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LAY ABSTRACT 

Current stroke medications work by targeting circulating molecules. Our aim was to 

discover new drug candidates by combining genetic and circulating biomarker data using 

a technique called “Mendelian Randomization”. In Study 1, we screened 653 circulating 

proteins and found evidence supporting causal roles for two novel candidates, SCARA5 

and TNFSF12. Prior experimental studies suggest an important role for mitochondria in 

stroke recovery. Accordingly, in Study 2, we characterized the genetic basis of an emerging 

biomarker, mitochondrial DNA copy number (mtDNA-CN). Analyses of 395,781 

participants revealed 71 associated genetic regions, representing a 40% increase in our 

knowledge. In Study 3, we measured mtDNA-CN in 3,498 acute patients and observed that 

lower levels predicted elevated risk of worse post-stroke functional outcomes. Furthermore, 

Mendelian Randomization analysis suggested a likely causal relationship. Overall, this 

work uncovered several novel therapeutic leads for preventing stroke onset and progression 

that warrant further investigation to verify therapeutic utility.  
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ABSTRACT 

Many current drugs for stroke act by targeting circulating molecules, yet these have not 

been exhaustively evaluated for therapeutic potential. A central challenge is that while 

many molecules correlate with stroke risk, only a subset cause stroke. To disentangle 

causality from association, a statistical genetics framework called “Mendelian 

Randomization” can be used by integrating genetic, biomarker, and phenotypic 

information. In Study 1, we screened 653 circulating proteins using this technique and 

found evidence supporting causal roles for seven proteins, two of which (SCARA5 and 

TNFSF12) were not previously implicated in stroke pathogenesis. We also characterized 

potential side-effects of targeting these molecules for stroke prevention and did not identify 

any adverse effects for SCARA5. The remaining two studies focused on investigating the 

role of an emerging marker of mitochondrial activity, leukocyte mitochondrial DNA copy 

number (mtDNA-CN). Mitochondria have long been known to play a protective role in 

stroke recovery; however, a mitochondrial basis for stroke protection has not been 

extensively studied in humans. In Study 2, we first sought to better understand the genetic 

basis of mtDNA-CN in a series of genetic association studies involving 395,781 UK 

residents. We identified 71 loci which represents a 40% increase in our knowledge. In 

Study 3, epidemiological analyses of 3,498 acute stroke demonstrated that low mtDNA-

CN was associated with higher risk of subsequent mortality and worse functional outcome 

1-month after stroke. Furthermore, Mendelian Randomization analyses corroborated a 

causative relationship for the first time, implying that interventions that increase mtDNA-

CN levels in stroke patients may represent a novel strategy for mitigating post-stroke 

complications. Ultimately, this work uncovered several novel therapeutic leads for 

preventing stroke onset and ameliorating its progression. Future investigations are 

necessary to better understand the underlying biological mechanisms connecting these 

molecules to stroke and to further interrogate their validity as potential drug targets.  
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CHAPTER 1: INTRODUCTION 

 

1.1 STROKE OVERVIEW 

1.1.1 STROKE AND ITS IMPACT ON SOCIETY 

Stroke, an acute neurological deficit caused by decreased blood supply to the brain, 

represents the second leading cause of death (11.8% of all deaths) and the third most 

common cause of disability (4.5% of all life years lost to disability) worldwide1. In addition 

to the tremendous toll on quality-of-life, stroke carries a substantial economic burden with 

reported costs of $74,353 (CAD) per patient and totals of nearly $2.8 billion annually in 

Canada alone2. Management and treatment are resource intensive as stroke patients carry a 

significantly higher life-time risk of recurrent stroke and other cardiovascular disease, 

infection, disability, and dementia3–6. A deeper understanding of the molecular risk factors 

mediating stroke may lead to better risk stratification, prevention, and treatment.  

1.1.2 STROKE SUBTYPES 

Acute neurological deficits may arise from several mechanisms that cause reduced 

cerebral perfusion. Approximately 70% of all strokes involve vessel blockage and are 

classified as “ischemic” strokes, and the remaining 30% of strokes are caused by the rupture 

of cerebral blood vessels leading to intracranial bleeding, also known as “hemorrhagic” 

stroke7,8. The diagnostic workup for determining stroke subtypes is extensive and 

encompasses a combination of neurological assessment, vascular imaging, neuroimaging 

(CT or MRI), structural and electrophysiological cardiac testing, and laboratory testing9. 

Most analyses performed in this thesis will focus on ischemic stroke, which will be the 

focus of the following sections.  
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Primary stroke types can be further subtyped based on etiology and location. 

Subtypes of ischemic stroke entail small artery occlusion, large artery atherosclerosis, 

cardioembolic stroke, stroke of other determined etiology, and strokes of undetermined 

sources10. Small artery occlusion arises from lipohyalinosis or microatheromas within the 

small penetrating cerebral arteries that directly perfuse brain parenchyma11. Lipohyalinosis 

is a consequence of chronic hypertension and is defined by endothelial dysfunction, local 

inflammation, and vessel wall thickening which culminate in vascular narrowing11. Large 

artery atherosclerosis refers to the presence of atherosclerotic plaques occluding larger 

intracranial and/or extracranial arteries or serving as a proximal atherothrombotic embolic 

source12. Cardioembolic stroke is characterized by blood clots originating from cardiac 

chambers or valves (e.g. left atrium) that subsequently migrate (embolize) to occlude 

cerebral arteries13. Strokes of other determined etiology consist of identifiable albeit rare 

causes of stroke (e.g. vascular dissection)10. Strokes of undetermined source are an active 

area of investigation but are suspected to be caused by various mechanisms including but 

not limited to embolism from overlooked cardiac sources (e.g. left ventricular thrombi), 

paradoxical embolism, and non-occlusive atherosclerosis14. In contrast to ischemic stroke 

subtypes, hemorrhagic stroke subtypes are defined based on whether bleeding occurs in the 

brain parenchyma (intracerebral hemorrhage) or the space surrounding the brain tissue 

(subarachnoid hemorrhage).  
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1.1.3 TREATMENT 

1.1.3.1 IMPORTANCE OF STROKE SUBTYPING 

Accurate diagnosis of subtypes is important because it informs both acute and 

secondary treatments. In the acute setting for example, recombinant tissue plasminogen 

activator (rt-PA) is used to degrade clots present in ischemic stroke patients; however, rt-

PA also increases the risk of bleeding, and thus is strongly contraindicated for hemorrhagic 

strokes15. For stroke prevention, antithrombotic agents are mainstay therapies since they 

target a common etiological pathway in thrombosis; however, considerations for the 

specific class of drug prescribed, timing, and dosage, are made in context of ischemic 

subtype16,17. For example, oral anticoagulation is recommended over antiplatelet therapy in 

atrial fibrillation patients at high risk of thromboembolism18. 

1.1.3.2 ACUTE STROKE TREATMENT 

The adage, “time is brain”, is often used to stress the urgency with which stroke 

patients should be treated to avoid substantial neuronal loss. It has been estimated that 

patients with large artery occlusion lose approximately 120 million neurons for every hour 

that passes by without treatment, which is equivalent to 3.6 years of “brain aging” 19. As 

such, the acute phase of ischemic stroke is extremely important to salvage neurons and is 

centered around timely restoration of blood supply through the disintegration or removal 

of the blood clot. Thrombolytic therapy entails administration of rt-PA intravenously within 

4.5 hours of stroke onset9. rt-PA catalyzes the conversion of plasminogen to plasmin, which 

degrades the fibrin mesh that stabilizes the blood clot20. Beyond the 4.5-hour therapeutic 

window, rt-PA is not effective. However, a subset of strokes with proximal large artery 
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occlusions affecting the anterior circulation are eligible for mechanical thrombectomy 

within 24 hours of stroke onset21. Mechanical thrombectomy consists of the physical 

removal of the blood clot from circulation using a stent-retriever device22. Major challenges 

associated with both thrombolysis and thrombectomy include a greater risk for intracranial 

bleeding and restrictive therapeutic windows23,24.  

1.1.3.3 PRIMARY AND SECONDARY STROKE PREVENTION  

In patients with vascular risk factors or who have already suffered a stroke, 

prevention of future strokes consists of risk factor management and antithrombotic therapy. 

The importance of controlling stroke risk factors was delineated by the “Importance of 

Conventional and Emerging Risk Factors of Stroke in Different Regions and Ethnic Groups 

of the World (INTERSTROKE)”25,26. INTERSTROKE found that 10 established risk 

factors account for approximately 90% of stroke risk globally. These 10 risk factors include 

hypertension, diabetes mellitus, smoking, alcohol consumption, physical inactivity, 

dyslipidemia, a diet low in fruits and vegetables, obesity, psychosocial factors, and heart 

conditions (atrial fibrillation or flutter, myocardial infarction, rheumatic valve disease or 

prosthetic heart valve). Hypertension is one of the strongest risk factors for stroke overall, 

and its presence is associated with three and four-fold increased odds of ischemic stroke 

and intracerebral hemorrhage, respectively26.  

While some risk factors are shared across stroke types, others are more strongly 

associated with specific subtypes. For example, atrial fibrillation is a common arrhythmia 

defined by irregular and intermittently stagnant blood flow within the left atria of the 

heart27. Atrial fibrillation potentiates cardiac thrombus formation thereby increasing risk of 
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cardioembolic stroke by approximately 16-fold28. Treatment of atrial fibrillation consists 

of medical interventions to sustain proper sinus rhythm and use of anticoagulation to 

prevent future embolic events29. Similarly, dyslipidemia is an important risk factor for 

atherosclerosis, and cholesterol-lowering medication in the form of statins (HMG-COA 

reductase inhibitors) are employed to treat large artery atherosclerosis30.  

Antithrombotic therapies block the formation of new blood clots, which are 

composed of (i) an aggregate of platelets known as the “platelet plug” and (ii) a fibrin mesh 

that stabilizes the platelet plug31. The most common antiplatelet therapy is acetylsalicylic 

acid (aspirin) acts by inhibiting platelet cyclooxygenase (COX1) to impede platelet 

activation and aggregation32. In contrast, anticoagulants block components of the 

coagulation cascade which constitutes a series of enzymatic cleavages involving protein 

coagulation factors that ultimately lead to the production of fibrin18. For example, a reduced 

form of vitamin K acts as a cofactor for multiple coagulation factors, and some 

anticoagulation strategies (e.g. warfarin) work by blocking hepatic vitamin K epoxidase 

reductase complex33. However, inhibition of vitamin K blocks several coagulation factors 

(II, VII, IX, and X) resulting in impaired hemostasis and greater risk for bleeds34. Newer 

anticoagulants (direct oral anticoagulants) directly target specific coagulation factors, such 

as factors II (dabigatran) and X (rivaroxaban, apixaban, edoxaban)18. Additionally, 

combined antiplatelet and anticoagulant therapy has recently shown efficacy for stroke 

prevention in patients with stable atherosclerotic disease35. As compared to aspirin 

monotherapy, the Cardiovascular Outcomes for People using Anticoagulation Strategies 
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(COMPASS) trial observed superiority for the combination of low-dose rivaroxaban and 

aspirin for a reduced risk of recurrent ischemic stroke by 67%36.  

1.2 STROKE BIOMARKERS 

1.2.1 RATIONALE FOR STUDY OF STROKE BIOMARKERS  

Despite current antithrombotic therapies and risk factor management, the residual 

risk for recurrent stroke is high (1 to 15% annually)37–40. As such, there is a need to uncover 

novel therapeutic targets. Biological markers (biomarkers) are objective, measurable 

parameters that can be used for disease prediction, diagnosis, and prognosis41. Notably, 

biomarkers also represent therapeutic targets; for example, many current stroke 

medications target circulating molecules such as rt-PA (plasmin), aspirin (platelet COX1), 

and oral anticoagulants (coagulation factors) 18,20,32,42. In the hours and days following 

stroke, there are quantifiable changes in thousands of circulating proteins including pro-

inflammatory cytokines, chemokines, adhesion molecules, and brain injury markers43. 

Among these circulating biomarkers, there may be a subset that causally mediate stroke 

pathogenesis and recovery which represent strong candidates for therapeutic targeting. 

Therefore, elucidating the biomarkers that causally mediate stroke recurrence is likely to 

reveal novel therapeutic targets for stroke management. In the following sections, we will 

summarize relevant literature regarding stroke biomarker research.  

1.2.2 BIOMARKERS FOR STROKE RISK PREDICTION  

Stroke risk stratification informs clinical decision making, and biomarkers may help 

to refine an individual’s risk assessment. Circulating C-reactive protein detected through a 
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high sensitivity assay (hsCRP) is a well-established marker of systemic inflammation and 

is associated with greater incidence of both ischemic and hemorrhagic stroke44–46. 

Similarly, higher circulating levels of the pro-inflammatory cytokine, Interleukin-6 (IL6), 

predict greater incidence of ischemic stroke though this increased risk is entirely mediated 

by differences in risk factor profiles46,47. LP(a) is a highly atherogenic, pro-inflammatory, 

and pro-thrombotic circulating lipoprotein. A large cohort study including more than 

60,000 Danish individuals showed a strong association between elevated LP(a) and stroke 

incidence (HR=1.60; 95% CI, 1.24-2.05) after adjustment for known risk factors including 

LDL cholesterol48. An even larger study of 283,540 British individuals confirmed this 

relationship and showed modest improvement in discrimination of atherosclerotic 

cardiovascular disease events by incorporating Lp(a) (c-index 0.640 vs. 0.642)49.  

A novel set of risk scores that integrate circulating biomarkers has shown promise 

for stroke and bleeding risk prediction in atrial fibrillation patients, known as the “age, 

biomarker and clinical history” (ABC) scores50,51. The ABC-stroke score incorporates two 

circulating cardiac biomarkers associated with incident ischemic stroke: N-terminal 

fragment B-type natriuretic peptide (NT-proBNP) and cardiac troponin T51. NT-proBNP is 

secreted by cardiomyocytes in response to myocyte stretch and is a marker of heart failure 

and an independent predictor of cardioembolic stroke52. Cardiac troponin T is released into 

circulation acutely after myocardial injury and elevated levels are used to diagnose 

myocardial infarction53. The ABC-stroke risk score better discriminates stroke risk when 

compared to the established CHA2DS2-VASc risk score which does not incorporate 

biomarkers (c-index 0.66 vs. 0.58) and performs well in both anticoagulated and non-
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coagulated patients with atrial fibrillation 51,54. Complementary to the ABC-stroke score is 

the ABC-bleeding score for the prediction of major bleeding, a key adverse side-effect of 

anticoagulation therapy50,55. The biomarkers incorporated into the ABC-bleeding score are 

growth differentiation factor 15 (GDF15), cardiac troponin T, and hemoglobin. Circulating 

GDF15 is often upregulated in response to stressors, and levels are prognostic for major 

bleeding and death50,56. The ABC-bleeding score outperforms the conventional HAS-

BLED score for risk discrimination of major bleeds (c-index 0.68 vs. 0.61)50.  

1.2.3 BIOMARKERS FOR STROKE PROGNOSTICATION 

Several circulating proteins have been reported to be associated with stroke 

prognosis including those implicated in inflammation (IL6, hsCRP, S100A8/A9), vascular 

remodelling (matrix metallopeptidase 9 [MMP9]), and brain injury (neurofilament light 

chain [NFl]). The modified Rankin Scale (mRS) is an ordinal metric used to capture post-

stroke functional outcome and ranges from “no symptoms at all” (mRS 0) to “death” (mRS 

6) (Table 1.1)57. Circulating IL6 is predictive of both stroke incidence and prognosis, and 

higher levels at hospital admission portends worse functional outcome (mRS 3-6 vs. 0-2) 

at 3-months in both ischemic and hemorrhagic stroke patients58. Serum levels of another 

inflammatory mediator, complement C3, correlate with poor functional outcome 3-months 

post-ischemic stroke and improve reclassification of individuals with poor (mRS 3-6) vs. 

good (mRS 0-2) functional outcomes (NRI=0.09)59. The prognostic utility of a multi-

biomarker risk score was investigated in 3,575 participants from the China 

Antihypertensive Trial in Acute Ischemic Stroke (CATIS) trial60. Specifically, the addition 

of hsCRP, GDF15, MMP9, and S100A8/A9 to conventional risk factors (age, sex, fasting 
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plasma glucose, lipids, systolic blood pressure, time from onset to hospitalisation, cigarette 

smoking status, alcohol drinking status, baseline stroke severity [NIHSS], ischemic stroke 

subtype, and antihypertensive medication post-admission) significantly improved 

reclassification of poor functional outcome at 3-months post-stroke (mRS 3-6 vs. 0-2; 

NRI=0.33). MMP9 plays an important role in remodelling of the extracellular matrix 

following stroke, and S100A8/A9 is abundantly present in neutrophils and monocytes 

which are the first responders of the immune defence to inflammation61,62. Finally, NFl is 

exclusively expressed in the axonal cytoskeleton of neurons and is only released into 

circulation after brain injury, and thus has been dubbed as the “neurologist’s troponin”63. 

NFl shows prognostic utility for multiple neurodegenerative disorders and stroke63. 

Elevated plasma NFl predicts poor functional outcome (mRS 3-6) at 3-months for patients 

with cardioembolic stroke, strokes of undetermined source, subarachnoid hemorrhage, and 

intracerebral hemorrhage64. 

Table 1.1. The modified Rankin Scale (mRS) as a measure of disability and 

dependence57.  
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1.2.4 NEW HORIZONS FOR STROKE BIOMARKER RESEARCH  

1.2.4.1 MITOCHONDRIAL DNA COPY NUMBER (MTDNA-CN) 

Mitochondria are semi-autonomous organelles that have important roles in stroke 

pathogenesis and recovery65,66. In the presence of ischemia, hypoxic neurons transition 

from oxidative to anaerobic phosphorylation, which eventually fails to meet the energy 

demands of the cell. As a result, ATP-dependent ion channels which normally maintain the 

electrochemical gradient between intracellular and extracellular compartments lose their 

function. An influx of sodium and calcium ions ensues, triggering mitochondrial swelling 

and the release of pro-apoptotic factors from the mitochondrial membrane (cytochrome C) 

which then induces neuronal cell death.  

A seminal proteomics study by Garcia-Berrrocoso et al (2018) further highlights 

the critical role of mitochondrial pathways in the response to cerebral ischemia67. Laser 

microdissection was used to isolate the neurovasculature of deceased ischemic stroke 

patients, and proteomic changes in infarcted brain tissue were compared to contralateral 

tissue. Mitochondrial dysfunction and oxidative phosphorylation constituted the top 

pathways that were differently expressed between infarcted and non-infarcted neurons. 

Additionally, a novel neuroprotective mechanism involving the intercellular transfer of 

mitochondria has been described in a rodent stroke model68. During stroke, astrocytes 

transfer their mitochondria to oxygen-deprived neurons, eliciting pro-survival signals. As 

a result, this is accompanied by several beneficial effects including smaller infarcts (less 

severe strokes) and better functional outcomes. A separate protective mechanism has also 

been described in endothelial progenitor cells, which release functionally viable 
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mitochondria into circulation69. These extracellular mitochondria are then taken up by 

damaged brain endothelium which partially restores the integrity of the blood brain barrier. 

Despite evidence supporting a strong role for mitochondria in stroke pathogenesis 

and recovery, mitochondrial biomarkers are seldom studied in human stroke patients. An 

emerging and inexpensive marker of mitochondrial activity is mitochondrial DNA copy 

number (mtDNA-CN)70,71. In the blood, most mitochondria are located in white blood cells, 

platelets, and various extracellular sources. Hitherto, investigations have measured 

mtDNA-CN predominantly from buffy coat samples, in which case, mtDNA-CN denotes 

the ratio between mitochondrial and autosomal DNA copies within white blood cells (and 

platelets if platelet-depletion is not performed). Sometimes viewed as a simple marker of 

mitochondrial abundance, lower white blood cell mtDNA-CN levels are thought to 

represent states of general mitochondrial dysfunction, oxidative stress, and inflammation72.  

While all three phenomena are relevant to stroke, evidence from genetic, 

experimental, and epidemiological studies also support a direct role of mtDNA-CN in 

stroke. First, patients with rare genetic disorders characterized by very low mtDNA-CN, 

known as “mtDNA depletion syndromes”, experience leukoencephalopathy and stroke-like 

episodes73,74. mtDNA depletion syndromes are caused by genetic defects in enzymes 

involved in nucleotide metabolism, mtDNA replication, and mtDNA repair75. Second, 

experimental studies suggest that mtDNA-CN is a mediator of ischemia reperfusion injury 

and stroke recovery76–78. Indeed, rats with experimentally induced ischemic stroke (middle 

cerebral artery occlusion) experience a precipitous drop in mtDNA-CN levels, and pre-

stroke mtDNA-CN levels can be recovered by injection of a cleavage-resistant form of a 
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key mtDNA regulator, Optic Atrophy 1 (OPA1)77. The recovery in mtDNA-CN levels via 

OPA1 also attenuated stroke severity and improved functional outcomes in rats. Third, 

epidemiological analyses demonstrate that low leukocyte mtDNA-CN is associated with 

stroke risk in humans. A retrospective case-control study found that stroke cases have lower 

leukocyte mtDNA-CN than controls and that this coincides with higher levels of oxidative 

stress markers79. A large meta-analysis of four prospective cohorts totalling 20,163 

participants including 1,583 incident stroke events (mean follow-up of 13.5 years) showed 

that low mtDNA-CN levels at baseline predicted higher risk for incident stroke80. In other 

disease settings (heart disease, peripheral artery disease, chronic kidney disease, and 

sudden cardiac death), low leukocyte mtDNA-CN is associated with incident risks of 

secondary hospitalization, infection, and mortality80–83. Hitherto, mtDNA-CN has not been 

extensively studied as a prognostic marker nor as therapeutic target for stroke in humans84.  

1.2.4.2 ADVANCES IN MULTIPLEX PROTEIN DETECTION ENABLE 

PROTEOME-WIDE DISCOVERY 

Most biomarker studies have evaluated only a select subset of proteins with prior 

evidence of (i) mediating stroke pathogenesis in animal models (e.g. MMP9), (ii) being 

associated with related neurological diseases in epidemiological studies (e.g. NFl), or (iii) 

capturing established risk factor pathways (e.g. hsCRP). However, this “candidate” 

biomarker approach is inherently limited in discovery potential and overlooks thousands of 

unique circulating proteins with less well-characterized functions. Surveying the entire 

circulating proteome is met by several challenges including (i) a wide dynamic range of 

concentration spanning 12 orders of magnitude (femtomolar to milligram), (ii) the vastness 
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of the circulating proteome encompassing ~10,000 unique proteins, and (iii) the non-

specificity of traditional immunoassays due to antibody cross-reactivity. Innovative 

technological breakthroughs have increased the number of measurable proteins from up to 

hundreds of proteins using traditional multiplex immunoassays to thousands. For large-

scale epidemiological investigations, two high-throughput proteomics technologies have 

been widely adopted, SOMAlogic’s Slow Off-rate Modified Aptamers (SOMAmers) 

technology and OLINK’s Proximity Extension Assay (PEA) technology85,86.  

SOMAmer technology currently offers the broadest coverage of the proteome 

enabling detection of 7,000 unique circulating proteins (https://somalogic.com/somascan-

discovery/). Aptamers are short oligonucleotides with high affinity towards a specific 

protein epitope that are generated through an iterative amplification process: a pool of 

random oligonucleotides encounters a target protein, and the aptamer with the highest 

affinity to a specific protein epitope is amplified86. After multiple rounds of aptamer 

selection and amplification, chemical modifications to stabilize the aptamer are added in 

the form of chemical modifications that behave like amino acid side chains86. The resulting 

molecule is a SOMAmer. SOMAmers are conjugated to fluorophores, which renders them 

amenable to multiplex protein quantification on a fluorescent microarray. Key limitations 

of SOMAmer technology include non-specificity (cross-reactive binding to non-target 

human proteins or even non-human proteins given that SOMAmers are not “natural” 

human antibodies) and variable detection depending on SNP variation (35% of SOMAmers 

display altered binding affinity in the presence of SNPs)87.  

https://somalogic.com/somascan-discovery/
https://somalogic.com/somascan-discovery/
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The OLINK PEA technology transduces protein quantification into a DNA 

quantification problem (Figure 1.1)85. Each protein is targeted by a pair of antibodies, and 

each antibody is labelled by a single-stranded DNA probe whose sequence is 

complementary to the cognate antibody’s single-stranded DNA probe. When antibody pairs 

bind the target protein, their complementary single-stranded DNA labels come into close 

proximity, forming a double-stranded DNA complex that primes an extension reaction. The 

resulting full-length DNA barcode is amplified by PCR and can then be quantified via 

quantitative PCR or next-generation sequencing (Figure 1.1). While more limited in 

proteomic coverage (up to ~1500 proteins) as compared to the SOMAmer detection 

method, the main advantage of PEA technology is its specificity 

(https://www.olink.com/products/olink-explore/). High specificity is maintained in the 

presence of cross-reactive antibody binding since the DNA labels of mismatching 

antibodies do not form double-stranded DNA complexes and thus cross-reactive events do 

not contribute to quantifiable signal. 

