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Abstract

Ultrasound (US) is the most widely used medical imaging modality due to its low

cost, portability, real time imaging ability and use of non-ionizing radiation. However,

unlike other imaging modalities such as CT or MRI, it is a heavily operator dependent,

requiring trained expertise to leverage these benefits.

Recently there has been an explosion of interest in artificial intelligence (AI) across

the medical community and many are turning to the growing trend of deep learning

(DL) models to assist in diagnosis. However, deep learning models do not perform

as well when training data is not fully representative of the problem. Due to this

difference in training and deployment, model performance suffers which can lead to

misdiagnosis. This issue is known as dataset shift. Two aims to address dataset shift

were proposed. The first was to quantify how US operator skill and hardware affects

acquired images. The second was to use this skill quantification method to screen

and match data to deep learning models to improve performance.

A BLUE phantom from CAE Healthcare (Sarasota, FL) with various mock lesions

was scanned by three operators using three different US systems (Siemens S3000,

Clarius L15, and Ultrasonix SonixTouch) producing 39013 images. DL models were

trained on a specific set to classify the presence of a simulated tumour and tested

with data from differing sets. The Xception, VGG19, and ResNet50 architectures
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were used to test the effects with varying frameworks. K-Means clustering was used

to separate images generated by operator and hardware into clusters. This clustering

algorithm was then used to screen incoming images during deployment to best match

input to an appropriate DL model which is trained specifically to classify that type

of operator or hardware.

Results showed a noticeable difference when models were given data from differing

datasets with the largest accuracy drop being 81.26% to 31.26%. Overall, operator

differences more significantly affected DL model performance. Clustering models

had much higher success separating hardware data compared to operator data. The

proposed method reflects this result with a much higher accuracy across the hardware

test set compared to the operator data.
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Chapter 1

Introduction and Problem

Statement

Ultrasound (US) is the most widely used medical imaging modality for its low cost,

portability, real time image presentation and use of non-ionizing radiation. The un-

derlying concept is also simple, send sound waves into tissue and measure reflections

from tissue and reconstruct an image based on intensity and travel time. However,

unlike other imaging modalities such as CT or MRI, it is a heavily operator depen-

dent modality, requiring trained expertise to leverage any of the benefits. This leads

to subjectivity in assessments and possible variability in diagnostics. This can be

especially true in emergency scenarios where trained personnel may not be readily

available. While errors in emergency ultrasound are due to multiple factors, many in-

clude operator or hardware related errors. These include lack of knowledge of technical

equipment, inappropriate choice of ultrasound probe, inadequate image optimization,

failure of perception, and overestimation of one’s skill.(Pinto et al. (2013))

Due to the data driven nature of medical imaging, many theorize the growing field
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of machine learning, specifically deep learning, may add objectivity to the subjective

nature of ultrasound imaging and potentially address this operator dependency. (Liu

et al. (2019))(Akkus et al. (2019))(Park (2021))

Machine learning is a broad term that encompasses a wide array of techniques.

At its core, machine learning uses mathematics to learn from a large amount of

representative data of an event or outcome in order to determine or predict the event

or outcome using similar data. Many studies have already been done to train a

Computer Aided Diagnosis (CAD) tool for ultrasound imaging. One example is Park

et al., where they trained a deep learning and other machine learning based CAD

tools which matched the performance of human radiologists in identifying thyroid

nodules in ultrasound images. (Park et al. (2019))

The operator dependent nature of the imaging modality is a unique hurdle to

successful implementation. This is largely due to the idea of dataset shift. Dataset

shift refers to differences in training data and deployment. Medical AI typically suffers

in performance due to changing subjects. Compounding this issue further, ultrasound

has high variability across institutions and hardware manufacturers (Liu et al. (2019))

leading to uncertainty that a trained model would be fully generalize. Studies are

typically done at only one institution with one ultrasound machine (Akkus et al.

(2019)) suggesting that models may not account for incoming data from differing

hardware and operators found at other institutions. The results of this on model

performance is therefore not clearly defined.

In this thesis a method is proposed that aims to accomplish two goals; first to

quantify US operator skill level and how specific hardware affects the acquired ultra-

sound images acquired. The second aim was to use this skill quantification method
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to screen and match data to deep learning models to improve performance. This

was done by using unsupervised machine learning to separate images generated by

various operators and hardware set ups into clusters and computing the distance be-

tween these separated clusters. This clustering algorithm can then be used to screen

incoming images during deployment to best match the input to an appropriate deep

learning model which is training specifically to classify that type of operator or hard-

ware. Specifically, it was hypothesized that a clustering algorithm would be able

to identify differences in hardware and operators and the distances between clusters

would be a metric to define them and match data to an appropriate deep learning

model.

The rest of this thesis is summarized as follows;

Chapter 2 provides background knowledge on the various topics covered and high-

lights key ideas, current work, and potential gaps in regards to ultrasound, machine

learning, deep learning, and trust quantification in machine learning.

Chapter 3 covers the experimental protocol including the data collection process,

hardware, software, algorithms used, experimental set ups, performance metrics, and

implementation.

Chapter 4 presents the results of the proposed methodology covering the specific

performances of the various models and algorithms used.

Chapter 5 focuses on key findings, discussing model performances and potential

implications of the study.

Chapter 6 concludes the thesis and summarizes findings, identifies improvements,

and proposes potential future work.
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Chapter 2

Background

This thesis includes elements from varying fields of expertise. These fields range from

medical imaging and wave physics to machine learning, mathematical modelling, and

trust. In order to bridge potential gaps in knowledge this chapter aims to give an

overview of relevant topics, highlight some current applications, as well as discuss

some of the core issues this thesis aims to address.

2.1 Ultrasound

2.1.1 Ultrasonic Physics

The fundamental principle behind ultrasound imaging is the transmission of ultra-

sonic waves. These are typically transmitted as pulses and this is known as pulsed

ultrasound. Pulse repetition frequency (PRF) describes the number of pulses per

unit time. (Chan and Perlas (2011)) Typically, these pulses are 1ms in length and

multiple pulses are emitted per second. (Aldrich (2007)) Since these pulses travel in
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straight lines, they are often referred to as beams. The direction of US propagation

along the beam is called the axial direction, and the direction perpendicular to the

axial direction is called lateral.

To describe these waves frequency and wavelength are commonly described. Clin-

ical ultrasonic waves are high frequency sound waves, typically 1-20 MHz(Chan and

Perlas (2011)), that are inaudible as the threshold for human hearing is about 20 kHz.

The wavelength is inversely proportional to frequency, this means that high frequency

waves have correspondingly low wave length and vice versa. Higher frequency waves

(10-15 MHz) result in a higher number of waves of compression for a given distance

and more accurately differentiates between two structures along the axial direction.

Thus, high frequency waves have higher axial resolution. (Chan and Perlas (2011))

However, higher frequency waves are also prone to higher attenuation and therefore

have less ability to penetrate deeper into tissue. This means that higher frequency

waves are more suitable for superficial tissue imaging. In contrast, lower frequency

waves (2-5 MHz) have lower attenuation and can be used to image deeper structures

albeit with lower axial resolution.(Chan and Perlas (2011))

These waves are transmitted into the subject and reflections at the source are

recorded. When ultrasonic waves travel through tissue, the wave can either reflect,

refract, transmit to deeper tissue, or transform into heat. This is due to the fact that

sound waves travel at different speed through differing media. The behaviour of the

waves is determined by propagation speed. Propagation speed refers to the speed at

which sound can travel through a medium and is typically considered to be 1540m/s in

soft tissue. (Aldrich (2007)) This speed is determined solely by an intrinsic, physical

properties of the medium known as acoustic impedance and is defined as the density
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multiplied by the velocity of the ultrasound wave propagation in the medium.(Chan

and Perlas (2011)) Air containing tissues such as the lungs have the lowest impedance

and dense tissues such as bone have the highest impedance.

Reflections of ultrasound beams form the core of this imaging technique and these

reflection beams are commonly referred to as echoes. Reflection occurs at boundaries

between two materials provided the acoustic impedance is sufficiently different. Of

note is that the only requirement is a difference in acoustic impedance. This means

that regardless if the beams are travelling from a higher to lower impedance or a

lower to higher impedance medium, an echo will still occur. If the difference between

the materials is small, a weak echo is reflected and most of the energy is transmitted

deeper into the tissue. If the difference is large, a strong echo is reflected and little

energy is transmitted deeper. If the difference is large enough, such as an interface

with air, all of the US beam is reflected and no energy is transmitted deeper. Typically

in soft tissue, only a small percentage of the beam is reflected. After reconstruction,

strong echoes appear as white and weaker echoes are shown as gray.

Refraction occurs when the ultrasound beam hits a surface at angle rather than

at 90 degrees. In this scenario, an echo returns at an angle equal to the incident while

the rest of the beam transmits deeper at an angle that deviates from the incident

angle determined by Snell’s Law (Equation 2.1). Figure 2.1 shows a visual example

of Snell’s Law.

n1sin(θ1) = n2sin(θ2) (2.1)

Refraction can commonly cause confusion since the reconstruction assumes that

the US beams travel in straight lines without deviation. However, this is only in
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Figure 2.1: Visual representation of Snell’s law. Snell’s law states that an incoming
ultrasound wave will deviate at a medium boundary defined by the given equation
where n1 and n2 are the acoustic impedances of the media, θ1 is the angle of the
incoming wave and θ2 is the angle of the refracted wave.

the idealized case and refraction is a useful property for imaging irregularly shaped

objects. (Aldrich (2007)) Scattering occurs when the beam hits an uneven or rough

surface and the echoes reflect in various directions. This allows for some of the echo

to reach the transducer, allowing for irregular objects to be imaged.

Transmission occurs through uniform tissue or at tissue boundaries of identical

acoustic impedance. The wave simply continues into deeper regions until it meets

another boundary. However, the wave may lose small amounts of energy as it may

transform into heat as the kinetic energy is absorbed by particles.

All of this allows for the reconstruction of an image based on the differing arrival

times of the echoes. An example image created through ultrasound imaging is seen

in Figure 2.2.
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Figure 2.2: Sample ultrasound image. Image depicts biceps muscle of a healthy male
volunteer scanned with the Siemens S3000 12L4 transducer at 12 MHz.

2.1.2 Hardware

Typically, there are two core hardware components in an ultrasound system. The

first component is the probe which both transmits the ultrasonic waves and detects

the reflecting echoes. The second component is a computing device to reconstruct an

image based on the travel times and energies of the echoes.

Probes vary in type and frequency. They are made of piezoelectric elements which

vibrate when an electric field is present and conversely also create an electric field

when it vibrates. Probes come in various array arrangements and produce variable

frequency waves for differing imaging requirements. Figure 2.3 shows examples of

probes.

Most ultrasound systems are pulse echo systems. This means that the device
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Figure 2.3: Ultrasound Probes. From left to right, Siemens S3000 12L4, Clarius L15,
SonixTouch L14-5. These particular examples are all linear phased array that produce
2D images.

detects three things, echo strength, echo direction, and time of arrival of echos from

the tissue boundaries.

Due to the many sources of attenuation, relative intensity levels are more impor-

tant to measure than absolute intensities and differing signal amplification is com-

monly applied during reconstruction.(Aldrich (2007))

2.1.3 Image Interpretation and Artifacts

There are four types of ultrasound scans commonly used for diagnosis, A-Mode, B-

Mode, M-Mode, and Doppler.(Carovac et al. (2011)) In A-Mode, a transducer scans a

line and plots echoes as a function of depth. In B-Mode, a linear array is used to image

a plane through the body which is reconstructed as a 2D image. M-mode refers to

motion and is used to capture a range of motion. Doppler ultrasound takes advantage

of the Doppler effect to image blood vessels. Most ultrasound imaging is done in

real time B-mode, also referred to as brightness mode. During the reconstruction
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of an ultrasound image, brighter regions are referred to as hyperechoic and darker

regions are referred to as hypoechoic. This corresponds to weaker and stronger echos

respectively. Isoechoic regions have echoes equivalent to neighbouring tissue and

anechoic regions appear as black regions without echoes.

Artifacts are image results that are not true to the object being imaged thus

leading to some form of inaccurate representation in image space. Artifacts often

arise due to assumptions made during collection and reconstruction. Some of the key

assumptions are that sound waves travel strictly in a straight line, that reflections

occur from structures along the central axis of the beam, that the intensity of the

reflection corresponds to the reflector scattering strength, that the speed of sound in

tissue is exactly 1540 m/s, and that the sound will travel directly to the reflector and

back. (Aldrich (2007)) In practice these assumptions are made false. Artifacts are

helpful sometimes and detrimental other times. It is up to the operator to discern

when they occur and how to interpret them (i.e. differentiate them from truth). It

is in part why the imaging modality is so operator dependent as it is difficult to

determine what the image is properly depicting without context.

2.2 Machine Learning

2.2.1 Overview

Datasets are typically divided into training, validation, and testing sets. Training

sets are used to first train an algorithm and constitute the largest portion of the

data. Validation sets are used to adjust training and search for hyperparameters,

adjustable values used to tune models, and test sets are used to determine how well
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the algorithm performs on similar, but unseen data. Both the validation sets and test

sets are typically similar in size.

Using this collection of data, algorithms are developed to model the data. This

modelling is typically done in a supervised, unsupervised, or reinforcement based

approach.

Supervised learning is one of the most common forms of machine learning and

involves the use of labelled data. In supervised learning problems, an algorithm is

given data and outputs a vector of scores. The goal is to have the algorithm output

scores that align with the proper labels of the given data. This is usually done with an

objective function, also known as a cost function, that measures the error between the

outputted scores and the desired scores. Given examples, the algorithm modifies its

internal weights in order to reduce the error and thus minimize the objective function.

Unsupervised learning is growing in interest and involves the use of unlabelled

data. In unsupervised learning problems, an algorithm is given data without labels.

Unlike supervised learning problems, there is no given result that the algorithm tries

to match. Instead, the algorithm tries to identify patterns, structure, or trends in the

data commonly referred to as clusters.

