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Abstract 

SHC proteins are a family of adaptor proteins that play an important role in signal 

transduction, they are characterized by three crucial domains: the phosphotyrosine binding 

(PTB) domain, a Src2 homology (SH2) domain and a less conserved collagen homolog 

(CH1) domain. Two Caenorhabditis elegans SHC proteins have been described: SHC-1 and 

SHC-2. We have identified a third SHC protein, K11E4.2, that is intestinally expressed. Our 

analysis revealed that K11E4.2 null mutant animals suffer from a diet-dependent change in 

fat accumulation and increased sensitivity to starvation and oxidative stress. C. elegans shc-

1 plays a role in stress response and lifespan regulation through the insulin signaling pathway. 

Our data suggest that shc-1 and K11E4.2 do not act redundantly to regulate stress or 

starvation response, but rather each plays a distinct role in these processes. This project 

proposes a model where K11E4.2 could have a role as positive insulin signaling regulator in 

C. elegans. 
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Chapter 1 

1 Introduction 

1.1  Introduction 

Signaling cascades are crucial for intracellular communication and homeostasis. Adaptor 

proteins are key components of signaling cascades that allow external stimuli to be 

transduced into internal cues, culminating in the appropriate biological responses. Adaptors 

are proteins lacking enzymatic activity that contain protein-binding domains that mediate 

protein-protein interactions (Flynn 2001; Schechtman and Mochly-rosen 2001). The Src 

homology and collagen homology (Shc) family of adaptor proteins is characterized  by 

three key domains:  the N-terminal phosphotyrosine binding (PTB) domain, the central 

collagen homology domain (CH1) and the C-terminal Src2 Homology domain (SH2) 

(Pelicci et al. 1992, 1996). While PTB and SH2 domains are found in a number of proteins 

individually, the presence of both an N-terminal PTB and a C-terminal SH2 domain is a 

defining characteristic of the Shc family (Luzi et al. 2000). These domains interact with 

specific phosphotyrosine motifs and therefore play an important role in mediating 

interactions that are dependent on phosphotyrosine signaling. An additional collagen 

homology region (CH2) is present in some isoforms of mammalian ShcA (p66), ShcB 

(p68), ShcC (p67) and ShcD (p69 ) (Ravichandran 2001). 

In mammals, there are four Shc genes and multiple Shc isoforms: ShcA (p66, p52, 

p46), ShcB (p68), ShcC (p67, p52) and ShcD (p69, p59, p49) (Luzi et al., 2000; G Pelicci 

et al., 1996, Jones et al., 2007).  ShcA, also known as Shc1, is the most studied as it is the 
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most broadly expressed in humans, as well as having significant roles in cell proliferation 

and migration (Pelicci et al. 1992). The ShcA isoforms play a role in oxidative stress 

responses and cell survival (Pelicci et al. 1992; Pellegrini, Pacini, and Baldari 2005; 

Purdom and Chen 2003).  The ShcB (p68), ShcC (p67, p52) and ShcD (p69) proteins are 

expressed in the brain and regulate neuronal cell development and survival by interacting 

with the receptor tyrosine kinase (RTK) TkrA (Pelicci et al. 1996; Sakai et al. 2000). 

Shc proteins are required for many cellular processes including motility, 

proliferation, apoptosis and differentiation (Ahmed and Prigent 2017). Phosphorylation of 

Ser, Thr and Tyr residues in Shc, allow members of the Shc family of proteins, particularly 

ShcA(p66) to relocate to organelles and bind to other signaling proteins (Ahmed and 

Prigent 2017). While the Shc family has been thoroughly studied in mammals, homologs 

of Shc are also found in simpler organisms such as Drosophila melanogaster (Lai et al. 

1995) and Caenorhabditis elegans (Luzi et al. 2000), suggesting that Shc proteins have an 

evolutionary conserved role. In D. melanogaster, the sole Shc homolog DSHC has a PTB 

and SH2 domain, but lacks the Grb2 binding region found in mammal Shc (Lai et al. 1995). 

DSHC is required for development and cell differentiation through TOR (Torso) and DER 

(Drosophila EGF receptor) signaling, as homozygous dshc mutant survivors display 

delayed development and defects in the eye, wing and ovary (Luschnig et al. 2000). These 

findings suggest that DSHC is most similar to mammal ShcA, as ShcA (particularly the 

p66 isoform) functions in the EGF receptor signaling pathway (Okada et al. 1997). C. 

elegans Shc protein homologs are present as SHC-1 and SHC-2. Based on sequence 

homology SHC-1 is most similar to mammal p52ShcA, and shc-1 mutant phenotypes can 
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be rescued by expression of human p52ShcA (Neumann-haefelin et al. 2008). There are no 

available reports of the function of SHC-2. However, the PTB and SH2 SHC-2 domains 

are reported to have homology with the mammal ShcC PTB and SH2 domains (Luzi et al. 

2000).  

Interactions with the PTB, SH2 and CH1 domains of Shc, have been mostly studied 

for the ShcA protein, as it is ubiquitously expressed in human tissue and has been the most 

investigated member of the Shc family  (Pelicci et al. 1992; Wills and Jones 2012). All 

three ShcA isoforms share the highly conserved PTB and SH2 domains and the less 

conserved CH1 domain. However, the p66ShcA isoform has an additional N-terminal 

region (Migliaccio et al. 1997), the CH2 domain, as a result of the activation of an 

alternative promoter (Ventura et al. 2002; Wright et al. 2019). While all the isoforms share 

a similar structure, different functions and intracellular localization patterns have been 

reported for each ShcA isoform (Migliaccio et al. 1997). Both the p46 and the p52 isoforms 

of ShcA are ubiquitously expressed (Migliaccio et al. 1997) and are required for the 

regulation of mitochondrial lipid oxidation (Tomilov et al. 2016) and Ras signaling (Geer 

et al. 1996; Isakoff, Marcantonio, and Giancotti 1996; Terada 2019) respectively. While 

the p46 isoform was shown to localize to the mitochondria (Tomilov et al. 2016; Ventura 

et al. 2004) and, in the case of cancerous hepatocytes (Yoshida et al. 2004) and gastric cells 

(Yukimasa et al. 2005) to the nucleus, the p52 isoform is mainly localized in the 

endoplasmic reticulum membrane and the cytoplasm (Lotti et al. 1996; Yoshida et al. 

2004). In contrast, the presence of p66ShcA varies from cell type to cell type (Migliaccio 

et al. 1997). The p66 ShcA isoform is required for the regulation of oxidative stress 



McMaster University-Biochemistry and Biomedical Sciences   MSc Thesis-V. León-Guerrero 
 
 

 4 

responses and lifespan in mammals (Migliaccio et al. 1999). ShcA p66 localizes to the 

cytoplasm, endoplasmic reticulum and mitochondria (Galimov 2010; Raker et al. 2004). 

1.2 SHC domains 

The PTB and SH2 domains in Shc bind phosphorylated tyrosines within activated receptors 

or  receptor substrates (Sakaguchi et al. 1998), allowing Shc to associate with tyrosine-

phosphorylated proteins (Migliaccio et al. 1997). In Shc proteins, the PTB domain is 

located in the amino-terminal region and binds to NPXpY-containing sequences (van der 

Geer et al. 1996; Zhou, Ravichandran, et al. 1995). Structurally, the PTB domain of Shc is 

composed by two b sheets and three a helices and within this structure, it was shown that 

the Arg 175 residue plays a crucial role in phosphotyrosine interaction as well as being 

conserved in other proteins that contain PTB domains (Zhou, Ravichandran, et al. 1995). 

One novel feature of the ShcA PTB domain is the ability to bind acidic phospholipids, 

which aids in the localization of ShcA to the membrane (Ravichandran et al. 1997; Uhlik 

et al. 2005; Zhou, Ravichandran, et al. 1995). This interaction is hypothesized to facilitate 

the recruitment of ShcA to activated receptors.  

The Shc SH2 domain is found in the C-terminus region of Shc proteins and binds 

to specific phosphotyrosine sequences contained in a  pYXXF  motif (where F represents 

a hydrophobic amino acid) (Zhou, Meadows, et al. 1995) in a variety of receptors. For 

example, ShcA SH2 binds to the phosphorylated epidermal growth factor (EGF) (Pelicci 

et al. 1992) and the platelet-derived growth factor (PDGF) (Yokote et al. 1994) receptors. 

Another domain present in all members of the mammalian Shc family is the collagen 

homology domain (CH1), named after its similarity to a1 collagen. CH1 is a proline-rich 
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central region in Shc and contains binding sites for Grb2: Tyr 317, 239 and 240 (Geer et al. 

1996). The interaction of ShcA CH1 with Grb2, results in the formation of the Grb2-Sos 

complex, leading to the activation of the Ras/MAPK signaling pathway (Ravichandran et 

al. 1995). Absent from the shorter ShcA isoforms, the CH2 domain is a N-terminal region 

only present in the p66ShcA isoform (Migliaccio et al. 1997) that is serine phosphorylated 

(Migliaccio et al. 1999) by JNK1/2 (Le, Connors, and Maroney 2001) in response to 

oxidative stress (Ahmad et al. 2020; Le et al. 2001). This serine phosphorylation is required 

for the regulation of apoptotic responses upon oxidative stress (Migliaccio et al. 1999; 

Pellegrini et al. 2005). 