  

Figure 1.1. OLINK PEA technology overview. (Screenshot from 

https://www.olink.com/data-you-can-trust/technology/) 

 

https://www.olink.com/products/olink-explore/
https://www.olink.com/data-you-can-trust/technology/
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1.3 INTEGRATING GENETICS & BIOMARKERS FOR TARGET DISCOVERY 

1.3.1 ENHANCING TARGET PRIORITIZATION WITH GENETICS 

Recent advances in multiplex protein assay technology have equipped researchers 

with the ability to interrogate thousands of plasma proteins in large epidemiological studies, 

and while this greatly expands the scope for therapeutic discovery, a central challenge 

remains in being able to pinpoint true drug targets among disease-associated biomarkers. 

The steep cost of developing new medications ($1.2 billion CAD per drug) and high 

attrition rates (> 50% drug candidates fail for lack of efficacy in RCTs) emphasize the 

utility of effective drug prioritization strategies since not all disease-associated biomarkers 

cause disease88,89. For example, hsCRP is an acute phase reactant protein whose circulating 

levels increase in response to activation of the NLRP3 inflammasome-IL1-IL6 axis46. 

Essentially, CRP is a downstream product of this inflammation pathway, thus serving as a 

clinically useful surrogate for inflammation levels. However, interventions reducing 

hsCRP levels per se are not expected to mitigate inflammation. Genetic studies provide 

evidence against a causal role for hsCRP in vascular inflammation, and conversely, support 

for a causal role for an upstream regulator of CRP, IL690–93. A single nucleotide 

polymorphism (SNP; rs7553007) proximal to the CRP gene is associated with serum CRP 

concentration (i.e. cis pQTL) but not risk of heart disease or stroke46. In contrast, SNPs 

within the IL6 pathway are associated with increased inflammation as well as increased 

risk of heart disease and stroke91,92. Indeed, a seminal randomized controlled trial showed 

that canakinumab, a monoclonal antibody that blocks the upstream activator of IL6, IL1β, 

reduces recurrent risk of cardiovascular events and death in myocardial infarction patients 
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with elevated hsCRP94. RCTs are currently planned to test pharmacologic agents (Anakinra 

and colchicine) to target the NRLP3-IL1 inflammasome axis for secondary cardiovascular 

disease prevention in ischemic stroke (Preventing cArdiovascular ComplIcations aFter 

Ischemic STroke [PACIFIST]; Colchicine for prevention of Vascular Inflammation in 

Non-CardioEmbolic Stroke [CONVINCE]) and intracerebral hemorrhage (Colchicine for 

the prevention of vascular events after an acute IntraCerebral Hemorrhage [CoVasc-ICH]) 

patients (private communication with Dr. Askhan Shoamanesh). In summary, genetic 

associations can be used to clarify causality between disease-biomarker associations, 

thereby providing a means to prioritize causal mediators as potential therapeutic targets.  

Therapeutic potential is hinted at in contexts where the genetic determinants of 

biomarkers and stroke risk overlap95. The intuition is that if a biomarker causally affects 

stroke risk, then genetic variants that influence biomarker levels should also have a 

corresponding and proportional effect on stroke risk. By using genetic evidence to infer 

causality of biomarker-stroke relationships, the subset of associated biomarkers causally 

mediating risk of stroke likely represents stronger drug candidates. Indeed, a review by 

Nelson et al. (2015) showed that pharmacological compounds with support from genetic 

association studies are more than twice as likely to reach market approval as compared to 

those without genetic support96.  

1.3.2 MENDELIAN RANDOMIZATION (MR) ANALYSIS  

Mendelian Randomization (MR) analysis is a statistical genetics framework for 

causal inference that uses genetic variants as “instruments” to approximate the 

unconfounded effect of an exposure (e.g. biomarker) on an outcome (e.g. stroke) 97,98,99. 
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Similar to how RCTs randomize interventions, MR leverages the natural randomization of 

genetic alleles that occurs during meiosis (i.e. Mendel’s second law of independent 

assortment)100 (Figure 1.2). While epidemiological associations may be susceptible to 

confounders and reverse causation, the randomization of exposure-associated alleles 

ensures that confounders are balanced between allele carriers and non-carriers. 

Furthermore, because genetic variants are inherited, the flow of cause-and-effect is 

unidirectional from genetic variant to change in biomarker level to disease consequence 

thus conferring some protection against reverse causation. In relation to stroke, MR has 

been mainly used to clarify whether a causal relationship exists between well-established 

clinical risk factors and risk of stroke. Such studies demonstrate causal roles for blood 

pressure and total stroke, adiposity and ischemic stroke, atrial fibrillation and ischemic 

stroke, type 2 diabetes and small artery occlusion, and LDL cholesterol and large artery 

atherosclerosis101–103. Candidate blood biomarkers have also been assessed through the MR 

framework with positive findings for lipoprotein(a) and matrix-metalloproteinase-12 

(MMP12) but not hsCRP, cystatin C, or YKL-4090,91,104–107. 
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Figure 1.2 A comparison of randomized controlled trials with the Mendelian 

Randomization study design.  

Causality is supported when the effects of multiple, independent genetic variants on 

biomarker levels are directionally consistent and proportional to their effects on stroke risk 

(Figure 1.3). The inputs necessary to conduct MR analysis are two sets of genetic effects: 

(A) the effect of genetic variants on biomarker levels and (B) the effect of genetic variants 

on stroke risk. Understanding the relationship between these effects permits triangulation 

of the causal effect of biomarker levels on stroke risk (C). Genetics effects can be derived 

through a genetic study design known as a genome-wide association study (GWAS) 

allowing for comprehensive interrogation of common variants dispersed across the 

genome. Notably, only summary-level data, in the form of effect estimates and their 
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standard errors, is required to perform MR analysis98,108. This statistical methodological 

advance in the MR field has led to an explosion in the number of studies of this kind 

conducted in the past 5 years.  

Figure 1.3. Visualization of the underlying premise for MR as a causal inference method. 

Each point represents an independent genetic variant. 

1.3.3 GENOME-WIDE ASSOCIATION STUDIES (GWAS) 

GWAS are systematic and agnostic surveys of common variant associations that 

allows for the identification of specific genetic determinants of traits and more specifically, 

an approximation of the effect of each genetic variant on the trait in question109. Following 

a similar trajectory as biomarker investigations, genetic studies began with “candidate” 

gene approaches but were supplanted by GWAS once multiplex SNP detection technology 

was developed, namely, the SNP microarray110. Microarrays contain millions of microwells 

that each harbour an individual assay for a unique SNP site, and as such, genotypes for 

hundreds of thousands to several millions of SNPs can be measured simultaneously in 

multiple samples110. Statistical genetics advances in the form of imputation techniques 
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leverage the correlation structure (linkage disequilibrium) between variants in large 

aggregates of sequencing data (imputation referenc) to boost the number of detectable 

genetic variants (genomic coverage) to approximately 10 million common SNPs111–113.  

1.3.3.1 GWAS FOR CIRCULATING BIOMARKERS   

Recent large-scale studies combining multiplex genomics and proteomics 

technologies highlight a major role for genetics in the regulation of circulating protein 

levels. A seminal study by Sun et al. (2018) investigated genetic determinants for 3,622 

plasma proteins using SOMAmer technology in 3,301 healthy blood donors from the 

INTERVAL study105. This study identified 1,927 associations for 1,104 unique proteins 

which represented a four-fold increase in the number of protein quantitative trait loci 

(pQTL) known at that time. Approximately 30% of pQTLs were located within or nearby 

the genes encoding for the circulating protein, also known as cis-pQTLs. Considering the 

vastness of the genome, this reinforces a strong role for proximal genetic regulation. Since 

the publication of this study, international research collaborations have been convened to 

exhaustively characterize the genetic determinants of circulating proteins. Most notably, 

the Systematic and Combined AnaLysis of Olink Proteins (SCALLOP) consortium has 

recently published GWAS of PEA-detected proteins associated with cardiovascular 

diseases including up to 30,000 study participants114.  

1.3.3.2 GWAS FOR STROKE 

Finding robust genetic associations for stroke through GWAS was initially 

challenging. The very first GWAS for ischemic stroke was conducted in 2009 by Ikram et 

al. in 19,602 participants (1164 ischemic strokes) and revealed NINJ2 as a putative stroke 
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locus, but this association has never been replicated115. This failure was attributed to 

overlooking the vast phenotypic heterogeneity of stroke and relatively small sample sizes. 

As Hacke et al. expressed in a GWAS commentary, many studies have fallen victim to the 

fact that stroke represents an umbrella term for etiologically distinct stroke subtypes116. 

Essentially, stroke is a syndrome encompassing many distinct clinical entities with a shared 

predisposition for thromboembolism.  

 Since the first stroke GWAS in 2009, several collaborative initiatives have been 

convened to conduct large GWAS meta-analyses including METASTROKE (N=90,648) 

and the NINDS Stroke Genetics Network (SiGN) (N=435,001) for ischemic stroke 

subtypes117,118. A seminal GWAS of stroke (N=521,612) was published in March 2018 by 

the MEGASTROKE consortium119. This study represented a major leap forward in our 

understanding of the genetic architecture of ischemic stroke subtypes. Prior to this study, 

only 10 reliable stroke loci were known. MEGASTROKE not only replicated these loci but 

also uncovered 22 new loci for a total of 32 loci. Of the 32 loci, 13 (41%) demonstrated 

subtype specificity and the remaining loci were either associated with multiple ischemic 

subtypes independently or broader stroke types (ischemic stroke or any stroke). A follow-

up analysis by Traylor et al. (2019) further investigated subtype specificity for a subset of 

16 MEGASTROKE loci and concluded that the pattern of subtype association for loci was 

highly heterogeneous, though seven (44%) of the 16 loci were found to influence both 

hemorrhagic and ischemic stroke risk suggesting a shared etiology between the major 

stroke types120. Furthermore, many MEGASTROKE loci were also associated with well-

established vascular risk factors including venous thromboembolism, lipids, coronary 
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artery disease, blood pressure, carotid plaque, and atrial fibrillation (Figure 1.4). 

Intriguingly, 11 loci were not known to influence classic risk factors suggesting novel 

mechanisms for stroke pathophysiology and are now being investigated more closely. For 

example, Traylor et al. (2020) further investigated the PDE3A variant in an independent 

study and observed that mutation carriers had impaired flow-mediated dilatation, a marker 

of endothelial reactivity121.  

 

Figure 1.4. A pictorial representation of the 32 stroke loci identified by the 

MEGASTROKE study and the overlap with vascular risk factors and traits119. 

Post-MEGASTROKE, GWAS have focused on underrepresented stroke subtypes 

(e.g. small vessel disease), radiological markers (e.g. perivascular dilated spaces), and 

stroke outcomes (e.g. 3-month mRS)122–125. Indeed, stroke outcome genetics is one of the 

major research priorities for future stroke genetics research according to the International 

Stroke Genetics Consortium (ISGC)126. To this end, the Genetics of Ischaemic Stroke 

Functional Outcome (GISCOME) performed the first international GWAS of 3-month 
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mRS and identified the first GWAS locus for ischemic stroke outcome, an intronic variant 

in the LOC105372028 locus (rs1842681)125. A second phase GWAS meta-analysis is under 

way to uncover additional genetic determinants of post-stroke outcome and therapeutic 

response (private communications).  

1.3.4 EMERGING STROKE THERAPIES WITH MR SUPPORT 

GWAS is the backbone of MR analysis as they are used to identify genetic variants 

associated with human traits, which can then be used as genetic instruments to evaluate 

causality with outcomes. Advances in GWAS for both circulating biomarkers and stroke 

provide an exciting opportunity for drug target discovery at an unprecedented 

scale105,114,119,127–130. Indeed, several new stroke therapies targeting coagulation and 

dyslipidemia have been recently supported by MR evidence42. For example, antisense 

oligonucleotide molecules blocking coagulation factor XI have been developed and are 

undergoing testing in RCTs for secondary stroke prevention and safety profiling in atrial 

fibrillation patients (NCT04304508, NCT03582462, NCT04218266). Complementary to 

these ongoing RCTs is a MR analysis by Georgi et al. (2020) showing that genetically 

lower FXI levels is associated with reduced risk of venous thrombosis and cardioembolic 

stroke131. Proprotein convertase subtilin/kexin type 9 (PCSK9) is an enzyme that facilitates 

the endocytosis and degradation of membrane-bound low-density lipoprotein receptor 

(LDLR) which clears LDL cholesterol from circulation132–137. Several monoclonal 

antibodies have been developed to inhibit PCSK9 production as a novel means of 

cholesterol lowering, and two RCTs have demonstrated that when PCSK9 inhibition is 

added to statin therapy, risk of recurrent stroke risk is further reduced by 25%138,139. MR 
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also supports a causal role for genetically reduced PCSK9 in ischemic stroke risk 

reduction99. Intriguingly, RCTs also observe that PCSK9 inhibition is associated with a 

reduction in another independent atherogenic mediator, Lipoprotein(a) (Lp(a)), suggesting 

potentially pleiotropic effects of PCSK9 inhibition beyond cholesterol-lowering140,141. A 

hepatocyte-directed antisense oligonucleotide therapy for Lp(a) (AKCEA-APO(a)-LRx) 

reduces circulating Lp(a) by approximately 80% as shown in a recent phase II trial, but 

whether this translates to clinical benefit remains to be determined in ongoing phase III 

trials. One of the earliest stroke MR studies evaluated LP(a) due to its high heritability and 

the fact that a single cis-pQTL (rs10455872) accounted for a significant proportion (~30%) 

of the variance in plasma concentrations48,104. MR analyses substantiate a strong role for 

genetically lower Lp(a) in protecting against atherosclerotic disease including heart disease, 

aortic valve stenosis, and large artery atherosclerosis142. Altogether, the fact that MR 

supports a causal role for several emerging therapeutic targets is both reassuring for 

ongoing phase III trials and corroborates the utility of MR as a drug prioritization tool.  
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CHAPTER 2: HYPOTHESIS, OBJECTIVE, RATIONALE, & APPROACH 

2.1 GENERAL HYPOTHESIS 

We hypothesize that a subset of blood biomarkers causally mediate stroke risk and 

prognosis.  

2.2 GENERAL OBJECTIVE 

The overall objective of this PhD thesis is to identify molecular determinants of stroke 

risk and post-stroke outcomes to generate novel therapeutic targets.  

2.3 RATIONALE AND APPROACH 

A decade ago, neuroprotective agents were heralded as the incumbent class of 

stroke medications following antithrombotic therapies; however, compelling animal model 

findings failed to translate to clinical benefit in human patients1. This cautionary tale 

emphasizes the importance of effective drug target prioritization tools that combine 

evidence from multiple modalities not reliant on a single source. One such promising 

framework that integrates multiple ‘Omics modalities is Mendelian Randomization (MR) 

analysis2. MR analysis has been successfully applied to drug target discovery and validation 

for numerous diseases via the triangulation of genomic, biomarker, and outcome 

information3. Accordingly, we will apply MR analysis to identify putative targets for stroke 

treatment in two ways: (i) systematic identification of novel targets (a priori discovery) and 

(ii) assessment of a single targeted hypothesis (priori evaluation).  

No study has used MR agnostically to identify novel drug targets for ischemic 

stroke. The recent emergence of large-scale GWAS for thousands of circulating proteins in 

combination with GWAS of thousands of stroke patients enables such an investigation for 
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the first time. Accordingly, we will (i) systematically screen the circulating proteome for 

novel drug targets, (ii) forecast effects of target manipulation on key safety phenotypes (i.e. 

intracranial bleeding), and (iii) comprehensively elucidate side-effect profiles (Chapter 3).  

Mitochondrial dysfunction has long been known to be a sequala and mediator of 

post-stroke brain injury4. However, only recently has an accessible blood marker of 

mitochondrial activity (leukocyte mtDNA-CN) emerged for study in human participants5. 

Findings from animal models indicate that circulating mtDNA-CN levels acutely drop 

following stroke, and that rescuing mtDNA-CN levels attenuates stroke severity and 

improves post-stroke functional outcomes6. In contrast, the role of mtDNA-CN in human 

stroke patients as both a marker and causal determinant of stroke prognosis has not been 

extensively investigated. The latter query has not yet been addressed mainly because the 

genetic determinants of mtDNA-CN remain elusive. To this end, we will (i) develop a novel 

method for array-based mtDNA-CN estimation to enable convenient estimation of 

mtDNA-CN from biobank-scale genomic datasets and (ii) apply this method to conduct a 

large GWAS in the UKBiobank study to find genetic variants associated with mtDNA-CN 

levels (Chapter 4). Finally, we will (i) characterize the epidemiological association between 

leukocyte mtDNA-CN measured within one week of stroke onset and post-stroke outcomes 

in patients from the INTERSTROKE study, and (ii) perform MR analysis using 

independent datasets (UKBiobank from Chapter 4 and GISCOME) to assess whether there 

is evidence supporting a causal effect of mtDNA-CN on post-stroke outcomes (Chapter 5). 
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CHAPTER 4:  

GWAS and ExWAS of blood Mitochondrial DNA copy number identifies 71 loci and 

highlights a potential causal role in dementia  
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Abstract 

Background: Mitochondrial DNA copy number (mtDNA-CN) is an accessible blood-

based measurement believed to capture underlying mitochondrial function. The specific 

biological processes underpinning its regulation, and whether those processes are causative 

for disease, is an area of active investigation.  

Methods: We developed a novel method for array-based mtDNA-CN estimation suitable 

for biobank-scale studies, called “AutoMitoC”. We applied AutoMitoC to 395,781 

UKBiobank study participants and performed genome and exome-wide association studies, 

identifying novel common and rare genetic determinants. Finally, we performed two-

sample Mendelian Randomization to assess whether genetically low mtDNA-

CN influenced select mitochondrial phenotypes. 

Results: Overall, genetic analyses identified 71 loci for mtDNA-CN, which implicated 

several genes involved in rare mtDNA depletion disorders, dNTP metabolism, and the 

mitochondrial central dogma. Rare variant analysis identified SAMHD1 mutation carriers 
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as having higher mtDNA-CN (beta=0.23 SDs; 95% CI, 0.18- 0.29; P=2.6x10-19), a 

potential therapeutic target for patients with mtDNA depletion disorders, but at increased 

risk of breast cancer (OR=1.91; 95% CI, 1.52-2.40; P=2.7x10- 8). Finally, Mendelian 

randomization analyses suggest a causal effect of low mtDNA-CN on dementia risk 

(OR=1.94 per 1 SD decrease in mtDNA-CN; 95% CI, 1.55-2.32; P=7.5x10-4). 

Conclusions: Altogether, our genetic findings indicate that mtDNA-CN is a complex 

biomarker reflecting specific mitochondrial processes related to mtDNA regulation, and 

that these processes are causally related to human diseases. 
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Introduction 

Mitochondria are semi-autonomous organelles present in nearly every human cell 

that execute fundamental cellular processes including oxidative phosphorylation, calcium 

storage, and apoptotic signalling. Mitochondrial dysfunction has been implicated as the 
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underlying cause for many human disorders based on mechanistic in vitro and in vivo 

studies (Burbulla et al., 2017; Desdín-micó et al., 2020; Sliter et al., 2020). Complementary 

evidence comes from recent epidemiological studies that measure mitochondrial DNA 

Copy Number (mtDNA-CN), a marker of mitochondrial activity that can be conveniently 

measured from peripheral blood. Since mitochondria contain their own unique set of 

genomes that are distinct from the nuclear genome, the ratio of mtDNA to nuclear DNA 

molecules (mtDNA-CN) in a sample serves as an accessible marker of mitochondrial 

quantity (Longchamps et al., 2020). Indeed, observational studies suggest that individuals 

with lower mtDNA-CN are at higher risk of age-related complex diseases, such as coronary 

artery disease, sudden cardiac death, cardiomegaly, stroke, portal hypertension, and chronic 

kidney disease (Tin et al., 2016; Ashar et al., 2017; Zhang et al., 2017; Hägg et al., 2020). 

Conversely, higher mtDNA-CN levels have been associated with increased cancer 

incidence (Kim et al., 2015; Hu, Yao and Shen, 2016).  

While previous studies demonstrate that mtDNA-CN is a biomarker of 

mitochondrial activity associated with various diseases, evidence suggests that it may also 

play a direct and causative role in human health and disease. For example, in cases of 

mtDNA depletion syndrome, wherein rare defects in nuclear genes responsible for 

replicating and/or maintaining mtDNA lead to deficient mtDNA-CN (Gorman et al., 2016), 

patients manifest with severe dysfunction of energy-dependent tissues (heart, brain, liver, 

and cardiac and skeletal muscles). So far, 19 genes have been reported to cause mtDNA 

depletion (Oyston, 1998). In addition to these rare monogenic syndromes, the importance 

of common genetic variation in regulating mtDNA-CN is an active area of research with 
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approximately 50 common loci identified so far (Cai et al., 2015; Guyatt et al., 2019; 

Longchamps, 2019; Hägg et al., 2020).  

To interrogate mtDNA-CN as a potential determinant of human diseases, we 

performed extensive genetic investigations in up to 395,781 participants from the 

UKBiobank study (Sudlow et al., 2015). We first developed and validated a novel method 

for biobank-scale mtDNA-CN investigations that leverages SNP array intensities, called 

“AutoMitoC”. Leveraging AutoMitoC-based mtDNA-CN estimates, we performed large-

scale GWAS and ExWAS to identify common and rare genetic variants contributing to 

population-level variation in mtDNA-CN. Various analyses were then conducted to build 

on previous publications regarding the specific genes and pathways underlying mtDNA-

CN regulation (Cai et al., 2015; Guyatt et al., 2019; Longchamps, 2019; Hägg et al., 2020). 

Finally, we applied Mendelian randomization analyses to assess potential causal 

relationships between mtDNA-CN and disease susceptibility.  

Materials and Methods 

The UKBiobank study  

The UKBiobank is a prospective cohort study including approximately 500,000 UK 

residents (ages 40-69 years) recruited from 2006-2010 in whom extensive genetic and 

phenotypic investigations have been and continue to be done (Sudlow et al., 2015). All 

UKBiobank data reported in this manuscript were accessed through the UKBiobank data 

showcase under application #15525. All analyses involve the use of genetic and/or 

phenotypic data from consenting UKBiobank participants. 

Genetic Analysis of Common Variants 
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Data acquisition and quality control  

Imputed genotypes (version 3) for 488,264 UKBiobank participants were downloaded 

through the European Genome Archive (Category 100319). Detailed sample and variant 

quality control are described in the supplementary methods. In special consideration of 

mtDNA-CN as the GWAS phenotype, we also removed variants within “NUMTs”, which 

refer to regions of the nuclear genome that exhibit homology to the mitochondrial genome 

due to past transposition of mitochondrial sequences (Simone et al., 2011). After quality 

control, 359,689 British, 10,598 Irish, 13,189 Other White, 6,172 South Asian, and 6,133 

African samples had suitable array-based mtDNA-CN estimates for subsequent GWAS 

testing.  

Association testing  

GWAS were initially conducted in an ethnicity-stratified manner for common variants 

(MAF > 0.005). To allow for genetic relatedness between participants, GWAS were 

conducted using the REGENIE framework (Mbatchou et al., 2020). GWAS covariates 

included age, age2, sex, chip type, 20 genetic principal components, and blood cell counts 

(white blood cell, platelet, and neutrophil counts). After ethnicity-specific GWAS were 

performed, results were combined through meta-analysis using METAL (Willer, Li and 

Abecasis, 2010). European (N=383,476) and trans-ethnic (N=395,718) GWAS meta-

analyses were performed. Sensitivity analyses testing for cryptic NUMT interference was 

conducted as per Nandakumar et al. (2021) (Nandakumar et al., 2021). See supplementary 

methods for further details.  

Fine-mapping of GWAS signals 



 

 

 

66 

We followed a similar protocol to Vuckovic et al. (2020) for fine-mapping mtDNA-CN 

loci (Vuckovic et al., 2020). Genome-wide significant variants were consolidated into 

genomic blocks by grouping variants within 250kb of each other. LDstore was used to 

compute a pairwise LD correlation matrix for all variants within each block and across all 

samples included in the European GWAS meta-analysis (Benner et al., 2017). For each 

genomic block, FINEMAP was used to perform stepwise conditional regression (Benner et 

al., 2016). The number of conditionally independent genetic signals per genomic block was 

used to inform the subsequent fine-mapping search parameters. Finally, the FINEMAP 

random stochastic search algorithm was applied to derive 95% credible sets constituting 

candidate causal variants that jointly contributed to 95% (or higher) of the posterior 

inclusion probabilities (Benner et al., 2016).  