Although not used in this thesis, reinforcement learning is briefly described for

sake of completion. Reinforcement learning is the least common form of machine

learning, but is also seeing growing interest. It involves training ”agents” to navigate a

state space by learning ”policies” and typically requires specific learning environments

rather than raw data samples. Typically agents learn by trial-and-error where they

interact with the environment, receive feedback, and update their policies on how

to handle certain situations in the future. One of the most famous examples of
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reinforcement learning in recent times is the program AlphaGo by Silver et al., the

first computer program to beat a world champion at the game of Go. (Silver et al.

(2017)) AlphaGo plays games against itself over and over, iterating through games in

order to improve itself . Remarkably, AlphaGo achieved its superhuman performance

without human guidance outside of the rules of the game, highlighting the potential

of reinforcement learning for areas with limited or unreliable sources of data.

2.2.2 Conventional Training Methods

Conventional training methods typically involve mathematical modelling techniques

with a statistical basis. In these methods, heavy domain expertise is usually required

for feature engineering (LeCun et al. (2015)) as raw data can take on many forms in

differing context. For example, voltage readings from sensors may require different

expertise than pixel values from images. The specialized knowledge needed to trans-

form differing formats of data in differing contexts into features suitable for use in

internal representations or feature vectors leads to a very narrow scope and places

limits on the ability to work with certain inputs. However, because the input features

are hand crafted, results are typically very easily explained.

K-Means Clustering

K-Means clustering is a conventional training method for unsupervised learning. It

was first proposed by Stuart Lloyd at Bell labs in 1957(Géron (2019)) and aims to

separate data into clusters based on minimizing distances to those clusters. The

algorithm works as follows:

1. Centroids are placed randomly within an m-dimensional data space
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2. The distance from each instance to each centroid is calculated

3. Centroids are moved

4. Repeat until convergence

To avoid convergence to local minima, this process is typically repeated n times

to produce the best result. A typical n value would be 10 times and the best result

is decided with a value known as inertia. Inertia is calculated as the mean squared

distance between each instance and its closest centroid.

2.2.3 Neural Networks and Deep Learning

Representation learning is a set of methods that allow a machine to be fed raw data

and to automatically discover the trends and representations required to model the

data. Deep learning is a form of representation learning with multiple levels. Each

level learns more abstract representations of the previous level. (LeCun et al. (2015))

Through this method, deep learning aims to discover structure in large datasets typ-

ically using a back-propagation algorithm to indicate how internal parameters called

weights should be adjusted to best compute the representations in each layer. Each

layer is composed of processing units which form a network.

These processing units are commonly referred to as artificial neurons and derive

their name from biological neurons. Likewise, combinations of them are named neural

networks. Biological neurons produce small electrical signals, called action potentials

that trigger the release of chemical signals, called neurotransmitters in other neu-

rons. Similarly, artificial neurons process inputs, and if the inputs reach a designated

threshold, they produce an output to other artificial neurons.
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A neural network is referred to as ”deep” when it has many layers, the exact

number of which is sometimes arbitrary. Figure 2.4 shows a visual representation of

a neural network.

Figure 2.4: Visual representation of a neural network. Individual processing units
are connected in layers for representation learning. Input layer refers to the neurons
that first process the input vectors. Hidden layers refer to the middle portion where
the weights are adjusted to learn abstract representations. Output layer refers to the
output from the network.

2.3 Trust in Deep Learning

2.3.1 Quantification of Trust

Adding objectivity and quantification for trust in machine learning is difficult because

there is no common definition or agreed upon standard. Schmidt and Biessmann

(Schmidt and Biessmann (2019)) bring up a comparison to the Turing test used to

define machine intelligence. Before the advent of the Turing test, it was difficult to

measure if a machine had intelligence because there was no true definition or test
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for machine intelligence. Thus, it is difficult to determine trust and trustworthiness

of machine learning algorithms and many are either proxy measurements or qualita-

tive.(Schmidt and Biessmann (2019))

On the other hand, Toreini et al. (Toreini et al. (2020)) introduced the idea of

FEAS technologies (i.e. fairness, explainability, auditability and safety) as qualities

machine learning algorithms must have in order to be trusted. Fairness refers to

technology that does not discriminate or have bias against certain demographics and

have means to prevent or protect against it. Explainability refers to the ability to

explain and interpret results in a humane manner to stakeholders and end users.

Auditability refers to the ability to have third-parties examine, regulate, monitor, or

challenge the operation of deployed models. Safety refers to the ability for a model

to continue to perform as intended in response to passive or active malicious attacks.

2.3.2 Dataset Shift

Dataset shift is a concept that analyzes data quality. Dataset shift occurs when

unseen testing data experiences events that lead to a change in the distribution of a

feature, a combination of features, or class boundaries and as a result, the assumption

that the training data and testing data are representative of the same distribution is

violated.(Moreno-Torres et al. (2012))

If a classification problem is defined as a set of X features used to produce a target

variable Y , then dataset shift is a situation in which the distribution of Xtrain is not

equal to the distribution of Xtest, therefore leading to an invalid relationship between

X and Y .

Dataset shift is a classic problem that can occur in medical AI. Medical AI typically
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suffers in performance due to changing subjects as populations are not static. Ultra-

sound introduces many other avenues for dataset shift due to its operator dependency.

Ultrasound has high variability across institutions and hardware manufacturers. (Liu

et al. (2019)) Furthermore, many studies are typically done at only one institution

with one ultrasound machine. (Akkus et al. (2019)) Thus, US model performance can

vary greatly and there is no certainty that a trained model would be fully generalize

regardless of the differing operators and hardware.

2.4 Thesis Goals

Core issues in regards to deep learning medical advisory systems for ultrasound revolve

around the notion of its operator dependent nature, the lack of explainability in most

deep learning models, and the overall subjectivity of ultrasound and trust in deep

learning. There is no means to quantify how much operator skill or hardware variance

affect the quality of an ultrasound image and no objective metric in which to quantify

the trustworthiness of an algorithm’s decision.

This thesis aims to address these issues by accomplishing the following goals; to

verify and observe differences in deep learning model performance due to hardware

and operator differences, to quantify the differences in hardware and operators, and

to create a metric to quantify how much the input data varies from the training data.
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Chapter 3

Methods

3.1 Data Collection and Hardware

3.1.1 Ultrasound Machines

Siemens S3000

The first machine was the Siemens S3000 Ultrasound (Siemens Healthcare, Erlangen

Germany) using the 12L4 Transducer. This machine saved files in an .avi format with

a resolution of 1024 x 768. Figure 3.1 shows the Siemens S3000 machine used.

Clarius Ultrasound

The next machine was the Clarius Ultrasound (Clarius Mobile Health, Vancouver

Canada) with the L15 Transducer. This machine also saved files in the .avi format

and had options for resolution. A resolution of 1024 x 768 was selected for consistency.

Figure 3.1 shows the Clarius Ultrasound machine used.
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SonixTouch

Lastly, the BK Medical Ultrasonix SonixTouch (BK Medical Ltd., Herlev Denmark)

ultrasound (SXTCH3.1-1012.0.11, software Version 6.07) with the L14-5 Transducer

was used. This machine saved files as MPEG also with a 1024 x 768 resolution.

Figure 3.1 shows the SonixTouch ultrasound machine used.

Figure 3.1: Ultrasound machines used. From left to right, Siemens S3000, Clarius
Ultrasound, SonixTouch Ultrasound.

3.1.2 Phantom

CAE Blue Phantom

The primary subject for this thesis was a soft tissue mimicking phantom from CAE

Healthcare. (Sarasota, FL) Specifically, the ’Soft Tissue Biopsy Ultrasound Training

Block Model’ was selected. The phantom contains 16 masses of varying sizes (4-11

mm in diameter) that are hypoechoic or hyperechoic in nature, relative to the gel

they are embedded in. Figure 3.2 shows the phantom used.
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Figure 3.2: Soft tissue mimicking BLUE phantom from CAE Healthcare (Sarasota,
FL).

3.1.3 Operators

Operator 1

Operator 1 was a graduate student with no formal training in ultrasound operation

and minimal medical imaging experience. The purpose of this operator was to closely

represent an operator with minimal technical skill with ultrasound imaging. Figure

3.3 shows sample images collected from Operator 1 using the various machines.

Operator 2

Operator 2 was a medical imaging expert with no formal training in ultrasound opera-

tion. The purpose of this operator was to represent an intermediate skill level. Figure

3.4 shows sample images collected from Operator 2 using the various machines.
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Figure 3.3: Sample images collected from Operator 1. From left to right, images from
the Siemens S3000, SonixTouch Ultrasound, and Clarius Ultrasound. Top row shows
samples of normal, uniform tissue. Bottom row shows samples of masses.

Operator 3

Operator 3 was an ultrasound technologist with 3 years of formal training at the time

of the study and 8 months of clinical experience. The purpose of this operator was to

represent trained personnel with a higher skill level. Figure 3.5 shows sample images

collected from Operator 3 using the various machines.

3.2 Software

3.2.1 Python 3

All computer code was implemented using Python 3.8 (Python Software Foundation,

https://www.python.org) and various supporting open source libraries. Python is

an interpreted, high level scripting language. It is open source and runs on various

operating systems. Python was selected as the implementation language for the wide
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Figure 3.4: Sample images collected from Operator 2. From left to right, images from
the Siemens S3000, SonixTouch Ultrasound, and Clarius Ultrasound. Top row shows
samples of normal, uniform tissue. Bottom row shows samples of masses.

selection of well supported libraries.

3.2.2 OpenCV

OpenCV (Bradski (2000)) is an open source computer vision library. It was built

primarily to support computer vision and machine learning applications and supports

a wide variety of algorithms for use. However, in this case, OpenCV was primarily

used for its simple video editing and frame extraction functions.

OpenCV for Python was used for the first pre-processing step. Deep learning leans

heavily on the ability to automatically extract features. Thus, the preprocessing

consisted mostly of converting video files into individual images and cropping UI

elements from each frame. Each video was converted to individual frames stored as

.PNG at 10 frames per second (FPS) using OpenCV.

23



M.A.Sc. Thesis - Calvin Zhu McMaster - School of Biomedical Engineering

Figure 3.5: Sample images collected from Operator 3. From left to right, images from
the Siemens S3000, SonixTouch Ultrasound, and Clarius Ultrasound. Top row shows
samples of normal, uniform tissue. Bottom row shows samples of masses.

3.2.3 Python Imaging Library

Python Imaging Library (PIL) (Clark (2015)) is a Python library used for general

image processing. PIL was chosen for its ability to support a wide variety of image

types and sizes. The individual frames extracted from the video clips were then passed

into a PIL based program for further pre-processing. Specifically, cropping of the UI

was done using PIL to create 320x720 images with the exception of the Clarius data.

The UI of the Clarius app relative to the image is large and thus were cropped to be

250x400 in order to remove the entire UI.
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3.2.4 TensorFlow

TensorFlow(Abadi et al. (2015)) is an open-source Python package that implements

machine learning algorithms that can be used across a variety of systems. It has seen

use in many areas of computer science and other fields including speech recognition,

computer vision, robotics and more. TensorFlow was used for re-sizing images to be

150x150 in order to speed up training and unify their size for giving to each model

and for implementing the deep learning models.

3.2.5 SciKit-Learn

SciKit-Learn(Pedregosa et al. (2011)) is an open source, Python-based, machine learn-

ing library built for medium scale supervised and unsupervised learning problems.

SciKit-Learn was used for implementing Principle Component Analysis and the K-

Means Clustering algorithm.

3.3 Model Details

3.3.1 Principle Component Analysis (PCA)

Conventional machine learning methods typically do not handle raw data very well

and as such a feature extractor was required. Principle component analysis (PCA)

is a common feature extraction and dimensionality reduction tool used for many

machine learning applications. PCA works by selecting a hyperplane closest to the

data and projecting the data onto an axis along it. By projecting the data onto a

hyperplane that minimizes the mean squared distance between the original data and

its projection onto the axis, most of the variance in the data is preserved. The data
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projected onto this hyperplane is referred to as the first principle component. The

data is then projected onto axes on hyperplanes orthogonal to this plane forming

additional principle components and preserving the rest of the variance in the data.

(Géron (2019))

This whole method is done by singular value decomposition (SVD) described by

Equation 3.1.

X = UΣV T (3.1)

where X is the training set matrix and V T contains unit vectors that define all

principle components.

3.3.2 K-Means Clustering

The implementation of K-Means clustering through the SciKit Learn library uses a K-

Means++ initialization which tends to select centroids further apart. The algorithm

is as follows:

1. Take one centroid, c1, chosen uniformly at random from the dataset

2. Take a new centroid, ci, choosing an instance xi with probability

D(xi)
2

Σm
j=1D(xj)2

(3.2)

where D(xi) is the distance between xi and the closest centroid that was already

chosen

3. Repeat for k clusters
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Furthermore, to reduce the likelihood of convergence to local minima, the K-Means

algorithm is repeated by default 10 times and the result with the lowest inertia is

returned. Inertia is defined as the mean squared distance between each instance and

its closest centroid.

The performance of these clustering models are evaluated using the silhouette

score. Silhouette score is a method for cluster analysis that shows which instances

are well placed in a cluster and those instances which are somewhere between clus-

ters.(Rousseeuw (1987)) Clusters are represented with silhouettes where average sil-

houette width is a means for evaluating cluster validity and can be used to select an

appropriate amount of clusters. Silhouettes are constructed from cluster labels and

the distances between instances computed by Equation 3.3.

s(i) =
b(i)− a(i)

max(a(i), b(i))
(3.3)

where i is an instance in a cluster, a(i) is the average dissimilarity (distance) of i

and all other objects in the same cluster, and b(i) is given by Equation 3.4.

b(i) = minimum(di, C) (3.4)

where C 6= A and (di, C) is the average distance from the instance to all values in

another cluster.

