration for Complex Traits (DEPICT) v.1.1 tool was used to map mtDNA-CN loci to genes based on shared co-regulation of gene

expression using default settings (Pers *et al.*, 2015). DEPICT-prioritized genes were uploaded to the GeneMANIA web platform (https://genemania.org/). Based on the combined list of DEPICT and GeneMANIA identified genes, a network was formed in GeneMANIA using default settings. Functional enrichment analysis was then performed to identify overrepresented Gene Ontology (GO) terms among all network genes (Gene and Consortium, 2000).

Mitochondrial annotation-based analyses

To complement the previous pathway analyses, we labelled prioritized genes with MitoCarta3 annotations and performed subsequent statistical enrichment analyses (Rath *et al.*, 2021). MitoCarta3 is an exquisite database of mitochondrial protein annotations, which draws from mass spectrophotometry and GFP colocalization experiments of isolated mitochondria from 14 different tissues to assign all human genes statuses indicating whether the corresponding proteins are expressed in the mitochondria or not. We tested whether prioritized genes were enriched for the mitochondrial proteome by using a binomial test in R. Furthermore, a t-test was used to compare mean PGC-1A induced fold change for the subset of GWAS-prioritized genes expressed in the mitochondrial proteome as compared to the mean PGC-1A induced fold change for all 1120 nuclear MitoCarta3-annotated genes. Also, genes were categorized based on MitoCarta3 "MitoPathway" annotations.

Genetic Analysis of Rare Variants

Data acquisition and quality control

Population-level whole-exome sequencing (WES) variant genotypes (UKB data field: 23155) for 200,643 UKBiobank participants corresponding to 17,975,236 variants were downloaded using the gfetch utility. Detailed quality control of WES data is described in the supplementary methods. After quality control, 173,688 unrelated Caucasian samples remained.

Exome-wide association study (ExWAS) to identify rare mtDNA-CN loci

Of the 173,688 individuals, suitable AutoMitoC mtDNA-CN estimates were available for 147,740 samples. Rare variant inclusion criteria consisted of variants which were infrequent (MAF \leq 0.001), non-synonymous, and predicted to be clinically deleterious by Mendelian Clinically Applicable Pathogenicity (M-CAP) v.1.4 scores (or were highly disruptive variant types including frameshift indel, stopgain, stoploss, or splicing) (Jagadeesh *et al.*, 2016). Herein, such variants are referred to as "rare variants" for simplicity. For each gene, rare allele counts were added per sample. A minor allele count of 10 was applied leading to a total of 18,890 genes analyzed (exome-wide significance P < 0.05/18,890 = 2.65 x10⁻⁶). Linear regression was conducted using mtDNA-CN as the dependent variable and the rare alleles counts per gene as the independent variable. The same set of covariates used in the primary GWAS analysis was used in the ExWAS analysis.

Phenome-wide association testing for rare SAMHD1 mutation carrier status

To identify disease phenotypes associated with carrying a rare *SAMHD1* mutation, we maximized sample size for phenome-wide association testing by analyzing the larger set of 173,688 WES samples (with or without suitable mtDNA-CN estimates). Disease outcomes

were defined using the previously published "PheCode" classification scheme to aggregate ICD-10 codes from hospital episodes (field ID 41270), death registry (field ID 40001 and 40002), and cancer registry (field ID 40006) records (Denny *et al.*, 2013; Wu *et al.*, 2019). Logistic regression was applied to test the association of *SAMHD1* mutation carrier status versus 771 PheCodes (phenome-wide significance $P < 0.05/771 = 6.49 \times 10^{-5}$) with a minimal case sample size of 300 (Wei *et al.*, 2017). The same set of covariates used in the primary GWAS were also employed in this analysis.

Mendelian Randomization Analysis

Disease Outcomes

We cross-referenced a list of 36 clinical manifestations of mitochondrial disease to FinnGen consortium GWAS (release 4; November 30 2020) traits (Gorman *et al.*, 2016; Feng *et al.*, 2020). Among 2,444 FinnGen traits, 10 overlapped with mitochondrial disease and had a case prevalence greater than 1% and were chosen for two-sample Mendelian Randomization analyses. These 10 traits included type 2 diabetes (N=23,364), mood disorder (N=20,288), sensorineural hearing loss (N=12,550), cerebrovascular disease (N=10,367), migraine (N=6,687), dementia (5,675), epilepsy (N=4,558), paralytic ileus and intestinal obstruction (N=2,999), and cardiomyopathy (N=2,342). FinnGen effect estimates and standard errors were used in subsequent Mendelian randomization analyses to define the effect of selected genetic instruments on disease risk.

Genetic Instrument Selection

First, genome-wide significant variants from the present European GWAS meta-analysis of mtDNA-CN were chosen (N=383,476). Second, we matched these variants to the

FinnGen v4 GWAS datasets (Feng *et al.*, 2020). Third, to enrich for variants that directly act through mitochondrial processes, we only retained those within 100kb of genes encoding for proteins that are expressed in mitochondria based on MitoCarta3 annotations (Rath *et al.*, 2021). Fourth, we performed LD-pruning in PLINK with 1000Genomes Europeans as the reference panel to ascertain an independent set of genetic variants (LD r2 < 0.01) (Purcell *et al.*, 2007; Abecasis *et al.*, 2012). Lastly, to mitigate potential for horizontal pleiotropy, we further removed variants with strong evidence of acting through alternative pathways by performing a phenome-wide search across published GWAS with Phenoscanner V2 (Kamat *et al.*, 2019). Variants strongly associated with other phenotypes (P<5x10⁻²⁰) were removed unless the variant was a coding mutation located within a gene encoding for the mitochondrial proteome (MitoCarta3) or had an established mitochondrial role based on manual literature review (Rath *et al.*, 2021). A total of 27 genetic variants were used to approximate genetically determined mtDNA-CN levels.

Mendelian Randomization & Sensitivity Analyses

Two sample Mendelian Randomization analyses were performed using the "TwoSampleMR" and "MRPRESSO" R packages (Hemani *et al.*, 2018; Verbanck *et al.*, 2018). Effect estimates and standard errors corresponding to the 27 genetic variants on mtDNA-CN (exposure) and mitochondrial disease phenotypes (outcome) were derived from the European GWAS meta-analysis and FinnGen v4 GWAS summary statistics, respectively (S2. Table 9). Three MR methodologies were employed including Inverse Variance Weighted (primary method), Weighted Median, and MR-EGGER methods. MR-PRESSO was used to detect global heterogeneity and P-values were derived based on 1000

simulations. If significant global heterogeneity was detected (P<0.05), a local outlier test was conducted to detect outlying SNPs. After removal of outlying SNPs, MR analyses were repeated. In the absence of heterogeneity (Egger-intercept P \ge 0.05; MR-PRESSO global heterogeneity P \ge 0.05), we reported the inverse-variance weighted result. In the presence of balanced pleiotropy (MR-PRESSO global heterogeneity P < 0.05) and absence of directional pleiotropy (Egger-intercept P \ge 0.05), we reported the weighted median result. In the presence of directional pleiotropy (Egger-intercept P \ge 0.05), we reported the weighted median result. In the presence of directional pleiotropy (Egger-intercept P \ge 0.05), we reported the MR-EGGER result.

Results

AutoMitoC: A streamlined method for array-based mtDNA-CN estimation

We built on an existing framework for processing normalized SNP probe intensities (L2R values) from genetic arrays into mtDNA-CN estimates known as the "Mitopipeline" (Lane, 2014). The MitoPipeline yields mtDNA-CN estimates that correlate with direct qPCR measurements and has been successfully implemented in several epidemiological investigations(Ashar *et al.*, 2017; Zhang *et al.*, 2017). We developed a novel method, "AutoMitoC", which incorporates three amendments to facilitate large-scale investigations of mtDNA-CN. Firstly, AutoMitoC replaces autosomal signal normalization of common variants with globally rare variants which negates the need for linkage disequilibrium pruning. As a result, this simplifies derivation of mtDNA-CN estimates in ethnically diverse cohorts by allowing for use of a single, universal variant set for normalization. Secondly, to detect potentially cross-hybridizing probes, we empirically assess the association of corrected probe signal intensities with off-target genome intensities, rather

than relying on sequence homology of probe sequences, which is not always available. Lastly, the primary estimate of MT signal is ascertained using principal component analysis (as opposed to using the median signal intensity of MT probes as per the Mitopipeline) which improves concordance of array-based mtDNA-CN estimates with those derived from alternative methods. A detailed description of the AutoMitoC pipeline is provided in Supplementary Results 1.

To benchmark performance of AutoMitoC, array-based mtDNA-CN estimates were compared to complementary measures of mtDNA-CN in two independent studies. Firstly, array-based mtDNA-CN estimates were derived in a subset of 34,436 UKBiobank participants with available whole exome sequencing (WES) data. Reference mtDNA-CN estimates were derived from the proportion of WES reads aligned to the mitochondrial genome relative to the autosome (Longchamps, 2019). AutoMitoC estimates were significantly correlated with WES estimates (r=0.45; P<2.23x10⁻³⁰⁸). Since WES data involves enrichment for nuclear coding genes and therefore could result in biased reference estimates for mtDNA-CN, we also performed an independent validation in an ethnically diverse study of 5,791 participants where mtDNA-CN was measured using quantitative PCR, the current gold standard assay (Fazzini et al., 2018). Indeed, we observed stronger correlation between AutoMitoC and qPCR-based estimates (r=0.64; P<2.23x10⁻³⁰⁸). Furthermore, AutoMitoC demonstrated robust performance ($r \ge 0.53$) across all ethnic strata in the secondary validation cohort including Europeans (N=2,431), Latin Americans (N=1,704), Africans (N=542), South East Asians (N=471), South Asians (N=186), and others (N=360; S1. Figure 4).

Genome-wide association study (GWAS) identifies 72 common loci for mtDNA-CN

A GWAS was performed testing the association between 11,453,766 common genetic variants (MAF>0.005) with mtDNA-CN in 383,476 UKBiobank participants of European ancestry. In total, 9,602 variants were associated with mtDNA-CN at genome-wide significance (Figure 1A; S2. Figure 1), encompassing 82 independent signals in 72 loci (S2. Table 1; S2. Figure 2). The genomic inflation factor was 1.16 and the LD-score intercept was 1.036, indicating that most inflation in test statistics was attributable to polygenicity. Sensitivity analyses revealed that NUMT interference may have played a role in 2 independent signals (2 loci), which were subsequently discarded, leading to a total of 80 independent signals in 70 loci.

Fine-mapping via the FINEMAP algorithm (Benner *et al.*, 2016) yielded 95% credible sets containing 2,363 genome-wide significant variants. Of the 80 independent genetic associations, 17 (22%) mapped to a single candidate causal variant; 32 (39%) mapped to 5 or fewer variants, and 42 (51%) mapped to 10 or fewer variants (Figure 1B; S2. Table 2). Credible sets for 11 genetic signals overlapped with genes responsible for rare mtDNA depletion disorders including *DGUOK* (3), *MGME1* (2), *TFAM* (2), *TWNK* (2), *POLG2* (1), and *TYMP* (1) (S2. Tables 3 & 4). Several associations mapped to coding variants with high posterior probability. *DGUOK* associations mapped to a synonymous variant (rs62641680; Posterior Probability=1) and a non-synonymous variant (rs74874677; PP=1). *TFAM* associations mapped to a 5'UTR variant (rs12247015; PP=1) falling within an ENCODE candidate cis-regulatory element with a promotor-like signature and an intronic variant (rs4397793; PP=1) with a proximal enhancer-like signature. Lastly,

POLG2 associations mapped to a nonsynonymous variant (rs17850455; PP=1). Beyond the six aforementioned mtDNA depletion genes identified at genome-wide significance, suggestive associations were found for *POLG* (rs2307441; P=1.0x10⁻⁷), *OPA1* (rs9872432; P=5.2x10⁻⁷), *SLC25A10* (rs62077224; P=1.2x10⁻⁷), and *RRM2B* (rs3907099; P=4.7x10⁻⁶). Given these observations, we hypothesized that mtDNA depletion genes may be generally enriched for common variant associations. Indeed, 10 (53%) of 19 known mtDNA depletion genes (Oyston, 1998) harboured at least suggestive mtDNA-CN associations (P<5x10⁻⁶).

Additionally, trans-ethnic meta-analysis inclusive of non-Europeans (N=395,781) was performed but given the small increase in sample size, GWAS findings remained highly similar (S2. Figure 3). However, European effect estimates were significantly and highly correlated with those derived from South Asian (r=0.97; P= 2.2×10^{-15}) and African (r=0.88; P= 9.1×10^{-5}) GWAS analyses (S2. Figure 4).

mtDNA-CN loci influence mitochondrial gene expression and heteroplasmy

We postulated that mtDNA-CN loci may regulate copy number by inducing changes in expression of genes that are directly transcribed from mtDNA. Ali *et al.* (2019) recently conducted a GWAS to identify nuclear genetic variants associated with variation in mtDNA-encoded gene expression (i.e. mt-eQTLs) (Ali *et al.*, 2019). Nonsynonymous variants in *LONP1* (rs11085147) and *TBRG4* (rs2304693), as well as an intronic variant in *MRPS35* (rs1127787), were associated with changes in MT gene expression across various tissues (S2. Table 3). Nominally associated mtDNA-CN loci were also observed to influence MT gene expression including intronic variants in both *PNPT1* (rs62165226;

mtDNA-CN P= 5.5×10^{-5}) and *LRPPRC* (rs10205130; mtDNA-CN P= 1.1×10^{-4}). Although differences in mitochondrial gene expression may be a consequence rather than a cause of variable mtDNA-CN, the analysis performed by Ali *et al* (2019) was corrected for factors associated with global changes in the mitochondrial transcriptome (Ali *et al.*, 2019). Moreover, the direction of effect estimates between mtDNA-CN and mt-eQTLs varied depending on gene and tissue context. Altogether, such findings imply that some mtDNA-CN loci may regulate mtDNA-CN by influencing mitochondrial gene expression.

A recent GWAS by Nandakumar *et al.* (2021) also reported 20 loci for mtDNA heteroplasmy. While full genome-wide summary statistics were not publicly available to systematically lookup potential effects of the 80 mtDNA-CN GWS variants on mtDNA heteroplasmy, we performed the reverse lookup of whether mtDNA heteroplasmy loci influenced mtDNA-CN. Of 19 matching variants between the GWAS, four heteroplasmy loci were also associated with mtDNA-CN at genome-wide significance including variants nearby or within *TINCR/LONP1* (rs12461806; mtDNA-CN GWAS P=7.5x10⁻⁸⁸), *TWNK/MPRL43* (rs58678340; P=1.3x10⁻³⁹), *TFAM* (rs1049432; P=1.5x10⁻²¹), and *PRKAB1* (rs11064881; P=2.6x10⁻¹⁰) genes. Consistent with the finding from Nandakumar *et al.* (2021) that the heteroplasmy-increasing *TFAM* allele was also associated with higher mtDNA-CN, we also observed concordant directionality for the other three variants. No additional mtDNA heteroplasmy loci were identified to influence mtDNA-CN when using the suggestive significance threshold.

Genes and pathways implicated in the regulation of mtDNA-CN

DEPICT analysis led to the prioritization of 91 out of 18,922 genes (FDR P < 0.05; S2. Table 4). 87 of these genes intersected with the GeneMANIA database and were uploaded to the GeneMANIA platform to identify additional functionally related genes (Warde-Farley *et al.*, 2010). GeneMANIA analysis discovered an additional 20 related genes (S2. Table 5). Among the 107 total genes prioritized by DEPICT or GeneMANIA (Figure 1C), mitochondrial functions were significantly enriched in gene ontology terms including mitochondrion organization (coverage: 12/225 genes; FDR P = $7.4x10^{-5}$), mitochondrial nucleoid (6/34; FDR P= $2.2x10^{-4}$), mitochondrial genome maintenance (4/10; FDR P= $6.8x10^{-4}$), and mitochondrial matrix (11/257; FDR P= $6.8x10^{-4}$). Visual inspection of the links between key genes involved in these functions highlights *PPRC1*, a member of the PGC-1A family of mitochondrial biogenesis activators (Richard C. Scarpulla, 2011), as a potential coordinator of mtDNA-related processes (Figure 1C).

MitoCarta3 is a comprehensive and curated inventory of 1,136 human proteins (1,120 nuclear) known to localize to the mitochondria based on experiments of isolated mitochondria from 14 non-blood tissues (Rath *et al.*, 2021). We leveraged this recently updated database, that was absent from GeneMANIA, to conduct a complementary set of targeted analyses focused on mitochondrial annotations (S2. Table 5). First, we hypothesized that prioritized genes would be generally enriched for genes encoding the mitochondrial proteome. Overall, 27 (25%) of 107 genes had evidence of mitochondrial localization corresponding to a 4.2-fold enrichment (null expectation = 5.9%; P=1.0x10⁻¹⁰). Next, given that *PPRC1*, an activator of mitochondrial biogenesis, was prioritized by DEPICT analyses and then linked to central mtDNA regulators in GeneMANIA, we

postulated that prioritized genes may be enriched for downstream targets of PGC-1A. PGC-1A induction resulted in a higher mean fold-change among prioritized genes (beta=1.48; 95% CI, 0.60 to 2.37) as compared to any mitochondrial gene (beta=1.19; 95% CI, -0.76 to 3.13; t-test P=0.04). Finally, we categorized the 27 MitoCarta3 genes into their respective pathways. Most (16; 57%) genes were members of the "Mitochondrial central dogma" pathway but other implicated pathways included "Metabolism", "Mitochondrial dynamics and surveillance", "Oxidative phosphorylation", and "Protein import, sorting and homeostasis" pathways (Figure 1D). Four proteins were annotated as part of multiple pathways including *TYMP/SCO2*, *GTPBP3*, *MIEF1*, and *OXA1L* (S2. Table 5).

B

С

79

Figure 1. Analyses of common genetic loci associated with mtDNA-CN. (A) Manhattan plot illustrating common genetic variant associations with mtDNA-CN. (B) Size distribution of 95% credible sets defined for 80 independent genetic signals. (C) GENE-MANIA-mania protein network interaction exploration (D) "MitoPathway" counts corresponding to 27 prioritized MitoCarta3 genes encoding proteins with known mitochondrial localization.

Exome-wide association testing uncovers rare coding SAMHD1 mutations as a

determinant of mtDNA-CN levels and breast cancer risk

We performed an exome-wide association study (EXWAS) in 147,740 UKBiobank participants with WES data to assess the contribution of rare coding variants. Among 18,890 genes tested, *SAMHD1* was the only gene reaching exome-wide significance (Figure 2A; S2 Table 8). The carrier prevalence of rare *SAMHD1* mutations was 0.75%, and on average, mutation carriers had higher mtDNA-CN than non-carriers (beta=0.23 SDs; 95% CI, 0.18-0.29; P=2.6x10⁻¹⁹; S2. Figure 5). Also, while none of the 19 known mtDNA depletion genes reached Bonferroni significance, a suggestive association was found for *TFAM* (beta=-0.33; 95% CI, -0.47 to -0.19; P=4.2x10⁻⁶), and this association was independent of the common *TFAM* variants (rs12247015; rs4397793) previously identified in the GWAS (beta=-0.33; 95% CI, -0.47 to -0.19; P=8.x10⁻⁶).

To evaluate whether rare SAMHD1 mutations also influenced disease risk, we conducted phenome-wide association testing of 771 diseases within the UKBiobank. At phenome-wide significance, SAMHD1 mutation carrier status was associated with approximately two-fold increased risk of breast cancer (OR=1.91; 95% CI, 1.52-2.40; P=2.7x10⁻⁸), as well as greater risk of "cancer (suspected or other)" (OR=1.52; 95% CI, 1.28-1.80; P=1.1x10⁻⁶; Figure 2B; S2 Table 9). Exclusion of breast cancer cases attenuated but did not nullify the association with "cancer (suspected or other)" (OR=1.36; 95% CI, 1.10-1.67; P=0.004) suggesting that SAMHD1 mutations may also increase risk of other cancers, as has been shown for colon cancer (Rentoft et al., 2019). To understand whether differences in mtDNA-CN levels between SAMHD1 mutation carriers was a consequence of cancer diagnosis, we repeated association testing with mtDNA-CN excluding cancer patients. In this analysis, the association with mtDNA-CN levels was not attenuated (beta=0.26; 95% CI, 0.19-0.32; P=7.8x10⁻¹⁵) suggesting that the effect of rare SAMHD1 variants on mtDNA-CN levels is not driven by its relationship with cancer status. A summary of mitochondrial genes and pathways implicated by common and rare loci is provided in Figure 3.

Figure 2. Rare variant gene burden association testing with mtDNA-CN and disease risk. (A) QQ plot illustrating expected vs. observed -log₁₀(p) values for exome-wide burden of rare (MAF<0.001) and nonsynymous mutations. (B) Manhattan plot showing phenome-

wide significant associations between SAMHD1 carrier status and cancer-related phenotypes.

Genetic regulation of mtDNA copy number

Figure 3. Graphical summary of mitochondrial genes and pathways implicated by genetic analyses. Colour-coding indicates through which set(s) of analyses genes were identified. The image was generated using BioRender (https://biorender.com/).

Mendelian Randomization analysis implicates low mtDNA-CN as a causal mediator of dementia

Given that common variant loci overlapped with several mtDNA depletion genes, we postulated that polygenically low mtDNA-CN might cause a milder syndrome with phenotypically similar manifestations. To assess whether mtDNA-CN may represent a putative mediator of mtDNA depletion-related phenotypes, we conducted Mendelian Randomization analyses between genetically determined mtDNA-CN and mitochondrial disease phenotypes using summary statistics derived from the FinnGen v4 GWAS dataset.

After accounting for multiple testing of 10 phenotypes, an association between mtDNA-CN and all-cause dementia was found (OR=1.94 per 1 SD decrease in mtDNA-CN; 95% CI, 1.55-2.32; P=7.5x10⁻⁴; S2. Table 9; Figure 4). Sensitivity analyses indicated no evidence of global (MR-PRESSO P=0.51; Q-statistic P=0.51) or directional (Egger Intercept P =0.47) pleiotropy. The 27 selected variants accounted for 0.70% of the variance in mtDNA-CN and 0.13% of the risk for dementia, consistent with a causal effect of mtDNA-CN on dementia risk and not vice versa (Steiger P= $1.9x10^{-62}$). Findings were robust across several different MR methods including the Weighted Median (OR=2.47; 95% CI, 1.93-3.00; P=0.001) and MR-EGGER (OR=2.41; 95% CI, 1.71-3.11; P=0.02) methods. Furthermore, we replicated this result using a second UKBiobank-independent GWAS dataset derived from the International Genomics of Alzheimer's Disease Consortium (2013) including 17,008 Alzheimer's disease patients (OR=1.41; 95% CI, 1.0001-1.98; P=0.04993) (Lambert *et al.*, 2013).

Figure 4. Coefficient plots for Mendelian Randomization analyses of mitochondrial disease traits. In the absence of heterogeneity (Egger-intercept P \geq 0.05; MR-PRESSO global heterogeneity P \geq 0.05), the inverse-variance weighted result was reported. In the presence of balanced pleiotropy (MR-PRESSO global heterogeneity P < 0.05), the weighted median result was reported. No set of analyses had evidence for directional pleiotropy (Egger-intercept P < 0.05).

Discussion

We developed a novel method to estimate mtDNA-CN from genetic array data, "AutoMitoC", and applied it to the UKBiobank study. Extensive genetic investigations led to several key insights regarding mtDNA-CN. First, several novel common and rare genetic determinants of mtDNA-CN were identified, totalling 71 loci. Second, these loci were enriched for mitochondrial processes related to dNTP metabolism and the replication, packaging, and maintenance of mtDNA. Third, we observed a strong role for common variation within known mtDNA depletion genes in regulating mtDNA-CN in the general population. Fourth, we found that rare variants in *SAMHD1* not only affect mtDNA-CN levels but also confer risk to cancer. Finally, we provided the first Mendelian Randomization evidence implicating low mtDNA-CN as a causative risk factor for dementia.

While several investigations for mtDNA-CN have been performed, the present study represents the most comprehensive genetic assessment to date(Cai et al., 2015; Longchamps, 2019; Hägg et al., 2020). Notably, Hagg et al. (2020) recently conducted a GWAS for mtDNA-CN in 295,150 UKBiobank participants and identified 50 common loci(Hägg et al., 2020). However, the method developed by Hagg et al. (2020) calibrated SNP probe intensities based on association with whole-exome sequencing read depths, which may limit the convenience of the method. In contrast, AutoMitoC only necessitates array probe intensities and does not require any secondary genetic measurements (WES or otherwise) for calibration. In addition, AutoMitoC exhibits superior concordance with WES-based estimates (Hagg r=0.33; AutoMitoC r=0.45), which was validated in an independent dataset with gold standard qPCR measurements. Further, Hagg et al. (2020) restricted genetic analyses to unrelated European individuals, whereas we incorporated ~100,000 additional individuals and demonstrated consistency in genetic effects between Europeans and non-Europeans (r > 0.88). The greater sample size in combination with more accurate mtDNA-CN estimates may explain the 44% increase in identified common loci (72 vs 50). Finally, in the present study we included exploration of the role of rare variants through ExWAS and, notably, Mendelian Randomization analyses to assess disease contexts whereby mtDNA-CN may represent a causal mediator and a potential therapeutic target.

MtDNA-CN has proven to be a biomarker of cardiovascular disease in several large epidemiological studies, with studies often assuming that such relationships are attributable to pathological processes including mitochondrial dysfunction, oxidative stress and inflammation (Tin *et al.*, 2016; Wu *et al.*, 2017; Fazzini *et al.*, 2019; Koller *et al.*, 2020). Consistent with previous GWAS findings, our genetic analyses confirm that mtDNA-CN indeed reflects specific mitochondrial functions, but perhaps not the ones commonly attributable to mtDNA-CN(Cai *et al.*, 2015; Guyatt *et al.*, 2019; Hägg *et al.*, 2020). Primarily, differences in mtDNA-CN reflect mitochondrial processes related to dNTP metabolism and the replication, maintenance, and organization of mtDNA. Secondarily, genes involved in mitochondrial biogenesis, metabolism, oxidative phosphorylation, and protein homeostasis were also identified but do not represent the main constituents. The observed enrichment in common variant associations within mtDNA depletion genes further reinforces the notion that differences in mtDNA-CN first and foremost reflect perturbations in mtDNA-related processes.

No therapy for mtDNA depletion disorders currently exists with treatment mainly consisting of supportive care. Intriguingly, we found that rare variants within *SAMHD1* were associated with increased levels of mtDNA-CN. *SAMHD1* is a multifaceted enzyme with various functions including tumour suppression through DNA repair activity and maintenance of steady-state intracellular dNTP levels, which has been involved in HIV-1 replication (Baldauf *et al.*, 2012; Kretschmer *et al.*, 2015). Rare homozygous and
compound heterozygous loss-of-function mutations in SAMHD1 result in an immune encephalopathy known as Aicardi Goutiere's syndrome(White et al., 2017). Imbalanced intracellular dNTP pools and chronic DNA damage cause persistent elevations in interferon alpha thus mimicking a prolonged response to HIV-1 infection. While Aicardi Goutiere's syndrome is a severe recessive genetic disorder, case reports of SAMHD1-related disease often describe heterozygous parents and siblings as being unaffected or with milder disease (familial chilblain lupus 2) (Haskell et al., 2018). In the UKBiobank, the vast majority (99.4%) of individuals possessing SAMHD1 mutations were heterozygote carriers, who had a two-fold increased risk of breast cancer. Indeed, our finding that SAMHD1 mutations associate with both elevated mtDNA-CN levels and risk of breast cancer belies the prevailing notion that higher mtDNA-CN is always a protective signature of proper mitochondrial function and healthy cells. Such findings may have important clinical implications for genetic screening. Firstly, heterozygous SAMHD1 mutations may be an overlooked risk factor for breast cancer considering that ~1 in 130 UKBiobank participants possessed a genetic mutation conferring two-fold elevated risk. Notably, while SAMHD1 mutations have been described previously to be associated with various cancers (Kohnken, Kodigepalli and Wu, 2015; Rentoft et al., 2019), this gene is not routinely screened nor part of targeted gene panels outside the context of neurological disorders (https://www.genedx.com/test-catalog/available-tests/comprehensive-common-cancerpanel/). Secondly, unaffected parents and siblings of Aicardi Goutiere patients might also present with greater risk of cancer. Thirdly, while SAMHD1 is a highly pleiotropic protein, therapeutic strategies to dampen (but not abolish) SAMHD1 activity might be considered to treat mtDNA depletion disorders caused by defects in nucleotide metabolism. Indeed, Franzolin *et al.* (2015) demonstrated that siRNA knockdown of SAMHD1 in human fibroblasts with *DGUOK* mtDNA depletion mutations partially recovered mtDNA-CN (Franzolin *et al.*, 2015).

To our knowledge, we provide the first Mendelian Randomization evidence that mtDNA-CN may be causally related to risk of dementia. Although dysfunctional mitochondria have long been implicated in the pathogenesis of Alzheimer's disease, only recently has mtDNA-CN been tested as a biomarker. Silzer et al. (2019) conducted a matched case-control study of 46 participants and showed that individuals with cognitive impairment had significantly lower blood-based mtDNA-CN(Silzer et al., 2019). Andrews et al. (2020) studied the relationship between post-mortem brain tissue mtDNA-CN and measures of cognitive impairment in 1,025 samples (Andrews and Goate, 2020). Consistent with our findings, a 1 SD decrease in brain mtDNA-CN was associated with lower mini mental state exam (beta = -4.02; 95% CI, -5.49 to -2.55; P= 1.07×10^{-7}) and higher clinical dementia rating (beta = 0.71; 95% CI, 0.51 to 0.91). Both studies implicate blood and brainbased mtDNA-CN as a marker of dementia but were retrospective. In contrast, Yang et al. (2020) observed a significant association between mtDNA-CN and incident risk of neurodegenerative disease (Parkinson's and Alzheimer's disease)(Yang et al., 2021). Altogether, our results combined with previous findings suggest that mtDNA-CN represents both a marker and mediator of dementia. Considering that our overall findings suggest that mtDNA-CN reflects numerous mitochondrial subprocesses, future studies will be required to disentangle which ones, as reflected by diminished mtDNA-CN, truly mediate dementia pathogenesis.

Several limitations should be noted. First, mtDNA-CN approximated by arraybased methods remain imperfectly accurate as compared to qPCR or whole genome sequencing measurements, though we found strong correlation between AutoMitoC and qPCR-based estimates in this study (r=0.64; P $< 2.23 \times 10^{-308}$). Although whole genome sequencing will eventually supplant array-based mtDNA-CN GWAS, we hypothesize that the improvements made in the areas of speed, portability to ethnically diverse studies, and ease-of-implementation, should greatly increase accessibility of mtDNA-CN research as a plethora of genotyping array data is presently available to re-analyze. Third, Mendelian Randomization analyses were underpowered to conduct a broad survey of diseases in which mitochondrial dysfunction may play a causal role, and equally as important, we were unable to differentiate whether specific mitochondrial subpathways mediated risk of disease. As additional loci are uncovered, such analyses may be feasible. Fourth, variants and genes implicated in the regulation of mtDNA-CN may be specific to blood samples though findings suggest that many mtDNA-CN loci act through genes that are widely expressed in mitochondria across multiple tissues. Future studies are required to determine whether associations are ubiquitous across mitochondria-containing cells and to investigate the role of mtDNA-CN in other tissues. Lastly, whole blood mtDNA-CN reflects a heterogenous mixture of nucleated and unnucleated cells, and despite adjustment for major known confounding cell types, inter-individual differences in cell subpopulations not captured by a standard blood cell count may represent an important source of confounding.

Conclusion

Although commonly viewed as a simple surrogate marker for the number of mitochondria present within a sample, genetic analyses suggest that mtDNA-CN is a highly complex biomarker under substantial nuclear genetic regulation. mtDNA-CN reflects a mixture of mitochondrial processes mostly pertaining to mtDNA regulation. Accordingly, the true relationship between mtDNA-CN measured in blood samples with human disease remains to be completely defined though we find evidence for mtDNA-CN as a putative causal risk factor for dementia. Future studies are necessary to decipher if mtDNA-CN is directly involved in the pathogenesis of dementia and other diseases or whether other specific mitochondrial processes are truly causative.

References and Notes:

Abecasis, G. R. *et al.* (2012) 'An integrated map of genetic variation from 1,092 human genomes.', *Nature*, 491(7422), pp. 56–65. doi: 10.1038/nature11632.

Ali, A. T. *et al.* (2019) 'Nuclear genetic regulation of the human mitochondrial transcriptome', *eLife*, 8, pp. 1–23. doi: 10.7554/eLife.41927.

Andrews, S. J. and Goate, A. M. (2020) 'Mitochondrial DNA copy number is associated with cognitive impairment', *Alzheimer's & Dementia*, 16(S5). doi: 10.1002/alz.047543.

Ashar, F. N. et al. (2017) 'Association of Mitochondrial DNA Copy Number With

Cardiovascular Disease', 21205(11), pp. 1247–1255. doi: 10.1001/jamacardio.2017.3683.

Baldauf, H.-M. et al. (2012) 'SAMHD1 restricts HIV-1 infection in resting CD4+ T

cells', Nature Medicine, 18(11), pp. 1682–1688. doi: 10.1038/nm.2964.

Benner, C. et al. (2016) 'FINEMAP: Efficient variable selection using summary data

from genome-wide association studies', *Bioinformatics*, 32(10), pp. 1493–1501. doi: 10.1093/bioinformatics/btw018.

Benner, C. *et al.* (2017) 'Prospects of Fine-Mapping Trait-Associated Genomic Regions
by Using Summary Statistics from Genome-wide Association Studies', *The American Journal of Human Genetics*, 101(4), pp. 539–551. doi: 10.1016/j.ajhg.2017.08.012.
Burbulla, L. F. *et al.* (2017) 'Dopamine oxidation mediates mitochondrial and lysosomal

dysfunction in Parkinson's disease', Science, 357(6357), pp. 1255–1261. doi:

10.1126/science.aam9080.

Cai, N. *et al.* (2015) 'Genetic Control over mtDNA and Its Relationship to Major Depressive Disorder', *Current Biology*. The Authors, 25(24), pp. 3170–3177. doi: 10.1016/j.cub.2015.10.065.

Denny, J. C. *et al.* (2013) 'Systematic comparison of phenome-wide association study of electronic medical record data and genome-wide association study data.', *Nature biotechnology*, 31(12), pp. 1102–10. doi: 10.1038/nbt.2749.

Desdín-micó, G. *et al.* (2020) 'T cells with dysfunctional mitochondria induce multimorbidity and premature senescence', 1376(June), pp. 1371–1376.

Fazzini, F. *et al.* (2018) 'Plasmid-normalized quantification of relative mitochondrial DNA copy number', (May), pp. 1–11. doi: 10.1038/s41598-018-33684-5.

Fazzini, F. *et al.* (2019) 'Mitochondrial DNA copy number is associated with mortality and infections in a large cohort of patients with chronic kidney disease', 8, pp. 480–488. doi: 10.1016/j.kint.2019.04.021.

Feng, Y.-C. A. et al. (2020) 'Findings and insights from the genetic investigation of age

of first reported occurrence for complex disorders in the UK Biobank and FinnGen',

medRxiv, p. 2020.11.20.20234302. Available at:

https://doi.org/10.1101/2020.11.20.20234302.

Franzolin, E. *et al.* (2015) 'The deoxynucleoside triphosphate triphosphohydrolase activity of SAMHD1 protein contributes to the mitochondrial DNA depletion associated with genetic deficiency of deoxyguanosine kinase', *Journal of Biological Chemistry*, 290(43), pp. 25986–25996. doi: 10.1074/jbc.M115.675082.

Gene, T. and Consortium, O. (2000) 'Gene Ontology : tool for the', 25(may), pp. 25–29.
Gorman, G. S. *et al.* (2016) 'Mitochondrial diseases', *Nature Reviews Disease Primers*.
Macmillan Publishers Limited, 2. doi: 10.1038/nrdp.2016.80.

Guyatt, A. L. *et al.* (2019) 'A genome-wide association study of mitochondrial DNA copy number in two population-based cohorts'. Human Genomics, pp. 1–17.

Hägg, S. *et al.* (2020) 'Deciphering the genetic and epidemiological landscape of mitochondrial DNA abundance', *Human Genetics*. Springer Berlin Heidelberg, (0123456789). doi: 10.1007/s00439-020-02249-w.

Haskell, G. T. *et al.* (2018) 'Combination of exome sequencing and immune testing confirms Aicardi–Goutières syndrome type 5 in a challenging pediatric neurology case', *Molecular Case Studies*, 4(5), p. a002758. doi: 10.1101/mcs.a002758.

Hemani, G. *et al.* (2018) 'The MR-base platform supports systematic causal inference across the human phenome', *eLife*, 7, pp. 1–29. doi: 10.7554/eLife.34408.

Hu, L., Yao, X. and Shen, Y. (2016) 'Altered mitochondrial DNA copy number

contributes to human cancer risk: Evidence from an updated meta-analysis', Scientific

Reports. Nature Publishing Group, 6(October), pp. 1–11. doi: 10.1038/srep35859. Jagadeesh, K. A. *et al.* (2016) 'M-CAP eliminates a majority of variants of uncertain significance in clinical exomes at high sensitivity.', *Nature genetics*, 48(12), pp. 1581–1586. doi: 10.1038/ng.3703.

Kamat, M. A. *et al.* (2019) 'PhenoScanner V2: an expanded tool for searching human genotype-phenotype associations.', *Bioinformatics (Oxford, England)*, 35(22), pp. 4851–4853. doi: 10.1093/bioinformatics/btz469.

Kim, C. *et al.* (2015) 'Mitochondrial DNA copy number and chronic lymphocytic leukemia/small lymphocytic lymphoma risk in two prospective studies', *Cancer Epidemiology Biomarkers and Prevention*, 24(1), pp. 148–153. doi: 10.1158/1055-9965.EPI-14-0753.

Kohnken, R., Kodigepalli, K. M. and Wu, L. (2015) 'Regulation of deoxynucleotide metabolism in cancer: Novel mechanisms and therapeutic implications', *Molecular Cancer*, 14(1), pp. 1–11. doi: 10.1186/s12943-015-0446-6.

Koller, A. *et al.* (2020) 'Mitochondrial DNA copy number is associated with all-cause mortality and cardiovascular events in patients with peripheral arterial disease', *Journal of Internal Medicine*, 287(5), pp. 569–579. doi: 10.1111/joim.13027.

Kretschmer, S. *et al.* (2015) 'SAMHD1 prevents autoimmunity by maintaining genome stability', *Annals of the Rheumatic Diseases*, 74(3). doi: 10.1136/annrheumdis-2013-204845.

Lambert, J. C. *et al.* (2013) 'Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease.', *Nature genetics*, 45(12), pp. 1452–8. doi:

10.1038/ng.2802.

Lane, J. (2014) *MitoPipeline: Generating Mitochondrial copy number estimates from SNP array data in Genvisis*. Available at: http://genvisis.org/MitoPipeline/.

Longchamps, R. J. (2019) 'EXPLORING THE ROLE OF MITOCHONDRIAL DNA QUANTITY AND QUALITY', *Biorxiv*, (August).

Longchamps, R. J. *et al.* (2020) 'Evaluation of mitochondrial DNA copy number estimation techniques', *PLOS ONE*. Edited by D. C. Samuels, 15(1), p. e0228166. doi: 10.1371/journal.pone.0228166.

Mbatchou, J. *et al.* (2020) 'Computationally efficient whole genome regression for quantitative and binary traits', pp. 1–88. doi: 10.1101/2020.06.19.162354.

Nandakumar, P. *et al.* (2021) 'Nuclear genome-wide associations with mitochondrial heteroplasmy', *Science Advances*, 7(12), pp. 1–10. doi: 10.1126/sciadv.abe7520.

Oyston, J. (1998) 'Online Mendelian Inheritance in Man.', *Anesthesiology*, 89(3), pp. 811–2.

Pers, T. H. *et al.* (2015) 'Biological interpretation of genome-wide association studies using predicted gene functions', *Nature Communications*, 6, p. 5890. doi: 10.1038/ncomms6890.

Purcell, S. *et al.* (2007) 'PLINK: a tool set for whole-genome association and populationbased linkage analyses.', *American journal of human genetics*, 81(3), pp. 559–75. doi: 10.1086/519795.

Rath, S. *et al.* (2021) 'MitoCarta3.0: an updated mitochondrial proteome now with suborganelle localization and pathway annotations', *Nucleic acids research*. Oxford University Press, 49(D1), pp. D1541–D1547. doi: 10.1093/nar/gkaa1011.

Rentoft, M. *et al.* (2019) 'Erratum: Heterozygous colon cancer-associated mutations of SAMHD1 have functional significance (Proceedings of the National Academy of Sciences of the United States of America (2016) 113 (4723-4728) DOI:

10.1073/pnas.1519128113)', Proceedings of the National Academy of Sciences of the United States of America, 116(10), p. 4744. doi: 10.1073/pnas.1902081116.

Richard C. Scarpulla (2011) 'Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network', *Biochim Biophys Acta.*, 1813(7), pp. 1269–1278. doi: 10.1016/j.bbamcr.2010.09.019.

Silzer, T. *et al.* (2019) 'Circulating mitochondrial DNA : New indices of type 2 diabetesrelated cognitive impairment in Mexican Americans', pp. 1–21.

Simone, D. *et al.* (2011) 'The reference human nuclear mitochondrial sequences
compilation validated and implemented on the UCSC genome browser.', *BMC genomics*,
12, p. 517. doi: 10.1186/1471-2164-12-517.

Sliter, D. A. *et al.* (2020) 'Parkin and PINK1 mitigate STING-induced inflammation', *Nature*, 561(7722), pp. 258–262. doi: 10.1038/s41586-018-0448-9.Parkin.

Sudlow, C. *et al.* (2015) 'UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age.', *PLoS medicine*, 12(3), p. e1001779. doi: 10.1371/journal.pmed.1001779.

Tin, A. *et al.* (2016) 'Association between mitochondrial DNA copy number in peripheral blood and incident CKD in the atherosclerosis risk in communities study', *Journal of the American Society of Nephrology*, 27(8), pp. 2467–2473. doi: 10.1681/ASN.2015060661.

Verbanck, M. *et al.* (2018) 'Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases', *Nature Genetics*. Springer US, 50(5), pp. 693–698. doi: 10.1038/s41588-018-0099-7.

Vuckovic, D. *et al.* (2020) 'The Polygenic and Monogenic Basis of Blood Traits and Diseases.', *Cell*, 182(5), pp. 1214-1231.e11. doi: 10.1016/j.cell.2020.08.008.

Warde-Farley, D. *et al.* (2010) 'The GeneMANIA prediction server: Biological network integration for gene prioritization and predicting gene function', *Nucleic Acids Research*, 38(SUPPL. 2), pp. 214–220. doi: 10.1093/nar/gkq537.

Wei, W. Q. *et al.* (2017) 'Evaluating phecodes, clinical classification software, and ICD9-CM codes for phenome-wide association studies in the electronic health record', *PLoS ONE*, 12(7), pp. 1–16. doi: 10.1371/journal.pone.0175508.

White, T. E. *et al.* (2017) 'A SAMHD1 mutation associated with Aicardi-Goutières syndrome uncouples the ability of SAMHD1 to restrict HIV-1 from its ability to downmodulate type I interferon in humans', *Human Mutation*, 38(6), pp. 658–668. doi: 10.1002/humu.23201.

Willer, C. J., Li, Y. and Abecasis, G. R. (2010) 'METAL: Fast and efficient meta-analysis of genomewide association scans', *Bioinformatics*, 26(17), pp. 2190–2191. doi: 10.1093/bioinformatics/btq340.

Wu, I.-C. *et al.* (2017) 'Interrelations Between Mitochondrial DNA Copy Number and Inflammation in Older Adults', *The Journals of Gerontology: Series A*, 72(7), pp. 937– 944. doi: 10.1093/gerona/glx033. Wu, P. *et al.* (2019) 'Mapping ICD-10 and ICD-10-CM Codes to Phecodes: Workflow Development and Initial Evaluation.', *JMIR medical informatics*, 7(4), p. e14325. doi: 10.2196/14325.

Yang, S. Y. *et al.* (2021) 'Blood-derived mitochondrial DNA copy number is associated with gene expression across multiple tissues and is predictive for incident neurodegenerative disease', *Genome Research*. doi: 10.1101/gr.269381.120.

Zhang, Y. *et al.* (2017) 'Association between mitochondrial DNA copy number and sudden cardiac death : findings from the Atherosclerosis Risk in Communities study (ARIC)', pp. 3443–3448. doi: 10.1093/eurheartj/ehx354.

Acknowledgements: We want to acknowledge the participants and investigators of the UKBiobank and FinnGen studies.

Funding:

Canadian Institutes of Health Research Frederick Banting and Charles Best Canada Graduate Scholarships Doctoral Award (MC, PM)

Canadian Institutes of Health Research Post-Doctoral Fellowship Award (RM)

Wellcome Trust Grant number: 099313/B/12/A; Crasnow Travel Scholarship; Bongani

Mayosi UCT-PHRI Scholarship 2019/2020 (TM)

Wellcome Trust Health Research Board Irish Clinical Academic Training (ICAT) Programme Grant Number: 203930/B/16/Z (CJ)

European Research Council COSIP Grant Number: 640580 (MO)

E.J. Moran Campbell Internal Career Research Award (MP)

CISCO Professorship in Integrated Health Systems (GP)

Canada Research Chair in Genetic and Molecular Epidemiology (GP)

Author Contributions:

Conceptualization: MC, GP

Methodology: MC, WN, GP

Bioinformatics and Statistical Analysis: MC, PM, NP, GP, SN, IK, RL, MK, TM

Visualization: MC, PM, NP, RM, CJ

Data Interpretation: MC, PM, GP, SN, LA, RM

Funding or data acquisition: GP, MO, NC

Project administration: GP

Supervision: GP

Writing – original draft: MC

Writing - review & editing: MC, PM, NP, WN, RM, SN, IK, RL, MK, CJ, TM, NC, MO,

MP, LA, GP

Competing Interests: None

Data and materials availability: Individual-level UKBiobank genotypes and phenotypes can be acquired upon successful application (https://bbams.ndph.ox.ac.uk/ams/). All individual-level UKBiobank data was accessed as part of application # 15255. FinnGen summary statistics are freely available to download (https://www.finngen.fi/en/access_results). All data products generated as part of this study will be made publicly accessible. Specifically, a software package for the AutoMitoC array-based mtDNA-CN estimation pipeline will be put on GitHub. The mtDNA-CN estimates derived in UKBiobank participants will be returned to the UKBiobank and made accessible

to researchers through the data showcase (https://biobank.ndph.ox.ac.uk/showcase/). Summary-level association statistics from GWAS will be made publicly available for download. All remaining data are available in the main text or supplementary materials.

Ethics Statement: Approval was received to use UKBiobank study data in this work under application ID # 15255 ("Identification of the shared biological and sociodemographic factors underlying cardiovascular disease and dementia risk"). The UKBiobank study obtained ethics approval from the North West Multi-centre Research Ethics Committee which encompasses the UK (REC reference: 11/NW/0382). All research participants provided informed consent.

CHAPTER 5:

Mitochondrial DNA copy number as a marker and mediator of stroke prognosis:

Observational and Mendelian Randomization analyses

Submitted to JAMA Neurology. (May 29th, 2021)

Mitochondrial DNA copy number as a marker and mediator of stroke prognosis:

Observational and Mendelian Randomization analyses

<u>Authors</u>: Michael Chong^{1,2,3,4}, MSc; Sukrit Narula^{1,2,5}, BA; Robert Morton^{1,2,4}, PhD; Conor Judge^{1,2,7}, MB; Loubna Akhabir^{1,2,6}, PhD; Nathan Cawte^{1,2}, BSc; Nazia Pathan^{1,2}, BSc; Ricky Lali^{1,2,5}, MSc; Pedrum Mohammadi-Shemirani^{1,2,4}, BSc; Ashkan Shoamanesh, MD^{1,6}; Martin O'Donnell^{1,7}, PhD; Salim Yusuf^{1,2,5,6}, DPhil; Peter Langhorne⁸, PhD; Guillaume Paré^{1,2,3,4,5,6}*, MD.

Dr. Guillaume Paré* Population Health Research Institute 237 Barton St East Hamilton, ON Canada L8L 2X2 Email: <u>pareg@mcmaster.ca</u>

¹Population Health Research Institute (PHRI), David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton Health Sciences; 237 Barton Street East, Hamilton, L8L2X2, Ontario, Canada.

²Thrombosis and Atherosclerosis Research Institute; 237 Barton Street East, Hamilton, L8L2X2, Ontario, Canada.

³Department of Biochemistry and Biomedical Sciences, McMaster University; 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada

⁴Department of Pathology and Molecular Medicine, Michael G. DeGroote School of Medicine, McMaster University; 1280 Main Street West, Hamilton, L8S 4K1, Ontario, Canada

⁵Department of Health Research Methods, Evidence, and Impact, McMaster University; 1280 Main Street West,

Hamilton, L8S 4K1, Ontario, Canada

⁶Department of Medicine, McMaster University, Michael G. DeGroote School of Medicine; 1280 Main Street West,

Hamilton, L8S 4K1, Ontario, Canada

⁷National University of Ireland Galway; University Road, H91 TK33, Galway, Ireland.

⁸Institute of Cardiovascular and Medical Sciences, University of Glasgow; 126 University Place, G1286A, Glasgow, UK

Manuscript Word Count: 3797

Key Points

Question: Do stroke patients with lower buffy coat mitochondrial DNA copy number (mtDNA-CN) have worse prognosis?

Findings: Stroke patients with lower mtDNA-CN levels measured within one week of stroke onset had significantly higher odds of worse outcomes at 1-month follow-up, including poor functional outcome (modified Rankin Scale [mRS] 3-6) and mortality. Two-sample Mendelian Randomization analyses in independent datasets revealed a significant association between genetic predisposition to lower mtDNA-CN and higher risk of poor functional outcomes at 3-months follow-up.

Meaning: Our findings suggest that low mtDNA-CN is a prognostic marker and a putative causal determinant of post-stroke outcomes.

<u>Abstract</u>

Importance: Low buffy coat mitochondrial DNA copy number (mtDNA-CN) is associated with incident risk of stroke and post-stroke mortality; however, its prognostic utility as a marker of post-stroke outcomes has not been extensively explored, nor is it known whether mtDNA-CN is a causal determinant.

Objective: To investigate whether low buffy coat mtDNA-CN is a marker and causal determinant of post-stroke outcomes using epidemiological and genetic studies.

Design and Setting: This study comprised a two-stage analysis. First, we performed association testing between baseline buffy coat mtDNA-CN measurements and 1-month post-stroke outcomes in 3498 acute, first stroke cases from 25 countries from the international, multicenter case-control study, "Importance of Conventional and Emerging

Risk Factors of Stroke in Different Regions and Ethnic Groups of the World" (INTERSTROKE). Then, we performed two-sample Mendelian Randomization analyses to evaluate potential causative effects of low mtDNA-CN on 3-month stroke outcomes. Genetic variants associated with mtDNA-CN levels were derived from the UKBiobank study (N=383476), and corresponding effects on 3-month stroke outcomes were ascertained from the Genetics of Ischemic Stroke functional Outcome study (GISCOME; N=6021).

Main Outcomes and Measures: We hypothesized that measured and genetically determined mtDNA-CN are associated with mRS-based outcomes.

Results: Independent of baseline stroke severity, a 1- standard deviation (SD) lower mtDNA-CN at baseline was associated with increased odds of greater 1-month disability (ordinal mRS; OR=1.16; 95% CI, 1.08-1.24; P=4.4x10⁻⁵), poor functional outcome status (mRS 3-6 vs. 0-2; OR=1.21; 95% CI, 1.08-1.34; P=6.9x10⁻⁴), and mortality (OR=1.35; 95% CI, 1.14-1.59; P=3.9x10⁻⁴). Subgroup analyses demonstrated consistent effects across stroke type, sex, age, country income level, and education level. In addition, mtDNA-CN significantly improved reclassification of poor functional outcome status (Net Reclassification Index (NRI)=0.16; 95% CI, 0.08-0.23; P=3.6x10⁻⁵) and mortality (NRI=0.31; 95% CI, 0.19-0.43; P=1.7x10⁻⁷) beyond known prognosticators. Using independent datasets, Mendelian Randomization revealed that a 1 SD decrease in genetically determined mtDNA-CN was associated with increased odds of greater 3-month disability quantified by ordinal mRS (OR=2.35; 95% CI, 1.13-4.90; P=0.02) and poor functional outcome status (OR=2.68; 95% CI, 1.05-6.86; P=0.04).

Conclusions and Relevance: Buffy coat mtDNA-CN is a novel and robust marker of poststroke prognosis that may also be a causal determinant of post-stroke outcomes.

Introduction

Stroke patients from low and middle-income countries bear a disproportionate burden of post-stroke complications^{1–3}. As such, identifying cost-effective and highly predictive biomarkers that mediate post-stroke recovery will allow for better risk stratification and novel targets for acute stroke treatment⁴.

Mitochondrial health has an important role in both stroke pathogenesis and recovery^{5,6}, and mitochondrial function can be measured using an inexpensive and accessible assay that quantifies the ratio of mitochondrial to nuclear DNA copies, known as mitochondrial DNA copy number (mtDNA-CN). Rare genetic disorders characterized by severe loss of mtDNA-CN, formally referred to as "mtDNA depletion" syndromes, can cause migraine, leukoencephalopathy, and stroke-like episodes^{7,8}. In the broader population, perturbations of leukocyte mtDNA-CN have been reported to reflect general mitochondrial dysfunction, oxidative stress, impaired oxidative phosphorylation, and inflammation⁹. Indeed, low leukocyte mtDNA-CN is associated with increased risks of secondary hospitalization and mortality in patients with atherosclerotic and chronic kidney disease^{10–12}. To our knowledge, only one study has investigated the association between mtDNA-CN and post-stroke outcomes, wherein a prospective cohort study of 1484 Chinese stroke patients reported an association between mtDNA-CN and mortality¹³. While these findings suggest a potential role for mtDNA-CN as a risk factor for post-stroke outcomes, and in particular mortality, several important questions remain to be addressed regarding: (i) the robustness of associations across stroke type and other clinically relevant subgroups,
(ii) whether associations are independent of baseline stroke severity, (iii) if mtDNA-CN is associated with the degree of functional disability among stroke survivors, and (iv) if mtDNA-CN is a causal determinant of post-stroke outcomes.

To address these questions, we investigated the relationships between both measured and genetically predicted mtDNA-CN levels with post-stroke outcomes using large-scale datasets. First, we evaluated the association between buffy coat mtDNA-CN levels measured within one week of stroke symptom onset and 1-month outcomes in 3498 stroke patients from the "Importance of Conventional and Emerging Risk Factors of Stroke in Different Regions and Ethnic Groups of the World" (INTERSTROKE) study¹⁴. Second, to assess whether lower mtDNA-CN levels may be a causal risk factor for poor outcomes at 3-months after stroke, we conducted two-sample Mendelian Randomization (MR) analyses using genetic effects derived from the UKBiobank (N=383476)¹⁵ and the Genetics of Ischemic Stroke funCtional Outcome (GISCOME; N=6165)¹⁶. Overall, we explored whether low mtDNA-CN represents a marker and casual driver of poor post-stroke outcomes.

Methods

INTERSTROKE

INTERSTROKE is a large international case-control study encompassing 32 countries across Asia, North America, South America, Europe, Australia, and Africa¹⁴. The study design has been described in detail previously¹⁷. In brief, participants were enrolled between January 11, 2007 and August 8, 2015. Cases consisted of patients with acute, first

stroke (ischemic or hemorrhagic) presenting within 5 days of symptom onset and 72 hours of hospital admission. Strokes were defined according to the World Health Organization definition, and subtypes were confirmed by neuroimaging (CT or MRI). Demographic characteristics, medical history, and risk factor data were collected through standardized questionnaires and physical examination. For patients who could not communicate, a proxy respondent was used (spouse or first-degree relative living in the same household aware of the patient's medical history and current treatments). All participants (or their proxies) provided written informed consent. The modified-Rankin scale (mRS)¹⁸ was used as a marker of stroke severity and was measured at baseline and at 1-month follow-up. The presence of hemorrhagic transformation after ischemic stroke was assessed through neuroimaging (either CT or MRI) and adjudicated locally by a site investigator. The present analyses were performed on a subset of 3498 INTERSTROKE cases with qPCR mtDNA-CN measurements.

MtDNA-CN Measurement and Quality Control

At each recruitment centre, non-fasting peripheral blood samples were collected in EDTA whole blood tubes from stroke patients within one week of symptom onset (and within 72 hours of hospital admission). Blood samples were shipped to the Clinical Research Laboratory and Biobank, located in Hamilton, Ontario, Canada, where DNA extraction was performed. DNA was extracted from the buffy coat layer of centrifuged samples using the QIAGEN QIAsymphony DNA Midi (96.7%), DNA Mini (2.7%) or DSP DNA Midi (0.6%) kits. mtDNA-CN was assayed by the Genetic and Molecular Epidemiology Lab located in Hamilton, Ontario, Canada using a plasmid-normalized quantitative Polymerase Chain Reaction (qPCR) method developed by Fazzini *et al.* (2018)¹⁹. Upon visual inspection of the distribution of mtDNA-CN values, a single sample with an extreme outlying value was removed. Additional outliers beyond 3 standard deviations (SD) of the mean were winsorized to the 99.7th percentile. MtDNA-CN values were normalized for known confounders by taking the residuals from a linear regression model for mtDNA-CN (dependent variable) versus age, sex, ethnicity, and qPCR batch (independent variables). The resulting numerical representation of mtDNA-CN was standardized to a mean of 0 and SD of 1 for subsequent analyses.

Statistical Analysis

All statistical analyses were performed using the statistical programming language 'R' (version 3.6.0). Plots were generated using a combination of the "ggplot2", "viridis", "dplyr", "grid", and "gridExtra" R packages. In INTERSTROKE, association testing was conducted to assess the relationship between low mtDNA-CN at baseline (continuous variable or discretized into quartiles) and stroke markers at two timepoints: 1) markers collected at the time of the stroke event (hereafter referred to as 'baseline' severity markers) and 2) markers collected 1-month after the stroke event. The primary marker of baseline stroke severity was ordinal mRS. Secondary markers included level of consciousness (alert, drowsy, or unconscious) and hemorrhagic transformation after ischemic stroke. The primary stroke outcome at 1-month follow-up was ordinal mRS. Secondary outcomes at 1-month follow-up included other formulations of mRS, specifically, poor functional outcome status (dichotomized mRS 3-6 vs. 0-2) and mortality status. Ordinal regression was used for analysis between ordinal mRS and consciousness ("polr" R package). The

proportional odds assumption was evaluated using the Brant test ("Brant" R package). Logistic regression analysis was conducted for dichotomous variables including hemorrhagic transformation at baseline and 1-month post-stroke outcomes (poor functional outcome and mortality statuses). All regression models were adjusted for age, sex, region, education level (none or primary school vs. high school, trade school, college, or university), 2018 World Bank country income stratum (high, upper-middle, and lowermiddle or low income), household income (adjusted for country), primary stroke type (ischemic vs. hemorrhagic stroke) and ischemic stroke Oxfordshire Community Stroke Project (OCSP) classification, pre-stroke dependency (pre-stroke mRS 3-5 vs. 0-2), Charleson comorbidity index, and stroke risk factors (hypertension, diabetes, hypercholesterolemia, atrial fibrillation or flutter, current smoker status, and waist to hip ratio) as defined previously¹⁴. In addition to these covariates, baseline stroke severity (baseline mRS) was additionally included in models for 1-month post-stroke outcomes. For analysis of dichotomous outcomes, additional subgroup analyses were performed stratifying by primary stroke type, sex, age ($< 65 \text{ vs.} \ge 65 \text{ years}$), country income level, and education level. The Net Reclassification Index (NRI) was used to assess model reclassification improvement upon addition of mtDNA-CN to a baseline model including the following covariates: age, sex, region, education level, country income level, household income, primary stroke type and OCSP classification, pre-stroke dependency, Charleson comorbidity index, hypertension, diabetes, hypercholesterolemia, atrial fibrillation or flutter, current smoker status, and waist to hip ratio ("Hmisc" R package).

Mendelian Randomization

Mendelian Randomization (MR) is a statistical genetics framework that leverages the random assortment of genetic alleles (Mendel's second law of independent assortment) to perform causal inference between an exposure and an outcome ²⁰⁻²². The use of randomized, genetic alleles as instrumental variables for an exposure endows several advantages including robustness to traditional confounding factors and reverse causation. Indeed, evidence from animal models suggests that stroke induces changes in mtDNA-CN levels, and therefore reverse causality is a relevant concern that is addressed by MR^{23,24}. To evaluate the potential causal relationship between low mtDNA-CN (exposure) and stroke prognosis (outcome), we performed "two-sample" MR analyses incorporating summary-level GWAS data from two independent studies. Genetic variants associated with mtDNA-CN levels were identified from a previous genome-wide association study (GWAS) we conducted in 383476 Caucasian participants from the UKBiobank study²⁵. UKBiobank is a prospective cohort study including UK residents (ages 40-69 years) recruited from 2006-2010²⁶. Eligibility criteria for the mtDNA-CN GWAS included Caucasian participants with suitable genetic microarray data who had non-outlying blood cell count and array intensity values²⁵. UKBiobank mtDNA-CN estimates were derived using AutoMitoC, a computational pipeline that leverages array-based data to estimate mtDNA-CN levels²⁵. Corresponding genetic effects on 3-month mRS were obtained from the Genetics of Ischaemic Stroke Functional Outcome (GISCOME) GWAS. GISCOME included 6021 Caucasian ischemic stroke patients from 12 studies across Europe, the United States, and Australia¹⁶. Two formulations of 3-month mRS were tested in the present study: ordinal mRS and poor functional outcome status (mRS 3-6 vs. 0-2). In GISCOME, 2280 (63%) participants suffered poor functional outcome. There is no sample overlap between UKBiobank and GISCOME datasets.

As previously described²⁵, an independent set of 26 genome-wide significant variants associated with mtDNA-CN located nearby or within genes expressed in the mitochondria were selected as instruments to genetically approximate mtDNA-CN levels (S. Methods; S. Tables 6 & 7). Collectively, these variants had an F-statistic of 100 which is sufficient (F>10) for the purposes of identifying a causal effect.

Two-sample MR analyses were executed using the "TwoSampleMR" (version 0.5.5) and "MRPRESSO" (version 1.0) R packages^{21,33}. Three MR methods were employed including the inverse variance weighted, weighted median, and MR-Egger methods. MR-PRESSO was used to detect global heterogeneity with P-values derived based on 1000 simulations. The Egger intercept test was used to assess directional pleiotropy. None of the MR associations exhibited significant heterogeneity (MR-PRESSO Global Test P > 0.05) or directional pleiotropy (Egger intercept P > 0.05), and thus the causal effect estimates from the Inverse Variance Weighted method was reported for all MR analyses. Causal effects were expressed as odds of a higher mRS category (or of poor functional outcome) per 1 standard deviation decrease in genetically determined mtDNA-CN levels.

Phenotypic mtDNA-CN associations may also, in part, capture differences in blood cell proportions^{29,30}, so we also examined the relationship between genetically determined blood cell traits and 3-month mRS outcomes as a sensitivity analysis. Blood cell traits entailed neutrophil, lymphocyte, white blood cell, and platelet counts, as well as the neutrophil to lymphocyte ratio. Genetic variants associated with blood cell counts were

ascertained from a large European GWAS by the Blood Cell Consortium X (2021) comprising over half a million individuals³¹. Genetic variants associated with neutrophil to lymphocyte ratio were derived from a UKBiobank GWAS we conducted in 340002 British participants (unpublished data; S. Methods)³². Causal effect estimates were expressed per 1 standard deviation increase in genetically determined blood cell traits.

Results

Baseline Characteristics of INTERSTROKE cases

A subset of 3498 stroke patients consented to genetic analysis, had peripheral blood specimen collected within one week of symptom onset, and had DNA samples that were successfully assayed for buffy coat mtDNA-CN (Supplementary Figure 1). The stroke patients analyzed in this study spanned 25 countries and 98 enrollment sites across Western Europe (26.6%), Eastern / Central Europe (11.8%), South America (28.1%), Africa (13.3%), South East Asia (6.8%), the Western Asia (6.8%), and North America and Australia (6.5%) (Table 1). The average age of stroke patients was 64.6 years (SD=14.4 years) and 1482 (42.4%) individuals were female. The sample comprised 677 (19.4%), 1259 (36.0%), and 1562 (44.6%) individuals from lower-middle / low income, uppermiddle income, and high-income countries, respectively. Primary stroke types consisted of 592 (16.9%) hemorrhagic, 2889 (82.6%) ischemic, and 17 (0.5%) undefined cases. Among the 2889 patients with ischemic stroke, 54 (1.9%) had hemorrhagic transformation of their infarct. At baseline, 2010 (57.5%) participants were functionally dependent on others to perform basic activities of daily living (mRS 3-5). The level of consciousness was reduced (drowsy or unconscious) in 1129 (29.9%) patients.

Table 1	. Demographic	characteristics,	comorbidities,	and stroke	characteristics	for 34) 8
INTERS	TROKE cases	included in this	study.				

Demographic Characteristics (N=349	98)
Age, years (SD)	64.6 (14.4)
Sex, N (%)	-
Female	1482 (42.4)
Male	2016 (57.6)
Region, N (%)	-
Western Europe	931 (26.6)
Eastern / Central Europe	413 (11.8)
South America	984 (28.1)
Africa	466 (13.3)
South East Asia	239 (6.8)
Western Asia	238 (6.8)
North America / Australia	227 (6.5)
Country income category, N (%)	-
Lower-middle or low income	677 (19.4)
Upper-middle income	1259 (36.0)
High income	1562 (44.6)
Ethnicity, N (%)	-
European	1562 (44.7)
Latin American	958 (27.4)
African	395 (11.3)
South East Asian	259 (7.4)
South Asian	108 (3.1)
Arab	105 (3.0)
Persian	103 (2.9)
Other	8 (0.2)
Education, N (%)	-
None	246 (7.0)
Primary school	870 (24.9)
High school or trade school	1545 (44.1)
College or university	527 (15.1)
Unknown	310 (8.9)

Comorbidity Burden and Risk Factors				
Charleson Comorbidity Index, N (%)	-			
None	832 (23.8)			
One or more comorbidities	2665 (76.2)			
Unknown	1 (< 0.1)			
Risk Factors, N (%)	-			
Hypertension	2200 (62.9)			
Diabetes Mellitus	683 (19.5)			
Hypercholesterolemia	925 (26.4)			
Atrial Fibrillation or Flutter	576 (16.5)			
Current Smoker	776 (22.2)			
Waist-to-hip Ratio, mean (SD)	0.95 (0.09)			
Baseline Stroke Characteristics				
Stroke type, N (%)	-			
Hemorrhagic Stroke	592 (16.9)			
Intracerebral Hemorrhage	587 (16.9)			
Subarachnoid Hemorrhage	5 (0.1)			
Ischemic Stroke	2889 (82.6)			
Total anterior circulation infarct	252 (7.2)			
Partial anterior circulation infarct	1333 (38.1)			
Posterior circulation infarct	439 (12.6)			
Lacunar infarct	628 (17.9)			
Other infarct	237 (6.8)			
Unknown	17 (0.5)			
Hemorrhagic Transformation, N (%)	-			
Present	54 (1.9*)			
Absent	2835 (98.2)			
Stroke severity, N (%)	-			
No symptoms (mRS 0)	151 (4.3)			
Symptomatic but no disability (mRS 1)	573 (16.4)			
Slight disability (mRS 2)	760 (21.7)			
Moderate disability (mRS 3)	954 (27.3)			

Moderately severe disability (mRS 4)	711 (20.3)
Severe disability (mRS 5)	345 (9.9)
Unknown	4 (0.1)
Level of consciousness, N (%)	-
Alert	2487 (71.0)
Drowsy	768 (22.0)
Unconscious	237 (6.8)
Unknown	6 (0.2)

* Percentage of ischemic stroke patients, not total number of participants

Lower mtDNA-CN is associated with greater stroke severity at baseline

At baseline, a 1-SD lower mtDNA-CN was significantly associated with increased odds of having a more severe stroke (ordinal mRS; OR=1.27; 95% CI, 1.19-1.36; P=4.7x10⁻¹²) and reduced consciousness (OR=1.34; 95% CI, 1.21-1.48; P=1.8x10⁻⁸) (S. Figure 2). Among ischemic stroke patients, the association with hemorrhagic transformation non-significant (OR=1.33; 95% CI, 0.92-1.93; P=0.13). Stratifying stroke patients by mtDNA-CN quartile, there was a stepwise increase in the proportion of individuals with higher stroke severity as mtDNA-CN decreased (S. Table 1; Figure 1A). Stroke patients in the lowest mtDNA-CN quartile were at greatest risk of having a more severe stroke (OR=2.00; 95% CI,1.65-2.44; P=2.9x10⁻¹²) and reduced consciousness (OR=2.42; 95% CI, 1.84-3.17; P=1.6x10⁻¹⁰) compared to those in the highest mtDNA-CN quartile (S. Table 1; Figure 1B). These associations were step-wise and graded, and there was no significant evidence suggesting that the proportional odds assumption had been violated in any ordinal analysis (Brant P > 0.05; S. Table 1). Time from symptom onset to blood draw was not significantly associated with mtDNA-CN levels (P=0.11).