1.3 SHC proteins are required for activating RAS signaling in response to 

insulin  

One of the first descriptions of the role of Shc adaptor proteins in the insulin signaling 

pathway was reported in 1993 by Pronk et al. Pronk and coworkers demonstrated that the 

ShcA 46 kDa and 52 kDa isoforms become tyrosine-phosphorylated upon insulin treatment 

and bind to the Grb2 protein, leading to the initial hypothesis that both Shc and Grb2 are 

involved in the activation of Ras upon insulin stimulation (Pronk et al. 1993). This group 

later added another piece to the puzzle, when they demonstrated that the interaction 

between the guanine nucleotide exchange factor Son of Sevenless (Sos) and Shc is also 

required for insulin induced Ras activation, by showing the presence of Sos in Shc 

immunoprecipitates and vice versa, after treatment with insulin (Pronk et al. 1994). Shc 

proteins were later shown to be the major connection between the insulin receptor and the 

Grb2-Sos complex in the Ras signaling cascade by Sasaoka et al. with an experiment that 
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showed reduced guanine nucleotide releasing factor (GNRF) activity after treating insulin 

stimulated quiescent living cells with anti-Shc antibody (Draznins et al. 1994) 

microinjection. Since Sos promotes GNRF activity (Zon et al. 1993) and Grb2-Sos 

complexes can exist in cells without requiring stimulation (Chardin et al. 1993; Gale et al. 

1993; Rozakis-adcock et al. 1993) the authors concluded that Shc is directly linked to Ras 

activation through the Grb2-Sos complex after insulin stimulation. Finally, it was shown 

by several groups that Shc interacts with the insulin receptor through the PTB domain 

(Craparo, Neill, and Gustafsont 1995; Dey et al. 1996; He et al. 1995; Isakoff et al. 1995).  

The main clue was provided by Gustafson et al. with a yeast two-hybrid assay that 

demonstrated that Shc interacts directly with the insulin receptor through a non-SH2 Shc 

domain (Gustafson et al. 1995), later termed the Shc PTB domain  (Kavanaugh and 

Williams 1994). Together these findings led to the elucidation of the mechanism we know 

today: after insulin stimulation, the activated insulin receptor binds to the Shc PTB domain, 

Shc itself becomes phosphorylated and recruits the Grb2-Sos complex through the central 

Shc CH1 region, resulting in the activation of the Ras signaling pathway (Fig 1.1). 

Activation of Ras signaling through the insulin signaling pathway via Shc results in insulin-

induced mitogenesis (Imamura et al. 1996; Sasaoka et al. 1994) which makes the Shc family 

of adaptor proteins an interesting candidate for the study of biological functions mediated 

by insulin stimulation. 
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Figure 1.1: Shc is required for active Ras signaling via the insulin signaling pathway. Upon 

insulin stimulation (1), the Shc PTB domain binds to the insulin receptor (2), leading to the 

recruitment of the Grb2-Sos complex through the Shc CH1 central region (3), resulting in 

the activation of Ras (4), activating downstream signaling cascades for cell proliferation 

(5). 

1.4 The intestine plays a key role in regulating insulin signaling in C. elegans 

Insulin signaling is a crucial pathway regulating growth, reproduction, aging and 

metabolism in C. elegans, as insulin loss of function phenotypes (Table 1.1) include 

changes in development, behavior, lifespan, fat storage, stress responses and reproduction 

(Ashrafi et al. 2003; Baugh and Sternberg 2006; Gottlieb and Ruvkun 1994; Hughes et al. 

2007; Kenyon, Chang, and Gensch 1993; Kimura et al. 1997; Lithgow et al. 1994; Ruaud, 

Katic, and Bessereau 2011).  
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The C. elegans insulin signaling pathway is regulated by insulin-like peptides (ILP) 

that activate the insulin receptor DAF-2, resulting in the recruitment and activation of the 

AGE-1/PI3K phosphoinositide 3-kinase, the FOXO transcription factor DAF-16 is then 

phosphorylated by the activated serine/threonine kinases PDK-1, AKT-1 and AKT-2. 

Phosphorylation of DAF-16 promotes interaction with 14-3-3 proteins PAR-5 and FTT-2, 

leading to cytoplasmic sequestration of DAF-16 (Murphy and Hu 2013).  

Table 1.1: Phenotypes resulting from decreased insulin signaling 
Mutant Phenotype Reference 

daf-2/IGFR 
age-1/P13K 

Increased lifespan 
 

(Kimura et al. 1997; Morris, 
Tissenbaum, and Ruvkun 1996) 

Slow development (Ayyadevara et al. 2008; Ruaud et 
al. 2011) 

daf-2/IGFR 
age-1/P13K 
akt-1;akt-2 

Dauer-constitutive 
 

(Alam et al. 2010; Kimura et al. 
1997; Morris et al. 1996; Riddle, 
Swanson, and Albert 1981) 

daf-2/IGFR 
 

Increased heat resistance (Lithgow et al. 1994) 
Increased oxidative stress 
resistance 

(Honda and Honda 1999; 
Vanfleteren 1993) 

Hypoxia resistance (Mabon, Scott, and Crowder 2009; 
Scott, Avidan, and Crowder 2003) 

Osmotic stress resistance (Lamitina and Strange 2005) 
Heavy metal stress resistance (Barsyte, Lovejoy, and Lithgow 

2001) 
UV radiation resistance (Murakami and Johnson 1996) 
Proteotoxicity resistance (Cohen et al. 2006; Morley and 

Morimoto 2004; Teixeira-Castro et 
al. 2011) 

Enhanced RNAi response (Wang and Ruvkun 2004) 
Enhanced resistance to 
bacterial pathogens 

(Garsin et al. 2003) 

Prolonged L1 survival (Baugh and Sternberg 2006) 
Better morphology 
maintenance and mobility with 
age 

(Garigan et al. 2002; Herndon et al. 
2002; Kenyon et al. 1993) 

Increased fat content (Ashrafi et al. 2003; Rourke, 
Soukas, and Carr 2010; Yen et al. 
2010) 
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Extended reproductive span (Hughes et al. 2007; Luo et al. 
2010) 

Reduced neural decline with 
aging 

(Stein and Murphy 2012) 

Reduced brood size (Tissenbaum and Ruvkun 1998) 
Reduced germline tumors in 
mutants of daf-16 downstream 
targets  

(Pinkston-gosse and Kenyon 2007) 

 

The intestine is a key organ for insulin signaling as DAF-16/FOXO activity in this 

tissue is required for reproductive span extension and longevity (Libina et al. 2003; Luo et 

al. 2011; Shi, Booth, and Murphy 2019). Intestinal insulin signaling is also required for the 

control of responses to environmental stressors such as simulated gravity (Kong et al. 

2019), nanoplastic particles (Liu, Tian, and Wang 2021; Qu et al. 2020; Shao et al. 2019) 

and carbon nanomaterials (Zhao et al. 2016) as well as for the regulation lipid metabolism 

(Clark et al. 2018) and infection responses (Engelmann, Ewbank, and Pujol 2018; Evans, 

Kawli, and Tan 2008; Mohri-shiomi and Garsin 2008). Because this organ is the main site 

for nutrient uptake, digestion and fat storage in C. elegans (Dimov and Maduro 2019; 

Rourke et al. 2010) the intestine remains an interesting target for the study of the 

relationship between energy uptake and expenditure and fundamental biological processes, 

as well as the signaling pathways that mediate them. 

1.5 C. elegans SHC-1 is required for insulin signaling and JNK pathways 

Two SHC proteins have been identified in C. elegans: SHC-1 and SHC-2 (Luschnig et al. 

2000; Luzi et al. 2000). Both SHC-1 and SHC-2 proteins in C. elegans have PTB and SH2 

domains characteristic of the Shc family of proteins, lacking however any of the collagen 

homology domains (Luzi et al. 2000; Neumann-haefelin et al. 2008). SHC-2 is exclusively 
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expressed in embryos and no phenotypes have been reported following knockdown of this 

gene in large-scale screens (Luzi et al. 2000). However, SHC-1 has been better 

characterized and plays a role in insulin signaling and JNK pathways. shc-1 mutants display 

accelerated aging, shorter lifespan, increased sensitivity to oxidative and metal stress 

response and germline disruption (Hisamoto et al. 2016; Neumann-haefelin et al. 2008; 

Pastuhov et al. 2012) (Fig 1.2). SHC-1 is broadly expressed, with expression reported in 

head and tail neurons, vulval muscles, the intestine, the hypodermis and the pharynx 

(Neumann-haefelin et al. 2008).  

 

 

Figure 1.2 : SHC-1 mediates aging, stress response, lifespan and axon regeneration through 

the insulin and JNK/MAPK pathways. In the insulin signaling pathway, SHC-1 has been 

reported to play a role in negative regulation of DAF-2, activation of DAF-16 and adjusting 

mitochondrial metabolism with DAF-18. In the JNK pathway, SHC-1 acts as a scaffold 

between MEK-1 and MLK-1 and between SVH-2 and DDR-2. 
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1.6 SHC-1 interacting proteins in C. elegans  

In mammals, SHC proteins interact with a wide range of receptors, including growth factor 

receptors, antigen receptors, cytokine receptors, G-protein coupled receptors and hormone 

receptors (Ravichandran 2001). These interactions take place through the different domains 

of Shc and result in protein complexes formation, for example, while the PTB domain of 

Shc interacts with the activated insulin receptor,  the CH1 domain of Shc interacts with the 

SH2 region of Grb2, and Grb2 recruits SOS, activating the Ras/MAPK signaling pathway 

(Sasaoka and Kobayashi 2000). 