The silhouette score is bounded between −1 ≤ s(i) ≤ 1 and scores close to -1

indicate a likely mis-classification, scores close to 0 indicate a decision boundary, and

scores close to 1 indicate that the instance is close to the cluster center.
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3.3.3 Deep Learning

Architectures

The following three architectures were chosen for the deep learning models for their

high performance in image classification tasks.

Xception (Chollet (2017)) is a convolutional neural network based on depthwise

separable convolutional layers. It has 36 convolutional layers structured into 14 mod-

ules to act as a feature extracter followed by a logistic regression layer.

ResNet50 (He et al. (2015)) uses a deep residual learning framework to allow for

better convergence on a deeper network at 34 layers. ResNet50 was the architecture

that won 1st place in the ILSVRC 2015 classification competition.

VGG19 (Simonyan and Zisserman (2015)) is a convolutional neural network ar-

chitecture that won 2nd place in the ImageNet Challenge 2014 for its classification

performance. It is a network that uses small, 3x3 convolutional filters. This version

uses 19 weight layers.

A normalization layer is included at the beginning of each network in order to

accommodate the architectures being used. Also, a drop out layer is included before

the output layer to regularize and help with overfitting.

The overall architecture is shown in Figure 3.6.

Training

After preprocessing a total of 39013 images were collected. Each set was divided

into approximately 80% training and validation and 20% testing. Care was taken to

ensure that data from one scan was not included in both the training and test sets in

order to avoid overfitting and inflating the test accuracy.
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Figure 3.6: Visual depiction of the architecture used shown for clarity. Abstraction
layers refer to the specific architecture Xception, ResNet50, or VGG19.

Optimizer

Adam (Kingma and Ba (2017)) is an algorithm for gradient-based optimization of

stochoastic objective functions. It requires a learning rate, α and exponential decay

rates, β1 and β2. The Adam implementation in TensorFlow uses default values as

follows, learningrate=0.001, β1=0.9, β2=0.999.

3.4 Experimental Set-ups

3.4.1 Investigating Hardware and Operator Variability

The purpose of this portion was to verify and observe if any differences in performance

existed when deep learning models are given ultrasound images from varying hardware
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and operator setups despite the content of the image being the same.

Experimental Set-up

The data was grouped into various sets in order to facilitate ease of data flow. Table

3.1 shows how the data was grouped.

Table 3.1: Data Sets from Operator 3

Dataset Train Set Testing Set

Sonix 4836 1193
Siemens 5462 1572
Clarius 5772 1567
Total 16070 4332

Table 3.2: Data Sets from Siemens S3000

Dataset Train Set Testing Set

Operator 1 5041 1412
Operator 2 3954 1170
Operator 3 5462 1572

Total 14457 4154

Models were trained given data acquired from one machine only. In this first step,

the operator was kept consistent to ensure that differences in performance would

primarily come from the hardware differences. Data from Operator 3 was used. Once

training was complete, the models were tested on data from the other machines to

observe performance.

Next, models were trained given data acquired from one operator only. In this

second step, the machine was kept consistent to ensure that differences in performance

would primarily come from the operator differences. Data from the Siemens S3000
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was used. Once training was complete, the models were tested on data from the other

operators to observe performance.

Figure 3.7 shows a visual representation of the training and testing process.

Figure 3.7: Training and testing method for the Deep learning models. Step 1:
Train individual models with data from only one designated set. Step 2: Test model
performances from the varying sets.

3.4.2 Quantifying Hardware and Operator Variability

The purpose of this portion was to quantify the differences in hardware and operator

setups of ultrasound image acquisition. It was proposed that a clustering algorithm

would be able to identify differences in hardware and operators due to the differences

in image acquisition and the distances between clusters would be a metric to define

the differences in hardware types and operator skill.
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Experimental Set-up

PCA is first applied to the datasets for dimension reduction and feature extraction.

The K-Means algorithm was then ran on the data from the three machines. The

operator was kept consistent and data from Operator 3 was used. The number of

clusters generated ranged from 2 to 6. Then this was repeated on data from the three

operators where the machine was kept consistent and data from the Siemens S3000

was used. The number of clusters generated also ranged from 2 to 6. Figure 3.8 shows

a visual representation of the cluster generating process.

The same data in Tables 3.1 and 3.2 were given to the clustering algorithm to

create clusters.

Figure 3.8: Visual representation of the clustering process. This process is repeated
with differing combinations of hardware and operators to generate from 2 to 6 clusters.

3.4.3 Proposed Method

By using the clustering model as a screening tool, an end user is given more informa-

tion about the model’s decisions by which to trust the results or not. Furthermore,
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the models themselves will in theory be more resistant to dataset shift as there will be

a means to ensure that the models are only given data similar to what it was trained

on.

Experimental Set-up

To test this, incoming test data was first given to the K-Means cluster model and the

Euclidean distance from each cluster center is calculated. The data was then given

to the model of the closest center. See Figure 3.9 for a visual representation.

Figure 3.9: Proposed method to create more consistent model performance. Test data
was first given to a clustering model to determine which model is most appropriate
before classification.
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Chapter 4

Results

4.1 Observing Machine and Operator Variability

4.1.1 Hardware Variability

Initial Training and Testing Results

Models were trained and tested within distribution, i.e. the training and test data

were from the same operator and machine. These results were used as a base to

compare performance when tested out of distribution, i.e. the test data is from a

different machine. Figure 4.1 shows training results for the Xception models. Figure

4.2 shows training results for the ResNet50 models. Figure 4.3 shows training results

for the VGG19 models. Table 4.1 shows the testing results.

Out of Distribution Results

Each Model was tested with the theorized out of distribution test set from each

different machine while maintaining the same operator, operator 3. The expert level
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Figure 4.1: Training results from the hardware Xception specific models. From left
to right, Siemens S3000, SonixTouch Ultrasound, Clarius Ultrasound. Top row shows
training and validation accuracy. Bottom row shows training and validation loss.

operator selected to minimize errors in scanning and ensure differences were due to

hardware differences. Tables 4.2, 4,3, 4.4, show the test results for the Xception,

ResNet50, and VGG19 models respectively.

4.1.2 Operator Variability

Initial Training and Testing Results

Models were trained and tested within distribution, i.e. the training and test data

were from the same operator and machine. These results were used as a base to

compare performance when tested out of distribution, i.e. the test data is from a

different operator. Figure 4.4 shows training results for the Xception models. Figure

4.5 shows training results for the ResNet50 models. Figure 4.6 shows training results
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Table 4.1: Training and testing model results for the hardware specific models. Mod-
els trained on specific hardware are tested with the matching data sets as a baseline
for performance.

Model Architecture Training Accuracy Testing Accuracy Sensitivity Specificity

Sonix Xception 0.9988 1.0 1.0 1.0
ResNet50 0.7330 0.8878 0.9736 0.6939
VGG19 0.9376 0.9996 1.0 0.9988

Siemens Xception 1.00 1.0 1.0 1.0
ResNet50 0.7995 0.8126 0.6242 0.9410
VGG19 0.9332 0.8483 0.8097 0.8745

Clarius Xception 0.9963 0.9948 1.0 0.9894
ResNet50 0.6831 0.7634 0.5415 1.0
VGG19 0.9335 0.9616 0.9293 0.9960

Table 4.2: Out of Distribution Hardware Test Results - Xception Models. Mod-
els trained on specific hardware are tested with the differing data sets to look for
differences in performance.

Model Dataset Testing Accuracy Sensitivity Specificity

Sonix Sonix 1.0 1.0 1.0
Siemens 0.9783 1.0 0.9635
Clarius 0.9475 1.0 0.8916

Siemens Sonix 0.9659 1.0 0.8890
Siemens 1.0 1.0 1.0
Clarius 0.7653 1.0 0.5151

Clarius Sonix 0.9770 0.9669 1.0
Siemens 0.7845 1.0 0.6377
Clarius 0.9948 1.0 0.9894
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Table 4.3: Out of Distribution Hardware Test Results - ResNet50 Models. Mod-
els trained on specific hardware are tested with the differing data sets to look for
differences in performance.

Model Dataset Testing Accuracy Sensitivity Specificity

Sonix Sonix 0.8878 0.9736 0.6939
Siemens 0.8068 0.7437 0.8499
Clarius 0.5134 0.9467 0.0515

Siemens Sonix 0.7870 0.7487 0.8738
Siemens 0.8126 0.6242 0.9410
Clarius 0.3126 0.5563 0.0528

Clarius Sonix 0.3752 0.0987 1.0
Siemens 0.5073 0.5393 0.4855
Clarius 0.7634 0.5415 1.0

Table 4.4: Out of Distribution Hardware Test Results - VGG19 Models. Models
trained on specific hardware are tested with the differing data sets to look for differ-
ences in performance.

Model Dataset Testing Accuracy Sensitivity Specificity

Sonix Sonix 0.9996 1.0 0.9988
Siemens 0.8833 0.9323 0.8499
Clarius 0.5345 1.0 0.0383

Siemens Sonix 0.8487 1.0 0.5070
Siemens 0.8483 0.8097 0.8745
Clarius 0.5319 1.0 0.0330

Clarius Sonix 0.3860 0.1142 1.0
Siemens 0.7558 0.4025 0.9967
Clarius 0.9616 0.9293 0.9960
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Figure 4.2: Training results from the hardware specific ResNet50 models. From left
to right, Siemens S3000, SonixTouch Ultrasound, Clarius Ultrasound. Top row shows
training and validation accuracy. Bottom row shows training and validation loss.

for the VGG19 models. Table 4.5 shows the testing results.

Out of Distribution Results

Each Model was tested with the theorized out of distribution test set from each oper-

ator while maintaining the same hardware source, the Siemens S3000. The Siemens

S3000 was selected as it was the machine with the best resolution. Tables 4.6, 4.7, 4.8,

show the test results for the Xception, ResNet50, and VGG19 models respectively.
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Table 4.5: Training and testing model results for the operator specific models. Models
trained on specific operators are tested with the matching data sets as a baseline for
performance.

Model Architecture Training Accuracy Testing Accuracy Sensitivity Specificity

Operator 1 Xception 0.9975 0.8665 0.9984 0.7496
ResNet50 0.6296 0.4989 0.4350 0.5555
VGG19 0.9239 0.8388 0.9848 0.7095

Operator 2 Xception 0.9937 0.9700 0.9637 1.0
ResNet50 0.7112 0.7968 0.8582 0.5037
VGG19 0.8943 0.9365 0.8834 1.0

Operator 3 Xception 1.0 1.0 1.0 1.0
ResNet50 0.7995 0.8126 0.6242 0.9410
VGG19 0.9332 0.8483 0.8097 0.8745

Table 4.6: Out of Distribution Operator Test Results - Xception Models. Models
trained on specific operators are tested with the differing data sets to look for differ-
ences in performance.

Model Dataset Testing Accuracy Sensitivity Specificity

Operator 1 Operator 1 0.8665 0.9984 0.7496
Operator 2 0.9947 0.9937 1.0
Operator 3 0.5015 1.0 0.1618

Operator 2 Operator 1 0.9609 0.9516 0.9692
Operator 2 0.9700 0.9637 1.0
Operator 3 0.9987 1.0 0.9978

Operator 3 Operator 1 0.8112 0.9592 0.6800
Operator 2 0.7773 0.8251 0.5488
Operator 3 1.0 1.0 1.0
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Table 4.7: Out of Distribution Operator Test Results - ResNet50 Models. Mod-
els trained on specific operators are tested with the differing data sets to look for
differences in performance.

Model Dataset Testing Accuracy Sensitivity Specificity

Operator 1 Operator 1 0.4989 0.4350 0.5555
Operator 2 0.3919 0.4283 0.2180
Operator 3 0.6908 0.2374 1.0

Operator 2 Operator 1 0.5344 0.7859 0.3119
Operator 2 0.7968 0.8582 0.5037
Operator 3 0.6934 0.4292 0.8735

Operator 3 Operator 1 0.4705 0.9486 0.0468
Operator 2 0.7656 0.9259 0
Operator 3 0.8126 0.6264 0.9410

Table 4.8: Out of Distribution Operator Test Results - VGG19 Models. Models
trained on specific operators are tested with the differing data sets to look for differ-
ences in performance.

Model Dataset Testing Accuracy Sensitivity Specificity

Operator 1 Operator 1 0.8388 0.9848 0.7095
Operator 2 0.9425 0.8944 1.0
Operator 3 0.4149 0.9842 0.0267

Operator 2 Operator 1 0.9041 0.9138 0.8955
Operator 2 0.9365 0.8834 1.0
Operator 3 0.8355 0.7783 0.8745

Operator 3 Operator 1 0.5805 1.0 0.2088
Operator 2 0.5441 1.0 0
Operator 3 0.8483 0.8097 0.8745

40



M.A.Sc. Thesis - Calvin Zhu McMaster - School of Biomedical Engineering

Figure 4.3: Training results from the hardware specific VGG19 models. From left to
right, Siemens S3000, SonixTouch Ultrasound, Clarius Ultrasound. Top row shows
training and validation accuracy. Bottom row shows training and validation loss.

4.2 Quantifying Machine and Operator Variability

4.2.1 Principle Component Analysis (PCA) Results

Using PCA the dimensionality of the hardware data was able to be reduced to 175

components while preserving 95% of the variance. In terms of the operator data PCA

was used to successfully reduce the dimensionality of that data to 482 components

while preserving 95% of the variance.

4.2.2 Hardware Clusters

The K-Means algorithm was run repeatedly to generate n = 2 to n = 6 clusters with

data from Operator 3 using all three machines. The expert level operator selected
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Figure 4.4: Training results from the operator specific Xception models. From left to
right, Siemens S3000, SonixTouch Ultrasound, Clarius Ultrasound. Top row shows
training and validation accuracy. Bottom row shows training and validation loss.

to minimize errors in scanning. The number of clusters was selected to range from

the minimum number of potential expected clusters, 2, to the maximum number of

potential expected clusters, 6. n = 2 clusters corresponds to a split between normal

and abnormal tissue scans. n = 6 clusters corresponds to a split between 3 machines,

each with a split of normal and abnormal tissue scans. Figure 4.7 shows the results

for the expected n = 3 clusters. Refer to Figures A.1 to A.4 in Appendix A.01 for

the other cluster results. The mis-classification rate for the n = 3 clusters model

was 0.597%. For n = 2 through 6, the average silhouette scores were 0.3446, 0.2683,

0.2638, 0.2885 and 0.2923, respectively. Meanwhile, the average distance between

clusters was 45.3892.
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Figure 4.5: Training results from the operator specific ResNet50 models. From left
to right, Siemens S3000, SonixTouch Ultrasound, Clarius Ultrasound. Top row shows
training and validation accuracy. Bottom row shows training and validation loss.