B

Figure 1. mtDNA-CN is associated with stroke severity at baseline. (A) Stacked bar plots illustrate the proportion of each (i) ordinal mRS and (ii) consciousness level category per mtDNA-CN quartile. (B) Forest plots illustrate the association between mtDNA-CN quartile and risk of having (i) more severe strokes as indicated by ordinal mRS and (ii) reduced consciousness. The highest (4th) mtDNA-CN quartile was used as the reference group.

Lower mtDNA-CN is associated with poor stroke prognosis at 1-month

Of the 3498 stroke patients, mRS was recorded at follow-up for 3470 (99.2%) individuals. At 1-month follow-up, 1354 (39.0%) patients had poor functional outcome (mRS 3-6) including 337 (9.7%) patients who died. Adjusting for baseline stroke severity in addition to previous covariates, a 1-SD lower mtDNA-CN was significantly associated with higher 1-month mRS (OR=1.16; 95% CI, 1.08-1.24; $P=4.4 \times 10^{-5}$), poor functional outcome (OR=1.21; 95% CI, 1.08-1.34; P=6.9x10⁻⁴), and mortality (OR=1.35; 95% CI, 1.14-1.59; P=3.9x10⁻⁴) (S. Figure 3; S. Table 2). The magnitude of effect for mtDNA-CN on mortality risk was comparable to age, an established predictor of stroke outcomes (S. Figure 3). Conversely, the effect of mtDNA-CN on post-stroke disability (mRS category and poor functional outcome status) was weaker than age (S. Figure 4). There was no significant evidence suggesting that the proportional odds assumption had been violated in any ordinal analysis (Brant P > 0.05; S. Table 2). Stratification by mtDNA-CN quartile revealed a consistent relationship between lower mtDNA-CN quartile and higher risk of adverse stroke outcomes (Figure 2). Stroke patients in the lowest quartile had greater odds of being classified in a higher mRS stratum (OR=1.40; 95% CI, 1.15-1.71; P=0.001),

having poor functional outcome (OR=1.51; 95% CI, 1.11-2.04; P=0.01), and mortality (OR=2.09; 95% CI, 1.34-3.25; P=0.001) compared to stroke patients in the highest quartile (S. Table 3; Figure 2).

B

Figure 2. mtDNA-CN is associated with 1-month prognosis after stroke. (A) Stacked bar plots illustrate the proportion of individuals belonging to (i) ordinal mRS, (ii) functional

outcome status, and (iii) mortality categories per mtDNA-CN quartile. (B) Forest plots convey the association between mtDNA-CN quartile and post-stroke outcomes with the fourth quartile as the reference for comparison.

To further assess the robustness of mtDNA-CN-outcome associations, we performed subgroup analyses stratifying by primary stroke type, sex, age, country income level, and education level. Directionally consistent associations were observed across all subgroups for both poor functional outcome and mortality statuses with no significant heterogeneity between subgroups detected (Cochran Q Heterogeneity P > 0.10; Figure 3; S. Table 4).

A) Poor Functional Outcome Status

B) Mortality Status

Figure 3. Subgroup analyses for mtDNA-CN associations with 1-month post-stroke outcomes including (A) poor functional outcome (mRS 3-6) and (B) mortality status. Except for the subgroup variable used to stratify, regression models were adjusted for age, sex, region, education level, country income level, household income level, primary stroke type and OCSP classification, Charleson comorbidity index, cardiovascular risk factors, pre-stroke disability, and baseline mRS.

Lastly, we assessed whether incorporation of mtDNA-CN improved prediction of post-stroke outcomes beyond known prognosticators, risk factors, and demographic characteristics. Addition of mtDNA-CN led to significant improvements in reclassification of functional outcome status (Net Reclassification index (NRI)_{overall}=0.16; 95% CI, 0.08-0.23; P= 3.6×10^{-5}) and mortality status (NRI_{overall}=0.31; 95% CI, 0.19-0.43; P= 1.7×10^{-7}). For both outcomes, NRI improvement was attributable to better reclassification of events (NRI_{Poor Outcome}=0.20; 95 % CI, 0.15-0.26; P= 4.3×10^{-12} ; NRI_{Death}=0.33; 95% CI, 0.22-0.44; P= 3.4×10^{-9}) as opposed to non-events (NRI_{Favourable Outcome}=-0.05; 95% CI, -0.09 to -0.001; P=0.045; NRI_{Alive}=-0.02; 95% CI, -0.06 to 0.02; P=0.30) (S. Table 5).

Low mtDNA-CN is a putative causal risk factor for 3-month stroke outcomes

Using the UKBiobank and GISCOME studies (independent of INTERSTROKE), we found that genetically low mtDNA-CN was significantly associated with worse 3-month outcomes after stroke quantified by the ordinal mRS (OR=2.35 per SD decrease in genetically predicted mtDNA-CN; 95% CI, 1.13-4.90; P=0.02) and poor functional outcome (OR=2.68; 95% CI, 1.05-6.86; P=0.04) (Figure 4; S. Table 8). For all analyses, there was no significant evidence of directional pleiotropy (MR-Egger intercept P > 0.05), nor global heterogeneity (Cochran Q and MR-PRESSO global test P > 0.05). Results were also directionally consistent when using other MR methods (weighted median and MR-Egger) (S. Table 8). As buffy coat mtDNA-CN is known to be correlated with immune cell counts, we also performed MR analyses for blood cell traits. Despite sufficient instrument strength for neutrophil (F=100), platelet (F=154), lymphocyte (F=108), total white blood cell counts (F=106) and the neutrophil to lymphocyte ratio (F=61), none were significantly associated with 3-month outcomes (Figure 4; S. Table 9).

Figure 4. Genetic predisposition to low mtDNA-CN, but not blood cell counts, is associated with higher risk of 3-month outcomes after stroke. Effect estimates for mtDNA-CN are expressed per 1 SD decrease in genetically predicted mtDNA-CN, whereas those for blood cell traits were expressed per 1 SD increase in genetically predicted blood cell counts (or neutrophil to lymphocyte ratio). Causal effect estimates obtained by the inverse variance weighted method are displayed as there was no significant heterogeneity or directional pleiotropy detected for any analysis (S. Tables 6 & 7).

Discussion

Our study represents the first international multicenter exploration of buffy coat mtDNA-CN as a potential prognosticator of post-stroke outcomes. First, lower buffy coat mtDNA-CN measured within one week post symptom onset correlated with functional and clinically relevant stroke severity indicators such as higher mRS and reduced consciousness. Second, lower buffy coat mtDNA-CN was associated with greater risk of poor functional outcome and death at 1-month follow-up, which were consistent across primary stroke type, sex, age, country income level, and education level strata, as well as, independent of baseline stroke severity. Third, in addition to being a strong predictor of mortality with a magnitude of effect comparable to, if not stronger than, age, the inclusion of buffy coat mtDNA-CN improved the prediction of functional outcome and death. Fourth, MR analysis provided support for low buffy coat mtDNA-CN as a causal mediator of 3-month mRS and poor functional outcome status. Altogether, our findings confirm the hypothesis that low buffy coat mtDNA-CN is a biomarker and mediator of worse stroke prognosis.

The main clinical implication of our study is that buffy coat mtDNA-CN may represent a useful prognostic marker of post-stroke outcomes. First, buffy coat mtDNA-CN is a blood biomarker of post-stroke outcomes that does not suffer from inter-rater variability and is not influenced by a patient's communication deficit. Second, the mtDNA-CNoutcome associations are consistent across stroke type, sex, age, country income level, education level, and baseline severity, which positions mtDNA-CN to have widespread utility across stroke patients globally. To our knowledge, we provide the first evidence suggesting that low mtDNA-CN may have consistent effects in both ischemic and hemorrhagic stroke patients. This is particularly relevant for health systems in low-income settings, which bear a disproportionate global burden of hemorrhagic stroke¹⁻³, though further analyses in larger samples of hemorrhagic stroke patients are warranted to confirm. Third, low mtDNA-CN represents a strong risk marker with effects comparable to established prognosticators including older age. Moreover, the observed effect for mtDNA-CN on mortality is also comparable to that of carrying an APOE E2 allele, which confers a 1.5-fold increased risk of 3-month mortality in intracerebral hemorrhage patients and is present in approximately 15% of the population³⁴. For comparison, we found that stroke patients in the bottom 15% of mtDNA-CN levels had a 1.6-fold increased risk of 1-month mortality (OR=1.57; 95% CI, 1.13-2.17; P=0.007) relative to the remaining 85% participants with higher mtDNA-CN levels. Fourth, mtDNA-CN is an easily accessible biomarker as (i) it can be measured from peripheral blood after stroke, (ii) the assay necessitates only basic molecular laboratory techniques (qPCR), and (iii) the cost per sample is low (< \$5 USD). Logistic and operational convenience combined with evidence
for robust, objective, and strong prognostic utility raises the promising prospect of implementing mtDNA-CN clinically; however, replication of such findings in a prospective analysis in addition to formal economic analyses in various settings is warranted.

Findings from MR analyses suggest that proper mtDNA regulation may be imperative for stroke protection and recovery, which aligns with animal model experiments demonstrating an important role for mtDNA-CN regulators in mediating protection against ischemia reperfusion injury. For example, reoxygenation of rodents with acute kidney injury induces the formation of excessive mitochondrial reactive oxygen species, accompanied by a sharp decline in mtDNA-CN levels²⁴. In addition, genetic upregulation of the mtDNA replication initiation factor, TFAM, is sufficient to rescue this acute drop in mtDNA-CN levels thereby attenuating ischemia reperfusion injury. In the context of stroke models, mice with transient middle cerebral artery occlusion exhibit excessive cleavage of OPA1, another important mtDNA regulator, and treatment with either a cleavage-resistant form of OPA1 or mild overexpression of OPA1 markedly reduces infarct volume and neuronal apoptosis^{23,35}. In conjunction with prior mechanistic studies, our epidemiological and genetic findings contribute to the mounting evidence that maintaining adequate mtDNA-CN may mediate cellular resilience to ischemic insults. Furthermore, consistent epidemiological associations in hemorrhagic stroke patients suggest that mtDNA-CN may protect against stroke injury through general mechanisms pertinent to both etiologies (e.g. blood brain barrier disruption, neuroprotection, inflammation, etc.)³⁶. Future MR analyses and experiments are necessary to elucidate the effects of mtDNA-CN perturbation on poststroke outcomes in the hemorrhagic context specifically.

Our study had several limitations. First, as INTERSTROKE was a large international case-control study, measures of baseline stroke severity (NIHSS) and outcome (3-month mRS) that are common in smaller stroke research studies were substituted with baseline mRS and 1-month mRS for feasibility, respectively, as was done in Langhorne et al. (2018). The interchangeability of such measures has been validated in previous independent studies showing high correlation between baseline NIHSS and mRS (r=0.69) and between 1-month and 3-month mRS (r=0.87; weighted kappa agreement =0.86)^{37,38}. Second, complete blood cell counts were not measured in INTERSTROKE participants; thus, we cannot directly evaluate to what extent blood cell counts influence observational associations with post-stroke outcomes. However, our genetic analyses suggest that mtDNA-CN may have a direct role in stroke prognosis independent of changes in blood cell counts since (i) mtDNA-CN GWAS effects had already been adjusted for major cell count determinants of mtDNA-CN levels (neutrophil, white blood cell, and platelet counts) and (ii) no significant association was observed for genetically determined immune cell counts per se. Nonetheless, the genetic determinants of post-stroke immune cell changes may differ from those influencing variation in cell counts within the general population as suggested by results from Torres-Aguila *et al.* $(2019)^{39}$. Third, although associations were corrected for a crude surrogate of infarct volume (OCSP classification), direct measurements of infarct and hematoma volumes were not available. Fourth, survivorship bias may have led to conservative effect estimates as INTERSTROKE cases

included patients surviving to hospital admission, and consequently, patients with severe, early fatal strokes were not represented. Finally, MR analyses were limited by the following considerations: (i) causal effect estimates were imprecise and were accompanied by large confidence intervals though these were consistent in direction-of-effect with epidemiological associations, (ii) although sensitivity analyses did not show significant evidence of heterogeneity, directional pleiotropy, or outlying effects, it is impossible to completely exclude bias due to potential pleiotropy, (iii) mortality and hemorrhagic stroke outcomes could not be evaluated directly for lack of GWAS summary statistics, and (iv) analyses were solely based on European participants.

Conclusions

Low buffy coat mtDNA-CN measured within one week of symptom onset represents an accessible and robust biomarker of both stroke severity and prognosis. MR findings suggest that low mtDNA-CN may mediate post-stroke outcomes. Additional investigations are warranted to replicate such findings in additional populations, to establish the temporal profile of post-stroke mtDNA-CN changes in more detail, and to assess whether compounds that maintain mtDNA-CN levels after cerebral insult hold promise as a novel therapeutic strategy.

Acknowledgements

We would like to acknowledge the investigators and participants of the INTERSTROKE, UKBiobank, and GISCOME studies for their important contributions to this research.

Competing Interests

We declare no competing interests.

Author Contributions

Mr. Chong and Dr. Pare had full access to all of the data and take responsibility for the integrity of the data and the accuracy of the data analysis.

Study concept and design: Chong, Paré.

Acquisition, analysis, or interpretation of data: Chong, Langhorne, Narula, Morton, Judge, Akhabir, Cawte, Pathan, Lali, Mohammadi-Shemirani, Shoamanesh, O'Donnell, Yusuf, Paré.

Drafting of the manuscript: Chong.

Critical revision of the manuscript for important intellectual content: All authors.

Statistical analysis: Chong.

Obtained funding: O'Donnell, Yusuf, Paré.

Administrative, technical, or material support: Judge, O'Donnell, Langhorne *Supervision:* Paré.

Funding

<u>Study</u>

Canadian Institutes of Health Research (399497), Canadian Stroke Network, Heart and Stroke Foundation Canada (G-18–0022359)

The funders of the study had no role in study design, data collection, data analysis, data interpretation, or writing of the report. The corresponding author had full access to all the data in the study and had final responsibility for the decision to submit for publication

Co-Authors

Canadian Institutes of Health Research Frederick Banting and Charles Best Canada Graduate Scholarships Doctoral Award (MC, PM)

Canadian Institutes of Health Research Post-Doctoral Fellowship Award (RM)

Wellcome Trust Health Research Board Irish Clinical Academic Training (ICAT) Programme Grant Number: 203930/B/16/Z (CJ)

European Research Council COSIP Grant Number: 640580 (MO)

Chest, Heart and Stroke Scotland (PL)

CISCO Professorship in Integrated Health Systems (GP)

Canada Research Chair in Genetic and Molecular Epidemiology (GP)

Conflict of Interest: None

<u>Research Ethics Statement:</u> Research was approved by the Hamilton Integrated Research Ethics Board under project # 06-331. INTERSTROKE analyses were reported following STREGA guidelines, and MR analyses were reported according to STROBE-MR guidelines (S. Tables 10 and 11).

Data Availability: The principal and corresponding authors, Michael Chong and Guillaume Paré, take full responsibility for the data, the analyses and interpretation, and the conduct of the research; all authors have full access to all of the data; and all authors have the right to publish any and all data separate and apart from any sponsor. The primary datasets in this study include INTERSTROKE, UKBiobank, and GISCOME. INTERSTROKE data may be available upon approval for request of collaboration with study PI, Martin O'Donnell. UKBiobank individual-level data can be acquired upon application (https://bbams.ndph.ox.ac.uk/ams/). UKBiobank mtDNA-CN GWAS

summary statistics will be posted on Github (<u>https://github.com/GMELab</u>). GISCOME summary statistics are freely available to download (https://cd.hugeamp.org/downloads.html).

References

- Langhorne P, O'Donnell MJ, Chin SL, et al. Practice patterns and outcomes after stroke across countries at different economic levels (INTERSTROKE): an international observational study. *Lancet*. 2018;391(10134):2019-2027. doi:10.1016/S0140-6736(18)30802-X
- Yusuf S, Rangarajan S, Teo K, et al. Cardiovascular Risk and Events in 17 Low-, Middle-, and High-Income Countries. N Engl J Med. 2014;371(9):818-827. doi:10.1056/NEJMoa1311890
- Dagenais GR, Leong DP, Rangarajan S, et al. Variations in common diseases, hospital admissions, and deaths in middle-aged adults in 21 countries from five continents (PURE): a prospective cohort study. *Lancet*. 2020;395(10226):785-794. doi:10.1016/S0140-6736(19)32007-0
- Montaner J, Ramiro L, Simats A, et al. Multilevel omics for the discovery of biomarkers and therapeutic targets for stroke. *Nat Rev Neurol*. 2020;16(5):247-264. doi:10.1038/s41582-020-0350-6
- Liu F, Lu J, Manaenko A, Tang J, Hu Q. Mitochondria in ischemic stroke: New insight and implications. *Aging Dis.* 2018;9(5):924-937. doi:10.14336/AD.2017.1126
- 6. Li Q, Gao S. Mitochondrial Dysfunction in Ischemic Stroke. In: *Translational* 129

Research in Stroke.; 2017:201-221. doi:10.1007/978-981-10-5804-2_10

- Paramasivam A, Venkatapathi C, Sandeep G, et al. Homozygous R627W mutations in POLG cause mitochondrial DNA depletion leading to encephalopathy, seizures and stroke-like episodes. *Mitochondrion*. 2019;48(June 2018):78-83. doi:10.1016/j.mito.2019.08.003
- Bonora E, Chakrabarty S, Kellaris G, et al. Biallelic variants in LIG3 cause a novel mitochondrial neurogastrointestinal encephalomyopathy. *Brain*. Published online 2021:1-17. doi:10.1093/brain/awab056
- Malik AN, Czajka A. Is mitochondrial DNA content a potential biomarker of mitochondrial dysfunction? *Mitochondrion*. 2013;13(5):481-492. doi:10.1016/j.mito.2012.10.011
- Koller A, Fazzini F, Lamina C, et al. Mitochondrial DNA copy number is associated with all-cause mortality and cardiovascular events in patients with peripheral arterial disease. *J Intern Med.* 2020;287(5):569-579. doi:10.1111/joim.13027
- Zhang Y, Guallar E, Ashar FN, et al. Association between mitochondrial DNA copy number and sudden cardiac death: findings from the Atherosclerosis Risk in Communities study (ARIC). Published online 2017:3443-3448. doi:10.1093/eurheartj/ehx354
- 12. Fazzini F, Lamina C, Fendt L, et al. Mitochondrial DNA copy number is associated with mortality and infections in a large cohort of patients with chronic kidney disease. 2019;8:480-488. doi:10.1016/j.kint.2019.04.021
- Song L, Liu T, Song Y, et al. mtDNA Copy Number Contributes to All-Cause 130

Mortality of Lacunar Infarct in a Chinese Prospective Stroke Population. J Cardiovasc Transl Res. 2020;13(5):783-789. doi:10.1007/s12265-019-09943-9

- O 'donnell MJ, Chin SL, Rangarajan S, et al. Global and regional eff ects of potentially modifi able risk factors associated with acute stroke in 32 countries (INTERSTROKE): a case-control study. *Lancet*. 2016;388(20):761-775. doi:10.1016/S0140-6736(16)30506-2
- Bycroft C, Freeman C, Petkova D, et al. The UK Biobank resource with deep phenotyping and genomic data. *Nature*. 2018;562(7726):203-209. doi:10.1038/s41586-018-0579-z
- Soderholm M, Pedersen A, Lorentzen E, et al. Genome-wide association metaanalysis of functional outcome after ischemic stroke. *Neurology*. 2019;0:1271-1283. doi:10.1212/WNL.000000000007138
- O'Donnell MJ, Xavier D, Liu L, et al. Risk factors for ischaemic and intracerebral haemorrhagic stroke in 22 countries (the INTERSTROKE study): a case-control study. *Lancet*. 2010;376(9735):112-123. doi:10.1016/S0140-6736(10)60834-3
- 18. Uyttenboogaart M, Stewart RE, Vroomen PCAJ. Optimizing Cutoff Scores for the Barthel Index and the Modified Rankin Scale for Defining Outcome in Acute Stroke Trials. Published online 2005:1984-1987. doi:10.1161/01.STR.0000177872.87960.61
- Fazzini F, Schöpf B, Blatzer M, et al. Plasmid-normalized quantification of relative mitochondrial DNA copy number. 2018;(May):1-11. doi:10.1038/s41598-018-33684-5

- Smith GD, Hemani G. Mendelian randomization: Geneticanchorsfor causal inference in epidemiological studies. *Hum Mol Genet*. 2014;23(R1):89-98. doi:10.1093/hmg/ddu328
- 21. Hemani G, Zheng J, Elsworth B, et al. The MR-base platform supports systematic causal inference across the human phenome. *Elife*. 2018;7:1-29. doi:10.7554/eLife.34408
- Bandres-Ciga S, Noyce AJ, Traynor BJ. Mendelian Randomization—A Journey From Obscurity to Center Stage With a Few Potholes Along the Way. *JAMA Neurol*. 2020;77(1):7. doi:10.1001/jamaneurol.2019.3419
- 23. Lai Y, Lin P, Chen M, et al. Restoration of L-OPA1 alleviates acute ischemic stroke injury in rats via inhibiting neuronal apoptosis and preserving mitochondrial function. *Redox Biol.* 2020;34(March):101503. doi:10.1016/j.redox.2020.101503
- 24. Zhao M, Wang Y, Li L, et al. Mitochondrial ROS promote mitochondrial dysfunction and inflammation in ischemic acute kidney injury by disrupting TFAM-mediated mtDNA maintenance. *Theranostics*. 2021;11(4). doi:10.7150/thno.50905
- 25. Chong M, Mohammadi-Shemirani P, Perrot N, et al. GWAS and ExWAS of blood Mitochondrial DNA copy number identifies 73 loci and highlights a potential causal role in dementia. *medRxiv*. Published online 2021. doi:10.1101/2021.04.08.21255031
- 26. Sudlow C, Gallacher J, Allen N, et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. *PLoS Med.* 2015;12(3):e1001779. doi:10.1371/journal.pmed.1001779

- Rath S, Sharma R, Gupta R, et al. MitoCarta3.0: an updated mitochondrial proteome now with sub-organelle localization and pathway annotations. *Nucleic Acids Res*. 2021;49(D1):D1541-D1547. doi:10.1093/nar/gkaa1011
- Kamat MA, Blackshaw JA, Young R, et al. PhenoScanner V2: an expanded tool for searching human genotype-phenotype associations. *Bioinformatics*. 2019;35(22):4851-4853. doi:10.1093/bioinformatics/btz469
- 29. Moore AZ, Ding J, Tuke MA, et al. Influence of cell distribution and diabetes status on the association between mitochondrial DNA copy number and aging phenotypes in the InCHIANTI study. *Aging Cell*. 2018;17(1):6-8. doi:10.1111/acel.12683
- 30. Hurtado-Roca Y, Ledesma M, Gonzalez-Lazaro M, et al. Adjusting MtDNA quantification in whole blood for peripheral blood platelet and leukocyte counts. *PLoS One*. 2016;11(10):1-14. doi:10.1371/journal.pone.0163770
- 31. Vuckovic D, Bao EL, Akbari P, et al. The Polygenic and Monogenic Basis of Blood Traits and Diseases. *Cell*. 2020;182(5):1214-1231.e11. doi:10.1016/j.cell.2020.08.008
- 32. Mbatchou J, Barnard L, Backman J, et al. Computationally efficient whole genome regression for quantitative and binary traits.
- 33. Verbanck M, Chen CY, Neale B, Do R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. *Nat Genet*. 2018;50(5):693-698. doi:10.1038/s41588-018-0099-7
- 34. Biffi A, Anderson CD, Jagiella JM, et al. APOE genotype and extent of bleeding

and outcome in lobar intracerebral haemorrhage : a genetic association study. *Lancet Neurol.* 2011;10(8):702-709. doi:10.1016/S1474-4422(11)70148-X

- 35. Varanita T, Soriano ME, Sandri M, et al. The Opa1-Dependent Mitochondrial Cristae Remodeling Pathway Controls Atrophic , Apoptotic , Article The Opa1-Dependent Mitochondrial Cristae Remodeling Pathway Controls Atrophic , Apoptotic , and Ischemic Tissue Damage. Published online 2015:834-844. doi:10.1016/j.cmet.2015.05.007
- 36. Chen W, Guo C, Feng H, Chen Y. Mitochondria: Novel Mechanisms and Therapeutic Targets for Secondary Brain Injury After Intracerebral Hemorrhage. *Front Aging Neurosci.* 2021;12(January):1-10. doi:10.3389/fnagi.2020.615451
- Bruno A, Close B, Switzer JA, et al. Simplified modified Rankin Scale questionnaire correlates with stroke severity. *Clin Rehabil*. 2013;27(8):724-727. doi:10.1177/0269215512470674
- 38. Ovbiagele B, Lyden PD, Saver JL. Disability status at 1 month is a reliable proxy for final ischemic stroke outcome. *Neurology*. 2010;44364:688-692.
- Torres-Aguila NP, Carrera C, Giese AK, et al. Genome-wide association study of white blood cell counts in patients with ischemic stroke. *Stroke*. 2019;50(12):3618-3621. doi:10.1161/STROKEAHA.119.026593

CHAPTER 6:

DISCUSSION

CHAPTER 6: DISCUSSION

6.1 GENERAL OVERVIEW

Despite current treatments, stroke risk remains high thus emphasizing the need to discover new drug targets. By their very definition, stroke biomarkers have clinical utility for stroke risk assessment, prognostication, or treatment response, but their latent value is that a subset of biomarkers are causal mediators of disease, thereby representing putative therapeutic targets. Throughout this thesis, we used MR analysis to identify circulating markers that also represent putative causal mediators. In Chapter 3, we systematically interrogated the blood proteome and uncovered established drug targets and novel putative mediators. Chapters 4 and 5 were devoted to investigation of an emerging mitochondrial biomarker, leukocyte mtDNA-CN. Specifically, Chapter 4 provided insights into the genetic architecture of leukocyte mtDNA-CN and fulfilled the first step of MR, which is to identify a subset of genetic variants associated with exposure in question. Using these identified mtDNA-CN-qTLs, Chapter 5 elucidated a role for mtDNA-CN as a predictor and causal risk factor for post-stroke outcomes. Altogether, this thesis identifies several potential therapeutic targets for stroke using the MR framework. In the subsequent sections, we will (i) highlight the main findings from each chapter, (ii) outline the biological, clinical, and research implications of these works, (iii) discuss new relevant literature and additional considerations to contextualize findings, and (iv) describe strengths, limitations, and future areas of investigation.

6.2 CHAPTER SUMMARIES

6.2.1 STUDY 1 (CHAPTER 3) SUMMARY

A systematic MR screen of 653 circulating proteins identified putative causal roles for previously established (ABO, CD40, FXI, LP(a), MMP12) and novel (SCARA5, TNFSF12) proteins mediating ischemic stroke risk. Forecasting potential adverse sideeffects, MR analysis revealed that if TNFSF12 was therapeutically targeted for ischemic stroke reduction, then this would also be accompanied by increased intracranial bleeding. Agnostic phenome-wide MR analyses identified 71 secondary associations with diseases, indicating substantial pleiotropic effects. Phenome-wide MR findings provided some reassurance of the safety of emerging therapeutic targets, FXI and LPA, for which inhibitors are currently undergoing phase III RCTs. Lastly, MR analyses suggest that SCARA5 may be a promising therapeutic target for treatment of cardioembolic stroke with no adverse side-effects on intracranial bleeding or other diseases detected.

6.2.3 STUDY 2 (CHAPTER 4) SUMMARY

To enable large-scale genetic investigations of mtDNA-CN, we first developed and validated a novel method, "AutoMitoC", to infer mtDNA-CN from widely accessible genetic array data and then applied it to 395,781 participants from the UKBiobank study. Genetic analyses (genome-wide and exome-wide association studies) identified 71 loci, implicating genes involved in rare mtDNA depletion disorders, dNTP metabolism, and the mitochondrial central dogma. mtDNA depletion syndromes are rare genetic disorders characterized by severely low mtDNA-CN, and novel strategies to increase mtDNA levels may benefit these patients who currently have no treatments. Analysis of rare variants

revealed that rare protein-altering mutations in *SAMHD1* were associated with higher mtDNA-CN levels, thus representing a potential therapeutic target for mtDNA depletion. Conversely, we also found that *SAMHD1* mutation carriers had approximately two-fold greater risk of breast cancer. Finally, MR analysis identified a causal relationship between genetically low mtDNA-CN and increased risk of dementia.

6.2.4 STUDY 3 (CHAPTER 5) SUMMARY

We performed the first global characterization of mtDNA-CN as a prognosticator for stroke outcomes in 3,498 stroke patients from the INTERSTROKE study. Lower mtDNA-CN measured within one week of symptom onset correlated with several stroke severity indicators at baseline. Independent of baseline stroke severity, lower mtDNA-CN was also associated with worse prognosis at 1-month including higher risk of poor functional outcome (mRS 3-6 vs. 0-2) and mortality. Notably, the magnitude of the mtDNA-CN effect was comparable to that of established prognosticators, such as older age and *APOE* ε 2 carrier status. Addition of mtDNA-CN to statistical models significantly improved event reclassification of poor functional outcome and mortality. MR analysis supported a causal relationship between genetically low mtDNA-CN and worse 3-month functional outcomes.

6.3 SIGNIFICANCE OF FINDINGS

6.3.1 CLINICAL IMPLICATIONS

The major clinical significance of this work is the identification of several novel therapeutic candidates to potentially ameliorate stroke risk and progression. Chapter 3 revealed circulating TNFSF12 and SCARA5 as putative causal mediators of cardioembolic stroke. Chapter 5 uncovered a causal link between low leukocyte mtDNA-CN and worse post-stroke outcomes, implying that interventions that upregulate or maintain mtDNA-CN levels during stroke may help reduce stroke severity and improve functional recovery. For example, SAMHD1 inhibition as suggested by Chapter 4, could be a means of recovering mtDNA-CN levels. Altogether, such findings represent suggestive pre-clinical human genetics evidence supporting a causal role of these molecules for stroke risk and outcomes. Accordingly, substantial follow-up investigations are necessary to better understand the underlying causative tissues and mechanisms that mediate the observed biomarker-stroke relationships, as well as to assess practical aspects of drug development including druggability, bioavailability, and drug delivery. Lastly, we also found that blood-based mtDNA-CN is an accessible, robust, and objective marker of stroke severity and progression in a globally representative sample of acute stroke cases. While it is tempting to speculate that this marker may have widespread utility for risk stratification and disease progression tracking, additional studies are necessary to assess whether mtDNA-CN provides complementary prognostic utility to established and emerging markers, such as cerebral microbleeds and circulating NFl. Lastly, we provide the first human genetics evidence directly linking dysregulation of mtDNA-CN to worsening post-stroke outcomes.

6.3.2 BIOLOGICAL IMPLICATIONS

This work reinforces the prevailing notion that stroke biology is highly complex. Numerous pathways are implicated by the identified causal mediators including atherosclerosis (LP(a), CD40), thrombosis (ABO, FXI, LP(a), SCARA5), inflammation (ABO, LP(a), TNFSF12), vascular and atrial remodeling (MMP12, TNFSF12), iron metabolism (SCARA5, TNFSF12), and mitochondrial dysfunction (mtDNA-CN). Many of these proteins participate in multiple processes relevant to stroke thus reflecting the multifunctionality of individual proteins and widespread pleiotropy.

Similarly, GWAS and ExWAS findings highlight the complexity of mtDNA-CN as a mitochondrial biomarker. While historically perceived by some as a simple surrogate measure to quantify cellular mitochondria content, genetic association results provide a more nuanced understanding of what this biomarker represents implicating multiple mitochondrial processes including mtDNA central dogma, nucleotide supply and metabolism, mitochondrial respiration, mitochondrial biogenesis, and other mitochondrial dynamics¹. Additionally, GWAS results affirm a polygenic basis for mtDNA-CN since we identified 71 genetic loci. To put this into perspective, this represents a 40% increase in our knowledge of mtDNA-CN loci as compared to the next largest published GWAS². The polygenicity of mtDNA-CN also implies perhaps that milder polygenic forms of mtDNA depletion may exist, though future studies are required to understand the aggregate effects of polygenic dysregulation of mtDNA-CN and the mechanisms responsible for variant and gene-based associations.

6.3.3. RESEARCH IMPLICATIONS

The frameworks, tools, and knowledge contributed by this thesis may help guide future drug target prioritization initiatives for cerebrovascular disease, cognitive decline, mitochondrial disorders, and other conditions. Chapter 3 conveyed a framework for how MR can be broadly applied to several aspects of drug target evaluation, ranging from systematic identification of candidate drug targets, safety adjudication and the elucidation of unexpected side-effects, and understanding mediating risk factors. Chapter 4 described the primary methodological contribution of this thesis, namely, the development of AutoMitoC, a pipeline to infer mtDNA-CN from SNP microarray intensities for large multi-ethnic biobank studies. Our hope is that AutoMitoC serves the broader mitochondria research community by enabling international collaborations to further interrogate the genetic determinants of mtDNA-CN. Lastly, genome-wide summary statistics for the UKBiobank mtDNA-CN GWAS will be made publicly available. This should facilitate additional MR analyses to identify other complications of mtDNA-CN dysregulation akin to what was performed for post-stroke outcomes in Chapter 5, and to find novel interventions to modulate mtDNA-CN levels.

6.4 DISCUSSION OF PUTATIVE STROKE TARGETS

6.4.1 SCAVENGER CLASS A RECEPTOR MEMBER A5 (SCARA5)

SCARA5 is an endocytic scavenger receptor that is widely expressed in the epithelium of various tissues^{3,4}. As a class A endocytic receptor, SCARA5 mediates the clearance of a wide repertoire of compounds from the stroma, and thus has important roles in various biological processes including tumour suppression, innate immunity, iron homeostasis, and hemostasis^{3–10}.

6.4.1.1 NEW STUDIES IMPLICATE SCARA5 AS A THROMBOSIS REGULATOR

In Study 1 (Chapter 3), the link between circulating SCARA5 and cardioembolic stroke risk was speculated to be due to its function as a transporter of L-ferritin since circulating iron is a causal risk factor for cardioembolic stroke. While this remains plausible, new evidence supports a role for SCARA5 in coagulation. Multiple GWAS analyses show that an intronic SCARA5 cis-pQTL (rs2726927) is associated with venous thromboembolism susceptibility, activated partial thromboplastin time (a measure of clotting time), coagulation factor VIII (FVIII) levels, and von Willebrand Factor (vWF) levels^{9,11,12}. Circulating vWF has a prominent role in hemostasis as a stabilizer of FVIII and an anchor for platelet adhesion to damaged parts of the endothelium. Recent experimental evidence also corroborates a direct interaction between SCARA5 and vWF with SCARA5 acting as an endocytic receptor for vWF. Specifically, *in vivo* and *in vitro* rodent experiments by Swystun *et al.* (2019) found that SCARA5 expressed on the surface of splenic littoral cells facilitated the clearance of circulating vWF and FVIII (through vWF-FVIII complexes)¹⁰. Altogether, upregulation of SCARA5's endocytic receptor activity may represent a novel therapeutic strategy for mitigating cardioembolic stroke.

6.4.1.2 ADDITIONAL CONSIDERATIONS FOR THE INTERPETATION OF SCARA5 MR RESULTS

While our UKBiobank-based MR analyses did not uncover side-effects of genetic upregulation of SCARA5 for intracranial bleeding nor other diseases, further investigations are required because (i) the MR analyses for SCARA5 were less well-powered in comparison to other circulating mediators like LP(a) and thus it is possible that we lacked adequate power to detect association with bleeding phenotypes, (ii) if stroke protection conferred by SCARA5 upregulation is indeed mediated through enhanced clearance of vWF, then bleeding risk may be concerning as vWF deficiency causes bleeding diathesis, and (iii) if stroke protection is partially mediated by removal of iron from circulation, then an increased risk of anemia might be expected. As a counterargument to the second point, recombinant vWF is available as an antidote for bleeding diathesis. Finally, it is important to consider that the main MR finding implicated circulating SCARA5 levels, but the former research literature has almost exclusively interrogated the endocytic activity of the membrane-bound form¹³.

6.4.2 TUMOR NECROSIS FACTOR LIGAND SUPERFAMILY MEMBER 12 (TNFSF12)

In Study 1 (Chapter 3), antagonistic effects were observed for the associations between genetically determined TNFSF12 levels on ischemic and hemorrhagic stroke subtypes. Specifically, higher TNFSF12 was associated with decreased risk of cardioembolic stroke but increased risk of intracranial bleeding. Circulating TNFSF12 is a multifunctional cytokine that acts primarily by binding to its membrane-bound receptor, Fibroblast Growth Factor-Inducible 14 (Fn14)¹⁴. Activation of the TNFSF12/Fn14 axis leads to the initiation of deleterious cellular signalling pathways including inflammation (IL6), cell proliferation and infiltration (PI3K-AKT and MKK-ERK1/2), and extracellular matrix remodeling (MMPs)¹⁴.

6.4.2.1 EMERGING EVIDENCE FOR TNFSF12 AS A PROGNOSTICATOR OF POST-STROKE OUTCOME

Independent of hypertension, a recent series of investigations by Silva-Candal *et al.* (2020; 2021) also suggest prognostic utility for circulating TNFSF12 levels as a biomarker of acute and post-stroke outcomes^{15,16}. These studies observed that higher circulating TNFSF12 at hospital admission is associated with increased risks of (i) hemorrhagic transformation among ischemic stroke patients, (ii) early hematoma expansion in

intracerebral hemorrhage patients, and (iii) poor functional outcome 3-months after stroke in both ischemic and hemorrhagic stroke patients^{15,16}. Accordingly, these new associations imply that the relationship between TNFSF12 and intracranial bleeding may be mediated by additional mechanisms beyond hypertension alone which warrants further investigation.

6.4.2.2 ADDITIONAL CONSIDERATIONS FOR THE INTERPETATION OF TNFSF12 MR RESULTS

Our phenome-wide MR analysis hinted that TNFSF12 may mediate stroke through atrial fibrillation and hypertension. Indeed, a recent proteome-wide MR analysis for atrial fibrillation replicated the causal protective effects of circulating TNFSF12 using an independent dataset for atrial fibrillation¹⁷. In terms of validation efforts for the relationship between TNFSF12 and hypertension, this finding has yet to be replicated in an independent dataset; however, it was reproduced in the same UKBiobank dataset by another research group using different MR parameters (https://www.epigraphdb.org/pqtl/TNFSF12;TNFSF12-TNFSF13).

TNFSF12 upregulation has not been explored therapeutically, but RCTs have assessed the safety and clinical efficacy of TNFSF12/Fn14 axis blockade with monoclonal antibodies (BIIB023, RO-5458640) in the contexts of cancer, lupus nephritis, and rheumatoid arthritis^{18–20}. While these studies were prematurely terminated due to a lack of clinical efficacy, there is renewed enthusiasm for TNFSF12/Fn14 inhibition for treatment of cardiovascular disease ¹⁴. Compelling evidence comes from Méndez-Barbero *et al.* (2019) who observed that TNFSF12 is highly expressed in human coronary arteries with in-stent restenosis, and that pharmacologic inhibition of the TNFSF12/Fn14 axis

ameliorates post-angioplasty restenosis in mice²¹. Although it is enticing to speculate about drug repurposing opportunities, importantly, our MR findings imply a potential adverse effect of TNFSF12 blockade on atrial fibrillation risk. Moreover, given that the target population would consist of cardiovascular disease patients, the concomitant cost of increasing risk of a major cardiovascular risk factor, atrial fibrillation, should be carefully considered.

6.4.3 MITOCHONDRIAL DNA COPY NUMBER (MTDNA-CN) 6.4.3.1 MTDNA-CN RECOVERY AS A POTENTIAL THERAPEUTIC AXIS FOR CEREBROVASCULAR DISEASE

Low mtDNA-CN was identified as a causal mediator of both dementia (Study 2; Chapter 4) and post-stroke outcomes (Study 3; Chapter 5) suggesting that interventions that increase mtDNA-CN levels may represent a novel therapeutic strategy for these conditions. As a corollary, drugs for mtDNA depletion disorders may be repurposed to prevent dementia and attenuate post-stroke outcomes. Although there are no clinically accepted treatments for mtDNA depletion, we will discuss emerging targets with pre-clinical support.

6.4.3.2 NUCLEOSIDE-BASED SUPPLEMENTATION FOR TREATMENT OF MTDNA DEPLETION

Nucleoside supplementation has been shown to replenish mtDNA levels in animal models of mtDNA depletion in which genetic mutations cause deficiencies in nucleotide metabolism enzymes that are critical for mtDNA synthesis ^{22,23}. A phase I/II RCT (NCT03639701) is currently recruiting participants to test thymidine supplementation in

patients with TK2-deficient mtDNA depletion syndrome²⁴. However, treatment efficacy is likely restricted to individuals with genetic defects in thymidine metabolism, since nucleoside supplementation was not found to alter mtDNA-CN levels in wildtype cells.

Another nucleotide-based compound with potentially broader application for treating mitochondrial dysfunction secondary to mtDNA depletion is nicotinamide adenine nucleotide (NAD)+. NAD+ is the well-known cofactor of the electron transport chain but also has other roles in metabolism, cell death, and immunity²⁵. A drug library screen searching for compounds to rescue the ATP deficit caused by mtDNA depletion identified nicotinamide adenine nucleotide (NAD), the precursor to NAD+²⁶. Specifically, NAD supplementation rescues ATP deficits in both DGUOK and RRM2B CRISPR/Cas9 knockout iSPC-derived hepatocytes. Furthermore, in-depth functional analyses in DGUOK-deficient hepatocytes revealed that administration of NAD rescues a broad range of mitochondrial defects including oxidative stress, mitochondrial membrane potential issues, and morphological aberrations. Also, oral administration of a NAD precursor, nicotinamide riboside (NR), to DGUOK-deficient rats promoted the expression of mtDNAencoded electron transport genes and restored hepatic ATP levels in vivo. Beyond forms of mtDNA depletion characterized by nucleotide metabolism defects (i.e. DGUOK, RRM2B, and TK2), emerging evidence suggests that NAD+ upregulation may also be beneficial in the context of other forms caused by mutations in the core mtDNA replication machinery. For example, mitochondrial transcription factor A (TFAM) is responsible for initiating mtDNA replication and organizing mtDNA into nucleoids. Oller et al. (2021) found that mice with TFAM deficiency confined to vascular smooth muscle cells, develop aortic aneurysms; NR supplementation is sufficient to derepress TFAM expression and mtDNA-CN levels thus reversing aortic aneurysm²⁷. Altogether, these findings indicate that NR supplementation, a precursor to NAD and NAD+, as a potential treatment for mtDNA depletion irrespective of the underlying genetic mutation.

6.4.3.3 EXPERIMENTAL EVIDENCE FOR NEUROPROTECTIVE EFFECTS OF NAD+ UPREGULATION

In vitro and in vivo rodent experiments suggest that upregulation of the NAD+ axis also protects against both ischemic and hemorrhagic stroke and that such neuroprotection, in part, is mediated by key mitochondrial regulators. First, just as mtDNA-CN levels are depleted after ischemic stroke, a similar drop in brain NAD occurs²⁵. Exogenous supplementation of NAD+ restores DNA repair activity thereby mitigating ischemic cell death in oxygen and glucose-deprived rat neurons ²⁵. Second, nicotinamide phosphribosyltransferase (NAMPT), the rate-limiting enzyme in the production of NAD+, protects against cerebral injury and promotes neurogenesis after cerebral ischemia^{28,29}. In rats with middle cerebral artery occlusion, pharmacological inhibition of NAMPT exacerbates neuronal cell death and increases the size of infarcts. Conversely, NAMPT overexpression overcomes these deficits by promoting neuronal survival via sirtuin-1mediated induction of AMPK, an upstream mitochondrial biogenesis activator ²⁸. Third, oxidative stress and neuroinflammation following experimentally induced intracerebral hemorrhage in mice is rescued by acute administration (30-minutes post-stroke) of the NAD precursor, nicotinamide mononucleotide (NMN)³⁰. NMN-treated mice also exhibit faster neurological recovery after intracerebral hemorrhage than those without treatment³⁰. Notably, NMN treatment promoted the expression of nuclear respiratory factor 2, a gatekeeper of mitochondrial biogenesis³⁰.

6.4.3.4 CLINICAL TRIALS OF NAD+ SUPPLEMENTATION

NAD precursor supplementation as a therapy for age-related diseases such as cardiometabolic disease, has garnered interest from academic and commercial sectors alike, culminating in several early phase RCTs. These trials suggest that daily NAD precursor supplementation (i) leads to persistent elevations in peripheral blood cell NAD+, (ii) is well-tolerated with no serious adverse events, and (iii) demonstrates preliminary evidence for protective vascular effects on blood pressure and arterial stiffness^{31,32}. The next phase of RCTs is currently underway to test NAD precursor supplementation to ameliorate progression of various diseases including but not limited to rare mitochondrial disorders, dementia, mild cognitive decline, Parkinson's disease, and stroke. In fact, one trial (NCT03432871) is investigating NR supplementation for individuals with mitochondrial is currently planned to investigate NR supplementation in a series of mtDNA depletion syndrome patients specifically, though this may be the next logical disease indication to explore.

6.5 STRENGTHS, LIMITATIONS, AND FUTURE DIRECTIONS

6.5.1 STRENGTHS

The main strengths of this work are: (i) the use of MR analysis, a statistical genetics framework robust to reverse causation and other types of confounding, to approximate causal effects of biomarkers on disease risk, (ii) the dual and context-appropriate application of MR analysis to (a) screen circulating proteins with various biological functions for causal mediators and (b) to verify the role of an emerging marker of mitochondrial dysfunction with a strong biological prior to mediate stroke progression, (iii) the incorporation of public datasets to expand the scope of testable biomarkers and to boost statistical power to detect associations with disease, (iv) the sensitivity analyses and validation efforts that were employed to ensure the robustness of findings (e.g. proteomics technology-stratified MR analyses, benchmarking of AutoMitoC with qPCR-based measurements, etc.), and (v) the breadth of study designs employed to interrogate causal mediators of cerebrovascular disease (e.g. regression-based association testing, GWAS, ExWAS, MR, etc.).

6.5.2 LIMITATIONS

In Study 1 (Chapter 3), we implemented a methodological framework to conduct systematic proteome-wide MR screens for circulating protein mediators of stroke standing on the shoulders of colleagues who deployed similar methods for the discovery of putative causal mediators for heart disease, blood pressure, diabetes, and chronic kidney disease. We extended this approach to an agnostic investigation of phenotypes to forecast potential repurposing opportunities and adverse effects associated with target manipulation. Although at the time of analysis, this represented an improvement of our lab's existing pipelines, there are several improvements that could be made now due to methodological advances and new databases. First, colocalization analyses could be performed to provide assurance that the same genetic signals responsible for changing biomarker levels also accounts for changes in stroke susceptibility. Second, rather than assume that the effects of

causal biomarkers on disease act via circulation, the integration of tissue-specific eQTL data from the GTEx database may aid in pinpointing causal tissues. One of the challenges of interpreting biomarker MR analyses is tissue specificity. Because germline genetic variants persist in all cell types, the association between genetically determined circulating levels and disease outcomes may not be specific to blood. For example, the aforementioned SCARA5 cis-pQTL (rs2726927) that is associated with circulating SCARA5 levels and pro-thrombotic factors also influences SCARA5 expression in the spleen, subcutaneous adipose tissue, and tibial nerve with concordant effect direction across all tissues. (https://www.gtexportal.org/home/gene/SCARA5). Therefore, it is difficult to disentangle the relevant and causal tissue through which SCARA5 activity protects against stroke.. Third, replication of secondary effects identified by the phenome-wide MR analysis can now be executed using newly available genome-wide and phenome-wide datasets, such as those made available by the FinnGen consortia. Fourth, the druggability or tractability of putative targets (e.g. whether there is a binding site or epitope on the target protein for small molecule or antibody binding) could be considered; however, the advent of oligonucleotide-based therapies that can down or up-regulate protein translation makes this consideration less constraining.

General limitations of using MR analysis for drug target evaluation include (i) potential for causal effects to act through alternative pathways apart from the target in question (i.e. horizontal pleiotropy), (ii) uncertain validity of extrapolating lifelong genetic effects for predicting the effects of pharmacological modulation, (iii) statistical power

varies by biomarker due to differences in instrument strength, and (iv) the inability to predict off-target side-effects of pharmacological interventions.

6.5.3 FUTURE DIRECTIONS FOR POTENTIAL THERAPEUTIC TARGETS 6.5.3.1 SCARA5

Beyond independent replication of SCARA5 MR findings, there are several investigations that could be pursued to better gauge the therapeutic potential of SCARA5. First, there is a knowledge gap between our understanding of the membrane-bound vs. circulating form of SCARA5, and thus it would be of particular interest to know whether the circulating form has similar functions to its membrane-bound counterpart. For example, a key question is whether circulating SCARA5 is also capable of facilitating endocytosis of pro-thrombotic factors, and if not, then what are the ways in which SCARA5 protects against stroke? Second, elucidating the mechanisms through which circulating SCARA5 is generated may provide another angle for pharmacologic intervention. The generation of circulating SCARA5 presumably involves proteolytic cleavage of membrane-bound SCARA5. and notably, among the many predicted cleavage sites (https://web.expasy.org/cgi-bin/peptide_cutter/peptidecutter.pl) is a site for coagulation FXa, the pharmacological target of several anticoagulants (e.g. Rivaroxaban). Third, animal model experiments are warranted to directly test the effects of SCARA5 upregulation on stroke risk and key side-effects, such as bleeding and iron deficiency.

6.5.3.2 TNFSF12

Although results suggest an unfavourable safety profile if TNFSF12 were to be directly targeted for stroke prevention, they still point towards a causal pathway potentially amenable to therapeutic targeting. Delving into downstream targets of TNFSF12 may provide a new source of targets with a more specific effect on stroke risk and favourable safety profile. This could be accomplished by performing a candidate MR analysis of all known downstream targets of TNFSF12 based on protein-protein interaction and pathway databases. Also, recent biomarker studies allude to TNFSF12 as a novel biomarker for post-intracerebral hemorrhage outcomes. Accordingly, subsequent MR analyses may be useful to help clarify whether these associations are causal, analogous to what was done for mtDNA-CN and post-ischemic stroke outcomes.

6.5.3.3 MTDNA-CN RECOVERY FOR STROKE PROTECTION

In conjunction with animal model experiments, our findings suggest that restoring mtDNA-CN during the acute phase of stroke may be a novel therapeutic angle to attenuate post-stroke outcomes. Awaiting the results of preliminary NAD precursor trials, these will inform their safety in stroke patients specifically. Once confirmed, it may be conceivable to plan an efficacy trial investigating post-stroke NAD precursor supplementation to improve functional outcomes after stroke. To our knowledge, no trial has been proposed to test this specific hypothesis. Beyond clinical testing, additional experimental studies could be performed to further examine the relationship between cellular mtDNA content and existing neuroprotective mechanisms involving mitochondria. For example, although mtDNA depletion abolishes pro-survival signals normally elicited by horizontal mitochondrial transfer in cancer cell lines³³, there are no analogous investigations in oxygen

and glucose-deprived neurons or animal models. Moreover, the dependency of intercellular mitochondrial transfer on mtDNA levels has not been explored beyond the aforementioned study. This is a key missing link that could connect not only mtDNA regulation to post-stroke neuronal resiliency but also mtDNA regulation to cellular resilience in general.

6.5.3.4 NEW HORIZONS FOR MTDNA-CN RESEARCH

Most epidemiological investigations (including the present work) have examined mtDNA content of aggregate immune cell populations from whole blood or buffy coat (Figure 6.1). As such, single-cell mtDNA-CN profiling will aid in pinpointing relevant cell populations that contribute to neuroprotection. Also, extracellular sources of circulating mtDNA-CN are relatively understudied but initial studies suggest a strong link with stroke pathophysiology. Extracellular mtDNA-CN consists of (i) free-floating and metabolically active mitochondria that may be horizontally transferred during diseases states to protect against injury, (ii) extracellular vesicles (microvesicles and exosomes) containing whole mtDNA genomes that are believed to participate in similar cytoprotective intercellular signalling mechanisms, (iii) and free-circulating mtDNA extruded from immune cells is characteristic of the damage associated molecular patterns that instigates IL1β-IL6mediated inflammation³⁴. Ultimately, deeper profiling of intracellular sources of mtDNA-CN will aid in clarifying the associations identified in the present work (Studies 1 and 2; Chapters 4 and 5), and comprehensive profiling of extracellular mtDNA-CN is an exciting potential source of new stroke biomarkers as they likely capture distinct mitochondrial processes relevant to stroke pathophysiology.

Figure 6.1. Sources of mtDNA-CN within whole blood. Created with https://biorender.com/.

6.6 CONCLUSION

Genomic, proteomic, and phenotypic datasets were integrated to elucidate putative circulating mediators of stroke risk and post-stroke outcomes. First, we conducted the largest MR screen of the circulating proteome for ischemic stroke mediators and identified two novel targets, TNFSF12 and SCARA5. Second, to understand the genetic determinants of an emerging mitochondrial biomarker in mtDNA-CN, we first devised a novel pipeline for array-based estimation tailored for large, multiethnic biobank studies. Third, using this pipeline, we carried out the largest and most comprehensive genetic association study for mtDNA-CN to date and increased the number of known loci by 40%. Fourth, we used a

subset of identified loci as genetic instruments to approximate genetically determined mtDNA-CN levels and provided the first MR evidence supporting causal roles for low mtDNA-CN in potentiating elevated risk for dementia and worse post-stroke outcomes.

6.7 REFERENCES

- 1. Robin, E. D. & Wong, R. Mitochondrial DNA molecules and virtual number of mitochondria per cell in mammalian cells. *J. Cell. Physiol.* **136**, 507–513 (1988).
- Hägg, S., Jylhävä, J., Wang, Y., Czene, K. & Grassmann, F. Deciphering the genetic and epidemiological landscape of mitochondrial DNA abundance. *Hum. Genet.* (2020) doi:10.1007/s00439-020-02249-w.
- 3. Li, J. Y. et al. NIH Public Access. 16, 35–46 (2010).
- Ojala, J. R. M., Pikkarainen, T., Elmberger, G. & Tryggvason, K. Progressive reactive lymphoid connective tissue disease and development of autoantibodies in scavenger receptor A5-deficient mice. *Am. J. Pathol.* 182, 1681–1695 (2013).
- Yu, B. *et al.* Interactions of ferritin with scavenger receptor class A members. *J. Biol. Chem.* 295, 15727–15741 (2020).
- 6. Yan, N. *et al.* Therapeutic upregulation of class a scavenger receptor member 5 inhibits tumor growth and metastasis. *Cancer Sci.* **103**, 1631–1639 (2012).
- Mendes-Jorge, L. *et al.* L-ferritin binding to Scara5: A new iron traffic pathway potentially implicated in retinopathy. *PLoS One* 9, 1–13 (2014).
- 8. WANG, J., WANG, S., CHEN, L. & TAN, J. SCARA5 suppresses the proliferation and migration, and promotes the apoptosis of human retinoblastoma

cells by inhibiting the PI3K/AKT pathway. Mol. Med. Rep. 23, 1–10 (2021).

- Lindström, S. *et al.* Genomic and transcriptomic association studies identify 16 novel susceptibility loci for venous thromboembolism. *Blood* 134, 1645–1657 (2019).
- Swystun, L. L. *et al.* The scavenger receptor SCARA5 is an endocytic receptor for von Willebrand factor expressed by littoral cells in the human spleen. *J. Thromb. Haemost.* 17, 1384–1396 (2019).
- 11. Kanai, M. *et al.* Genetic analysis of quantitative traits in the Japanese population links cell types to complex human diseases. *Nat. Genet.* **50**, 390–400 (2018).
- Smith, N. L. *et al.* Novel associations of multiple genetic loci with plasma levels of factor VII, factor VIII, and von willebrand factor: The charge (cohorts for heart and aging research in genome epidemiology) consortium. *Circulation* 121, 1382–1392 (2010).
- Liu, Y. *et al.* Identification of SCARA5 as a Potential Biomarker for Oral Squamous Cell Carcinoma using MALDI–TOF–MS Analysis. *Proteomics - Clin. Appl.* 12, 1–8 (2018).
- Nerea, M., Guti, C., Bl, R., Mart, J. L. & Blanco-colio, L. M. Tumor Necrosis Factor-Like Weak Inducer of Apoptosis (TWEAK)/Fibroblast Growth Factor-Inducible 14 (Fn14) Axis in Cardiovascular Diseases: Progress and Challenges. *Cells* 14, (2020).
- 15. da Silva-Candal, A. *et al.* The presence of leukoaraiosis enhances the association between sTWEAK and hemorrhagic transformation. *Ann. Clin. Transl. Neurol.* **7**,

2103–2114 (2020).

- Da Silva-Candal, A. *et al.* sTWEAK is a marker of early haematoma growth and leukoaraiosis in intracerebral haemorrhage. *Stroke Vasc. Neurol.* 1–8 (2021) doi:10.1136/svn-2020-000684.
- Wang, Q. *et al.* A phenome-wide multi-directional Mendelian randomization analysis of atrial fibrillation. *medRxiv* 1–22 (2020) doi:10.1101/2020.10.15.20212654.
- Lam, E. T. *et al.* Phase I study of enavatuzumab, a first-in-class humanized monoclonal antibody targeting the TWEAK receptor, in patients with advanced solid tumors. *Mol. Cancer Ther.* 17, 215–221 (2018).
- R, F. *et al.* Evaluation of the Efficacy, Safety, and Tolerability of BIIB023 As an Adjunct to Standard of Care in Subjects with Lupus Nephritis. in *Arthritis Rheumatol.* (2016).
- Galluppi, G. R., Wisniacki, N. & Stebbins, C. Population pharmacokinetic and pharmacodynamic analysis of BIIB023, an anti-TNF-like weak inducer of apoptosis (anti-TWEAK) monoclonal antibody. *Br. J. Clin. Pharmacol.* 118–128 (2016) doi:10.1111/bcp.12914.
- 21. Méndez-Barbero, N. *et al.* A major role of TWEAK/Fn14 axis as a therapeutic target for post-angioplasty restenosis. *EBioMedicine* **46**, 274–289 (2019).
- Munro, B., Horvath, R. & Müller, J. S. Nucleoside supplementation modulates mitochondrial DNA copy number in the dguok-/- zebrafish. *Hum. Mol. Genet.* 28, 796–803 (2019).

- 23. Vanden Avond, M. A. *et al.* The nucleotide prodrug CERC-913 improves mtDNA content in primary hepatocytes from DGUOK-deficient rats. *J. Inherit. Metab. Dis.*44, 492–501 (2021).
- 24. Almannai, M., El-hattab, A. W., Ali, M. & Soler-alfonso, C. Clinical trials in mitochondrial disorders, an update Mohammed. *Mol. Genet. Metab.* **131**, (2020).
- Wang, S. *et al.* Cellular NAD replenishment confers marked neuroprotection against ischemic cell death: Role of enhanced DNA repair. *Stroke* 39, 2587–2595 (2008).
- Jing, R. *et al.* Potential Treatment for mtDNA Depletion Syndrome. *Cell Rep.* 25, 1469–1484 (2018).
- Oller, J. *et al.* Extracellular Tuning of Mitochondrial Respiration Leads to Aortic Aneurysm. *Circulation* (2021) doi:10.1161/circulationaha.120.051171.
- Wang, P. *et al.* Nicotinamide phosphoribosyltransferase protects against ischemic stroke through SIRT1-dependent adenosine monophosphate-activated kinase pathway. *Ann. Neurol.* 69, 360–374 (2011).
- Zhao, Y. *et al.* Regenerative Neurogenesis after Ischemic Stroke Promoted by Nicotinamide Phosphoribosyltransferase-Nicotinamide Adenine Dinucleotide Cascade. *Stroke* 46, 1966–1974 (2015).
- Wei, C. C. *et al.* Nicotinamide mononucleotide attenuates brain injury after intracerebral hemorrhage by activating Nrf2/HO-1 signaling pathway. *Sci. Rep.* 7, 1–13 (2017).
- 31. Dellinger, R. W. et al. Repeat dose NRPT (nicotinamide riboside and

pterostilbene) increases NAD+ levels in humans safely and sustainably: a randomized, double-blind, placebo-controlled study. *npj Aging Mech. Dis.* **3**, (2017).

- Conze, D., Brenner, C. & Kruger, C. L. Safety and Metabolism of Long-term Administration of NIAGEN (Nicotinamide Riboside Chloride) in a Randomized, Double-Blind, Placebo-controlled Clinical Trial of Healthy Overweight Adults. *Sci. Rep.* 9, 1–13 (2019).
- 33. Dong, L. F. *et al.* Horizontal transfer of whole mitochondria restores tumorigenic potential in mitochondrial DNA-deficient cancer cells. *Elife* **6**, 1–22 (2017).
- 34. Yamazoe, M. *et al.* Sparsely methylated mitochondrial cell free DNA released from cardiomyocytes contributes to systemic inflammatory response accompanied by atrial fibrillation. *Sci. Rep.* **11**, 1–10 (2021).
APPENDIX A:

Supplementary Data for Study 1

Supplemental Tables

Supplemental Table 1. Characteristics of individual biomarker GWAS used for genetic instrument selection

Reference	Study Cohort(s)	Cohort Description	GWAS Sample Size	Number of Biomarkers Analyzed	Biomarker Assay	Blood Fraction Tested	
Ahola <i>et al.</i>	YES · FINBISK	Population-based	2019;6323	41	Bio-Rad Bio-Plex Pro Human Cytokine 27-plex	Serum · Plasma	
(2017)'		cohort studies	(8332)		and 21-plex assays	Cerum, riasma	
Folkersen <i>et al.</i> (2017) ²	IMPROVE	Observational study of individuals with 3+ CVD risk factors but no symptoms	3394	83	O-link ProSeek CVD Array I	Plasma	
Sjaarda <i>et al.</i> (2018) ³	ORIGIN	Randomized controlled trial for secondary CVD prevention in diabetic and pre-diabetic individuals	4147	227	Myriad RBM Human Explorer Multi-Analyte Profile	Serum	
Suhre <i>et al.</i>	KORA F4: QMDiab	Population-based cohort study ; Cross-	997;338	1124	SOMAScan assay	Plasma	
(2017)*		sectional case-control study of diabetes	(1335)		V3.2		
Sun <i>et al.</i> (2017)⁵	INTERVAL	Randomized controlled trial of varying blood donation intervals in overall healthy individuals	3301	2994	SOMAScan assay (Extended Panel)	Plasma	
Total	-		20509	3090*	-	-	

*Number of unique biomarkers measured

Supplemental Table 2. Genetic instruments used at each stage of the study for identified biomarkers

	SNPs									
	Stage 1	Stage 2	Stage 3							
A B O	rs116842520,rs139744322,rs144596390,rs886017,rs1180707 31,rs117338100,rs78338045,rs7027827,rs35637464,rs49620 97,rs10901239,rs11793170,rs140167245,rs7039497,rs14180 149,rs75215086,rs117329841,rs7103180,rs78755596,rs12 216891,rs138374634,rs8176704,rs2073826,rs66697526,rs63 3862,rs5589407,rs9650778,rs183853102,rs81751475,rs192 308651,rs2285488,rs36218903,rs36221449,rs36221464,rs65 5911,rs41297217,rs34008151,rs3124758,rs73550898	rs 10901239, rs 116842520, rs 117338100, rs 117903170, rs 11796539 6, rs 118070731, rs 12216891, rs 138374634, rs 140167248, rs 14180 8149, rs 144596390, rs 146384222, rs 149181677, rs 150258577, rs 92308651, rs 2073826, rs 225488, rs 3124758, rs 34008151, rs 3402 1886, rs 36219903, rs 35621449, rs 36221464, rs 3761824, rs 412972 17, rs 4962095, rs 535015444, rs 55088407, rs 1611983, rs 16715475, r s 633862, rs 655911, rs 66697526, rs 7032208, rs 7039497, rs 7148320 6, rs 71503180, rs 73550484, rs 78338045, rs 8176704, rs 9650778	rs10901239,rs11842520,rs117338100,rs11793170,rs11796539 6,rs118070731,rs12216891,rs138374634,rs140167245,rs14180 8149,rs14459300,rs14582422,rs149181677,rs150258577,rs1 92308651,rs2073826,rs225488,rs3124758,rs34008151,rs3402 1886,rs36218903,rs36221449,rs36221464,rs3761824,rs412972 17,rs4962095,rs5350154445,rs5598840,rs161983,rs61751475, rs63362,rs655911,rs66697526,rs7032208,rs7039497,rs7148320 6,rs71503180,rs75508988,rs78338045,rs78555596,rs8176704,r s9650778							
C D 4 0	rs7267295,rs139518651,rs139824725,rs117871956,rs144858 460,rs6073990,rs79522550,rs17344810,rs76559719,rs10093 73,rs1569723,rs62215622,rs2024571,rs6074041,rs6124768,r s2425754,rs6065932,rs74495637,rs117606004,rs118016871, rs2425780,rs117967218,rs75838841	rs1009373,rs117606004,rs117871956,rs117967218,rs11801687 1,rs139518651,rs139824725,rs144858460,rs1669723,rs173448 10,rs2024571,rs2425754,rs2425780,rs6065932,rs6073990,rs60 74041,rs6124768,rs62215622,rs7267295,rs74495637,rs758388 41,rs76659719,rs79522550	rs1009373,rs117606004,rs117871956,rs117967218,rs11801687 1,rs139518651,rs139824725,rs144858460,rs1669723,rs173448 10,rs2024571,rs2425754,rs2425780,rs6065932,rs6073990,rs60 74041,rs6124768,rs62215622,rs7267295,rs74495637,rs758388 41,rs76659719,rs79522550							
F 1 1	rs4862658,rs7687961,rs4253248,rs4253406,rs2289252,rs486 2674	rs2289252,rs4253248,rs4253406,rs4862674,rs7687961	rs2289252,rs4253248,rs4253406,rs4862674,rs7687961							
L P A	rs62440365,rs146184004,rs3004079,rs140481741,rs9364552 rs138799654,rs7439569,rs149838402,rs2457574,rs112576 f76,rs13213126,rs12214416,rr470871,rs7751293,rs557304 99,rs41272078,rs73596816,rs80145669,rs117174672,rs6905 073,rs41269876,rs2115680,rs186666265,rs783144,rs187158 156,rs1819158,rs783147,rs77026,rs4252193,rs10945689,r s139699952,rs75991907	rs10945689,rs112376176,rs116881261,rs117174672,rs1221441 6,rs1317026,rs13213129,rs138799654,rs139699652,rs1404817 4,rs146184004,rs1810138,rs186896265,rs189839402,rs21158 68,rs2457574,rs3004079,rs34498812,rs41259144,rs41269876,r s41272078,rs41272114,rs4252193,rs4708871,rs5730499,rs624 40365,rs6900573,rs73596816,rs75991907,rs7751293,rs783144, rs783147,rs78439586,rs80145669,rs9364552	rs10945689,rs112376176,rs116881281,rs117174672,rs1221441 6,rs1317026,rs13213129,rs138799654,rs139699652,rs1404817 41,rs146184004,rs1810138,rs186890252,rs189839402,rs21158 68,rs2457574,rs3004079,rs34498812,rs41259144,rs41259876,r s41272078,rs41272114,rs4252193,rs4708671,rs55730499,rs624 40365,rs6900573,rs7359861,rs75991007,rs7761293,rs783144, rs783147,rs78439586,rs80145669,rs9364552							
М Р 1 2	rs112743271;rs2845675;rs35231465;rs11225397;rs3758861;r s118090914;rs1938896;rs17293152;rs470155;rs17359230;rs 17860962;rs17878905;rs17881127;rs1786556;rs552306;rs 17861296;rs11224552;rs17881127;rs1786556;rs552306;rs 1882271;rs112759267;rs17860561;rs184540219;rs10791605; rs2155240;rs65258;rs1125507;rs151104266;rs11822520;rs 1177674362;rs186287714;rs4430479	rs10791605, rs112246582, rs11225397, rs11225507, rs112743271 ,rs112759287, rs114176245, rs117674362, rs11800014, rs11822 520, rs147031000, rs151104286, rs17293152, rs173560230, rs1736 0292, rs17860561, rs17860692, rs17878065, rs17881127, rs17885 595, rs184540219, rs186287714, rs1882871, rs138886, rs194093 7, rs2155240, rs245675, rs5231465, rs3758861, rs4430479, rs47 0155, rs471994, rs552306, rs570662, rs613804, rs685286	rs10791605, rs112246582, rs11225397, rs11225507, rs112743271 rs112759287, rs114176245, rs117674362, rs118000914, rs11822 520, rs147031000, rs151104286, rs17293152, rs173560230, rs1736 0292, rs17860561, rs17860602, rs17878045, rs17881127, rs1788 595, rs184460219, rs186287714, rs1862871, rs1938864, rs194093 7, rs2155240, rs245675, rs5231465, rs3758861, rs443097, rs47 0155, rs471994, rs552306, rs570662, rs613804, rs685286							
S C A R A 5	rs17384485,rs62498000,rs113456803,rs79124402,rs4732771 ,rs2726881,rs2685383,rs76282380,rs11994699,rs7831834,rs 13268989,rs60047958,rs62498853,rs3757895	rs113456903,rs11994699,rs13288989,rs17384485,rs2685363,rs 2726981,rs3757895,rs4732771,rs60047958,rs62496853,rs6249 8000,rs78282380,rs7831934,rs79124402	rs113456903,rs11994699,rs13288989,rs17384485,rs2685363,rs 2726981,rs3757895,rs4732771,rs60047958,rs62496853,rs6249 8000,rs78282380,rs7831934,rs79124402							
TNFSF12	rs6503016,rs12937133,rs72842814,rs33989543,rs9906416,rs 11078691,rs12948869,rs6608,rs150836621,rs1641511,rs161 4984,rs2078486,rs118081933,rs3803802,rs12451505,rs5633 2843,rs117646332	rs11078601,rs117646332,rs118081933,rs12451505,rs12948860 ,rs150836621,rs1614984,rs1641511,rs181975550,rs2078486,rs 33869543,rs3803802,rs56206519,rs62062613,rs6608,rs728428 14,rs9906416	rs11078691,rs117646332,rs118081933,rs12451505,rs12948869 ,rs150836621,rs1614984,rs1641511,rs181975550,rs2078486,rs 33869543,rs3803802,rs56206519,rs62062613,rs6608,rs728428 14,rs9906416							

SNP = single nucleotide polymorphism; ABO = Histo-blood group ABO system transferase; CD40 = cluster of

differentiation 40; F11 = coagulation factor XI; LPA = apolipoprotein(a); MMP12 = matrix-metalloproteinase-12; SCARA5 =

scavenger receptor class A5; TNFSF12 = tumour necrosis factor-like weak inducer of apoptosis.

