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Abstract

Cluster analysis is used to detect underlying group structure in data. Model-based

clustering is the process of performing cluster analysis which involves the fitting of

finite mixture models. However, parameter estimation in mixture model-based ap-

proaches to clustering is notoriously difficult. To this end, this thesis focuses on the

development of evolutionary computation as an alternative technique for parameter

estimation in mixture models. An evolutionary algorithm is proposed and illustrated

on the well-established Gaussian mixture model with missing values. Next, the fam-

ily of Gaussian parsimonious clustering models is considered, and an evolutionary

algorithm is developed to estimate the parameters. Next, an evolutionary algorithm

is developed for latent Gaussian mixture models and to facilitate the flexible clus-

tering of high-dimensional data. For all models and families of models considered in

this thesis, the proposed algorithms used for model-fitting and parameter estimation

are presented and the performance illustrated using real and simulated data sets to

assess the clustering ability of all models. This thesis concludes with a discussion

and suggestions for future work.
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Chapter 1

Introduction

1.1 Clustering

1.1.1 Cluster Analysis

One of our most natural abilities is grouping and sorting objects into categories or

groups. Classification can be described as a technique where group membership labels

are assigned to unlabelled observations. It is natural to classify objects or individuals

into groups to better understand the world around us and, as such, unsupervised

classification, also known as clustering is the process of revealing underlying group

structure in data. Cluster analysis is used for a wide variety of applications such

as plant and animal ecology to reveal different types of species, market research to

better understand the relationship between different groups of consumers or potential

customers, crime analysis to identify areas where there are greater incidences of

particular types of crime, etc.
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In performing cluster analysis, there is no a priori knowledge of the class labels

of observations or, at least the data is treated as such. However, at the other end

of the classification spectrum is supervised classification, or discriminant analysis,

where the class labels of some observations are known a priori and can be used to

create a prediction rule for the classification of new observations.

The work in this thesis is mainly dedicated to developing novel approaches to

parameter estimation in cluster analysis and, to establish clusters, or groups, in data

such that the observations within groups are as similar as possible whilst observations

in different groups are as dissimilar as possible. The methods developed in this thesis

are tested on a variety of real data sets and may be applied to a wide range of real-

world applications.

1.1.2 Clustering Methods

There are numerous techniques for performing cluster analysis in the literature.

These techniques can be divided into two broad categories, distance based and model

based clustering.

Clustering algorithms based on distance measures—e.g., k-means clustering (Mac-

Queen et al., 1967), partition around medoids (PAM; Kaufman and Rousseeuw,

1990), hierarchical clustering (Ward Jr, 1963)—group objects together based on their

distance from each other, such that objects in the same cluster are closer to each

other, and objects in different clusters are farther away from each other, by com-

puting the distance or the dissimilarity between the objects using some distance or

dissimilarity measure. A major setback to such methods is that, for some types of
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data, it may be a challenge, or impossible to define an appropriate distance metric.

Also, as far as cluster structure is concerned, these approaches are quite rigid.

Parametric, model-based clustering techniques are commonly implemented us-

ing finite mixture models and they offer an alternative to distance based methods.

According to Yeung et al. (2001):

In the absence of a well-grounded statistical model, it seems difficult

to define what is meant by a ‘good’ clustering algorithm or the ‘right’

number of clusters.

Finite mixture-models can be used for clustering by treating observations as a con-

vex linear combination of probability densities. When clustering is based on finite

mixture models, the component densities can be treated as similar to clusters and

the problem is reduced to the assignment of observations to components — this

technique is called model-based clustering (Fraley and Raftery, 2002; McNicholas,

2016). In recent years, a great deal of work has been done on model-based clustering

(e.g., Gollini and Murphy, 2014; Tang et al., 2015; Melnykov, 2016; Wei et al., 2019;

Tortora et al., 2020; Scott et al., 2020; Erola et al., 2020; Lee et al., 2020; Caruso

et al., 2021; Chen and Zhang, 2021); however, relatively little attention has been

paid to the various approaches to parameter estimation.

1.2 Evolutionary Computation

Evolutionary algorithms are used to find the global optimum in fitness landscapes, in

particular where hardly much prior knowledge about the landscape is known (Pitzer

3
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and Affenzeller, 2012). In an evolutionary algorithm, we aim at maximizing a pre-

defined fitness function (Ashlock, 2010) by subjecting individuals to methods such

as mutation, recombination, reproduction and selection. A fitness function can be

defined as a function that can be used to assess the health of all individual members

of a given population. As new members of a population mutate and reproduce from

generation to generation, more fit members are chosen for further reproduction.

The maximization of the fitness function to find the global maximum in the fitness

landscape is analogous to maximizing the conditional expected value of the complete-

data likelihood in an EM algorithm. Evolutionary algorithms have been successfully

applied to cluster analysis (e.g., Hruschka et al., 2009; Andrews and McNicholas,

2013; McNicholas et al., 2020); but there is little work done on this topic in the

literature. In this work, mixture-model based clustering methods are adapted to

take into account elements of evolutionary computation.

1.3 Thesis Outline

1.3.1 Chapter 2

Background information is provided, including details on finite mixture models, miss-

ing data mechanisms, the EM algorithm and its variants, the Gaussian parsimonious

clustering models, and mixtures of factor analyzers and extensions. Techniques for

model-selection and performance assessment are also discussed.
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1.3.2 Chapter 3

An evolutionary algorithm (EA) utilizing an evolutionary operation known as muta-

tion is developed. This algorithm is applied for parameter estimation when handling

data in the presence of missing values. The clustering ability of the method is

illustrated on real and simulated data and compared to the well-known expectation-

maximization (EM) algorithm.

1.3.3 Chapter 4

An EA with crossover followed by mutation is developed as a viable alternate to the

EM algorithm for the parameter estimation in the family of Gaussian parsimonious

clustering models (GPCMs). Model fitting and parameter estimation are discussed

and excellent clustering performance is exhibited when the method is applied to

several real data sets.

1.3.4 Chapter 5

Evolutionary computation is considered for estimating the parameters in the family

of latent Gaussian mixture models, known as parsimonious Gaussian mixture mod-

els (PGMMs). The proposed technique is illustrated on both real and simulated

data sets and its performance compared to the alternating expectation-conditional

maximization (AECM) algorithm.
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1.3.5 Chapter 6

A summary of the work demonstrated in this thesis is presented and possible research

proposals for future work are also discussed.

1.4 Contributions of this Work

The impact of the work presented in this thesis on the body of evolutionary algo-

rithms and model-based clustering literature is summarized as follows:

• An evolutionary algorithm is first used for model-based clustering in the pres-

ence of unobserved or missing values. It gives an approach that can be con-

sidered a hard model-based clustering with missing values under missing at

random mechanism. The method is demonstrated using simulated and real

data sets and performs favorably compared to both the EM algorithm and the

mean imputation method.

• An EA has been developed as an alternative to the EM algorithm. This EA

utilizes evolutionary operations known as crossover and mutation. The pro-

posed method is the first used for parameter estimation in the family of the

famous 14 GPCMs. Our proposed method is demonstrated on numerous real

data sets and performed comparably to the well established EM algorithm.

• Maximum likelihood estimates for the parameters in a family of latent Gaus-

sian mixture models, known as PGMMs, are typically found using an AECM

algorithm. Rather than using an AECM algorithm, an evolutionary algorithm
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is proposed. This EA makes use of the mutation operation. The proposed

EA is illustrated on both real and simulated data sets and its performance is

compared to the AECM algorithm.
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Chapter 2

Background

2.1 Finite Mixture Models

Finite mixture models assume that a population can be modelled as a set of sub-

populations, and each may be modelled by a statistical distribution. They present

a natural approach for model-based clustering both for parameter estimation and to

estimate group memberships. In general, a p-dimensional random vector X arises

from a finite mixture model if for all x ∈ X, it has a density of the form

f(x|ϑ) =
G∑

g=1

πgfg(x|θg), (2.1)

where πg > 0 such that
∑G

g=1 πg = 1 are the mixing proportions, f1(x | θ1), . . . , fg(x | θg)

are the component densities, ϑ = (π,θ1, . . . ,θG) is the vector of parameters where

π = (π1, . . . , πG), and G denote the number of mixture components used to model

the data. The use of finite mixture models began with the work of Pearson (1894)
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who used a mixture of two normal distributions to model data on crabs sampled

from the Bay of Naples. Extensive reviews of finite mixture models can be found in

Everitt (1981), Titterington et al. (1985), McLachlan and Basford (1988), McLachlan

and Peel (2000a) and McNicholas (2016).

When the density is expressed in the form of (2.1), each component density is

typically assumed to follow the same statistical distribution, e.g., the multivariate

Gaussian distribution. The multivariate Gaussian components has been widely used

in the statistical literature for continuous multivariate data, due to their computa-

tional convenience. The earliest use of the finite mixture model for clustering can

be found in Wolfe (1965), using a Gaussian mixture model. The Gaussian mixture

density is defined as:

f(x | ϑ) =
G∑

g=1

πgφ(x | µg,Σg), (2.2)

where φ(x | µg,Σg) is a p-dimensional multivariate normal density with mean µg

and covariance matrix Σg, ϑ = (π,µ1, . . . ,µG,Σ1, . . . ,ΣG) denotes the parameters

of the mixture model, with π = (π1, . . . , πG), and πg has the same meaning as before.

2.2 Mixture of Multivariate Gaussian Distribu-

tions

2.2.1 Model-Based Clustering

Model-based clustering is a fundamental statistical approach used to describe a clus-

tering framework that uses statistical distributions, particularly mixture models.
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Suppose that n p-dimensional data vectors x1, . . . ,xn are observed and all are un-

labelled or treated as such. The Gaussian model-based clustering likelihood can be

expressed as

L(ϑ) =
n∏

i=1

G∑
g=1

πgφ(xi | µg,Σg), (2.3)

where πg can be thought of as the a priori probability that observation xi belongs

in component g (McLachlan and Peel, 2000a; McNicholas, 2016). To facilitate clus-

tering, the notation zi is introduced where, zi = (zi1, . . . , ziG) denote the component

(group) membership of observation i, such that zig = 1 if observation i belongs to

the gth component and zig = 0 otherwise. Within the EM algorithm framework, the

zig are replaced by their expected values:

ẑig =
π̂gφ(xi | µ̂g, Σ̂g)∑G
h=1 π̂hφ(xi | µ̂h, Σ̂h)

, (2.4)

for i = 1, . . . , n and g = 1, . . . , G. After the parameters have been estimated, the

predicted group memberships are determined from the a posteriori probability that

observation xi belongs to component g—this is given by ẑig evaluated at the pa-

rameter estimates. The main difference between “soft” classification and “hard”

classification boils down to how the ẑig is reported—when this value is reported ex-

actly as computed, it is referred to as soft classification, and when rounded to 0 or

1, it is referred to as hard classification.

The most popular way to carry out hard classification is to report the maximum

10
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a posteriori (MAP) classification, i.e., MAP{ẑig}, where

MAP{ẑig} =


1 if g =argmaxh{ẑih}, and

0 otherwise.

The EM algorithm always allows values ẑig ∈ [0, 1] as the algorithm iterates, ir-

respective of whether ẑig or MAP{ẑig} is eventually returned. In this work, the

evolutionary algorithm that is considered restricts ẑig ∈ {0, 1} at all times, which is

the main feature that distinguishes it and the EM algorithm.

2.2.2 Gaussian Parsimonious Clustering Models

A p-dimensional random variable following a G-component Gaussian mixture model

has a total of G − 1 + Gp + Gp(p + 1)/2 free parameter, with G − 1 coming from

the mixing proportions, Gp from the means and Gp(p + 1)/2 from the covariance

matrices. Celeux and Govaert (1995) introduced parsimony into Gaussian mixtures,

by imposing constraints on the elements of the decomposed covariance structure

Σg. Banfield and Raftery (1993) proposed an eigen-decomposition of the component

covariance matrices, i.e.,

Σg = λgΓg∆gΓ
′
g, (2.5)

where Γg is an orthogonal matrix of eigenvectors of Σg, ∆g is a diagonal matrix, such

that |∆g| = 1, containing the normalized eigenvalues of Σg in decreasing order, and

λg = |Σg|1/p is the associated constant of proportionality. The scalar λg constitutes

the volume in p-space, ∆g specifies the shape and Γg determines the orientation

11
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(Banfield and Raftery, 1993; McNicholas, 2016). By imposing a combination of

constraints on (2.5), Celeux and Govaert (1995) developed a family of 14 Gaussian

parsimonious clustering models (GPCMs) and these models are presented in Table 2.1

(sourced from McNicholas, 2016).

Table 2.1: Nomenclature, descriptions, component covariance structure, and param-
eter counts of the component covariance matrices for each member of the GPCM
family.

Model λg = λ ∆g = ∆ Γg = Γ Σg
Number of

Covariance Parameters

EII Equal Identity Identity λI 1
VII Variable Identity Identity λgI G
EEI Equal Equal Identity λ∆ p
VEI Variable Equal Identity λg∆ p+G− 1
EVI Equal Variable Identity λ∆g Gp−G+ 1
VVI Variable Variable Identity λg∆g Gp
EEE Equal Equal Equal λΓ∆Γ′ p(p+ 1)/2
VEE Variable Equal Equal λgΓ∆Γ′ G+ p− 1 + p(p− 1)/2
EVE Equal Variable Equal λΓ∆gΓ

′ 1 +G(p− 1) + p(p− 1)/2
EEV Equal Equal Variable λΓg∆Γ′g p+Gp(p− 1)/2
VVE Variable Variable Equal λgΓ∆gΓ

′ Gp+ p(p− 1)/2
VEV Variable Equal Variable λgΓg∆Γ′g G+ p− 1 +Gp(p− 1)/2
EVV Equal Variable Variable λΓg∆gΓ

′
g 1 +G(p− 1) +Gp(p− 1)/2

VVV Variable Variable Variable λgΓg∆gΓ
′
g Gp(p+ 1)/2

Parameter estimation for these 14 GPCM models is carried out using an EM

algorithm (Dempster et al., 1977), and a detailed outline of the framework is given by

Celeux and Govaert (1995). Browne and McNicholas (2014) developed an alternate

approach for the EVE and the VVE models using fast majorization-minimization

algorithms.
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2.3 Mixture of Factor Analyzers Model

Although mixture models are widely used, however, they need to be adapted to

cope with high-dimensional data sets. This is because as the data dimensionality p

increases, the number of model parameters that must be estimated becomes large.

The main contribution to the number of free parameters comes from the component

covariance matrices.

Factor analysis, first introduced by the psychologist, Spearman (1904), is a tech-

nique that is used to reduce a large number of variables into a fewer number of

factors. This technique was later on explained in statistical terms by Bartlett (1953)

and Lawley and Maxwell (1962). Consider independent p-dimensional random vari-

ables X1, . . . ,Xn, the factor analysis model can be written

Xi = µ+ ΛUi + εi, (2.6)

for i = 1, ..., n, where Λ is a p× q matrix of factor loadings with q < p, Ui ∼ N(0, Iq)

denotes the latent factors, and εi ∼ N(0,Ψ), with Ψ = diag(ψ1, . . . , ψp). The Ui

and εi are both independently distributed and independent of each another. Under

this model, the marginal distribution of Xi is N(µ,ΛΛ′ + Ψ). Similar to the factor

analysis model, the mixture of factor analyzers (MFA) model is expressed as:

Xi = µg + ΛgUig + εig, (2.7)

with probability πg, for i = 1, ..., n and g = 1, ..., G. The MFA model originally
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proposed by Ghahramani and Hinton (1997) and Hinton et al. (1997), reduces the

number of parameters to be estimated via restrictions on the component covariance

matrices Σg. The density of this MFA model is that of a Gaussian mixture model

with component covariance structure Σg = ΛgΛ
′
g +Ψg. Thus the density of Xi from

the MFA model is

f(xi) =
G∑

g=1

πg
(2π)p/2|ΛgΛ′g + Ψg|1/2

× exp

{
−1

2
(xi − µg)

′(ΛgΛ
′
g + Ψg)

−1(xi − µg)

}
.