Mitochondrial expression quantitative trait loci (mt-eQTL) and heteroplasmy look-ups 

Among GWAS hits, we searched for mt-eQTLs using information from Ali et al. (2019), 

“Nuclear genetic regulation of the human mitochondrial transcriptome”(Ali et al., 2019). 

All variants in both Tables 1 and 2 were queried in the mtDNA-CN summary statistics. 

When mt-eQTLs also had reported effect estimates, the consistency in direction-of-effects 

between mt-eQTL and mtDNA-CN associations was reported (S2. Table 3). GWS variants 

associated with mean heteroplasmy levels were extracted from Nandakumar et al. 

(Nandakumar et al., 2021).  

Gene prioritization & pathway analyses 

The Data-driven Expression-prioritized Integration for Complex Traits (DEPICT) v.1.1 

tool was used to map mtDNA-CN loci to genes based on shared co-regulation of gene 
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expression using default settings (Pers et al., 2015). DEPICT-prioritized genes were 

uploaded to the GeneMANIA web platform (https://genemania.org/). Based on the 

combined list of DEPICT and GeneMANIA identified genes, a network was formed in 

GeneMANIA using default settings. Functional enrichment analysis was then performed to 

identify overrepresented Gene Ontology (GO) terms among all network genes (Gene and 

Consortium, 2000).  

Mitochondrial annotation-based analyses 

To complement the previous pathway analyses, we labelled prioritized genes with 

MitoCarta3 annotations and performed subsequent statistical enrichment analyses (Rath et 

al., 2021). MitoCarta3 is an exquisite database of mitochondrial protein annotations, which 

draws from mass spectrophotometry and GFP colocalization experiments of isolated 

mitochondria from 14 different tissues to assign all human genes statuses indicating 

whether the corresponding proteins are expressed in the mitochondria or not. We tested 

whether prioritized genes were enriched for the mitochondrial proteome by using a 

binomial test in R. Furthermore, a t-test was used to compare mean PGC-1A induced fold 

change for the subset of GWAS-prioritized genes expressed in the mitochondrial proteome 

as compared to the mean PGC-1A induced fold change for all 1120 nuclear MitoCarta3-

annotated genes. Also, genes were categorized based on MitoCarta3 “MitoPathway” 

annotations.  

Genetic Analysis of Rare Variants  

Data acquisition and quality control 

https://genemania.org/
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Population-level whole-exome sequencing (WES) variant genotypes (UKB data field: 

23155) for 200,643 UKBiobank participants corresponding to 17,975,236 variants were 

downloaded using the gfetch utility. Detailed quality control of WES data is described in 

the supplementary methods. After quality control, 173,688 unrelated Caucasian samples 

remained.  

Exome-wide association study (ExWAS) to identify rare mtDNA-CN loci 

Of the 173,688 individuals, suitable AutoMitoC mtDNA-CN estimates were available for 

147,740 samples. Rare variant inclusion criteria consisted of variants which were 

infrequent (MAF < 0.001), non-synonymous, and predicted to be clinically deleterious by 

Mendelian Clinically Applicable Pathogenicity (M-CAP) v.1.4 scores (or were highly 

disruptive variant types including frameshift indel, stopgain, stoploss, or splicing) 

(Jagadeesh et al., 2016). Herein, such variants are referred to as “rare variants” for 

simplicity. For each gene, rare allele counts were added per sample. A minor allele count 

of 10 was applied leading to a total of 18,890 genes analyzed (exome-wide significance P 

< 0.05/18,890 = 2.65 x10-6). Linear regression was conducted using mtDNA-CN as the 

dependent variable and the rare alleles counts per gene as the independent variable. The 

same set of covariates used in the primary GWAS analysis was used in the ExWAS 

analysis. 

Phenome-wide association testing for rare SAMHD1 mutation carrier status 

To identify disease phenotypes associated with carrying a rare SAMHD1 mutation, we 

maximized sample size for phenome-wide association testing by analyzing the larger set of 

173,688 WES samples (with or without suitable mtDNA-CN estimates). Disease outcomes 
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were defined using the previously published “PheCode” classification scheme to aggregate 

ICD-10 codes from hospital episodes (field ID 41270), death registry (field ID 40001 and 

40002), and cancer registry (field ID 40006) records (Denny et al., 2013; Wu et al., 2019). 

Logistic regression was applied to test the association of SAMHD1 mutation carrier status 

versus 771 PheCodes (phenome-wide significance P < 0.05/771 = 6.49x10-5) with a 

minimal case sample size of 300 (Wei et al., 2017). The same set of covariates used in the 

primary GWAS were also employed in this analysis. 

Mendelian Randomization Analysis 

Disease Outcomes 

We cross-referenced a list of 36 clinical manifestations of mitochondrial disease to 

FinnGen consortium GWAS (release 4; November 30 2020) traits (Gorman et al., 2016; 

Feng et al., 2020). Among 2,444 FinnGen traits, 10 overlapped with mitochondrial disease 

and had a case prevalence greater than 1% and were chosen for two-sample Mendelian 

Randomization analyses. These 10 traits included type 2 diabetes (N=23,364), mood 

disorder (N=20,288), sensorineural hearing loss (N=12,550), cerebrovascular disease 

(N=10,367), migraine (N=6,687), dementia (5,675), epilepsy (N=4,558), paralytic ileus and 

intestinal obstruction (N=2,999), and cardiomyopathy (N=2,342). FinnGen effect estimates 

and standard errors were used in subsequent Mendelian randomization analyses to define 

the effect of selected genetic instruments on disease risk. 

Genetic Instrument Selection 

First, genome-wide significant variants from the present European GWAS meta-analysis 

of mtDNA-CN were chosen (N=383,476). Second, we matched these variants to the 
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FinnGen v4 GWAS datasets (Feng et al., 2020). Third, to enrich for variants that directly 

act through mitochondrial processes, we only retained those within 100kb of genes 

encoding for proteins that are expressed in mitochondria based on MitoCarta3 annotations 

(Rath et al., 2021). Fourth, we performed LD-pruning in PLINK with 1000Genomes 

Europeans as the reference panel to ascertain an independent set of genetic variants (LD r2 

< 0.01) (Purcell et al., 2007; Abecasis et al., 2012). Lastly, to mitigate potential for 

horizontal pleiotropy, we further removed variants with strong evidence of acting through 

alternative pathways by performing a phenome-wide search across published GWAS with 

Phenoscanner V2 (Kamat et al., 2019). Variants strongly associated with other phenotypes 

(P<5x10-20) were removed unless the variant was a coding mutation located within a gene 

encoding for the mitochondrial proteome (MitoCarta3) or had an established mitochondrial 

role based on manual literature review (Rath et al., 2021). A total of 27 genetic variants 

were used to approximate genetically determined mtDNA-CN levels.  

Mendelian Randomization & Sensitivity Analyses 

Two sample Mendelian Randomization analyses were performed using the 

“TwoSampleMR” and “MRPRESSO” R packages (Hemani et al., 2018; Verbanck et al., 

2018).  Effect estimates and standard errors corresponding to the 27 genetic variants on 

mtDNA-CN (exposure) and mitochondrial disease phenotypes (outcome) were derived 

from the European GWAS meta-analysis and FinnGen v4 GWAS summary statistics, 

respectively (S2. Table 9). Three MR methodologies were employed including Inverse 

Variance Weighted (primary method), Weighted Median, and MR-EGGER methods. MR-

PRESSO was used to detect global heterogeneity and P-values were derived based on 1000 
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simulations. If significant global heterogeneity was detected (P<0.05), a local outlier test 

was conducted to detect outlying SNPs. After removal of outlying SNPs, MR analyses were 

repeated. In the absence of heterogeneity (Egger-intercept P > 0.05; MR-PRESSO global 

heterogeneity P > 0.05), we reported the inverse-variance weighted result. In the presence 

of balanced pleiotropy (MR-PRESSO global heterogeneity P < 0.05) and absence of 

directional pleiotropy (Egger-intercept P > 0.05), we reported the weighted median result. 

In the presence of directional pleiotropy (Egger-intercept P < 0.05), we reported the MR-

EGGER result.  

Results 

AutoMitoC: A streamlined method for array-based mtDNA-CN estimation  

We built on an existing framework for processing normalized SNP probe intensities 

(L2R values) from genetic arrays into mtDNA-CN estimates known as the “Mitopipeline” 

(Lane, 2014). The MitoPipeline yields mtDNA-CN estimates that correlate with direct 

qPCR measurements and has been successfully implemented in several epidemiological 

investigations(Ashar et al., 2017; Zhang et al., 2017). We developed a novel method, 

“AutoMitoC”, which incorporates three amendments to facilitate large-scale investigations 

of mtDNA-CN. Firstly, AutoMitoC replaces autosomal signal normalization of common 

variants with globally rare variants which negates the need for linkage disequilibrium 

pruning. As a result, this simplifies derivation of mtDNA-CN estimates in ethnically 

diverse cohorts by allowing for use of a single, universal variant set for normalization. 

Secondly, to detect potentially cross-hybridizing probes, we empirically assess the 

association of corrected probe signal intensities with off-target genome intensities, rather 
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than relying on sequence homology of probe sequences, which is not always available. 

Lastly, the primary estimate of MT signal is ascertained using principal component analysis 

(as opposed to using the median signal intensity of MT probes as per the Mitopipeline) 

which improves concordance of array-based mtDNA-CN estimates with those derived from 

alternative methods. A detailed description of the AutoMitoC pipeline is provided in 

Supplementary Results 1. 

To benchmark performance of AutoMitoC, array-based mtDNA-CN estimates were 

compared to complementary measures of mtDNA-CN in two independent studies. Firstly, 

array-based mtDNA-CN estimates were derived in a subset of 34,436 UKBiobank 

participants with available whole exome sequencing (WES) data. Reference mtDNA-CN 

estimates were derived from the proportion of WES reads aligned to the mitochondrial 

genome relative to the autosome (Longchamps, 2019). AutoMitoC estimates were 

significantly correlated with WES estimates (r=0.45; P<2.23x10-308). Since WES data 

involves enrichment for nuclear coding genes and therefore could result in biased reference 

estimates for mtDNA-CN, we also performed an independent validation in an ethnically 

diverse study of 5,791 participants where mtDNA-CN was measured using quantitative 

PCR, the current gold standard assay (Fazzini et al., 2018). Indeed, we observed stronger 

correlation between AutoMitoC and qPCR-based estimates (r=0.64; P<2.23x10-308). 

Furthermore, AutoMitoC demonstrated robust performance (r > 0.53) across all ethnic 

strata in the secondary validation cohort including Europeans (N=2,431), Latin Americans 

(N=1,704), Africans (N=542), South East Asians (N=471), South Asians (N=186), and 

others (N=360; S1. Figure 4).  
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Genome-wide association study (GWAS) identifies 72 common loci for mtDNA-CN 

A GWAS was performed testing the association between 11,453,766 common 

genetic variants (MAF>0.005) with mtDNA-CN in 383,476 UKBiobank participants of 

European ancestry. In total, 9,602 variants were associated with mtDNA-CN at genome-

wide significance (Figure 1A; S2. Figure 1), encompassing 82 independent signals in 72 

loci (S2. Table 1; S2. Figure 2). The genomic inflation factor was 1.16 and the LD-score 

intercept was 1.036, indicating that most inflation in test statistics was attributable to 

polygenicity. Sensitivity analyses revealed that NUMT interference may have played a role 

in 2 independent signals (2 loci), which were subsequently discarded, leading to a total of 

80 independent signals in 70 loci.  

Fine-mapping via the FINEMAP algorithm (Benner et al., 2016) yielded 95% 

credible sets containing 2,363 genome-wide significant variants. Of the 80 independent 

genetic associations, 17 (22%) mapped to a single candidate causal variant; 32 (39%) 

mapped to 5 or fewer variants, and 42 (51%) mapped to 10 or fewer variants (Figure 1B; 

S2. Table 2). Credible sets for 11 genetic signals overlapped with genes responsible for rare 

mtDNA depletion disorders including DGUOK (3), MGME1 (2), TFAM (2), TWNK (2), 

POLG2 (1), and TYMP (1) (S2. Tables 3 & 4). Several associations mapped to coding 

variants with high posterior probability. DGUOK associations mapped to a synonymous 

variant (rs62641680; Posterior Probability=1) and a non-synonymous variant (rs74874677; 

PP=1). TFAM associations mapped to a 5’UTR variant (rs12247015; PP=1) falling within 

an ENCODE candidate cis-regulatory element with a promotor-like signature and an 

intronic variant (rs4397793; PP=1) with a proximal enhancer-like signature. Lastly, 
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POLG2 associations mapped to a nonsynonymous variant (rs17850455; PP=1). Beyond the 

six aforementioned mtDNA depletion genes identified at genome-wide significance, 

suggestive associations were found for POLG (rs2307441; P=1.0x10-7), OPA1 (rs9872432; 

P=5.2x10-7), SLC25A10 (rs62077224; P=1.2x10-7), and RRM2B (rs3907099; P=4.7x10-6). 

Given these observations, we hypothesized that mtDNA depletion genes may be generally 

enriched for common variant associations. Indeed, 10 (53%) of 19 known mtDNA 

depletion genes (Oyston, 1998) harboured at least suggestive mtDNA-CN associations 

(P<5x10-6).  

Additionally, trans-ethnic meta-analysis inclusive of non-Europeans (N=395,781) 

was performed but given the small increase in sample size, GWAS findings remained 

highly similar (S2. Figure 3). However, European effect estimates were significantly and 

highly correlated with those derived from South Asian (r=0.97; P= 2.2x10-15) and African 

(r=0.88; P=9.1x10-5) GWAS analyses (S2. Figure 4).  

mtDNA-CN loci influence mitochondrial gene expression and heteroplasmy 

We postulated that mtDNA-CN loci may regulate copy number by inducing 

changes in expression of genes that are directly transcribed from mtDNA. Ali et al. (2019) 

recently conducted a GWAS to identify nuclear genetic variants associated with variation 

in mtDNA-encoded gene expression (i.e. mt-eQTLs) (Ali et al., 2019). Nonsynonymous 

variants in LONP1 (rs11085147) and TBRG4 (rs2304693), as well as an intronic variant in 

MRPS35 (rs1127787), were associated with changes in MT gene expression across various 

tissues (S2. Table 3). Nominally associated mtDNA-CN loci were also observed to 

influence MT gene expression including intronic variants in both PNPT1 (rs62165226; 
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mtDNA-CN P=5.5x10-5) and LRPPRC (rs10205130; mtDNA-CN P=1.1x10-4). Although 

differences in mitochondrial gene expression may be a consequence rather than a cause of 

variable mtDNA-CN, the analysis performed by Ali et al (2019) was corrected for factors 

associated with global changes in the mitochondrial transcriptome (Ali et al., 2019). 

Moreover, the direction of effect estimates between mtDNA-CN and mt-eQTLs varied 

depending on gene and tissue context. Altogether, such findings imply that some mtDNA-

CN loci may regulate mtDNA-CN by influencing mitochondrial gene expression. 

A recent GWAS by Nandakumar et al. (2021) also reported 20 loci for mtDNA 

heteroplasmy. While full genome-wide summary statistics were not publicly available to 

systematically lookup potential effects of the 80 mtDNA-CN GWS variants on mtDNA 

heteroplasmy, we performed the reverse lookup of whether mtDNA heteroplasmy loci 

influenced mtDNA-CN. Of 19 matching variants between the GWAS, four heteroplasmy 

loci were also associated with mtDNA-CN at genome-wide significance including variants 

nearby or within TINCR/LONP1 (rs12461806; mtDNA-CN GWAS P=7.5x10-88), 

TWNK/MPRL43 (rs58678340; P=1.3x10-39), TFAM (rs1049432; P=1.5x10-21), and 

PRKAB1 (rs11064881; P=2.6x10-10) genes. Consistent with the finding from Nandakumar 

et al. (2021) that the heteroplasmy-increasing TFAM allele was also associated with higher 

mtDNA-CN, we also observed concordant directionality for the other three variants. No 

additional mtDNA heteroplasmy loci were identified to influence mtDNA-CN when using 

the suggestive significance threshold.  

Genes and pathways implicated in the regulation of mtDNA-CN 
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DEPICT analysis led to the prioritization of 91 out of 18,922 genes (FDR P < 0.05; 

S2. Table 4). 87 of these genes intersected with the GeneMANIA database and were 

uploaded to the GeneMANIA platform to identify additional functionally related genes 

(Warde-Farley et al., 2010). GeneMANIA analysis discovered an additional 20 related 

genes (S2. Table 5). Among the 107 total genes prioritized by DEPICT or GeneMANIA 

(Figure 1C), mitochondrial functions were significantly enriched in gene ontology terms 

including mitochondrion organization (coverage: 12/225 genes; FDR P =7.4x10-5), 

mitochondrial nucleoid (6/34; FDR P=2.2x10-4), mitochondrial genome maintenance (4/10; 

FDR P=6.8x10-4), and mitochondrial matrix (11/257; FDR P=6.8x10-4). Visual inspection 

of the links between key genes involved in these functions highlights PPRC1, a member of 

the PGC-1A family of mitochondrial biogenesis activators (Richard C. Scarpulla, 2011), as 

a potential coordinator of mtDNA-related processes (Figure 1C).  

MitoCarta3 is a comprehensive and curated inventory of 1,136 human proteins 

(1,120 nuclear) known to localize to the mitochondria based on experiments of isolated 

mitochondria from 14 non-blood tissues (Rath et al., 2021). We leveraged this recently 

updated database, that was absent from GeneMANIA, to conduct a complementary set of 

targeted analyses focused on mitochondrial annotations (S2. Table 5). First, we 

hypothesized that prioritized genes would be generally enriched for genes encoding the 

mitochondrial proteome. Overall, 27 (25%) of 107 genes had evidence of mitochondrial 

localization corresponding to a 4.2-fold enrichment (null expectation = 5.9%; P=1.0x10-

10). Next, given that PPRC1, an activator of mitochondrial biogenesis, was prioritized by 

DEPICT analyses and then linked to central mtDNA regulators in GeneMANIA, we 
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postulated that prioritized genes may be enriched for downstream targets of PGC-1A. PGC-

1A induction resulted in a higher mean fold-change among prioritized genes (beta=1.48; 

95% CI, 0.60 to 2.37) as compared to any mitochondrial gene (beta=1.19; 95% CI, -0.76 

to 3.13; t-test P=0.04). Finally, we categorized the 27 MitoCarta3 genes into their respective 

pathways. Most (16; 57%) genes were members of the “Mitochondrial central dogma” 

pathway but other implicated pathways included “Metabolism”, “Mitochondrial dynamics 

and surveillance”, “Oxidative phosphorylation”, and “Protein import, sorting and 

homeostasis” pathways (Figure 1D). Four proteins were annotated as part of multiple 

pathways including TYMP/SCO2, GTPBP3, MIEF1, and OXA1L (S2. Table 5). 
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Figure 1. Analyses of common genetic loci associated with mtDNA-CN. (A) Manhattan 

plot illustrating common genetic variant associations with mtDNA-CN. (B) Size 

distribution of 95% credible sets defined for 80 independent genetic signals. (C) GENE-

MANIA-mania protein network interaction exploration (D) “MitoPathway” counts 

corresponding to 27 prioritized MitoCarta3 genes encoding proteins with known 

mitochondrial localization.  

Exome-wide association testing uncovers rare coding SAMHD1 mutations as a 

determinant of mtDNA-CN levels and breast cancer risk 

We performed an exome-wide association study (EXWAS) in 147,740 UKBiobank 

participants with WES data to assess the contribution of rare coding variants. Among 

18,890 genes tested, SAMHD1 was the only gene reaching exome-wide significance 

(Figure 2A; S2 Table 8). The carrier prevalence of rare SAMHD1 mutations was 0.75%, 
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and on average, mutation carriers had higher mtDNA-CN than non-carriers (beta=0.23 

SDs; 95% CI, 0.18-0.29; P=2.6x10-19; S2. Figure 5). Also, while none of the 19 known 

mtDNA depletion genes reached Bonferroni significance, a suggestive association was 

found for TFAM (beta=-0.33; 95% CI, -0.47 to -0.19; P=4.2x10-6), and this association was 

independent of the common TFAM variants (rs12247015; rs4397793) previously identified 

in the GWAS (beta=-0.33; 95% CI, -0.47 to -0.19; P=8.x10-6).  

To evaluate whether rare SAMHD1 mutations also influenced disease risk, we 

conducted phenome-wide association testing of 771 diseases within the UKBiobank. At 

phenome-wide significance, SAMHD1 mutation carrier status was associated with 

approximately two-fold increased risk of breast cancer (OR=1.91; 95% CI, 1.52-2.40; 

P=2.7x10-8), as well as greater risk of “cancer (suspected or other)” (OR=1.52; 95% CI, 

1.28-1.80; P=1.1x10-6; Figure 2B; S2 Table 9). Exclusion of breast cancer cases attenuated 

but did not nullify the association with “cancer (suspected or other)” (OR=1.36; 95% CI, 

1.10-1.67; P=0.004) suggesting that SAMHD1 mutations may also increase risk of other 

cancers, as has been shown for colon cancer (Rentoft et al., 2019). To understand whether 

differences in mtDNA-CN levels between SAMHD1 mutation carriers was a consequence 

of cancer diagnosis, we repeated association testing with mtDNA-CN excluding cancer 

patients. In this analysis, the association with mtDNA-CN levels was not attenuated 

(beta=0.26; 95% CI, 0.19-0.32; P=7.8x10-15) suggesting that the effect of rare SAMHD1 

variants on mtDNA-CN levels is not driven by its relationship with cancer status. A 

summary of mitochondrial genes and pathways implicated by common and rare loci is 

provided in Figure 3. 
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Figure 2. Rare variant gene burden association testing with mtDNA-CN and disease risk. 

(A) QQ plot illustrating expected vs. observed -log10(p) values for exome-wide burden of 

rare (MAF<0.001) and nonsynymous mutations. (B) Manhattan plot showing phenome-
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wide significant associations between SAMHD1 carrier status and cancer-related 

phenotypes.  

 

Figure 3. Graphical summary of mitochondrial genes and pathways implicated by genetic 

analyses. Colour-coding indicates through which set(s) of analyses genes were identified. 

The image was generated using BioRender (https://biorender.com/). 

Mendelian Randomization analysis implicates low mtDNA-CN as a causal mediator 

of dementia  

Given that common variant loci overlapped with several mtDNA depletion genes, 

we postulated that polygenically low mtDNA-CN might cause a milder syndrome with 

phenotypically similar manifestations. To assess whether mtDNA-CN may represent a 

putative mediator of mtDNA depletion-related phenotypes, we conducted Mendelian 

https://biorender.com/
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Randomization analyses between genetically determined mtDNA-CN and mitochondrial 

disease phenotypes using summary statistics derived from the FinnGen v4 GWAS dataset.  

After accounting for multiple testing of 10 phenotypes, an association between 

mtDNA-CN and all-cause dementia was found (OR=1.94 per 1 SD decrease in mtDNA-

CN; 95% CI, 1.55-2.32; P=7.5x10-4; S2. Table 9; Figure 4). Sensitivity analyses indicated 

no evidence of global (MR-PRESSO P=0.51; Q-statistic P=0.51) or directional (Egger 

Intercept P =0.47) pleiotropy. The 27 selected variants accounted for 0.70% of the variance 

in mtDNA-CN and 0.13% of the risk for dementia, consistent with a causal effect of 

mtDNA-CN on dementia risk and not vice versa (Steiger P= 1.9x10-62). Findings were 

robust across several different MR methods including the Weighted Median (OR=2.47; 

95% CI, 1.93-3.00; P=0.001) and MR-EGGER (OR=2.41; 95% CI, 1.71-3.11; P=0.02) 

methods. Furthermore, we replicated this result using a second UKBiobank-independent 

GWAS dataset derived from the International Genomics of Alzheimer’s Disease 

Consortium (2013) including 17,008 Alzheimer’s disease patients (OR=1.41; 95% CI, 

1.0001-1.98; P=0.04993) (Lambert et al., 2013). 
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Figure 4. Coefficient plots for Mendelian Randomization analyses of mitochondrial 

disease traits. In the absence of heterogeneity (Egger-intercept P > 0.05; MR-PRESSO 

global heterogeneity P > 0.05), the inverse-variance weighted result was reported. In the 

presence of balanced pleiotropy (MR-PRESSO global heterogeneity P < 0.05), the 

weighted median result was reported. No set of analyses had evidence for directional 

pleiotropy (Egger-intercept P < 0.05).  