PheCode	Phenotype Description	Disease Category	Number of cases	Number of controls	Number of excluded controls
401	Hypertension	circulatory system	77,977	330,366	618
401.1	Essential hypertension	circulatory system	77,723	330,366	872
550	Abdominal hernia	digestive	47,344	361,617	0
785	Abdominal pain	symptoms	41,316	367,645	0
716	Other arthropathies	musculoskeletal	38,715	365,819	4,427
716.9	Arthropathy NOS	musculoskeletal	37,043	365,819	6,099
272	Disorders of lipid metabolism	endocrine/metabolic	35,927	373,034	0
530	Diseases of esophagus	digestive	35,852	369,275	3,834
272.1	Hyperlipidemia	endocrine/metabolic	35,844	373,034	83
272.11	Hypercholesterolemia	endocrine/metabolic	33,242	373,034	2,685
530.1	Esophagitis, GERD and related diseases	digestive	32,108	369,275	7,578
418	Nonspecific chest pain	circulatory system	31,429	377,532	0
411	Ischemic Heart Disease	circulatory system	31,355	377,103	503
535	Gastritis and duodenitis	digestive	28,941	378,124	1,896
306	Other mental disorder	mental disorders	28,791	365,476	14,694
740	Osteoarthrosis	musculoskeletal	28,439	380,522	0
562	Diverticulosis and diverticulitis	digestive	27,311	334,783	46,867
562.1	Diverticulosis	digestive	27,268	334,783	46,910
550.2	Diaphragmatic hernia	digestive	27,126	361,617	20,218
495	Asthma	respiratory	26,332	375,505	7,124
427	Cardiac dysrhythmias	circulatory system	24,681	380,919	3,361
599	Other symptoms/disorders or the urinary system	genitourinary	24,031	384,930	0

Supplemental Table 3. 679 disease traits analyzed in the Phe-MR analysis (Adapted from Zhou et al., 2018)⁶

Full table available here:

https://www.ahajournals.org/action/downloadSupplement?doi=10.1161%2FCIRCULATI ONAHA.119.040180&file=circ_circulationaha-2019-040180_supp1.pdf

Supplemental Table 4. List of 653 biomarkers examined in the primary MR screen for ischemic stroke mediators

Gene	Uniprot ID	Description
ABO	P16442	Histo-blood group ABO system transferase (Fucosylglycoprotein 3-alpha-galactosyltransferase) (Fucosylglycoprotein alpha-N-acetylgalactosaminyltransferase) (Glycoprotein-fucosylgalactoside alpha-N- acetylgalactosaminyltransferase) (EC 2.4.1.40) (Glycoprotein-fucosylgalactoside alpha-galactosyltransferase) (EC 2.4.1.37) (Histo-blood group A transferase) (A transferase) (Histo-blood group B transferase) (B transferase) (NAGAT) [Cleaved into: Fucosylglycoprotein alpha-N-acetylgalactosaminyltransferase soluble form]
ACE	P12821	Angiotensin-converting enzyme (ACE) (EC 3.2.1) (EC 3.4.15.1) (Dipeptidyl carboxypeptidase I) (Kininase II) (CD antigen CD143) [Cleaved into: Angiotensin-converting enzyme, soluble form]
ACP1	P24666	Low molecular weight phosphotyrosine protein phosphatase (LMW-PTP) (LMW-PTPase) (EC 3.1.3.48) (Adipocyte acid phosphatase) (Low molecular weight cytosolic acid phosphatase) (EC 3.1.3.2) (Red cell acid phosphatase 1)
ACP5	P13686	Tartrate-resistant acid phosphatase type 5 (TR-AP) (EC 3.1.3.2) (Tartrate-resistant acid ATPase) (TrATPase) (Type 5 acid phosphatase)
ADA2	Q9NZK5	Adenosine deaminase 2 (EC 3.5.4.4) (Cat eye syndrome critical region protein 1)
ADAM23	075077	Disintegrin and metalloproteinase domain-containing protein 23 (ADAM 23) (Metalloproteinase-like, disintegrin- like, and cysteine-rich protein 3) (MDC-3)
ADAMTS13	Q76LX8	A disintegrin and metalloproteinase with thrombospondin motifs 13 (ADAM-TS 13) (ADAM-TS13) (ADAMTS-13) (EC 3.4.24.87) (von Willebrand factor-cleaving protease) (vWF-CP) (vWF-cleaving protease)
ADAMTS5	Q9UNA0	A disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAM-TS 5) (ADAM-TS5) (ADAMTS-5) (EC 3.4.24) (A disintegrin and metalloproteinase with thrombospondin motifs 11) (ADAM-TS 11) (ADAMTS-11) (ADAMP-2) (Aggrecanase-2)
ADGRF5	Q8IZF2	Adhesion G protein-coupled receptor F5 (G-protein coupled receptor 116)
ADIPOQ	Q15848	Adiponectin (30 kDa adipocyte complement-related protein) (Adipocyte complement-related 30 kDa protein) (ACRP30) (Adipocyte, C1q and collagen domain-containing protein) (Adipose most abundant gene transcript 1 protein) (apM-1) (Gelatin-binding protein)
AGT	P01019	Angiotensinogen (Serpin A8) [Cleaved into: Angiotensin-1 (Angiotensin 1-10) (Angiotensin I) (Ang I); Angiotensin-2 (Angiotensin 1-8) (Angiotensin II) (Ang II); Angiotensin-3 (Angiotensin 2-8) (Angiotensin III) (Ang III) (Des- Asp[1]-angiotensin II); Angiotensin-4 (Angiotensin 3-8) (Angiotensin IV) (Ang IV); Angiotensin 1-9; Angiotensin 1- 7; Angiotensin 1-5; Angiotensin 1-4]
AHSG	P02765	Alpha-2-HS-glycoprotein (Alpha-2-Z-globulin) (Ba-alpha-2-glycoprotein) (Fetuin-A) [Cleaved into: Alpha-2-HS- glycoprotein chain A; Alpha-2-HS-glycoprotein chain B]
AKR1A1	P14550	Alcohol dehydrogenase [NADP(+)] (EC 1.1.1.2) (Aldehyde reductase) (Aldo-keto reductase family 1 member A1)
AKR1B1	P15121	Aldose reductase (AR) (EC 1.1.1.21) (Aldehyde reductase) (Aldo-keto reductase family 1 member B1)

Full table available here:

https://www.ahajournals.org/action/downloadSupplement?doi=10.1161%2FCIRCULATI ONAHA.119.040180&file=circ_circulationaha-2019-040180_supp1.pdf

Biomarker	Stroke Subtype	MR Method	nsnp	OR	95% CI	P- value	Biomarker r2	Correct Causal Direction?	Steiger P- value	Egger Intercept P-value
400	050	MR-	20	1.05	1 00 1 10	0.045745	0.20	TOUE	0	
ABO		EGGER	39	1.05	1.00-1.10	0.045715	0.30	TRUE	0	
ABO	CES		39	1.06	1.03-1.09	1.69E-05	0.30	TRUE	0	0.68
ABO	CES	MR-RAPS	39	1.06	1.04-1.09	4.54E-07	0.30	TRUE	0	
ABO	CES	MR-	39	1.06	1.02-1.10	0.001534	0.30	IRUE	0	
ABO	LAA	EGGER	39	1.08	1.02-1.14	0.011521	0.30	TRUE	0	
ABO	LAA	IVW	39	1.09	1.05-1.12	1.86E-07	0.30	TRUE	0	0.73
ABO	LAA	MR-RAPS	39	1.08	1.05-1.12	2.43E-07	0.30	TRUE	0	
ABO	LAA	WM	39	1.07	1.03-1.12	0.000819	0.30	TRUE	0	
F11	CES	MR-	6	1 15	0 97-1 37	0 197397	0.01	TRUE	0	
F11	CES		6	1.15	1 17-1 34	7.80E-11	0.01	TRUE	0	0.55
E11	CES	MR-RAPS	6	1.25	1 16-1 36	1.34E-08	0.01	TRUE	0	0.55
E11	CES	WIN-INAFS	6	1.23	1 14-1 34	2.32E-07	0.01	TRUE	0	
SCARA5	CES	MR- EGGER	14	0.83	0.66-1.06	0.163432	0.01	TRUE	0	
SCARA5	CES	IVW	14	0.80	0.72-0.88	6.73E-06	0.01	TRUE	0	0.69
SCARA5	CES	MR-RAPS	14	0.78	0.70-0.88	1.46E-05	0.01	TRUE	0	
SCARA5	CES	WM	14	0.79	0.69-0.90	0.000642	0.01	TRUE	0	
TNFSF12	CES	MR- EGGER	17	0.81	0.71-0.92	0.006758	0.05	TRUE	0	
TNFSF12	CES	IVW	17	0.86	0.81-0.91	3.04E-07	0.05	TRUE	0	0.33
TNFSF12	CES	MR-RAPS	17	0.86	0.81-0.91	7.69E-07	0.05	TRUE	0	
TNFSF12	CES	WM	17	0.84	0.78-0.91	1.15E-05	0.05	TRUE	0	
CD40	LAA	MR- EGGER	23	0.80	0.64-1.00	0.058122	0.06	TRUE	0	0.34
CD40	LAA	IVW	23	0.73	0.65-0.81	1.08E-08	0.06	TRUE	0	
CD40	LAA	MR-RAPS	23	0.73	0.66-0.80	1.90E-10	0.06	TRUE	0	
CD40	LAA	WM	23	0.72	0.63-0.82	1.68E-06	0.06	TRUE	0	
LPA	LAA	MR- EGGER	31	1.20	1.08-1.33	0.0016	0.12	TRUE	0	
LPA	LAA	IVW	31	1.18	1.11-1.26	6.19E-07	0.12	TRUE	0	0.69
LPA	LAA	MR-RAPS	31	1.22	1.14-1.30	3.19E-09	0.12	TRUE	0	
LPA	LAA	WM	31	1.24	1.15-1.33	1.40E-08	0.12	TRUE	0	
MMP12	LAA	MR- EGGER	33	0.83	0.73-0.95	0.008978	0.14	TRUE	0	
MMP12	LAA	IVW	33	0.83	0.77-0.90	1.80E-06	0.14	TRUE	0	0.98
MMP12	LAA	MR-RAPS	33	0.83	0.77-0.90	6.56E-06	0.14	TRUE	0	
IVINIP 12	LAA	VVIVI		0.60	0.74-0.87	9.52E-08	0.14	IRUE	U	

Supplemental Table 5. Sensitivity MR analyses for ischemic stroke subtype analyses

Effects are expressed per 1 SD increase in biomarker levels. MR-EGGER = MR-EGGER; IVW = Inverse Variance Weighted; MR-RAPS = MR-Robust adjusted profile score; WM = Weighted Median; ABO = Histo-blood group ABO system transferase; CD40 = cluster of differentiation 40; F11 = coagulation factor XI; LPA = apolipoprotein(a); MMP12 = matrix-metalloproteinase-12; SCARA5 = scavenger receptor class A5; TNFSF12 = tumour necrosis factor-like weak inducer of apoptosis; OR = odds ratio; CI = confidence interval.

Supplemental Table 6. Association between stroke biomarkers and ischemic subtypes and total ischemic stroke

Biomarker	Stroke Subtype	# SNPs	Biomarker r2	OR	95% CI	P-value
ABO**	LAA	39	0.3	1.08	1.05-1.12	2.43 x 10 ⁻⁷
ABO**	CES	39	0.3	1.06	1.04-1.09	4.54 x 10 ⁻⁷
ABO	SAO	39	0.3	1.01	0.98-1.04	0.47
ABO**	Ischemic Stroke	39	0.3	1.03	1.02-1.05	9.79 x 10 ⁻⁸
ABO*	All Stroke	39	0.3	1.03	1.01-1.04	3.73 x 10 ⁻⁵
CD40**	LAA	23	0.06	0.73	0.66-0.80	1.90 x 10 ⁻¹⁰
CD40	CES	23	0.06	1.05	0.97-1.13	0.21
CD40*	SAO	23	0.06	0.9	0.83-0.99	0.03
CD40**	Ischemic Stroke	23	0.06	0.91	0.87-0.95	3.29 x 10 ⁻⁶
CD40**	All Stroke	23	0.06	0.91	0.87-0.95	9.07 x 10 ⁻⁶
F11	LAA	6	0.01	0.98	0.89-1.07	0.64
F11**	CES	6	0.01	1.25	1.16-1.36	1.34 x 10 ⁻⁸
F11	SAO	6	0.01	1.07	0.98-1.17	0.11
F11**	Ischemic Stroke	6	0.01	1.09	1.05-1.13	2.32 x 10⁻⁵
F11*	All Stroke	6	0.01	1.07	1.03-1.10	2.49 x 10 ⁻⁴
LPA**	LAA	31	0.12	1.22	1.14-1.30	3.19 x 10 ⁻⁹
LPA	CES	31	0.12	1.02	0.98-1.06	0.4
LPA	SAO	31	0.12	0.98	0.92-1.03	0.41
LPA*	Ischemic Stroke	31	0.12	1.02	1.003-1.04	0.02
LPA	All Stroke	31	0.12	1.02	0.999-1.04	0.06
MMP12**	LAA	33	0.14	0.83	0.77-0.90	6.56 x 10 ⁻⁶
MMP12*	CES	33	0.14	0.94	0.90-0.99	0.01
MMP12*	SAO	33	0.14	0.93	0.89-0.99	0.01
MMP12**	Ischemic Stroke	33	0.14	0.91	0.89-0.95	5.91 x 10 ⁻¹³
MMP12**	All Stroke	33	0.14	0.93	0.91-0.95	9.16 x 10 ⁻¹²
SCARA5	LAA	14	0.02	1.08	0.90-1.28	0.41
SCARA5**	CES	14	0.02	0.78	0.70-0.88	1.46 x 10 ⁻⁵
SCARA5*	SAO	14	0.02	0.86	0.76-0.98	0.02
SCARA5*	Ischemic Stroke	14	0.02	0.89	0.84-0.95	2.66 x 10 ⁻⁴
SCARA5*	All Stroke	14	0.02	0.9	0.86-0.95	8.26 x 10 ⁻⁵
TNFSF12	LAA	17	0.05	0.99	0.92-1.07	0.8
TNFSF12**	CES	17	0.05	0.86	0.81-0.91	7.69 x 10 ⁻⁷
TNFSF12	SAO	17	0.05	1.04	0.97-1.12	0.24
TNFSF12*	Ischemic Stroke	17	0.05	0.96	0.93-0.99	0.01
TNFSF12*	All Stroke	17	0.05	0.94	0.84-1.05	0.3

* Nominally significant (P<0.05) ** Bonferroni significant (P<2.55x10⁻⁵). ABO = Histo-blood group ABO system transferase; CD40 = cluster of differentiation 40; F11 = coagulation factor XI; LPA = apolipoprotein(a); MMP12 = matrixmetalloproteinase-12; SCARA5 = scavenger receptor class A5; TNFSF12 = tumour necrosis factor-like weak inducer of apoptosis; LAA = large artery atherosclerosis; CES = cardioembolic stroke; SAO = small artery occlusion; OR = odds ratio; CI = confidence interval.

Biomarker	Stroke Subtype	MR Method	nsnp	OR	95 % CI	P-value	Biomarke r r2	Correct Causal Direction ?	Steiger P- value	Egger Intercept P-value
ABO	SAH	MR-EGGER	41	0.99	0.90-1.08	0 77354	0 292	TRUE	0	
ABO	SAH	IVW	41	1.00	0.95-1.05	0.90825	0.292	TRUE	0	
ABO	SAH	MR-RAPS	41	0.99	0.94-1.04	0.75015	0.292	TRUE	0	0.79
ABO	SAH	WM	41	0.97	0.90-1.03	0.31904	0.292	TRUE	0	
ABO	ICH	MR-EGGER	41	0.92	0.82-1.03	0.1453	0.202	TRUE	0	
ABO	ICH		41	0.99	0.93-1.06	0.72437	0.202	TRUE	0	
ABO	ICH	MR-RAPS	41	0.00	0.93-1.05	0.64274	0.292	TRUE	0	0.13
ABO	ICH	WM	41	0.00	0.90-1.05	0.07214	0.292	TRUE	0	
CD40	SAH	MREGGER	23	1 20	0.82-1.76	0.363/1	0.252	TRUE	0	
CD40	SAH		23	0.89	0.73-1.09	0.30341	0.004	TRUE	0	
CD40	SAH	MR-RAPS	23	0.88	0.73-1.03	0.20732	0.064	TRUE	0	0.10
CD40	SAH	WM	23	0.00	0.66-1.06	0.12002	0.064	TRUE	0	
CD40		MPEGGER	23	1 3 3	0.00-1.00	0.14014	0.004	TRUE	0	
CD40			23	1.00	0.92-1.92	0.14014	0.004	TRUE	0	
CD40			23	1.10	0.92-1.32	0.30133	0.004	TRUE	0	0.25
CD40		WIR-RAFS	23	1.09	0.89-1.34	0.36502	0.064	TRUE	0	
CD40			23	0.90	0.61-1.33	0.1407	0.004	TRUE	0	
	SAH	WIR-EGGER	5	0.00	0.92 1 17	0.41000	0.011	TRUE	0	
	SAH		5	0.90	0.02-1.17	0.79922	0.011	TRUE	0	0.43
F11	SAH	WIR-RAPS	5	0.96	0.82-1.13	0.0047	0.011	TRUE	0	
	SAH		5	0.93	0.78-1.10	0.38641	0.011	TRUE	0	
F11	ICH	MR-EGGER	5	0.87	0.56-1.36	0.58545	0.011	TRUE	0	
F11	ICH		5	0.92	0.77-1.09	0.30886	0.011	TRUE	0	0.83
F11	ICH	MIR-RAPS	5	0.91	0.76-1.09	0.3242	0.011	TRUE	0	
F11	ICH		5	0.90	0.74-1.10	0.29924	0.011	TRUE	0	
LPA	SAH	MR-EGGER	35	1.06	0.95-1.18	0.29925	0.132	TRUE	0	
LPA	SAH		35	1.10	1.03-1.18	0.0061	0.132	TRUE	0	0.34
LPA	SAH	MR-RAPS	35	1.10	1.02-1.18	0.01038	0.132	TRUE	0	
LPA	SAH		35	1.08	0.97-1.20	0.14282	0.132	TRUE	0	
LPA	ICH	MR-EGGER	35	1.01	0.88-1.15	0.90428	0.132	TRUE	0	
LPA	ICH	IVW	35	0.99	0.91-1.08	0.84207	0.132	TRUE	0	0.74
LPA	ICH	MR-RAPS	35	1.00	0.91-1.09	0.94617	0.132	TRUE	0	
LPA	ICH	VVM	35	1.05	0.94-1.18	0.37634	0.132	TRUE	0	
MMP12	SAH	MR-EGGER	36	1.04	0.88-1.23	0.63925	0.146	TRUE	0	
MMP12	SAH	IVW	36	1.07	0.97-1.17	0.16097	0.146	TRUE	0	0.70
MMP12	SAH	MR-RAPS	36	1.07	0.97-1.17	0.19779	0.146	TRUE	0	
MMP12	SAH	VVM	36	1.08	0.94-1.24	0.29873	0.146	TRUE	0	
MMP12	ICH	MR-EGGER	36	1.22	0.99-1.50	0.07723	0.146	TRUE	0	
MMP12	ICH	IVW	36	1.21	1.08-1.37	0.00121	0.146	TRUE	0	0.99
MMP12	ICH	MR-RAPS	36	1.22	1.09-1.36	0.00048	0.146	TRUE	0	
MMP12	ICH	WM	36	1.15	0.98-1.35	0.09762	0.146	TRUE	0	
SCARA5	SAH	MR-EGGER	14	0.48	0.27-0.83	0.02186	0.015	TRUE	0	
SCARA5	SAH	IVW	14	0.68	0.53-0.86	0.00141	0.015	TRUE	0	0.19
SCARA5	SAH	MR-RAPS	14	0.67	0.52-0.85	0.0012	0.015	TRUE	0	
SCARA5	SAH	WM	14	0.72	0.51-1.00	0.04801	0.015	TRUE	0	
SCARA5	ICH	MR-EGGER	14	0.57	0.32-1.03	0.08604	0.015	TRUE	0	
SCARA5	ICH	IVW	14	0.76	0.60-0.97	0.03047	0.015	TRUE	0	0.31
SCARA5	ICH	MR-RAPS	14	0.77	0.59-1.00	0.04834	0.015	TRUE	0	
SCARA5	ICH	WM	14	0.77	0.54-1.11	0.16059	0.015	TRUE	0	
TNFSF12	SAH	MR-EGGER	17	1.23	0.92-1.66	0.18251	0.047	TRUE	0	
TNFSF12	SAH	IVW	17	1.36	1.20-1.55	1.13E-06	0.047	TRUE	0	0.47
TNFSF12	SAH	MR-RAPS	17	1.37	1.20-1.56	3.12E-06	0.047	TRUE	0	0.77
TNFSF12	SAH	WM	17	1.39	1.18-1.65	8.72E-05	0.047	TRUE	0	
TNFSF12	ICH	MR-EGGER	17	1.27	0.91-1.77	0.17539	0.047	TRUE	0	0.65
TNFSF12	ICH	IVW	17	1.37	1.19-1.57	1.4E-05	0.047	TRUE	0	0.05

Supplemental Table 7. Sensitivity MR analyses for hemorrhagic stroke subtype analyses.

TNFSF12	ICH	MR-RAPS	17	1.37	1.18-1.59	2.8E-05	0.047	TRUE	0
TNFSF12	ICH	WM	17	1.34	1.11-1.63	0.00295	0.047	TRUE	0

Effects are expressed per 1 SD increase in biomarker levels. MR-EGGER = MR-EGGER; IVW = Inverse Variance Weighted; MR-RAPS = MR-Robust adjusted profile score; WM = Weighted Median; ABO = Histo-blood group ABO system transferase; CD40 = cluster of differentiation 40; F11 = coagulation factor XI; LPA = apolipoprotein(a); MMP12 = matrix-metalloproteinase-12; SCARA5 = scavenger receptor class A5; TNFSF12 = tumour necrosis factor-like weak inducer of apoptosis; SAH = subarachnoid hemorrhage; ICH = intracerebral hemorrhage; OR = odds ratio; CI = confidence interval.

Supplemental Table 8. Association between identified biomarkers and ICH subtypes based on Woo et al. (2014)⁷.

Biomarker	Stroke Subtype	Biomarker r2	OR	95% CI	P- value
ABO	non-lobar	0.24	0.93	0.86-1.00	0.06
ABO	lobar	0.23	1.03	0.94-1.12	0.57
CD40	non-lobar	0.05	1.01	0.75-1.37	0.95
CD40	lobar	0.05	0.90	0.68-1.20	0.49
F11	non-lobar	0.01	0.99	0.79-1.25	0.96
F11	lobar	0.01	1.14	0.88-1.47	0.32
LPA	non-lobar	0.05	1.10	0.90-1.34	0.36
LPA	lobar	0.05	0.94	0.75-1.18	0.61
MMP12	non-lobar	0.10	0.84	0.71-1.00	0.05
MMP12	lobar	0.11	0.82	0.69-0.98	0.03
SCARA5	non-lobar	0.01	0.92	0.65-1.30	0.63
SCARA5	lobar	0.01	0.87	0.55-1.37	0.54
TNFSF12	non-lobar	0.03	1.07	0.83-1.37	0.60
TNFSF12	lobar	0.02	1.12	0.61-2.07	0.71

ABO = Histo-blood group ABO system transferase; CD40 = cluster of differentiation 40; F11 = coagulation factor XI; LPA = apolipoprotein(a); MMP12 = matrix-metalloproteinase-12; SCARA5 = scavenger receptor class A5; TNFSF12 = tumour necrosis factor-like weak inducer of apoptosis; CI = confidence interval.

Supplemental Table 9. Sensitivity MR analyses for all significant Phe-WAS results.

Biomarker	PheCode	Phenotype Description	Disease Chapter	MR Method	nsnp	OR	95% CI	P-value	Biomarker r2	Egger Intercept
			-							P-value
ABO	157	Pancreatic cancer	neoplasms	MR- EGGER	42	1.24	1.09-1.40	0.00215	0.303	0.80
ABO	157	Pancreatic cancer	neoplasms	IVW	42	1.22	1.14-1.31	5.87E-08	0.303	0.80
ABO	157	Pancreatic cancer	neoplasms	MR-RAPS	42	1.22	1.12-1.32	2.48E-06	0.303	0.80
ABO	157	Pancreatic cancer	neoplasms	WM	42	1.20	1.09-1.33	0.00024	0.303	0.80
ABO	174	Breast cancer	neoplasms	MR- EGGER	42	1.03	1.00-1.06	0.02724	0.303	0.49
ABO	174	Breast cancer	neoplasms	IVW	42	1.04	1.02-1.05	6.04E-07	0.303	0.49
ABO	174	Breast cancer	neoplasms	MR-RAPS	42	1.04	1.02-1.05	1.14E-06	0.303	0.49
ABO	174	Breast cancer	neoplasms	WM	42	1.04	1.02-1.06	0.00052	0.303	0.49
CD40	202	Cancer of other lymphoid, histiocytic tissue	neoplasms	MR- EGGER	23	0.66	0.51-0.85	0.00393	0.064	0.29
CD40	202	Cancer of other lymphoid, histiocytic tissue	neoplasms	IVW	23	0.74	0.65-0.84	3.39E-06	0.064	0.29
CD40	202	Cancer of other lymphoid, histiocytic tissue	neoplasms	MR-RAPS	23	0.74	0.65-0.84	3.18E-06	0.064	0.29
CD40	202	Cancer of other lymphoid, histiocytic tissue	neoplasms	WM	23	0.74	0.64-0.87	0.00022	0.064	0.29
CD40	202.2	Non-Hodgkins lymphoma	neoplasms	MR- EGGER	23	0.68	0.50-0.93	0.02269	0.064	0.75
CD40	202.2	Non-Hodgkins lymphoma	neoplasms	IVW	23	0.71	0.62-0.83	6.83E-06	0.064	0.75
CD40	202.2	Non-Hodgkins lymphoma	neoplasms	MR-RAPS	23	0.70	0.60-0.82	7.93E-06	0.064	0.75
CD40	202.2	Non-Hodgkins lymphoma	neoplasms	WM	23	0.73	0.61-0.87	0.00051	0.064	0.75
ABO	214	Lipoma	neoplasms	MR- EGGER	42	1.05	1.01-1.09	0.00952	0.303	0.92
ABO	214	Lipoma	neoplasms	IVW	42	1.05	1.03-1.07	4.11E-06	0.303	0.92
ABO	214	Lipoma	neoplasms	MR-RAPS	42	1.05	1.03-1.07	5.74E-06	0.303	0.92
ABO	214	Lipoma	neoplasms	WM	42	1.06	1.03-1.09	4.47E-05	0.303	0.92
ABO	214.1	Lipoma of skin and subcutaneous tissue	neoplasms	MR- EGGER	42	1.08	1.04-1.13	0.00049	0.303	0.31
ABO	214.1	Lipoma of skin and subcutaneous tissue	neoplasms	IVW	42	1.06	1.04-1.09	2.79E-07	0.303	0.31
ABO	214.1	Lipoma of skin and subcutaneous tissue	neoplasms	MR-RAPS	42	1.07	1.04-1.09	2.15E-07	0.303	0.31

Effects are expressed per 1 SD increase in biomarker levels. MR-EGGER = MR-EGGER; IVW = Inverse Variance Weighted; MR-RAPS = MR-Robust adjusted profile score; WM = Weighted Median; ABO = Histo-blood group ABO system transferase; CD40 = cluster of differentiation 40; F11 = coagulation factor XI; LPA = apolipoprotein(a); MMP12 = matrix-metalloproteinase-12; SCARA5 = scavenger receptor class A5; TNFSF12 = tumour necrosis factor-like weak inducer of apoptosis.

Full table available here:

https://www.ahajournals.org/action/downloadSupplement?doi=10.1161%2FCIRCULATI ONAHA.119.040180&file=circ_circulationaha-2019-040180_supp1.pdf

Supplemental Table 10. Association between select biomarkers serving as negative controls with ischemic stroke subtypes.

Biomarker	Stroke Subtype	Biomarker r2	OR	95% CI	P- value
CHI3L1	CES	0.15	0.95	0.90-1.00	0.06
CHI3L1	LAA	0.15	1.04	0.96-1.13	0.34
CHI3L1	SAO	0.15	1.06	0.99-1.13	0.08
CRP	CES	0.019	0.99	0.84-1.15	0.86
CRP	LAA	0.019	1.17	0.95-1.45	0.14
CRP	SAO	0.019	1.03	0.86-1.22	0.78
CST3	CES	0.015	0.97	0.85-1.09	0.59
CST3	LAA	0.015	1.05	0.89-1.25	0.56
CST3	SAO	0.015	0.96	0.82-1.12	0.58

YKL-40 (CHI3L1), Cystatin C (CST3), and C-reactive protein (CRP) have been epidemiologically associated with risk of stroke but subsequent MRs did not reveal causal associations^{8–10}. CES = cardioembolic stroke; LAA = large artery atherosclerosis; SAO = small artery occlusion; OR = odds ratio; CI = confidence interval.

Supplemental Figures and Figure Legends

Supplemental Figure 1. Study-specific MR results for significant biomarkers detected in multiple studies. Other biomarkers were only measured in a single study and thus were not plotted. ABO and SCARA5 were measured in Sun *et al.* (2018), F11 in Suhre *et al.* (2017), and LPA in Sjaarda *et al.* (2018)^{1–3}.

Supplemental Figure 2. Linkage disequilibrium (LD) matrix between 6 SNPs selected as genetic instruments for F11 levels and 2 SNPs (rs4253417 and rs62350309) used as genetic instruments by Gill *et al.* (2018)⁴. A red arrow indicates that a single SNP (rs2289252) in our study is strongly correlated (r2=0.97) with rs4253417 from Gill *et al.*'s (red box). After excluding this overlapping genetic signal, the association between F11 and CES remained statistically significant (OR=1.32; 95% CI, 1.16-1.50; P=3.47x10⁻⁵).

Supplemental Figure 3. Linkage disequilibrium (LD) matrix between 31 SNPs selected as genetic instruments for LPA levels and two SNPs (rs3798220 and rs10455872) used in a genetic risk score by Helgadottir *et al.* (2012)⁵. Red arrows indicate that two SNPs (rs55730499 and rs186696265) in our study are strongly correlated (r2>0.60) with SNPs in Helgadottir *et al.* (red box) After excluding overlapping genetic signals, the association between LPA and LAA remained statistically significant (OR=1.21; 95% CI, 1.11-1.32; P=1.93x10⁻⁵).

Supplemental Figure 4. A series of manhattan plots illustrating significance of Phe-MR associations. The horizontal pink line indicates the threshold for Bonferroni significance (P<1.07x10⁻⁵), and labels are provided for disease traits surpassing this threshold. Disease traits are grouped and colour-coded by disease chapter and sorted by statistical significance. ABO = Histo-blood group ABO system transferase; CD40 = cluster of differentiation 40; F11 = coagulation factor XI; LPA = apolipoprotein(a); MMP12 = matrix-metalloproteinase-12; SCARA5 = scavenger receptor class A5;

TNFSF12 = tumour necrosis factor-like weak inducer of apoptosis.

Supplemental References

- Sun BB, Maranville JC, Peters JE, Stacey D, Staley JR, Blackshaw J, Burgess S, Jiang T, Paige E, Surendran P, Oliver-Williams C, Kamat MA, Prins BP, Wilcox SK, Zimmerman ES, Chi A, Bansal N, Spain SL, Wood AM, Morrell NW, Bradley JR, Janjic N, Roberts DJ, Ouwehand WH, Todd JA, Soranzo N, Suhre K, Paul DS, Fox CS, Plenge RM, Danesh J, Runz H, Butterworth AS. Genomic atlas of the human plasma proteome. *Nature*. 2018;558:73–79.
- Suhre K, Arnold M, Bhagwat AM, Cotton RJ, Engelke R, Raffler J, Sarwath H, Thareja G, Wahl A, Delisle RK, Gold L, Pezer M, Lauc G, Selim MAED, Mook-Kanamori DO, Al-Dous EK, Mohamoud YA, Malek J, Strauch K, Grallert H, Peters A, Kastenmüller G, Gieger C, Graumann J. Connecting genetic risk to disease end points through the human blood plasma proteome. *Nat Commun*. 2017;8:14357.
- 3. Sjaarda J, Gerstein H, Chong M, Yusuf S, Meyre D, Anand SS, Hess S, Paré G. Blood CSF1 and CXCL12 as Causal Mediators of Coronary Artery Disease. *J Am Coll Cardiol.* 2018;72:300–310.
- Gill D, Georgakis MK, Laffan M, Sabater-Lleal M, Malik R, Tzoulaki I, Veltkamp R, Dehghan A. Genetically Determined FXI (Factor XI) Levels and Risk of Stroke. Stroke. 2018;49:2761–2763.
- Helgadottir A, Gretarsdottir S, Thorleifsson G, Holm H, Patel RS, Gudnason T, Jones GT, Van Rij AM, Eapen DJ, Baas AF, Tregouet DA, Morange PE, Emmerich J, Lindblad B, Gottster A, Kiemeny LA, Lindholt JS, Sakalihasan N, Ferrell RE, Carey DJ, Elmore JR, Tsao PS, Grarup N, Jørgensen T, Witte DR, Hansen T, Pedersen O, Pola R, Gaetani E, Magnadottir HB, Wijmenga C, Tromp G, Ronkainen A, Ruigrok YM, Blankensteijn JD, Mueller T, Wells PS, Corral J, Soria JM, Souto JC, Peden JF, Jalilzadeh S, Mayosi BM, Keavney B, Strawbridge RJ, Sabater-Lleal M, Gertow K, Baldassarre D, Nyyssnen K, Rauramaa R, Smit AJ, Mannarino E, Giral P, Tremoli E, De Faire U, Humphries SE, Hamsten A, Haraldsdottir V, Olafsson I, Magnusson MK, Samani NJ, Levey AI, Markus HS, Kostulas K, Dichgans M, Berger K, Kuhlenbumer G, Ringelstein EB, Stoll M, Seedorf U, Rothwell PM, Powell JT, Kuivaniemi H, Onundarson PT, Valdimarsson E, Matthiasson SE, Gudbjartsson DF, Thorgeirsson G, Quyyumi AA, Watkins H, Farrall M, Thorsteinsdottir U, Stefansson K. Apolipoprotein(a) genetic sequence variants associated with systemic atherosclerosis and coronary atherosclerotic burden but not with venous thromboembolism. *J Am Coll Cardiol.* 2012;60:722–729.
- Zhou W, Nielsen JB, Fritsche LG, Dey R, Gabrielsen ME, Wolford BN, LeFaive J, VandeHaar P, Gagliano SA, Gifford A, Bastarache LA, Wei WQ, Denny JC, Lin M, Hveem K, Kang HM, Abecasis GR, Willer CJ, Lee S. Efficiently controlling for case-control imbalance and sample relatedness in large-scale genetic association studies. *Nat Genet.* 2018;50:1335–1341.
- 7. Woo D, Falcone GJ, Devan WJ, Brown WM, Biffi A, Howard TD, Anderson CD, Brouwers HB, Valant V, Battey TWK, Radmanesh F, Raffeld MR, Baedorf-Kassis S, Deka R, Woo JG, Martin LJ, Haverbusch M, Moomaw CJ, Sun G, Broderick JP, Flaherty ML, Martini SR, Kleindorfer DO, Kissela B, Comeau ME, Jagiella JM, Schmidt H, Freudenberger P, Pichler A, Enzinger C, Hansen BM, Norrving B, Jimenez-Conde J, Giralt-Steinhauer E, Elosua R, Cuadrado-Godia E, Soriano C, Roquer J, Kraft P, Ayres AM, Schwab K, McCauley JL, Pera J, Urbanik A, Rost NS, Goldstein JN, Viswanathan A, Stögerer EM, Tirschwell DL, Selim M, Brown DL, Silliman SL, Worrall BB, Meschia JF, Kidwell CS, Montaner J, Fernandez-Cadenas I, Delgado P, Malik R, Dichgans M, Greenberg SM, Rothwell PM, Lindgren A, Slowik A, Schmidt R, Langefeld CD, Rosand J. Meta-analysis of genome-wide association studies identifies 1q22 as a susceptibility locus for intracerebral hemorrhage. *Am J Hum Genet.* 2014;94:511–521.
- Kjaergaard AD, Johansen JS, Bojesen SE, Nordestgaard BG. Elevated plasma YKL-40, lipids and lipoproteins, and ischemic vascular disease in the general population. *Stroke*. 2015;46:329–335.
- Prins BP, Abbasi A, Wong A, Vaez A, Nolte I, Franceschini N, Stuart PE, Guterriez Achury J, Mistry V, Bradfield JP, Valdes AM, Bras J, Shatunov A, Lu C, Han B, Raychaudhuri S, Bevan S, Mayes MD, Tsoi LC, Evangelou E, Nair RP, Grant SFA, Polychronakos C, Radstake TRD, van Heel DA, Dunstan ML, Wood NW, Al-Chalabi A, Dehghan A, Hakonarson H, Markus HS, Elder JT, Knight J, Arking DE, Spector TD, Koeleman BPC, van Duijn CM, Martin J, Morris AP, Weersma RK, Wijmenga C, Munroe PB, Perry JRB, Pouget JG, Jamshidi Y, Snieder H, Alizadeh BZ. Investigating the Causal Relationship of C-Reactive Protein with 32 Complex Somatic and Psychiatric Outcomes: A Large-Scale Cross-Consortium Mendelian Randomization Study. *PLoS Med*. 2016;13:1–29.
- Russi AE, Brown MA. Cystatin C and Cardiovascular Disease: A Mendelian Randomization Study. 2016;165:255– 269.

APPENDIX B:

Supplementary Data for Study 2

Supplementary Results I:

<u>Development of the Automatic Mitochondrial Copy (AutoMitoC) Number Pipeline</u> Background & Premise Underlying Array-based mtDNA-CN Estimation

While SNP array data is intended for highly multiplexed determination of genotypes, the raw probe signal intensities used for genotypic inference can also be coopted to derive estimates of mtDNA-CN. Determining genotypes for a sample at a given variant site relies on contrasting hybridization intensities of allele-specific oligonucleotide probes and then assigning membership to the most probable genotype cluster based on intensity properties (S1. Figure 1). Variation in intensities within each genotyping cluster can also be co-opted to deduce variations in copy number. A commonly used metric of probe intensity is the "log2ratio" (L2R), which denotes log₂(observed intensity for a probe conditional on each genotype cluster.

S1. Figure 1. Contrast in the intensities of mitochondrial probes X and Y discriminate genotypes. Intra-cluster variation in signal intensities may reflect mtDNA-CN. (Adapted from Lane *et al.*(Lane 2014))

Existing Methodology: The MitoPipeline

The "MitoPipeline" is a framework for estimating mtDNA-CN from array-based L2R (aka LRR) values developed by Lane *et al.* (2015) (Lane 2014; Zhang et al. 2017). An overview of the MitoPipeline is described in S1. Figure 2. To briefly summarize: (i) autosomal and mitochondrial L2R values are first corrected for GC waves; (ii) a high-quality set of mitochondrial and autosomal markers are selected largely based on visual inspection of genotype clusters and BLAST alignment for non-homologous sequences; (iii) principal component analysis (PCA) of at least 40,000 autosomal markers is conducted to capture batch effects; (iv) finally, mtDNA-CN is estimated based on median MT L2R value for each sample and then corrected for background noise through residualization of top autosomal PCs.

The MitoPipeline has proven to be effective in estimating mtDNA-CN (correlation coefficient $R \sim 0.5$ with direct qPCR estimates) as evidenced by multiple epidemiological studies employing this method (Ashar et al. 2017; Fazzini et al. 2019; Zhang et al. 2017). Firstly, visual inspection of MT probe intensity clusters is recommended to remove probes with poorly differentiated genotype clusters. However, this process is time-consuming (especially for biobank studies that are genotyped across thousands of batches); determination of probes with "good" vs "bad" genotype clustering is subjective; and guidance is only provided for adjudication of polymorphic but not monomorphic markers which may still be informative. Secondly, in consideration of nuclear and mitochondrial sequences with significant sequence similarity due to past and recurrent transposition of mitochondrial sequence into the nuclear genome, also known as "NUMTs" (Simone et al. 2011), the MitoPipeline recommends exclusion of MT probes with greater than 80% sequence similarity to the nuclear genome. While determining sequence homology of probes to the nuclear genome may have been feasible with older microarrays wherein probe sequences were often publicized, for many contemporary arrays, including the UKBiobank array, such information is not readily available. Thirdly, LD-pruning of common autosomal variants is required to ascertain a set of independent genetic variants, but implementation of this approach within ethnically diverse studies becomes more complex since genetic independence is ancestry-dependent. Under the MitoPipeline framework, each ethnicity warrants a unique set of common variants, which not only adds to computational burden but also creates an additional source of variability in terms of performance of the method between ethnicities.

Proposed Methodology: AutoMitoC

Therefore, we developed a new array-based mtDNA-CN estimation method, which we have dubbed the "AutoMitoC" pipeline, which incorporates three key amendments: (i) Autosomal signal normalization utilises globally rare variants in place of common variants which confers advantages in terms of both speed and portability to ethnically diverse studies, (ii) cross-hybridizing probes are identified by assessing evidence for cross-hybridization via association of signal intensities (rather than using genotype association and identification of homologous sequences through BLAST alignment), and (iii) the primary estimate of mitochondrial (MT) signal is ascertained using PCA as opposed to using the median signal intensity of MT probes. The rationale underlying these amendments are described in detail in the subsequent sections. An overview of the AutoMitoC pipeline is provided in S1. Figure 3.

S1. Figure 3. Overview of the AutoMitoC Pipeline.

Development of AutoMitoC in the UKBiobank study

To develop the AutoMitoC pipeline we used genetic datasets from the large UKBiobank prospective cohort study which includes approximately half of a million UK residents recruited from 2006 to 2010 in whom extensive genotypic and phenotypic investigations have been and continue to be performed (Sudlow et al. 2015). The size, breadth, and depth of such investigations makes this a rich resource for both methodological development and medical research. All UKBiobank data was accessed as part of application ID: 15255, "Identification of the shared biological and sociodemographic factors underlying cardiovascular disease and dementia risk". Two main genetic datasets from the UKBiobank were incorporated in the development of AutoMitoC. Firstly, CNV log2r (L2R) values derived from genetic arrays (i.e. normalized array probe intensities) for 488,264 samples were downloaded using the ukbgene utility, and their corresponding genotype calls (data field: 22418) were downloaded with *gfetch*. Secondly, exome alignment maps (EXOME FE CRAM files and indices; data fields 23163 & 23164) from the first tranche 49,989 samples released in March, 2019 were downloaded with the "ukbfetch" utility. L2R values were used to derive AutoMitoC mtDNA-CN estimates. For whole-exome sequencing data, Samtools *idxstats* was used to derive the number of sequence reads aligning to mitochondrial and autosomal genomes, from which an estimate of mtDNA-CN was derived according to the procedure by Longchamps et al. (2019) (Longchamps 2019); these complementary WES-based mtDNA-CN estimates served as a comparator to benchmark AutoMitoC performance.

Initial quality control of 488,264 samples and 784,256 directly genotyped variants was executed in PLINK following that of the Mitopipeline (i.e. sample call rate > 0.96; variant call rate > 0.98; HWE p-value > 1×10^{-5} ; PLINK mishap P-value > 1×10^{-4} ; genotype association with sex p-value > 0.00001; LD-pruning r2 < 0.30; MAF > 0.01) (Purcell et al. 2007). Variants within 1 Mb of immunoglobulin, T-cell receptor genes, and centromeric regions were removed. After this quality control procedure, 466,093 samples and 86,677 common variants remained. Next, genomic waves were corrected according to Diskin et al. (2008)the PennCNV "genomic wave.pl" using script (https://github.com/WGLab/PennCNV/blob/master/genomic_wave.pl) (Diskin et al. 2008; Wang et al. 2007). Samples with high genomic waviness (L2R SD > 0.35) before and after GC-correction were removed resulting in 431,501 samples with array L2R values corresponding to 86,677 common autosomal variants. Lastly, we excluded samples representing blood cell count outliers as per Longchamps et al. (2019) which led to 395,781 participants (Longchamps 2019). Finally, we took the intersection of European samples with both suitable array and whole-exome sequencing data resulting in a final testing dataset of 34,436 European participants. To evaluate the possibility of replacing common autosomal variant signal normalization with rare variants, we also analyzed a set of 79,611 variants with a MAF<0.01.

Background correlation between autosomal & MT signal intensities

Inference of relative mitochondrial DNA copy number (mtDNA-CN) from array data consists of determining the ratio of mitochondrial to autosomal probe signal intensities (or normalized L2R values) within each sample. Technical (e.g. batch and plate effects) and latent sample factors confound raw signal intensities for reasons unrelated to DNA quantity. Such confounders induce strong cross-genome correlation, and therefore, a necessary first step is to remove this background noise from autosomal and mitochondrial probe intensities.

Indeed, even after correcting autosomal L2R values for genomic waves, we observed significant correlation between individual autosomal probe intensities and the median sample intensity across the 265 mitochondrial 2 (S1. Figure 4A). The extent of cross-genome intensity correlation varied based on minor allele frequency (MAF), with rare autosomal variants (MAF<0.01; M=79,611) showing the strongest correlation. We postulate that intensity properties for rare variants, which have a higher prevalence of homozygous genotypes, more strongly resemble those for mitochondrial genotypes, which are predominantly homoplasmic. On this basis, we only use rare autosomal variants to represent autosomal signal. While this approach contrasts with the Mitopipeline, which utilises common genetic variants to represent autosomal signal, restricting autosomal signal normalization to rare variants confers three major advantages while maintaining the same level of concordance with WES estimates (R_{common}=0.50; R_{rare}=0.49). First, this allows for further streamlining of the pipeline as this precludes the necessity for common variant filters, such as Hardy Weinberg equilibrium or LD-pruning. Second, we show that fewer principal components (PCs) are necessary to capture the same proportion of total variance in signal intensities with rare as opposed to common variants. Approximately 70% of the total variance in rare autosomal intensities was explained by 120 PCs, whereas the same proportion of variance in common autosomal intensities would necessitate more than 1000 PCs (S1. Figure 4B). In the UKBiobank, PCs were derived via the eigendecomposition of the empirical covariance matrix conducted in Python 3.6, using NumPy and SciPy (Harris et al. 2020; Virtanen et al. 2020). Third, the set of autosomal markers used in deriving mtDNA-CN remains independent from the set of common autosomal variants analyzed in subsequent GWAS for mtDNA-CN. Effectively, this ensures that common autosomal variants evaluated for association with mtDNA-CN in downstream GWAS analyses are not directly incorporated into autosomal signal normalization, which could otherwise attenuate GWAS signals.

S1. Figure 4. (A) Histogram illustrating the square of the Pearson correlation coefficient (\mathbb{R}^2) of autosomal GC-corrected L2R values with median mitochondrial signal intensity stratified by MAF categories. (B) Cumulative variance explained by inclusion of top eigenvectors for sets of common (MAF>0.01; M=86,677) and rare (MAF≤0.01; M=79,611) autosomal probe sets.

Empirical Detection of off-target probes

S1. Figure 5. Distribution of log10 transformed coefficients of determination (R^2) from the association between autosomal probe intensities vs. median mitochondrial signal with (blue) or without (red) correction for background noise (i.e. 120 autosomal PCs). The dashed vertical line represents the threshold corresponding to "moderate" correlation (|R|>0.05 or R²>0.0025), which is used to remove outlying probes that are associated with mitochondrial signal. Without correction for top PCs, the most autosomal probes exhibit some correlation with mitochondrial signal.

After adjustment for 120 autosomal PCs (approximating the elbow of the variance explained curve), there persisted a smaller subset of autosomal probes that were significantly correlated with median MT intensity (S1. Figure 5). We hypothesized that such probes either (i) cross-hybridize with the MT genome (i.e. lie within nuclear mitochondrial DNA (NUMT) regions) or (ii) corresponded to genetic loci involved in regulation of mtDNA-CN. As an illustration, S1. Table 1 conveys characteristics of the 10 most strongly correlated variants. Four of the top 10 probes were located within 1Mb of a NUMT region, and in all four cases, the sign of the correlation coefficient was negative

which might reflect interference of autosomal signal with increasing mtDNA-CN. An additional 3 probes corresponded to variants within genes that were implicated in mitochondrial disorders or regulation of mitochondrial processes (S1. Table 1).

S1. Table 1. Characteristics of top 10 autosomal probes whose adjusted intensities correlate with median mitochondrial signal.

Autosomal	Genomic	Intensity R	Comment
Probe ID	Coordinates	(Auto vs. Mito)	
rs68130461	17:22024892	-0.20	HSA_NumtS_508_b2
Affx-	6:43484921	-0.11	HSA_NumtS_239_b1 (+25 Kb)
80229644			
rs35201453	14:22783111	-0.09	NA
rs41267813	6:160998199	-0.08	HSA_NumtS_261_b1 (-742 Kb)
rs117507044	13:19958310	-0.08	NA
rs113200742	6:25272561	-0.08	HSA_NumtS_236_b1 (-324 Kb)
rs201397731	1:161168270	0.08	NDUFS2 Coding Variant
			(gene causes Mitochondrial
			Complex I Deficiency)
rs138167117	17:65739626	0.08	NA
rs138656762	19:36330320	0.08	NPHS1 pathogenic variant
			(causes Finnish Nephrotic
			syndrome, characterized by
			mitochondrial dysfunction in
			kidneys)
rs117116233	19:8535980	-0.08	HNRNPM intronic variant
			(putative regulator of
			mitochondrial processes)

We further explored whether there was evidence for cross-hybridization between autosomal SNPs and sex chromosomes by regressing adjusted autosomal probe intensities with reported male status. Generally, correlations between autosomal intensities and sex were stronger than those with MT intensities, suggesting that cross-hybridization of autosomal probes to sex chromosomes is more pronounced. For the top 10 sex-associated probes, we performed BLASTn alignment against the human reference genome (GRCh38) using 30 bases surrounding each probe (S1. Table 2) (Altschul et al. 1990). All probes had at least one flanking sequence with near-perfect (\geq 97%) sequence identity to a sex chromosome. For these 10 probes, the sign of the correlation between autosomal intensity and male status was perfectly consistent with homology to X or Y chromosomes, thus supporting the hypothesis that such probes cross-hybridized to sex chromosomes.

Autosomal	Genomic	Intensity R	Flank	Chromosome	Sequence
Probe ID	Coordinates	(Auto vs.	(30 BP)		Similarity
		Male Sex)			(E-value)
Affx-89012246	7:141336763	0.67	Right	Y	97%
					$(9x10^{-6})$
rs138167117	17:65739626	-0.60	Left	Х	100%
					$(3x10^{-8})$
rs147585440	18:47310224	-0.60	Left	Х	100%
					$(3x10^{-8})$
Affx-80264600	21:38555134	-0.59	Left	Х	100%
					$(3x10^{-8})$
Affx-80229637	6:43470088	-0.59	Left	Х	100%
					$(3x10^{-8})$
rs56275071	10:88822514	-0.57	Left	Х	97%
					$(9x10^{-6})$
rs117507044	13:19958310	0.57	Left	Y	100%
					$(3x10^{-8})$
Affx-89008518	7:140501303	-0.57	Left	Х	100%
					$(3x10^{-8})$
Affx-80224967	4:84380892	-0.57	Right	X	100%
					$(3x10^{-8})$
Affx-89005068	7:140501288	-0.55	Left	X	100%
					$(9x10^{-6})$

S1. Table 2. Characteristics of top autosomal probes associated with male sex status.

Inclusion of autosomal probes with evidence of off-target hybridization to the mitochondrial genome or sex chromosomes is problematic. In the former scenario,

misattribution of autosomal as mitochondrial signal may reduce the effectiveness of normalization. In the latter scenario, inadvertent adjustment for sex through retention of cross-hybridizing autosomal probes may occur if such probes explain substantial variance in autosomal probe intensities and this is particularly problematic given that mtDNA-CN has been robustly shown to differ between genders in epidemiological studies. In preliminary investigations where sex-associated probes were retained, we noticed that several top PCs that perfectly tagged gender. Hypothetically, had these PCs been retained and used for correction of mitochondrial signal, then the final mtDNA-CN estimate would have been inadvertently corrected for gender. Therefore, we removed autosomal probes exhibiting moderate correlation ($|\mathbf{R}| > 0.05$) with sex (907; 1.14%) or median mitochondrial intensity (193; 0.24%) and then recalculated top autosomal PCs.

PCA-based approach improves concordance with complementary estimates

After correcting MT probes using the updated set of 120 autosomal L2R PCs, we adopted the Mitopipeline's approach for estimating mtDNA-CN and calculated the median of corrected MT L2R values to denote an individual's final mtDN A-CN estimate. Using this median-based approach, array mtDNA-CN estimates demonstrated significant correlation with WES mtDNA-CN estimates (R=0.33; P < 2.23×10^{-308}). However, we found that performing PCA across all corrected MT L2R values and then extracting the top MT PC for each sample as the final mtDNA-CN estimate resulted in stronger correlation with WES (R=0.49; P < 2.23×10^{-308}).

Independent validation in an ethnically diverse sample

We additionally validated the AutoMitoC pipeline by deriving array-based mtDNA-CN estimates in the INTERSTROKE study and comparing these with parallel qPCR-based measurements, the current gold standard for measuring mtDNA-CN. INTERSTROKE is an international case-control study of stroke including 26,526 participants from 32 countries and 142 centers(O'Donnell et al. 2010). Blood samples have been collected for a subset of approximately 12,000 individuals, of which 9,311 have been successfully genotyped using the Axiom Precision Medicine Research Array (PMRA r3). A further subset of 5,791 samples with both suitable array genotypes have undergone qPCR measurement of mtDNA-CN using the plasmid-normalized protocol from Fazzini et al. (2019). Within INTERSTROKE, concordant findings to UKB-based analyses were observed favouring the PC-based (r=0.64; P< 2.23×10^{-308}) over the median-based approach (R=0.60; P < 2.23×10^{-308}). Furthermore, INTERSTROKE is ethnically diverse thus enabling an assessment of the robustness of AutoMitoC across genetic ancestries (S1. Figure 6). Correlations between array and qPCR mtDNA-CN estimates were comparable for individuals of European (N=2431), Latin American (N=1704), African (N=542), South East Asian (N=471), South Asian (N=186), and other ethnic groups (N=360; S1. Figure 6). Bland Altman plots also illustrate the extent of agreement between methods (S1. Figure 7). For every ethnicity, 95% limits of agreement intervals were smaller than expected by chance. Lastly, while all analyses hitherto followed the Mitopipeline condition of requiring >40,000 autosomal variants for normalization, we observed comparable performance using even 1,000 random rare autosomal probes (r2=0.60; $P<5x10^{-300}$) for signal normalization which reduced the runtime from several hours to less than 10 minutes for these 5,791 samples.

qPCR mtDNA-CN measurement

S1. Figure 6. Validation of AutoMitoC in an ethnically diverse cohort with qPCR-based estimates. Both qPCR and array-based mtDNA-CN estimates are presented as standardized units (mean=0; SD=1). The sample consisted of 2431 Europeans, 1704 Latin Americans, 542 Africans, 471 South East Asians, 186 South Asians, and 360 participants of other ancestry. Correlations between array and qPCR estimates were comparable for European (r=0.60; P= 2.7×10^{-238}), Latin American (r=0.70; P= 3.9×10^{-251}), African (R=0.66; P= 1.8×10^{-68}), South East Asian (r=0.59; P= 6.2×10^{-46}), South Asian (r=0.53; P= 4.2×10^{-15}),

and other (r=0.72; P= 5.4×10^{-59}) ethnic groups. The blue line indicates the linear trendline and the surrounding shaded region indicates the 95% confidence interval for the trendline.

S1. Figure 7. Bland Altman plots illustrating the extent of agreement between array and qPCR measurements. The black solid line indicates perfect agreement. The dashed blue line indicates the mean difference (or bias) between estimates. The horizontal red line corresponds to the 95% upper and lower limits of agreement (U/L LOA) for the observed data. The dashed black lines indicate the 95% U/L LOA that is expect under the null for two unrelated variables.

Supplementary Methods

*** For all methods and results pertaining to the AutoMitoC pipeline, please see supplementary results I.

The UKBiobank study

The UKBiobank is a prospective cohort study including approximately 500,000 UK residents (ages 40-69 years) recruited from 2006-2010 in whom extensive genetic and phenotypic investigations have been and continue to be done(Sudlow et al. 2015). All UKBiobank data reported in this manuscript were accessed through the UKBiobank data showcase under application # 15525. All following analyses described in this supplementary material involve the use of genetic and/or phenotypic data from consenting UKBiobank participants.

Genetic Analysis of Common Variants

Data acquisition and quality control

UKBiobank samples were genotyped on either the UK Biobank Array (~450,000) or the UK BiLEVE array (~50,000) for approximately 800,000 variants (Bycroft et al. 2018). Further imputation was conducted by the UKBiobank study team using a combined reference panel of the UK10K and Haplotype Reference Consortium datasets. Imputed genotypes (version 3) for 488,264 UKBiobank participants were downloaded through the European Genome Archive (Category 100319). Samples were removed if they were flagged for any of the UKBiobank-provided quality control annotations (Resource 531; "ukb sqc v2.txt") for high ancestry-specific heterozygosity, high missingness, mismatching genetic ancestry, chromosome aneuploidy or sex ("het.missing.outliers", "in.white.British.ancestry.subset",
"putative.sex.chromosome.aneuploidy"). Samples were also removed if their submitted gender did not match their genetic sex or if they had withdrawn consent at the time of analysis. Variant quality control consisted of removing variants that had low imputation quality (INFO score ≤ 0.30), were rare (MAF ≤ 0.005), or were in Hardy Weinberg Disequilibrium (HWE P $\leq 1 \times 10^{-10}$). The HWE test was conducted within a subset of unrelated individuals for each ethnic strata, though all related individuals were retained for subsequent GWAS analysis. Lastly, in special consideration of mtDNA-CN as the GWAS phenotype, we also removed variants within "NUMTs", which refer to regions of the nuclear genome that exhibit homology to the mitochondrial genome due to past transposition of mitochondrial sequences. Accordingly, NUMTs represent a specific confounder of mtDNA-CN GWAS analyses which may lead to false positive associations. NUMT boundaries were obtained from the UCSC NumtS Sequence (numtSeq) track, which is based on the Reference Human NumtS curated by Simone et al. (2011) (Simone et al. 2011). All sample and variant quality control of imputed genotypes were executed using actools and resultant bgen files were indexed with bgenix. Smaller ethnic groups with similar genetic ancestry were consolidated; individuals self-reporting as "African" or "Caribbean" were combined into a larger "African" stratum and individuals self-reporting as "Indian" or "Pakistani" were combined into a "South Asian" stratum. After quality control, 359689 British, 10598 Irish, 13189 Other White, 6172 South Asian, and 6133 African samples passing quality control also had suitable array-based mtDNA-CN estimates for subsequent GWAS analyses.

Genome-wide association study (GWAS)

GWAS were initially conducted in an ethnicity-stratified manner. The number of variants tested for association with mtDNA-CN varied for British (M=10,728,525), Irish (M=10,707,537), Other White (M=10,894,497), South Asian (M=11,350,981), and African (M=18,981,896) study participants, respectively. GWAS was performed using the REGENIE framework which consists of two steps (Mbatchou et al. 2020). In step 1, mtDNA-CN was predicted using a ridge regression model fit on a set of high-quality genotyped SNPs (MAF>0.01, MAC>100, genotype and sample missingness above 10%, and passing HWE ($p>10^{-15}$)) across the whole genome in blocks of 1000 SNPs. In step 2, the linear regression model was used to test the association of all SNPs adjusting for age, age², sex, chip type, 20 genetic principal components, and blood cell counts (white blood cell, platelet, and neutrophil counts), and conditional on the model from step 1.

Blood cell counts were determined for blood specimen collected at the initial assessment visit using Beckman Coulter LH750 analyzers (https://biobank.ndph.ox.ac.uk/showcase/showcase/docs/haematology.pdf). Information on blood cell counts was retrieved from the UKBiobank data showcase. Individuals with missing values for any blood cell counts (~2.5%) were removed from any subsequent analysis involving blood cell counts. Quality control of blood counts was done following the same procedure as Longchamps et al. (2019) (Longchamps 2019). Except for platelet counts, all blood cell counts were log-transformed and samples exhibiting outlying values were removed (~4% samples). Lastly, values were standardized to have a mean of 0 and standard deviation of 1.

After ethnicity-specific GWAS were performed, results were combined through meta-analysis using METAL (Willer, Li, and Abecasis 2010). European (N=383,476) and trans-ethnic (N=395,718) GWAS meta-analyses were performed. We found that results from the trans-ethnic meta-analyses strongly resembled that of the European meta-analysis due to the high proportion of Europeans (97%). Accordingly, we report results from the European meta-analysis as the primary GWAS. To summarize statistical associations, Manhattan plots and quantile-quantile plots were generated by uploading summary statistics into the locus zoom web platform (https://my.locuszoom.org/) (Pruim et al. 2010). LD-score regression was performed to calculate the LD-score intercept by uploading GWAS results to the LDhub test center (http://ldsc.broadinstitute.org/) (Bulik-Sullivan et al. 2015). As per the instructions, all variants within the MHC region on chromosome 6 were removed prior to uploading. Annovar (version date 2020-06-07) was used to functionally annotate genome-wide significant loci based on their proximity (+/- 250kb) to genes (RefSeq), predicted effect on amino acid sequence, allele frequency in external datasets (1000Genomes), clinical pathogenicity (Clinvar), and in silico deleteriousness (CADD), and eQTL information (GTEx v8) (Abecasis et al. 2012; GTEX 2014; Landrum et al. 2015; Rentzsch et al. 2019).

NUMT Sensitivity Analyses

To assess whether genome-wide significant associations could be explained by cryptic mitochondrial pseudogenes (NUMTs), we performed sensitivity analyses as per Nandakumar *et al.* (2021)f. The MT genome was divided into thirds, and AutoMitoC estimates were rederived for each region (MT:1-6425; MT:6526-11947; MT:11948-16569)

using the corresponding MT variants belonging to these three consecutive regions. Association testing was performed for each region using REGENIE. For a given variant, if at least one region-based analysis yielded a non-significant association (P<0.05), we considered this as evidence of NUMT interference.

Fine-mapping of GWAS signals

We followed a similar protocol to Vuckovic *et al.* (2020) for fine-mapping mtDNA-CN loci (Vuckovic et al. 2020). All 9,602 genome-wide significant variants were consolidated into genomic blocks by grouping variants within 250kb of each other, yielding 72 distinct genomic blocks. LDstore was used to compute a pairwise LD correlation matrix for all variants within each block and across all samples included in the European GWAS meta-analysis (Benner et al. 2017). For each genomic block, FINEMAP was used to perform stepwise conditional regression, leading to 80 conditionally independent variants at genome-wide significance (Benner et al. 2016). The number of conditionally independent genetic signals per genomic block was used to inform the subsequent finemapping search parameters. Finally, the FINEMAP random stochastic search algorithm was applied to derive 95% credible sets constituting candidate causal variants that jointly contributed to 95% (or higher) of the posterior inclusion probabilities (Benner et al. 2016). *Mitochondrial expression quantitative trait loci (mt-eQTL)*

Among our GWAS hits, we searched for mt-eQTLs using information from Ali *et al.* (2019), "Nuclear genetic regulation of the human mitochondrial transcriptome" (Ali et al. 2019). All variants in both Tables 1 and 2 were queried in the mtDNA-CN summary

statistics. When mt-eQTLs also had reported effect estimates, the consistency in directionof-effects between mt-eQTL and mtDNA-CN associations was reported (S2. Table 3).

Gene prioritization & pathway analyses

The Data-driven Expression-prioritized Integration for Complex Traits (DEPICT) v.1.1 tool was used to map mtDNA-CN loci to genes based on shared co-regulation of gene expression (Pers et al. 2015). Genome-wide significant variants from the European GWAS meta-analysis were "clumped" into independent loci using PLINK "--clump-p1 5e-8 -clump-kb 500 --clump-r2 0.05" with LD correlation matrix derived from 1000Genomes Europeans (Purcell et al. 2007). DEPICT was subsequently run on independent SNPs using default settings. DEPICT identified 91 genes in total at a FDR of 0.05. Of the 91 genes, 4 non-coding genes were excluded from subsequent analyses for lack of a match in the GeneMANIA database(Warde-Farley et al. 2010). The excluded genes include a pseudogene (PTMAP3), an intronic transcript (ALMS1-IT1), and 2 long non-coding RNAs (SNHG15, RP11-125K10.4). The remaining 87 DEPICT-prioritized genes were uploaded to the GeneMANIA web platform (<u>https://genemania.org/</u>), which mines publicly available biological datasets to identify additional related genes based on functional associations (genetic interactions, pathways, co-expression, co-localization and protein domain homology). Based on the combined list of DEPICT and GeneMANIA identified genes, a network was formed in GeneMANIA maximizing the connectivity between all input genes using the default "Assigned based on query gene" setting to weight the network. Functional enrichment analysis was then performed to identify overrepresented Gene Ontology (GO) terms among all network genes (Gene and Consortium 2000). All network genes with at least one GO annotation were compared to a background comprising all GeneMANIA genes with GO annotations.