(2.8)

A number of models have been developed that extend the MFA model as a result

of additional constraints imposed on the component covariance parameters. McLach-

lan and Peel (2000b) presented a more general mixture of factor analyzers model

(Σg = ΛgΛ
′
g + Ψg), and Tipping and Bishop (1999) introduced a mixture of prob-

abilistic principal component analyzers model (Σg = ΛgΛ
′
g + ψgIp). McNicholas

and Murphy (2008) constructed a family of parsimonious Gaussian mixture models

(PGMM), and this family of models is discussed in the subsection below.

2.3.1 Parsimonious Gaussian Mixture Models

McNicholas and Murphy (2008) considered the combinations of the constraints Λg =

Λ, Ψg = Ψ, and the isotopic constraint Ψg = ψgIp, providing a class of eight different

PGMMs. These constraints tend to reduce the number of free parameters estimated,

making PGMM models more suitable for clustering high-dimensional data. These

PGMMs are presented in Table 2.2, where “C” means a constraint is imposed and

14
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“U” means constraint not imposed (notations borrowed from McNicholas, 2016).

The maximum likelihood estimates of the parameters for the members of the PGMM

family are performed using the AECM algorithm.

Table 2.2: The nomenclature, component covariance structure, and parameter counts
of the component covariance matrices for each member of the PGMM family.

Model ID Λg = Λ Ψg = Ψ Ψg = ψgIp Σg
Free Covariance

Parameters

CCC C C C ΛΛ′ + ψIp pq − q(q − 1)/2 + 1
CCU C C U ΛΛ′ + Ψ pq − q(q − 1)/2 + p
CUC C U C ΛΛ′ + ψgIp pq − q(q − 1)/2 +G
CUU C U U ΛΛ′ + Ψg pq − q(q − 1)/2 +Gp
UCC U C C ΛgΛ

′
g + ψIp G[pq − q(q − 1)/2] + 1

UCU U C U ΛgΛ
′
g + Ψ G[pq − q(q − 1)/2] + p

UUC U U C ΛgΛ
′
g + ψgIp G[pq − q(q − 1)/2] +G

UUU U U U ΛgΛ
′
g + Ψg G[pq − q(q − 1)/2] +Gp

2.4 EM Algorithm and Extensions

2.4.1 The EM Algorithm

The EM algorithm (Dempster et al., 1977) is an iterative technique that computes

the maximum likelihood (ML) estimates and has been the most common approach for

the fitting of mixture models, and parameter estimation in model-based clustering.

The EM algorithm is designed for application to data that is incomplete or treated as

such. In clustering applications, the term incomplete data refers to the unobserved

group membership labels and sometimes other latent variables and, complete data

refers to both observed and missing data.
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The EM algorithm is based on the complete data and it alternates between two

steps, an expectation (E-) step and a maximization (M-) step. In each E-step, the

expected value of the complete-data log-likelihood, namely the so-called Q function,

is calculated conditional on the observed data and the current parameter estimates.

In the M-step, the expected complete-data log-likelihoodQ is maximized with respect

to the model parameters. The EM algorithm iterates between the E-step and M-step

until some stopping/convergence criterion is met. Ng et al. (2012) outlined a detailed

description of the EM algorithm.

2.4.2 The AECM Algorithm

The AECM algorithm (Meng and Van Dyk, 1997) is a variant of the EM algorithm, or

more precisely, it is an extension of the expectation-conditional maximization (ECM)

algorithm (Meng and Rubin, 1993). The ECM algorithm replaces the M-step in the

EM algorithm by a sequence of conditional maximization (CM-) steps. The AECM

algorithm incorporates a series of CM-steps instead of a single M-step and also allows

for different specification of the complete-data in each stage of the algorithm. Similar

to the regular M-step, the CM-step will maximize the conditional expectation of its

corresponding complete-data log-likelihood at each cycle. A detailed description as

well as illustrative examples of the EM algorithm and its extensions can be found in

McLachlan and Krishnan (2007).
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2.4.3 Convergence

The EM algorithm and its extensions iteratively update the model parameters until

certain predefined criteria are satisfied. A common approach is the lack of progress,

where the algorithm is stopped depending on the difference in successive observed

log-likelihood values. In this case the EM algorithm is stopped when

l(r+1) − l(r) < ε, (2.9)

where ε is some small value, and l(r) is the observed log-likelihood from iteration r.

An alternate method is the Aitken’s acceleration-based criterion (Aitken, 1926),

which is used to evaluate the asymptotic maximum of the log-likelihood at each

iteration of the EM algorithm. At iteration r, it is expressed as

a(r) =
l(r+1) − l(r)

l(r) − l(r−1)
, (2.10)

where l(r) is the log-likelihood value evaluated at iteration r. The Aitken’s accelerated

estimate of the log-likelihood at iteration r + 1 considered by Böhning et al. (1994)

and Lindsay (1995) is

l(r+1)
∞ = l(r) +

1

1− a(r)
(l(r+1) − l(r)). (2.11)

McNicholas et al. (2010) stopped the algorithm when

l(r+1)
∞ − l(r) < ε, (2.12)
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provided this difference is positive.

2.5 Evolutionary Computation

Evolutionary computation (EC) is a paradigm consisting of computational intelli-

gence technique strongly inspired by the theory of evolution from the perspective

of biology. An EC initially starts with a population of individuals that are consid-

ered to be candidate solutions. Operations inspired from natural evolution, such as

crossover and mutation are carried out on these individuals which then reproduce

and replace the less fit members of the population. In mutation, parts of a solution

are modified randomly to generate a new solution, e.g., in cluster analysis, one can

select an observation at random and change the group to which it belongs. On the

other hand, crossover involves the combination of two or more solutions, in some

fashion, to give a new solution.

Evolutionary algorithms (EAs) are useful for overcoming difficult optimization

problems. Similarly to how nature works, evolutionary algorithms use two basic

ideas: reproduction and survival of the fittest. Survival of the fittest is a way of

describing the process of natural selection which in this case refers to the individuals

or solutions that are selected for the reproduction phase. Fitness is determined in

the context of a fitness function and the less fit members from a generation are

replaced by new, fitter, members. This evolutionary process—mutation, crossover,

and survival of the fittest—is repeated until some stopping rule is satisfied. The

fitness function used in a particular case depends on the goal of the EA. In fact,
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if the optimization problem is multi-objective, then there can be multiple fitness

functions or criteria. The general steps of an EA is presented below.

initialize population of solutions called members

calculate the fitness of all members

while optimal solution is not attained

select parents

apply genetic operators, crossover and mutation to the selected individuals

calculate fitness values of new individuals

select individuals for the next generation

end while

return the best individuals

A detailed survey on EAs for clustering is presented by Hruschka et al. (2009), where

they remarked that a lot of work needs to be done on the theoretical foundations of

EAs as they can be seen as heuristic-based approach to solving hard optimization

problems. Also, Weicker and Weicker (2003) pointed out that a solid theoretical basis

for these applications is still lacking whilst outlining a networked understanding of

EAs.

The field of EAs is quite active and recent work includes contributions by Has-

nat et al. (2017), Das et al. (2019), Lin et al. (2019), Tautenhain and Nascimento

(2020), Hassan and Rashid (2021) and Luo et al. (2021). Comprehensive coverage of

EAs is given in the monographs by Deb (2001) and Ashlock (2010). In the field of

model-based clustering, there are existing EA approaches that focus on evolving the

parameter space (Martınez and Vitria, 2000; Pernkopf and Bouchaffra, 2005) whilst
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Andrews and McNicholas (2013) and McNicholas et al. (2020) propose approaches

that focus instead on mutations among the cluster membership labels where the data

is completely observed, i.e., the case of null proportion of missing data. Mutations

among the cluster membership labels can be considered as having two theoretical

advantages (Andrews and McNicholas, 2013). Firstly, the hard cluster membership

space is finite unlike the parameter space and, secondly, the ability to make “edu-

cated” random mutations on the cluster memberships by using the expectations that

would be used in an EM algorithm. Due to these advantages, the approach devel-

oped in this thesis focuses on mutation and crossover among the cluster membership

labels. In Chapter 3, our proposed EA is built to perform model-based clustering

when data are missing at random using a single fitness function, i.e., the (observed)

log-likelihood, and mutations. In Chapter 4, the EA developed utilizes crossover

followed by mutation and, in Chapter 5, the EA approach focuses on mutation only.

2.6 Missing Data Mechanism

The presence of unobserved or missing data poses a particularly significant diffi-

culty in clustering because, in addition to the usual challenges, the subpopulation to

which an observation with missing data belongs is unknown. Orchard et al. (1972)

commented that the best way to treat missing data is not to have them and, while

true, is often not practical. As Allison (2002) observed, anyone who works with data

sooner or later runs into problems with missing data. The maximum likelihood and

Bayesian methods are two popular imputation paradigms for analyzing data with
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missing observations.

Little and Rubin (1987) and Rubin (1976) classified the missing data mechanism

into three categories that remain in use today: (a) missing completely at random

(MCAR), (b) missing at random (MAR), and (c) missing not at random (MNAR),

a.k.a not missing at random (NMAR). In the missing data literature, data are often

partitioned into two parts: the observed data (Xo) and the missing data (Xm). In

this context, the mechanism of missing data can be elegantly described through the

relationships between Xo, Xm, and the “cause” of the missingness. For MCAR, the

cause of missingness is independent of both Xo and Xm. MAR is a process in which

the cause of missingness is not related to Xm, but may depend on Xo. In this case

MCAR can be seen as a special case of MAR. The missing data mechanism is MNAR

if the data missingness are related to Xm or some unobserved latent variables. In

Chapter 3 of this thesis, the missing data mechanism is assumed to be missing at

random (MAR), under which the missing data mechanisms are ignorable for methods

using the maximum likelihood approach.

2.7 Model Selection and Performance Assessment

2.7.1 Bayesian Information Criterion

In a family of models, an appropriate model often has to be selected. For example, it

is necessary to select an adequate number of components G, and/or the component

covariance structure. The Bayesian information criterion (BIC; Schwarz et al., 1978)
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is a common technique for model selection in model-based clustering and is given by

BIC = 2l(ϑ̂)− ρlogn, (2.13)

where l(ϑ̂) is the maximized log-likelihood, ϑ̂ represents the maximum likelihood

estimate of ϑ, n is the number of observations, and ρ denotes the number of free

parameters to be estimated in the model. Fraley and Raftery (1998, 2002) provide

evidence that the BIC performs well as a model selection criterion for mixture models.

Alternatives for model selection are suggested, inter alia, by Biernacki et al. (2000),

but none have been consistently better. Lopes and West (2004) show how the BIC can

be used to select the number of latent factors for a factor analysis model. Throughout

this thesis, the BIC is used as a model selection criterion to choose the number of

groups, latent factors, and covariance structure where appropriate. Note also that we

choose the model with the largest BIC value from among a set of competing models.

2.7.2 Adjusted Rand Index

In this thesis, clustering is performed on data sets for which the true fundamental

groups are known a priori. This allows us to evaluate the clustering efficiency of

the models developed here by comparing the known class labels with the estimated

cluster members. However, each analysis is performed as a true clustering problem

and the actual class members are entirely hidden from our algorithms and are not

used to aid the clustering.

The Rand index (RI; Rand, 1971) is a method used for assessing class agreement
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and is calculated as a cross-tabulation between the true class labels and the MAP

classifications. In general, the Rand index can be calculated as

number of pairwise agreements

total number of pairs
,

where the total number of pairs is the sum of the number of pairwise agreements

and the number of pairwise disagreements. A pairwise agreement occurs when two

observations belonging to the same cluster are assigned the same label or, when two

observations belonging to different clusters are actually assigned different labels by

the mixture model. The RI takes on values between 0 and 1, where a value of 1

indicates perfect class agreement. The RI may be difficult to interpret sometimes for

smaller values, because its expected value is greater than 0 under random classifica-

tion.

The adjusted Rand index (ARI) introduced by Hubert and Arabie (1985), corrects

the RI for the number of pairwise agreements that would be expected to occur if the

observations were classified at random. Similar to the RI, an ARI value of 1 indicates

perfect agreement between the true class labels and the MAP classifications. Under

random classification, the expected ARI value is 0, whilst a negative value shows

that the classification is worse than classifying randomly.
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Chapter 3

Clustering Incomplete Data using

an Evolutionary Algorithm

3.1 Introduction

With the increasing emphasis on data science, clustering (or unsupervised classifica-

tion) has burgeoned into an important subfield of machine learning. In a clustering

scenario, each observation comes from one of a number of subpopulations—a.k.a.

groups, classes or clusters—with distinguishable features and the objective is to find

to which subpopulation each observation belongs to. The presence of missing data

poses a particularly significant difficulty in clustering because, in addition to the

usual challenges, the subpopulation to which an observation with missing data be-

longs is unknown. The Gaussian component model with an EM algorithm is often

used to tackle missing data in the unsupervised classification paradigm. However,

24



Ph.D. Thesis - Regina S. Kampo McMaster - Mathematics and Statistics

despite the great benefits associated with the EM algorithm, it is susceptible to be-

coming stuck at local maxima and also, the algorithm is very reliant on starting

values. In this chapter, rather than using an EM algorithm, we develop an EA for

clustering partially observed data. The EA facilitates a different search of the fitness

landscape, i.e., the likelihood surface, when compared to the EM algorithm and so

it is of interest to compare the two.

3.2 Gaussian Mixture Models with Missing Data

Consider a model-based clustering scenario, the maximum likelihood estimation of

(2.3) when the random variables X1, . . . ,Xn are not completely observed, i.e., when

the pattern of missingness is arbitrary and MAR — thus we assume the missing data

mechanism here to be MAR.

To set up the updates for the Gaussian mixture model with missing values, Xi

is partitioned into the observed part Xo
i and the missing part Xm

i with dimensions

poi × 1 and pmi × 1, respectively, where poi + pmi = p. Borrowing standard notation

(e.g., Lin et al., 2006; Wei et al., 2019), two missing indicator matrices are also

introduced, denoted by Oi (poi × p) and Mi (pmi × p), which can be extracted from

a p-dimensional identity matrix Ip, corresponding to the respective row positions of

Xo
i and Xm

i in Xi such that Xo
i = OiXi and Xm

i = MiXi. It can be easily verified

that Xi = O′iX
o
i + M′

iX
m
i and O′iOi + M′

iMi = Ip.

To denote which component each data vector xi belongs to, it is convenient to

introduce z1, . . . , zn, where zi = (zi1, . . . , ziG) with zig = 1 if xi belongs to the gth
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component and zig = 0 otherwise. Parameter estimation can be performed using the

EM algorithm, where the complete-data comprise the observed x1, . . . ,xn and the

labels z1, . . . , zn. The complete-data likelihood is

Lc(ϑ) =
n∏

i=1

G∏
g=1

[πgφ(xi | µg,Σg)]
zig . (3.1)

Following the EM algorithm outlined by Lin et al. (2006), the complete-data log-

likelihood function is expressed as

lc(ϑ) =
G∑

g=1

n∑
i=1

zig log πg +
1

2

G∑
g=1

(
log
∣∣Σ−1g

∣∣ n∑
i=1

zig −
n∑

i=1

zig(∆
o
ig + ∆m.o

ig )

)
, (3.2)

where Σ−1g = Soo
ig + Smm.o

ig , Soo
ig = O′i(OiΣgO

′
i)
−1Oi, ∆o

ig = (xi − µg)
′Soo

ig (xi − µg),

∆m.o
ig = (xi − µg)

′Smm.o
ig (xi − µg)and

Smm.o
ig = [Mi(Ip −Σg)S

oo
ig ]′[Mi(Ip −Σg)S

oo
ig ΣgM

′
i]
−1 ×Mi(Ip −Σg)S

oo
ig .