Discussion 

 We developed a novel method to estimate mtDNA-CN from genetic array data, 

“AutoMitoC”, and applied it to the UKBiobank study. Extensive genetic investigations led 

to several key insights regarding mtDNA-CN. First, several novel common and rare genetic 

determinants of mtDNA-CN were identified, totalling 71 loci. Second, these loci were 

enriched for mitochondrial processes related to dNTP metabolism and the replication, 

packaging, and maintenance of mtDNA. Third, we observed a strong role for common 

variation within known mtDNA depletion genes in regulating mtDNA-CN in the general 
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population. Fourth, we found that rare variants in SAMHD1 not only affect mtDNA-CN 

levels but also confer risk to cancer. Finally, we provided the first Mendelian 

Randomization evidence implicating low mtDNA-CN as a causative risk factor for 

dementia. 

While several investigations for mtDNA-CN have been performed, the present 

study represents the most comprehensive genetic assessment to date(Cai et al., 2015; 

Longchamps, 2019; Hägg et al., 2020). Notably, Hagg et al. (2020) recently conducted a 

GWAS for mtDNA-CN in 295,150 UKBiobank participants and identified 50 common 

loci(Hägg et al., 2020). However, the method developed by Hagg et al. (2020) calibrated 

SNP probe intensities based on association with whole-exome sequencing read depths, 

which may limit the convenience of the method. In contrast, AutoMitoC only necessitates 

array probe intensities and does not require any secondary genetic measurements (WES or 

otherwise) for calibration. In addition, AutoMitoC exhibits superior concordance with 

WES-based estimates (Hagg r=0.33; AutoMitoC r=0.45), which was validated in an 

independent dataset with gold standard qPCR measurements. Further, Hagg et al. (2020) 

restricted genetic analyses to unrelated European individuals, whereas we incorporated 

~100,000 additional individuals and demonstrated consistency in genetic effects between 

Europeans and non-Europeans (r > 0.88). The greater sample size in combination with more 

accurate mtDNA-CN estimates may explain the 44% increase in identified common loci 

(72 vs 50). Finally, in the present study we included exploration of the role of rare variants 

through ExWAS and, notably, Mendelian Randomization analyses to assess disease 
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contexts whereby mtDNA-CN may represent a causal mediator and a potential therapeutic 

target.  

MtDNA-CN has proven to be a biomarker of cardiovascular disease in several large 

epidemiological studies, with studies often assuming that such relationships are attributable 

to pathological processes including mitochondrial dysfunction, oxidative stress and 

inflammation (Tin et al., 2016; Wu et al., 2017; Fazzini et al., 2019; Koller et al., 2020). 

Consistent with previous GWAS findings, our genetic analyses confirm that mtDNA-CN 

indeed reflects specific mitochondrial functions, but perhaps not the ones commonly 

attributable to mtDNA-CN(Cai et al., 2015; Guyatt et al., 2019; Hägg et al., 2020). 

Primarily, differences in mtDNA-CN reflect mitochondrial processes related to dNTP 

metabolism and the replication, maintenance, and organization of mtDNA. Secondarily, 

genes involved in mitochondrial biogenesis, metabolism, oxidative phosphorylation, and 

protein homeostasis were also identified but do not represent the main constituents. The 

observed enrichment in common variant associations within mtDNA depletion genes 

further reinforces the notion that differences in mtDNA-CN first and foremost reflect 

perturbations in mtDNA-related processes.  

No therapy for mtDNA depletion disorders currently exists with treatment mainly 

consisting of supportive care. Intriguingly, we found that rare variants within SAMHD1 

were associated with increased levels of mtDNA-CN. SAMHD1 is a multifaceted enzyme 

with various functions including tumour suppression through DNA repair activity and 

maintenance of steady-state intracellular dNTP levels, which has been involved in HIV-1 

replication (Baldauf et al., 2012; Kretschmer et al., 2015). Rare homozygous and 



 

 

 

88 

compound heterozygous loss-of-function mutations in SAMHD1 result in an immune 

encephalopathy known as Aicardi Goutiere’s syndrome(White et al., 2017). Imbalanced 

intracellular dNTP pools and chronic DNA damage cause persistent elevations in interferon 

alpha thus mimicking a prolonged response to HIV-1 infection. While Aicardi Goutiere’s 

syndrome is a severe recessive genetic disorder, case reports of SAMHD1-related disease 

often describe heterozygous parents and siblings as being unaffected or with milder disease 

(familial chilblain lupus 2) (Haskell et al., 2018). In the UKBiobank, the vast majority 

(99.4%) of individuals possessing SAMHD1 mutations were heterozygote carriers, who had 

a two-fold increased risk of breast cancer. Indeed, our finding that SAMHD1 mutations 

associate with both elevated mtDNA-CN levels and risk of breast cancer belies the 

prevailing notion that higher mtDNA-CN is always a protective signature of proper 

mitochondrial function and healthy cells. Such findings may have important clinical 

implications for genetic screening. Firstly, heterozygous SAMHD1 mutations may be an 

overlooked risk factor for breast cancer considering that ~1 in 130 UKBiobank participants 

possessed a genetic mutation conferring two-fold elevated risk. Notably, while SAMHD1 

mutations have been described previously to be associated with various cancers (Kohnken, 

Kodigepalli and Wu, 2015; Rentoft et al., 2019), this gene is not routinely screened nor part 

of targeted gene panels outside the context of neurological disorders 

(https://www.genedx.com/test-catalog/available-tests/comprehensive-common-cancer-

panel/). Secondly, unaffected parents and siblings of Aicardi Goutiere patients might also 

present with greater risk of cancer. Thirdly, while SAMHD1 is a highly pleiotropic protein, 

therapeutic strategies to dampen (but not abolish) SAMHD1 activity might be considered 

https://www.genedx.com/test-catalog/available-tests/comprehensive-common-cancer-panel/
https://www.genedx.com/test-catalog/available-tests/comprehensive-common-cancer-panel/
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to treat mtDNA depletion disorders caused by defects in nucleotide metabolism. Indeed, 

Franzolin et al. (2015) demonstrated that siRNA knockdown of SAMHD1 in human 

fibroblasts with DGUOK mtDNA depletion mutations partially recovered mtDNA-CN 

(Franzolin et al., 2015).  

To our knowledge, we provide the first Mendelian Randomization evidence that 

mtDNA-CN may be causally related to risk of dementia. Although dysfunctional 

mitochondria have long been implicated in the pathogenesis of Alzheimer’s disease, only 

recently has mtDNA-CN been tested as a biomarker. Silzer et al. (2019) conducted a 

matched case-control study of 46 participants and showed that individuals with cognitive 

impairment had significantly lower blood-based mtDNA-CN(Silzer et al., 2019). Andrews 

et al. (2020) studied the relationship between post-mortem brain tissue mtDNA-CN and 

measures of cognitive impairment in 1,025 samples (Andrews and Goate, 2020). Consistent 

with our findings, a 1 SD decrease in brain mtDNA-CN was associated with lower mini 

mental state exam (beta = -4.02; 95% CI, -5.49 to -2.55; P=1.07x10-7) and higher clinical 

dementia rating (beta = 0.71; 95% CI, 0.51 to 0.91). Both studies implicate blood and brain-

based mtDNA-CN as a marker of dementia but were retrospective. In contrast, Yang et al. 

(2020) observed a significant association between mtDNA-CN and incident risk of 

neurodegenerative disease (Parkinson’s and Alzheimer’s disease)(Yang et al., 2021). 

Altogether, our results combined with previous findings suggest that mtDNA-CN 

represents both a marker and mediator of dementia. Considering that our overall findings 

suggest that mtDNA-CN reflects numerous mitochondrial subprocesses, future studies will 
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be required to disentangle which ones, as reflected by diminished mtDNA-CN, truly 

mediate dementia pathogenesis.  

Several limitations should be noted. First, mtDNA-CN approximated by array-

based methods remain imperfectly accurate as compared to qPCR or whole genome 

sequencing measurements, though we found strong correlation between AutoMitoC and 

qPCR-based estimates in this study (r=0.64; P<2.23x10-308). Although whole genome 

sequencing will eventually supplant array-based mtDNA-CN GWAS, we hypothesize that 

the improvements made in the areas of speed, portability to ethnically diverse studies, and 

ease-of-implementation, should greatly increase accessibility of mtDNA-CN research as a 

plethora of genotyping array data is presently available to re-analyze. Third, Mendelian 

Randomization analyses were underpowered to conduct a broad survey of diseases in which 

mitochondrial dysfunction may play a causal role, and equally as important, we were unable 

to differentiate whether specific mitochondrial subpathways mediated risk of disease. As 

additional loci are uncovered, such analyses may be feasible. Fourth, variants and genes 

implicated in the regulation of mtDNA-CN may be specific to blood samples though 

findings suggest that many mtDNA-CN loci act through genes that are widely expressed in 

mitochondria across multiple tissues. Future studies are required to determine whether 

associations are ubiquitous across mitochondria-containing cells and to investigate the role 

of mtDNA-CN in other tissues. Lastly, whole blood mtDNA-CN reflects a heterogenous 

mixture of nucleated and unnucleated cells, and despite adjustment for major known 

confounding cell types, inter-individual differences in cell subpopulations not captured by 

a standard blood cell count may represent an important source of confounding.  
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Conclusion  

Although commonly viewed as a simple surrogate marker for the number of 

mitochondria present within a sample, genetic analyses suggest that mtDNA-CN is a highly 

complex biomarker under substantial nuclear genetic regulation. mtDNA-CN reflects a 

mixture of mitochondrial processes mostly pertaining to mtDNA regulation. Accordingly, 

the true relationship between mtDNA-CN measured in blood samples with human disease 

remains to be completely defined though we find evidence for mtDNA-CN as a putative 

causal risk factor for dementia. Future studies are necessary to decipher if mtDNA-CN is 

directly involved in the pathogenesis of dementia and other diseases or whether other 

specific mitochondrial processes are truly causative.  
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Key Points 

Question: Do stroke patients with lower buffy coat mitochondrial DNA copy number 

(mtDNA-CN) have worse prognosis?  

Findings: Stroke patients with lower mtDNA-CN levels measured within one week of 

stroke onset had significantly higher odds of worse outcomes at 1-month follow-up, 

including poor functional outcome (modified Rankin Scale [mRS] 3-6) and mortality. Two-

sample Mendelian Randomization analyses in independent datasets revealed a significant 

association between genetic predisposition to lower mtDNA-CN and higher risk of poor 

functional outcomes at 3-months follow-up.   

Meaning: Our findings suggest that low mtDNA-CN is a prognostic marker and a putative 

causal determinant of post-stroke outcomes. 

Abstract 

Importance: Low buffy coat mitochondrial DNA copy number (mtDNA-CN) is associated 

with incident risk of stroke and post-stroke mortality; however, its prognostic utility as a 

marker of post-stroke outcomes has not been extensively explored, nor is it known whether 

mtDNA-CN is a causal determinant.  

Objective: To investigate whether low buffy coat mtDNA-CN is a marker and causal 

determinant of post-stroke outcomes using epidemiological and genetic studies.  

Design and Setting: This study comprised a two-stage analysis. First, we performed 

association testing between baseline buffy coat mtDNA-CN measurements and 1-month 

post-stroke outcomes in 3498 acute, first stroke cases from 25 countries from the 

international, multicenter case-control study, “Importance of Conventional and Emerging 
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Risk Factors of Stroke in Different Regions and Ethnic Groups of the World” 

(INTERSTROKE). Then, we performed two-sample Mendelian Randomization analyses 

to evaluate potential causative effects of low mtDNA-CN on 3-month stroke outcomes. 

Genetic variants associated with mtDNA-CN levels were derived from the UKBiobank 

study (N=383476), and corresponding effects on 3-month stroke outcomes were 

ascertained from the Genetics of Ischemic Stroke funCtional Outcome study (GISCOME; 

N=6021).  

Main Outcomes and Measures: We hypothesized that measured and genetically 

determined mtDNA-CN are associated with mRS-based outcomes. 

Results: Independent of baseline stroke severity, a 1- standard deviation (SD) lower 

mtDNA-CN at baseline was associated with increased odds of greater 1-month disability 

(ordinal mRS; OR=1.16; 95% CI, 1.08-1.24; P=4.4x10-5), poor functional outcome status 

(mRS 3-6 vs. 0-2; OR=1.21; 95% CI, 1.08-1.34; P=6.9x10-4), and mortality (OR=1.35; 

95% CI, 1.14-1.59; P=3.9x10-4). Subgroup analyses demonstrated consistent effects across 

stroke type, sex, age, country income level, and education level. In addition, mtDNA-CN 

significantly improved reclassification of poor functional outcome status (Net 

Reclassification Index (NRI)=0.16; 95% CI, 0.08-0.23; P=3.6x10-5) and mortality 

(NRI=0.31; 95% CI, 0.19-0.43; P=1.7x10-7) beyond known prognosticators. Using 

independent datasets, Mendelian Randomization revealed that a 1 SD decrease in 

genetically determined mtDNA-CN was associated with increased odds of greater 3-month 

disability quantified by ordinal mRS (OR=2.35; 95% CI, 1.13-4.90; P=0.02) and poor 

functional outcome status (OR=2.68; 95% CI, 1.05-6.86; P=0.04).  
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Conclusions and Relevance: Buffy coat mtDNA-CN is a novel and robust marker of post-

stroke prognosis that may also be a causal determinant of post-stroke outcomes. 

Introduction 

Stroke patients from low and middle-income countries bear a disproportionate 

burden of post-stroke complications1–3. As such, identifying cost-effective and highly 

predictive biomarkers that mediate post-stroke recovery will allow for better risk 

stratification and novel targets for acute stroke treatment4.  

Mitochondrial health has an important role in both stroke pathogenesis and 

recovery5,6,  and mitochondrial function can be measured using an inexpensive and 

accessible assay that quantifies the ratio of mitochondrial to nuclear DNA copies, known 

as mitochondrial DNA copy number (mtDNA-CN). Rare genetic disorders characterized 

by severe loss of mtDNA-CN, formally referred to as “mtDNA depletion” syndromes, can 

cause migraine, leukoencephalopathy, and stroke-like episodes7,8. In the broader 

population, perturbations of leukocyte mtDNA-CN have been reported to reflect general 

mitochondrial dysfunction, oxidative stress, impaired oxidative phosphorylation, and 

inflammation9. Indeed, low leukocyte mtDNA-CN is associated with increased risks of 

secondary hospitalization and mortality in patients with atherosclerotic and chronic kidney 

disease10–12. To our knowledge, only one study has investigated the association between 

mtDNA-CN and post-stroke outcomes, wherein a prospective cohort study of 1484 Chinese 

stroke patients reported an association between mtDNA-CN and mortality13. While these 

findings suggest a potential role for mtDNA-CN as a risk factor for post-stroke outcomes, 

and in particular mortality, several important questions remain to be addressed regarding: 
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(i) the robustness of associations across stroke type and other clinically relevant subgroups, 

(ii) whether associations are independent of baseline stroke severity, (iii) if mtDNA-CN is 

associated with the degree of functional disability among stroke survivors, and (iv) if 

mtDNA-CN is a causal determinant of post-stroke outcomes.  

To address these questions, we investigated the relationships between both 

measured and genetically predicted mtDNA-CN levels with post-stroke outcomes using 

large-scale datasets. First, we evaluated the association between buffy coat mtDNA-CN 

levels measured within one week of stroke symptom onset and 1-month outcomes in 3498 

stroke patients from the “Importance of Conventional and Emerging Risk Factors of Stroke 

in Different Regions and Ethnic Groups of the World” (INTERSTROKE) study14. Second, 

to assess whether lower mtDNA-CN levels may be a causal risk factor for poor outcomes 

at 3-months after stroke, we conducted two-sample Mendelian Randomization (MR) 

analyses using genetic effects derived from the UKBiobank (N=383476)15 and the Genetics 

of Ischemic Stroke funCtional Outcome (GISCOME; N=6165)16. Overall, we explored 

whether low mtDNA-CN represents a marker and casual driver of poor post-stroke 

outcomes.   

Methods 

INTERSTROKE  

 INTERSTROKE is a large international case-control study encompassing 32 

countries across Asia, North America, South America, Europe, Australia, and Africa14. The 

study design has been described in detail previously17. In brief, participants were enrolled 

between January 11, 2007 and August 8, 2015. Cases consisted of patients with acute, first 
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stroke (ischemic or hemorrhagic) presenting within 5 days of symptom onset and 72 hours 

of hospital admission. Strokes were defined according to the World Health Organization 

definition, and subtypes were confirmed by neuroimaging (CT or MRI). Demographic 

characteristics, medical history, and risk factor data were collected through standardized 

questionnaires and physical examination. For patients who could not communicate, a proxy 

respondent was used (spouse or first-degree relative living in the same household aware of 

the patient’s medical history and current treatments). All participants (or their proxies) 

provided written informed consent. The modified-Rankin scale (mRS)18 was used as a 

marker of stroke severity and was measured at baseline and at 1-month follow-up. The 

presence of hemorrhagic transformation after ischemic stroke was assessed through 

neuroimaging (either CT or MRI) and adjudicated locally by a site investigator. The present 

analyses were performed on a subset of 3498 INTERSTROKE cases with qPCR mtDNA-

CN measurements. 

MtDNA-CN Measurement and Quality Control 

At each recruitment centre, non-fasting peripheral blood samples were collected in 

EDTA whole blood tubes from stroke patients within one week of symptom onset (and 

within 72 hours of hospital admission). Blood samples were shipped to the Clinical 

Research Laboratory and Biobank, located in Hamilton, Ontario, Canada, where DNA 

extraction was performed. DNA was extracted from the buffy coat layer of centrifuged 

samples using the QIAGEN QIAsymphony DNA Midi (96.7%), DNA Mini (2.7%) or DSP 

DNA Midi (0.6%) kits. mtDNA-CN was assayed by the Genetic and Molecular 

Epidemiology Lab located in Hamilton, Ontario, Canada using a plasmid-normalized 
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quantitative Polymerase Chain Reaction (qPCR) method developed by Fazzini et al. 

(2018)19. Upon visual inspection of the distribution of mtDNA-CN values, a single sample 

with an extreme outlying value was removed. Additional outliers beyond 3 standard 

deviations (SD) of the mean were winsorized to the 99.7th percentile. MtDNA-CN values 

were normalized for known confounders by taking the residuals from a linear regression 

model for mtDNA-CN (dependent variable) versus age, sex, ethnicity, and qPCR batch 

(independent variables). The resulting numerical representation of mtDNA-CN was 

standardized to a mean of 0 and SD of 1 for subsequent analyses.   

Statistical Analysis  

 All statistical analyses were performed using the statistical programming language 

‘R’ (version 3.6.0). Plots were generated using a combination of the “ggplot2”, “viridis”, 

“dplyr”, “grid”, and “gridExtra” R packages. In INTERSTROKE, association testing was 

conducted to assess the relationship between low mtDNA-CN at baseline (continuous 

variable or discretized into quartiles) and stroke markers at two timepoints: 1) markers 

collected at the time of the stroke event (hereafter referred to as ‘baseline’ severity markers) 

and 2) markers collected 1-month after the stroke event. The primary marker of baseline 

stroke severity was ordinal mRS. Secondary markers included level of consciousness (alert, 

drowsy, or unconscious) and hemorrhagic transformation after ischemic stroke. The 

primary stroke outcome at 1-month follow-up was ordinal mRS. Secondary outcomes at 1-

month follow-up included other formulations of mRS, specifically, poor functional 

outcome status (dichotomized mRS 3-6 vs. 0-2) and mortality status. Ordinal regression 

was used for analysis between ordinal mRS and consciousness (“polr” R package). The 
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proportional odds assumption was evaluated using the Brant test (“Brant” R package). 

Logistic regression analysis was conducted for dichotomous variables including 

hemorrhagic transformation at baseline and 1-month post-stroke outcomes (poor functional 

outcome and mortality statuses). All regression models were adjusted for age, sex, region, 

education level (none or primary school vs. high school, trade school, college, or 

university), 2018 World Bank country income stratum (high, upper-middle, and lower-

middle or low income), household income (adjusted for country), primary stroke type 

(ischemic vs. hemorrhagic stroke) and ischemic stroke Oxfordshire Community Stroke 

Project (OCSP) classification, pre-stroke dependency (pre-stroke mRS 3-5 vs. 0-2), 

Charleson comorbidity index, and stroke risk factors (hypertension, diabetes, 

hypercholesterolemia, atrial fibrillation or flutter, current smoker status, and waist to hip 

ratio) as defined previously14. In addition to these covariates, baseline stroke severity 

(baseline mRS) was additionally included in models for 1-month post-stroke outcomes. For 

analysis of dichotomous outcomes, additional subgroup analyses were performed 

stratifying by primary stroke type, sex, age (< 65 vs. > 65 years), country income level, and 

education level. The Net Reclassification Index (NRI) was used to assess model 

reclassification improvement upon addition of mtDNA-CN to a baseline model including 

the following covariates: age, sex, region, education level, country income level, household 

income, primary stroke type and OCSP classification, pre-stroke dependency, Charleson 

comorbidity index, hypertension, diabetes, hypercholesterolemia, atrial fibrillation or 

flutter, current smoker status, and waist to hip ratio (“Hmisc” R package).  

Mendelian Randomization  
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Mendelian Randomization (MR) is a statistical genetics framework that leverages 

the random assortment of genetic alleles (Mendel’s second law of independent assortment) 

to perform causal inference between an exposure and an outcome 20–22. The use of 

randomized, genetic alleles as instrumental variables for an exposure endows several 

advantages including robustness to traditional confounding factors and reverse causation. 

Indeed, evidence from animal models suggests that stroke induces changes in mtDNA-CN 

levels, and therefore reverse causality is a relevant concern that is addressed by MR23,24. 

To evaluate the potential causal relationship between low mtDNA-CN (exposure) and 

stroke prognosis (outcome), we performed “two-sample” MR analyses incorporating 

summary-level GWAS data from two independent studies. Genetic variants associated with 

mtDNA-CN levels were identified from a previous genome-wide association study 

(GWAS) we conducted in 383476 Caucasian participants from the UKBiobank study25. 

UKBiobank is a prospective cohort study including UK residents (ages 40-69 years) 

recruited from 2006-201026. Eligibility criteria for the mtDNA-CN GWAS included 

Caucasian participants with suitable genetic microarray data who had non-outlying blood 

cell count and array intensity values25. UKBiobank mtDNA-CN estimates were derived 

using AutoMitoC, a computational pipeline that leverages array-based data to estimate 

mtDNA-CN levels25. Corresponding genetic effects on 3-month mRS were obtained from 

the Genetics of Ischaemic Stroke Functional Outcome (GISCOME) GWAS. GISCOME 

included 6021 Caucasian ischemic stroke patients from 12 studies across Europe, the 

United States, and Australia16. Two formulations of 3-month mRS were tested in the 

present study: ordinal mRS and poor functional outcome status (mRS 3-6 vs. 0-2). In 
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GISCOME, 2280 (63%) participants suffered poor functional outcome. There is no sample 

overlap between UKBiobank and GISCOME datasets. 

As previously described25, an independent set of 26 genome-wide significant 

variants associated with mtDNA-CN located nearby or within genes expressed in the 

mitochondria were selected as instruments to genetically approximate mtDNA-CN levels 

(S. Methods; S. Tables 6 & 7). Collectively, these variants had an F-statistic of 100 which 

is sufficient (F>10) for the purposes of identifying a causal effect.  

Two-sample MR analyses were executed using the “TwoSampleMR” (version 

0.5.5) and “MRPRESSO” (version 1.0) R packages21,33. Three MR methods were employed 

including the inverse variance weighted, weighted median, and MR-Egger methods. MR-

PRESSO was used to detect global heterogeneity with P-values derived based on 1000 

simulations. The Egger intercept test was used to assess directional pleiotropy. None of the 

MR associations exhibited significant heterogeneity (MR-PRESSO Global Test P > 0.05) 

or directional pleiotropy (Egger intercept P > 0.05), and thus the causal effect estimates 

from the Inverse Variance Weighted method was reported for all MR analyses. Causal 

effects were expressed as odds of a higher mRS category (or of poor functional outcome) 

per 1 standard deviation decrease in genetically determined mtDNA-CN levels.  

Phenotypic mtDNA-CN associations may also, in part, capture differences in blood 

cell proportions29,30, so we also examined the relationship between genetically determined 

blood cell traits and 3-month mRS outcomes as a sensitivity analysis. Blood cell traits 

entailed neutrophil, lymphocyte, white blood cell, and platelet counts, as well as the 

neutrophil to lymphocyte ratio. Genetic variants associated with blood cell counts were 
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ascertained from a large European GWAS by the Blood Cell Consortium X (2021) 

comprising over half a million individuals31. Genetic variants associated with neutrophil to 

lymphocyte ratio were derived from a UKBiobank GWAS we conducted in 340002 British 

participants (unpublished data; S. Methods)32. Causal effect estimates were expressed per 

1 standard deviation increase in genetically determined blood cell traits. 