Mitochondrial annotation-based analyses

To complement the previous analyses, we labelled prioritized genes with MitoCarta3 annotations and performed subsequent statistical enrichment analyses (Rath et al. 2021). MitoCarta3 is an exquisite database of mitochondrial protein annotations, which draws from mass spectrophotometry and GFP colocalization experiments of isolated mitochondria from 14 different tissues, as well as a plethora of other sources including literature review, to assign all human genes statuses indicating whether the corresponding proteins are expressed in the mitochondria or not. We tested whether prioritized genes were enriched for the mitochondrial proteome by using a binomial test in R. The number of "trials" was set to the total number of DEPICT and GeneMANIA-prioritized genes (107); the number of "successes" was set to the aforementioned gene subset that were labelled as mitochondrial proteins by MitoCarta3 (27); finally, the expected probability was set to the number of nuclear-encoded MitoCarta3 genes divided by the total number of genes (1120/18922). Furthermore, a t-test was used to compare mean PGC-1A induced fold change for the 27 genes as compared to the mean PGC-1A induced fold change for all 1120 nuclear MitoCarta3-annotated genes. MitoCarta3 genes with missing values were excluded from this analysis. Lastly, the 27 genes were labelled based on MitoCarta3 "MitoPathways". Only the top level pathway (i.e. parent node) was ascribed to each gene within the main text though detailed pathway annotations are available S2. Table 5.

Genetic Analysis of Rare Variants

Data acquisition and quality control

Population-level whole-exome sequencing (WES) variant genotypes (UKB data field: 23155) for 200,643 UKBiobank participants corresponding to 17,975,236 variants were downloaded using the gfetch utility. These data represent the second tranche of WES data released by the UKBiobank and differs from the first tranche (~50K samples) which was used for the development of the AutoMitoC pipeline. Quality control of WES data was conducted as follows. First, 11 samples who withdrew consent by the time of analysis were removed. Second, 83,700 monomorphic variants were removed. Third, 369,215 variants with non-missing genotypes present in less than 90% of samples were removed. Fourth, 2 samples with call rates less than 99% were removed. Fifth, 18 samples exhibiting discordance between genetic and reported sex were removed. Sixth, through visual inspection of scatterplots of the first two genetic principal components, 3 outlying samples whose locations strongly departed from their putative ethnicity cluster were removed. Seventh, 35,317 variants deviating from Hardy Weinberg Equilibrium were removed. Eighth, 12,765 samples belonging to smaller ethnic groups with less than 5000 samples (South Asian=3395; African=3168; Other=6,202) were removed. Ninth, we selected for a maximal number of unrelated samples and excluded 14,156 samples exhibiting third degree or closer relatedness. Finally, 12,394,404 non-coding variants were removed, and 5,176,300 protein-altering variants (stopgain, stoploss, startloss, splicing, missense, frameshift and in-frame indels) were retained in 173,688 samples.

Exome-wide association testing to identify rare mtDNA-CN loci

Of the 173,688 individuals passing quality control, 147,740 had non-missing mtDNA-CN estimates. Further variant inclusion criteria were implemented: variants that were rare (MAF \leq 0.001), non-synonymous, and predicted to be clinically deleterious by Mendelian Clinically Applicable Pathogenicity (M-CAP) v.1.4 scores (or were highly disruptive variant types including frameshift indel, stopgain, stoploss, or splicing) were retained (Jagadeesh et al. 2016). Herein, such variants are referred to as "rare variants" for simplicity. For each gene, rare allele counts were added per sample. 18,890 genes with a total minor allele count of least 10 were subsequently analyzed (exome-wide significance $P < 0.05/18890 = 2.65 \times 10^{-6}$). Linear regression was conducted using mtDNA-CN as the dependent variable and the rare alleles counts per gene as the independent variable. The same set of covariates used in the primary GWAS were also employed in this analysis.

Phenome-wide association testing for rare SAMHD1 mutation carrier status

To identify disease phenotypes associated with carrying a rare *SAMHD1* mutation, we maximized sample size for phenome-wide association testing by analyzing the larger set of 173,688 WES samples (with or without suitable mtDNA-CN estimates). Disease outcomes were defined using the previously published "PheCode" classification scheme to aggregate ICD-10 codes from hospital episodes (field ID 41270), death registry (field ID 40001 and 40002), and cancer registry (field ID 40006) records(Denny et al. 2013; Wu et al. 2019). Further manual review was performed to exclude cases of sex-specific outcomes that may be erroneously attributed to the opposite genetic sex. Logistic regression was applied to test the association of *SAMHD1* mutation carrier status versus 771 PheCodes (phenome-wide significance $P < 0.05/771 = 6.49 \times 10^{-5}$) with a minimal case sample size of

300 (Wei et al. 2017). The same set of covariates used in the primary GWAS were also employed in this analysis.

Mendelian Randomization Analysis

Disease Outcomes

To assess evidence for a causal role of mtDNA-CN on mitochondrial disorderrelated traits, we first defined a list of testable disease outcomes related to mitochondrial disorders. 36 clinical manifestations from a review paper by Gorman *et al.* (2016) were cross-referenced to GWAS traits analyzed by the FinnGen consortium (Feng et al. 2020; Gorman et al. 2016). The FinnGen consortium is a collaborative research entity aggregating genomic data from 9 Finnish biobanks with phenotypic data from electronic health records (https://finngen.gitbook.io/documentation/data-description#summary-association-

statistics). FinnGen GWAS (v4) have been performed for 176,899 participants and 2,444 disease endpoints using the SAIGE method which entails a logistic mixed model with saddle point approximation to account for imbalanced case-control ratios(Zhou et al. 2018). Of these 2,444 disease endpoints, 10 traits corresponded to one of the 36 clinical manifestations of mitochondrial disease and had a case prevalence greater than 1% in FinnGen including type 2 diabetes (N=23,364), mood disorder (N=20,288), sensorineural hearing loss (N=12,550), cerebrovascular disease (N=10,367), migraine (N=6,687), dementia (5,675), epilepsy (N=4,558), paralytic ileus and intestinal obstruction (N=2,999), and cardiomyopathy (N=2,342). Genome-wide summary statistics were downloaded for these 10 traits, from which effect estimates and standard errors were used in subsequent

Mendelian randomization analyses to define the effect of selected genetic instruments on disease risk.

Genetic Instrument Selection

First, genome-wide significant variants from the European GWAS meta-analysis of mtDNA-CN were chosen (N=383476). Second, we matched these variants to the FinnGen v4 GWAS datasets (Feng et al. 2020). Third, to enrich for variants that directly act through mitochondrial processes, we only retained those within 100kb of genes encoding for proteins that localize to the mitochondria based on MitoCarta3 annotations (Rath et al. 2021). Fourth, we performed LD-pruning in PLINK with 1000Genomes Europeans as the reference panel to ascertain an independent set of genetic variants (LD $r_2 > 0.01$), resulting in 34 variants (Abecasis et al. 2012; Purcell et al. 2007). Lastly, to mitigate potential for horizontal pleiotropy, we further removed variants with strong evidence of acting through alternative pathways by performing a phenome-wide search across published GWAS with Phenoscanner V2 (Kamat et al. 2019). Variants strongly associated with other phenotypes $(P < 5x10^{-20})$ were removed unless the variant was a coding mutation located within gene encoding for the mitochondrial proteome (MitoCarta3) or had an established mitochondrial role based on manual literature review (Rath et al. 2021). Seven genetic variants were removed based on these criteria including rs8067252 (ADAP2), rs56069439 (ANKLE1), rs2844509 (ATP6V1G2-DDX39B), rs73004962 (PBX4), rs7412 (APOE), rs385893 (AK3, *RCL1*), and rs1613662 (*GP6*) (S2. Table 8).

Mendelian Randomization & Sensitivity Analyses

Two sample Mendelian Randomization analyses were performed using the "TwoSampleMR" and "MRPRESSO" R packages (Hemani et al. 2018; Verbanck et al. 2018). Effect estimates and standard errors corresponding to the 27 genetic variants on mtDNA-CN (exposure) and mitochondrial disease phenotypes (outcome) were derived from the European GWAS meta-analysis and FinnGen v4 GWAS summary statistics, respectively (S2. Table 9). Three MR methodologies were employed including Inverse Variance Weighted (primary method), Weighted Median, and MR-EGGER methods. MR-PRESSO was used to detect global heterogeneity and P-values were derived based on 1000 simulations. If significant global heterogeneity was detected (P<0.05), a local outlier test was conducted to detect outlying SNPs. After removal of outlying SNPs, MR analyses were repeated. In the absence of heterogeneity (Egger-intercept $P \ge 0.05$; MR-PRESSO global heterogeneity $P \ge 0.05$), we reported the inverse-variance weighted result. In the presence of balanced pleiotropy (MR-PRESSO global heterogeneity P < 0.05) and absence of directional pleiotropy (Egger-intercept P \geq 0.05), we reported the weighted median result. In the presence of directional pleiotropy (Egger-intercept P < 0.05), we reported the MR-EGGER result. We also performed the Steiger directionality test to ensure that a greater proportion of variance in mtDNA-CN was explained than risk of the outcome. Finally, to replicate the two-sample MR finding using an independent outcome dataset without UKBiobank participants, we repeated two-sample MR analyses using the International Genomics of Alzheimer's Disease Consortium (2013) GWAS meta-analysis including 17,008 cases and 37,154 controls (Lambert et al. 2013).

Supplementary Results II

Supplementary Tables

S2. Table 2. FINEMAP results for 72 mtDNA-CN loci and 82 independent signals

locus	I 95% Credible Set (SNP Posterior Probability)	# SNPs in Credible Set	Top Finemapping (FM) SNP	Top FM SNP Posterior Probability	Top FM SNP also lead GWAS SNP?	Bayes Factor
	1 n2977608 (0, 998892)	1	rs2977608	0.999892	Yes	7.19
-	2 (h1509413) (0.953140)(h4652) (0.0208123) +03766744 (1.03948)(+046682) (0.10948)(+04814)(+03181)(+0173122)(+0236054 (0.0733122)(+0485801 (0.0733122)(+01731		rs1569419	0.935346	Yes	4.03
	0.0490396;rs1540933 (0.0490396;rs3820189 (0.0328776);rs11121845 (0.0328776);rs2180183 (0.0328776);rs376744 (0.0328776;rs7551289 (0.022092];rs273293 (0.022092];rs829008					
	3 [0.229922]:rs3820290 [0.0148785];rs1040669 (0.0148785);rs6678553 (0.0148785)	20	rs3766744	0.109848	Yes	2.54
-	1 (5139898144 (0.399987) +*2274318 (0.7209567)-**193560 (0.0556045)-*1182442 (0.0556045)-*1780454 (0.0556045)-*6658120 (0.0556045)-*12918248 +*2274318 (0.7209567)-*193560 (0.0556045)-*123422 (0.0556045)-*1780454 (0.0556045)-*6658120 (0.0556045)-*129182	,	rs139898146	0.999987	res	8.56
	[0.041865];rs6700679 (0.041865];rs1050316 (0.041865];rs1050316 (0.041865];rs1700459 (0.041865];rs10908504 (0.041865);rs274320 (0.041865);rs1790457 (0.041865);rs11264486					
	5 (0.041865);rs2274316 (0.041865);rs4450010 (0.041865);rs3818463 (0.041865);rs2282286 (0.041865)	21	rs2274319	0.0740056	Yes	2.13
	FEXION 5010 (0.177530)(0.17613)(FEXION 1.17613)(FEXION 1.17	11	192057301	0.177559	No	2.54
	rs143989240 (0.3249);rs9425601 (0.200558);rs9425308 (0.124655);rs9425602 (0.12251);rs2901656 (0.053766);rs6691993 (0.0534879);rs6699095 (0.0424655);rs2422141 (0.0218965);rs9425311					
-	6 [0.0083239]	5	rs143989240	0.3249	Yes	3.24
	/ [s10/496.06 (0.594.348);rs6659109 (0.5944778];rs11204524 (0.0722111) 8 st116640045 (0.351251);rs64595535 (0.151258);rs115021784 (0.28215) 8 st116540045 (0.351251);rs64595535 (0.151258);rs115021784 (0.28215)	1	rs10749636 rs116640044	0.794548	Yes	4.11
	rs1653261 (0.186324);rs10543585 (0.119586);rs1726030 (0.0802926);rs2462124 (0.0802104);rs831548 (0.065927);rs2254678 (0.0545878);rs2689773 (0.0541427);rs4852322 (0.0464502);rs2243819					
	[0.042816];rs7608662 (0.0306169];rs86551 (0.0250277];rs851522 (0.0225413];rs951409 (0.019966];rs851408 [0.0196671];rs851524 (0.0196671];rs831523 [0.0122517];rs831523 [0.012971];rs811523 [0.0127372];rs851452 [0.0127372];rs851452 [0.0198730];rs8546881 (0.0196671];rs831524 [0.019529];rs854681 [0.0196671];rs831524 [0.019529];rs854681 [0.0196671];rs831524 [0.019529];rs854681 [0.0196671];rs831524 [0.019671];rs831524 [0.019671];rs831524 [0.019671];rs831524 [0.019671];rs831524 [0.019671];rs831524 [0.019671];rs831524 [0.019671];rs831524 [0.019671];rs831524 [0.019710];rs854681 [0.019671];rs831524 [0.019710];rs854681 [0.019671];rs831524 [0.019710];rs854681 [0.019671];rs831524 [0.019710];rs854681 [0.019671];rs831524 [0.019671];		m1652361	0 186234	Yor	2.77
	9 [04254160 [] 9 [04254160 []	1	rs62641680	1	Yes	13.41
1	9 15/4677677(0.999881)	1	rs74874677	0.999881	Yes	7.30
	rc12052715 (0.1948281=x12692566 (0.02099921=x2295555 (0.06255261=x22299708 (0.05359271=x12231362 (0.0856671=x56186131 (0.0328116)=x643570 (0.029505)=x67065814					
	[0.029905];rs17829052 (0.0230755);rs2063440 (0.0230755);rs67504288 (0.0230755);rs3828323 (0.0230755);rs2063439 (0.0180879);rs2729701 (0.0111896);rs2729702 (0.0111896);rs2955982					
	[0.0113896];rk2729707 (0.0113896];r4665122 (0.00936734);r11052733 (0.00936734);r1314632 (0.0083092);r6755783 (0.00883092);rk255695 (0.00883092);rk255697 (0.00883092);rk255698 (0.00883092);rk25698 (0.00883092);rk2698 (0.00883092					
	[0.0088092];h5590234 (0.0088392];h523009 [0.0083992];h521325 (0.0088392];h52135 (0.0088392];h5213525 (0.008392);h521555 (0.008392);h521555 (0.008392);h52155 (0.008392);h52					
	[0.00785181];rs145316910 (0.00785181];rs10674031 (0.00785181);rs62175229 (0.00698521);rs60264981 (0.00698521);rs69785786 (0.00698521);rs62175230 (0.00698521);rs7595388					
	0.0055378];rs198857030 (0.0055378];rs2357686 (0.0029738];rs138012496 (0.0029738];rs139012450 (0.0029738];rs139012450 (0.00279713];rs2521808 (0.00279713];rs1231801240 (0.00279713);rs139112450 (0.00279713);rs1231808 (0.00279713);rs139112450 (0.0027		#12052715	0.162676	Ver	12.26
1	(correct) (corre	1	rs78909033	0.999997	Yes	13.41
	rs13084580 (0.256872);rs7623800 (0.164471);rs60889002 (0.105695);rs135008320 (0.084847];rs59889656 (0.084847];rs2056615 (0.0681735);rs6080630 (0.0548268);rs13791786 (0.0548268);rs13078962	225		V0.0520-200	0.055	2.90
- 1	2[0.0548268];rs12637881[0.0548268]	10	rs13084580	0.256872	Yes	3.12
	rs6792510 (0.0914552);rs1352420 (0.0705842);rs4858828 (0.0705842);rs4858798 (0.0705842);rs14858831 (0.0705842);rs12497850 (0.0545887);rs11928552 (0.0545887);rs1085952					
	[0.0545887];rs12493578 (0.0545887];rs688650 (0.0545887);rs551116669 (0.0545887);rs7633840 (0.036662];rs6786055 [0.0255662];rs974084 (0.0199364];rs4858800 (0.00418224];rs6806356					
	(0.00418224);rs7441050 (0.00418224);rs7610519 (0.00418224);rs10805951 (0.00418224);rs6442130 (0.00418224);rs6442130 (0.0029807);rs7623021 (0.0029807);rs711920534 (0.0029807);rs711920534 (0.0029807);rs7120534 (0.0029807);rs712054 (0.0029807					
	(0.00298607);rs57423815 (0.00298607);rs9848268 (0.00277777);rs9882443 (0.00277777);rs9882443 (0.00277777);rs9882443 (0.00233246);rs7827404 (0.00233246);rs7827400 (0.0023246);rs782740 (0.0023246);rs7827400);rs782740 (0.0023246);rs7827400);rs782777000000000000000000000000000000000					
	(0.00233246);rs12493289 (0.00233246);rs11705737 (0.00233246);rs6446252 (0.00233246);rs113076 (0.00233246);rs1249240 (0.00233246);rs1449252 (0.0023246);rs1449252 (0.0023246);rs1449252 (0.0023246);rs1449252 (0.0023246);rs1449252 (0.0023246);rs14920020000	1				
	[0.00231246];nt94461696 (0.00231246];nt73123146) (0.00233246];nt940666 (0.00233246);nt941063 (0.00231246);nt9410511 (0.00231246);nt941051					
	[0.00233246];rs1064883 (0.00233246];rs7430501 (0.00233246];rs11924597 (0.00233246];rs7431857 (0.00233246];rs755751 (0.00233246];rs7615675 (0.00233246];rs794079 (0.00233246];rs9311430					
-	13[0.00233246);rs7428387(0.00233246);rs7636057(0.00233246);rs9754878(0.00233246);rs9867373(0.00233246);rs18078308 1313[0.00233246];rs1428387(0.00233246);rs7636057(0.00233246);rs9754878(0.00233246);rs18078308(0.00233246);rs180783	71	rs6792510 rs1354034	0.0914552	Yes	2.12
	5 (=34778241 (0.999639)		rs34778241	0.999639	Yes	13.28
	rs884549 (0.249803);rs1099923 (0.189831);rs1089374 (0.11889);rs12488540 (0.0918647);rs14894010 (0.0510201);rs1008900 (0.09909);rs1072265 (0.032029);rs13065293					
	International and internati	21	rs9844549	0.249303	No	2.86
	n (non-practice and provide strategy in the former strategy former strategy in the strategy in		15504245	0.249303	110	2.00
	rs10013187 (0.045956);rs4270589 (0.0266823);rs58654655 (0.0266823);rs6850747 (0.0266823);rs13128022 (0.0266823);rs4270588 (0.0266823);rs428 (0.0266823);rs10516483					
	(0.0266823);rs12331849 (0.0266823);rs756729 (0.0266823);rs7579233 (0.0266823);rs7682346 (0.0266823);rs75232550 (0.0266823);rs999440 (0.0224664);rs469819 (0.0224864);rs469819 (0.024864);rs469819 (0.					
	(0.0174265);rs1776586 (0.0174265);rs109776 (0.0174265);rs109776 (0.0174265);rs397465 (0.0174265);rs3974649 (0.0174265);rs767882 (0.0174265);rs816787					
	(0.0135331);rs7441177 (0.0120067);rs4607219 (0.0120067);rs11097757 (0.0120067);rs4443287 (0.0120067);rs4610336 (0.0120067);rs4365725 (0.0120067);rs10856963 (0.0120067);rs4426778					
	(0.0120067);rs4554079 (0.0120067);rs4572884 (0.0105313);rs2825545 (0.0105313);rs1005108 (0.00821229);rs1010042 (0.00821229);rs100400 (0.0082129);rs100400 (0.0082190000);rs100400 (0.0082000000000000000000000000000000000					
	(0.002443);ri11541987 (0.0019283);rs7663572 (0.0019283);rs193157 (0.0019283);rs1340984 (0.0019283);rs13116542 (0.0019283);rs1930376 (0.0019283);rs1980376	1				
	12 (0.0019283);rs4698975 (0.0019283);rs19363067 (0.0019283);rs1934097 (0.0019283);rs34321727 (0.0019283);rs35860418 (0.0019283);rs11939568 (0.0019283)	70	rs10013187	0.045956	No	2.04
	18 [rs7705528 (0.495464);rs2736100 (0.409];rs7726159 (0.0571492)	3	rs7705526	0.495464	Yes	3.45
	rs539151713 (0.0353395];rs1598010 (0.00903469);rs67011705 (0.00903469);rs2338793 (0.00903469);rs10060065 [0.00903469);rs6040109 (0.00903469);rs13181060 [0.0075018);rs10070639					
	(0.0075018];rs871969 (0.0075018];rs266423 (0.0075018];rs11953055 (0.0075018];rs10077575 (0.0075018];rs11953668 (0.0075018];rs10059897 (0.0075018];rs1319818 (0.0075018];rs9293450					
	(0.0075018)rs13184711 (0.0075018)rs3316720 (0.0073303);rs3566674 (0.067778);rs1003408 (0.062359);rs156262 (0.062359);rs15001045 (0.0062359);rs13171299 (0.062359);rs135729 (0.062359);rs13					
	(co06235);157:25344 (co06235);152:25445 (co06235);151:25046 (co06235);155762233 (co06235);152545 (co06235);154724882 (co06235);154724882 (co06235);154737648 (co06235);1547848 (co06235)					
	(0.0062359);rs2338789 (0.0062359);rs4540158 (0.0062359);rs60377327 (0.0062359);rs10042574 (0.0062359);rs3846645 (0.0062359);rs11960081 (0.0062359);rs10076348 (0.0062359);rs13181437					
	(0.062359);rs135562; (0.062359);rs645682; (0.062359);rs10068605; (0.062359);rs1305595];rs1396660; (0.062359);rs10055974; (0.062359);rs1057974; (0.062359);rs10579; (0.062359);rs10579; (0.062359);rs105974; (0.062359);rs1057974; (0.					
	(0.0062359);rs6883890 (0.0062359);rs9293437 (0.0062359);rs13190547 (0.0062359);rs10061820 (0.0062359);rs1690102 (0.0062359);rs10041942 (0.0062359);rs13182583 (0.0062359);rs131844198					
	(0.0062359);rs916446 (0.0062359);rs9654412 (0.0062359);rs4452670 (0.0062359);rs4206244 (0.0062359);rs4254881 (0.0062359);rs4266644 (0.0062359);rs42568644 (0.0062359);rs4256884 (0.0062359);rs426884 (0.0062359);rs42684 (0.0062369);rs426 (0.0062359);rs42684 (0.0062359);rs42684 (0.0062369);rs42684 (0.0062369);rs426 (0.006286);rs426 (0.006286);rs426 (0.006286);rs426 (0.006286);rs426 (0.006286);rs426 (0.006286);rs426 (0.006286);rs426 (0.006286);rs426 (0.006286);rs4					
	[0.0062399];rs4135124 [0.0062399];rs460525 [0.0062399];rs428100 (0.0062399];rs478235 [0.0062399];rs413524 [0.0062399];rs1314786 (0.0062399];rs1318671 [0.0062399];rs1318778 (0.0062399];rs1318671 [0.0062399];rs131594 [0.0062399];rs1318671 [0.0062390];rs1318671 [0.0062390];rs13000];rs1318671 [0.0062390];rs1318671 [0.0062390];rs1318671 [0.0062390];rs1318671 [0.0062390];rs1318671 [0.0062390];rs1318671 [0.0062390];rs1318671 [0.0062390];rs1318671 [0.0062390];rs1318671 [0.0062390];rs1318671 [0.0062390];rs131871 [0.0062390];rs131871 [0.0062390];rs131871 [0.0062390];rs131871 [0.0062390];rs131871 [0.0062390];rs131871 [0.0062390];rs131871 [0.0062390];rs13180000];rs13180000];rs13180000];rs13180000];rs131800000];rs131800000];rs130000000];rs1318000000000];rs13000000000000000					
	(0.0062339);rs6882092 (0.00567101);rs11951999 (0.00518938);rs3846643 (0.00518938);rs11952024 (0.00518938);rs14664 (0.00518938);rs13168325 (0.00518938);rs6452657 (0.00518938);rs446649					
	(0.00518938);rs4624774 (0.00518938);rs10052154 (0.00518938);rs108938);rs1082154 (0.00518938);rs1082154 (0.00518938					
	[0.00518939];h513952089 (0.00518938];r546/2 (0.00518938];r51195081 [0.00518938];r54690 (0.00642529];r511006256 (0.00642529];r54053 (0.00642529];r5119548 (0.0045259];r5119548 (0.0045259];r5119548 (0.0045259];r5119548 (0.0045259];r5119548 (0.0045259];r5119548 (0.0045259];r5119548 (0.0045259];r5119548 (0.0045259];r5119548 (0.0045259);r5119548 (0.0045259);r5119548 (0.0045259);r5119548 (0.0045259);r5119548 (0.0045259);r5119548 (0.00518938);r5119548 (0.0045259);r5119548 (0.004529);r5119648 (0.004529);r5119648 (0.004529);r5119648 (0.004529);r5119648 (0.004529);r5119648 (0.0045					
	(0.00432329);rts266430 (0.00432329);rts34955 (0.00432329);rts34665 (0.00432329);rts34661 (0.00432329);rts3320 (0.00432329);rts266437 (0.00432329);rts34667 (0.00432329);rts34658					
	(0.00432329);rx845520 (0.00432329);rx55451 (0.0043239);rx55169 (0.00432329);rx84657 (0.00432329);rx84657 (0.0043239);rx516411 (0.0043239);rx866426 (0.0043239);rx84657 (0.0043239);rx8467 (0.0043239);rx8467 (0.0043239);rx8467 (0.0043239);rx8467 (0.0043239);rx8467 (0.0043239);rx8467 (0.004329);rx847 (0.00430);rx847 (0.00430);rx847 (0.00430);rx847 (0.00430);rx847 (0.00430);rx847 (0.00430);rx8					
	(0.0043232)[194439 (0.0043223)[194070 (0.0043239)[1940703355 (0.0043232)[197703420] (0.00398252)[1954743 (0.00432329)[1940703355 (0.0043232)[197703420] (0.00398252)[19531535] (0.0038252)[19531535] (0.0038252)[19571535] (0.0038252)[19571535] (0.0038252)[197723260 (0.0038252)[1976244] (0.0038257][197713260 (0.0038252)[19772360 (0.0043239)[19771320] (0.00388252)[19771320 (0.00385252)[19772360 (0.0043239)[19771320] (0.00388252)[19771320 (0.00385252)[19772360 (0.0043239)[19771320] (0.00388252)[19771320 (0.00385252)[19772360 (0.0043239)[19771320] (0.00388252)[19771320 (0.00385252)[19771320 (0.0043239)[19771320 (0.0043239)[19771320 (0.00388252)[19771320 (0.00388252)[19771320 (0.00388252)[19771320 (0.00388252)[19771320 (0.00388252)[19771320 (0.00388252)[19771320 (0.00388252)[19771320 (0.00388252)[19771320 (0.00388252)[19771320 (0.00388252)[19771320 (0.00388252)[19771320 (0.00388252)[19771320 (0.00388252)[19771320 (0.00388252)[19771320 (0.00388252)[19771320 (0.00388252)[19771320 (0.00388252)[19771320 (0.0038852)[1977120000000000000000000000000000000000					
	19 (0.00360574);rs266446 (0.00360574);rs17606 (0.00360574)	163	rs539151713	0.0353395	No	1.80
-	20 (5114694170 (0.999986)	1	rs114694170	0.999986	Yes	13.07
	rs391629 (0.0248689);rs6905986 (0.0248689);rs969297 (0.0248689);rs121938 (0.0248689);rs212941 (0.0248689);rs26326 (0.0248689);rs212930 (0.0248689);rs121936 (0.0248689);rs301370					
	[0.237666];rs01371 [0.237666];rs01375 [0.237666];rs21406 [0.105614];rs4146488 [0.0196141];rs45964 [0.105614];rs47644 [0.0196141];rs471066 [0.1056141];rs474450 [0.1056141];rs474450 [0.1056141];rs474450 [0.1056141];rs474450 [0.1056141];rs474450 [0.1056141];rs474450 [0.1056141];rs474450 [0.1056141];rs47450 [0.1056141];rs4750 [0.10561					
	(0.017629);rs9588641(0.0156944];rs91301379(0.0135512);rs600257(0.00971566);rs3951877(0.00779691];rs913185(0.017076691);rs3804110(0.00639155);rs3804107(0.0063915);rs3804107(0.0063915);rs3804107(0.00639155);rs3804107(0.006	1				
	(0.00593432);rs391544 (0.00593432);rs769016 (0.00593432);rs301384 (0.00593432);rs301386 (0.00593432);rs3915740 (0.00593432);rs301381 (0.00593432);rs391592 (0.00593432);rs301381 (0.00593432);rs3012000;rs301000;rs301000;rs3000;rs3000;rs3000;rs3000;rs3000;rs3000;rs3000;rs3000;rs3000;rs3000;rs3000;rs3000;rs3000					
	penagaraan, jumunaa (uutusessa juma) juutusessa juutusess					
	[0.00452693];rs1408280 (0.00452693];rs489748 (0.00452693];rs7769572 (0.00452693];rs7750552 (0.00452693];rs7751682 (0.00452693];rs458443 (0.00452693);rs6928493 (0.00452693);rs7751682 (0.00452693);rs6928493 (0.00452693);rs7751682 (0.00452693);rs7851000000000000000000000000000000000000					
	[0.00452693];rs01800[0.00452693];rs101882 [0.00452693];rs101882 [0.00452693];rs10189 [0.00452693];rs10189 [0.00452693];rs110189 [0.00452693];rs1100000000000000000000000000000000000					
	processes with the second seco					
	[0.00283418];rs35785909 (0.00288418];rs7788507 (0.00265228];rs12199135 (0.00265228];rs2762355 (0.00265228];rs49097269 (0.00265228];rs1924471 (0.00265228];rs34446232 (0.00265228];rs496439					
- 23	[[0.00265278]];r#40044 (0.00265228]];rs92465 (0.00265228]];rs758571 (0.00265228]];rs758527 (0.00265228]];rs758527 (0.00265228]];rs67245361 (0.00265228)];rs67245361 (0.0026528)];rs67245361 (0.0026528)];rs6724528];rs67245361 (0.0026528)];rs67245361 (0.0026528)];rs67245361 (0.0026528)];rs67245361 (0.0026528)];rs67245361 (0.0026528)];rs67245361 (0.0026528)];rs67245361 (0.0026528)];rs67245361 (0.0026528)];rs67245361 (0.0026528)];rs67245361 (0.0026528)];rs67245260 (0.0026528)];rs67240 (0.0026528)];rs6724000000000000000000000000000000000000		rt301620	0.02.000	No	1.00
-	n2844599 (0.177306);n2071590 (0.0794158);n2844483 (0.0881266);n2844484 (0.0381266);n121800 (0.0381266);r2256695 (0.0321027);n2516390 (0.0299775);n2516391 (0.0299775);n288455			0.0246003		1.95
	[0.0299775];n:251692 [0.0299775];n:0094955 [0.0299775];n:266868 [0.0299775];n:252500 [0.0299775];n:2844486 [0.0299775];n:2516479 [0.029975];n:2516479 [0.029975];n:2516479 [0.029975];n:2516479 [0.029975];n:2516479 [0.029975];n:2516479 [0.029975];n:2516479 [0.029975];n:2516479 [0.029975];n:2516479 [0.029975];n:2516479 [0.02975];n:2516479 [0.02975];n:25179 [0.02975];n:2516479 [0.02975];n:2516479 [0.02975];n:2516479 [0.02975];n:2516479 [0.02975];n:2516479 [0.02975];n:2516479 [0.02975];n:2516479 [0.02975];n:2516479 [0.02975];n:251700 [0.02975];n:251700 [0.02975];n:251700 [0.02975];n:25170000000000000000000000000					
	[U0.109777]]71.251149(0) (10.106697]71251488 (0.010481]7251648 (0.0299775)]71315044 (0.0299775)]71251648 (0.016697)71251648 (0.016697)71251648 (0.010481]71251648 (0.001481)71251648 (0.001481)7125164 (0.001481)71251648 (0.001481)71251648 (0.001481)71251648 (0.001481)7128 (0.001481)7128 (0.001481)7128 (0.001481)7128 (0.001481)7128 (0.001481)7128 (0.001481)7128 (0.001481)7128 (0.001481)7128 (0.001481)7128 (0.0001481)					
1	22 [0.00121905];rs1521 [0.00109644];rs3130707 [0.000886577];rs3130629 [0.000846786];rs2844533 [0.000832351]	3	152844509	0.177306	Yes	4.23
	Ins33729382 (0.197605);rs7749550 (0.131875);rs20043555 (0.131875);rs1769331 (0.0884379);rs11752276 (0.0884379);rs17404055 (0.0884379);rs1754183 (0.0584379);rs175754 (0.0884379);rs1752754 (0.0884379);rs17554 (0.0884379);rs17554 (0.0884379);rs17552754 (0.0884379);rs17552754 (0.0884379);rs17554 (0.0884379);rs17552754 (0.0884379);rs17554 (0.0884379);rs17552754 (0.0884379);rs17554 (0.0884379);rs17554 (0.0884379);rs17554 (0.0884379);rs17554 (0.0884379);rs17563 (0.0884379);rs17563 (0.0884379);rs17563 (0.0884379);rs17563 (0.0884379);rs17563 (0.0884379);rs17563 (0.0884379);rs17563 (0.0884379);rs17563 (0.0884379);rs175563 (0.0884379);rs17556 (0.0884379);rs17556 (0.0884379);rs17556 (0.0884379);rs17556 (0.0884379);rs17563 (0.0884379);rs17563 (0.0884379);rs17563 (0.0884379);rs1756 (0.0884379);rs1756 (0.0884379);rs1756 (0.0884379);rs1756 (0.0884379);rs1756 (0.0884379);rs1756 (0.088437					
	[U_0399997];75269826 (U_026695]];71096591];7009713] (U_007199];7109713] (U_007199];710701 (U_00707994);71087016 (U_0075226);7115222 (U_0078687);711752186 (U_00478687);711752186 (U_00478687);111752186 (U_00478687);11175218000;11175200;11175200;11175200;11175200;11175200;11175200;11175200;11175200;1117520;11175200;1117520					
	[0.00212593];rts75004483 [0.00155888];rts28383364 [0.00147247];rt2760995 [0.00145197];rt9271459 [0.000871551];rts7748043 [0.000828684];rts707947 [0.00079865];rts7754396					
	[0:000745847];rs927068 [0:00774458];rs9270637 [0:00734858];rs9270638 [0:000734858];rs9270549 [0:000701003];rs12722055 [0:00059458];rs2828376 [0:00049699];rs282881461 [0:000479699];rs282881461 [0:000479699];rs2881461 [0:00046699];rs2881461 [0:0004699];rs2881461 [0:000					
	[0.00038055];r9270116] (0.00037556];r9270126] (0.00037556];r9270126] (0.00037556];r9270126] (0.00037566];r9270456] (0.00037566];r927046] (0.0003766);r927046] (0.00000);r927046] (0.00000);r927046] (0.00000);r927040] (0.0000);r927040] (0.00000);r927040);r927040] (0.0000					
	(0.000325005);rz8383390 (0.000312562];rz8832349 (0.000312562];rz889543 (0.000301427);rz184006295 (0.000303427);rz500746783 (0.000297901);rz568924277 (0.00030285741];rz8891139					
	[0.000282465];rsz841151 [0.00028465];rs301164 [0.00027895]];rs271537 [0.00027895]];rs2875249 [0.00028605]];rs2883866 [0.00026605];rs2883836 [0.00026605];rs2883836 [0.00026605]];rs2883836 [0.00026605]];rs2838386 [0.000260505]];rs283836 [0.000260505]];rs28386 [0.000260505]];rs28386 [0.000260505]];rs28386 [0.000260505]];rs28386 [0.000260505]];rs283836 [0.000260505]];rs283836 [0.000260505]];rs283836 [0.000260505]];rs283836 [0.000260505]];rs283836 [0.000260505]];rs28386 [0.000260505]];rs28386 [0.000260505]];rs28386 [0.000260505]];rs28386 [0.000260505]];rs28386 [0.000260505]];rs28386 [0.000260505]];rs28386 [0.000260505]];rs28386 [0.000260505]];rs28386 [0.000260500]];rs28386 [0.000260500]];rs286000000000000000000000000000000000000					
	[0.000230372];n-3188048 [0.000230372];n-28883449 [0.000230372];n-28883449 [0.000230372];n-2888348 [0.000230372];n-7154421 [0.00022809];n-28844559 [0.00022809];n-28844559 [0.00022809];n-28844559 [0.000230372];n-2888348 [0.000230372];n-288838 [0.000230372];n-288838 [0.000230372];n-2888388 [0.000230372];n-2888388 [0.000230372];n-288838 [0.000		and the second second			
-	23 [(0.002288/09)/r98271.844 (0.00022057)	8	rs35372932	0.197605	Yes	3.73
1	eq103-01882 (0.10882/1)103-00302 (0.10822/1)173208013 (0.10827)171374308018 (0.125782)170278079 (0.125782)179357161 (0.125782)1755564 (0.0246351)) (7)9901424 (0.52525)1+0895644 (0.24463)1+02902011 (0.04725781)1313130 (0.052004)1+9902564 (0.01340031-0.0134031-0.011102)1+03900132 (0.008132031-0.011102)1+03900132 (0.008132031-0.011102)1+03900132 (0.008132031-0.011102)1+03900132 (0.008132031-0.011102)1+03900132 (0.008132031-0.011102)1+03900132 (0.008132031-0.011102)1+03900132 (0.008132031-0.011102)1+03900132 (0.008132031-0.011102)1+03900132 (0.011102)1+03900132 (0.011102)1+0390013 (0.011102)1+03900132 (0.008001)1+03900132 (0.011102)1+03900132 (0.011102)1+03900132 (0.011102)1+03900132 (0.011102)1+03900132 (0.008132031-0.011102)1+03900132 (0.011102)1+03 00030030000000000000000000000000000	1	1150743582	0.16423	lie l	2.80
	[0.00813392];rs5595942 (0.00813392];rs9376091 (0.00813392];rs9389268 [0.00813392];rs9437609 (0.00610433);rs94376090 (0.00610433);rs94376092 (0.00610433);rs94376091 (0.0061043);rs94376091 (0.0061040);rs9438760 (0.0061040);rs9438760 (0.0061040);rs9438760 (0.0061040);rs9438760 (0.0061040);rs94387600 (0.0061040);rs94387600 (0.0061040);rs94387600 (0.00610400);rs94387600 (0.00610400);rs94376000 (0.00610400);rs94376000 (0.00610400);rs94376000 (0.00610400);rs94376000 (0.00610400);rs94376000 (0.00610400);rs94376000 (0.00610400);rs943876000000000000000000000000000000000000				Lan I	
1	15[0.0048029] cr3700027 (0.1164331cr33046b1 (0.104143)cr33046b1 (0.0734045)cr10611385 (0.0463078)cr136601 (0.0463078)cr136601 (0.074045)cr30046b1 (0.104143)cr30046b1 (0.104143)cr3004b1 (0.104143)cr3004b1 (0.104140b1 (0.104140b1)cr3004b1 (0.104140b1)cr3004b1 (0.10414b1)cr3004b1 (0.10414b1)cr3004b1 (0.10414b1)cr3004b1 (0.10414b1)cr3004b1 (0.10414b1)cr3004b1 (0.10414b1)cr3004b1 (0.10414b1)cr3004b1 (0.10414b1)cr3004b1 (0.10414b1)cr3004b1 (0.1040	1	1159494142	0.542825	No	3.35
	10.0569585[11572041 (0.0569555]]rt126655[10124721 (0.054975]]rt126661 (0.024971]]rt1266631 (0.009956)[rt129597 (0.024971]]rt1256631 (0.					
	[0.0294771];rs145013958 (0.0294771];rs6955277 [0.0294771];rs6955857 (0.0294771];rs6973982 (0.0294771];rs1355488 [0.00779346];rs111979067 (0.00407684];rs4551245 [0.00329328];rs57170042					
	[0.0026938]srr3107995 (0.0027759]s12670523 (0.00266371];rs179504 (0.00266371];rs1208 (0.00266371];rs189861 (0.00266371];rs2304692 (0.00266371];rs4724342 (0.00266371];rs13481731 [0.00266371];rs171474342 (0.00266371];rs17474342 (0.00266371];rs1747442 (0.00266741);rs1747442 (0.00266741);rs1747442 (0.00266741);rs17474442 (0.00266741);rs17474442 (0.00266741);rs17474442		774720497		No	
1	o (hooppane) (hooppane	33		0.136822		2.54
	rs4731606 (0.0554474);rs28551188 (0.0554474);rs28854232 (0.0554474);rs2177616 (0.0554474);rs7811282 (0.0422974);rs12671075 (0.0422974);rs1761673 (0.0323392);rs7779873 (0.0323392);rs6467251					
	[0.0128193];rs81943 [0.0123993];rs1998129 (0.0247816);rs131442 [0.0247816);rs1751645 [0.0247816];rs1751645 [0.0247816];rs175165 [0.0247816];rs175165 [0.0247816];rs17515 [0.0247816]					
	[cv:scr:sex], assesses [sw:scr:sel][stat1ref390 [UV:scr:se31][staf940 / ze] (UV:scr:se31][staf940 / ze] (UV:scr					
	[0.00677464];rs10260012 (0.00677464];rs9649532 (0.00677464];rs9449529 [0.00677464];rs10260020 (0.00677464];rs9649527 (0.00526246);rs134592988 [0.00526246];rs12155010					
	[0.00578/46];rz386744 [0.00578246];rz196495 [0.0049709];rz164973 [0.0049709];rz166871 [0.0049709];rz1919157 [0.0049709];rz19688808 [0.0049709];rz19444 [0.0049709];rz194944 [0.0049709];rz19494 [0.0049709];rz1					
	[0] (0.00319703);72781841 (0.00319703);7012310 (0.00319703);701345 (0.00319703);70135 (0.00319703);70135 (0.00319703);70135 (0.00319703);70135 (0.00319703);70135 (0.00319703);70135 (0.00319703);70135 (0.003	63	rs4731606	0.0554474	No	2.18
	28 [rs445 (0.94887);rs548127829 (0.00395268)		rs445	0.94887	Yes	13.24
1.5	P (1-242792) (0.1541411-r-342790) (0.1541411-r-342793) (0.1541411-r-342794) (0.1541411-r-342794) (0.1541411-r-34794) (0.154141-r-34794)		rs342292	0.154444	No	3/4
-	rs972244 (0.812639);rs998102 (0.0545145);rs149992290 (0.0125646);rr4750282 (0.0092077);rr1723663 (0.0092077);rr1236170 (0.066567);rs11268677 (0.00666567);rs1126817 (0.0066567);rs1126817 (0.006657);rs1126817 (0.00667);rs1126817 (0.00667);rs1126817 (0.0067);rs1126817 (0.0077);rs1126817 (0.0077);rs1126817 (0.0077);rs1126817		PARIA	0.154141		2.00
1	00 (0:00086597);rs77928323 (0:00529341);rs56359210 (0:00529341);rs86273705 (0:00503443)	11	rs6972244	0.832639	Yes	4.26
1	11177710200 (U.496712)/259329052 (U.464712)/155150201 (U.0705727)	1	15/810260	0.464712	NO	3.52

		1			
	m453301 (0.14374);n4841132 (0.11884);n45581 (0.10886);n9992289 (0.08997];n4441138 (0.04125);n4240624 (0.064125);n983309 (0.05872)[n439989 (0.048434);n193155 (0.048434);n193155 (0.048434);n193155 (0.048434);n193155 (0.048434);n193157 (0.0483434);n193157 (0.04834344);n193157 (0.04834344);n193157 (0.04834344);n193157 (0.0483444);n193157 (0.04834344);n193157 (0.04834344);n193157 (0.04834344);n193157 (0.04834344);n193157 (0.04834344);n193157 (0.04834344);n193157 (0.04834344);n193157 (0.0483444);n193157 (0.				
3	(0.00597396);rt355555151 (0.00510897);rt36380 (0.0048865);rt1461729 (0.0048865);rt2126259 (0.0048865);rt34523847 (0.00461169);rt1783641 (0.00437323);rt35899262 (0.00374689);rt34597048	7	rs453301	0.14237/	2.9
	Inconsective sub-field and the section of the secti		199300	0.14237	
	n2322718 [0.0496493];rs148964304 [0.0496483];rs24847559 [0.0198417];rs17376255 [0.0198417];rs175561 [0.0198417];rs17561756 [0.0198417];rs17560076 [0.0198417];rs1760076 [0.0198417];rs				
	[0.0198437];rs141943259 (0.0198417];rs2163174 (0.0198417];rs2115805 (0.0198417];rs10089637 (0.0198417];rs57432684 (0.0198417];rs205968 (0.0198417];rs2059968 (0.0198417];rs205968 (0.0198417];rs2058 (0.0198417];rs2058 (0.0198417];rs2058 (0.0198417];rs2058 (0.0198417);rs2058 (0.0198417];rs2058 (0.0198417]				
	[00198417];rs19:991 [00198417];rs28490131 [00198417];rs112483 [00198417];rs104530 [00198417];rs104531 [00198417];rs104512 [00198417];rs104512 [00198417];rs124503 [00198417];rs12503 [00198417];rs125		a su esta esta esta esta esta esta esta esta	0.220-010	
3/	[0.0.198417];rs17376241 (0.0.198417];rs28612364 (0.0.198417];rs4733055 (0.0.198417];rs28566530 (0.0198417];rs175644 (0.0.198417] 	4	rs2322718	0.0494943	Yes 2.05
	n8176645 (0.741866);n657152 (0.0442211];n:544873 (0.0224468);n:543968 (0.0224468);n:643434 (0.0224468);n:615334 (0.022468);n:615334 (0.022468);n:61534 (0.022468);n:615334 (0.022468);n:615334 (0.022468);n:615334 (0.022468);n:615334 (0.022468);n:61534 (0.022468);n:6154 (0.022468);n:61534 (0.022468);n:61534 (0.022468);n:61534 (0.0				
31	[0.0.1798];;s9411377 [0.00703985];rs550057 [0.00328198];rs13292932 [0.0029771] =12247035 [1]	1	rs8176645	0.741866	Yes 13.40
3			rs4397793	0.999733	. Yes 8.25
31	[0.052543];U052133;[005224];U063224];U063224];U063224];U063224];U063243];U063243];U063243];U063243];U063243];U063244];U06344];U06	1	s rs7080386	0.17348	I No 3.04
31	n112254994 (0.250699)[xs73149121 (0.250142]]xs17113613 (0.17238]]xs57066921 (0.172128][xs62626301 (0.144022)		5 rs112254994	0.250699	No 2.6
	nz750866 (0.0612128);rs701834 (0.0608764);rs701835 (0.0604091);rs55646950 (0.0602876);rs3740489 (0.0406369);rs11190787 (0.040476);rs7903239 (0.0400618);rs11190786 (0.039955);rs7902510				
	[0.039623];n:2295716 (0.0271133];n=5792077 (0.02764);n=15571302 (0.026885);n=72243 (0.0268082];n=3919511 (0.026735);n=3740488 (0.0267157];n=3740488 (0.0266755);n=3740488 (0.0266755);n=374088 (0.0266755);n=374088 (0.0266755);n=374088 (0.0266755);n=374088 (0.0266755);n=374088 (0.0266755)				
31	0.0226657);rsf7812001(0.017655];rs751371(0.0179627);rs265095(0.017553);rs1570171(0.0161642);rs1184431(0.0162186);rs12552441(0.016273) 	3	rs750866	0.0612128	Yes 1.95
	in stand for a long of the ability of the		1371414500		
	r145124071 (0.0527457)*s1083540 (0.0372277)*s10835276 (0.0372277)*s2910887 (0.0372277)*s2111104 (0.0372277)*s293702 (0.0372277)*s4910886 (0.035945)*s4910889				
	[0.0259145];rs12290828 [0.0259145];rs35359151 [0.0259145];rs2284450 (0.0259145];rs2268168 [0.0259145];rs11031110 [0.0259145];rs4910880 [0.0259145];rs187657 [0.0259145];rs940013				
	[10.025945];rt4910891 [0.0259145];rt1085561 [0.0259145];rt10767845 [0.0180766];rt4910904 [0.0180766];rt2910904 [0.0180766];rt910904 [0.0180766];rt9100404 [0.018				
	[0.0126354]r;r4910888 [0.0126354]r;s1083568 (0.0126354]r;s28419002 (0.0094142];r1083554 [0.0094142]r;s10767811 (0.0094142]r;s10835561 (0.0094142]r;s10767811 (0.0094142]r;s1076781 (0.0094142]r;s1076781 (0.0094142]r;s1076781 (0.0094142]r;s10767811 (0.0094142]r;s10767811 (0.0094142]r;s10767811 (0.0094142]r;s10767811 (0.0094142]r;s10767811 (0.0094142]r;s10767811 (0.0094142]r;s1076781 (0.0094142]r;s1076781 (0.0094142]r;s1076781 (0.0094142]r;s1076781 (0.0094142]r;s107681 (0.				
	100034249);r1239118 (0.0034249);r3993240 (0.000797);r4910596 (0.0044371);r1080756 (0.0045371);r20179616 (0.0024371);r1083557 (0.00245371);r1444209	1			
	[10.00245371]; rs1149348 [0.00245371]; rs1083544 [0.0017615]; rs4910875 [0.0017615]; rs10835312 [0.0017615]; rs10835525 [0.0017615]; rs11149348 [0.00245371]; rs10835312 [0.0017615]; rs107615]; rs1				
	0.0017615/tra10767685 [0.0017615/tra57800556 [0.0017615/tr113141602 [0.0017615/tra13480 [0.0017615/tra1085223 [0.0012669]tr458571 [0.0012669]tr4585			0.053745	
4	n1064074 (0.629432);n1862213 (0.166699);n1862214 (0.0695302);n197081 (0.0695302);n1970		5 rs11054074	0.62943	2 Yes 3.64
4	n5012419 (0.206488);ns10841121 (0.124143);ns10841120 (0.124143);ns5012422 (0.124143);ns7484729 (0.124143);ns5012420 (0.0747912);ns5012421 (0.0747912);ns10734683 (0.0747912);ns10841122 [0.0273146]		rs5012419	0.206486	à Yes 2.8
	rs1127787 (0.05/3356);x;7954129 (0.0510991);x510919199 (0.0510991);rs51915366 (0.0510991);rs71452063 (0.0510991);x511049110 (0.0510991);rs11049111 (0.051091);rs11049111 (0.051091);rs11049111 (0.051091);rs11049111 (0.0510991);rs11049111 (0.051091);rs11049111 (0.051091);rs11049111 (0.0510991);rs11049111 (0.051091);rs11049111 (0.051091);rs1049111 (0.051091);rs1049111 (0.051091);rs11049111 (0.051091);rs1049111 (0.051091);rs10400;rs10400;rs10400;rs10400;rs10400;rs10400;rs10400;rs10400;				
	[International international internationa				
4	(0.0189732)	2	rs1127787	0.0525356	Yes 2.2
	rx35024086 (0.234905);rx5015599 (0.234905);rx1006409 (0.177981);rx10771511 (0.177981);rx372063926 (0.039801);rx7969607 (0.0107746);rx34365857 (0.0046388);rx11050173 (0.00448668);rx11050176	Þ			
	[UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU				
	[0.00118251]/m3702509 [0.00118251]/m16934135 [0.00118251]/m7970601 [0.00118251]/m7901188 [0.00118251]/m11050189 [0.00118251]/m7967339 [0.00118251]/m57146951 [0.00118251]/m97446951 [0.00118251]/m79674278	7			
	[0.00118251];rs12866505 [0.00118251];rs11050188 [0.00118251];rs1050188 [0.00118251];rs1250188 [0.00118251];rs128652 [0.00118251];rs1	1			
4	[10.0011325];rs57803026 (0.000957977];rs1105193 (0.000957977);rs783721 (0.000957977);rs10843377 [0.000957977];rs6487804 (0.000922181];rs5782510 [0.000922181];rs12228468 [0.00092181];rs1989478 (0.000922181];rs282182 (0.0009512181)	5	7 rs35024086	0.234905	3 No 2.97
4	n+2889979 (0.175886);ns10850362 (0.175886);ns3742028 (0.175886);ns12426673 (0.175886);ns10850589 (0.127939);ns10774928 (0.127939)		5 rs4388979	0.175886	No 2.6
4	1511044851 (0.5%C572) 711551899 (1)		rs11064881 rs11553699	0.96257	1 Yes 4.7
4		1	2 rs1760940	0.93733	Yes 4.63
51	10.0281997);rs1004572 (0.0281997);rs72698720 (0.0148562);rs4805998 (0.0101036)	1	rs72698722	0.559123	Yes 3.40
5	rz289713 (0.409307);r:7499892 (0.140793);r:11076175 (0.11652);r:7203984 (0.0688728);r:8045855 (0.0568884);r:12720922 (0.0389727);r:289714 (0.0224739);r:12730988 (0.0223349);r:1864163 (0.021326);r:7203984 (0.0688728);r:7203984 (0.0680278);r:7203984 (0.0688728);r:7203984 (0.0680278);r:7203984 (0.068078);r:7203984 (0.0680278);r:7203984 (0.0680278);r:7203984 (0.0680278);r:7203984 (0.0680278);r:7203984 (0.0680278);r:7203984 (0.0680278);r:7203984 (0.0680278);r:7203984 (0.0680278);r:7203984 (0.0680278);r:7203984 (0.0680278);r:720	14	rs289713	0.409307	Yes 13.31
	13889940 (UV)3891 (3):1444.0000 (3):1444.0000 (3):1444.0000 (3):1440.0000 (3):140.0000 (3):140.0000 (3):141.3000 (3):140.00000 (3):140.00000 (3):140.00000 (3):140.00000 (3):1				
	[0.026087](r;72828960 (0.020863)];r;17205907 (0.020963)];r;55845800 (0.020963]];r;55793748 [0.0209637];r;12258817];r;1225817] (0.0168173)];r;5519325 [0.0168173];r;1219977 [0.0168173]];r;5519325 [0.0168173];r;1219977 [0.0168173]];r;5519325 [0.0168173]];r;1219977 [0.0168173]];r;5519325 [0.0168173]];r;1219977 [0.0168173]];r;5519325 [0.0168173]];r;1219977 [0.0168173]];r;5519325 [0.0168173]];r;1219977 [0.0168173]];r;5519325 [0.0168173]];r;1219977 [0.0168173]];r;5519375 [0.0168173]];r;1219977 [0.0168173]];r;5519325 [0.0168173]];r;1219977 [0.0168173]];r;121977 [0.0168173]];r;551937 [0.0168173]];r;121977 [0.0168173]];r;121977 [0.0168173]];r;121977 [0.0168173]];r;1219977 [0.0168173]];r;121977 [0.0168173]];r;1219977 [0.0168173]];r;1219977 [0.0168173]];r;1219977 [0.0168173]];r;1219977 [0.0168173]];r;1219977 [0.0168173]];r;1219977 [0.0168173]];r;1219977 [0.0168173]];r;1219977 [0.0168173]];r;121997 [0.01573]];r;12197 [0.01573]];r;121997 [0.01573]];r;12197 [0.01573]];r;1219000[0.01573]];r;12197 [0.				
	0.0135204);rrs77826279 (0.0135204);rrs140209629 (0.0135204);rs79959344 (0.0135204);rs11201687 (0.0135204);rs5940735 (0.0135204);rs737292797 (0.0135204);rs112031627 (0.0135204);rs111436543			0.0703670	
	[[07123548][J21596468,[07176134][J212323,13,4,07166145][J212441,2 [07069145][J21235426 [070769145][J273366 [070769145][J21256423 [070709146]]	-	153882402	0.0793676	15 2.34
	1967556 (0.0877894)~200309755 (0.0751566)~8065570 (0.0183097)~55709487 (0.012484)~2019 (0.012484)~2731096 (0.012484)~2731096 (0.012484)~211000~21100~2100~21100~210~21				
	0.0124434);rs139745191 (0.0124434);rs22766 (0.0124434);rs6505121 (0.0124434);rs6505127 (0.0124434);rs6505127 (0.0124757);rs771428 (0.00647575);rs134521 (0.00647575);rs14521 (0.00647575);rs14521 (0.0067575);rs14521 (0.0007575);rs14521 (0.0007575);rs14521 (0.0007575				
	[10.0847575];rr3208675 (0.0847575];rr12586150 (0.0847575);rr2586150 (0.0847575);rr258952 (0.0847575);rr459814 (0.0847575);rr4595309 (0.0847575);rr261111 (0.0847575);rr4595125 (0.084755);rr4595125 (0.0847575);rr4595125 (0.0847575);rr4595125 (0				
	0.00847575);rs6505129 (0.00847575);rs650549 (0.00847575);rs7206552 (0.00847575);rs6650558 (0.00847575);rs690520 (0.00847575);rs690542 (0.00847575);rs691520 (0.00847575);rs690542 (0.00847575);rs691520 (0.0084755);rs691520 (0.0084755);rs600520 (0.0084755);rs60050000000000000000000000000000000000				
	[0.00847575];rs916533 [0.00847575];rs12452156 [0.00847575];rs586700 [0.00847575];rs2558627 [0.00847575];rs11652977 [0.00847575];rs5819869 [0.00578633];rs483399 [0.00578633];rs111550930				
	[10.00578633];r11188450 [0.00578633];rr2102.05 (0.00578633];r1396344 (0.00578633];r13154051 [0.00578633];r13174008 (0.00578633];r1359629 (0.00578633];r131649 (0.00578633);r131649 (0.00578633);r13169 (0.00578633);r13169 (0.00578633);r13169 (0.00578633);r13169 (0.00578633);r13169 (0.				
	10.00578633];rs11447326 (0.00578633];rs2138653 (0.00578633];rs7138829 (0.00578633];rs1046576 (0.00578633];rs2586137 (0.00578633];rs2586153 (0.00578633);rs2586153 (0.00578633);rs25863 (0.00578633);rs25803 (0.00578633);rs25803 (0.00578633);rs25803 (0.00578633);rs25803				
	[0.00578633];rs2946741 [0.00578633];rs12936932 [0.00578633];rs4419109 (0.00578633];rs764092 [0.00578633];rs12947124 (0.00578633];rs9897945 (0.00578633];rs3807549 (0.00578633];rs5807549 [0.00578633];rs5807549 [0.00578633];rs5807540 [0.00578633];rs5807540 [0.00578633];rs5807540 [0.00578633];rs5807540 [0.00578633];rs5807540 [0.00578633];rs5807540 [0.00578633];rs58075400[0.00578633];rs58075800[0.00578633];rs58075800[0.00578633];rs58075800[0.00578633];rs58075800[0.00578633];rs58075800[0.00578633];rs5807800[0.00578633];rs5807800[0.00578633];rs5807800[0.00578633];rs5807800[0.00578633];rs5807800[0.00578633];rs5807800[0.00578633];rs5807800[0.00578633];rs5800[0.005786300[0.00578633];rs5800[0.00578633];rs5800[0.00578633];rs5800[0.005786				
	[10.0039932];re2841.4594 [0.00399523];rs16434 (0.00395923];rs4891.759 [0.00395923];rr575282862 [0.00395923];rr5205240 [0.00395923];rr570644 [0.00395923];rr570644 [0.00395923];rr570640 [0.00395923];rr5706400 [0.00395923];rr5076400 [0.0039523];rr5076400 [0.00300];rr5076400 [0.00300];rr507640000000];rr5076400000000000000000000000000000000000				
	[0.00395923];r;213885(2)[0.00395923];r;7222804 (0.00395923];r;8081584 (0.00395923];r;901247 [0.00395923];r;11651639 (0.00395923];r;8076739 (0.00395923];r;8076739 (0.00395923);r;8076739 (0.00395923);r;8076730 (0.00395923);r;8076700 (0.00395923);r;807600000000000000000000000000000000000	17	m1067556	0.0877994	2.26
	n:8067252 (0.597943);n:75637630 (0.01935);n:5047660 (0.01935);n:502070648 (0.01935);n:502070645 (0.01935);n:127529210 (0.01935);n:79461387 (0.01935);n:50207651 (0.0158648);n:50207652				
	[0.015648];ri13934718 [0.0158648];ri1336578 [0.0158648];ri13365680 [0.0151834];rr223535 (0.0130299];re2070644 [0.0130299];re62070643 [0.013029];rr3961589 [0.0083514];rs2585686 [0.007244];rr2123535 (0.0130299];re2070643 [0.013029];rr3961586 [0.007244];rr2123535 (0.0130299];re2070643 [0.013029];rr3961586 [0.007244];rr2123535 (0.0130299];re2070643 [0.013029];rr3961586 [0.007244];rr2123535 (0.0130299];re2070643 [0.013029];rr3961586 [0.007244];rr2123535 (0.015844];rr2123555 (0.0055419];rr216572 [0.00055419];rr216572 [0.00055419];rr21572 [0.00055419];rr21572 [0.00055419];rr21572 [0.00055419];rr216572 [0.00055419];rr216572 [0.00055419];rr216572 [0.00055419];rr216572 [0.00055419];rr216572 [0.00055419];rr216572 [0.00055419];rr216572 [0.00055419];rr21572 [0.00055419];rr21572 [0.0005540];rr21572 [0.0005540];rr21572 [0.0005540];rr21572	8			
	[0.00499773];rs4506963 [0.00499773];rs4506963 [0.004970357];rs62070637 [0.00425912];rs45070631 [0.00425912];rs12051880 [0.003643];rs6505216 [0.00354708];rs6505216 [0.0031051];rs62070626 [0.0031051];rs620706				
5	(0.00281402)	4	rs8067252	0.597943	Yes 13.22
5	(11/850455 (1)	<u> </u>	rs17850455	· · · · · ·	Yes 10.23
	rs11082396 (0.165795);rs141236451 (0.0571819);rs77261872 (0.0544208);rs945167 (0.0439348);rs9945359 (0.0439348);rs19944794 (0.0439348);rs74260365 (0.0439348);rs75763843				
	[0.0253888];rs17841683 [0.0253888];rs24497883 [0.0200525];rs14997723 [0.0200525];rs188050966 [0.0197295];rs947269 [0.02014713];rs7534229 [0.0153466];rs11082383 [0.01949];rs12454829				
5	[0.0119491];rs12456054 (0.0119491];rs12606438 (0.00931276];rs11082384 (0.00931276];rs4586544 (0.00931276];rs1082385 (0.00931276];rs80227818 (0.00931276];rs80929 (0.00726519];rs28547892 [0.00726519];rs1537328 (0.00726519];rs10502831 (0.00726519];rs28782011 (0.00726519];rs12456660 (0.00726519];rs1874778 (0.00726519)	3	rs11082396	0.165795	No 2.70
	n:28665408 (0.57391);rs12604128 (0.0596524);rs34594414 (0.0596524);rs1788229 (0.0256175);rs7239671 (0.0183409);rs184875178 (0.0183409);rs1790931 (0.0183409);rs790931 (0.018409);rs790931 (0.018409				
	[0.00946547];rs9950174 (0.00946547];rs198094 (0.00682305];rs1790576 (0.00682305];rs1790947 [0.00682305];rs724422 (0.00682305];rs1788232 (0.00682305];rs1615504 (0.00682305];rs18099412			1000	S 20
5	[INU09642992][T517909963 [INU992946][T51790946 (ID00492946]	2	1128963408	0.57393	1es 3.49
	rs112743753 (0.0834059);rs12986002 (0.0834059);rs34418036 (0.0642043);rs35581531 (0.0642043);rs355873901 (0.0642043);rs556119352 (0.0527062);rs11669351				
	[0.0141434];rs3764640 [0.0141434];rs741766 [0.0141434];rs224246 [0.013172];rs12976079 [0.00951805];rs11879091 [0.0085886];rs1312487089 [0.0248874];rs111287089 [0.02487453 [0.02487453];rs111287089 [0.0248874];rs111287089 [0.0248874];rs111287089 [0.0248874];rs111287089 [0.0248874];rs111287089 [0.0248874];rs111287089 [0.0248874];rs111287089 [0.0248874];rs111287089 [0.0248874];rs111287089 [0.02487453];rs111287089 [0.02487453];rs111287089 [0.02487453];rs111287089 [0.0248874];rs111287089 [0.0248874];rs111287089 [0.0248874];rs111287089 [0.0248874];rs111287089 [0.02487453];rs111287089 [0.0248745];rs111287089 [0.02487450];rs111287089 [0.02487450];rs111287089 [0.02487450];rs111287089 [0.02487450];rs11128708000];rs1111287090 [0.024874500];rs11108000];rs11108000[0.02487000];rs11108000[0.02487000];rs11108000[0.0248700000000];rs11108000[0.024874000000000];rs111080000[0.02487000000000]				
	[0.00794853];ts1683584 (0.00794853];xs1637996 (0.00649339];rs238584 (0.00649339];rs4807313 (0.00649339);rs758218 (0.00649339);rs880592 (0.00649339);rs238585 (0.00649339);rs8105235 (0.00649339);rs8105235 (0.00649339);rs10679314 (0.003167631);rs11668974 (0.003167631);rs11678031);rs11668974 (0.003167631);rs11668974 (0.003167631);rs11668974 (0.003167631);rs11678031);rs11678031				
5	[0.00331676];rs7258402 (0.00331676];rs11670089 (0.00331676];rs8113305 (0.00306895)	4	rs112743753	0.0834059	Yes 2.75
-					11.96
	15142158911 (0.0490098);rs5511720 (0.0490098);rs57217136 (0.0345215);rs114846699 (0.0345215);rs17248727 (0.0345215);rs17015024 (0.0244057);rs18294113 (0.0244057);rs142130958 (0.0244057);rs14829658 (0.0244057);rs16194703 (0.0244057);rs13015011 (0.0244057);rs10412048 (0.0244057);rs10412048 (0.0244057);rs10412048 (0.0244057);rs10412112				
	[0.0244057];rt145960625 (0.021625];rt143020224 (0.0205489];rt14821903 (0.0205489];rt147985405 (0.0205489];rt115594766 (0.0205489];rt15997232 (0.0205489];rt112107114 0.005489];rt118175288 (0.0205489];rt15288(0.0205489];rt114821803 (0.0205489);rt11722275 (0.0005489);rt1594766 (0.0205489);rt1594766 (0.0205489);rt1172275 (0.0005489);rt1172275 (0.0005489);rt1172757 (0.0005489);rt1177577 (0.0005489);rt1177577 (0.0005489);rt117577 (0.0005489);rt117757 (0.0005489);rt117577 (0.0005489);rt117577 (0.0005489);rt1177577 (0.0005489);rt1177577 (0.0005489);rt1177577 (0.0005489);rt1177577 (0.0005489);rt117577 (0.0005489);rt117577 (0.0005489);rt117577 (0.0005489);rt117577 (0.0005489);rt117577 (0.0005489);rt115777 (0.0005489);rt11577 (0.0005489);rt117577 (0.0005489);rt117777 (0.0005489);rt117577 (0.0005489);rt11757 (0.0005489);rt11557 (0.0005489);rt11577 (0.00054				
	[0.0205489];rs77265569 [0.0183935];rs1123874545 [0.0173175];rs112898275 [0.0173175];rs125289821 [0.0173175];rs11255209 [0.0173175];rs112736558 [0.0173175];rs112374558 [0.0173175];rs11237458 [0.0173175];rs112347458 [0.0173175];rs112347458 [0.0173175];rs112347458 [0.0173175];rs112347458 [0.0173175];rs112347458 [0.0173175];rs112347458 [0.0173175];rs112347458 [0.0173175];rs11247458 [0.0173175];rs11248 [0.0173175];rs11248 [0.0173175];rs11248 [0.0173175];rs11248 [0.0173175];rs11248 [0.0173175];rs11248 [0.0173175];rs11248 [0.0173175];rs11248 [0.0173				
6	0.00.173175);rs189853865 (0.0159397);rs73015021 (0.0146076);rs151113958 (0.0146076);rs56125973 (0.0146076);rs145329186 (0.0123331) rs139891465 (0.996324)	4	rs142158911 rs139891465	0.0490098	No 2.05
	rs4808075 (0.105709);rs10419197 (0.104948);rs56009439 (0.104509);rs13343778 (0.0980371);rs55924783 (0.0738152);rs4808616 (0.07383522);rs113299211 (0.0729241);rs67397200	202			
6	provi zanneg, naziven za (n. u. n. naziveni pri neusovi na (n. u. n. naziveni pri nauka naziveni (n. 10. 14 mor); nzaka 7 stora (n. 10. 101 ang); na 14 mor); nzaka 7 stora (n. 10. 101 ang); na 14 mor); nzaka 7 stora (n. 10. 101 ang); na 14 mor);	-	rs35586766	0.105709 0.677972	No 2.41 No 3.89
	nz304128 (0.165505);n58847837 (0.0755947);n57004962 (0.0755947);n57504626 (0.0651692);n156906185 (0.0651692);n12610185 (0.0651692);n12610191 (0.0651692);n12600212 (0.0651692);n126300496 (0.055203);n73004975 (0.04)9273];n73004959 (0.0352423) (0.0313547);n12608729 (0.0271428);n73004926 (0.0254005);n73004975 (0.04)9273];n73004959 (0.0352423) (0.0313547);n12608729 (0.0271428);n73004926 (0.0254005);n73004975 (0.04)9273];n73004959 (0.0352423) (0.0313547);n12608729 (0.0271428);n73004926 (0.0254005);n73004927 (0.0352423) (0.0352423) (0.0313547);n12608729 (0.0271428);n73004926 (0.0254005);n73004923 (0.0254005);n73004957 (0.04)9273];n573004959 (0.0352423) (0.0313547);n12608729 (0.0271428);n73004926 (0.0254005);n73004923 (0.0254005);n73004923 (0.025405);n73004925 (0.025405);n73004926 (0				
6	0.0220916):rs73004951 (0.0203828):rs73004957 (0.018664):rs17217098 (0.018664)	1	rs2304128	0.165505	Yes 2.67
- 6	rs892090 (0.234067);rs1613662 (0.234067);rs1654425 (0.153324);rs12609736 (0.12433);rs61658003 (0.0856496);rs1671152 (0.0102461);rs4020012 (0.00951049);rs1654444 (0.00755425);rs1671219	<u> </u>	124/02023	0.780055	3.94
	[0.00755425];rs1654442 (0.00755425];rs165445 (0.00755425];rs1671220 (0.00755425];rs1671226 (0.00712321];rs775224 (0.0024392];rs1654442 (0.0024392];rs160713 (0.000544573];rs169942				
6	0.00245521);rs1654447 (0.00239388)	2	5 rs892090	0.234067	No 3.1
6	n:8074896 (0.999241) n:156355 (0.943727);r:156333 (0.0064512)		rs6074896 rs156355	0.999241	No 6.55 7 Yes 4.64
6	n4814778 (0.462974);/s6136489 (0.262138);/s6112072 (0.252192) m61705873 (0.3500801-m6105853 (0.1197032)-m8131270 (0.0623260)-m754566 (0.655731)6131396 (0.05565553147354 (0.055604)1556556 (0.1197032)1556556 (0.1197032)1556556 (0.1197032)1556556 (0.1197032)		rs4814778	0.462974	No 3.3
	[0.037704];rs94853 (0.050043];rs11697789 (0.034676);rs3790301 (0.0346008];rs111753 (0.048385];rs6136255 (0.0348084];rs91000 (0.0347891];rs982121 (0.0344711];rs982120				
6	[(0.0344689)]/s10978655 (0.0341381)/s16136244 (0.028315) sr56599088 (0.687836]/sr57469378 (0.206419]/s186228279 (0.0880411)	1	rs6105852 rs76599088	0.120099	Yes 2.50 3 Yes 3.7
	rs1815 (0.137417);rs2245946 (0.137417);rs245947 (0.137417);rs5759176 (0.137417);rs737802 (0.0755889);rs2076079 (0.0755889);rs2066910 (0.0755889);rs6003067 (0.0755889);rs2235317		es13815	0 12741	/ No 2.6
6	rs140522 [0.116625];rs12148 [0.132648];rs131814 (0.0996661];rs2782 (0.0996661];rs131808 [0.0996661];rs470119 (0.0750394];rs140523 [0.0750394];rs131801 (0.0750394]		l rs140522	0.316625	No 3.30
1 6	NPS1012417 (0 NU24NPS1012416 (0 365361)	1	trs3002417	0 610746	4100 1 337

