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Abstract

Global dynamic optimization arises in many engineering applications such as parameter

estimation, global optimal control, and optimization-based worst-case uncertainty analy-

sis. In branch-and-bound deterministic global optimization algorithms, a major computa-

tional bottleneck is generating appropriate lower bounds for the globally optimal objective

value. These bounds are typically constructed using convex relaxations for the solutions

of dynamic systems with respect to decision variables. Tighter convex relaxations thus

translate into tighter lower bounds, which will typically reduce the number of iterations

required by branch-and-bound. Subgradients, as useful local sensitivities of convex relax-

ations, are typically required by nonsmooth optimization solvers to effectively minimize

these relaxations. This thesis develops novel techniques for efficiently computing tight

convex relaxations with the corresponding subgradients for the solutions of ordinary differ-

ential equations (ODEs), to ultimately improve efficiency of deterministic global dynamic

optimization.

Firstly, new bounding and comparison results for dynamic process models are devel-

oped, which are more broadly applicable to engineering models than previous results.

These new results show for the first time that in a state-of-the-art ODE relaxation frame-

work, tighter enclosures of the original ODE system’s right-hand side will necessarily

translate into enclosures for the state variables that are at least as tight, which paves the
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way towards new advances for bounding in global dynamic optimization.

Secondly, new convex relaxations are proposed for the solutions of ODE systems.

These new relaxations are guaranteed to be at least as tight as state-of-the-art ODE relax-

ations. Unlike established ODE relaxation approaches, the new ODE relaxation approach

can employ any valid convex and concave relaxations for the original right-hand side, and

tighter such relaxations will necessarily yield ODE relaxations that are at least as tight.

In a numerical case study, such tightness does indeed improve computational efficiency

in deterministic global dynamic optimization. This new ODE relaxation approach is then

extended in various ways to further tighten ODE relaxations.

Thirdly, new subgradient evaluation approaches are proposed for ODE relaxations. Un-

like established approaches that compute valid subgradients for nonsmooth dynamic sys-

tems, the new approaches are compatible with reverse automatic differentiation (AD). It is

shown for the first time that subgradients of dynamic convex relaxations can be computed

via a modified adjoint ODE sensitivity system, which could speed up lower bounding in

global dynamic optimization.

Lastly, in the situation where convex relaxations are known to be correct but subgradi-

ents are unavailable (such as for certain ODE relaxations), a new approach is proposed for

tractably constructing useful correct affine underestimators and lower bounds of the con-

vex relaxations just by black-box sampling. No additional assumptions are required, and

no subgradients must be computed at any point. Under mild conditions, these new bounds

are shown to converge rapidly to an original nonconvex function as the domain of interest

shrinks. Variants of the new approach are presented to account for numerical error or noise

in the sampling procedure.
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Chapter 1

Introduction

1.1 Motivation

This thesis considers dynamic optimization problems that are formulated as optimization

problems with embedded parametric systems of ordinary differential equations (ODEs).

These ODE systems may exhibit significant nonconvexity, and thus a local nonlinear pro-

gramming (NLP) solver may converge to suboptimal local optima when applied to such

dynamic optimization problems. Compared with suboptimal local optima, a global op-

timum represents the most desirable outcome subject to the predefined constraints, such

as the lowest operating cost or the highest production rate. Globally optimal solutions

for dynamic optimization problems are sought in engineering applications such as opti-

mal control of batch processes [10–13], optimal catalyst blending [14], and optimal drug

scheduling [15, 16]. Moreover, in several other applications, suboptimal local optima are

inappropriate and a global optimum is essential. For example, a typical dynamic parameter

estimation and model identification problem [17–19] aims to choose parameters to min-

imize the discrepancy between the prediction of a dynamic model and experiment data,
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and global optimization can confirm that a particular model is inappropriate regardless of

parameter choice. A worst-case uncertainty analysis determines the maximal possible cost

or potential safety hazard [20] based on an assessment of the probability distribution of

parameter values.

For simplicity of analysis, this thesis considers a generic nonconvex dynamic optimiza-

tion problem:

min
p

c(p) := g(t f ,p,x(t f ,p))

s.t. pL ≤ p≤ pU,

(1.1.1)

where p ∈ Rnp denotes decision variables with known bounds, c : Rnp → R is an objective

function based on a cost function g of appropriate domain and range dimension, and x

denotes the solution of the parametric ODE system:

ẋ(t,p) = f(t,p,x(t,p)), ∀t ∈ (t0, t f ],

x(t0,p) = x0(p),
(1.1.2)

This ODE system will be formalized in Section 2.3. Established global optimization al-

gorithms may be classified into deterministic algorithms and stochastic algorithms. The

main types of stochastic algorithms are genetic algorithms [21], differential evolution algo-

rithms [22], and particle swarm algorithms [23], whose applications on dynamic optimiza-

tion problems are discussed in [24–26]. While these stochastic global search algorithms

are effective in certain situations, deterministic global optimization methods are guaran-

teed to locate a global optimum to within a predefined tolerance in finite computational

time. Deterministic global optimization algorithms [27–31] are typically based on branch-

and-bound frameworks, wherein upper and lower bounds of the globally optimal objective

value are evaluated. These are then refined progressively as the considered decision space
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is subdivided. Upper bounds are typically computed from local minima obtained by local

NLP solvers, and lower bounds are typically computed by minimizing convex relaxations

ccv of c in (1.1.1). A convex relaxation is an auxiliary function that underestimates the

original function and is convex on the considered domain. Thus, any local minimum of

ccv obtained using local NLP solvers would also be a global minimum, which is guaran-

teed to be a valid lower bound of c. Tighter convex relaxations — namely relaxations

that are pointwise closer to the original function — thus translate into tighter bounds sup-

plied to branch-and-bound, and could in turn reduce the number of iterations required by

an overarching optimization method. Figure 1.1 depicts a convex relaxation and a tighter

convex relaxation of c for illustration. While state-of-the-art deterministic global optimiza-

tion solvers including BARON [28] and ANTIGONE [32] are effective at solving problems

that are not dynamic, current deterministic algorithms for global dynamic optimization can

only currently solve problems with no more than around five state variables and five deci-

sion variables. Hence, there is a need in global dynamic optimization to develop efficient

and accurate computational tools for automatically generating tight convex relaxations for

dynamic systems, to ultimately extend the scope of these deterministic algorithms to prob-

lems of practical interest.

State relaxations are respective underestimators and overestimators of x in (1.1.2) whose

components are respectively convex and concave with respect to p for each fixed t. State

relaxations may be used in deterministic global dynamic optimization to construct con-

vex relaxations of the objective function c of (1.1.1) by various adaptations [6, 7, 33–35]

of McCormick’s relaxation method [5]. Except for bounding and convexity, state relax-

ations should have desirable tightness and convergence properties. Firstly, state relaxations
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Figure 1.1: The original objective function c (solid) in (1.1.1), along with a convex re-
laxation (dot-dashed) and a tighter convex relaxation (dashed) with corresponding lower
bounds cL,B and cL,A of c on [pL, pU], respectively.

should be tight. As illustrated in Figure 1.2, tighter state relaxations for (1.1.2) will typi-

cally translate into tighter convex relaxations for c in (1.1.1) [6], which will in turn translate

into tighter lower bounds in global optimization, and thus reduce the number of iterations

required in a branch-and-bound algorithm. Secondly, state relaxations should converge

rapidly to x as the domain P := [pL,pU] is subdivided. The convex relaxations of c will

necessarily inherit this rapid convergence [36]. Such rapid convergence can mitigate the

cluster effect [37, 38], wherein a branch-and-bound method must branch many times near

a global minimum even in the best case. This notion of rapid convergence has been for-

malized as second-order pointwise convergence [36]. State relaxations may also be used

for similarly constructing lower bounding problems in global optimization for an origi-

nal problem that is more complicated than (1.1.1), such as a dynamic optimization problem

with typical path or endpoint constraints and an objective function with integral. The exten-

sion of state relaxations to parametric systems of differential-algebraic equations (DAEs)

is discussed in [39].
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Figure 1.2: An illustration of how tighter state relaxations for x typically lead to tighter
convex relaxations for c in (1.1.1). On the left: a solution x(t f , ·) (solid) of the parametric
ODE system (1.1.2) at t := t f , along with state relaxations (dot-dashed) and tighter state
relaxations (dashed).

Subgradients are useful local sensitivities for nonsmooth convex functions (analogously

for concave functions), which reduce to the usual gradients for smooth convex functions.

Subgradients of state relaxations may be used to compute subgradients of convex relax-

ations of c [35]. When computing lower bounds by minimizing convex relaxations in

global optimization, subgradients are typically required by nonsmooth convex optimiza-

tion methods such as Nesterov’s Level Method and Subgradient Method [40] and general

nonsmooth local optimization methods such as bundle methods [41–43] to proceed effec-

tively. Without subgradients, an overarching global optimization method may fail to com-

pute the required lower bounds by minimizing convex relaxations. Moreover, subgradients

are useful for constructing piecewise affine relaxations by a finite combination of the cor-

responding subtangents [34, 44, 45], and each subtangent can be efficiently constructed by

a single evaluation of the original convex relaxation and an associated subgradient [46].

Subgradients of state relaxations are also useful in dynamic reachable set generation, for

constructing a convex polyhedral enclosure of the reachable set for x in (1.1.2) [47].
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1.2 Established relaxation methods for composite functions

This section introduces several established convex relaxation generation methods for com-

posite functions, which may be used for relaxing ODE systems’ right-hand side functions.

Such relaxations may then be embedded in approaches for computing ODE relaxations.

Established convex relaxation generation methods for composite functions mainly in-

clude natural interval extensions [48], McCormick relaxations [5], generalized McCormick

relaxations [6], αBB relaxations [9,49], and relaxations obtained using the Auxiliary Vari-

able Method (AVM) [8,50]. These relaxation methods will be further illustrated via exam-

ples in Section 2.2. The natural interval extension [48] employs predefined upper and lower

bounds for simple arithmetic operations that are used to define the overall composite func-

tion, and constructs bounds for the composite function by propagating the bounds for these

operations. These bounds are constant on the domain of interest, and thus are trivially con-

vex and concave. Based on the underlying bounds, the McCormick relaxation method [5]

employs predefined convex and concave relaxations of intrinsic functions, and constructs

closed-form nonsmooth convex and concave relaxations for a composite function in a sim-

ilar fashion. The generalized McCormick relaxation method [6] adapts the McCormick

relaxations to better handle each composed function in a composition. The αBB relaxation

method [9, 49] applies to twice-differentiable functions, and constructs convex relaxations

by adding a sufficiently large convex quadratic term to the original nonconvex function.

The AVM [8, 50] typically applies to nonconvex optimization problems. The AVM con-

structs an auxiliary convex optimization problem, by first introducing auxiliary variables to

capture any nonlinearities in the original nonconvex optimization problem, and then bound-

ing these variables by appropriate convex and concave relaxations. The optimal objective

values of this auxiliary optimization problem are guaranteed to be valid lower bounds of
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the optimal objective values of the original nonconvex problem. Moreover, Chapter 5 of

this thesis will show that the AVM may be adapted to construct convex relaxations for

composite functions as well. Other convex relaxations include piecewise-affine relaxations

constructed from subtangents [35, 44] and convex envelope which is the tightest possible

convex relaxation for a nonconvex function. Convex envelopes of certain functions [51–56]

have been proposed, but there is no established method for constructing convex envelopes

for general composite functions.

1.3 Established ODE relaxation approaches

This section summarizes established approaches for constructing either state relaxations or

state bounds that are p-invariant bounds for x in (1.1.2). These approaches may be clas-

sified into two broad categories: discretize-then-relax approaches and relax-then-discretize

approaches. Discretize-then-relax approaches may be further classified into two subclasses

based on how the ODE system (1.1.2) is handled. The first subclass [35,57–59] discretizes

the ODE system (1.1.2) into approximating equations, by approaches including the explicit

Euler method or orthogonal collocation. These equations are then relaxed using algebraic

relaxation methods such as αBB [57], the McCormick relaxation method [5], or the Auxil-

iary Variable Method [8, 60]. Most recently, Yang and Scott [59] extended the continuous-

time theory of differential inequalities to bound discrete-time nonlinear dynamic systems.

Wilhelm et al. [58] proposed a relaxation method efficient for stiff dynamic systems utiliz-

ing implicit functions [61].

The second subclass of discretize-then-relax approaches includes the methods in [62–

66], which discretize the dynamic systems using Taylor expansions which are then bounded

by various approaches. These methods originate from the high-order-enclosure (HOE)
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method [63], where bounds for Taylor expansions are propagated over t. The HOE method

was extended to propagate McCormick relaxations [64], Taylor models [62], and McCormick-

Taylor models [66]. Recently, Pérez-Galván and Bogle [67] tightened bounds for Taylor

models using interval contractors. The McCormick-Taylor method [66] has been shown to

yield state relaxations with second-order pointwise convergence [68], and this method was

applied to solve a global optimal control problem with the branch-and-lift algorithm [12].

Relax-then-discretize approaches [1,2,69–76], on the other hand, are based directly on

differential inequalities [77], since these preserve the differential equation nature of (1.1.2).

These approaches have the advantage of being able to exploit the adaptive time-stepping

and error control of numerical ODE solvers. Papamichail and Adjiman [1] extended αBB

relaxations from closed-form functions to parametric ODEs (1.1.2), with the required Hes-

sian bounds computed via numerical integration. This method was recently applied to solve

global optimal control problems with the direct multiple shooting method [13]. Baja and

Hasan [78] proposed dynamic edge-concave relaxations, which are also based on Hessian

bounding of the ODE solutions. Other methods in this class compute state relaxations

directly by solving auxiliary ODE systems, whose right-hand sides are related to various

relaxations of the right-hand side f of (1.1.2). The function f has been relaxed in these

methods using interval extension [69,73,74], affine relaxation [70–72,76], and generalized

McCormick relaxation [2, 6, 75]. As shown in [79], the relaxations proposed in [2] are at

least as tight as those in [75], and have second-order pointwise convergence. Other meth-

ods [71–74,76] in this class can incorporate additional bounding information from physical

or mathematical arguments, to yield significantly tighter state bounds or relaxations when

such bounding information is available. Recently, methods that combine differential in-

equalities and Taylor models have been also proposed [80, 81]. Other established methods
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for generating convex enclosures of reachable sets include bounding the reachable sets by

ellipsoids [82], zonotopes [83], or polytopes [84]. The ellipsoidal calculus method was ap-

plied to account for the parameterization errors of control inputs for affine control systems

in global optimal control [12].

1.4 Scott–Barton ODE relaxation framework

This section introduces a state-of-the-art relax-then-discretize framework by Scott and Bar-

ton [2], for relaxing the underlying ODE system (1.1.2). This thesis aims to improve this

framework, to aid in lower bounding for global dynamic optimization. The Scott–Barton

framework requires furnishing the following crucial functions:

• convex and concave relaxations (xcv
0 ,xcc

0 ) of the initial-value function x0,

• predefined p-invariant bounds (xL xU) for x,

• functions (u,o) (c.f. [2, Definitions 6 and 7]) that are modified relaxations of f.

Then, valid state relaxations (xcv,xcc) for (1.1.2) are computed by solving the following

auxiliary ODE system: for each component i,

ẋcv
i (t,p) =


ui(t,p,xcv,xcc), if xcv

i > xL
i (t),

max
(
ẋL

i (t),ui(t,p,xcv,xcc)
)
, if xcv

i = xL
i (t),

xcv
i (0,p) = xcv

i,0(p).

(1.4.1)

Dynamics of xcc are described similarly. This formulation will be formalized in Section 2.4.

Scott and Barton [2] proceeded to construct appropriate (u,o) based on the generalized Mc-

Cormick relaxations [6] of f. The generalized McCormick relaxation method [6] has been
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shown to be efficient for constructing useful convex and concave relaxations for compos-

ite functions [6, 35]. The resulting state relaxations of this approach will be denoted as

the Scott–Barton-McCormick (SBM) relaxations. The state-of-the-art SBM relaxation ap-

proach has the following advantages over other established ODE relaxation approaches.

Unlike general discretize-then-relax approaches, the SBM relaxation approach is able to

exploit the adaptive time-stepping and error control of numerical ODE solvers, since the

SBM relaxations are computed by solving an auxiliary ODE system. Compared with the

discretize-then-relax approaches based on Taylor models [62, 63, 65, 66], the SBM relax-

ations are more efficient and relatively simple to implement as discussed in [2]. The SBM

relaxations may also be more efficient than the αBB ODE relaxations [1], since the SBM

relaxations do not require expensive second-order sensitivity information of x. For solving

a global dynamic optimization problem, the embedded ODE system may be discretized

first, and then the resulting non-dynamic optimization problem is supplied to the state-

of-the-art deterministic global optimization solver BARON [28, 60]. However, as will be

seen in a global dynamic optimization case study in Chapter 4, this approach failed to con-

verge to a global optimum, while a branch-and-bound algorithm with the SBM relaxations

embedded successfully converged. Lastly, Schaber et al. [79] recently showed that the

SBM relaxations are guaranteed to be at least as tight as the earlier relax-then-discretize

ODE relaxations in [75]. This tightness result benefits from a general relaxation preserv-

ing dynamics nature that is exclusive for the Scott–Barton framework. However, while

the SBM relaxations exhibit these advantages, the Scott–Barton framework has the follow-

ing limitations, which impede developing new ODE relaxations that outperform the SBM

relaxations:
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1. In the Scott–Barton framework, it was unknown prior to this thesis whether the tight-

ness of the original right-hand side relaxations would translate into tightness of state

relaxations. Since several recent advances [7, 34, 45, 85] have been proposed for

constructing tight convex relaxations for closed-form functions, new methods for

constructing tighter state relaxations could significantly benefit from a greater un-

derstanding of the tightness properties of the Scott–Barton framework. Establish-

ing the tightness results requires fundamental results for comparing ODE solutions

based on differential inequalities [77, 86]. However, existing ODE comparison re-

sults [39, 77, 79, 87–89] (detailed in Chapter 3 below) are insufficient to address this

problem; new ODE comparison results must be developed.

2. Prior to this thesis, only generalized McCormick relaxations [6] were allowed to be

embedded into the Scott–Barton framework. If tighter non-McCormick relaxations

of f are available, they cannot be used in this framework to yield potentially tighter

state relaxations. It is not obvious how to embed non-McCormick relaxations into

Scott–Barton framework in its current setting, and new versatile state relaxation for-

mulation must be developed for this task.

3. Due to current limitations in convex analysis theory and nonsmooth dynamic sen-

sitivity analysis, there was previously no dynamic subgradient evaluation methods

for state relaxations in the Scott–Barton framework. As mentioned in Section 1.1,

subgradients of convex relaxations can help nonsmooth local optimizer proceed ef-

fectively. Without subgradients, an overarching global optimization method may fail

to compute the required lower bounds by minimizing convex relaxations.
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1.5 Goals

This thesis aims to resolve the limitations outlined in the previous section of the Scott–

Barton ODE relaxation framework [2], to ultimately improve computational efficiency of

deterministic algorithms of global dynamic optimization. Specifically, the goals of this

thesis are to:

1. Develop new results for comparing solutions of related ODE systems. Based on these

new results, develop new tightness results for state relaxations obtained using Scott–

Barton framework, to pave the way towards computing tighter state relaxations from

tighter relaxations for the original right-hand side f.

2. Develop new state relaxation approaches by using the Scott–Barton relaxation the-

ory [2] in a new way, to yield tighter state relaxations than the SBM state relaxations

in [2] and permit tighter non-McCormick relaxations for f to be used when these are

available.

3. Develop new approaches for efficiently computing subgradients of state relaxations

obtained using the Scott–Barton framework.

4. Develop new approaches for using convex relaxations with unknown subgradients in

global optimization, by exploring derivative-free optimization technique.

5. Embed the new techniques for lower bounding into a branch-and-bound-based deter-

ministic algorithms, to obtain a new efficient implementation for deterministic global

dynamic optimization.

The long-term goal for this line of research is to develop deterministic global dynamic op-

timization algorithms that are efficient enough for engineering applications. Once the goals
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of this thesis are achieved, one could employ any tight convex relaxations for right-hand

sides of the underlying ODE system, to construct tight ODE relaxations using the new ver-

satile ODE relaxation formulation proposed in this thesis. Since the first approaches for

computing subgradients of state-of-the-art ODE relaxations are proposed in this thesis, one

could for the first time use these ODE relaxations in deterministic global dynamic opti-

mization to compute the required lower bounds for the globally optimal objective values.

All these efforts aim to improve computational efficiency for the lower-bounding proce-

dure in an overarching global optimization method, which would ultimately facilitate the

long-term goal.

1.6 Contributions and thesis structure

This thesis proposes novel state relaxation approaches for the original parametric sys-

tem (1.1.2), which allow using tighter non-McCormick relaxations of f for constructing

state relaxations, and guarantee to yield state relaxations that are at least as tight as the

state-of-the-art SBM state relaxations [2]. This thesis also proposes new dynamic subgradi-

ent evaluation approaches for state relaxations obtained using the Scott–Barton framework,

which show for the first time that dynamic subgradients may be computed using adjoint

sensitivity approaches [90]. These approaches may improve computational efficiency for

lower bounding in deterministic global dynamic optimization. A new Julia implementa-

tion of deterministic global dynamic optimization is being developed in collaboration with

colleagues. The work in this thesis has appeared in the published articles [3, 4], articles

currently in review [91,92], and a manuscript in preparation [93]. The contents and contri-

butions of each chapter of this thesis are summarized below.

Chapter 2 presents the notational conventions throughout this thesis, formalizes the
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original parametric ODE system (1.1.2), and summarizes the Scott–Barton ODE relaxation

framework [2] and the SBM relaxations, which are the actual state relaxations proposed

in [2]. Recall that the main goal of this thesis is to resolve the limitations of the Scott–

Barton framework described in Section 1.3, to improve efficiency of deterministic global

dynamic optimization.

Chapter 3, reproduced from the submitted journal article [91], presents new results

for comparing solutions of related ODE systems, which are more broadly applicable to

engineering models than previous results. By applying these results, it is shown for the

first time that in the Scott–Barton ODE relaxation framework, tighter enclosures of ODE

right-hand side functions will necessarily translate into enclosures of the ODE solutions

that are at least as tight.

Chapter 4, reproduced from the published journal article [3], proposes a new approach

for constructing useful convex and concave relaxations for the solutions of parametric ODE

systems. This new approach allows using any convex and concave relaxations for the un-

derlying ODE system’s right-hand sides, and is guaranteed to yield ODE relaxations that

are at least as tight as the state-of-the-art SBM relaxations [2]. In a global optimization case

study, the new ODE relaxations indeed lead to fewer branch-and-bound global optimization

iterations than the SBM relaxations.

Chapter 5, reproduced from the manuscript in preparation [93], describes two exten-

sions of the new ODE relaxations proposed in Chapter 4. Firstly, a new implementation

method of the new ODE relaxations is presented, which is more efficient than the imple-

mentation used in Chapter 4. By employing this new implementation, the new ODE relax-

ations may be significantly tighter, and at the same time as efficient as the SBM relaxations.

Secondly, another new ODE relaxation method is proposed based on Chapter 4, which can
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effectively exploit the structure of the underlying ODE system’s right-hand sides. It will be

shown that the ODE relaxations in Chapter 5 are guaranteed to be at least as tight as both

the ODE relaxations in Chapter 4 and the SBM relaxations.

Chapter 6, reproduced from the submitted journal article [92], proposes new methods

for evaluating subgradients of ODE relaxations obtained using the Scott–Barton frame-

work. These methods for the first time enable using these state-of-the-art ODE relaxations

in deterministic global dynamic optimization, to compute the required lower bounds of the

globally optimal objective values. Moreover, this work extends the efficient classical dy-

namic adjoint gradient evaluation methods to nonsmooth dynamic subgradient evaluation,

which may speed up the computation of lower bounds by minimizing convex relaxations.

Chapter 7, reproduced from the published journal article [4], proposes a new approach

for tractably constructing useful, correct affine underestimators and lower bounds of con-

vex relaxations via black-box sampling. This approach enables computing lower bounds

in global optimization using convex relaxations whose subgradients are unavailable such

as certain ODE relaxations. The resulting affine underestimators are shown to converge

rapidly to an original nonconvex function as the domain of interest shrinks, and variants

are proposed to account for numerical error or noise in the sampling procedure. Thus,

this approach essentially extends derivative-free techniques to the computation of lower

bounds in global optimization. The associated article [4] was written in collaboration with

colleagues, but Chapter 7 only presents the contributions of the author of this thesis.
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Chapter 2

Mathematical Preliminaries

This chapter summarizes mathematical background information that is used throughout this

thesis, including notational conventions, established convex relaxation methods for com-

posite functions, a formalized underlying ODE system (1.1.2), and the established ODE

relaxations by Scott and Barton [2]. Mathematical background that is specific to one chap-

ter will be introduced later in that chapter.

2.1 Notation

Throughout this thesis, scalars are denoted as lowercase letters (e.g. ξ ∈ R), vectors are

denoted as boldface lowercase letters (e.g. ξξξ ∈ Rn), and the ith component of a vector

ξξξ is denoted as ξi. The symbol e(i) ∈ Rn denotes the ith unit coordinate vector in Rn.

Inequalities involving vectors are to be interpreted componentwise. Sets are denoted as

uppercase letters (e.g. Ξ ⊆ Rn). Matrices are denoted as boldface uppercase letters (e.g.

M ∈ Rm×n), and the ith row of a matrix M is denoted as m(i). Let R0 denote a set of

null vector, and for any v ∈ Rn, let vr:s denote the vector (vr,vr+1, ...,vs) for s > r, denote
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the scalar vr for s = r, and denote a null vector for s < r. Lower case Greek letters (e.g.

ξξξ ) typically denote dummy variables standing in for analogous English-lettered quantities

(e.g. x). A dot above a quantity (e.g. ẋ) indicates a partial derivative with respect to t (e.g.

∂x
∂ t ). For any xL,xU ∈ Rn with xL ≤ xU, an interval X := [xL,xU] is defined as the compact

set {ξξξ ∈Rn : xL ≤ ξξξ ≤ xU}. For any Q⊆Rn, let IQ denote the set of all nonempty interval

subsets of Q. Superscripts “L” and “U” will be used to denote lower and upper bounds

of intervals, and superscripts “cv” and “cc” will be used to denote convex and concave

relaxations. The Euclidean norm ∥ · ∥ or the l-infinity norm ∥ · ∥∞ and inner product ⟨·, ·⟩

are considered on Rn. The matrix norm induced by the Euclidean norm is employed. A

sum such as ∑ j∈J g( j) is understood to be 0 if the index set J is empty. The abbreviation

“a.e.” stands for “almost every” in the sense of Lebesgue measure.

2.2 Established relaxations for composite functions

This section illustrates several established convex relaxation methods for composite func-

tions via examples, including natural interval extension [48], McCormick relaxation [5],

generalized McCormick relaxation [2], αBB relaxation [9, 49], and the Auxiliary Variable

Method [8, 50]. Full mathematical descriptions of these methods are somewhat cumber-

some, and are available at the cited references. These methods may be used for constructing

relaxations for the right-hand side function f in (1.1.2). Prior to this thesis, the Scott–Barton

ODE relaxation framework only allowed using generalized McCormick relaxations of f for

constructing ODE relaxations. On the other hand, the new ODE relaxation formulations

that will be presented in Chapters 4 and 5 permit all these different relaxations of f to be

embedded.
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Definition 2.2.1 (adapted from [35]). Let Y ⊆ Rn be convex, and consider a function

h : Y → Rm. Vector functions hcv,hcc : Y → Rm are respectively called to be convex and

concave, if for each i ∈ {1, ...,m}, hcv
i and hcc

i are respectively convex and concave. More-

over, if for each y ∈ Y , hcv(y)≤ h(y) and hcc(y)≥ h(y), then hcv and hcc are respectively

called a convex relaxation and a concave relaxation of h on Y .

2.2.1 Natural interval extensions and McCormick relaxations

As introduced in Section 1.3, the natural interval extension [48] and the McCormick relax-

ation method [5] compute closed-form interval bounds and convex and concave relaxations

for composite functions by propagating bounds and relaxations for simple intrinsic func-

tions. This will be illustrated in the following example.

Example 2.1. Consider a function h : (y,z) 7→ ez− (y+ z)2 defined on the interval [0,1]2.

This example aims to construct lower and upper bounds hL,hU ∈ R for h for which hL ≤

h(y,z) ≤ hU, for all (y, ,z) ∈ [0,1]2 using natural interval extension, and construct convex

and concave relaxations hcv,hcc : [0,1]2→R for h using the McCormick relaxation method.

These methods may employ the following evaluation procedure (also known as a factored

representation) for h: for each (y,z) ∈ [0,1]2,

v1 := ez,

v2 := y+ z,

v3 := v2
2,

v4 :=−v3,

v5 := v1 + v4,

and h(y,z)≡ v5.

(2.2.1)
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Observe that this evaluation procedure employs the following intrinsic functions:

w1 : r 7→ er, w2 : (rA,rB) 7→ rA + rB, w3 : r 7→ r2, and w4 : r 7→ −r. (2.2.2)

Based on the known behavior of these intrinsic functions, bounds and convex and concave

relaxations for these functions on any interval [rL,rU] can be easily constructed. For exam-

ple, w1 attains its maximum at rU and attains its minimum at rL. Since w1 is convex, w1

is a convex relaxation of itself, and a valid concave relaxation is the secant line connecting

(rL,w1(rL)) and (rU,w1(rU)). Then, the bounds (hL,hU) for h may be computed based on

the natural interval extension rules [48]. This computation requires computing intermediate

quantities denoted as (vL
j ,v

U
j ) for each v j in (2.2.1), as follows:

vL
1 := 1, vU

1 := e,

vL
2 := 0, vU

2 := 2,

vL
3 := [vL

2 ]
2 = 0, vU

3 := [vU
2 ]

2 = 4,

vL
4 :=−vU

3 =−4, vU
4 :=−vL

3 = 0,

vL
5 := vL

1 + vL
4 = 1+(−4) =−3, vU

5 := vU
1 + vU

4 = e+0 = e,

hL := vL
5 =−3, hU := vU

5 = e.

Similarly, for each (y,z) ∈ [0,1]2, the McCormick convex/concave relaxations hcv(y,z) and

hcc(y,z) may be computed based on the McCormick relaxation rules [5]. This computa-

tion requires the previously computed quantities (vL
j ,v

U
j ) and also requires computing new
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quantities denoted as (vcv
j ,v

cc
j ), as follows:

vcv
1 := ez, vcc

1 := (e−1)z+1,

vcv
2 := y+ z, vcc

2 := y+ z,

vcv
3 := [vcv

2 ]2, vcc
3 := (vU

2 + vL
2 )(v

cc
2 − vL

2 )+ [vL
2 ]

2,

vcv
4 :=−vcc

3 , vcc
4 :=−vcv

3 ,

vcv
5 := vcv

1 + vcv
4 , vcc

5 := vcc
1 + vcc

4 ,

hcv(y,z) := vcv
5 , hcc(y,z) := vcc

5 .

(2.2.3)

The McCormick relaxations have been shown to be efficient in deterministic global op-

timization [35]. The generalized McCormick relaxation method [6] is a later variant of the

McCormick relaxation method, which can better handle each composed function in a com-

position. The generalized McCormick relaxations have been implemented to automatically

execute procedures similar to (2.2.3) for any composite functions, such as in the EAGO

package [94] in Julia [95] and in the MC++ library [96]. Other variants of McCormick

relaxations include a differentiable variant [97], a variant [7] to better handle multivariate

intrinsic functions, and a tighter variant [34] via subgradient propagation.

2.2.2 αBB relaxations

The αBB relaxation method [9,49] applies to twice-differentiable functions, and constructs

convex relaxations by adding a sufficiently large convex quadratic term to the original non-

convex function. This will be illustrated in the following example.

Example 2.2 (from [33]). Consider a function h : (y,z) 7→ z(y2− 1) defined on [−4,4]2.

The αBB relaxation method constructs a convex relaxation hcv : [−4,4]2→ R of h in the
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following form:

hcv(y,z) := h(y,z)+α1(y−4)(y+4)+α2(z−4)(z+4),

where α1,α2 ≥ 0. Since y,z ∈ [−4,4], the quadratic terms α1(y− 4)(y+ 4) and α2(z−

4)(z+4) above are always less or equal than zero. Thus, hcv is guaranteed to underestimate

h on [−4,4]2. The key part for constructing hcv is to find appropriate values of (α1,α2) so

that the Hessian of hcv is positive semidefinite at each (y,z) ∈ [−4,4]2, which guarantees

hcv to be convex. There are various methods [9] for computing (α1,α2) typically based on

estimating the Hessian of h. Using a nonuniform diagonal shift matrix method summarized

in [9] for computing (α1,α2), a correct convex relaxation hcv may be constructed as

hcv(y,z) := h(y,z)+8(y2−16)+4(z2−16).

A concave relaxation of h is constructed analogously. Note that the αBB relaxations

only apply to twice-differentiable nonconvex functions, whereas the McCormick relax-

ations in the previous subsection apply to nonsmooth functions or even discontinuous func-

tions [98].

2.2.3 Auxiliary Variable Method

The Auxiliary Variable Method (AVM) [8, 50] is used for constructing lower-bounding

problems in global optimization, and is employed in the state-of-the-art deterministic global

optimization solver BARON [28, 60]. The following example illustrates how the Auxil-

iary Variable Method (AVM) [8, 50] constructs an auxiliary convex optimization problem,

whose optimal objective values are valid lower bounds for the optimal objective values of
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an original nonconvex optimization problem.

Example 2.3. Consider minimizing the function h defined in Example 2.1 in Section 2.2.1

on the box [0,1]2:

min
y,z

ez− (y+ z)2

s.t. 0≤ y≤ 1,

0≤ z≤ 1.

(2.2.4)

Observe that this problem is nonconvex since the objective function is nonconvex. The

AVM considers the evaluation procedure (2.2.1) of h and sets up new decision variables

(v1,v2,v3,v4,v5) in an auxiliary optimization problem. The decision variables v1 and v3 are

bounded by convex and concave relaxations of the nonlinear intrinsic functions w1 and w3

in (2.2.2), respectively, and the linear expressions v2 = y+ z, v4 = −v3, and v5 = v1 + v4

in (2.2.1) are employed directly as linear constraints. Thus, the auxiliary optimization

problem constructed by AVM is as follows:

min
y,z,v1,v2,v3,v4,v5

v5

s.t. v5 = v1 + v4,

v4 =−v3,

v2
2 ≤ v3 ≤ (vU

2 + vL
2 )(v2− vL

2 )+ [vL
2 ]

2,

v2 = y+ z,

ez ≤ v1 ≤ (e−1)z+1,

0≤ y≤ 1,

0≤ z≤ 1.

(2.2.5)
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As established in [8, 50], the optimization problem above is convex, and its optimal ob-

jective values are valid lower bounds for the optimal objective values of (2.2.4). If we

substitute the “min” with “max” in (2.2.5), then this optimization problem is now a con-

cave maximization problem, and instead yields guaranteed upper bounds for (2.2.4).

Chapter 5 in this thesis will extend the AVM to construct convex and concave relax-

ations for composite functions, and will show that the AVM relaxations are guaranteed to

be at least as tight as the McCormick relaxations.

2.3 Underlying ODE system

This section is adapted from [3, Section 2] and formalizes the ODE process model (1.1.2)

for a generic dynamic process system considered throughout. This thesis considers deter-

ministic global dynamic optimization problems with this system embedded, and proposes

new approaches for computing convex relaxations with corresponding subgradients for the

ODE solution, for efficiently computing lower-bounding information in an overarching

global optimization method. The following definition of uniform Lipschitz continuity is

adapted from [99].

Definition 2.3.1 (adapted from [99]). Consider a function h : Y ×Z→ Rm. The mapping

h(·,z) is said to be Lipschitz continuous on Y , uniformly over z ∈ Z if there exists a l ≥ 0

so that for any yA,yB ∈ Y and z ∈ Z,

∥h(yA,z)−h(yB,z)∥∞ ≤ l∥yA−yB∥∞.

The following assumption formalizes the parametric ODE system (1.1.2).
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Assumption 2.3.2. Let I := [t0, t f ]⊊R and P := [pL,pU]⊊Rnp be nonempty intervals, and

let D ⊆ Rnx be open. Consider continuous functions x0 : P→ D and f : I×P×D→ Rnx .

Suppose that f(t,p, ·) is Lipschitz continuous on D, uniformly over (t,p) ∈ I×P. Consider

the following parametric ODE system:

ẋ(t,p) = f(t,p,x(t,p)), ∀t ∈ (t0, t f ],

x(t0,p) = x0(p).
(2.3.1)

Suppose that the ODE system (2.3.1) has exactly one solution in the classical sense on I.

Definition 2.3.3. Consider the parametric ODE system (2.3.1) formalized in Assump-

tion 2.3.2. A function x : I×P→ D is a solution in the classical sense of (2.3.1) on I

if, for each p ∈ P, x(·,p) is continuously differentiable and satisfies (2.3.1) on I. A func-

tion x : I×P→D is a solution in the Carathéodory sense of (2.3.1) on I if, for each p ∈ P,

x(·,p) is absolutely continuous on I, x(t0,p)= x0(p) is satisfied, and ẋ(t,p)= f(t,p,x(t,p))

is satisfied for a.e. t ∈ I. Solutions of other ODEs throughout this thesis are defined analo-

gously.

Note that if an appropriate Lipschitz extension of f is applied from the domain I×P×

D to I × P×Rnx , then global existence and uniqueness of solutions of (2.3.1) on I are

guaranteed by [100, Theorem 3.2].

2.4 Established ODE relaxation formulations

For reference, this section, adapted from [3, Section 3], summarizes established ODE re-

laxation formulations [2, 69] for the underlying ODE system (2.3.1). Firstly, Harrison’s
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method [69] for constructing state bounds that are p-invariant bounds for the solution tra-

jectory x of (2.3.1) is summarized. This method is widely used in dynamic state bounding.

Then, this section summarizes a general framework for constructing state relaxations for

x in (2.3.1) by Scott and Barton [2], who then specialize this framework by applying Har-

rison’s bounding method and the generalized McCormick relaxation method [6] to furnish

crucial functions in the framework. Prior to this thesis, this was the only method for fur-

nishing these functions, whereas this thesis proposes new ODE relaxation approaches in

this framework, which can yield state relaxations that are at least as tight as the relaxations

proposed by Scott and Barton [2].

Definition 2.4.1 (adapted from [2]). Functions xcv,xcc : I×P→Rnx are called state relax-

ations for (2.3.1) on I×P if, for every t ∈ I, xcv(t, ·) is a convex relaxation of x(t, ·) on P,

and xcc(t, ·) is a concave relaxation of x(t, ·) on P.

Definition 2.4.2 (adapted from [2]). Functions xL,xU : I→Rnx are called state bounds for

(2.3.1) on I×P if xL(t) ≤ x(t,p) ≤ xU(t) for all (t,p) ∈ I×P. For each t ∈ I, denote the

interval [xL(t),xU(t)]⊊Rnx as X(t).

Definition 2.4.4 below formalizes a state bounding method by Harrison [69], which is

widely used in dynamic state bounding [1, 2, 13, 74–76, 78]. This method describes state

bounds as the unique solution of an auxiliary ODE system whose right-hand side involves

the natural interval extension [48] of the original right-hand side f in (2.3.1).

Definition 2.4.3 (adapted from [2]). For each i∈ {1, ...,nx}, define interval flattening func-

tions ri,L,ri,U : Rnx×Rnx → Rnx×Rnx for which

1. ri,L(ξξξ
L,A

,ξξξ
U,A

) := (ξξξ
L,A

,ξξξ
U,B

), where ξ
U,B
k := ξ

U,A
k for all k ∈ {1, ...,nx} and k ̸= i,

and ξ
U,B
i := ξ

L,A
i ,
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2. ri,U(ξξξ
L,A

,ξξξ
U,A

) := (ξξξ
L,B

,ξξξ
U,A

), where ξ
L,B
k := ξ

L,A
k for all k ∈ {1, ...,nx} and k ̸= i,

and ξ
L,B
i := ξ

U,A
i .

Definition 2.4.4 (adapted from [69]). Consider the parametric ODE system (2.3.1) for-

malized in Assumption 2.3.2. Let D ⊆ D̄ ⊆ Rnx . Consider constant lower and upper

bounds xL
0 ,x

U
0 ∈ D̄ for the function x0 on P. Consider the natural interval extension [48]

fL, fU : I× D̄× D̄→ Rnx of f such that, for each t ∈ I and [ξξξ
L
,ξξξ

U
] ∈ ID̄, fL(t,ξξξ L

,ξξξ
U
) and

fU(t,ξξξ L
,ξξξ

U
) are respectively constant lower and upper bounds for f(t, ·, ·) on P× [ξξξ

L
,ξξξ

U
].