4.2.3 Operator Clusters

The K-Means algorithm was once again ran repeatedly to generate n = 2 to n =

6 clusters but with data from all operators using the Siemens S3000 machine. The

Siemens S3000 was selected as it was the machine with the best resolution. The

number of clusters was selected to range from the minimum number of potential

expected clusters, 2, to the maximum number of potential expected clusters, 6. n =

2 clusters corresponds to a split between normal and abnormal tissue scans. n = 6

clusters corresponds to a split between 3 operators, each with a split of normal and

abnormal tissue scans. Figure 4.8 shows the results for the expected n = 3 clusters.

Refer to Figures A.5 to A.8 in Appendix section A.01 for the other cluster results.

The mis-classification rate for the n = 3 clusters model was 71.4%. For n = 2 to 6
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Figure 4.6: Training results from the operator specific VGG19 models. From left to
right, Siemens S3000, SonixTouch Ultrasound, Clarius Ultrasound. Top row shows
training and validation accuracy. Bottom row shows training and validation loss.

clusters, the average silhouette scores were 0.1204, 0.1290, 0.1241, 0.1268 and 0.1381,

respectively. Here, the average distance between clusters was 37.0233.

4.3 Proposed Method

Each test sample was first passed through the clustering algorithm to identify which

cluster it belonged to. From there, the designated deep learning model was used for

classification. This process was repeated for each type of architecture, the Xception,

ResNet50, and VGG19. Table 4.9 shows the testing accuracy.
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Figure 4.7: Silhouette analysis and visual representation of the clusters running K-
Means to generate 3 clusters of hardware. On the left is a graphical representation
of the silhouette score of each individual sample in each cluster. The red dotted line
denotes the average silhouette score. On the right is a visual representation of the
clustered data. Note that only the first two principle components are plotted. Cluster
0 represents the Siemens S3000. Cluster 1 represents the SonixTouch Ultrasound.
Cluster 2 represents the Clarius ultrasound.

Table 4.9: Model Results - Proposed Method. Testing accuracy is determined from
the entire test set, including data from each hardware dataset in the hardware cluster
models and data from each operator in the operator cluster models.

Cluster Type Model Testing Accuracy

Hardware Xception 0.9979
ResNet50 0.8266
VGG19 0.9311

Operator Xception 0.8854
ResNet50 0.6026
VGG19 0.8270
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Figure 4.8: Silhouette analysis and visual representation of the clusters running K-
Means to generate 3 clusters of operators. On the left is a graphical representation
of the silhouette score of each individual sample in each cluster. The red dotted line
denotes the average silhouette score. On the right is a visual representation of the
clustered data. Note that only the first two principle components are plotted. Cluster
0 represents operator 2, the intermediate operator skill level. Cluster 1 represents
operator 1, the novice operator skill level, and Cluster 2 represents operator 3, the
expert operator skill level.
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Chapter 5

Discussion

5.1 Hardware and Operator Variability

Overall, the models had good in-distribution testing results. The Xception models

performed the best with all models having an in distribution testing accuracy of over

86.65%, with the highest being 100%. As expected, models evaluated on ’out of

distribution’ data had inconsistent performance. Performance varied widely when

the hardware or operator was different than the training data.

The largest changes in testing accuracy of the hardware based models was found

when the Clarius data was tested on differing models such as in the Siemens ResNet50

model which dropped from 81.26% accuracy to 31.26%, the Siemens Xception model

which dropped from 100% to 76.53%, the SonixTouch ResNet50 model which dropped

from 88.78% to 51.34%, and the SonixTouch VGG19 model which dropped from

99.96% to 53.45%. Of note is that the Clarius ultrasound is the only portable ultra-

sound machine used in this thesis and thus differs in hardware inherently. The smallest

drop in accuracy of the hardware models was the SonixTouch Xception model which
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only dropped between 2-5% in testing accuracy going from the SonixTouch test set

to the others.

In comparison to the hardware models, the largest drop in test accuracy of the

operator models was found when the models trained with operator 3, the expert

level operator, was tested with the other data. When operator 3 models were given

data from the other operators, the Xception model dropped in testing accuracy by

over 20%, the ResNet50 model dropped in testing accuracy by up to 34%, and the

VGG19 model dropped up to 40%. Counter intuitively, some models had increased

testing accuracy when evaluated out of distribution which was the case primarily

with operator 1, the novice skill level. In the Xception model, the testing accuracy

increased from 86.65% to 99.47% when tested with data from operator 2, but sharply

decreased to 50.15% when tested with data from operator 3. This result occured again

in the VGG19 model where the testing accuracy increased from 83.88% to 94.25%

when tested with data from operator 2, but sharply decreased to 41.49% when tested

with data from operator 3.

Interestingly, models trained using the data from operator 2, the intermediate skill

level, seemed less variable to changes in operators. With operator 2, the Xception

model had performances within 3% performance differences, and the ResNet50 and

VGG19 models had performances within 10%. This may be due to an intermediate

level operator scanning with elements from both a novice and expert. In this way,

the model would theoretically be exposed to tendencies from a wider range of skill

levels.

Overall, the out of distribution tests tended to have skewed sensitivity or speci-

ficity, where in some models the specificity dropped to almost 0. The larger numbers
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of false positives may be due to the models interpreting the differences in the distri-

bution of the test data as an ’abnormality’ akin to the tumours the models are trying

to classify, and follow up work may be done to verify this. In terms of architecture,

the Xception models as a whole seemed the least affected by changing the testing

data and overall had the best performance. Based on these findings it appears that

operator variance affected performance more.

5.2 Quantifying Differences

The hardware cluster model with 3 clusters had a mis-classification rate of 0.597%.

The highest silhouette scores correspond to 2 and 6 clusters with 0.3446 and 0.2923

respectively. The operator cluster model with 3 clusters had a mis-classification rate

of 71.4%. Similarly the highest silhouette scores corresponded to 3 and 6 clusters

with 0.1290 and 0.1381, respectively. These higher scores imply that the number

of clusters in the data align with the designated clusters when collecting the data.

2 clusters imply that there may be clearer separation between abnormal tissue and

normal tissue. 3 clusters imply that there is a separation between the three types

of hardware or operators used. 6 clusters imply separation in both abnormal and

normal tissue for each with the three types of hardware or operators.

Overall, the operator cluster models had lower average silhouette scores and higher

average distance between clusters implying that the clusters in the operator cluster

model are less separable. This is consistent with the extremely high mis-classification

rate. This suggests that differences in hardware are more easily found than differences

in operators which is against the common notion that ultrasound is a heavily operator

dependent imaging modality. This finding however, contradicts the previous section
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where operator variance had a larger impact on model performance. The consistency

of model performance and cluster centre distances should in theory have an inverse

relationship. The further clusters are, the more separable the data is, and thus there

are larger differences in the data. Larger differences in the data should increase the

effects of data set shift and thus lead to lower model consistency.

Of note, is that the silhouette scores of the cluster models with 4 or 5 clusters are

comparable to the scores of the other models. The hardware cluster model with 5

clusters in fact had a higher score of 0.2885 compared to the model with 3 clusters of

0.2683. This suggests that there may be overlap in clusters instead of simply having

the expected clusters of 2, 3, and 6. There may be be 4 or 5 clusters instead where

some of the data overlap to form one or two larger clusters due to overlap in operator

tendencies or machine characteristics.

5.3 Proposed Method

Using the proposed screening method with the hardware cluster model resulted in

more consistent model performance when given out of distribution data. The Xcep-

tion models in particular saw very good test results with 99.79% accuracy when given

the test sets of the three machines. The VGG19 models had similar performance at

93.11%. The ResNet50 models had 82.66%.

Using the proposed screening method with the operator cluster model resulted in

a lower performance compared to the hardware cluster model. The Xception models

still performed the best at 88.54% accuracy across the test sets. The VGG19 models

had an accuracy of 82.70% and the ResNet50 Models had an accuracy of 60.26%.

The poor performance of the operator models with the proposed method is likely
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due to the poor performance of the corresponding cluster model. In theory, the cluster

model would act as a proper screening method to ensure that the deep learning model

used for classification would see test samples within distribution. However, this is

highly dependent on the performance of the cluster model.
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Chapter 6

Conclusion

In this thesis, hardware and operator variability was studied for investigating its

effects on deep learning model performance and to create an objective metric by which

to help users trust deep learning medical advisory systems for ultrasound. This thesis

proposed using K-Means clustering to screen incoming data and distances between

test samples and the generated cluster centres as a means to produce a quantifiable

metric to improve trust in deep learning models.

This was primarily motivated by the subjectivity in ultrasonography and the abil-

ity for deep learning to provide objectivity in a medical advisory system. However,

deep learning is ’black box’ in nature and it is difficult to trust results when much of

the information used to make the decision is hidden. Ultrasonography is extra suscep-

tible to error due to dataset shift due to operator and hardware variance leading to

even more difficulty trusting results. Therefore, a method to investigate the variance

and provide more information to users was proposed.

This was done by first gathering B-mode ultrasound scans from differing hardware

and operator combinations and training various deep learning models based on this
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data. These models were tested on out of distribution data to investigate the effects

of hardware and operator variance. In terms of hardware variance, it was found

that the Clarius ultrasound created the largest discrepancies in testing results when

models were tested out of distribution. This hardware mismatch created drops in

accuracy of upwards of 50%. In terms of operator variance, models trained with data

collected from expert operator had the largest drops in performance when tested out

of distribution. The operator mismatch created drops in accuracy of upwards of 40%.

Xception models as a whole performed the best, and it appears that operator variance

creates larger discrepancies in testing accuracy.

Next, these scans were clustered using PCA and the K-Means algorithm to create a

measurement by which to quantify the differences caused by operators and hardware.

These measurements were used as both a screening tool and means to provide users

with more information about the deep learning models decisions to foster trust. The

hardware cluster model had a mis-classification rate of 0.597%. The operator cluster

model had a mis-classification of 71.4%. The silhouette scores and average distance

between cluster centres was higher in the hardware model, implying that the hardware

data is more separable which contradicts with the previous results.

Model performances on out of distribution data were compared when screened by

the clustering algorithm and when they were run independently. The hardware cluster

models had good performance with higher accuracies than the individual models.

The operator cluster model had comparatively very poor performance. In theory, the

cluster model would act as a barrier to prevent models from being deployed on out

of distribution data leading to more reliable results. This however, depends heavily

on the performance of the cluster model. In practice, the cluster model did not have
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high enough performance to achieve this task. Therefore, it may be better to have a

human operator select which model best matches the data instead.

Overall, it is difficult to conclude whether the proposed methods create a proper

means to provide an objective measurement of trust and further work may shed more

light on this. Two possible approaches are provided. Firstly, the proposed method

should be tested with human users to see if the extra information provided allows for

more trustworthy models. For example, a study that has a control group using the

deep learning models by themselves and a separate group using the proposed methods

with clustering information can be conducted to determine if the proposed methods

create more trustworthiness. This would give more insight if the proposed methods

achieve their goal of creating more objective metrics by which users can choose to

trust the results or not.

Secondly, the models themselves can be improved in terms of data and feature

engineering. The ultrasound machines used in this thesis vary wildly in age and

quality. This will naturally create large differences in the data. Furthermore, only

three machines were used. Future work could look into using a larger number of

machines that are better quality matched in order to properly validate that hardware

differences exist and to better measure to what extent these differences are. On the

other hand the operators for this thesis do not have as wide a range of variance in

skill. Follow up work should include more operators at even more varied skill levels.

Also, the proposed methods could potentially be repeated on patients instead of a

phantom such that skill can be better expressed. This is key in separating operator

skill as a large part of ultrasonography is using landmarks to identify anatomy and

interpreting artifacts. These elements were not present when scanning a phantom as
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it is uniform and unlikely to produce artifacts.

The need to expand the data set extends into the idea of combined, or hidden

clusters as well. This is based on the findings of the clustering models with an

unexpected number of clusters. The silhouette scores of the cluster models with 4 or

5 clusters were comparable to the scores of the expected 2, 3, and 6 cluster models.

This could imply that there are potentially other means to cluster the data than the

expected clusters. For example, a repeated study with 6 machines may find that there

are 3 clusters denoting three types of machines rather than 6 separate machines. This

may add increased generalizability of the models and screening method as instead of

matching models to specific machines, they can be matched to a type instead. On

the other hand, this may also be due to small sample size of similar data. If in that

same 6 machine example, 6 clusters have a notably higher silhouette score than the

others, it further reinforces differences in specific machines.