In the E-step, the expected value of the complete-data log-likelihood is updated.

In practice, this amounts to replacing the zig in (3.2) by their expected values

ẑig =
π̂gφpoi

(xo
i | µ̂o

ig, Σ̂
oo
ig )∑G

h=1 π̂hφpoi
(xo

i | µ̂o
ih, Σ̂

oo
ih )
, (3.3)

where µ̂o
ig = Oiµ̂g and Σ̂oo

ig = OiΣ̂gO
′
i. Note that, in the E-step, we are conditioning

on the current parameter estimates, hence the use of hats on the parameters in (3.3).
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It follows that, the expected value of the complete-data log-likelihood is

Q(ϑ) =
G∑

g=1

n∑
i=1

ẑiglogπg +
1

2

G∑
g=1

(
log | Σ−1g |

n∑
i=1

ẑig − tr

(
Σ−1g

n∑
i=1

Ωig

))
, (3.4)

where

Ωig = ẑig

[
(x̂ig − µg)(x̂ig − µg)

′ + (Ip − Σ̂gŜ
oo
ig )Σ̂g

]
and

x̂ig = µ̂g + Σ̂gŜ
oo
ig (xi − µ̂g).

In the M-step, the model parameters are updated, by maximizing Q(ϑ). Specif-

ically, Q(ϑ) is maximized with respect to πg, µg, and Σg, producing the following

updates

π̂g =
1

n

n∑
i=1

ẑig, µ̂g =
1

ng

n∑
i=1

ẑigx̂ig, Σ̂g =
1

ng

n∑
i=1

Ω̂ig,

where ng =
∑n

i=1 ẑig and Ω̂ig is Ωig as above with µg replaced by µ̂g. The EM

algorithm alternates between the E-step and the M-step until some stopping criterion

is satisfied. The EM algorithm is heavily dependent on starting values and is prone

to stopping at local maxima (McLachlan and Krishnan, 2007). These issues arise

because of the single path monotonic nature of the EM algorithm. When used for

model-based clustering, the EM algorithm can be initialized in two ways. Either by

defining the initial model parameters and computing the expected class membership

indicators, or by specifying starting values for the ẑig and initializing the model

parameters according to the updates. To initialize the EM algorithm herein, the

27



Ph.D. Thesis - Regina S. Kampo McMaster - Mathematics and Statistics

k−means function was used to generate the starting values for ẑig.

3.3 Evolutionary Algorithm for Clustering with

Missing Data

3.3.1 Model and Fitness Function

The underlying model considered here is the mixture of multivariate Gaussian distri-

butions. Also, all the group labels are assumed to be unknown even in cases where

they are actually known for the purpose of clustering. Whereas the EM algorithm

deals with the expected value of the complete-data loglikelihood, the EA developed

in this chapter is single-objective, i.e., built to optimize one fitness function, and the

fitness function is based on the (observed) log-likelihood, i.e.,

l(ϑ) =
n∑

i=1

log

{
G∑

g=1

πgφ(xi | µg,Σg)

}
, (3.5)

where ϑ = (π1, . . . , πG,µ1, . . . ,µg,Σ1, . . . ,Σg) represents the model parameters.

The EA developed herein can be seen as an approach for hard model-based clus-

tering with missing data. The term “hard” in this context simply means that the

estimated group membership labels are forced to take the values z̃ig ∈ {0, 1} as com-

pared to the soft labels ẑig ∈ [0, 1] used in the EM algorithm. In order to avoid any

mix-ups with the expected values ẑig used in the EM algorithm, we use z̃ig to denote

the estimate of zig used in the EA. As the EA iterates, the estimated value of zig

continues to change.
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3.3.2 Evolutionary Algorithm

Our EA uses several individual parents, each of which is cloned multiple times with

the cloned offspring reproducing. Also, because each step of the algorithm requires

calculations among either parents or children, two further sets of indices are needed:

j = 1, ..., J indexes children and k = 1, ..., K indexes parents. The fitness function

for the jth child is simply the log-likelihood (3.5) evaluated using the expectations

x̂ig and the parameter estimates π̂1j, . . . , π̂Gj, µ̂1j, . . . , µ̂Gj, Σ̂1j, . . . , Σ̂Gj.

The K fittest solutions at each generation survive. These K solutions are cloned

(i.e., produce children) to the next generation which ensures that the maximum

fitness from one generation to another is non-decreasing. To be specific, the initial

K single parents and all the clones are arranged in a descending order of fitness,

where we choose the topmost K to become the next generation of single parents.

Based on z̃igk, the updates π̂gk, µ̂gk and Σ̂gk (g = 1, . . . , G) are computed as for the

EM algorithm (Section 3.2). Then, we can compute the probability that observation

xi belongs to component g for parent k given these current parameter estimates:

ẑigk =
πgkφpoi

(xo
i | µo

gk,Σ
oo
gk)∑G

h=1 πhkφpoi
(xo

i | µo
hk,Σ

oo
hk)

(3.6)

for i = 1, . . . , n, g = 1, . . . , G and k = 1, . . . , K. The z̃igk are mutated by randomly

sampling each observation’s cluster membership according to the probabilities (3.6).

At each iteration, K parents are stored and, during the reproduction phase, we

sample J new matrices of z̃igk according to the ẑigk corresponding to each of the K

parents. As our EA is an iterative procedure, the stopping criterion adopted here is
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the lack of progress approach where the EA is stopped once stagnation occurs. In

this particular instance, when the log-likelihoods from the top K solutions remain

the same or fail to increase over three consecutive generations, our EA is terminated.

Pseudo-Code

The detailed procedure followed in our EA is summarized in the following pseudo-

code (Algorithm 1). Note that the code used in this thesis was written in R (R Core

Team, 2020).

Algorithm 1 EA for GMM with Missing Data

initialize z̃igk matrices using k-means

initialize: k sets of parameters based on these z̃igk

stag = 0

while stag < 3 do

mutate: calculate ẑigk; sample J children (clones) z̃igk accordingly

update: all J sets of parameters

fitness: calculate log-likelihood for each of J children (clones)

survival: sort J children (clones) and K parents in descending fitness order,

select top K as new parents

if the log-likelihoods of the top K solutions are the same as previous cycle

then

stag++

else

stag = 0

end if

end while

return z̃igk corresponding to the highest log-likelihood
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Our EA is fitted for different values of J and K and the best combination of J

and K is then selected via the BIC. The effectiveness of our EA for traversing the

fitness (log-likelihood) surface is illustrated in Section 3.4.

3.4 Illustrations

To assess the performance of our EA, we compare it to the EM algorithm in Sec-

tion 3.2 and with the straightforward mean imputation (MI) method — where the

missing data is replaced with the sample mean of the associated variable — followed

by an EM algorithm on the resulting (complete) data. In the applications here, the

data sets are complete and, for illustration purposes, we consider different degrees

of missingness by excluding observations using an MAR mechanism, provided that

each observation has at least one observable attribute. All the data sets discussed

here are scaled before the analysis.

For the data sets considered, we assumed that there is no prior knowledge of the

labels or the number of components (i.e., they are treated as a genuine clustering

example). As is common, the BIC is used for model selection; in our case, to select

J , K, and G. Because the true group labels are available for each data, the true

and the predicted classifications can be compared using the ARI. Steinley (2004)

outlined detailed arguments justifying the use of ARI in this instance, contrary to

alternatives such as the misclassification rate.
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3.4.1 Simulation

Two simulation scenarios are considered. In each case, the data are generated via

the genRandomClust function from the R package called clusterGeneration (Qiu

and Joe, 2006) for varying dimensions. In all, 100 artificially missing data sets are

created by deleting at random under various specified missing proportions r.

In Scenario I, we generated a data set with p = 3 variables, n = 323 observations

and well separated clusters by setting sepVal = 0.03, numNonNoisy = 3 and the

remaining settings were left at default — a pairs plot of this data is presented in

Figure 3.1. Over the 100 replicates for each missing proportion r, we report the

average ARI values for different values of the number of survivors K and the number

of children J in our EA (Table 3.1).

Table 3.1: Average ARI values for the number of survivors K and the number of
children J , with varying missingness proportions r, for our EA for the simulated data
from Scenario I (100 replicates).

J
r K 10 20 30
5% 1 0.9110 0.9100 0.9103

2 0.9862 0.9859 0.9910
4 0.9932 0.9938 0.9935

10% 1 0.9148 0.9110 0.9098
2 0.9657 0.9702 0.9802
4 0.9808 0.9811 0.9799

20% 1 0.9129 0.9132 0.9123
2 0.9235 0.9236 0.9139
4 0.9274 0.9271 0.9271

30% 1 0.8584 0.8564 0.8579
2 0.8687 0.8683 0.8621
4 0.8651 0.8632 0.8657
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Figure 3.1: A pairs plot of the simulated data set in Scenario I, where colours reflect
true classes.

It is unsurprising that, as the missingness proportion r increases, the classifica-

tion performance, i.e., the average ARI, decreases (Table 3.1). For a fixed number

of survivors K, increasing the number of children J has effectively no impact on the

average ARI values—this is true for all considered values of r. However, increas-

ing the number of survivors K results in notably improved ARI values for missing

proportions r ∈ {5%, 10%}. There was a small improvement when K was increased

at r = 20% and 30%. Based on these observations, we consider K ≥ 2 survivors
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hereafter.

The results from comparing our EA to the EM and MI approaches (Table 3.2)

in Scenario I, show that both the EA and EM notably outperformed MI in all cases.

Furthermore, the classification performance of the EA is better than the EM with

higher average ARI values and lower associated standard deviations in all cases. The

BIC selected an EA with K = 2 and J = 20, and the associated average BIC values

are compared with those from the EM and MI approaches in Table 3.3.

Table 3.2: Average ARI values with standard deviations (sd) for EA (K = 2 and J
= 20), EM and MI under varying missing proportions r for the simulated data in
Scenario I (100 replicates).
r EA EM MI
5% mean 0.9859 0.9486 0.9139

sd 0.0542 0.1458 0.0284
10% mean 0.9702 0.9281 0.7915

sd 0.0540 0.1524 0.1197
20% mean 0.9236 0.9113 0.6607

sd 0.0470 0.0852 0.0864
30% mean 0.8683 0.8503 0.6053

sd 0.0309 0.0877 0.0964

Table 3.3: Average BIC values for EA (K = 2 and J = 20), EM and MI for the
simulated data from Scenario I.
r EA EM MI
5% −1166.62 −1212.46 −1494.87
10% −1148.10 −1192.63 −1595.03
20% −1093.40 −1106.37 −1502.74
30% −1030.00 −1036.91 −1407.68

In Scenario II, we generate a data set with p = 3 variables, n = 323 observations

and substantially overlapping clusters. This is a very difficult clustering problem (see
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Figure 3.2) and classification results close to perfect are not expected. The results

(Table 3.4) again show that the EA and EM approaches outperform the MI approach.

This time, the EA and EM algorithms give comparable classification performance

with the EA approach consistently obtaining slightly higher average ARI values in

each case with very similar standard deviations. As usual, the EA is chosen based

on the BIC. The chosen EA (K = 2 and J = 20) and the EM algorithm have very

similar average BIC values in this scenario (Table 3.5).
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Figure 3.2: A pairs plot of the simulated data set in Scenario II, where colours reflect
true classes.
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Table 3.4: Average ARI values with standard deviations (sd) for EA (K = 2 and J
= 20), EM and MI under varying missing proportions r for the simulated data from
Scenario II (100 replicates).
r EA EM MI
5% mean 0.7991 0.7923 0.7633

sd 0.0204 0.0189 0.0255
10% mean 0.7577 0.7518 0.6792

sd 0.0269 0.0253 0.0357
20% mean 0.6754 0.6682 0.4558

sd 0.0336 0.0352 0.1021
30% mean 0.5900 0.5812 0.2629

sd 0.0565 0.0646 0.0622

Table 3.5: Average BIC values for EA (K = 2 and J = 20), EM and MI for the
simulated data from Scenario II.
r EA EM MI
5% −2490.49 −2489.95 −2586.26
10% −2381.07 −2380.45 −2577.81
20% −2155.33 −2154.67 −2509.16
30% −1925.14 −1925.17 −2362.14

To investigate the run time of our proposed EA compared to EM and MI, we

generated data sets with similar specifications as Scenario I, but with different num-

bers of variables, p = {5, 15, 30}. From Fig.3.3, we have the average run time given

in seconds for the various methods. The EA has the longest run time, which is not

surprising since it requires calculations among children (clones) at each iteration of

the algorithm.
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Figure 3.3: Plot of the average run time in seconds for the EA, EM and MI vs varying
missingness proportions r, for simulated data sets with 5, 15 and 30 variables (100
replicates).

3.4.2 Real Data

Iris Data

Fisher (1936) discussed four measurements in centimeters on the attributes of the

petal length, petal width, sepal length and sepal width from three species of irises

(Iris setosa, Iris virginica and Iris veriscolor) originally collected by Anderson (1935).

The data set consists of 50 samples from each of the three species and is available in
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the R package datasets. The results from applying the EA, EM and MI approaches

to the iris data are summarized in Table 3.6. For the EAs, we consider K ∈ {1, 2}

and J ∈ {10, 20}. For K = 1 and regardless of J , the EA yielded slightly inferior ARI

values compared to K = 2—this is not surprising when one considers the simulation

scenarios (Section 3.4.1). However, it is worth noting that K = 1 still resulted in

superior average ARI values compared to the EM and the MI approaches. Overall,

the MI approach is the worst performer. The EA chosen based on the BIC, i.e.,

with K = 2 and J = 20, outperforms the EM algorithm in all cases, with consis-

tently higher average ARI values and lower associated standard deviations as well as

superior average BIC values (see Tables 3.6 and 3.7).

Table 3.6: Average ARI values with standard deviations (sd) for EA (K = 2 and
J = 20), EM and MI under varying missing proportions r for the iris data (100
replicates).
r EA EM MI
5% mean 0.8977 0.8849 0.5581

sd 0.0500 0.0900 0.1257
10% mean 0.8491 0.8187 0.6071

sd 0.1248 0.1542 0.1512
20% mean 0.8331 0.7984 0.5441

sd 0.0925 0.1383 0.1402
30% mean 0.7781 0.7046 0.3897

sd 0.0966 0.1505 0.1182

Diabetes Data

The diabetes data studied by Reaven and Miller (1979) considers the relationship

between chemical and overt diabetes in 145 (non-obese) adults. Three measurements

are taken on the subject: degree of glucose intolerance, insulin response to oral
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Table 3.7: Average BIC values for EA (K = 2 and J = 20), EM and MI for the Iris
data.
r EA EM MI
5% −782.46 −795.00 −1029.07
10% −744.98 −768.20 −1144.12
20% −756.59 −739.25 −1246.76
30% −720.98 −708.00 −1221.41

glucose and insulin resistance where patients are classified into one of three types.