Then, Harrison’s state bounding method constructs the following auxiliary ODE system:

for each i ∈ {1, ...,nx},

ẋL
i (t) = f L

i
(
t,ri,L(xL(t),xU(t))

)
, xL

i (t0) = xL
0,i,

ẋU
i (t) = f U

i
(
t,ri,U(xL(t),xU(t))

)
, xU

i (t0) = xU
0,i.

Let (xL,xU) be a solution of this ODE system in the classical sense on I. Then, (xL,xU)

are valid state bounds for the underlying parametric ODE system (2.3.1).

Assumption 2.4.5. Throughout this thesis, suppose that the state bounds (xL,xU) are LR-

analytic (see [101, Definition 2.3]) on I. Roughly, a LR-analytic function can be repre-

sented by the combination of finitely many pieces of sufficiently smooth functions.

Observe that Harrison’s state bounds [69] formalized in Definition 2.4.4 are LR-analytic.

Since the right-hand side of Harrison’s auxiliary ODE system is abs-factorable as in [101,

Definition 2.1], the resulting state bounds are LR-analytic according to [101, Theorem 3.6].

Note that the state bounds are assumed to be absolutely continuous in [2], so that the time

derivatives (ẋL, ẋU) are well-defined for a.e. t ∈ I. The LR-analytic assumption here is a

stronger, yet widely applicable assumption, which is essential for guaranteeing solutions’
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existence of the Scott–Barton ODE system (2.4.1) below by classical results [102, Chap-

ter 2, §7].

Definition 2.4.6. Functions xcv
0 ,xcc

0 : P→Rnx
0 are called initial relaxations for (2.3.1) if xcv

0

and xcc
0 are respectively convex and concave relaxations for x0 in (2.3.1) on P.

Definition 2.4.7 (from [2]). Functions u,o : I×P×Rnx×Rnx → Rnx describe bound pre-

serving dynamics for (2.3.1) (based on bounds X(t)) if, for any i ∈ {1, ...,nx}, any p ∈ P,

a.e. t ∈ I, and any functions ξξξ ,ξξξ
cv
,ξξξ

cc : I×P→Rnx such that ξξξ (t,p),ξξξ cv
(t,p),ξξξ cc

(t,p) ∈

X(t) and ξξξ
cv
(t,p)≤ ξξξ (t,p)≤ ξξξ

cc
(t,p), the following holds:

1. if ξi(t,p) = ξ cv
i (t,p), then ui(t,p,ξξξ

cv
(t,p),ξξξ cc

(t,p))≤ fi(t,p,ξξξ (t,p)), and

2. if ξi(t,p) = ξ cc
i (t,p), then oi(t,p,ξξξ

cv
(t,p),ξξξ cc

(t,p))≥ fi(t,p,ξξξ (t,p)).

Definition 2.4.8 (from [2]). Functions u,o : I×P×Rnx ×Rnx → Rnx describe convexity

preserving dynamics for (2.3.1) (based on bounds X(t)) if, for any i ∈ {1, ...,nx}, any λ ∈

(0,1), any pA,pB ∈P, p̄ := λpA+(1−λ )pB, a.e. t ∈ I, and any functions ξξξ
cv
,ξξξ

cc : I×P→

Rnx such that

1. ξξξ
cv
(t, p̄)≤ λξξξ

cv
(t,pA)+(1−λ )ξξξ

cv
(t,pB),

2. ξξξ
cc
(t, p̄)≥ λξξξ

cc
(t,pA)+(1−λ )ξξξ

cc
(t,pB), and

3. ξξξ
cv
(t,q)≤ ξξξ

cc
(t,q) and ξξξ

cv
(t,q),ξξξ cc

(t,q) ∈ X(t), for all q ∈ {pA,pB, p̄},

both of the following conditions hold:

1. if ξ cv
i (t, p̄) = λξ cv

i (t,pA)+(1−λ )ξ cv
i (t,pB), then

ui(t, p̄,ξξξ
cv
(t, p̄),ξξξ cc

(t, p̄))≤ λui(t,pA,ξξξ
cv
(t,pA),ξξξ

cc
(t,pA))

+(1−λ )ui(t,pB,ξξξ
cv
(t,pB),ξξξ

cc
(t,pB)), and
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2. if ξ cc
i (t, p̄) = λξ cc

i (t,pA)+(1−λ )ξ cc
i (t,pB), then

oi(t, p̄,ξξξ
cv
(t, p̄),ξξξ cc

(t, p̄))≥ λoi(t,pA,ξξξ
cv
(t,pA),ξξξ

cc
(t,pA))

+(1−λ )oi(t,pB,ξξξ
cv
(t,pB),ξξξ

cc
(t,pB)).

Definition 2.4.9 (adapted from [2]). Functions u,o : I×P×Rnx ×Rnx → Rnx are called

Scott–Barton right-hand side functions for (2.3.1) (based on bounds X(t)) if,

1. u and o are continuous,

2. u(t,p, ·, ·) and o(t,p, ·, ·) are Lipschitz continuous on Rnx×Rnx , uniformly over (t,p)∈

I×P, and

3. u and o describe both bound preserving dynamics and convexity preserving dynamics

for (2.3.1) based on bounds X(t).

Now, the following definition formalizes the Scott–Barton ODE relaxation framework [2].

Definition 2.4.10 (from [2]). Given state bounds (xL,xU) that satisfy Assumption 2.4.5,

initial relaxations (xcv
0 ,xcc

0 ), and valid Scott–Barton right-hand side functions (u,o) in Def-

inition 2.4.9, Scott and Barton provide valid state relaxations (xcv,xcc) for (2.3.1) as the
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unique solution in the Carathéodory sense of an auxiliary ODE system constructed as fol-

lows: for each i ∈ {1, ...,nx},

ẋcv
i (t,p) =


ui(t,p,xcv(t,p),xcc(t,p)), if xcv

i (t,p)> xL
i (t),

max
(
ẋL

i (t),ui(t,p,xcv(t,p),xcc(t,p))
)
, if xcv

i (t,p)≤ xL
i (t),

ẋcc
i (t,p) =


oi(t,p,xcv(t,p),xcc(t,p)), if xcc

i (t,p)< xU
i (t),

min
(
ẋU

i (t),oi(t,p,xcv(t,p),xcc(t,p))
)
, if xcc

i (t,p)≥ xU
i (t),

xcv
i (t0,p) = max(xL

i (t0),x
cv
0,i(p)), xcc

i (t0,p) = min(xU
i (t0),x

cc
0,i(p)).

(2.4.1)

The auxiliary parametric ODE system (2.4.1) with any constructions of the functions

(xL,xU,xcv
0 ,xcc

0 ,u,o) will be denoted as the Scott–Barton ODE relaxation framework.

Scott–Barton right-hand side functions (u,o) may be constructed by first constructing

functions (ũ, õ) that satisfy the following assumption [2].

Assumption 2.4.11 (adapted from [2]). Suppose that functions ũ, õ : I×P×Rnx×Rnx →

Rnx satisfy all of the following conditions:

1. ũ and õ are continuous,

2. ũ(t,p, ·, ·) and õ(t,p, ·, ·) are Lipschitz continuous on Rnx×Rnx , uniformly over (t,p)∈

I×P, and

3. ũ and õ describe bound amplifying dynamics and convexity amplifying dynamics for

(2.3.1) based on bounds X(t), as defined in [2].

Roughly, the functions ũ and õ are respectively intended to describe convex and concave

relaxations of the composition f(t, ·,x(t, ·)) on P, for each fixed t ∈ I.
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Scott and Barton proceed by constructing functions (ũ, õ) satisfying Assumption 2.4.11

using the generalized McCormick relaxation method [6]. Scott–Barton right-hand side

functions (u,o) are then constructed by composing the functions (ũ, õ) with the interval

flattening operations in Definition 2.4.3 as follows: for each i ∈ {1, . . . ,nx},

ui(t,p,ξξξ
cv
,ξξξ

cc
)≡ ũi(t,p,ri,L(ξξξ

cv
,ξξξ

cc
))

and oi(t,p,ξξξ
cv
,ξξξ

cc
)≡ õi(t,p,ri,U(ξξξ

cv
,ξξξ

cc
)).

(2.4.2)

Within the Scott–Barton framework, we refer to the unique solution (xcv,xcc) of (2.4.1)

as Scott–Barton–McCormick (SBM) relaxations for (2.3.1) if the functions (u,o) in (2.4.1)

are defined by (2.4.2) where (ũ, õ) are the generalized McCormick relaxations [6] of f.

Prior to this thesis, SBM relaxations were the only actual state relaxations to be established

within the Scott–Barton framework, since generalized McCormick relaxations were the

only established way to generate Scott–Barton right-hand sides.

Intuitively, in order to be useful in global dynamic optimization algorithm, the state

relaxations xcv and xcc must converge to x as P is subdivided. To achieve this, the functions

ũ and õ in Assumption 2.4.11 are also expected to satisfy the following assumption.

Assumption 2.4.12 (from [79]). For a.e. t ∈ I, any p∈P, and any ξξξ
cv,A

,ξξξ
cc,A

,ξξξ
cv,B

,ξξξ
cc,B ∈

X(t) such that ξξξ
cv,A ≤ ξξξ

cv,B ≤ ξξξ
cc,B ≤ ξξξ

cc,A, suppose that

ũ(t,p,ξξξ cv,A
,ξξξ

cc,A
)≤ ũ(t,p,ξξξ cv,B

,ξξξ
cc,B

)≤ õ(t,p,ξξξ cv,B
,ξξξ

cc,B
)≤ õ(t,p,ξξξ cv,A

,ξξξ
cc,A

).

Note that ũ and õ constructed as generalized McCormick relaxations are guaranteed to

satisfy Assumption 2.4.12 [6, 79].
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Chapter 3

Comparing Solutions of Related ODEs

Using New Differential Inequalities

This chapter, reproduced from the submitted journal article [91], presents new results for

comparing the Carathéodory solutions of related ODE systems, under less stringent con-

ditions than established results. A first result provides sufficient conditions under which

one ODE system’s solutions dominate another’s. Unlike certain established results, this

result does not require differentiability of ODE solutions or a quasi-monotonicity assump-

tion [88, Definition 1.5.2] on right-hand side functions. A second result addresses ODEs

that describe bounding trajectories for an original ODE system, and provides sufficient con-

ditions under which one system of bounding trajectories is guaranteed to enclose another.

By applying this result, it is shown for the first time that the Scott–Barton framework [2] (as

summarized in Section 2.4) for constructing useful convex enclosures for the reachable sets

of a parametric ODE system has the following property: if tighter enclosures of the original

ODE right-hand side function are available, then these will translate into enclosures of the

ODE solution that are at least as tight.
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3.1 Introduction

This chapter focuses on inequalities between solutions of related ODE systems, based on

differential inequalities and inequalities between the system’s initial conditions. Such ODE

comparison results are crucial in analysis methods for ODEs, such as approaches for in-

vestigating ODE solutions’ uniqueness, stability, and continuous dependence on initial val-

ues [77, 87, 88, 103]. Such ODE comparison results also provide theoretical justification

for reachable-set generation methods [69, 72, 74, 104]. Reachable-set methods are widely

used in engineering applications such as fault detection [105], robust optimal control [106],

safety analysis [20], and state and parameter estimation [104,107,108]. Recently, compar-

ison results have also been used to compare competing reachable-set generation methods

in terms of tightness [79]. Our primary motivation concerns algorithms for deterministic

global dynamic optimization [19,27], which typically construct convex enclosures of ODE

reachable sets to obtain crucial bounding information. In this context, ODE comparison

results may help with developing reachable-set enclosure methods that construct less con-

servative enclosures, which would intuitively reduce the number of iterations required in

global dynamic optimization algorithms.

This work presents comparison results concerning ODE systems known to have Carathéodory

solutions [77] (C-solutions). These solutions’ derivatives are known to exist and are uniquely

determined almost everywhere in the sense of Lebesgue measure. Such ODE systems are

prevalent in applications such as hybrid dynamic systems [109, 110], Lebesgue-integrable

control systems [12, 111], and nonsmooth ODE relaxation systems [2, 75]. Several estab-

lished ODE comparison results [39,77,79,87–89] are concerned with bounding C-solutions

in particular. We broadly group these results into three classes:

1. one-sided bounding results that bound C-solutions from either below or above,
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2. two-sided bounding results that bound C-solutions from both below and above si-

multaneously, and

3. bound comparison results that consider two two-sided bounding pairs and provide

sufficient conditions under which one bounding pair is guaranteed to enclose another.

Table 3.1 summarizes these established results, along with summaries of their assumptions

enforced on the original ODE right-hand sides and solutions. As shown in Table 3.1, as-

sumptions individually shared by several of these results include: whether the ODE solution

is scalar-valued, whether the ODE solution is differentiable everywhere, whether the con-

sidered solution is the maximal solution among possible non-unique solutions, whether the

ODE right-hand side (RHS) function has properties such as quasimonotonicity [88, Defi-

nition 1.5.2], satisfaction of a right-uniqueness condition [77, Equation 10.3], or a weak-

ened variant [77, Condition 6.VII(γ)], and Lipschitz continuity [77, Example 11.IV]. The

results also differ based on whether strict (with < signs) or weak (with ≤ signs) inequali-

ties between bounds and ODE solutions are obtained. As shown in Table 3.1, established

one-sided bounding results for ODE systems require either the ODE solution to be dif-

ferentiable, or require the RHS function to be quasimonotone increasing (c.f. [88, Defi-

nition 1.5.2]). However, C-solutions are typically not differentiable everywhere, and dy-

namic systems in applications do not exhibit quasimonotonicity in general [19]. Schaber et

al. [79] propose the main established bound comparison result [79, Theorem 4.14], which

is applied to show that the reachable-set enclosure method in [2] is guaranteed to yield

tighter enclosures for solutions of parametric ODE systems than the method in [75]. How-

ever, this bound comparison result requires certain stringent assumptions of the compared

bounding systems. This result requires the outer bounding system’s right-hand side to

be locally Lipschitz continuous, requires openness of important sets, and imposes certain
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stringent differential inequality assumptions, as will be detailed in Section 3.4 below. Thus,

this result is not easily extended to compare other reachable-set generation methods such

as [2, 3, 70–72].
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State relaxations (as described by Scott and Barton [2]) are lower and upper bounds

for solutions of parametric ODE systems, whose components are respectively convex and

concave with respect to the parameters. State relaxations are useful in global dynamic op-

timization to construct lower bounds for globally optimal objective values in deterministic

branch-and-bound approaches [27, 29, 31], and can also be used to construct convex poly-

hedral enclosures of reachable sets via finite combinations of their subtangents [44, 47].

Tighter state relaxations will intuitively translate into tighter lower bounds supplied to

branch-and-bound, which would then reduce the number of branch-and-bound iterations

required, and thus may speed up an overarching global optimization method.

As summarized in Section 2.4, Scott and Barton [2] propose a general framework for

generating state relaxations. This framework describes state relaxations as the C-solutions

of an auxiliary ODE system, which requires furnishing certain convex and concave relax-

ations for the original ODE initial condition and RHS functions. The generalized Mc-

Cormick relaxation method [6] is then used to construct these relaxations, and has been

shown to efficiently generate useful convex and concave relaxations for composite func-

tions [6, 35]. As in [3], we denote these ODE relaxations derived from the generalized

McCormick relaxations as Scott–Barton–McCormick (SBM) relaxations. However, in this

Scott–Barton framework, it is thus far unknown whether the tightness of RHS relaxations

translates into tightness of state relaxations. Since several recent advances [7, 34, 85]

have been proposed for constructing tight convex relaxations for closed-form functions,

new methods for constructing tighter state relaxations could significantly benefit from a

greater understanding of the tightness properties of the Scott–Barton framework. Estab-

lishing these tightness properties requires a new bound comparison result, because the only

established bound comparison result [79, Theorem 4.14] in Table 3.1 requires the outer
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bounding system’s right-hand side to be locally Lipschitz continuous, which is not satisfied

by relaxation systems in the Scott–Barton framework. Moreover, the stringent differen-

tial inequality assumptions and set requirements of [79, Theorem 4.14] must be relaxed to

compare the SBM relaxations [2] and the optimization-based relaxations [3] in the Scott–

Barton framework that will be introduced in the next chapter, as will be discussed later.

This work proposes a new one-sided bounding result that establishes weak inequalities

between bounds and C-solutions of ODE systems. Unlike established one-sided bounding

results, our new result does not require the ODE solutions to be differentiable everywhere,

and does not require the original RHS function to be quasimonotone increasing. Thus, this

new result is applicable to a broad class of dynamic systems in applications. Based on

this new one-sided bounding result, we then propose a new bound comparison result for

an original ODE system with C-solutions, under significantly less stringent assumptions

than the only established bound comparison result [79, Theorem 4.14]. Our new result

requires only a weakened right-uniqueness condition of the bounding systems’ right-hand

side that is weaker than the Lipschitz continuity required by [79, Theorem 4.14]. This new

result also provides more moderate differential inequality assumptions and set requirements

than [79, Theorem 4.14]. A detailed comparison between these two results will be given in

Section 3.4. By applying this new bound comparison result, we show that the Scott–Barton

ODE relaxation framework [2] has the following tightness property: if tighter convex and

concave relaxations of the original ODE initial condition and RHS functions are available,

then these tighter relaxations will necessarily translate into state relaxations that are at least

as tight, and may thereby provide tighter bounding information for deterministic global

dynamic optimization. While plausible, this tightness property was apparently previously

unknown and is revealed by our new bound comparison result. This tightness result in turn
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paves the way towards using tighter non-McCormick relaxations for constructing tighter

state relaxations in the Scott–Barton framework [2]. Moreover, this result also indicates

that it is worthwhile to seek tighter enclosure methods for closed-form functions and mod-

els from the standpoint of reachability analysis or dynamic optimization in general, since

doing so necessarily translates into superior descriptions of reachable-set enclosures for dy-

namic systems. The next chapter will propose a new ODE state relaxation approach [3] in

the Scott–Barton framework, which allows using non-McCormick relaxations of the orig-

inal RHS function to construct state relaxations. As an application of Theorem 3.5.1 of

this chapter, it will be shown that if McCormick relaxations [5] of the original RHS are

applied, then the new ODE relaxation approach [3] is guaranteed to yield state relaxations

that lie within the SBM relaxations [2]. Moreover, embedding tighter non-McCormick

relaxations in the new method will necessarily lead to state relaxations that are at least as

tight. Example 4.6 in the next chapter shows that such tightness of the new state relaxations

does indeed translate into fewer branch-and-bound iterations, which may ultimately reduce

computational effort for deterministic global dynamic optimization.

The remainder of this chapter is organized as follows. Section 3.2 formalizes Carathéodory

solutions for ODE systems. Section 3.3 presents the new one-sided bounding result. Sec-

tion 3.4 presents the new bound comparison result, which is then shown to supersede to

an established bound comparison result [79, Theorem 4.14]. As an application of these

results, Section 3.5 presents new tightness results for the Scott–Barton ODE relaxation

framework [2].
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3.2 Background: Carathéodory solutions of ODE systems

Definition 3.2.1 (from [102]). Given A⊆Rn and B⊆Rm, a set-valued mapping X : A ⇒ B

is a function that maps each element of A to a subset of B.

Definition 3.2.2 (adapted from [77]). Let I := [t0, t f ]⊊ R. Consider a set-valued mapping

X : I ⇒ Rn, define a set U := {(t,φφφ) ∈ I×Rn : φφφ ∈ X(t)}, and let x0 ∈ X(t0). Consider a

function f : U → Rn and an ODE system:

ẋ(t) = f(t,x(t)), ∀t ∈ (t0, t f ],

x(t0) = x0.

(3.2.1)

A function x : I→ Rn is called a Carathéodory solution (C-solution) of (3.2.1) on I if the

following conditions hold:

1. the initial condition x(t0) = x0 is satisfied,

2. x is absolutely continuous on I, and

3. for a.e. t ∈ I, ẋ(t) = f(t,x(t)).

3.3 One-sided bounding

The following theorem provides new sufficient conditions under which one ODE system’s

solutions dominate another’s. The subsequent results in this chapter build upon this result.

Theorem 3.3.1. Let I := [t0, t f ] ⊊ R. Consider set-valued mappings XA,XB : I ⇒ Rn.

Define sets UA := {(t,ξξξ ) ∈ I×Rn : ξξξ ∈ XA(t)} and UB := {(t,ξξξ ) ∈ I×Rn : ξξξ ∈ XB(t)}.

Consider functions xA,xB : I→ Rn. Define a function x̃ : I→ Rn so that for each t ∈ I and
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each i ∈ {1, ...,n}, x̃i(t) := min(xA
i (t),x

B
i (t)). Consider vectors xA

0 ∈ XA(t0), xB
0 ∈ XB(t0)

such that xA
0 ≤ xB

0 . Consider functions fA : UA→ Rn and fB : UB→ Rn. Suppose that the

following conditions hold:

I.1 For each t ∈ I, xA(t), x̃(t) ∈ XA(t) and xB(t) ∈ XB(t).

I.2 There exists a Lebesgue integrable function k : I → R+ ∪{+∞} so that for any i ∈

{1, ...,n}, a.e. t ∈ I, and any ξξξ ,ξξξ
′ ∈ XA(t) for which ξξξ ≤ ξξξ

′,

f A
i (t,ξξξ ′)− f A

i (t,ξξξ )≤ k(t)∥ξξξ ′−ξξξ∥∞.

I.3 For any i ∈ {1, ...,n}, a.e. t ∈ I, any ξξξ
A ∈ XA(t), and any ξξξ

B ∈ XB(t) such that

ξ A
i = ξ B

i and ξξξ
A ≤ ξξξ

B,

f A
i (t,ξξξ A

)≤ f B
i (t,ξξξ

B
).

I.4 The functions xA and xB are C-solutions on I of the following ODEs:

ẋA(t) = fA(t,xA(t)), xA(t0) = xA
0 ,

ẋB(t) = fB(t,xB(t)), xB(t0) = xB
0 .

Then,

xA(t)≤ xB(t), ∀t ∈ I. (3.3.1)

Proof. Since xA
0 ≤ xB

0 by construction, (3.3.1) holds at t := t0. We proceed by showing that

xA(t)≤ xB(t), for all t ∈ (t0, t f ].

To arrive a contradiction, suppose that there exists t̃ ∈ (t0, t f ] for which xB
i (t̃) < xA

i (t̃)
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for some i ∈ {1, ...,n}, and thus define

t1 := inf
{

t ∈ (t0, t f ] : ∃κ ∈ {1, ...,n} for which xB
κ (t)< xA

κ (t)
}
∈ I. (3.3.2)

Define a function δδδ : I→ Rn for which

δδδ (t) := xA(t)−xB(t). (3.3.3)

According to Condition I.4, xA and xB are absolutely continuous on I, and thus, δδδ is con-

tinuous on I. Applying Lemma 3.3.4 and 3.3.5 in [39] to δδδ and t1, we obtain the following.

Let 1 ∈ Rn be a vector whose components are all equal to 1. Consider the function k in

Condition I.2. It holds that t1 < t f , and, for any t4 ∈ (t1, t f ], there exist j ∈ {1, ...,n}, ε ∈

R+, an absolutely continuous and non-decreasing function ρ : [t1, t4]→R whose derivative

a.e. on [t1, t4] is denoted as ρ̇ , and scalars t2, t3 ∈ [t1, t4] with t2 < t3 such that

0 < ρ(t)≤ ε, ∀t ∈ [t1, t4], (3.3.4)

ρ̇(t)> k(t)ρ(t), a.e. t ∈ [t1, t4], (3.3.5)

xA(t)−ρ(t)1 < xB(t), ∀t ∈ [t2, t3), (3.3.6)

xB
j (t2) = xA

j (t2), (3.3.7)

xB
j (t3) = xA

j (t3)−ρ(t3), (3.3.8)

xB
j (t)< xA

j (t), ∀t ∈ (t2, t3). (3.3.9)

According to (3.3.7) and (3.3.9), for all t ∈ [t2, t3), xB
j (t)≤ xA

j (t), and thus

x̃ j(t) = xB
j (t), ∀t ∈ [t2, t3). (3.3.10)
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By construction of x̃, for all t ∈ [t2, t3), we also have

x̃(t)≤ xB(t). (3.3.11)

Then, since (3.3.10), (3.3.11), Condition I.1, and Condition I.3 hold, it follows that

f B
j (t,x

B(t))≥ f A
j (t, x̃(t)), a.e. t ∈ [t2, t3). (3.3.12)

Now, for each κ ∈ {1, ...,n} and each t ∈ [t2, t3), one of the following cases will occur.

1. If xB
κ (t)≥ xA

κ (t), then x̃κ(t) = xA
κ (t) and

x̃κ(t)− xA
κ (t) = 0, (3.3.13)

2. If xB
κ (t)< xA

κ (t), then x̃κ(t) = xB
κ (t); moreover, since (3.3.6) holds,

0 < xA
κ (t)− x̃κ(t)< ρ(t). (3.3.14)

The following inequality follows from (3.3.13) and (3.3.14):

∥x̃(t)−xA(t)∥∞ < ρ(t), ∀t ∈ [t2, t3). (3.3.15)

Now, for each t ∈ [t2, t3), since x̃(t)≤ xA(t) according to the construction of x̃, the following

inequality holds according to Condition I.2,

f A
j (t, x̃(t))≥ f A

j (t,x
A(t))− k(t)∥xA(t)− x̃(t)∥∞, a.e. t ∈ [t2, t3).
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Combining this with (3.3.12) yields

f B
j (t,x

B(t))≥ f A
j (t,x

A(t))− k(t)∥xA(t)− x̃(t)∥∞, a.e. t ∈ [t2, t3).

Applying (3.3.15) yields

f B
j (t,x

B(t))> f A
j (t,x

A(t))− k(t)ρ(t), a.e. t ∈ [t2, t3).

Since ρ̇(t)> k(t)ρ(t) for a.e. t ∈ [t2, t3] according to (3.3.5), rearranging the above inequal-

ity yields,

f A
j (t,x

A(t))− f B
j (t,x

B(t))− ρ̇(t)< 0, a.e. t ∈ [t2, t3].

Since Condition I.4 holds, Theorem 3.1 in [87] implies that
(
xA

j (t)− xB
j (t)−ρ(t)

)
is de-

creasing with respect to t on [t2, t3], which in turn implies

xA
j (t3)− xB

j (t3)−ρ(t3)< xA
j (t2)− xB

j (t2)−ρ(t2). (3.3.16)

However, according to (3.3.7) and (3.3.8), xA
j (t3)−xB

j (t3)−ρ(t3) = 0 and xA
j (t2)−xB

j (t2) =

0. Then, (3.3.16) becomes ρ(t2)< 0, which contradicts (3.3.4). Thus, t̃ cannot exist.

Remark 3.3.2. Condition I.2 is a mild assumption that is implied by f with right-uniqueness

conditions (such as [77, Theorem 6.IX]). Unlike the established one-sided bounding results

for Carathéodory ODE systems summarized in Table 3.1, Theorem 3.3.1 requires neither

the quasi-monotonicity assumption on fA or fB nor differentiability of xA and xB. On the

other hand, Theorem 3.3.1 has a new domain requirement formulated as Condition I.1.

From our experience, this requirement is typically satisfied by dynamic models of engi-

neering processes.
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3.4 Bound comparison

Based on Theorem 3.3.1, the following theorem provides new sufficient conditions under

which one dynamic bounding pair is guaranteed to enclose another.

Theorem 3.4.1. Let I := [t0, t f ] ⊊ R. Consider set-valued mappings CA,CB : I ⇒ Rn.

Define sets DA := {(t,φφφ ,ψψψ) ∈ I×Rn×Rn : φφφ ,ψψψ ∈ CA(t)} and DB := {(t,φφφ ,ψψψ) ∈ I×

Rn×Rn : φφφ ,ψψψ ∈ CB(t)}. Consider functions vA,wA,vB,wB : I → Rn. Define functions

ṽ, w̃ : I → Rn so that for each i ∈ {1, ...,n} and each t ∈ I, ṽi := min(vA
i (t),v

B
i (t)) and

w̃i := max(wA
i (t),w

B
i (t)). Consider vectors vA

0 ,w
A
0 ∈ CA(t0) and vB

0 ,v
B
0 ∈ CB(t0) so that

vA
0 ≤ vB

0 ≤ wB
0 ≤ wA

0 . Consider functions dL,A,dU,A : DA→ Rn and dL,B,dU,B : DB→ Rn.

Suppose that the following conditions hold:

II.1 For each t ∈ I, it follows that vA(t),wA(t), ṽ(t), w̃(t) ∈ CA(t) and vB(t),wB(t) ∈

CB(t).

II.2 There exists a Lebesgue integrable function k : I → R+ ∪{+∞} so that for any i ∈

{1, ...,n}, a.e. t ∈ I, and any φφφ ,ψψψ,φφφ ′,ψψψ ′ ∈CA(t) for which φφφ ≤ φφφ
′ ≤ ψψψ ′ ≤ ψψψ ,

dL,A
i (t,φφφ ′,ψψψ ′)−dL,A

i (t,φφφ ,ψψψ)≤ k(t)(∥φφφ ′−φφφ∥∞ +∥ψψψ−ψψψ
′∥∞),

and dU,A
i (t,φφφ ,ψψψ)−dU,A

i (t,φφφ ′,ψψψ ′)≤ k(t)(∥φφφ ′−φφφ∥∞ +∥ψψψ−ψψψ
′∥∞).

II.3 For any i ∈ {1, ...,n}, a.e. t ∈ I, any φφφ
A,ψψψA ∈CA(t), and any φφφ

B,ψψψB ∈CB(t) such

that φφφ
A ≤ φφφ

B ≤ ψψψB ≤ ψψψA,

(a) if φ A
i = φ B

i , then dL,B
i (t,φφφ B,ψψψB)≥ dL,A

i (t,φφφ A,ψψψA), and

(b) if ψA
i = ψB

i , then dU,B
i (t,φφφ B,ψψψB)≤ dU,A

i (t,φφφ A,ψψψA).
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II.4 For all t ∈ I,

vA(t)≤ wA(t) and vB(t)≤ wB(t).

II.5 The functions vA,vB,wA,wB are C-solutions on I of the following ODEs:

v̇A(t) = dL,A(t,vA(t),wA(t)), vA(t0) = vA
0 ,

ẇA(t) = dU,A(t,vA(t),wA(t)), wA(t0) = wA
0 ,

v̇B(t) = dL,B(t,vB(t),wB(t)), vB(t0) = vB
0 ,

ẇB(t) = dU,B(t,vB(t),wB(t)), wB(t0) = wB
0 .

(3.4.1)

Then, the following inequalities hold:

vA(t)≤ vB(t)≤ wB(t)≤ wA(t), ∀t ∈ I. (3.4.2)

Proof. Since Condition II.4 holds, it only remains to be shown that for all t ∈ I,

vA(t)≤ vB(t) and wA(t)≥ wB(t). (3.4.3)

Define functions xA,xB : I→ R2n so that for all t ∈ I,

xA(t) := (vA(t),−wA(t)) and xB(t) := (vB(t),−wB(t)).

To prove (3.4.3), it suffices to show that

xA(t)≤ xB(t), ∀t ∈ I. (3.4.4)
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Define set-valued mappings XA,XB : I ⇒ R2n so that for each t ∈ I,

XA(t) := {(φφφ ,−ψψψ) ∈ R2n : φφφ ,ψψψ ∈CA(t), and φφφ ≤ ψψψ},

and XB(t) := {(φφφ ,−ψψψ) ∈ R2n : φφφ ,ψψψ ∈CB(t), and φφφ ≤ ψψψ}.

Define sets UA := {(t,ξξξ )∈ I×R2n : ξξξ ∈ XA(t)} and UB := {(t,ξξξ )∈ I×R2n : ξξξ ∈ XB(t)}.

Define functions fA : UA → R2n and fB : UB → R2n so that, with ξξξ
A := (φφφ A,−ψψψA) and

ξξξ
B := (φφφ B,−ψψψB), for each (t,ξξξ A

) ∈UA and each (t,ξξξ B
) ∈UB,

fA(t,ξξξ A
) := (dL,A(t,φφφ A,ψψψA),−dU,A(t,φφφ A,ψψψA)),

and fB(t,ξξξ B
) := (dL,B(t,φφφ B,ψψψB),−dU,B(t,φφφ B,ψψψB)).

Define a function x̃(t) : I → R2n so that for each i ∈ {1, ...,2n}, x̃i := min(xA
i (t),x

B
i (t)).

To prove (3.4.4), we proceed by showing that all conditions of Theorem 3.3.1 are satisfied

with (xA,xB, fA, fB) as defined above.

Since Condition II.1 and II.4 hold, for each t ∈ I, xA(t) ∈ XA(t) and xB(t) ∈ XB(t).

Note that by construction of x̃,

x̃(t)≡ (ṽ(t),−w̃(t)).

For each t ∈ I, since Condition II.4 holds, it follows that ṽ(t) ≤ w̃(t). Furthermore, since

ṽ(t), w̃(t) ∈CA(t) according to Condition II.1, x̃(t) ∈ XA(t). Thus, Condition I.1 is satis-

fied.

Consider any i ∈ {1, ...,2n}, a.e. t ∈ I, and any ξξξ ,ξξξ
′ ∈ XA(t) so that ξξξ

′ ≥ ξξξ . Define

φφφ ,ψψψ,φφφ ′,ψψψ ′ ∈CA(t) so that ξξξ := (φφφ ,−ψψψ) and ξξξ
′ := (φφφ ′,−ψψψ ′). According to the definition
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of the l-infinity norm,

∥ξξξ ′−ξξξ∥∞ = max(∥φφφ ′−φφφ∥∞,∥ψψψ−ψψψ
′∥∞),

and thus

2k(t)∥ξξξ ′−ξξξ∥∞ ≥ k(t)
(
∥φφφ ′−φφφ∥∞ +∥ψψψ−ψψψ

′∥∞

)
. (3.4.5)

Since ξξξ ,ξξξ
′ ∈ XA(t) and ξξξ

′ ≥ ξξξ , we obtain φφφ ≤ φφφ
′ ≤ ψψψ ′ ≤ ψψψ . Combining Condition II.2

with (3.4.5) then yields

f A
i (t,ξξξ ′)− f A

i (t,ξξξ )≤ 2k(t)∥ξξξ ′−ξξξ∥∞.

Thus, Condition I.2 is satisfied.

Consider any i ∈ {1, ...,2n}, a.e. t ∈ I, any ξξξ
A ∈ XA(t), and any ξξξ

B ∈ XB(t) for which

ξ A
i = ξ B

i and ξξξ
B ≥ ξξξ

A. Define φφφ
A,ψψψA ∈ CA(t) and φφφ

B,ψψψB ∈ CB(t) for which ξξξ
A ≡

(φφφ A,−ψψψA) and ξξξ
B ≡ (φφφ B,−ψψψB). It follows that φφφ

A ≤ φφφ
B ≤ ψψψB ≤ ψψψA. Moreover, since

Condition II.3 holds,

f B
i (t,ξξξ

B
)≥ f A

i (t,ξξξ A
).

Thus, Condition I.3 is satisfied.

Let xA
0 := (vA

0 ,−wA
0 ) and xB

0 := (vB
0 ,−wB

0 ). Since Condition II.5 holds, it follows that

xA
0 ∈ XA(t0), xB

0 ∈ XB(t0), and xA
0 ≤ xB

0 . Thus, the functions xA and xB are C-solutions on

I of the following ODEs:

ẋA(t) = fA(t,xA(t)), xA(t0) = xA
0 ,

ẋB(t) = fB(t,xB(t)), xB(t0) = xB
0 .
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Thus, Condition I.4 is satisfied. Hence, Theorem 3.3.1 yields (3.4.4).

Remark 3.4.2. Condition II.1 is a mild assumption that is satisfied if, for each t, CA(t) is

an interval and CB(t) is a subset of CA(t).

To the authors’ knowledge, the only previous bound comparison result was proposed

by Schaber et al. ( [79, Theorem 4.14]). Theorem 3.4.1 has less stringent assumptions

than [79, Theorem 4.14] in the following respects:

1. [79, Theorem 4.14] requires the right-hand side functions (dL,A,dU,A) of the ODEs

in (vA,wA) in (3.4.1) to be locally Lipschitz continuous. Theorem 3.4.1 instead

requires Condition II.2, which is satisfied if (dL,A,dU,A) obey a less stringent right-

uniqueness condition [77, Theorem 6.IX].

2. [79, Theorem 4.14] requires ∥wA(t)− vA(t)∥∞ to be increasing with respect to t,

and requires (v̇B(t) ≥ v̇A(t)), and (ẇA(t) ≥ ẇB(t)). Instead, Theorem 3.4.1 has no

requirement on ∥wA(t)−vA(t)∥∞, only requires v̇B
i (t)≥ v̇A

i (t) if vB
i (t) = vA

i (t), and

only requires ẇA
i (t)≥ ẇB

i (t) if wA
i (t) = wB

i (t), as shown in Condition II.3.

3. [79, Theorem 4.14] assumes the sets CA and CB in Theorem 3.4.1 to be open, equal,

and independent of t. On the other hand, Theorem 3.4.1 permits CA and CB to be

distinct and not necessarily open.

The next section shows that, due to these less stringent assumptions, Theorem 3.4.1

applies to the ODE relaxations given by [2].
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3.5 Tightness results for ODE relaxations

Based on the new bound comparison theorem (Theorem 3.4.1), this section presents new

tightness results for a state-of-the-art ODE relaxation framework by Scott and Barton [2]

summarized in Section 2.4. The Scott–Barton framework constructs convex and concave

relaxations for solutions of parametric ODE systems with respect to parameters, to ulti-

mately provide bounding information to algorithms for deterministic global dynamic op-

timization [19, 27]. In this context, tighter ODE relaxations translate into tighter bounds

for globally optimal objective values, and would thus reduce the number of iterations re-

quired in these algorithms. Such results could not be obtained using Schaber et al.’s estab-

lished bound comparison result [79, Theorem 4.14]. The reason is that [79, Theorem 4.14]

requires the outer bounding system’s right-hand side to be locally Lipschitz continuous,

while the right-hand side of the framework (2.4.1), as shown in [2, 3], only satisfies a

right-uniqueness condition ( [102, §10, Theorem 1]) that is weaker than the Lipschitz con-

tinuity. Moreover, as discussed in Section 3.4, Theorem 3.4.1 has less stringent differential

inequality conditions and set requirements than [79, Theorem 4.14]. These less stringent

conditions do indeed help compare the established state relaxations (c.f. [3, Section 5.5])

in the framework. However, this comparison cannot be done based on the differential in-

equality conditions and set requirements of [79, Theorem 4.14].

Thus, the following new tightness result of the Scott–Barton framework (2.4.1) is devel-

oped based on Theorem 3.4.1. Suppose that there are two considered choices for (xcv
0 ,xcc

0 ,xL,xU,u,o)

in (2.4.1); call these (xcv,A
0 ,xcc,A

0 ,xL,A,xU,A,uA,oA) and (xcv,B
0 ,xcc,B

0 ,xL,B,xU,B,uB,oB),

and denote the resulting state relaxations as (xcv,A,xcc,A) and (xcv,B,xcc,B), respectively.

Theorem 3.5.1 below shows that if the state bounds (xL,B,xU,B) lie within (xL,A,xU,A), if

the initial relaxations (xcv,B
0 ,xcc,B

0 ) lie within (xcv,A
0 ,xcc,A

0 ), and if the functions (uA,oA,uB,oB)
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satisfy a condition that resembles Condition II.3 in Theorem 3.4.1, then the state relaxations

(xcv,B,xcc,B) are guaranteed to lie within the state relaxations (xcv,A,xcc,A).

Theorem 3.5.1. Consider state lower bounds xL,A,xL,B : I→ Rnx and state upper bounds

xU,A,xU,B : I → Rnx for (2.3.1) on I×P that are absolutely continuous, and suppose for

all t ∈ I that xL,A(t) ≤ xL,B(t) ≤ xU,B(t) ≤ xU,A(t). For each t ∈ I, denote the intervals

[xL,A(t),xU,A(t)] and [xL,B(t),xU,B(t)] as XA(t) and XB(t), respectively. Consider initial

convex relaxations xcv,A
0 ,xcv,B

0 : P→ Rnx and initial concave relaxations xcc,A
0 ,xcc,B

0 : P→

Rnx for (2.3.1), and suppose for all p ∈ P that xcv,A
0 (p) ≤ xcv,B

0 (p) ≤ xcc,B
0 (p) ≤ xcc,A

0 (p).

Consider functions uA,oA,uB,oB : I×P×Rnx×Rnx→Rnx , and suppose that the following

conditions hold.

III.1 The functions (uA,oA) and (uB,oB) are Scott–Barton right-hand side functions for

(2.3.1) as in Definition 2.4.9 based on bounds XA(t) and XB(t), respectively.