0.000071/j.0474444 00004481/j.0476474 00004481/j.0476474 00004481/j.0476474 0.000071/j.0476444 00004481/j.0476474 00004481/j.0476474 00004481/j.0476474 0.000071/j.0476445 00004481/j.0476474 00004481/j.0476474 00004481/j.0476474 0.000471/j.047644 00004481/j.0476474 00004481/j.0476474 000074861/j.0476474 000074861/j.04767476 0.000471/j.047644 00004481/j.0416744 000074861/j.0476474 000074861/j.04767480/j.00074481/j.0407484 000074861/j.04767480/j.04074481/j.0407481/j.04074481/j.04074481/j.04074481/j.04074481/j.04074481/j.04074481/j.0407481/j.04074481/j.0407481/j.0	50 (117720303	0.11533 %=	200
n/1230638 (0 x07351):r452881 (0 c014X019):r492144 (0 044431):r177920 (0 15897):r28817 (0 c15897):r28817 (0 c15897):r48817 (0 c15897);r48817 (0 c15897);r488178 (0 c15897);r488178 (0 c15897);r488178 (0 c15897);r4	85 or 7150016 c = 10000	0.00735) Yes 0.22740 Per	13.02

S2. Table 3. Overlap between mtDNA-CN loci and MT-eQTLs (Ali et al., 2019)

rsid	chr	pos	ref	alt	Nuclear Gene	Nuclear Gene Annotation	mtDNA-CN GWAS Beta	mtDNA-CN GWAS P-value	MT-eQTL Tissue	MT-eQTL Gene	MT-eQTL GWAS Beta	MT-eQTL GWAS P-value	Concordant sign between mtDNA-CN and MT-eQTL
rs1108514	7 19	5711930	С	Т	LONP1	NM_001276479:exon5:c.G530A:p.R177C	0.0756	1.54E-95	Whole Blood	MTCO2	NA	NA	NA
										MTCYB	NA	NA	NA
									Whole Blood	MTCO2	-0.028	7.53E-31	No
									Whole blood	MTCO3	-0.028	1.23E-25	No
										MTND1	0.015	2.34E-17	Yes
									Skin (not sup exposed)	MTCO2	NA	NA	NA
									Skiir (not suir exposed)	MTCO3	-0.027	2.84E-12	No
										MTND4L	NA	NA	NA
**2204603	1 7	45149667			TRRCA	NM 100122:00002:0 C170Tip RE7	0.0181	C 115 11		MTRNR2	NA	NA	NA
152304033	Ϋ́	43148007	"	^	75404	NW_199122.ex012.c.c1701.p.r57c	0.0181	5.110-11	Lymphoblastoid cell lines	MTCO2	NA	NA	NA
									cymphobiascold cell lines	MTCO3	NA	NA	NA
										MTND1	NA	NA	NA
									MTND4 -0.029 2.35E-18		2.35E-18	No	
										MTCO3	NA	NA	NA
									Subrutaneous as	Subcutaneous adinose	MTND1	NA	NA
									Subcutaneous adipose	MTND5	NA	NA	NA
										MTND6	NA	NA	NA
									Subrutaneous Adinose	MTND1	-0.032	2.48E-23	Yes
rs1127787	7 12	27867727	G	Α	MRPS35	NM_021821:exon2:c.G127A:p.G43R	-0.0159	1.49E-08	Subcutarieous Aulpose	MTND4	-0.022	2.20E-12	Yes
									Skin (not sun exposed)	MTND1	-0.022	7.72E-12	Yes
										MTRNR2	NA	NA	NA
rr6216522	6.2	66979220	T		DNDT1	intronic	0.0085	5 475.05	Whole Blood	MTND5	NA	NA	NA
150210522	٩ ۴	33676333	11	1	110/12	merome	-0.0005	3.472-03		MTND6	NA	NA	NA
									Lymphoblastoid cell lines	MTCO3	-0.018	2.79E-08	Yes
re1020513	0 2	44151572			IRPPRC	intronic	-0.0084	1 175-04	lymphoblastoid cell lines	MTCO2	NA	NA	NA
34020313	٦ 1	44131372	1	~	LINFTHE	madnic	-0.0084	1.170-04	cymphobiastold cell lines	MTND1	0.023	1.23E-10	No

S2. Table 4. DEPICT gene prioritization results

SNPs in Locus	# Genes in Locus	Locus Coordinates	GWAS P-value	Ensembl Gene ID	Gene Symbol	Included in GeneMANIA Analysis	DEPICT P-value (Nominal	DEPICT FDR	Gene Closest to Lead SNP	Top cis-eOTL (Westra et al. 2014: Nature Genetics)
rs55955211	4	chr22:50528308-50656045	2.53E-08	ENSG0000073169	SELO	Yes	3.07E-08	<=0.01	TRUE	rs2272847
rs465299	1	chr9:4860454-4885917	1.31E-08	ENSG00000243754	RP11-125K10.4	No	1.29E-07	<=0.01	TRUE	-
rs116614177	15	chr2:73169165-74007284	2.17E-09	ENSG00000135632	SMYD5	Yes	2.81E-06	<=0.01	FALSE	rs2421547
rs1760940	1	chr14:20937113-20945253	5.20E-27	ENSG00000198805	PNP	Yes	9.68E-06	<=0.01	TRUE	rs1713459
rs11697158;r s6105852;rs7 6599088	4	chr20:17922241-18039832	1.41E-25	ENSG0000089006	SNX5	Yes	1.09E-05	<=0.01	TRUE	rs6132012
rs55955211	4	chr22:50528308-50656045	2.53E-08	ENSG00000170638	TRABD	Yes	1.36E-05	<=0.01	FALSE	rs732710
rs12780745;r s1408343	6	chr10:102672720-102790890	6.26E-28	ENSG0000055950	MRPL43	Yes	1.48E-05	<=0.01	FALSE	rs2863095
rs59791256	21	chr10:103113820-104192418	3.60E-10	ENSG00000148840	PPRC1	Yes	2.21E-05	<=0.01	FALSE	rs10736156
rs116614177	15	chr2:73169165-74007284	2.17E-09	ENSG00000144048	DUSP11	Yes	2.30E-05	<=0.01	FALSE	-
rs6792510	20	chr3:48701364-49378145	1.44E-08	ENSG00000178537	SLC25A20	Yes	4.76E-05	<=0.01	FALSE	
rs117437695; rs3097889	12	chr19:5720688-6110664	2.54E-18	ENSG00000141994	DUS3L	Yes	4.88E-05	<=0.01	FALSE	-
rs2304693	5	chr7:45002261-45151646	5.11E-11	ENSG00000136270	TBRG4	Yes	5.04E-05	<=0.01	TRUE	rs3757573;rs4724362;rs2289373
rs59791256	21	chr10:103113820-104192418	3.60E-10	ENSG00000166197	NOLC1	Yes	8.17E-05	<=0.01	FALSE	-

rs59791256	21	chr10:103113820-104192418	3.60E-10	ENSG00000166197	NOLC1	Yes	8.17E-05	<=0.01	FALSE	
rs12780745;r s1408343	6	chr10:102672720-102790890	6.26E-28	ENSG00000107815	C10orf2	Yes	8.37E-05	<=0.01	FALSE	rs927302
rs12451698;r s3889402	10	chr17:18012020-18317694	2.60E-14	ENSG00000177731	FLII	Yes	1.02E-04	<=0.01	FALSE	rs8065874
rs10407593;r s11085147;rs 9636179	7	chr19:5558178-5720463	1.54E-95	ENSG00000196365	LONP1	Yes	1.59E-04	<=0.01	TRUE	rs7256359
rs6792510	20	chr3:48701364-49378145	1.44E-08	ENSG00000172053	QARS	Yes	2.57E-04	<=0.01	FALSE	rs11706052
rs2304128	12	chr19:19366456-19791761	9.16E-09	ENSG00000105726	ATP13A1	Yes	2.75E-04	<=0.01	FALSE	rs2304130
rs59791256	21	chr10:103113820-104192418	3.60E-10	ENSG00000077150	NFKB2	Yes	3.09E-04	<=0.01	TRUE	
rs12451698;r s3889402	10	chr17:18012020-18317694	2.60E-14	ENSG00000176974	SHMT1	Yes	3.41E-04	<=0.01	FALSE	rs2168781
rs139891465; rs35586766;r s56069439;rs 7254318	8	chr19:17360838-17453539	2.30E-32	ENSG00000130312	MRPL34	Yes	3.84E-04	<=0.01	FALSE	rs8100448
rs116614177	15	chr2:73169165-74007284	2.17E-09	ENSG00000230002	ALMS1-IT1	No	4.28E-04	<=0.01	FALSE	
rs111870993; rs117263028; rs117821325; rs145707459; rs56052501;r s7896518;rs7 916282	3	chr10:64893050-65384883	9.53E-99	ENSG0000148572	NRBF2	Yes	5.26E-04	<=0.01	TRUE	
rs148308452	10	chr12:122277433-122907179	3.70E-09	ENSG00000175727	MLXIP	Yes	6.21E-04	<=0.01	FALSE	
rs12148	4	chr22:50946645-50971009	1.32E-10	ENSG0000025708	TYMP	Yes	7.13E-04	<=0.01	FALSE	rs140522;rs140522;rs2341010
s9804982	4	chr12:122064455-122232261	1.45E-43	ENSG00000139725	RHOF	Yes	8.25E-04	<=0.01	TRUE	rs11043194
rs342293	1	chr7:106297211-106301442	1.05E-40	ENSG00000166169	C7orf74	Yes	9.15E-04	<=0.01	TRUE	
rs13084580	6	chr3:38887260-39234087	2.19E-13	ENSG00000144655	CSRNP1	Yes	1.03E-03	<=0.01	TRUE	rs3732383
rs1127787	1	chr12:27863706-27909228	1.49E-08	ENSG0000061794	MRPS35	Yes	1.04E-03	<=0.01	TRUE	rs10771360
rs59791256	21	chr10:103113820-104192418	3.60E-10	ENSG00000166189	HPS6	Yes	1.07E-03	<=0.01	FALSE	rs17771448
rs13088724	3	chr3:179040779-179169378	7.70E-12	ENSG00000121864	ZNF639	Yes	1.08E-03	<=0.01	FALSE	
rs8067252	3	chr17:29158988-29286340	3.58E-08	ENSG00000172171	C17orf42	Yes	1.10E-03	<=0.01	FALSE	
rs2304128	12	chr19:19366456-19791761	9.16E-09	ENSG0000089639	GMIP	Yes	1.22E-03	<=0.01	FALSE	rs1476459
rs2245946	2	chr22:43506754-43539400	9.38E-45	ENSG00000100294	MCAT	Yes	1.29E-03	<=0.01	TRUE	-
rs139891465; rs35586766;r s56069439;rs 7254318	8	chr19:17360838-17453539	2.30E-32	ENSG00000130299	GTPBP3	Yes	1.31E-03	<=0.01	FALSE	rs3826700;rs7247558
rs2304128	12	chr19:19366456-19791761	9.16E-09	ENSG00000129933	MAU2	Yes	1.34E-03	<=0.01	FALSE	rs2301668
rs6792510	20	chr3:48701364-49378145	1.44E-08	ENSG00000177479	ARIH2	Yes	1.54E-03	<0.05	FALSE	rs7628719
rs7223593	1	chr17:17991239-18011285	4.79E-08	ENSG00000108591	DRG2	Yes	1.73E-03	<0.05	TRUE	rs854791
rs2304693	5	chr7:45002261-45151646	5.11E-11	ENSG00000232956	SNHG15	No	1.87E-03	<0.05	FALSE	
rs112743753	2	chr19:984328-1009731	4.79E-08	ENSG0000065268	WDR18	Yes	1.98E-03	<0.05	FALSE	rs4806884
rs34243225;r s6959832	3	chr7:135046547-135378166	2.10E-23	ENSG00000155561	NUP205	Yes	2.00E-03	<0.05	TRUE	rs13241136
rs12247015;r s186832534;r s2790203	4	chr10:59951278-60158981	1.28E-55	ENSG00000108064	TFAM	Yes	2.21E-03	<0.05	TRUE	rs10826176
rs10749636	1	chr1:248020501-248041507	5.43E-10	ENSG00000162722	TRIM58	Yes	2.26E-03	<0.05	TRUE	rs10788730
rs12426673	3	chr12:109460894-109531436	4.03E-11	ENSG00000189046	ALKBH2	Yes	2.44E-03	<0.05	FALSE	rs246085
rs12780745;r s1408343	6	chr10:102672720-102790890	6.26E-28	ENSG00000119906	FAM178A	Yes	2.46E-03	<0.05	TRUE	rs10883567
rs17850455	1	chr17:62473904-62493184	1.81E-18	ENSG00000256525	POLG2	Yes	2.51E-03	<0.05	TRUE	
rs6792510	20	chr3:48701364-49378145	1.44E-08	ENSG00000185909	KLHDC8B	Yes	2.53E-03	<0.05	FALSE	rs11706189
rs139891465; rs35586766;r s56069439;rs 7254318	8	chr19:17360838-17453539	2.30E-32	ENSG00000160117	ANKLE1	Yes	2.56E-03	<0.05	TRUE	rs9676419
rs11553699;r s9804982	4	chr12:122064455-122232261	1.45E-43	ENSG00000182500	ORAI1	Yes	3.06E-03	<0.05	FALSE	rs12308869
rs59791256	21	chr10:103113820-104192418	3.60E-10	ENSG00000107833	NPM3	Yes	3.18E-03	<0.05	FALSE	rs2305191
rs10407593;r s11085147;rs 9636179	7	chr19:5558178-5720463	1.54E-95	ENSG00000174917	C19orf70	Yes	3.34E-03	<0.05	TRUE	-

rs78909033	2	chr2:241505221-241557122	1.00E-11	ENSG00000142327	RNPEPL1	Yes	3.54E-03	<0.05	FALSE	rs4676430
rs11553699;r s9804982	4	chr12:122064455-122232261	1.45E-43	ENSG00000188735	TMEM120B	Yes	3.69E-03	<0.05	TRUE	-
rs11697158;r s6105852;rs7 6599088	4	chr20:17922241-18039832	1.41E-25	ENSG00000218902	PTMAP3	No	4.34E-03	<0.05	FALSE	-
rs10407593;r s11085147;rs 9636179	7	chr19:5558178-5720463	1.54E-95	ENSG00000130254	SAFB2	Yes	4.38E-03	<0.05	FALSE	rs639858;rs708691
rs59791256	21	chr10:103113820-104192418	3.60E-10	ENSG00000107874	CUEDC2	Yes	4.54E-03	<0.05	FALSE	rs11191274
rs6792510	20	chr3:48701364-49378145	1.44E-08	ENSG00000172046	USP19	Yes	4.80E-03	<0.05	FALSE	
rs10407593;r s11085147;rs 9636179	7	chr19:5558178-5720463	1.54E-95	ENSG00000160633	SAFB	Yes	4.82E-03	<0.05	FALSE	rs8102642
rs3766744	2	chr1:11994262-12073571	2.91E-17	ENSG00000116688	MFN2	Yes	5.06E-03	<0.05	TRUE	rs873458
rs1613662	3	chr19:55476438-55580914	3.90E-09	ENSG0000088053	GP6	Yes	5.15E-03	<0.05	TRUE	rs17836542
rs13084580	6	chr3:38887260-39234087	2.19E-13	ENSG00000114742	WDR48	Yes	5.33E-03	<0.05	FALSE	rs3736573
rs11064881	3	chr12:119825792-120315095	2.58E-10	ENSG00000111725	PRKAB1	Yes	5.84E-03	<0.05	FALSE	rs11064881
rs34243225;r s6959832	3	chr7:135046547-135378166	2.10E-23	ENSG00000243317	C7orf73	Yes	5.86E-03	<0.05	FALSE	-
rs34594414	1	chr18:67528097-67624160	1.07E-12	ENSG00000150637	CD226	Yes	6.27E-03	<0.05	TRUE	rs763361
rs148308452	10	chr12:122277433-122907179	3.70E-09	ENSG00000130779	CLIP1	Yes	6.34E-03	<0.05	FALSE	
rs12451698;r s3889402	10	chr17:18012020-18317694	2.60E-14	ENSG00000177302	ТОРЗА	Yes	6.38E-03	<0.05	FALSE	rs1563632
rs2304128	12	chr19:19366456-19791761	9.16E-09	ENSG00000167491	GATAD2A	Yes	6.42E-03	<0.05	FALSE	rs6909;rs7259773
rs11591571	4	chr10:104221149-104418164	3.77E-15	ENSG00000138107	ACTR1A	Yes	7.28E-03	<0.05	FALSE	rs2902544
rs6792510	20	chr3:48701364-49378145	1.44E-08	ENSG00000114316	USP4	Yes	8.00E-03	<0.05	FALSE	rs11713297;rs3774800
rs11697158;r s6105852;rs7 6599088	4	chr20:17922241-18039832	1.41E-25	ENSG00000125871	C20orf72	Yes	9.05E-03	<0.05	TRUE	rs8120495
rs11764390	1	chr7:79998891-80308593	1.55E-08	ENSG00000135218	CD36	Yes	9.72E-03	<0.05	FALSE	rs3211958;rs2272353
rs6792510	20	chr3:48701364-49378145	1.44E-08	ENSG00000178035	IMPDH2	Yes	9.90E-03	<0.05	FALSE	
rs12148	4	chr22:50946645-50971009	1.32E-10	ENSG0000025770	NCAPH2	Yes	0.01	<0.05	FALSE	rs140524;rs5770769
rs12247015;r s186832534;r s2790203	4	chr10:59951278-60158981	1.28E-55	ENSG0000072401	UBE2D1	Yes	0.01	<0.05	TRUE	rs10826174
rs2245946	2	chr22:43506754-43539400	9.38E-45	ENSG00000100290	ВІК	Yes	0.01	<0.05	FALSE	rs5751435
rs4698839	1	chr4:102332443-102995969	9.47E-09	ENSG00000153064	BANK1	Yes	0.01	<0.05	TRUE	rs17031974
rs139891465; rs35586766;r s56069439;rs 7254318	8	chr19:17360838-17453539	2.30E-32	ENSG0000105393	BABAM1	Yes	0.01	<0.05	FALSE	rs7246262;rs891017
rs117437695; rs3097889	12	chr19:5720688-6110664	2.54E-18	ENSG00000174886	NDUFA11	Yes	0.01	<0.05	FALSE	-
rs59791256	21	chr10:103113820-104192418	3.60E-10	ENSG00000198728	LDB1	Yes	0.01	<0.05	FALSE	
rs10835540	2	chr11:3875757-4160106	5.74E-16	ENSG00000167325	RRM1	Yes	0.01	<0.05	TRUE	rs12806698
rs8067252	3	chr17:29158988-29286340	3.58E-08	ENSG00000176208	ATAD5	Yes	0.01	<0.05	FALSE	-
rs116614177	15	chr2:73169165-74007284	2.17E-09	ENSG00000135624	CCT7	Yes	0.01	<0.05	FALSE	rs12464589;rs12104774
rs12148	4	chr22:50946645-50971009	1.32E-10	ENSG00000130489	SCO2	Yes	0.01	<0.05	TRUE	rs3091397
	*	chr10:104221149-104418104	5.772-15	ENSG00000107882	TERT	res	0.01	<0.05	TRUE	
157705526	1	cnr5:1255262-1295184	0.466-15	EN3G00000164362	TERI	res	0.02	<0.05	TROE	152242052;150654574
rs12451698;r s3889402	10	chr17:18012020-18317694	2.60E-14	ENSG00000177427	SMCR7	Yes	0.02	<0.05	TRUE	rs16960835
rs2304693	5	chr7:45002261-45151646	5.11E-11	ENSG00000136286	MY01G	Yes	0.02	<0.05	FALSE	rs6976664
rs1354034	1	chr3:56761446-57113357	2.05E-35	ENSG00000163947	ARHGEF3	Yes	0.02	<0.05	FALSE	rs2046823;rs7639049
rs148308452	10	chr12:122277433-122907179	3.70E-09	ENSG00000139719	VPS33A	Yes	0.02	<0.05	FALSE	-
rs6792510	20	chr3:48701364-49378145	1.44E-08	ENSG00000188315	C3orf62	Yes	0.02	<0.05	FALSE	rs4955411
rs2304128	12	chr19:19366456-19791761	9.16E-09	ENSG00000105705	SUGP1	No	0.02	<0.20	FALSE	
rs1598010	2	chr5:72112139-72386349	2.41E-08	ENSG0000083312	TNPO1	No	0.02	<0.20	TRUE	

rs112997975; rs139111376; rs139898146; rs2375112;rs 614997	7	chr1:25549170-25895377	1.96E-106	ENSG0000204178	TMEM57	No	0.02	<0.20	FALSE	rs2986161
rs13088724	3	chr3:179040779-179169378	7.70E-12	ENSG00000171109	MFN1	No	0.02	<0.20	FALSE	
rs2015599	3	chr12:29302036-29534122	6.03E-09	ENSG00000257176	FAR2	No	0.02	<0.20	TRUE	
rs2322718	1	chr8:27168999-27316903	1.53E-10	ENSG00000120899	РТК2В	No	0.02	<0.20	FALSE	rs2322599;rs2322600
rs116614177	15	chr2:73169165-74007284	2.17E-09	ENSG00000144034	TPRKB	No	0.02	<0.20	FALSE	
rs4895441	1	chr6:135281516-135424194	8.31E-14	ENSG00000112339	HBS1L	No	0.02	<0.20	TRUE	rs4472368
rs12451698;r s3889402	10	chr17:18012020-18317694	2.60E-14	ENSG00000176994	SMCR8	No	0.02	<0.20	TRUE	-
rs6792510	20	chr3:48701364-49378145	1.44E-08	ENSG00000178252	WDR6	No	0.03	<0.20	FALSE	rs9846123
rs59791256	21	chr10:103113820-104192418	3.60E-10	ENSG00000107862	GBF1	No	0.03	<0.20	FALSE	
rs116614177	15	chr2:73169165-74007284	2.17E-09	ENSG00000135617	PRADC1	No	0.03	<0.20	FALSE	rs7599223
rs59791256	21	chr10:103113820-104192418	3.60E-10	ENSG00000120029	C10orf76	No	0.03	<0.20	FALSE	
rs112997975; rs139111376; rs139898146; rs2375112;rs 614997	7	chr1:25549170-25895377	1.96E-106	ENSG0000188672	RHCE	No	0.03	<0.20	FALSE	
rs6792510	20	chr3:48701364-49378145	1.44E-08	ENSG00000198218	QRICH1	No	0.03	<0.20	FALSE	rs4974083
rs1613662	3	chr19:55476438-55580914	3.90E-09	ENSG00000022556	NLRP2	No	0.03	<0.20	FALSE	rs7253480
rs289713	1	chr16:56995762-57017757	4.14E-08	ENSG0000087237	CETP	No	0.03	<0.20	TRUE	rs1167742;rs1684575
rs117437695; rs3097889	12	chr19:5720688-6110664	2.54E-18	ENSG00000031823	RANBP3	No	0.03	<0.20	FALSE	rs555836;rs1678859
rs13084580	6	chr3:38887260-39234087	2.19E-13	ENSG00000114745	GORASP1	No	0.04	<0.20	FALSE	rs11923194
rs139891465; rs35586766;r s56069439;rs 7254318	8	chr19:17360838-17453539	2.30E-32	ENSG00000130311	DDA1	No	0.04	<0.20	FALSE	-
rs6792510	20	chr3:48701364-49378145	1.44E-08	ENSG00000178149	DALRD3	No	0.04	<0.20	FALSE	
rs117437695; rs3097889	12	chr19:5720688-6110664	2.54E-18	ENSG00000212123	PRR22	No	0.04	<0.20	TRUE	
rs34243225;r s6959832	3	chr7:135046547-135378166	2.10E-23	ENSG0000080802	CNOT4	No	0.04	<0.20	TRUE	rs1863004;rs12666242;rs7799891
rs2304693	5	chr7:45002261-45151646	5.11E-11	ENSG00000136280	CCM2	No	0.04	<0.20	FALSE	rs2289371;rs1859487;rs11765226
rs6792510	20	chr3:48701364-49378145	1.44E-08	ENSG00000178057	NDUFAF3	No	0.04	<0.20	FALSE	rs10865954
rs112997975; rs139111376; rs139898146; rs2375112;rs 614997	7	chr1:25549170-25895377	1.96E-106	ENSG00000117614	SYF2	No	0.05	<0.20	TRUE	
rs11591571	4	chr10:104221149-104418164	3.77E-15	ENSG00000138111	TMEM180	No	0.06	<0.20	FALSE	rs3740416
rs2015599	3	chr12:29302036-29534122	6.03E-09	ENSG0000087502	ERGIC2	No	0.06	<0.20	FALSE	rs2278094
rs2015599	3	chr12:29302036-29534122	6.03E-09	ENSG0000087502	ERGIC2	No	0.06	<0.20	FALSE	rs2278094
rs2304128	12	chr19:19366456-19791761	9.16E-09	ENSG00000181896	ZNF101	No	0.06	<0.20	FALSE	rs247775
rs112997975; rs139111376; rs139898146; rs2375112;rs 614997	7	chr1:25549170-25895377	1.96E-106	ENSG0000187010	RHD	No	0.07	<0.20	TRUE	rs909832
rs139891465; rs35586766;r s56069439;rs 7254318	8	chr19:17360838-17453539	2.30E-32	ENSG0000130307	USHBP1	No	0.07	<0.20	FALSE	-
rs385893	1	chr9:4711155-4742043	5.96E-13	ENSG00000147853	AK3	No	0.08	<0.20	TRUE	rs12343429
rs2462124;rs 62151973;rs6 2641680;rs74 874677	2	chr2:74119441-74186088	4.63E-47	ENSG00000114956	DGUOK	No	0.08	<0.20	TRUE	rs4852994;rs6711332;rs13411881
rs148308452	10	chr12:122277433-122907179	3.70E-09	ENSG00000110987	BCL7A	No	0.1	<0.20	FALSE	-
rs6792510	20	chr3:48701364-49378145	1.44E-08	ENSG00000114302	PRKAR2A	No	0.1	<0.20	FALSE	rs11716614

rs12247015;r s186832534;r s2790203	4	chr10:59951278-60158981	1.28E-55	ENSG00000122873	CISD1	No	0.1	<0.20	FALSE	rs1867573;rs1199103
rs10407593;r s11085147;rs 9636179	7	chr19:5558178-5720463	1.54E-95	ENSG00000130255	RPL36	No	0.11	<0.20	FALSE	rs10406504
rs8067252	3	chr17:29158988-29286340	3.58E-08	ENSG00000184060	ADAP2	No	0.11	>0.20	TRUE	
rs2274319	1	chr1:156433519-156470620	4.09E-10	ENSG00000116604	MEF2D	No	0.13	>0.20	TRUE	rs10908506
rs2977608	2	chr1:761586-789791	2.58E-21	ENSG00000228794	LINC01128	No	0.13	>0.20	TRUE	
rs10835540	2	chr11:3875757-4160106	5.74E-16	ENSG00000167323	STIM1	No	0.15	>0.20	FALSE	rs7113148
rs445	1	chr7:92234235-92465908	8.85E-09	ENSG00000105810	CDK6	No	0.15	>0.20	TRUE	
rs156355;rs4 814776;rs669 83532	1	chr20:1875154-1920543	2.00E-40	ENSG00000198053	SIRPA	No	0.16	>0.20	TRUE	rs6112072
rs116614177	15	chr2:73169165-74007284	2.17E-09	ENSG00000116127	ALMS1	No	0.17	>0.20	TRUE	rs6706235
rs13084580	6	chr3:38887260-39234087	2.19E-13	ENSG00000168334	XIRP1	No	0.17	>0.20	FALSE	
rs59791256	21	chr10:103113820-104192418	3.60E-10	ENSG00000119915	ELOVL3	No	0.18	>0.20	FALSE	
rs114694170	2	chr5:88013975-88762215	3.04E-13	ENSG0000081189	MEF2C	No	0.19	>0.20	FALSE	rs661311
rs117437695; rs3097889	12	chr19:5720688-6110664	2.54E-18	ENSG00000171124	FUT3	No	0.19	>0.20	FALSE	-
rs111870993; rs117263028; rs117821325; rs145707459; rs56052501;r s7896518;rs7 916282	3	chr10:64893050-65384883	9.53E-99	ENSG0000171988	JMJD1C	No	0.19	>0.20	TRUE	>0.20
rs6792510	20	chr3:48701364-49378145	1.44E-08	ENSG00000213672	NCKIPSD	No	0.23	>0.20	TRUE	rs12497850
rs1613662	3	chr19:55476438-55580914	3.90E-09	ENSG00000160439	RDH13	No	0.24	>0.20	FALSE	rs3745912
rs148308452	10	chr12:122277433-122907179	3.70E-09	ENSG00000256546	LOC100506691	No	0.24	>0.20	FALSE	
rs6792510	20	chr3:48701364-49378145	1.44E-08	ENSG0000068745	IP6K2	No	0.26	>0.20	FALSE	
rs2304128	12	chr19:19366456-19791761	9.16E-09	ENSG0000064547	LPAR2	No	0.26	>0.20	TRUE	rs880090
rs117437695:										
rs3097889 rs117437695;	12	chr19:5720688-6110664	2.54E-18	ENSG00000156413	PUI6	No	0.26	>0.20	FALSE	
rs3097889	12	0113.3720000-0110004	2.540-10	11300000007505	111.72	10	0.27	-0.20	TADL	131040351,1310410205
rs2015599	3	chr12:29302036-29534122	6.03E-09	ENSG0000064763	FAR2	No	0.28	>0.20	FALSE	
rs112997975; rs139111376; rs139898146; rs2375112;rs 614997	7	chr1:25549170-25895377	1.96E-106	ENSG0000157978	LDLRAP1	No	0.3	>0.20	TRUE	rs6688931
rs12247015;r s186832534;r s2790203	4	chr10:59951278-60158981	1.28E-55	ENSG00000151151	ІРМК	No	0.31	>0.20	FALSE	-
rs59791256	21	chr10:103113820-104192418	3.60E-10	ENSG00000120049	KCNIP2	No	0.31	>0.20	FALSE	
rs12451698;r s3889402	10	chr17:18012020-18317694	2.60E-14	ENSG0000091542	ALKBH5	No	0.31	>0.20	FALSE	
rs117437695; rs3097889	12	chr19:5720688-6110664	2.54E-18	ENSG00000171119	NRTN	No	0.32	>0.20	FALSE	
rs12426673	3	chr12:109460894-109531436	4.03E-11	ENSG00000135093	USP30	No	0.32	>0.20	FALSE	
rs116614177	15	chr2:73169165-74007284	2.17E-09	ENSG00000204872	NAT8B	No	0.33	>0.20	FALSE	
rs13088724	3	chr3:179040779-179169378	7.70E-12	ENSG00000114450	GNB4	No	0.34	>0.20	TRUE	rs11714353
rs59791256	21	chr10:103113820-104192418	3.60E-10	ENSG00000166171	DPCD	No	0.35	>0.20	FALSE	rs10883666
rs117437695; rs3097889	12	chr19:5720688-6110664	2.54E-18	ENSG0000105519	CAPS	No	0.36	>0.20	FALSE	rs6510862;rs8108064
rs6511720	1	chr19:11200038-11244492	4.08E-09	ENSG00000130164	LDLR	No	0.36	>0.20	TRUE	rs12459603
rs7412	2	chr19:45408956-45422606	5.56E-23	ENSG00000130208	APOC1	No	0.37	>0.20	FALSE	
rs11553699;r s9804982	4	chr12:122064455-122232261	1.45E-43	ENSG00000139714	MORN3	No	0.37	>0.20	FALSE	
rs59791256	21	chr10:103113820-104192418	3.60E-10	ENSG00000107829	FBXW4	No	0.38	>0.20	FALSE	rs17767748
rs12052715	1	chr2:160628362-160761260	1.72E-08	ENSG0000054219	LY75	No	0.42	>0.20	FALSE	rs2162500;rs12466631
rs59791256	21	chr10:103113820-104192418	3.60E-10	ENSG00000166167	BTRC	No	0,43	>0.20	FALSE	rs12569599
rs1482084F3	10	chr12:122277/22.122007170	3 705.00	ENSG00000158104	HPD	No	0.45	>0.20	TRUE	
	10	++10.10366476 10701	0.105-09	ENICODOCODI 58104	Therefo	NO	0.43	-0.20	EALOS	
rs2304128	12	cnr19:19306456-19791761	a.16E-08	ENSG0000213996	TM6SF2	No	0.51	>0.20	FALSE	-
rs112997975; rs139111376; rs139898146; rs2375112;rs 614997	7	chr1:25549170-25895377	1.96E-106	ENSG00000183726	TMEM50A	No	0.52	>0.20	TRUE	rs1293259

rs4284061	1	chr8:6912831-6914256	2.97E-17	ENSG00000164816	DEFA5	No	0.52	>0.20	TRUE	
rs11591571	4	chr10:104221149-104418164	3.77E-15	ENSG00000171206	TRIM8	No	0.53	>0.20	TRUE	rs11594073
rs148308452	10	chr12:122277433-122907179	3.70E-09	ENSG00000158023	WDR66	No	0.55	>0.20	FALSE	
rs2304128	12	chr19:19366456-19791761	9.16E-09	ENSG00000105717	PBX4	No	0.55	>0.20	FALSE	rs12611058
rs59791256	21	chr10:103113820-104192418	3.60E-10	ENSG00000107872	FBXL15	No	0.57	>0.20	FALSE	
rs148308452	10	chr12:122277433-122907179	3.70E-09	ENSG00000255856	AC069503.1	No	0.57	>0.20	FALSE	
rs12148	4	chr22:50946645-50971009	1.32E-10	ENSG00000177989	ODF3B	No	0.58	>0.20	FALSE	
rs6074896	1	chr20:1544167-1600655	1.84E-20	ENSG00000101307	SIRPB1	No	0.58	>0.20	TRUE	
rs6792510	20	chr3:48701364-49378145	1.44E-08	ENSG00000225399	AC121247.1	No	0.59	>0.20	FALSE	
rs59791256	21	chr10:103113820-104192418	3.60E-10	ENSG00000198408	MGEA5	No	0.63	>0.20	FALSE	rs11191150
rs116614177	15	chr2:73169165-74007284	2.17E-09	ENSG00000135625	EGR4	No	0.63	>0.20	FALSE	
rs116614177	15	chr2:73169165-74007284	2.17E-09	ENSG00000144035	NAT8	No	0.64	>0.20	FALSE	
rs62494425	1	chr8:9009252-9025646	2.07E-08	ENSG00000253426	-	No	0.64	>0.20	TRUE	
rs1598010	2	chr5:72112139-72386349	2.41E-08	ENSG00000157107	FCHO2	No	0.65	>0.20	FALSE	rs2548332
rs112997975; rs139111376; rs139898146; rs2375112;rs 614997	7	chr1:25549170-25895377	1.96E-106	ENSG0000117616	C1orf63	No	0.65	>0.20	TRUE	rs592372;rs630931
rs12780745;r s1408343	6	chr10:102672720-102790890	6.26E-28	ENSG00000107816	LZT52	No	0.65	>0.20	TRUE	
rs116614177	15	chr2:73169165-74007284	2.17E-09	ENSG00000163016	ALMS1P	No	0.66	>0.20	FALSE	-
rs111870993; rs117263028; rs117821325; rs145707459; rs56052501;r s7896518;rs7 916282	3	chr10:64893050-65384883	9.53E-99	ENSG00000165476	REEP3	No	0.67	>0.20	TRUE	rs7076601
rs11064074	1	chr12:6308881-6347427	4.87E-20	ENSG00000010278	CD9	No	0.69	>0.20	TRUE	rs11064058
rs114694170	2	chr5:88013975-88762215	3.04E-13	ENSG00000248309	MEF2C-AS1	No	0.71	>0.20	TRUE	
rs12780745;r s1408343	6	chr10:102672720-102790890	6.26E-28	ENSG00000186862	PDZD7	No	0.71	>0.20	FALSE	
rs2462124;rs 62151973;rs6 2641680;rs74 874677	2	chr2:74119441-74186088	4.63E-47	EN5G0000163017	ACTG2	No	0.71	>0.20	FALSE	rs6751551
rs148308452	10	chr12:122277433-122907179	3.70E-09	ENSG00000158113	LRRC43	No	0.72	>0.20	FALSE	rs7972979
rs59791256	21	chr10:103113820-104192418	3.60E-10	ENSG00000059915	PSD	No	0.72	>0.20	FALSE	
rs2304128	12	chr19:19366456-19791761	9.16E-09	ENSG00000187664	HAPLN4	No	0.74	>0.20	FALSE	
rs12451698;r s3889402	10	chr17:18012020-18317694	2.60E-14	ENSG00000131899	LLGL1	No	0.75	>0.20	FALSE	rs2290507
rs12780745;r s1408343	6	chr10:102672720-102790890	6.26E-28	ENSG0000095539	SEMA4G	No	0.75	>0.20	FALSE	-
rs55955211	4	chr22:50528308-50656045	2.53E-08	ENSG0000073146	MOV10L1	No	0.76	>0.20	FALSE	
rs116614177	15	chr2:73169165-74007284	2.17E-09	ENSG00000144040	SFXN5	No	0.78	>0.20	FALSE	rs2115916
rs139891465; rs35586766;r s56069439;rs 7254318	8	chr19:17360838-17453539	2.30E-32	ENSG0000074855	ANO8	No	0.78	>0.20	FALSE	-
rs11697158;r s6105852;rs7 6599088	4	chr20:17922241-18039832	1.41E-25	ENSG00000125850	OVOL2	No	0.79	>0.20	FALSE	rs11299
rs11031389	2	chr19:45408956-45422606 chr11:4208370-4223885	5.56E-23 3.09E-08	ENSG00000130203	APOE LINC02749	No	0.79	>0.20	TRUE	· ·
rs6792510	20	chr3:48701364-49378145	1.44F-08	ENSG00000173421	CCDC36	No	0.8	>0.20	FALSE	rs1134043
rs376674A	20	chr1:11994262-12073E71	2.915-17	ENSG0000083444	PLOD1	No	0.8	>0.20	FAISE	rs7550526
re148208473	10	che12:122277/22.1220/23/1	3 705 00	ENSG00000176303	BEGNITA	No	0.01	>0.20	EALCE	10/00000
15148308452	10		5.70E-09	LIV3G00000176383	630114	NO	0.81	20.20	PALSE	
6691993	3	chr1:171810621-172437971	1.39E-09	ENSG00000180999	C1orf105	No	0.85	>0.20	FALSE	
rs139891465; rs35586766;r s56069439;rs 7254318	8	chr19:17360838-17453539	2.30E-32	ENSG00000127220	ABHD8	No	0.85	>0.20	FALSE	rs2288464
rs117437695; rs3097889	12	chr19:5720688-6110664	2.54E-18	ENSG00000249707		No	0.85	>0.20	FALSE	-
rs117437695; rs3097889	12	chr19:5720688-6110664	2.54E-18	ENSG00000174898	TMEM146	No	0.86	>0.20	TRUE	

rs112743753	2	chr19:984328-1009731	4.79E-08	ENSG00000116032	GRIN3B	No	0.88	>0.20	TRUE	rs2285905
rs12426673	3	chr12:109460894-109531436	4.03E-11	ENSG00000256262	USP30-AS1	No	0.89	>0.20	TRUE	
rs116614177	15	chr2:73169165-74007284	2.17E-09	ENSG00000163013	FBXO41	No	0.89	>0.20	FALSE	
rs2038480;rs 6691993	3	chr1:171810621-172437971	1.39E-09	ENSG00000197959	DNM3	No	0.89	>0.20	TRUE	-
rs116614177	15	chr2:73169165-74007284	2.17E-09	ENSG00000135631	RAB11FIP5	No	0.89	>0.20	FALSE	rs13416407
rs11064881	3	chr12:119825792-120315095	2.58E-10	ENSG00000248636	AC002070.1	No	0.9	>0.20	TRUE	
rs11064881	3	chr12:119825792-120315095	2.58E-10	ENSG00000122966	СІТ	No	0.9	>0.20	FALSE	
rs2304128	12	chr19:19366456-19791761	9.16E-09	ENSG00000160161	CILP2	No	0.9	>0.20	FALSE	
rs1967556	1	chr17:27717943-27871502	1.97E-16	ENSG00000160551	TAOK1	No	0.91	>0.20	TRUE	
rs13084580	6	chr3:38887260-39234087	2.19E-13	ENSG00000168026	TTC21A	No	0.93	>0.20	FALSE	rs11720056
rs117437695; rs3097889	12	chr19:5720688-6110664	2.54E-18	ENSG00000130383	FUT5	No	0.93	>0.20	FALSE	-
rs10407593;r s11085147;rs 9636179	7	chr19:5558178-5720463	1.54E-95	ENSG00000167733	HSD11B1L	No	0.93	>0.20	FALSE	rs11673407
rs6792510	20	chr3:48701364-49378145	1.44E-08	ENSG00000172037	LAMB2	No	0.94	>0.20	FALSE	
rs2038480;rs 6691993	3	chr1:171810621-172437971	1.39E-09	ENSG00000135845	PIGC	No	0.94	>0.20	TRUE	rs13932;rs13932
rs12451698;r s3889402	10	chr17:18012020-18317694	2.60E-14	ENSG0000091536	MY015A	No	0.94	>0.20	FALSE	
rs78909033	2	chr2:241505221-241557122	1.00E-11	ENSG00000142330	CAPN10	No	0.95	>0.20	FALSE	rs12614493;rs11676358
rs59791256	21	chr10:103113820-104192418	3.60E-10	ENSG00000107859	PITX3	No	0.96	>0.20	FALSE	rs4919626
rs55955211	4	chr22:50528308-50656045	2.53E-08	ENSG0000073150	PANX2	No	0.96	>0.20	FALSE	rs2341367
rs6792510	20	chr3:48701364-49378145	1.44E-08	ENSG00000221883	C3orf71	No	0.96	>0.20	FALSE	
rs116614177	15	chr2:73169165-74007284	2.17E-09	ENSG00000246432	-	No	0.97	>0.20	FALSE	
rs13381785;r s77261872	1	chr18:42260138-42648475	2.28E-16	ENSG00000152217	SETBP1	No	0.97	>0.20	TRUE	rs1036929;rs4890486
rs2304693	5	chr7:45002261-45151646	5.11E-11	ENSG00000136274	NACAD	No	0.97	>0.20	FALSE	
rs12451698;r s3889402	10	chr17:18012020-18317694	2.60E-14	ENSG00000214860	EVPLL	No	0.98	>0.20	FALSE	-
rs2304128	12	chr19:19366456-19791761	9.16E-09	ENSG00000178093	TSSK6	No	0.98	>0.20	FALSE	
rs13084580	6	chr3:38887260-39234087	2.19E-13	ENSG00000168356	SCN11A	No	0.98	>0.20	FALSE	
rs59791256	21	chr10:103113820-104192418	3.60E-10	ENSG00000226009	KCNIP2-AS1	No	0.98	>0.20	FALSE	
rs4841132	1	chr8:9106927-9271224	7.46E-09	ENSG00000254235	-	No	0.98	>0.20	FALSE	
rs10407593;r s11085147;rs 9636179	7	chr19:5558178-5720463	1.54E-95	ENSG00000223573	PLAC2	No	0.99	>0.20	TRUE	-
rs72698722	1	chr14:101192042-101201539	1.25E-12	ENSG00000185559	DLK1	No	0.99	>0.20	TRUE	rs12882815;rs10138818
rs12451698;r s3889402	10	chr17:18012020-18317694	2.60E-14	ENSG00000220161	LINC02076	No	0.99	>0.20	FALSE	
rs4727801;rs 6972244	3	chr7:113726382-114766368	2.77E-25	ENSG00000225535	LINC01393	No	0.99	>0.20	TRUE	-
rs4727801;rs 6972244	3	chr7:113726382-114766368	2.77E-25	ENSG00000128573	FOXP2	No	0.99	>0.20	FALSE	rs1058335;rs6945523
rs5012419	1	chr12:19282648-19529334	2.66E-29	ENSG0000052126	PLEKHAS	No	1	>0.20	TRUE	rs12372773
rs59791256	21	chr10:103113820-104192418	3.60E-10	ENSG00000107831	FGF8	No	1	>0.20	FALSE	rs3127245
rs6792510	20	chr3:48701364-49378145	1.44E-08	ENSG00000178467	P4HTM	No	1	>0.20	FALSE	-
rs2018800;rs 465339	1	chr19:5455426-5456867	7.81E-09	ENSG00000105428	ZNRF4	No	1	>0.20	TRUE	-
rs1569419	1	chr1:2985732-3355185	6.87E-14	ENSG00000142611	PRDM16	No	1	>0.20	TRUE	rs10492937

S2 .	Table	5.	MitoCarta3	annotations	for	DEPICT	and	GeneMANIA-	prioritized	genes
									1	\mathcal{O}

	Gene Overview				MitoCarta3.0 Anno	tations	_	_	
		Human MitoCarta3					PGC		
Gene Name	Analysis Identified	Status	MitoCarta3.0	MitoCarta3.0_Sub	NUM CONTRACTOR		Induct	on	
DIK	DEDICT	Ver	Gene Name	MitoLocalization	MitoCarta3.0 MitoPathways	UniProt	Score	-	Tissues Expressed
CLPX	GeneMANIA	Ves	CLPX	Matrix	Protein import sorting and homeostacis > Protein homeostacis > Proteases	076031	NA	168	20114
EARS2	GeneMANIA	Yes	EARS2	Matrix	Mitochondrial central dogma > Translation > mt-tRNA synthetases	Q5JPH6	NA		adipose, largeintestine, placenta
CARGA	C	Maria							cerebrum, cerebellum, brainstem, spinalcord, liver, skeletalmuscle, adipose,
GAR51	GeneMANIA	Yes	GARS1	Matrix	Mitochondrial central dogma > Translation > mt-tRNA synthetases	P41250		.62	smallintestine, largeintestine, stomach, placenta, testis
GTPBP3	DEPICT	Ves			Mitochondrial central dogma > mtRNA metabolism > mt-tRNA modifications				
011015	Derret	105	GTPBP3	Matrix	Metabolism > Vitamin metabolism > Folate and 1-C metabolism	Q969Y2	NA		largeintestine
LONP1	DEPICT	Yes	LONP1	Matrix	Protein import, sorting and homeostasis > Protein homeostasis > Proteases	P36776		.81	all 14
PIM1	GeneMANIA	Yes	LONP1	Matrix	Protein import, sorting and homeostasis > Protein homeostasis > Proteases	P36776		.81	all 14
MCAT	DEPICT	Yes	MCAT	Matrix	Metabolism > Linid metabolism > Type II fatty acid synthesis	08///52	NA		spinalcord, kidney, liver, skeletalmuscle, adipose, smallintestine, largeintestine, stomach, placenta, testis
	-		mcAl	IVIGUIA	Mitochondrial dynamics and surveillance > Fusion Mitochondrial dynamics and	001932		-	cerebrum, cerebellum, brainstem, spinalcord, liver, adipose, largeintestine
MFN2	DEPICT	Yes	MFN2	мом	surveillance > Organelle contact sites	095140		.83	stomach, placenta, testis
C20orf72; MGME1	DEPICT	Yes			Mitochondrial central dogma > mtDNA maintenance > mtDNA replication				
	L		MGME1	Matrix	Mitochondrial central dogma > mtDNA maintenance > mtDNA stability and decay	Q9BQP7	NA		largeintestine, placenta
C19orf70; MICOS13	3 DEPICT	Yes	MICOS13	MIM	Mitochondrial dynamics and surveillance > Cristae formation > MICOS complex	Q5XKP0	().72	all 14
SMCR7	DEPICT	Yes	MIEF2	мом	Mitochondrial dynamics and surveillance > Fission	Q96C03	NA	_	NA
MRPL34	DEPICT	Yes	14001.24	Manada	Mite shandalat an east damage to Translation to Mite shandalat shares a	000040	Ι.	- 70	cerebrum, cerebellum, brainstem, spinalcord, kidney, liver, heart, adipose,
MPPI 43	DEPICT	Ver	MRPL34	Matrix	Mitochondrial central dogma > Translation > Mitochondrial ribosome	OSN083		157	all 14
MRPS35	DEPICT	Yes	MRPS35	Matrix	Mitochondrial central dogma > Translation > Mitochondrial ribosome	P82673		.81	all 14
NDUFA11	DEPICT	Yes	NDUFA11	MIM	OXPHOS > Complex I > CI subunits OXPHOS > OXPHOS subunits	Q86Y39		1.8	all 14
NDUFA7	GeneMANIA	Yes	NDUFA7	MIM	OXPHOS > Complex I > CI subunits OXPHOS > OXPHOS subunits	095182	NA		all 14
					Mitochondrial central dogma > mtRNA metabolism > mtRNA granules				
NOA1	GeneMANIA	Yes	NOA1	MIM	Mitochondrial central dogma > Translation > Mitochondrial ribosome assembly	Q8NC60	NA		adipose, largeintestine
OXA1I	GeneMANIA	Ves			Protein import, sorting and homeostasis > Protein import and sorting > OXA				cerebrum, brainstem, spinalcord, kidney, heart, adipose, smallintestine,
ONTIL	Generative	105	OXA1L	MIM	Mitochondrial central dogma > Translation	Q15070	NA	_	largeintestine, placenta, testis
POLG2	DEPICT	Yes	00100		Mitochondrial central dogma > mtDNA maintenance > mtDNA replication				
			ruloz	watrix	Millochonorial central dogma > mtUNA maintenance > mtUNA nucleoid	USOHN1	NA	-	na
SCO2	DEPICT	Yes	5002	MIM	> Complex is > Crease in previous actors Metabolism > Metals and cofactors > Conner metabolism OXPHOS > OXPHOS screambly factore	043919	NA		all 14
					 solition incompany in the second system by rectors 	343013		-	spinalcord, liver, skeletalmuscle, adipose, smallintestine. largeintestine. stomach
SELO	DEPICT	Yes	SELENOO	Matrix	Metabolism > Detoxification > Selenoproteins	Q9BVL4	NA		placenta, testis
					Metabolism > Lipid metabolism > Fatty acid oxidation Metabolism > Metals and				
SLC25A20	DEPICT	Yes			cofactors > Carnitine synthesis and transport Metabolism > Metals and cofactors				
L			SLC25A20	MIM	> Carnitine shuttle Small molecule transport > SLC25A family	043772	1	.62	all 14
					Mitochondrial central dogma > mtRNA metabolism > Polycistronic mtRNA		_		
TBRG4	DEPICT	Yes			processing Mitochondrial central dogma > mtRNA metabolism > mtRNA stability				
C17orf42, TEEM	DEDICT	Vec	TEEN4	Matrix	and decay Mitochandrial control dozena > mtRNA motobalism > Transcription	Q96920	NA .	14	all 14 liver heart chalatelmuscle edinese largeintecting stemach placents testis
C170H42; TEFM	DEPICT	Tes	TEPM	Matrix	Mitochondrial central dogma > mtRNA metabolism > transcription	(TAPOTE2		.14	liver, neart, skeletalmuscle, adipose, largeintestine, stomach, placenta, testis
TEAM	DEPICT	Yes			Mitochondrial central dogma > mtDNA maintenance > mtDNA nucleoid				
			TFAM	Matrix	Mitochondrial central dogma > mtRNA metabolism > Transcription	Q00059	1	.62	all 14
TOP3A	DEPICT	Yes	ТОРЗА	Matrix	Mitochondrial central dogma > mtDNA maintenance > mtDNA replication	Q13472	NA		testis
C10orf2: TWNK	DEPICT	Yes			Mitochondrial central dogma > mtDNA maintenance > mtDNA replication				
	001101		TWNK	Matrix	Mitochondrial central dogma > mtDNA maintenance > mtDNA nucleoid	Q96RR1	1	.99	NA
ACTR1A	DEPICT	No							cerebrum, cerebellum, brainstem, spinalcord, kidney, liver, skeletalmuscle, adipose,
	DEDICT	N.	ACTRIA	NA	NA	P61163	INA .	-	smallintestine, largeintestine, stomach, placenta, testis
ALKBHZ	DEPICT	No	ALKBHZ	NA	NA NA	QBN538	NA	-	NA NA
ARIH2	DEPICT	No	ARIH2	NA	NA	095376	NA	-	NA
ATADS	DEPICT	No	ATADS	NA	NA	Q96QE3	NA	-	largeintestine, testis
ATP13A1	DEPICT	No	ATP13A1	NA	NA	Q9HD20	NA		testis
BABAM1	DEPICT	No	BABAM1	NA	NA	Q9NWV8	NA		NA
BANK1	DEPICT	No	BANK1	NA	NA	Q8NDB2	NA		NA
C3orf62	DEPICT	No	C3orf62	NA	NA	Q6ZUJ4	NA	_	NA
C7orf74	DEPICT	No	CCDC71L	NA	NA	Q8N9Z2	NA		NA
CC17	DEPICT	No	CC17	NA	NA NA	Q99832	NA	-0.3	cerebrum, spinalcord, adipose, smallintestine, placenta, testis
CD36	DEPICT	No	CD226	NA	NA	P16671	NA	-	nn adinose smallintestine
CLIP1	DEPICT	No	CLIP1	NA	NA	P30622	NA	-	skeletalmuscle, largeintestine
CPNE3	GeneMANIA	No	CPNE3	NA	NA	075131	NA		NA
HN1L	GeneMANIA	No	CRAMP1	NA	NA	Q96RY5	NA		largeintestine
CSRNP1	DEPICT	No	CSRNP1	NA	NA	Q96565		.39	NA
CUEDC2	DEPICT	No	CUEDC2	NA	NA	Q9H467	NA	_	NA
DRG2	DEPICT	No	DRG2	NA	NA	P55039		28	NA
DUS9L	DEPICT	No	DUS3L	NA	NA NA	075210	NA	-	NA
ARHGEF3	DEPICT	No	ECT2	NA	NA	Q9H8V3	NA	-	NA
FLII	DEPICT	No	FLII	NA	NA	Q13045	-	0.23	NA
GATAD2A	DEPICT	No	GATAD2A	NA	NA	Q86YP4	NA		NA
GMIP	DEPICT	No	GMIP	NA	NA	Q9P107	NA		adipose
GP6	DEPICT	No	GP6	NA	NA	Q9HCN6	NA		NA
HPS5	GeneMANIA	No	HPS5	NA	NA	Q9UPZ3	NA		NA
HPS6	DEPICT	No	MPS6	INA NA	NA NA	Q869V9	NA	_	NA NA
IMPDH2 ITSN1	GeneMANIA	NO No	ITSN1	NA	NA	015811	NA	-	cerebellum, brainstem
KLHDC8B	DEPICT	No	KLHDC8B	NA	NA	Q8IXV7	NA		NA
LDB1	DEPICT	No	LDB1	NA	NA	Q86U70	NA		NA
MARK4	GeneMANIA	No	MARK4	NA	NA	Q96L34	NA		NA
MAU2	DEPICT	No	MAU2	NA	NA	Q9Y6X3	NA		NA
MLXIP	DEPICT	No	MLXIP	NA	NA	Q9HAP2	NA	_	NA
MY01G	DEPICT	No	MYO1G	NA	NA	BOI1T2	NA		smallintestine
NCAPH2	DEPICT	No No	NEKD2	NA	NA NA	QBIBW4	-(1.56	NA NA
NOLC1	DEPICT	No	NOLC1	NA	NA	Q14978	NA	-	NA
NPM3	DEPICT	No	NPM3	NA	NA	075607	NA	-	NA
NRBF2	DEPICT	No	NRBF2	NA	NA	Q96F24	NA		NA
NUP205	DEPICT	No	NUP205	NA	NA	Q92621	NA		testis
ORAI1	DEPICT	No	ORAI1	NA	NA	Q96D31	NA	_	NA
PAK4	GeneMANIA	No	PAK4	NA	NA	096013	NA	_	NA
PIN1	GeneMANIA	No No	PIN1 DND	NA	NA	Q13526	INA NA	-	prainstem, spinalcord
POLL	DEPICT	No	POLL	NA	NA	Q9UGP5	NA	-	NA
PPRC1	DEPICT	No	PPRC1	NA	NA	Q5VV67	-	.48	NA
PRKAB1	DEPICT	No	PRKAB1	NA	NA	Q9Y478	NA		NA
PUM3	GeneMANIA	No	PUM3	NA	NA	Q15397	NA		NA
QARS	DEPICT	No	QARS1	NA	NA	P47897	-(.39	NA
RHOF	DEPICT	No	RHOF	NA	NA	Q9HBH0	NA		NA
RNPEPL1	DEPICT	No	KNPEPL1	NA	NA	Q9HAU8	NA .		NA NA
KRM1 SAER	DEPICT	No	DAER SAER	NA	NA	r23921	NA C	r.82	NA NA
SAFR?	DEPICT	No	SAFB2	NA	NA	014151	NA	-	NA
SHMT1	DEPICT	No	SHMT1	NA	NA	P34896	1	.69	NA
FAM178A	DEPICT	No	SLF2	NA	NA	Q8IX21	NA		NA
SMYD5	DEPICT	No	SMYD5	NA	NA	Q6GMV2	NA		NA
SNX5	DEPICT	No	SNX5	NA	NA	Q9Y5X3	-	.41	NA
SPCS2	GeneMANIA	No	SPCS2	NA	NA	Q15005	-(1.42	liver, placenta
C7orf73	DEPICT	No	STMP1	INA	INA	E0CX11	INA		INA

1	SUFU	DEPICT	No	SUFU	NA	NA	Q9UMX1	NA	NA
1	TERT	DEPICT	No	TERT	NA	NA	014746	NA	NA
1	TMEM120B	DEPICT	No	TMEM120B	NA	NA	AOPKOO	NA	NA
1	TP53BP2	GeneMANIA	No	TP53BP2	NA	NA	Q13625	NA	NA
1	TRABD	DEPICT	No	TRABD	NA	NA	Q9H4I3	0.5	kidney, largeintestine, placenta, testis
1	TRIM58	DEPICT	No	TRIM58	NA	NA	Q8NG06	NA	NA
1	TYMP	DEPICT	No	TYMP	NA	NA	P19971	NA	NA
1	UBE2D1	DEPICT	No	UBE2D1	NA	NA	P51668	NA	NA
1	USP19	DEPICT	No	USP19	NA	NA	O94966	NA	NA
1	USP4	DEPICT	No	USP4	NA	NA	Q13107	0.41	NA
	VPS11	GeneMANIA	No	VPS11	NA	NA	Q9H270	NA	NA
1	VPS16	GeneMANIA	No	VPS16	NA	NA	Q9H269	NA	NA
	VPS18	GeneMANIA	No	VPS18	NA	NA	Q9P253	NA	cerebrum, cerebellum, brainstem, adipose, placenta, testis
1	VPS33A	DEPICT	No	VPS33A	NA	NA	Q96AX1	NA	NA
	WDR18	DEPICT	No	WDR18	NA	NA	Q9BV38	NA	NA
1	WDR48	DEPICT	No	WDR48	NA	NA	Q8TAF3	NA	NA
	ZNF639	DEPICT	No	ZNF639	NA	NA	Q9UID6	0.87	NA

S2. Table 6. Rare variant exome-wide association testing for mtDNA-CN loci. Nominally

Index	Gene	Carrier Count	Non-carrier Count	beta	se	95% LCI	95% UCI	P-value
14073	SAMHD1	1112	146628	0.234084	0.02606	0.183017	0.285151	2.63E-19
16251	TFAM	148	147592	-0.33052	0.07186	-0.47136	-0.18969	4.23E-06
17910	WDR59	1253	146487	-0.10931	0.0248	-0.15791	-0.06071	1.04E-05
2834	CELF5	286	147454	0.224476	0.05172	0.123104	0.325848	1.42E-05
12513	PPP1R35	304	147436	0.192313	0.0459	0.102341	0.282284	2.80E-05
538	ALDH16A1	1925	145815	0.078944	0.01905	0.041614	0.116273	3.40E-05
15623	STAG2	154	147586	-0.29098	0.07049	-0.42913	-0.15282	3.66E-05
11997	PIGT	744	146996	-0.13189	0.03205	-0.19471	-0.06906	3.88E-05
14753	SLC25A37	302	147438	0.20316	0.05034	0.104486	0.301834	5.45E-05
1211	ATG9A	590	147150	0.141701	0.03595	0.071231	0.212172	8.11E-05
1709	BTNL2	249	147491	0.218173	0.05543	0.109531	0.326814	8.29E-05
15945	TAFA2	93	147647	0.34432	0.09066	0.166629	0.522011	0.000146
297	ADAR	748	146992	0.118711	0.03147	0.057028	0.180394	0.000162
15735	STX1A	134	147606	0.275124	0.07552	0.127099	0.423149	0.00027
7184	HRH4	223	147517	0.202505	0.05564	0.093458	0.311553	0.000273
3267	CLUH	2468	145272	-0.06281	0.01732	-0.09676	-0.02886	0.000287
16182	TEK	711	147029	-0.11051	0.03285	-0.17489	-0.04614	0.000767
903	AQP9	512	147228	0.130133	0.03869	0.054297	0.205969	0.00077
994	ARHGEF6	266	147474	0.178188	0.05366	0.073015	0.28336	0.000898
9877	MT1M	13	147727	-0.80468	0.24236	-1.2797	-0.32967	0.0009
3659	CRYM	224	147516	-0.19254	0.05805	-0.30631	-0.07876	0.00091
5900	FXYD4	95	147645	-0.29724	0.08968	-0.47301	-0.12148	0.000918
4314	DLGAP3	397	147343	-0.1434	0.0436	-0.22885	-0.05796	0.001004
13664	RNF126	949	146791	0.093211	0.02837	0.037615	0.148807	0.001016
8799	LPXN	685	147055	-0.10371	0.03164	-0.16573	-0.04169	0.001047
13164	RABL2B	321	147419	0.158845	0.04883	0.063146	0.254544	0.001141
15978	TAS1R1	1947	145793	-0.06317	0.01966	-0.1017	-0.02465	0.001309
14665	SLC16A9	388	147352	0.139698	0.04375	0.053954	0.225443	0.001407
7496	IL1RAP	167	147573	0.214074	0.06765	0.081471	0.346677	0.001555
6423	GPATCH2	326	147414	-0.15327	0.04845	-0.24823	-0.05831	0.001559
7817	JOSD1	57	147683	-0.36576	0.11575	-0.59263	-0.13888	0.001579
6994	HIST1H4E	324	147416	-0.15336	0.04863	-0.24867	-0.05806	0.001611
7628	INTS8	275	147465	-0.16592	0.05274	-0.26929	-0.06254	0.001656
15794	SUPT4H1	88	147652	-0.29177	0.09318	-0.47441	-0.10913	0.001742
8900	LRRC74A	434	147306	0.129644	0.04159	0.048136	0.211152	0.001824
14290	SEMA4B	1744	145996	-0.06511	0.0209	-0.10607	-0.02414	0.001839
5703	FLT3	811	146929	0.095601	0.03073	0.035377	0.155826	0.001863
13432	REPIN1	579	147161	0.11261	0.03629	0.041475	0.183746	0.001918
15576	SSTR3	557	147183	0.11446	0.03699	0.041953	0.186968	0.001975

significant (P<0.01) results are shown.