The data is freely available in the mclust package (Scrucca et al., 2017) in R. Our EA

is applied to these data with varying missing proportions r for K ∈ {1, 2} survivors

and J ∈ {10, 20} children. The BIC chooses an EA with K = 2 and J = 20. The

MI approach again gives poor performance, while the EA and EM approaches give

comparable performance (Tables 3.8 and 3.9). However, the EA consistently has

slightly higher average ARI values and lower standard deviations compared to the

EM algorithm.

Table 3.8: Average ARI values with standard deviations (sd) for EA (K = 2 and J
= 20), EM and MI under varying missing proportions r for the diabetes data (100
replicates).
r EA EM MI
5% mean 0.6613 0.6279 0.5776

sd 0.0259 0.0779 0.0588
10% mean 0.6461 0.6138 0.4929

sd 0.0481 0.0818 0.0800
20% mean 0.6109 0.5951 0.4594

sd 0.0648 0.0831 0.0673
30% mean 0.5773 0.5552 0.3806

sd 0.0803 0.0865 0.0671
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Table 3.9: Average BIC values for EA (K = 2 and J = 20), EM and MI for the
diabetes data.
r EA EM MI
5% −480.12 −486.77 −593.34
10% −478.04 −484.27 −650.38
20% −463.78 −467.61 −689.53
30% −438.71 −439.50 −665.38

Female Voles Data

The female voles data are available in the Flury package (Flury, 2012) in R. The data

contain six morphometric measurements, as well as age, for 86 female voles from two

species: Microtus californicus and Microtus ochrogaster. Again, the three approaches

were applied. For the EAs, we consider K ∈ {2, 4} and J ∈ {10, 20, 30} and the BIC

selected the best combination of K and J to be 4 and 20, respectively. The results

(Tables 3.10 and 3.11) again show that the MI approach gives the worst performance.

The EA and EM approaches give similar performance, with the EA approach again

always having a slightly higher average ARI value and smaller standard deviation.

Table 3.10: Average ARI values with standard deviations (sd) for EA (K = 4 and
J = 20), EM and MI under varying missing proportions r for the female voles data
(100 replicates).
r EA EM MI
5% mean 0.9418 0.9165 0.9027

sd 0.0463 0.0613 0.0464
10% mean 0.9209 0.9105 0.8761

sd 0.0564 0.0591 0.0498
20% mean 0.8914 0.8857 0.7684

sd 0.0654 0.0726 0.1241
30% mean 0.8358 0.8317 0.6416

sd 0.0911 0.0932 0.1513
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Table 3.11: Average BIC values for EA (K = 4 and J = 20), EM and MI for the
female voles data.
r EA EM MI
5% −1342.46 −1345.60 −1365.60
10% −1298.10 −1299.74 −1403.33
20% −1201.79 −1200.32 −1433.75
30% −1064.97 −1050.19 −1412.77

Banknote Data

The banknote data are freely available from the mclust package in R. They contain

six measurements, all in millimeters (mm), on 100 genuine and 100 counterfeit Swiss

1000-franc bank notes. This is the easiest of the clustering problems we consider

amongst the famous real data sets considered herein. The EA with varying missing

proportions r for K ∈ {2, 4} survivors and J ∈ {10, 20, 30} children is applied to

these data and similar results are obtained for the various EA scenarios; however,

the EA with K = 4 and J = 30 is selected by the BIC. As before, the MI approach

gives the worst performance, in terms of both average ARI and average BIC, for all

r; however, its classification performance is closer to the EA and EM approaches for

smaller values of r. On this data set, the EA and EM approaches give very similar

performance overall (Tables 3.12 and 3.13).
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Table 3.12: Average ARI with standard deviations (sd) for EA, EM and MI under
varying missingness proportions r for the banknote data (100 replicates).
r EA EM MI
5% mean 0.9695 0.9701 0.9642

sd 0.0144 0.0144 0.0182
10% mean 0.9616 0.9609 0.9487

sd 0.0178 0.0175 0.0334
20% mean 0.9323 0.9291 0.8933

sd 0.0226 0.0231 0.0559
30% mean 0.8845 0.8776 0.7534

sd 0.0331 0.0343 0.0967

Table 3.13: Average BIC values for EA (K = 4 and J = 30), EM and MI for the
banknote data.
r EA EM MI
5% −2695.88 −2695.83 −2853.36
10% −2590.28 −2590.38 −2888.84
20% −2369.03 −2370.03 −2900.19
30% −2142.42 −2143.46 −2844.96
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Body Data

Heinz et al. (2003) report data on 24 body dimension measurements as well as age,

weight, height, and gender for 260 women and 247 men. The total of 507 people

involved in this study were active individuals i.e., exercised several hours a week,

and in their twenties and thirties with a few older men and women. The body data

is available in the R package gclus (Hurley, 2004).

Applying the EA approach introduced herein to these data with varying missing

proportions, r, for K ∈ {1, 2} survivors and J ∈ {10, 20} children, the BIC chooses

an EA with K = 2 and J = 20. Again, the MI approach gives poor performance

in terms of the ARI values except for r = 5% with lower BIC values (Tables 3.14

and 3.15). On the other hand, the EA outperformed the EM with consistently higher

ARI and BIC values with comparable standard deviations.

Table 3.14: Average ARI with standard deviations (sd) for EA, EM and MI under
varying missingness proportions r for the body data (100 replicates).

r EA EM MI
5% mean 0.8262 0.8029 0.8262

sd 0.0269 0.0269 0.0685
10% mean 0.8197 0.8045 0.7668

sd 0.0382 0.0271 0.1025
20% mean 0.8113 0.8053 0.5214

sd 0.0520 0.0417 0.3078
30% mean 0.8131 0.8094 0.0978

sd 0.0366 0.0323 0.0496
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Table 3.15: Average BIC values for EA (K = 2 and J = 20), EM and MI for the
body data.
r EA EM MI
5% −19347.42 −19356.84 −22713.78
10% −18763.29 −18769.37 −24193.48
20% −17526.48 −17534.03 −25782.64
30% −16237.60 −16242.12 −26119.67

3.5 Discussion

An EA for model-based clustering with incomplete data has been developed and im-

plemented in R. Two simulation studies and real analyses using five famous data sets

revealed that the EA approach usually gives comparable or superior performance

when compared to the EM algorithm. Note that Dasgupta and Raftery (1998) con-

sider that BIC differences of more than 10 constitute “very strong evidence”. Across

all 20 real data scenarios considered in this chapter (five data sets for four values of

r), there was a difference of more than 10 in the average BIC between the EA and

EM approaches on just six occasions. In five of the six cases, the EA had the better

average BIC value. Further, in simulation Scenario I, there was a difference of more

than 10 between the average BIC values for the EA and EM approaches for three

of the four r values considered. In all three cases, the EA had the better average

BIC value. This being said, comparing the average BIC values is probably not quite

as meaningful as comparing the average ARI values. The reason is twofold: the

calculation of the log-likelihood for each EA uses hard z̃ig whereas the log-likelihood

in the case of the EM approach is computed using soft ẑig; and, when assessing an

approach for clustering, the ultimate assessment is often taken to be classification
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performance. Comparing the EA and EM approaches across the 20 real data sce-

narios based on average ARI values, we see that the average ARI value is higher for

the EA approach in 19/20 cases. Hence the EA produces more accurate clustering

results albeit being less efficient computationally. This work is most important as

the first use of evolutionary algorithms for clustering with missing data. Because the

proposed EA uses hard classifications, one could view it as an extension of k-means

clustering to both non-spherical clusters and incomplete data. Herein, the missing

data mechanism is assumed to be MAR and a departure from this assumption will be

considered as future work. Also, each generation of our EA uses mutations only and

modifying our EA by using a crossover step followed by a mutation step will also be

considered. The EM algorithm is well known to be sensitive to starting values, and

a detailed assessment of the sensitivity of our EA to starting values will be a topic of

future work. In this work, we focused on the classical EM algorithm and, as future

work, other algorithms to estimate the mixture parameters such as classification EM

and stochastic EM by Celeux and Govaert (1992) will be explored. Finally, while

the code used for this work is written in R, we plan to develop C code to improve

computational efficiency.
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Chapter 4

Evolutionary Algorithms for

Gaussian Parsimonious clustering

Models

4.1 Introduction

Cluster analysis finds sub-groups of similar observations within populations. In

model based clustering, the component densities in finite mixture models can be

treated as analogous to clusters and the problem reduces to assigning observations

to components (McNicholas, 2016). The EM algorithm is popularly employed in

estimating the parameters in model-based clustering scenarios. In this chapter, we

develop an EA utilizing a crossover step followed by a mutation step to estimate the

parameters for each member of the GPCM family (Section 2.2.2) and subsequently
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determine group memberships of each observation. To assess the performance of our

proposed EA and the EM algorithm, we applied both algorithms to several real data

sets.

4.1.1 Parameter Estimation for GPCMs

Consider the model-based clustering paradigm, and let zig denote component mem-

bership. Parameter estimation for each member of the GPCM family is carried out

using an EM algorithm, which is based on the complete-data. The complete-data

log-likelihood is given as

lc(ϑ) =
n∑

i=1

G∑
g=1

zig[log πg + log φ(xi | µg,Σg)]. (4.1)

The E-step of the EM algorithm involves computing the expected value of the

complete-data log-likelihood. This amounts to replacing the zig in (4.1) by their

expected values

ẑig =
π̂gφ(xi | µ̂g, Σ̂g)∑G
h=1 π̂hφ(xi | µ̂h, Σ̂h)

,

for i = 1, . . . , n and g = 1, . . . , G. The M-step entails maximizing the expected value

of (4.1) with respect to the model parameters. For an in-depth information on the

EM algorithm parameter estimates for the GPCMs, see Celeux and Govaert (1995)

and Fraley and Raftery (1999). The estimates of ẑig, µ̂g and π̂g are the same for

each member of the GPCM family with

µ̂g =

∑n
i=1 ẑigxi∑n
i=1 ẑig

and π̂g =
ng

n
where ng =

n∑
i=1

ẑig.
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4.2 Evolutionary Algorithms for GPCMs

4.2.1 Model and Fitness Function

The underlying model considered here is a mixture of multivariate Gaussian distri-

butions. Again, this is a clustering technique, hence all component memberships are

unknown or treated as such. The fitness function for the EA developed herein is

based on the (observed) log-likelihood

l(ϑ) =
n∑

i=1

log

{
G∑

g=1

πgφ(xi | µg,Σg)

}
, (4.2)

where ϑ = (π1, . . . , πG,µ1, . . . ,µg,Σ1, . . . ,Σg) denotes the model parameters.

The estimated value of the component membership labels, zig evolves as our EA

progresses. We use z̃ig to denote the estimate of zig in our EA and ẑig for the expected

values used in the EM algorithm. The estimated component membership labels of

xi in our EA is given by z̃i = (z̃i1, . . . , z̃iG) which are restricted to values z̃ig ∈ {0, 1}

as compared to the soft labels ẑi ∈ [0, 1] used in the EM algorithm. Hence the EA

developed can be seen as an approach for hard model-based clustering. The fitness

function is the log-likelihood (4.2) evaluated at the estimates

µ̃g =

∑n
i=1 z̃igxi∑n
i=1 z̃ig

, π̃g =
ng

n
and Σ̃g (4.3)

where ng =
∑n

i=1 z̃ig and Σ̃g for each member of the GPCM family as presented in

Table 2.1 (Section 2.2.2).
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4.2.2 Evolutionary Algorithm

For this EA, we used a number of single parents and each is cloned several times,

with the cloned children reproducing. Each step of the algorithm requires calculations

among either parents or children, hence two further sets of indices are introduced:

j = 1, . . . , J indexes children and k = 1, . . . , K indexes parents. Our EA discussed

here utilizes both crossover and mutation operations.

For each cloned child, we select two observations at random and swap their group

membership labels, i.e., z̃i values. This swap is only necessary if they have different

membership labels. The offspring from different single parents are created in such a

way that they are never crossed. After the crossover, the children together with the

parents are arranged in a descending order of fitness. The new generation of single

parents are then selected by choosing the top K from the ordered list. This crossover

process avoids stopping at local maxima of the fitness surface, i.e., the log-likelihood

surface. However, each iteration also includes a mutation step, since simply replacing

the membership labels of one point with the membership labels of another may not

improve the clustering results. During the mutation stage, random mutations are

generated within the z̃ik. The K parents will produce J children each with J taken

to be approximately n in number. These children will each have their z̃ik mutated

in such a way as to alter the cluster they belong to. The crossover step followed by

a mutation step are performed multiple times until our EA stagnates.

The following is pseudo-code (Algorithm 2) to outline the EA developed here.

Note that the code used in this thesis was written in R and that the comments used

in the pseudo-code below are in R comment style i.e., #.
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It should be noted that, after the first crossover step, the parents are simply the

best K elements in terms of fitness. Also, the estimates in (4.3) are computed in

update whilst fitness entails computing the log-likelihood (4.2) with these esti-

mates. There is a good general interpretation of this EA: the crossover step provides

diversity, and the mutation step allows improved fitness (clustering), which crossover

alone cannot provide.

50



Ph.D. Thesis - Regina S. Kampo McMaster - Mathematics and Statistics

Algorithm 2 EA for Gaussian Model-Based Clustering

initialize z̃igk matrices using k-means

initialize: k sets of parameters based on these z̃igk

stag = 0

while stag < stagnation do

# First, crossover

crossover: select two unequal labels from z̃igk and swap them to get J children

(clones)

update: all J sets of parameters

fitness: calculate log-likelihood for each of J children (clones)

survival: sort J children (clones) and K parents in descending fitness order,

select top K as new parents

# Now, mutate

mutate: change the z̃igk for each value of i such that its cluster membership

changes

update: all J sets of parameters

fitness: calculate log-likelihood for each of J children (clones)

survival: sort J children (clones) and K parents in descending fitness order,

select top K as new parents

if the log-likelihoods of the top K solutions the same as previous cycle then

stag++

else

stag = 0

end if

end while

return z̃igk corresponding to the highest log-likelihood
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4.2.3 Computational Aspect

Initialization

To initialize zigk, a k-means clustering algorithm was run and the resulting z̃igk was

then taken as the starting group membership labels for all the models.

Stopping Criterion

Our stopping criterion is simple lack of progress. Specifically, the EA is stopped once

stagnation occurs, i.e., we terminate the EA when the log-likelihoods from top K

solutions fail to increase over a number of consecutive generations.

4.3 Illustrations

In this section, our EA is applied to several real data sets that are commonly used

for illustration in the mixture model-based clustering literature. We compare the

performance of our EA — which we refer to here as crossover followed by mutation

EA (CMEA)— and the EM algorithm. The EM algorithm is implemented using the

gpcm function in the mixture package (Pocuca et al., 2021) from R with the argument,

start set to 0 for the k−means function to be used for initialization. This is consistent

with the initialization approach adopted in our EAs thus making it appropriate to

compare the two approaches. To be complete, we also considered the EA developed

in Chapter 3 — which we refer to as mutation only EA (MEA) to avoid confusion

between the two EAs.
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All the illustrations in this section are performed as a true cluster analysis, nev-

ertheless the true labels are always known making it possible for the predicted clas-

sifications to be compared. We carried out this comparison using the ARI. We used

the BIC to choose the model type (EII, VII,...,VVV) and the number of components

G, for the GPCMs as well as the number of parents, clones and the stagnation values.

All the analysis are performed using the R programming software and the data sets

considered are scaled prior to analysis using the scale function in R.

4.3.1 Banknote Data

The first real data considered is the famous banknote data set previously analyzed.

The CMEA approach introduced herein is applied to these data, for the GPCM

family using k-means start, with K ∈ {1, 4}, J ∈ {10, 30} and stagnation ∈ {2, 4}.