III.2 For any i ∈ {1, ...,nx}, any p ∈ P, a.e. t ∈ I, any φφφ
A,ψψψA ∈ XA(t), and any φφφ

B,ψψψB ∈

XB(t) such that φφφ
A ≤ φφφ

B ≤ ψψψB ≤ ψψψA,

(a) if φ A
i = φ B

i , then uA
i (t,p,φφφ

A,ψψψA)≤ uB
i (t,p,φφφ

B,ψψψB),

(b) if ψA
i = ψB

i , then oA
i (t,p,φφφ

A,ψψψA)≥ oB
i (t,p,φφφ

B,ψψψB).

Let (xcv,A,xcc,A) be a solution of (2.4.1) with

(xL,xU,xcv
0 ,xcc

0 ,u,o) := (xL,A,xU,A,xcv,A
0 ,xcc,A

0 ,uA,oA).

Let (xcv,B,xcc,B) be a solution of (2.4.1) with

(xL,xU,xcv
0 ,xcc

0 ,u,o) := (xL,B,xU,B,xcv,B
0 ,xcc,B

0 ,uB,oB).
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Then, (xcv,A,xcc,A) and (xcv,B,xcc,B) are both valid state relaxations for (2.3.1) on I×P.

Moreover, for any (t,p) ∈ I×P,

xcv,A(t,p)≤ xcv,B(t,p)≤ xcc,B(t,p)≤ xcc,A(t,p). (3.5.1)

Proof. Since Condition III.1 holds, [2, Corollary 1 and Theorem 3] imply that both (xcv,A,xcc,A)

and (xcv,B,xcc,B) are valid state relaxations for (2.3.1) on I×P. Throughout the remainder

of this proof, consider any fixed p ∈ P. The inequality (3.5.1) will be demonstrated by

verifying all conditions in Theorem 3.4.1 with the following substitutions: for all t ∈ I,

vA(t) := xcv,A(t,p), wA(t) := xcc,A(t,p),

vB(t) := xcv,B(t,p), wB(t) := xcc,B(t,p).
(3.5.2)

Since Condition III.1 holds, [2, Lemma 1] implies that for all t ∈ I,

xcv,A(t,p),xcc,A(t,p) ∈ XA(t),

and xcv,B(t,p),xcc,B(t,p) ∈ XB(t).
(3.5.3)

Furthermore, since for each t ∈ I, XA(t) is an interval and XB(t) ⊆ XA(t), Remark 3.4.2

implies that Condition II.1 is satisfied with (XA,XB) in place of (CA,CB).

Since (xL,A,xU,A,xL,B,xU,B) are absolutely continuous on I, they are differentiable

almost everywhere. Thus, there is a zero-measure subset Ĩ ⊊ I for which the deriva-

tives ẋL,A, ẋU,A, ẋL,B, ẋU,B are well-defined on I\Ĩ and for which t f ∈ Ĩ. Define functions
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uA
r ,oA

r : I×Rnx×Rnx → Rnx so that for each i ∈ {1, ...,nx} and (t,φφφ ,ψψψ) ∈ I×Rnx×Rnx ,

uA
r,i(t,φφφ ,ψψψ) :=


uA

i (t,p,φφφ ,ψψψ), if φi > xL,A
i (t) and t ∈ I\Ĩ,

max
(
ẋL,A

i (t),uA
i (t,p,φφφ ,ψψψ)

)
, if φi ≤ xL,A

i (t) and t ∈ I\Ĩ,

0, if t ∈ Ĩ,

oA
r,i(t,φφφ ,ψψψ) :=


oA

i (t,p,φφφ ,ψψψ), if ψi < xU,A
i (t) and t ∈ I\Ĩ,

min
(
ẋU,A

i (t),oA
i (t,p,φφφ ,ψψψ)

)
, if ψi ≥ xU,A

i (t) and t ∈ I\Ĩ,

0 if t ∈ Ĩ.

(3.5.4)

Define functions uB
r ,oB

r : I×Rnx×Rnx→Rnx so that for each i∈ {1, ...,nx} and (t,φφφ ,ψψψ)∈

I×Rnx×Rnx , uB
r,i(t,φφφ ,ψψψ) and oB

r,i(t,φφφ ,ψψψ) are defined by (3.5.4) except with

(uB
r,i,o

B
r,i,u

B
i ,o

B
i ,x

L,B
i ,xU,B

i ) in place of (uA
r,i,o

A
r,i,u

A
i ,o

A
i ,x

L,A
i ,xU,A

i ).

Now, we show that the functions (uA
r ,oA

r ) satisfy Condition II.2 of Theorem 3.4.1 in

place of (dL,A,dU,A). Consider any i∈ {1, ...,nx}, any t ∈ I\Ĩ, and any φφφ ,ψψψ,φφφ ′,ψψψ ′ ∈ XA(t)

such that φ ′i ≥ φi. Since uA(t,p, ·, ·) is Lipschitz continuous on Rnx ×Rnx , uniformly over

(t,p) ∈ I×P, there exists k ≥ 0 so that the following conditions are satisfied.

1. If either φi = xL,A
i (t) and φ ′i = xL,A

i (t), or φi > xL,A
i (t) and φ ′i > xL,A

i (t), then

|uA
r,i(t,φφφ ,ψψψ)−uA

r,i(t,φφφ
′,ψψψ ′)| ≤ k

(
∥φφφ −φφφ

′∥∞ +∥ψψψ−ψψψ
′∥∞

)
. (3.5.5)

2. If φi = xL,A
i (t) and φ ′i > xL,A

i (t), then

uA
r,i(t,φφφ

′,ψψψ ′)−uA
r,i(t,φφφ ,ψψψ)≡ uA

i (t,p,φφφ
′,ψψψ ′)−max(ẋL,A

i (t),uA
i (t,p,φφφ ,ψψψ)).
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Thus,

(a) if ẋL,A
i (t)≤ uA

i (t,p,φφφ ,ψψψ), then

uA
r,i(t,φφφ

′,ψψψ ′)−uA
r,i(t,φφφ ,ψψψ)≡ uA

i (t,p,φφφ
′,ψψψ ′)−uA

i (t,p,φφφ ,ψψψ)

≤ k
(
∥φφφ −φφφ

′∥∞ +∥ψψψ−ψψψ
′∥∞

)
,

(3.5.6)

(b) if ẋL,A
i (t)> uA

i (t,p,φφφ ,ψψψ), then

uA
r,i(t,φφφ

′,ψψψ ′)−uA
r,i(t,φφφ ,ψψψ)≡ uA

i (t,p,φφφ
′,ψψψ ′)− ẋL,A

i (t)

≤ uA
i (t,p,φφφ

′,ψψψ ′)−uA
i (t,p,φφφ ,ψψψ)

≤ k
(
∥φφφ −φφφ

′∥∞ +∥ψψψ−ψψψ
′∥∞

)
.

(3.5.7)

Combining (3.5.5), (3.5.6), and (3.5.7) shows that, for all φφφ ,ψψψ,φφφ ′,ψψψ ′ ∈ XA(t) such that

φ ′i ≥ φi,

uA
r,i(t,φφφ

′,ψψψ ′)−uA
r,i(t,φφφ ,ψψψ)≤ k

(
∥φφφ −φφφ

′∥∞ +∥ψψψ−ψψψ
′∥∞

)
. (3.5.8)

A similar argument shows that, for each i ∈ {1, ...,n}, t ∈ I\Ĩ, and φφφ ,ψψψ,φφφ ′,ψψψ ′ ∈ XA(t)

such that ψi ≥ ψ ′i ,

oA
r,i(t,φφφ ,ψψψ)−oA

r,i(t,φφφ
′,ψψψ ′)≤ k

(
∥φφφ −φφφ

′∥∞ +∥ψψψ−ψψψ
′∥∞

)
. (3.5.9)

Since (3.5.8) and (3.5.9) hold, the functions (uA
r ,oA

r ) (with p fixed) satisfy Condition II.2

in place of (dL,A,dU,A).

Now, we show that the functions (uA
r ,oA

r ,uB
r ,oB

r ) satisfy Condition II.3 in place of

(dL,A,dU,A,dL,B,dU,B). Consider any i ∈ {1, ...,nx}, any t ∈ I\Ĩ, any φφφ
A,ψψψA ∈ XA(t),

and any φφφ
B,ψψψB ∈ XB(t) such that φφφ

A ≤ φφφ
B ≤ ψψψB ≤ ψψψA and φ A

i = φ B
i . We now consider
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several cases separately.

1. If φ A
i > xL,A

i (t) and φ B
i > xL,B

i (t), then

uA
r,i(t,φφφ

A,ψψψA)≡ uA
i (t,p,φφφ

A,ψψψA),

and uB
r,i(t,φφφ

B,ψψψB)≡ uB
i (t,p,φφφ

B,ψψψB).

Since Condition III.2 holds, it follows that

uA
r,i(t,φφφ

A,ψψψA)≤ uB
r,i(t,φφφ

B,ψψψB). (3.5.10)

2. If φ A
i = xL,A

i (t) and φ B
i > xL,B

i (t), this implies that xL,A
i (t)> xL,B

i (t) which contradicts

the assumption xL,A(t) ≤ xL,B(t) ≤ xU,B(t) ≤ xU,A(t). Hence, this case does not

occur.

3. If φ A
i > xL,A

i (t) and φ B
i = xL,B

i (t), then

uA
r,i(t,φφφ

A,ψψψA)≡ uA
i (t,p,φφφ

A,ψψψA),

and uB
r,i(t,φφφ

B,ψψψB)≡max(ẋL,B
i (t),uB

i (t,p,φφφ
B,ψψψB)).

Since Condition III.2 holds, it follows that

uA
r,i(t,φφφ

A,ψψψA)≤ uB
r,i(t,φφφ

B,ψψψB). (3.5.11)

4. If φ A
i = xL,A

i (t) and φ B
i = xL,B

i (t), then

uA
r,i(t,φφφ

A,ψψψA)≡max(ẋL,A
i (t),uA

i (t,p,φφφ
A,ψψψA)),

and uB
r,i(t,φφφ

B,ψψψB)≡max(ẋL,B
i (t),uB

i (t,p,φφφ
B,ψψψB)),
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Since φ A
i = φ B

i by assumption, it follows that xL,A
i (t) = xL,B

i (t). Moreover, since

xL,A(τ)≤ xL,B(τ) for each τ ∈ I by assumption and since t f ∈ Ĩ so t ̸= t f , it follows

that ẋL,A
i (t)≤ ẋL,B

i (t). Combining this with Condition III.2 yields

uA
r,i(t,φφφ

A,ψψψA)≤ uB
r,i(t,φφφ

B,ψψψB). (3.5.12)

Combining (3.5.10), (3.5.11), and (3.5.12) shows that, for all φφφ
A,ψψψA ∈XA(t) and φφφ

B,ψψψB ∈

XB(t) such that φφφ
A ≤ φφφ

B ≤ ψψψB ≤ ψψψA and φ A
i = φ B

i ,

uA
r,i(t,φφφ

A,ψψψA)≤ uB
r,i(t,φφφ

B,ψψψB).

A similar argument shows that, for all φφφ
A,ψψψA ∈ XA(t) and φφφ

B,ψψψB ∈ XB(t) such that

φφφ
A ≤ φφφ

B ≤ ψψψB ≤ ψψψA and ψA
i = ψB

i ,

oA
r,i(t,φφφ

A,ψψψA)≥ oB
r,i(t,φφφ

B,ψψψB).

Thus, the functions (uA
r ,oA

r ,uB
r ,oB

r ) (with p fixed) satisfy Condition II.3 in place of

(dL,A,dU,A,dL,B,dU,B).

Next, since it has been shown at the beginning that both (xcv,A,xcc,A) and (xcv,B,xcc,B)

are valid state relaxations for (2.4.1) on I×P, it follows that for all t ∈ I,

xcv,A(t,p)≤ x(t,p)≤ xcc,A(t,p)

and xcv,B(t,p)≤ x(t,p)≤ xcc,B(t,p).

Thus, (xcv,A,xcc,A,xcv,B,xcc,B) satisfy Condition II.4 in place of (vA,wA,vB,wB).
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Finally, it is observed that

max(xL,A
i (t0),x

cv,A
0,i (p))≤max(xL,B

i (t0),x
cv,B
0,i (p))≤ x0,i(p)

≤min(xU,B
i (t0),x

cc,B
0,i (p))≤min(xU,A

i (t0),x
cc,A
0,i (p)),

and observe that (xcv,A(·,p),xcc,A(·,p),xcv,B(·,p),xcc,B(·,p)) are the C-solutions on I of

the following ODEs. For each i ∈ {1, ...,nx}, for all t ∈ (t0, t f ],

ẋcv,A
i (t,p) = uA

r,i(t,p,x
cv,A(t,p),xcc,A(t,p)), xcv,A

i (t0,p) = max(xL,A
i (t0),x

cv,A
0,i (p)),

ẋcc,A
i (t,p) = oA

r,i(t,p,x
cv,A(t,p),xcc,A(t,p)), xcc,A

i (t0,p) = min(xU,A
i (t0),x

cc,A
0,i (p)),

ẋcv,B
i (t,p) = uB

r,i(t,p,x
cv,B(t,p),xcc,B(t,p)), xcv,B

i (t0,p) = max(xL,B
i (t0),x

cv,B
0,i (p)),

ẋcc,B
i (t,p) = oB

r,i(t,p,x
cv,B(t,p),xcc,B(t,p)), xcc,B

i (t0,p) = min(xU,B
i (t0),x

cc,B
0,i (p)),

Thus, Condition II.5 is satisfied with (uA
r ,oA

r ,uB
r ,oB

r ) with p fixed in place of

(dL,A,dU,A,dL,B,dU,B). Hence, Theorem 3.4.1 applies with the substitutions (3.5.2).

Remark 3.5.2. The theorem above will be applied to show that the state relaxation method

in [3] that will be introduced in the next chapter has the following tightness properties:

1. If McCormick relaxations [5] of f are applied in this method, then the resulting state

relaxations are guaranteed to lie within the SBM relaxations [2].

2. Embedding tighter relaxations for f in this method will necessarily lead to state re-

laxations that are at least as tight.

As mentioned in Section 2.4, the Scott–Barton right-hand side functions (u,o) in (2.4.1)

may be constructed via (2.4.2) where the functions (ũ, õ) satisfy Assumption 2.4.11. The

following corollary provides sufficient conditions under which one method for furnishing
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(ũ, õ) ultimately leads to state relaxations (xcv,xcc) that lie within the relaxations by another

method, through (2.4.2) and (2.4.1).

Corollary 3.5.3. Consider functions (xL,A,xL,B,xU,A,xU,B) and (xcv,A
0 ,xcv,B

0 ,xcc,A
0 ,xcc,B

0 )

and intervals XA(t) and XB(t) as in Theorem 3.5.1. Consider functions uA,oA, ũA, õA,uB,oB, ũB, õB :

I×P×Rnx×Rnx → Rnx for which the following conditions hold.

IV.1 Assumption 2.4.11 is satisfied with (ũ, õ) :=(ũA, õA) and X :=XA, and with (ũ, õ) :=

(ũB, õB) and X := XB.

IV.2 For any i∈ {1, ...,nx}, a.e. t ∈ I, any p∈ P, any φφφ ,ψψψ ∈ XA(t), and any φφφ
′,ψψψ ′ ∈ XB(t)

such that φφφ ≤ φφφ
′ ≤ ψψψ ′ ≤ ψψψ and φi = φ ′i = ψ ′i = ψi,

ũA
i (t,p,φφφ ,ψψψ)≤ ũB

i (t,p,φφφ
′,ψψψ ′),

and õA
i (t,p,φφφ ,ψψψ)≥ õB

i (t,p,φφφ
′,ψψψ ′).

(3.5.13)

IV.3 (2.4.2) holds with (u,o, ũ, õ) :=(uA,oA, ũA, õA) and with (u,o, ũ, õ) :=(uB,oB, ũB, õB).

Let (xcv,A,xcc,A) be a solution of (2.4.1) with

(xL,xU,xcv
0 ,xcc

0 ,u,o) := (xL,A,xU,A,xcv,A
0 ,xcc,A

0 ,uA,oA).

Let (xcv,B,xcc,B) be a solution of (2.4.1) with

(xL,xU,xcv
0 ,xcc

0 ,u,o) := (xL,B,xU,B,xcv,B
0 ,xcc,B

0 ,uB,oB).

Then, the functions (uA,oA) and (uB,oB) are Scott–Barton right-hand side functions, and

satisfy Condition III.2 in Theorem 3.5.1. The solutions (xcv,A,xcc,A) and (xcv,B,xcc,B) are

57



Ph.D. Thesis – Y. Song McMaster University – Chemical Engineering

both valid state relaxations for (2.3.1). Moreover, for any (t,p) ∈ I×P,

xcv,A(t,p)≤ xcv,B(t,p)≤ xcc,B(t,p)≤ xcc,A(t,p).

Proof. We proceed by showing that the functions (uA,oA,uB,oB) satisfy Conditions III.1 and III.2

of Theorem 3.5.1. Then, the claimed results follow from Theorem 3.5.1.

Consider any i∈ {1, ...,nx}, any p∈ P, and a.e. t ∈ I. Consider any φφφ
A,ψψψA ∈ XA(t) and

φφφ
B,ψψψB ∈ XB(t) for which φφφ

A ≤ φφφ
B ≤ψψψB ≤ψψψA and φ A

i = φ B
i . Let (φφφ ,ψψψ) := ri,L(φφφ A,ψψψA)

and (φφφ ′,ψψψ ′) := ri,L(φφφ B,ψψψB). By construction of ri,L,φi = ψi = φ A
i , and φ ′i = ψ ′i = φ B

i .

Moreover, since φ A
i = φ B

i , it follows that

φi = φ
′
i = ψ

′
i = ψi.

Also by construction of ri,L, for all κ ∈ {1, ...,n} and κ ̸= i, φκ = φ A
κ , ψκ = ψA

κ , φ ′κ = φ B
κ ,

and ψ ′κ = ψB
κ , and thus, φκ ≤ φ ′κ ≤ ψ ′κ ≤ ψκ , φφφ ,ψψψ ∈ XA(t), and φφφ

′,ψψψ ′ ∈ XB(t). Then,

since (3.5.13) holds, it follows that

ũA
i (t,p,φφφ ,ψψψ)≤ ũB

i (t,p,φφφ
′,ψψψ ′),

which implies that

ũA
i (t,p,r

i,L(φφφ A,ψψψA))≤ ũB
i (t,p,r

i,L(φφφ B,ψψψB)).

Combining this with Condition IV.3 yields

uA
i (t,p,φφφ

A,ψψψA)≤ uB
i (t,p,φφφ

B,ψψψB).
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A similar argument shows that, for any φφφ
A,ψψψA ∈ XA(t) and any φφφ

B,ψψψB ∈ XB(t) such that

φφφ
A ≤ φφφ

B ≤ ψψψB ≤ ψψψA and ψA
i = ψB

i ,

oA
i (t,p,φφφ

A,ψψψA)≥ oB
i (t,p,φφφ

B,ψψψB).

Thus, the functions (uA,oA,uB,oB) satisfy Condition III.2 in Theorem 3.5.1. Moreover,

since Condition IV.1 holds, [2, Lemma 10 and Lemma 11] imply that the functions (uA,oA)

and (uB,oB) are valid Scott–Barton right-hand side functions based on XA(t) and XB(t),

respectively. Thus, Condition III.1 in Theorem 3.5.1 holds, and the claimed results follow

from Theorem 3.5.1.

As shown in [2], if valid state relaxations (xcv,xcc) for (2.3.1) are considered, and

if we have functions (ũ, õ) as in Assumption 2.4.11, then for a.e. t ∈ I, the mappings

ũ(t, ·,xcv(t, ·),xcc(t, ·)) and õ(t, ·,xcv(t, ·),xcc(t, ·)) are respectively convex and concave re-

laxations of the composition f(t, ·,x(t, ·)) in (2.3.1) on P. Such functions (ũ, õ) are called

relaxation functions for f in [79]. The following theorem shows that under both Assump-

tions 2.4.11 and 2.4.12, tighter relaxation functions (ũ, õ) will necessarily ultimately trans-

late into state relaxations that are at least as tight through (2.4.2) and (2.4.1).

Theorem 3.5.4. Consider functions (xL,A,xL,B,xU,A,xU,B) and (xcv,A
0 ,xcv,B

0 ,xcc,A
0 ,xcc,B

0 ) and

intervals XA(t) and XB(t) as in Theorem 3.5.1. Consider functions uA,oA, ũA, õA,uB,oB, ũB, õB :

I×P×Rnx×Rnx → Rnx for which the following conditions hold:

V.1 Assumption 2.4.11 is satisfied with (ũ, õ) :=(ũA, õA) and X :=XA, and with (ũ, õ) :=

(ũB, õB) and X := XB,

V.2 Assumption 2.4.12 is satisfied with (ũ, õ) := (ũA, õA) and X := XA,
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V.3 for a.e. t ∈ I, any p ∈ P, and any φφφ
′,ψψψ ′ ∈ XB(t),

ũA(t,p,φφφ ′,ψψψ ′)≤ ũB(t,p,φφφ ′,ψψψ ′),

and õA(t,p,φφφ ′,ψψψ ′)≥ õB(t,p,φφφ ′,ψψψ ′),
(3.5.14)

V.4 (2.4.2) holds with (u,o, ũ, õ) :=(uA,oA, ũA, õA) and with (u,o, ũ, õ) :=(uB,oB, ũB, õB).

Then, the functions (uA,oA) and (uB,oB) are Scott–Barton right-hand side functions, and

satisfy Condition III.2 in Theorem 3.5.1. The solutions (xcv,A,xcc,A) and (xcv,B,xcc,B) are

both valid state relaxations for (2.3.1). Moreover, for any (t,p) ∈ I×P,

xcv,A(t,p)≤ xcv,B(t,p)≤ xcc,B(t,p)≤ xcc,A(t,p).

Proof. Noting that Condition IV.1 of Corollary 3.5.3 is satisfied, we proceed by showing

that under Conditions V.2 and V.3, the functions (ũA, õA, ũB, õB) satisfy Condition IV.2 of

Corollary 3.5.3. Then, the claimed results follow from Corollary 3.5.3.

Consider a.e. t ∈ I, any p ∈ P, any φφφ ,ψψψ ∈ XA(t), and any φφφ
′,ψψψ ′ ∈ XB(t) such that

φφφ ≤ φφφ
′ ≤ ψψψ ′ ≤ ψψψ . Since Condition V.2 holds and XB(t)⊆ XA(t),

ũA(t,p,φφφ ,ψψψ)≤ ũA(t,p,φφφ ′,ψψψ ′) and õA(t,p,φφφ ,ψψψ)≥ õA(t,p,φφφ ′,ψψψ ′).

Moreover, since (3.5.14) holds,

ũA(t,p,φφφ ,ψψψ)≤ ũA(t,p,φφφ ′,ψψψ ′)≤ ũB(t,p,φφφ ′,ψψψ ′),

and õA(t,p,φφφ ,ψψψ)≥ õA(t,p,φφφ ′,ψψψ ′)≥ õB(t,p,φφφ ′,ψψψ ′).

Thus, Condition IV.2 holds.
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3.6 Conclusions and future work

New comparison results have been provided for ODE systems with Carathéodory solu-

tions. These new results have less stringent requirements than established results and are

thus more broadly applicable. Theorem 3.3.1 provides sufficient conditions under which

one ODE system’s solutions dominate another’s. Unlike certain established results, The-

orem 3.3.1 does not require differentiability of ODE solutions or the quasi-monotonicity

assumption on right-hand side functions, and thus is desirable for dynamic models of en-

gineering processes. Based on Theorem 3.3.1, Theorem 3.4.1 provides sufficient condi-

tions under which one dynamic bounding pair necessarily encloses another. This result

has less stringent assumptions than the only established bound comparison result [79, The-

orem 4.14], and is useful for comparing competing reachable-set generation methods in

terms of tightness. By applying Theorem 3.4.1, it was shown in Section 3.5 that a state-of-

the-art framework (2.4.1) [2] for generating convex relaxations for solutions of a noncon-

vex parametric ODE system (2.3.1) has the following tightness property: if tighter initial

relaxations (xcv
0 ,xcc

0 ), tighter state bounds (xL,xU), and tighter right-hand side relaxations

(ũ, õ) are available, then these relaxations in (2.4.1) and (2.4.2) will necessarily translate

into state relaxations that are at least as tight for the original ODE solutions. This result is

beneficial for developing new methods for formulating tighter ODE relaxations, aiding in

furnishing tighter bounding for deterministic global dynamic optimization and constructing

tighter convex enclosures of reachable sets. In particular, Theorem 3.5.1 is applied to show

the desirable tightness properties of a new ODE relaxation formulation proposed in [3], as

will be seen in the next chapter.

Future work may involve seeking new relaxation methods for furnishing tighter (ũ, õ)

in Assumption 2.4.11, since doing so will always yield tighter ODE relaxations through
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(2.4.2) and (2.4.1), as shown in Theorem 3.5.4. Extending the ODE-based results of this

chapter to systems of differential-algebraic equations may also be possible.
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Chapter 4

Optimization-Based Convex Relaxations

for Nonconvex Parametric Systems of

ODEs

This chapter, reproduced from the published journal article [3], proposes novel convex

and concave relaxations for the solutions of parametric ODE systems in the Scott–Barton

framework [2], to aid in furnishing bounding information for deterministic global dynamic

optimization methods. These relaxations are constructed as the solutions of auxiliary ODE

systems with embedded convex optimization problems, whose objective functions employ

convex and concave relaxations of the original ODE right-hand side. Unlike established

relaxation methods, any valid convex and concave relaxations for the original right-hand

side are permitted in the approach, including the McCormick relaxations [5] and the αBB

relaxations [9,49]. By applying the tightness results of the Scott–Barton framework devel-

oped in Chapter 3, it is shown that tighter such relaxations will necessarily translate into
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at least as tight relaxations for the ODE solutions, thus providing tighter bounding infor-

mation for an overarching global dynamic optimization method. Notably, if McCormick

relaxations are employed in the new approach, then the obtained relaxations are guaranteed

to be at least as tight as the state-of-the-art SBM relaxations [2] based on generalized Mc-

Cormick relaxations. The new relaxations converge rapidly to the original system as the

considered parametric subdomain shrinks. Several examples are presented for comparison

with established ODE relaxations, based on a proof-of-concept implementation in MAT-

LAB. In a global optimization case study, the new ODE relaxations are shown to lead to

fewer branch-and-bound global optimization iterations than the SBM relaxations.

4.1 Introduction

This chapter considers the generic nonconvex dynamic optimization problem (1.1.1) with

embedded the underlying ODE system (1.1.2) that is formalized in Section 2.3. As intro-

duced in Section 1.1, state relaxations (as in Definition 2.4.1) are fundamental in determin-

istic algorithms of global dynamic optimization. Tighter state relaxations will necessarily

translate into tighter convex relaxations of the objective function c in (1.1.1), thus provid-

ing tighter lower bounds in global optimization. Such tightness may improve computa-

tional efficiency of an overarching global optimization method, by reducing the number of

iterations required by deterministic branch-and-bound algorithms [27–29, 31]. Since cur-

rent deterministic algorithms for global dynamic optimization can only solve problems of

modest size, improved techniques must be sought for computing tighter state relaxations

efficiently, to ultimately extend the scope of these algorithms to problems of practical in-

terest.

64



Ph.D. Thesis – Y. Song McMaster University – Chemical Engineering

Established approaches for constructing either state relaxations or p-invariant state

bounds for x in (1.1.2) may be classified into two broad categories: discretize-then-relax ap-

proaches and relax-then-discretize approaches. The discretize-then-relax approaches [35,

57–59,62–64,66,67] first discretize the original ODE system (1.1.2) using methods such as

Euler method, orthogonal collocation, and Taylor expansion, and then the resulting equa-

tion system is bounded by different approaches. The relax-then-discretize approaches [1,

2, 69–71, 73–76, 78, 108, 112], on the other hand, directly handle the original dynamic sys-

tem, and typically compute valid state relaxations by constructing and solving an auxiliary

ODE system, whose right-hand side is derived from various bounds or relaxations of the

original right-hand side f. Compared to the discretize-then-relax approaches, the relax-

then-discretize approaches have the advantage that they are able to exploit the adaptive

time-stepping and error control of numerical ODE solvers. Refer to Section 1.3 for a thor-

ough review of established state relaxation approaches.

This chapter proposes a new relax-then-discretize approach for relaxing the ODEs (1.1.2),

in which the right-hand side of the relaxations’ ODE system includes embedded convex op-

timization problems. These optimization problems employ bound constraints and convex

and concave relaxations for the right-hand side f. This approach is based on the Scott–

Barton ODE relaxation framework [2] as summarized in Section 2.4, but constructs very

different auxiliary right-hand side functions from [2] to satisfy the framework’s require-

ments. While the Scott–Barton method [2] is based on generalized McCormick relaxations

of the original right-hand side f, our new formulation is compatible with any valid convex

and concave relaxations for f, including affine relaxations, the αBB relaxations, the Mc-

Cormick relaxations, or even the pointwise tightest among multiple relaxations. Moreover,

tighter such relaxations of f will always yield tighter state relaxations for (1.1.2), which
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incentivizes seeking tighter relaxations for closed-form functions to help relax dynamic

systems. Furthermore, if McCormick relaxations of f are applied, then the new state relax-

ations are at least as tight as the SBM relaxations [2]. Numerical examples also suggest that

when αBB relaxations [9] are used for f in the new approach, significantly tighter relax-

ations may be obtained compared to the primary established method for generating αBB

state relaxations [1]. Moreover, the new state relaxations inherit second-order pointwise

convergence from the supplied relaxations of f, and thus help to avoid the cluster effect in

branch-and-bound-based algorithms.

We note that several established dynamic bounding methods also employ embedded

optimization problems, such as the methods in [72, 76], which are based on earlier theo-

retical results [74, 77, 89] involving differential inequalities. In particular, our formulation

becomes similar to a formulation by Singer and Barton [76] in the special case where we

adopt affine relaxations of convex relaxations of f; their method’s justification relies heavily

on these relaxations being affine. The right-hand side convex optimization problems in our

new approach also resemble those in an approach for constructing state bounds by Harwood

et al. [72]. Both our approach and the approach of [72] require furnishing convex relax-

ations of f as objective functions, but have different decision variables and different goals

(computing state relaxations versus computing state bounds). Neither approach appears to

be a special case of the other.

We also note that the right-hand sides of our new auxiliary ODE system superficially re-

semble multivariate McCormick relaxations [7, Theorem 2] of the composition f(t, ·,x(t, ·))

combined with interval flattening operations [2, Definition 11]. However, as will be dis-

cussed in Section 4.2, our result is not a direct consequence of [7, Theorem 2]. Since

we do not know a priori that our relaxations are valid and convex, we cannot satisfy the
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assumptions of [7, Theorem 2] when proving our relaxations’ validity.

The remainder of this chapter is organized as follows. Section 4.2 formulates the new

approach based on the Scott–Barton framework summarized in Section 2.4. Section 4.3

establishes its useful theoretical properties, including continuity of the new auxiliary right-

hand side, existence and uniqueness of solutions, bounding, convexity, tightness, and con-

vergence properties. The approach of this chapter is also compared to the following es-

tablished approaches: the SBM approach [2], the primary dynamic αBB relaxation ap-

proach [1], and the Auxiliary Variable Method [50]. In Section 4.4, a proof-of-concept

implementation of the new approach in MATLAB [113] is outlined, and several numer-

ical examples are described for comparison with the established approaches. A problem

instance of (1.1.1) is solved to global optimality in Julia [95], both with the new state

relaxations and the SBM relaxations. In this instance, our new ODE relaxations require

significantly fewer iterations in branch-and-bound.

4.2 New state relaxation formulation

This section presents a new approach for constructing useful state relaxations for the ODE

process model (2.3.1) formalized in Section 2.3, to ultimately furnish bounding information

to help solve the nonconvex optimization problem (1.1.1) to global optimality. Beneficial

properties of this formulation will then be established in Section 4.3. This approach utilizes

the Scott–Barton framework (2.4.1), but constructs new u and o functions as optimal-value

functions (in the sense of e.g. [114]) for parametric convex optimization problems. The new

approach requires functions fcv and fcc that satisfy the following assumption. Constructive

methods to satisfy this assumption are discussed subsequently.

67



Ph.D. Thesis – Y. Song McMaster University – Chemical Engineering

Assumption 4.2.1. Suppose that functions fcv, fcc : I×P×Rnx → Rnx satisfy all of the

following conditions:

1. fcv and fcc are continuous,

2. fcv(t,p, ·) and fcc(t,p, ·) are Lipschitz continuous on Rnx , uniformly over (t,p) ∈

I×P, and

3. for a.e. t ∈ I, the functions fcv(t, ·, ·) and fcc(t, ·, ·) are, respectively, convex and con-

cave relaxations of f(t, ·, ·) in (2.3.1) on P×X(t).

Remark 4.2.2. Several established convex relaxation approaches produce functions (fcv, fcc)

that satisfy Assumption 4.2.1, including certain affine relaxations, the αBB relaxations [9],

the McCormick relaxations [5], or the pointwise tightest among certain multiple relax-

ations defined as follows. Suppose that multiple convex relaxations fcv,1, fcv,2, ..., fcv,k and

concave relaxations fcc,1, fcc,2, ..., fcc,κ that satisfy Assumption 4.2.1 are available. For each

i ∈ {1, ...,nx}, pointwise tightest relaxations ( f cv,multi
i , f cc,multi

i ) are then defined so that for

each t ∈ I, p ∈ P, and ξξξ ∈ X(t),

f cv,multi
i (t,p,ξξξ ) := max( f cv,1

i (t,p,ξξξ ), f cv,2
i (t,p,ξξξ ), ..., f cv,k

i (t,p,ξξξ ))

and f cc,multi
i (t,p,ξξξ ) := min( f cc,1

i (t,p,ξξξ ), f cc,2
i (t,p,ξξξ ), ..., f cc,κ

i (t,p,ξξξ )).
(4.2.1)

These relaxations are readily confirmed to satisfy Assumption 4.2.1. Lipschitz continuity

on the full space Rnx may be enforced by passing to an appropriate Lipschitz extension.

Although convex/concave envelopes (the tightest possible relaxations) of f(t, ·, ·) are not

typically available, they may be used here as well in principle. This approach will be

illustrated in Example 4.5.
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With Assumption 4.2.1 satisfied, define a function v : Rnx×Rnx×Rnx→Rnx so that for

all i ∈ {1, ...,nx} and ααα,ξξξ
cv
,ξξξ

cc ∈ Rnx ,

vi(ααα,ξξξ
cv
,ξξξ

cc
) := 1

2 [(αi +1)ξ cc
i − (αi−1)ξ cv

i ]. (4.2.2)

Intuitively, vi(ααα,ξξξ
cv
,ξξξ

cc
) is a linear combination of ξξξ

cv and ξξξ
cc, weighted in a particular

way based on the value of ααα . The key step of our formulation is the following. Con-

struct functions u and o, for use in the Scott–Barton framework (2.4.1), so that for all

i ∈ {1, ...,nx} and (t,p,ξξξ cv
,ξξξ

cc
) ∈ I×P×Rnx×Rnx ,

ui(t,p,ξξξ
cv
,ξξξ

cc
) := min

ααα∈[−1,1]nx
f cv
i (t,p,v(ααα,ξξξ

cv
,ξξξ

cc
)) subject to αi =−1,

and oi(t,p,ξξξ
cv
,ξξξ

cc
) := max

ααα∈[−1,1]nx
f cc
i (t,p,v(ααα,ξξξ

cv
,ξξξ

cc
)) subject to αi =+1.

(4.2.3)

We will show in Section 4.3 below that this new choice of (u,o) always yields valid state

relaxations, and that these are tighter than the SBM relaxations when McCormick relax-

ations of f are used to construct (fcv, fcc). Observe that the nonlinear programs defining ui

and oi above are, respectively, bound-constrained convex minimization and concave maxi-

mization problems that are always feasible. Overall, our new dynamic relaxation approach

is to solve the auxiliary ODE system (2.4.1) with u and o defined in (4.2.3) to yield valid

state relaxations for (2.3.1); this validity will be established in Section 4.3.

Remark 4.2.3. If the pointwise tightest relaxations (fcv,multi, fcc,multi) considered in Re-

mark 4.2.2 are applied in (4.2.3), then the nonsmooth “max” and “min” functions in (4.2.1)
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may be eliminated in (4.2.3) by introducing an extra decision variable, as follows:

ui(t,p,ξξξ
cv
,ξξξ

cc
) := min

s∈R,ααα∈[−1,1]nx
s

subject to f cv,m
i (t,p,v(ααα,ξξξ

cv
,ξξξ

cc
))≤ s, ∀m ∈ {1, ...,k},

αi =−1,

oi(t,p,ξξξ
cv
,ξξξ

cc
) := max

s∈R,ααα∈[−1,1]nx
s

subject to f cc,m
i (t,p,v(ααα,ξξξ

cv
,ξξξ

cc
))≥ s, ∀m ∈ {1, ...,κ},

αi =+1.

In the special case where ξξξ
cv ≤ ξξξ

cc in (4.2.3), observe that (4.2.3) may be reformulated

as
ui(t,p,ξξξ

cv
,ξξξ

cc
)≡ min

ξξξ∈[ξξξ cv,ξξξ cc]
f cv
i (t,p,ξξξ ) subject to ξi = ξ

cv
i ,

and oi(t,p,ξξξ
cv
,ξξξ

cc
)≡ max

ξξξ∈[ξξξ cv,ξξξ cc]
f cc
i (t,p,ξξξ ) subject to ξi = ξ

cc
i .

(4.2.4)

However, since numerical ODE solvers typically assume that the domain of the right-

hand side function is an open set [72], these solvers may attempt to evaluate infeasible

perturbations of (4.2.4) during integration of (2.4.1). On the other hand, the optimiza-

tion problems in (4.2.3) are always feasible by construction. Thus, the formulation (4.2.3)

may be beneficial during numerical implementation. The following example illustrates this

point.

Example 4.1. Under Assumption 4.2.1, let x0(p) = p for each p ∈ P. Then, to construct

Scott–Barton ODEs (2.4.1), it is natural to define xcv
0 (p) ≡ xcc

0 (p) := p. Thus, the exact

solution of (2.4.1) with (4.2.4) embedded is well-defined according to Section 4.3 below,

and will have xcv(t,p)≈ xcc(t,p) when t ≈ t0. As a result, during numerical integration of
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the relaxation ODEs (2.4.1) at t = t0, an implicit ODE solver may attempt to evaluate the

right-hand side functions (ui,oi) at ξ cv
j > ξ cc

j for some j ̸= i, and thus cause infeasibility

of the optimization problems in (4.2.4). On the other hand, the formulation (4.2.3) remains

feasible.

Observe that if valid state relaxations (xcv,xcc) are employed in (4.2.3) in place of the

dummy variables (ξξξ
cv
,ξξξ

cc
), the optimization problems in (4.2.4) would become multi-

variate McCormick relaxations [7, Theorem 2] of the composition f(t, ·,x(t, ·)), composed

with the flattening operations of Definition 2.4.3. However, it is not obvious from [2]

or [7] that this approach would yield valid state relaxations for (2.3.1). In [2], general-

ized McCormick relaxation method is the only method that is established to furnish valid

Scott–Barton right-hand-side functions, and thus construct valid state relaxations in the

Scott–Barton framework (2.4.1). In [7], multivariate McCormick relaxations are only ap-

plied to build relaxations for closed-form composite functions, and their correctness does

not translate directly into correct state relaxations for (2.3.1).

Remark 4.2.4. By inspection of (4.2.4), in the special case where nx = 1, u and o in (4.2.3)

reduce to closed-form functions:

u(t,p,ξ cv,ξ cc)≡ f cv(t,p,ξ cv) and o(t,p,ξ cv,ξ cc)≡ f cc(t,p,ξ cc). (4.2.5)

This formulation shows that if there is only one state variable, unlike established methods

[2, 64, 66, 75] that propagate xcv and xcc in a coupled system, our new approach constructs

xcv and xcc independently of each other. Thus, if only xcv is of interest, then only xcv
0 and

f cv are required, and there is no need to construct xcc
0 or f cc to compute xcv.

Remark 4.2.5. Consider the special case where nx = 1. In light of [79, Remark 5.4],
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generalized McCormick relaxations ũgMC, õgMC : I×P×Rnx ×Rnx → Rnx for f may be

applied to construct ( f cv, f cc) in Assumption 4.2.1 by setting

f cv(t,p,ξ ) := ũgMC(t,p,ξ ,ξ ) and f cc(t,p,ξ ) := õgMC(t,p,ξ ,ξ )

(with notation as in [79]). With this choice of ( f cv, f cc), our new approach (2.4.1) with

(4.2.5) embedded reduces to the SBM method described in Section 2.4. Nonetheless, it is

not apparent from [2] that xcv and xcc are decoupled in this case.