Ultrasonography has always been known as an operator dependent modality and

thus there is great need for adding objectivity. Deep learning may be an avenue to

provide this objectivity, but before deep learning models can be properly adopted,

users must be able trust the models. There are many barriers to properly trusting

deep learning models such as dataset shift which can occur due to hardware and

operator variance that must be addressed first. The challenge of quantifying trust in

deep learning is a multifaceted problem with a large body of work ahead. With the

continued growth in the use of deep learning algorithms in everyday life, the need

for regulation on deep learning is growing as well. Before proper regulations can be

put in place, more quantitative metrics must be established to measure deep learning

algorithms.
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Appendix

A.0.1 Code Listings

’ ’ ’

frames . py

’ ’ ’

import cv2

import os

#p r i n t ( os . getcwd ( ) )

FILE PATH = ”DATA/RAW/SIEMENS”

v ideos = os . l i s t d i r ( os . getcwd ( ) + ”/”+FILE PATH)

print ( v ideos )

def getFrame (NP, sec ) :
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vidcap . set ( cv2 .CAP PROP POS MSEC, sec ∗1000)

hasFrames , image = vidcap . read ( )

i f hasFrames :

cv2 . imwrite ( str (NP[ 0 : 9 ] ) + ” IMAGE ”+str ( count)+” . png” , image , [ cv2 .IMWRITE PNG COMPRESSION, 0 ] )

# save frame as c o m p r e s s i o n l e s s PNG

return hasFrames

for video in v ideos :

i f ” DS Store ” in video :

continue

vidcap = cv2 . VideoCapture (FILE PATH + video )

s ec = 0

frameRate = 0 .1 #// i t w i l l cap ture image in each 0.1 second

count=1

s u c c e s s = getFrame ( video , s ec )

while s u c c e s s :

count = count + 1

sec = sec + frameRate

sec = round( sec , 2)

s u c c e s s = getFrame ( video , s ec )
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’ ’ ’

crop . py

’ ’ ’

from PIL import Image

import os

FILE PATH = ”DATA/RAW/CLARIUS”

frames = os . l i s t d i r ( os . getcwd ( ) + ”/” + FILE PATH)

for frame in f rames :

i f ” DS Store ” in frame :

print (1 )

continue

# Opens a image in RGB mode

im = Image . open(FILE PATH + frame )

# S e t t i n g the p o i n t s f o r cropped image

l e f t = 175

top = 275

r i g h t = 575

bottom = 525

# Cropped image o f above dimension

im1 = im . crop ( ( l e f t , top , r i ght , bottom ) )
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’ ’ ’

Load data . py

’ ’ ’

Import L i b r a r i e s

’ ’ ’

import t e n s o r f l o w as t f

import p a t h l i b

import os

import numpy as np

import sys

import m a t p l o t l i b . p y p l o t as p l t

’ ’ ’

Image Parameters /Batch S e t t i n g s

’ ’ ’

# S e t t i n g random seeds

RANDOM SEED = 1234

t f . random . s e t s e e d (RANDOM SEED)

np . random . seed (RANDOM SEED)

IMG HEIGHT = 150

IMG WIDTH = 150

# Choose Batch S i z e

59



M.A.Sc. Thesis - Calvin Zhu McMaster - School of Biomedical Engineering

# TF D e f a u l t s to 32

BATCH SIZE = 32

’ ’ ’

Functions

’ ’ ’

d e f l o a d d a t a t r v ( t r a i n d i r ) :

’ ’ ’

Loads t r a i n i n g and v a l i d a t i o n s e t s .

Organize the f i l e d i r e c t o r y such that f o l d e r names are l a b e l s .

Each f o l d e r conta in s a l l the data for that l a b e l .

Function w i l l c r e a t e r e s i z ed , l a b e l l e d p a i r s in batches .

Arguments :

t r a i n d i r : s t r i n g which i s the d i r e c t o r y conta in ing the f o l d e r s

Returns :

t r a i n s e t : t f . data object conta in ing the t r a i n i n g set

v a l s e t : t f . data object conta in ing the v a l i d a t i o n set

’ ’ ’
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t r a i n d i r = p a t h l i b . Path ( t r a i n d i r )

t r a i n s e t = t f . keras . p r e p r o c e s s i n g . i m a g e d a t a s e t f r o m d i r e c t o r y (

t r a i n d i r ,

#labe l mode =’ b inary ’ ,

v a l i d a t i o n s p l i t =0.2 ,

s u b s e t = ” t r a i n i n g ” ,

seed = 123 ,

i m a g e s i z e = (IMG HEIGHT, IMG WIDTH) ,

b a t c h s i z e = BATCH SIZE,

)

v a l s e t = t f . keras . p r e p r o c e s s i n g . i m a g e d a t a s e t f r o m d i r e c t o r y (

t r a i n d i r ,

#labe l mode =’ b inary ’ ,

v a l i d a t i o n s p l i t =0.2 ,

s u b s e t = ” v a l i d a t i o n ” ,

seed = 123 ,

i m a g e s i z e = (IMG HEIGHT, IMG WIDTH) ,

b a t c h s i z e = BATCH SIZE,

)

re turn t r a i n s e t , v a l s e t
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d e f l o a d d a t a b e a s t i e ( d a t a d i r ) :

’ ’ ’

Loads t r a i n i n g and Val idat i on Sets us ing TF 2 .2 for Beas t i e

Organize the f i l e d i r e c t o r y such that f o l d e r names are l a b e l s .

Each f o l d e r conta in s a l l the data for that l a b e l .

Function w i l l c r e a t e r e s i z ed , l a b e l l e d p a i r s in batches .

Arguments :

t r a i n d i r : s t r i n g which i s the d i r e c t o r y conta in ing the f o l d e r s

Returns :

t r a i n s e t : t f . data object conta in ing the t r a i n i n g set

v a l s e t : t f . data object conta in ing the v a l i d a t i o n set

’ ’ ’

d a t a d i r = p a t h l i b . Path ( d a t a d i r )

image count = l e n ( l i s t ( d a t a d i r . g l o b ( ’∗/∗ . png ’ ) ) )

CLASS NAMES = np . array ( [ item . name f o r item in d a t a d i r . g l o b ( ’∗ ’ ) i f i tem . name != ”. DS Store ” ] )

l i s t d s = t f . data . Dataset . l i s t f i l e s ( s t r ( d a t a d i r / ’∗/∗ . png ’ ) )

v a l s i z e = i n t ( image count ∗ 0 . 2 )
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t r a i n d s = l i s t d s . s k i p ( v a l s i z e )

v a l d s = l i s t d s . take ( v a l s i z e )

#p r i n t ( l e n ( l i s t ( l i s t d s . a s n u m p y i t e r a t o r ( ) ) ) )

t r a i n s e t = t r a i n d s . map( pr oces s pa t h , n u m p a r a l l e l c a l l s=t f . data . exper imenta l .AUTOTUNE)

v a l s e t = v a l d s . map( proc es s pa t h , n u m p a r a l l e l c a l l s=t f . data . exper imenta l .AUTOTUNE)

t r a i n s e t = t r a i n s e t . s h u f f l e ( b u f f e r s i z e =1000). ba tch (BATCH SIZE)

v a l s e t = v a l s e t . s h u f f l e ( b u f f e r s i z e =1000). ba tch (BATCH SIZE)

re turn t r a i n s e t , v a l s e t

’ ’ ’

Optional Helper Funct ions

’ ’ ’

d e f g e t l a b e l ( f i l e p a t h ) :

CLASS NAMES = [” Abnormal ” ,” Normal ” ]

p a r t s = t f . s t r i n g s . s p l i t ( f i l e p a t h , ”/”)

#t f . p r i n t ( f i l e p a t h , ou tput s t ream=sys . s t d e r r )

#t f . p r i n t ( parts , ou tput s t ream=sys . s t d e r r )

#t f . p r i n t ( p a r t s [−2] , ou tput s t ream=sys . s t d e r r )

i f p a r t s [−2] == ”Abnormal ” :
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re turn (0)

e l s e :

re turn (1)

#return t f . argmax ( one hot )

d e f decode img ( img ) :

img = t f . i o . decode png ( img , channe l s =0) #c o l o r images

#img = t f . image . c o n v e r t i m a g e d t y p e ( img , t f . f l o a t 3 2 )

img = t f . image . r e s i z e ( img , [IMG WIDTH, IMG HEIGHT] )

#conver t un i t8 t e n s o r to f l o a t s in the [ 0 , 1 ] range

re turn img

d e f p r o c e s s p a t h ( f i l e p a t h ) :

#p r i n t ( f i l e p a t h )

l a b e l = g e t l a b e l ( f i l e p a t h )

img = t f . i o . r e a d f i l e ( f i l e p a t h )

img = decode img ( img )

re turn img , l a b e l

d e f cache data ( t r a i n s e t , v a l s e t ) :

’ ’ ’

Caches the t r a i n i n g and v a l i d a t i o n set .

Run for performance i f l oad ing the data mul t ip l e t imes .
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Arguments :

t r a i n s e t : t f . data object conta in ing the t r a i n i n g set

v a l s e t : t f . data object conta in ing the v a l i d a t i o n set

Returns :

t r a i n s e t : t f . data object conta in ing the t r a i n i n g set

v a l s e t : t f . data object conta in ing the v a l i d a t i o n set

’ ’ ’

t r a i n s e t = t r a i n s e t . cache ( ) . p r e f e t c h ( b u f f e r s i z e =10)

v a l s e t = v a l s e t . cache ( ) . p r e f e t c h ( b u f f e r s i z e =10)

re turn t r a i n s e t , v a l s e t
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’ ’ ’

c r e a t e m o d e l s . py

’ ’ ’

’ ’ ’

Import L i b r a r i e s

’ ’ ’

import t en so r f l ow as t f

from t en so r f l ow import keras

import numpy as np

import os

import matp lo t l i b . pyplot as p l t

’ ’ ’

Constants and Parameters

’ ’ ’

# S e t t i n g random seeds

RANDOM SEED = 1234

t f . random . s e t s e e d (RANDOM SEED)

np . random . seed (RANDOM SEED)

’ ’ ’
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Create Models

’ ’ ’

def c reate xcept ion mode l A ( ) :

’ ’ ’

Creates an Xception based model .

Arguments :

N/A

Returns :

model : TF model to be compi led and t r a i n e d .

’ ’ ’

base model = keras . a p p l i c a t i o n s . Xception (

weights=” imagenet ” , # Load w e i g h t s pre−t r a i n e d on ImageNet .

input shape =(150 , 150 , 3 ) , # Adjust input s i z e s a c c o r d i n g l y .

i n c l u d e t o p=False , # Do not i n c l u d e the ImageNet c l a s s i f i e r at the top .

)

# Freeze the base model

base model . t r a i n a b l e = Fal se

# Create new model on top
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inputs = keras . Input ( shape =(150 , 150 , 3 ) ) # Adjust input s i z e s a c c o r d i n g l y .

# Normal izat ion Layer

norm layer = keras . l a y e r s . exper imenta l . p r ep r o c e s s i ng . Normal izat ion ( )

mean = np . array ( [ 1 2 7 . 5 ] ∗ 3)

var = mean ∗∗ 2

# Sca le i n p u t s to [−1 , +1]

x = norm layer ( inputs )

norm layer . s e t w e i g h t s ( [ mean , var ] )

# The base model con ta ins batchnorm l a y e r s . We want to keep them in i n f e r e n c e mode

# when we u n f r e e z e the base model f o r f ine−tuning , so we make sure t h a t the

# base model i s running in i n f e r e n c e mode here .

x = base model (x , t r a i n i n g=False )

x = keras . l a y e r s . GlobalAveragePooling2D ( ) ( x )

# Drop−out Layer

x = keras . l a y e r s . Dropout ( 0 . 2 ) ( x )

# Binary o u t p u t s

outputs = keras . l a y e r s . Dense ( 1 ) ( x )

# Put model t o g e t h e r

model = keras . Model ( inputs , outputs )
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# Print summary

model . summary ( )

return model

def create VGG19 model A ( ) :

’ ’ ’

Creates a VGG19 based model .

WARNING! TAKES A VERY LONG TIME TO TRAIN.

Arguments :

N/A

Returns :

model : TF model to be compi led and t r a i n e d .

’ ’ ’

base model = keras . a p p l i c a t i o n s .VGG19(

weights=” imagenet ” , # Load w e i g h t s pre−t r a i n e d on ImageNet .

input shape =(150 , 150 , 3 ) , # Adjust input s i z e s a c c o r d i n g l y .

i n c l u d e t o p=False , # Do not i n c l u d e the ImageNet c l a s s i f i e r at the top .

)
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# Freeze the base model

base model . t r a i n a b l e = Fal se

# Create new model on top

inputs = keras . Input ( shape =(150 , 150 , 3 ) ) # Adjust input s i z e s a c c o r d i n g l y .

# Normal izat ion l a y e r

norm layer = keras . l a y e r s . exper imenta l . p r ep r o c e s s i ng . Normal izat ion ( )

mean = np . array ( [ 1 2 7 . 5 ] ∗ 3)

var = mean ∗∗ 2

# Sca le i n p u t s to [−1 , +1]

x = norm layer ( inputs )

norm layer . s e t w e i g h t s ( [ mean , var ] )

# The base model con ta ins batchnorm l a y e r s . We want to keep them in i n f e r e n c e mode

# when we u n f r e e z e the base model f o r f ine−tuning , so we make sure t h a t the

# base model i s running in i n f e r e n c e mode here .

x = base model (x , t r a i n i n g=False )

x = keras . l a y e r s . GlobalAveragePooling2D ( ) ( x )

# Drop−out Layer

x = keras . l a y e r s . Dropout ( 0 . 2 ) ( x )
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# Binary output

outputs = keras . l a y e r s . Dense ( 1 ) ( x )

# Put model t o g e t h e r

model = keras . Model ( inputs , outputs )

# Print summary

model . summary ( )

return model

def create ResNet50 model A ( ) :

’ ’ ’

Creates a ResNet50 based model .

WARNING! TAKES A LONG TIME TO TRAIN.

Arguments :

N/A

Returns :

model : TF model to be compi led and t r a i n e d .

’ ’ ’
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base model = keras . a p p l i c a t i o n s . ResNet50 (

weights=” imagenet ” , # Load w e i g h t s pre−t r a i n e d on ImageNet .

input shape =(150 , 150 , 3 ) , # Adjust input s i z e s a c c o r d i n g l y .

i n c l u d e t o p=False , # Do not i n c l u d e the ImageNet c l a s s i f i e r at the top .