SHC-1 interacts with SVH-2 (MERTK), DDR-2 (DDR-2), MLK-1 

(MAP3K10,MAP3K9), MEK-1 (MAP2K7) and DAF-2 (IGF1R) (Hisamoto et al. 2016; 

Mizuno et al. 2008; Neumann-haefelin et al. 2008; Pastuhov et al. 2012) .The interaction 

of SHC-1 with SVH-2 and DDR-2 regulates the JNK/MAPK pathway for axon 

regeneration. Importantly, SHC-1 binding with SVH-2, was shown to be required for SVH-

2 activity for axon regeneration (Hisamoto et al. 2016). SHC-1 connects MEK-1 with 

MLK-1 as a component of the KGB-1 (MAPK10) pathway that regulates the response to  

heavy metal and endoplasmic reticulum stress  in C. elegans (Mizuno et al. 2008). In the 

KGB-1 pathway, shc-1 loss of function prevents KGB-1 activation, resulting in enhanced 

sensitivity to metal stress (Mizuno et al. 2008).  Also, SHC-1 acts as an inhibitor of the 

insulin receptor DAF-2, negatively regulating the insulin pathway (Neumann-haefelin et 

al. 2008). However, the precise mechanism of interaction of SHC-1 with the insulin 

receptor DAF-2 has not been elucidated. The group that characterized SHC-1 propose that 

SHC-1 negatively regulates DAF-2 by any of  three possible mechanisms: 1) SHC-1 
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functions as a modulator of DAF-2 phosphorylation by recruiting a kinase, 2) SHC-1 

regulates DAF-2 receptor internalization or 3) SHC-1acts more indirectly by removing a 

source of PIP2 from the AGE-1 (PIK3CA) complex (Neumann-haefelin et al. 2008). 

Additionally, by co-immunoprecipitation, they found that both the PTB and SH2 domains 

of SHC-1 interact with DAF-2. In mammals, Shc directly interacts with the activated 

insulin receptor through the PTB domain, resulting in the formation of the Shc-Grb2-Sos 

complex (Giorgetti et al. 1994; Sasaoka and Kobayashi 2000). However, the possibility of 

SHC-1 performing a similar function, and the biological significance of this mechanism 

remains to be explored.  

SHC-1 is also required for modulating DAF-16 (FOXO) function in the 

hypodermis. This was shown in an experiment where DAF-16 (FOXO) is over-expressed 

in the hypodermis in combination with loss of function of SHC-1, resulting in enhanced 

gonadal basement disruption, a weakly penetrant phenotype in shc-1 mutants, causing a 

tumor-like germline phenotype and further reducing the short lifespan of shc-1(Qi et al. 

2012). Therefore, it was proposed that in the presence of insulin signaling, SHC-1 acts by 

antagonizing nuclear DAF-16 (FOXO) in somatic cells (Qi et al. 2012; Wolf et al. 2014).  

SHC-1 is required to adjust mitochondrial metabolism to nutrient availability via 

the intestine. This was shown by exposing daf-18/PTEN and shc-1 double mutants to 

prolonged starvation during the first larval stage (L1). daf-18/PTEN mutants show 

disrupted gonadal development after refeeding and this phenotype was enhanced, from 

61% to 91% and 85% to 100% after two and three days of starvation,  by the loss of function 

of shc-1(ok198) (Wolf et al. 2014), suggesting that both SHC-1 and DAF-18 act in 
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adaptation to starvation. Interestingly, single shc-1(ok198) mutants display this phenotype 

at lower penetrance after seven days of starvation (Wolf et al. 2014). By adding 

doxycycline, an antibiotic that targets mitochondrial translation, the gonadal disruption 

phenotype was suppressed in double shc-1 and daf-18 mutants, leading to the conclusion 

that both DAF-18 and SHC-1 regulate mitochondrial metabolism in response to starvation 

(Wolf et al. 2014). 

Overall, the loss of SHC-1 results in reduced lifespan, accelerated ageing, germline 

disruption and increased sensitivity to oxidative and heavy metal stress and starvation. 

1.7 The role of PTB, CH1 and SH2 domains in SHC-1 interactions 

The SHC-1 PTB interaction mechanism for the regulation of heavy metal stress responses 

was described in a study by Mizuno et al (Mizuno et al. 2008). It was shown that the SHC-

1 PTB domain interacts with MEK-1(MAP2K7) and MLK-1 (MAP3K10,MAP3K9), in the 

KGB-1 pathway, a pathway that regulates stress responses to heavy metals(Mizuno et al. 

2004, 2008). The same study showed that the SHC-1 PTB domain binds to the NPXY motif 

in MLK-1. These interactions are important for stress sensitivity mediated by the KGB-1 

pathway, as SHC-1 acts as a scaffold that links MEK-1 and MLK-1 and the loss of SHC-1 

results in heavy metal hypersensitivity (Kim and Sieburth 2019; Pastuhov et al. 2012). 

Unlike mammalian Shc proteins, SHC-1 does not have a central CH1 domain 

containing the 239, 240 and 317 tyrosines that are critical for binding to SEM-5/Grb2 , and 

to our knowledge shc-1 mutants do not recapitulate all the phenotypes of Ras defective 

mutants (Mizuno et al. 2008), such as lethality (Yochem, Sundaram, and Han 1997), uterine 

defects (Chang, Newman, and Sternberg 1999), male spicule defects (Chamberlin and 
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Sternberg 1994), vulvaless phenotype (Sundaram 2006), sterility (Church, Guan, and 

Lambie 1995), olfaction defects (Hirotsu et al. 2000) and axon guidance defects (Bülow, 

Boulin, and Hobert 2004). However, SHC-1 mutants have been reported to recapitulate 

some LET-60/Ras gain of function phenotypes, including sluggishness and dysregulated 

Erk activation in the germline causing sterility (Arur et al. 2011). SHC-1 has therefore been 

suggested to negatively regulate Erk activation and phosphorylation (Suen et al. 2013). 

Currently, data implicating the LET-60/Ras pathway as a target of insulin signaling in C. 

elegans is not available. 

Notably, SHC-1 is required for axon regeneration. In C. elegans axon regeneration 

is mediated through the JNK/MAPK pathway, one of the components of this pathway is 

SVH-2, a HGF-like receptor tyrosine kinase (Nix et al. 2011). SVH-2 interacts with SHC-

1 through Shc SH2 domain, as it was demonstrated in an experiment with a mutation of 

Arg 234 to Lys resulting in the inability of SVH-2 to interact with SHC-1(Hisamoto et al. 

2016). In this same study, it was shown that SHC-1 is able to interact with the cytoplasmic 

domain of DDR-2, one of the two discoidin domain receptors in C. elegans, highlighting 

the importance of the interaction of SHC-1 with the DDR-2 and SVH-2 receptor tyrosine 

kinases to promote axon regeneration. Overall, this study describes SHC-1 as a link of 

SVH-2 to the cytoplasmic domain of DDR2. 

1.8 Concluding section 

Since they were first identified in 1992, Shc proteins have been described as key adaptor 

proteins for signal transduction, and the best-known example of their role is in the 

formation of the Grb2-Sos complex upon insulin stimulation. Importantly, the 
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understanding of Shc signaling has led to innovation in obesity, diabetes and cancer 

research. 

In C. elegans, two SHC homologs have been described: SHC-1 and SHC-2. The available 

experimental data shows that SHC-1 has a role in insulin and JNK pathways, mediating 

axon regeneration, ageing and stress responses in C. elegans. Interestingly, SHC-1 mutants 

do not display all phenotypes characteristic of insulin and Ras defective mutants, which 

could be due to the lack of a CH1 domain, that might interact with the Grb2 homolog, SEM-

5. In C. elegans, SEM-5/Grb2 is required for vulval induction and sex myoblast migration 

(Clark, Stern, and Horvitz 1992). Mutant SEM-5/Grb 2 worms display lethality and 

vulvaless phenotypes (Clark et al. 1992). The loss of the characterized C. elegans SHC 

proteins, does not result in these phenotypes, which could indicate that: 1) There are 

additional Shc-like proteins not yet identified in C. elegans or 2) Shc-like proteins in C. 

elegans are not required for Ras signaling in the same manner as other organisms. Since 

interactions between Shc and Grb2 occur via the CH1 domain in mammals, it would be 

interesting to know if there are additional binding sites in Shc-like proteins that could 

interact with Grb2 and that have not yet been identified. Furthermore, if Shc-like proteins 

in C.elegans do not play the same role as mammalian Shc, it might suggest that the role of 

the Shc family in Ras signaling, was acquired later in evolution. Elucidating the role of Shc 

signaling in C. elegans remains an interesting subject for understanding intracellular 

communication. Because learning about Shc signaling has led to the discovery of potential 

therapies for cancer and diabetes (Dong et al. 2019; Hui et al. 2020; Lin et al. 2019; Liu et 
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al. 2019; Shih et al. 2012) exploring additional interactions and mechanisms of Shc, might 

lead to new clinical alternatives.   
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Chapter 2 

2  Research problem 

Since their identification in  1992, Shc proteins have been associated with diverse functions 

such as regulation of cell survival, proliferation and oxidative stress responses, making the 

family of Shc adaptor proteins a subject of study for more than 20 years (Wills and Jones 

2012). While some therapeutic strategies targeting Shc functions for diabetes (Hui et al. 