10904	ODF3L1	313	147427	-0.15226	0.04946	-0.24921	-0.05532	0.002081
12376	POMP	55	147685	0.360846	0.11784	0.129878	0.591814	0.002198
15485	SPTLC2	458	147282	0.119405	0.03902	0.042924	0.195886	0.002214
9801	MRPS23	110	147630	0.252238	0.08334	0.088888	0.415587	0.002474
10018	MYH2	3135	144605	-0.04677	0.01546	-0.07707	-0.01646	0.002489
10787	NUDCD1	245	147495	0.16675	0.05519	0.058571	0.274928	0.002518
9042	MAB21L4	325	147415	-0.14465	0.04794	-0.23861	-0.05068	0.002553
11209	OR5AK2	91	147649	-0.27598	0.09164	-0.45559	-0.09637	0.002598
2257	CASP1	167	147573	0.202762	0.06765	0.07016	0.335364	0.002727
868	APOC2	139	147601	0.222172	0.07417	0.076799	0.367544	0.002741
7353	IFI35	353	147387	0.138124	0.04637	0.047234	0.229013	0.002896
14389	SETD7	346	147394	0.140176	0.0471	0.047863	0.232488	0.002919
16334	THOC2	146	147594	0.214448	0.07238	0.07259	0.356307	0.003048
18564	ZNF519	390	147350	0.130834	0.04431	0.043994	0.217674	0.003148
10510	NLRP8	456	147284	-0.12028	0.04086	-0.20036	-0.0402	0.00324
14037	S1PR2	265	147475	0.158156	0.05373	0.052838	0.263473	0.003247
18542	ZNF490	53	147687	-0.31345	0.10677	-0.52272	-0.10418	0.003328
11244	OR5M9	46	147694	0.377561	0.12888	0.124963	0.63016	0.003394
16718	TMEM72	115	147625	-0.23882	0.08153	-0.39861	-0.07903	0.003396
5543	FCGR2B	33	147707	-0.44538	0.15212	-0.74354	-0.14721	0.003415
8316	KRT80	1155	146585	0.074957	0.02561	0.024754	0.12516	0.003429
7621	INTS2	921	146819	-0.08379	0.0287	-0.14004	-0.02754	0.003503
15832	SYCP1	331	147409	-0.14033	0.04808	-0.23458	-0.04609	0.003517
4014	DCAF17	468	147272	0.1146	0.03938	0.037407	0.191793	0.003617
1569	BLOC1S6	35	147705	-0.42921	0.14772	-0.71873	-0.13969	0.003665
6632	GSE1	3397	144343	0.043108	0.01485	0.014007	0.072209	0.003692
17311	TUBB1	1243	146497	0.071977	0.02482	0.023334	0.120621	0.00373
6837	HDDC2	539	147201	0.108939	0.03761	0.035226	0.182653	0.003772
3694	CSNK2A2	61	147679	-0.32331	0.11191	-0.54266	-0.10397	0.003864
18373	ZNF208	428	147312	0.122058	0.0423	0.039155	0.204961	0.003906
18628	ZNF595	2169	145571	-0.03191	0.01106	-0.05358	-0.01023	0.003919
9028	LYZL4	127	147613	0.223582	0.07757	0.071554	0.375611	0.003946
13071	QSOX2	1053	146687	0.076902	0.02669	0.024599	0.129205	0.003955
14227	SDR16C5	617	147123	0.101223	0.03516	0.032306	0.17014	0.003993
16556	TMEM156	71	147669	-0.29728	0.10373	-0.50059	-0.09398	0.004157
11848	PFDN4	42	147698	-0.38635	0.13485	-0.65066	-0.12205	0.00417
18227	ZEB1	437	147303	-0.11878	0.04147	-0.20007	-0.03749	0.004185
13319	RBM15B	914	146826	-0.08156	0.02853	-0.13748	-0.02565	0.00425
976	ARHGEF15	1038	146702	0.077559	0.02714	0.024357	0.130761	0.004273
4616	DYM	1442	146298	0.06545	0.02291	0.020549	0.110351	0.004277
3455	COPRS	147	147593	0.205838	0.07211	0.064506	0.347169	0.00431
16684	TMEM38B	428	147312	-0.12061	0.0423	-0.20352	-0.0377	0.004356
7552	IMP3	188	147552	0.173682	0.06093	0.054266	0.293099	0.004363
8035	KIAA0754	976	146764	-0.07945	0.02789	-0.13412	-0.02478	0.004393
5500	FBXO28	56	147684	0.332062	0.11678	0.103168	0.560956	0.004464
17348	TWNK	1328	146412	-0.06734	0.0237	-0.11378	-0.02089	0.004489
12233	PLSCR5	246	147494	-0.1569	0.05543	-0.26554	-0.04827	0.004642
8752	LOC11448	259	147481	-0.15334	0.05435	-0.25986	-0.04682	0.00478
8388	KRTAP5-4	17	147723	0.597892	0.21199	0.182388	1.013395	0.004798
8772	LONRF2	801	146939	0.086987	0.03085	0.026528	0.147446	0.004803

I	5536	FCER1A	44	147696	-0.371	0.13173	-0.6292	-0.11281	0.004858
I	6194	GIMAP6	121	147619	-0.22372	0.07948	-0.37949	-0.06794	0.00488
	7991	KDM1A	385	147355	0.123532	0.04392	0.037458	0.209605	0.004909
	10971	OR10A6	177	147563	0.183088	0.06519	0.055321	0.310855	0.004976
	4271	DIAPH2	385	147355	-0.12433	0.0443	-0.21116	-0.03751	0.005006
	8353	KRTAP19-6	30	147710	0.447676	0.15955	0.134953	0.7604	0.005019
I	13429	REN	510	147230	0.108681	0.03876	0.032704	0.184658	0.005053
l	18383	ZNF222	153	147587	0.197948	0.07071	0.059366	0.33653	0.005117
	18807	ZNF85	105	147635	-0.23876	0.08531	-0.40597	-0.07155	0.005131
	13433	REPS1	371	147369	0.127104	0.04542	0.038083	0.216124	0.005135
	17387	U2AF2	167	147573	-0.18923	0.06765	-0.32182	-0.05664	0.005156
l	7808	JHY	482	147258	-0.11144	0.03987	-0.18958	-0.0333	0.005186
	3833	CXCL11	93	147647	0.253202	0.09064	0.075556	0.430848	0.005213
l	9228	MARVELD	184	147556	0.179769	0.06445	0.053439	0.306099	0.005286
	11823	PES1	955	146785	0.078432	0.02815	0.023265	0.133598	0.005328
ļ	15639	STARD7	459	147281	0.113291	0.04072	0.033483	0.193099	0.005398
l	18066	YBX2	280	147460	0.144758	0.05227	0.042312	0.247204	0.005615
l	718	ANKRD34	181	147559	0.180134	0.06506	0.052626	0.307641	0.005624
ļ	16413	TKTL2	1011	146729	-0.07577	0.02737	-0.12943	-0.02212	0.005638
ļ	11100	OR2T5	24	147716	-0.46535	0.16816	-0.79494	-0.13577	0.005651
l	1155	ASPDH	469	147271	-0.11038	0.03995	-0.18867	-0.03208	0.005726
l	6584	GRIK2	547	147193	0.103033	0.03733	0.029858	0.176208	0.005785
l	4397	DNAJC13	1282	146458	-0.06617	0.02399	-0.11318	-0.01916	0.0058
l	6106	GCSAML	44	147696	-0.36322	0.13176	-0.62146	-0.10498	0.005838
ļ	3634	CRTC1	306	147434	0.137753	0.05001	0.039725	0.235781	0.005883
I	6115	GDF11	1141	146599	0.071411	0.02593	0.020585	0.122238	0.005891
I	16925	TPM1	443	147297	0.112257	0.04081	0.032276	0.192238	0.005943
	16585	TMEM182	306	147434	-0.13682	0.04977	-0.23436	-0.03927	0.005975
	14239	SEC14L3	609	147131	0.097051	0.03531	0.027839	0.166263	0.00599
	12126	PLAGL2	39	147701	-0.38409	0.13994	-0.65837	-0.10981	0.006057
	13886	RPS6KB1	304	147436	-0.13769	0.05019	-0.23607	-0.03932	0.006082
	17042	TRIM38	165	147575	0.186628	0.06807	0.053217	0.320039	0.00611
	4276	DIO1	278	147462	-0.14295	0.05217	-0.24521	-0.0407	0.006143
	147	ACER2	308	147432	0.136556	0.04985	0.038856	0.234255	0.006154
ļ	5149	EXOC8	374	147366	-0.12392	0.04525	-0.2126	-0.03523	0.006169
	1426	BARHL1	442	147298	0.113962	0.04163	0.032366	0.195557	0.006192
ļ	5045	ERI1	210	147530	0.164909	0.06034	0.04665	0.283168	0.006274
	6725	GYS2	1114	146626	0.071328	0.02611	0.02016	0.122496	0.006291
	6204	GIP	137	147603	0.201274	0.07389	0.056458	0.346091	0.006448
	10196	NBPF6	393	147347	0.120211	0.04414	0.033701	0.206721	0.00646
Ļ	6119	GDF5	331	147409	0.122862	0.04512	0.034433	0.21129	0.006466
ļ	8963	LTK	2020	145720	0.052918	0.01947	0.014768	0.091069	0.006555
	10064	MYO5B	2928	144812	0.043596	0.01607	0.0121	0.075092	0.006669
	11094	OR2T29	22	147718	-0.50434	0.18628	-0.86945	-0.13923	0.006782
ļ	8858	LRRC29	172	147568	-0.18031	0.06667	-0.31098	-0.04963	0.006842
	9402	MEP1A	717	147023	0.088013	0.03258	0.024158	0.151868	0.006903
ļ	14084	SAR1A	39	147701	0.378056	0.13994	0.103765	0.652346	0.006904
	17989	WNT8B	213	147527	0.161854	0.05991	0.044425	0.279283	0.006904
	53	ABCC10	3192	144548	0.041362	0.01531	0.011349	0.071375	0.006911
	18392	ZNF232	110	147630	0.224927	0.08335	0.061569	0.388284	0.006961

	11573	PBDC1	51	147689	0.330139	0.12253	0.08999	0.570288	0.007051
	17032	TRIM29	471	147269	0.108113	0.04021	0.029309	0.186917	0.007168
	17579	UPK3A	<mark>6</mark> 87	147053	-0.08966	0.03335	-0.15502	-0.0243	0.00717
I	15040	SLURP1	118	147622	-0.21636	0.08047	-0.37408	-0.05863	0.007175
	12977	PTPN9	609	147131	-0.09506	0.0354	-0.16444	-0.02568	0.007244
I	8784	LPAR3	163	147577	0.183745	0.06849	0.049507	0.317983	0.007301
I	11820	PER3	663	147077	-0.09039	0.03371	-0.15646	-0.02432	0.007333
I	12823	PSAT1	666	147074	0.090858	0.03395	0.024311	0.157406	0.007451
	6256	GLIS1	803	146937	-0.08182	0.03058	-0.14175	-0.02188	0.007462
ſ	1828	C17orf67	43	147697	0.355772	0.13328	0.094545	0.616999	0.0076
ľ	11038	OR1L3	109	147631	0.223198	0.08375	0.059055	0.387341	0.007696
I	16632	TMEM229	472	147268	0.10635	0.03991	0.028127	0.184572	0.007705
I	10223	NCKAP5	472	147268	0.106279	0.03991	0.028056	0.184502	0.007746
I	6847	HDX	180	147560	0.172061	0.06466	0.045322	0.298801	0.007794
I	2246	CARNS1	1811	145929	0.05463	0.02054	0.014368	0.094892	0.007828
I	16400	TIPARP	78	147662	-0.26322	0.09898	-0.45722	-0.06922	0.007829
I	776	ANXA11	531	147209	-0.09918	0.03733	-0.17234	-0.02603	0.007877
I	5581	FERD3L	371	147369	-0.11982	0.04513	-0.20827	-0.03136	0.007933
I	16747	TMLHE	552	147188	-0.09845	0.03712	-0.1712	-0.02569	0.007998
I	7738	ITGAV	661	147079	0.089887	0.03391	0.023416	0.156357	0.008039
	9541	MIOX	376	147364	0.118167	0.04461	0.030736	0.205599	0.008073
I	15396	SPEM2	300	147440	0.133109	0.05026	0.034608	0.231611	0.008083
I	4425	DNASE1	1152	146588	-0.06752	0.02552	-0.11754	-0.0175	0.008155
I	7762	ITM2B	223	147517	-0.15061	0.05704	-0.26241	-0.03881	0.008283
	8441	LAMA5	10011	137729	-0.02266	0.00859	-0.03949	-0.00582	0.008343
ľ	15564	SSMEM1	260	147480	-0.14305	0.05424	-0.24937	-0.03673	0.008362
ľ	17751	VIPR1	515	147225	-0.09915	0.03761	-0.17286	-0.02545	0.008374
I	16875	TOMM70	251	147489	0.142834	0.05424	0.036519	0.24915	0.008458
I	3320	CNNM4	1073	146667	0.069605	0.02644	0.017778	0.121431	0.00848
	7949	KCNN4	597	147143	-0.09288	0.03531	-0.16209	-0.02367	0.008534
	14334	SERINC4	586	147154	-0.09486	0.03608	-0.16557	-0.02416	0.008549
I	9625	MN1	2046	145694	-0.04997	0.01901	-0.08723	-0.01271	0.008576
	848	APLP2	1263	146477	0.063163	0.02405	0.016033	0.110293	0.008621
I	8588	LGR6	1168	146572	0.06681	0.02545	0.016926	0.116694	0.008665
I	14756	SLC25A4	183	147557	-0.16694	0.0636	-0.2916	-0.04228	0.008673
	477	AIG1	371	147369	-0.11425	0.04355	-0.19961	-0.02889	0.008707
	18555	ZNF511	701	147039	0.072151	0.02751	0.018232	0.12607	0.008724
L	71	ABCG1	893	146847	-0.07556	0.02882	-0.13205	-0.01908	0.008745
L	16320	THBS3	1910	145830	0.052521	0.02004	0.013249	0.091793	0.008762
Ļ	15111	SMIM5	76	147664	-0.26277	0.10029	-0.45933	-0.0662	0.008791
L	15019	SLFN12	615	147125	-0.08926	0.03414	-0.15616	-0.02235	0.008931
L	6269	GLRA4	460	147280	-0.10632	0.04073	-0.18615	-0.02649	0.009047
Ļ	5292	FAM171A	747	146993	0.083278	0.03193	0.020701	0.145855	0.009098
L	13902	RRAGB	128	147612	-0.20159	0.07731	-0.35311	-0.05007	0.009115
Ļ	11678	PCNT	2377	145363	-0.04667	0.0179	-0.08175	-0.01159	0.009122
L	2824	CEL	4187	143553	0.031455	0.01207	0.007793	0.055118	0.009175
Ļ	11616	PCDHA8	538	147202	0.097288	0.03735	0.024076	0.1705	0.009201
Ļ	9304	MCM6	287	147453	-0.13378	0.05137	-0.23446	-0.03309	0.009209
Ļ	11073	OR2H1	98	147642	-0.22962	0.0883	-0.40269	-0.05655	0.009313
	15611	ST8SIA1	165	147575	-0.17681	0.06807	-0.31022	-0.0434	0.00939

9499	MIB1	969	146771	-0.07211	0.02782	-0.12663	-0.01759	0.009538
5169	EYA3	562	147178	-0.09545	0.03684	-0.16764	-0.02325	0.009566
13518	RGS4	254	147486	-0.14223	0.0549	-0.24983	-0.03463	0.009573
16070	TBL3	1960	145780	0.051125	0.01974	0.012444	0.089805	0.009583
14889	SLC39A8	356	147384	-0.11989	0.04637	-0.21078	-0.029	0.009726

S2. Table 7. Rare variant SAMHD1 phenome-wide association testing with disease

status. Nominally significant (P<0.01) results are shown.

Index	Pherode	Phenotyne Description	Category	# Case	# Control	# Case w/	# Case w/o	# Control w/	# Control w/o	OR	95% (C)	95% LICI	Pavalue
index	Friecoue	Phenotype Description	category	# Case	# control	Mutation	Mutation	mutation	mutation	UK	95% LCI	55% OCI	r-value
44	phecode_174	Breast cancer	neoplasms	6727	162518	86	6641	1154	161364	1.91	1.52	2.4	2.73E-08
46	phecode_174.11	Malignant neoplasm of female breast	neoplasms	6186	84387	79	6107	566	83821	1.9	1.5	2.41	1.01E-07
45	phecode_174.1	Breast cancer [female]	neoplasms	6631	84387	83	6548	566	83821	1.86	1.48	2.35	1.38E-07
65	phecode_195.1	Malignant neoplasm- other	neoplasms	14784	151547	159	14625	1053	150494	1.54	1.3	1.82	5.78E-07
64	phecode_195	Cancer- suspected or other	neoplasms	15170	151547	161	15009	1053	150494	1.52	1.28	1.8	1.05E-06
66	phecode_197	Chemotherapy	neoplasms	9299	151547	105	9194	1053	150494	1.61	1.32	1.98	3.16E-06
21	phecode_1010	Other tests	NULL	9440	164248	103	9337	1173	163075	1.52	1.24	1.86	5.39E-05
47	phecode_175	Acquired absence of breast	neoplasms	1269	162044	21	1248	1148	160896	2.42	1.57	3.74	7.02E-05
630	phecode_702.2	Seborrheic keratosis	dermatologic	1422	171025	24	1398	1247	169778	2.18	1.46	3.27	0.000148
86	phecode_214	Lipoma	neoplasms	2996	170201	38	2958	1229	168972	1.78	1.29	2.45	0.000384
56	phecode_189	Cancer of urinary organs (incl. kidney and bladder)	neoplasms	2182	171506	31	2151	1245	170261	1.91	1.34	2.74	0.000399
67	phecode_198	Secondary malignant neoplasm	neoplasms	5038	151547	55	4983	1053	150494	1.58	1.21	2.08	0.000933
524	phecode_599.3	Dysuria	genitourinary	560	161318	11	549	1160	160158	2.65	1.47	4.79	0.001252
7	phecode_041	Bacterial infection NOS	infectious diseases	5860	166072	65	5795	1201	164871	1.49	1.16	1.91	0.001792
73	phecode_198.6	Secondary malignancy of bone	neoplasms	1236	151547	18	1218	1053	150494	2.1	1.31	3.35	0.001875
648	phecode_717	Polymyalgia Rheumatica	musculoskeletal	665	173023	12	653	1264	171759	2.47	1.39	4.37	0.002002
633	phecode_704	Diseases of hair and hair follicles	dermatologic	2459	170744	31	2428	1238	169506	1.72	1.21	2.46	0.00269
9	phecode_041.2	Streptococcus infection	infectious diseases	799	166072	13	786	1201	164871	2.26	1.31	3.9	0.003359
		Nonspecific abnormal findings on radiological and											
721	phecode_793	other examination of musculoskeletal system	symptoms	377	173311	7	370	1269	172042	2.79	1.4	5.56	0.003545
544	phecode_611.3	Lump or mass in breast	genitourinary	722	92533	12	710	653	91880	2.33	1.32	4.13	0.003712
544	phecode_611.3	Lump or mass in breast	genitourinary	722	92533	12	710	653	91880	2.33	1.32	4.13	0.003712
80	phecode_204.1	Lymphoid leukemia	neoplasms	397	171046	8	389	1247	169799	2.79	1.39	5.58	0.003752
79	phecode_204	Leukemia	neoplasms	1068	171046	16	1052	1247	169799	2.07	1.27	3.39	0.003792
58	phecode_189.11	Malignant neoplasm of kidney- except pelvis	neoplasms	643	171506	11	632	1245	170261	2.32	1.28	4.2	0.005398
87	phecode_214.1	Lipoma of skin and subcutaneous tissue	neoplasms	2269	170201	27	2242	1229	168972	1.7	1.17	2.47	0.0054
543	phecode_611	Abnormal findings on mammogram or breast exam	genitourinary	748	92533	12	736	653	91880	2.25	1.27	3.99	0.005503
472	phecode_574	Cholelithiasis and cholecystitis	digestive	7413	165528	75	7338	1197	164331	1.38	1.1	1.75	0.006495
57	phecode_189.1	Cancer of kidney and renal pelvis	neoplasms	666	171506	11	655	1245	170261	2.24	1.24	4.05	0.007689
		Other benign neoplasm of connective and other soft											
88	phecode_215	tissue	neoplasms	508	170201	9	499	1229	168972	2.43	1.26	4.67	0.00803
		Malignant neoplasm of other and ill-defined sites											
36	phecode_159	within the digestive organs and peritoneum	neoplasms	2889	165054	34	2855	1199	163855	1.57	1.12	2.22	0.009233
610	phecode_686	Other local infections of skin and subcutaneous tissue	dermatologic	2115	168268	26	2089	1224	167044	1.67	1.13	2.46	0.00943
335	phecode_446	Polyarteritis nodosa and allied conditions	circulatory system	435	169127	8	427	1241	167886	2.49	1.25	4.98	0.009768
521	phecode_599	Other symptoms/disorders or the urinary system	genitourinary	12370	161318	116	12254	1160	160158	1.29	1.06	1.56	0.009848

S2. Table 8. Phenoscanner search results for genetic variants initially considered as

genetic instruments for Mendelian Randomization analysis.

-											
Index	rsid	Variant Excluded from MR?	Reason for Inclusion or Exclusion	Gene	Trait	study	pmid	ancestry	year	р	n
1	rs12148	No	Coding mutation in Mitochondrially Localized Gene	SCO2	Mean corpuscular hemoglobin	Astle W	27863252	European	2016	7.54E-85	173480
2	rs12148	No	Coding mutation in Mitochondrially Localized Gene	5CO2	Mean corpuscular volume	Astle W	27863252	European	2016	3.63E-113	173480
3	rs12148	No	Coding mutation in Mitochondrially Localized Gene	SCO2	Red blood cell count	Astle W	27863252	European	2016	3.84E-38	173480
4	rs12148	No	Coding mutation in Mitochondrially Localized Gene	SCO2	Red cell distribution width	Astle W	27863252	European	2016	7.83E-19	173480
5	rs12148	No	Coding mutation in Mitochondrially Localized Gene	SCO2	Reticulocyte count	Astle W	27863252	European	2016	2.08E-14	173480
6	rs12148	No	Coding mutation in Mitochondrially Localized Gene	SCO2	Mean corpuscular hemoglobin concentration	van der Harst P	23222517	Mixed	2012	5.64E-13	71861
7	rs12148	No	Coding mutation in Mitochondrially Localized Gene	SCO2	Mean corpuscular volume	Ganesh SK	19862010	European	2009	1.23E-09	24167
8	rs12148	No	Coding mutation in Mitochondrially Localized Gene	SCO2	Mean corpuscular volume	van der Harst P	23222517	Mixed	2012	4.41E-14	71861
9	rs8067252	Yes	Strong associations with anthropometric measurements	ADAP2	Granulocyte percentage of myeloid white cells	Astle W	27863252	European	2016	2.62E-09	173480
10	rs8067252	Yes	Strong associations with anthropometric measurements	ADAP2	Neutrophil percentage of white cells	Astle W	27863252	European	2016	8.90E-09	173480
11	rs8067252	Yes	Strong associations with anthropometric measurements	ADAP2	Arm fat-free mass left	Neale B	UKBB	European	2017	1.10E-19	331159
12	rs8067252	Yes	Strong associations with anthropometric measurements	ADAP2	Arm fat-free mass right	Neale B	UKBB	European	2017	1.27E-20	331221
13	rs8067252	Yes	Strong associations with anthropometric measurements	ADAP2	Arm predicted mass left	Neale B	UKBB	European	2017	4.32E-20	331146
14	rs8067252	Yes	Strong associations with anthropometric measurements	ADAP2	Arm predicted mass right	Neale B	UKBB	European	2017	2.42E-21	331216
15	rs8067252	Yes	Strong associations with anthropometric measurements	ADAP2	Basal metabolic rate	Neale B	UKBB	European	2017	1.16E-20	331307
16	rs8067252	Yes	Strong associations with anthropometric measurements	ADAP2	Comparative height size at age 10	Neale B	UKBB	European	2017	1.17E-32	332021
17	rs8067252	Yes	Strong associations with anthropometric measurements	ADAP2	Forced expiratory volume in 1-second, predicted	Neale B	UKBB	European	2017	4.86E-15	110423
18	rs8067252	Yes	Strong associations with anthropometric measurements	ADAP2	Height	Neale B	UKBB	European	2017	6.14E-55	336474
19	rs8067252	Yes	Strong associations with anthropometric measurements	ADAP2	Leg fat-free mass left	Neale B	UKBB	European	2017	1.29E-14	331258
20	rs8067252	Yes	Strong associations with anthropometric measurements	ADAP2	Leg fat-free mass right	Neale B	UKBB	European	2017	4.48E-16	331285
21	rs8067252	Yes	Strong associations with anthropometric measurements	ADAP2	Leg predicted mass left	Neale B	UKBB	European	2017	1.08E-14	331253
22	rs8067252	Yes	Strong associations with anthropometric measurements	ADAP2	Leg predicted mass right	Neale B	UKBB	European	2017	2.97E-16	331285
23	rs8067252	Yes	Strong associations with anthropometric measurements	ADAP2	Trunk fat-free mass	Neale B	UKBB	European	2017	3.63E-26	331030
24	rs8067252	Yes	Strong associations with anthropometric measurements	ADAP2	Trunk predicted mass	Neale B	UKBB	European	2017	1.35E-26	330995
25	rs8067252	Yes	Strong associations with anthropometric measurements	ADAP2	Weight	Neale B	UKBB	European	2017	6.16E-13	336227
26	rs8067252	Yes	Strong associations with anthropometric measurements	ADAP2	Whole body fat-free mass	Neale B	UKBB	European	2017	7.00E-23	331291
27	rs8067252	Yes	Strong associations with anthropometric measurements	ADAP2	Whole body water mass	Neale B	UKBB	European	2017	2.19E-22	331315
28	rs56069439	Yes	Strong association with female cancers	ANKLE1	Breast cancer risk in BRCA1 mutation carriers	Antoniou AC	20852631	European	2010	1.06E-11	2383

29	rs56069439	Yes	Strong association with female cancers	ANKLE1	Breast cancer	Couch FJ	27117709	European	2016	1.00E-32	
30	rs56069439	Yes	Strong association with female cancers	ANKLE1	Breast cancer	Michailidou K	29059683	Mixed	2017	9.00E-09	-
31	rs56069439	Yes	Strong association with female cancers	ANKLE1	High grade serous ovarian cancer	Phelan M	28346442	European	2016	6.48E-26	- 53978
33	rs56069439	Yes	Strong association with female cancers	ANKLE1	Invasive ovarian cancer	Phelan M	28346442	European	2017	2.94E-17	63347
34	rs56069439	Yes	Strong association with female cancers	ANKLE1	Serous invasive ovarian cancer	Phelan M	28346442	European	2017	6.66E-24	54990
35	rs701834	No	Minimal evidence of pleiotropy	LZTS2	Comparative height size at age 10	Neale B	UKBB	European	2017	1.39E-12	332021
30	rs12426673	No	Coding mutation in Mitochondrially Localized Gene	USP30-AS1	Platelet count	Astle W	27863252	European	2016	4.15E-31	173480
38	rs17850455	No	Coding mutation in Mitochondrially Localized Gene	POLG2	Cause of death: unspecified place	Neale B	UKBB	European	2010	2.66E-08	7637
39	rs5745582	No	Coding mutation in Mitochondrially Localized Gene	BAK1	Platelet count	Astle W	27863252	European	2016	3.36E-101	173480
40	rs5745582	No	Coding mutation in Mitochondrially Localized Gene	BAK1	Plateletcrit	Astle W	27863252	European	2016	2.72E-116	173480
41	rs5745582	No	Coding mutation in Mitochondrially Localized Gene	BAK1	Platelet count	Qayyum R	22423221	African	2012	2.48E-12	16388
42	rs2844509	Yes	Strong associations with immune diseases	ATP6V1G2-DDX39B	Mean platelet volume	Astle W	27863252	European	2016	1.79E-09	173480
43	rs2844509	Yes	Strong associations with immune diseases	ATP6V1G2-DDX39B	HIV 1 control	Pereyra F	21051598	Mixed	2010	1.20E-10	3622
44	rs2844509	Yes	Strong associations with immune diseases	ATP6V1G2-DDX39B	HIV 1 control viral load at set point	Fellay J	20041166	European	2009	6.40E-09	2362
45	rs2844509	Yes	Strong associations with immune diseases	ATP6V1G2-DDX398	Rheumatoid arthritis	Gregersen PK	19503088	European	2007	5.52E-27	6922
47	rs2844509	Yes	Strong associations with immune diseases	ATP6V1G2-DDX39B	Rheumatoid arthritis	Stahl E	20453842	European	2010	1.47E-46	25708
48	rs2844509	Yes	Strong associations with immune diseases	ATP6V1G2-DDX39B	Ulcerative colitis	IBDGC	26192919	European	2015	1.21E-10	27432
49	rs2844509	Yes	Strong associations with immune diseases	ATP6V1G2-DDX39B	Primary sclerosing cholangitis	Ji S	27992413	European	2017	1.36E-27	14890
50	rs2844509	Yes	Strong associations with immune diseases	ATP6V1G2-DDX39B	Psoriasis	Neale B	UKBB	European	2017	3.60E-09	337199
51	rs2844509	Yes	Strong associations with immune diseases	ATP6V1G2-DDX39B	Self-reported hyperthyroidism or thyrotoxicosis	Neale B	UKBB	European	2017	1.48E-14	337159
52	rs2844509	Yes	Strong associations with immune diseases	ATP6V1G2-DDX39B	Self-reported psoriasis	Neale B	UKBB	European	2017	3.08E-115	33/159
54	rs2844509	Yes	Strong associations with immune diseases	ATP6V1G2-DDX398	Treatment with dovobet ointment	Neale B	UKBB	European	2017	8.51E-15	337159
55	rs2844509	Yes	Strong associations with immune diseases	ATP6V1G2-DDX39B	Treatment with dovonex 50micrograms or g cream	Neale B	UKBB	European	2017	8.39E-09	337159
56	rs2844509	Yes	Strong associations with immune diseases	ATP6V1G2-DDX39B	Treatment with levothyroxine sodium	Neale B	UKBB	European	2017	1.13E-10	337159
57	rs2844509	Yes	Strong associations with immune diseases	ATP6V1G2-DDX39B	Rheumatoid arthritis	Okada Y	24390342	East Asian	2014	1.40E-14	22515
57	rs2844509	Yes	Strong associations with immune diseases	ATP6V1G2-DDX39B	Rheumatoid arthritis	Okada Y	24390342	East Asian	2014	1.40E-14	22515
58	rs2844509	Yes	Strong associations with immune diseases	ATP6V1G2-DDX39B	Rheumatoid arthritis	Okada Y	24390342	European	2014	5.10E-82	58284
59	rs2844509	Yes	Strong associations with immune diseases	ATP6V1G2-DDX39B	Rheumatoid arthritis	Okada Y	24390342	Mixed	2014	6.00E-32	80799
60	rs2844509	Yes	Strong associations with immune diseases	ATP6V1G2-DDX39B	Rheumatoid arthritis	Stahl E	20453842	European	2010	1.47E-46	25706
61	rs73004962	Tes Yec	Strong associations with Immune diseases Strong associations with linide	PBX4	Plateletcrit	Astle W	27863252	European	2016	2.21E-13	173480
63	rs73004962	Yes	Strong associations with lipids	PBX4	Type II diabetes	DIAGRAM	26551672	European	2015	1.10E-09	84780
64	rs73004962	Yes	Strong associations with lipids	PBX4	Low density lipoprotein	GLGC	24097068	European	2013	2.71E-21	74969
65	rs73004962	Yes	Strong associations with lipids	PBX4	Total cholesterol	GLGC	24097068	European	2013	7.94E-23	82981
66	rs73004962	Yes	Strong associations with lipids	PBX4	Triglycerides	GLGC	24097068	European	2013	6.65E-40	78333
67	rs73004962	Yes	Strong associations with lipids	PBX4	Height	Neale B	UKBB	European	2017	7.37E-11	336474
68	rs73004962	Yes	Strong associations with lipids	PBX4	Leg fat-free mass left	Neale B	UKBB	European	2017	2.82E-08	331258
69	rs73004962	Yes	Strong associations with lipids	PBX4	Leg fat-free mass right	Neale B	UKBB	European	2017	1.52E-08	331285
70	rs73004962	Yes	Strong associations with lipids	PBX4 PRX4	Leg predicted mass left	Neale B	LIKBB	European	2017	2.41E-08	331285
	137 3004302	163	Strong associations with riplus	1004	Medication for cholesterol, blood pressure or diabetes:	Heare D	OKDO	curopean	2017	1.576-00	331203
72	rs73004962	Yes	Strong associations with lipids	PBX4	cholesterol lowering medication	Neale B	UKBB	European	2017	1.06E-12	154702
73	rs73004962	Yes	Strong associations with lipids	PBX4	Self-reported high cholesterol	Neale B	UKBB	European	2017	1.64E-14	337159
			Minimal evidence of pleiotropy and has a known role in								
	rs1760940	No	mitochondrial function	PNP	Age at menopause	ReproGen	26414677	European	2015	5.10E-10	
			(https://journals.plos.org/plosgenetics/article?id=10.1371/jo		- 0						
74	**2766744	No	Coding mutation in Mitachandrially Localized Gana	MEN/2	Platelet count	Actio W	27962262	European	2016	5.025.25	172480
75	rs3766744	No	Coding mutation in Mitochondrially Localized Gene	MEN2	Platelet count	Astie W	27863252	European	2016	2.11E-37	173480
77	rs6792510	No	Minimal evidence of pleiotropy	NCKIPSD	Sum eosinophil basophil counts	Astle W	27863252	European	2016	1.93E-08	173480
78	rs11596235	No	Minimal evidence of pleiotropy	SUFU	Sum eosinophil basophil counts	Astle W	27863252	European	2016	3.91E-08	173480
79	rs11596235	No	Minimal evidence of pleiotropy	SUFU	Waist circumference adjusted for BMI	GIANT	25673412	Mixed	2015	1.50E-08	243954
80	rs11596235	No	Minimal evidence of pleiotropy	SUFU	Height	Neale B	UKBB	European	2017	1.40E-11	336474
80	rs11596235 rs11596235	No No	Minimal evidence of pleiotropy Minimal evidence of pleiotropy	SUFU SUFU	Height Sitting height	Neale B Neale B	UKBB UKBB	European European	2017 2017	1.40E-11 4.83E-10	336474 336172
80	rs11596235 rs11596235	No	Minimal evidence of pleiotropy Minimal evidence of pleiotropy Minimal evidence of pleiotropy and experimental evidence	SUFU SUFU	Height Sitting height	Neale B Neale B	UKBB UKBB	European European	2017	1.40E-11 4.83E-10	336474 336172
80	rs11596235 rs11596235 rs1342442	No No No	Minimal evidence of pleiotropy Minimal evidence of pleiotropy Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mtDNA regulation (https://whende.chi.alm.nih.aev/21393861/)	SUFU SUFU MEF2D	Height Sitting height Platelet count	Neale B Neale B Astle W	UKBB UKBB 27863252	European European European	2017 2017 2016	1.40E-11 4.83E-10 7.97E-11	336474 336172
80	rs11596235 rs11596235 rs1342442	No No No	Minimal evidence of pleiotropy Minimal evidence of pleiotropy Minimal evidence of pleiotropy Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mtDNA regulation (https://pubmed.ncbi.nlm.nih.gov/21393861/) Minimal evidence of dipleiotropy and experimental evidence	SUFU SUFU MEF2D	Height Sitting height Platelet count	Neale B Neale B Astle W	UKBB UKBB 27863252	European European European	2017 2017 2016	1.40E-11 4.83E-10 7.97E-11	336474 336172 173480
80	rs11596235 rs11596235 rs1342442 rs1342442	No No No	Minimal evidence of pleiotropy Minimal evidence of pleiotropy Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mtDNA regulation (https://pubmed.ncbi.mm.ing.ov/21393861/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mtDNA regulation	SUFU SUFU MEF2D MEF2D	Height Sitting height Platelet count Plateletcrit	Neale B Neale B Astie W Astie W	UKBB UKBB 27863252 27863252	European European European	2017 2017 2016 2016	1.40E-11 4.83E-10 7.97E-11 3.06E-14	336474 336172 173480
80 81 82 83	rs11596235 rs11596235 rs1342442 rs1342442	No No No	Minimal evidence of pleiotropy Minimal evidence of pleiotropy Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.ing.ov/13193861/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.ing.ov/13193861/)	SUFU SUFU MEF2D MEF2D	Height Sitting height Platelet count Plateletcrit	Neale B Neale B Astie W Astie W	UKBB UKBB 27863252 27863252	European European European European	2017 2017 2016 2016	1.40E-11 4.83E-10 7.97E-11 3.06E-14	336474 336172 173480 173480
80 81 82 83	rs11596235 rs11596235 rs1342442 rs1342442	No No No	Minimal evidence of pleiotropy Minimal evidence of pleiotropy Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mtDNA regulation (https://pubmed.ncik.imm.nih.gov/21393661/ Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mtDNA regulation (https://pubmed.ncik.imm.nik.gov/21393661/ Minimal evidence of pleiotropy and experimental evidence	SUFU SUFU MEF2D MEF2D	Height Sitting height Platelet count Plateletcrit Medication for pair called constions baathurs one of	Neale B Neale B Astle W Astle W	UKBB UKBB 27863252 27863252	European European European European	2017 2017 2016 2016	1.40E-11 4.83E-10 7.97E-11 3.06E-14	336474 336172 173480 173480
80 81 82 83	rs11596235 rs11596235 rs1342442 rs1342442 rs1342442	No No No No	Minimal evidence of pleiotropy Minimal evidence of pleiotropy Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDVA regulation (https://pubmed.ncbi.nm.nib.gov/21393861/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDVA regulation (https://pubmed.ncbi.nlm.nib.gov/21393861/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDVA regulation	SUFU SUFU MEF2D MEF2D MEF2D	Height Sitting height Platelet count Plateletcrit Medication for pain relief, constipation, heartburn: none of the above	Neale B Neale B Astle W Astle W Neale B	UKBB UKBB 27863252 27863252 UKBB	European European European European European	2017 2017 2016 2016 2016 2017	1.40E-11 4.83E-10 7.97E-11 3.06E-14 3.45E-09	336474 336172 173480 173480
80 81 82 83 83	rs11596235 rs11596235 rs1342442 rs1342442 rs1342442	No No No No	Minimal evidence of pleiotropy Minimal evidence of pleiotropy Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nih.gov/21393651/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nih.gov/21393651/) (https://pubmed.ncbi.nlm.nih.gov/21393651/)	SUFU SUFU MEF2D MEF2D MEF2D	Height Sitting height Platelet count Plateletcrit Medication for pain relief, constipation, heartburn: none of the above	Neale B Neale B Astle W Astle W Neale B	UKBB UKBB 27863252 27863252 UKBB	European European European European European	2017 2017 2016 2016 2016 2017	1.40E-11 4.83E-10 7.97E-11 3.06E-14 3.45E-09	336474 336172 173480 173480 333581
80 81 82 83 83	rs11596235 rs11596235 rs1342442 rs1342442 rs1342442	No No No	Minimal evidence of pleiotropy Minimal evidence of pleiotropy Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.min.mik.gv/21393661/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.min.nik.gv/21393661/) Minimal evidence of pleiotropy and experimental evidence (https://pubmed.ncbi.min.mik.gv/21393661/) Minimal evidence of pleiotropy and experimental evidence	SUFU SUFU MEF2D MEF2D MEF2D	Height Sitting height Platelet count Plateletcrit Medication for pain relief, constipation, heartburn: none of the above Medication for pain relief, constipation, heartburn:	Neale B Neale B Astie W Astie W Neale B	UKBB UKBB 27863252 27863252 UKBB	European European European European	2017 2017 2016 2016 2016 2017	1.40E-11 4.83E-10 7.97E-11 3.06E-14 3.45E-09	336474 336172 173480 173480 333581
80 81 82 83 84	rs11596235 rs11596235 rs1342442 rs1342442 rs1342442 rs1342442	No No No No No	Minimal evidence of pleiotropy Minimal evidence of pleiotropy Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pulmed.ncbi.nlm.nih.gov/21393861/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pulmed.ncbi.nlm.nih.gov/21393861/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pulmed.ncbi.nlm.nih.gov/21393861/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pulmed.ncbi.nlm.nih.gov/21393861/) Minimal evidence of pleiotropy not experimental evidence (https://moment.ncbi.nlm.nih.gov/21393861/)	SUFU SUFU MEF2D MEF2D MEF2D MEF2D	Height Sitting height Platelet count Plateletcrit Medication for pain relief, constipation, heartburn: none of the above Medication for pain relief, constipation, heartburn: paracetamol	Neale B Neale B Astle W Astle W Neale B Neale B	UKBB UKBB 27863252 27863252 UKBB UKBB	European European European European European	2017 2017 2016 2016 2016 2017 2017	1.40E-11 4.83E-10 7.97E-11 3.06E-14 3.45E-09 8.13E-09	336474 336172 173480 173480 333581
80 81 82 83 83 84 84 85	rs11596235 rs11596235 rs1342442 rs1342442 rs1342442 rs1342442	No No No No No	Minimal evidence of pleiotropy Minimal evidence of pleiotropy Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mtDNA regulation (https://pubmed.ncbi.min.mi.gov/21393861/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mtDNA regulation (https://pubmed.ncbi.min.mi.gov/21393861/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mtDNA regulation (https://pubmed.ncbi.min.mi.gov/21393861/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mtDNA regulation (https://pubmed.ncbi.min.mi.gov/21393861/) Minimal evidence of pleiotropy and experimental evidence suggesting ed reletor of wardsmontal = indexed	SUFU SUFU MEF2D MEF2D MEF2D MEF2D	Height Sitting height Platelet count Plateletcrit Medication for pain relief, constipation, heartburn: none of the above Medication for pain relief, constipation, heartburn: paracetamol	Neale B Neale B Astle W Astle W Neale B Neale B	UKBB UKBB 27863252 27863252 UKBB UKBB	European European European European European	2017 2017 2016 2016 2016 2017 2017	1.40E-11 4.83E-10 7.97E-11 3.06E-14 3.45E-09 8.13E-09	336474 336172 173480 173480 333581 333581
80 81 82 83 83 84 85	rs11596235 rs11596235 rs1342442 rs1342442 rs1342442 rs1342442 rs1342442	No No No No No	Minimal evidence of pleiotopy Minimal evidence of pleiotopy Minimal evidence of pleiotopy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nib.gov/12193961/) Minimal evidence of pleiotopy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nib.gov/12193961/) Minimal evidence of pleiotopy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nib.gov/12193961/) Minimal evidence of pleiotopy and experimental evidence Missing a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nib.gov/12193961/) Minimal evidence of pleiotopy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nib.gov/12193961/) Minimal evidence of pleiotopy and experimental evidence suggesting a direct role in mDNA regulation	SUFU SUFU MEF2D MEF2D MEF2D MEF2D MEF2D	Height Sitting height Platelet count Plateletcrit Medication for pain relief, constipation, heartburn: none of the above Medication for pain relief, constipation, heartburn: paracetamol Pain type experienced in last month: headache	Neale B Neale B Astie W Neale B Neale B Neale B	UKBB UKBB 27863252 27863252 UKBB UKBB UKBB	European European European European European European	2017 2017 2016 2016 2017 2017 2017	1.40E-11 4.83E-10 7.97E-11 3.06E-14 3.45E-09 8.13E-09 8.13E-09	336474 336172 173480 173480 333581 333581
80 81 82 83 83 84 84 85 86	rs11596235 rs11596235 rs1342442 rs1342442 rs1342442 rs1342442 rs1342442	No No No No No No	Minimal evidence of pleiotropy Minimal evidence of pleiotropy Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nm.nih.gov/21393861/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nm.nih.gov/21393861/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nm.nih.gov/21393861/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nm.nih.gov/21393861/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nm.nih.gov/21393861/)	SUFU SUFU MEF2D MEF2D MEF2D MEF2D MEF2D	Height Sitting height Platelet count Plateletcrit Medication for pain relief, constipation, heartburn: none of the above Medication for pain relief, constipation, heartburn: paracetamol Pain type experienced in last month: headache	Neale B Neale B Astle W Astle W Neale B Neale B Neale B	UKBB UKBB 27863252 27863252 UKBB UKBB UKBB	European European European European European European	2017 2017 2016 2016 2017 2017 2017 2017	1.40E-11 4.83E-10 7.97E-11 3.06E-14 3.45E-09 8.13E-09 8.13E-09	336474 336172 173480 173480 333581 333581 333581
80 81 82 83 83 84 84 85 86	rs11596235 rs11596235 rs1342442 rs1342442 rs1342442 rs1342442 rs1342442	No No No No No No	Minimal evidence of pleiotropy Minimal evidence of pleiotropy Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.min.mik.gv/1133861/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.min.mik.gv/12393661/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.min.mik.gv/12393661/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.min.mik.gv/12393861/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.min.mik.gv/12393861/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.min.mik.gv/13933661/)	SUFU SUFU MEF2D MEF2D MEF2D MEF2D MEF2D	Height Sitting height Platelet count Plateletcrit Medication for pain relief, constipation, heartburn: none of the above Medication for pain relief, constipation, heartburn: paracetamol Pain type experienced in last month: headache	Neale B Neale B Astle W Astle W Neale B Neale B Neale B	UKBB UKBB 27863252 27863252 UKBB UKBB UKBB	European European European European European European	2017 2017 2016 2016 2017 2017 2017 2017	1.40E-11 4.83E-10 7.97E-11 3.06E-14 3.45E-09 8.13E-09 8.12E-16	336474 336172 173480 173480 333581 333581 3336650
80 81 82 83 83 84 84 85 86	rs11596235 rs11596235 rs1342442 rs1342442 rs1342442 rs1342442 rs1342442 rs1342442	No	Minimal evidence of pleiotropy Minimal evidence of pleiotropy Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.min.mi.gov/21393861/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.min.mi.gov/21393861/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.min.mi.gov/21393861/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.min.mi.gov/21393861/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.min.mi.gov/21393861/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.min.mi.gov/21393861/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation	SUFU SUFU MEF2D MEF2D MEF2D MEF2D MEF2D MEF2D	Height Sitting height Platelet count Plateletcrit Medication for pain relief, constipation, heartburn: none of the above Medication for pain relief, constipation, heartburn: paracetamol Pain type experienced in last month: headache Pulse rate	Neale B Astle W Astle W Neale B Neale B Neale B Neale B Neale B	UKBB UKBB 27863252 27863252 UKBB UKBB UKBB	European European European European European European European	2017 2017 2016 2016 2017 2017 2017 2017	1.40E-11 4.83E-10 7.97E-11 3.06E-14 3.45E-09 8.13E-09 8.12E-16 3.01E-12	336474 336172 173480 173480 333581 333581 333581 3336650
80 81 82 83 83 84 84 85 86 86 87	rs11596235 rs11596235 rs1342442 rs1342442 rs1342442 rs1342442 rs1342442 rs1342442	No No No No No No No No No	Minimal evidence of pleiotropy Minimal evidence of pleiotropy Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nih.gov/21393861/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nih.gov/21393861/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nih.gov/21393861/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nih.gov/21393861/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nih.gov/21393861/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nih.gov/21393861/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nih.gov/21393861/)	SUFU SUFU MEF2D MEF2D MEF2D MEF2D MEF2D MEF2D	Height Sitting height Platelet count Plateletcrit Medication for pain relief, constipation, heartburn: none of the above Medication for pain relief, constipation, heartburn: paracetamol Pain type experienced in last month: headache Pulse rate	Neale B Neale B Astie W Neale B Neale B Neale B Neale B	UKBB UKBB 27863252 27863252 UKBB UKBB UKBB	European European European European European European European	2017 2017 2016 2016 2017 2017 2017 2017 2017	1.40E-11 4.83E-10 7.97E-11 3.06E-14 3.45E-09 8.13E-09 8.12E-16 3.01E-12	336474 336172 173480 173480 333581 333581 3336650 317756
80 81 82 83 84 84 85 86 86 86	rs11596235 rs11596235 rs1342442 rs1342442 rs1342442 rs1342442 rs1342442 rs1342442	No No No No No No	Minimal evidence of pleiotropy Minimal evidence of pleiotropy and levidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://puhmed.ncbi.nlm.nih.gov/21393861/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://puhmed.ncbi.nlm.nih.gov/21393861/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://puhmed.ncbi.nlm.nih.gov/21393861/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://puhmed.ncbi.nlm.nih.gov/21393861/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://puhmed.ncbi.nlm.nih.gov/21393861/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://puhmed.ncbi.nlm.nih.gov/21393861/) Minimal evidence of pleiotropy and experimental evidence (https://puhmed.ncbi.nlm.nih.gov/21393861/) Minimal evidence of pleiotropy and experimental evidence (https://puhmed.ncbi.nlm.nih.gov/21393861/) Minimal evidence of pleiotropy and experimental evidence (https://puhmed.ncbi.nlm.nih.gov/21393861/) Minimal evidence of pleiotropy and experimental evidence	SUFU SUFU SUFU MEF2D MEF2D MEF2D MEF2D MEF2D MEF2D MEF2D	Height Sitting height Platelet count Plateletcrit Medication for pain relief, constipation, heartburn: none of the above Medication for pain relief, constipation, heartburn: paracetamol Pain type experienced in last month: headache Pulse rate Salf-second relievience	Neale B Neale B Astle W Neale B Neale B Neale B Neale B	UKBB UKBB 27863252 27863252 UKBB UKBB UKBB	European European European European European European European	2017 2017 2016 2016 2017 2017 2017 2017 2017 2017	1.40E-11 4.83E-10 7.97E-11 3.06E-14 3.45E-09 8.13E-09 8.12E-16 3.01E-12	336474 336172 173480 173480 333581 333581 3336650 317756
80 81 82 83 83 84 84 85 86 86 87	rs11596235 rs11596235 rs1342442 rs1342442 rs1342442 rs1342442 rs1342442 rs1342442	No No No No No No No	Minimal evidence of pleiotropy Minimal evidence of pleiotropy Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (http://pubmed.ncbi.mn.nib.gov/21393661/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (http://pubmed.ncbi.mn.nib.gov/21393661/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (http://pubmed.ncbi.mn.nib.gov/21393661/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (http://pubmed.ncbi.mn.nib.gov/21393661/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (http://pubmed.ncbi.mn.nib.gov/21393661/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (http://pubmed.ncbi.mn.nib.gov/21393661/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (http://pubmed.ncbi.mn.nib.gov/21393661/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (http://pubmed.ncbi.mn.nib.gov/21393661/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (http://pubmed.ncbi.mn.nib.gov/21393661/)	SUFU SUFU MEF2D MEF2D MEF2D MEF2D MEF2D MEF2D MEF2D	Height Sitting height Platelet count Platelet count Plateletcrit Medication for pain relief, constipation, heartburn: none of the above Medication for pain relief, constipation, heartburn: paracetamol Pain type experienced in last month: headache Pulse rate Self-reported migraine	Neale B Astle W Astle W Neale B Neale B Neale B Neale B Neale B Neale B	UKBB UKBB 27863252 27863252 UKBB UKBB UKBB UKBB	European European European European European European European	2017 2017 2016 2016 2017 2017 2017 2017 2017 2017 2017	1.40E-11 4.83E-10 7.97E-11 3.06E-14 3.45E-09 8.13E-09 8.12E-16 3.01E-12 1.10E-08	336474 336172 173480 173480 333581 333581 333650 317756
80 81 82 83 83 84 84 85 86 86 86 87 87 88	rs11596235 rs11596235 rs1342442 rs1342442 rs1342442 rs1342442 rs1342442 rs1342442	No N	Minimal evidence of pleiotopy Minimal evidence of pleiotopy Minimal evidence of pleiotopy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nib.gov/12139361/) Minimal evidence of pleiotopy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nib.gov/12139361/) Minimal evidence of pleiotopy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nib.gov/12139361/) Minimal evidence of pleiotopy and experimental evidence muggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nib.gov/12139361/) Minimal evidence of pleiotopy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nib.gov/12139361/) Minimal evidence of pleiotopy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nib.gov/12139361/) Minimal evidence of pleiotopy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nib.gov/12139361/) Minimal evidence of pleiotopy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nib.gov/12139361/) Minimal evidence of pleiotopy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nib.gov/12139361/) Minimal evidence of pleiotopy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nib.gov/12139361/)	SUFU SUFU SUFU MEF2D MEF2D MEF2D MEF2D MEF2D MEF2D MEF2D	Height Sitting height Platelet count Platelet count Plateletcrit Medication for pain relief, constipation, heartburn: none of the above Medication for pain relief, constipation, heartburn: paracetamol Pain type experienced in last month: headache Pulse rate Self-reported migraine	Neale B Neale B Astle W Neale B Neale B Neale B Neale B Neale B	UKBB UKBB 27863252 27863252 UKBB UKBB UKBB UKBB	European European European European European European European European	2017 2017 2016 2016 2017 2017 2017 2017 2017 2017	1.40E-11 4.83E-10 7.97E-11 3.06E-14 3.45E-09 8.13E-09 8.12E-16 3.01E-12 1.10E-08	336474 336172 173480 173480 333581 333581 3336650 317756 337159
800 81 82 83 84 84 85 86 86 87 87 88 88 89	r:11596235 rs11596235 rs1342442 rs1342442 rs1342442 rs1342442 rs1342442 rs1342442 rs1342442 rs1342442 rs1342442	No N	Minimal evidence of pleiotropy Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nih.gev/21393661/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nih.gv/21393661/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nih.gv/21393661/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nih.gv/21393661/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nih.gv/21393661/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nih.gv/21393661/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nih.gv/2139361/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nih.gv/2139361/) Strong associations with lipids and neurodegenerative disese	SUFU SUFU MEF2D MEF2D MEF2D MEF2D MEF2D MEF2D MEF2D MEF2D APOE	Height Sitting height Platelet count Platelet count Plateletcrit Medication for pain relief, constipation, heartburn: none of the above Medication for pain relief, constipation, heartburn: paracetamol Pain type experienced in last month: headache Pulse rate Self-reported migraine High light scatter percentage of red cells	Neale B Astle W Astle W Neale B	UKBB UKBB 27863252 27863252 UKBB UKBB UKBB UKBB 27863252	European European European European European European European European	2017 2017 2016 2016 2017 2017 2017 2017 2017 2017 2017	1.40E-11 4.83E-10 7.97E-11 3.06E-14 3.45E-09 8.13E-09 8.12E-16 3.01E-12 1.10E-08 2.95E-38	336474 336172 173480 173480 333581 333581 3336650 317756 337159 173480
800 81 82 83 84 84 85 85 86 86 87 87 88 88 89	rs11596235 rs11596235 rs1342442 rs1342442 rs1342442 rs1342442 rs1342442 rs1342442 rs1342442 rs1342442 rs1342442 rs1342442 rs7412 rs7412	No N	Minimal evidence of pleiotopy Minimal evidence of pleiotopy Minimal evidence of pleiotopy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nih.gov/2139361/) Minimal evidence of pleiotopy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nih.gov/2139361/) Minimal evidence of pleiotopy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nih.gov/2139361/) Minimal evidence of pleiotopy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nih.gov/2139361/) Minimal evidence of pleiotopy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nih.gov/2139361/) Minimal evidence of pleiotopy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nih.gov/2139361/) Minimal evidence of pleiotopy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nih.gov/2139361/) Minimal evidence of pleiotopy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nih.gov/2139361/) Minimal evidencies of pleiotopy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nih.gov/2139361/) Minimal evidencies of pleiotopy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nih.gov/2139361/)	SUFU SUFU SUFU MEF2D	Height Sitting height Platelet count Platelet count Plateletcrit Medication for pain relief, constipation, heartburn: none of the above Medication for pain relief, constipation, heartburn: paracetamol Pain type experienced in last month: headache Pulse rate Self-reported migraine High light scatter percentage of red cells Medication comt	Neale B Neale B Astle W Astle W Neale B Neale B Neale B Neale B Neale B Neale B	UKBB UKBB 27863252 27863252 UKBB UKBB UKBB UKBB UKBB 27863252 27863252	European European European European European European European European	2017 2017 2016 2016 2017 2017 2017 2017 2017 2017 2017 2016 2016	1.40E-11 4.83E-10 7.97E-11 3.06E-14 3.45E-09 8.13E-09 8.12E-16 3.01E-12 1.10E-08 2.95E-38	336474 336172 173480 333581 333581 3336650 317756 337159 173480
800 81 82 83 84 84 85 85 86 87 87 88 88 89 90	r:11596235 rs11596235 rs1342442 rs1342442 rs1342442 rs1342442 rs1342442 rs1342442 rs1342442 rs1342442 rs1342442 rs1342442 rs7412	No No No No No No No No Yes Yes	Minimal evidence of pleiotropy Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nih.gov/21393861/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nih.gov/21393861/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nih.gov/21393861/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nih.gov/21393861/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nih.gov/21393861/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nih.gov/21393861/) Strong associations with lipids and reurodegenerative direase Strong associations with lipids and neurodegenerative direase Strong associations with lipids and neurodegenerative direase	SUFU SUFU MEF2D MEF2D MEF2D MEF2D MEF2D MEF2D MEF2D APOE APOE	Height Sitting height Platelet count Platelet count Plateletcrit Medication for pain relief, constipation, heartburn: none of the above Medication for pain relief, constipation, heartburn: paracetamol Pain type experienced in last month: headache Pulse rate Self-reported migraine High light scatter reticulocyte count	Neale B Neale B Astle W Neale B Neale B Neale B Neale B Neale B Neale B Astle W Astle W	UKBB UKBB 27863252 27863252 UKBB UKBB UKBB UKBB UKBB 27863252 27863252	European European European European European European European European European	2017 2017 2016 2016 2017 2017 2017 2017 2017 2017 2017 2016 2016	1.40F-11 4.83E-10 7.97E-11 3.06E-14 3.45E-09 8.13E-09 8.13E-09 8.12E-16 3.01E-12 1.10E-08 2.95E-38 9.58E-36	336474 336172 173480 173480 333581 333581 333581 3336650 317756 337159 173480 173480
80 81 82 83 84 84 85 85 86 87 87 88 89 900	rs11596235 rs11596235 rs1342442 rs1342442 rs1342442 rs1342442 rs1342442 rs1342442 rs1342442 rs1342442 rs1342442 rs7412 rs7412	No No No No No No No No Ves Yes	Minimal evidence of pleiotropy Minimal evidence of pleiotropy Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.min.mil.gov/21393661/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.min.mil.gov/21393661/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.min.mil.gov/21393661/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.min.mil.gov/21393661/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.min.mil.gov/21393661/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.min.mil.gov/21393661/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.min.mil.gov/21393661/) Strong ssociations with lipids and neurodegenerative disease Strong ssociations with lipids and neurodegenerative	SUFU SUFU MEF2D MEF2D MEF2D MEF2D MEF2D MEF2D MEF2D MEF2D APOE APOE APOE	Height Sitting height Platelet count Platelet count Platelet count Platelet count Medication for pain relief, constipation, heartburn: none of the above Medication for pain relief, constipation, heartburn: paracetamol Pain type experienced in last month: headache Pulse rate Self-reported migraine High light scatter reticulocyte count Immature fraction of reticulocytes	Neale B Astle W Astle W Neale B	UKBB UKBB 27863252 27863252 UKBB UKBB UKBB UKBB UKBB 27863252 27863252 27863252	European European European European European European European European European European	2017 2017 2016 2016 2017 2017 2017 2017 2017 2017 2017 2016 2016 2016	1.40E-11 4.83E-10 7.97E-11 3.06E-14 3.45E-09 8.13E-09 8.12E-16 3.01E-12 1.10E-08 2.95E-38 9.58E-36 4.36E-38	336474 336172 173480 173480 333581 333581 333581 333650 317756 337159 173480 173480
80 81 82 83 84 84 85 86 86 87 88 88 89 90	r:11596235 rs11596235 rs1342442 rs1342442 rs1342442 rs1342442 rs1342442 rs1342442 rs1342442 rs1342442 rs1342442 rs7412 rs7412 rs7412	No No No No No No No Ves Ves Ves Ves	Minimal evidence of pleiotropy Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nih.gov/12139361/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nih.gov/12139361/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nih.gov/12139361/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nih.gov/12139361/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nih.gov/12139361/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nih.gov/12139361/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nih.gov/12139361/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nih.gov/12139361/) Strong susciations with ligba and neurodegenerative direase Strong susciations with ligba and neurodegenerative direase	SUFU SUFU SUFU MEF2D	Height Sitting height Platelet count Platelet count Plateletcrit Medication for pain relief, constipation, heartburn: none of the above Medication for pain relief, constipation, heartburn: paracetamol Pain type experienced in last month: headache Pulse rate Self-reported migraine High light scatter reticulocyte count Immature fraction of reticulocytes	Neele B Neele B Astle W Astle W Neele B Neele B Neele B Neele B Neele B Astle W Astle W Astle W	UKBB UKBB 27863252 27863252 UKBB UKBB UKBB UKBB UKBB 27863252 27863252 27863252	European European European European European European European European European European	2017 2017 2016 2016 2017 2017 2017 2017 2017 2017 2017 2017	1.40E-11 4.83E-10 7.97E-11 3.06E-14 3.45E-09 8.13E-09 8.13E-09 8.12E-16 3.01E-12 1.10E-08 2.95E-38 9.58E-36 4.36E-38	336474 336172 173480 173480 333581 333581 3336650 317756 337159 173480 173480 173480
80 80 81 82 83 84 85 86 86 87 87 88 89 90 90	rs11596235 rs11596235 rs1342442 rs1342442 rs1342442 rs1342442 rs1342442 rs1342442 rs1342442 rs1342442 rs1342442 rs7412 rs7412 rs7412	No No No No No No No No Yes Yes	Minimal evidence of pleiotropy Minimal evidence of pleiotropy Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nih.gov/21393651/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nih.gov/21393651/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nih.gov/21393661/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nih.gov/21393661/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nih.gov/21393661/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nih.gov/21393661/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nih.gov/2139361/) Strong associations with lipids and neurodegenerative disease Strong associations with lipids and neurodegenerative disease	SUFU SUFU MEF2D MEF2D MEF2D MEF2D MEF2D MEF2D MEF2D MEF2D APOE APOE APOE	Height Sitting height Platelet count Platelet count Plateletcrit Medication for pain relief, constipation, heartburn: none of the above Medication for pain relief, constipation, heartburn: paracetamol Pain type experienced in last month: headache Pulse rate Self-reported migraine High light scatter reticulocyte count Immature fraction of reticulocytes Red cell distribution width	Neale B Neale B Astle W Astle W Neale B Neale B Neale B Neale B Neale B Neale B Astle W Astle W Astle W	UKBB UKBB 27863252 27863252 UKBB UKBB UKBB UKBB UKBB 27863252 27863252 27863252 27863252	European European European European European European European European European European European European	2017 2017 2016 2016 2017 2017 2017 2017 2017 2017 2017 2016 2016 2016 2016	1.40E-11 4.83E-10 7.97E-11 3.06E-14 3.45E-09 8.13E-09 8.12E-16 3.01E-12 1.10E-08 2.95E-38 9.58E-36 4.36E-38	336474 336474 336172 173480 173480 333581 333581 333581 333581 333581 336550 317756 337759 173480 173480 173480
80 80 81 82 83 83 84 85 86 86 87 87 87 88 89 90 91	r:11596235 r:11596235 r:11596235 r:11596235 r:1342442 r:1342442 r:1342442 r:1342442 r:1342442 r:1342442 r:1342442 r:1342442 r:1342442 r:1342442 r:1342442 r:1342442 r:1342442 r:1342442	No No No No No No No No Yes Yes Yes Yes	Minimal evidence of pleiotopy Minimal evidence of pleiotopy Minimal evidence of pleiotopy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nib.gov/12193861/) Minimal evidence of pleiotopy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nib.gov/12193861/) Minimal evidence of pleiotopy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nib.gov/12193861/) Minimal evidence of pleiotopy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nib.gov/12193861/) Minimal evidence of pleiotopy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nib.gov/12193861/) Minimal evidence of pleiotopy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nib.gov/12193861/) Minimal evidence of pleiotopy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nib.gov/12193861/) Minimal evidence of pleiotopy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nib.gov/12193861/) Strong sasociations with lijdia and neurodegenerative disease Strong associations with lijdia and neurodegenerative disease Strong associations with lijdia and neurodegenerative disease	SUFU SUFU MEF2D MEF2D MEF2D MEF2D MEF2D MEF2D MEF2D APOE APOE APOE	Height Sitting height Platelet count Platelet count Platelet count Medication for pain relief, constipation, heartburn: none of the above Medication for pain relief, constipation, heartburn: paracetamol Pain type experienced in last month: headache Pulse rate Self-reported migraine High light scatter percentage of red cells High light scatter reticulocyte count Immature fraction of reticulocytes Red cell distribution width	Neale B Neale B Astle W Astle W Neale B Neale B Neale B Neale B Neale B Neale B Astle W Astle W Astle W	UKBB UKBB 27863252 27863252 UKBB UKBB UKBB UKBB UKBB 27863252 27863252 27863252	European European European European European European European European European European	2017 2017 2016 2016 2017 2017 2017 2017 2017 2017 2017 2016 2016 2016	1.40E-11 4.83E-10 7.97E-11 3.06E-14 3.45E-09 8.13E-09 8.13E-09 8.12E-16 3.01E-12 1.10E-08 2.95E-38 9.58E-36 4.36E-38 1.97E-44	336474 336172 173480 173480 333581 333581 333650 337559 173480 173480 173480
80 81 82 83 84 84 84 85 86 87 88 89 90 91 92 92	r:11596235 r:11596235 r:11596235 r:1342442 r:1342442 r:1342442 r:1342442 r:1342442 r:1342442 r:1342442 r:1342442 r:1342442 r:1342442 r:1342442 r:1342442 r:1342442 r:1342442 r:1342442 r:1342442 r:1342442 r:1342442	No No No No No No No No No Ves Yes Yes	Minimal evidence of pleiotropy Minimal evidence of pleiotropy Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pulmed.ncbi.nlm.nih.gov/21393861/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pulmed.ncbi.nlm.nih.gov/21393861/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nih.gov/21393861/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nih.gov/21393861/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nih.gov/21393861/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nih.gov/21393861/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nih.gov/21393861/) Strong associations wth lipids and neurodegenerative disease Strong associations wth lipids and neurodegenerative disease Strong associations wth lipids and neurodegenerative disease	SUFU SUFU SUFU MEF2D APOE APOE APOE APOE	Height Sitting height Sitting height Platelet count Plateletcrit Medication for pain relief, constipation, heartburn: none of the above Medication for pain relief, constipation, heartburn: paracetamol Pain type experienced in last month: headache Pulse rate Self-reported migraine High light scatter reticulocyte count Immature fraction of reticulocytes Red cell distribution width Reticulocyte count	Neale B Astle W Astle W Neale B Neale B Neale B Neale B Neale B Neale B Astle W Astle W Astle W Astle W Astle W	UKBB UKBB 27863252 UKBB UKBB UKBB UKBB 27863252 27863252 27863252 27863252 27863252 27863252	European European European European European European European European European European European European European	2017 2017 2016 2016 2017 2017 2017 2017 2017 2017 2017 2017	1.40E-11 4.83E-10 7.97E-11 3.06E-14 3.45E-09 8.13E-09 8.12E-16 3.01E-12 1.10E-08 2.95E-38 9.58E-36 4.36E-38 1.97E-44 8.88E-18	336474 336172 173480 333581 333581 333581 333581 336650 317756 337159 173480 173480 173480 173480
80 61 62 83 84 84 85 86 86 87 88 89 90 90 91 92 93	r:11596235 r:11596235 r:11596235 r:11596235 r:1342442 r:1342442 r:1342442 r:1342442 r:1342442 r:1342442 r:1342442 r:1342442 r:1342442 r:1342442 r:1342442 r:1342442 r:1342442 r:1342442 r:1342442	No No No No No No No No Ves Ves Ves Ves Ves	Minimal evidence of pleiotopy Minimal evidence of pleiotopy Minimal evidence of pleiotopy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nib.gov/2139361/) Minimal evidence of pleiotopy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nib.gov/2139361/) Minimal evidence of pleiotopy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nib.gov/2139361/) Minimal evidence of pleiotopy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nib.gov/2139361/) Minimal evidence of pleiotopy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nib.gov/2139361/) Minimal evidence of pleiotopy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nib.gov/2139361/) Minimal evidence of pleiotopy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nib.gov/2139361/) Minimal evidence of pleiotopy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nib.gov/2139361/) Strong ssociations with ligida and neurodegenerative disease Strong associations with ligida and neurodegenerative disease Strong associations with ligida and neurodegenerative disease Strong associations with ligida and neurodegenerative Strong associations with ligida and neurodegenerative Strong associations with ligida and neurodegenerative disease Strong associations with ligida and neurodegenerative Strong associations with ligida and neurodegenerative Strong associations with ligida and neurodegenerative Strong associations with ligida and neurodegenerative disease	SUFU SUFU SUFU MEF2D MEF2D MEF2D MEF2D MEF2D MEF2D MEF2D APOE APOE APOE	Height Sitting height Platelet count Platelet count Platelet count Platelet count Medication for pain relief, constipation, heartburn: none of the above Medication for pain relief, constipation, heartburn: paracetamol Pain type experienced in last month: headache Pulse rate Self-reported migraine High light scatter reticulocyte count Immature fraction of reticulocytes Red cell distribution width Reticulocyte count Reticulocyte count	Neele B Neele B Astle W Astle W Neele B Neele B Neele B Neele B Neele B Neele B Neele B Astle W Astle W Astle W Astle W Astle W	UKBB 27863252 27863252 UKBB UKBB UKBB UKBB UKBB UKBB 27863252 27863252 27863252 27863252 27863252	European European European European European European European European European European European European	2017 2017 2016 2016 2017 2017 2017 2017 2017 2017 2017 2017	1.40E-11 4.83E10 7.97E-11 3.06E-14 3.45E-09 8.13E-09 8.13E-09 8.12E-16 3.01E-12 1.10E-08 2.95E-38 9.58E-36 4.36E-38 1.97E-44 8.88E-13	336474 7 336172 173480 333581 333581 333581 333650 337756 337756 173480 173480 173480
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94	rs1396235 rs1396235 rs1396235 rs1396242 rs1342442 rs1342442 rs1342442 rs1342442 rs1342442 rs1342442 rs1342442 rs7412 rs7412 rs7412 rs7412 rs7412	No No No No No No No No Ves Ves Ves Ves Ves	Minimal evidence of pleiotropy Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nih.gov/21393661/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nih.gov/21393661/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nih.gov/21393661/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nih.gov/21393661/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nih.gov/21393661/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nih.gov/21393661/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nih.gov/21393661/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nih.gov/21393661/) Strong associations with lipids and neurodegenerative disease Strong associations with lipids and neurodegenerative disease	SUFU SUFU MEF2D MEF2D MEF2D MEF2D MEF2D MEF2D MEF2D APOE APOE APOE APOE	Height Sitting height Sitting height Platelet count Plateletcrit Medication for pain relief, constipation, heartburn: none of the above Medication for pain relief, constipation, heartburn: paracetamol Pain type experienced in last month: headache Pulse rate Self-reported migraine High light scatter percentage of red cells High light scatter reticulocyte count Immature fraction of reticulocytes Red cell distribution width Reticulocyte fraction of red cells	Neale B Astle W Astle W Neale B Neale B Neale B Neale B Neale B Neale B Astle W Astle W Astle W Astle W Astle W Astle W	UKBB UKBB 27863252 27863252 UKBB UKBB UKBB UKBB UKBB 27863252 27863252 27863252 27863252 27863252 27863252	European European European European European European European European European European European European European	2017 2017 2016 2016 2017 2017 2017 2017 2017 2017 2017 2017	1.40E-11 4.83E-10 7.97E-11 3.06E-14 3.45E-09 8.13E-09 8.13E-09 8.12E-16 3.01E-12 1.10E-08 2.95E-38 9.58E-36 4.36E-38 1.97E-44 8.88E-18 4.40E-20	336474 336172 173480 333581 333581 333581 333581 333583 335851 337159 173480 173480 173480 173480 173480
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94	n11596235 n11596235 n1342442 n1342442 n1342442 n1342442 n1342442 n1342442 n1342442 n1342442 n71422 n7412 n7412 n7412 n7412 n7412 n7412	No No No No No No No No Yes Yes Yes Yes Yes	Minimal evidence of pleiotropy Minimal evidence of pleiotropy Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nih.gov/21393651/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nih.gov/21393651/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nih.gov/21393651/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nih.gov/21393651/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nih.gov/21393651/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nih.gov/2139361/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nih.gov/2139361/) Strong associations with lipids and neurodegenerative disease Strong associations with lipids and neurodegenerative disease	SUFU SUFU SUFU MEF2D MEF2D MEF2D MEF2D MEF2D MEF2D MEF2D MEF2D APOE APOE APOE APOE APOE APOE	Height Sitting height Sitting height Platelet count Platelet count Plateletcrit Medication for pain relief, constipation, heartburn: none of the above Medication for pain relief, constipation, heartburn: paracetamol Pain type experienced in last month: headache Pulse rate Self-reported migraine High light scatter reticulocyte count Immature fraction of reticulocytes Red cell distribution width Reticulocyte fraction of red cells Coropary atterv disease	Neeale B Neale B Astle W Astle W Neale B Neale B Neale B Neale B Neale B Neale B Astle W Astle W Astle W Astle W Astle W Astle W Astle W	UKBB UKBB 27863252 27863252 UKBB UKBB UKBB UKBB UKBB 27863252 27863252 27863252 27863252 27863252 27863252 27863252	European European European European European European European European European European European European European European European European European	2017 2017 2016 2016 2017 2017 2017 2017 2017 2017 2017 2017	1.40E-11 4.83E-10 7.97E-11 3.06E-14 3.45E-09 8.13E-09 8.12E-16 3.01E-12 1.10E-08 2.95E-38 9.58E-36 4.36E-38 1.97E-44 8.88E-18 4.40E-20 8.17F-11	336474 336172 173480 333581 333581 333581 333581 333650 317756 337159 173480 173480 173480
80 81 82 83 84 85 86 87 88 89 90 91 91 92 93 94	n11596233 n11596233 n1342442 n1342442 n1342442 n1342442 n1342442 n1342442 n1342442 n1342442 n1342442 n1342442 n7412 n7412 n7412 n7412 n7412 n7412	No No No No No No No Ves Ves Ves Ves Ves Ves Ves Ves Ves Ves	Minimal evidence of pleiotropy Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nih.gov/12139361/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nih.gov/12139361/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nih.gov/12139361/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nih.gov/12139361/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nih.gov/12139361/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nih.gov/12139361/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nih.gov/12139361/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nih.gov/13193861/) Strong associations with lipids and neurodegenerative disease Strong associations with lipids and neurodegenerative disease	SUFU SUFU MEF2D MEF2D MEF2D MEF2D MEF2D MEF2D MEF2D APOE APOE APOE APOE APOE APOE	Height Sitting height Sitting height Platelet count Plateletcrit Medication for pain relief, constipation, heartburn: none of the above Medication for pain relief, constipation, heartburn: paracetamol Pain type experienced in last month: headache Pulse rate Self-reported migraine High light scatter reticulocyte count Immature fraction of reticulocytes Red cell distribution width Reticulocyte fraction of red cells Coronary artery disease	Neele B Neele B Astle W Astle W Neele B Neele B Neele B Neele B Neele B Astle W Astle W Astle W Astle W Astle W Astle W CARDIoGRAMplusCAD	UKBB UKBB 27863252 27863252 UKBB UKBB UKBB UKBB UKBB 27863252 27863252 27863252 27863252 27863252 27863252 27863252 27863252 27863252 27863252 26343387	European European European European European European European European European European European European European	2017 2017 2016 2016 2017 2017 2017 2017 2017 2017 2017 2017	1.40E-11 4.83E-10 7.97E-11 3.06E-14 3.45E-09 8.13E-09 8.13E-09 8.12E-16 3.01E-12 1.10E-08 2.95E-38 9.58E-36 4.36E-38 1.97E-44 8.88E-18 4.40E-20 8.17E-11	336474, 336172 173480 333581 333581 333581 333581 333581 333581 333581 333581 333581 333581 333581 333581 333581 333581 173480 1
80 81 82 83 84 85 86 85 86 88 88 99 90 90 91 91 91 92 92 92 92 92	n11596233 n11596233 n1342442 n1342442 n1342442 n1342442 n1342442 n1342442 n1342442 n1342442 n1342442 n1342442 n7412 n7412 n7412 n7412 n7412 n7412	No No No No No No No No No No Ves Yes Yes Yes Yes Yes Yes	Minimal evidence of pleiotropy Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nil.gov/21393661/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nil.gov/21393661/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nil.gov/21393861/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nil.gov/21393861/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nil.gov/21393861/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nil.gov/21393861/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nil.gov/21393861/) Strong associations with lipids and neurodegenerative disease Strong associations with lipids and neurodegenerative disease	SUFU SUFU SUFU MEF2D APOE	Height Sitting height Sitting height Platelet count Plateletcrit Medication for pain relief, constipation, heartburn: none of the above Medication for pain relief, constipation, heartburn: paracetamol Pain type experienced in last month: headache Pulse rate Self-reported migraine High light scatter reticulocyte count Immature fraction of reticulocytes Red cell distribution width Reticulocyte fraction of red cells Coronary artery disease High density lipoprotein	Neale B Neale B Astle W Astle W Neale B Neale B Neale B Neale B Neale B Neale B Astle W Astle W Astle W Astle W Astle W Astle W CARDIoGRAMplusCAD GLGC	UKBB UKBB 27863252 27863252 UKBB UKBB UKBB UKBB 27863252 27863252 27863252 27863252 27863252 27863252 27863252 27863252 27863252 27863252 27863252 27863252	European European	2017 2017 2016 2016 2017 2017 2017 2017 2017 2017 2017 2017	1.40E-11 4.83E-10 7.97E-11 3.06E-14 3.45E-09 8.12E-16 3.01E-12 1.10E-08 2.95E-38 9.58E-36 4.36E-38 1.97E-44 8.88E-18 4.40E-20 8.17E-11 4.44E-19	336474 33 336474 336172 173480 333581 333581 333581 333581 3336650 337756 337159 173480 173480 173480 173480 173480 173480
80 81 82 83 83 84 84 85 86 85 86 87 87 89 90 91 91 92 93 93 94 94 95 95	n11992233 n11992233 n1342442 n1342442 n1342442 n1342442 n1342442 n1342442 n1342442 n1342442 n1342442 n1342442 n7412 n7412 n7412 n7412 n7412 n7412	No No No No No No No No Ves Ves Ves Ves Ves Ves Ves Ves Ves Ves	Minimal evidence of pleiotropy Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nib.gov/12193861/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nib.gov/12193861/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nib.gov/12193861/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nib.gov/12193861/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nib.gov/12193861/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nib.gov/12193861/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nib.gov/12193861/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nib.gov/12193861/) Strong sasociations with lijdia and neurodegenerative disease Strong associations with lijdia and neurodegenerative disease Strong sasociations with lijdia and neurodegenerative disease	SUFU SUFU MEF2D MEF2D MEF2D MEF2D MEF2D MEF2D MEF2D MEF2D APOE APOE APOE APOE APOE APOE APOE	Height Sitting height Sitting height Platelet count Platelet count Plateletcrit Medication for pain relief, constipation, heartburn: none of the above Medication for pain relief, constipation, heartburn: paracetamol Pain type experienced in last month: headache Pulse rate Self-reported migraine High light scatter reticulocyte count Immature fraction of rediculocytes Red cell distribution width Reticulocyte fraction of red cells Coronary artery disease High density lipoprotein	Neesle B Neesle B Astle W Astle W Neesle B Neesle B Neesle B Neesle B Neesle B Neesle B Astle W Astle W Astle W Astle W CARDIoGRAMplusC4D GLGC	UKBB 27863252 27863252 UKBB UKBB UKBB UKBB UKBB UKBB UKBB 27863252 27863252 27863252 27863252 27863252 27863252 27863252 27863252 27863252 26343387 24097068	European European European European European European European European European European European European European	2017 2017 2016 2016 2016 2017 2017 2017 2017 2017 2017 2017 2017	1.40E-11 4.83E10 7.97E-11 3.06E-14 3.45E-09 8.13E-09 8.12E-16 3.01E-12 1.10E-08 2.95E-38 9.58E-36 4.36E-38 1.97E-44 8.88E-18 4.40E-20 8.17E-11 4.44E-19	336474 336172 173480 173480 333581 333581 333581 333581 333581 333581 333581 333581 333581 333581 333581 333581 333581 173480 17
80 81 82 83 84 85 86 86 87 87 88 88 89 90 91 91 90 91 91 92 92 93 93 93 95 95	n11596235 n11596235 n1342442 n1342442 n1342442 n1342442 n1342442 n1342442 n1342442 n1342442 n1342442 n7142 n7412 n7412 n7412 n7412 n7412	No Yes	Minimal evidence of pleiotropy Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pulmed.ncbi.nlm.nih.gov/2139361/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pulmed.ncbi.nlm.nih.gov/2139361/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pulmed.ncbi.nlm.nih.gov/2139361/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pulmed.ncbi.nlm.nih.gov/2139361/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nih.gov/2139361/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nih.gov/2139361/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nih.gov/2139361/) Strong associations with lipids and neurodegenerative dicese Strong associations with lipids and neurodegenerative dicese	SUFU SUFU SUFU MEF2D MEF2D MEF2D MEF2D MEF2D MEF2D MEF2D MEF2D MEF2D APOE	Height Sitting height Sitting height Platelet count Plateletcrit Medication for pain relief, constipation, heartburn: none of the above Medication for pain relief, constipation, heartburn: paracetamol Pain type experienced in last month: headache Pulse rate Self-reported migraine High light scatter percentage of red cells High light scatter reticulocyte count Immature fraction of reticulocytes Red cell distribution width Reticulocyte fraction of red cells Coronary artery disease High density lipoprotein Low density lipoprotein	Neale B Neale B Astle W Astle W Neale B Neale B Neale B Neale B Neale B Astle W Astle W Astle W Astle W Astle W Astle W CARDIoGRAMplasC4D GLGC	UKBB UKBB 27863252 27863252 UKBB UKBB UKBB UKBB 27863252 27863252 27863252 27863252 27863252 27863252 27863252 27863252 27863252 27863252 27863252 27863252 27863252 2634387 24097068	European European	2017 2017 2016 2016 2016 2017 2017 2017 2017 2017 2017 2017 2017	1.40E-11 4.83E-10 7.97E-11 3.06E-14 3.45E-09 8.13E-09 8.12E-16 3.01E-12 1.10E-08 2.95E-38 9.58E-36 4.36E-38 1.97E-44 8.88E-18 4.40E-20 8.17E-11 4.44E-19 1.24e-652	336474 336772 336772 173480 333581 333581 333581 336650 337756 337756 337756 337756 173480 17
80 81 82 83 84 85 86 87 88 88 90 91 91 92 93 94 95 96 97 97	n1199273 n1342442 n1342442 n1342442 n1342442 n1342442 n1342442 n1342442 n1342442 n1342442 n1342442 n1342442 n7412 n	No Yes	Minimal evidence of pleiotopy Minimal evidence of pleiotopy Minimal evidence of pleiotopy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nib.gov/2139361/) Minimal evidence of pleiotopy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nib.gov/2139361/) Minimal evidence of pleiotopy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nib.gov/2139361/) Minimal evidence of pleiotopy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nib.gov/2139361/) Minimal evidence of pleiotopy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nib.gov/2139361/) Minimal evidence of pleiotopy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nib.gov/2139361/) Minimal evidence of pleiotopy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nib.gov/2139361/) Minimal evidence of pleiotopy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nib.gov/2139361/) Minimal evidence of pleiotopy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nib.gov/2139361/) Strong associations with ligids and neurodegenerative disease Strong associations with ligid	SUFU SUFU SUFU MEF2D APOE	Height Sitting height Sitting height Platelet count Platelet count Plateletcrit Medication for pain relief, constipation, heartburn: none of the above Medication for pain relief, constipation, heartburn: paracetamol Pain type experienced in last month: headache Pulse rate Self-reported migraine High light scatter reliculocyte count Immature fraction of reliculocytes Red cell distribution width Reticulocyte fraction of red cells Coronary artery disease High density lipoprotein Low density lipoprotein	Neale B Neale B Astle W Astle W Neale B Neale B Neale B Neale B Neale B Neale B Astle W Astle W Astle W Astle W Astle W CARDIoGRAMplusC4D GLGC	UKBB UKBB 27863252 27863252 UKBB UKBB UKBB UKBB UKBB UKBB UKBB UKB	European European European European European European European European European European European European European European European	2017 2017 2016 2016 2017 2017 2017 2017 2017 2017 2017 2017	1.40E-11 4.83E10 7.97E-11 3.06E-14 3.45E-09 8.13E-09 8.12E-16 3.01E-12 1.10E-08 2.95E-38 9.58E-36 4.36E-38 1.97E-44 8.88E-18 4.40E-20 8.17E-11 4.44E-19 1.24e-65	336474 336172 173480 173480 333581 333581 333581 333581 333581 333581 173480 317756 337159 173480 173480 173480 173480 173480 173480 84305 92158 82533
80 81 82 83 84 85 86 87 88 89 90 91 92 93 93 94 94 95 96 96 97 97 98 88	n1199233 n1199233 n1342442 n1342442 n1342442 n1342442 n1342442 n1342442 n1342442 n1342442 n1342442 n1342442 n1342442 n73422 n7412 n7412 n7412 n7412	No Ves	Minimal evidence of pleiotropy Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nih.gov/21393661/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nih.gov/21393661/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nih.gov/21393661/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nih.gov/21393661/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nih.gov/21393661/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nih.gov/21393661/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nih.gov/21393661/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nih.gov/21393661/) Strong associations with lipids and neurodegenerative disease Strong associations with lipids and neurodegenerative disease	SUFU SUFU SUFU MEF2D MEF2D MEF2D MEF2D MEF2D MEF2D MEF2D MEF2D MEF2D APOE	Height Sitting height Sitting height High leight Platelet count Plateletcrit Medication for pain relief, constipation, heartburn: none of the above Medication for pain relief, constipation, heartburn: paracetamol Pain type experienced in last month: headache Pulse rate Self-reported migraine High light scatter reticulocyte count limmature fraction of reticulocytes Red cell distribution width Reticulocyte fraction of red cells Coronary artery disease High density lipoprotein Low density lipoprotein Total cholesterol	Neale B Neale B Astle W Astle W Neale B Neale B Neale B Neale B Neale B Astle W Astle W Astle W Astle W Astle W CARDIoGRAMplusC4D GLGC GLGC	UKBB UKBB 27863252 27863252 UKBB UKBB UKBB UKBB UKBB UKBB 27863252 27863252 27863252 27863252 27863252 27863252 27863252 27863252 27863252 27863252 27863252 26343387 24097068 24097068	European European	2017 2017 2016 2016 2016 2017 2017 2017 2017 2017 2017 2017 2017	1.40E-11 4.83E-10 7.97E-11 3.06E-14 3.45E-09 8.13E-09 8.12E-16 3.01E-12 1.10E-08 2.95E-38 9.58E-36 4.36E-38 1.97E-44 8.88E-18 4.40E-20 8.17E-11 4.44E-19 1.24e-652 1.56E-283	336474, 336474, 336172, 336172, 173480, 333581, 333756
80 81 82 83 84 84 85 86 88 88 88 99 99 99 99 99 99 99 93 94 95 96 97 99	n11596233 n11596233 n1342442 n1342442 n1342442 n1342442 n1342442 n1342442 n1342442 n1342442 n1342442 n1342442 n1342442 n7412 n7412 n7412 n7412 n7412 n7412 n7412 n7412	No No No No No No No No No No No No Ves Ves Yes Ves	Minimal evidence of pleiotropy Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.mlm.ih.gev/21393661/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.mlm.ih.gev/21393661/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.mlm.ih.gev/21393661/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.mlm.ih.gev/21393661/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.mlm.ih.gev/21393661/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.mlm.ih.gev/21393661/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.mlm.ih.gev/21393661/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.mlm.ih.gev/21393661/) Strong associations with lipids and neurodegenerative disease Strong associations with lipids and neurodegenerative disease	SUFU SUFU SUFU MEF2D APOE	Height Sitting height Sitting height Platelet count Plateletcrit Medication for pain relief, constipation, heartburn: none of the above Medication for pain relief, constipation, heartburn: paracetamol Pain type experienced in last month: headache Pulse rate Self-reported migraine High light scatter reliculocyte count Immature fraction of reticulocytes Red cell distribution width Reticulocyte fraction of red cells Coronary artery disease High density lipoprotein Low density lipoprotein Total cholesterol	Neale B Neale B Astle W Astle W Neale B Neale B Neale B Neale B Neale B Neale B Astle W Astle W Astle W Astle W Astle W Astle W CARDiogRAMplusCAD GLGC GLGC	UKBB UKBB 27863252 27863252 UKBB UKBB UKBB UKBB UKBB 27863252 27863252 27863252 27863252 27863252 27863252 27863252 27863252 26343387 24097068 24097068	European European	2017 2017 2016 2016 2017 2017 2017 2017 2017 2017 2017 2017	1.40E-11 4.83E-10 7.97E-11 3.06E-14 3.45E-09 8.13E-09 8.12E-16 3.01E-12 1.10E-08 2.95E-38 9.58E-36 4.36E-38 1.97E-44 8.88E-18 4.40E-20 8.17E-11 4.44E-19 1.24e-652 1.56E-283 1.16E-52	336474 336474 336172 173480 333581 33
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 99 99 99 99 99 99 99 99	n11996233 n11996233 n1342442 n1342442 n1342442 n1342442 n1342442 n1342442 n1342442 n1342442 n1342442 n1342442 n1342442 n7412 n7412 n7412 n7412 n7412 n7412 n7412 n7412 n7412	No Ves Ves	Minimal evidence of pleiotropy Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nib.gov/12139361/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nib.gov/12139361/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nib.gov/12139361/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nib.gov/12139361/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nib.gov/12139361/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nib.gov/12139361/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nib.gov/12139361/) Strong suscitations with lipids and neurodegenerative disease Strong associations with lipids and neurodegenerative disease	SUFU SUFU SUFU MEF2D MEF2D MEF2D MEF2D MEF2D MEF2D MEF2D APOE APOE APOE APOE APOE APOE APOE APOE	Height Sitting height Sitting height Platelet count Plateletcrit Medication for pain relief, constipation, heartburn: none of the above Medication for pain relief, constipation, heartburn: paracetamol Pain type experienced in last month: headache Pulse rate Self-reported migraine High light scatter reticulocyte count Immature fraction of reticulocytes Red cell distribution width Reticulocyte fraction of red cells Coronary artery disease High density lipoprotein Low density lipoprotein Total cholesterol Triglycerides	Neele B Neele B Astle W Astle W Neele B Neele B Neele B Neele B Neele B Astle W Astle W Astle W Astle W Astle W Astle W CARDIoGRAMplusCAD GLGC GLGC	UKBB UKBB 27863252 27863252 UKBB UKBB UKBB UKBB UKBB UKBB UKBB 27863252 27863252 27863252 27863252 27863252 27863252 27863252 27863252 27863252 27863252 26343387 24097068 24097068	European European	2017 2017 2016 2016 2017 2017 2017 2017 2017 2017 2017 2017	1.40E-11 4.83E-10 7.97E-11 3.06E-14 3.45E-09 8.13E-09 8.12E-16 3.01E-12 1.10E-08 2.95E-38 9.58E-36 4.36E-38 1.97E-44 8.88E-18 4.40E-20 8.17E-11 4.44E-19 1.24E-652 1.56E-283 1.15E-28	336474, 336474, 336172, 173480, 173480, 333581
80 81 82 83 84 85 86 88 88 88 88 89 90 90 91 91 92 92 99 99 99 99 99 99 90 90 90 90 90 90 90	n11596233 n11596233 n1342442 n1342442 n1342442 n1342442 n1342442 n1342442 n1342442 n1342442 n1342442 n1342442 n1342442 n7412 n7412 n7412 n7412 n7412 n7412 n7412 n7412	No No No No No No No No No No Ves Ves Ves Ves Ves Ves Ves Ves Ves Ves	Minimal evidence of pleiotropy Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.mlm.nil.gov/21393861/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.mlm.nil.gov/21393861/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.mlm.nil.gov/21393861/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.mlm.nil.gov/21393861/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.mlm.nil.gov/21393861/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.mlm.nil.gov/21393861/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.mlm.nil.gov/21393861/) Strong associations with lipids and neurodegenerative disease Strong associations with lipids and neurodegenerative disease	SUFU SUFU SUFU MEF2D APOE AP	Height Sitting height Sitting height Platelet count Plateletcrit Medication for pain relief, constipation, heartburn: none of the above Medication for pain relief, constipation, heartburn: paracetamol Pain type experienced in last month: headache Pulse rate Self-reported migraine High light scatter reticulocyte count Immature fraction of reticulocytes Red cell distribution width Reticulocyte fraction of red cells Coronary artery disease High density lipoprotein Cotal cholesterol Total cholesterol Triglycerides APD8 apolipoprotein B	Neale B Neale B Astle W Astle W Neale B Neale B Neale B Neale B Neale B Astle W Astle W Astle W Astle W Astle W CARDIoGRAMplusC4D GLGC GLGC GLGC	UKBB UKBB 27863252 27863252 UKBB UKBB UKBB UKBB 27863252 27863252 27863252 27863252 27863252 27863252 27863252 27863252 27863252 27863252 27863252 26343387 24097068 24097068 24097068	European European	2017 2017 2016 2016 2017 2017 2017 2017 2017 2017 2017 2017	1.40E-11 4.83E-10 7.97E-11 3.06E-14 3.45E-09 8.13E-09 8.12E-16 3.01E-12 1.10E-08 2.95E-38 9.58E-36 4.36E-38 1.97E-44 8.88E-18 4.40E-20 8.17E-11 4.44E-19 1.24E-652 1.56E-283 1.15E-28 5.90E-154	336474 336774 336772 173480 333581 333581 333581 333581 333581 333581 333581 333581 333581 333581 333581 333581 333581 173480 17
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 91000	n11596233 n11596233 n1342442 n1342442 n1342442 n1342442 n1342442 n1342442 n1342442 n1342442 n1342442 n7412 n7412 n7412 n7412 n7412 n7412 n7412 n7412 n7412 n7412	No No No No No No No No No Ves Ves Ves Ves Ves Ves Ves Ves Ves Ves	Minimal evidence of pleiotropy Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nib.gov/12193861/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nib.gov/12193861/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nib.gov/12193861/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nib.gov/12193861/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nib.gov/12193861/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nib.gov/12193861/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nib.gov/12193861/) Strong associations with lipids and neurodegenerative disease Strong association	SUFU SUFU MEF2D MEF2D MEF2D MEF2D MEF2D MEF2D MEF2D MEF2D MEF2D APOE APOE APOE APOE APOE APOE APOE APOE	Height Sitting height Sitting height Platelet count Platelet count Platelet count Medication for pain relief, constipation, heartburn: none of the above Medication for pain relief, constipation, heartburn: paracetamol Pain type experienced in last month: headache Pulse rate Self-reported migraine High light scatter reticulocyte count Immature fraction of reticulocytes Red cell distribution width Reticulocyte fraction of red cells Coronary artery disease High density lipoprotein Cotal cholesterol Total cholesterol Triglycerides APDB apolipoprotein B APDB apolipoprotein B	Neale B Neale B Astle W Astle W Neale B Neale B Neale B Neale B Neale B Neale B Astle W Astle W Astle W Astle W Astle W CARDIOGRAMplusCAD GLGC GLGC GLGC Hopewell	UKBB 27863252 27863252 UKBB UKBB UKBB UKBB UKBB UKBB 27863252 27863252 27863252 27863252 27863252 27863252 27863252 27863252 27863252 27863252 27863252 26343387 24097068 24097068 24097068 24097068	European European	2017 2017 2017 2016 2016 2017 2017 2017 2017 2017 2017 2017 2017	1.40E-11 4.83E10 7.97E-11 3.06E-14 3.45E-09 8.13E-09 8.13E-09 8.12E-16 3.01E-12 1.10E-08 2.95E-38 9.58E-36 4.36E-38 1.97E-44 8.88E-18 4.40E-20 8.17E-11 4.44E-19 1.24E-652 1.55E-283 1.55E-28 5.50E-154	336474 336172 336172 173480 173480 173480 333581 333581 333581 333581 333581 333581 173480 17
80 81 82 83 84 85 86 87 88 89 90 91 92 93 93 94 94 95 95 95 95 95 95 95 95 95 95	n11992233 n11992233 n1342442 n1342442 n1342442 n1342442 n1342442 n1342442 n1342442 n1342442 n1342442 n1342442 n7142 n7142 n7142 n7142 n7142 n7142 n7142 n7142	No Yes	Minimal evidence of pleiotropy Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://puhmed.ncbi.nlm.nih.gov/21393861/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://puhmed.ncbi.nlm.nih.gov/21393861/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://puhmed.ncbi.nlm.nih.gov/21393861/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://puhmed.ncbi.nlm.nih.gov/21393861/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nih.gov/21393861/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nih.gov/21393861/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nih.gov/21393861/) Strong associations with lipids and neurodegenerative disease Strong associations with lipids and neurodegenerative disease	SUFU SUFU SUFU MEF2D MEF2D MEF2D MEF2D MEF2D MEF2D MEF2D MEF2D MEF2D APOE APOE<	Height Sitting height Sitting height Platelet count Plateletcrit Medication for pain relief, constipation, heartburn: none of the above Medication for pain relief, constipation, heartburn: paracetamol Pain type experienced in last month: headache Pulse rate Self-reported migraine High light scatter reticulocyte count limmature fraction of reticulocytes Red cell distribution width Reticulocyte fraction of reticulocytes (Coronary artery disease High density lipoprotein Coundary lipoprotein Low density lipoprotein Total cholesterol Triglycerides APOB apolipoprotein B APOB apolipoprotein B APOB apolipoprotein B APOB apolipoprotein B	Neale B Neale B Astle W Astle W Neale B Neale B Neale B Neale B Neale B Astle W Astle W Astle W Astle W Astle W CARDIoGRAMplasC4D GLGC GLGC GLGC GLGC	UKBB UKBB 27863252 27863252 UKBB UKBB UKBB UKBB UKBB 27863252 27863255 27863255 27863255 2786355 27865555 27865555555555555555555555555555	European European	2017 2017 2016 2016 2017 2017 2017 2017 2017 2017 2017 2017	1.40E-11 4.83E-10 7.97E-11 3.06E-14 3.45E-09 8.13E-09 8.12E-16 3.01E-12 1.10E-08 2.95E-38 9.58E-36 4.36E-38 1.97E-44 8.88E-18 4.40E-20 8.17E-11 4.44E-19 1.24e-652 1.15E-283 1.15E-283 5.50E-154 4.30E-29	336474 336474 336172 33581 173480 333581 333581 333581 333581 333581 333581 333581 333581 333581 333581 333581 333581 173480 174
80 81 82 83 84 85 85 86 87 88 89 90 91 92 93 94 95 96 97 99 99 100 101	n11992233 n1392242 n1342442 n1342442 n1342442 n1342442 n1342442 n1342442 n1342442 n1342442 n1342442 n1342442 n7411	No Yes	Minimal evidence of pleiotropy Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nib.gov/2139361/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nib.gov/2139361/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nib.gov/2139361/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nib.gov/2139361/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nib.gov/2139361/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nib.gov/2139361/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nib.gov/2139361/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nib.gov/2139361/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nib.gov/2139361/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nib.gov/2139361/) Strong associations with lipids and neurodegenerative disease Strong associations with lipids	SUFU SUFU SUFU MEF2D MEF2D MEF2D MEF2D MEF2D MEF2D MEF2D MEF2D MEF2D APOE APOE APOE APOE APOE APOE APOE APOE	Height Sitting height Sitting height Platelet count Platelet count Platelet count Medication for pain relief, constipation, heartburn: none of the above Medication for pain relief, constipation, heartburn: paracetamol Pain type experienced in last month: headache Pulse rate Self-reported migraine High light scatter percentage of red cells High light scatter reliculocyte count Immature fraction of rediculocytes Red cell distribution width Reticulocyte fraction of red cells Coronary artery disease High density lipoprotein Low density lipoprotein Total cholesterol Triglycerides APOB apolloportein B APOB apolloportein B	Neale B Neale B Astle W Astle W Neale B Neale B Neale B Neale B Neale B Neale B Neale B Astle W Astle W Astle W Astle W CARDIoGRAMplusC4D GLGC GLGC GLGC GLGC Hopewell Hopewell	UKBB UKBB 27863252 27863252 UKBB UKBB UKBB UKBB UKBB UKBB UKBB UKB	European European	2017 2017 2016 2016 2016 2017 2017 2017 2017 2017 2017 2017 2017	1.40E-11 4.83E10 7.97E-11 3.06E-14 3.45E-09 8.13E-09 8.13E-09 8.12E-16 3.01E-12 1.10E-08 2.95E-38 9.58E-36 4.36E-38 1.97E-44 8.88E-18 4.40E-20 8.17E-11 4.44E-19 1.24E-652 1.15E-283 1.15E-28 5.90E-154 4.90E-29	336474 336474 336172 173480 173480 173480 333581 333581 333581 333581 333581 333581 333581 333581 333581 173480 173480 173480 173480 173480 173480 173480 833581 173480 84253 8455 84553 8455555 845555 845555 845555 8455555 845555555 8455555555
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 95 95 95 96 99 99 1000 1010 1020 10	n11992233 n11992233 n1342442 n134242 n13424 n13424 n13424 n1342 n13424 n13424 n13424 n1342 n134	No Ves	Minimal evidence of pleiotropy Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nib.gov/21393861/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nib.gov/21393861/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nib.gov/21393861/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nib.gov/21393861/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nib.gov/21393861/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nib.gov/21393861/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nib.gov/21393861/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nib.gov/21393861/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nib.gov/21393861/) Strong associations with highs and neurodegenerative disease Strong associations with highs and neurodegenerative disease	SUFU SUFU SUFU MEF2D MEF2D MEF2D MEF2D MEF2D MEF2D MEF2D MEF2D APOE APOE APOE APOE APOE APOE APOE APOE	Height Sitting height Sitting height Hight geight Platelet count Plateletcrit Medication for pain relief, constipation, heartburn: none of the above Medication for pain relief, constipation, heartburn: paracetamol Pain type experienced in last month: headache Pulse rate Self-reported migraine High light scatter percentage of red cells High light scatter reticulocyte count limmature fraction of red cells High light scatter cell distribution width Reticulocyte fraction of red cells Coronary artery disease High density lipoprotein Low density lipoprotein Total cholesterol Triglycerides APOB apolipoprotein B APOB apolipoprotein B APOB apolipoprotein B LUX cholesterol LUX cholesterol	Neale B Neale B Astle W Astle W Neale B Neale B Neale B Neale B Neale B Neale B Astle W Astle W Astle W Astle W Astle W CARDIoGRAMplusC4D GLGC GLGC GLGC Hopewell Hopewell Smith EN	UKBB UKBB 27863252 27863252 UKBB UKBB UKBB UKBB UKBB UKBB UKBB 27863252 27863252 27863252 27863252 27863252 27863252 27863252 27863252 27863252 27863252 26343387 24097068 24097068 24097068 24097068 24097068	European European	2017 2017 2016 2016 2017 2017 2017 2017 2017 2017 2017 2017	1.40E-11 4.83E-10 7.97E-11 3.06E-14 3.45E-09 8.13E-09 8.13E-09 8.12E-16 3.01E-12 1.10E-08 2.95E-38 9.58E-36 4.36E-38 1.97E-44 8.88E-18 4.40E-20 8.17E-11 4.44E-19 1.24E-652 1.56E-283 1.15E-28 5.590E-154 4.90E-29 1.60E-08	336474,7 336474,7 336472,7 335472,7 173480 333581 333581 333581 333581 333581 333581 333581 333581 333581 333581 173480 1
80 81 82 83 84 85 86 87 88 88 89 90 91 92 92 93 94 95 96 97 98 99 1000 1011	n1199233 n1392233 n1392233 n1342442 n1342442 n1342442 n1342442 n1342442 n1342442 n1342442 n1342442 n1342442 n1342442 n74122 n7412 n7412 n7412 n7412 n7412 n7412 n7412 n7412 n7412 n7412 n7412	No Yes	Minimal evidence of pleiotropy Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nib.gov/2139361/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nib.gov/2139361/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nib.gov/2139361/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nib.gov/2139361/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nib.gov/2139361/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nib.gov/2139361/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nib.gov/2139361/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nib.gov/2139361/) Strong ssociations with ligids and neurodegenerative disease Strong associations with ligids and neurodegenerative disease Strong	SUFU SUFU SUFU MEF2D APOE	Height Sitting height Sitting height Sitting height Platelet count Platelet count Platelet count Medication for pain relief, constipation, heartburn: none of the above Medication for pain relief, constipation, heartburn: paracetama Medication for pain relief, constipation, heartburn: paracetama Pain type experienced in last month: headache Pulse rate Self-reported migraine High light scatter percentage of red cells High light scatter percentage of red cells High light scatter reliculocyte count Immature fraction of reliculocytes Red cell distribution width Reticulocyte fraction of red cells Coronary artery disease High density lipoprotein Low density lipoprotein Total cholesterol APOB apolipoprotein B APOB apolipoprotein B APOB apolipoprotein B	Neale B Neale B Astle W Astle W Neale B Neale B Neale B Neale B Neale B Neale B Neale B Astle W Astle W Astle W Astle W CARDIoGRAMplusC4D GLGC GLGC GLGC GLGC Hopewell Hopewell	UKBB UKBB 27863252 27863252 UKBB UKBB UKBB UKBB UKBB UKBB UKBB UKB	European European	2017 2017 2016 2016 2017 2017 2017 2017 2017 2017 2017 2017	1.40E-11 4.83E10 7.97E-11 3.06E-14 3.45E-09 8.13E-09 8.12E-16 3.01E-12 1.10E-08 9.58E-36 4.36E-38 9.58E-36 4.36E-38 1.97E-44 8.88E-18 4.40E-20 8.17E-11 4.44E-19 1.24E-652 1.56E-283 1.15E-28 5.90E-154 4.90E-29 1.60E-29	336474, 336474, 336172, 173480, 173480, 333581, 33459, 33759, 33759, 33759, 33759, 337480, 37759, 37
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 90 100 1002 1003	n11992233 n11992233 n1342442 n1342442 n1342442 n1342442 n1342442 n1342442 n1342442 n1342442 n1342442 n1342442 n1342442 n1342442 n1342442 n7412 n7412 n7412 n7412 n7412 n7412 n7412 n7412	No Yes	Minimal evidence of pleiotropy Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nib.gov/12139361/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nib.gov/12139361/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nib.gov/12139361/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nib.gov/12139361/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nib.gov/12139361/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nib.gov/12139361/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pubmed.ncbi.nlm.nib.gov/12139361/) Strong suscitations with lipids and neurodegenerative disease Strong suscitations with lipids and neurodegenerative disease Strong associations with lipids and neurodegenerative disease Strong a	SUFU SUFU SUFU MEF2D MEF2D MEF2D MEF2D MEF2D MEF2D MEF2D APOE APOE APOE APOE APOE APOE APOE APOE	Height Sitting height Sitting height Platelet count Plateletcrit Medication for pain relief, constipation, heartburn: none of the above Medication for pain relief, constipation, heartburn: paracetamol Palin type experienced in last month: headache Pulse rate Self-reported migraine High light scatter reticulocyte count Immature fraction of reticulocytes Red cell distribution width Reticulocyte fraction of red cells Coronary artery disease High density lipoprotein Low density lipoprotein Cotal cholesterol APOB apolipoprotein B APOB apolipoprotein B APOB apolipoprotein Response after 40mg daily sinvastatin treatment LDL cholesterol LDL cholesterol LDL cholesterol	Neele B Neele B Astle W Astle W Neele B Neele B Neele B Neele B Neele B Neele B Astle W Astle W Astle W Astle W Astle W Astle W CARDIoGRAMpluSCAD GLGC GLGC GLGC GLGC Hopewell Hopewell Smith EN	UKBB UKBB 27863252 27863252 UKBB UKBB UKBB UKBB UKBB UKBB UKBB UKB	European European	2017 2017 2017 2016 2016 2017 2017 2017 2017 2017 2017 2017 2017	1.40E-11 4.83E-10 4.83E-10 7.97E-11 3.06E-14 3.45E-09 8.13E-09 8.13E-09 8.12E-16 3.01E-12 1.10E-08 2.95E-38 9.58E-36 4.36E-38 1.97E-44 8.88E-18 4.40E-20 8.17E-11 4.44E-19 1.24E-652 1.56E-283 1.15E-28 5.90E-154 4.90E-29 1.60E-08 1.52E-71	336474,733677 336474,73480 173480 333581 333581 333581 333581 333581 333581 333581 333581 333581 333581 333581 173480 174
80 81 82 83 84 85 86 87 88 89 90 91 92 92 92 93 94 95 96 97 98 99 90 100 101 102 103	n11596233 n11596233 n1342442 n1342442 n1342442 n1342442 n1342442 n1342442 n1342442 n1342442 n1342442 n1342442 n741	No Yes	Minimal evidence of pleiotropy Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pulmed.ncbi.mlm.nil.gov/2139361/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pulmed.ncbi.mlm.nil.gov/2139361/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pulmed.ncbi.mlm.nil.gov/2139361/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pulmed.ncbi.mlm.nil.gov/2139361/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pulmed.ncbi.mlm.nil.gov/2139361/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pulmed.ncbi.mlm.nil.gov/2139361/) Minimal evidence of pleiotropy and experimental evidence suggesting a direct role in mDNA regulation (https://pulmed.ncbi.mlm.nil.gov/2139361/) Strong associations with lipids and neurodegenerative dicese Strong associations with lipids and neurodegenerative dicese	SUFU SUFU SUFU MEF2D APOE AP	Height Sitting height Sitting height Platelet count Plateletcrit Medication for pain relief, constipation, heartburn: none of the above Medication for pain relief, constipation, heartburn: paracetamol Pain type experienced in last month: headache Pulse rate Self-reported migraine High light scatter reticulocyte count Immature fraction of reticulocytes Red cell distribution width Reticulocyte fraction of red cells Coronary artery disease High density lipoprotein Coto artery disease High density lipoprotein Coto artery disease High density lipoprotein Total cholesterol Triglycerides APOB apolipoprotein B APOB apolipoprotein B APOB apolipoprotein B LDL cholesterol LDL cholesterol	Neale B Neale B Astle W Astle W Neale B Neale B Neale B Neale B Neale B Neale B Astle W Astle W Astle W Astle W Astle W Astle W CARDIoGRAMplusC4D GLGC GLGC GLGC GLGC GLGC GLGC GLGC GLG	UKBB UKBB 27863252 27863252 UKBB UKBB UKBB UKBB 27863252 27863252 27863252 27863252 27863252 27863252 27863252 27863252 27863252 27863252 27863252 27863252 2634387 24097068 24097068 24097068 24097068 24097068 24097068 24097068	European European	2017 2017 2016 2016 2017 2017 2017 2017 2017 2017 2017 2017	1.40E-11 4.83E-10 7.97E-11 3.06E-14 3.45E-09 8.13E-09 8.12E-16 3.01E-12 1.10E-08 2.95E-38 9.58E-36 4.36E-38 1.97E-44 8.88E-18 4.40E-20 8.17E-11 4.44E-19 1.24E-652 1.56E-283 1.15E-28 5.90E-154 4.90E-29 1.60E-08 1.52E-71 1.50E-08	336474 336774 336772 173480 333581 333581 333581 333581 333581 333581 333581 333581 333581 333581 333581 333581 333581 173480 17