)

# Freeze the base model

base model . t r a i n a b l e = Fal se

# Create new model on top

inputs = keras . Input ( shape =(150 , 150 , 3 ) )

# Normal izat ion Layer

norm layer = keras . l a y e r s . exper imenta l . p r ep r o c e s s i ng . Normal izat ion ( )

mean = np . array ( [ 1 2 7 . 5 ] ∗ 3)

var = mean ∗∗ 2

# Sca le i n p u t s to [−1 , +1]

x = norm layer ( inputs )

norm layer . s e t w e i g h t s ( [ mean , var ] )

# The base model con ta ins batchnorm l a y e r s . We want to keep them in i n f e r e n c e mode

# when we u n f r e e z e the base model f o r f ine−tuning , so we make sure t h a t the

# base model i s running in i n f e r e n c e mode here .

x = base model (x , t r a i n i n g=False )
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x = keras . l a y e r s . GlobalAveragePooling2D ( ) ( x )

# Drop−out Layer

x = keras . l a y e r s . Dropout ( 0 . 2 ) ( x )

# Binary output

outputs = keras . l a y e r s . Dense ( 1 ) ( x )

# Put model t o g e t h e r

model = keras . Model ( inputs , outputs )

# Print summary

model . summary ( )

return model

’ ’ ’

Model Compiler

’ ’ ’

def s e t m e t r i c s a n d c o m p i l e ( model , l o s s f u n c , r e s u l t m e t r i c ) :

’ ’ ’

Compile model f o r t r a i n i n g accord ing to s p e c i f i e d l o s s f u n c t i o n and metr ic
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D e f a u l t i s BinaryCrossentropy and accuracy . Uses ADAM o p t i m i z e r .

− Wil l p r o b a b l y remove d e f a u l t s l a t e r . I t ’ s i n c l u d e d f o r ease o f t e s t i n g f o r now .

Arguments :

model : t f . model c r e a t e d by p r e v i o u s f u n c t i o n s .

l o s s f u n c : l o s s f u n c t i o n

r e s u l t m e t r i c : o p t i m i z i n g metr ic

Returns :

model : t f . model ready to be t r a i n e d

’ ’ ’

model . compile (

opt imize r=keras . op t im i z e r s .Adam( ) ,

l o s s=l o s s f u n c ,

met r i c s=r e s u l t m e t r i c ,

)

return model

’ ’ ’

Train Models

’ ’ ’

def t ra in mode l ( model , t r a i n d a t a s e t , va l da ta s e t , epochs = 10 , model name = ”model” ) :

’ ’ ’
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Trains model i n c l u d i n g v a l i d a t i o n s t e p s

− D e f a u l t o f 10 epochs

− ” Saved Models ” i s d i r e c t o r y to s t o r e output f i l e s in

− w i l l c r e a t e d i r e c t o r y i f not p r e s e n t

− Generates p l o t o f t r a i n i n g h i s t o r y and l o s s f o r a n a l y s i s

Arguments :

model : model a r c h i t e c t u r e . Generate through p r e v i o u s f u n c t i o n s .

t r a i n d a t a s e t : t r a i n i n g da tase t , genera te wi th l o a d d a t a . py

v a l d a t a s e t : t e s t da tase t , genera te wi th l o a d d a t a . py

epochs : i n t v a l u e o f epochs to t r a i n for , d e f a u l t i s 10 . ( Opt iona l )

model name : name o f the model , d e f u l t i s ”model” ( Opt iona l )

Returns :

N/A

’ ’ ’

# Train Model

f i t = model . f i t ( t r a i n d a t a s e t , epochs=epochs , v a l i d a t i o n d a t a=v a l d a t a s e t )

# Create d i r e c t o r y and s t o r e model f o r f u t u r e use

try :
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os . mkdir ( ” Saved Models ” )

model . save ( ” Saved Models /”+model name )

print ( ” Created d i r e c t o r y ’ Saved Models ’ to s t o r e model . ” )

except F i l e E x i s t s E r r o r :

print ( ” Di rec to ry ’ Saved Models ’ e x i s t s . Model saved to d i r e c t o r y ’ Saved Models ’ . ” )

model . save ( ” Saved Models /”+model name )

# E x t a c t i n g Training in format ion

# Adjust b e f o r e running

accuracy=f i t . h i s t o r y [ ’ b inary accuracy ’ ]

l o s s = f i t . h i s t o r y [ ’ l o s s ’ ]

va l a c curacy = f i t . h i s t o r y [ ’ va l b ina ry ac cu ra cy ’ ]

v a l l o s s = f i t . h i s t o r y [ ’ v a l l o s s ’ ]

epochs = range ( epochs )

# Plot t r a i n i n g s t a t i s t i c s

p l t . p l o t ( epochs , accuracy , l a b e l=” Train ing Accuracy” )

p l t . p l o t ( epochs , va l accuracy , l a b e l=” Va l idat i on Accuracy” )

p l t . t i t l e ( ” Train ing and Va l idat i on Accuracy − ” + model name )

p l t . x l a b e l ( ”Epochs” )

p l t . y l a b e l ( ”Accuracy” )

p l t . l egend ( )

p l t . s a v e f i g ( ” a c c u r a c y p l o t s ” + model name + ” . png” )
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p l t . c l f ( )

p l t . p l o t ( epochs , l o s s , l a b e l=” Train ing Loss ” )

p l t . p l o t ( epochs , v a l l o s s , l a b e l=” Va l idat i on Loss ” )

p l t . t i t l e ( ” Train ing and Va l idat i on Loss −” + model name )

p l t . x l a b e l ( ”Epochs” )

p l t . y l a b e l ( ” Loss ” )

p l t . l egend ( )

p l t . s a v e f i g ( ” l o s s p l o t s ” + model name + ” . png” )
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’ ’ ’

t r a i n m o d e l . py

’ ’ ’

Import L i b r a r i e s

’ ’ ’

import numpy as np

import t e n s o r f l o w as t f

from t e n s o r f l o w import keras

import p a t h l i b

# Load p r e v i o u s l y w r i t t e n l i b r a r i e s

import l o a d d a t a as l t v

import c r e a t e m o d e l s as cm

’ ’ ’

Constants and Parameters

’ ’ ’

# S e t t i n g random seeds

RANDOM SEED = 1234

t f . random . s e t s e e d (RANDOM SEED)

np . random . seed (RANDOM SEED)

’ ’ ’

F i l e D i r e c t o r i e s
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’ ’ ’

K Siemens DIR = ”/ Users / c a l v i n z h u / desk top / Fina l Mode ls /DATA/Kyla/Siemens/Train”

K Clarius DIR = ”/ Users / c a l v i n z h u / desk top / Fina l Mode ls /DATA/Kyla/ C l a r i u s /Train”

K Sonix DIR = ”/ Users / c a l v i n z h u / desk top / Fina l Mode ls /DATA/Kyla/ Sonix /Train”

C Siemens DIR = ”/ Users / c a l v i n z h u / desk top / Fina l Mode ls /DATA/ Calv in /Siemens/Train”

M Siemens DIR = ”/ Users / c a l v i n z h u / desk top / Fina l Mode ls /DATA/Mike/Siemens/Train”

’ ’ ’

Loading Data

’ ’ ’

t r a i n s e t , v a l s e t = l t v . l o a d d a t a t r v ( K Clarius DIR )

’ ’ ’

Creat ing and compi l ing models

’ ’ ’

model = cm. create ResNet50 model A ()

model = cm. s e t m e t r i c s a n d c o m p i l e ( model , keras . l o s s e s . BinaryCrossentropy ( f r o m l o g i t s=True ) , [ keras . metr i c s . BinaryAccuracy ( ) ] )

’ ’ ’

Training Model

’ ’ ’

m o d e l t i t l e = ”K C ResNet A”

cm. t r a i n m o d e l ( model , t r a i n s e t , v a l s e t ,10 , model name=m o d e l t i t l e )
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p r i n t ( m o d e l t i t l e )
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’ ’ ’

l o a d t e s t m o d e l . py

’ ’ ’

’ ’ ’

Import L i b r a r i e s

’ ’ ’

import t en so r f l ow as t f

import path l i b

import matp lo t l i b . pyplot as p l t

import os

import numpy as np

np . s e t p r i n t o p t i o n s ( p r e c i s i o n =4)

np . s e t p r i n t o p t i o n s ( suppres s=True )

’ ’ ’

Constants , Parameters , Image S e t t i n g s

’ ’ ’

# S e t t i n g random seeds

RANDOM SEED = 1234

t f . random . s e t s e e d (RANDOM SEED)

np . random . seed (RANDOM SEED)
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’ ’ ’

Helper Functions

’ ’ ’

def l o a d t e s t s e t ( data d i r , BATCH SIZE ) :

’ ’ ’

Loads t e s t s e t from d i r e c t o r y

Organize the f i l e d i r e c t o r y such t h a t f o l d e r names are l a b e l s .

Each f o l d e r conta ins a l l the data f o r t h a t l a b e l .

Function w i l l c r e a t e r e s i z e d , l a b e l l e d p a i r s in b a t c h e s .

For ease o f i n t e r p r e t a t i o n , l o a d s one l a r g e batch , u n s h u f f l e d .

Batch s i z e must be entered accord ing to the number o f t e s t samples .

Current ly w r i t t e n f o r i n t e r p r e t a b i l i t y , not performance .

− Slow e x e c u t i o n wi th l a r g e batch s i z e s

− Requires argument o f number o f samples

Arguments :

d a t a d i r : s t r i n g which i s the d i r e c t o r y c o n t a i n i n g the f o l d e r s .

BATCH SIZE: number format o f t o t a l number o f t e s t samples

Returns :

t e s t s e t : t f . data o b j e c t c o n t a i n i n g the t e s t s e t .
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’ ’ ’

t e s t s e t = t f . ke ras . p r e p r o c e s s i ng . i m ag e d a t a s e t f r o m d i r e c t o ry (

pa th l i b . Path ( d a t a d i r ) ,

image s i z e =(150 , 150) , # Adjust input s i z e s a c c o r d i n g l y .

s h u f f l e=False ,

b a t c h s i z e = BATCH SIZE

)

return t e s t s e t

def l o a d t e s t b e a s t i e ( data d i r , BATCH SIZE ) :

’ ’ ’

Loads t e s t s e t from d i r e c t o r y f o r use wi th TF 2.2

Organize the f i l e d i r e c t o r y such t h a t f o l d e r names are l a b e l s .

Each f o l d e r conta ins a l l the data f o r t h a t l a b e l .

Function w i l l c r e a t e r e s i z e d , l a b e l l e d p a i r s in b a t c h e s .

For ease o f i n t e r p r e t a t i o n , l o a d s one l a r g e batch , u n s h u f f l e d .

Batch s i z e must be entered accord ing to the number o f t e s t samples .

Current ly w r i t t e n f o r i n t e r p r e t a b i l i t y , not performance .

− Slow e x e c u t i o n wi th l a r g e batch s i z e s
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− Requires argument o f number o f samples

Arguments :

d a t a d i r : s t r i n g which i s the d i r e c t o r y c o n t a i n i n g the f o l d e r s .

BATCH SIZE: number format o f t o t a l number o f t e s t samples

Returns :

t e s t s e t : t f . data o b j e c t c o n t a i n i n g the t e s t s e t .

’ ’ ’

d a t a d i r = path l i b . Path ( d a t a d i r )

image count = len ( l i s t ( d a t a d i r . g lob ( ’ ∗/∗ . png ’ ) ) )

CLASS NAMES = np . array ( [ item . name for item in d a t a d i r . g lob ( ’∗ ’ ) i f item . name != ” . DS Store ” ] )

l i s t d s = t f . data . Dataset . l i s t f i l e s ( str ( d a t a d i r / ’ ∗/∗ . png ’ ) )

t e s t s e t = l i s t d s .map( proces s path , n u m p a r a l l e l c a l l s=t f . data . exper imenta l .AUTOTUNE)

t e s t s e t = t e s t s e t . s h u f f l e ( b u f f e r s i z e =1000). batch (BATCH SIZE)

return t e s t s e t
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def load model ( model ) :

’ ’ ’

Loads p r e v i o u s l y saved model c r e a t e d by t r a i n m o d e l . py

Arguments :

model : s t r i n g c o n t a i n i n g name o f the saved model .

Returns :

loaded mode l : t f . model o b j e c t used to make p r e d i c t i o n s .

’ ’ ’

model = path l i b . Path ( model )

loaded model = t f . keras . models . load model ( model )

# Prev ious ly , t f . model . e v a l u a t e ( ) was c a l l e d here to check

# performance . However , due to output o f l o g i t s and no

# a b i l i t y to a d j u s t t h r e s h o l d , i t no l o n g e r does t h i s .

# The accuracy and metr ic s r e p o r t e d made no sense .

# May come back to f i x t h i s a t some p o i n t though .

#loaded mode l . e v a l u a t e ( t e s t s e t , verbose =1, b a t c h s i z e =210)
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return loaded model

def e x t r a c t l a b e l s ( t e s t s e t ) :

’ ’ ’

Creates a l i s t o f c o r r e c t l a b e l s from a t f . data o b j e c t

Arguments :

t e s t s e t : t f . data o b j e c t from which to grab the l a b e l s

Returns :

l a b e l s : l i s t o f l a b e l s

’ ’ ’

l a b e l s = l i s t ( t e s t s e t . a s numpy i te ra tor ( ) ) [ 0 ] [ 1 ]

return l a b e l s

def make pred i c t i ons ( model , t e s t s e t ) :

’ ’ ’

Creates a l i s t o f p r e d i c t i o n s

Runs the t e s t s e t through the model .