2020) and cancer (Ahn et al. 2017; Lin et al. 2019) have been explored, their ubiquitous 

expression and the similarity between isoforms stills poses a challenge for therapeutic 

agents (Wright, Staruschenko, and Sorokin 2018) as knockout of all three isoforms result 

in embryonic lethality in mice (Lai and Pawson 2000). Studying the mechanism of Shc 

proteins and their interactions might present an opportunity to target diseases such as 

cancer, obesity and diabetes, without directly targeting Shc proteins which could potentially 

result in detrimental consequences. Shc proteins are conserved through evolution, as their 

presence has been confirmed not only in mammals, but also in invertebrates such as 

Drosophila melanogaster and Caenorhabditis elegans (Luzi et al. 2000). While only one 

Shc protein has been identified in D. melanogaster (dSHC)(Luschnig et al. 2000), two SHC 

proteins have been identified in C. elegans (SHC-1, SHC-2)(Luzi et al. 2000; Neumann-

haefelin et al. 2008). The knowledge on SHC-2 is limited, but SHC-1 has been better 

described and is now known to be required for oxidative stress responses, ageing and 

lifespan and has been reported to be most similar to the p52 isoform of human ShcA 

(Neumann-haefelin et al. 2008; Wolf et al. 2014). The MacNeil laboratory identified a third 
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Shc-like protein in C. elegans, expressed by the K11E4.2 gene. The K11E4.2 protein was 

predicted to contain both a PTB and SH2 domain. Because the already identified SHC-1 

and SHC-2, do not recapitulate all phenotypes proper of insulin and Ras mutant animals 

(Luzi et al. 2000; Neumann-haefelin et al. 2008; Wolf et al. 2014), we hypothesize that 

K11E4.2 might recapitulate these phenotypes and that K11E4.2 might display a different 

role from already identified SHC proteins in C. elegans. This project aims to identify the 

phenotypes associated to K11E4.2 mutants and provide evidence of its function in C. 

elegans, The knowledge obtained from the characterization of K11E4.2 might shed some 

light into conserved Shc-like functions throughout evolution and what is learned from a 

third Shc-like protein and its interactions in C. elegans could potentially be extrapolated to 

more complex organisms such as humans, offering the possibility of identifying novel 

therapeutic targets for Shc dysregulated functions. 
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Chapter 3 

3 Methodology 

3.1 Strains used 

N2 was used as the wild-type strain. All worm strains were maintained on nematode growth 

medium (NGM) at 20°C on E. coli OP50 standard laboratory diet (Brenner 1974). All 

mutant strains were outcrossed at least four times. Strains used: K11E4.2 (syb1634), shc-1 

(ok198), shc-1(ok198); K11E4.2(syb1634), K11E4.2 (gk890887) and TJ356 (zIs356 [daf-

16p::daf-16a/b::GFP + rol-6(su1006)]).  

3.2 L1 synchronization 

To generate synchronous populations, eggs were collected by hypochlorite treatment from 

gravid adult plates and allowed to hatch from 18 to 24 hours in M9 buffer. When hatched 

in the absence of food, worms enter L1 arrest and resume development upon feeding 

(Baugh 2013). 

3.3 Expression pattern 

The LMN015 strain (K11E4.2p: GFP) was used to observe expression pattern during the 

animals’ life cycle. A parent GFP positive animal was allowed to lay eggs and the offspring 

was observed to monitor the expression pattern of K11E4.2. 

3.4 Developmental score 

Wild-type or mutant strains were transferred to NGM 60mm plates seeded with 200 µL E. 

coli OP50 or Comamonas aquatica following L1 synchronization. At least 100 to 150 

worms were transferred to each plate. Thirty worms were scored at L4 developmental stage 



McMaster University-Biochemistry and Biomedical Sciences   MSc Thesis-V. León-Guerrero 
 
 

 20 

on three separate occasions for each condition and classified into L4 substages. 

Development delay in worms in the fourth larval stage is scored by looking at the position 

of the cells that fuse and migrate to form the vulva (Mok, Sternberg, and Inoue 2015). 

Animals were paralyzed with 1% sodium azide and mounted on 2% agarose pads for 

visualization on a compound microscope. Statistical analysis was performed using 

GraphPad Prism P-values were obtained by comparing observed (K11E4.2 mutants) adults 

to expected (wild-type) number of adults. 

3.5 Oil Red O staining and ImageJ analysis for lipid accumulation 

Oil red O staining was performed (Rourke et al. 2010) on day one adult worms (48 hours 

after L1 transfer to plates).  Briefly, after exposure to a diet of E. coli OP50 or C. aquatica, 

200-300 animals were collected and washed twice with 1X PBS. After washing, 500 µL of 

2X MRWB and 125 µL of 16% paraformaldehyde were added to 400 µL of sample. After 

an incubation period of 30 minutes at room temperature, samples were washed twice with 

Tris-Cl (100 mM, pH 7.4). After the second wash, 900 µL of reduction buffer were added 

to 100 µL of sample and incubated for 30 minutes at room temperature. After the incubation 

period, a wash was performed with 1X PBS, and 700 µL of isopropanol were added to 300 

µL of the sample. After 15 minutes, 1 mL of Oil Red O working solution was added and 

samples were washed once with 1X PBS on the next day before visualization. At least 300 

worms were stained per condition.  Up to 30 animals were imaged per condition on a 

compound microscope. 

To analyze the staining, we used ImageJ. Briefly, using the green channel we 

selected the area of the intestine below the pharyngeal-intestinal valve to the start of the 



McMaster University-Biochemistry and Biomedical Sciences   MSc Thesis-V. León-Guerrero 
 
 

 21 

gonad and measured the percentage of the area that was stained. In C. elegans anatomy, the 

gonad overlaps with the intestine, making the visualization of lipid vesicles less clear, 

therefore we selected the area of the intestine above the gonad tubes and manually singled 

out the lipid vesicles from the background. Aggregates were subtracted from the selection. 

Statistical analysis was performed using GraphPad Prism, P-values were obtained by an 

unpaired T-test. 

3.6 Brood size 

Single L4 hermaphrodites were plated on 35mm plates seeded with E. coli OP50 at 20ºC. 

Each worm was transferred to a new plate every 24 hours for three consecutive days. 

Embryos and newly hatched worms on each plate were counted. For every strain we used 

samples of at least 24 worms. Worms that died from internal hatching or gonad defects 

were censored. Worms that burrowed and laid eggs within the agar were censored. 

Statistical analysis was performed using GraphPad Prism, P-values were obtained by 

ordinary one-way ANOVA and multiple comparisons. This experiment was performed on 

three separate occasions. 

3.7 L1 Starvation assay 

Eggs were obtained by bleaching from gravid adult plates and allowed to hatch from 18 to 

24 hours in M9 buffer. Tubes were kept on a rocker at 20ºC and on each time point samples 

were plated on E. coli OP50 and live worms were counted after two days (Hibshman et al. 

2017; Mata-cabana et al. 2020). Because density of animals is known to be an 

environmental factor that influences L1 arrest survival (Mata-cabana et al. 2020), 

concentrations of animals per µL were controlled to be similar across strains  (~1 to 2 
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worms/µL). Animals were scored for survival on days 1, 5, 11/12 and 15/16 after L1 arrest. 

The mean survival was calculated relative to the maximum number of worms counted per 

strain and this value was taken as 100%.  Five plates were scored per strain, with at least 

30 worms in each plate, and the mean survival was plotted for each time point. This 

experiment was performed on two different occasions. Statistical analysis was performed 

using GraphPad Prism, P-values were determined by using a Mantel-Cox log-rank test. 

3.8 Lifespan 

NGM plates were supplemented with 100µM FUDR to avoid the presence of progeny 

(Gandhi et al. 1980) . For each condition, a sample of at least 70 L4/young adult worms 

was used. The day the worms were transferred to the FUDR plates was taken as day zero. 

Animals were gently prodded with a platinum wire, if there was no response, they were 

scored as dead for the day, worms that burrowed were censored. This experiment was 

performed in two different occasions. Statistical analysis was performed using GraphPad 

Prism, P-values were determined by using a Mantel-Cox log-rank test.  

3.9 Acute Paraquat Assay 

NGM plates were supplemented with 100 mM paraquat. For each condition, a sample of at 

least 70 L4/young adult worms was used. Animals were scored for survival after 6, 12, 24 

and 48 hours after transferring to paraquat plates. Animals were gently prodded with a 

platinum wire, if there was no response, they were scored as dead, worms that crawled off 

to the side of the plate were censored.  Statistical analysis was performed using GraphPad 

Prism, P-values were determined by using a Mantel-Cox log-rank test. This experiment 

was performed in two different occasions. 
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3.10 Chronic Paraquat Assay 

NGM plates were supplemented with 4 mM paraquat and 100 µM FUDR. For each 

condition, a sample of at least 80 L4/young adult worms was used (Senchuk, Dues, and 

Raamsdonk 2017). The day the worms were transferred to paraquat plates was taken as day 

zero. Animals were gently prodded with a platinum wire, if there was no response, they 

were scored as dead for the day, worms that crawled off to the side of the plate were 

censored.  Statistical analysis was performed using GraphPad Prism, P-values were 

determined by using a Mantel-Cox log-rank test. This experiment was performed in two 

different occasions. 

3.11 DAF-16 nuclear localization 

NGM plates supplemented with 50 µg/mL carbenicillin and 5 mM IPTG were seeded with 

200 µL of  bacterial clones containing double stranded RNA for daf-2, KIIE4.2 or the empty 

vector (L4440) (Kamath and Ahringer 2003). Transgenic worms (TJ356) containing a GFP 

reporter to monitor DAF-16 localization were plated at L1 stage and scored for DAF-16 

nuclear localization at the L4/young adult stage. At least 30 worms were scored per 

condition, animals were paralyzed with 12mM levamisole and mounted on a 2% agarose 

pad for visualization. Intracellular localization of DAF-16 was classified as nuclear if 50% 

or more intestinal cells had predominant nuclear localization, intermediate if nuclear 

localization was predominant in more than 10% but less than 50% of intestinal cells, and 

cytoplasmic if equal or less than 10% of cells had this characteristic (Ke et al. 2020).  

Statistical analysis was performed using GraphPad Prism, P-values were determined by 

using Two-way ANOVA. This experiment was repeated in three separate trials.  
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Chapter 4 

4 Results 

4.1 Expression of K11E4.2 is maintained during all larval stages and adults.  

In order to characterize the function of K11E4.2 in C. elegans, its expression pattern was 

monitored using a translational GFP reporter. K11E4.2::GFP expression was observed in 

the intestine at all larval stages and in adults (Fig. 4.1). C. elegans intestinal cells have a 

circular structure with the basement membrane facing the outermost part of the intestine 

and the apical or inner most section surrounding the lumen (Dimov and Maduro 2019). 

Localization was found in the cytoplasm and at the apical membrane of intestinal cells. 