Results  

Baseline Characteristics of INTERSTROKE cases 

A subset of 3498 stroke patients consented to genetic analysis, had peripheral blood 

specimen collected within one week of symptom onset, and had DNA samples that were 

successfully assayed for buffy coat mtDNA-CN (Supplementary Figure 1). The stroke 

patients analyzed in this study spanned 25 countries and 98 enrollment sites across Western 

Europe (26.6%), Eastern / Central Europe (11.8%), South America (28.1%), Africa 

(13.3%), South East Asia (6.8%), the Western Asia (6.8%), and North America and 

Australia (6.5%) (Table 1). The average age of stroke patients was 64.6 years (SD=14.4 

years) and 1482 (42.4%) individuals were female. The sample comprised 677 (19.4%), 

1259 (36.0%), and 1562 (44.6%) individuals from lower-middle / low income, upper-

middle income, and high-income countries, respectively. Primary stroke types consisted of 

592 (16.9%) hemorrhagic, 2889 (82.6%) ischemic, and 17 (0.5%) undefined cases. Among 

the 2889 patients with ischemic stroke, 54 (1.9%) had hemorrhagic transformation of their 

infarct. At baseline, 2010 (57.5%) participants were functionally dependent on others to 

perform basic activities of daily living (mRS 3-5). The level of consciousness was reduced 

(drowsy or unconscious) in 1129 (29.9%) patients.  



 

 

 

113 

Table 1. Demographic characteristics, comorbidities, and stroke characteristics for 3498 

INTERSTROKE cases included in this study.  

Demographic Characteristics (N=3498) 

Age, years (SD) 64.6 (14.4) 

Sex, N (%) - 

  Female 1482 (42.4) 

  Male 2016 (57.6) 

Region, N (%) - 

  Western Europe 931 (26.6) 

  Eastern / Central Europe 413 (11.8) 

  South America  984 (28.1) 

  Africa 466 (13.3) 

  South East Asia     239 (6.8) 

  Western Asia 238 (6.8) 

  North America / Australia 227 (6.5) 

Country income category, N (%) - 

  Lower-middle or low income  677 (19.4) 

  Upper-middle income 1259 (36.0) 

  High income 1562 (44.6) 

Ethnicity, N (%) - 

  European 1562 (44.7) 

  Latin American 958 (27.4) 

  African 395 (11.3) 

  South East Asian 259 (7.4) 

  South Asian 108 (3.1) 

  Arab 105 (3.0) 

  Persian 103 (2.9) 

  Other 8 (0.2) 

Education, N (%) - 

  None  246 (7.0) 

  Primary school 870 (24.9) 

  High school or trade school 1545 (44.1) 

  College or university 527 (15.1) 

  Unknown  310 (8.9) 
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Comorbidity Burden and Risk Factors 

Charleson Comorbidity Index, N (%) - 

  None 832 (23.8) 

  One or more comorbidities 2665 (76.2) 

  Unknown  1 (< 0.1) 

Risk Factors, N (%) - 

  Hypertension 2200 (62.9) 

  Diabetes Mellitus 683 (19.5) 

  Hypercholesterolemia 925 (26.4) 

  Atrial Fibrillation or Flutter 576 (16.5) 

  Current Smoker 776 (22.2) 

  Waist-to-hip Ratio, mean (SD) 0.95 (0.09) 

Baseline Stroke Characteristics 

Stroke type, N (%) - 

   Hemorrhagic Stroke 592 (16.9) 

        Intracerebral Hemorrhage 587 (16.9) 

        Subarachnoid Hemorrhage  5 (0.1) 

   Ischemic Stroke 2889 (82.6) 

        Total anterior circulation infarct 252 (7.2) 

        Partial anterior circulation infarct 1333 (38.1) 

        Posterior circulation infarct  439 (12.6) 

        Lacunar infarct 628 (17.9) 

        Other infarct 237 (6.8) 

   Unknown 17 (0.5) 

Hemorrhagic Transformation, N (%) - 

   Present 54 (1.9*) 

   Absent 2835 (98.2) 

Stroke severity, N (%) - 

   No symptoms (mRS 0) 151 (4.3) 

   Symptomatic but no disability (mRS 1) 573 (16.4) 

   Slight disability (mRS 2) 760 (21.7) 

   Moderate disability (mRS 3) 954 (27.3) 
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   Moderately severe disability (mRS 4) 711 (20.3) 

   Severe disability (mRS 5) 345 (9.9) 

   Unknown 4 (0.1) 

Level of consciousness, N (%) - 

   Alert 2487 (71.0) 

   Drowsy 768 (22.0) 

   Unconscious 237 (6.8) 

   Unknown 6 (0.2) 

* Percentage of ischemic stroke patients, not total number of participants 

Lower mtDNA-CN is associated with greater stroke severity at baseline  

At baseline, a 1-SD lower mtDNA-CN was significantly associated with increased 

odds of having a more severe stroke (ordinal mRS; OR=1.27; 95% CI, 1.19-1.36; P=4.7x10-

12) and reduced consciousness (OR=1.34; 95% CI, 1.21-1.48; P=1.8x10-8) (S. Figure 2). 

Among ischemic stroke patients, the association with hemorrhagic transformation non-

significant (OR=1.33; 95% CI, 0.92-1.93; P=0.13). Stratifying stroke patients by mtDNA-

CN quartile, there was a stepwise increase in the proportion of individuals with higher 

stroke severity as mtDNA-CN decreased (S. Table 1; Figure 1A). Stroke patients in the 

lowest mtDNA-CN quartile were at greatest risk of having a more severe stroke (OR=2.00; 

95% CI,1.65-2.44; P=2.9x10-12) and reduced consciousness (OR=2.42; 95% CI, 1.84-3.17; 

P=1.6x10-10) compared to those in the highest mtDNA-CN quartile (S. Table 1; Figure 1B). 

These associations were step-wise and graded, and there was no significant evidence 

suggesting that the proportional odds assumption had been violated in any ordinal analysis 

(Brant P > 0.05; S. Table 1). Time from symptom onset to blood draw was not significantly 

associated with mtDNA-CN levels (P=0.11). 

A  
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Figure 1. mtDNA-CN is associated with stroke severity at baseline. (A) Stacked bar plots 

illustrate the proportion of each (i) ordinal mRS and (ii) consciousness level category per 

mtDNA-CN quartile. (B) Forest plots illustrate the association between mtDNA-CN 

quartile and risk of having (i) more severe strokes as indicated by ordinal mRS and (ii) 

reduced consciousness. The highest (4th) mtDNA-CN quartile was used as the reference 

group. 

Lower mtDNA-CN is associated with poor stroke prognosis at 1-month  

 Of the 3498 stroke patients, mRS was recorded at follow-up for 3470 (99.2%) 

individuals. At 1-month follow-up, 1354 (39.0%) patients had poor functional outcome 

(mRS 3-6) including 337 (9.7%) patients who died. Adjusting for baseline stroke severity 

in addition to previous covariates, a 1-SD lower mtDNA-CN was significantly associated 

with higher 1-month mRS (OR=1.16; 95% CI, 1.08-1.24; P=4.4x10-5), poor functional 

outcome (OR=1.21; 95% CI, 1.08-1.34; P=6.9x10-4), and mortality (OR=1.35; 95% CI, 

1.14-1.59; P=3.9x10-4) (S. Figure 3; S. Table 2). The magnitude of effect for mtDNA-CN 

on mortality risk was comparable to age, an established predictor of stroke outcomes (S. 

Figure 3). Conversely, the effect of mtDNA-CN on post-stroke disability (mRS category 

and poor functional outcome status) was weaker than age (S. Figure 4). There was no 

significant evidence suggesting that the proportional odds assumption had been violated in 

any ordinal analysis (Brant P > 0.05; S. Table 2). Stratification by mtDNA-CN quartile 

revealed a consistent relationship between lower mtDNA-CN quartile and higher risk of 

adverse stroke outcomes (Figure 2). Stroke patients in the lowest quartile had greater odds 

of being classified in a higher mRS stratum (OR=1.40; 95% CI, 1.15-1.71; P=0.001), 
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having poor functional outcome (OR=1.51; 95% CI, 1.11-2.04; P=0.01), and mortality 

(OR=2.09; 95% CI, 1.34-3.25; P=0.001) compared to stroke patients in the highest quartile 

(S. Table 3; Figure 2). 

A 

 

B 

 

Figure 2. mtDNA-CN is associated with 1-month prognosis after stroke. (A) Stacked bar 

plots illustrate the proportion of individuals belonging to (i) ordinal mRS, (ii) functional 
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outcome status, and (iii) mortality categories per mtDNA-CN quartile. (B) Forest plots 

convey the association between mtDNA-CN quartile and post-stroke outcomes with the 

fourth quartile as the reference for comparison. 

To further assess the robustness of mtDNA-CN-outcome associations, we 

performed subgroup analyses stratifying by primary stroke type, sex, age, country income 

level, and education level. Directionally consistent associations were observed across all 

subgroups for both poor functional outcome and mortality statuses with no significant 

heterogeneity between subgroups detected (Cochran Q Heterogeneity P > 0.10; Figure 3; 

S. Table 4).  

A) Poor Functional Outcome Status 

 

B) Mortality Status 
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Figure 3. Subgroup analyses for mtDNA-CN associations with 1-month post-stroke 

outcomes including (A) poor functional outcome (mRS 3-6) and (B) mortality status. 

Except for the subgroup variable used to stratify, regression models were adjusted for age, 

sex, region, education level, country income level, household income level, primary stroke 

type and OCSP classification, Charleson comorbidity index, cardiovascular risk factors, 

pre-stroke disability, and baseline mRS.  

Lastly, we assessed whether incorporation of mtDNA-CN improved prediction of 

post-stroke outcomes beyond known prognosticators, risk factors, and demographic 

characteristics. Addition of mtDNA-CN led to significant improvements in reclassification 

of functional outcome status (Net Reclassification index (NRI)overall=0.16; 95% CI, 0.08-

0.23; P=3.6x10-5) and mortality status (NRIoverall=0.31; 95% CI, 0.19-0.43; P=1.7x10-7). 

For both outcomes, NRI improvement was attributable to better reclassification of events 

(NRIPoor Outcome=0.20; 95 % CI, 0.15-0.26; P=4.3x10-12; NRIDeath=0.33; 95% CI, 0.22-0.44; 

P=3.4x10-9) as opposed to non-events (NRIFavourable Outcome=-0.05; 95% CI, -0.09 to -0.001; 

P=0.045; NRIAlive=-0.02; 95% CI, -0.06 to 0.02; P=0.30) (S. Table 5).  

Low mtDNA-CN is a putative causal risk factor for 3-month stroke outcomes 
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Using the UKBiobank and GISCOME studies (independent of INTERSTROKE), 

we found that genetically low mtDNA-CN was significantly associated with worse 3-month 

outcomes after stroke quantified by the ordinal mRS (OR=2.35 per SD decrease in 

genetically predicted mtDNA-CN; 95% CI, 1.13-4.90; P=0.02) and poor functional 

outcome (OR=2.68; 95% CI, 1.05-6.86; P=0.04) (Figure 4; S. Table 8). For all analyses, 

there was no significant evidence of directional pleiotropy (MR-Egger intercept P > 0.05), 

nor global heterogeneity (Cochran Q and MR-PRESSO global test P > 0.05). Results were 

also directionally consistent when using other MR methods (weighted median and MR-

Egger) (S. Table 8). As buffy coat mtDNA-CN is known to be correlated with immune cell 

counts, we also performed MR analyses for blood cell traits. Despite sufficient instrument 

strength for neutrophil (F=100), platelet (F=154), lymphocyte (F=108), total white blood 

cell counts (F=106) and the neutrophil to lymphocyte ratio (F=61), none were significantly 

associated with 3-month outcomes (Figure 4; S. Table 9).  
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Figure 4. Genetic predisposition to low mtDNA-CN, but not blood cell counts, is 

associated with higher risk of 3-month outcomes after stroke. Effect estimates for mtDNA-

CN are expressed per 1 SD decrease in genetically predicted mtDNA-CN, whereas those 

for blood cell traits were expressed per 1 SD increase in genetically predicted blood cell 

counts (or neutrophil to lymphocyte ratio). Causal effect estimates obtained by the inverse 

variance weighted method are displayed as there was no significant heterogeneity or 

directional pleiotropy detected for any analysis (S. Tables 6 & 7). 

Discussion 

Our study represents the first international multicenter exploration of buffy coat 

mtDNA-CN as a potential prognosticator of post-stroke outcomes. First, lower buffy coat 

mtDNA-CN measured within one week post symptom onset correlated with functional and 

clinically relevant stroke severity indicators such as higher mRS and reduced 

consciousness. Second, lower buffy coat mtDNA-CN was associated with greater risk of 

poor functional outcome and death at 1-month follow-up, which were consistent across 

primary stroke type, sex, age, country income level, and education level strata, as well as, 

independent of baseline stroke severity. Third, in addition to being a strong predictor of 

mortality with a magnitude of effect comparable to, if not stronger than, age, the inclusion 

of buffy coat mtDNA-CN improved the prediction of functional outcome and death. Fourth, 

MR analysis provided support for low buffy coat mtDNA-CN as a causal mediator of 3-

month mRS and poor functional outcome status. Altogether, our findings confirm the 

hypothesis that low buffy coat mtDNA-CN is a biomarker and mediator of worse stroke 

prognosis. 
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The main clinical implication of our study is that buffy coat mtDNA-CN may 

represent a useful prognostic marker of post-stroke outcomes. First, buffy coat mtDNA-CN 

is a blood biomarker of post-stroke outcomes that does not suffer from inter-rater variability 

and is not influenced by a patient’s communication deficit. Second, the mtDNA-CN-

outcome associations are consistent across stroke type, sex, age, country income level, 

education level, and baseline severity, which positions mtDNA-CN to have widespread 

utility across stroke patients globally. To our knowledge, we provide the first evidence 

suggesting that low mtDNA-CN may have consistent effects in both ischemic and 

hemorrhagic stroke patients. This is particularly relevant for health systems in low-income 

settings, which bear a disproportionate global burden of hemorrhagic stroke1–3, though 

further analyses in larger samples of hemorrhagic stroke patients are warranted to confirm. 

Third, low mtDNA-CN represents a strong risk marker with effects comparable to 

established prognosticators including older age. Moreover, the observed effect for mtDNA-

CN on mortality is also comparable to that of carrying an APOE Ɛ2 allele, which confers a 

1.5-fold increased risk of 3-month mortality in intracerebral hemorrhage patients and is 

present in approximately 15% of the population34. For comparison, we found that stroke 

patients in the bottom 15% of mtDNA-CN levels had a 1.6-fold increased risk of 1-month 

mortality (OR=1.57; 95% CI, 1.13-2.17; P=0.007) relative to the remaining 85% 

participants with higher mtDNA-CN levels. Fourth, mtDNA-CN is an easily accessible 

biomarker as (i) it can be measured from peripheral blood after stroke, (ii) the assay 

necessitates only basic molecular laboratory techniques (qPCR), and (iii) the cost per 

sample is low (< $5 USD). Logistic and operational convenience combined with evidence 
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for robust, objective, and strong prognostic utility raises the promising prospect of 

implementing mtDNA-CN clinically; however, replication of such findings in a 

prospective analysis in addition to formal economic analyses in various settings is 

warranted.   

Findings from MR analyses suggest that proper mtDNA regulation may be 

imperative for stroke protection and recovery, which aligns with animal model experiments 

demonstrating an important role for mtDNA-CN regulators in mediating protection against 

ischemia reperfusion injury. For example, reoxygenation of rodents with acute kidney 

injury induces the formation of excessive mitochondrial reactive oxygen species, 

accompanied by a sharp decline in mtDNA-CN levels24. In addition, genetic upregulation 

of the mtDNA replication initiation factor, TFAM, is sufficient to rescue this acute drop in 

mtDNA-CN levels thereby attenuating ischemia reperfusion injury. In the context of stroke 

models, mice with transient middle cerebral artery occlusion exhibit excessive cleavage of 

OPA1, another important mtDNA regulator, and treatment with either a cleavage-resistant 

form of OPA1 or mild overexpression of OPA1 markedly reduces infarct volume and 

neuronal apoptosis23,35. In conjunction with prior mechanistic studies, our epidemiological 

and genetic findings contribute to the mounting evidence that maintaining adequate 

mtDNA-CN may mediate cellular resilience to ischemic insults. Furthermore, consistent 

epidemiological associations in hemorrhagic stroke patients suggest that mtDNA-CN may 

protect against stroke injury through general mechanisms pertinent to both etiologies (e.g. 

blood brain barrier disruption, neuroprotection, inflammation, etc.)36. Future MR analyses 
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and experiments are necessary to elucidate the effects of mtDNA-CN perturbation on post-

stroke outcomes in the hemorrhagic context specifically. 

Our study had several limitations. First, as INTERSTROKE was a large 

international case-control study, measures of baseline stroke severity (NIHSS) and 

outcome (3-month mRS) that are common in smaller stroke research studies were 

substituted with baseline mRS and 1-month mRS for feasibility, respectively, as was done 

in Langhorne et al. (2018). The interchangeability of such measures has been validated in 

previous independent studies showing high correlation between baseline NIHSS and mRS 

(r=0.69) and between 1-month and 3-month mRS (r=0.87; weighted kappa agreement = 

0.86)37,38. Second, complete blood cell counts were not measured in INTERSTROKE 

participants; thus, we cannot directly evaluate to what extent blood cell counts influence 

observational associations with post-stroke outcomes. However, our genetic analyses 

suggest that mtDNA-CN may have a direct role in stroke prognosis independent of changes 

in blood cell counts since (i) mtDNA-CN GWAS effects had already been adjusted for 

major cell count determinants of mtDNA-CN levels (neutrophil, white blood cell, and 

platelet counts) and (ii) no significant association was observed for genetically determined 

immune cell counts per se. Nonetheless, the genetic determinants of post-stroke immune 

cell changes may differ from those influencing variation in cell counts within the general 

population as suggested by results from Torres-Aguila et al. (2019)39. Third, although 

associations were corrected for a crude surrogate of infarct volume (OCSP classification), 

direct measurements of infarct and hematoma volumes were not available. Fourth, 

survivorship bias may have led to conservative effect estimates as INTERSTROKE cases 
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included patients surviving to hospital admission, and consequently, patients with severe, 

early fatal strokes were not represented. Finally, MR analyses were limited by the following 

considerations: (i) causal effect estimates were imprecise and were accompanied by large 

confidence intervals though these were consistent in direction-of-effect with 

epidemiological associations, (ii) although sensitivity analyses did not show significant 

evidence of heterogeneity, directional pleiotropy, or outlying effects, it is impossible to 

completely exclude bias due to potential pleiotropy, (iii) mortality and hemorrhagic stroke 

outcomes could not be evaluated directly for lack of GWAS summary statistics, and (iv) 

analyses were solely based on European participants.  

Conclusions 

 Low buffy coat mtDNA-CN measured within one week of symptom onset 

represents an accessible and robust biomarker of both stroke severity and prognosis. MR 

findings suggest that low mtDNA-CN may mediate post-stroke outcomes. Additional 

investigations are warranted to replicate such findings in additional populations, to 

establish the temporal profile of post-stroke mtDNA-CN changes in more detail, and to 

assess whether compounds that maintain mtDNA-CN levels after cerebral insult hold 

promise as a novel therapeutic strategy.   
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CHAPTER 6: DISCUSSION 

6.1 GENERAL OVERVIEW 

Despite current treatments, stroke risk remains high thus emphasizing the need to 

discover new drug targets. By their very definition, stroke biomarkers have clinical utility 

for stroke risk assessment, prognostication, or treatment response, but their latent value is 

that a subset of biomarkers are causal mediators of disease, thereby representing putative 

therapeutic targets. Throughout this thesis, we used MR analysis to identify circulating 

markers that also represent putative causal mediators. In Chapter 3, we systematically 

interrogated the blood proteome and uncovered established drug targets and novel putative 

mediators. Chapters 4 and 5 were devoted to investigation of an emerging mitochondrial 

biomarker, leukocyte mtDNA-CN. Specifically, Chapter 4 provided insights into the 

genetic architecture of leukocyte mtDNA-CN and fulfilled the first step of MR, which is to 

identify a subset of genetic variants associated with exposure in question. Using these 

identified mtDNA-CN-qTLs, Chapter 5 elucidated a role for mtDNA-CN as a predictor and 

causal risk factor for post-stroke outcomes. Altogether, this thesis identifies several 

potential therapeutic targets for stroke using the MR framework. In the subsequent sections, 

we will (i) highlight the main findings from each chapter, (ii) outline the biological, clinical, 

and research implications of these works, (iii) discuss new relevant literature and additional 

considerations to contextualize findings, and (iv) describe strengths, limitations, and future 

areas of investigation. 
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6.2 CHAPTER SUMMARIES 

6.2.1 STUDY 1 (CHAPTER 3) SUMMARY 

A systematic MR screen of 653 circulating proteins identified putative causal 

roles for previously established (ABO, CD40, FXI, LP(a), MMP12) and novel (SCARA5, 

TNFSF12) proteins mediating ischemic stroke risk. Forecasting potential adverse side-

effects, MR analysis revealed that if TNFSF12 was therapeutically targeted for ischemic 

stroke reduction, then this would also be accompanied by increased intracranial bleeding. 

Agnostic phenome-wide MR analyses identified 71 secondary associations with diseases, 

indicating substantial pleiotropic effects. Phenome-wide MR findings provided some 

reassurance of the safety of emerging therapeutic targets, FXI and LPA, for which 

inhibitors are currently undergoing phase III RCTs. Lastly, MR analyses suggest that 

SCARA5 may be a promising therapeutic target for treatment of cardioembolic stroke 

with no adverse side-effects on intracranial bleeding or other diseases detected.  

6.2.3 STUDY 2 (CHAPTER 4) SUMMARY 

To enable large-scale genetic investigations of mtDNA-CN, we first developed and 

validated a novel method, “AutoMitoC”, to infer mtDNA-CN from widely accessible 

genetic array data and then applied it to 395,781 participants from the UKBiobank study. 

Genetic analyses (genome-wide and exome-wide association studies) identified 71 loci, 

implicating genes involved in rare mtDNA depletion disorders, dNTP metabolism, and the 

mitochondrial central dogma. mtDNA depletion syndromes are rare genetic disorders 

characterized by severely low mtDNA-CN, and novel strategies to increase mtDNA levels 

may benefit these patients who currently have no treatments. Analysis of rare variants 
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revealed that rare protein-altering mutations in SAMHD1 were associated with higher 

mtDNA-CN levels, thus representing a potential therapeutic target for mtDNA depletion. 

Conversely, we also found that SAMHD1 mutation carriers had approximately two-fold 

greater risk of breast cancer. Finally, MR analysis identified a causal relationship between 

genetically low mtDNA-CN and increased risk of dementia.  

6.2.4 STUDY 3 (CHAPTER 5) SUMMARY 

We performed the first global characterization of mtDNA-CN as a prognosticator 

for stroke outcomes in 3,498 stroke patients from the INTERSTROKE study. Lower 

mtDNA-CN measured within one week of symptom onset correlated with several stroke 

severity indicators at baseline. Independent of baseline stroke severity, lower mtDNA-CN 

was also associated with worse prognosis at 1-month including higher risk of poor 

functional outcome (mRS 3-6 vs. 0-2) and mortality. Notably, the magnitude of the 

mtDNA-CN effect was comparable to that of established prognosticators, such as older age 

and APOE ε2 carrier status. Addition of mtDNA-CN to statistical models significantly 

improved event reclassification of poor functional outcome and mortality. MR analysis 

supported a causal relationship between genetically low mtDNA-CN and worse 3-month 

functional outcomes. 

6.3 SIGNIFICANCE OF FINDINGS 

6.3.1 CLINICAL IMPLICATIONS 

The major clinical significance of this work is the identification of several novel 

therapeutic candidates to potentially ameliorate stroke risk and progression. Chapter 3 

revealed circulating TNFSF12 and SCARA5 as putative causal mediators of cardioembolic 
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stroke. Chapter 5 uncovered a causal link between low leukocyte mtDNA-CN and worse 

post-stroke outcomes, implying that interventions that upregulate or maintain mtDNA-CN 

levels during stroke may help reduce stroke severity and improve functional recovery. For 

example, SAMHD1 inhibition as suggested by Chapter 4, could be a means of recovering 

mtDNA-CN levels. Altogether, such findings represent suggestive pre-clinical human 

genetics evidence supporting a causal role of these molecules for stroke risk and outcomes. 