Arguments :

model : t f . model loaded by load mode l ( )
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t e s t s e t : t f . data loaded by l o a d t e s t s e t ( )

Returns :

p r e d i c t l i s t : l i s t o f p r e d i c t i o n s

’ ’ ’

# Run t e s t s e t through model

p r e d i c t i o n s = model . p r e d i c t ( t e s t s e t )

#p r i n t (”RAW PREDICTIONS”)

#p r i n t ( p r e d i c t i o n s )

# Model r e t u r n s l o g i t s

# Use sigmoid f u n c t i o n to conver t i n t o b inary l a b e l s

p r e d i c t i o n s = t f . nn . s igmoid ( p r e d i c t i o n s )

p r e d i c t i o n s = t f . where ( p r e d i c t i o n s < 0 . 5 , 0 , 1) # Choose t h r e s h o l d

# Convert to numpy array f o r ease o f manipulat ion

p r e d i c t i o n s = p r e d i c t i o n s . numpy ( ) . astype ( int )

# Extrac t v a l u e s i n t o a l i s t

p r e d i c t l i s t = [ ]

for value in p r e d i c t i o n s :

p r e d i c t l i s t . append ( value [ 0 ] )
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# conver t back to array f o r ” p r e t t i e r ” f o r m a t t i n g

p r e d i c t l i s t = np . asar ray ( p r e d i c t l i s t )

#p r i n t ( ( p r e d i c t l i s t ) )

return p r e d i c t l i s t

def c a l c a c c u r a c y ( c f ) :

’ ’ ’

C a l c u l a t e s accuracy from the confus ion matrix .

Accuracy = ( TP + TN ) / ( TP + FP + TN + FN )

Arguments :

c f : t f . t e n s o r c r e a t e d by t f . math . c o n f u s i o n m a t r i x ( )

Returns :

accuracy : f l o a t v a l u e o f accuracy

’ ’ ’

c f = c f . numpy( )

accuracy = ( ( c f [ 0 ] [ 0 ] + c f [ 1 ] [ 1 ] ) ) / np .sum( c f )

return accuracy

def c a l c p r e c i s i o n ( c f ) :

’ ’ ’
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C a l c u l a t e s p r e c i s i o n from the confus ion matrix .

P r e c i s i o n = ( TP ) / ( TP + FP )

Arguments :

c f : t f . t e n s o r c r e a t e d by t f . math . c o n f u s i o n m a t r i x ( )

Returns :

accuracy : f l o a t v a l u e o f P r e c i s i o n

’ ’ ’

c f = c f . numpy( )

p r e c i s i o n = ( c f [ 0 ] [ 0 ] ) / ( c f [ 0 ] [ 0 ] + c f [ 1 ] [ 0 ] )

return p r e c i s i o n

def c a l c s e n s i t i v i t y ( c f ) :

’ ’ ’

C a l c u l a t e s s e n s i t i v i t y from the confus ion matrix .

S e n s i t i v i t y = ( TP ) / ( TP + FN )

Arguments :

c f : t f . t e n s o r c r e a t e d by t f . math . c o n f u s i o n m a t r i x ( )

Returns :
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accuracy : f l o a t v a l u e o f s e n s i t i v i t y

’ ’ ’

c f = c f . numpy( )

s e n s i t i v i t y = ( c f [ 0 ] [ 0 ] ) / ( c f [ 0 ] [ 0 ] + c f [ 0 ] [ 1 ] )

return s e n s i t i v i t y

def c a l c s p e c i f i c i t y ( c f ) :

’ ’ ’

C a l c u l a t e s s p e c i f i c i t y from the confus ion matrix .

S p e c i f i c i t y = ( TN ) / ( FP + TN )

Arguments :

c f : t f . t e n s o r c r e a t e d by t f . math . c o n f u s i o n m a t r i x ( )

Returns :

accuracy : f l o a t v a l u e o f s p e c i f i c i t y

’ ’ ’

c f = c f . numpy( )

s p e c i f i c i t y = ( c f [ 1 ] [ 1 ] ) / ( c f [ 1 ] [ 0 ] + c f [ 1 ] [ 1 ] )

return s p e c i f i c i t y

’ ’ ’

Helper Functions
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’ ’ ’

def g e t l a b e l ( f i l e p a t h ) :

CLASS NAMES = [ ”Abnormal” , ”Normal” ]

par t s = t f . s t r i n g s . s p l i t ( f i l e p a t h , ”/” )

t f . print ( par t s [−2] , output stream=sys . s t d e r r )

i f par t s [−2] == ”Normal” :

return (1 )

else :

return (0 )

#return t f . argmax ( one hot )

def decode img ( img ) :

img = t f . i o . decode png ( img , channe l s =0)

#conver t un i t8 t e n s o r to f l o a t s in the [ 0 , 1 ] range

img = t f . image . r e s i z e ( img , [ 150 , 150 ] )

return img

def proce s s pa th ( f i l e p a t h ) :

l a b e l = g e t l a b e l ( f i l e p a t h )

img = t f . i o . r e a d f i l e ( f i l e p a t h )

img = decode img ( img )

return img , l a b e l
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’ ’ ’

Main

’ ’ ’

def main ( ) :

BATCH SIZE = 854+723

#t e s t s e t = l o a d t e s t s e t (”/ Users / c a l v i n z h u / desk top / Fina l Mode ls /DATA/Kyla/Siemens/ Test ” ,BATCH SIZE)

#t e s t s e t = l o a d t e s t s e t (”/ Users / c a l v i n z h u / desk top / Fina l Mode ls /DATA/Kyla/ Sonix / Test ” ,BATCH SIZE)

#t e s t s e t = l o a d t e s t s e t (”/ Users / c a l v i n z h u / desk top / Fina l Mode ls /DATA/Kyla/ C l a r i u s / Test ” ,BATCH SIZE)

#t e s t s e t = l o a d t e s t s e t (”/ Users / c a l v i n z h u / desk top / Fina l Mode ls /DATA/ Calv in /Siemens/ Test ” ,BATCH SIZE)

#t e s t s e t = l o a d t e s t s e t (”/ Users / c a l v i n z h u / desk top / Fina l Mode ls /DATA/Mike/Siemens/ Test ” ,BATCH SIZE)

t e s t s e t = l o a d t e s t s e t ( ”/ Users / ca lv inzhu / desktop / Final Models /DATA/PM OPER 2” ,BATCH SIZE)

l a b e l s = e x t r a c t l a b e l s ( t e s t s e t )

loaded model = load model ( ”/ Users / ca lv inzhu / desktop / Final Models / Saved Models /K S ResNet50 A” )

p r e d i c t i o n s = make pred i c t i ons ( loaded model , t e s t s e t )

print ( l a b e l s )

print ( p r e d i c t i o n s )

# Create confus ion matrix
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c f = t f . math . con fus i on mat r ix ( l a b e l s , p r e d i c t i o n s )

print ( ” Confusion Matrix : ” )

print ( c f )

accuracy = c a l c a c c u r a c y ( c f )

p r e c i s i o n = c a l c p r e c i s i o n ( c f )

s e n s i t i v i t y = c a l c s e n s i t i v i t y ( c f )

s p e c i f i c i t y = c a l c s p e c i f i c i t y ( c f )

print ( )

print ( ”Accuracy : ” , accuracy )

print ( ” P r e c i s i o n : ” , p r e c i s i o n )

print ( ” S e n s i t i v i t y : ” , s e n s i t i v i t y )

print ( ” S p e c i f i c i t y : ” , s p e c i f i c i t y )
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’ ’ ’

PM. py

’ ’ ’

# Import ML L i b r a r i e s

import t en so r f l ow as t f

import s k l e a rn

from s k l e a rn . c l u s t e r import KMeans

from s k l e a rn import metr i c s

from s k l e a rn . decomposit ion import PCA

from s k l e a rn . met r i c s import s i l h o u e t t e s a m p l e s , s i l h o u e t t e s c o r e

from j o b l i b import dump, load

# Import Support ing L i b r a r i e s

import path l i b

import os

import sys

import s h u t i l

# Import P l o t t i n g L i b r a r i e s

import numpy as np

import matp lo t l i b . pyplot as p l t

import matp lo t l i b . cm as cm

’ ’ ’
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Functions

’ ’ ’

def load Sample ( img path ) :

’ ’ ’

load Sample ( )

##

Loads t e s t sample us ing Tensorf low i n t o a Python Imaging Library (PIL) o b j e c t .

− Res i ze s images i n t o 150 x150 p i x e l s f o r c o n s i s t e n c y

##

Input Arguements : Direc tory f o r image to be loaded

− Expects s t r i n g .

##

Returns : PIL o b j e c t o f image .

− Image i s unprocessed .

− Use show Sample ( ) on output o f t h i s f u n c t i o n to d i s p l a y image .

− Use process Sample ( ) on output o f t h i s f u n c t i o n to conver t to f e a t u r e matrix expec ted by the c l u s t e r model .

’ ’ ’

img=t f . ke ras . p r e p r o c e s s i ng . image . load img ( img path , t a r g e t s i z e =(150 ,150))

return ( img )
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def process Sample ( img ,PCA MODEL DIR) :

’ ’ ’

process Sample ( )

##

E x t r a c t s f e a t u r e s from sample f o r use in c l u s t e r i n g model .

− Loads PIL o b j e c t , c o n v e r t s to np . array , then passed i n t o PCA model

##

Input Arguements : Image Sample .

− Expects PIL Object

− Generate PIL Object from load Sample ( )

##

Returns : Extrac ted f e a t u r e s

− np . array o f f e a t u r e s

− Model was o r i g i n a l l y s e t to do p r e d i c t i o n s on b u l k samples , so the output i s an array o f arrays .

’ ’ ’

img data = t f . ke ras . p r e p r o c e s s i n g . image . img to ar ray ( img )

img data = t f . ke ras . a p p l i c a t i o n s . xcept ion . p r e p r o c e s s i n p u t ( img data )

f e a t u r e s = [ ]

f e a t u r e s . append ( ( img data ) . f l a t t e n ( ) )

pca = load (PCA MODEL DIR)
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p c a f e a t u r e s = pca . trans form ( f e a t u r e s )

return np . array ( p c a f e a t u r e s )

def pass Sample 1 ( pca f ea tu r e s ,CLUSTER MODEL DIR) :

’ ’ ’

pass Sample 1 ( )

##

Runs e x t r a c t e d f e a t u r e s through the c l u s t e r i n g model , g i v i n g c l u s t e r l a b e l and d i s t a n c e s from a l l c e n t e r s

##

Input Arguements : Ex trac ted f e a t u r e s

− Expects array o f arrays o f f e a t u r e s

− Generate f e a t u r e array wi th process Sample ( )

’ ’ ’

c l u s t e r = load (CLUSTER MODEL DIR)

s k i l l l e v e l = c l u s t e r . p r e d i c t ( p c a f e a t u r e s )

return s k i l l l e v e l

def main ( ) :
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PCA MODEL DIR = ”/ Users / ca lv inzhu /Desktop/ Final Models /SKModels/pca HDWR. j o b l i b ” # S t a t i s t i c a l model f o r f e a t u r e e x t r a c t i o n

CLUSTER MODEL DIR = ”/ Users / ca lv inzhu /Desktop/ Final Models /SKModels/cluster HDWR . j o b l i b ” # C l u s t e r i n g model

TEST SAMPLE DIR 1 = ”/ Users / ca lv inzhu /Desktop/ Final Models /Data/Kyla/Siemens/ Test /Abnormal/”

TEST SAMPLE DIR 2 = ”/ Users / ca lv inzhu /Desktop/ Final Models /Data/Kyla/Siemens/ Test /Normal/”

TEST SAMPLE DIR 3 = ”/ Users / ca lv inzhu /Desktop/ Final Models /Data/Kyla/ Sonix / Test /Abnormal/”

TEST SAMPLE DIR 4 = ”/ Users / ca lv inzhu /Desktop/ Final Models /Data/Kyla/ Sonix / Test /Normal/”

TEST SAMPLE DIR 5 = ”/ Users / ca lv inzhu /Desktop/ Final Models /Data/Kyla/ C la r iu s / Test /Abnormal/”

TEST SAMPLE DIR 6 = ”/ Users / ca lv inzhu /Desktop/ Final Models /Data/Kyla/ C la r iu s / Test /Normal/”

DIR 1 = path l i b . Path (TEST SAMPLE DIR 1)

DIR 2 = path l i b . Path (TEST SAMPLE DIR 2)

DIR 3 = path l i b . Path (TEST SAMPLE DIR 3)

DIR 4 = path l i b . Path (TEST SAMPLE DIR 4)

DIR 5 = path l i b . Path (TEST SAMPLE DIR 5)

DIR 6 = path l i b . Path (TEST SAMPLE DIR 6)

DIR 1 = l i s t ( DIR 1 . g lob ( ” ∗ . png” ) )

DIR 2 = l i s t ( DIR 2 . g lob ( ” ∗ . png” ) )
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DIR 3 = l i s t ( DIR 3 . g lob ( ” ∗ . png” ) )

DIR 4 = l i s t ( DIR 4 . g lob ( ” ∗ . png” ) )

DIR 5 = l i s t ( DIR 5 . g lob ( ” ∗ . png” ) )

DIR 6 = l i s t ( DIR 6 . g lob ( ” ∗ . png” ) )