Notably, K11E4.2 is also found in nuclei and cytoplasm in some worms of the same 

population. Subcellular localization may be regulated in response to environmental stimuli, 

for example stress response, however this hypothesis requires further testing. 
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Figure 4.1 : K11E4.2 is intestinally expressed during all larval stages. A: Larval stage one 

(L1), B: Larval stage two (L2), C: Larval stage three (L3), D: Larval stage four (L4) and 

adulthood (E). A translational reporter with GFP fused to the K11E4.2 gene was used to 

observe expression during the animals’ life cycle, dotted lines outline the worms’ body. 

Scale bar in all images is 100µm 

4.2 Apical localization of K11E4.2 in intestinal cells is at least partially 

mediated by the PTB domain. 

SHC adaptor proteins are characterized by the PTB and SH2 domains and the less 

conserved CH1 and CH2 domains (Ahmed and Prigent 2017).  In C. elegans, K11E4.2 is 

predicted to have both PTB and SH2 domains and a CH1 domain. In order to determine if 
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the localization of K11E4.2 in the apical membrane was mediated by a specific domain, we 

compared wild-type worms to K11E4.2 mutants. To do this, the afore mentioned strain, 

K11E4.2::GFP, and a mutant strain with a GFP reporter fused to a K11E4.2 protein that 

contains a substitution of arginine to glutamine in the 145 position of the PTB domain, a 

residue conserved among the ShcA isoforms (Zhou, Ravichandran, et al. 1995) and 

essential for the interaction of ShcA with activated receptors (van der Geer et al. 1996), 

were monitored for expression. While GFP in worms expressing K11E4.2::GFP was 

observed at the apical intestinal membrane (Fig. 4.2, A-B), GFP in worms expressing 

K11E4.2(R145Q)::GFP was present in the cytoplasm an nuclei of intestinal cells (Fig. 4.2 

C), suggesting that cellular localization might be at least partially mediated by the PTB 

domain.  

 

 

Figure 4.2: K11E4.2 localizes to the apical membrane in C. elegans intestinal cells. A-B) 

A GFP reporter fused to the K11E4.2 gene shows expression in intestinal cells, white arrow 

indicates apical localization. C) K11E4.2 R145Q mutants show K11E4.2 localization in 
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nuclei and cytoplasm, short arrows indicate cytoplasmic localization and long arrows 

indicate nuclear localization. Scale bars: A) and C): 100 µm, B) 50 µm 

4.3 K11E4.2 mutants develop normally on an E. coli OP50 diet but develop 

more slowly on a Comamonas aquatica diet as compared to wild-type 

animals 

Slow development is a phenotype found in daf-2/IGFR mutants as DAF-16/FOXO is 

required to control developmental speed of the second larval stage (L2), a dauer-formation 

independent function (Ruaud et al. 2011). To test if K11E4.2 recapitulated this phenotype, 

we assessed developmental rate of K11E4.2 mutants compared to wild-type animals in a 

standard E. coli OP50 diet, an uracil auxotroph used across C. elegans laboratories for 

maintenance (Brenner 1974). When comparing the number of adult animals in the wild-

type population compared to the K11E4.2 mutant population at 40 hours after plating 

synchronized L1 animals, there was no significant difference (Fig. 4.3A). Because 

K11E4.2 is expressed in the intestine, the main site for nutrient uptake and lipid storage 

(Dimov and Maduro 2019), animals were exposed  to a Comamonas aquatica bacterial diet, 

known to accelerate developmental rate in wild-type animals in a TOR and insulin 

independent manner (MacNeil et al. 2013), to test if there would be a difference in 

developmental rate in response to this nutrimental change. Upon exposure to C. aquatica, 

a significant increase in the number of adults in the wild-type population compared to the 

K11E4.2 mutant population was observed (Fig. 4.3B). These findings suggest that K11E4.2 

has a role in metabolism in response to different bacterial diets by modulating 

developmental rate.  
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Figure 4.3: K11E4.2 mutant animals develop at a normal rate on an E. coli OP50 diet (left) 

but more slowly on a C. aquatica diet (right) compared to wild-type animals. Animals were 

scored at 40 hours after plating the synchronized L1 populations in plates seeded with the 

respective diets. Scoring was performed by assessing vulva morphology at the L4 stage. A) 

N2 on E. coli OP50 (n=30) and K11E4.2 mutants on E. coli OP50 (n=30) B) N2 on 

Comamonas aquatica, (n=30) and K11E4.2 mutants on Comamonas aquatica, (n=30). 

Expected number of adults (wild-type) vs observed (K11E4.2): E. coli OP50 (P=ns), C. 

aquatica (P = 0.0006) 

4.4 K11E4.2 mutants have increased fat accumulation on an E. coli OP50 diet 

as assessed by Oil Red O staining 

daf-2/Insulin receptor mutants display increased fat accumulation in a daf-16/FOXO 

dependent manner (Ashrafi et al. 2003; Perez and Van Gilst 2008); this phenotype is often 

seen in mutants with slow development (Srinivasan 2015). Because there were differences 

in developmental rate in response to different bacterial diets, fat accumulation was assessed 
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by performing Oil red O  staining of neutral triglycerides (Rourke et al. 2010) after wild-

type worms and K11E4.2 mutants were exposed to an E. coli OP50 diet or a C. aquatica 

diet. In wild-type C. elegans, fatty acids obtained from their bacterial diet are the main form 

of body fat and once they are turned into triglycerides, fatty acids are stored in droplets 

both in intestinal cells and hypodermal cells (Ashrafi 2007; Lemieux and Ashrafi 2015; 

Srinivasan 2015). When fed E. coli OP50, K11E4.2 mutant worms showed greater lipid 

accumulation than wild-type worms as assessed by ImageJ (Fig. 4.4A). Additionally, wild-

type worms fed C. aquatica accumulate more fat than K11E4.2 mutants under the same 

conditions (Fig. 4.4B). These findings suggest that K11E4.2 might act as a regulator of 

energy expenditure and storage in the intestine, dependent on the bacterial diet. 
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Figure 4.4: Fat accumulation in wild-type and in K11E4.2 mutant worms as assessed by 

ImageJ analysis after Oil red O staining.  Oil red O staining is more intense in K11E4.2 

mutants fed E. coli OP50, but fainter when fed Comamonas aquatica. Staining was 

performed in young adults at 48 hours after plating L1 synchronized populations. A) E. 

coli OP50, n=30 B) Comamonas aquatica, n=30. Each dot represents the stained area 

between the pharyngeal valve and the start of the gonadal arm of an individual worm. 

Unpaired T-test: *P<0.05. Scale bar: 100µm 
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4.5 K11E4.2 is not required for normal lifespan but K11E4.2 mutation 

rescues the short lifespan phenotype of shc-1 mutants 

In mammals and C. elegans, SHC proteins promote survival by regulating stress resistance 

through insulin and MAPK pathways (Neumann-haefelin et al. 2008; Pellegrini et al. 2005). 

The lifespan of shc-1 mutants is 25-38% less than that of wild-type animals (Neumann-

haefelin et al. 2008; Qi et al. 2012) principally due to defects in germline integrity. While 

K11E4.2 mutants have not been assessed for egg-laying defects, shc-1 mutants die early on 

due to internal hatching. To avoid the internal hatching early death, FUDR is supplemented 

in the media. Importantly, FUDR extends the lifespan of shc-1 mutants (Qi et al. 2012). 

However, even in the presence of FUDR, the lifespan of shc-1 mutants is decreased relative 

to wild-type animals (Fig. 4.5). Double SHC mutants displayed a lifespan similar to wild-

type animals, this suggests that not only does the loss of K11E4.2 not enhance the early 

death of shc-1 mutants, but prevents it. Together these results suggest that K11E4.2 is not 

required for lifespan extension in a single K11E4.2 mutant background, but the loss of 

K11E4.2 in a shc-1 mutant background results in the rescuing of the shc-1 mutant short 

lifespan phenotype.  
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Figure 4.5: K11E4.2 mutants display normal lifespan. Survival over time is shown. There 

is no significant difference between the lifespan of wild-type animals and K11E4.2 

(syb1634) mutants. While single shc-1(ok198) mutants display significantly reduced 

lifespan, double shc-1(ok198);K11E4.2(syb1634) mutants display increased lifespan. L4 

animals were transferred to NGM plates with 100 µM FUDR to prevent the development 

of progeny. Day 0 indicates the day of transfer. For all strains: n ³ 200. Mantel-Cox test: 

K11E4.2 (syb1634) (P = ns ), shc-1 (ok198) (P<0.0001), shc-1(ok198);K11E4.2(syb1634) 

(P<0.0001), K11E4.2 (gk890887) (P<0.0001). This is a representative figure of two 

independent experiments. 

 
4.6 K11E4.2 is not required for fertility 

In C. elegans, insulin signaling is one of the main pathways that mediates reproduction and 

fertility. This is shown in mutants that have a significantly reduced brood size, such as daf-

2 and age-1 (Tissenbaum and Ruvkun 1998). Interestingly, daf-16/FOXO mutants have a 

slightly decreased brood size as compared to N2 wild-type worms, but this same mutation 
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partially rescues reduced brood size in daf-2 mutants, which suggests that daf-16 

downregulation is at least partially responsible for normal reproduction (Tissenbaum and 

Ruvkun 1998). When assessing brood size in shc-1 and shc-3 mutants, there was no 

statistical difference in the number of progeny between strains (Fig. 4.6).  All strains, 

including K11E4.2 mutants, had the same number of offspring as wild-type animals which 

suggests that K11E4.2 is not required for normal fertility. 