Accordingly, substantial follow-up investigations are necessary to better understand the 

underlying causative tissues and mechanisms that mediate the observed biomarker-stroke 

relationships, as well as to assess practical aspects of drug development including 

druggability, bioavailability, and drug delivery. Lastly, we also found that blood-based 

mtDNA-CN is an accessible, robust, and objective marker of stroke severity and 

progression in a globally representative sample of acute stroke cases. While it is tempting 

to speculate that this marker may have widespread utility for risk stratification and disease 

progression tracking, additional studies are necessary to assess whether mtDNA-CN 

provides complementary prognostic utility to established and emerging markers, such as 

cerebral microbleeds and circulating NFl. Lastly, we provide the first human genetics 

evidence directly linking dysregulation of mtDNA-CN to worsening post-stroke outcomes. 

6.3.2 BIOLOGICAL IMPLICATIONS 

This work reinforces the prevailing notion that stroke biology is highly complex. 

Numerous pathways are implicated by the identified causal mediators including 

atherosclerosis (LP(a), CD40), thrombosis (ABO, FXI, LP(a), SCARA5), inflammation 

(ABO, LP(a), TNFSF12), vascular and atrial remodeling (MMP12, TNFSF12), iron 
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metabolism (SCARA5, TNFSF12), and mitochondrial dysfunction (mtDNA-CN). Many of 

these proteins participate in multiple processes relevant to stroke thus reflecting the 

multifunctionality of individual proteins and widespread pleiotropy.  

Similarly, GWAS and ExWAS findings highlight the complexity of mtDNA-CN as 

a mitochondrial biomarker. While historically perceived by some as a simple surrogate 

measure to quantify cellular mitochondria content, genetic association results provide a 

more nuanced understanding of what this biomarker represents implicating multiple 

mitochondrial processes including mtDNA central dogma, nucleotide supply and 

metabolism, mitochondrial respiration, mitochondrial biogenesis, and other mitochondrial 

dynamics1. Additionally, GWAS results affirm a polygenic basis for mtDNA-CN since we 

identified 71 genetic loci. To put this into perspective, this represents a 40% increase in our 

knowledge of mtDNA-CN loci as compared to the next largest published GWAS2. The 

polygenicity of mtDNA-CN also implies perhaps that milder polygenic forms of mtDNA 

depletion may exist, though future studies are required to understand the aggregate effects 

of polygenic dysregulation of mtDNA-CN and the mechanisms responsible for variant and 

gene-based associations.  

6.3.3. RESEARCH IMPLICATIONS 

The frameworks, tools, and knowledge contributed by this thesis may help guide 

future drug target prioritization initiatives for cerebrovascular disease, cognitive decline, 

mitochondrial disorders, and other conditions. Chapter 3 conveyed a framework for how 

MR can be broadly applied to several aspects of drug target evaluation, ranging from 

systematic identification of candidate drug targets, safety adjudication and the elucidation 
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of unexpected side-effects, and understanding mediating risk factors. Chapter 4 described 

the primary methodological contribution of this thesis, namely, the development of 

AutoMitoC, a pipeline to infer mtDNA-CN from SNP microarray intensities for large 

multi-ethnic biobank studies. Our hope is that AutoMitoC serves the broader mitochondria 

research community by enabling international collaborations to further interrogate the 

genetic determinants of mtDNA-CN. Lastly, genome-wide summary statistics for the 

UKBiobank mtDNA-CN GWAS will be made publicly available. This should facilitate 

additional MR analyses to identify other complications of mtDNA-CN dysregulation akin 

to what was performed for post-stroke outcomes in Chapter 5, and to find novel 

interventions to modulate mtDNA-CN levels.  

6.4 DISCUSSION OF PUTATIVE STROKE TARGETS 

6.4.1 SCAVENGER CLASS A RECEPTOR MEMBER A5 (SCARA5) 

SCARA5 is an endocytic scavenger receptor that is widely expressed in the 

epithelium of various tissues3,4. As a class A endocytic receptor, SCARA5 mediates the 

clearance of a wide repertoire of compounds from the stroma, and thus has important roles 

in various biological processes including tumour suppression, innate immunity, iron 

homeostasis, and hemostasis3–10. 

6.4.1.1 NEW STUDIES IMPLICATE SCARA5 AS A THROMBOSIS REGULATOR 

In Study 1 (Chapter 3), the link between circulating SCARA5 and cardioembolic 

stroke risk was speculated to be due to its function as a transporter of L-ferritin since 

circulating iron is a causal risk factor for cardioembolic stroke. While this remains 

plausible, new evidence supports a role for SCARA5 in coagulation. Multiple GWAS 
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analyses show that an intronic SCARA5 cis-pQTL (rs2726927) is associated with venous 

thromboembolism susceptibility, activated partial thromboplastin time (a measure of 

clotting time), coagulation factor VIII (FVIII) levels, and von Willebrand Factor (vWF) 

levels9,11,12. Circulating vWF has a prominent role in hemostasis as a stabilizer of FVIII and 

an anchor for platelet adhesion to damaged parts of the endothelium. Recent experimental 

evidence also corroborates a direct interaction between SCARA5 and vWF with SCARA5 

acting as an endocytic receptor for vWF. Specifically, in vivo and in vitro rodent 

experiments by Swystun et al. (2019) found that SCARA5 expressed on the surface of 

splenic littoral cells facilitated the clearance of circulating vWF and FVIII (through vWF-

FVIII complexes)10. Altogether, upregulation of SCARA5’s endocytic receptor activity 

may represent a novel therapeutic strategy for mitigating cardioembolic stroke. 

6.4.1.2 ADDITIONAL CONSIDERATIONS FOR THE INTERPETATION OF 

SCARA5 MR RESULTS 

While our UKBiobank-based MR analyses did not uncover side-effects of genetic 

upregulation of SCARA5 for intracranial bleeding nor other diseases, further investigations 

are required because (i) the MR analyses for SCARA5 were less well-powered in 

comparison to other circulating mediators like LP(a) and thus it is possible that we lacked 

adequate power to detect association with bleeding phenotypes, (ii) if stroke protection 

conferred by SCARA5 upregulation is indeed mediated through enhanced clearance of 

vWF, then bleeding risk may be concerning as vWF deficiency causes bleeding diathesis, 

and (iii) if stroke protection is partially mediated by removal of iron from circulation, then 

an increased risk of anemia might be expected. As a counterargument to the second point, 
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recombinant vWF is available as an antidote for bleeding diathesis. Finally, it is important 

to consider that the main MR finding implicated circulating SCARA5 levels, but the former 

research literature has almost exclusively interrogated the endocytic activity of the 

membrane-bound form13. 

6.4.2 TUMOR NECROSIS FACTOR LIGAND SUPERFAMILY MEMBER 12 

(TNFSF12) 

In Study 1 (Chapter 3), antagonistic effects were observed for the associations 

between genetically determined TNFSF12 levels on ischemic and hemorrhagic stroke 

subtypes. Specifically, higher TNFSF12 was associated with decreased risk of 

cardioembolic stroke but increased risk of intracranial bleeding. Circulating TNFSF12 is a 

multifunctional cytokine that acts primarily by binding to its membrane-bound receptor, 

Fibroblast Growth Factor-Inducible 14 (Fn14)14. Activation of the TNFSF12/Fn14 axis 

leads to the initiation of deleterious cellular signalling pathways including inflammation 

(IL6), cell proliferation and infiltration (PI3K-AKT and MKK-ERK1/2), and extracellular 

matrix remodeling (MMPs)14.  

6.4.2.1 EMERGING EVIDENCE FOR TNFSF12 AS A PROGNOSTICATOR OF 

POST-STROKE OUTCOME 

Independent of hypertension, a recent series of investigations by Silva-Candal et al. 

(2020; 2021) also suggest prognostic utility for circulating TNFSF12 levels as a biomarker 

of acute and post-stroke outcomes15,16. These studies observed that higher circulating 

TNFSF12 at hospital admission is associated with increased risks of (i) hemorrhagic 

transformation among ischemic stroke patients, (ii) early hematoma expansion in 



 

 

 

144 

intracerebral hemorrhage patients, and (iii) poor functional outcome 3-months after stroke 

in both ischemic and hemorrhagic stroke patients15,16. Accordingly, these new associations 

imply that the relationship between TNFSF12 and intracranial bleeding may be mediated 

by additional mechanisms beyond hypertension alone which warrants further investigation. 

6.4.2.2 ADDITIONAL CONSIDERATIONS FOR THE INTERPETATION OF 

TNFSF12 MR RESULTS 

Our phenome-wide MR analysis hinted that TNFSF12 may mediate stroke through 

atrial fibrillation and hypertension. Indeed, a recent proteome-wide MR analysis for atrial 

fibrillation replicated the causal protective effects of circulating TNFSF12 using an 

independent dataset for atrial fibrillation17. In terms of validation efforts for the relationship 

between TNFSF12 and hypertension, this finding has yet to be replicated in an independent 

dataset; however, it was reproduced in the same UKBiobank dataset by another research 

group using different MR parameters 

(https://www.epigraphdb.org/pqtl/TNFSF12;TNFSF12-TNFSF13).  

TNFSF12 upregulation has not been explored therapeutically, but RCTs have 

assessed the safety and clinical efficacy of TNFSF12/Fn14 axis blockade with monoclonal 

antibodies (BIIB023, RO-5458640) in the contexts of cancer, lupus nephritis, and 

rheumatoid arthritis18–20. While these studies were prematurely terminated due to a lack of 

clinical efficacy, there is renewed enthusiasm for TNFSF12/Fn14 inhibition for treatment 

of cardiovascular disease 14. Compelling evidence comes from Méndez-Barbero et al. 

(2019) who observed that TNFSF12 is highly expressed in human coronary arteries with 

in-stent restenosis, and that pharmacologic inhibition of the TNFSF12/Fn14 axis 

https://www.epigraphdb.org/pqtl/TNFSF12;TNFSF12-TNFSF13
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ameliorates post-angioplasty restenosis in mice21. Although it is enticing to speculate about 

drug repurposing opportunities, importantly, our MR findings imply a potential adverse 

effect of TNFSF12 blockade on atrial fibrillation risk. Moreover, given that the target 

population would consist of cardiovascular disease patients, the concomitant cost of 

increasing risk of a major cardiovascular risk factor, atrial fibrillation, should be carefully 

considered. 

6.4.3 MITOCHONDRIAL DNA COPY NUMBER (MTDNA-CN) 

6.4.3.1 MTDNA-CN RECOVERY AS A POTENTIAL THERAPEUTIC AXIS FOR 

CEREBROVASCULAR DISEASE 

Low mtDNA-CN was identified as a causal mediator of both dementia (Study 2; 

Chapter 4) and post-stroke outcomes (Study 3; Chapter 5) suggesting that interventions that 

increase mtDNA-CN levels may represent a novel therapeutic strategy for these conditions. 

As a corollary, drugs for mtDNA depletion disorders may be repurposed to prevent 

dementia and attenuate post-stroke outcomes. Although there are no clinically accepted 

treatments for mtDNA depletion, we will discuss emerging targets with pre-clinical 

support. 

6.4.3.2 NUCLEOSIDE-BASED SUPPLEMENTATION FOR TREATMENT OF 

MTDNA DEPLETION  

Nucleoside supplementation has been shown to replenish mtDNA levels in animal 

models of mtDNA depletion in which genetic mutations cause deficiencies in nucleotide 

metabolism enzymes that are critical for mtDNA synthesis 22,23. A phase I/II RCT 

(NCT03639701) is currently recruiting participants to test thymidine supplementation in 
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patients with TK2-deficient mtDNA depletion syndrome24. However, treatment efficacy is 

likely restricted to individuals with genetic defects in thymidine metabolism, since 

nucleoside supplementation was not found to alter mtDNA-CN levels in wildtype cells.  

Another nucleotide-based compound with potentially broader application for 

treating mitochondrial dysfunction secondary to mtDNA depletion is nicotinamide adenine 

nucleotide (NAD)+. NAD+ is the well-known cofactor of the electron transport chain but 

also has other roles in metabolism, cell death, and immunity25. A drug library screen 

searching for compounds to rescue the ATP deficit caused by mtDNA depletion identified 

nicotinamide adenine nucleotide (NAD), the precursor to NAD+26. Specifically, NAD 

supplementation rescues ATP deficits in both DGUOK and RRM2B CRISPR/Cas9 

knockout iSPC-derived hepatocytes. Furthermore, in-depth functional analyses in 

DGUOK-deficient hepatocytes revealed that administration of NAD rescues a broad range 

of mitochondrial defects including oxidative stress, mitochondrial membrane potential 

issues, and morphological aberrations. Also, oral administration of a NAD precursor, 

nicotinamide riboside (NR), to DGUOK-deficient rats promoted the expression of mtDNA-

encoded electron transport genes and restored hepatic ATP levels in vivo. Beyond forms of 

mtDNA depletion characterized by nucleotide metabolism defects (i.e. DGUOK, RRM2B, 

and TK2), emerging evidence suggests that NAD+ upregulation may also be beneficial in 

the context of other forms caused by mutations in the core mtDNA replication machinery. 

For example, mitochondrial transcription factor A (TFAM) is responsible for initiating 

mtDNA replication and organizing mtDNA into nucleoids. Oller et al. (2021) found that 

mice with TFAM deficiency confined to vascular smooth muscle cells, develop aortic 
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aneurysms; NR supplementation is sufficient to derepress TFAM expression and mtDNA-

CN levels thus reversing aortic aneurysm27. Altogether, these findings indicate that NR 

supplementation, a precursor to NAD and NAD+, as a potential treatment for mtDNA 

depletion irrespective of the underlying genetic mutation.  

6.4.3.3 EXPERIMENTAL EVIDENCE FOR NEUROPROTECTIVE EFFECTS OF 

NAD+ UPREGULATION 

In vitro and in vivo rodent experiments suggest that upregulation of the NAD+ axis 

also protects against both ischemic and hemorrhagic stroke and that such neuroprotection, 

in part, is mediated by key mitochondrial regulators. First, just as mtDNA-CN levels are 

depleted after ischemic stroke, a similar drop in brain NAD occurs25. Exogenous 

supplementation of NAD+ restores DNA repair activity thereby mitigating ischemic cell 

death in oxygen and glucose-deprived rat neurons 25. Second, nicotinamide 

phosphribosyltransferase (NAMPT), the rate-limiting enzyme in the production of NAD+, 

protects against cerebral injury and promotes neurogenesis after cerebral ischemia28,29. In 

rats with middle cerebral artery occlusion, pharmacological inhibition of NAMPT 

exacerbates neuronal cell death and increases the size of infarcts. Conversely, NAMPT 

overexpression overcomes these deficits by promoting neuronal survival via sirtuin-1-

mediated induction of AMPK, an upstream mitochondrial biogenesis activator 28. Third, 

oxidative stress and neuroinflammation following experimentally induced intracerebral 

hemorrhage in mice is rescued by acute administration (30-minutes post-stroke) of the 

NAD precursor, nicotinamide mononucleotide (NMN) 30. NMN-treated mice also exhibit 

faster neurological recovery after intracerebral hemorrhage than those without treatment30. 
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Notably, NMN treatment promoted the expression of nuclear respiratory factor 2, a 

gatekeeper of mitochondrial biogenesis30.  

6.4.3.4 CLINICAL TRIALS OF NAD+ SUPPLEMENTATION 

NAD precursor supplementation as a therapy for age-related diseases such as 

cardiometabolic disease, has garnered interest from academic and commercial sectors alike, 

culminating in several early phase RCTs. These trials suggest that daily NAD precursor 

supplementation (i) leads to persistent elevations in peripheral blood cell NAD+, (ii) is 

well-tolerated with no serious adverse events, and (iii) demonstrates preliminary evidence 

for protective vascular effects on blood pressure and arterial stiffness31,32. The next phase 

of RCTs is currently underway to test NAD precursor supplementation to ameliorate 

progression of various diseases including but not limited to rare mitochondrial disorders, 

dementia, mild cognitive decline, Parkinson’s disease, and stroke. In fact, one trial 

(NCT03432871) is investigating NR supplementation for individuals with mitochondrial 

encephalopathy with lactic acidosis and stroke-like episodes 24. To our knowledge, no trial 

is currently planned to investigate NR supplementation in a series of mtDNA depletion 

syndrome patients specifically, though this may be the next logical disease indication to 

explore.  

6.5 STRENGTHS, LIMITATIONS, AND FUTURE DIRECTIONS 

6.5.1 STRENGTHS 

The main strengths of this work are: (i) the use of MR analysis, a statistical genetics 

framework robust to reverse causation and other types of confounding, to approximate 

causal effects of biomarkers on disease risk, (ii) the dual and context-appropriate 
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application of MR analysis to (a) screen circulating proteins with various biological 

functions for causal mediators and (b) to verify the role of an emerging marker of 

mitochondrial dysfunction with a strong biological prior to mediate stroke progression, (iii) 

the incorporation of public datasets to expand the scope of testable biomarkers and to boost 

statistical power to detect associations with disease, (iv) the sensitivity analyses and 

validation efforts that were employed to ensure the robustness of findings (e.g. proteomics 

technology-stratified MR analyses, benchmarking of AutoMitoC with qPCR-based 

measurements, etc.), and (v) the breadth of study designs employed to interrogate causal 

mediators of cerebrovascular disease (e.g. regression-based association testing, GWAS, 

ExWAS, MR, etc.). 

6.5.2 LIMITATIONS 

In Study 1 (Chapter 3), we implemented a methodological framework to conduct 

systematic proteome-wide MR screens for circulating protein mediators of stroke standing 

on the shoulders of colleagues who deployed similar methods for the discovery of putative 

causal mediators for heart disease, blood pressure, diabetes, and chronic kidney disease. 

We extended this approach to an agnostic investigation of phenotypes to forecast potential 

repurposing opportunities and adverse effects associated with target manipulation. 

Although at the time of analysis, this represented an improvement of our lab’s existing 

pipelines, there are several improvements that could be made now due to methodological 

advances and new databases. First, colocalization analyses could be performed to provide 

assurance that the same genetic signals responsible for changing biomarker levels also 

accounts for changes in stroke susceptibility. Second, rather than assume that the effects of 
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causal biomarkers on disease act via circulation, the integration of tissue-specific eQTL 

data from the GTEx database may aid in pinpointing causal tissues. One of the challenges 

of interpreting biomarker MR analyses is tissue specificity. Because germline genetic 

variants persist in all cell types, the association between genetically determined circulating 

levels and disease outcomes may not be specific to blood. For example, the aforementioned 

SCARA5 cis-pQTL (rs2726927) that is associated with circulating SCARA5 levels and 

pro-thrombotic factors also influences SCARA5 expression in the spleen, subcutaneous 

adipose tissue, and tibial nerve with concordant effect direction across all tissues.  

(https://www.gtexportal.org/home/gene/SCARA5). Therefore, it is difficult to disentangle 

the relevant and causal tissue through which SCARA5 activity protects against stroke.. 

Third, replication of secondary effects identified by the phenome-wide MR analysis can 

now be executed using newly available genome-wide and phenome-wide datasets, such as 

those made available by the FinnGen consortia. Fourth, the druggability or tractability of 

putative targets (e.g. whether there is a binding site or epitope on the target protein for small 

molecule or antibody binding) could be considered; however, the advent of 

oligonucleotide-based therapies that can down or up-regulate protein translation makes this 

consideration less constraining.  

General limitations of using MR analysis for drug target evaluation include (i) 

potential for causal effects to act through alternative pathways apart from the target in 

question (i.e. horizontal pleiotropy), (ii) uncertain validity of extrapolating lifelong genetic 

effects for predicting the effects of pharmacological modulation, (iii) statistical power 

https://www.gtexportal.org/home/gene/SCARA5
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varies by biomarker due to differences in instrument strength, and (iv) the inability to 

predict off-target side-effects of pharmacological interventions. 

6.5.3 FUTURE DIRECTIONS FOR POTENTIAL THERAPEUTIC TARGETS 

6.5.3.1 SCARA5 

Beyond independent replication of SCARA5 MR findings, there are several 

investigations that could be pursued to better gauge the therapeutic potential of SCARA5. 

First, there is a knowledge gap between our understanding of the membrane-bound vs. 

circulating form of SCARA5, and thus it would be of particular interest to know whether 

the circulating form has similar functions to its membrane-bound counterpart. For example, 

a key question is whether circulating SCARA5 is also capable of facilitating endocytosis 

of pro-thrombotic factors, and if not, then what are the ways in which SCARA5 protects 

against stroke? Second, elucidating the mechanisms through which circulating SCARA5 is 

generated may provide another angle for pharmacologic intervention. The generation of 

circulating SCARA5 presumably involves proteolytic cleavage of membrane-bound 

SCARA5, and notably, among the many predicted cleavage sites 

(https://web.expasy.org/cgi-bin/peptide_cutter/peptidecutter.pl) is a site for coagulation 

FXa, the pharmacological target of several anticoagulants (e.g. Rivaroxaban). Third, animal 

model experiments are warranted to directly test the effects of SCARA5 upregulation on 

stroke risk and key side-effects, such as bleeding and iron deficiency. 

6.5.3.2 TNFSF12 

 

https://web.expasy.org/cgi-bin/peptide_cutter/peptidecutter.pl
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Although results suggest an unfavourable safety profile if TNFSF12 were to be 

directly targeted for stroke prevention, they still point towards a causal pathway potentially 

amenable to therapeutic targeting. Delving into downstream targets of TNFSF12 may 

provide a new source of targets with a more specific effect on stroke risk and favourable 

safety profile. This could be accomplished by performing a candidate MR analysis of all 

known downstream targets of TNFSF12 based on protein-protein interaction and pathway 

databases. Also, recent biomarker studies allude to TNFSF12 as a novel biomarker for post-

intracerebral hemorrhage outcomes. Accordingly, subsequent MR analyses may be useful 

to help clarify whether these associations are causal, analogous to what was done for 

mtDNA-CN and post-ischemic stroke outcomes. 

6.5.3.3 MTDNA-CN RECOVERY FOR STROKE PROTECTION 

In conjunction with animal model experiments, our findings suggest that restoring 

mtDNA-CN during the acute phase of stroke may be a novel therapeutic angle to attenuate 

post-stroke outcomes. Awaiting the results of preliminary NAD precursor trials, these will 

inform their safety in stroke patients specifically. Once confirmed, it may be conceivable 

to plan an efficacy trial investigating post-stroke NAD precursor supplementation to 

improve functional outcomes after stroke. To our knowledge, no trial has been proposed to 

test this specific hypothesis. Beyond clinical testing, additional experimental studies could 

be performed to further examine the relationship between cellular mtDNA content and 

existing neuroprotective mechanisms involving mitochondria. For example, although 

mtDNA depletion abolishes pro-survival signals normally elicited by horizontal 

mitochondrial transfer in cancer cell lines33, there are no analogous investigations in oxygen 
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and glucose-deprived neurons or animal models. Moreover, the dependency of intercellular 

mitochondrial transfer on mtDNA levels has not been explored beyond the aforementioned 

study. This is a key missing link that could connect not only mtDNA regulation to post-

stroke neuronal resiliency but also mtDNA regulation to cellular resilience in general.  

6.5.3.4 NEW HORIZONS FOR MTDNA-CN RESEARCH 

Most epidemiological investigations (including the present work) have examined 

mtDNA content of aggregate immune cell populations from whole blood or buffy coat 

(Figure 6.1). As such, single-cell mtDNA-CN profiling will aid in pinpointing relevant cell 

populations that contribute to neuroprotection. Also, extracellular sources of circulating 

mtDNA-CN are relatively understudied but initial studies suggest a strong link with stroke 

pathophysiology. Extracellular mtDNA-CN consists of (i) free-floating and metabolically 

active mitochondria that may be horizontally transferred during diseases states to protect 

against injury, (ii) extracellular vesicles (microvesicles and exosomes) containing whole 

mtDNA genomes that are believed to participate in similar cytoprotective intercellular 

signalling mechanisms, (iii) and free-circulating mtDNA extruded from immune cells is 

characteristic of the damage associated molecular patterns that instigates IL1β-IL6-

mediated inflammation34. Ultimately, deeper profiling of intracellular sources of mtDNA-

CN will aid in clarifying the associations identified in the present work (Studies 1 and 2; 

Chapters 4 and 5), and comprehensive profiling of extracellular mtDNA-CN is an exciting 

potential source of new stroke biomarkers as they likely capture distinct mitochondrial 

processes relevant to stroke pathophysiology.  
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Figure 6.1. Sources of mtDNA-CN within whole blood. Created with 

https://biorender.com/.  