#p r i n t ( DIR 1 [ 0 ] [ −1 ] )

for f i l e in DIR 1 :

sample = load Sample ( f i l e )

t e s t = process Sample ( sample ,PCA MODEL DIR)

c l u s t e r = pass Sample 1 ( t e s t ,CLUSTER MODEL DIR)

s h u t i l . copy ( f i l e , ”/ Users / ca lv inzhu /Desktop/ Final Models /Data/PM HDWR ”+str ( c l u s t e r [ 0 ] )+ ”/Abnormal/” )

for f i l e in DIR 2 :

sample = load Sample ( f i l e )

t e s t = process Sample ( sample ,PCA MODEL DIR)

c l u s t e r = pass Sample 1 ( t e s t ,CLUSTER MODEL DIR)

s h u t i l . copy ( f i l e , ”/ Users / ca lv inzhu /Desktop/ Final Models /Data/PM HDWR ”+str ( c l u s t e r [ 0 ] )+ ”/Normal/” )
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for f i l e in DIR 3 :

sample = load Sample ( f i l e )

t e s t = process Sample ( sample ,PCA MODEL DIR)

c l u s t e r = pass Sample 1 ( t e s t ,CLUSTER MODEL DIR)

s h u t i l . copy ( f i l e , ”/ Users / ca lv inzhu /Desktop/ Final Models /Data/PM HDWR ”+str ( c l u s t e r [ 0 ] )+ ”/Abnormal/” )

for f i l e in DIR 4 :

sample = load Sample ( f i l e )

t e s t = process Sample ( sample ,PCA MODEL DIR)

c l u s t e r = pass Sample 1 ( t e s t ,CLUSTER MODEL DIR)

s h u t i l . copy ( f i l e , ”/ Users / ca lv inzhu /Desktop/ Final Models /Data/PM HDWR ”+str ( c l u s t e r [ 0 ] )+ ”/Normal/” )

for f i l e in DIR 5 :

sample = load Sample ( f i l e )

t e s t = process Sample ( sample ,PCA MODEL DIR)

c l u s t e r = pass Sample 1 ( t e s t ,CLUSTER MODEL DIR)

s h u t i l . copy ( f i l e , ”/ Users / ca lv inzhu /Desktop/ Final Models /Data/PM HDWR ”+str ( c l u s t e r [ 0 ] )+ ”/Abnormal/” )

for f i l e in DIR 6 :

sample = load Sample ( f i l e )
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t e s t = process Sample ( sample ,PCA MODEL DIR)

c l u s t e r = pass Sample 1 ( t e s t ,CLUSTER MODEL DIR)

s h u t i l . copy ( f i l e , ”/ Users / ca lv inzhu /Desktop/ Final Models /Data/PM HDWR ”+str ( c l u s t e r [ 0 ] )+ ”/Normal/” )
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’ ’ ’

c l u s t e r . py

’ ’ ’

# Import ML L i b r a r i e s

import t en so r f l ow as t f

from s k l e a rn . c l u s t e r import KMeans

from s k l e a rn import metr i c s

from s k l e a rn . decomposit ion import PCA

from s k l e a rn . met r i c s import s i l h o u e t t e s a m p l e s , s i l h o u e t t e s c o r e

from j o b l i b import dump, load

# Import Support ing L i b r a r i e s

import path l i b

import os

# Import P l o t t i n g L i b r a r i e s

import numpy as np

import matp lo t l i b . pyplot as p l t

import matp lo t l i b . cm as cm

# S e t t i n g Constants / Seeds /GPUS

RANDOM SEED = 1234

t f . random . s e t s e e d (RANDOM SEED)

np . random . seed (RANDOM SEED)
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os . env i ron [ ”CUDA VISIBLE DEVICES”]=”2”

# Version Checks

print ( ”TF” )

print ( t f . v e r s i o n )

print ( )

print ( t f . c o n f i g . exper imenta l . l i s t p h y s i c a l d e v i c e s ( ) )

print ( )

#p r i n t ( os . environ )

print (1 )

def conve r t img to a r ray ( img path ) :

’ ’ ’

Converts raw images to numpy arrays

Inputs

Outputs

’ ’ ’

img = t f . ke ras . p r ep r o c e s s i ng . image . load img ( img path , t a r g e t s i z e =(150 , 150))
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img data = t f . ke ras . p r e p r o c e s s i n g . image . img to ar ray ( img )

img data = t f . ke ras . a p p l i c a t i o n s . xcept ion . p r e p r o c e s s i n p u t ( img data )

return img data

d i r 1 = ” data /Kyla/Siemens/ Train /Normal”

d i r 1 = path l i b . Path ( d i r 1 )

d i r 2 = ” data /Kyla/ Sonix / Train /Normal”

d i r 2 = path l i b . Path ( d i r 2 )

d i r 3 = ” data /Kyla/ C la r iu s / Train /Normal”

d i r 3 = path l i b . Path ( d i r 3 )

d i r 4 = ” data /Kyla/Siemens/ Train /Abnormal”

d i r 4 = path l i b . Path ( d i r 4 )

d i r 5 = ” data /Kyla/ Sonix / Train /Abnormal”

d i r 5 = path l i b . Path ( d i r 5 )

d i r 6 = ” data /Kyla/ C la r iu s / Train /Abnormal”

d i r 6 = path l i b . Path ( d i r 6 )

f e a t u r e l i s t = [ ]

l i s t 1 = l i s t ( d i r 1 . g lob ( ’ ∗ . png ’ ) )

l i s t 2 = l i s t ( d i r 2 . g lob ( ’ ∗ . png ’ ) )

l i s t 3 = l i s t ( d i r 3 . g lob ( ’∗png ’ ) )
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l i s t 4 = l i s t ( d i r 1 . g lob ( ’ ∗ . png ’ ) )

l i s t 5 = l i s t ( d i r 2 . g lob ( ’ ∗ . png ’ ) )

l i s t 6 = l i s t ( d i r 3 . g lob ( ’∗png ’ ) )

l i s t o f f i l e s = l i s t 1 + l i s t 2 + l i s t 3 + l i s t 4 + l i s t 5 + l i s t 6

# Run PCA

for name in range ( len ( l i s t o f f i l e s ) ) :

f e a t u r e s = conve r t img to a r ray ( l i s t o f f i l e s [ name ] )

n p f e a t u r e s = np . array ( f e a t u r e s )

f e a t u r e l i s t . append ( n p f e a t u r e s . f l a t t e n ( ) )

X = np . array ( f e a t u r e l i s t )

pca data = PCA( 0 . 9 5 )

X = pca data . f i t t r a n s f o r m (X)

dump( pca data , ’pca HDWR. j o b l i b ’ )

print ( pca data . e x p l a i n e d v a r i a n c e r a t i o )

#p r i n t ( pca data . s i n g u l a r v a l u e s )

print (sum( pca data . e x p l a i n e d v a r i a n c e r a t i o ) )

print ( len ( pca data . e x p l a i n e d v a r i a n c e r a t i o ) )
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r a n g e n c l u s t e r s = [ 2 , 3 , 4 , 5 , 6 ]

for n c l u s t e r s in r a n g e n c l u s t e r s :

# Create a s u b p l o t wi th 1 row and 2 columns

f i g , ( ax1 , ax2 ) = p l t . subp lo t s (1 , 2)

f i g . s e t s i z e i n c h e s (18 , 7)

# The 1 s t s u b p l o t i s the s i l h o u e t t e p l o t

ax1 . s e t x l i m ( [−0 .1 , 1 ] )

ax1 . s e t y l i m ( [ 0 , len (X) + ( n c l u s t e r s + 1) ∗ 1 0 ] )

c l u s t e r e r = KMeans( n c l u s t e r s=n c l u s t e r s , random state =0)

c l u s t e r l a b e l s = c l u s t e r e r . f i t p r e d i c t (X)

# The s i l h o u e t t e s c o r e g i v e s the average v a l u e f o r a l l the samples .

# This g i v e s a p e r s p e c t i v e i n t o the d e n s i t y and s e p a r a t i o n o f the formed

# c l u s t e r s

s i l h o u e t t e a v g = s i l h o u e t t e s c o r e (X, c l u s t e r l a b e l s )

print ( ”For n c l u s t e r s =” , n c l u s t e r s ,

”The average s i l h o u e t t e s c o r e i s : ” , s i l h o u e t t e a v g )

# Compute the s i l h o u e t t e s c o r e s f o r each sample

s a m p l e s i l h o u e t t e v a l u e s = s i l h o u e t t e s a m p l e s (X, c l u s t e r l a b e l s )
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y lower = 10

for i in range ( n c l u s t e r s ) :

# Aggregate the s i l h o u e t t e s c o r e s f o r samples b e l o n g i n g to

# c l u s t e r i , and s o r t them

i t h c l u s t e r s i l h o u e t t e v a l u e s = \

s a m p l e s i l h o u e t t e v a l u e s [ c l u s t e r l a b e l s == i ]

i t h c l u s t e r s i l h o u e t t e v a l u e s . s o r t ( )

s i z e c l u s t e r i = i t h c l u s t e r s i l h o u e t t e v a l u e s . shape [ 0 ]

y upper = y lower + s i z e c l u s t e r i

c o l o r = cm. n i p y s p e c t r a l ( f loat ( i ) / n c l u s t e r s )

ax1 . f i l l b e t w e e n x (np . arange ( y lower , y upper ) ,

0 , i t h c l u s t e r s i l h o u e t t e v a l u e s ,

f a c e c o l o r=co lo r , edgeco l o r=co lo r , alpha =0.7)

# Labe l the s i l h o u e t t e p l o t s wi th t h e i r c l u s t e r numbers at the middle

ax1 . t ex t (−0.05 , y lower + 0 .5 ∗ s i z e c l u s t e r i , str ( i ) )

# Compute the new y l o w e r f o r next p l o t

y lower = y upper + 10 # 10 f o r the 0 samples
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ax1 . s e t t i t l e ( ”The s i l h o u e t t e p l o t f o r the var i ous c l u s t e r s . ” )

ax1 . s e t x l a b e l ( ”The s i l h o u e t t e c o e f f i c i e n t va lue s ” )

ax1 . s e t y l a b e l ( ” Clus te r l a b e l ” )

# The v e r t i c a l l i n e f o r average s i l h o u e t t e score o f a l l t he v a l u e s

ax1 . axv l i n e ( x=s i l h o u e t t e a v g , c o l o r=” red ” , l i n e s t y l e=”−−” )

ax1 . s e t y t i c k s ( [ ] ) # Clear the y a x i s l a b e l s / t i c k s

ax1 . s e t x t i c k s ( [−0 .1 , 0 , 0 . 2 , 0 . 4 , 0 . 6 , 0 . 8 , 1 ] )

# 2nd Plo t showing the a c t u a l c l u s t e r s formed

c o l o r s = cm. n i p y s p e c t r a l ( c l u s t e r l a b e l s . astype ( f loat ) / n c l u s t e r s )

ax2 . s c a t t e r (X[ : , 0 ] , X[ : , 1 ] , marker=’ . ’ , s =30, lw=0, alpha =0.7 ,

c=co l o r s , edgeco l o r=’ k ’ )

# L a b e l i n g the c l u s t e r s

c e n t e r s = c l u s t e r e r . c l u s t e r c e n t e r s

# Draw whi te c i r c l e s a t c l u s t e r c e n t e r s

ax2 . s c a t t e r ( c e n t e r s [ : , 0 ] , c e n t e r s [ : , 1 ] , marker=’ o ’ ,

c=” white ” , alpha =1, s =200 , edgeco l o r=’ k ’ )

for i , c in enumerate ( c e n t e r s ) :

ax2 . s c a t t e r ( c [ 0 ] , c [ 1 ] , marker=’ $%d$ ’ % i , alpha =1,

s =50, edgeco l o r=’ k ’ )
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ax2 . s e t t i t l e ( ”The v i s u a l i z a t i o n o f the c l u s t e r e d data . ” )

ax2 . s e t x l a b e l ( ” Feature space f o r the 1 s t f e a t u r e ” )

ax2 . s e t y l a b e l ( ” Feature space f o r the 2nd f e a t u r e ” )

p l t . s u p t i t l e ( ( ” S i l h o u e t t e a n a l y s i s f o r KMeans c l u s t e r i n g ”

” with n c l u s t e r s = %d” % n c l u s t e r s ) ,

f o n t s i z e =14, fontwe ight=’ bold ’ )

p l t . s a v e f i g ( ”PCA Reduced Normal Hardware − S i l h o u e t t e Ana lys i s f o r KMeans C lu s t e r i ng with n c l u s t e r s = ” + str ( n c l u s t e r s ) + ” . png” )

p l t . show ( )
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A.0.2 Other Cluster Results Figures

This section includes figures showing the silhouette analysis and clusters of running

K-Means to generate other numbers of clusters rather than the 3 required for use in

screening for the proposed method. These include Figures A.1 to A.8

Figure A.1: Silhouette analysis and visual representation of the clusters running K-
Means to generate 2 clusters of operators. On the left is a graphical representation
of the silhouette score of each individual sample in each cluster. The red dotted line
denotes the average silhouette score. On the right is a visual representation of the
clustered data. Note that only the first two principle components are plotted.
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Figure A.2: Silhouette analysis and visual representation of the clusters running K-
Means to generate 3 clusters of operators. On the left is a graphical representation
of the silhouette score of each individual sample in each cluster. The red dotted line
denotes the average silhouette score. On the right is a visual representation of the
clustered data. Note that only the first two principle components are plotted.

Figure A.3: Silhouette analysis and visual representation of the clusters running K-
Means to generate 3 clusters of operators. On the left is a graphical representation
of the silhouette score of each individual sample in each cluster. The red dotted line
denotes the average silhouette score. On the right is a visual representation of the
clustered data. Note that only the first two principle components are plotted.
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Figure A.4: Silhouette analysis and visual representation of the clusters running K-
Means to generate 3 clusters of operators. On the left is a graphical representation
of the silhouette score of each individual sample in each cluster. The red dotted line
denotes the average silhouette score. On the right is a visual representation of the
clustered data. Note that only the first two principle components are plotted.

Figure A.5: Silhouette analysis and visual representation of the clusters running K-
Means to generate 2 clusters of operators. On the left is a graphical representation
of the silhouette score of each individual sample in each cluster. The red dotted line
denotes the average silhouette score. On the right is a visual representation of the
clustered data. Note that only the first two principle components are plotted.
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Figure A.6: Silhouette analysis and visual representation of the clusters running K-
Means to generate 4 clusters of operators. On the left is a graphical representation
of the silhouette score of each individual sample in each cluster. The red dotted line
denotes the average silhouette score. On the right is a visual representation of the
clustered data. Note that only the first two principle components are plotted.

Figure A.7: Silhouette analysis and visual representation of the clusters running K-
Means to generate 5 clusters of operators. On the left is a graphical representation
of the silhouette score of each individual sample in each cluster. The red dotted line
denotes the average silhouette score. On the right is a visual representation of the
clustered data. Note that only the first two principle components are plotted.
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Figure A.8: Silhouette analysis and visual representation of the clusters running K-
Means to generate 6 clusters of operators. On the left is a graphical representation
of the silhouette score of each individual sample in each cluster. The red dotted line
denotes the average silhouette score. On the right is a visual representation of the
clustered data. Note that only the first two principle components are plotted.
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