Remark 4.2.6. For nx > 1, evaluating (u,o) in (4.2.3) ostensibly involves handling con-

vex optimization problems by NLP-based methods. However, if the original right-hand

side function f(t, ·, ·) is quadratic for each t ∈ I, and if αBB relaxations [9] are applied

for (fcv, fcc), then the optimization problems in (4.2.3) become bound-constrained convex

quadratic programming problems, which have closed-form solutions that could in principle

be computed a priori.

4.3 Properties of new state relaxations

This section establishes the following useful properties of the auxiliary ODE system (2.4.1)

with (4.2.3) newly embedded, under Assumption 4.2.1. Each of the following properties

essentially follows from a corresponding condition in Assumption 4.2.1.

• The right-hand side functions u and o defined in (4.2.3) are continuous, and u(t,p, ·, ·)

and o(t,p, ·, ·) are Lipschitz continuous on Rnx×Rnx , uniformly over (t,p) ∈ I×P.

• The auxiliary ODE system (2.4.1) with (4.2.3) embedded has exactly one solution

(xcv,xcc), which is guaranteed to lie within the predefined state bounds (xL,xU).
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This unique solution is also a valid state relaxation for x in (2.3.1).

• In this approach, tighter state bounds (xL,xU) and tighter relaxations (xcv
0 ,xcc

0 ) and

(fcv, fcc) necessarily translate into tighter state relaxations (xcv,xcc). If McCormick

relaxations are used to construct (fcv, fcc), then the new state relaxations are guaran-

teed to be at least as tight as the SBM relaxations [2].

• The new state relaxations (xcv,xcc) inherit second-order pointwise convergence from

(fcv, fcc), and thereby avoid the cluster effect [37, 38] in branch-and-bound methods

for deterministic nonconvex optimization.

This section then concludes by discussing how the approach of this chapter compares to

established state relaxation methods.

4.3.1 Continuity

In this subsection, Proposition 4.3.1 will show that the functions u and o given by (4.2.3)

are continuous. Proposition 4.3.2 will then show that the functions u(t,p, ·, ·) and o(t,p, ·, ·)

are Lipschitz continuous on Rnx×Rnx , uniformly over (t,p) ∈ I×P.

Proposition 4.3.1. Under Assumption 4.2.1, the functions u and o defined in (4.2.3) are

continuous.

Proof. Consider any fixed i∈ {1, ...,nx}. Since f cv
i is continuous according to Assumption

4.2.1 and since v is also continuous as shown in (4.2.2), the mapping (t,p,ααα,ξξξ
cv
,ξξξ

cc
) 7→

f cv
i (t,p,v(ααα,ξξξ

cv
,ξξξ

cc
)) is continuous. Moreover, since the feasible set of the optimization

problem of ui in (4.2.3) is nonempty and independent of (t,p,ξξξ cv
,ξξξ

cc
), ui is continuous

according to Berge’s Maximum Theorem [115, p116]. That the function o is continuous

can be proved similarly.
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Proposition 4.3.2. Under Assumption 4.2.1, the functions u(t,p, ·, ·) and o(t,p, ·, ·) defined

in (4.2.3) are Lipschitz continuous on Rnx×Rnx , uniformly over (t,p) ∈ I×P.

Proof. Consider any fixed i∈ {1, ...,nx} and (t,p)∈ I×P. According to Assumption 4.2.1,

there exists l > 0 independent of i, t, and p, so that for any ξξξ
A
,ξξξ

B ∈ Rnx ,

| f cv
i (t,p,ξξξ A

)− f cv
i (t,p,ξξξ B

)| ≤ l∥ξξξ A−ξξξ
B∥∞. (4.3.1)

By construction of v in (4.2.2), for each m ∈ {1, ...,nx}, ααα ∈ [−1,1]nx , and

ξξξ
cv,A

,ξξξ
cv,B

,ξξξ
cc,B

,ξξξ
cc,A ∈ Rnx , we have:

∥v(ααα,ξξξ
cv,A

,ξξξ
cc,A

)−v(ααα,ξξξ
cv,B

,ξξξ
cc,B

)∥∞ ≤ ∥ξξξ cv,A−ξξξ
cv,B∥∞ +∥ξξξ cc,A−ξξξ

cc,B∥∞.

(4.3.2)

Combining (4.3.1) and (4.3.2), for any ααα ∈ [−1,1]nx and ξξξ
cv,A

,ξξξ
cv,B

,ξξξ
cc,B

,ξξξ
cc,A ∈ Rnx ,

| f cv
i (t,p,v(ααα,ξξξ

cv,A
,ξξξ

cc,A
))− f cv

i (t,p,v(ααα,ξξξ
cv,B

,ξξξ
cc,B

))|

≤ l
(
∥ξξξ cv,A−ξξξ

cv,B∥∞ +∥ξξξ cc,A−ξξξ
cc,B∥∞

)
.

Moreover, since the function f cv
i (t,p,v(·, ·, ·)) is continuous, Theorem 2.1 in [116] shows

that for any ξξξ
cv,A

,ξξξ
cv,B

,ξξξ
cc,B

,ξξξ
cc,A ∈ Rnx ,

|ui(t,p,ξξξ
cv,A

,ξξξ
cc,A

)−ui(t,p,ξξξ
cv,B

,ξξξ
cc,B

)| ≤ l
(
∥ξξξ cv,A−ξξξ

cv,B∥∞ +∥ξξξ cc,A−ξξξ
cc,B∥∞

)
.

(4.3.3)

Since the choice of (t,p) was arbitrary, (4.3.3) holds for any (t,p) ∈ I×P.

That o(t,p, ·, ·) and the other u j(t,p, ·, ·)s are Lipschitz continuous on Rnx ×Rnx uni-

formly over (t,p) ∈ I×P can be demonstrated similarly.
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4.3.2 Existence and right-uniqueness

In this subsection, Theorem 4.3.3 establishes existence on I×P of solutions of (2.4.1) with

(u,o) defined by (4.2.3), and these solutions are guaranteed to lie within the predefined

state bounds (xL,xU). Theorem 4.3.4 subsequently establishes right-uniqueness for these

solutions.

Theorem 4.3.3. Under Assumption 4.2.1, for each p ∈ P, the ODE system (2.4.1) with p

fixed and with (u,o) defined by (4.2.3) has at least one solution (xcv(·,p),xcc(·,p)) on I,

which satisfies xcv(t,p),xcc(t,p) ∈ X(t) for each t ∈ I.

Proof. Consider a sufficiently large interval X̃ := {ξξξ ∈Rnx : x≤ ξξξ ≤ x}, for which X(t)⊆

X̃ for each t ∈ I. Consider a function m : Rnx → Rnx for which, for any γγγ ∈ Rnx , m(γγγ)

returns the componentwise median value of the collection {x,x,γγγ}. Thus, the function m

maps Rnx into X̃ . Define functions û, ô : I×P×Rnx×Rnx → Rnx as the compositions:

û(t,p,ξξξ cv
,ξξξ

cc
)≡ u(t,p,m(ξξξ

cv
),m(ξξξ

cc
))

and ô(t,p,ξξξ cv
,ξξξ

cc
)≡ o(t,p,m(ξξξ

cv
),m(ξξξ

cc
)),

Now, we establish global existence of solutions of (2.4.1) with the substitution (u,o)←

(û, ô). It will be shown subsequently that the solutions shown to exist for (û, ô) must also

solve (2.4.1) directly.

Consider any fixed p ∈ P throughout. Since xL and xU are LR-analytic, the derivatives

ẋL and ẋU exist and are continuous except at finitely many discontinuities on I, according to

Theorem 3.12 in [101]. Moreover, since the function m is Lipschitz continuous and maps

Rnx into X̃ , û and ô inherit the continuity of u and o established in Proposition 4.3.1, and

are globally bounded. Thus, (û, ô) are piecewise continuous in the sense of Filippov [102],
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which implies that (2.4.1) with (u,o)← (û, ô) is a differential inclusion system whose

solutions may be alternatively described following the approach of §4, [102]. Since û and

ô are globally bounded, global existence then follows from applying [102, §7, Theorem 1]

on a sufficiently large neighborhood of the initial value (xcv
0 (p),xcc

0 (p)).

Since the functions (û, ô) are continuous, [2, Lemma 1] implies that any solution (xcv(·,p),xcc(·,p))

of (2.4.1) with the substitution (u,o)← (û, ô) must satisfy xcv(t,p),xcc(t,p) ∈ X(t) for

each t ∈ I. Furthermore, by construction of the m function, these solutions must also be

solutions of (2.4.1) with (u,o) as defined in (4.2.3).

Theorem 4.3.4. Under Assumption 4.2.1, for each p ∈ P, the ODE system (2.4.1) with p

fixed and with (u,o) defined by (4.2.3) has right-uniqueness of solutions on I.

Proof. Consider any fixed p ∈ P. Since the functions u and o have the uniform Lipschitz

continuity established in Proposition 4.3.2, it is readily verified that the overall right-hand

side functions of (2.4.1) satisfy the sufficient condition for right-uniqueness established

in [102, §10, Theorem 1].

Remark 4.3.5. Along a solution trajectory of the ODE system (2.4.1), the derivatives ẋcv
i

and ẋcc
i may respectively switch between the ui and “max” cases and between the oi and

“min” cases depending on whether the solutions (xcv
i ,xcc

i ) are on or strictly within the state

bounds (xL
i ,x

U
i ). With these discontinuities present, (2.4.1) may only be expected to have

right-uniqueness, even though the functions u and o are Lipschitz continuous. We note

that if these switches do not occur, then (2.4.1) will indeed have standard “both-sides”

uniqueness according to classical uniqueness results for ODEs such as [99, Theorem 1.1].
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4.3.3 Bounding of original ODE solution

Theorem 4.3.7 below shows that the solutions xcv and xcc of (2.4.1) with (u,o) defined

by (4.2.3) are, respectively, valid underestimators and overestimators of the solution x

of (2.3.1). Recall that bound preserving dynamics were defined in Definition 2.4.7.

Lemma 4.3.6. Under Assumption 4.2.1, the functions u and o defined by (4.2.3) describe

bound preserving dynamics for (2.3.1).

Proof. Consider any i ∈ {1, ...,nx}, any functions ξξξ ,ξξξ
cv
,ξξξ

cc : I × P → Rnx , a.e. t ∈ I,

and any p ∈ P satisfying the conditions of Definition 2.4.7. First, assume that ξi(t,p) =

ξ cv
i (t,p). Since ξξξ

cv
(t,p)≤ ξξξ

cc
(t,p), (4.2.3) may be reformulated as (4.2.4), which yields

ui(t,p,ξξξ
cv
(t,p),ξξξ cc

(t,p)) = min
ζζζ∈[ξξξ cv(t,p),ξξξ cc(t,p)]

f cv
i (t,p,ζζζ ) subject to ζi = ξ

cv
i (t,p).

(4.3.4)

Since ξi(t,p) = ξ cv
i (t,p) and ξξξ

cv
(t,p)≤ ξξξ (t,p)≤ ξξξ

cc
(t,p), it follows that ξξξ (t,p) is feasi-

ble in the optimization problem in (4.3.4), and thus ui(t,p,ξξξ
cv
(t,p),ξξξ cc

(t,p))≤ f cv
i (t,p,ξξξ (t,p)).

Furthermore, since the function f cv
i (t,p, ·) is a convex relaxation of fi(t,p, ·) on X(t) and

since ξξξ (t,p) ∈ [ξξξ
cv
(t,p),ξξξ cc

(t,p)]⊆ X(t),

ui(t,p,ξξξ
cv
(t,p),ξξξ cc

(t,p))≤ f cv
i (t,p,ξξξ (t,p))≤ fi(t,p,ξξξ (t,p)).

If we instead assume that ξi(t,p) = ξ cc
i (t,p), it can be proved similarly that

oi(t,p,ξξξ
cv
(t,p),ξξξ cc

(t,p))≥ fi(t,p,ξξξ (t,p)).

Thus, the functions u and o describe bound preserving dynamics for (2.3.1).
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Theorem 4.3.7. Suppose that Assumption 4.2.1 holds. Let (xcv,xcc) be a solution of (2.4.1)

with u and o defined by (4.2.3). Let x be a solution of (2.3.1). Then, for all (t,p) ∈ I×P,

xcv(t,p)≤ x(t,p)≤ xcc(t,p).

Proof. According to Lemma 4.3.6, the functions u and o describe bound preserving dy-

namics for (2.3.1). Since, moreover, Proposition 4.3.2 holds and the right-hand side f of

(2.3.1) is Lipschitz continuous, the claimed result then follows from [2, Corollary 1].

Note that according to Theorem 4.3.7 above, the optimization problems in (4.2.4) are

always feasible along a solution trajectory of (2.4.1) with (4.2.3) embedded.

4.3.4 Convexity

This subsection shows that the solutions (xcv,xcc) of (2.4.1) with (4.2.3) embedded are,

respectively, convex and concave with respect to p. Combined with the results of Sec-

tions 4.3.2 and 4.3.3, this shows that candidate relaxations deriving from (2.4.1) with (u,o)

defined by (4.2.3) are indeed valid state relaxations for the original ODE system (2.3.1).

Recall that convexity preserving dynamics were defined in Definition 2.4.8.

Lemma 4.3.8. Under Assumption 4.2.1, the functions u and o defined by (4.2.3) describe

convexity preserving dynamics for (2.3.1).

Proof. Consider any i ∈ {1, ...,nx}, a.e. t ∈ I, any pA,pB ∈ P, any λ ∈ (0,1), p̄ := λpA +

(1−λ )pB, and any functions ξξξ
cv
,ξξξ

cc : I×P→ Rnx as satisfying the conditions in Defini-

tion 2.4.8. Firstly, assume that

ξ
cv
i (t, p̄) = λξ

cv
i (t,pA)+(1−λ )ξ cv

i (t,pB).
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Since ξξξ
cv
(t,q) ≤ ξξξ

cc
(t,q), for all q ∈ {pA,pB, p̄}, the reformulation (4.2.4) of (4.2.3)

yields

ui(t,q,ξξξ
cv
(t,q),ξξξ cc

(t,q)) = min
ξξξ∈[ξξξ cv(t,q),ξξξ cc(t,q)]

f cv
i (t,q,ξξξ ) subject to ξi = ξ

cv
i (t,q).

(4.3.5)

Let ξξξ
∗,A

,ξξξ
∗,B ∈Rnx be optimal solutions of the optimization problems in (4.3.5) at q := pA

and pB, respectively, and define ζζζ := λξξξ
∗,A

+(1−λ )ξξξ
∗,B. Then, we have

λξξξ
cv
(t,pA)+(1−λ )ξξξ

cv
(t,pB)≤ ζζζ

and λξ
cv
i (t,pA)+(1−λ )ξ cv

i (t,pB) = ζi.

Moreover, since

ξξξ
cv
(t, p̄)≤ λξξξ

cv
(t,pA)+(1−λ )ξξξ

cv
(t,pB)

and ξ
cv
i (t, p̄) = λξ

cv
i (t,pA)+(1−λ )ξ cv

i (t,pB)

by assumption, it follows that

ξξξ
cv
(t, p̄)≤ ζζζ and ξ

cv
i (t, p̄) = ζi.

Similarly, it can be shown that ζζζ ≤ ξξξ
cc
(t, p̄). Thus, ζζζ is feasible in the optimization prob-

lem in (4.3.5) at q := p̄, which implies that

ui(t, p̄,ξξξ
cv
(t, p̄),ξξξ cc

(t, p̄))≤ f cv
i (t, p̄,ζζζ ).

Since for a.e. t ∈ I, f cv
i (t, ·, ·) is convex on P×X(t) and [ξξξ

cv
(t,q),ξξξ cc

(t,q)] ⊆ X(t), for
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each q ∈ {pA,pB, p̄} and a.e. t ∈ I, it follows that

ui(t, p̄,ξξξ
cv
(t, p̄),ξξξ cc

(t, p̄))≤ f cv
i (t, p̄,ζζζ ),

≤ λ f cv
i (t,pA,ξξξ

∗,A
)+(1−λ ) f cv

i (t,pB,ξξξ
∗,B

)

= λui(t,pA,ξξξ
cv
(t,pA),ξξξ

cc
(t,pA))

+(1−λ )ui(t,pB,ξξξ
cv
(t,pB),ξξξ

cc
(t,pB)),

as required.

If we instead assume that ξ cc
i (t, p̄) = λξ cc

i (t,pA)+(1−λ )ξ cc
i (t,pB), then an analogous

concavity is established for oi(t, ·,ξξξ cv
(t, ·),ξξξ cc

(t, ·)). Thus, the functions u and o describe

convexity preserving dynamics for (2.3.1).

Theorem 4.3.9. Suppose that Assumption 4.2.1 holds. Let (xcv,xcc) be a solution of (2.4.1)

with u and o defined by (4.2.3). Then, for each i ∈ {1, ...,nx} and each t ∈ I, xcv
i (t, ·) is

convex on P and xcc
i (t, ·) is concave on P.

Proof. According to Lemmata 4.3.6 and 4.3.8, the functions u and o describe both bound

preserving dynamics and convexity preserving dynamics for (2.3.1). The claimed result

then follows from Proposition 4.3.2 and [2, Theorem 3].

4.3.5 Tightness

This subsection shows that if tighter relaxations of f are employed in (4.2.3), then the

auxiliary ODE system (2.4.1) with (u,o) defined by (4.2.3) is guaranteed to yield tighter

state relaxations for the ODE system (2.3.1). A procedure is presented for embedding any

functions (ũ, õ) satisfying Assumptions 2.4.11 and 2.4.12 into the new approach. Doing

so is shown to yield state relaxations that are at least as tight as those obtained by solving
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(2.4.1) with (2.4.2) embedded. Hence, if McCormick relaxations are used in (4.2.3), then

the new state relaxations are at least as tight as the SBM relaxations [2].

To begin, we reproduce the following tightness result concerning the Scott–Barton ODE

relaxation framework (2.4.1) from Theorem 3.5.1 in Chapter 3. Suppose that there are two

considered choices for (u,o) in (2.4.1); call these (uA,oA) and (uB,oB), and let us label

quantities relating to each with “A” or “B” superscripts. Proposition 4.3.10 below provides

sufficient conditions under which the resulting relaxations (xcv,B,xcc,B) are guaranteed to

be at least as tight as (xcv,A,xcc,A). This result is then specialized to the particular choice

(4.2.3) of (u,o).

Proposition 4.3.10 (from [91]). Consider state lower bounds xL,A,xL,B : I→Rnx and state

upper bounds xU,A,xU,B : I→ Rnx for (2.3.1) that are absolutely continuous, and suppose

for all t ∈ I that xL,A(t)≤ xL,B(t)≤ xU,B(t)≤ xU,A(t). For each t ∈ I, denote the intervals

[xL,A(t),xU,A(t)] and [xL,B(t),xU,B(t)] as XA(t) and XB(t), respectively. Consider convex

relaxations xcv,A
0 ,xcv,B

0 : P→ Rnx and concave relaxations xcc,A
0 ,xcc,B

0 : P→ Rnx for the

initial-value function x0 in (2.3.1), and suppose for all p ∈ P that xcv,A
0 (p) ≤ xcv,B

0 (p) ≤

xcc,B
0 (p)≤ xcc,A

0 (p). Consider functions uA,oA,uB,oB : I×P×Rnx×Rnx →Rnx , and sup-

pose that the following conditions hold.

I. The functions (uA,oA) and (uB,oB) are Scott–Barton right-hand side functions as in

Definition 2.4.9 based on bounds XA(t) and XB(t), respectively.

II. For any i ∈ {1, ...,nx}, any p ∈ P, a.e. t ∈ I, any ξξξ
cv,A

,ξξξ
cc,A ∈ XA(t), and any

ξξξ
cv,B

,ξξξ
cc,B ∈ XB(t) such that ξξξ

cv,A ≤ ξξξ
cv,B ≤ ξξξ

cc,B ≤ ξξξ
cc,A,

(a) if ξ
cv,A
i = ξ

cv,B
i , then uA

i (t,p,ξξξ
cv,A

,ξξξ
cc,A

)≤ uB
i (t,p,ξξξ

cv,B
,ξξξ

cc,B
),

(b) if ξ
cc,A
i = ξ

cc,B
i , then oA

i (t,p,ξξξ
cv,A

,ξξξ
cc,A

)≥ oB
i (t,p,ξξξ

cv,B
,ξξξ

cc,B
).
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Let (xcv,A,xcc,A) be a solution of (2.4.1) with

(xL,xU,xcv
0 ,xcc

0 ,u,o) := (xL,A,xU,A,xcv,A
0 ,xcc,A

0 ,uA,oA).

Let (xcv,B,xcc,B) be a solution of (2.4.1) with

(xL,xU,xcv
0 ,xcc

0 ,u,o) := (xL,B,xU,B,xcv,B
0 ,xcc,B

0 ,uB,oB).

Then, (xcv,A,xcc,A) and (xcv,B,xcc,B) are both valid state relaxations for (2.3.1). Moreover,

for any (t,p) ∈ I×P,

xcv,A(t,p)≤ xcv,B(t,p)≤ xcc,B(t,p)≤ xcc,A(t,p).

Based on this proposition, the following theorem provides an inclusion monotonicity

result for the approach of this chapter, showing essentially that tighter bounds and relax-

ations for f and x0 in (2.3.1) translate into tighter state relaxations for (2.3.1).

Theorem 4.3.11. Consider functions (xL,A,xL,B,xU,A,xU,B) and (xcv,A
0 ,xcv,B

0 ,xcc,A
0 ,xcc,B

0 )

and intervals XA(t) and XB(t) as in Proposition 4.3.10. Consider functions

fcv,A, fcc,A, fcv,B, fcc,B : I×P×Rnx → Rnx , and suppose that the following conditions hold.

I. Assumption 4.2.1 is satisfied both with (fcv, fcc) := (fcv,A, fcc,A) and X(t) := XA(t),

and with (fcv, fcc) := (fcv,B, fcc,B) and X(t) := XB(t).

II. For any t ∈ I, p ∈ P, and ξξξ ∈ XB(t),

fcv,A(t,p,ξξξ )≤ fcv,B(t,p,ξξξ )≤ fcc,B(t,p,ξξξ )≤ fcc,A(t,p,ξξξ ).
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Consider the function v defined in (4.2.2). Define functions uA,oA,uB,oB : I×P×Rnx ×

Rnx → Rnx so that, for each i ∈ {1, ...,nx} and each (t,p,ξξξ cv
,ξξξ

cc
) ∈ I×P×Rnx×Rnx ,

uA
i (t,p,ξξξ

cv
,ξξξ

cc
) := min

ααα∈[−1,1]nx
f cv,A
i (t,p,v(ααα,ξξξ

cv
,ξξξ

cc
)) subject to αi =−1,

oA
i (t,p,ξξξ

cv
,ξξξ

cc
) := max

ααα∈[−1,1]nx
f cc,A
i (t,p,v(ααα,ξξξ

cv
,ξξξ

cc
)) subject to αi =+1,

uB
i (t,p,ξξξ

cv
,ξξξ

cc
) := min

ααα∈[−1,1]nx
f cv,B
i (t,p,v(ααα,ξξξ

cv
,ξξξ

cc
)) subject to αi =−1,

and oB
i (t,p,ξξξ

cv
,ξξξ

cc
) := max

ααα∈[−1,1]nx
f cc,B
i (t,p,v(ααα,ξξξ

cv
,ξξξ

cc
)) subject to αi =+1.

Let (xcv,A,xcc,A) be a solution of (2.4.1) with

(xL,xU,xcv
0 ,xcc

0 ,u,o) := (xL,A,xU,A,xcv,A
0 ,xcc,A

0 ,uA,oA).

Let (xcv,B,xcc,B) be a solution of (2.4.1) with

(xL,xU,xcv
0 ,xcc

0 ,u,o) := (xL,B,xU,B,xcv,B
0 ,xcc,B

0 ,uB,oB).

Then, (xcv,A,xcc,A) and (xcv,B,xcc,B) are both valid state relaxations for (2.3.1). Moreover,

for any (t,p) ∈ I×P,

xcv,A(t,p)≤ xcv,B(t,p)≤ xcc,B(t,p)≤ xcc,A(t,p).

Proof. We proceed by verifying all conditions of (uA,oA,uB,oB) in Proposition 4.3.10.

Since Assumption 4.2.1 applies to (fcv,A, fcc,A) and (fcv,B, fcc,B), since Propositions 4.3.1 and 4.3.2

hold, and since Lemmata 4.3.6 and 4.3.8 apply with (u,o) := (uA,oA) or (u,o) := (uB,oB),

Condition I in Proposition 4.3.10 is satisfied. Thus, (xcv,A,xcc,A) and (xcv,B,xcc,B) are valid
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state relaxations for (2.3.1).

Consider any i∈ {1, ...,nx}, any p∈ P, and a.e. t ∈ I. Consider any ξξξ
cv,A

,ξξξ
cc,A ∈ XA(t)

and ξξξ
cv,B

,ξξξ
cc,B ∈ XB(t) such that

ξξξ
cv,A ≤ ξξξ

cv,B ≤ ξξξ
cc,B ≤ ξξξ

cc,A and ξ
cv,A
i = ξ

cv,B
i . (4.3.6)

Then, according to the reformulation (4.2.4),

uA
i (t,p,ξξξ

cv,A
,ξξξ

cc,A
)≡ min

ξξξ∈[ξξξ cv,A,ξξξ cc,A]
f cv,A
i (t,p,ξξξ ) subject to ξi = ξ

cv,A
i , (4.3.7)

and uB
i (t,p,ξξξ

cv,B
,ξξξ

cc,B
)≡ min

ξξξ∈[ξξξ cv,B,ξξξ cc,B]
f cv,B
i (t,p,ξξξ ) subject to ξi = ξ

cv,B
i . (4.3.8)

Since (4.3.6) holds, the feasible set of the optimization problem in (4.3.8) is a subset of

the feasible set of the optimization problem in (4.3.7). Furthermore, since f cv,A
i (t,p,ξξξ )≤

f cv,B
i (t,p,ξξξ ) for all ξξξ ∈ XB(t), it holds that uA

i (t,p,ξξξ
cv,A

,ξξξ
cc,A

) ≤ uB
i (t,p,ξξξ

cv,B
,ξξξ

cc,B
).

Similarly, if we consider any ξξξ
cv,A

,ξξξ
cc,A ∈ XA(t) and ξξξ

cv,B
,ξξξ

cc,B ∈ XB(t) such that

ξξξ
cv,A ≤ ξξξ

cv,B ≤ ξξξ
cc,B ≤ ξξξ

cc,A and ξ
cc,A
i = ξ

cc,B
i ,

it is readily verified that

oA
i (t,p,ξξξ

cv,A
,ξξξ

cc,A
)≥ oB

i (t,p,ξξξ
cv,B

,ξξξ
cc,B

).

Thus, Condition II in Proposition 4.3.10 is satisfied.

Remark 4.3.12. Theorem 4.3.11 implies that if the convex/concave envelopes (i.e. the
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tightest possible relaxations) of x0 and f(t, ·, ·) for all t ∈ I are available, then these en-

velopes will translate into the tightest possible state relaxations generated by the new ap-

proach in this chapter. Note that these envelopes for x0 and f will not necessarily translate

into envelopes for x.

The following corollary shows that any functions ũ and õ that satisfy Assumptions 2.4.11 and 2.4.12

can be embedded into the new ODE relaxation approach, and that doing so always yields

state relaxations that are at least as tight as those obtained by the approach by Scott and

Barton [2] of solving (2.4.1) with (2.4.2) embedded. Note that this corollary does not spec-

ify any particular choice of (ũ, õ). Corollary 4.3.15 then shows that our new relaxations are

at least as tight as SBM relaxations when (ũ, õ) are specialized to generalized McCormick

relaxations.

Corollary 4.3.13. Consider functions (xcv,A
0 ,xcv,B

0 ,xcc,A
0 ,xcc,B

0 ) as in Proposition 4.3.10,

with XA := X and XB := X (where X was described by Definition 2.4.2). Consider func-

tions ũ, õ : I×P×Rnx ×Rnx → Rnx that satisfy Assumptions 2.4.11 and 2.4.12. Consider

the interval flattening functions ri,L and ri,U for each i ∈ {1, ..,nx} from Definition 2.4.3.

Consider the function v defined in (4.2.2). Define functions uA,oA,uB,oB : I×P×Rnx ×

Rnx → Rnx so that, for each i ∈ {1, ...,nx} and each (t,p,ξξξ cv
,ξξξ

cc
) ∈ I×P×Rnx×Rnx ,

uA
i (t,p,ξξξ

cv
,ξξξ

cc
) := ũi(t,p,ri,L(ξξξ

cv
,ξξξ

cc
)),

oA
i (t,p,ξξξ

cv
,ξξξ

cc
) := õi(t,p,ri,U(ξξξ

cv
,ξξξ

cc
)),

uB
i (t,p,ξξξ

cv
,ξξξ

cc
) := min

ααα∈[−1,1]nx
ũi(t,p,v(ααα,ξξξ

cv
,ξξξ

cc
),v(ααα,ξξξ

cv
,ξξξ

cc
)) subject to αi =−1,

and oB
i (t,p,ξξξ

cv
,ξξξ

cc
) := max

ααα∈[−1,1]nx
õi(t,p,v(ααα,ξξξ

cv
,ξξξ

cc
),v(ααα,ξξξ

cv
,ξξξ

cc
)) subject to αi =+1.
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Define functions fcv, fcc : I×P×Rnx → Rnx for which

fcv(t,p,ξξξ ) := ũ(t,p,ξξξ ,ξξξ ) and fcc(t,p,ξξξ ) := õ(t,p,ξξξ ,ξξξ ). (4.3.9)

Let (xcv,A,xcc,A) be a solution of (2.4.1) with (xcv
0 ,xcc

0 ,u,o) := (xcv,A
0 ,xcc,A

0 ,uA,oA). Let

(xcv,B,xcc,B) be a solution of (2.4.1) with (xcv
0 ,xcc

0 ,u,o) := (xcv,B
0 ,xcc,B

0 ,uB,oB). Then,

(uB,oB) are the special case of (4.2.3) with (fcv, fcc) given by (4.3.9), this choice of (fcv, fcc)

satisfies Assumption 4.2.1, and (xcv,A,xcc,A) and (xcv,B,xcc,B) are both valid state relax-

ations for (2.3.1). Moreover, for any (t,p) ∈ I×P,

xcv,A(t,p)≤ xcv,B(t,p)≤ xcc,B(t,p)≤ xcc,A(t,p).

Proof. We proceed by verifying all conditions of (uA,oA,uB,oB) in Proposition 4.3.10

with XA(t)≡XB(t) :=X(t). Since the functions ũ and õ satisfy Assumptions 2.4.11 and 2.4.12,

it follows that for a.e. t ∈ I, the mappings ũ(t, ·, ·, ·) and õ(t, ·, ·, ·) are relaxation functions

for f(t, ·, ·) on P×X(t) as defined in [79, Definition 5.3 and Remark 5.4]. Then, according

to Lemma 2.4.11 in [39], fcv and fcc defined in (4.3.9) satisfy Assumption 4.2.1. Thus, uB

and oB are indeed the special case of (4.2.3) with (4.3.9) embedded, and are Scott–Barton

right-hand side functions as in Definition 2.4.9, according to Propositions 4.3.1 and 4.3.2

and Lemmata 4.3.6 and 4.3.8. According to Lemmata 10 and 11 in [2], uA and oA are

also Scott–Barton right-hand side functions. Hence, Condition I in Proposition 4.3.10 is

satisfied, and (xcv,A,xcc,A) and (xcv,B,xcc,B) are valid state relaxations.

Next, we verify Condition II in Proposition 4.3.10. Consider any i ∈ {1, ...,nx}, any
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p ∈ P, and a.e. t ∈ I. Consider any ξξξ
cv,A

,ξξξ
cc,A

,ξξξ
cv,B

,ξξξ
cc,B ∈ X(t) such that

ξξξ
cv,A ≤ ξξξ

cv,B ≤ ξξξ
cc,B ≤ ξξξ

cc,A and ξ
cv,A
i = ξ

cv,B
i . (4.3.10)

Let (ξ̂ξξ
cv,A

, ξ̂ξξ
cc,A

) := ri,L(ξξξ
cv,A

,ξξξ
cc,A

). According to Definition 2.4.3 of ri,L,

ξ̂
cv,A
i = ξ̂

cc,A
i = ξ

cv,A
i ,

ξ̂
cv,A
j = ξ

cv,A
j , and ξ̂

cc,A
j = ξ

cc,A
j , ∀ j ∈ {1, ...,nx} and j ̸= i.

(4.3.11)

Since ξξξ
cv,B ≤ ξξξ

cc,B, according to the reformulation (4.2.4),

uB
i (t,p,ξξξ

cv,B
,ξξξ

cc,B
)≡ min

ξξξ∈[ξξξ cv,B,ξξξ cc,B]
ũi(t,p,ξξξ ,ξξξ ) subject to ξi = ξ

cv,B
i .

Let ξξξ
∗,B be an optimal solution of the optimization problem above. It follows that ξξξ

cv,B ≤

ξξξ
∗,B ≤ ξξξ

cc,B and ξ
∗,B
i = ξ

cv,B
i . Moreover, since (4.3.10) and (4.3.11) hold,

ξ
∗,B
i = ξ

cv,B
i = ξ

cv,A
i = ξ̂

cv,A
i = ξ̂

cc,A
i ,

ξ̂
cv,A
j = ξ

cv,A
j ≤ ξ

cv,B
j ≤ ξ

∗,B
j ≤ ξ

cc,B
j ≤ ξ

cc,A
j = ξ̂

cc,A
j , ∀ j ∈ {1, ...,nx} and j ̸= i.

Thus, ξ̂ξξ
cv,A
≤ ξξξ

∗,B ≤ ξ̂ξξ
cc,A

. Since Assumption 2.4.12 holds for (ũ, õ) and ξ̂ξξ
cv,A

, ξ̂ξξ
cc,A
∈

X(t),

ũi(t,p, ξ̂ξξ
cv,A

, ξ̂ξξ
cc,A

)≤ ũi(t,p,ξξξ
∗,B

,ξξξ
∗,B

),

Since (ξ̂ξξ
cv,A

, ξ̂ξξ
cc,A

) := ri,L(ξξξ
cv,A

,ξξξ
cc,A

) by definition, it follows that

ũi(t,p,ri,L(ξξξ
cv,A

,ξξξ
cc,A

))≤ uB
i (t,p,ξξξ

cv,B
,ξξξ

cc,B
),
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which implies that

uA
i (t,p,ξξξ

cv,A
,ξξξ

cc,A
)≤ uB

i (t,p,ξξξ
cv,B

,ξξξ
cc,B

).

Similarly, if we instead assume ξ
cc,A
i = ξ

cc,B
i , it can be verified that

oA
i (t,p,ξξξ

cv,A
,ξξξ

cc,A
)≥ oB

i (t,p,ξξξ
cv,B

,ξξξ
cc,B

).

Thus, the claimed result follows from Proposition 4.3.10.

Remark 4.3.14. The corollary above applies the same state bounds (xL,xU) to both re-

laxation systems “A” and “B”. We remark that, as a straightforward extension of Propo-

sition 4.3.10 and Corollary 4.3.13, the following tightness result holds. Consider state

bounds (xL,A,xL,B,xU,A,xU,B) as in Proposition 4.3.10, and, informally, consider a method

for constructing appropriate (ũ, õ) that permits any choice of state bounds. Suppose that

we construct (ũB, õB) based on (xL,B,xU,B) and construct (ũA, õA) based on (xL,A,xU,A).

Then, using (ũB, õB) in our new ODE relaxation approach will necessarily lead to state

relaxations that are at least as tight as those obtained by using (ũA, õA) in the Scott–Barton

method [2].

The following corollary shows that if fcv and fcc in Assumption 4.2.1 are constructed

using McCormick relaxations, then the state relaxations obtained by the new approach are

guaranteed to be at least as tight as the SBM relaxations [2].

Corollary 4.3.15. Consider the setup of Corollary 4.3.13, except with (ũ, õ) chosen to be

the generalized McCormick relaxations [6] (ũgMC, õgMC) for f. Then, (xcv,A,xcc,A) and
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(xcv,B,xcc,B) are both valid state relaxations for (2.3.1). Moreover, for any (t,p) ∈ I×P,

xcv,A(t,p)≤ xcv,B(t,p)≤ xcc,B(t,p)≤ xcc,A(t,p).

Proof. According to Section 4.2 in [2] and Theorem 2.4.32 in [39], Assumptions 2.4.11

and 2.4.12 are satisfied with (ũ, õ) := (ũgMC, õgMC). The claimed result then follows from

Corollary 4.3.13.

Observe that (uA,oA) in Corollary 4.3.15 come from the SBM method, while (uB,oB)

come from our new relaxation method (4.2.3) with fcv(t,p,ξξξ ) := ũgMC(t,p,ξξξ ,ξξξ ) and fcc(t,p,ξξξ ) :=

õgMC(t,p,ξξξ ,ξξξ ). Note that by this definition, (fcv, fcc) are standard McCormick relax-

ations [5] of f and satisfy Assumption 4.2.1. Moreover, the tightness result presented in

Remark 4.3.14 also applies here, where the generalized McCormick relaxation method is

used for constructing (ũ, õ) based on any state bounds.

Remark 4.3.16. Theorem 4.3.11 and Corollary 4.3.15 together show that, if relaxations

that are at least as tight as McCormick relaxations [5] of f are embedded into our new ap-

proach, then our new ODE relaxations are guaranteed to be at least as tight as the SBM

relaxations [2]. Thus, our ODE relaxation approach may reduce the number of iterations

required by an overarching global dynamic optimization method. Example 4.6 in Sec-

tion 4.4.2 shows that this is indeed the case for a particular case study. We expect that such

a reduction would benefit an overall deterministic global dynamic optimization algorithm.

4.3.6 Convergence as domain shrinks

In this subsection, we show that state relaxations obtained by the new approach converge

pointwise quadratically (in the sense of Bompadre and Mitsos [68]) to the solution x of
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(2.3.1) as the parametric domain P is subdivided, provided that the supplied relaxations of

x0 and f converge analogously. In order to explicitly describe this dependence on paramet-

ric domain, we introduce the following extended notation for this subsection.

1. For any Q⊆ Rn, let IQ denote the set of all nonempty interval subsets of Q.

2. For any P̃ ∈ IP, let xcv
P̃ (t,p) and xcc

P̃ (t,p) denote state relaxations for (2.3.1) at any

(t,p) on I× P̃, and let xcv
0,P̃(p) and xcc

0,P̃(p) denote convex and concave relaxations of

the initial value function x0 on P̃, respectively.

3. For any P̃∈ IP, let xL
P̃(t) and xU

P̃ (t) denote LR-analytic state bounds for (2.3.1) at any

t ∈ I based on P̃, and denote the interval [xL
P̃(t),x

U
P̃ (t)] as X(t; P̃).

4. Assume for simplicity that D is sufficiently large and there exists a compact D̂ ⊊

D so that for all t ∈ I and P̃ ∈ IP, X(t; P̃) ⊆ D̂. Let fW denote the original ODE

right-hand side function f from (2.3.1) on the domain I×W , where W ∈ IP× ID̂.

Correspondingly, let fcv
W and fcc

W denote relaxations that satisfy Assumption 4.2.1 on

W . Denote the lower and upper bounds of W as wL ∈ Rnx+np and wU ∈ Rnx+np ,

respectively. Then, let wid(W ) := max{wU
i −wL

i : 1≤ i≤ nx +np} denote the width

of W .

5. Let uP̃ and oP̃ denote the functions u and o with P replaced by P̃ ∈ IP.

In the language of [79], the following theorem shows that if the inclusion functions

{xL
P̃,x

U
P̃}P̃∈IP have at least first-order convergence in P, uniformly on I, if the scheme of

estimators {xcv
0,P̃,x

cc
0,P̃}P̃∈IP has second-order pointwise convergence in P, and if the scheme

of right-hand side relaxations {fcv
W , fcc

W}W∈IP×ID̂ has second-order pointwise convergence in

P× D̂, uniformly on I, then the scheme of state relaxations {xcv
P̃ ,xcc

P̃ }P̃∈IP has second-order

pointwise convergence, uniformly on I.
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Theorem 4.3.17. Suppose that Assumption 4.2.1 holds with each P̃∈ IP in place of P, and

suppose that all of the following conditions are satisfied.