6.6 CONCLUSION 

Genomic, proteomic, and phenotypic datasets were integrated to elucidate putative 

circulating mediators of stroke risk and post-stroke outcomes. First, we conducted the 

largest MR screen of the circulating proteome for ischemic stroke mediators and identified 

two novel targets, TNFSF12 and SCARA5. Second, to understand the genetic determinants 

of an emerging mitochondrial biomarker in mtDNA-CN, we first devised a novel pipeline 

for array-based estimation tailored for large, multiethnic biobank studies. Third, using this 

pipeline, we carried out the largest and most comprehensive genetic association study for 

mtDNA-CN to date and increased the number of known loci by 40%. Fourth, we used a 

https://biorender.com/
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subset of identified loci as genetic instruments to approximate genetically determined 

mtDNA-CN levels and provided the first MR evidence supporting causal roles for low 

mtDNA-CN in potentiating elevated risk for dementia and worse post-stroke outcomes. 
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APPENDIX A:  

Supplementary Data for Study 1 
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APPENDIX B:  

Supplementary Data for Study 2 
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Supplementary Results I:  

Development of the Automatic Mitochondrial Copy (AutoMitoC) Number Pipeline 

Background & Premise Underlying Array-based mtDNA-CN Estimation 

While SNP array data is intended for highly multiplexed determination of 

genotypes, the raw probe signal intensities used for genotypic inference can also be co-

opted to derive estimates of mtDNA-CN. Determining genotypes for a sample at a given 

variant site relies on contrasting hybridization intensities of allele-specific oligonucleotide 

probes and then assigning membership to the most probable genotype cluster based on 

intensity properties (S1. Figure 1). Variation in intensities within each genotyping cluster 

can also be co-opted to deduce variations in copy number. A commonly used metric of 

probe intensity is the “log2ratio” (L2R), which denotes log2(observed intensity / expected 

intensity), where the expected intensity is defined as the median signal intensity for a probe 

conditional on each genotype cluster.  

 

S1. Figure 1. Contrast in the intensities of mitochondrial probes X and Y discriminate 

genotypes. Intra-cluster variation in signal intensities may reflect mtDNA-CN. (Adapted 

from Lane et al.(Lane 2014))  
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Existing Methodology: The MitoPipeline 

The “MitoPipeline” is a framework for estimating mtDNA-CN from array-based 

L2R (aka LRR) values developed by Lane et al. (2015) (Lane 2014; Zhang et al. 2017). An 

overview of the MitoPipeline is described in S1. Figure 2. To briefly summarize: (i) 

autosomal and mitochondrial L2R values are first corrected for GC waves; (ii) a high-

quality set of mitochondrial and autosomal markers are selected largely based on visual 

inspection of genotype clusters and BLAST alignment for non-homologous sequences; (iii) 

principal component analysis (PCA) of  at least 40,000 autosomal markers is conducted to 

capture batch effects; (iv) finally, mtDNA-CN is estimated based on median MT L2R value 

for each sample and then corrected for background noise through residualization of top 

autosomal PCs.   

 

S1. Figure 2. Overview of the MitoPipeline (Source: http://genvisis.org/MitoPipeline/) 

(Lane 2014). 

http://genvisis.org/MitoPipeline/
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The MitoPipeline has proven to be effective in estimating mtDNA-CN (correlation 

coefficient R ~ 0.5 with direct qPCR estimates) as evidenced by multiple epidemiological 

studies employing this method (Ashar et al. 2017; Fazzini et al. 2019; Zhang et al. 2017). 

Firstly, visual inspection of MT probe intensity clusters is recommended to remove probes 

with poorly differentiated genotype clusters. However, this process is time-consuming 

(especially for biobank studies that are genotyped across thousands of batches); 

determination of probes with “good” vs “bad” genotype clustering is subjective; and 

guidance is only provided for adjudication of polymorphic but not monomorphic markers 

which may still be informative. Secondly, in consideration of nuclear and mitochondrial 

sequences with significant sequence similarity due to past and recurrent transposition of 

mitochondrial sequence into the nuclear genome, also known as “NUMTs” (Simone et al. 

2011), the MitoPipeline recommends exclusion of MT probes with greater than 80% 

sequence similarity to the nuclear genome. While determining sequence homology of 

probes to the nuclear genome may have been feasible with older microarrays wherein probe 

sequences were often publicized, for many contemporary arrays, including the UKBiobank 

array, such information is not readily available. Thirdly, LD-pruning of common autosomal 

variants is required to ascertain a set of independent genetic variants, but implementation 

of this approach within ethnically diverse studies becomes more complex since genetic 

independence is ancestry-dependent. Under the MitoPipeline framework, each ethnicity 

warrants a unique set of common variants, which not only adds to computational burden 

but also creates an additional source of variability in terms of performance of the method 

between ethnicities. 
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Proposed Methodology: AutoMitoC 

Therefore, we developed a new array-based mtDNA-CN estimation method, which 

we have dubbed the “AutoMitoC” pipeline, which incorporates three key amendments: (i) 

Autosomal signal normalization utilises globally rare variants in place of common variants 

which confers advantages in terms of both speed and portability to ethnically diverse 

studies, (ii) cross-hybridizing probes are identified by assessing evidence for cross-

hybridization via association of signal intensities (rather than using genotype association 

and identification of homologous sequences through BLAST alignment), and (iii) the 

primary estimate of mitochondrial (MT) signal is ascertained using PCA as opposed to 

using the median signal intensity of MT probes. The rationale underlying these 

amendments are described in detail in the subsequent sections. An overview of the 

AutoMitoC pipeline is provided in S1. Figure 3. 
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S1. Figure 3. Overview of the AutoMitoC Pipeline. 

 

Select rare autosomal variants  

Call rate > 0.95; MAF < 0.01  

Initial correction of autosomal and MT L2R 
values 

Select # of top PCs equivalent to ~70% total variance in autosomal L2R 

 Detection and removal of cross-hybridizing autosomal probes 

Remove autosomal probes whose corrected L2R values exhibit correlation 
with mitochondrial intensity or gender (r>0.05) 

Top MT PC is taken as mtDNA-CN estimate 

Standardize MT PC (mean=0; sd=1) 

Autosomal Log 2 Ratio (L2R) values PCA1 

Corrected MT probe L2R values 

          Non-cross-hybridizing autosomal probes 

Correct mitochondrial L2R values using finalized autosomal 
 

Select # of top PCs equivalent to ~70% variance in autosomal L2R 

PCA2 

PCA3 
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Development of AutoMitoC in the UKBiobank study  

 To develop the AutoMitoC pipeline we used genetic datasets from the large 

UKBiobank prospective cohort study which includes approximately half of a million UK 

residents recruited from 2006 to 2010 in whom extensive genotypic and phenotypic 

investigations have been and continue to be performed (Sudlow et al. 2015). The size, 

breadth, and depth of such investigations makes this a rich resource for both 

methodological development and medical research. All UKBiobank data was accessed as 

part of application ID: 15255, “Identification of the shared biological and 

sociodemographic factors underlying cardiovascular disease and dementia risk”. Two main 

genetic datasets from the UKBiobank were incorporated in the development of AutoMitoC. 

Firstly, CNV log2r (L2R) values derived from genetic arrays (i.e. normalized array probe 

intensities) for 488,264 samples were downloaded using the ukbgene utility, and their 

corresponding genotype calls (data field: 22418) were downloaded with gfetch. Secondly, 

exome alignment maps (EXOME FE CRAM files and indices; data fields 23163 & 23164) 

from the first tranche 49,989 samples released in March, 2019 were downloaded with the 

“ukbfetch” utility. L2R values were used to derive AutoMitoC mtDNA-CN estimates. For 

whole-exome sequencing data, Samtools idxstats was used to derive the number of 

sequence reads aligning to mitochondrial and autosomal genomes, from which an estimate 

of mtDNA-CN was derived according to the procedure by Longchamps et al. (2019) 

(Longchamps 2019); these complementary WES-based mtDNA-CN estimates served as a 

comparator to benchmark AutoMitoC performance.  
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Initial quality control of 488,264 samples and 784,256 directly genotyped variants 

was executed in PLINK following that of the Mitopipeline (i.e. sample call rate > 0.96; 

variant call rate > 0.98; HWE p-value > 1x10-5; PLINK mishap P-value > 1x10-4; genotype 

association with sex p-value > 0.00001; LD-pruning r2 < 0.30; MAF > 0.01) (Purcell et al. 

2007). Variants within 1 Mb of immunoglobulin, T-cell receptor genes, and centromeric 

regions were removed. After this quality control procedure, 466,093 samples and 86,677 

common variants remained. Next, genomic waves were corrected according to Diskin et 

al. (2008) using the PennCNV “genomic_wave.pl” script 

(https://github.com/WGLab/PennCNV/blob/master/genomic_wave.pl) (Diskin et al. 2008; 

Wang et al. 2007). Samples with high genomic waviness (L2R SD > 0.35) before and after 

GC-correction were removed resulting in 431,501 samples with array L2R values 

corresponding to 86,677 common autosomal variants. Lastly, we excluded samples 

representing blood cell count outliers as per Longchamps et al. (2019) which led to 395,781 

participants (Longchamps 2019). Finally, we took the intersection of European samples 

with both suitable array and whole-exome sequencing data resulting in a final testing 

dataset of 34,436 European participants. To evaluate the possibility of replacing common 

autosomal variant signal normalization with rare variants, we also analyzed a set of 79,611 

variants with a MAF<0.01.  

Background correlation between autosomal & MT signal intensities 

Inference of relative mitochondrial DNA copy number (mtDNA-CN) from array 

data consists of determining the ratio of mitochondrial to autosomal probe signal intensities 

(or normalized L2R values) within each sample. Technical (e.g. batch and plate effects) 

https://github.com/WGLab/PennCNV/blob/master/genomic_wave.pl
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and latent sample factors confound raw signal intensities for reasons unrelated to DNA 

quantity. Such confounders induce strong cross-genome correlation, and therefore, a 

necessary first step is to remove this background noise from autosomal and mitochondrial 

probe intensities.  

Indeed, even after correcting autosomal L2R values for genomic waves, we 

observed significant correlation between individual autosomal probe intensities and the 

median sample intensity across the 265 mitochondrial 2 (S1. Figure 4A). The extent of 

cross-genome intensity correlation varied based on minor allele frequency (MAF), with 

rare autosomal variants (MAF<0.01; M=79,611) showing the strongest correlation. We 

postulate that intensity properties for rare variants, which have a higher prevalence of 

homozygous genotypes, more strongly resemble those for mitochondrial genotypes, which 

are predominantly homoplasmic. On this basis, we only use rare autosomal variants to 

represent autosomal signal. While this approach contrasts with the Mitopipeline, which 

utilises common genetic variants to represent autosomal signal, restricting autosomal signal 

normalization to rare variants confers three major advantages while maintaining the same 

level of concordance with WES estimates (Rcommon=0.50 ; Rrare=0.49). First, this allows for 

further streamlining of the pipeline as this precludes the necessity for common variant 

filters, such as Hardy Weinberg equilibrium or LD-pruning. Second, we show that fewer 

principal components (PCs) are necessary to capture the same proportion of total variance 

in signal intensities with rare as opposed to common variants. Approximately 70% of the 

total variance in rare autosomal intensities was explained by 120 PCs, whereas the same 

proportion of variance in common autosomal intensities would necessitate more than 1000 
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PCs (S1. Figure 4B). In the UKBiobank, PCs were derived via the eigendecomposition of 

the empirical covariance matrix conducted in Python 3.6, using NumPy and SciPy (Harris 

et al. 2020; Virtanen et al. 2020). 

Third, the set of autosomal markers used in deriving mtDNA-CN remains independent from 

the set of common autosomal variants analyzed in subsequent GWAS for mtDNA-CN. 

Effectively, this ensures that common autosomal variants evaluated for association with 

mtDNA-CN in downstream GWAS analyses are not directly incorporated into autosomal 

signal normalization, which could otherwise attenuate GWAS signals.  

A B    

S1. Figure 4. (A) Histogram illustrating the square of the Pearson correlation coefficient 

(R2) of autosomal GC-corrected L2R values with median mitochondrial signal intensity 

stratified by MAF categories. (B) Cumulative variance explained by inclusion of top 

eigenvectors for sets of common (MAF>0.01; M=86,677) and rare (MAF<0.01; 

M=79,611) autosomal probe sets.  

Empirical Detection of off-target probes  
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S1. Figure 5. Distribution of log10 transformed coefficients of determination (R2) from the 

association between autosomal probe intensities vs. median mitochondrial signal with 

(blue) or without (red) correction for background noise (i.e. 120 autosomal PCs). The 

dashed vertical line represents the threshold corresponding to “moderate” correlation 

(|R|>0.05 or R2>0.0025), which is used to remove outlying probes that are associated with 

mitochondrial signal. Without correction for top PCs, the most autosomal probes exhibit 

some correlation with mitochondrial signal.  

After adjustment for 120 autosomal PCs (approximating the elbow of the variance 

explained curve), there persisted a smaller subset of autosomal probes that were 

significantly correlated with median MT intensity (S1. Figure 5). We hypothesized that 

such probes either (i) cross-hybridize with the MT genome (i.e. lie within nuclear 

mitochondrial DNA (NUMT) regions) or (ii) corresponded to genetic loci involved in 

regulation of mtDNA-CN. As an illustration, S1. Table 1 conveys characteristics of the 10 

most strongly correlated variants. Four of the top 10 probes were located within 1Mb of a 

NUMT region, and in all four cases, the sign of the correlation coefficient was negative 
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which might reflect interference of autosomal signal with increasing mtDNA-CN. An 

additional 3 probes corresponded to variants within genes that were implicated in 

mitochondrial disorders or regulation of mitochondrial processes (S1. Table 1).  

S1. Table 1. Characteristics of top 10 autosomal probes whose adjusted intensities correlate 

with median mitochondrial signal. 

Autosomal 

Probe ID 

Genomic 

Coordinates 

Intensity R 

(Auto vs. Mito) 

Comment 

rs68130461 17:22024892 -0.20 HSA_NumtS_508_b2 

Affx-

80229644    

6:43484921 -0.11 HSA_NumtS_239_b1 (+25 Kb) 

rs35201453   14:22783111 -0.09 NA 

rs41267813 6:160998199 -0.08 HSA_NumtS_261_b1 (-742 Kb) 

rs117507044   13:19958310 -0.08 NA 

rs113200742    6:25272561 -0.08 HSA_NumtS_236_b1 (-324 Kb) 

rs201397731    1:161168270 0.08 NDUFS2 Coding Variant 

(gene causes Mitochondrial 

Complex I Deficiency) 

rs138167117  17:65739626 0.08 NA 

rs138656762 19:36330320 0.08 NPHS1 pathogenic variant  

(causes Finnish Nephrotic 

syndrome, characterized by 

mitochondrial dysfunction in 

kidneys) 

rs117116233 19:8535980 -0.08 HNRNPM intronic variant  

(putative regulator of 

mitochondrial processes) 

 

 We further explored whether there was evidence for cross-hybridization between 

autosomal SNPs and sex chromosomes by regressing adjusted autosomal probe intensities 

with reported male status. Generally, correlations between autosomal intensities and sex 

were stronger than those with MT intensities, suggesting that cross-hybridization of 

autosomal probes to sex chromosomes is more pronounced. For the top 10 sex-associated 



 

 

 

190 

probes, we performed BLASTn alignment against the human reference genome (GRCh38) 

using 30 bases surrounding each probe (S1. Table 2) (Altschul et al. 1990). All probes had 

at least one flanking sequence with near-perfect (> 97%) sequence identity to a sex 

chromosome. For these 10 probes, the sign of the correlation between autosomal intensity 

and male status was perfectly consistent with homology to X or Y chromosomes, thus 

supporting the hypothesis that such probes cross-hybridized to sex chromosomes.  

S1. Table 2. Characteristics of top autosomal probes associated with male sex status. 

Autosomal 

Probe ID 

Genomic 

Coordinates 

Intensity R  

(Auto vs. 

Male Sex) 

Flank  

(30 BP) 

Chromosome  Sequence 

Similarity

(E-value) 

Affx-89012246    7:141336763 0.67 Right Y 97% 

(9x10-6) 

rs138167117 17:65739626 -0.60 Left X 100% 

(3x10-8) 

rs147585440 18:47310224 -0.60 Left X 100% 

(3x10-8) 

Affx-80264600 21:38555134 -0.59 Left X 100% 

(3x10-8) 

Affx-80229637 6:43470088 -0.59 Left X 100% 

(3x10-8) 

rs56275071 10:88822514 -0.57 Left X 97% 

(9x10-6) 

rs117507044 13:19958310 0.57 Left Y 100% 

(3x10-8) 

Affx-89008518 7:140501303 -0.57 Left X 100% 

(3x10-8) 

Affx-80224967 4:84380892 -0.57 Right X 100% 

(3x10-8) 

Affx-89005068 7:140501288 -0.55 Left X 100% 

(9x10-6) 

 

Inclusion of autosomal probes with evidence of off-target hybridization to the 

mitochondrial genome or sex chromosomes is problematic. In the former scenario, 
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misattribution of autosomal as mitochondrial signal may reduce the effectiveness of 

normalization. In the latter scenario, inadvertent adjustment for sex through retention of 

cross-hybridizing autosomal probes may occur if such probes explain substantial variance 

in autosomal probe intensities and this is particularly problematic given that mtDNA-CN 

has been robustly shown to differ between genders in epidemiological studies. In 

preliminary investigations where sex-associated probes were retained, we noticed that 

several top PCs that perfectly tagged gender. Hypothetically, had these PCs been retained 

and used for correction of mitochondrial signal, then the final mtDNA-CN estimate would 

have been inadvertently corrected for gender. Therefore, we removed autosomal probes 

exhibiting moderate correlation (|R| >0.05) with sex (907; 1.14%) or median mitochondrial 

intensity (193; 0.24%) and then recalculated top autosomal PCs.  

PCA-based approach improves concordance with complementary estimates  

 After correcting MT probes using the updated set of 120 autosomal L2R PCs, we 

adopted the Mitopipeline’s approach for estimating mtDNA-CN and calculated the median 

of corrected MT L2R values to denote an individual’s final mtDN A-CN estimate. Using 

this median-based approach, array mtDNA-CN estimates demonstrated significant 

correlation with WES mtDNA-CN estimates (R=0.33; P < 2.23x10-308). However, we 

found that performing PCA across all corrected MT L2R values and then extracting the top 

MT PC for each sample as the final mtDNA-CN estimate resulted in stronger correlation 

with WES (R=0.49; P < 2.23x10-308).  

Independent validation in an ethnically diverse sample  
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We additionally validated the AutoMitoC pipeline by deriving array-based 

mtDNA-CN estimates in the INTERSTROKE study and comparing these with parallel 

qPCR-based measurements, the current gold standard for measuring mtDNA-CN. 

INTERSTROKE is an international case-control study of stroke including 26,526 

participants from 32 countries and 142 centers(O’Donnell et al. 2010). Blood samples have 

been collected for a subset of approximately 12,000 individuals, of which 9,311 have been 

successfully genotyped using the Axiom Precision Medicine Research Array (PMRA r3). 

A further subset of 5,791 samples with both suitable array genotypes have undergone qPCR 

measurement of mtDNA-CN using the plasmid-normalized protocol from Fazzini et al. 

(2019). Within INTERSTROKE, concordant findings to UKB-based analyses were 

observed favouring the PC-based (r=0.64; P< 2.23x10-308) over the median-based approach 

(R=0.60; P < 2.23x10-308). Furthermore, INTERSTROKE is ethnically diverse thus 

enabling an assessment of the robustness of AutoMitoC across genetic ancestries (S1. 

Figure 6). Correlations between array and qPCR mtDNA-CN estimates were comparable 

for individuals of European (N=2431), Latin American (N=1704), African (N=542), South 

East Asian (N=471), South Asian (N=186), and other ethnic groups (N=360; S1. Figure 6). 

Bland Altman plots also illustrate the extent of agreement between methods (S1. Figure 7). 

For every ethnicity, 95% limits of agreement intervals were smaller than expected by 

chance. Lastly, while all analyses hitherto followed the Mitopipeline condition of requiring 

> 40,000 autosomal variants for normalization, we observed comparable performance using 

even 1,000 random rare autosomal probes (r2=0.60; P<5x10-300) for signal normalization 
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which reduced the runtime from several hours to less than 10 minutes for these 5,791 

samples. 

 

S1. Figure 6. Validation of AutoMitoC in an ethnically diverse cohort with qPCR-based 

estimates. Both qPCR and array-based mtDNA-CN estimates are presented as standardized 

units (mean=0; SD=1). The sample consisted of 2431 Europeans, 1704 Latin Americans, 

542 Africans, 471 South East Asians, 186 South Asians, and 360 participants of other 

ancestry. Correlations between array and qPCR estimates were comparable for European 

(r=0.60; P=2.7x10-238), Latin American (r=0.70; P=3.9x10-251), African (R=0.66; 

P=1.8x10-68), South East Asian (r=0.59; P=6.2x10-46), South Asian (r=0.53; P=4.2x10-15), 
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and other (r=0.72; P=5.4x10-59) ethnic groups. The blue line indicates the linear trendline 

and the surrounding shaded region indicates the 95% confidence interval for the trendline.  

 

S1. Figure 7. Bland Altman plots illustrating the extent of agreement between array and 

qPCR measurements. The black solid line indicates perfect agreement. The dashed blue 

line indicates the mean difference (or bias) between estimates. The horizontal red line 

corresponds to the 95% upper and lower limits of agreement (U/L LOA) for the observed 

data. The dashed black lines indicate the 95% U/L LOA that is expect under the null for 

two unrelated variables. 

Supplementary Methods 
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*** For all methods and results pertaining to the AutoMitoC pipeline, please see 

supplementary results I.  

The UKBiobank study  

The UKBiobank is a prospective cohort study including approximately 500,000 UK 

residents (ages 40-69 years) recruited from 2006-2010 in whom extensive genetic and 

phenotypic investigations have been and continue to be done(Sudlow et al. 2015). All 

UKBiobank data reported in this manuscript were accessed through the UKBiobank data 

showcase under application # 15525. All following analyses described in this 

supplementary material involve the use of genetic and/or phenotypic data from consenting 

UKBiobank participants. 

Genetic Analysis of Common Variants 

Data acquisition and quality control  

UKBiobank samples were genotyped on either the UK Biobank Array (~450,000) 

or the UK BiLEVE array (~50,000) for approximately 800,000 variants (Bycroft et al. 

2018). Further imputation was conducted by the UKBiobank study team using a combined 

reference panel of the UK10K and Haplotype Reference Consortium datasets. Imputed 

genotypes (version 3) for 488,264 UKBiobank participants were downloaded through the 

European Genome Archive (Category 100319). Samples were removed if they were 

flagged for any of the UKBiobank-provided quality control annotations (Resource 531; 

“ukb_sqc_v2.txt”) for high ancestry-specific heterozygosity, high missingness, 

mismatching genetic ancestry, or sex chromosome aneuploidy 

(“het.missing.outliers”,“in.white.British.ancestry.subset”, 
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“putative.sex.chromosome.aneuploidy”). Samples were also removed if their submitted 

gender did not match their genetic sex or if they had withdrawn consent at the time of 

analysis. Variant quality control consisted of removing variants that had low imputation 

quality (INFO score < 0.30), were rare (MAF < 0.005), or were in Hardy Weinberg 

Disequilibrium (HWE P < 1x10-10). The HWE test was conducted within a subset of 

unrelated individuals for each ethnic strata, though all related individuals were retained for 

subsequent GWAS analysis. Lastly, in special consideration of mtDNA-CN as the GWAS 

phenotype, we also removed variants within “NUMTs”, which refer to regions of the 

nuclear genome that exhibit homology to the mitochondrial genome due to past 

transposition of mitochondrial sequences. Accordingly, NUMTs represent a specific 

confounder of mtDNA-CN GWAS analyses which may lead to false positive associations. 

NUMT boundaries were obtained from the UCSC NumtS Sequence (numtSeq) track, 

which is based on the Reference Human NumtS curated by Simone et al. (2011) (Simone 

et al. 2011). All sample and variant quality control of imputed genotypes were executed 

using qctools and resultant bgen files were indexed with bgenix. Smaller ethnic groups with 

similar genetic ancestry were consolidated; individuals self-reporting as “African” or 

“Caribbean” were combined into a larger “African” stratum and individuals self-reporting 

as “Indian” or “Pakistani” were combined into a “South Asian” stratum. After quality 

control, 359689 British, 10598 Irish, 13189 Other White, 6172 South Asian, and 6133 

African samples passing quality control also had suitable array-based mtDNA-CN 

estimates for subsequent GWAS analyses.  

Genome-wide association study (GWAS)  
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GWAS were initially conducted in an ethnicity-stratified manner. The number of 

variants tested for association with mtDNA-CN varied for British (M=10,728,525), Irish 

(M=10,707,537), Other White (M=10,894,497), South Asian (M=11,350,981), and African 

(M=18,981,896) study participants, respectively. GWAS was performed using the 

REGENIE framework which consists of two steps (Mbatchou et al. 2020). In step 1, 

mtDNA-CN was predicted using a ridge regression model fit on a set of high-quality 

genotyped SNPs (MAF>0.01, MAC>100, genotype and sample missingness above 10%, 

and passing HWE (p>10−15)) across the whole genome in blocks of 1000 SNPs. In step 2, 

the linear regression model was used to test the association of all SNPs adjusting for age, 

age2, sex, chip type, 20 genetic principal components, and blood cell counts (white blood 

cell, platelet, and neutrophil counts), and conditional on the model from step 1.  