 

Figure 4.6:. Fertility is not affected in K11E4.2 mutants. All strains were scored for 

number of progeny for three consecutive days. Each point represents the total number of 

offspring for an individual animal. No significant differences were detected for any of the 

mutant strains. For all strains: n ³ 9. One-way ANOVA and Dunnett’s multiple 

comparisons: Mean and standard deviation are shown.  
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4.7 K11E4.2 knockout rescues enhanced shc-1 oxidative stress sensitivity in 

double mutants. K11E4.2 are more sensitive to oxidative stress in an allele 

dependent manner in acute and chronic paraquat assays 

In mammals, SHC proteins are reported to play a role in the regulation of oxidative stress 

response, specifically the 66kDa isoform of mammal Shc functions as a sensor of 

intracellular ROS concentrations and promotes apoptosis (Pellegrini et al. 2005). In C. 

elegans, SHC-1 is also required for oxidative stress survival through the JNK pathway 

(Neumann-haefelin et al. 2008), but it is known to be more similar to the 52 kDa isoform 

of human Shc an isoform less involved in oxidative stress responses (Mcglade et al. 1992; 

Wu et al. 2016). SHC-1 mutants display an increased sensitivity to ROS upon acute 

paraquat exposure as compared to wild-type animals.  

To test if K11E4.2 is also required for oxidative stress regulation, animals were first 

exposed animals to 4mM paraquat and scored every day for survival. As previously 

reported, SHC-1 mutants were more sensitive to the treatment as compared to wild-type 

worms (Neumann-haefelin et al. 2008). Interestingly, while double shc-

1(ok198);K11E4.2(syb1634) mutants were the most resistant to the treatment, the 

K11E4.2(gk890887) mutant strain was the most sensitive (Fig. 4.7A) . These results 

suggest that not only both SHC proteins act in oxidative stress survival mechanisms but 

also the loss of both SHC-1 and K11E4.2(syb1634) results in increased resistance rather 

than increased sensitivity, which leads to the hypothesis that both SHC proteins do not act 

redundantly in oxidative stress response mechanisms. Because survival significantly 

decreased during the first days of treatment, a higher concentration of paraquat (100mM) 
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was tested to analyze the effect of acute oxidative stress. Similarly to the first time points 

of the chronic assay, the shc-1(ok198) and K11E4.2 (gk890887) mutants were the most 

sensitive and the K11E4.2(syb1634) and double mutant shc-1(ok198);K11E4.2(syb1634) 

strains were less sensitive to the treatment (Fig. 4.7B). Increased stress sensitivity of SHC-

1 mutants is reported to be mediated by the interaction of SHC-1 with the JNK pathway 

component MEK-1/MAP2K7 (Neumann-haefelin et al. 2008). Further experiments would 

be needed to understand the mechanism by which K11E4.2 regulates responses to oxidative 

stress and to determine why two different alleles result in opposite effects and to elucidate 

if K11E4.2 acts in the same pathway as SHC-1. 
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Figure 4.7: K11E4.2 mutants are more sensitive to chronic and acute oxidative stress in an 

allele-dependent manner. Upon exposure to 4mM and 100mM paraquat, 

K11E4.2(gk890887) mutants have a shorter lifespan compared to all strains. L4 and young 

adults were transferred to NGM plates added with 4mM or 100mM paraquat and scored for 

survival every day during the chronic assay (4mM) and after 6, 12, 24 and 48 hours during 

the acute assay (100mM). A) For all strains: n ³ 200, Mantel Cox test: K11E4.2(syb1634) 

(P<0. 0001), shc-1(ok198) (P=ns), shc-1(ok198);K11E4.2(syb1634) (P<0. 0001), K11E4.2 

(gk890887)( P<0. 0001) B) For all strains n ³ 70, Mantel Cox test: K11E4.2(syb1634) 

(P=ns), shc-1(ok198) (P=0.0037), shc-1(ok198);K11E4.2(syb1634) (P=ns), K11E4.2 

(gk890887)( P<0. 0001). 
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4.8 K11E4.2 mutants are more sensitive to prolonged starvation during L1 

arrest than wild-type animals 

L1 arrest is controlled by insulin signaling (Baugh 2013). While daf-2/insulin receptor 

mutants display an enhanced resistance to L1 arrest, daf-16/FOXO mutants show increased 

sensitivity and increased death rate during L1 arrest(Baugh and Sternberg 2006).   

shc-1 mutants display an enhanced sensitivity to prolonged starvation during L1 arrest. 

SHC-1 and DAF-18/PTEN are required for L1 arrest resistance, by regulating 

mitochondrial metabolism (Wolf et al. 2014). To test if K11E4.2 recapitulates this 

phenotype seen in both shc-1 and insulin signaling mutants, we tested the survival of 

K11E4.2 mutants upon L1 arrest. To explore this hypothesis, eggs of wild-type, shc-1, 

K11E4.2, and double shc-1(ok198);K11E4.2(syb1634) mutant backgrounds, were 

collected by hypochlorite treatment and allowed to develop to L1 larval stage in M9 buffer 

(Lee et al. 2012). Every day worms were scored for survival by extracting a fixed volume 

of each sample that was placed on E. coli OP50 seeded plates. Across all biological 

replicates, the least resistant worms were shc-1 mutants, which is consistent with the 

available literature (Wolf et al. 2014). However, K11E4.2 mutants were also more sensitive 

to starvation than wild-type worms (Fig. 4.8). This suggests that both SHC-1 and K11E4.2 

promote survival after prolonged starvation. Importantly, loss of both SHC-1 and K11E4.2 

proteins did not enhance the effect of either individual mutant, this suggests that SHC-1 

and K11E4.2 do not act redundantly to regulate L1 arrest survival. However, it does suggest 

that both proteins function in the same genetic pathway, which might lead to the hypothesis 
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that each SHC protein acts to control development in response to nutrient availability 

through different mechanisms.  

 

Figure 4.8: K11E4.2 mutants are more sensitive to prolonged starvation compared to wild-

type animals, but more resistant compared to shc-1 mutants. K11E4.2 mutants show 

reduced recovery from L1 arrest as compared to wild-type animals. Each time point 

represents the mean survival of five individual plates with at least 30 animals per plate. 

Recovery was assessed after 1, 5, 7, 12 and 15 days after L1 arrest. Each dot represents the 

survival proportion of an individual plate. Mantel Cox test: K11E4.2 (syb1634) (P=ns), 

shc-1(ok198) (P=0.0001), shc-1(ok198);K11E4.2(syb1634) (P=0.0011) K11E4.2 

(sgk890887) (P=0.0191). This is a representative figure of two independent assays 

including all strains. 

4.9 K11E4.2 knockdown induces cytoplasmic and intermediate DAF-16 

intracellular localization 

The DAF-16/FOXO transcription factor, is the major downstream target of the insulin 

signaling pathway in C. elegans (Lee, Hench, and Ruvkun 2001) and when DAF-16 is 

activated, upon insulin signaling downregulation, it migrates to the nucleus and regulates 
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transcription of target genes, promoting longevity and increased stress resistance (Lee et al. 

2003). 

In order to know if K11E4.2 acts in the insulin signaling pathway, we tested the 

effect of K11E4.2 knockdown and its effect in DAF-16 intracellular localization, assessing 

for cytoplasmic, intermediate or nuclear localization (Fig. 4.9). We hypothesized that if the 

K11E4.2 RNAi treatment induced similar DAF-16 nuclear localization compared to daf-2 

RNAi, then K11E4.2 is likely to be a positive regulator of insulin signaling in wild-type 

animals. To this end, we exposed a transgenic strain DAF-16::GFP  to double stranded 

RNA for daf-2, K11E4.2 and the empty vector L4440 and analyzed DAF-16 intracellular 

localization at the fourth larval stage (L4). While animals exposed to daf-2 RNAi displayed 

predominantly nuclear and intermediate localization (Fig. 4.10A-B) K11E4.2 RNAi treated 

worms displayed cytosolic and intermediate localization of DAF-16 (Fig. 4.10A-B). These 

findings suggest that K11E4.2 knockdown induced a mild decrease in insulin signaling as 

cytoplasmic localization was significantly decreased compared to the empty vector 

(P=0.0393) but significantly increased compared to daf-2 RNAi (P=0.0461) (Fig. 4.10A-

B). Collectively, these results lead to the hypothesis that K11E4.2 normal function aids in 

the positive regulation of insulin signaling, therefore promoting DAF-16 cytoplasmic 

sequestration. 
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Figure 4.9: Animals were assessed for DAF-16 intracellular localization, and classified in 

cytoplasmic (A), intermediate (B) and nuclear (C) DAF-16 localization. Scale bar: 50 µm. 

Representative pictures of animals expressing a GFP reporter fused to daf-16.
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Figure 4.10: K11E4.2 RNAi treated worms show significantly less cytoplasmic DAF-16 

intracellular localization than animals fed with the empty vector. Animals treated with the 

empty vector show cytoplasmic DAF-16 localization (A). daf-2 knockdown induces 

nuclear and intermediate localization of DAF-16 (A). K11E4.2 RNAi treated animals show 

cytoplasmic and intermediate DAF-16 localization (A). A: Pictures are representative of 

three independent experiments. Scale bar: 50µm and 100 µm. B: Empty vector (n=89), daf-

2 (n=89) K11E4.2 (n=90). Two-way ANOVA, Cytoplasmic localization compared to the 

empty vector : K11E4.2 (P=0.0393), daf-2 (P=0.0007). 
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Chapter 5 

5 Discussion and suggestions for further research 

5.1 Discussion  

This project aimed to characterize the function of a novel Shc protein, K11E4.2, based on 

the knowledge that 1) Shc proteins are evolutionarily conserved (Luzi et al. 2000), 2) Shc 

proteins are involved in various cellular processes such as oxidative stress responses and 

survival, through conserved signaling pathways such as insulin signaling (Ahmed and 

Prigent 2017; Ravichandran 2001)   and 3) K11E4.2 is predicted to have the characteristic 

PTB and SH2 domains of Shc proteins, as well as a portion of the CH1 region. 