I. For some κ0 > 0, for all P̃ ∈ IP and p ∈ P̃,

∥xcc
0,P̃(p)−xcv

0,P̃(p)∥∞ ≤ κ0wid(P̃)2. (4.3.12)

II. For some κf > 0, for all W ∈ IP× ID̂ and (t,p,ξξξ ) ∈ I×W ,

∥fcc
W (t,p,ξξξ )− fcv

W (t,p,ξξξ )∥∞ ≤ κfwid(W )2. (4.3.13)

III. For some κB > 0, for all t ∈ I and P̃ ∈ IP,

wid(X(t; P̃))≤ κBwid(P̃). (4.3.14)

IV. For some l > 0, for all t ∈ I, p ∈ P, and ξξξ
A
,ξξξ

B ∈ D̂,

∥f(t,p,ξξξ A
)− f(t,p,ξξξ B

)∥∞ ≤ l∥ξξξ A−ξξξ
B∥∞. (4.3.15)

Consider any solution (xcv
P̃ ,xcc

P̃ ) of the ODE system (2.4.1) with (4.2.3) embedded, with P̃

in place of P. Then, for all t ∈ I, P̃ ∈ IP, and p ∈ P̃,

∥xcc
P̃ (t,p)−xcv

P̃ (t,p)∥∞ ≤
(
κ0 +2(t f − t0)κf max(1,κ2

B)
)

exp(l(t f − t0))wid(P̃)2. (4.3.16)

Proof. Consider any fixed i∈{1, ...,nx}, t ∈ I, P̃∈ IP, and p∈ P̃ throughout. Since (4.3.13)

91



Ph.D. Thesis – Y. Song McMaster University – Chemical Engineering

holds, for any τ ∈ [t0, t] and ξξξ ∈ X(τ; P̃),

f cc
i,P̃×X(τ;P̃)(τ,p,ξξξ )− f cv

i,P̃×X(τ;P̃)(τ,p,ξξξ )≤ κfwid(P̃×X(τ; P̃))2

= κf max
(
wid(P̃),wid(X(τ; P̃))

)2
.

Furthermore, since (4.3.14) holds, for any τ ∈ [t0, t] and ξξξ ∈ X(τ; P̃),

f cc
i,P̃×X(τ;P̃)(τ,p,ξξξ )− f cv

i,P̃×X(τ;P̃)(τ,p,ξξξ )≤ κf max
(
wid(P̃),wid(X(τ; P̃))

)2

≤ κf max
(
wid(P̃),κBwid(P̃)

)2

= κf max
(
1,κ2

B
)
wid(P̃)2.

(4.3.17)

Consider any nonempty interval [ξξξ cv
,ξξξ

cc
] ⊆ X(τ; P̃). Denote particular optimal solutions

of the optimization problems of ui,P̃(τ,p,ξξξ
cv
,ξξξ

cc
) and oi,P̃(τ,p,ξξξ

cv
,ξξξ

cc
) in (4.2.4) as ξξξ

∗,ui

and ξξξ
∗,oi , respectively. Then,

oi,P̃(τ,p,ξξξ
cv
,ξξξ

cc
)−ui,P̃(τ,p,ξξξ

cv
,ξξξ

cc
) = f cc

i,P̃×X(τ;P̃)(τ,p,ξξξ
∗,oi)− f cv

i,P̃×X(τ;P̃)(τ,p,ξξξ
∗,ui)

= f cc
i,P̃×X(τ;P̃)(τ,p,ξξξ

∗,oi)− fi,P̃×X(τ;P̃)(τ,p,ξξξ
∗,oi)

+
(

fi,P̃×X(τ;P̃)(τ,p,ξξξ
∗,ui)− f cv

i,P̃×X(τ;P̃)(τ,p,ξξξ
∗,ui)

)
+
(

fi,P̃×X(τ;P̃)(τ,p,ξξξ
∗,oi)− fi,P̃×X(τ;P̃)(τ,p,ξξξ

∗,ui)
)
.

(4.3.18)

Combining (4.3.15), (4.3.17), and (4.3.18), we have that for any τ ∈ [t0, t] and any [ξξξ
cv
,ξξξ

cc
]⊆
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X(τ; P̃),

oi,P̃(τ,p,ξξξ
cv
,ξξξ

cc
)−ui,P̃(τ,p,ξξξ

cv
,ξξξ

cc
)≤ f cc

i,P̃×X(τ;P̃)(τ,p,ξξξ
∗,oi)− f cv

i,P̃×X(τ;P̃)(τ,p,ξξξ
∗,oi)

+
(

f cc
i,P̃×X(τ;P̃)(τ,p,ξξξ

∗,ui)− f cv
i,P̃×X(τ;P̃)(τ,p,ξξξ

∗,ui)
)

+
(

fi,P̃×X(τ;P̃)(τ,p,ξξξ
∗,oi)− fi,P̃×X(τ;P̃)(τ,p,ξξξ

∗,ui)
)

≤ 2κf max(1,κ2
B)wid(P̃)2 + l∥ξξξ cc−ξξξ

cv∥∞.

(4.3.19)

Now, we obtain the convergence properties of {xcv
P̃ ,xcc

P̃ }P̃∈IP using the Gronwall-Bellman

Inequality (as presented in [100, Lemma A.1]). Expressing (2.4.1) in integral form yields:

xcc
i,P̃(t,p)− xcv

i,P̃(t,p) = xcc
0,i,P̃(p)− xcv

0,i,P̃(p)+
∫ t

t0

(
ẋcc

i,P̃(τ,p)− ẋcv
i,P̃(τ,p)

)
dτ

≤ xcc
0,i,P̃(p)− xcv

0,i,P̃(p)

+
∫ t

t0

(
oi,P̃(τ,p,x

cv
P̃ (τ,p),xcc

P̃ (τ,p))−ui,P̃(τ,p,x
cv
P̃ (τ,p),xcc

P̃ (τ,p))
)
dτ.

(4.3.20)

Since Theorem 4.3.3 shows that [xcv
P̃ (τ,p),xcc

P̃ (τ,p)] ⊆ X(τ; P̃) and since (4.3.19) holds,

combining (4.3.19) and (4.3.20) yields

xcc
i,P̃(t,p)− xcv

i,P̃(t,p)≤ xcc
0,i,P̃(p)− xcv

0,i,P̃(p)+
∫ t

t0

(
2κf max

(
1,κ2

B
)
wid(P̃)2)dτ

+
∫ t

t0

(
l∥xcc

P̃ (τ,p)−xcv
P̃ (τ,p)∥∞

)
dτ.

Furthermore, since (4.3.12) holds, since xcc
P̃ (t,p) ≥ xcv

P̃ (t,p) as shown in Theorem 4.3.7,

and since the inequality above holds for any i ∈ {1, ...,nx},

∥xcc
P̃ (t,p)−xcv

P̃ (t,p)∥∞ ≤
(
κ0 +2(t f − t0)κf max(1,κ2

B)
)
wid(P̃)2

+
∫ t

t0

(
l∥xcc

P̃ (τ,p)−xcv
P̃ (τ,p)∥∞

)
dτ.
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Applying the Gronwall-Bellman Inequality yields

∥xcc
P̃ (t,p)−xcv

P̃ (t,p)∥∞ ≤
(
κ0 +2(t f − t0)κf max(1,κ2

B)
)

exp(l(t− t0))wid(P̃)2

≤
(
κ0 +2(t f − t0)κf max(1,κ2

B)
)

exp(l(t f − t0))wid(P̃)2.

This convergence property will be illustrated in Example 4.2 in Section 4.4.

Remark 4.3.18. The inequality (4.3.19) shows that the functions (u,o) described by (4.2.4)

have the (1,2)-convergence property of [79, Definition 5.15]. This property was originally

established for the generalized McCormick relaxations [6]. Since this beneficial conver-

gence property also holds for our new (u,o), it follows immediately that all benefits of the

SBM relaxations [2] established in [79] also hold for our new optimization-based state

relaxations. These benefits include: (a) a potentially smaller convergence prefactor of

(xcv,xcc) in (4.3.16), which could aid branch-and-bound convergence, and (b) that the

relaxations (xcv(t, ·),xcc(t, ·)) could get tighter over time t under appropriate conditions.

These follow directly from proofs of analogous results in [79], except with the SBM (u,o)

functions replaced by our new (u,o) defined in (4.2.4).

Remark 4.3.19. If McCormick relaxations are used for (fcv, fcc) in Assumption 4.2.1, then

the quadratic pointwise convergence of our new state relaxations is directly implied by

combining Corollary 4.3.15 and [79, Corollary 5.21]. Corollary 4.3.15 shows that the new

state relaxations are at least as tight as the SBM relaxations [2] whose quadratic pointwise

convergence was established in [79, Corollary 5.21]. However, Theorem 4.3.17 applies

even when non-McCormick relaxations are used for (fcv, fcc) such as αBB relaxations.

This theorem newly demonstrates that quadratic pointwise convergence of (fcv, fcc) will
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translate into quadratic pointwise convergence of (xcv,xcc).

4.3.7 Comparison to established relaxation methods

In this subsection, we compare our new ODE relaxation approach (namely (2.4.1) with

(4.2.3) or (4.2.4) embedded) to established ODE relaxation approaches. Firstly, we com-

pare the new approach to the SBM method [2] based on strength of assumptions, tightness,

computational complexity, and difficulty of implementation. Then, we present a formula-

tion that embeds αBB relaxations [9] of f into our new approach, which we compare to

the dynamic αBB relaxations proposed by Papamichail and Adjiman [1]. We choose these

particular comparisons since these established methods are also based on differential in-

equalities and interval bounds, and are the most similar to our new method. This similarity

enables relatively straightforward apples-to-apples comparisons in which we may assume,

for example, that all approaches have access to the same interval bounds [xL(t),xU(t)] for

(2.3.1). Lastly, we discuss how our new approach compares with the class of discretize-

then-relax approaches.

Comparison to the SBM method

Our new approach ((2.4.1) with (u,o) defined in (4.2.3)) has less stringent assumptions on

relaxations of the original right-hand side f than the SBM method [2]. While the SBM

method only admits generalized McCormick relaxations [6] of f to construct Scott–Barton

right-hand sides (u,o), our new (u,o) formulation (4.2.3) admits any convex and concave

relaxations of f that satisfy Assumption 4.2.1, such as McCormick relaxations [5], αBB

relaxations [9], affine relaxations, the pointwise tightest among multiple relaxations, and

convex envelopes.
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Corollary 4.3.15 shows that our new state relaxations are at least as tight as the SBM

relaxations [2], when Assumption 4.2.1 is satisfied by applying McCormick relaxations [5]

to f. Thus, embedding our new state relaxations into a branch-and-bound procedure for

global optimization will yield less conservative lower bounds of global optimal objective

values of (1.1.1), which we expect will translate into fewer branch-and-bound iterations

required to reach global optimality. Moreover, Theorem 4.3.11 shows that tighter relax-

ations of f will always translate into tighter relaxations for x in our new approach, which

incentivizes seeking tighter relaxations for closed-form functions in order to relax dynamic

systems. As will be shown in Example 4.6 in Section 4.4.2, embedding convex envelopes

of the original right-hand side f in our new ODE relaxation approach may significantly

reduce the number of branch-and-bound iterations, compared to the SBM relaxations, in a

global dynamic optimization instance of (1.1.1).

Regarding computational complexity, the SBM method [2] constructs Scott–Barton

right-hand sides (u,o) in (2.4.1) as closed-form functions, while our new approach con-

structs new (u,o) as optimal-value functions (4.2.3). When these are evaluated naively

using numerical NLP solvers, evaluating relaxations in our new approach will generally

be more computationally expensive than the SBM relaxation method, as will be seen in

Example 4.4. However, the computational efficiency of our new approach may be further

improved. For example, the optimal solutions in the formulation (4.2.3) (as opposed to

(4.2.4)) at a time t may still be optimal in the near future. Thus, warm-started optimiza-

tion could be particularly useful in this setting. Since the optimization problems in (4.2.3)

and (4.2.4) are convex, the ODE system (2.4.1) with (4.2.3) or (4.2.4) embedded can be

reformulated as an equivalent nonlinear complimentarity system (NCS), using a Karush-

Kuhn-Tucker complementarity reformulation of (4.2.3) or (4.2.4). In principle, this NCS

96



Ph.D. Thesis – Y. Song McMaster University – Chemical Engineering

could be solved with efficient NCS solvers such as SICONOS [117]. We expect that, if

active constraints and optimal solutions in (4.2.3) or (4.2.4) are managed during integra-

tion analogously to integrators such as DFBAlab [118], then an optimal implementation of

our new approach would be roughly as efficient as the SBM method for evaluating state

relaxations. Furthermore, since our new relaxations are tighter in general, we expect that

our new approach would ultimately lead to less computational time in deterministic global

dynamic optimization.

Implementation of the SBM method requires ODE solvers and a generalized McCormick

relaxation package such as the C++ library MC++ or EAGO [119] in Julia [95]. A naive

implementation of our new approach that solves the optimization problems in (4.2.3) nu-

merically will additionally require a convex NLP solver such as IPOPT [120], fmincon in

MATLAB for smooth (fcv, fcc), or Nesterov’s level method [40] for nonsmooth (fcv, fcc).

This would be a significant computational expense. Currently, EAGO in Julia is the only

open-source branch-and-bound global optimization library in which custom relaxations

may be used, but a stripped-down version of IPOPT is currently the only NLP solver avail-

able in JuMP [121] in Julia. An active-set tracking approach as discussed in the previous

paragraph would remove the need and computational expense of the NLP solver.

Comparison to dynamic αααBB relaxations

In this subsection, we summarize an established αBB dynamic relaxation method by Pa-

pamichail and Adjiman [1], and then consider applying our new approach by embedding

αBB relaxations [9] of the original right-hand side f into (4.2.3) and (2.4.1). These ap-

proaches are then compared.
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The αBB class of relaxation methods applies to twice-differentiable nonconvex func-

tions, and constructs valid convex relaxations by adding a convex quadratic term with suf-

ficiently large curvature to the original nonconvex function. Papamichail and Adjiman [1]

describe a variant of αBB relaxations that relaxes ODE solutions x of (2.3.1) as follows.

For each i ∈ {1, ...,nx} and each p ∈ [pL,pU], define

xcv
i (t f ,p) := xi(t f ,p)+

np

∑
m=1

α
i
m(pm− pL

m)(pm− pU
m), (4.3.21)

where the coefficients α i
1, ...,α

i
np

are ultimately determined so that for each p, the Hessian

matrix of xcv
i (t f ,p) with respect to p is positive semidefinite. To compute appropriate co-

efficients ααα i, Papamichail and Adjiman [1] first compute interval bounds of of the Hessian

matrix of xi(t f , ·) on P by applying Harrison’s bounding method [69] to the second-order

sensitivity system of x with respect to p, as summarized in [13, Appendix]. With these

bounds, appropriate ααα i values in (4.3.21) are then computed using the Scaled Gerschgorin

Theorem (see [9, Theorem 3.13]). In this chapter, Papamichail and Adjiman’s relaxation

method will be referred to as the PA method.

Our new approach provides another way to use αBB relaxations to generate state relax-

ations, as follows. Instead of constructing state relaxations directly using αBB relaxations

as in (4.3.21), we construct αBB relaxations fcv(t, ·, ·) and fcc(t, ·, ·) for the original right-

hand side f(t, ·, ·) for each t ∈ I as follows, according to the approach of [9]. Consider the

αBB parameters ααα
i,cv
p ,ααα i,cc

p : I→ Rnp and ααα
i,cv
x ,ααα i,cc

x : I→ Rnx for each i ∈ {1, ...,nx} as

functions of t, to be determined subsequently. Then, for each i ∈ {1, ...,nx}, each t ∈ I,
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each p ∈ [pL,pU], and each ξξξ ∈ [xL(t),xU(t)], define

f cv
i (t,p,ξξξ ) := fi(t,p,ξξξ )+

np

∑
m=1

α
i,cv
m,p(t)(pm− pL

m)(pm− pU
m)

+
( nx

∑
m=1

α
i,cv
m,x (t)(ξm− xL

m(t))(ξm− xU
m(t))

)
,

f cc
i (t,p,ξξξ ) := fi(t,p,ξξξ )−

np

∑
m=1

α
i,cc
m,p(t)(pm− pL

m)(pm− pU
m)

−
( nx

∑
m=1

α
i,cc
m,x(t)(ξm− xL

m(t))(ξm− xU
m(t))

)
.

(4.3.22)

If the αBB parameters ααα i(t) := (ααα i,cv
p (t),ααα i,cv

x (t),ααα i,cc
p (t),ααα i,cc

x (t)) in (4.3.22) are com-

puted for each t by the Scaled Gerschgorin Theorem as described in [9] based on the in-

tervals [pL,pU] and [xL(t),xU(t)], then f cv
i (t, ·, ·) and f cc

i (t, ·, ·) are αBB relaxations of

fi(t, ·, ·) on P×X(t), and we may then obtain state relaxations in our new approach by em-

bedding (4.3.22) into (4.2.3), which is then embedded into (2.4.1). We may also compute

t-invariant αBB parameters ααα i := (ααα i,cv
p ,ααα i,cv

x ,ααα i,cc
p ,ααα i,cc

x ) by a simpler approach, when the

original right-hand side function f in (2.3.1) is t-invariant. First, we compute state bounds

xL and xU for (2.3.1) on I using Harrison’s bounding method. Then, uniform state bounds

x,x ∈ Rnx are chosen so that x ≤ xL(t) ≤ xU(t) ≤ x, for all t ∈ I. Finally, t-invariant ααα i

in (4.3.22) are computed based on the intervals [pL,pU] and [x,x]. These two approaches,

based on αBB relaxations of f with either t-invariant ααα i or t-varying ααα i, will be respectively

referred to as the OB-αTI method and OB-αTV method.

The OB-αTI method uses our new approach, but is similar to the PA method in the

sense that both of them require computing ααα once for use in (4.3.21) and (4.3.22). For a

fair comparison in this chapter, we consider both methods to employ natural interval exten-

sion [48] and Harrison’s bounding method [69] for computing interval bounds whenever
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necessary, and to employ the Scaled Gerschgorin Theorem for computing parameters ααα .

Since the two methods differ in structure, it is difficult to draw a general conclusion about

which method is more efficient in general, and which method would yield tighter state re-

laxations. However, as will be shown in Example 4.2, in one instance of (2.3.1), our new

OB-αTI method requires less computational time for evaluating state relaxations, and also

yields tighter state relaxations than the PA method.

Intuitively, the OB-αTV method would yield tighter state relaxations than the OB-αTI

method, since for each t ∈ I, the OB-αTV method computes less conservative ααα(t) for

use in (4.3.22) based on [xL(t),xU(t)], while the OB-αTI method computes a constant ααα

throughout the time horizon, based on the more conservative bounds [x,x]. On the other

hand, the OB-αTI method would be less computationally expensive in general than the

OB-αTV method, since the OB-αTV method must compute values of ααα for each time

step.

Comparison to discretize-then-relax approaches

Unlike the discretize-then-relax approaches outlined in Section 4.1, our new approach con-

structs state relaxations using an auxiliary ODE system. Thus, the new approach is able

to exploit the adaptive time-stepping and error control of numerical ODE solvers when

evaluating state relaxations. Moreover, compared to the Auxiliary Variable Method [50],

our new approach avoids including auxiliary decision variables and constraints when dis-

cretizing the original ODE system (2.3.1). The new approach thereby does not enlarge the

lower bounding problem of (1.1.1) in branch-and-bound, which may be advantageous for

an overarching global optimization method.
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4.4 Implementation and examples

4.4.1 Implementation

A proof-of-concept implementation was developed in MATLAB R2019a to construct and

compute state relaxations for (2.3.1) by solving the auxiliary ODE system (2.4.1) with

(u,o) provided by (4.2.3) (available at https://github.com/kamilkhanlab/ob-ode-relaxations).

In this implementation, Harrison’s bounding method [69] is employed via operator over-

loading to compute state bounds (xL,xU) automatically. McCormick relaxations [5] were

implemented via operator overloading, for use in automatically constructing (fcv, fcc) that

satisfy Assumption 4.2.1. For any inputs (t,p,ξξξ cv
,ξξξ

cc
) ∈ I×P×Rnx×Rnx and any user-

defined (fcv, fcc), the optimal-value functions u and o in (2.4.1) are evaluated naively by

solving the convex optimization problems in (4.2.3) using the local optimization solver

fmincon with an optimality tolerance of 10−6. Finally, the auxiliary ODE system (2.4.1)

with u and o embedded is solved using the ODE solver ode23 with an absolute tolerance

of 10−4 and a relative tolerance of 10−4. An analogous implementation for the SBM relax-

ation method [2] was also developed for comparison. All computation in this section was

performed on a Dell desktop computer with two 3.00 GHz Intel Core i7-9700 CPUs and

16.0 GB of RAM.

4.4.2 Numerical examples

This subsection presents numerical examples that compare our new approach to the SBM

method [2], the dynamic αBB relaxation method [1] discussed in Section 4.3.7, and a

discretize-then-relax approach employing the state-of-the-art global optimization solver
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BARON [60]. Table 4.1 lists the various relax-then-discretize approaches that will be com-

pared in this subsection, along with abbreviations for each approach that will be employed

from here on.

Table 4.1: A list of considered state relaxation methods and their abbreviations.

Method Abbreviation

From Scott and Barton [2] with generalized McCormick relaxations SBM
From Papamichail and Adjiman [1] PA
New optimization-based method with embedded convex envelopes OB-ENV
New method with embedded McCormick relaxations OBM
New method with embedded αBB relaxations and time-varying α OB-αTV
New method with embedded αBB relaxations and constant α OB-αTI

Firstly, the following example illustrates the versatility of our new relaxation formu-

lation, by showing that, unlike the SBM relaxations [2], we may use the αBB relaxation

method [9] to construct right-hand side relaxations (fcv, fcc) according to (4.3.22). In this

example, our new OB-αTI approach requires less computational time, and yields signif-

icantly tighter ODE convex relaxations than the PA method [1]. This example also il-

lustrates the quadratic pointwise convergence of our new state relaxations established in

Theorem 4.3.17.

Example 4.2. Let P := [−2,2], and I := [0,0.15], and consider the following instance of

(2.3.1) with one state variable x and one parameter p ∈ P:

ẋ(t) = p(x2−1), t ∈ I,

x(0) =−2.
(4.4.1)

The value t f := 0.15 was chosen arbitrarily. As a function of p, x(0.15, ·) is a nontrivial

nonlinear function, as shown in Figure 4.1. Since nx = 1 in this example, the right-hand
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side functions u and o from (4.2.3) were constructed in closed form using (4.2.5). The

functions ( f cv, f cc) in (4.2.5) were constructed using αBB relaxations both with t-varying

ααα and t-invariant ααα following the procedure in Section 4.3.7. The Hessian system of x(t, p)

in (4.4.1) with respect to p was hard-coded in MATLAB, according to [13, Appendix]. Har-

rison’s bounding method was applied to this system to obtain the Hessian bounds. Thus,

state relaxations of the solution x(0.15, ·) of (4.4.1) on P were generated numerically in

MATLAB by the OB-αTI method, OB-αTV method, and PA method [1], as summarized

in Section 4.3.7. When implementing the OB-αTV and OB-αTI methods, we integrated

Harrison’s state bounds and state relaxations for (4.4.1) at all mesh points pi ∈ P simulta-

neously, since doing so avoids repeatedly computing state bounds when evaluating each

(xcv(0.15, pi),xcc(0.15, pi)). Table 4.2 presents the resulting CPU times for evaluating

(xcv(0.15, pi),xcc(0.15, pi)) at one mesh point pi by the three ODE relaxation methods.

For the OB-αTV and OB-αTI methods, per-mesh-point CPU times were obtained by tak-

ing the total evaluation time for all mesh points pi simultaneously, dividing this by the

number of mesh points, and averaging this figure over ten runs. For both the PA and

OB-αTI methods, the total CPU time includes the time for computing the constant ααα in

(4.3.21) and (4.3.22), respectively. Figure 4.1 depicts the resulting relaxations of x(0.15, ·),

along with the original ODE solution for comparison. Observe that, for both the OB-αTI

and OB-αTV methods, the generated relaxations do indeed appear to be valid convex un-

derestimators and concave overestimators, as is guaranteed by Theorems 4.3.7 and 4.3.9.

Furthermore, the OB-αTV relaxations are evidently tighter than the OB-αTI relaxations,

but require more computational effort to evaluate as shown in Table 4.2. This is to be ex-

pected, since the OB-αTV method updates values of ααα for each right-hand side evaluation,

but these time-varying ααα are less conservative than the constant ααα values of the OB-αTI
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method, which ultimately translate into tighter state relaxations through (4.3.22), (4.2.5),

and (2.4.1). Observe that in this case, the new OB-αTI convex relaxations are significantly

tighter than the PA convex relaxations [1], and also require less computational time than the

PA relaxations as shown in Table 4.2. This could be because evaluating the Hessian bounds

of x(t, p) in (4.4.1) with respect to p is computationally expensive. We nevertheless note

that since the PA method and the OB-αTI method differ so much in structure, it is difficult

here to draw a general conclusion.

Table 4.2: Average computational times for eval-
uating state relaxations (xcv(0.15, p),xcc(0.15, p))
for (4.4.1) in Example 1.

State relaxation method CPU time (seconds) *

OB-αTV 0.0006
OB-αTI 0.0002
PA 0.0006

* Each CPU time here was averaged over 10 runs.

To illustrate convergence properties of the new OB-αTV relaxations to (4.4.1) as the

parametric subdomain shrinks, we compute state relaxations {xcv
P(k),x

cc
P(k)} at t := 0.15 on

P(k) := [−1,−1+2k+1] for each k ∈ {−10,−9, ...,0} by the OB-αTV method. Extending

the “width” concept from Section 4.3.6, define the width of the enclosure XC
k formed by the

state relaxations on each parametric subinterval P(k) as wid(XC
k ) :=maxp∈P(k)

(
xcc

P(k)(0.15, p)−

xcv
P(k)(0.15, p)

)
. Figure 4.2 plots wid(XC

k ) against wid(Pk), and shows that the new αBB

state relaxations do indeed exhibit second-order pointwise convergence in this case. This

is guaranteed by Theorem 4.3.17, since αBB relaxations of closed-form smooth functions

have second-order pointwise convergence [36].
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Figure 4.1: The solution x(0.15, p) (solid black) of the parametric ODE (4.4.1) from Ex-
ample 4.2, plotted against p along with corresponding state relaxations obtained by the
OB-αTI method (dotted blue), the OB-αTV method (dashed red), and the PA method [1]
(squared green).

Figure 4.2: A plot on logarithmic axes of wid(XC
k ) := supp∈P(k)

(
xcc

P(k)(0.15, p) −
xcv

P(k)(0.15, p)
)

vs. wid(P(k)) := 2k+1 (blue circles) for Example 4.2, for k :=
−10,−9, ...,0, with (xcv

P(k),x
cc
P(k)) generated by the OB-αTV method, along with a refer-

ence line (dotted red) corresponding to second-order pointwise convergence.
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In the following example, we show that the discrepancy between our new ODE relax-

ations and the original ODE system may decrease over time, as discussed in Remark 4.3.18.

Example 4.3. Let P := [−1.2,1.2] and I := [0,0.7], and consider the following instance of

(2.3.1) with one state variable x and one parameter p ∈ P:

ẋ(t) = x2− ex, ∀t ∈ I,

x(0) = p− p3

3
.

(4.4.2)

The functions xcv
0 and xcc

0 in (2.4.1) were constructed as McCormick relaxations [5, 35] of

the initial-value function x0(p) := p− p3

3 from (4.4.2), with the known convex and concave

envelopes for p 7→ p3 [52] employed. For each t ∈ [0.1,0.7], state relaxations xcv(t, ·) and

xcc(t, ·) for the solution x(t, ·) of the ODE (4.4.2) were generated numerically on P by the

new OB-αTV method in MATLAB. Thus, define the convex ODE relaxation discrepancy

εcv as

ε
cv(t) := max

p∈P

(
x(t, p)− xcv(t, p)

)
,

and define the concave ODE relaxation discrepancy εcc as

ε
cc(t) := max

p∈P

(
xcc(t, p)− x(t, p)

)
.

Figure 4.3 depicts εcv and εcc. We can see that as t increases, both εcv and εcc initially

increase and then decrease with respect to t.

In the following example, we show that if McCormick relaxations [5] of the original

right-hand side f are used to define fcv and fcc in (4.2.3), then the corresponding new OBM

approach yields state relaxations that are at least as tight as the SBM relaxations [2], as
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Figure 4.3: A plot of the convex state relaxation discrepancy εcv(t) := maxp∈P
(
x(t, p)−

xcv(t, p)
)

(dotted blue) and the concave state relaxation discrepancy εcc(t) :=
maxp∈P

(
xcc(t, p)− x(t, p)

)
(dashed red) vs. time t ∈ [0.1,0.7], with (xcv,xcc) generated

by the OB-αTV method, for Example 4.3.

guaranteed by Corollary 4.3.15.

Example 4.4. Consider the following variant of an established anaerobic digestion process

model [81, 122]. Let p := (p1, p2, ..., p8) denote parameters with known bounds listed in

Table 4.3. Let I := [0,2], and consider the following problem instance of (2.3.1):

ẋ1(t) = (µ1(t)−0.2)x1(t), x1(0) = 0.5,

ẋ2(t) = (µ2(t)−0.2)x2(t), x2(0) = p8,

ẋ3(t) = 0.4(5− x3(t))− p1µ1(t)x1(t), x3(0) = 1,

ẋ4(t) = 0.4(80− x4(t))+ p2µ1(t)x1(t)− p3µ2(t)x2(t), x4(0) = 5,

ẋ5(t) =−0.4x5(t)−q(t)+ p4µ1(t)x1(t)+ p5µ2(t)x2(t), x5(0) = 40,

(4.4.3)
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with

µ1(t) =
1.2x3(t)

x3(t)+7.1
, µ2(t) =

0.74x4(t)
x4(t)+ p7 +(x4(t))2/256

,

φ(t) = x5(t)+ x4(t)−34+
p6µ2(t)x4(t)

19.8
, q(t) = 19.8(x5(t)+ x4(t)−50−0.5φ(t)).

Table 4.3: The interval bounds of uncertain pa-
rameters p in Example 4.4.

i Lower bounds of pi Upper bounds of pi

1 22.14 62.14
2 80.0 146.5
3 238 298
4 30.6 70.6
5 313.6 373.6
6 423 483
7 4.28 14.28
8 0.84 1.16

For the solution x(2, ·) of (4.4.3) at t f = 2, our new OBM relaxations were generated

numerically by applying our MATLAB implementation, and the SBM relaxations were

generated analogously for comparison. Figures 4.4 and 4.5 present two cross-sectional

plots, comparing the new OBM relaxations, the SBM relaxations, and the original ODE

solution. Table 4.4 summarizes the resulting CPU times for evaluating state relaxations

(xcv(2,p),xcc(2,p)) for (4.4.3) at one p, both using the SBM method and the OBM method.

Observe that in both Figures 4.4 and 4.5, our new OBM relaxations are at least as tight as

the SBM relaxations; this was shown to hold generally in Corollary 4.3.15. However,

the new OBM relaxations took longer to evaluate than the SBM relaxations as shown in

Table 4.4, largely because the proof-of-concept implementation of the OBM method de-

scribed in Section 4.4.1 naively solves convex optimization problems with NLP solvers, at
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each evaluation. We expect that this implementation may be improved with the techniques

outlined in Section 4.3.7.

Table 4.4: Average computational times for eval-
uating state relaxations (xcv(2,p),xcc(2,p)) for
(4.4.3) in Example 4.4.

State relaxation method CPU time (seconds) *

OBM 327.0
SBM 2.6

* Each CPU time here was averaged over 10 runs.

Figure 4.4: A cross-section at (p1, p2, p3, p4, p5, p6, p8) :=
(42.14,116.5,269,50.6,343.6,450,1) of the solution x5(2, ·) (solid black) of the ODE
system (4.4.3) from Example 4.4, along with corresponding state relaxations obtained by
the new OBM method (dashed red) and by the SBM method [2] (dotted blue).

The following example shows that our new approach can employ convex envelopes for

f to yield state relaxations that are at least as tight as the SBM relaxations [2], as discussed

in Remark 4.3.12. For comparison, we also applied the OB-αTI method, the OB-αTV

method, and the PA method [1] as summarized in Section 4.3.7 to this example. In this
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Figure 4.5: A cross-section at (p1, p2, p3, p4, p5, p6, p7) :=
(42.14,116.5,269,50.6,343.6,450,9.28) of the solution x5(2, ·) (solid black) of the
ODE system (4.4.3) from Example 4.4, along with corresponding state relaxations
obtained by the new OBM method (dashed red) and by the SBM method [2] (dotted blue).

case, the OB-αTI relaxations and OB-αTV relaxations ultimately reduce to the predefined

Harrison state bounds, and the PA method ultimately fails, since Harrison interval bounds

of the Hessian of the ODE solution x explode as t increases.

Example 4.5. For P := [−1.2,−0.2] and I := [0,0.9], consider the following instance of

(2.3.1) with one state variable x and one parameter p ∈ P:

ẋ(t) = x4−3x2− x+0.4, t ∈ I,

x(0) = p− p3

3
.

(4.4.4)

Define a set S := {(ξ ,ξ L,ξ U)∈ R3 :−1.5≤ ξ L ≤ ξ ≤ ξ U ≤ 0.5}. With (xL,xU) denot-

ing Harrison state bounds for (4.4.4), it is empirically verified that for each t ∈ I, −1.5 ≤

xL(t) ≤ xU(t) ≤ 0.5. Consider the first-order derivative function f ′ : ξ 7→ 4ξ 3−6ξ −1 of
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the right-hand side f : ξ 7→ ξ 4− 3ξ 2− ξ + 0.4 of (4.4.4). Following the procedures pre-

sented in [5,51], we constructed functions f cv,env, f cc,env : S→R so that for any [ξ L,ξ U]⊆

[−1.5,0.5], the mappings f cv,env(·,ξ L,ξ U) and f cc,env(·,ξ L,ξ U) are respectively convex

and concave envelopes of f on [ξ L,ξ U]. For each (ξ ,ξ L,ξ U) ∈ S, f cv,env and f cc,env are

thus evaluated as follows:

• if ξ L ≥−
√

2
2 ,

f cv,env(ξ ,ξ L,ξ U) :=
f (ξ U)− f (ξ L)

ξ U−ξ L (ξ −ξ
L)+ f (ξ L),

f cc,env(ξ ,ξ L,ξ U) := f (ξ ),

• if ξ U ≤−
√

2
2 ,

f cv,env(ξ ,ξ L,ξ U) := f (ξ ),

f cc,env(ξ ,ξ L,ξ U) :=
f (ξ U)− f (ξ L)

ξ U−ξ L (ξ −ξ
L)+ f (ξ L),

• if ξ L <−
√

2
2 < ξ U, with ξ A := −ξ U−

√
9−2(ξ U)2

3 and ξ B := −ξ L−
√

9−2(ξ L)2

3 ,

f cv,env(ξ ,ξ L,ξ U) :=



f (ξ U)− f (ξ L)
ξ U−ξ L (ξ −ξ L)+ f (ξ L), if ξ A ≤ ξ L,

f (ξ ), if ξ A > ξ L and ξ ≤ ξ A,

f ′(ξ A)(ξ −ξ A)+ f (ξ A), if ξ A > ξ L and ξ > ξ A,

f cc,env(ξ ,ξ L,ξ U) :=



f (ξ U)− f (ξ L)
ξ U−ξ L (ξ −ξ L)+ f (ξ L), if ξ B ≥ ξ U,

f (ξ ) if ξ B < ξ U and ξ > ξ B,

f ′(ξ B)(ξ −ξ B)+ f (ξ B), if ξ B < ξ U and ξ ≤ ξ B.
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Then, appropriate functions ( f cv, f cc) for use in (4.2.5) were constructed by setting

f cv(t, p,ξ )≡ f cv,env(ξ ,xL(t),xU(t)) and f cc(t, p,ξ )≡ f cc,env(ξ ,xL(t),xU(t)).

The functions xcv
0 and xcc

0 in (2.4.1) were constructed as McCormick relaxations [5, 35] of

the initial-value function x0(p)≡ p− p3

3 from (4.4.4), with the known convex and concave

envelopes for p 7→ p3 [52] employed. State relaxations for the solution x(0.9, ·) of the

ODE (4.4.4) were generated numerically on P by the OB-ENV method (in which our new

approach has ( f cv,env, f cc,env) embedded), the SBM method [2], the new OB-αTI method,

and the new OB-αTV method in MATLAB. Note that since nx = 1, the OBM method here

reduces to the SBM method as discussed in Remark 4.2.5. In this case, the PA method [1]

failed to give valid state relaxations, since the required Harrison interval bounds of the Hes-

sian of x in (4.4.4) exploded as t increased. Table 4.5 summarizes the average CPU times

for evaluating state relaxations (xcv(0.9, p),xcc(0.9, p)) for (4.4.4) at one p, using each of

these methods. Figure 4.6 presents the corresponding state relaxations, along with the orig-

inal ODE solution x(0.9, ·). Observe that the OB-ENV relaxations are tighter than the the

SBM relaxations, which is guaranteed in general as discussed in Remark 4.3.12.The OB-

ENV relaxations also required significantly less computational time to evaluate than the

SBM relaxations, as shown in Table 4.5. One reason for this may be that the envelopes

( f cv,env, f cc,env) could be entered in closed-form, while constructing McCormick relax-

ations of the original right-hand side of (4.4.4) required access to operator overloading. We

also note that both the OB-αTV relaxations and the OB-αTI relaxations reduce to Harri-

son state bounds in this example. The reason is that for any p ∈ P, our new αBB-based

ODE relaxation xcv(τ, p) coincided with xL(τ) at some τ < t f , and then xcv(t, p) remained

identical with xL(t) for t > τ due to the if-statements in (2.4.1). A similar situation arose
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with xcc and xU.

Table 4.5: Average computational times for evalu-
ating state relaxations (xcv(0.9, p),xcc(0.9, p)) for
(4.4.4) in Example 4.5.

State relaxation method CPU time (seconds) *

OB-αTI 0.008
OB-αTV 0.010
OB-ENV 0.004
SBM 0.012
PA failed

* Each CPU time here was averaged over 10 runs.

In the following example, we describe how a dynamic optimization problem instance

was solved to global optimality in Julia v1.4.2 [95], both with the OB-ENV relaxations

and the SBM relaxations [2] for an embedded ODE system. This implementation only ad-

dresses the nx = 1 case, in which Remark 4.2.4 shows that (4.2.3) reduces to the simpler

(4.2.5). The results show that, to reach global optimality in this case, the new OB-ENV re-

laxations require significantly fewer branch-and-bound iterations than the SBM relaxations,

for this example. The same problem instance was also supplied to the state-of-the-art global

optimization solver BARON v19.12.7 [60], under the Auxiliary Variable Method [50].

Example 4.6. Consider the following instance of the global dynamic optimization problem

(1.1.1) with (4.4.4) embedded:

min
p∈[−1.2,−0.2]

−3(x(0.9, p))3 +(1+ p)x(0.9, p) (4.4.5)

A proof-of-concept implementation for solving (4.4.5) to global optimality was developed

in Julia v1.4.2 [95]. EAGO v0.4.1 [119] was used to apply a branch-and-bound frame-

work [27], without any range reduction. As described in [27], a branch-and-bound method
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Figure 4.6: The solution x(0.9, ·) (solid black) of the ODE (4.4.4) on P from Example
4.5, along with corresponding state relaxations obtained by the OB-ENV method (squared
green), the SBM method [2] (dashed red), and the OB-αTV method (dotted blue). (In this
example, the OB-αTI relaxations overlap with the OB-αTV relaxations, and the OB-αTV
convex relaxations overlap with the SBM convex relaxations).

computes upper and lower bounds of the globally optimal objective value and progres-

sively refines these bounds as the decision space is subdivided. EAGO is currently the

only open-source branch-and-bound framework that admits user-defined upper and lower

bounding procedures. In our implementation, on any subinterval P̃ ⊆ [−1.2,−0.2], the

upper bounding procedure solves the problem (4.4.5) locally using IPOPT [120], and the

lower bounding procedure is as follows:

1. Compute state relaxations for (4.4.4) on P̂ using the OB-ENV method or the SBM

method [2].

2. Based on these state relaxations, compute a convex relaxation of the mapping p 7→

−3(x(0.9, p))3 +(1+ p)x(0.9, p) on P̂ using the generalized McCormick relaxation

method [6].
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3. Minimize this convex relaxation on P̂, yielding a valid lower bound of globally opti-

mal objective values of (4.4.5).

In the upper and lower bounding procedures above, we employ EAGO to compute natural

interval extensions [48] and generalized McCormick relaxations [6] when necessary, we

employ the ODE solver BS3() from the package DifferentialEquations v6.15.0 [123] to

solve related ODE systems, and we employ JuMP v0.21.3 [121] as an interface with the

local NLP solver IPOPT v3.13.2 [120], which is used for all local minimization.

While IPOPT was developed to solve smooth NLPs, it was applied here even for the

nonsmooth lower bounding NLPs, as it is the only NLP solver implemented in JuMP. We

observed that, when attempting to minimize nonsmooth convex relaxations, IPOPT usu-

ally iterated from initial points to nonsmooth optimal points within several steps, and then

often remained at or near the optimal points without terminating, perhaps unsuccessfully

reducing the dual infeasibility due to the nonsmoothness. In this proof-of-concept imple-

mentation, we sidestepped this issue by permitting at most 10 iterations, and considering

the objective value at this point to be acceptable. All non-default IPOPT settings in our

implementation are listed in Table 4.6, and were adapted from [124] wherein Watson et al.

applied IPOPT to a nondifferentiable model of a gas liquefaction process. Any necessary

gradients were approximated by the centered finite difference method with a step length

of 10−6. The absolute and relative convergence tolerances of EAGO’s branch-and-bound

were set to be 10−4 and 10−3, respectively. Both absolute and relative tolerances of the

ODE solver BS3() were set to be 10−8.