104	rs7412	Yes	Strong associations with lipids and neurodegenerative disease	APOE	LDL cholesterol	Rasmussen Torvik LJ	23067351	African	2012	1.50E-09	1249
105	rs7412	Yes	Strong associations with lipids and neurodegenerative disease	APOE	LDL cholesterol	Hopewell	23100282	European	2012	2.10E-215	3895
106	rs7412	Yes	Strong associations with lipids and neurodegenerative disease	APOE	LDL cholesterol among a group where cancer diabetes hyperhypothyroidism and LDL altering medications were not present	Rasmussen Torvik U	23067351	African	2012	6.30E-11	1249
107	rs7412	Yes	Strong associations with lipids and neurodegenerative disease	APOE	LDL cholesterol change with statins	Thompson	20031582	Mixed	2009	5.54E-30	1984
108	rs7412	Yes	Strong associations with lipids and neurodegenerative	APOE	LDL cholesterol response after 40mg daily simvastatin	Hopewell	23100282	European	2012	2.70E-30	3895
109	rs7412	Yes	Strong associations with lipids and neurodegenerative	APOE	LDL cholesterol response to statins baseline LDL cholesterol	Chasman DI	22331829	European	2012	1.60E-47	6989
110	rs7412	Yes	Strong associations with lipids and neurodegenerative	APOE	LDL cholesterol response to statins fractional change in LDL	Chasman DI	22331829	European	2012	5.80E-19	6080
110	rs7412	Yes	Strong associations with lipids and neurodegenerative	APOE	LDL cholesterol response to stating residuals of the measure	Chasman DI	22331829	European	2012	4.00E-17	6989
	rs7412	Yes	Strong associations with lipids and neurodegenerative	APOE	Late onset Alzheimers disease	Naj AC	20885792	Jnspecified	2010	5.49E-58	6989
112	rs7412	Yes	disease Strong associations with lipids and neurodegenerative	APOE	Late onset Alzheimers disease	Hu X	21390209	European	2011	3.93E-09	2035
113	rs7412	Yes	disease Strong associations with lipids and neurodegenerative	APOE	Lipoprotein associated phospholipase A2 activity Lp2	Chu AY	23118302	European	2012	4.30E-81	3595
114	rs7412	Yes	disease Strong associations with lipids and neurodegenerative	APOE	Total cholesterol	Asselbergs	23063622	European	2012	1.55E-36	6851
115	rs7412	Yes	disease Strong associations with lipids and neurodegenerative	APOF	Alzheimers disease	IGAP	24162737	European	2013	1.23F-22	66240
116		Ver	disease Strong associations with lipids and neurodegenerative	APOE	Chalasterol total	Surakka I	25061042	European	2015	8.005.220	54162
117	7412		disease Strong associations with lipids and neurodegenerative	4005	Challesterol total	New D	20070201	Curopean	2013	5.005.04	-
118	rs/412	Yes	disease Strong associations with lipids and neurodegenerative	APOE	Cholesterol total	Nagy R	282/0201	European	2017	5.00E-94	-
119	rs7412	Yes	disease Strong associations with lipids and neurodegenerative	APOE	Coronary artery disease	Nelson CP	28714975	Mixed	2017	2.00E-19	-
120	rs7412	Yes	disease Strong associations with linids and neurodegenerative	APOE	Coronary artery disease	van der Harst P	29212778	Mixed	2018	2.00E-35	-
121	rs7412	Yes	disease Strong associations with links and neurodegenerative	APOE	Coronary artery disease	van der Harst P	29212778	Mixed	2018	3.00E-39	-
122	rs7412	Yes	disease Strong associations with light and neurodegenerative	APOE	Coronary artery disease	van der Harst P	29212778	Mixed	2018	3.00E-39	-
123	rs7412	Yes	disease	APOE	HDL cholesterol	Nagy R	28270201	European	2017	6.00E-14	-
124	rs7412	Yes	disease	APOE	High light scatter reticulocyte count	Astle W	27863252	European	2016	1.00E-35	-
125	rs7412	Yes	Strong associations with lipids and neurodegenerative disease	APOE	High light scatter reticulocyte percentage of red cells	Astle W	27863252	European	2016	3.00E-38	-
126	rs7412	Yes	Strong associations with lipids and neurodegenerative disease	APOE	Ideal cardiovascular health clinical and behavioural	Allen NB	27179730	European	2016	9.00E-16	-
127	rs7412	Yes	Strong associations with lipids and neurodegenerative disease	APOE	Immature fraction of reticulocytes	Astle W	27863252	European	2016	4.00E-38	-
128	rs7412	Yes	Strong associations with lipids and neurodegenerative disease	APOE	LDL cholesterol	Rasmussen Torvik LJ	23067351	African	2012	2.00E-09	-
129	rs7412	Yes	Strong associations with lipids and neurodegenerative disease	APOE	LDL cholesterol levels	Spracklen CN	28334899	East Asian	2017	2.00E-286	-
130	rs7412	Yes	Strong associations with lipids and neurodegenerative disease	APOE	LDL cholesterol levels	Zhu Y	28371326	East Asian	2017	7.00E-15	
131	rs7412	Yes	Strong associations with lipids and neurodegenerative disease	APOE	Lipid metabolism phenotypes	Kettunen J	22286219	European	2012	3.00E-58	-
132	rs7412	Yes	Strong associations with lipids and neurodegenerative disease	APOE	Lipid traits	Wu Y	24023260	Filipino	2013	2.00E-30	-
133	rs7412	Yes	Strong associations with lipids and neurodegenerative disease	APOE	Lipid traits	Wu Y	24023260	Filipino	2013	3.00E-53	-
134	rs7412	Yes	Strong associations with lipids and neurodegenerative disease	APOE	Lipoprotein a levels	Mack S	28512139	European	2017	3.00E-10	-
135	rs7412	Yes	Strong associations with lipids and neurodegenerative disease	APOE	Lipoprotein associated phospholipase A2 activity change in response to darapladib treatment in cardiovascular disease	Yeo A	28753643	Mixed	2017	2.00E-27	-
136	rs7412	Yes	Strong associations with lipids and neurodegenerative disease	APOE	Lipoprotein phospholipase A2 activity in cardiovascular disease	Yeo A	28753643	Mixed	2017	8.00E-78	-
137	rs7412	Yes	Strong associations with lipids and neurodegenerative	APOE	Lipoproteina levels adjusted for apolipoproteina isoforms	Mack S	28512139	European	2017	3.00E-09	
129	rs7412	Yes	Strong associations with lipids and neurodegenerative	APOE	Low density lipoprotein cholesterol	Southam L	28548082	Mixed	2017	3.00E-19	
130	rs7412	Yes	Strong associations with lipids and neurodegenerative	APOE	Metabolite levels lipoprotein measures	Kettunen J	27005778	European	2016	2.00E-120	
139	rs7412	Yes	Strong associations with lipids and neurodegenerative	APOE	Pulse pressure	Warren HR	28135244	European	2017	4.00E-10	-
140	rs7412	Yes	Strong associations with lipids and neurodegenerative	APOE	Red cell distribution width	Astle W	27863252	European	2016	2.00E-44	
141	rs7412	Yes	Strong associations with lipids and neurodegenerative	APOE	Response to statin therapy LDL C	Chasman DI	22331829	European	2012	2.00E-47	-
142	rs7412	Yes	assease Strong associations with lipids and neurodegenerative	APOE	Reticulocyte count	Astle W	27863252	European	2016	9.00E-18	
143	rs7412	Yec	disease Strong associations with lipids and neurodegenerative	APOF	Reticulocyte fraction of red cells	Astle W	27863252	European	2016	4.00F-20	-
144	rs7412	. es γ _{ρe}	disease Strong associations with lipids and neurodegenerative	APOF	Total cholecterol levels	Spracklan CN	28334800	Fast Asian	2017	99999772479	-
145	107412	Ver	disease Strong associations with lipids and neurodegenerative	APOE	Total cholesterol louis	Southam I	20334033	Mired	2017	1.005.09	-
146	15/412	1es	disease Strong associations with lipids and neurodegenerative	APOE	Arm fat I-ft	Nosi- D	20348082	Furgers	2017	2.015.00	-
147	rs/412	Tes	disease Strong associations with lipids and neurodegenerative	APUE	Arm rat mass left	Neale B	UKBB	curopean	2017	2.015-08	331164
148	rs/412	Tes	disease Strong associations with lipids and neurodegenerative	APOE	Arm fat mass right	Neale B	UKBB	curopean	2017	5.01E-09	331226
149	rs7412	Yes	disease Strong associations with lipids and neurodegenerative	APOE	Arm tat percentage left	Neale B	UKBB	European	2017	1.83E-08	331198
150	rs7412	Yes	disease Strong associations with lipids and neurodegenerative	APOE	Arm fat percentage right	Neale B	UKBB	European	2017	1.61E-08	331249
151	rs7412	Yes	disease Strong associations with lipids and neurodegenerative	APOE	Body fat percentage	Neale B	UKBB	European	2017	1.13E-09	331117
152	rs7412	Yes	disease Strong associations with lipids and neurodegenerative	APOE	Chronic ischaemic heart disease	Neale B	UKBB	European	2017	1.43E-08	337199
153	rs7412	Yes	disease Strong associations with lipids and neurodegenerative	APOE	Hip circumference	Neale B	UKBB	European	2017	2.68E-09	336601
154	rs7412	Yes	disease Strong associations with linity and neurodagenerative	APOE	Illnesses of father: alzheimers disease or dementia	Neale B	UKBB	European	2017	7.29E-15	292807
155	rs7412	Yes	disease	APOE	Illnesses of father: heart disease	Neale B	UKBB	European	2017	9.03E-09	298237
1	rs7412	Yes	an ong associations with inplus and neurodegenerative	APOE	Illnesses of mother: alzheimers disease or dementia	Neale B	UKBB	European	2017	1.29E-40	

157	rs7412	Yes	Strong associations with lipids and neurodegenerative	APOE	Medication for cholesterol, blood pressure or diabetes:	Neale B	UKBB	European	2017	2.85E-62	15 4702
157	rs7412	Yes	Strong associations with lipids and neurodegenerative	APOE	Medication for cholesterol, blood pressure or diabetes: none	Neale B	UKBB	European	2017	4.34E-18	154702
158	rs7412	Vac	disease Strong associations with lipids and neurodegenerative	APOE	of the above Medication for pain relief, constinution, hearthurn; asnirin	Nesle B	LIKBB	European	2017	2 30E-08	154702
159	157412	ies	disease Strong associations with lipids and neurodegenerative	AFOE	No treatment with medication for cholesterol, blood	iveale b	OKBB	European	2017	2.302-08	333581
160	rs7412	Yes	disease Strong associations with lipids and neurodegenerative	APOE	pressure, diabetes, or take exogenous hormones	Neale B	UKBB	European	2017	1.12E-21	180203
161	rs7412	Yes	disease	APOE	Number of treatments or medications taken	Neale B	UKBB	European	2017	2.38E-08	337159
162	rs7412	Yes	strong associations with lipids and neurodegenerative disease	APOE	Pulse rate	Neale B	UKBB	European	2017	5.50E-17	317756
163	rs7412	Yes	Strong associations with lipids and neurodegenerative disease	APOE	Self-reported angina	Neale B	UKBB	European	2017	1.38E-12	337159
164	rs7412	Yes	Strong associations with lipids and neurodegenerative disease	APOE	Self-reported heart attack or myocardial infarction	Neale B	UKBB	European	2017	3.48E-09	337159
165	rs7412	Yes	Strong associations with lipids and neurodegenerative disease	APOE	Self-reported high cholesterol	Neale B	UKBB	European	2017	4.73E-145	337159
100	rs7412	Yes	Strong associations with lipids and neurodegenerative	APOE	Treatment with aspirin	Neale B	UKBB	European	2017	5.45E-10	227150
100	rs7412	Yes	Strong associations with lipids and neurodegenerative	APOE	Treatment with atorvastatin	Neale B	UKBB	European	2017	4.91E-36	337133
167	rs7412	Yes	Gisease Strong associations with lipids and neurodegenerative	APOE	Treatment with cholesterol lowering medication	Neale B	UKBB	European	2017	2.09E-86	33/159
168		Vec	disease Strong associations with lipids and neurodegenerative	4805	Teasteent with eastimite	Neele P	LIKBB	European	2017	1.055.11	180203
169	157412	res	disease Strong associations with lipids and neurodegenerative	AFOE	Treatment with ezetimide	iveale B	OKBB	European	2017	1.056-11	337159
170	rs7412	Yes	disease	APOE	Treatment with lipitor 10mg tablet	Neale B	UKBB	European	2017	1.69E-11	337159
171	rs7412	Yes	disease	APOE	Treatment with rosuvastatin	Neale B	UKBB	European	2017	1.72E-10	337159
172	rs7412	Yes	strong associations with lipids and neurodegenerative disease	APOE	Treatment with simvastatin	Neale B	UKBB	European	2017	5.02E-70	337159
173	rs7412	Yes	Strong associations with lipids and neurodegenerative disease	APOE	Trunk fat mass	Neale B	UKBB	European	2017	7.96E-11	331093
174	rs7412	Yes	Strong associations with lipids and neurodegenerative disease	APOE	Trunk fat percentage	Neale B	UKBB	European	2017	1.02E-10	331113
175	rs7412	Yes	Strong associations with lipids and neurodegenerative disease	APOE	Vascular or heart problems diagnosed by doctor: angina	Neale B	UKBB	European	2017	1.28E-14	336683
176	rs7412	Yes	Strong associations with lipids and neurodegenerative	APOE	Vascular or heart problems diagnosed by doctor: heart attack	Neale B	UKBB	European	2017	1.29E-08	336683
177	rs7412	Yes	Strong associations with lipids and neurodegenerative	APOE	Vascular or heart problems diagnosed by doctor: none of the	Neale B	UKBB	European	2017	1.40E-09	226692
1//	rs7412	Yes	Strong associations with lipids and neurodegenerative	APOE	Weight	Neale B	UKBB	European	2017	1.25E-08	330083
178	rs7412	Yes	disease Strong associations with lipids and neurodegenerative	APOE	Whole body fat mass	Neale B	UKBB	European	2017	6.13E-10	336227
179	r=7412	Var	disease Strong associations with lipids and neurodegenerative	APOE	Coronany arteny disease	Nalson CP	28714975	Mixed	2017	2 175-19	330762
180	=7412	Vac	disease Strong associations with lipids and neurodegenerative	AROE	Low desity licensetsin	Drine D	20027542	European	2017	1 155.77	148715
181	15/412		disease Strong associations with lipids and neurodegenerative	AFOE	Low density hpoprotein	FILIS D	20007342	european	2017	1.156-77	9961
182	rs/412	Tes	disease	APOE	i otai cholesterol	Prins B	28887542	European	2017	8.50E-32	9961
183	rs7412	Yes	disease	APOE	High density lipoprotein	Spracklen CN	28334899	East Asian	2017	1.44E-08	10133
184	rs7412	Yes	disease	APOE	Low density lipoprotein	Spracklen CN	28334899	East Asian	2017	8.20E-107	10133
185	rs7412	Yes	Strong associations with lipids and neurodegenerative disease	APOE	Total cholesterol	Spracklen CN	28334899	East Asian	2017	1.23E-40	10133
186	rs7412	Yes	Strong associations with lipids and neurodegenerative disease	APOE	Cholesterol Idl	Chasman DI	22331829	European	2012	2.00E-47	
187	rs7412	Yes	Strong associations with lipids and neurodegenerative disease	APOE	Lipid metabolism	Kettunen J	22286219	European	2012	3.00E-58	-
188	rs7412	Yes	Strong associations with lipids and neurodegenerative disease	APOE	Coronary artery disease	van der Harst P	29212778	Mixed	2018	7.30E-27	296525
189	rs7412	Yes	Strong associations with lipids and neurodegenerative disease	APOE	Coronary artery disease	van der Harst P	29212778	Mixed	2018	2.14E-35	547261
190	rs385893	Yes	Strong association with blood cell traits and ambiguous whather variant is attributable to AK3 (mitschoodrial gene)	AK3;RCL1	Granulocyte count	Astle W	27863252	European	2016	1.48E-14	172490
190	rs385893	Yes	Strong association with blood cell traits and ambiguous	AK3;RCL1	Granulocyte percentage of myeloid white cells	Astle W	27863252	European	2016	3.07E-10	173400
191	rs385893	Yes	Strong association with blood cell traits and ambiguous	AK3;RCL1	Lymphocyte percentage of white cells	Astle W	27863252	European	2016	4.13E-12	173480
192	rs385893	Yes	whether variant is attributable to AKs (mitochondrial gene) Strong association with blood cell traits and ambiguous	AK3;RCL1	Mean corpuscular hemoglobin	Astle W	27863252	European	2016	8.84E-21	1/3480
193	rs385893	Yes	wnetner variant is attributable to AK3 (mitochondrial gene) Strong association with blood cell traits and ambiguous	AK3;RCL1	Mean corpuscular volume	Astle W	27863252	European	2016	2.73E-18	173480
194	1295.003	Ver	whether variant is attributable to AK3 (mitochondrial gene) Strong association with blood cell traits and ambiguous	AKD-DOL1	Musloid uplite cell court	Acti- W	27962252	European	2016	1 745 13	173480
195	19303033	, es	whether variant is attributable to AK3 (mitochondrial gene) Strong association with blood cell traits and ambiguous	AND, ALLI	ingelow write cell count	Pout W	27003232	e or opean	2010	1.746-13	173480
196	rs385893	Yes	whether variant is attributable to AK3 (mitochondrial gene) Strong association with blood call traits and ambiguous	AK3;RCL1	Neutrophil count	Astle W	27863252	European	2016	3.81E-13	173480
197	rs385893	Yes	whether variant is attributable to AK3 (mitochondrial gene)	AK3;RCL1	Neutrophil percentage of white cells	Astle W	27863252	European	2016	8.39E-12	173480
198	rs385893	Yes	whether variant is attributable to AK3 (mitochondrial gene)	AK3;RCL1	Platelet count	Astle W	27863252	European	2016	5.55E-184	173480
199	rs385893	Yes	whether variant is attributable to AK3 (mitochondrial gene)	AK3;RCL1	Plateletcrit	Astle W	27863252	European	2016	8.42E-238	173480
200	rs385893	Yes	Strong association with blood cell traits and ambiguous whether variant is attributable to AK3 (mitochondrial gene)	AK3;RCL1	Red blood cell count	Astle W	27863252	European	2016	5.75E-15	173480
201	rs385893	Yes	Strong association with blood cell traits and ambiguous whether variant is attributable to AK3 (mitochondrial gene)	AK3;RCL1	Red cell distribution width	Astle W	27863252	European	2016	5.71E-10	173480
202	rs385893	Yes	Strong association with blood cell traits and ambiguous whether variant is attributable to AK3 (mitochondrial gene)	AK3;RCL1	Sum basophil neutrophil counts	Astle W	27863252	European	2016	1.21E-13	173480
202	rs385893	Yes	Strong association with blood cell traits and ambiguous whether variant is attributable to AK3 (mitochondrial association)	AK3;RCL1	Sum neutrophil eosinophil counts	Astle W	27863252	European	2016	4.26E-14	173480
203	rs385893	Yes	Strong association with blood cell traits and ambiguous	AK3;RCL1	White blood cell count	Astle W	27863252	European	2016	9.43E-09	170400
204	rs385893	Yes	Strong association with blood cell traits and ambiguous	AK3;RCL1	Platelet count PLT	Kamatani Y	20139978	East Asian	2010	2.95E-13	1/3480
205	rs385893	Yes	wnetner variant is attributable to AK3 (mitochondrial gene) Strong association with blood cell traits and ambiguous	AK3:RCL1	Platelet count PLT 1091	Soranzo N	19820697	Furopean	2009	8.50E-17	14700
206	rs385902	Yes	whether variant is attributable to AK3 (mitochondrial gene) Strong association with blood cell traits and ambiguous	AK3-DC1 1	Granuloete coust	Actin M/	27863252	Europera	2016	1.005-14	4627
207		165	whether variant is attributable to AK3 (mitochondrial gene) Strong association with blood cell traits and ambiguous	AND DOLL	Granding of an analysis of an	Ant	27003232	cur opean	2010	1.000-14	-
208	12302233	162	whether variant is attributable to AK3 (mitochondrial gene)	AKS;KCL1	Granulocyte percentage of myelold white cells	ASUE W	2/003252	curopean	2010	5.00E-10	-

	rs385893		Strong association with blood cell traits and ambiguous	AK3;RCL1	Hematological parameters	Soranzo N	19820697	European	2009	9.00E-17	
209			whether variant is attributable to AK3 (mitochondrial gene)								
210	rs385893	Yes	Strong association with blood cell traits and ambiguous	AK3-RCI1	Myeloid white cell count	Actie W	27863252	European	2016	2.00F-13	
			whether variant is attributable to AK3 (mitochondrial gene)		,						-
211	rs385893	Yes	Strong association with blood cell traits and ambiguous	AK3-RCI1	Neutrophil count	Astle W	27863252	Furonean	2016	4.00E-13	
		105	whether variant is attributable to AK3 (mitochondrial gene)	Photocia	Neurophi counc	Polic W	27005252	caropean	1010	4.002.13	-
212	rs385893	Vee	Strong association with blood cell traits and ambiguous	AK2-0CL1	Neutraphil percentage of white calls	Actio M	27862252	E	2016	8 005-12	
		res	whether variant is attributable to AK3 (mitochondrial gene)	AND;ACL1	Neutrophil percentage of white cells	Astie w	27003232	European	2010	0.00E-12	
		N	Strong association with blood cell traits and ambiguous	4/2 0011	Plate later service	Manual M	20120070	F	2010	2 005 12	
213	15385893	res	whether variant is attributable to AK3 (mitochondrial gene)	AK3;KCL1	Platelet counts	Kamatani Y	20139978	East Asian	2010	3.00E-13	
	rs385893		Strong association with blood cell traits and ambiguous	4112 0.014				Contractory		0.005.40	
214		res	whether variant is attributable to AK3 (mitochondrial gene)	AK3;RCL1	Platelet counts	Kamatani Y	20139978	East Asian	2010	3.00E-13	
	rs385893	Yes	Strong association with blood cell traits and ambiguous					<i>c</i>	204.0		
215			whether variant is attributable to AK3 (mitochondrial gene)	AK3;RCL1	Sum basophil neutrophil counts	Astle W	27863252	European	2016	1.00E-13	
216	rs385893	Yes	Strong association with blood cell traits and ambiguous					European		4.005.14	
			whether variant is attributable to AK3 (mitochondrial gene)	AK3;RCL1	Sum neutrophil eosinophil counts	Astle W	27863252		2016	4.00E-14	
			Strong association with blood cell traits and ambiguous					-			
217	rs385893	Yes	whether variant is attributable to AK3 (mitochondrial gene)	AK3;RCL1	Platelet count	Soranzo N	19820697	European	2009	9.00E-17	
218	rs1613662	Yes	Strong associations with blood cell traits (GP6 is not a								
			mitochondrial gene)	GP6	Mean platelet volume	Astle W	27863252	European	2016	9.16E-28	173480
219 rs161			Strong associations with blood cell traits (GP6 is not a								
	rs1613662	Yes	mitochondrial gene)	GP6	Platelet distribution width	Astle W	27863252	European	2016	8.50E-45	173480
220	rs1613662		Strong associations with blood cell traits (GP6 is not a					-			
		Yes	mitochondrial gene)	GP6	Reticulocyte count	Astle W	27863252	European	2016	3.06E-10	173480
221	rs1613662		Strong associations with blood cell traits (GP6 is not a								
		Yes	mitochondrial gene)	GP6	Reticulocyte fraction of red cells	Astle W	27863252	European	2016	2.74E-09	173480
222 m			Strong associations with blood cell traits (GP6 is not a			İ					
	rs1613662	Yes	mitochondrial gene)	GP6	Mean platelet volume	Astle W	27863252	European	2016	9.00E-28	
	-		Strong associations with blood cell traits (GP6 is not a								
	rs1613662	Yes	mitochondrial gene)	GP6	Platelet distribution width	Astle W	27863252	European	2016	8.00E-45	
	<u> </u>		mitochonanai genej								C .