The best model selected was the EEV with BIC = −2781.27 and the number of

components, G = 2, for stagnation = 2, J = 10 and K = 1. Table 4.1 represents the

cross-tabulation of the MAP classifications from the CMEA versus the true class. A

near perfect classification performance was achieved, with just one misclassification,

i.e., ARI = 0.980. Over all 8 runs, i.e., combinations of K, J and stagnation for the

EEV, identical results were obtained. The MEA is also applied to these data with

the same parameters as above and the results are identical to that of the CMEA —

the accompanying classification performance is given in Table 4.2 with ARI = 0.980.

All fourteen GPCMs were fitted using the mixture package with k−means start

and the best model selected was the EEV with BIC = −2781.26 for G = 2 resulting

in one misclassified observation (Table 4.3; ARI=0.980). The results from both EAs
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and the EM are similar.

Table 4.1: Cross-tabulation of the predicted classifications (1,2) from CMEA versus
true class (Counterfeit or Genuine) for the banknote data.

Cluster

1 2

Counterfeit 100 0
Genuine 1 99

Table 4.2: Cross-tabulation of the predicted classifications (1,2) from MEA versus
true class (Counterfeit or Genuine) for the banknote data.

Cluster

1 2

Counterfeit 100 0
Genuine 1 99

Table 4.3: Cross-tabulation of the predicted classifications (1,2) from EM versus true
class (Counterfeit or Genuine) for the banknote data.

Cluster

1 2

Counterfeit 100 0
Genuine 1 99

4.3.2 Coffee Data

Streuli (1973) reports on the chemical composition of coffee samples and is available

from the R package pgmm. The Coffee data comprises 43 samples from 29 countries.
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Each sample is either of the Arabica or Robusta variety. We excluded total chloro-

genic acid from the analysis since it is the sum of neochlorogenic, isochlorogenic and

chlorogenic acid values, hence twelve out of the thirteen chemical constituents are

considered.

Our CMEA is applied to these data with K ∈ {1, 4}, J ∈ {10, 30} and stagnation

∈ {2, 4}. The best model, i.e., the model with the highest BIC = −1334.22, was

the VEI model with G = 2, for stagnation = 2, J = 10 and K = 1. Over all 8

runs — combinations of K, J and stagnation — identical and perfect classification

performance was obtained with no misclassifications (Table 4.4; ARI = 1.00). Similar

results were obtained for the MEA but are not reported here.

Analysis of the coffee data using the mixture package with k-means start se-

lected the VEI model with BIC = −1334.22 for G = 2 resulting in no misclassified

observations (Table 4.5; ARI = 1.00). Again, these results are similar to the results

obtained from the EAs.

Table 4.4: Cross-tabulation of the predicted classifications (1,2) from CMEA versus
true class (Arabica or Robusta) for the coffee data.

Cluster

1 2

Arabica 36 0
Robusta 0 7
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Table 4.5: Cross-tabulation of the predicted classifications (1,2) from EM versus true
class (Arabica or Robusta) for the coffee data.

Cluster

1 2

Arabica 36 0
Robusta 0 7

4.3.3 Australian Institute of Sports (AIS) Data

The Australian institute of sports (AIS) data was sourced from the R package alr3

(Weisberg, 2014, 2018). The data reports on physical measurements and blood mea-

surements from high performance athletes at the AIS, for 202 athletes (100 females;

102 males) on 11 quantitative variables.

The CMEA approach was applied to these data with K ∈ {1, 4}, J ∈ {10, 30}

and stagnation ∈ {2, 4}. The best model selected was the EEV model with BIC

= −2479.26 for G = 2, stagnation = 2, J = 10 and K = 1. Over all 8 runs

— combinations of K, J and stagnation — similar and near perfect classification

performance was achieved with four misclassifications (Table 4.6; ARI = 0.922).

Again, similar results were obtained for the MEA but are not reported here.

Table 4.6: Cross-tabulation of the predicted classifications (1,2) from our CMEA
versus true class (male or female) for the AIS data.

Cluster

1 2

Male 98 4
Female 0 100

Analysis of the AIS data using the mixture package with k-means start selected
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the EEV model with BIC = −2479.18 for G = 2 components. This resulted in four

misclassified observations (Table 4.7; ARI = 0.922). These results are similar to the

results obtained from the EAs.

Table 4.7: Cross-tabulation of the predicted classifications (1,2) from EM versus true
class (male or female) for the AIS data.

Cluster

1 2

Male 98 4
Female 0 100

4.3.4 Female Voles Data

The real data analyzed here is the female voles data that was previously analyzed.

Both CMEA and MEA are applied to these data with K ∈ {1, 4}, J ∈ {10, 30} and

stagnation ∈ {2, 4}. The EAs selected the EEE covariance structure with BIC =

−1316.72 for G = 2 components for stagnation = 2, J = 10 and K = 1. Over all 8

runs — combinations of K, J and stagnation — similar and near perfect classification

performance was achieved with two misclassified observations (Table 4.8; ARI =

0.908).

Fitting all fourteen GPCMs with mixture package with k-means start selected

the EEE covariance structure with BIC = −1316.70 for G = 2 components. This

resulted in two misclassified observations (Table 4.9; ARI = 0.908). Both the EAs

and the EM selected the same model with the same number of components. Also,

the ARIs from the cross-tabulation of both methods are similar.
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Table 4.8: Cross-tabulation of the predicted classifications (1,2) from CMEA versus
true class (Californicus or Ochrogaster) for the female voles data.

Cluster

1 2

Californicus 41 0
Ochrogaster 2 43

Table 4.9: Cross-tabulation of the predicted classifications (1,2) from EM versus true
class (Californicus or Ochrogaster) for the female voles data.

Cluster

1 2

Californicus 41 0
Ochrogaster 2 43

4.3.5 Seeds Data

The Seeds data set (Charytanowicz et al., 2010) publicly available via the UCI Ma-

chine Learning Repository is considered here. The data set contains measurements

on kernels from three varieties of wheat: Kama, Rosa, and Canadian. Each of the

variety consists of 70 elements. We consider seven measurements for each variety of

wheat and attempt to cluster the scaled data according to wheat variety.

Both CMEA and MEA are applied to these data with K ∈ {1, 4}, J ∈ {10, 30}

and stagnation ∈ {2, 4}. The CMEA selected the EEV covariance structure with BIC

= 139.17 for G = 3 components for stagnation = 2, J = 30, and K = 1. Over all

8 runs — combinations of K, J and stagnation — identical and good classification

performance was obtained with thirty-one misclassified observations (Table 4.10; ARI

= 0.630). The MEA approach produced similar results to the CMEA approach but
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are not reported here.

Table 4.10: Cross-tabulation of the predicted classifications (1,2,3) from CMEA ver-
sus true class (Kama, Rosa or Canadian) for the seeds data.

Cluster

1 2 3

Kama 54 1 15
Rosa 15 55 0
Canadian 0 0 70

Analysis of the seeds data using the mixture package with k-means start selected

the EEV model with BIC = 139.209 for G = 3 components. This resulted in thirty-

one misclassified observations (Table 4.11; ARI = 0.630). These results are similar

to the results obtained from the EAs.

Table 4.11: Cross-tabulation of the predicted classifications (1,2,3) from EM versus
true class (Kama, Rosa or Canadian) for the seeds data.

Cluster

1 2 3

Kama 54 1 15
Rosa 15 55 0
Canadian 0 0 70

4.3.6 Iris Data

We also consider the famous (Fisher’s and Anderson’s) iris data set that was previ-

ously analyzed. Both CMEA and MEA are applied to these data with K ∈ {1, 4},

J ∈ {10, 30} and stagnation ∈ {2, 4}. The CMEA selected the VEV covariance struc-

ture with BIC = −789.45 for G = 3 components for stagnation = 4, J = 10, and
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K = 1. Over all 8 runs — combinations of K, J and stagnation — identical and good

classification performance was obtained with four misclassified observations (Table

4.12; ARI = 0.922) except for the combination stagnation = 2, J = 10, and K = 1

where we had five missclassified observations. The MEA selected the VEV covariance

structure with BIC = −789.45 for G = 3 components for stagnation = 2, J = 10, and

K = 1. Over all 8 runs — combinations of K, J and stagnation — identical and good

classification performance was obtained with four misclassified observations similar

to the results obtained by CMEA.

Table 4.12: Cross-tabulation of the predicted classifications (1,2,3) from CMEA ver-
sus true class (Setosa, Versicolor or Virginica) for the iris data.

Cluster

1 2 3

Setosa 50 0 0
Versicolor 0 46 4
Virginica 0 0 50

Performing the analysis of the iris data using the mixture package with k-means

start selected the VEV model with BIC = −789.37 for G = 3 components. This

resulted in four misclassified observations (Table 4.13; ARI = 0.922). Again, these

results are similar to the results obtained from the EAs.
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Table 4.13: Cross-tabulation of the predicted classifications (1,2,3) from EM versus
true class (Setosa, Versicolor or Virginica) for the iris data.

Cluster

1 2 3

Setosa 50 0 0
Versicolor 0 46 4
Virginica 0 0 50

4.3.7 Italian Wine Data

The Italian wine data set (Forina et al., 1986) was sourced from the pgmm package in

R and contains twenty-seven chemical measurements on 178 samples of three varieties

of red wine: Barolo, Grignolino and Barbera. We attempt to cluster the scaled data

according to wine varieties.

The CMEA approach was applied to these data with K ∈ {1, 4}, J ∈ {10, 30}

and stagnation ∈ {2, 4}. The best model selected was the VVI with BIC = −12103.88

for G = 3, stagnation = 2, J = 10 and K = 1. Over all 8 runs — combinations of K,

J and stagnation for the VVI model — identical and good classification performance

was obtained with six misclassifications (Table 4.14; ARI = 0.895). Again, similar

results were obtained for the MEA but not reported here.

Analysis of the Italian wine data with twenty-seven variables using the mixture

package with k-means start selected the VVI model with BIC = −12103.74 for G = 3

components. This resulted in six misclassified observations (Table 4.15; ARI =

0.895). These results are similar to the results obtained from the EAs.
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Table 4.14: Cross-tabulation of the predicted classifications (1,2,3) from CMEA ver-
sus true class (Barolo, Grignolino or Barbera) for the Italian wine data with twenty-
seven variables.

Cluster

1 2 3

Barolo 58 1 0
Grignolino 4 66 1
Barbera 0 0 48

Table 4.15: Cross-tabulation of the predicted classifications (1,2,3) from EM versus
true class (Barolo, Grignolino or Barbera) for the Italian wine data with twenty-seven
variables.

Cluster

1 2 3

Barolo 58 1 0
Grignolino 4 66 1
Barbera 0 0 48

4.3.8 Crabs Data

The Crabs data reported by Campbell and Mahon (1974) are available in the MASS

library (Ripley et al., 2020; Venables and Ripley, 2002) for R. It comprises 200 rows

describing five morphological measurements on two species of crab (blue and orange)

and, further separated into two genders.

Both CMEA and MEA are applied to these data with K ∈ {1, 4}, J ∈ {10, 30}

and stagnation ∈ {2, 4}. The CMEA selected the EVV covariance structure with

BIC = 39.22 for G = 2 components for stagnation = 2, J = 10 and K = 4. A cross-

tabulation of the predicted classifications (1,2) versus true class (Male or Female)

resulted in an ARI value of 0.756 (Table 4.16). Similar results were obtained for the
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MEA but are not reported here.

Table 4.16: Cross-tabulation of the predicted classifications (1,2) from CMEA versus
true class (Female or Male) for the crabs data.

Cluster

1 2

Female 90 10
Male 3 97

Fitting all fourteen GPCMs with mixture package with k-means start selected

the EVV covariance structure with BIC = 39.34 for G = 2 components. A cross-

tabulation of the predicted classifications (1,2) versus true class (Male or Female)

resulted in an ARI value of 0.736 (Table 4.17). Both the CMEA and the EM selected

the same model with the same number of groups. However, CMEA has a higher ARI

value compared to the ARI value from the EM.

Table 4.17: Cross-tabulation of the predicted classifications (1,2) from CMEA versus
true class (Female or Male) for the crabs data.

Cluster

1 2

Female 89 11
Male 3 97

4.3.9 Olive Oil Data

Forina and Tiscornia (1982) and Forina et al. (1983) report the percentage compo-

sition of eight fatty acids found by lipid fraction of 572 Italian olive oils. The data
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originate from three regions namely, Southern Italy, Sardinia, and Northern Italy.

However, there are several different areas in each region. Southern Italy is made up

of Calabria, Sicily, South and North Apulia; Sardinia is divided into Costal Sardinia

and Inland Sardinia; and Northern Italy comprises East Liguria, West Liguria and

Umbria. These data are publicly available within the pgmm package (McNicholas

et al., 2018) for R.

The EAs and the EM are applied to the Olive Oil data to classify them into

the appropriate area. Both CMEA and MEA selected the EVV model with BIC =

−5817.73 for G = 3 components for stagnation = 4, J = 10 and K = 1. A cross-

tabulation of the predicted classifications (1,2,3) versus true class (Southern Italy,

Sardinia, Northern Italy) resulted in an ARI value of 0.524 (Table 4.18).

Table 4.18: Cross-tabulation of the predicted classifications (1,2,3) from CMEA ver-
sus true class (Southern Italy, Sardinia, Northern Italy) for the olive data.

Cluster

1 2 3

Southern Italy 222 0 101
Sardinia 0 98 0
Northern Italy 0 151 0

Again, fitting all fourteen GPCMs, the EM selected the EVV model with BIC =

−5817.45 for G = 3 components and this resulted in an ARI value of 0.525 from the

cross-tabulation of the predicted classification versus true class (Table 4.19). The

EAs and the EM selected the same model with similar BIC values as well as the ARI

values.
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Table 4.19: Cross-tabulation of the predicted classifications (1,2,3) from CMEA ver-
sus true class (Southern Italy, Sardinia, Northern Italy) for the olive data.

Cluster

1 2 3

Southern Italy 223 0 100
Sardinia 0 98 0
Northern Italy 0 151 0

4.3.10 Wisconsin Breast Cancer Data

The Wisconsin breast cancer (WBC) data are available from the UCI Machine Learn-

ing Repository (Dua and Graff, 2019) and contains 30 quantitative features computed

from digitized images of 567 fine needle aspirates of breast masses. Of the 569 sam-

ples, 357 are benign and 212 are malignant.

The EA approaches introduced herein are applied to these data for the GPCM

family using k-means start, with K ∈ {1, 4}, J ∈ {10, 30} and stagnation ∈ {2, 4}.

The best model selected was the VEE with BIC = −6452.22 and the number of

components, G = 2, for stagnation = 2, J = 10 and K = 1. Table 4.20 represents the

cross-tabulation of the MAP classifications from the CMEA versus the true class.

This resulted in 149 misclassified points with an ARI = 0.213. Over all 8 runs, i.e.,

combinations of K, J and stagnation for the VEE, identical results were obtained.

Analysing the WBC data using the mixture package with k-means start selected

the VEE model with BIC = −6467.60 for G = 2 components. This resulted in 150

misclassified observations (Table 4.21; ARI = 0.212). The WBC data is a difficult

data to classify and this is evident from the very low ARI values from both the

CMEA and EM. The ARI value from the CMEA is similar to the EM; however, the
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Table 4.20: Cross-tabulation of the predicted classifications (1,2) from CMEA versus
true class (Benign or Malignant) for the Wisconsin breast cancer data.

Cluster

1 2

Benign 319 38
Malignant 111 101

BIC values are not the same.