Using this implementation, we solved the problem (4.4.5) to numerical global opti-

mality both with the OB-ENV and SBM methods [2] used to relax (4.4.4). Table 4.7
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Table 4.6: Non-default IPOPT options specified
for nonsmooth convex minimization, for Exam-
ple 4.6.

IPOPT option Value

tol 10−5

max iter 10
mu strategy adaptive

hessian approximation limited-memory

summarizes the corresponding CPU times and numbers of iterations required for branch-

and-bound, averaged over ten runs. Observe that the new OB-ENV method required less

CPU time and about 30% fewer iterations than the SBM method [2] to obtain the globally

optimal solution.

Table 4.7: Global optimization results for the problem (4.4.5) in Example 4.6.

State relaxation method Glob. optim. obj. * CPU time (seconds) * # iterations in B&B *

OB-ENV −0.06068 7.3 23
SBM −0.06068 9.7 33

* Each number here is the average of 10 runs. The abbreviation “glob. optim. obj.” stands for
“global optimal objective value”, and “B&B” stands for “branch-and-bound”.

For comparison, we also attempted to solve (4.4.5) with BARON v19.12.7 [60] in

GAMS v30.3.0, using a discretize-then-relax approach. We discretized the embedded

parametric ODE system (4.4.4) by the forward Euler method with predefined time steps

t0, t1, ..., tk and an even step size ∆t := 0.9
k , and included auxiliary variables ξ0,ξ1, ...,ξk

with bounds [−1.5,0.5] at each ti to represent the state x, according to [35]. Thus, the
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dynamic optimization problem (4.4.5) was approximated by the NLP:

min
p,ξ0,ξ1,...,ξk

−3ξ
3
k +(1+ p)ξk

s.t. ξ j = ξ j−1 +∆t(ξ 4
j−1−3ξ

2
j−1−ξ j−1 +0.4), ∀ j ∈ {1, ...,k},

ξ0 = p− p3

3
,

−1.2≤ p≤−0.2,

−1.5≤ ξ j ≤ 0.5, ∀ j ∈ {1, ...,k}.

(4.4.6)

This NLP was formulated in GAMS and solved with BARON both with k = 10 and k= 100,

and both with and without range reduction. Recall that our global dynamic optimiza-

tion implementation in Julia did not incorporate range reduction, for a fair comparison

between different ODE relaxation methods. The corresponding computational results for

these solves are summarized in Table 4.8. Observe that with range reduction, for both

k = 10 and k = 100, BARON converged to a globally optimal solution for the approxima-

tion (4.4.6) of (4.4.5). Moreover, the globally optimal objective value−0.06090 of k = 100

is closer to the value −0.06068 obtained by our Julia implementation with a sequential ap-

proach, as was reported in Table 4.7. This is expected; the discretized formulation (4.4.6)

inevitably introduces discretization error, which typically becomes smaller as the step size

∆t shrinks. Without range reduction, BARON failed to solve the problem to global opti-

mality. For k = 10, BARON reported that the “problem is numerically sensitive”; we were

unable to determine why. BARON’s documentation suggests that in this case, the reported

“best possible” value is likely a correct globally optimal objective value, but this was not

true for this example. For k = 100, the obtained upper and lower bounds for the globally

optimal objective value failed to converge within 500 seconds.
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4.5 Conclusions and future work

Based on Scott and Barton’s general ODE relaxation framework [2], we have proposed a

new approach for generating convex and concave relaxations for the solutions of noncon-

vex parametric ODE systems (2.3.1), for use in deterministic global dynamic optimization.

This approach furnishes new right-hand sides (u,o) in the Scott–Barton relaxation frame-

work (2.4.1) as optimal-value functions defined by (4.2.3). Prior to this work, the SBM

relaxations summarized in Section 2.4 were the only established way to actually gener-

ate valid relaxations within the framework (2.4.1). While the SBM relaxations require the

generalized McCormick relaxations of f, our new approach admits any relaxations of f

that satisfy Assumption 4.2.1, such as affine relaxations, αBB relaxations [9], McCormick

relaxations, envelopes, and even the pointwise tightest among multiple relaxations. More-

over, Theorem 4.3.11 shows that tighter relaxations for x0 and f in (2.3.1) translate into

tighter state relaxations for x; this in turn incentivizes seeking tighter relaxations for closed-

form functions such as f. Corollary 4.3.15 moreover shows that if McCormick relaxations

are applied in our approach, then our new state relaxations are at least as tight as the SBM

relaxations [2] that are based on generalized McCormick relaxations. These properties

are beneficial in the context of global dynamic optimization, since tighter relaxations lead

to fewer iterations required by branch-and-bound-based deterministic optimization algo-

rithms. Theorem 4.3.17 shows that our new ODE relaxations also inherit second-order

pointwise convergence from the relaxations for f, thus mitigating the cluster effect in an

overarching global dynamic optimization method. Proof-of-concept implementations of

these relaxations were developed in MATLAB, and a proof-of-concept global optimiza-

tion solver was formulated in Julia for the nx = 1 case, by combining our new relaxation

approach with EAGO, JuMP, and DifferentialEquations.
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We remark that our proof-of-concept implementation in MATLAB may not yet be

appropriate for general usage in deterministic global dynamic optimization. Firstly, this

implementation solves convex optimization problems at each right-hand side evaluation,

which invokes significant computational expense. Potential methods for improving compu-

tational efficiency, including warm-started optimization and KKT reformulation, were out-

lined in Section 4.3.7. Secondly, since nonsmooth relaxations (fcv, fcc) such as McCormick

relaxations may be embedded, and since MATLAB’s NLP solvers assume smoothness,

these solvers may perform poorly when solving the NLPs embedded in (4.2.3). Thus,

nonsmooth convex optimization solvers such as Nesterov’s level method [40] would be

preferred for handling nonsmooth (fcv, fcc), but are not yet implemented here. Thirdly,

in order to handle the right-hand sides’ discontinuities in (xcv,xcc) introduced by the if-

statements in (2.4.1), an event detection scheme in [2] would be preferred. In the current

implementation, such discontinuities are represented by if-statements in MATLAB, which

may introduce numerical difficulties during integration [125].

Future work will involve developing this implementation further to compute the pro-

posed ODE relaxations more efficiently. Developing a method for computing subgradients

for solutions of (2.4.1) would also be particularly useful, since subgradients are impor-

tant when obtaining lower bounds for the globally optimal objective value of (1.1.1) using

off-the-shelf convex optimization solvers.
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Chapter 5

Extending Optimization-Based Convex

Relaxations for Dynamic Process Models

This chapter, reproduced from the manuscript in preparation [93], describes two exten-

sions of the optimization-based ODE relaxations proposed in Chapter 4. When simulating

the optimization-based relaxation system, the MATLAB implementation in Chapter 4 nu-

merically solves convex optimization problems for each right-hand side evaluation, which

may require expensive computational efforts. In the first extension, it is shown that if the

employed relaxations of the original right-hand side functions have pre-known monotonic-

ity, then closed-form extrema can be identified directly, and thus the optimization-based

ODE relaxation system’s right-hand side can be efficiently evaluated in closed form. A nu-

merical example then suggests that by using this method, the resulting optimization-based

ODE relaxations may be significantly tighter, yet as efficient as the SBM relaxations. The

second extension is a new ODE relaxation approach based on the optimization-based relax-

ations, which constructs different convex optimization problems at the relaxation system’s

right-hand side. These convex optimization problems are constructed from relaxing the
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original right-hand side using the effective Auxiliary Variable Method (AVM) [8, 50]. It

is shown that the new AVM-based ODE relaxations are guaranteed to be at least as tight

as the optimization-based relaxations and in some cases significantly tighter, as illustrated

by several numerical examples based on a proof-of-concept implementation in Julia. The

right-hand side of the AVM-based system may be evaluated in closed form in certain cases

as well.

5.1 Introduction

This chapter considers the original ODE system (2.3.1) with a factorable right-hand side

function f. As in [6, Definition 8], a factorable function can be represented as a finite com-

position of predefined intrinsic functions. The Auxiliary Variable Method (AVM) [8, 50]

and the McCormick relaxation method [5] are two methods for automatically constructing

convex and concave relaxations for general factorable functions. The AVM was originally

proposed for relaxing nonconvex optimization problems to yield convex programs, by first

introducing auxiliary variables to capture any nonlinearities, and then bounding these vari-

ables by appropriate convex and concave relaxations. The AVM is employed in the state-

of-the-art deterministic global optimization solver BARON [28], and has been shown to be

empirically efficient for computing lower bounds in global optimization. As will be shown

in Definition 5.4.6 below, the AVM may also be extended to construct convex relaxations

for factorable functions as optimal-value functions (in the sense of e.g. [114]). The Mc-

Cormick relaxation method [5] and its variants [6,7,33,34] typically construct closed-form

convex relaxations by recursively applying relaxation rules for intrinsic functions, without

introducing auxiliary variables. It has been shown [35] that in certain cases, using Mc-

Cormick relaxations in global optimization may lead to significant computational savings

122



Ph.D. Thesis – Y. Song McMaster University – Chemical Engineering

over the AVM. On the other hand, the AVM may in general yield tighter relaxations than

the McCormick relaxations, by effectively handling repeated terms in a factorable func-

tion [7, 45].

For an original ODE system (2.3.1) with a factorable f, this chapter proposes two exten-

sions of the optimization-based (OB) state relaxations proposed in Chapter 4, for efficiently

computing tight state relaxations for use in deterministic algorithms of global dynamic op-

timization. In the first extension, we show that if the employed relaxations of f in the OB

relaxation formulation have known monotonicity on the considered box domain, then an

optimal solution may be directly identified on the box. Thus, the right-hand side of the

OB relaxation system can be efficiently evaluated in closed form; no need to use numerical

NLP solvers. This method would be much more efficient than numerically solving convex

NLPs at each right-hand side evaluation as in [3]. In Example 5.1 below, convex envelopes

with known monotonicity of an original ODE right-hand side f are applied for constructing

the OB relaxations. The results show that the OB relaxations are tighter and also as effi-

cient as the SBM relaxations, which may ultimately improve computational efficiency in

an overarching global optimization method.

In the second extension, we propose a new relax-then-discretize state relaxation ap-

proach in the Scott–Barton framework, which constructs a third new class of right-hand

side functions after the SBM relaxations and OB relaxations. Similarly to the OB re-

laxation system’s right-hand side, these new right-hand side functions are optimal-value

functions with convex optimization problems embedded, but are constructed very differ-

ently. As mentioned above, the OB relaxation convex NLPs employ any relaxations of f as

objective functions and employ box constraints. On the other hand, the new convex NLPs
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here are motivated by handling a factorable f using the AVM [8,50], and employ linear ob-

jective functions and nonlinear convex constraints. In the new formulation, f is factorized,

and new convex NLPs are constructed from bounding each factor with convex and concave

relaxations of the corresponding intrinsic function, and also employing the box constraints

in the OB relaxation formulation. Thus, this new formulation extends the efficient AVM

from computing lower bounds in global optimization to effectively handling factorable

ODE right-hand sides for constructing state relaxations. The new state relaxations (re-

ferred as AVM-based relaxations) have desirable tightness properties over the established

relaxations [2, 3] in the Scott–Barton framework. As a necessity for establishing these re-

sults, we prove rigorously that for any given factorable function, the AVM relaxations are

guaranteed to be at least as tight as the multivariate McCormick relaxations [7], and the

multivariate McCormick relaxations are guaranteed to be at least as tight as the classical

(univariate) McCormick relaxations [5]. These were briefly discussed in [7, Section 4], but

not yet rigorously proved. By leveraging these results, it is shown that the new AVM-based

state relaxations are at least as tight as both the SBM relaxations and the OB relaxations de-

rived from the McCormick relaxations of f (denoted as the optimization–based–McCormick

(OBM) relaxations). This is promising since McCormick relaxations are commonly used

when tight relaxations of f are not directly available, and the new AVM-based state relax-

ations are superior to these state relaxations constructed from McCormick relaxations of f.

Furthermore, numerical examples in this chapter suggest that if in practice f has repeated

factors as in Definition 5.4.26 or if convex envelopes of multivariate intrinsic functions

are available, then the AVM-based relaxations may be significantly tighter than the SBM

and OBM relaxations. We will also outline a proof-of-concept implementation of the new

AVM-based relaxations in Julia [95], which numerically solves convex NLPs at each time
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step. This implementation may require expensive computational effort, similarly to the im-

plementation for OB relaxations in [3]. We note that the techniques for efficiently solving

ODE right-hand side convex NLPs in [3, Section 5.7.1] may also be useful here. Besides, if

the factors of f are bounded by affine relaxations, then the right-hand side convex NLPs re-

duce to linear programming (LP) problems. Example 5.5 below shows that by solving LPs,

the AVM-based relaxations can be evaluated much more efficiently than solving convex

NLPs at the relaxation system’s right-hand side, yet without compromising much tightness

of the resulting relaxations. Lastly, the right-hand side of the AVM-based relaxation sys-

tem may also be efficiently evaluated in closed form by leveraging the monotonicity of the

employed relaxations for each factor, as will be seen in Example 5.5.

The remainder of this chapter is organized as follows. Section 5.2 summarizes the OB

relaxation formulation proposed in Chapter 4. Section 5.3 proposes the first contribution

of this chapter, which constructs closed-form OB relaxation formulation’s right-hand side

based on known monotonicity of relaxations of f. Section 5.4 then proposes the new AVM-

based state relaxation approach. Established relaxation methods for factorable functions are

firstly summarized, and the new state relaxation formulation is then presented, along with

a comparison to the OB relaxation formulation. Next, theoretical properties of the new

approach are established, including solutions’ uniqueness, valid bounding and convexity

properties, and desirable tightness properties. Lastly, a proof-of-concept implementation

in Julia is outlined, and several numerical examples are presented to illustrate the tightness

properties of the new AVM-based state relaxations.
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5.2 Background: optimization-based relaxation formula-

tion

This section summarizes the optimization-based state relaxation formulation proposed in

Chapter 4. Consider the Scott–Barton framework (2.4.1) in Section 2.4. The optimization-

based relaxation formulation furnishes Scott–Barton right-hand side functions (u,o) as

optimal-value functions (in the sense of e.g. [114]), constructed as follows. Define a func-

tion v : Rnx×Rnx×Rnx → Rnx so that for all i ∈ {1, ...,nx} and ααα,ξξξ
cv
,ξξξ

cc ∈ Rnx ,

vi(ααα,ξξξ
cv
,ξξξ

cc
) := 1

2 [(αi +1)ξ cc
i − (αi−1)ξ cv

i ]. (5.2.1)

Intuitively, vi(ααα,ξξξ
cv
,ξξξ

cc
) is a linear combination of ξξξ

cv and ξξξ
cc, weighted in a particular

way based on the value of ααα . Consider functions fcv, fcc : I×P×Rnx →Rnx that satisfy the

following assumption.

Assumption 5.2.1 (from [3]). Suppose that functions fcv, fcc : I×P×Rnx→Rnx satisfy the

following conditions:

1. fcv and fcc are continuous,

2. fcv(t,p, ·) and fcc(t,p, ·) are Lipschitz continuous on Rnx , uniformly over (t,p) ∈

I×P, and

3. for a.e. t ∈ I, the functions fcv(t, ·, ·) and fcc(t, ·, ·) are, respectively, convex and con-

cave relaxations of f(t, ·, ·) in (2.3.1) on P×X(t).

Then, for each i ∈ {1, ...,nx} and (t,p,ξξξ cv
,ξξξ

cc
) ∈ I×P×Rnx×Rnx , [3] constructs the
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following (ui,oi):

ui(t,p,ξξξ
cv
,ξξξ

cc
) := min

ααα∈[−1,1]nx
f cv
i (t,p,v(ααα,ξξξ

cv
,ξξξ

cc
)) subject to αi =−1,

and oi(t,p,ξξξ
cv
,ξξξ

cc
) := max

ααα∈[−1,1]nx
f cc
i (t,p,v(ααα,ξξξ

cv
,ξξξ

cc
)) subject to αi =+1.

(5.2.2)

Thus, this state relaxation approach is to solve (2.4.1) with (u,o) defined in (5.2.2). Observe

that on a set S := {(t,p,ξξξ cv
,ξξξ

cc
) ∈ I×P×Rnx×Rnx : ξξξ

cv
,ξξξ

cc ∈ X(t) and ξξξ
cv ≤ ξξξ

cc}, the

(ui,oi) in (5.2.2) reduce to

ui(t,p,ξξξ
cv
,ξξξ

cc
)≡ min

ξξξ∈[ξξξ cv,ξξξ cc]
f cv
i (t,p,ξξξ ) subject to ξi = ξ

cv
i ,

and oi(t,p,ξξξ
cv
,ξξξ

cc
)≡ max

ξξξ∈[ξξξ cv,ξξξ cc]
f cc
i (t,p,ξξξ ) subject to ξi = ξ

cc
i .

(5.2.3)

As discussed in [3, Remark 1], for each t ∈ I, fcv(t, ·, ·) and fcc(t, ·, ·) above may be con-

structed as any Lipschitz continuous convex and concave relaxations of f(t, ·, ·) on P×

X(t). Lipschitz continuity on the full space may be enforced by passing to an appro-

priate Lipschitz extension [126]. Note that [3, Theorem 1] guarantees that any solution

(xcv(t,p),xcc(t,p)) of (2.4.1) with (5.2.2) embedded is always within the box X(t). Defin-

ing fcv(t,p, ·) and fcc(t,p, ·) outside X(t) is for the convenience of validating solutions’

theoretical properties.

This state relaxation approach can utilize established convex and concave relaxations

for f including McCormick relaxations [5,6], αBB relaxations [9,49], affine relaxations [4,

35, 44], and convex envelopes. Moreover, tighter such relaxations will necessarily trans-

late into at least as tight state relaxations, as guaranteed in [3, Theorem 5]. Notably, [3,

Corollary 2] shows that using McCormick relaxations [5] of f in this approach necessarily
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yields state relaxations that are at least as tight as the SBM relaxations [2]. In this chap-

ter, we refer to the state relaxations of this approach with any (fcv, fcc) embedded as the

optimization-based (OB) relaxations. Specifically, if (fcv, fcc) are McCormick relaxations,

then the resulting state relaxations will be referred as the optimization-based-McCormick

(OBM) relaxations.

5.3 Using closed-form minima of convex envelopes

When computing the OB relaxations [3], the proof-of-concept-implementation proposed

in [3] numerically solves the optimization problems in (5.2.2) using NLP solvers (e.g.

fmincon in MATLAB or IPOPT [120]). As shown in [3, Example 4], even though the

OB relaxations can be tighter than the SBM relaxations [2], this naive implementation may

require more expensive computational effort, and thus ultimately lead to longer computa-

tional time for an overarching global optimization method. As the first contribution of this

chapter, Example 5.1 below shows that if the relaxations (fcv, fcc) (including envelopes)

employed in (5.2.2) have pre-known monotonicity on the interval X , then (u,o) in (5.2.2)

can be efficiently evaluated in closed forms, by directly identifying optimal solutions of the

right-hand side optimization problems at corners of the box [−1,1]nx . With this method,

the resulting OB relaxations may be equally efficiently evaluated, yet tighter than the SBM

relaxations.

Example 5.1. Let P := [0.1,1.5], and I := [0,2.5], and consider the following instance of

(2.3.1) on I:

ẋ1(t) =
√

x2

x2
1
, ẋ2(t) = x2e−x1,

x1(0) = 1+ p2, x2(0) = p− p3

3
+5.

(5.3.1)
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Harrison’s state bounding method was applied to the ODEs above, and it was empirically

verified that the resulting state bounds xL(t),xU(t)> 0 for each t ∈ I. Define the right-hand

side functions of (5.3.1) as g : ξξξ 7→
√

ξ2/ξ 2
1 and h : ξξξ 7→ ξ2e−ξ1 . Let Ξ = {(ξξξ ,ξξξ L

,ξξξ
U
) ∈

R6 : 0 < ξξξ
L ≤ ξξξ ≤ ξξξ

U}. Following [54, Corollaries 1 and 2], we constructed functions

gcv,env,hcv,env : Ξ→R so that for any ξξξ
L
,ξξξ

U ∈R2 for which 0< ξξξ
L≤ ξξξ

U, gcv,env(·,ξξξ L
,ξξξ

U
)

and hcv,env(·,ξξξ L
,ξξξ

U
) are respectively convex envelopes of g and h on [ξξξ

L
,ξξξ

U
], as follows.

For each (ξξξ ,ξξξ
L
,ξξξ

U
) ∈ Ξ, let

λ1 =
ξ U

2 −ξ2

ξ U
2 −ξ L

2
and λ2 =

ξ2−ξ L
2

ξ U
2 −ξ L

2
,

let α = (ξ L
2 /ξ U

2 )1/6 and then [54, Corollary 1] indicates that

gcv,env(ξξξ ,ξξξ
L,ξξξ

U) :=


λ1(ξ

L
1 )
−2
√

ξ L
2 +λ 3

2 (ξ1−λ1ξ L
1 )
−2
√

ξ U
2 , if ξ L

1 ≤ ξ1 ≤ λ1ξ L
1 +λ2 min{ξ L

1 /α,ξ U
1 },

ξ
−2
1 (λ1(ξ

L
2 )

1/6 +λ2(ξ
U
2 )1/6)3, if (λ1 +λ2/α)ξ L

1 ≤ ξ1 ≤ (λ1α +λ2)ξ
U
1 ,

λ 3
1 (ξ1−λ2ξ U

1 )−2
√

ξ L
2 +λ2(ξ

U
1 )−2

√
ξ U

2 , if λ1 max{ξ L
1 ,αξ U

1 }+λ2ξ U
1 ≤ ξ1 ≤ ξ U

1 ,

let α ′ =− ln(ξ U
2 /ξ L

2 ) and then [54, Corollary 2] indicates that

hcv,env(ξξξ ,ξξξ
L,ξξξ

U) :=


λ1ξ L

2 e−ξ L
1 +λ2e(−ξ1+λ1ξ L

1 )/λ2ξ U
2 , if ξ L

1 ≤ ξ1 ≤ λ1ξ L
1 +λ2 min{ξ L

1 −α ′,ξ U
1 },

e−ξ1(ξ L
2 )

λ1(ξ U
2 )λ2 , if ξ L

1 −λ2α ′ ≤ ξ1 ≤ ξ U
1 +λ1α ′,

λ1e(−ξ1+λ2ξ U
1 )/λ1ξ L

2 +λ2e−ξ U
1 ξ U

2 , if λ1 max{ξ L
1 ,ξ

U
1 +α ′}+λ2ξ U

1 ≤ ξ1 ≤ ξ U
1 .

(5.3.2)

Next, appropriate functions ( f cv
1 , f cv

2 ) for use in (5.2.2) were constructed by setting

f cv
1 (t, p,ξξξ ) := gcv,env(ξξξ ,xL(t),xU(t)) and f cv

2 (t, p,ξξξ ) := hcv,env(ξξξ ,xL(t),xU(t)).

(5.3.3)
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Instead of numerically solving the optimization problems for defining (u1,u2) in (5.2.2)

with (5.3.3) embedded, we now describe how these functions can be evaluated in closed

form in this case, and thus lead to a more efficient evaluation method. We observed

that for several t ∈ I, with slight abuse of notation, for each fixed ξ1 ∈ [xL
1 (t),x

U
1 (t)], the

function gcv,env(ξ1, ·,xL(t),xU(t)) is monotonic increasing on [xL
2 (t),x

U
2 (t)], and for each

fixed ξ2 ∈ [xL
2 (t),x

U
2 (t)], the function hcv,env(·,ξ2,xL(t),xU(t)) is monotonic decreasing on

[xL
2 (t),x

U
2 (t)]. However, due to the complexity of these functions, it is difficult to verify the

mentioned monotonicity rigorously for each t ∈ I; we directly assume such monotonicity

of (gcv,env,hcv,env) for each t ∈ I. Thus, the optimization problems for defining u1 and u2

in (5.2.2) always have optimal solutions ααα∗,u1 := (−1,−1) and ααα∗,u2 := (1,−1), respec-

tively. Therefore, the functions (u1,u2) defined using (5.2.2) with (5.3.3) embedded have

the following closed forms:

u1(t, p,ξξξ cv
,ξξξ

cc
)≡ f cv

1 (t, p,v(ααα∗,u1,ξξξ
cv
,ξξξ

cc
))

and u2(t, p,ξξξ cv
,ξξξ

cc
)≡ f cv

2 (t, p,v(ααα∗,u2,ξξξ
cv
,ξξξ

cc
)).

(5.3.4)

Since there are no available concave envelopes for g and h that have the desirable

monotonicity as (gcv,env,hcv,env) above, we constructed closed-form McCormick concave

relaxations hcc,MC,gcc,MC : Ξ → R as follows. It will be shown that these concave re-

laxations have the required monotonicity for identifying closed-form maxima. For each

(ξξξ ,ξξξ
L
,ξξξ

U
) ∈ Ξ, let

β
g =
−(ξ L

1 +ξ U
1 )

(ξ L
1 ξ U

1 )2
(ξ1−ξ

L)+
1

(ξ L
1 )

2 and β
h =

e−ξ U
1 − e−ξ L

1

ξ U
1 −ξ L

1
(ξ1−ξ

L
1 )+ e−ξ L

1 ,
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and then,

gcc,MC(ξξξ ,ξξξ
L
,ξξξ

U
) := min{

√
ξ2

(ξ U
1 )2

+
√

ξ U
2 β

g−

√
ξ U

2

(ξ U
1 )2

,

√
ξ2

(ξ L
1 )

2 +
√

ξ L
2 β

g−

√
ξ L

2

(ξ L
1 )

2}

and hcc,MC(ξξξ ,ξξξ
L
,ξξξ

U
) := min{e−ξ U

1 ξ2 +ξ
U
2 β

h−ξ
U
2 e−ξ U

1 ,e−ξ L
1 ξ2 +ξ

L
2 β

h−ξ
L
2 e−ξ L

1 }.
(5.3.5)

Note that if ξ U
1 ≡ ξ L

1 , then β h above is defined as e−ξ L
1 . Since ξξξ

L
,ξξξ

U
> 0, on any [ξξξ

L
,ξξξ

U
],

for each fixed ξ1, gcc,MC is monotonic increasing with respect to ξ2, and for each fixed ξ2,

hcc,MC is monotonic decreasing with respect to ξ1. Thus, with the definition:

f cc
1 (t, p,ξξξ ) := gcc,MC(ξξξ ,xL(t),xU(t)) and f cc

2 (t, p,ξξξ ) := hcc,MC(ξξξ ,xL(t),xU(t)),

the optimization problems for defining o1 and o2 in (5.2.2) always have optimal solutions

ααα∗,o1 := (1,1) and ααα∗,o2 := (−1,1), respectively. Therefore, we may construct closed-form

(o1,o2) defined in (5.2.2) as:

o1(t, p,ξξξ cv
,ξξξ

cc
)≡ f cc

1 (t, p,v(ααα∗,o1,ξξξ
cv
,ξξξ

cc
))

and o2(t, p,ξξξ cv
,ξξξ

cc
)≡ f cc

2 (t, p,v(ααα∗,o2,ξξξ
cv
,ξξξ

cc
)).

(5.3.6)

The initial-value functions in (5.3.1) were relaxed using the McCormick relaxation

method, and then the OB relaxation system were constructed by embedding closed-form

(u,o) in (5.3.4) and (5.3.6) into (2.4.1). We computed both the SBM relaxations and the

OB relaxations based on implementations in Julia v1.4.2 [95]. Harrison’s state bounds [69]

(xL,xU) were integrated simultaneously with the relaxation systems. The closed-form

functions (u,o) in (5.3.4) and (5.3.6) were hard-coded. Any necessary computations of

natural interval extension [48] and generalized McCormick relaxations [6] were performed
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via operator overloading using EAGO v0.4.1 [94]. All ODE systems were solved using the

ODE solver BS3() with an absolute tolerance of 10−4 and a relative tolerance of 10−4 from

the package DifferentialEquations v6.15.0 [123]. These computations were performed on a

Dell desktop computer with two 3.00GHz Intel Core i7-9700 CPUs and 16.0 GB of RAM.

Figure 5.1 depicts the resulting state relaxations, along with the original ODE solution

for comparison. Observe that the OB relaxations are mostly visually tighter than the SBM

relaxations [2]. Table 5.1 presents the CPU times for evaluating (xcv(2.5, pi),xcc(2.5, pi))

at one mesh point pi by the considered two state relaxation methods. These per-mesh-

point CPU times were obtained by taking the total evaluation time for all mesh points pi

simultaneously, dividing this by the number of mesh points, and averaging this figure over

ten runs. Observe that both methods roughly took the same CPU time, since both relaxation

systems’ right-hand sides were evaluated in closed form. Thus, the OB relaxations obtained

by this method are tighter, but at the same time as efficient as the SBM relaxations, which

may ultimately improve efficiency for an overarching global optimization method.

Table 5.1: Average computational times for evalu-
ating state relaxations (xcv(2.5, p),xcc(2.5, p)) for
(5.3.1) in Example 5.1.

State relaxation method CPU time (seconds)*

SBM relaxations 0.06
OB relaxations 0.05

* Each CPU time here was averaged over 10
runs, with a sample standard deviation that is much
smaller than the reported average.

For this example, if concave envelopes with desirable monotonicity for g and h are

available, then it is reasonable to expect that using these to construct closed-form (o1,o2)

defined in (5.2.2) would yield further tighter OB relaxations than in Figure 5.1, yet as
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Figure 5.1: The solution x1(2.5, p) (left, solid black) and x2(2.5, p) (right, solid black) of
the parametric ODEs (5.3.1) from Example 5.1, plotted against p along with corresponding
SBM relaxations [2] (dotted blue) and the OB relaxations (dashed red) obtained by solving
(2.4.1) with closed-form (5.3.4) and (5.3.6) embedded. (In the left subfigure, the concave
SBM relaxation overlaps with the new concave relaxation for x1.)

efficient as the SBM relaxations. This efficient evaluation method for OB relaxations is

applicable to an original parametric ODE system with multi-parameters, more than two

state variables, and explicit parameter-dependence at right-hand side, as long as (fcv, fcc)

have pre-known monotonicity on X analogous to this example.

5.4 New state relaxation approach

As the second contribution of this chapter, we now present a new state relaxation approach

for the original parametric ODE system (2.3.1). This approach is extended from the OB

relaxation approach [3], is applicable to a factorable original right-hand side function f, and

yields state relaxations that are at least as tight as the OBM relaxations (OB relaxations de-

rived from McCormick relaxations of f). This section is organized as follows. Section 5.4.1
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gives a definition of factorable functions considered in this chapter, and summarizes several

existing relaxation approaches for factorable functions. Section 5.4.2 presents the new re-

laxation formulation, and Section 5.4.3 describes how this formulation compares to the OB

relaxation formulation. Section 5.4.4 then validates theoretical properties of the new for-

mulation, including solutions’ uniqueness, validity as state relaxations, and tightness. Sec-

tion 5.4.5 outlines a proof-of-concept implementation in Julia, and Section 5.4.6 presents

several numerical examples to illustrate the desirable tightness properties of the new state

relaxations.

5.4.1 Background: convex relaxations of factorable functions

In this subsection, we give a definition of factorable functions employed in this chapter,

and introduce three established convex relaxation methods for factorable functions: the

McCormick relaxation method [5, 6], a formalized Tsoukalas–Mitsos–McCormick relax-

ation method based on multivariate McCormick relaxations [6, 7], and the Auxiliary Vari-

able Method [8, 50]. These methods are useful for developing and validating a new ODE

relaxation approach later.

Definition 5.4.1. Given V ⊆ Rn, a function w : V → R is called a multivariate intrinsic

function if,

1. functions wL,wU : IV → R are available so that for each Ṽ ∈ IV and each v ∈ Ṽ ,

wL(Ṽ )≤ w(v)≤ wU(Ṽ ),

2. functions wcv,wcc : V × IV → R are available so that for each Ṽ ∈ IV , the mappings

wcv(·,Ṽ ) and wcc(·,Ṽ ) are respectively convex and concave relaxations of w on Ṽ ,

and
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3. the following holds:

wL(Ṽ )≤ wcv(v,Ṽ )≤ wcc(v,Ṽ )≤ wU(v,Ṽ ), ∀Ṽ ∈ IV, ∀v ∈ Ṽ . (5.4.1)

For any given Ṽ ∈ IV , we are only interested in evaluating wcv(v,Ṽ ) and wcc(v,Ṽ ) for

each v ∈ Ṽ . Defining (wcv,wcc) on V × IV is for convenience of notation. For any relax-

ations (wcv,A,wcc,A) that do not satisfy (5.4.1), new relaxations (wcv,B,wcc,B) that satisfy

(5.4.1) can be constructed by setting for any Ṽ ∈ IV and any v ∈ Ṽ ,

wcv,B(v,Ṽ ) := max(wL(Ṽ ),wcv,A(v,Ṽ )),

and wcc,B(v,Ṽ ) := min(wU(Ṽ ),wcc,A(v,Ṽ )).

Now, a factorable function considered in this chapter is defined below.

Definition 5.4.2. Given Y ⊆ Rn, a function h : Y → R is factorable if it can be expressed

in terms of a finite number of factors v1, ...,vm such that for any given y ∈ Y ,

1. for each j ∈ {1, ...,m}, let Vj ⊆ R j−1, there exists a multivariate intrinsic function

w j : Y ×Vj→ R such that v j := w j(y,v1: j−1),

2. h(y)≡ vm.

The following assumption is made for any factorable functions considered in this chap-

ter, and is standard in interval analysis [48].

Assumption 5.4.3. Given Y ⊆ Rn, consider a factorable function h : Y → R with related

quantities and functions in Definitions 5.4.2 and 5.4.1. Let V̂1 be a set of null vector, and
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for each Ỹ ∈ IY , for each j ∈ {2, ...,m}, recursively define

V̂j := [wL
1 (Ỹ ,V̂1),wU

1 (Ỹ ,V̂1)]× ...× [wL
j−1(Ỹ ,V̂j−1),wU

j−1(Ỹ ,V̂j−1)],

and assume that V̂j ⊆Vj.

Definition 5.4.2 above generalizes the conventional definition of factorable functions

in [5, 6, 35]. [6, Definition 8] considers a factorable function as a finite composition of

binary addition, binary multiplication, and known univariate intrinsic functions. Defini-

tion 5.4.2 considers a factorable function as a finite composition of known multivariate

intrinsic functions. These multivariate intrinsic functions may include, but are not limited

to, these operations in [6, Definition 8]. In fact, nearly every function that can be rep-

resented finitely on a computer is factorable in the sense of [6, Definition 8]. However,

Definition 5.4.2 has the advantage that it allows using known tight convex relaxations of

multivariate intrinsic functions for constructing convex relaxations for a factorable func-

tion, as illustrated in the following example.

Example 5.2 (adapted from [53]). Consider a function φ : [0,1]× [0.1,2]× [0,1]→ R:

φ : (y1,y2,y3) 7→ (
√

y1− y2)exp(−y3)+ y1y2.

The conventional definition [6, Definition 8] of a factorable function may factorize φ as

follows: for each y,

v1 =
√

y1, v2 =−y2, v3 = v1 + v2,

v4 =−y3, v5 = exp(v4), v6 = v3v5,

v7 = y1y2, v8 = v6 + v7, φ(y) = v8.
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Observe that the factor representation above involves the following nonlinear univariate

intrinsic functions:

w1 : y1 7→
√

y1 and w5 : v4 7→ exp(v4).

With known convex and concave relaxations of the nonlinear (w1,w5) above, the Mc-

Cormick relaxation method [5, 6] computes convex relaxations for φ by recursively apply-

ing relaxation rules for univariate composition, binary addition, and binary multiplication.

On the other hand, Definition 5.4.2 in this chapter may factorize φ using another different

factor representation: for each y,

v1 = (
√

y1− y2)exp(−y3), v2 = y1y2, v3 = v1 + v2, φ(y) = v3. (5.4.2)

Observe that this factor representation involves the following nonlinear multivariate intrin-

sic functions:

w1 : (y1,y2,y3) 7→ (
√

y1− y2)exp(−y3) and w2 : (y1,y2) 7→ y1y2. (5.4.3)

Convex and concave envelopes of w1 are available in [53, Example 3], and w2 may be re-

laxed using the well-known McCormick envelope [5]. However, the standard McCormick

relaxation method as in [6, Definition 9] cannot utilize the tight relaxations of such multi-

variate (w1,w2) for computing φ ’s relaxations. On the other hand, in concert with Defini-

tion 5.4.2, the following Tsoukalas–Mitsos–McCormick relaxation method [6, 7] can relax

φ with the factor representation (5.4.2). This method can utilize any convex and con-

cave relaxations, even convex envelopes, for known multivariate intrinsic functions such

as (w1,w2) in (5.4.3), and recursively compose these relaxations via the multivariate Mc-

Cormick relaxation rule [7, Theorem 2], as defined below.
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Definition 5.4.4 (adapted from [6] and [7]). Given Y ⊆ Rn, consider a factorable function

h : Y → R and the related quantities and functions in Definitions 5.4.2 and 5.4.1. Denote

the Tsoukalas–Mitsos–McCormick (TMC) relaxations of h as functions hcv,TMC,hcc,TMC :

Y × IY →R, where for each Ỹ ∈ IY and y ∈ Ỹ , hcv,TMC(y,Ỹ ) and hcc,TMC(y,Ỹ ) are defined

by the following procedure:

1. Initialize vcv and vcc as null vectors.

2. Set j := 1.

3. Compute the interval V̂j defined in Assumption 5.4.3.

4. Compute vcv
j as

vcv
j := min{wcv

j (y,v1: j−1,Ỹ ,V̂j) : vcv
1: j−1 ≤ v1: j−1 ≤ vcc

1: j−1} (5.4.4)

and compute vcc
j as

vcc
j := max{wcc

j (y,v1: j−1,Ỹ ,V̂j) : vcv
1: j−1 ≤ v1: j−1 ≤ vcc

1: j−1}. (5.4.5)

5. If j = m, go to 6. Otherwise, assign j := j+1 and go to 3.

6. Set hcv,TMC(y) := vcv
m and hcc,TMC(y) := vcc

m .

Then, hcv,TMC(·,Ỹ ) and hcc,TMC(·,Ỹ ) are guaranteed to be respectively convex and concave

relaxations for h on Ỹ .

The formulas (5.4.4) and (5.4.5) are derived from the multivariate McCormick relax-

ations [7, Theorem 2]. By applying this to h represented by a finite composition of factors,
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hcv,TMC and hcc,TMC are indeed valid convex and concave relaxations of h. The TMC

relaxation method was conceptually discussed in [7], and there is thus far no developed

implementation for automatically executing this procedure.

For convenience, we reframe the standard McCormick relaxation method as in [6, Def-

inition 9] so that it is applicable to a factorable function h as in Definition 5.4.2, with

factorable multivariate intrinsic functions w j in the sense of [6, Definition 8]. Note that

such h is also overall factorable in the sense of [6, Definition 8]. For such h, the following

definition of McCormick relaxations is equivalent to [6, Definition 9].

Definition 5.4.5 (adapted from [6]). Given Y ⊆Rn, consider a factorable function h :Y→R

and the related quantities and functions in Definitions 5.4.2 and 5.4.1. Suppose that each

multivariate intrinsic function w j is factorable in the sense of [6, Definition 8]. Denote the

McCormick (MC) relaxations of h as functions hcv,MC,hcc,MC : Y ×IY →R, where for each

Ỹ ∈ IY and y ∈ Ỹ , hcv,MC(y,Ỹ ) and hcc,MC(y,Ỹ ) are defined by the following procedure:

1. Initialize v̄cv and v̄cc as null vectors.

2. Set j := 1.

3. Compute the interval V̂j defined in Assumption 5.4.3.

4. Denote the generalized McCormick (gMC) relaxations as in [6, Definition 15] of w j

as wcv,gMC
j ,wcc,gMC

j : Rn×Rn×R j−1×R j−1× IY × IVj→ R. Compute v̄cv
j and v̄cc

j

as
v̄cv

j := wcv,gMC
j (y,y, v̄cv

1: j−1, v̄
cc
1: j−1,Ỹ ,V̂j),

v̄cc
j := wcc,gMC

j (y,y, v̄cv
1: j−1, v̄

cc
1: j−1,Ỹ ,V̂j).

(5.4.6)

5. If j = m, go to 6. Otherwise, assign j := j+1 and go to 3.
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6. Set hcv,MC(y) := v̄cv
m and hcc,MC(y) := v̄cc

m .