Collectively, the data obtained suggest that K11E4.2 is likely to act as a metabolism 

regulator in response to different environmental conditions. While K11E4.2 mutants 

display a normal lifespan and brood size, developmental rate and fat accumulation change 

in response to different bacterial diets.  These results suggest that K11E4.2 might have a 

role in regulating energy storage and expenditure. K11E4.2 mutants were more sensitive to 

oxidative stress and prolonged starvation.  

Based on the finding that K11E4.2 knockdown increases DAF-16/FOXO 

cytoplasmic localization, K11E4.2 is likely to act as a positive regulator of insulin 

signaling. However, phenotypic analysis of K11E4.2 mutants did not provide a clear 

understanding of how this protein may function insulin signaling (Table 5.1). In fact, some 

phenotypic data would be consistent with K11E4.2 acting as a negative regulator of insulin 

signaling. Additional phenotypes shown by insulin signaling mutants include extended 
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lifespan and increased resistance to stress (Kimura et al. 1997; Tissenbaum and Ruvkun 

1998). shc-1 mutants suffer from an early death due to accelerated aging (Neumann-

haefelin et al. 2008). When assessing lifespan, the short lifespan phenotype of shc-1(ok198) 

was rescued in double shc-1(ok198);K11E4.2(syb1634) mutants, which suggests that as a 

single mutation, the loss of K11E4.2 does not have an effect on lifespan, but in the context 

of double mutants, it extends the short-lived phenotype of the shc-1(ok198) mutant. The 

short lifespan of shc-1(ok198) mutants is reported to be daf-16-dependent (Neumann-

haefelin et al. 2008), however whether the K11E4.2 rescue in the double mutants is also 

mediated by daf-16 remains unclear.  

In mammals and C. elegans, SHC proteins are implicated in oxidative stress 

response (Galimov 2010; Migliaccio et al. 1999; Neumann-haefelin et al. 2008). The results 

obtained show that the loss of both SHC-1 and K11E4.2 does not result in enhanced 

oxidative stress sensitivity, leading to the hypothesis that SHC-1 and K11E4.2 have 

different functions in regulating responses to oxidative stress. SHC-1 regulates oxidative 

stress responses by interaction with the insulin receptor DAF-2 in the insulin signaling 

pathway and positive regulation of the JNK-1 signaling pathway (Neumann-haefelin et al. 

2008). Importantly, SHC-1 is reported to interact with DAF-2, through its PTB domain and 

to interact with MEK-1 through its SH2 domain (Neumann-haefelin et al. 2008).  Since 

K11E4.2 is likely to function in the same genetic pathway as SHC-1, one possibility could 

be that K11E4.2 also interacts with DAF-2 through the K11E4.2 PTB domain but 

modulates DAF-2 activity by recruiting an additional protein through its CH1 or SH2 

domain  (Fig 5.1B). In this scenario, K11E4.2 could recruit additional proteins such as 
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kinases or protein complexes through the SH2 domain and increase DAF-2 activity, 

promoting decreased tolerance to environmental stressors in wild-type animals by DAF-16 

cytoplasmic retention. Thus, explaining the less severe sensitivity to environmental 

aggressions seen in K11E4.2(syb1634) mutants. As opposed to SHC-1, a negative regulator 

of the insulin signaling pathway, whose function is hypothesized to promote survival in 

response to environmental changes.  

  Furthermore, since the loss of K11E4.2 results in consistent but not significant 

oxidative stress sensitivity, it could be possible that K11E4.2 does not negatively regulate 

DAF-2 in wild-type animals. Notably, while shc-1 is broadly expressed in C. elegans, 

K11E4.2 is only expressed in the intestine, which also raises an important question as to 

what is the extent of the role of the intestine in modulating oxidative stress responses and 

how the loss of function of K11E4.2 in this tissue, is able to rescue shc-1(ok198) increased 

sensitivity in double mutants. 

 In C. elegans, recovery from L1 arrest is assessed as an indicator of nutritional 

control of development as it depends solely on nutrient availability (Chen and Baugh 2014). 

daf-2 mutants show enhanced resistance to prolonged starvation during L1 arrest in a DAF-

16 dependent manner (Baugh and Sternberg 2006). In contrast, decreased adaptation to 

prolonged starvation in shc-1(ok198) mutants, as assessed by the presence of germline 

tumors upon refeeding after prolonged starvation, is reported to be likely caused by 

increased insulin signaling in a DAF-16 independent manner (Wolf et al. 2014). Similarly 

to the oxidative stress assays double shc-1(ok198);K11E4.2(syb1634) mutants showed 

better recovery from L1 arrest than single shc-1(ok198) mutants. Further supporting the 
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hypothesis that SHC-1 and K11E4.2 have different functions but act in the same genetic 

pathway. Whether K11E4.2 acts in a DAF-16 dependent manner to regulate L1 survival 

remains an interesting question for future research. 

Because K11E4.2(syb1634) mutants showed significantly less severe phenotypes 

from shc-1(ok198) mutants in both oxidative stress and L1 recovery assays, an additional 

K11E4.2 mutant strain was included in these assays. Intriguingly, while both mutants are 

predicted null mutants, the K11E4.2(syb1634) and K11E4.2(gk890887) mutations resulted 

in different phenotype penetrance after chronic and acute paraquat exposure (Fig. 4.7). 

K11E4.2(syb1634) mutants did not show significantly decreased survival from wild-type 

animals during paraquat assays. However, K11E4.2(gk890887) mutants displayed 

significantly enhanced sensitivity in both assays, and their survival was significantly 

different from both wild-type animals and shc-1(ok198) mutants. The K11E4.2(syb1634) 

mutation is a deletion that removes the first and second exons and should result in no protein 

production and the K11E4.2(gk890887) mutation is a nucleotide substitution, resulting in 

the introduction of a stop codon at Q39. This raises the question of whether one of these 

alleles might retain function and thus, explain the difference in penetrance in the observed 

phenotypes. Although both strains were outcrossed, a linked mutation may also explain 

differences in the two strains. K11E2.4 RNAi knockdown in these strains could confirm 

loss of function and possibly offer an answer to this question in the future. Furthermore, 

rescue of the mutant strains with a wild type gene could also address this issue. 

Overall, the data obtained from this project suggests that K11E4.2 could function 

as positive regulator of the insulin signaling pathway, likely competing with SHC-1 for 
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DAF-2 signal transduction in intestinal cells (Fig. 5.1A). Examining genetic interactions 

with daf-2 and daf-16 mutants could help to better understand the role of K11E4.2 in insulin 

signaling. 

 

Table 5.1: Summary of phenotypes found in K11E4.2 mutants 
Phenotype daf-2 mutants shc-1 mutant K11E4.2 mutant 
Development Slow Not reported Normal 
Lifespan Increased Decreased Normal 
Brood size Decreased Normal Normal 
Fat accumulation Increased Not reported Increased on E. 

coli OP50, 
decreased on C. 
aquatica 

Oxidative stress 
resistance 

Increased Decreased Decreased in 
allele dependent 
manner 

Prolonged starvation 
resistance 

Increased Decreased Decreased 

DAF-16 activation Increased Decreased Increased 
compared to 
empty vector 
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Figure 5.1 : Proposed model for K11E4.2 positive regulation of the insulin signaling 

pathway in C. elegans. A) Upon environmental stimuli, such as nutrient availability and 

composition or stressors, K11E4.2 might positively regulate insulin signaling in the 

intestine and compete with SHC-1, a negative regulator. B) Both K11E4.2 and SHC-1 are 

predicted to contain an N-terminal PTB domain. Since K11E4.2 is likely to have opposite 

functions from SHC-1, a negative insulin regulator, K11E4.2 could potentially interact with 

the DAF-2 insulin receptor, through the K11E4.2 PTB domain, and modulate DAF-2 

activity by recruiting additional proteins through the predicted K11E4.2 CH1 or SH2 

domain. 
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5.2 Future directions 

The results obtained suggest that K11E4.2 might have an interesting regulating function in 

the C. elegans intestine. However, a number of questions remain. Firstly, what is the role 

of K11E4.2 in adapting to different bacterial diets? To answer this question, it would be 

useful to know if K11E4.2 has a role in regulating pathways such as lipid metabolism in 

response to dietary composition. While lipid storage was assessed with an ImageJ software 

after Oil red O staining, the code used  is a very simple algorithm (Supplementary 

information), which might result in less accurate comparisons, therefore more sophisticated 

methods like mass spectrometry or thin layer chromatography (Lemieux and Ashrafi 2015) 

could be performed to assess precise differences in fat storage. To our knowledge, fat 

assessment has not been reported in shc-1(ok198) single mutants, therefore including both 

shc-1(ok198) and double mutant strains in lipid assessment could also provide more clues 

about the role of C. elegans SHC proteins in lipid metabolism. Additionally, diet-dependent 

phenotypes are mainly attributed to the composition of the bacterial diet (MacNeil et al. 

2013; Rashid et al. 2020; Zhang et al. 2010). Therefore, if the difference in lipid storage is 

indeed significant, identification of the components of the diet that cause the difference in 

phenotypes could also aid in the identification of additional metabolic pathways that 

K11E4.2 could act in to regulate nutrient uptake and storage. Because K11E4.2 is found to 

be intestinally expressed, this knowledge could also elucidate the mechanism whereby 

tissue intercommunication is able to regulate processes such as development and energy 

expenditure.  
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 As discussed above, the data obtained suggest a possible competition with SHC-1 

for DAF-2 signal transduction in the insulin signaling pathway. However, whether 

K11E4.2 could also act in other metabolic pathways remains unclear. Furthermore, Shc 

proteins are adaptor proteins which by definition mediate protein-protein interactions, 

therefore it is likely that K11E4.2 interacts with additional molecules aside from DAF-2. 