S2. Table 9. Mendelian Randomization analyses of mtDNA-CN versus mitochondrial

disease phenotypes

MR analysis parameters							MR results					Sensitivity Analyses										
SNPs included	R2 mtDNA-CN explained by SNPs	F-statistic	Outcome Trait	FinnGen Phenocode	R2 Explained by Outcome Trait	MR Method	beta	se	OR 959	10 959	N UCI	P-value	MR-PRESSO Global P-value	MR-PRESSO SNP Outliers	q	Qdf	Q P-value	intercept	intercept se	intercept P-value	correct direction?	steiger directionality p-value
			Sensorineural Hearing Loss	H8_HL_SEN_NAS	0.0007	Weighted median	0.08	0.19	L.09 0.	75 1	.57	0.65	0.04	NA	NA	NA	NA	NA	NA	NA	TRUE	1.13E-90
						MR Egger -	0.02	0.29	0.98 0.	55 1	.73	0.94			39.94	25.00	0.03	0.00	0.01	0.85	TRUE	1.13E-90
1_12043717_G_A;						Inverse variance weighted -	0.07	0.16	0.93 0.	59 1	26	0.66			40.00	26.00	0.04	NA	NA	NA	TRUE	1.13E-90
1_1564666995_G_A;			Cerebrovascular Disease	FG_CEREBVASC	0.0007	Weighted median	0.22	0.23	1.25 0.	79 1	.97	0.35		NA	NA	NA	NA	NA	NA	NA	TRUE	9.43E-65
10_102757098_G_C;						Inverse variance weighted	0.12	0.17	1.13 0.	82 1	.56	0.46	0.31		27.75	26.00	0.37	NA	NA	NA	TRUE	9.43E-65
10_102761801_C_1;						MR Egger	0.19	0.30	0.83 0.	16 1	.50	0.54			26.17	25.00	0.40	-0.01	0.01	0.23	TRUE	9.43E-65
10_104351034_C_1;			Epilepsy	G6_EPLEPSY	0.0009	Weighted median	0.16	0.28	1.17 0.	58 2	.03	0.57	0.52	NA	NA	NA	NA	NA	NA	NA	TRUE	1.18E-69
10_00143075_A_0;						Inverse variance weighted	0.13	0.20	1.14 0.	78 1	.68	0.49			25.40	26.00	0.50	NA	NA	NA	TRUE	1.18E-69
12_109490296_0_1;						MR Egger	0.05	0.36	1.05 0.	52 2	.13	0.89			25.32	25.00	0.44	0.00	0.01	0.78	TRUE	1.18E-69
12_2/80/727_G_AC			Migraine	G6_MIGRAINE	0.0009	MR Egger	0.10	0.35	0.91 0.	16 1	.80	0.78	0.21	NA	31.48	25.00	0.17	0.00	0.01	0.89	TRUE	4.26E-73
14_20538231_A_C,		100.767				Inverse variance weighted -	0.14	0.19	0.87 0.	50 1	.26	0.46			31.50	26.00	0.21	NA	NA	NA	TRUE	4.26E-73
17_1810/397_0_1;						Weighted median -	0.32	0.26	0.73 0.	14 1	.21	0.22			NA	NA	NA	NA	NA	NA	TRUE	4.26E-73
17_10233035_C_1;			Dementia	F5_DEMENTIA	0.0013	Weighted median	0.90	0.27	2.47 1.	15 4	.20	9.02E-04		NA	NA	NA	NA	NA	NA	NA	TRUE	1.87E-62
10 17445208 C T						MR Egger	88.0	0.36	2.41 1.	19 4	.87	0.02	0.51		24.67	25.00	0.48	0.01	0.01	0.47	TRUE	1.87E-62
10 5711030 C T	0.003045034					Inverse variance weighted	0.66	0.20	1.94 1.	32 2	.85	7.53E-04			25.20	26.00	0.51	NA	NA	NA	TRUE	1.87E-62
2 74154075 G T	0.007043374		Mood Disorder	F5_MOOD	0.0005	MR Egger	0.17	0.25	1.19 0.	72 1	.95	0.50		NA	40.96	25.00	0.02	0.01	0.01	0.38	TRUE	4.06E-104
2 74166052 G A						Inverse variance weighted	0.02	0.14	0.98 0.	75 1	.28	0.89	0.03		42.28	26.00	0.02	NA	NA	NA	TRUE	4.06E-104
2 74177777 A C						Weighted median -	0.07	0.16	0.93 0.	58 1	.28	0.67			NA	NA	NA	NA	NA	NA	TRUE	4.06E-104
20 17955152 G A			Cardiomyopathy	I9_CARDMYO	0.0015	Inverse variance weighted	0.22	0.28	1.25 0.	72 2	.18	0.43		NA	18.11	26.00	0.87	NA	NA	NA	TRUE	6.99E-45
20 17969871 C T						MR Egger -	0.12	0.52	0.88 0.	32 2	.44	0.81	0.90		17.48	25.00	0.86	-0.01	0.01	0.43	TRUE	6.99E-45
12 43539340 G A						Weighted median -	0.14	0.38	0.87 0.	12 1	.82	0.71			NA	NA	NA	NA	NA	NA	TRUE	6.99E-45
22_43310240_0_0_0			Conduction Disorders	19_CONDUCTIO	0.0016	MR Egger	0.97	0.45	2.64 1.	29 6	.38	0.04		NA	27.20	25.00	0.35	0.02	0.01	0.18	TRUE	2.10E-43
3 179156647 C T						Weighted median	0.73	0.33	2.08 1.	10 3	.93	0.02	0.32		NA	NA	NA	NA	NA	NA	TRUE	2.10E-43
3 48723302 G C						Inverse variance weighted	0.45	0.25	1.56 0.	96 2	.55	0.07			29.28	26.00	0.30	NA	NA	NA	TRUE	2.10E-43
6 33546498 C T			Type 2 diabetes, definitions combined	T2D	0.0005	Inverse variance weighted	0.19	0.13	1.21 0.	93 1	.57	0.16		10_102761801_c_t	40.32	26.00	0.04	NA	NA	NA	TRUE	5.06E-103
7 45148667 G A						Weighted median	0.14	0.16	1.15 0.	84 1	.57	0.37	0.04		NA	NA	NA	NA	NA	NA	TRUE	5.06E-103
8 27257787 T G						MR Egger	0.13	0.24	0.87 0.	55 1	.40	0.58			36.54	25.00	0.06	-0.01	0.01	0.12	TRUE	5.06E-103
× 118601473 T.C			Paralytic ileus and intestinal obstruction	K11_ILEUS	0.0020	Weighted median	0.03	0.40	L.04 0.	47 2	.28	0.93		NA	NA	NA	NA	NA	NA	NA	TRUE	1.73E-38
						Inverse variance weighted -	0.47	0.28	0.63 0.	36 1	.07	0.09	0.08		34.04	26.00	0.13	NA	NA	NA	TRUE	1.73E-38
						MR Fager	0.54	0.52	1.58 0	21 1	60	0.20			34.00	25.00	0.11	0.00	0.01	0.86	TRUE	1 725 39

Supplementary Figures

African

South Asian

Other White

GC lambda 0.1: 1.011 GC lambda 0.01: 1.008 GC lambda 0.001: 1.010 (Genomic Control lambda calculated based on the 50th percentile (median), 10th percentile, 1st percentile, and 1/10th of a percentile)

GC lambda 0.5: 1.008

GC lambda 0.1: 1.009 GC lambda 0.01: 1.003 GC lambda 0.001: 1.002 (Genomic Control lambda calculated based on the 50th percentile (median), 10th percentile, 1st percentile, and 1/10th of a percentile)

GC lambda 0.5: 1.009

GC lambda 0.1: 1.010 GC lambda 0.01: 1.008 GC lambda 0.001: 0.999 (Genomic Control lambda calculated based on the 50th percentile (median), 10th percentile, 1st percentile, and 1/10th of a percentile)

Irish

British

European Meta-Analysis

S2. Figure 1. MAF and ethnicity-stratified GWAS quantile-quantile plots.

S2. Figure 2 (Extended Figures). Locus zoom plots for 72 loci and 82 conditionally independent genetic signals. Variants with the highest fine-mapping posterior probability are labelled by their genomic coordinates (GRCh37). Pairwise correlation between the lead variant and proximal variants were colour-coded based on the 1000Genomes Europeans reference panel.

S2 Figure 3. Manhattan plot for trans-ethnic GWAS meta-analysis (N=395,781).

S2 Figure 4. Correlation between conditionally independent mtDNA-CN loci effect estimates derived from European GWAS meta-analyses (x-axes) vs. effect estimates from Non-European GWAS (y-axes). Comparisons for African (A) and South Asian (B) GWAS analyses are presented. Of the total 82 conditionally independent signals identified using

the European GWAS meta-analysis, 73 and 75 variants were available for comparison in African and South Asian GWAS, respectively.

S2. Figure 5. Violin plots showing the distribution of mtDNA-CN for carriers and noncarriers of (A) *SAMHD1* and (B) *TFAM* rare nonsynonymous and deleterious (MCAP > 0.025) variants.

Supplementary References

Abecasis, Goncalo R et al. 2012. "An Integrated Map of Genetic Variation from 1,092 Human Genomes." *Nature* 491(7422): 56–65. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3498066&tool=pmcentr ez&rendertype=abstract (July 9, 2014).

Ali, Aminah T. et al. 2019. "Nuclear Genetic Regulation of the Human Mitochondrial Transcriptome." *eLife* 8: 1–23.

Altschul, S F et al. 1990. "Basic Local Alignment Search Tool." Journal of molecular

biology 215(3): 403–10. http://www.ncbi.nlm.nih.gov/pubmed/2231712.

- Ashar, Foram N et al. 2017. "Association of Mitochondrial DNA Copy Number With Cardiovascular Disease." 21205(11): 1247–55.
- Benner, Christian et al. 2016. "FINEMAP: Efficient Variable Selection Using Summary Data from Genome-Wide Association Studies." *Bioinformatics* 32(10): 1493–1501.
 ——. 2017. "Prospects of Fine-Mapping Trait-Associated Genomic Regions by Using Summary Statistics from Genome-Wide Association Studies." *The American Journal of Human Genetics* 101(4): 539–51.

https://linkinghub.elsevier.com/retrieve/pii/S0002929717303348.

- Bulik-Sullivan, Brendan et al. 2015. "LD Score Regression Distinguishes Confounding from Polygenicity in Genome-Wide Association Studies." *Nature Genetics* 47(3): 291–95.
- Bycroft, Clare et al. 2018. "The UK Biobank Resource with Deep Phenotyping and Genomic Data." *Nature* 562(7726): 203–9. http://www.nature.com/articles/s41586-018-0579-z.
- Denny, Joshua C et al. 2013. "Systematic Comparison of Phenome-Wide Association Study of Electronic Medical Record Data and Genome-Wide Association Study Data." *Nature biotechnology* 31(12): 1102–10. http://www.ncbi.nlm.nih.gov/pubmed/24270849.
- Diskin, Sharon J et al. 2008. "Adjustment of Genomic Waves in Signal Intensities from Whole-Genome SNP Genotyping Platforms." *Nucleic acids research* 36(19): e126. http://www.ncbi.nlm.nih.gov/pubmed/18784189.
- Fazzini, Federica et al. 2019. "Mitochondrial DNA Copy Number Is Associated with Mortality and Infections in a Large Cohort of Patients with Chronic Kidney Disease." 8: 480–88.
- Feng, Yen-Chen A et al. 2020. "Findings and Insights from the Genetic Investigation of Age of First Reported Occurrence for Complex Disorders in the UK Biobank and FinnGen." *medRxiv*: 2020.11.20.20234302.

https://doi.org/10.1101/2020.11.20.20234302.

- Gene, The, and Ontology Consortium. 2000. "Gene Ontology : Tool for The." 25(may): 25–29.
- Gorman, Gráinne S. et al. 2016. "Mitochondrial Diseases." *Nature Reviews Disease Primers* 2.
- GTEX. 2014. "The Genotype-Tissue Expression (GTEx) Project The." *Nature Genetics* 45(6): 580–85.
- Harris, Charles R. et al. 2020. "Array Programming with NumPy." *Nature* 585(7825): 357–62. http://www.nature.com/articles/s41586-020-2649-2.
- Hemani, Gibran et al. 2018. "The MR-Base Platform Supports Systematic Causal Inference across the Human Phenome." *eLife* 7: 1–29.
- Jagadeesh, Karthik A et al. 2016. "M-CAP Eliminates a Majority of Variants of Uncertain Significance in Clinical Exomes at High Sensitivity." *Nature genetics* 48(12): 1581– 86. http://www.ncbi.nlm.nih.gov/pubmed/27776117.
- Kamat, Mihir A et al. 2019. "PhenoScanner V2: An Expanded Tool for Searching Human Genotype-Phenotype Associations." *Bioinformatics (Oxford, England)* 35(22):

4851–53. http://www.ncbi.nlm.nih.gov/pubmed/31233103.

- Lambert, J C et al. 2013. "Meta-Analysis of 74,046 Individuals Identifies 11 New Susceptibility Loci for Alzheimer's Disease." *Nature genetics* 45(12): 1452–58. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3896259&tool=pmcentr ez&rendertype=abstract (July 14, 2014).
- Landrum, M. J. et al. 2015. "ClinVar: Public Archive of Interpretations of Clinically Relevant Variants." *Nucleic Acids Research*.

http://nar.oxfordjournals.org/lookup/doi/10.1093/nar/gkv1222.

- Lane, John. 2014. "MitoPipeline: Generating Mitochondrial Copy Number Estimates from SNP Array Data in Genvisis." http://genvisis.org/MitoPipeline/.
- Longchamps, Ryan Joseph. 2019. "EXPLORING THE ROLE OF MITOCHONDRIAL DNA QUANTITY AND QUALITY." *Biorxiv* (August).
- Mbatchou, Joelle et al. 2020. "Computationally Efficient Whole Genome Regression for Quantitative and Binary Traits." : 1–88.
- O'Donnell, Martin J et al. 2010. "Risk Factors for Ischaemic and Intracerebral Haemorrhagic Stroke in 22 Countries (the INTERSTROKE Study): A Case-Control Study." *Lancet* 376(9735): 112–23. http://www.ncbi.nlm.nih.gov/pubmed/20561675 (July 11, 2014).
- Pers, Tune H. et al. 2015. "Biological Interpretation of Genome-Wide Association Studies Using Predicted Gene Functions." *Nature Communications* 6: 5890. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4420238&tool=pmcentr ez&rendertype=abstract.

- Pruim, Randall J et al. 2010. "LocusZoom : Regional Visualization of Genome-Wide Association Scan Results." 26(18): 2336–37.
- Purcell, Shaun et al. 2007. "PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses." *American journal of human genetics* 81(3): 559–75.
- Rath, Sneha et al. 2021. "MitoCarta3.0: An Updated Mitochondrial Proteome Now with Sub-Organelle Localization and Pathway Annotations." *Nucleic acids research* 49(D1): D1541–47.
- Rentzsch, Philipp et al. 2019. "CADD: Predicting the Deleteriousness of Variants throughout the Human Genome." *Nucleic Acids Research* 47(D1): D886–94. https://academic.oup.com/nar/article/47/D1/D886/5146191.
- Simone, Domenico et al. 2011. "The Reference Human Nuclear Mitochondrial Sequences Compilation Validated and Implemented on the UCSC Genome Browser." *BMC genomics* 12: 517. http://www.ncbi.nlm.nih.gov/pubmed/22013967.
- Sudlow, Cathie et al. 2015. "UK Biobank: An Open Access Resource for Identifying the Causes of a Wide Range of Complex Diseases of Middle and Old Age." *PLoS medicine* 12(3): e1001779. http://www.ncbi.nlm.nih.gov/pubmed/25826379.
- Verbanck, Marie, Chia Yen Chen, Benjamin Neale, and Ron Do. 2018. "Detection of Widespread Horizontal Pleiotropy in Causal Relationships Inferred from Mendelian Randomization between Complex Traits and Diseases." *Nature Genetics* 50(5): 693– 98. http://dx.doi.org/10.1038/s41588-018-0099-7.

Virtanen, Pauli et al. 2020. "SciPy 1.0: Fundamental Algorithms for Scientific Computing

in Python." *Nature Methods* 17(3): 261–72. http://www.nature.com/articles/s41592-019-0686-2.

Vuckovic, Dragana et al. 2020. "The Polygenic and Monogenic Basis of Blood Traits and Diseases." *Cell* 182(5): 1214-1231.e11.

http://www.ncbi.nlm.nih.gov/pubmed/32888494.

- Wang, Kai et al. 2007. "PennCNV: An Integrated Hidden Markov Model Designed for High-Resolution Copy Number Variation Detection in Whole-Genome SNP Genotyping Data." *Genome research* 17(11): 1665–74. http://www.ncbi.nlm.nih.gov/pubmed/17921354.
- Warde-Farley, David et al. 2010. "The GeneMANIA Prediction Server: Biological Network Integration for Gene Prioritization and Predicting Gene Function." *Nucleic Acids Research* 38(SUPPL. 2): 214–20.
- Wei, Wei Qi et al. 2017. "Evaluating Phecodes, Clinical Classification Software, and ICD-9-CM Codes for Phenome-Wide Association Studies in the Electronic Health Record." *PLoS ONE* 12(7): 1–16.
- Willer, Cristen J., Yun Li, and Gonçalo R. Abecasis. 2010. "METAL: Fast and Efficient Meta-Analysis of Genomewide Association Scans." *Bioinformatics* 26(17): 2190– 91.
- Wu, Patrick et al. 2019. "Mapping ICD-10 and ICD-10-CM Codes to Phecodes:
 Workflow Development and Initial Evaluation." *JMIR medical informatics* 7(4): e14325. http://www.ncbi.nlm.nih.gov/pubmed/31553307.
- Zhang, Yiyi et al. 2017. "Association between Mitochondrial DNA Copy Number and

Sudden Cardiac Death : Findings from the Atherosclerosis Risk in Communities Study (ARIC).": 3443–48.

Zhou, Wei et al. 2018. "Efficiently Controlling for Case-Control Imbalance and Sample Relatedness in Large-Scale Genetic Association Studies." *Nature Genetics* 50(9): 1335–41. http://www.nature.com/articles/s41588-018-0184-y.

APPENDIX C:

Supplementary Data for Study 3

Supplementary Methods 237

mtDNA-CN measurement in INTERSTROKE

mtDNA-CN was assayed by the Genetic and Molecular Epidemiology Lab located in Hamilton, Ontario, Canada using a plasmid-normalized quantitative Polymerase Chain Reaction (qPCR) method developed by Fazzini *et al.* The qPCR assay is a duplex assay that simultaneously amplifies segments of the mitochondrial *tRNALeu* and the nuclear *B2M* genes. A plasmid construct containing a single copy of both mitochondrial and nuclear fragments was amplified to calibrate differences in fluorescent dye intensities used to differentiate mitochondrial and nuclear signals. All INTERSTROKE study participants' samples were assayed in duplicate, and any samples demonstrating inconsistent cycle thresholds with coefficient of variation greater than 5% were excluded. Four calibrator samples were included on each of the qPCR plates to measure assay reproducibility. The mean coefficient of variation among these four samples across plates was 6.5%, which is consistent with 7% intra-assay variability previously reported for this protocol¹.

Mendelian Randomization Instrument Selection

Selection of genetic variants was based on a previously described scheme². First, to satisfy the MR "relevance" assumption, we extracted 9602 genome-wide significant ($P < 5x10^{-8}$) variants associated with buffy coat mtDNA-CN levels from the UKBiobank GWAS. Second, in consideration of the "exclusion restriction" assumption, we removed variants located outside of genes (> 100kb from the transcript) encoding for proteins localizing to the mitochondria to exclude variants that may act through non-mitochondrial pathways, thus resulting in 1701 variants ³. Third, we matched these variants to the GISCOME outcome GWAS and retained 1416 shared variants between UKBiobank and

GISCOME. Fourth, we performed linkage disequilibrium pruning (1000Genomes Europeans LD r2 < 0.01) to achieve an independent set of 33 variants. Fifth, to further mitigate potential for horizontal pleiotropy, we performed a phenome-wide search across published GWAS with Phenoscanner V2 ⁴ and removed seven variants with strong evidence of acting through alternative pathways (P<5x10⁻²⁰) ³. Ultimately, 26 genetic variants remained as suitable genetic instruments.

Genetic instruments for neutrophil to lymphocyte ratio

Whole genome model linear regressions were performed using the REGENIE program in 340002 British participants from the UKBiobank study (unpublished data)⁵. Genotyped and imputed variants with minor allele frequency > 0.001 and quality INFO score > 0.3 were analyzed. Association analyses were adjusted for the following covariates: age, age², sex, 20 ancestry-informative principal components, type of genotyping array and assessment centre. Like the other MR analyses, an independent (1000Genomes European LD r2 < 0.01) set of genome-wide significant (P<5x10⁻⁸) variants were retained to approximate genetically determined neutrophil to lymphocyte ratio. Causal effects on mRS-based outcomes are expressed in terms of a 1 SD increase in the neutrophil to lymphocyte ratio.

Supplementary Table

S. Table 1. Association between mtDNA-CN and baseline stroke severity characteristics. Analyses of mtDNA-CN as a continuous variable are expressed per 1 SD decrease in mtDNA-CN. mtDNA-CN quartile comparisons are expressed with reference to the highest (4th) quartile.

	Analysis Parameters				м	ain Sumr	nary Stati	stics		Proportional Odds Check
mtDNA-CN Quartile (or Continuous)	Baseline Stroke Characteristic	N no outcome	Noutcome	Beta	SE	OR	LCI	UCI	P-value	Brant test P- value
Continuous	Ordinal mRS	NA	3493	0.24	0.03	1.27	1.19	1.36	4.67E-12	0.77
Continuous	Reduced Consciousness	NA	3491	0.29	0.05	1.33	1.21	1.48	1.76E-08	0.97
Continuous	Hemorrhagic Transformation	2845	54	0.29	0.19	1.33	0.92	1.93	0.13	NA
1st	Ordinal mRS	NA	874	0.70	0.10	2.00	1.65	2.44	2.86E-12	0.53
2nd	Ordinal mRS	NA	873	0.50	0.10	1.66	1.37	2.01	2.48E-07	0.91
3rd	Ordinal mRS	NA	872	0.30	0.10	1.34	1.11	1.62	1.98E-03	0.37
4th	Ordinal mRS	NA	874	NA	NA	NA	NA	NA	NA	NA
1st	Reduced Consciousness	NA	873	0.88	0.14	2.42	1.84	3.17	1.58E-10	0.31
2nd	Reduced Consciousness	NA	873	0.69	0.14	1.99	1.50	2.64	1.76E-06	0.35
3rd	Reduced Consciousness	NA	873	0.33	0.15	1.39	1.04	1.87	2.67E-02	0.37
4th	Reduced Consciousness	NA	872	NA	NA	NA	NA	NA	NA	NA
1st	Hemorrhagic Transformation	642	20	0.82	0.46	2.28	0.92	5.66	0.08	NA
2nd	Hemorrhagic Transformation	696	13	0.06	0.51	1.06	0.39	2.90	0.91	NA
3rd	Hemorrhagic Transformation	749	11	0.07	0.53	1.07	0.38	3.03	0.90	NA
4th	Hemorrhagic Transformation	758	10	NA	NA	NA	NA	NA	NA	NA

S. Table 2. Comparison of the association between mtDNA-CN (per 1 SD decrease) and 1-month post-stroke outcomes versus age (per 1 SD increase) and 1-month post-stroke outcomes.

	Analysis Parameters				Mai	n Sum	mary S	tatistic	s	Proportional Odds Check
Exposure	1-month Stroke Outcome	N _{w/}	N _{w/o}	Beta	SE	OR	LCI	υсι	P-value	Brant test P-value
									4.41E-	
mtDNA-CN*	Ordinal mRS	3470	NA	0.15	0.04	1.16	1.08	1.24	05	0.2
									1.77E-	
Age**	Ordinal mRS	3470	NA	0.25	0.04	1.28	1.18	1.39	09	0.11
									6.85E-	
mtDNA-CN*	Poor Functional Outcome	1354	2116	0.19	0.06	1.21	1.08	1.34	04	NA
									4.10E-	
Age**	Poor Functional Outcome	1354	2116	0.34	0.06	1.41	1.25	1.59	08	NA
									3.90E-	
mtDNA-CN*	Mortality	337	3133	0.30	0.08	1.35	1.14	1.59	04	NA
									4.62E-	
Age**	Mortality	337	3133	0.16	0.08	1.18	1.00	1.38	02	NA

*Effects are expressed per 1 SD decrease in mtDNA-CN

**Effects are expressed per 1SD increase in age

S. Table 3. mtDNA-CN quartile associations with 1-month post-stroke outcomes. Results are expressed with reference to the highest (4th) quartile.

	Analysis Parameters				Ma	in Sum	mary 9	Statisti	cs	Proportional Odds Check
mtDNA-CN Quartile	1-month Stroke Outcome	Nw/ outcome	Nw/o outcome	Beta	SE	OR	LCI	UCI	P-value	Brant test P-value
1st	Ordinal mRS	869	NA	0.34	0.10	1.40	1.15	1.71	9.02E-04	0.49
2nd	Ordinal mRS	865	NA	0.29	0.10	1.34	1.10	1.63	3.35E-03	0.41
3rd	Ordinal mRS	866	NA	0.00	0.10	1.00	0.83	1.22	9.88E-01	0.25
4th	Ordinal mRS	869	NA	NA	NA	NA	NA	NA	NA	NA
1st	Poor Functional Outcome	452	417	0.41	0.16	1.51	1.11	2.04	8.34E-03	NA
2nd	Poor Functional Outcome	368	497	0.27	0.15	1.30	0.97	1.76	8.38E-02	NA
3rd	Poor Functional Outcome	284	582	- 0.09	0.15	0.92	0.68	1.24	5.76E-01	NA
4th	Poor Functional Outcome	250	619	NA	NA	NA	NA	NA	NA	NA
1st	Mortality	146	723	0.74	0.23	2.09	1.34	3.25	1.10E-03	NA
2nd	Mortality	95	770	0.59	0.24	1.80	1.12	2.89	1.51E-02	NA
3rd	Mortality	52	814	0.07	0.27	1.07	0.64	1.81	7.87E-01	NA
4th	Mortality	44	825	NA	NA	NA	NA	NA	NA	NA

S. Table 4. Subgroup analyses for mtDNA-CN associations with 1-month post-stroke outcomes. Poor functional outcome is defined as 1-month mRS 3-6. Odds ratios are expressed per 1 SD decrease in mtDNA-CN.

		Strata						I	Main S	ummary S	atistics	
Variable	Subgroup	1-month Stroke Outcome	Noutcome	N non-outcome	Beta	SE	OR	LCI	υсι	P-value	ľ	Heterogeneity P-value
Primary Stroke	Ischemic	Poor Functional										
Туре	Stroke	Outcome	916	1701	0.18	0.06	1.20	1.07	1.36	0.00262	0	
Primary Stroke	Hemorrhagic	Poor Functional									0	
Туре	Stroke	Outcome	303	245	0.18	0.14	1.19	0.91	1.57	0.20440		0.9612
		Poor Functional										
Sex	Female	Outcome	638	828	0.22	0.08	1.25	1.06	1.46	0.00615		
		Poor Functional										
Sex	Male	Outcome	712	1288	0.18	0.08	1.19	1.02	1.39	0.02466	0	0.6926
		Poor Functional										
Age	<= 65 years	Outcome	549	1183	0.17	0.08	1.18	1.00	1.39	0.04384		
		Poor Functional										
Age	> 65 years	Outcome	801	933	0.20	0.08	1.23	1.06	1.42	0.00695	0	0.7418
World Bank	Lower-	Poor Functional									10.71	0.2262
Country Income	middle/Low	Outcome	326	339	0.17	0.09	1.19	1.00	1.41	0.04919	10.71	0.3263

World Bank	Upper-	Poor Functional										
Country Income	middle	Outcome	633	615	0.28	0.10	1.32	1.09	1.61	0.00526		
World Bank		Poor Functional									1	
Country Income	High	Outcome	391	1162	0.06	0.11	1.06	0.86	1.31	0.59446		
	None or	Poor Functional										
Education Level	Primary	Outcome	531	572	0.17	0.09	1.18	0.99	1.41	0.06105		
	High School,											
	Trade										0	0.8119
	School,											
	College, or	Poor Functional										
Education Level	University	Outcome	692	1374	0.20	0.07	1.22	1.05	1.40	0.00706		
		Poor Functional									NA	NA
All	All	Outcome	1354	2116	0.19	0.06	1.21	1.08	1.34	0.00068		
Primary Stroke	Ischemic											
Туре	Stroke	Mortality	189	2428	0.29	0.10	1.33	1.08	1.63	0.00641	0	0 9992
Primary Stroke	Hemorrhagic											0.5552
Туре	Stroke	Mortality	117	431	0.29	0.15	1.33	1.00	1.77	0.05231		
Sex	Female	Mortality	161	1305	0.34	0.12	1.41	1.11	1.79	0.00468		0 7112
Sex	Male	Mortality	172	1828	0.28	0.12	1.32	1.04	1.68	0.02137	0	0.7115
Age	<= 65 years	Mortality	143	1589	0.44	0.13	1.56	1.20	2.01	0.00071		0 1249
Age	> 65 years	Mortality	190	1544	0.18	0.11	1.20	0.97	1.49	0.09740	57.54	0.1249
World Bank	Lower-											
Country Income	middle/Low	Mortality	125	540	0.21	0.11	1.23	0.99	1.53	0.06581		
World Bank	Upper-											0.514
Country Income	middle	Mortality	175	1073	0.37	0.15	1.45	1.09	1.93	0.00993	0	0.514
World Bank											1	
Country Income	High	Mortality	33	1520	0.55	0.39	1.74	0.81	3.72	0.15523		
	None or											
Education Level	Primary	Mortality	159	944	0.33	0.13	1.39	1.08	1.78	0.00941		
	High School,										0	0.7923
	Trade											
Education Level	School,	Mortality	151	1915	0.28	0.12	1.33	1.06	1.67	0.01368		
	College, or											
	University											
All	All	Mortality	337	3133	0.30	0.08	1.35	1.14	1.59	0.00039	NA	NA

S. Table 5. Net reclassification indices for the addition of mtDNA-CN into logistic regression models. Model covariates include age, sex, region, education level (none or primary school vs. high school, trade school, college, or university), 2018 World Bank country income stratum (high, upper-middle, and lower-middle or low income), household income (adjusted for country), primary stroke type (ischemic vs. hemorrhagic stroke) and ischemic stroke Oxfordshire Community Stroke Project (OCSP) classification, pre-stroke dependency (pre-stroke mRS 3-5 vs. 0-2), Charleson comorbidity index, and stroke risk factors (hypertension, diabetes, hypercholesterolemia, atrial fibrillation or flutter, current smoker status, and waist to hip ratio), and baseline mRS.

1-month Stroke Outcome	N _{event}	N _{non-event}	NRI Strata	NRI	95% LCI	95% UCI	P-value
Poor Functional Outcome	1219	1945	NRI _{overall}	0.16	0.08	0.23	3.60E-05
Poor Functional Outcome	1219	1945	NRI _{events}	0.20	0.15	0.26	4.30E-12
Poor Functional Outcome	1219	1945	NRInon_events	-0.05	-0.09	0.00	4.50E-02
Mortality	306	2858	NRI _{overall}	0.31	0.19	0.43	1.70E-07
Mortality	306	2858	NRI _{events}	0.33	0.22	0.44	3.40E-09
Mortality	306	2858	NRInon_events	-0.02	-0.06	0.02	2.96E-01

S. Table 6. Characteristics of 33 independent genetic variants located within 100kb of MitoCarta3-annotated genes considered for MR analyses. A phenoscanner v2 search was performed, identifying seven variants strongly associated with other traits ($P < 5x10^{-20}$). 26 genetic variants were retained as suitable genetic instruments to approximate genetically determined mtDNA-CN levels.

									Nearest	1000G	Phenoscanner v2	Included
rsid	snpid	chr	pos_hg19	ref	alt	beta	se	p-value	Gene(s)	Eur AF	Pleiotropy Detected?	in MR?
rs3766744	1_12043717_G_A	1	12043717	G	Α	-0.0179	0.0021	2.91E-17	MFN2	0.4722	No	Yes
rs1342442	1_156466699_G_A	1	156466699	G	Α	-0.0138	0.0022	5.56E-10	MEF2D	0.675	No	Yes
rs11677402	2_74154975_G_T	2	74154975	G	т	0.0251	0.0028	7.37E-20	DGUOK	0.6332	No	Yes
rs62641680	2_74166053_G_A	2	74166053	G	Α	-0.0903	0.0063	4.63E-47	DGUOK	0.0249	No	Yes
rs74874677	2_74177777_A_G	2	74177777	А	G	-0.0819	0.0071	3.62E-31	DGUOK	0.0298	No	Yes
rs6792510	3_48723302_G_C	3	48723302	G	С	-0.0126	0.0022	1.44E-08	NCKIPSD	0.6471	No	Yes
rs13088724	3_179152841_G_A	3	179152841	G	Α	0.0175	0.0026	7.70E-12	GNB4	0.2714	No	Yes
	C 21510024 A C		24540024		6	0.014	0.0005	2 645 00	ATP6V1G2-	0.0704	N	No
rs2844509	6_31510924_A_G	6	31510924	A	G	0.014	0.0025	2.61E-08	DDX39B	0.2704	Yes	No
rs5745582	6_33546498_C_1	6	33546498	C	1	0.021	0.0028	3.46E-14	BAK1	0.2247	No	Yes
rs2304693	7 45148667 G A	7	45148667	G	A	0.0181	0.0028	5.11E-11	RAMP3	0.2097	No	Yes
rs2322718	8 27257787 T G	8	27257787	Т	G	0.0136	0.0021	1.53E-10	РТК2В	0.4533	No	Yes
rs385893	9 4763176 T C	9	4763176	т	с	0.0153	0.0021	5.96E-13	AK3; RCL1	0.493	No	No
rs8176645	9 136149098 T A	9	136149098	т	Α	-0.0145	0.0026	3.06E-08	ABO	0.3966	Yes	No
rs12247015	10_60145079_A_G	10	60145079	A	G	0.0337	0.0021	1.28E-55	TFAM	0.4245	No	Yes
rs57066921	10_102752345_T_G	10	102752345	т	G	-0.1081	0.0081	8.98E-41	LZTS2	0.0169	No	Yes
rs701834	10_102761801_C_T	10	102761801	с	т	-0.0254	0.0026	1.12E-22	LZTS2	0.1839	No	Yes
rs11596235	10_104391034_C_T	10	104391034	с	т	0.0174	0.0023	2.16E-14	SUFU	0.3509	No	Yes
rs1127787	12_27867727_G_A	12	27867727	G	А	-0.0159	0.0028	1.49E-08	MRPS35	0.173	No	Yes
rs12426673	12_109490296_G_T	12	109490296	G	т	-0.0141	0.0021	4.03E-11	USP30	0.6233	No	Yes
rs1760940	14_20938251_A_C	14	20938251	А	С	0.0263	0.0024	5.20E-27	PNP	0.2455	No	Yes
rs3889402	17_18167397_G_T	17	18167397	G	т	0.026	0.0034	2.60E-14	MIEF2	0.0924	No	Yes
rs62072546	17_18253839_C_T	17	18253839	С	т	-0.0149	0.0025	2.95E-09	SHMT1	0.2227	No	Yes
rs8067252	17_29263700_C_T	17	29263700	С	т	-0.0142	0.0026	3.58E-08	ADAP2	0.2276	Yes	No
rs17850455	17_62476451_C_G	17	62476451	С	G	0.091	0.0104	1.81E-18	POLG2	0.0129	No	Yes
rs11085147	19_5711930_C_T	19	5711930	с	т	0.0756	0.0036	1.54E-95	LONP1	0.0865	No	Yes
rs35586766	19_17392629_G_A	19	17392629	G	Α	0.0313	0.0036	4.48E-18	ANKLE1	0.1103	Yes	No
									ANO8;			
rs117176661	19_17445208_C_T	19	17445208	С	Т	0.0369	0.0048	1.32E-14	GTPBP3	0.0457	No	Yes
rs2304128	19_19746151_G_T	19	19746151	G	Т	0.0226	0.0039	9.17E-09	GMIP	0.0805	Yes	No
rs1065853	19_45413233_G_T	19	45413233	G	Т	0.0388	0.0039	1.59E-23	APOE	0.0626	Yes	No
rs6105852	20_17955153_G_A	20	17955153	G	Α	0.0221	0.0021	1.41E-25	MGME1	0.5179	No	Yes
rs76599088	20_17968871_C_T	20	17968871	С	Т	0.0623	0.0082	3.16E-14	MGME1	0.0139	No	Yes
rs2245946	22_43528240_G_A	22	43528240	G	А	0.0317	0.0023	9.38E-45	MCAT	0.663	No	Yes
rs12148	22_50962208_T_G	22	50962208	Т	G	-0.0139	0.0022	1.32E-10	ODF3B	0.6799	No	Yes

S. Table 7. Individual effects of MR variants on mtDNA-CN levels (UKBiobank) and 3month mRS-based outcomes (GISCOME). Outcomes include ordinal mRS, poor functional outcome status (mRS 3-6 vs. 0-2), or mRS 2-6 vs. 0-1. Genetic effects for mtDNA-CN are expressed per 1 SD increase in mtDNA-CN levels. Genetic effects for mRS-based outcomes are expressed in terms of a log(odds) increase per additional alternative ("alt") allele. Accordingly, a positive beta indicates that the alternative allele increases risk of worse stroke outcome and vice versa.

		beta	se	pvalue	beta ordinal	se ordinal	pvalue ordinal	beta mRS 3-	se mRS 3-6 vs	pvalue mRS 3-	beta mRS 2-6	se mRS 2-6 vs	pvalue mRS 2-
rsid	snpid	mtdna	mtdna	mtdna	mRS	mRS	mRS	6 vs 0-2	0-2	6 VS 0-2	VS 0-1	0-1	6 VS 0-1
rs3766744	1_12043717_G_A	-0.0179	0.0021	2.91E-17	0.0456	0.0343	0.1844	0.0546	0.0461	0.236	0.0595	0.0465	0.2009
rs1342442	1_156466699_G_A	-0.0138	0.0022	5.56E-10	-0.0604	0.0366	0.09821	-0.0703	0.0487	0.1487	-0.0861	0.05	0.08471
rs11677402	2_74154975_G_T	0.0251	0.0028	7.37E-20	0.0188	0.0473	0.691	-0.0222	0.0577	0.7009	-0.0155	0.0648	0.8115
rs62641680	2_74166053_G_A	-0.0903	0.0063	4.63E-47	0.377	0.1212	0.001864	0.2712	0.1482	0.06714	0.3544	0.1743	0.04195
rs74874677	2_74177777_A_G	-0.0819	0.0071	3.62E-31	0.2915	0.1247	0.01942	0.0832	0.1545	0.5901	0.2824	0.1765	0.1096
rs6792510	3_48723302_G_C	-0.0126	0.0022	1.44E-08	0.0379	0.0361	0.2946	0.038	0.0443	0.3911	0.0686	0.0488	0.1599
rs13088724	3_179152841_G_A	0.0175	0.0026	7.70E-12	0.0447	0.0409	0.2741	-0.0028	0.05	0.9556	0.1042	0.0557	0.06156
rs5745582	6_33546498_C_T	0.021	0.0028	3.46E-14	-0.0659	0.042	0.1171	-0.047	0.0566	0.4062	-0.109	0.0568	0.05488
rs2304693	7_45148667_G_A	0.0181	0.0028	5.11E-11	0.067	0.0465	0.1493	0.1205	0.0563	0.03243	0.0454	0.0647	0.4825
rs2322718	8_27257787_T_G	0.0136	0.0021	1.53E-10	0.0005	0.0344	0.9877	-0.0246	0.042	0.5578	-0.0187	0.0469	0.6906
rs12247015	10_60145079_A_G	0.0337	0.0021	1.28E-55	0.0275	0.0348	0.4298	0.0182	0.0428	0.6697	0.0089	0.0471	0.8494
rs57066921	10_102752345_T_G	-0.1081	0.0081	8.98E-41	-0.0033	0.1135	0.9771	0.1235	0.1417	0.3834	0.1082	0.1548	0.4846
rs701834	10_102761801_C_T	-0.0254	0.0026	1.12E-22	-0.0061	0.0426	0.8862	-0.043	0.0519	0.4069	0.0099	0.0582	0.8646
rs11596235	10_104391034_C_T	0.0174	0.0023	2.16E-14	0.0012	0.0376	0.9752	-0.0032	0.0458	0.9436	0.041	0.0509	0.4196
rs1127787	12_27867727_G_A	-0.0159	0.0028	1.49E-08	0.0386	0.0464	0.4061	-0.008	0.0575	0.8898	0.1172	0.0642	0.06802
rs12426673	12_109490296_G_T	-0.0141	0.0021	4.03E-11	-0.019	0.0344	0.5803	-0.0431	0.0421	0.3065	-0.0313	0.0466	0.5018
rs1760940	14_20938251_A_C	0.0263	0.0024	5.20E-27	-0.0214	0.0418	0.6082	-0.0203	0.0515	0.6932	-0.0234	0.0563	0.6776
rs3889402	17_18167397_G_T	0.026	0.0034	2.60E-14	-0.0166	0.0596	0.7805	-0.0636	0.0732	0.3847	-0.01	0.0818	0.9031
rs62072546	17_18253839_C_T	-0.0149	0.0025	2.95E-09	0.0068	0.0413	0.8695	-0.009	0.0507	0.8591	-0.008	0.057	0.8885
rs17850455	17_62476451_C_G	0.091	0.0104	1.81E-18	-0.2642	0.1722	0.125	-0.3578	0.2139	0.09436	0.1666	0.2532	0.5105
rs11085147	19_5711930_C_T	0.0756	0.0036	1.54E-95	-0.1133	0.0607	0.06193	-0.1782	0.0763	0.01952	-0.1012	0.0848	0.2332
rs117176661	19_17445208_C_T	0.0369	0.0048	1.32E-14	0.0964	0.0896	0.2821	-0.0449	0.1135	0.6922	0.0837	0.1207	0.4878
rs6105852	20_17955153_G_A	0.0221	0.0021	1.41E-25	-0.0646	0.0346	0.06158	-0.0843	0.0423	0.0466	-0.061	0.047	0.1945
rs76599088	20_17968871_C_T	0.0623	0.0082	3.16E-14	-0.1168	0.1697	0.4911	0.0687	0.2099	0.7436	-0.3896	0.2448	0.1116
rs2245946	22_43528240_G_A	0.0317	0.0023	9.38E-45	-0.0177	0.0369	0.6318	-0.0022	0.0504	0.9656	-0.0136	0.0495	0.7842
rs12148	22_50962208_T_G	-0.0139	0.0022	1.32E-10	-0.002	0.036	0.9554	0.021	0.0439	0.6328	0.0302	0.0485	0.5335

S. Table 8. Main MR results for the association between genetically determined mtDNA-CN levels and 3-month post-stroke outcomes. Results are expressed per 1 SD decrease in genetically predicted mtDNA-CN.

	Analysis Pa	aramete	rs			M	lain M	R Resu	lts				Sensi	itivity /	Analyses		
SNPS included	R ² explained	F- statistic	3-month Stroke Outcome	MR Method	Beta	SE	OR	LCI	UCI	р	MR- PRESSO Global Test P	0	O df	OP	MR- EGGER	MR- EGGER intercept	MR- EGGER intercept P
1_12043717_g_a;			Ordinal mRS	Inverse variance weighted	0.85	0.37	2.35	1.13	4.90	0.02	0.12	32.96	25	0.13	NA	NA	NA
1_156466699_g_a; 10_102752345_t_g; 10_102761801_c_t;			Ordinal mRS	Weighted median	0.62	0.50	1.86	0.69	4.97	0.22	0.12	NA	NA	NA	NA	NA	NA
10_104391034_c_t; 10_60145079_a_g; 12_109490296_g_t;			Ordinal mRS	MR Egger Inverse	1.86	0.67	6.44	1.75	23.75	0.01	0.12	29.06	24	0.22	-0.03	0.02	0.09
12_27867727_g_a; 14_20938251_a_c;			0-1 mRS 2-6 vs.	weighted Weighted	1.00	0.41	2.72	1.22	6.05	0.01	0.30	23.99	25	0.52	NA	NA	NA
17_18167397_g_t; 17_18253839_c_t; 17_62476451_c_g;			0-1 mRS 2-6 vs.	median	1.11	0.63	3.04	0.89	10.40	0.08	0.30	NA	NA	NA	NA	NA	NA
19_17445208_c_t; 19_5711930_c_t; 2_74154975_g_t; 2_74166053_g_a; 2_7417777_a_g;	0.0068	100	Poor Functional Outcome (mRS 3-6 vs. 0-2)	Inverse variance weighted	0.99	0.75	2.68	1.93	6.86	0.01	0.30	28.56	24	0.65	0.04	0.02	NA
20_17955153_g_a; 20_17968871_c_t; 22_43528240_g_a; 22_50962208_t_g; 3_179152841_g_a;			Poor Functional Outcome (mRS 3-6 vs. 0-2)	Weighted median	0.97	0.66	2.63	0.73	9.54	0.14	0.51	NA	NA	NA	NA	NA	NA
5_48/25302_g_C; 6_33546498_c_t; 7_45148667_g_a; 8_27257787_t_g			Poor Functional Outcome (mRS 3-6 vs. 0-2)	MR Egger	1.71	0.90	5.55	0.95	32.49	0.07	0.51	27.51	24	0.28	0.02	0.02	0.35

S. Table 9. Sensitivity analyses showing MR results for the association between genetically determined blood cell traits and 3-month post-stroke outcomes. Results are expressed per 1 SD increase in genetically predicted blood cell counts.

		Ana	lysis Parameter	rs			r	Main M	R Result	s					Sensit	ivity Analyses		
# SNPs	R2 explained	F- statistic	Exposure	3-month Stroke Outcome	MR Method	Beta	SE	OR	LCI	UCI	Р	MR- PRESSO Global Test P	Q	Q df	Q.P	MR-EGGER intercept	MR-EGGER intercept se	MR-EGGER intercept P
694	0.11	96.99		Ordinal mRS	Inverse variance weighted Weighted	0.00	0.07	1.00	0.87	1.15	0.99	0.79	689.17	693	0.53	NA	NA	NA
				Ordinal mRS Ordinal mRS	MR Egger	0.05	0.12	1.05	0.83	1.34	0.67	0.79	NA 688.03	NA 692	0.54	0.00	0.00	0.29
				mRS 2-6 vs. 0-	Inverse variance weighted	0.01	0.10	1.01	0.83	1.22	0.95	0.72	676.18	695	0.69	NA	NA	NA
696	0.11	99.74		mRS 2-6 vs. 0- 1	Weighted median	0.14	0.17	0.87	0.63	1.21	0.40	0.72	NA	NA	NA	NA	NA	NA
			Neutrophil	mRS 2-6 vs. 0- 1	MR Egger	0.02	0.21	1.02	0.68	1.53	0.93	0.72	676.18	694	0.68	0.00	0.00	0.95
			Count	Poor Functional Outcome (mRS 3-6 vs. 0-2)	Inverse variance weighted	0.08	0.09	1.08	0.90	1.29	0.40	0.77	664.76	693	0.77	NA	NA	NA
694	0.11	100.47		Poor Functional Outcome (mRS 3-6 vs. 0-2)	Weighted	0.03	0.15	1.03	0.77	1.39	0.83	0.77	NA	NA	NA	NA	NA	NA
				Poor Functional Outcome (mRS 3-6 vs. 0-2)	MR Egger	0.13	0.19	1.14	0.79	1.65	0.48	0.77	664.64	692	0.77	0.00	0.00	0.73
889	0.14	99.67	White Blood Cell	Ordinal mRS	Inverse variance weighted	0.07	0.07	1.07	0.94	1.22	0.31	0.57	881.71	888	0.55	NA	NA	NA

1	1		1	1	Weighted	1	1	1	1	1	1	1	1	1	1	1	1	1
				Ordinal mRS	median	0.10	0.11	1.11	0.89	1.38	0.35	0.57	NA	NA	NA	NA	NA	NA
				Ordinal mRS	MR Egger	0.19	0.14	1.21	0.92	1.59	0.17	0.57	880.67	887	0.55	0.00	0.00	0.31
			1		Inverse				0.02							0.00	0.00	0.01
				mRS 2-6 vs. 0-	variance													
				1	weighted	0.06	0.09	1.06	0.89	1.26	0.52	0.99	811.02	894	0.98	NA	NA	NA
895	0.14	106.15		mRS 2-6 vs. 0-	Weighted	-												
				1	median	0.01	0.15	0.99	0.73	1.33	0.94	0.99	NA	NA	NA	NA	NA	NA
				mRS 2-6 vs. 0-														
				1	MR Egger	0.01	0.19	1.01	0.70	1.46	0.96	0.99	810.94	893	0.98	0.00	0.00	0.78
				Poor														
				Functional														
				Outcome	Inverse													
				(mks 5-6 vs. 0-2)	weighted	0.07	0.08	1.08	0.92	1 26	0.37	0.73	864.28	890	0.73	NA	NA	NA
				Poor	weighted	0.07	0.00	1.00	0.52	1.20	0.37	0.75	004.20	050	0.75	116	110	116
				Functional														
891	0.14	106.20		Outcome														
				(mRS 3-6 vs.	Weighted													
				0-2)	median	0.08	0.14	1.09	0.82	1.44	0.56	0.73	NA	NA	NA	NA	NA	NA
				Poor														
				Functional														
				Outcome														
				(mRS 3-6 vs.		0.40	0.47		0.00	4 70	0.00	0.70			0.70			
				0-2)	MR Egger	0.19	0.17	1.21	0.86	1.70	0.26	0.73	863.66	889	0.72	0.00	0.00	0.43
					Inverse													
				Ordinal mPS	weighted	0.02	0.05	1.02	0.92	1 1 2	0.72	0.14	1125.03	1072	0.13	NA	NA	NA
1073	0.23	154.61		ordinarinks	Weighted	0.02	0.05	1.02	0.52	1.15	0.72	0.14	1125.05	1072	0.15	100	100	100
				Ordinal mRS	median	0.05	0.09	1.05	0.87	1.25	0.62	0.14	NA	NA	NA	NA	NA	NA
			-	Ordinal mRS	MR Egger	0.05	0.10	1.06	0.87	1.27	0.57	0.14	1124.83	1071	0.12	0.00	0.00	0.66
					Inverse													
				1 miks 2-6 vs. 0-	variance	0.04	0.07	1.04	0.00	1 10	0.61	0.60	1050.02	1072	0.61	NA	NA	NA
1074	0.23	154.60	District	mRS 2-6 vs. 0-	Weighted	0.04	0.07	1.04	0.50	1.15	0.01	0.00	1055.55	1075	0.01	NA .	n/A	NA .
10/4	0.25	104.00	Platelet	1	median	0.03	0.12	0.97	0.77	1.22	0.78	0.60	NA	NA	NA	NA	NA	NA
			Count	mRS 2-6 vs. 0-														
				1	MR Egger	0.02	0.13	1.02	0.79	1.32	0.86	0.60	1059.92	1072	0.60	0.00	0.00	0.91
			1	Poor														
				Functional														
				Outcome	Inverse													
1071	0.23	154 69		(mRS 3-6 vs.	variance													
1071	0.20	104.05		0-2)	weighted	0.02	0.06	1.02	0.90	1.16	0.74	0.64	1053.28	1070	0.64	NA	NA	NA
				Poor														
				Functional	weighted	0.14	0.11	1.15	0.02	1.42	0.21	0.64	NA	NIA	NA	NIA		NIA
1	1	1	1	outcome	median	0.14	10.11	1.15	0.95	1.42	1 0.21	0.64	I NA	I NA	I NA	I NA	I NA	I NA

				(mRS 3-6 vs.														
				0-2)														
				Functional														
				Outcome														
				(mRS 3-6 vs.	MD 5	0.00	0.12	1.00	0.00	1.27	0.47		1052.07	1000	0.02	0.00	0.00	0.50
				0-2)	IVIR Egger	0.08	0.12	1.09	0.86	1.37	0.47	0.64	1052.87	1069	0.63	0.00	0.00	0.52
					variance	1.1												
074	0.14	100.00		Ordinal mRS	weighted	0.01	0.06	0.99	0.87	1.12	0.84	0.35	890.72	873	0.33	NA	NA	NA
0/4	0.14	106.55		Ordinal mPS	Weighted	0.11	0.12	1 12	0.00	1 40	0.24	0.25	NA	NA	NA	NA	NA	NA
				Ordinal mks	median	0.11	0.12	1.12	0.69	1.40	0.54	0.55	NA	INA	INA	NA	NA NA	NA
			_	Ordinal mRS	MR Egger	0.23	0.13	1.25	0.97	1.62	0.08	0.35	886.23	872	0.36	0.01	0.00	0.04
				mRS 2-6 vs. 0-	variance													
				1	weighted	0.08	0.09	0.93	0.78	1.10	0.38	0.60	867.88	876	0.57	NA	NA	NA
877	0.14	108.13		mRS 2-6 vs. 0-	Weighted													
				1 mRS 2=6 vs. 0=	median	0.07	0.15	1.08	0.81	1.43	0.61	0.60	NA	NA	NA	NA	NA	NA
				1	MR Egger	0.07	0.18	1.08	0.76	1.52	0.68	0.60	866.95	875	0.57	0.00	0.00	0.34
			Lymphocyte	Poor														
			Count	Functional														
				(mRS 3-6 vs.	variance													
				0-2)	weighted	0.09	0.08	0.91	0.78	1.07	0.27	0.96	800.53	869	0.95	NA	NA	NA
				Poor														
870	0.14	107 57		Functional														
0/0	0.14	107.57		(mRS 3-6 vs.	Weighted													
				0-2)	median	0.04	0.13	0.96	0.74	1.25	0.78	0.96	NA	NA	NA	NA	NA	NA
				Poor														
				Outcome														
				(mRS 3-6 vs.														
				0-2)	MR Egger	0.16	0.17	1.17	0.85	1.62	0.33	0.96	797.54	868	0.96	-0.01	0.00	0.08
					variance													
				Ordinal mRS	weighted	0.02	0.15	1.02	0.77	1.36	0.87	0.05	228.12	194	0.05	NA	NA	NA
195	0.03	61.28	Neutrophil		Weighted													
			to	Ordinal mRS	median	0.13	0.22	1.13	0.74	1.73	0.56	0.05	NA	NA	NA	NA	NA	NA
			Ratio	Ordinal mRS	MR Egger	0.15	0.40	0.86	0.40	1.87	0.71	0.05	227.87	193	0.04	0.00	0.01	0.64
					Inverse													
197	0.03	61.33		mRS 2-6 vs. 0-	variance	-	0.10	0.00	0.62	1.20	0.54	0.62	100 50	100	0.00	NA	NA	NA
				mRS 2-6 vs. 0-	Weighted	0.11	0.16	0.90	0.03	1.26	0.54	0.02	190.30	190	0.00	INA	INA	INA
				1	median	0.16	0.29	0.86	0.48	1.52	0.59	0.62	NA	NA	NA	NA	NA	NA
				mRS 2-6 vs. 0-														
			-	Poor	MR Egger	0.06	0.47	0.94	0.37	2.39	0.90	0.62	190.54	195	0.58	0.00	0.01	0.91
				Functional														
				Outcome	Inverse													
				(mRS 3-6 vs.	variance	0.14	0.17		0.02	1.50		0.47	107.10	105				
				Poor	weighted	0.14	0.17	1.15	0.83	1.59	0.41	0.47	197.10	195	0,44	NA	NA	NA
				Functional														
196	0.03	61.60		Outcome														
				(mRS 3-6 vs.	Weighted	0.00	0.26	1.10	0.65	1.84	0.72	0.47	NA	NA	NA	NA	NA	NA
				Poor	methall	0.03	0.20	1.10	0.03	1.04	0.75	0.47	11/2	110	11A	110	110	110
				Functional														
				Outcome														
				(mks 3-6 vs. 0-2)	MR Egger	0.15	0.45	0.86	0.35	2.10	0.75	0.47	196.64	194	0.43	0.01	0.01	0.50

S. Table 10. STREGA checklist.

Section			
Number	Section(s)	Item	Place Addressed
		a) Indicate the study's design with a commonly used term in the	
1	TITLE and ABSTRACT	title or the abstract	Title Page and Abstract
		b) Provide in the abstract an informative and balanced summary	
		of what was done and what was found	Abstract
		Explain the scientific background and rationale for the	
2	BACKGROUND and RATIONALE	investigation being reported.	Introduction
		State specific objectives, including any prespecified hypotheses.	
		State if the study is the first report of a genetic association, a	
3	OBJECTIVES	replication effort, or both.	Introduction
4	STUDY DESIGN	Present key elements of study design early in the paper	Introduction
		Describe the setting, locations, and relevant dates, including	Methods
5	SETTING	periods of recruitment, exposure, follow-up, and data collection	("INTERSTROKE")

6	ELIGIBILITY CRITERIA	 a) Cohort study – Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up. Case-control study – Give the eligibility criteria, and the sources and methods of case ascertainment and control selection. Give the rationale for the choice of cases and controls. Cross-sectional study – Give the eligibility criteria, and the sources and methods of selection of participants. Give information on the criteria and methods for selection of subsets of participants from a larger study, when relevant. b) Cohort study – For matched studies, give matching criteria and number of exposed and unexposed. Case-control study – For matched studies, give matching criteria and the number of 	Methods ("INTERSTROKE"), Results ("Baseline Characteristics of INTERSTROKE cases"), Supplementary Figure 1
		controls per case.	NA
7	VARIABLES	a) Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	Methods ("MtDNA-CN Measurement and Quality Control", "Statistical Analysis","Mendelian Randomization")
		 b) Clearly define genetic exposures (genetic variants) using a widely-used nomenclature system. Identify variables likely to be associated with population stratification (confounding by ethnic origin) 	Supplementary Tables 6-8
8	DATA SOURCES / MEASUREMENT	 a) For each variable of interest give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group. Give information separately for for exposed and unexposed groups if applicable. 	Methods ("MtDNA-CN Measurement and Quality Control", "Statistical Analysis", "Mendelian Randomization")
		b) Describe laboratory methods, including source and storage of DNA, genotyping methods and platforms (including the allele calling algorithm used, and its version), error rates and call rates. State the laboratory / centre where genotyping was done. Describe comparability of laboratory methods if there is more than one group. Specify whether genotypes were assigned using all of the data from the study simultaneously or in smaller batches.	Methods ("MtDNA-CN Measurement and Quality Control")
9	BIAS	Describe any efforts to address notential sources of hias	Methods ("Statistical Analysis")
10	STUDY SIZE	Explain how the study size was arrived at	Supplementary Figure 1
11	QUANTITATIVE VARIABLES	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen, and why. If applicable, describe how effects of treatment were dealt with.	Methods ("MtDNA-CN Measurement and Quality Control")
12	STATISTICAL METHODS	Describe any methods used to assess the assumptions or justify their validity.	Methods ("MtDNA-CN Measurement and Quality Control")
		 a) Describe all statistical methods, including those used to control for confounding. State software version used and options (or settings) chosen. 	Methods ("Statistical Analysis")
		 b) Describe any methods used to examine subgroups and interactions 	Methods ("Statistical Analysis")
		c) Explain how missing data were addressed	Methods ("Statistical Analysis")
		d) If applicable, explain how loss to follow-up was addressed	NA
		e) Describe any sensitivity analyses	Methods ("Statistical Analysis")
		t) State whether Hardy-Weinberg equilibrium was considered and, if so, how.	NA
		 g) Describe any methods used for inferring genotypes or haplotypes 	NA
		h) Describe any methods used to assess or address population stratification.	NA

		i) Describe any methods used to address multiple comparisons or	Methods ("Statistical
		i) Describe any methods used to address and correct for	Andiysis ; Fage oj
		relatedness among subjects	NA
		a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed. Give information separately for for exposed and upexposed groups if applicable. Report numbers of individuals in	
13	PARTICIPANTS	whom genotyping was attempted and numbers of individuals in whom genotyping was successful.	Supplementary Figure 1
		b) Give reasons for non-participation at each stage	Supplementary Figure 1
		c) Consider use of a flow diagram	Supplementary Figure 1
		 a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders. Give information separately for exposed and unexposed groups if applicable. Consider giving information by 	
14	DESCRIPTIVE DATA	genotype	Results Table 1
		variable of interest	Results Table 1
		 c) Cohort study – Summarize follow-up time, e.g. average and total amount 	Recults
		Cohort study Report numbers of outcome events or summary measures over time. Give information separately for exposed and unexposed groups if applicable. Report outcomes (phenotypes) for each genotype category over time Case-control study – Report numbers in each exposure category, or summary measures of exposure. Give information separately for cases and controls. Report numbers in each genotype category. Cross-sectional study – Report numbers of outcome events or summary measures. Give information separately for exposed and unexposed groups if	Results ("Lower mtDNA- CN is associated with
15	OUTCOME DATA	applicable. Report outcomes (phenotypes) for each genotype category	poor stroke prognosis at 1-month")
16	MAIN RESULTS	a) Give unadjusted estimates and, if applicable, confounder- adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	Methods ("Statistical Analysis")
		 b) Report category boundaries when continuous variables were categorized 	Methods ("Statistical Analysis")
		c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	NA
		d) Report results of any adjustments for multiple comparisons	NA
17	OTHER ANALYSES	a) Report other analyses done—e.g., analyses of subgroups and interactions, and sensitivity analyses	Results ("Lower mtDNA- CN is associated with poor stroke prognosis at 1-month"), Figure 3
		 b) If numerous genetic exposures (genetic variants) were examined, summarize results from all analyses undertaken. 	NA
		c) If detailed results are available elsewhere, state how they can be accessed.	Supplementary Tables 1 to 5
18	KEY RESULTS	Summarise key results with reference to study objectives	Discussion
19	LIMITATIONS	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias.	Discussion
20		Give a cautious overall interpretation considering objectives, limitations, multiplicity of analyses, results from similar studies,	Discussion + Constructor
20		and other relevant evidence.	Discussion + Conclusion
	GENERALISADILI I	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which	
22	FUNDING	the present article is based	Funding Sources

S. Table 11. STROBE-MR checklist.

Section	Section (s)	Item	Place Addressed
Number	section(s)	Indicate Mendelian randomization as the study's design in the	Place Addressed
1	TITLE and ABSTRACT	title and/or abstract	Title page and abstract
		Explain the scientific background and rationale for the reported	
		study. Is causality between exposure and outcome plausible?	
		Justify why MR is a helpful method to address the study	
2	INTRODUCTION: Background	question.	Introduction
2		State specific objectives clearly, including pre-specified causal	Introduction
5	INTRODUCTION. Objectives	Present key elements of study design early in the paper.	Introduction
		Consider including a table listing sources of data for all phases of	
	METHODS: Study Design + Data	the study. For each data source contributing to the analysis,	Methods ("Mendelian
4	Sources	describe the following:	Randomization")
		a) Describe the study design and the underlying population from	
		which it was drawn. Describe also the setting, locations, and	Mathada ("Mandalian
		follow-up, and data collection, if available	Randomization")
		b) Give the eligibility criteria, and the sources and methods of	Methods ("Mendelian
		selection of participants.	Randomization")
			Methods ("Mendelian
		c) Explain how the analyzed sample size was arrived at.	Randomization")
		d) Describe measurement, quality and selection of genetic	Methods ("Mendelian Bandomization")
		e) For each exposure outcome and other relevant variables	Kandomization)
		describe methods of assessment and, in the case of diseases,	Methods ("Mendelian
		the diagnostic criteria used.	Randomization")
		f) Provide details of ethics committee approval and participant	
		informed consent, if relevant.	NA
			Methods ("Mendelian
		Explicitly state assumptions for the main analysis (e.g. relevance,	Randomization");
5	METHODS: Assumptions	exclusion, independence, nomogeneity) as well assumptions for	Supplementary Methods
5			Randomization Instrument
			Selection")
			,
	METHODS: Statistical Methods:	a) Describe how quantitative variables were handled in the	Methods ("Mendelian
6	main analysis	analyses (i.e., scale, units, model).	Randomization")
			Methods ("Mendelian
			Randomization");
		b) Describe the process for identifying genetic variants and	("Mendelian
		weights to be included in the analyses (i.e. independence and	Randomization Instrument
		model). Consider a flow diagram.	Selection")
		c) Describe the MR estimator, e.g. two-stage least squares, Wald	
		ratio, and related statistics. Detail the included covariates and,	Matha da (1194 au dallau
		In case of two-sample MR, whether the same covariate set was used for adjustment in the two samples	Randomization")
		asea for adjustment in the two sumples.	Methods ("Mendelian
			Randomization");
			Supplementary Methods
			("Mendelian
		d) Explain how missing data were addressed	Randomization Instrument
		a) If applicable, say how multiple tecting was dealt with	
	METHODS: Assesment of	Describe any methods used to assess the assumptions or justify	Methods ("Mendelian
7	Assumptions	their validity.	Randomization")
		Describe any sensitivity analyses or additional analyses	Methods ("Mendelian
8	METHODS: Sensitivity Analyses	performed.	Randomization")

9	METHODS: Software & Pre- registration	 a) Name statistical software and package(s), including version and settings used. 	Methods ("Mendelian Randomization")
		b) State whether the study protocol and details were pre- registered (as well as when and where).	NA
10	RESULTS: Descriptive Data	 a) Report the numbers of individuals at each stage of included studies and reasons for exclusion. Consider use of a flow- diagram. 	Methods ("Mendelian Randomization")
10		 b) Report summary statistics for phenotypic exposure(s), outcome(s) and other relevant variables (e.g. means, standard deviations, proportions). 	, Methods ("Mendelian Randomization")
		c) If the data sources include meta-analyses of previous studies, provide the number of studies, their reported ancestry, if available, and assessments of heterogeneity across these studies. Consider using a supplementary table for each data source.	Methods ("Mendelian Randomization")
		 d) For two-sample Mendelian randomization: i. Provide information on the similarity of the genetic variant- exposure associations between the exposure and outcome samples. 	NA
		ii. Provide information on extent of sample overlap between the	Methods ("Mendelian
4.4	DECULTE: Main Deculte	exposure and outcome data sources. a) Report the associations between genetic variant and exposure, and between genetic variant and outcome, preferably on an interpretable scale (e.g. comparing 25th and 75th percentile of allele count or genetic risk score, if individual-level data available.	Kandomization")
11	RESULTS: Main Results	b) Report causal effect estimate between exposure and	Results ("Low mtDNA-CN
		outcome, and the measures of uncertainty from the MR analysis. Use an intuitive scale, such as odds ratio, or relative	is a putative causal risk factor for 3-month strok
		risk, per standard deviation difference.	outcomes"), Figure 4
		c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time-period.	NA
		d) Consider any plots to visualize results (e.g. forest plot,	
		outcome versus between genetic variants and exposure).	Results Figure 4
12	RESULTS: Assessment of Assumptions	a) Assess the validity of the assumptions.	Results ("Low mtDNA-CN is a putative causal risk factor for 3-month strok outcomes"), Supplementary Tables 8 and 9
12			Results ("Low mtDNA-Cf is a putative causal risk factor for 3-month strok outcomes"),
		b) Report any additional statistics (e.g., assessments of heterogeneity, such as I2 , Q statistic).	Supplementary Tables 8 and 9
	RESULTS: Sensitivity + Additional	a) Use sensitivity analyses to assess the robustness of the main	Results ("Low mtDNA-CN is a putative causal risk factor for 3-month strok outcomes"), Supplementary Tables 8
13	мпацузез	b) Report results from other sensitivity analyses (e.g., replication study with different dataset, analyses of subgroups, validation of instrument(s), simulations, etc.).	Results ("Low mtDNA-CM is a putative causal risk factor for 3-month strok outcomes"), Figure 4, Supplementary Table 9
		c) Report any assessment of direction of causality (e.g., bidirectional MR).	NA
		d) When relevant, report and compare with estimates from non- MR analyses.	Discussion

			e) Consider any additional plots to visualize results (e.g., leave- one-out analyses).	NA
	14	DISCUSSION: Key Results	Summarize key results with reference to study objectives.	Discussion
	45		Discuss limitations of the study, taking into account the validity of the MR assumptions, other sources of potential bias, and imprecision. Discuss both direction and magnitude of any	
L	15	DISCUSSION: Limitations	potential bias, and any efforts to address them.	Discussion
	16	DISCUSSION: Interpretation	objectives and limitations. Compare with results from other relevant studies.	Discussion + Conclusion
			 b) Discuss underlying biological mechanisms that could be modelled by using the genetic variants to assess the relationship between the exposure and the outcome. 	Discussion
			c) Discuss whether the results have clinical or policy relevance, and whether interventions could have the same size effect.	Discussion + Conclusion
	17	DISCUSSION: Generalizability	Discuss the generalizability of the study results (a) to other populations (i.e. external validity), (b) across other exposure periods/timings, and (c) across other levels of exposure.	Discussion
	18	OTHER INFO: Funding	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study or studies on which the present article is based.	Funding Sources
	19	OTHER INFO: Data + Data Sharing	Present data used to perform all analyses or report where and how the data can be accessed. State whether statistical code is publicly accessible and if so, where.	Data Availability
	20	OTHER INFO: Conflicts of Interest	All authors should declare all potential conflicts of interest.	Conflicts of Interest

Supplementary References

- Fazzini F, Schöpf B, Blatzer M, et al. Plasmid-normalized quantification of relative mitochondrial DNA copy number. 2018;(May):1-11. doi:10.1038/s41598-018-33684-5
- Chong M, Mohammadi-Shemirani P, Perrot N, et al. GWAS and ExWAS of blood Mitochondrial DNA copy number identifies 73 loci and highlights a potential causal role in dementia. *medRxiv*. Published online 2021. doi:10.1101/2021.04.08.21255031
- Rath S, Sharma R, Gupta R, et al. MitoCarta3.0: an updated mitochondrial proteome now with sub-organelle localization and pathway annotations. *Nucleic Acids Res*. 2021;49(D1):D1541-D1547. doi:10.1093/nar/gkaa1011
- 4. Kamat MA, Blackshaw JA, Young R, et al. PhenoScanner V2: an expanded tool for

searching human genotype-phenotype associations. *Bioinformatics*. 2019;35(22):4851-4853. doi:10.1093/bioinformatics/btz469

5. Mbatchou J, Barnard L, Backman J, et al. Computationally efficient whole genome regression for quantitative and binary traits.

Supplementary Figures

Supplementary Figure 1. Participant flow chart.

S. Figure 2. Area charts illustrate the predicted model probabilities for baseline stroke severity strata as a function of mtDNA-CN (continuous variable).

S. Figure 3. Area charts illustrate the predicted model probabilities for 1-month post-stroke outcomes as a function of mtDNA-CN (continuous variable).

S. Figure 4. Comparison of effects for age and mtDNA-CN on 1-month stroke outcomes.