Then, hcv,MC(·,Ỹ ) and hcc,MC(·,Ỹ ) are guaranteed to be respectively convex and concave

relaxations for h on Ỹ .

It will be shown in Theorem 5.4.18 that the TMC relaxations of a factorable function

in Definition 5.4.4 are at least as tight as the MC relaxations in Definition 5.4.5.

The Auxiliary Variable Method [8,50] was originally proposed for relaxing nonconvex

optimization problems to yield convex programs, by first introducing auxiliary variables

to capture any nonconvexities, and then bounding these variables by appropriate convex

and concave relaxations. This method is used in the deterministic global optimization

solver BARON [60] to compute the required lower bounds of the globally optimal objec-

tive values. In this chapter, as a straightforward extension, we define the Auxiliary Variable

Method for computing convex relaxations of a factorable function in the sense of Defini-

tion 5.4.2.

Definition 5.4.6 (adapted from [50]). Given Y ⊆Rn, consider a factorable function h : Y →

R with related quantities and functions in Definitions 5.4.2 and 5.4.1. Consider the sets
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V̂1, ...,V̂m defined in Assumption 5.4.3. The Auxiliary Variable Method constructs optimal-

value functions hcv,AVM,hcc,AVM : Y × IY → R so that for each Ỹ ∈ IY and y ∈ Ỹ ,

hcv,AVM(y,Ỹ ) := min
v

vm

s.t. ∀ j ∈ {1, ...,m},

wcv
j (y,v1: j−1,Ỹ ,V̂j)≤ v j ≤ wcc

j (y,v1: j−1,Ỹ ,V̂j),

hcc,AVM(y,Ỹ ) := max
v

vm

s.t. ∀ j ∈ {1, ...,m},

wcv
j (y,v1: j−1,Ỹ ,V̂j)≤ v j ≤ wcc

j (y,v1: j−1,Ỹ ,V̂j).

(5.4.7)

Then, the mappings hcv,AVM(·,Ỹ ) and hcc,AVM(·,Ỹ ) are relatively convex and concave re-

laxations of h on Ỹ . These mappings will be referred as the AVM relaxations for h on

Ỹ .

Observe that the optimization problems in (5.4.7) are convex. It will be shown in The-

orem 5.4.20 that for any given factorable function and any bounds and relaxations of the

factors, the AVM relaxations defined above are at least as tight as the TMC relaxations in

Definition 5.4.4.

5.4.2 New state relaxation formulation

Consider the original parametric ODE system (2.3.1) in Section 2.3, and further assume that

the right-hand side function f is factorable as in Definition 5.4.2. This new state relaxation

formulation is based on the Scott–Barton ODE relaxation framework (2.4.1), and employs

a novel construction of the right-hand side functions (u,o) as follows.

For each i ∈ {1, ...,nx}, let m(i) denote the number of factors v1, ...,vm(i) for fi, and let
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Ji := {1, ...,m(i)}. Thus, based on Definitions 5.4.1 and 5.4.2 and Assumption 5.4.3, for

each i ∈ {1, ...,nx} and j ∈ Ji,

1. let Vj,i ⊆R j−1, and define multivariate intrinsic functions w j,i : I×P×D×Vj,i→R

so that v j := w j,i(t,p,ξξξ ,v1: j−1) for each (t,p,ξξξ ,v1: j−1) ∈ I×P×D×Vj,i,

2. define functions wL
j,i,w

U
j,i : I× IP× ID× IVj,i → R so that for each (t, P̃, D̃,Ṽj,i) ∈

I× IP× ID× IVj,i,

wL
j,i(t, P̃, D̃,Ṽj,i)≤w j,i(t,p,ξξξ ,v1: j−1)≤wU

j,i(t, P̃, D̃,Ṽj,i), ∀(p,ξξξ ,v1: j−1)∈ P̃×D̃×Ṽj,i,

3. define functions wcv
j,i,w

cc
j,i : I×P×D×Vj,i× IP× ID× IVj,i → R so that for each

(t, P̃, D̃,Ṽj,i)∈ I×IP×ID×IVj,i, the mappings wcv
j,i(t, ·, ·, ·, P̃, D̃,Ṽj,i) and wcc

j,i(t, ·, ·, ·, P̃, D̃,Ṽj,i)

are respectively convex and concave relaxations of w j,i(t, ·, ·, ·) on P̃× D̃× Ṽj,i, and

for each (p,ξξξ ,v1: j−1) ∈ P̃× D̃×Ṽj,i,

wL
j,i(t, P̃, D̃,Ṽj,i)≤ wcv

j,i(t,p,ξξξ ,v1: j−1, P̃, D̃,Ṽj,i)

≤ wcc
j,i(t,p,ξξξ ,v1: j−1, P̃, D̃,Ṽj,i)≤ wU

j,i(t, P̃, D̃,Ṽj,i),

(5.4.8)

4. for each t ∈ I, let V̂1,i(t) be a set of null vector, and for each j ∈ {2, ...,m(i)}, recur-

sively define V̂j,i(t):

V̂j,i(t) := [wL
1,i(t,P,X(t),V̂1,i(t)),wU

1,i(t,P,X(t),V̂1,i(t))]× ...

× [wL
j−1,i(t,P,X(t),V̂j−1,i(t)),wU

j−1,i(t,P,X(t),V̂j−1,i(t))],
(5.4.9)

and assume that V̂j,i(t) ∈ IVj,i.

Let S := {(t,p,ξξξ cv
,ξξξ

cc
) ∈ I×P×Rnx ×Rnx : ξξξ

cv
,ξξξ

cc ∈ X(t) and ξξξ
cv ≤ ξξξ

cc}, and define
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functions ū, ō : S→ Rnx so that for each i ∈ {1, ...,nx} and (t,p,ξξξ cv
,ξξξ

cc
) ∈ S,

ūi(t,p,ξξξ
cv
,ξξξ

cc
) := min

ξξξ ,v
vm(i)

s.t. ξi = ξ
cv
i ,

ξξξ
cv ≤ ξξξ ≤ ξξξ

cc
,

∀ j ∈ Ji,

− v j ≤−wcv
j,i(t,p,ξξξ ,v1: j−1,P,X(t),V̂j,i(t)), (5.4.10a)

v j ≤ wcc
j,i(t,p,ξξξ ,v1: j−1,P,X(t),V̂j,i(t)), (5.4.10b)

ōi(t,p,ξξξ
cv
,ξξξ

cc
) := max

ξξξ ,v
vm(i)

s.t. ξi = ξ
cc
i ,

ξξξ
cv ≤ ξξξ ≤ ξξξ

cc
,

∀ j ∈ Ji,

− v j ≤−wcv
j,i(t,p,ξξξ ,v1: j−1,P,X(t),V̂j,i(t)),

v j ≤ wcc
j,i(t,p,ξξξ ,v1: j−1,P,X(t),V̂j,i(t)).

Observe that the right-hand sides’ optimization problems above are convex.

Remark 5.4.7. The functions (wcv
j ,w

cc
j ) can be any convex and concave relaxations for w j,

including McCormick relaxations [5, 6], αBB relaxations [9, 49], affine relaxations [4, 35,

44], and convex envelopes.

Remark 5.4.8. For any i∈ {1, ...,nx}, j ∈ Ji, and t ∈ I, if the multivariate intrinsic function

w j,i(t, ·, ·, ·) is affine on P×X(t)×V̂j,i(t), then we can choose the relaxations wcv
j,i(t, ·, ·, ·,P,X(t),V̂j,i(t))

and wcc
j,i(t, ·, ·, ·,P,X(t),V̂j,i(t)) to be identical to w j,i(t, ·, ·, ·). Thus, for these (i, j, t), the

constraints (5.4.10a) and (5.4.10b) are reduced to a linear equality constraint v j =w j,i(t,p,ξξξ ,v1: j−1).
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Remark 5.4.9. If all (wcv
j,i,w

cc
j,i) are chosen to be affine relaxations, then the convex opti-

mization problems in (5.4.10) reduce to linear optimization problems.

We make the following blanket assumptions concerning the uniform Lipschitz continu-

ity of the constructed (ū, ō) in (5.4.10).

Assumption 5.4.10. There exists a scalar l > 0 so that for each t ∈ I, p ∈ P, and

ξξξ
cv,A

,ξξξ
cc,A

,ξξξ
cv,B

,ξξξ
cc,B ∈ X(t) for which ξξξ

cv,A ≤ ξξξ
cc,A and ξξξ

cv,B ≤ ξξξ
cc,B,

∥ū(t,p,ξξξ cv,A
,ξξξ

cc,A
)− ū(t,p,ξξξ cv,B

,ξξξ
cc,B

)∥∞ +∥ō(t,p,ξξξ cv,A
,ξξξ

cc,A
)− ō(t,p,ξξξ cv,B

,ξξξ
cc,B

)∥∞

≤ l
(
∥ξξξ cv,A−ξξξ

cv,B∥∞ +∥ξξξ cc,A−ξξξ
cc,B∥∞

)
.

It will be shown in Section 5.4.4 that under stronger assumptions on the functions for

defining (ū, ō) in (5.4.10), (ū, ō) are guaranteed to satisfy the assumption above. Now,

consider functions u,o : I×P×Rnx×Rnx → Rnx that satisfy the following assumption.

Assumption 5.4.11. Consider functions u,o : I×P×Rnx ×Rnx → Rnx and (ū, ō) defined

in (5.4.10), for which suppose that

1. for each (t,p,ξξξ cv
,ξξξ

cc
) ∈ S,

u(t,p,ξξξ cv
,ξξξ

cc
)≡ ū(t,p,ξξξ cv

,ξξξ
cc
) and o(t,p,ξξξ cv

,ξξξ
cc
)≡ ō(t,p,ξξξ cv

,ξξξ
cc
),

2. u(t,p, ·, ·) and o(t,p, ·, ·) are Lipschitz continuous on Rnx×Rnx uniformly over (t,p)∈

I×P.

Since Assumption 5.4.10 holds for (ū, ō), [126, Theorem 5] implies that the (u,o) in

the assumption above exist and may be constructed as appropriate Lipschitz extensions of

(ū, ō) from S to I×P×Rnx×Rnx .
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Then, our new approach for constructing state relaxations (xcv,xcc) for (2.3.1) is to

solve the auxiliary ODE system (2.4.1) with (u,o) satisfying Assumption 5.4.11. Unfortu-

nately, we encounter difficulties for showing certain continuity and measurability of these

(u,o). Such properties can help validate solutions’ existence of the new ODE relaxation

system (c.f. [102]). We instead make the following assumption about solutions’ existence.

Assumption 5.4.12. Assume that there exists at least one solution for the ODE system (2.4.1)

with (u,o) satisfying Assumption 5.4.11.

It will be shown in Section 5.4.4 that the new ODE relaxation system has right-uniqueness,

whose unique solution is guaranteed to be valid state relaxations for (2.3.1).

Remark 5.4.13. It will be shown in Section 5.4.4 that any solution (xcv,xcc) of our new

ODE relaxation system satisfies that for all (t,p) ∈ I×P, xL(t) ≤ xcv(t,p) ≤ xcc(t,p) ≤

xU(t). Thus, the solutions do not visit the region outside of S. Therefore, we may practi-

cally construct functions (ū, ō) in (5.4.10), and then solve (2.4.1) with (u,o)← (ū, ō). This

would yield identical state relaxations. The Lipschitz extensions (u,o) have the advantage

that they are defined on an open set Rnx ×Rnx of state variables, which is convenient for

validating theoretical properties of the new relaxation approach. As discussed in [3, 72],

using (u,o) for numerically solving the ODEs may be preferable over using (ū, ō), since

ODE solvers typically require the right-hand side functions defined on an open set. How-

ever, from the authors’ numerical experiments, using (ū, ō) did not cause numerical issues

for ODE solvers with explicit integration methods.

5.4.3 Comparison to optimization-based relaxations

The new ODE relaxation system (2.4.1) with (u,o) satisfying Assumption 5.4.11 is moti-

vated by embedding the AVM relaxations as in Definition 5.4.6 of the original right-hand
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side fi into the optimization-based ODE relaxation formulation (5.2.3) and (2.4.1). For

illustrating this, consider the quantities and functions in (5.4.10), and apply the Auxil-

iary Variable Method as in Definition 5.4.6 to the factorable function fi(t, ·, ·) for each

i ∈ {1, ...,nx} and t ∈ I. Thus, define the AVM relaxations fcv,AVM, fcc,AVM : I×P×D×

IP× ID→ Rnx so that for each i ∈ {1, ...,nx}, each p ∈ P, and each ξξξ ∈ X(t),

f cv,AVM
i (t,p,ξξξ ,P,X(t)) := min

v
vm(i)

s.t. ∀ j ∈ Ji,

− v j ≤−wcv
j,i(t,p,ξξξ ,v1: j−1,P,X(t),V̂j,i(t)),

v j ≤ wcc
j,i(t,p,ξξξ ,v1: j−1,P,X(t),V̂j,i(t)),

f cc,AVM
i (t,p,ξξξ ,P,X(t)) := max

v
vm(i)

s.t. ∀ j ∈ Ji,

− v j ≤−wcv
j,i(t,p,ξξξ ,v1: j−1,P,X(t),V̂j,i(t)),

v j ≤ wcc
j,i(t,p,ξξξ ,v1: j−1,P,X(t),V̂j,i(t)).

(5.4.11)

According to Definition 5.4.6, for each i ∈ {1, ...,nx} and each t ∈ I, f cv,AVM
i (t, ·, ·,P,X(t))

and f cc,AVM
i (t, ·, ·,P,X(t)) are respectively convex and concave relaxations of fi(t, ·, ·) on

P×X(t). Moreover, observe that for each (t,p,ξξξ cv
,ξξξ

cc
)∈ S, ūi(t,p,ξξξ

cv
,ξξξ

cc
) and ōi(t,p,ξξξ

cv
,ξξξ

cc
)

in (5.4.10) reduce to

ūi(t,p,ξξξ
cv
,ξξξ

cc
)≡ min

ξξξ∈[ξξξ cv,ξξξ cc]
f cv,AVM
i (t,p,ξξξ ,P,X(t)) subject to ξi = ξ

cv
i ,

ōi(t,p,ξξξ
cv
,ξξξ

cc
)≡ max

ξξξ∈[ξξξ cv,ξξξ cc]
f cc,AVM
i (t,p,ξξξ ,P,X(t)) subject to ξi = ξ

cc
i

(5.4.12)
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which resemble (5.2.3) with

f cv
i (t,p,ξξξ ) := f cv,AVM

i (t,p,ξξξ ,P,X(t)) and f cc
i (t,p,ξξξ ) := f cc,AVM

i (t,p,ξξξ ,P,X(t)).

Thus, throughout the remainder of this chapter, the new ODE relaxation method that solves

(2.4.1) with (u,o) satisfying Assumption 5.4.11 will be referred as the AVM-based ODE

relaxation method.

The new AVM-based relaxation method is similar to the OB relaxation method [3] in

the sense that both solve convex optimization problems at relaxation systems’ right-hand

side. However, they are different in the following respects:

1. Though the new (ūi, ōi) resemble (5.4.12), these (ūi, ōi) can be evaluated by solving

the convex optimization problems in (5.4.10), instead of solving the nested optimiza-

tion problems in (5.4.12) with (5.4.11) embedded. The reformulation (5.4.12) is

useful for validating theoretical properties of the new state relaxation approach.

2. The OB relaxation approach does not assume a factorable original right-hand side

fi in general, while the AVM-based approach assumes a factorable fi. Nevertheless,

almost all functions that can be presented in a scientific calculator are factorable [2,

6].

3. If the relaxations (fcv, fcc) used in (5.2.2) are nonsmooth (e.g. McCormick relax-

ations [5]), then the right-hand side NLPs in (5.2.2) are nonsmooth and in prin-

ciple require dedicated nonsmooth convex optimization solvers such as Nesterov’s

Level Method [40] or general nonsmooth solvers such as bundle methods [42, 43].
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On the other hand, if the relaxations (wcv
j,i,w

cc
j,i) for use in (5.4.10) are piecewise-

differentiable in the sense of Scholtes [127], then such relaxations can be easily de-

composed into a set of smooth constraints in (5.4.10). For example, the McCormick

envelope [5] for bilinear terms can be represented by two lower bounding constraints

and two upper bounding constraints [8]. Therefore, the resulting right-hand side

NLPs in (5.4.10) are smooth and can be solved by off-the-shelf smooth NLP solvers

such as IPOPT [120].

4. It will be shown in Theorem 5.4.23 that the new AVM-based relaxations are guar-

anteed to be at least as tight as the OBM relaxations (using McCormick relaxations

of f). Note that when the relaxations (fcv, fcc) are not directly available, McCormick

relaxation method is a primary relaxation method for such factorable f. Moreover,

numerical examples in Section 5.4.6 will show that the new relaxation approach can

effectively handle repeated factors as in Definition 5.4.26 of f and use convex en-

velopes (wcv
j,i,w

cc
j,i) in (5.4.10), to yield significantly tighter relaxations than the SBM

and OBM relaxations.

Lastly, both relaxation methods may require expensive computational effort, if the

NLPs at relaxation systems’ right-hand sides are naively solved using numerical NLP

solvers. Section 5.3 has proposed to construct closed-form OB relaxation system’s right-

hand side, and several methods for improving computational efficiency of the OB re-

laxations are summarized in [3, Section 5.7.1]. These methods are also useful for ef-

ficiently evaluating the AVM-based ODE relaxations. For example, the right-hand side

NLPs in (5.4.10) can be reformulated using Karush-Kuhn-Tucker complementarity con-

ditions. Thus, the AVM-based ODE relaxation system is reformulated as an equivalent

complementarity system (NCS), which could be solved by efficient NCS solvers such as
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SICONOS [117]. In addition, the optimal solutions in (5.4.10) at a time t may be nearly op-

timal in the near future, and thus warm-starting an NLP solver may be particularly useful.

As will be seen in Example 5.5, the AVM-based relaxation system’s right-hand side may

also be expressed in closed form, by directly identifying an optimal solution of (5.4.10).

If all employed (wcv
j,i,w

cc
j,i) are affine relaxations, i.e. (5.4.10) solves linear optimization

problems, then solving these LPs is in principle much more efficient than solving convex

NLPs during ODE solving. Moreover, in this setting, the feasible-basis tracking approach

for solving ODEs with LP embedded described in [72, Section 5.3] may also be useful.

Overall, we expect that the AVM-based relaxation method would be in general at most as

efficient as the OB relaxation method, since the former explores detailed factor structure

of f and employs more constraints in the right-hand side convex NLPs, to tighten ODE

relaxations.

5.4.4 Properties of new state relaxations

This subsection establishes the following useful properties of the new AVM-based ODE

relaxation system:

• Under mild additional assumptions on (xL,xU,wL
j,i,w

U
j,i,w

cv
j,i,w

cc
j,i), (ū, ō) in (5.4.10)

are guaranteed to exhibit the Lipschitz properties in Assumption 5.4.10, which in

turn guarantees that the functions (u,o) used in (2.4.1) satisfy Assumption 5.4.11.

• The AVM-based ODE relaxation system has right-uniqueness.

• The unique solution of the AVM-based ODE relaxation system is guaranteed to be

valid state relaxations for (2.3.1).
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• For a given factorable function in Definition 5.4.2, the TMC relaxations in Defini-

tion 5.4.4 are at least as tight as the MC relaxations in Definition 5.4.5, and the AVM

relaxations in Definition 5.4.6 are at least as tight as the TMC relaxations. For a

given original parametric ODE system (2.3.1), the new AVM-based state relaxations

are at least as tight as both the SBM and OBM relaxations [3] in the Scott–Barton

framework.

Lipschitz continuity

Due to theoretical difficulties, we have to generally assume the Lipschitz continuity of

(ū, ō) in (5.4.10), as in Assumption 5.4.10. Such property is crucial for validating the-

oretical properties of solutions of the AVM-based ODE relaxation system later. In this

subsection, we show that if some mild additional assumptions are applied to the functions

for defining (ū, ō), (ū, ō) are guaranteed to satisfy Assumption 5.4.10.

Assumption 5.4.14. Consider the functions and quantities for defining (ū, ō) in (5.4.10).

Further assume that the following conditions hold:

1. The state bounds (xL,xU) for (2.3.1) are Lipschitz continuous.

2. For each i ∈ {1, ...,nx} and each j ∈ Ji, the functions (wcv
j,i,w

cc
j,i,w

L
j,i,w

U
j,i) are Lips-

chitz continuous, and for each (t, P̃, D̃,Ṽj,i)∈ I×IP×ID×IVj,i and each (p,ξξξ ,v1: j−1)∈

P̃× D̃×Ṽj,i,

wcv
j,i(t,p,ξξξ ,v1: j−1, P̃, D̃,Ṽj,i)< wcc

j,i(t,p,ξξξ ,v1: j−1, P̃, D̃,Ṽj,i). (5.4.13)

The assumption above can often be satisfied in practice. For example, Harrison’s state

bounds [69] (xL,xU) are Lipschitz continuous. The relaxations (wcv
j,i,w

cc
j,i) constructed by
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McCormick relaxations [5, 6], αBB relaxations [9, 49], and certain convex envelopes (e.g.

envelopes developed in [52–54]) are Lipschitz continuous. The bounds (wL
j,i,w

U
j,i) con-

structed by natural interval extension [48] are Lipschitz continuous. For any (wcv,A
j,i ,wcc,A

j,i )

that only satisfy a weak inequality as in (5.4.8), new (wcv,B
j,i ,wcc,B

j,i ) that satisfy (5.4.13) can

be constructed by adding a small perturbation ε > 0 to (wcv,A
j,i ,wcc,A

j,i ), as shown below:

wcv,B
j,i := wcv,A

j,i − ε and wcc,B
j,i := wcc,A

j,i + ε.

Proposition 5.4.15. Under Assumption 5.4.14, the functions (ū, ō) defined in (5.4.10) sat-

isfy Assumption 5.4.10.

Proof. Consider any fixed i ∈ {1, ...,nx}. Under Assumption 5.4.14, for each j ∈ Ji, the

mappings wcv
j,i(·, ·, ·, ·,P,X(·),V̂j,i(·)) and wcc

j,i(·, ·, ·, ·,P,X(·),V̂j,i(·)) are Lipschitz continu-

ous. Moreover, since (5.4.13) holds, for each (t,p,ξξξ cv
,ξξξ

cc
) ∈ S, the domains of the opti-

mization problems in (5.4.10) are compact convex sets with interior points, and thus satisfy

the Slater’s Conditions (c.f. [128, Theorem 1 (ii)]). Thus, [128, Theorem 1] implies that

(ūi, ōi) is locally Lipschitz continuous at each (t,p,ξξξ cv
,ξξξ

cc
) ∈ S. Note that [128, Theo-

rem 1] requires the mappings wcv
j,i(t,p, ·, ·,P,X(t),V̂j,i(t)) and wcc

j,i(t,p, ·, ·,P,X(t),V̂j,i(t)) to

be respectively convex and concave on Rnx ×R j−1for each t ∈ I; this can be easily satis-

fied by applying convex extensions (c.f. [129, Proposition 3.1.4]) to these mappings from

X(t)× V̂j,i(t) to Rnx ×R j−1. Furthermore, since S is compact, it follows that (ūi, ōi) are

Lipschitz continuous on S. Then, it is readily verified that this guarantees (ū, ō) to satisfy

Assumption 5.4.10.
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Right-uniqueness

The following theorem establishes the right-uniqueness of solutions of the new AVM-based

ODE relaxation system.

Theorem 5.4.16. Suppose that Assumption 5.4.10 holds. For each p ∈ P, the ODE sys-

tem (2.4.1) with (u,o) satisfying Assumption 5.4.11 has right-uniqueness on I.

Proof. It is readily verified that under Assumption 5.4.11, for each p ∈ P, the overall right-

hand side functions of (2.4.1) satisfy the sufficient condition for right-uniqueness estab-

lished in [102, §10, Theorem 1].

Valid state relaxations

The following theorem shows that our new AVM-based ODE relaxation system yields valid

state relaxations for the original ODE system (2.3.1).

Theorem 5.4.17. Suppose that Assumption 5.4.10 holds. Let (xcv,xcc) be a solution of

(2.4.1) with (u,o) satisfying Assumption 5.4.11. Then, for each (t,p) ∈ I×P,

xL(t)≤ xcv(t,p) and xcc(t,p)≤ xU(t), (5.4.14)

and (xcv,xcc) are valid state relaxations for (2.3.1) as in Definition 2.4.1.

Proof. [2, Lemma 1] implies that any solution (xcv,xcc) (in the Carathéodory sense) of

the Scott–Barton ODE relaxation framework (2.4.1) satisfies (5.4.14). As discussed in Sec-

tion 5.4.2, (ū, ō) in (5.4.10) are equivalent to (5.4.12), where f cv,AVM
i / f cc,AVM

i (t, ·, ·,P,X(t))

are valid convex and concave relaxations for fi(t, ·, ·) on P×X(t) for each t ∈ I. Then, since

Assumption 5.4.11 holds, according to [3, Lemma 1 and Lemma 2], (u,o) describe both
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bound preserving dynamics and convexity preserving dynamics (c.f. [2, Definitions 6 and 7])

for the original ODE system (2.3.1). Finally, [2, Corollary 1 and Theorem 3] imply that any

solution (xcv,xcc) of the new AVM-based ODE relaxation system are valid state relaxations

for (2.3.1).

The theorem above implies that the functions (u,o) in Assumption 5.4.11 satisfy Condi-

tions 2 and 3 of the Scott–Barton right-hand side functions as in Definition 2.4.9. However,

these (u,o) do not necessarily satisfy Condition 1 in Definition 2.4.9. Nevertheless, this

is not a problem, since Condition 1 is only concerned with Scott–Barton relaxation frame-

work solutions’ existence, which has been addressed in Assumption 5.4.12 for the new

AVM-based relaxation system.

Tightness

Tightness of relaxations for factorable functions Now, we establish tightness results

for comparing the various relaxations of factorable functions introduced in Section 5.4.1.

These results are essential for comparing our new ODE relaxations in this chapter to the

established ODE relaxations [2,3]. The following theorem shows that for a given factorable

function h in the sense of Definition 5.4.2, if McCormick relaxations for each factor w j of

h are used in Definition 5.4.4, then the TMC relaxations in Definition 5.4.4 are at least as

tight as the MC relaxations in Definition 5.4.5.

Theorem 5.4.18. Given Y ⊆ Rn, consider a factorable function h : Y → R with related

quantities and functions in Definitions 5.4.2 and 5.4.1. Suppose that each w j is factorable

in the sense of [6, Definition 8]. Consider the MC relaxations (hcv,MC,hcc,MC) for h and the

gMC relaxations (wcv,gMC
j ,wcc,gMC

j ) for each w j in Definition 5.4.5. For each j ∈ {1, ...,m},

define wcv,MC
j ,wcc,MC

j : Y ×Vj× IY × IVj→ R by setting for each Ỹ ∈ IY , Ṽj ∈ IVj, y ∈ Ỹ ,
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and v1: j−1 ∈ Ṽj,

wcv,MC
j (y,v1: j−1,Ỹ ,Ṽj) := wcv,gMC

j (y,y,v1: j−1,v1: j−1,Ỹ ,Ṽj),

wcc,MC
j (y,v1: j−1,Ỹ ,Ṽj) := wcc,gMC

j (y,y,v1: j−1,v1: j−1,Ỹ ,Ṽj).

(5.4.15)

Then, (wcv,MC
j ,wcc,MC

j ) are valid McCormick relaxations for w j. Now, consider the TMC

relaxations (hcv,TMC,hcc,TMC) for h in Definition 5.4.4 with (wcv
j ,w

cc
j )← (wcv,MC

j ,wcc,MC
j ).

Then, for each Ỹ ∈ IY and each y ∈ Ỹ ,

hcv,MC(y,Ỹ )≤ hcv,TMC(y,Ỹ )≤ hcc,TMC(y,Ỹ )≤ hcc,MC(y,Ỹ ). (5.4.16)

Proof. According to [6, 79], (wcv,MC
j ,wcc,MC

j ) defined in (5.4.15) are standard McCormick

relaxations of w j.

Consider any fixed Ỹ ∈ IY and y∈ Ỹ . Consider the set V̂j for each j ∈ {1, ...,m} defined

in Assumption 5.4.3. Consider the (vcv,vcc) computed using (5.4.4) and (5.4.5) in Defini-

tion 5.4.4, and consider the (v̄cv, v̄cc) computed using (5.4.6) in Definition 5.4.5. We prove

(5.4.16) by showing that v̄cv
m ≤ vcv

m ≤ vcc
m ≤ v̄cc

m . This will be proved using strong induction.

Firstly, we have

v̄cv
2 := wcv,gMC

2 (y,y, v̄cv
1 , v̄cc

1 ,Ỹ ,V̂2),

v̄cc
2 := wcc,gMC

2 (y,y, v̄cv
1 , v̄cc

1 ,Ỹ ,V̂2),

vcv
2 := min{wcv,gMC

2 (y,y,v1,v1,Ỹ ,V̂2) : vcv
1 ≤ v1 ≤ vcc

1 },

and vcc
2 := max{wcc,gMC

2 (y,y,v1,v1,Ỹ ,V̂2) : vcv
1 ≤ v1 ≤ vcc

1 },
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where
vcv

1 ≡ v̄cv
1 := wcv,gMC

1 (y,y, v̄cv
1:0, v̄

cc
1:0,Ỹ ,V̂1)

and vcc
1 ≡ v̄cc

1 := wcc,gMC
1 (y,y, v̄cv

1:0, v̄
cc
1:0,Ỹ ,V̂1).

Since generalized McCormick relaxations are inclusion monotonic as shown in [39, Theo-

rem 2.4.32], for any v1 ∈ [v̄cv
1 , v̄cc

1 ],

wcv,gMC
2 (y,y, v̄cv

1 , v̄cc
1 ,Ỹ ,V̂2)≤ wcv,gMC

2 (y,y,v1,v1,Ỹ ,V̂2)

≤ wcc,gMC
2 (y,y,v1,v1,Ỹ ,V̂2)≤ wcc,gMC

2 (y,y, v̄cv
1 , v̄cc

1 ,Ỹ ,V̂2),

and thus v̄cv
2 ≤ vcv

2 ≤ vcc
2 ≤ v̄cc

2 . Now, consider any k ∈ {3, ...,m} for which suppose that

v̄cv
r ≤ vcv

r ≤ vcc
r ≤ v̄cc

r , for all r ∈ {1, ...,k−1}. We have

v̄cv
k := wcv,gMC

k (y,y, v̄cv
1:k−1, v̄

cc
1:k−1,Ỹ ,V̂k),

v̄cc
k := wcc,gMC

k (y,y, v̄cv
1:k−1, v̄

cc
1:k−1,Ỹ ,V̂k),

vcv
k := min{wcv,gMC

k (y,y,v1:k−1,v1:k−1,Ỹ ,V̂k) : vcv
1:k−1 ≤ v1:k−1 ≤ vcc

1:k−1},

and vcc
k := max{wcc,gMC

k (y,y,v1:k−1,v1:k−1,Ỹ ,V̂k) : vcv
1:k−1 ≤ v1:k−1 ≤ vcc

1:k−1}.

By a similar argument of inclusion monotonicity, it can be shown that v̄cv
k ≤ vcv

k ≤ vcc
k ≤ v̄cc

k .

Finally, (5.4.16) is proved by letting k increase inductively from 3 to m.

Remark 5.4.19. The proof above implies that if non-McCormick relaxations (wcv
j ,w

cc
j ) in

Definition 5.4.4 are at least as tight as (wcv,MC
j ,wcc,MC

j ), then the TMC relaxations are also

at least as tight as the MC relaxations for h.

The following theorem shows that for a given factorable function and any given bounds

and relaxations of the factors, the AVM relaxations in Definition 5.4.6 are guaranteed to be

at least as tight as the TMC relaxations in Definition 5.4.4.
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Theorem 5.4.20. Given Y ⊆ Rn, consider a factorable function h : Y → R in the sense

of Definition 5.4.2. Consider the TMC relaxations (hcv,TMC,hcc,TMC) for h in Defini-

tion 5.4.4 and the AVM relaxations (hcv,AVM,hcc,AVM) for h in Definition 5.4.6. Assume

that same functions (wL
j ,w

U
j ,w

cv
j ,w

cc
j ) in Definition 5.4.1 are applied to construct both

(hcv,TMC,hcc,TMC) and (hcv,AVM,hcc,AVM). Then, for each Ỹ ∈ IY and each y ∈ Ỹ ,

hcv,TMC(y,Ỹ )≤ hcv,AVM(y,Ỹ )≤ hcc,AVM(y,Ỹ )≤ hcc,TMC(y,Ỹ ). (5.4.17)

Proof. Consider any fixed Ỹ ∈ IY and y ∈ Ỹ . Consider the set V̂j for each j ∈ {1, ...,m}

in Assumption 5.4.3. Consider the (vcv,vcc) computed in Definition 5.4.4 and the decision

variables v in (5.4.7) in Definition 5.4.6. By observing the optimization problems in (5.4.7),

to prove the claimed result, we need to show that for any v1:m−1 ∈ V̂m for which

wcv
r (y,v1:r−1,Ỹ ,V̂r)≤ vr ≤ wcc

r (y,v1:r−1,Ỹ ,V̂r), ∀r ∈ {1, ...,m−1},

the following holds:

vcv
m ≤ wcv

m (y,v1:m−1,Ỹ ,V̂m)≤ wcc
m (y,v1:m−1,Ỹ ,V̂m)≤ vcc

m .

We prove this using strong induction. Firstly, according to the formulations (5.4.4) and (5.4.5),

we have
vcv

2 := min {wcv
2 (y,v1,Ỹ ,V̂2) : vcv

1 ≤ v1 ≤ vcc
1 }

and vcc
2 := max {wcc

2 (y,v1,Ỹ ,V̂2) : vcv
1 ≤ v1 ≤ vcc

1 },
(5.4.18)

where vcv
1 := wcv

1 (y,v1:0,Ỹ ,V̂1) and vcc
1 := wcc

1 (y,v1:0,Ỹ ,V̂1). Observe that for any v1 ∈ R
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such that wcv
1 (y,v1:0,Ỹ ,V̂1)≤ v1 ≤ wcc

1 (y,v1:0,Ỹ ,V̂1),

vcv
2 ≤ wcv

2 (y,v1,Ỹ ,V̂2)≤ wcc
2 (y,v1,Ỹ ,V̂2)≤ vcc

2 .

Now we show that for any k := {3, ...,m}, if for any v1:k−1 ∈ V̂k for which

vcv
r ≤ wcv

r (y,v1:r−1,Ỹ ,V̂r)≤ vr ≤ wcc
r (y,v1:r−1,Ỹ ,V̂r)≤ vcc

r , ∀r ∈ {1, ...,k−1},

(5.4.19)

then the following holds:

vcv
k ≤ wcv

k (y,v1:k−1,Ỹ ,V̂k)≤ wcc
k (y,v1:k−1,Ỹ ,V̂k)≤ vcc

k .

Recall that

vcv
k := min {wcv

k (y,v1:k−1,Ỹ ,V̂k) : vcv
1:k−1 ≤ v1:k−1 ≤ vcc

1:k−1}

and vcc
k := max {wcc

k (y,v1:k−1,Ỹ ,V̂k) : vcv
1:k−1 ≤ v1:k−1 ≤ vcc

1:k−1}.

Define the domain of the optimization problems above as

Γk := {v1:k−1 ∈ V̂k : vcv
1:k−1 ≤ v1:k−1 ≤ vcc

1:k−1},

and define a set

Γ̃k := {v1:k−1 ∈ V̂k : wcv
r (y,v1:r−1,Ỹ ,V̂r)≤ vr ≤ wcc

r (y,v1:r−1,Ỹ ,V̂r), ∀r ∈ {1, ...,k−1}}.

Since (5.4.19) holds, Γ̃k ⊆ Γk. Moreover, since vcv
k minimizes wcv

k (y, ·,Ỹ ,V̂k) on Γk and vcc
k
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maximizes wcc
k (y, ·,Ỹ ,V̂k) on Γk, it follows that

vcv
k ≤ wcv

k (y,v1:k−1,Ỹ ,V̂k)≤ wcc
k (y,v1:k−1,Ỹ ,V̂k)≤ vcc

k , ∀v1:k−1 ∈ Γ̃k.

Finally, (5.4.17) is proved by letting k increase inductively from 3 to m.

Remark 5.4.21. Theorems 5.4.18 and 5.4.20 together imply the following tightness result.

Consider a factorable function h as in Definition 5.4.2, and suppose that (wcv
j ,w

cc
j ) are at

least as tight as (wcv,MC
j ,wcc,MC

j ). Then, the AVM relaxations (hcv,AVM,hcc,AVM) derived

from (wcv
j ,w

cc
j ) as in Definition 5.4.6 are at least as tight as the McCormick relaxations

(hcv,MC,hcc,MC) as in Definition 5.4.5. This result is based on a fundamental assumption

that both the AVM and McCormick relaxation methods use the same factor representation

in the sense of Definition 5.4.2. However, a factorable function can be factorized in multiple

ways, which may in turn result in different AVM relaxations and McCormick relaxations.

In this situation, the tightness result in this remark implies that for a given factorable func-

tion, the tightest possible McCormick relaxations are guaranteed to be no tighter than the

tightest AVM relaxations.

Tightness results for new ODE relaxations Theorem 5.4.23 below shows that for a

given original ODE system (2.3.1) with a factorable right-hand side function f, if Mc-

Cormick relaxations of each multivariate intrinsic function w j,i of fi are employed in

(5.4.10), then our new AVM-based state relaxations are guaranteed to be at least as tight

as the OBM relaxations [3] (using McCormick relaxations of f), as introduced in Sec-

tion 5.2. Note that when tight relaxations (fcv, fcc) of a factorable f are not directly avail-

able, the McCormick relaxation method is a primary method for relaxing such general

factorable functions. Theorem 5.4.23 requires the following basic tightness result reframed
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from [3, Theorem 5] concerning the state relaxation formulation (5.2.2) and (2.4.1) with

any appropriate (fcv, fcc). This result shows that if tighter state bounds (xL,xU) for (2.3.1),

tighter relaxations (xcv
0 ,xcc

0 ) for x0, and tighter relaxations (fcv, fcc) are available, then these

tighter relaxations will necessarily translate into at least as tight state relaxations (xcv,xcc)

for (2.3.1) through (5.2.2) and (2.4.1).

Proposition 5.4.22 (adapted from [3]). Consider state lower bounds xL,A,xL,B : I → Rnx

and state upper bounds xU,A,xU,B : I→ Rnx for (2.3.1) that are absolutely continuous, and

suppose for all t ∈ I that xL,A(t)≤ xL,B(t)≤ xU,B(t)≤ xU,A(t). For each t ∈ I, denote the

intervals [xL,A(t),xU,A(t)] and [xL,B(t),xU,B(t)] as XA(t) and XB(t), respectively. Consider

convex relaxations xcv,A
0 ,xcv,B

0 : P→Rnx and concave relaxations xcc,A
0 ,xcc,B

0 : P→Rnx for

the initial-value function x0 in (2.3.1), and suppose for all p ∈ P that xcv,A
0 (p)≤ xcv,B

0 (p)≤

xcc,B
0 (p)≤ xcc,A

0 (p). Consider functions fcv,A, fcc,A, fcv,B, fcc,B : I×P×Rnx→Rnx for which

suppose that for a.e. t ∈ I, fcv,A(B)(t, ·, ·) and fcc,A(B)(t, ·, ·) are respectively convex and

concave relaxations for f(t, ·, ·) in (2.3.1) on P×XA(B)(t), and for each (p,ξξξ ) ∈ P×XB(t),

fff cv,A(t,p,ξξξ )≤ fff cv,B(t,p,ξξξ )≤ fff cc,B(t,p,ξξξ )≤ fff cc,A(t,p,ξξξ ). (5.4.20)

Define a set SA := {(t,p,ξξξ cv
,ξξξ

cc
) ∈ I×P×Rnx ×Rnx : ξξξ

cv
,ξξξ

cc ∈ XA(t) and ξξξ
cv ≤ ξξξ

cc}

and a set SB := {(t,p,ξξξ cv
,ξξξ

cc
) ∈ I × P×Rnx ×Rnx : ξξξ

cv
,ξξξ

cc ∈ XB(t) and ξξξ
cv ≤ ξξξ

cc}.