Blood cell counts were determined for blood specimen collected at the initial 

assessment visit using Beckman Coulter LH750 analyzers 

(https://biobank.ndph.ox.ac.uk/showcase/showcase/docs/haematology.pdf). Information 

on blood cell counts was retrieved from the UKBiobank data showcase. Individuals with 

missing values for any blood cell counts (~2.5%) were removed from any subsequent 

analysis involving blood cell counts. Quality control of blood counts was done following 

the same procedure as Longchamps et al. (2019) (Longchamps 2019). Except for platelet 

counts, all blood cell counts were log-transformed and samples exhibiting outlying values 

were removed (~4% samples). Lastly, values were standardized to have a mean of 0 and 

standard deviation of 1.   

https://biobank.ndph.ox.ac.uk/showcase/showcase/docs/haematology.pdf
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After ethnicity-specific GWAS were performed, results were combined through 

meta-analysis using METAL (Willer, Li, and Abecasis 2010). European (N=383,476) and 

trans-ethnic (N=395,718) GWAS meta-analyses were performed. We found that results 

from the trans-ethnic meta-analyses strongly resembled that of the European meta-analysis 

due to the high proportion of Europeans (97%). Accordingly, we report results from the 

European meta-analysis as the primary GWAS. To summarize statistical associations, 

Manhattan plots and quantile-quantile plots were generated by uploading summary 

statistics into the locus zoom web platform (https://my.locuszoom.org/) (Pruim et al. 2010). 

LD-score regression was performed to calculate the LD-score intercept by uploading 

GWAS results to the LDhub test center (http://ldsc.broadinstitute.org/) (Bulik-Sullivan et 

al. 2015). As per the instructions, all variants within the MHC region on chromosome 6 

were removed prior to uploading. Annovar (version date 2020-06-07) was used to 

functionally annotate genome-wide significant loci based on their proximity (+/- 250kb) to 

genes (RefSeq), predicted effect on amino acid sequence, allele frequency in external 

datasets (1000Genomes), clinical pathogenicity (Clinvar), and in silico deleteriousness 

(CADD), and eQTL information (GTEx v8) (Abecasis et al. 2012; GTEX 2014; Landrum 

et al. 2015; Rentzsch et al. 2019).  

NUMT Sensitivity Analyses  

To assess whether genome-wide significant associations could be explained by 

cryptic mitochondrial pseudogenes (NUMTs), we performed sensitivity analyses as per 

Nandakumar et al. (2021)f. The MT genome was divided into thirds, and AutoMitoC 

estimates were rederived for each region (MT:1-6425; MT:6526-11947; MT:11948-16569) 

https://my.locuszoom.org/
http://ldsc.broadinstitute.org/
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using the corresponding MT variants belonging to these three consecutive regions. 

Association testing was performed for each region using REGENIE. For a given variant, if 

at least one region-based analysis yielded a non-significant association (P<0.05), we 

considered this as evidence of NUMT interference.  

Fine-mapping of GWAS signals 

We followed a similar protocol to Vuckovic et al. (2020) for fine-mapping mtDNA-

CN loci (Vuckovic et al. 2020). All 9,602 genome-wide significant variants were 

consolidated into genomic blocks by grouping variants within 250kb of each other, yielding 

72 distinct genomic blocks. LDstore was used to compute a pairwise LD correlation matrix 

for all variants within each block and across all samples included in the European GWAS 

meta-analysis (Benner et al. 2017). For each genomic block, FINEMAP was used to 

perform stepwise conditional regression, leading to 80 conditionally independent variants 

at genome-wide significance (Benner et al. 2016). The number of conditionally 

independent genetic signals per genomic block was used to inform the subsequent fine-

mapping search parameters. Finally, the FINEMAP random stochastic search algorithm 

was applied to derive 95% credible sets constituting candidate causal variants that jointly 

contributed to 95% (or higher) of the posterior inclusion probabilities (Benner et al. 2016).  

Mitochondrial expression quantitative trait loci (mt-eQTL) 

Among our GWAS hits, we searched for mt-eQTLs using information from Ali et 

al. (2019), “Nuclear genetic regulation of the human mitochondrial transcriptome” (Ali et 

al. 2019). All variants in both Tables 1 and 2 were queried in the mtDNA-CN summary 
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statistics. When mt-eQTLs also had reported effect estimates, the consistency in direction-

of-effects between mt-eQTL and mtDNA-CN associations was reported (S2. Table 3).  

Gene prioritization & pathway analyses 

The Data-driven Expression-prioritized Integration for Complex Traits (DEPICT) 

v.1.1 tool was used to map mtDNA-CN loci to genes based on shared co-regulation of gene 

expression (Pers et al. 2015). Genome-wide significant variants from the European GWAS 

meta-analysis were “clumped” into independent loci using PLINK “--clump-p1 5e-8 --

clump-kb 500 --clump-r2 0.05” with LD correlation matrix derived from 1000Genomes 

Europeans (Purcell et al. 2007). DEPICT was subsequently run on independent SNPs using 

default settings. DEPICT identified 91 genes in total at a FDR of 0.05. Of the 91 genes, 4 

non-coding genes were excluded from subsequent analyses for lack of a match in the 

GeneMANIA database(Warde-Farley et al. 2010). The excluded genes include a 

pseudogene (PTMAP3), an intronic transcript (ALMS1-IT1), and 2 long non-coding RNAs 

(SNHG15, RP11-125K10.4). The remaining 87 DEPICT-prioritized genes were uploaded 

to the GeneMANIA web platform (https://genemania.org/), which mines publicly available 

biological datasets to identify additional related genes based on functional associations 

(genetic interactions, pathways, co-expression, co-localization and protein domain 

homology). Based on the combined list of DEPICT and GeneMANIA identified genes, a 

network was formed in GeneMANIA maximizing the connectivity between all input genes 

using the default “Assigned based on query gene” setting to weight the network. Functional 

enrichment analysis was then performed to identify overrepresented Gene Ontology (GO) 

terms among all network genes (Gene and Consortium 2000). All network genes with at 

https://genemania.org/
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least one GO annotation were compared to a background comprising all GeneMANIA 

genes with GO annotations.  

Mitochondrial annotation-based analyses 

To complement the previous analyses, we labelled prioritized genes with 

MitoCarta3 annotations and performed subsequent statistical enrichment analyses (Rath et 

al. 2021). MitoCarta3 is an exquisite database of mitochondrial protein annotations, which 

draws from mass spectrophotometry and GFP colocalization experiments of isolated 

mitochondria from 14 different tissues, as well as a plethora of other sources including 

literature review, to assign all human genes statuses indicating whether the corresponding 

proteins are expressed in the mitochondria or not. We tested whether prioritized genes were 

enriched for the mitochondrial proteome by using a binomial test in R. The number of 

“trials” was set to the total number of DEPICT and GeneMANIA-prioritized genes (107); 

the number of “successes” was set to the aforementioned gene subset that were labelled as 

mitochondrial proteins by MitoCarta3 (27); finally, the expected probability was set to the 

number of nuclear-encoded MitoCarta3 genes divided by the total number of genes 

(1120/18922). Furthermore, a t-test was used to compare mean PGC-1A induced fold 

change for the 27 genes as compared to the mean PGC-1A induced fold change for all 1120 

nuclear MitoCarta3-annotated genes. MitoCarta3 genes with missing values were excluded 

from this analysis. Lastly, the 27 genes were labelled based on MitoCarta3 

“MitoPathways”. Only the top level pathway (i.e. parent node) was ascribed to each gene 

within the main text though detailed pathway annotations are available S2. Table 5.  

Genetic Analysis of Rare Variants  



 

 

 

202 

Data acquisition and quality control 

Population-level whole-exome sequencing (WES) variant genotypes (UKB data 

field: 23155) for 200,643 UKBiobank participants corresponding to 17,975,236 variants 

were downloaded using the gfetch utility. These data represent the second tranche of WES 

data released by the UKBiobank and differs from the first tranche (~50K samples) which 

was used for the development of the AutoMitoC pipeline. Quality control of WES data was 

conducted as follows. First, 11 samples who withdrew consent by the time of analysis were 

removed. Second, 83,700 monomorphic variants were removed. Third, 369,215 variants 

with non-missing genotypes present in less than 90% of samples were removed. Fourth, 2 

samples with call rates less than 99% were removed. Fifth, 18 samples exhibiting 

discordance between genetic and reported sex were removed. Sixth, through visual 

inspection of scatterplots of the first two genetic principal components, 3 outlying samples 

whose locations strongly departed from their putative ethnicity cluster were removed. 

Seventh, 35,317 variants deviating from Hardy Weinberg Equilibrium were removed. 

Eighth, 12,765 samples belonging to smaller ethnic groups with less than 5000 samples 

(South Asian=3395; African=3168; Other=6,202) were removed. Ninth, we selected for a 

maximal number of unrelated samples and excluded 14,156 samples exhibiting third degree 

or closer relatedness. Finally, 12,394,404 non-coding variants were removed, and 

5,176,300 protein-altering variants (stopgain, stoploss, startloss, splicing, missense, 

frameshift and in-frame indels) were retained in 173,688 samples.  

Exome-wide association testing to identify rare mtDNA-CN loci 
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Of the 173,688 individuals passing quality control, 147,740 had non-missing 

mtDNA-CN estimates. Further variant inclusion criteria were implemented: variants that 

were rare (MAF < 0.001), non-synonymous, and predicted to be clinically deleterious by 

Mendelian Clinically Applicable Pathogenicity (M-CAP) v.1.4 scores (or were highly 

disruptive variant types including frameshift indel, stopgain, stoploss, or splicing) were 

retained (Jagadeesh et al. 2016). Herein, such variants are referred to as “rare variants” for 

simplicity. For each gene, rare allele counts were added per sample. 18,890 genes with a 

total minor allele count of least 10 were subsequently analyzed (exome-wide significance 

P < 0.05/18890 = 2.65 x10-6). Linear regression was conducted using mtDNA-CN as the 

dependent variable and the rare alleles counts per gene as the independent variable. The 

same set of covariates used in the primary GWAS were also employed in this analysis. 

Phenome-wide association testing for rare SAMHD1 mutation carrier status 

To identify disease phenotypes associated with carrying a rare SAMHD1 mutation, 

we maximized sample size for phenome-wide association testing by analyzing the larger 

set of 173,688 WES samples (with or without suitable mtDNA-CN estimates). Disease 

outcomes were defined using the previously published “PheCode” classification scheme to 

aggregate ICD-10 codes from hospital episodes (field ID 41270), death registry (field ID 

40001 and 40002), and cancer registry (field ID 40006) records(Denny et al. 2013; Wu et 

al. 2019). Further manual review was performed to exclude cases of sex-specific outcomes 

that may be erroneously attributed to the opposite genetic sex. Logistic regression was 

applied to test the association of SAMHD1 mutation carrier status versus 771 PheCodes 

(phenome-wide significance P < 0.05/771 = 6.49x10-5) with a minimal case sample size of 
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300 (Wei et al. 2017). The same set of covariates used in the primary GWAS were also 

employed in this analysis. 

Mendelian Randomization Analysis 

Disease Outcomes 

To assess evidence for a causal role of mtDNA-CN on mitochondrial disorder-

related traits, we first defined a list of testable disease outcomes related to mitochondrial 

disorders. 36 clinical manifestations from a review paper by Gorman et al. (2016) were 

cross-referenced to GWAS traits analyzed by the FinnGen consortium (Feng et al. 2020; 

Gorman et al. 2016). The FinnGen consortium is a collaborative research entity aggregating 

genomic data from 9 Finnish biobanks with phenotypic data from electronic health records 

(https://finngen.gitbook.io/documentation/data-description#summary-association-

statistics). FinnGen GWAS (v4) have been performed for 176,899 participants and 2,444 

disease endpoints using the SAIGE method which entails a logistic mixed model with 

saddle point approximation to account for imbalanced case-control ratios(Zhou et al. 2018). 

Of these 2,444 disease endpoints, 10 traits corresponded to one of the 36 clinical 

manifestations of mitochondrial disease and had a case prevalence greater than 1% in 

FinnGen including type 2 diabetes (N=23,364), mood disorder (N=20,288), sensorineural 

hearing loss (N=12,550), cerebrovascular disease (N=10,367), migraine (N=6,687), 

dementia (5,675), epilepsy (N=4,558), paralytic ileus and intestinal obstruction (N=2,999), 

and cardiomyopathy (N=2,342). Genome-wide summary statistics were downloaded for 

these 10 traits, from which effect estimates and standard errors were used in subsequent 

https://finngen.gitbook.io/documentation/data-description#summary-association-statistics
https://finngen.gitbook.io/documentation/data-description#summary-association-statistics
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Mendelian randomization analyses to define the effect of selected genetic instruments on 

disease risk. 

Genetic Instrument Selection 

First, genome-wide significant variants from the European GWAS meta-analysis of 

mtDNA-CN were chosen (N=383476). Second, we matched these variants to the FinnGen 

v4 GWAS datasets (Feng et al. 2020). Third, to enrich for variants that directly act through 

mitochondrial processes, we only retained those within 100kb of genes encoding for 

proteins that localize to the mitochondria based on MitoCarta3 annotations (Rath et al. 

2021). Fourth, we performed LD-pruning in PLINK with 1000Genomes Europeans as the 

reference panel to ascertain an independent set of genetic variants (LD r2 > 0.01), resulting 

in 34 variants (Abecasis et al. 2012; Purcell et al. 2007). Lastly, to mitigate potential for 

horizontal pleiotropy, we further removed variants with strong evidence of acting through 

alternative pathways by performing a phenome-wide search across published GWAS with 

Phenoscanner V2 (Kamat et al. 2019). Variants strongly associated with other phenotypes 

(P<5x10-20) were removed unless the variant was a coding mutation located within gene 

encoding for the mitochondrial proteome (MitoCarta3) or had an established mitochondrial 

role based on manual literature review (Rath et al. 2021). Seven genetic variants were 

removed based on these criteria including rs8067252 (ADAP2), rs56069439 (ANKLE1), 

rs2844509 (ATP6V1G2-DDX39B), rs73004962 (PBX4), rs7412 (APOE), rs385893 (AK3, 

RCL1), and rs1613662 (GP6) (S2. Table 8).  

Mendelian Randomization & Sensitivity Analyses 
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Two sample Mendelian Randomization analyses were performed using the 

“TwoSampleMR” and “MRPRESSO” R packages (Hemani et al. 2018; Verbanck et al. 

2018).  Effect estimates and standard errors corresponding to the 27 genetic variants on 

mtDNA-CN (exposure) and mitochondrial disease phenotypes (outcome) were derived 

from the European GWAS meta-analysis and FinnGen v4 GWAS summary statistics, 

respectively (S2. Table 9). Three MR methodologies were employed including Inverse 

Variance Weighted (primary method), Weighted Median, and MR-EGGER methods. MR-

PRESSO was used to detect global heterogeneity and P-values were derived based on 1000 

simulations. If significant global heterogeneity was detected (P<0.05), a local outlier test 

was conducted to detect outlying SNPs. After removal of outlying SNPs, MR analyses were 

repeated. In the absence of heterogeneity (Egger-intercept P > 0.05; MR-PRESSO global 

heterogeneity P > 0.05), we reported the inverse-variance weighted result. In the presence 

of balanced pleiotropy (MR-PRESSO global heterogeneity P < 0.05) and absence of 

directional pleiotropy (Egger-intercept P > 0.05), we reported the weighted median result. 

In the presence of directional pleiotropy (Egger-intercept P < 0.05), we reported the MR-

EGGER result. We also performed the Steiger directionality test to ensure that a greater 

proportion of variance in mtDNA-CN was explained than risk of the outcome. Finally, to 

replicate the two-sample MR finding using an independent outcome dataset without 

UKBiobank participants, we repeated two-sample MR analyses using the International 

Genomics of Alzheimer’s Disease Consortium (2013) GWAS meta-analysis including 

17,008 cases and 37,154 controls (Lambert et al. 2013). 

Supplementary Results II 
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Supplementary Tables 

S2. Table 1. Annotated genome-wide significant mtDNA-CN loci  

 

 

 
 

S2. Table 2. FINEMAP results for 72 mtDNA-CN loci and 82 independent signals  
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S2. Table 3. Overlap between mtDNA-CN loci and MT-eQTLs (Ali et al., 2019) 

 

S2. Table 4. DEPICT gene prioritization results 
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S2. Table 5. MitoCarta3 annotations for DEPICT and GeneMANIA-prioritized genes 
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S2. Table 6. Rare variant exome-wide association testing for mtDNA-CN loci. Nominally 

significant (P<0.01) results are shown.  
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S2. Table 7. Rare variant SAMHD1 phenome-wide association testing with disease 

status. Nominally significant (P<0.01) results are shown. 

 

 
 

S2. Table 8. Phenoscanner search results for genetic variants initially considered as 

genetic instruments for Mendelian Randomization analysis. 
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S2. Table 9. Mendelian Randomization analyses of mtDNA-CN versus mitochondrial 

disease phenotypes  

 

Supplementary Figures  
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S2. Figure 1. MAF and ethnicity-stratified GWAS quantile-quantile plots. 

S2. Figure 2 (Extended Figures). Locus zoom plots for 72 loci and 82 conditionally 

independent genetic signals. Variants with the highest fine-mapping posterior probability 

are labelled by their genomic coordinates (GRCh37). Pairwise correlation between the lead 

variant and proximal variants were colour-coded based on the 1000Genomes Europeans 

reference panel.  
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S2 Figure 3. Manhattan plot for trans-ethnic GWAS meta-analysis (N=395,781). 

A      B 

         

S2 Figure 4. Correlation between conditionally independent mtDNA-CN loci effect 

estimates derived from European GWAS meta-analyses (x-axes) vs. effect estimates from 

Non-European GWAS (y-axes).  Comparisons for African (A) and South Asian (B) GWAS 

analyses are presented. Of the total 82 conditionally independent signals identified using 
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the European GWAS meta-analysis, 73 and 75 variants were available for comparison in 

African and South Asian GWAS, respectively.  

   A             B 

            

S2. Figure 5. Violin plots showing the distribution of mtDNA-CN for carriers and non-

carriers of (A) SAMHD1 and (B) TFAM rare nonsynonymous and deleterious (MCAP > 

0.025) variants. 
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APPENDIX C:  
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mtDNA-CN measurement in INTERSTROKE 

mtDNA-CN was assayed by the Genetic and Molecular Epidemiology Lab located 

in Hamilton, Ontario, Canada using a plasmid-normalized quantitative Polymerase Chain 

Reaction (qPCR) method developed by Fazzini et al. The qPCR assay is a duplex assay 

that simultaneously amplifies segments of the mitochondrial tRNALeu and the nuclear B2M 

genes. A plasmid construct containing a single copy of both mitochondrial and nuclear 

fragments was amplified to calibrate differences in fluorescent dye intensities used to 

differentiate mitochondrial and nuclear signals. All INTERSTROKE study participants’ 

samples were assayed in duplicate, and any samples demonstrating inconsistent cycle 

thresholds with coefficient of variation greater than 5% were excluded. Four calibrator 

samples were included on each of the qPCR plates to measure assay reproducibility. The 

mean coefficient of variation among these four samples across plates was 6.5%, which is 

consistent with 7% intra-assay variability previously reported for this protocol1. 

Mendelian Randomization Instrument Selection  

Selection of genetic variants was based on a previously described scheme2. First, to 

satisfy the MR “relevance” assumption, we extracted 9602 genome-wide significant (P < 

5x10-8) variants associated with buffy coat mtDNA-CN levels from the UKBiobank 

GWAS. Second, in consideration of the “exclusion restriction” assumption, we removed 

variants located outside of genes (> 100kb from the transcript) encoding for proteins 

localizing to the mitochondria to exclude variants that may act through non-mitochondrial 

pathways, thus resulting in 1701 variants 3. Third, we matched these variants to the 

GISCOME outcome GWAS and retained 1416 shared variants between UKBiobank and 
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GISCOME. Fourth, we performed linkage disequilibrium pruning (1000Genomes 

Europeans LD r2 < 0.01) to achieve an independent set of 33 variants. Fifth, to further 

mitigate potential for horizontal pleiotropy, we performed a phenome-wide search across 

published GWAS with Phenoscanner V2 4 and removed seven variants with strong 

evidence of acting through alternative pathways (P<5x10-20) 3. Ultimately, 26 genetic 

variants remained as suitable genetic instruments.  

Genetic instruments for neutrophil to lymphocyte ratio  

Whole genome model linear regressions were performed using the REGENIE 

program in 340002 British participants from the UKBiobank study (unpublished data)5. 

Genotyped and imputed variants with minor allele frequency > 0.001 and quality INFO 

score > 0.3 were analyzed. Association analyses were adjusted for the following covariates: 

age, age2, sex, 20 ancestry-informative principal components, type of genotyping array and 

assessment centre. Like the other MR analyses, an independent (1000Genomes European 

LD r2 < 0.01) set of genome-wide significant (P<5x10-8) variants were retained to 

approximate genetically determined neutrophil to lymphocyte ratio. Causal effects on 

mRS-based outcomes are expressed in terms of a 1 SD increase in the neutrophil to 

lymphocyte ratio.  

Supplementary Table 

S. Table 1. Association between mtDNA-CN and baseline stroke severity characteristics. 

Analyses of mtDNA-CN as a continuous variable are expressed per 1 SD decrease in 

mtDNA-CN. mtDNA-CN quartile comparisons are expressed with reference to the highest 

(4th) quartile.  
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S. Table 2. Comparison of the association between mtDNA-CN (per 1 SD decrease) and 

1-month post-stroke outcomes versus age (per 1 SD increase) and 1-month post-stroke 

outcomes.  

 

S. Table 3. mtDNA-CN quartile associations with 1-month post-stroke outcomes. Results 

are expressed with reference to the highest (4th) quartile. 
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S. Table 4. Subgroup analyses for mtDNA-CN associations with 1-month post-stroke 

outcomes. Poor functional outcome is defined as 1-month mRS 3-6. Odds ratios are 

expressed per 1 SD decrease in mtDNA-CN.  
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S. Table 5. Net reclassification indices for the addition of mtDNA-CN into logistic 

regression models. Model covariates include age, sex, region, education level (none or 

primary school vs. high school, trade school, college, or university), 2018 World Bank 

country income stratum (high, upper-middle, and lower-middle or low income), household 

income (adjusted for country), primary stroke type (ischemic vs. hemorrhagic stroke) and 

ischemic stroke Oxfordshire Community Stroke Project (OCSP) classification, pre-stroke 

dependency (pre-stroke mRS 3-5 vs. 0-2), Charleson comorbidity index, and stroke risk 

factors (hypertension, diabetes, hypercholesterolemia, atrial fibrillation or flutter, current 

smoker status, and waist to hip ratio), and baseline mRS.  
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S. Table 6. Characteristics of 33 independent genetic variants located within 100kb of 

MitoCarta3-annotated genes considered for MR analyses. A phenoscanner v2 search was 

performed, identifying seven variants strongly associated with other traits (P<5x10-20). 26 

genetic variants were retained as suitable genetic instruments to approximate genetically 

determined mtDNA-CN levels.  
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S. Table 7. Individual effects of MR variants on mtDNA-CN levels (UKBiobank) and 3-

month mRS-based outcomes (GISCOME). Outcomes include ordinal mRS, poor functional 

outcome status (mRS 3-6 vs. 0-2), or mRS 2-6 vs. 0-1. Genetic effects for mtDNA-CN are 

expressed per 1 SD increase in mtDNA-CN levels. Genetic effects for mRS-based 

outcomes are expressed in terms of a log(odds) increase per additional alternative (“alt”) 

allele. Accordingly, a positive beta indicates that the alternative allele increases risk of 

worse stroke outcome and vice versa.  

 

 
 

S. Table 8. Main MR results for the association between genetically determined mtDNA-

CN levels and 3-month post-stroke outcomes. Results are expressed per 1 SD decrease in 

genetically predicted mtDNA-CN.  
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S. Table 9. Sensitivity analyses showing MR results for the association between genetically 

determined blood cell traits and 3-month post-stroke outcomes. Results are expressed per 

1 SD increase in genetically predicted blood cell counts.  
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S. Table 10. STREGA checklist.  
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S. Table 11. STROBE-MR checklist.  
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Supplementary Figures 

Supplementary Figure 1. Participant flow chart.  
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S. Figure 2. Area charts illustrate the predicted model probabilities for baseline stroke 

severity strata as a function of mtDNA-CN (continuous variable).  
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S. Figure 3. Area charts illustrate the predicted model probabilities for 1-month post-stroke 

outcomes as a function of mtDNA-CN (continuous variable).  

 

S. Figure 4. Comparison of effects for age and mtDNA-CN on 1-month stroke outcomes. 

 