Table 4.21: Cross-tabulation of the predicted classifications (1,2) from EM versus
true class (Benign or Malignant) for the Wisconsin breast cancer data.

Cluster

1 2

Benign 309 48
Malignant 102 110

4.3.11 Thyroid Data

The next real data considered is the thyroid data reported by Coomans et al. (1983)

and are publicly available in the mclust (Fraley and Raftery, 1999) library for R.

The data set comprises five laboratory tests performed on a sample of 215 patients

to correctly classify a patient’s thyroid state as euthyroidism, hypothyroidism or

hyperthyroidism.

The CMEA approach was applied to these data with K ∈ {1, 4}, J ∈ {10, 30}

and stagnation ∈ {2, 4}. The best model selected was VVV with BIC = −1209.57

for G = 3, stagnation = 2, J = 30 and K = 1. Over all 8 runs — combinations of K,

J and stagnation — similar and very good classification performance was achieved
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with nine misclassifications (Table 4.22; ARI = 0.863). Again, similar results were

obtained for the MEA but are not reported here.

Table 4.22: Cross-tabulation of the predicted classifications (1,2,3) from our CMEA
versus true class (Euthyroidism, Hypothyroidism or Hyperthyroidism) for the thyroid
data.

Cluster

1 2 3

Euthyroidism 145 3 2
Hypothyroidism 0 35 0
Hyperthyroidism 4 0 26

Analysis of the thyroid data using the mixture package with k-means start se-

lected the VVV model with BIC = −1209.44 for G = 3 components. This resulted in

nine misclassified observations (Table 4.23; ARI = 0.863). These results are similar

to the results obtained from the EAs.

Table 4.23: Cross-tabulation of the predicted classifications (1,2,3) from EM versus
true class (Euthyroidism, Hypothyroidism or Hyperthyroidism) for the thyroid data.

Cluster

1 2 3

Euthyroidism 145 3 2
Hypothyroidism 0 35 0
Hyperthyroidism 4 0 26

4.3.12 US Crime Data

The US crime data are available from the MASS package in R. The data was collected

by criminologists interested in the effect of punishment regimes on crime rates in 47
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states in the US. The data consists of 15 features and is classified between Southern

and non-Southern states.

Both CMEA and MEA are applied to these data with K ∈ {1, 4}, J ∈ {10, 30}

and stagnation ∈ {2, 4}. The CMEA selected the VII covariance structure with BIC

= −1929.30 for G = 2 components for stagnation = 2, J = 10 and K = 1. Over all

8 runs — combinations of K, J and stagnation — identical and good classification

performance was obtained. A cross-tabulation of the predicted classifications versus

true class resulted in an ARI value of 0.603 (Table 4.24). Similar results were obtained

for the MEA but are not reported here.

Table 4.24: Cross-tabulation of the predicted classifications (1,2) from CMEA versus
true class (Non-Southern State or Southern State) for the US crime data.

Cluster

1 2

Non-Southern State 31 0
Southern State 5 11

Fitting all fourteen GPCMs using the mixture package with k-means start, the

EM selected the VII model with BIC = −1929.22 for G = 2 components and this

resulted in an ARI value of 0.603 from the cross-tabulation of the predicted classifi-

cation versus true class (Table 4.25). Again, these results are similar to the results

obtained from the EAs.
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Table 4.25: Cross-tabulation of the predicted classifications (1,2) from EM versus
true class (Non-Southern State or Southern State) for the US crime data.

Cluster

1 2

Non-Southern State 31 0
Southern State 5 11

4.3.13 Cervical Cancer Behavior Risk Data

We considered the Cervical cancer behavior risk (CCBR) data set reported by Sobar

et al. (2016) and publicly available in the UCI Machine Learning Repository. The

data set contains 19 attributes from 72 women regarding the risk of cervical cancer.

Twenty-one of these women have cervical cancer whilst fifty-one of them do not have

cervical cancer.

Both CMEA and MEA are applied to these data with K ∈ {1, 4}, J ∈ {10, 30}

and stagnation ∈ {2, 4}. The CMEA selected the VEI covariance structure with BIC

= −3733.43 for G = 2 components for stagnation = 2, J = 10, and K = 1. Table 4.26

represents the cross-tabulation of the MAP classifications from the CMEA versus the

true class. This resulted in nineteen misclassified points with an ARI = 0.214. Over

all 8 runs, i.e., combinations of K, J and stagnation for the VEI, identical results

were obtained. Similar results were obtained for the MEA.

Performing the analysis of the CCRB data using the mixture package with k-

means start selected the VEI model with BIC = −3733.39 for G = 2 components.

This resulted in nineteen misclassified observations (Table 4.27; ARI = 0.214). Again,

these results are similar to the results obtained from the EAs.
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Table 4.26: Cross-tabulation of the predicted classifications (1,2) from CMEA versus
true class (Cervical cancer absent or Cervical cancer present) for the CCBR data.

Cluster

1 2

Cervical cancer absent 34 17
Cervical cancer present 2 19

Table 4.27: Cross-tabulation of the predicted classifications (1,2) from EM versus
true class (Cervical cancer absent or Cervical cancer present) for the CCBR data.

Cluster

1 2

Cervical cancer absent 34 17
Cervical cancer present 2 19

4.3.14 Diabetes Data

Reaven and Miller (1979) examined the relationship among blood chemistry measures

of glucose tolerance and insulin in 145 non-obese adults. For each subject six variables

were measured where patients were classified as subclinical (chemical) diabetics, overt

diabetics and normal after further analysis. The data is freely available in the heplots

package (Fox et al., 2021) in R.

The CMEA approach was applied to these data with K ∈ {1, 4}, J ∈ {10, 30}

and stagnation ∈ {2, 4}. The best model selected was VEV with BIC = −1134.39

for G = 3, stagnation = 4, J = 30 and K = 1. Over all 8 runs — combinations of

K, J and stagnation — identical and good classification performance was obtained

with twenty-one misclassifications (Table 4.28; ARI = 0.641). Again, similar results

were obtained for the MEA but are not reported here.
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Table 4.28: Cross-tabulation of the predicted classifications (1,2,3) from our CMEA
versus true class (Chemical Diabetic, Normal or Overt Diabetic) for the diabetes
data.

Cluster

1 2 3

Chemical Diabetic 25 10 1
Normal 5 71 0
Overt Diabetic 5 0 28

Analysing the diabetes data using the mixture package with k-means start se-

lected the VEV model with BIC = −1136.78 for G = 3 components. This resulted

in twenty misclassified observations (Table 4.29; ARI = 0.666). The ARI value from

the EM is slightly higher than the ARI from the CMEA whereas the BIC from the

CMEA is slightly larger than the BIC from the EM.

Table 4.29: Cross-tabulation of the predicted classifications (1,2,3) from EM versus
true class (Chemical Diabetic, Normal or Overt Diabetic) for the diabetes data.

Cluster

1 2 3

Chemical Diabetic 24 12 0
Normal 2 74 0
Overt Diabetic 6 0 27

4.3.15 Body Data

Finally, we also consider the body data set previously analyzed. Our CMEA is

applied to these data with K ∈ {1, 4}, J ∈ {10, 30} and stagnation ∈ {2, 4}. The

best model, i.e., the model with the highest BIC = −18816.38, was VEE model with
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G = 2, for stagnation = 2, J = 10 and K = 1. Over all 8 runs — combinations of K,

J and stagnation — similar and near perfect classification performance was achieved

with nine misclassified observations (Table 4.30; ARI = 0.930). Similar results were

obtained for the MEA but not reported here.

Table 4.30: Cross-tabulation of the predicted classifications (1,2) from CMEA versus
true class (Female or Male) for the body data.

Cluster

1 2

Female 254 6
Male 3 244

Fitting all fourteen GPCMs using mixture package with k-means start selected

the VEE covariance structure with BIC = −18815.98 for G = 2 components. This

lead to nine misclassified observations (Table 4.31; ARI = 0.930). Both the EAs and

the EM selected the same model with the same number of components. Also, the

ARIs from the cross-tabulation of both methods are identical.

Table 4.31: Cross-tabulation of the predicted classifications (1,2) from EM versus
true class (Female or Male) for the body data.

Cluster

1 2

Female 254 6
Mela 3 244

In Table 4.32, we give a summary of the BIC values for the models selected for

each of the data sets as well as the ARI values from the cross-tabulation of the

predicted values versus the true classes. We also report on the run time given in
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seconds for each of the methods applied to the data sets but should only be taken

as a rough guide because the code has yet to be optimized. The general observation

is that the time used by the EM is consistently less for all the data sets compared

to the CMEA and the MEA. On the other hand, the CMEA is the most expensive

among the three approaches. Out of the fifteen real data sets considered here, the

ARI values for eleven are the same for all the methods.

4.4 Discussion

In this chapter, an EA is introduced for parameter estimation in the family of mixture

models, i.e., the GPCM family. This is the first use of an EA in clustering for the

family of GPCMs within the literature. In fact, the closest approach considers only

the VVV covariance structure (McNicholas et al., 2020). Each iteration of our EA

uses a crossover step followed by a mutation step.

In general, when assessing an approach for clustering, the classification perfor-

mance is often considered to be the ultimate assessment. Analysis of fifteen famous

real data sets in R revealed that the EA approach usually gives identical classification

performance to the EM algorithm — i.e., all the ARI values for eleven out of the

fifteen real data sets are the same for both the EA and the EM. Across all fifteen

real data scenarios, an excellent or good classification performance has been attained

except for two data sets. Also, there has not been a BIC difference of more than

2.5 between the EA and the EM except for one data where the BIC difference is

more than 15. Note that a BIC difference of more than 10 is considered “a strong
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evidence”.

It is not surprising that the EA is computationally expensive. The reason is two

fold: the EAs involves calculations among parents and children at each iteration

of the algorithm and this becomes increasingly time consuming; and, the EA code

is written in R and all analysis were carried out in R, however, one of the main

drawbacks is the fact that R is a much slower programming language compared to

other languages.

By our illustrations using real data sets, we have shown that the EAs, both

CMEA and MEA are good alternatives to the EM algorithm for classifying data in

cluster analysis. As future work, we are keen on considering alternatives to the R

programming language such as C or Python for implementing the EAs to ease the

computational burden.
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Table 4.32: A summary of the ARI, BIC and the time in seconds for the data sets
considered for the CMEA, MEA and EM.

Data CMEA MEA EM

ARI BIC Time ARI BIC Time ARI BIC Time

Banknote 0.980 −2781.27 0.181 0.980 −2781.27 0.097 0.980 −2781.26 0.001

Coffee 1.000 −1334.22 0.001 1.000 −1334.22 0.000 1.000 −1334.22 0.000

AIS 0.922 −2479.26 0.666 0.922 −2479.26 0.170 0.922 −2479.18 0.014

Female voles 0.908 −1316.72 0.145 0.908 −1316.72 0.115 0.908 −1316.70 0.001

Seeds 0.630 139.17 3.535 0.630 139.17 0.073 0.630 139.21 0.003

Iris 0.922 −789.45 0.813 0.922 −789.45 0.018 0.922 −789.37 0.001

Italian Wine 0.895 −12103.88 0.800 0.895 −12103.88 0.046 0.895 −12103.74 0.001

Crabs 0.756 39.23 11.281 0.756 39.15 3.164 0.738 39.34 0.046

Olive Oil 0.524 −5817.73 17.172 0.524 −5817.73 0.300 0.525 −5817.45 0.017

WBC 0.213 −6452.22 340.231 0.213 −6452.22 19.765 0.212 −6467.60 0.198

Thyroid 0.863 −1209.57 3.973 0.863 −1209.57 0.054 0.863 −1209.44 0.004

US crime 0.603 −1929.30 0.156 0.603 −1929.30 0.007 0.603 −1929.22 0.005

CCBR 0.214 −3733.43 0.047 0.214 −3733.43 0.032 0.214 −3733.43 0.001

Diabetes 0.641 −1134.39 0.987 0.641 −1134.39 0.272 0.666 −1136.78 0.012

Body 0.930 −18816.38 461.146 0.930 −18816.38 2.155 0.930 −18815.98 0.051
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Chapter 5

An Evolutionary Algorithm for

Latent Gaussian Mixture Models

5.1 Introduction

Mixture models must be adapted to handle high-dimensional data, given that vast

amounts of data can be collected and stored with ease using modern technology.

Some methods for clustering such data are based on the MFA model. McNicholas and

Murphy (2008) developed a class of eight different PGMMs by extending the MFA

model (see Section 2.3). However, maximum likelihood estimates for the parameters

in the family of latent Gaussian mixture models, known as PGMMs, are typically

found using an AECM algorithm. In this chapter, rather than using an AECM

algorithm, we develop an EA to estimate these parameters and classify the data.

The EA developed in this chapter is similar to the one developed in Chapter 3.
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Again, it is of interest to compare the performance of our proposed algorithm to the

AECM algorithm through illustrations using both real and simulated data sets.

5.2 Parameter Estimation for PGMMs

The maximum likelihood estimates of the parameters for members of the PGMM

family are carried out using the AECM algorithm. This algorithm is a variant of the

EM algorithm and uses different specifications of missing data at each stage.

In the first stage of the AECM algorithm, the unobserved group membership

labels are z = (z1, . . . , zn) when estimating πg and µg. Thus, the complete-data

log-likelihood is expressed as

l1 =
n∑

i=1

G∑
g=1

ziglog[πgφ(xi | µg,ΛgΛ
′
g + Ψg)]. (5.1)

The expected complete-data log-likelihood is of the form

Q1(µg, πg) =
G∑

g=1

ng logπg −
np

2
log 2π −

G∑
g=1

ng

2
log |ΛgΛ

′
g + Ψg|

−
G∑

g=1

ng

2
tr
{
Sg(ΛgΛ

′
g + Ψg)

−1} , (5.2)

where ng =
∑n

i=1 ẑig and Sg = (1/ng)
∑n

i=1 ẑig(xi − µg)(xi − µg)
′. Maximizing Q1

with respect to πg and µg yields π̂g and µ̂g, respectively.

At the second stage of the AECM algorithm, the group membership labels z and

the unobserved latent factors u are taken to be the missing data when estimating
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Λg and Ψg. The complete-data log-likelihood is given as

l2 = C +
G∑

g=1

[
− ng

2
log|Ψg| −

ng

2
tr{Ψ−1g Sg}

+
n∑

i=1

zig(xi − µg)
′Ψ−1g Λgui −

1

2
tr

{
Λ′gΨ

−1
g Λg

n∑
i=1

ziguiu
′
i

}]
,

(5.3)

where C is a constant with respect to Λg and Ψg. The expected value of the complete-

data log-likelihood evaluated with µg = µ̂g and πg = π̂g can be written

Q2(Λg,Ψg) = C +
G∑

g=1

ng

[
1

2
log|Ψ−1g | −

1

2
tr{Ψ−1g Sg}+ tr{Ψ−1g Λgβ̂gSg}

− 1

2
tr{Λ′gΨ−1g ΛgΘg}

]
,

(5.4)

where C is a constant, β̂g = Λ̂′g(Λ̂gΛ̂
′
g + Ψ̂g)

−1 and Θg = Iq − β̂gΛ̂g + β̂gSgβ̂
′
g.

The estimates of ẑig, µ̂g and π̂g which are calculated in the first stage of the

AECM algorithm are the same for each member of the PGMM family, thus:

ẑig =
π̂gφ(xi | µ̂g, Λ̂g, Ψ̂g)∑G
h=1 π̂hφ(xi | µ̂h, Λ̂h, Ψ̂h)

, µ̂g =

∑n
i=1 ẑigxi∑n
i=1 ẑig

and π̂g =
ng

n
.