To this end, examination of protein interactions will prove essential in order to fully 

characterize the function of K11E4.2. Methods such as proximity labeling could provide a 

clue as to which proteins could potentially form complexes with K11E4.2 and which 

metabolic pathways could require K11E4.2 for signal propagation.  

5.3 Limitations 
 
Experimental procedures can result in variability for a number of reasons, and experiments 

with C. elegans are no exception (Pho and MacNeil 2019). For assessing L1 survival, 

population density has to be taken into account as larvae density influences survival (Mata-

cabana et al. 2020). Therefore, accuracy in the comparison of survival between populations 

can be affected if the density of animals in each sample varies, as animals in a more dense 

population show increased survival (Mata-cabana et al. 2020). Another factor to take into 

account is contamination as our protocol has a duration of 21 days. As a fixed volume is 

extracted for each time point, it is important to maintain sterility for the duration of the 

experiment. Thus, special care has to be taken in both handling the samples and comparing 

similar population densities. 

 C. elegans is known to display avoidance behaviors after being exposed to 

environmental stressors, such as paraquat (Gourgou and Chronis 2016). During the initial 
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time points of both chronic and acute exposure to paraquat, a percentage of the populations 

will crawl to the side of the plates and will have to be censored. This was a limitation for 

initial experiments as the majority of the animals in the samples had to be censored, 

interfering with the interpretation of the effect of paraquat on survival. Therefore after 

repeating the experiments, we found that for this set of assays it is important to have an 

adequate number of worms: at least 50 per plate during chronic exposure and at least 30 for 

the acute assay. With larger numbers of animals, the effect of paraquat on survival can be 

more accurately assessed. 

 Finally, an important limitation was the assessment of fat accumulation after Oil 

Red O staining. For the purpose of this project, we focused on a representative area of the 

intestine, as K11E4.2 is expressed in this tissue. However, the image analysis was 

performed with a very simple ImageJ algorithm and each image was assessed 

independently, which could result in variability between samples and/or experiments. 

Additionally, we did not take intensity of the dye into account, as we found black 

aggregates in some of our samples, we aimed to avoid the interference this may cause. To 

our knowledge, there is no intestine-specific image analysis protocol for the assessment of 

Oil red O staining. Additionally, Oil red O is an indirect measure of lipids, therefore more 

sophisticated methods, like liquid chromatography or mass spectrometry, should be 

employed to measure changes in specific lipids (Lemieux and Ashrafi 2015). 
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Appendix A 

A.  Supplementary Information 
 
A.1 ImageJ Macro for Oil red O assessment in ImageJ.  
 
The scale of the images is adjusted from pixels to micrometers. TIFF files are processed by 

splitting the images into RGB stacks and using the green channel to manually adjust  the 

threshold to highlight the area stained between the end of the pharyngeal valve and the start 

of the gonadal arm in young adults. The code used was run on ImageJ as follows: 

 
//setTool("line");	
run("In [+]");	
run("In [+]");	
//setTool("hand");	
makeRectangle(1182, 1409, 489, 315);	
//setTool("line");	
makeLine(2300, 1947, 2796, 1949);	
run("Set Scale...", "distance=496.0018 known=100 pixel=1 unit=µm");	
run("Out [-]");	
run("Out [-]");	
//setTool("rectangle");	
run("RGB Stack");	
setAutoThreshold("Default dark");	
//run("Threshold...");	
//setTool("rectangle");	
makeRectangle(1179, 1403, 465, 318);	
makeRectangle(1179, 1427, 459, 294);	
makeRectangle(1170, 1451, 468, 270);	
makeRectangle(1170, 1451, 456, 243);	
makeRectangle(1173, 1457, 453, 237);	
run("Measure");	
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A.2 Chapter 4: Experimental replicates 
 

  
 

 
Figure A.2. 1: K11E4.2 mutant animals develop at a normal rate on an E. coli OP50 diet 

(A,C) but more slowly on a C. aquatica diet (B,D) compared to wild-type animals in two 

separate experiments. Animals were scored at 40 hours after plating the synchronized L1 

populations in plates seeded with the respective diets. Scoring was performed by assessing 

vulva morphology at the L4 stage. A) N2 on E. coli OP50 (n=18) and K11E4.2 mutants on 

E. coli OP50 (n=30). Expected number of L4.9 (wild-type) vs observed (K11E4.2): E. coli 

OP50 (P<0.05) B) N2 on Comamonas aquatica, (n=30) and K11E4.2 mutants on 

Comamonas aquatica, (n=30). Expected number of adults (wild-type) vs observed 
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(K11E4.2): C. aquatica (P =ns) C) N2 on E. coli OP50 (n=30) and K11E4.2 mutants on E. 

coli OP50 (n=30). Expected number of adults (wild-type) vs observed (K11E4.2): E. coli 

OP50 (P=ns D) N2 on Comamonas aquatica, (n=30) and K11E4.2 mutants on Comamonas 

aquatica, (n=30). Expected number of adults (wild-type) vs observed (K11E4.2): C. 

aquatica (P =ns). 

 

  
 
  

  
Figure A.2. 2: Fat accumulation in wild-type and in K11E4.2 mutant worms as assessed 

by ImageJ analysis after Oil red O staining.  Oil red O staining is more intense in K11E4.2 
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mutants fed E. coli OP50, but fainter when fed Comamonas aquatica. Staining was 

performed in young adults at 48 hours after plating L1 synchronized populations. A,C) E. 

coli OP50, n=30 B,D) Comamonas aquatica, n=30. Each dot represents the stained area 

between the pharyngeal valve and the start of the gonadal arm of an individual worm. 

Unpaired T-test: ****P<0.0001.  

 
 

 
Figure A.2. 3: K11E4.2 mutants display normal lifespan. Survival over time is shown. 

There is no significant difference between the lifespan of wild-type animals and K11E4.2 

(syb1634) mutants. While single shc-1(ok198) mutants display significantly reduced 

lifespan, double shc-1(ok198);K11E4.2(syb1634) mutants display increased lifespan. L4 

animals were transferred to NGM plates with 100 µM FUDR to prevent the development 

of progeny. Day 0 indicates the day of transfer. For all strains: n ³ 78. Mantel-Cox test: 

K11E4.2 (syb1634) (P = ns ), shc-1 (ok198) (P<0.0001), shc-1(ok198);K11E4.2(syb1634) 

(P=0.0262), K11E4.2 (gk890887) (P<0.0001). 
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Figure A.2. 4:  Fertility is not affected in K11E4.2 mutants. All strains were scored for 

number of progeny for three consecutive days. Each point represents the total number of 

offspring for an individual animal. A) K11E4.2(syb1634) and double mutants displayed 

reduced brood size compared to wild-type animals in a first trial (**P<0.05). For all strains: 

n=25.  B) No significant differences were detected for any of the mutant strains in a second 

trial. For all strains: n ³ 9. One-way ANOVA and Dunnett’s multiple comparisons: Mean 

and standard deviation are shown.  
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Figure A.2. 5: K11E4.2 mutants are more sensitive to chronic and acute oxidative stress in 

an allele-dependent manner. Upon exposure to 4mM and 100mM paraquat, 

K11E4.2(gk890887) mutants have a shorter lifespan compared to all strains. L4 and young 

adults were transferred to NGM plates added with 4mM or 100mM paraquat and scored for 

survival every day during the chronic assay (4mM) and after 6, 12, 24 and 48 hours during 

the acute assay (100mM). A) For all strains: n ³ 80, Mantel Cox test: K11E4.2(syb1634) 

(P=ns), shc-1(ok198) (P=0.0004), shc-1(ok198);K11E4.2(syb1634) (P=ns), K11E4.2 

(gk890887)( P<0. 0001) B) For all strains n ³ 100, Mantel Cox test: K11E4.2(syb1634) 
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(P=ns), shc-1(ok198) (P<0. 0001), shc-1(ok198);K11E4.2(syb1634) (P=0.0079), K11E4.2 

(gk890887)( P<0. 0001). 

 

 

Figure A.2. 6 : K11E4.2 mutants are more sensitive to prolonged starvation than wild-type 

animals, but more resistant than shc-1 mutants. Percent survival is shown over time. 

K11E4.2 mutants show reduced recovery from L1 arrest as compared to wild-type animals. 

Each time point represents the mean survival of five individual plates with at least 30 

animals per plate. Each dot represents survival proportion of an individual plate. A) 
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Recovery was assessed after 1, 5, 11 and 15 days after L1 arrest. Mantel Cox test: K11E4.2 

(syb1634) (P=0.0003), shc-1(ok198) (P<0.0001), shc-1(ok198);K11E4.2(syb1634) 

(P=0.0006) B) Recovery was assessed after 1, 5, 11 and 16 days after L1 arrest. Mantel 

Cox test: K11E4.2 (syb1634) (P=ns), shc-1(ok198) (P<0.0001), shc-

1(ok198);K11E4.2(syb1634) (P=0.0177) K11E4.2 (sgk890887) (P=ns). 

 

 

Figure A.2. 7: K11E4.2 RNAi treated worms show significantly less cytoplasmic DAF-16 

intracellular localization than animals fed with the empty vector. Animals treated with the 

empty vector show predominantly cytoplasmic DAF-16 localization. daf-2 knockdown 

induces nuclear and intermediate localization of DAF-16. K11E4.2 RNAi treated animals 

show cytoplasmic and intermediate DAF-16 localization. A) Empty vector (n=46), daf-2 

(n=55) K11E4.2 (n=61). Two-way ANOVA, Cytoplasmic localization compared to the 

empty vector: K11E4.2 (P=ns), daf-2 (P=0.0211). B) Empty vector (n=56), daf-2 (n=71) 

K11E4.2 (n=59). Two-way ANOVA, Cytoplasmic localization compared to the empty 

vector: K11E4.2 (P=ns), daf-2 (P=0.0358). 
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