The resulting estimates, when we impose constraints (Table 2.2) on Λg and Ψg

matrices, can be easily derived from the expression Q2(Λg,Ψg). Details of the pa-

rameter estimates for each member of the PGMM family are given by McNicholas

and Murphy (2008). McLachlan and Peel (2000b) give extensive details of fitting the
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AECM algorithm in the case where no constraints are imposed. The AECM algo-

rithm updates the parameters iteratively until it convergences. The estimates of the

a posteriori probability of group membership for each observation is the subsequent

ẑig values and can be used to cluster observations into groups.

5.3 An Evolutionary Algorithm for Latent Gaus-

sian Mixture Models

5.3.1 Model and Fitness Function

A mixture of factor analyzers model was selected as the basic model. For the purpose

of clustering, all component memberships are unknown or treated as such.

The EA developed herein is built to optimize one fitness function, and the fitness

function is the (observed) log-likelihood

l(ϑ) =
n∑

i=1

log

{
G∑

g=1

πgφ(xi | µg,ΛgΛ
′
g + Ψg)

}
, (5.5)

where ϑ denotes the model parameters. We use z̃ig to denote the estimate of zig

used in the EA to avoid confusion with the expected values ẑig used in the AECM

algorithm.
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5.3.2 Evolutionary Algorithm

For this EA various single parents are considered and each is cloned multiple times

with the cloned offspring reproducing as described here. Each step of the algorithm

requires calculations among either children or parents, hence two further sets of

indices are introduced: j = 1, ..., J indexes children (clones) and k = 1, ..., K indices

parents. The fitness function for the jth child is just the log-likelihood (5.5) evaluated

at the estimates π̃g, µ̃g, Λ̃g and Ψ̃g.

Based on z̃igk, the updates πgk, µgk, Λgk and Ψgk, for g = 1, ..., G are computed as

for the AECM algorithm (Section 5.2) for the family of the PGMM models. Thus, the

estimated component membership of xi for parent k given these current parameter

estimates is

ẑigk =
πgkφ(xi | µgk,Λgk,Ψgk)∑G
h=1 πhkφ(xi | µhk,Λhk,Ψhk)

, (5.6)

for i = 1, ..., n, g = 1, ..., G and k = 1, ..., K. For each child, i.e., each clone of a

single parent, the z̃igk are mutated by randomly sampling each observation’s cluster

membership according to the probabilities in (5.6).

At each iteration, K parents are stored, and during the reproduction phase, we

sample J new matrices of z̃igj according to the z̃igk corresponding to each of the

K parents. The top K fittest solutions at each generation are cloned (i.e., produce

children) to the next generation which ensures that the maximum fitness from one

generation to another is non-decreasing. That is, after each instance of mutation

has been carried out on each cloned child, all the children and the original K single

parents are put into one list in decreasing order of fitness, where the top K are
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selected to become the new generation of single parents. The following pseudo-code

(Algorithm 3) details the procedure followed in our EA.

Pseudo-Code

The following pseudo-code (Algorithm 3) details the procedure followed in our EA.

Algorithm 3 EA for Latent Gaussian Mixture Models

initialize z̃igk matrices using k-means and k-medoids

initialize: k sets of parameters based on these z̃igk

stag = 0

while stag < stagnation do

mutate: calculate ẑigk; sample J children (clones) z̃igk accordingly

update: all J sets of parameters

fitness: calculate log-likelihood for each of J children (clones)

survival: sort J children (clones) and K parents in descending fitness order,

select top K as new parents

if the log-likelihoods of the top K solutions the same as previous cycle then

stag++

else

stag = 0

end if

end while

return z̃igk corresponding to the highest log-likelihood
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5.3.3 Computational Aspect

Initialization

To initialize zigk, both k-means and k-medoids clustering algorithms were run and

the resulting z̃igk were then taken as the starting group membership labels for all the

models— note that we fixed the number of parents K = 2 for this EA. The initial

values for the elements of Λgk and Ψgk were generated from the eigen-decomposition

of Sgk using Householder reduction and the QL method (details are given in Press

et al., 2007).

Stopping Criterion

Our EA is stopped once stagnation occurs, i.e., we terminate the EA when the

log-likelihoods from top K solutions fail to increase over a number of consecutive

generations.

Model Selection and Performance

We propose using the BIC to choose the model type (CCC, CCU,...,UUU), the num-

ber of latent factors q and the number of components G, for the PGMMs as well

as the number of J and the stagnation values. The effectiveness of the PGMMs in

detecting group structures in data is illustrated by matching the predicted compo-

nent membership labels of the observations with the true labels. Also, clustering

performance of various methods is quantified using the ARI.
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5.4 Illustrations

The purpose of these illustrations is to assess the performance of our EA by com-

paring it to the AECM algorithm in Section 5.2 using the function pgmmEM via the

R package pgmm (McNicholas et al., 2018) and with model-based clustering using

the mclust (model-based clustering) software (Fraley and Raftery, 1999, 2002) for R.

For the data sets considered, we assumed that there is no prior knowledge of the

labels or the number of components — i.e., they are treated as a genuine clustering

example. However, in each case the true labels are known and thus it is possible to

compare the predicted classifications. This comparison is carried out using the ARI.

The data sets are scaled prior to analysis using the scale function in R.

5.4.1 Italian Wine Data

The Italian wine data set previously analyzed is considered here. We also analyzed

the more common thirteen variable subset publicly available in the UCI Machine

Learning data repository and as part of the gclus library (Hurley, 2004) for R.

The EA approach introduced herein is demonstrated on the analysis of these

Italian wine data sets with stagnation ∈ {2, 3, 4, 5} and J ∈ {10, 20, 30, 40, 50}.

All eight PGMMs were fitted to the data sets for G = 1, 2, 3 and q = 1, 2, 3.

83



Ph.D. Thesis - Regina S. Kampo McMaster - Mathematics and Statistics

Twenty-Seven variables

The BIC for each model was computed and the model with the highest BIC value

(−11575.78) was selected; this was the CUU model with G = 3 and q = 3 for stagna-

tion = 5 and J = 30. For J = 30 and for all stagnation values, excellent classification

performance was attained with 2 misclassifications (Table 5.1; ARI=0.967). How-

ever, for all stagnation values and J ∈ {10, 20, 40, 50}, similar and near perfect

classification was achieved, with just one misclassification (Table 5.2; ARI = 0.983).

Table 5.1: Cross-tabulation of the predicted classifications (1,2,3) from our EAs
versus true class (Barolo, Grignolino or Barbera) for the Italian wine data with
twenty-seven variables. The best model is CUU with G = 3 and q = 3 for stagnation
∈ {2,3,4,5} and J = 30.

Cluster

1 2 3

Barolo 59 0 0
Grignolino 0 69 2
Barbera 0 0 48

Table 5.2: Cross-tabulation of the predicted classifications (1,2,3) from our EAs
versus true class (Barolo, Grignolino or Barbera) for the Italian wine data with
twenty-seven variables. The best model is CUU with G = 3 and q = 3 for stagnation
∈ {2,3,4,5} and J ∈ {10,20,40,50}

.

Cluster

1 2 3

Barolo 59 0 0
Grignolino 0 70 1
Barbera 0 0 48

The parsimonious Gaussian mixture models is applied to the wine data using
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the pgmm software for R. Considering a random start, the best model selected was

CUU with BIC = −11577.09 with G = 3 and q = 3. This resulted in 4 misclas-

sified observations (Table 5.3). Using k-means starts, the best model based on the

largest BIC (−11753.09) was CCU with G = 2 and q = 3 and the resulting classifica-

tion performance is presented in Table 5.4. The classification performance of pgmm

with random and k-means starts resulted in ARI values 0.931 and 0.439 respectively

(Table 5.6) which is inferior to the EAs.

Table 5.3: Cross-tabulation of the predicted classifications (1,2,3) from pgmm with
random starts versus true class (Barolo, Grignolino or Barbera) for the Italian wine
data with twenty-seven variables.

Cluster

1 2 3

Barolo 59 0 0
Grignolino 2 62 2
Barbera 0 0 48

Table 5.4: Cross-tabulation of the predicted classifications (1,2,3) from pgmm with
k-means starts versus true class (Barolo, Grignolino or Barbera) for the Italian wine
data with twenty-seven variables.

Cluster

1 2

Barolo 59 0
Grignolino 63 8
Barbera 0 48

Model-based clustering was also performed on the wine data using the mclust

software for R. The model with the highest BIC value (−11949.50) was the three
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component mixture with the VVE (variable shape and different sized ellipses but

with equal orientation) covariance structure. The classification performance is shown

in Table 5.5 with ARI = 0.931. It is clear that, the performance of mclust on this

data is inferior to our EA.

Table 5.5: Cross-tabulation of the predicted classifications (1,2,3) from the best
model found using mclust versus true class (Barolo, Grignolino or Barbera) for the
Italian wine data with twenty-seven variables.

Cluster

1 2 3

Barolo 58 1 0
Grignolino 1 70 0
Barbera 0 2 46

Table 5.6: Rand index, ARI and BIC for the models that were applied to the Italian
wine data with twenty-seven variables.

Model Rand index ARI BIC

EA 0.985 0.967 −11575.78
PGMM (random starts) 0.969 0.931 −11577.09
PGMM (k-means starts) 0.708 0.439 −11753.09
MCLUST 0.969 0.931 −11949.50
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Thirteen variables

The EA developed is applied to the subset of the wine data with thirteen variables,

and the best model i.e., the model with the largest BIC (−5318.89) was selected to

be CUU with G = 3 and q = 3 for stagnation = 5 and J ∈ {40, 50}. Over all 20

runs, i.e., combinations of stagnation and J , identical classification performance was

obtained. A cross-tabulation of the predicted group membership labels from the EAs

against the true wine type is given in Table 5.7, resulting in 4 misclassifications with

ARI = 0.933.

Table 5.7: Cross-tabulation of the predicted classifications (1,2,3) from our EAs
versus true class (Barolo, Grignolino or Barbera) for the Italian wine data with
thirteen variables.

Cluster

1 2 3

Barolo 58 1 0
Grignolino 0 68 3
Barbera 0 0 48

All eight PGMMs were fitted using the pgmm package in R with a random start

and the best model selected was CUU with BIC = −5318.04 for G = 3 and q = 2

resulting in 4 misclassified observations as seen in Table 5.8. Using k-means starting

values, again, the CUU model was selected with BIC = −5318.10 for G = 3 and

q = 2 which results in 5 missclassifications (Table 5.9). Whilst the result with a

random start is similar to our EAs in terms of the ARI (Table 5.11), the result with

k-means starting values is inferior.

Analysis of the subset of the wine data using the mclust software yielded 3 groups
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with a VVE covariance structure and a BIC value of −5403.77. This model gives

slightly inferior classification performance (Table 5.10; ARI = 0.933) compared to

our EA.

Table 5.8: Cross-tabulation of the predicted classifications (1,2,3) from pgmm with
random starts versus true class (Barolo, Grignolino or Barbera) for the Italian wine
data with thirteen variables.

Cluster

1 2 3

Barolo 58 1 0
Grignolino 0 68 3
Barbera 0 0 48

Table 5.9: Cross-tabulation of the predicted classifications (1,2,3) from pgmm with
k-means starts versus true class (Barolo, Grignolino or Barbera) for the Italian wine
data with thirteen variables.

Cluster

1 2 3

Barolo 58 1 0
Grignolino 0 67 4
Barbera 0 0 48

Table 5.10: Cross-tabulation of the predicted classifications (1,2,3) from the best
model found using mclust versus true class (Barolo, Grignolino or Barbera) for the
Italian wine data with thirteen variables.

Cluster

1 2 3

Barolo 56 3 0
Grignolino 0 70 1
Barbera 0 0 48
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Table 5.11: Rand index, ARI and BIC for the models that were applied to the Italian
wine data with thirteen variables.

Model Rand index ARI BIC

EA 0.970 0.933 −5318.89
PGMM (random starts) 0.970 0.933 −5318.04
PGMM (k-means starts) 0.963 0.917 −5318.10
MCLUST 0.969 0.930 −5403.77

5.4.2 Body Data

We consider the body data set that was previously analyzed. Applying the EA

approach introduced herein with stagnation ∈ {2, 3, 4, 5} and J ∈ {10, 20, 30, 40,

50}. All eight PGMMs are fitted with the number of components fixed at G = 2

and q = 1, ..., 8. The model with the highest BIC = −18614.10 was the CCU model

with G = 2 and q = 8 for stagnation = 5 and J = 10. The associated classification

performance is very good (ARI = 0.930; Table 5.12).

Table 5.12: Cross-tabulation of the predicted classifications (1,2) from our EAs versus
true class (female or male) for the body data.

Cluster

1 2

Female 256 4
Male 5 242

Fitting all eight PGMMs to the body data for G = 2 and q = 1, ..., 8 using the

pgmm software with random starting values selected the CCU model for G = 2 and

q = 8 with BIC = −18622.89. The associated classification performance is very good

(ARI = 0.938; Tables 5.13 and 5.16). The k-means starts selected the CCU model
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for G = 2 and q = 7 with BIC = −18642.46 as the best model and the resulting

classification performance yielded ARI = 0.930 (Table 5.14). The ARI value from

our EA is slightly inferior to the ARI from pgmm with random start but similar to

the pgmm with k-means start (Table 5.16).

Table 5.13: Cross-tabulation of the predicted classifications (1,2) from pgmm with
random starts versus true class (female or male) for the body data.

Cluster

1 2

Female 257 3
Male 5 242

Table 5.14: Cross-tabulation of the predicted classifications (1,2) from pgmm with
k-means starts versus true class (female or male) for the body data.

Cluster

1 2

Female 256 4
Male 5 242

The mclust software selected an ellipsoidal, equal shape and orientation (VEE)

model with 4 components and a BIC = −18700.06. From Table 5.15, the associated

classification resulted in an ARI value of 0.616 which is inferior compared to the ARI

from our EAs and pgmm with both k-means start and random start.
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Table 5.15: Cross-tabulation of the predicted classifications (1,2,3,4) from the best
model found using mclust versus true class (female or male) for the body data.

Cluster

1 2 3 4

Female 174 70 1 2
Male 0 5 208 47

Table 5.16: Rand index, ARI and BIC for the models that were applied to the body
data.

Model Rand index ARI BIC

EA 0.965 0.930 −18614.10
PGMM (random starts) 0.969 0.938 −18622.89
PGMM (k-means starts) 0.965 0.930 −18642.46
MCLUST 0.808 0.616 −18700.06

5.4.3 Coffee Data

The coffee data set previously analyzed is considered here. The EA approach intro-

duced herein is applied to these data, with stagnation ∈ {2, 3, 4, 5} and J ∈ {10, 20,

30, 40, 50}. All eight PGMMs are fitted with G = 1, 2, 3 and q = 1, 2, 3. The model

with the highest BIC (−1306.54) was the CCU model with G = 2 and q = 1 for stag-

nation = 5 regardless of the number of J . Thus over all 20 runs, identical and perfect

classification performance was obtained with no misclassifications (Table 5.17; ARI

= 1.00).

Analysis of the data using the pgmm software with random starts selected the

best model to be CCU with BIC = −1326.02 for G = 3 and q = 1; whilst a k-means

starts selected the CCU model as well with BIC = −1306.13 for G = 2 and q = 1. A

cross-tabulation of the class from the best pgmm model with random and k-means
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Table 5.17: Cross-tabulation of the predicted classifications (1,2) from our EAs versus
true class (Arabica or Robusta) for the Coffee data.

Cluster

1 2

Arabica 36 0
Robusta 0 7

starts are presented in Tables 5.18 and 5.19 respectively. The k-means starts result

is inferior to our EAs in terms of the ARI values (Table 5.21; ARI = 0.383).

The mclust software yielded three groups with VEI covariance structure with the

highest BIC value −1297.94. The VEI covariance structure signifies clusters that are

shaped equally, with varying volume and aligned with the axis. Table 5.20 shows

the classification from this analysis with ARI = 0.383. It is clear that the mclust did

poorly compared to the EAs in separating coffee into the different varieties.

Table 5.18: Cross-tabulation of the predicted classifications (1,2,3) from pgmm with
random starts versus true class (Arabica or Robusta) for the Coffee data.

Cluster

1 2 3

Arabica 22 14 0
Robusta 0 0 7
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Table 5.19: Cross-tabulation of the predicted classifications (1,2) from pgmm with
k-means starts versus true class (Arabica or Robusta) for the Coffee data.

Cluster

1 2

Arabica 36 0
Robusta 0 7

Table 5.20: Cross-tabulation of the predicted classifications (1,2,3) from the best
model found using mclust versus true class (Arabica or Robusta) for the Coffee data.

Cluster

1 2 3

Arabica 22 14 0
Robusta 0 0 7

Table 5.21: Rand index, ARI and BIC for the models that were applied to the Coffee
data.

Model Rand index ARI BIC

EA 1.000 1.000 −1306.54
PGMM (random starts) 0.659 0.383 −1326.02
PGMM (k-means starts) 1.000 1.000 −1306.13
MCLUST 0.659 0.383 −1297.94

5.4.4 Australian Open Men Data

The Australian Open Men’s data are publicly available from the UCI Machine Learn-

ing Repository. The data contains the match statistics of men at the Australian open

tennis tournament. There are 98 matches in total of which 34 quantitative match

statistics were recorded and the results of each match is referenced on whether player

1 wins or loses.
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Again, the EA developed is applied to these data with stagnation ∈ {2,3,4,5} and

J ∈ {10, 20, 30, 40, 50}. Fitting all eight PGMMs with G = 2 and q = 1, 2, 3;

the UUU model with G = 2 and q = 1 was selected to be the best model with

identical BIC value of −6702.66 over all 20 runs of the combinations of stagnation

and J . Table 5.22 presents the cross tabulation of the MAP classifications from the

EA versus the true results of player 1 in the tournament — near perfect classification

performance was achieved with just 1 misclassification (ARI = 0.959; Table 5.25).

Table 5.22: Cross-tabulation of the predicted classifications (1,2) from our EAs versus
true class (Player 1 loses or Player 1 wins) for the Australian Open Men data.

Cluster

1 2

Player 1 loses 48 0
Player 1 wins 1 49

Contrarily, analysis of these data using the pgmm software with random starts

selected the CUU model with BIC = −4747.64 for G = 2 and q = 3 resulting in 2

misclassified players (Table 5.23; ARI = 0.919). However, k-means starts selected the

UUU model with BIC = −7718.26 for G = 2 and q = 1, resulting in a negative ARI

value (Table 5.24; ARI = -0.010) which is not surprising from the cross tabulation of

the predicted versus the true classes — the negative ARI value can be interpreted as

classifications that are worse than would be expected under random classifications.

Analysing the data using model-based clustering, mclust, selected the XXX —

i.e., ellipsoidal multivariate normal — model with 1 component with BIC = 5831.55

and ARI = 0 (Table 5.25) — thus the mclust performed poorly in classifying the

players in the tournament.
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Table 5.23: Cross-tabulation of the predicted classifications (1,2) from pgmm with
random starts versus true class (Player 1 loses or Player 1 wins) for the Australian
Open Men data.

Cluster

1 2

Player 1 loses 50 0
Player 1 wins 2 46

Table 5.24: Cross-tabulation of the predicted classifications (1,2) from pgmm with
k-means starts versus true class (Player 1 loses or Player 1 wins) for the Australian
Open Men data.

Cluster

1 2

Player 1 loses 23 25
Player 1 wins 23 27

Table 5.25: Rand index, ARI and BIC for the models that were applied to the
Australian Open Men data.

Model Rand index ARI BIC

EA 0.980 0.959 −6702.66
PGMM (random starts) 0.960 0.919 −4747.64
PGMM (k-means starts) 0.495 −0.010 −7718.26
MCLUST 0.495 0.000 5831.55
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5.4.5 US Crime Data

The US crime data set previously analyzed is considered here. The EA approach is

applied to these data with stagnation ∈ {2, 3, 4, 5} and J ∈ {10, 20, 30, 40, 50}.

All eight PGMMs are fitted with G = 1, 2, 3 and q = 1, 2, 3. The model with the

highest BIC (−1625.24) was the CUU model with G = 2 and q = 2 for stagnation =

5 regardless of the number of J . A cross tabulation of the MAP classifications from

the EA versus the true states is given in Table 5.26; the model correctly classifies all

but 3 states resulting in an ARI value of 0.754.

Table 5.26: Cross-tabulation of the predicted classifications (1,2) from our EAs versus
true class (Non-Southern State or Southern State) for the US crime data.

Cluster

1 2

Non-Southern State 14 2
Southern State 1 30

All eight PGMMs are fitted to the US crime data for G = 1, 2, 3 and q = 1, 2, 3

using the pgmm software. Using random starting values, the best model selected is

the CUU with BIC = −1610.34 for G = 3 and q = 3. Whilst k-means starts selected

the CUU model with BIC = −1619.55 for G = 2 and q = 2. A cross tabulation of the

MAP classifications from the best pgmm model with random and k-means starting

values are presented in Tables 5.27 and 5.28 respectively. The ARI values from both

random and k-means starts are inferior to our EA (Table 5.29).

The mclust software resulted in an ellipsoidal multivariate normal (XXX) model
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with 1 component and a BIC value of −1708.02. From Table 5.29, the mclust per-

formed poorly in separating the states in the US crime data.

Table 5.27: Cross-tabulation of the predicted classifications (1,2,3) from pgmm with
random starts versus true class (Non-Southern State or Southern State) for the US
crime data.

Cluster

1 2 3

Non-Southern State 7 23 1
Southern State 1 2 13

Table 5.28: Cross-tabulation of the predicted classifications (1,2) from pgmm with
k-means starts versus true class (Non-Southern State or Southern State) for the US
crime data.

Cluster

1 2

Non-Southern State 13 3
Southern State 1 30

Table 5.29: Rand index, ARI and BIC for the models that were applied to the US
crime data.

Model Rand index ARI BIC

EA 0.878 0.754 −1625.24
PGMM (random starts) 0.724 0.459 −1610.34
PGMM (k-means starts) 0.841 0.678 −1619.55
MCLUST 0.541 0.000 −1708.02
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5.4.6 Australian Institute of Sports Data

The AIS data previously analyzed is considered here. The EA approach developed is

applied to these data with stagnation ∈ {2, 3, 4, 5}, J ∈ {10, 20, 30, 40, 50}, G = 2,

and the number of factors q = 1, 2, 3, 4, 5. Fitting all eight PGMMs, the best model

for the range of parameters specified is a UUU model with G = 2 components and

q = 4 factors. For all combinations of stagnation and J , we obtained a similar BIC

value of −2788.72 for this model. Thus, over all 20 runs, identical and a very good

classification performance was obtained with 4 missclasified athletes resulting in an

ARI value = 0.922 (Tables 5.30 and 5.34).

Table 5.30: Cross-tabulation of the predicted classifications (1,2) from our EAs versus
true class (male or female) for the AIS data.

Cluster

1 2

Male 99 3
Female 1 99

Fitting all eight PGMMs using the pgmm package in R with random starting

values, the best model (BIC = −2465.92) for the range of factors and components

is the UCU model with G = 2 and q = 4 resulting in a poor ARI value = 0.304

(Table 5.31). On the other hand, k-means starting values selected the UUU model

(BIC = −2394.34) with G = 2 and q = 4 and an ARI value = 0.811 (Table 5.32).

Whilst the results from the k-means starting values is better than the random starting

values from the pgmm, both are inferior to the ARI from the EA approach.

Analysis of this data using mclust software yielded 5 groups with EVE covariance
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structure and a BIC value of −2392.88. This model gives a slightly better classifi-

cation performance (Tables 5.33 and 5.34; ARI = 0.477) compared to pgmm with

random starting values and an inferior ARI value compared to our EA approach.

Table 5.31: Cross-tabulation of the predicted classifications (1,2) from pgmm with
random starts versus true class (male or female) for the AIS data.

Cluster

1 2

Male 86 16
Female 29 71

Table 5.32: Cross-tabulation of the predicted classifications (1,2) from pgmm with
k-means starts versus true class (male or female) for the AIS data.

Cluster

1 2

Male 92 10
Female 0 100

Table 5.33: Cross-tabulation of the predicted classifications (1,2) from the best model
found using mclust versus true class (male or female) for the AIS data.

Cluster

1 2 3 4 5

Male 1 9 16 3 73
Female 65 5 9 21 0
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Table 5.34: Rand index, ARI and BIC for the models that were applied to the AIS
data.

Model Rand index ARI BIC

EA 0.961 0.922 −2788.72
PGMM (random starts) 0.652 0.304 −2465.92
PGMM (k-means starts) 0.905 0.811 −2394.38
MCLUST 0.739 0.477 −2392.88

5.4.7 Simulated Data

We demonstrated our approach on a simulated data set. The data is generated via

the genRandomClust function from the R package clusterGeneration (Qiu and Joe,

2006). The data comprises p = 20 variables, n = 332 observations and substantially

overlapping clusters; the remaining settings were left at default. This is a very

difficult clustering problem and one should not expect perfect classification results.

Each algorithm was initialized at random 30 times on this data for all the approaches

considered. The EA consistently selected the CUU model for G = 3 and q = 1 with

stagnation = 5 and J = 40. Using k-means starts and random starts for pgmm,

both selected the CUU model for G = 3 and q = 1. The mclust selected a three

component EVI model. These results are summarized in Table 5.35 with EA having

the highest average ARI value. Overall, the EA resulted in a better classification

performance compared to the pgmm with both random and k-means starting values

and model-based clustering using mclust.
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Table 5.35: Average rand index, ARI and BIC for the models that were applied to
the simulated data.

Model Rand index ARI BIC

EA 0.983 0.962 −18452.30
PGMM (random starts) 0.960 0.912 −18493.67
PGMM (k-means starts) 0.956 0.903 −18493.74
MCLUST 0.969 0.932 −18435.74

5.5 Discussion

An EA has been developed for latent Gaussian mixture models known as PGMMs.

Each iteration of our EA uses a mutation step; no comparable approach in the liter-

ature has been taken for the family of PGMMs. The closest approach uses mutation

for Gaussian mixture models (Andrews and McNicholas, 2013). The clustering phi-

losophy associated with our approach is that of “hard” clustering, i.e., the estimated

group membership labels are restricted to values z̃ig ∈ {0,1} as compared to the soft

labels ẑig ∈ [0,1] used in the AECM algorithm.

We used the BIC in selecting the best model for each method in this analysis. In

five of the data sets where the EA and pgmm with k-means starting values selected

the same models, the EA consistently gave better BIC values except for one data

set. However, comparing the BIC across the models selected by each method is not

quite as meaningful since the methods select different models for most of the data

sets hence the classification performance of each model is compared adopting the

ARI values.

The application of the EAs for the family of PGMMs to the data sets considered

shows that the results give excellent clustering performance compared to the other
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approaches employed in our analysis. It can be seen that, fitting the parsimonious

Gaussian mixture models using pgmm software is heavily dependent on starting val-

ues since both k-means and random starting values produced non-identical results

in all eight data sets used in this work. However, this is not the case with the EA

approach. The clusters found using the EA consistently showed greater ability to

capture the group structure of the data than the other techniques, i.e., the EA gives

superior clustering performance to pgmm and mclust.

There are several possible extensions of this work: as future work, it will be of

interest to introduce a crossover step followed by a mutation step in the EA proposed

herein (e.g., McNicholas et al., 2020). Also, a similar EA will be developed for

situations where clusters may be non-Gaussian using non-Gaussian mixture models

(e.g., Browne and McNicholas, 2015; Franczak et al., 2015).
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Chapter 6

Conclusions

6.1 Summary

Mixture model-based clustering continues to grow in prominence in the literature,

and hence different techniques for parameter estimation in clustering problems need

to be explored. The work developed in this thesis has focused on the development

and implementation of evolutionary algorithms in the field of model-based clustering.

In Chapter 3, an EA approach was developed for Gaussian mixture model-based

clustering with incomplete data, i.e., when data is missing at random. This is the

first use of an EA for clustering with missing data. Our EA utilizes an evolutionary

operator known as mutation at each iteration. The EA which iterates until stagnation

gives an approach that can be considered an alternative to the EM algorithm. Our

proposed approach performed favourably or equivalently on both real and simulated

data sets when compared to the EM algorithm.
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In Chapter 4, we developed an EA called CMEA for parameter estimation in

the family of Gaussian parsimonious clustering models. The approach uses crossover

followed by a mutation step at each iteration. The EA uses hard classifications

and could be viewed as an extension of k-means, and as an alternative to the EM

algorithm. Several data analyses were carried out to illustrate our EA, and in most

cases it was found to have the same performance as the EM algorithm. The relative

performance of our EA and the EM algorithm is quite remarkable and shows that

soft clustering is not necessarily preferable to hard clustering.

Finally, an EA was developed for latent Gaussian mixture models known as

PGMMs in Chapter 5. Each iteration of the EA consists of a mutation step and

can be considered as an alternative to the AECM algorithm. This approach was

illustrated on several real data sets and a simulated data set. The EA gave superior

performance in five cases, and identical performance in three cases when compared

to the current state-of-the-art, i.e., the AECM algorithm.

6.2 Further Work

6.2.1 Non-Gaussian Distributions

The approach developed herein is based on the Gaussian mixture model, neverthe-

less it is of interest to depart from Gaussianity in future work. For example, this

work could be extended to situations where clusters may be non-Gaussian using

non-Gaussian mixture models. The most natural departure from Gaussian mixture

models is the mixture of multivariate t-distributions. In general, the evolutionary
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computation approach for parameter estimation will be applied to the members of the

tEIGEN family introduced by Andrews and McNicholas (2012). The method could

also be extended to the multivariate skew-t mixture models (Vrbik and McNicholas,

2012; Murray et al., 2014).

6.2.2 Missing Not At Random (MNAR)

In Chapter 3, we developed an evolutionary algorithm to cluster data with missing

values under the MAR assumption, which are often referred to as ignorable missing-

ness mechanism because the parameters that govern the missingness are separable

from the parameters that govern the data. Although the MAR assumption is often

reasonable, there are situations where this assumption is not achievable. Hence, it

becomes necessary to model the missingness mechanism that may contain informa-

tion about the parameters of the complete-data population. Therefore, future work

focusing on the MNAR missing data mechanism would be beneficial.

6.2.3 Improvement to the Computational Efficiency

We have demonstrated in this thesis that evolutionary computations are effective

in parameter estimation and clustering. However, there are computational chal-

lenges that must be addressed in the implementation of the evolutionary algorithms.

Notably, during each generation of the algorithm, calculations among both clones

(children) and parents are required which incurs additional computational overhead.

This problem can be at least somewhat remedied by code optimization. R software

has been used to write the code for implementing the proposed algorithms in this

105



Ph.D. Thesis - Regina S. Kampo McMaster - Mathematics and Statistics

thesis. However, developing analogous C code to form the basis for an R package

is a possible solution to help improve computational efficiency. There is also work

to be done on the alternative to the R programming language such as Python for

implementing these algorithms.
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