Consider functions uA,oA,uB,oB : I×P×Rnx×Rnx→Rnx so that uA(t,p, ·, ·), oA(t,p, ·, ·),

uB(t,p, ·, ·), and oB(t,p, ·, ·) are Lipschitz continuous on Rnx×Rnx , uniformly over (t,p) ∈
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I×P, and also suppose that for each i ∈ {1, ...,nx}, for each (t,p,ξξξ cv
,ξξξ

cc
) ∈ SA,

uA
i (t,p,ξξξ

cv
,ξξξ

cc
)≡ min

ξξξ∈[ξξξ cv,ξξξ cc]
f cv,A
i (t,p,ξξξ ) subject to ξi = ξ

cv
i ,

oA
i (t,p,ξξξ

cv
,ξξξ

cc
)≡ max

ξξξ∈[ξξξ cv,ξξξ cc]
f cc,A
i (t,p,ξξξ ) subject to ξi = ξ

cc
i ,

and for each (t,p,ξξξ cv
,ξξξ

cc
) ∈ SB,

uB
i (t,p,ξξξ

cv
,ξξξ

cc
)≡ min

ξξξ∈[ξξξ cv,ξξξ cc]
f cv,B
i (t,p,ξξξ ) subject to ξi = ξ

cv
i ,

oB
i (t,p,ξξξ

cv
,ξξξ

cc
)≡ max

ξξξ∈[ξξξ cv,ξξξ cc]
f cc,B
i (t,p,ξξξ ) subject to ξi = ξ

cc
i .

Let (xcv,A,xcc,A) be a solution of (2.4.1) with

(xL,xU,xcv
0 ,xcc

0 ,u,o)← (xL,A,xU,A,xcv,A
0 ,xcc,A

0 ,uA,oA).

Let (xcv,B,xcc,B) be a solution of (2.4.1) with

(xL,xU,xcv
0 ,xcc

0 ,u,o)← (xL,B,xU,B,xcv,B
0 ,xcc,B

0 ,uB,oB).

Then, (xcv,A,xcc,A) and (xcv,B,xcc,B) are both valid state relaxations for (2.3.1). Moreover,

for any (t,p) ∈ I×P,

xcv,A(t,p)≤ xcv,B(t,p)≤ xcc,B(t,p)≤ xcc,A(t,p).

Theorem 5.4.23. Consider functions (xL,A,xL,B,xU,A,xU,B) and (xcv,A
0 ,xcv,B

0 ,xcc,A
0 ,xcc,B

0 ),

intervals XA(t) and XB(t), and sets SA and SB as in Proposition 5.4.22. Suppose that

each multivariate intrinsic function w j,i for representing fi in Section 5.4.2 is factorable in
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the sense of [6, Definition 8]. Following Definition 5.4.5, define McCormick relaxations

fcv,MC, fcc,MC : I × P×D× IP× ID→ Rnx so that for each t ∈ I, fcv,MC(t, ·, ·,P,XA(t))

and fcc,MC(t, ·, ·,P,XA(t)) are respectively convex and concave relaxations of f(t, ·, ·) on

P×XA(t). Define functions ūA, ōA : SA→ Rnx so that for each (t,p,ξξξ cv
,ξξξ

cc
) ∈ SA,

ūA
i (t,p,ξξξ

cv
,ξξξ

cc
) := min

ξξξ∈[ξξξ cv,ξξξ cc]
f cv,MC
i (t,p,ξξξ ,P,XA(t)) subject to ξi = ξ

cv
i ,

ōA
i (t,p,ξξξ

cv
,ξξξ

cc
) := max

ξξξ∈[ξξξ cv,ξξξ cc]
f cc,MC
i (t,p,ξξξ ,P,XA(t)) subject to ξi = ξ

cc
i .

(5.4.21)

For each i ∈ {1, ...,nx} and j ∈ Ji, consider McCormick relaxations (wcv,MC
j,i ,wcv,MC

j,i ) for

the intrinsic functions w j,i of fi, and for each t ∈ I, consider sets V̂ B
j,i(t) defined using

(5.4.9) with X(t)← XB(t) and V̂j,i(t)← V̂ B
j,i(t). Define functions ūB, ōB : SB → Rnx us-

ing (5.4.10) with (ū, ō)← (ūB, ōB), (wcv
j,i,w

cc
j,i)← (wcv,MC

j,i ,wcc,MC
j,i ), and (X(t),V̂j,i(t))←

(XB(t),V̂ B
j,i(t)). Suppose that Assumption 5.4.10 is satisfied with (ū, ō)← (ūA, ōA) and

with (ū, ō)← (ūB, ōB). Consider Lipschitz extensions uA,oA,uB,oB : I×P×Rnx×Rnx →

Rnx of (ūA, ōA, ūB, ōB) so that Assumption 5.4.11 is satisfied with (u,o)← (uA,oA) and

with (u,o)← (uB,oB). Let (xcv,A,xcc,A) be a solution of (2.4.1) with

(xL,xU,xcv
0 ,xcc

0 ,u,o)← (xL,A,xU,A,xcv,A
0 ,xcc,A

0 ,uA,oA).

Let (xcv,B,xcc,B) be a solution of (2.4.1) with

(xL,xU,xcv
0 ,xcc

0 ,u,o)← (xL,B,xU,B,xcv,B
0 ,xcc,B

0 ,uB,oB).

Then, (xcv,A,xcc,A) and (xcv,B,xcc,B) are both valid state relaxations for (2.3.1). Moreover,
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for any (t,p) ∈ I×P,

xcv,A(t,p)≤ xcv,B(t,p)≤ xcc,B(t,p)≤ xcc,A(t,p). (5.4.22)

Proof. By construction, on the set SA, (uA,oA)≡ (ūA, ōA), and on SB, (uB,oB)≡ (ūB, ōB).

Moreover, by a similar argument to (5.4.12), (ūB, ōB) are equivalent to the following: for

each i ∈ {1, ...,nx} and each (t,p,ξξξ cv
,ξξξ

cc
) ∈ SB,

ūB
i (t,p,ξξξ

cv
,ξξξ

cc
)≡ min

ξξξ∈[ξξξ cv,ξξξ cc]
f cv,AVM
i (t,p,ξξξ ,P,XB(t)) subject to ξi = ξ

cv
i ,

ōB
i (t,p,ξξξ

cv
,ξξξ

cc
)≡ max

ξξξ∈[ξξξ cv,ξξξ cc]
f cc,AVM
i (t,p,ξξξ ,P,XB(t)) subject to ξi = ξ

cc
i

(5.4.23)

where the AVM relaxations f cv,AVM
i , f cc,AVM

i : I×P×D×IP×ID→R are constructed fol-

lowing Definition 5.4.6 so that for each t ∈ I, fcv,AVM(t, ·, ·,P,XB(t)) and fcc,AVM(t, ·, ·,P,XB(t))

are respectively convex and concave relaxations of f(t, ·, ·) on P×XB(t). Since Assump-

tion 5.4.11 is satisfied both with (u,o)← (uA,oA) and with (u,o)← (uB,oB), and since

(5.4.21) and (5.4.23) hold, (xcv,A,xcc,A) and (xcv,B,xcc,B) are both valid state relaxations

for (2.3.1), according to Proposition 5.4.22.

Now, we prove (5.4.22) by verifying the tightness hypothesis (5.4.20) in Proposition 5.4.22

with the following substitution: for each t ∈ I, p ∈ P, and ξξξ ∈ XB(t),

fcv,A(t,p,ξξξ )← fcv,MC(t,p,ξξξ ,P,XA(t)),

fcc,A(t,p,ξξξ )← fcc,MC(t,p,ξξξ ,P,XA(t)),

fcv,B(t,p,ξξξ )← fcv,AVM(t,p,ξξξ ,P,XB(t)),

fcc,B(t,p,ξξξ )← fcc,AVM(t,p,ξξξ ,P,XB(t)).
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Consider any t ∈ I, p ∈ P, and ξξξ ∈ XB(t). Since McCormick relaxations (wcv,MC
j,i ,wcc,MC

j,i )

of w j,i are used for defining (fcv,AVM, fcc,AVM), Theorems 5.4.18 and 5.4.20 together imply

that

fcv,MC(t,p,ξξξ ,P,XB(t))≤ fcv,AVM(t,p,ξξξ ,P,XB(t))

≤ fcc,AVM(t,p,ξξξ ,P,XB(t))≤ fcc,MC(t,p,ξξξ ,P,XB(t)).

Since McCormick relaxations are partition monotonic as in [39, Theorem 2.6.5], and since

XB(t)⊆ XA(t), it follows that

fcv,MC(t,p,ξξξ ,P,XA(t))≤ fcv,MC(t,p,ξξξ ,P,XB(t))

≤ fcc,MC(t,p,ξξξ ,P,XB(t))≤ fcc,MC(t,p,ξξξ ,P,XA(t)).

Combining the inequalities above yields

fcv,MC(t,p,ξξξ ,P,XA(t))≤ fcv,AVM(t,p,ξξξ ,P,XB(t))

≤ fcc,AVM(t,p,ξξξ ,P,XB(t))≤ fcc,MC(t,p,ξξξ ,P,XA(t)),

which satisfies (5.4.20) in Proposition 5.4.22.

In the theorem above, the ODE system (2.4.1) with (uA,oA) embedded comes from the

OBM relaxation approach in [3], and (2.4.1) with (uB,oB) embedded comes from the new

AVM-based ODE relaxation method in this chapter.

Remark 5.4.24. Proposition 5.4.22 and Theorem 5.4.23 also imply the following tightness

results:

1. By using (wcv,MC
j,i ,wcc,MC

j,i ), the new state relaxations in this chapter are also at least

as tight as the SBM relaxations [2], since it is shown in [3] that the OBM relaxations
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are at least as tight as the SBM relaxations.

2. If non-McCormick relaxations (wcv
j,i,w

cc
j,i) that are at least as tight as (wcv,MC

j,i ,wcc,MC
j,i )

are available, then using these for defining the new (ū, ō) in (5.4.10) also leads to state

relaxations that are at least as tight as the OBM relaxations.

3. Suppose that there are two considered choices of relaxations for w j,i; call these

(wcv,B
j,i ,wcc,B

j,i ) and (wcv,A
j,i ,wcc,A

j,i ). If (wcv,B
j,i ,wcc,B

j,i ) are at least as tight as (wcv,A
j,i ,wcc,A

j,i ),

then using (wcv,B
j,i ,wcc,B

j,i ) in the new AVM-based ODE relaxation system necessar-

ily leads to state relaxations that are at least as tight as these obtained by using

(wcv,A
j,i ,wcc,A

j,i ).

4. The TMC relaxations (fcv,TMC, fcc,TMC) in Definition 5.4.4 of f may also be used

for generating state relaxations via (5.2.2) and (2.4.1) (analogously denoted as the

optimization–based–TMC (OBT) relaxations). Theorems 5.4.18 and 5.4.20 imply

that for a given factorable function, the TMC relaxations are no looser than the MC

relaxations, and are no tighter than the AVM relaxations. Combining this with Propo-

sition 5.4.22, it can be verified that the OBT state relaxations are no looser than the

OBM relaxations, and are no tighter than the new AVM-based relaxations. In this

chapter, we focus on the AVM-based relaxations rather than the OBT relaxations,

since the AVM-based relaxations are the tightest among these potential relaxations.

Remark 5.4.25. Since the AVM-based relaxations are at least as tight as the OBM relax-

ations and since the OBM relaxations have second-order pointwise convergence [36,79] as

proved in [3, Theorem 6], the new AVM-based relaxations in this chapter also have such de-

sirable convergence property, which can help mitigate the cluster effect [37, 38] in branch-

and-bound methods for deterministic nonconvex optimization. Moreover, due to the same

164



Ph.D. Thesis – Y. Song McMaster University – Chemical Engineering

tightness result, similarly to the OB relaxations as discussed in [3, Remark 10 and Exam-

ple 3], the new AVM-based relaxations (xcv(t, ·),xcc(t, ·)) may get tighter over time t under

appropriate conditions.

5.4.5 Implementation

Proof-of-concept implementations were developed in Julia v1.4.2 [95] to compute state

relaxations for (2.3.1) by constructing and solving the auxiliary ODE system (2.4.1) with

(u,o) satisfying Assumption 5.4.11. According to Remark 5.4.13, we practically construct

(ū, ō) defined in (5.4.10) in place of the Lipschitz extensions (u,o) in (2.4.1), which would

yield identical solutions. Harrison’s bounding method [69] is employed to compute state

bounds (xL,xU) automatically. For any given instance of the original ODE system (2.3.1),

the initial-value function x0 is relaxed using the McCormick relaxation method [5], and

the right-hand side function f is factorized manually. Natural interval extension [48] is em-

ployed for constructing all factor bounds (wL
j,i,w

U
j,i), and the optimal-value functions (ū, ō)

defined in (5.4.10) are hard-coded with predefined (wcv
j,i,w

cc
j,i) for each numerical example

in the next subsection. For each (t,p) ∈ I×P, unless otherwise specified, the right-hand

side optimization problems in (5.4.10) are solved numerically using local optimizer IPOPT

v3.13.2 [120] with an overall tolerance of 10−6. Any necessary user-provided local sensi-

tivities are approximated using central finite difference with a step length of 10−10. JuMP

v0.21.3 [121] is employed as an interface with IPOPT. The auxiliary ODE system (2.4.1)

with (ū, ō) in place of (u,o) is solved using the ODE solver BS3() with an absolute tol-

erance of 10−4 and a relative tolerance of 10−4 from the package DifferentialEquations

v6.15.0 [123]. For comparison, we also developed an analogous implementation in Julia
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for the OBM relaxations [3], which automatically constructs and solves optimization prob-

lems in (5.2.2) with McCormick relaxations [5] (fcv,MC, fcc,MC) embedded. This implemen-

tation is similar to the previous MATLAB implementation proposed in [3, Section 6.1]. An

implementation of the SBM relaxations [2] was also developed in Julia. Any necessary

computations of natural interval extension and McCormick relaxations are executed via

operator overloading using EAGO v0.4.1 [119]. All computations in the next subsection

were performed on the same computer as in Example 5.1.

5.4.6 Numerical examples

As established in Theorem 5.4.23 and Remark 5.4.24, the new AVM-based state relaxations

in this chapter are guaranteed to be at least as tight as both the SBM relaxations [2] and the

OBM relaxations [3]. In this section, we present several numerical examples to show that, if

f has certain features, then the new AVM-based state relaxations may be significantly tighter

than the two other types of relaxations. Example 5.3 shows that the AVM-based relaxation

method can yield tighter state relaxations by recognizing and eliminating repeated factors

(in Definition 5.4.26 below) of f. Example 5.4 shows that if f contains multivariate intrinsic

functions with known convex envelopes, then the new relaxation method can utilize these

envelopes to yield tighter state relaxations. In Example 5.5, we apply the AVM-based re-

laxations to a chemical reaction network model from [74, Example 1], whose right-hand

side has both repeated factors and multivariate intrinsic functions with known convex en-

velopes. The results show that the new relaxations are significantly tighter than the SBM

relaxations and the OBM relaxations.

Definition 5.4.26. Given Y ⊂ Rn, consider a factorable function h : Y → R with related

factors v1, ...,vm in Definition 5.4.2. For each y ∈ Y , for any i, j ∈ {1, ...,m}, vi and v j are
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repeated factors if vi ≡ v j.

In the following example, we show how repeated factors of f can be eliminated in

the new AVM-based ODE relaxation formulation, to yield tighter state relaxations than

established relaxations [2, 3].

Example 5.3. Let P := [−0.4,0.7], and I := [0,0.06], and consider the following instance

of (2.3.1) with one state variable x and one parameter p ∈ P:

ẋ(t) = e3x− e2x− ex, ∀t ∈ I,

x(0) = p− p3.

(5.4.24)

A standard operator overloading procedure (e.g. employed by EAGO [94,119] or MC++ [96])

may factorize the right-hand side function f (ξ ) : ξ 7→ e3ξ − e2ξ − eξ using the following

factor representation: for any ξ ∈ R,

v1 = eξ , v2 = v3
1, v′1 = eξ , v3 = (v′1)

2, v′′1 = eξ , and f (ξ ) = v4 = v2− v3− v′′1.

Observe that v1,v′1,v
′′
1 are repeated factors as in Definition 5.4.26. Thus, we used the fol-

lowing factor representation of f by recognizing these repeated factors as one common

factor v1, for constructing the right-hand side functions (ū, ō) defined in (5.4.10) of the new

AVM-based ODE relaxation system:

v1 = eξ , v2 = v3
1, v3 = v2

1, and f (ξ ) = v4 = v2− v3− v1.

The intrinsic cubic function was bounded by its convex and concave envelopes [52], and

the convex exponential and square functions were bounded above by the affine envelopes.
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Thus, the functions (ū, ō) defined in (5.4.10) were constructed, and the new AVM-based

state relaxations for (5.4.24) were computed using the proposed proof-of-concept imple-

mentation in Julia. The SBM relaxations [6] were also computed for comparison. Note

that the OBM relaxations [3] are identical to the SBM relaxations for nx = 1, as discussed

in [3, Remark 4]. Figure 5.2 depicts the original parametric solution x(0.06, p), along with

the constructed SBM relaxations and AVM-based ODE relaxations for comparison. Ob-

serve that the new AVM-based relaxations are visually tighter than the SBM relaxations,

which is consistent with the discussion in Remark 5.4.27. Table 5.2 summarizes the compu-

tational times for per-mesh-point evaluation of the two types of relaxations. It can be seen

that the AVM-based relaxations took longer time to evaluate, since the convex optimization

problems in (5.2.2) were naively solved with IPOPT, while SBM relaxation system’s right-

hand side was efficiently evaluated in closed form. We expect that this implementation

method may be improved with the techniques outlined in Section 5.4.3.

Figure 5.2: The solution x(0.06, p) (solid black) of the parametric ODE (5.4.24) from
Example 5.3, plotted against p along with corresponding SBM relaxations [2] (dotted blue)
and the AVM-based relaxations (dashed red).

Remark 5.4.27. It has been discussed in [7, 45] that the AVM relaxation method provides
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Table 5.2: Average computational times for evaluating
state relaxations (xcv(0.06, p),xcc(0.06, p)) for (5.4.24)
in Example 5.3.

State relaxation method CPU time (seconds)*

SBM relaxations 0.07
New AVM-based relaxations 1.05

* Each CPU time here was averaged over 10 runs, with
a sample standard deviation that is much smaller than
the reported average.

potentially tighter bounds than the McCormick relaxation method due to repeated terms.

This result can be rigorously proved by a straightforward extension of Theorems 5.4.18 and 5.4.20.

Then, Theorem 5.4.23 essentially translates such tightness of relaxations from non-dynamic

factorable functions to ODE solutions.

In the following example, we show how convex envelopes of multivariate intrinsic func-

tions in f can be employed by the AVM-based ODE relaxation approach, to yield tighter

state relaxations than established relaxations [2, 3].

Example 5.4. Let P := [0.8,1.3], and I := [0,0.1], and consider the following instance of

(2.3.1) with one state variable x and one parameter p ∈ P:

ẋ(t) = pe−x(x4−3x2− x+0.4),

x(0) = p− p3

3
.

(5.4.25)

Based on Definition 5.4.2, we factorized the right-hand side function f : (p,ξ ) 7→ pe−ξ (ξ 4−

3ξ 2−ξ +0.4) into the following factor representation: for each (p,ξ ) ∈ P×R,

v1 = pe−ξ , v2 = ξ
4−3ξ

2−ξ +0.4, v3 = v1v2, and f (p,ξ ) = v3. (5.4.26)
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Then, we employed the following convex and concave relaxations for bounding the multi-

variate intrinsic functions above. With (xL,xU) denoting Harrison state bounds for (5.4.25),

it was empirically verified that for each t ∈ I, 0 ≤ xL(t) ≤ xU(t) ≤ 1.3. Furthermore,

since pL > 0, the convex envelope hcv,env of the intrinsic function h : (p,ξ ) 7→ pe−ξ was

given by (5.3.2). Since there is no established concave envelope of h, we employed Mc-

Cormick concave relaxation hcc,MC as constructed in (5.3.5). For the intrinsic function

g : ξ 7→ ξ 4−3ξ 2−ξ +0.4, we developed convex and concave envelopes on any subinter-

val of [0,1.3] (recall 0≤ xL(t)≤ xU(t)≤ 1.3) following the procedures presented in [5,51],

as follows. Define a set Ξ := {(ξ ,ξ L,ξ U) ∈ R3 : 0 ≤ ξ L ≤ ξ ≤ ξ U ≤ 1.3}. Consider

the first-order derivative function g′ : ξ 7→ 4ξ 3− 6ξ 2− 1 of g. We constructed functions

gcv,env,gcc,env : Ξ→ R so that for any [ξ L,ξ U] ⊆ [0,1.3], the mappings gcv,env(·,ξ L,ξU)

and gcc,env(·,ξ L,ξU) are respectively convex and concave envelopes of g on [ξ L,ξU ]. For

each (ξ ,ξ L,ξ U) ∈ Ξ, gcv,env and gcc,env are thus evaluated as follows:

• if ξ U ≤
√

2
2 ,

gcv,env(ξ ,ξ L,ξ U) :=
g(ξ U)−g(ξ L)

ξ U−ξ L (ξ −ξ
L)+g(ξ L),

gcc,env(ξ ,ξ L,ξ U) := g(ξ ),

• if ξ L ≥
√

2
2 ,

gcv,env(ξ ,ξ L,ξ U) := g(ξ ),

gcc,env(ξ ,ξ L,ξ U) :=
g(ξ U)−g(ξ L)

ξ U−ξ L (ξ −ξ
L)+g(ξ L),
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• if ξ L <
√

2
2 < ξ U, with ξ A := −ξ L+

√
9−2(ξ L)2

3 and ξ B := −ξ U+
√

9−2(ξ U)2

3 ,

gcv,env(ξ ,ξ L,ξ U) :=



g(ξ U)−g(ξ L)
ξ U−ξ L (ξ −ξ L)+g(ξ L), if ξ U ≤ ξ A,

g(ξ ), if ξ U > ξ A and ξ ≥ ξ A,

g′(ξ A)(ξ −ξ A)+g(ξ A), if ξ U > ξ A and ξ < ξ A,

gcc,env(ξ ,ξ L,ξ U) :=



g(ξ U)−g(ξ L)
ξ U−ξ L (ξ −ξ L)+g(ξ L), if ξ L ≥ ξ B,

g(ξ ) if ξ L < ξ B and ξ ≤ ξ B,

g′(ξ B)(ξ −ξ B)+g(ξ B), if ξ L < ξ B and ξ > ξ B.

Note that the same function g was also investigated in [3, Example 5], where similar con-

vex and concave envelopes were constructed on a different range of (ξ L,ξ U). Lastly, the

bilinear intrinsic function in (5.4.26) was bounded by the McCormick envelope [5].

Functions (ū, ō) defined in (5.4.10) were then constructed based on the factor repre-

sentation (5.4.26) and the constructed (gcv,env,gcc,env,hcv,env,hcc,MC) and the McCormick

envelopes of bilinear terms. Observe that in this case, the right-hand side optimization

problems for defining (ū, ō) are in fact linear optimization problems, even though non-

linear relaxations were used for the intrinsic functions. Thus, the LP solver Clp v0.8.3

(available at: https://github.com/jump-dev/Clp.jl) was employed to evaluate (ū, ō). Next,

the AVM-based ODE relaxations and SBM relaxations were computed using the proposed

proof-of-concept implementation in Julia. Similarly to Example 5.3, the OBM relaxations

are identical to the SBM relaxations in this case, since there is only one state variable. Fig-

ure 5.3 depicts the resulting state relaxations and shows that the AVM-based relaxations
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are visually tighter than the SBM relaxations; this is consistent with Results 1 and 2 in Re-

mark 5.4.24. Such tightness benefits from the fact that the AVM-based relaxation formula-

tion utilizes convex envelopes for multivariate intrinsic functions, which are not employed

in SBM relaxation method. Table 5.3 shows that the AVM-based relaxations took longer

CPU time, which is expected since the implementation naively solves the right-hand side

optimization problems in (5.4.10) using the LP solver Clp.

Figure 5.3: The solution x(0.1, p) (solid black) of the parametric ODE (5.4.25) from Ex-
ample 5.4, plotted against p along with corresponding SBM relaxations [2] (dotted blue)
and the AVM-based state relaxations (dashed red).

Table 5.3: Average computational times for evaluating
state relaxations (xcv(0.1, p),xcc(0.1, p)) for (5.4.25) in
Example 5.4.

State relaxation method CPU time (seconds)*

SBM relaxations 0.12
New AVM-based relaxations 0.91

* Each CPU time here was averaged over 10 runs, with
a sample standard deviation that is much smaller than
the reported average.
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In the following example, we apply the AVM-based ODE relaxation approach to a

chemical reaction network model whose right-hand side functions have both repeated fac-

tors and multivariate intrinsic functions with pre-known convex envelopes. We will show

that with a factor representation that has repeated factors, the AVM-based (ūi, ōi) defined

in (5.4.10) may be efficiently evaluated in closed form, yet provide significantly tighter

state relaxations than the SBM and OBM relaxations. By recognizing and eliminating the

repeated factors, different right-hand side functions (ūNLP
i , ōNLP

i ) can be constructed and

evaluated with numerical NLP solvers. Using such (ūNLP
i , ōNLP

i ) in the AVM-based relax-

ation formulation yields further tighter state relaxations than using the closed-form (ūi, ōi),

but also requires longer computational time. Then, we construct new (ūLP
i , ōLP

i ) that in-

volves solving LP problems. These LPs are constructed from subtangents of the original

nonlinear convex relaxations of multivariate intrinsic functions. The results show that by

using (ūLP
i , ōLP

i ), the AVM-based ODE relaxations can be evaluated much more efficiently

than using (ūNLP
i , ōNLP

i ), yet without compromising much tightness of the state relaxations.

Example 5.5. This example is from [74, Example 1]. Consider a chemical reaction network

A−→B−→C. Assume elementary reactions and Arrhenius rate constants, and denote the

concentrations of the chemical species A,B,C as x1,x2,x3, respectively. Then, this reaction

network may be modelled using the following ODEs on a time horizon I := [0,0.02]:

ẋ1(t) =−A1e−E1/(RT )x1,

ẋ2(t) = A1e−E1/(RT )x1−A2e−E2/(RT )x2,

ẋ3(t) =−A2e−E2/(RT )x2,

(5.4.27)

with (x1(0),x2(0),x3(0)) = (1.5,0.5,0.0)(mol
L ). The uppercase letters above denote physi-

cal quantities. The temperature T is considered as an uncertain parameter within the bounds
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[T L,T U] := [300,600](K). Note that [74, Example 1] considers T as a time-varying control,

while here T is assumed to be an uncertain constant along the time horizon. Nevertheless,

the setting here may be useful in the context of global optimal control, e.g. assuming that

the control T is piecewise constant. The values of the other physical quantities are listed in

Table 5.4.

Table 5.4: The values of the constant
physical quantities in (5.4.27), for Ex-
ample 5.5.

Quantities Values Units

A1 2400 1/s
A2 8800 1/s
E1 6.9×103 J/mol
E2 1.69×104 J/mol
R 8.314 J/(mol ·K)

Now, we show that for this system, how the AVM-based relaxation system’s right-

hand side functions (ū, ō) defined in (5.4.10) can be evaluated in closed form. For exam-

ple, we employed the following factor representation of f2 : (T,ξ1,ξ2) 7→ A1e−E1/(RT )ξ1−

A2e−E2/(RT )ξ2:

v1 = 1/T, v2 = (E1/R)v1, v3 = ξ1e−v2, v′1 = 1/T,

v4 = (E2/R)v′1, v5 = ξ2e−v4, v6 = A1v3−A2v5 = f2(T,ξ1,ξ2).

(5.4.28)

Observe that there are repeated factors v1 and v′1; we will handle these later. Let (vL
2 ,v

U
2 ) and

(vL
4 ,v

U
4 ) respectively denote the natural interval bounds of v2 and v4 in (5.4.28) derived from

(T L,T U). Bound the convex intrinsic functions T 7→ 1/T from above by the secant line

connecting (T L,1/T L) and (T U,1/T U), and thus define vcv
1 ≡ vcv′

1 := 1/T and vcc
1 ≡ vcc′

1 :=

1
T L

(
−T−T L

T U +1
)

. We employed hcv,env in (5.3.2) as the convex envelope of (ξ1,v1) 7→
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ξ1e−v1 or (ξ2,v3) 7→ ξ2e−v3 , and employed the corresponding closed-form McCormick

concave relaxation hcc,MC as in (5.3.5). Thus, ū2 defined in (5.4.10) may be constructed as

follows:

ū2(t,T,ξξξ
cv
,ξξξ

cc
) := min

v,ξ1
A1v3−A2v5

s.t. v3 ≤ hcc,MC(v2,ξ1,vL
2 ,x

L
1 (t),v

U
2 ,x

U
1 (t)),

v3 ≥ hcv,env(v2,ξ1,vL
2 ,x

L
1 (t),v

U
2 ,x

U
1 (t)),

v5 ≤ hcc,MC(v4,ξ
cv
2 ,vL

4 ,x
L
2 (t),v

U
4 ,x

U
2 (t)),

v5 ≥ hcv,env(v4,ξ
cv
2 ,vL

4 ,x
L
2 (t),v

U
4 ,x

U
2 (t)),

v2 = (E1/R)v1

v4 = (E2/R)v′1

vcv
1 ≤ v1 ≤ vcc

1 ,

vcv′
1 ≤ v′1 ≤ vcc′

1 ,

ξ
cv
1 ≤ ξ1 ≤ ξ

cc
1 .

(5.4.29)

By investigating the monotonicity of hcv,env and hcv,MC, it was verified that ū2 above is

equivalent to the following closed form:

ū2(t,T,ξξξ
cv
,ξξξ

cc
)≡A1hcv,env(vcc

2 ,ξ cv
1 ,vL

2 ,x
L
1 (t),v

U
2 ,x

U
1 (t))−A2hcc,MC(vcv

4 ,ξ cv
2 ,vL

4 ,x
L
2 (t),v

U
4 ,x

U
2 (t)).

Similarly, ō2 defined in (5.4.10) has the following closed form:

ō2(t,T,ξξξ
cv
,ξξξ

cc
)≡A1hcc,MC(vcv

2 ,ξ cc
1 ,vL

2 ,x
L
1 (t),v

U
2 ,x

U
1 (t))−A2hcv,env(vcc

4 ,ξ cc
2 ,vL

4 ,x
L
2 (t),v

U
4 ,x

U
2 (t)).

Note that this is the case where closed-form solutions of the optimization problems in
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(5.4.10) can be easily identified, similarly to the OB relaxations as demonstrated in Ex-

ample 5.1. Consider the (vcv
1 ,vcc

1 ,vL
2 ,v

U
2 ,v

L
4 ,v

U
4 ) defined above, and following the same

procedure, we have derived closed-form (ū1, ō1, ū3, ō3) as follows:

ū1(t,T,ξξξ
cv
,ξξξ

cc
)≡−A1hcc,MC(

E1

R
vcv

1 ,ξ cv
1 ,vL

2 ,x
L
1 (t),v

U
2 ,x

U
1 (t)),

ō1(t,T,ξξξ
cv
,ξξξ

cc
)≡−A1hcv,env(

E1

R
vcc

1 ,ξ cc
1 ,vL

2 ,x
L
1 (t),v

U
2 ,x

U
1 (t)),

ū3(t,T,ξξξ
cv
,ξξξ

cc
)≡ A2hcv,env(

E2

R
vcc

1 ,ξ cv
2 ,vL

4 ,x
L
2 (t),v

U
4 ,x

U
2 (t)),

and ō3(t,T,ξξξ
cv
,ξξξ

cc
)≡ A2hcc,MC(

E2

R
vcv

1 ,ξ cc
2 ,vL

4 ,x
L
2 (t),v

U
4 ,x

U
2 (t)).

(5.4.30)

However, observe that the factor representation (5.4.28) has repeated factors v1 and v′1.

By eliminating the repeated v′1, we constructed different (ūNLP
2 , ōNLP

2 ) that are also defined

by (5.4.10). Take ūNLP
2 as an example:

ūNLP
2 (t,T,ξξξ cv

,ξξξ
cc
) := min

v,ξ1
A1v3−A2v5

s.t. v3 ≤ hcc,MC(v2,ξ1,vL
2 ,x

L
1 (t),v

U
2 ,x

U
1 (t)), (5.4.31a)

v3 ≥ hcv,env(v2,ξ1,vL
2 ,x

L
1 (t),v

U
2 ,x

U
1 (t)),

v5 ≤ hcc,MC(v4,ξ
cv
2 ,vL

4 ,x
L
2 (t),v

U
4 ,x

U
2 (t)), (5.4.31b)

v5 ≥ hcv,env(v4,ξ
cv
2 ,vL

4 ,x
L
2 (t),v

U
4 ,x

U
2 (t)),

v2 = (E1/R)v1,

v4 = (E2/R)v1,

vcv
1 ≤ v1 ≤ vcc

1 ,

ξ
cv
1 ≤ ξ1 ≤ ξ

cc
1 .

The counterpart ōNLP
2 was constructed similarly. Unlike the ū2 defined in (5.4.29), ūNLP

2
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above does not have a straightforward closed-form optimal objective value, and may be

evaluated using numerical NLP solvers. Observe from (5.3.5) that hcc,MC is equivalent to

the following:

hcc,MC(ξξξ ,ξξξ
L
,ξξξ

U
)≡min{hcc,MC1(ξξξ ,ξξξ

L
,ξξξ

U
),hcc,MC2(ξξξ ,ξξξ

L
,ξξξ

U
)},

where
hcc,MC1 : (ξξξ ,ξξξ L

,ξξξ
U
) 7→ e−ξ U

1 ξ2 +ξ
U
2 β

h−ξ
U
2 e−ξ U

1

and hcc,MC2 : (ξξξ ,ξξξ L
,ξξξ

U
) 7→ e−ξ L

1 ξ2 +ξ
L
2 β

h−ξ
L
2 e−ξ L

1 .

Observe that hcc,MC is nonsmooth, while hcc,MC1 and hcc,MC2 are smooth. As discussed in

Section 5.4.3, the constraints (5.4.31a) and (5.4.31b) may thus be replaced by the following:

v3 ≤ hcc,MC1(v2,ξ1,vL
2 ,x

L
1 (t),v

U
2 ,x

U
1 (t)),

v3 ≤ hcc,MC2(v2,ξ1,vL
2 ,x

L
1 (t),v

U
2 ,x

U
1 (t)),

v5 ≤ hcc,MC1(v4,ξ
cv
2 ,vL

4 ,x
L
2 (t),v

U
4 ,x

U
2 (t)),

v5 ≤ hcc,MC2(v4,ξ
cv
2 ,vL

4 ,x
L
2 (t),v

U
4 ,x

U
2 (t)).

This allows to evaluate ūNLP
2 with off-the-shelf smooth NLP solvers. The same reformula-

tion was also applied to ōNLP
2 .

We have also constructed a third class of the AVM-based right-hand side functions for

f2; denote these as (ūLP
2 , ōLP

2 ). These (ūLP
2 , ōLP

2 ) were constructed similarly to (ūNLP
2 , ōNLP

2 ),

but we replaced the employed nonlinear (hcv,env,hcc,MC1,hcc,MC2) by their subtangents

at center of the considered box domains (e.g. a subtangent of hcv,env at the center of

[vL
2 ,v

U
2 ]× [xL

1 (t),x
U
1 (t)]). Thus, evaluating (ūLP

2 , ōLP
2 ) is intuitively more efficient than eval-

uating (ūNLP
2 , ōNLP

2 ), since evaluating (ūLP
2 , ōLP

2 ) involves solving LPs while (ūNLP
2 , ōNLP

2 )
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solve NLPs.

Based on the different constructions of the AVM-based relaxation system’s right-hand

sides above, Table 5.5 summarizes all state relaxation methods that were applied to the orig-

inal system (5.4.27) using our proof-of-concept implementation in Julia. Figures 5.4 and 5.5

respectively depict the original parametric solutions x2(0.02,T ) and x3(0.02,T ), along with

the resulting state relaxations for comparison. Table 5.6 summarizes the per-mesh-point

CPU times for evaluating these state relaxations. From both figures, the OBM relaxations

are identical to the SBM relaxations for this example, while the former took longer CPU

time than the latter. This is because the SBM method evaluates closed-form right-hand side

functions, while our implementation for the OBM relaxations automatically constructs and

solves NLPs using numerical solvers at system’s right-hand side. It may be possible to

derive closed-form right-hand sides for the OBM relaxation system similarly to Exam-

ple 5.1, which, however, is not the focus of this example. The CF-AVM-based relaxations

are as efficient as the SBM relaxations, yet are significantly tighter due to the use of multi-

variate convex envelopes, which is consistent with Results 1 and 2 in Remark 5.4.24. The

NLP-AVM-based method yields the tightest relaxations by eliminating repeated factors and

employing convex envelopes, yet requires the longest CPU time. The reason why the NLP-

AVM-based relaxations took longer CPU time to evaluate than the OBM relaxations may be

that the NLP-AVM-based right-hand side solved convex NLPs with nonlinear convex con-

straints, while the OBM right-hand side solved convex NLPs with simple box constraints.

The LP-AVM-based relaxations are much more efficient than the NLP-AVM-based relax-

ations, since LPs are more efficient to solve than convex NLPs at ODE right-hand sides.

On the other hand, the LP-AVM-based relaxations are no tighter than the NLP-AVM-based
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relaxations as guaranteed by Result 3 in Remark 5.4.24, since subtangents are outer approx-

imations of the original convex relaxations. Note that there is no general tightness result

for comparing the SBM relaxations and the LP-AVM-based relaxations. However, this ex-

ample indicates that the LP-AVM-based relaxations may still be promising, since they are

much more efficient than the NLP-AVM-based relaxations, yet may have extrema that are

close to the extrema of the NLP-AVM-based relaxations, as can be seen from the figures.

In addition, using multiple subtangents [44] to tighten LP-AVM-based relaxations is also

possible. We remark that both implementations for the LP/NLP-AVM-based relaxations

may be improved using the techniques outlined in Section 5.4.3.

Table 5.5: Various state relaxation methods that were applied to (5.4.27), for Exam-
ple 5.5.

Methods Description

CF-AVM-based method*
New AVM-based method evaluating (ū2, ō2)
in closed form

NLP-AVM-based method*
New AVM-based method evaluating (ūNLP

2 , ōNLP
2 )

with NLP solver IPOPT

LP-AVM-based method*
New AVM-based method evaluating (ūLP

2 , ōLP
2 )

with LP solver Clp
OBM method From [3], using generalized McCormick relaxations of f
SBM method From [2], using McCormick relaxations of f

* All these methods evaluate the same closed-form (ū1, ō1, ū3, ō3) in (5.4.30).
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Figure 5.4: The solution x2(0.02,T ) (solid black) of the parametric ODE (5.4.27) from Ex-
ample 5.5, plotted against T along with corresponding SBM relaxations [2] (dotted blue),
CF-AVM-based relaxations (dashed red), NLP-AVM-based relaxations (dashed green),
and LP-AVM-based relaxations (dashed orange). Note that the OBM relaxations [3] are
identical to the SBM relaxations in this case, and all state convex relaxations overlap.

Figure 5.5: The solution x3(0.02,T ) (solid black) of the parametric ODE (5.4.27) from Ex-
ample 5.5, plotted against T along with corresponding SBM relaxations [2] (dotted blue),
CF-AVM-based relaxations (dashed red), NLP-AVM-based relaxations (dashed green),
and LP-AVM-based relaxations (dashed orange). Note that the OBM relaxations [3] are
identical to the SBM relaxations in this case.
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Table 5.6: Average computational times for evaluating
state relaxations (xcv(0.02,T ),xcc(0.02,T )) for (5.4.25)
in Example 5.5.

State relaxation method CPU time (seconds)*

CF-AVM-based relaxations 0.07
NLP-AVM-based relaxations 7.15±0.32
LP-AVM-based relaxations 1.75
OBM relaxations 5.23±0.12
SBM relaxations 0.08

* Each CPU time here was averaged over 10 runs. For
each CPU time with a significant sample standard devi-
ation (std), the number is reported as “average ± std”.

5.5 Conclusions and future work

This chapter has proposed two extensions of the established OB relaxations [3] introduced

in Chapter 4 for solutions of the parametric ODE system (2.3.1), which are useful for

efficiently computing tight bounding information in deterministic algorithms of global dy-

namic optimization. While the OB relaxations may be significantly tighter than the SBM

relaxations [2], the previous implementation [3] of the OB relaxations solves convex NLPs

using numerical solvers at each time step, which requires expensive computational efforts.

Therefore, in the first extension, we considered relaxations (fcv, fcc) in (5.2.2) with pre-

known monotonicity, and showed that by directly identifying closed-form extrema of these

relaxations on the box X , we can derive closed-form right-hand side functions of the OB

relaxation system. Example 5.1 showed that by using this method, the OB relaxations

can be tighter, yet as efficient as the SBM relaxations [2], which may ultimately improve

efficiency of an overarching global optimization method. The second extension is a new

type of state relaxations termed AVM-based state relaxations, which are computed by solv-

ing (2.4.1) with (u,o) satisfying Assumption 5.4.11. This relaxation approach considers a
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factorable (in the sense of Definition 5.4.2) original right-hand side function f, and is moti-

vated by embedding the AVM relaxations as in Definition 5.4.6 of f into the OB relaxation

system, as discussed in Section 5.4.3. Theorem 5.4.23 and Remark 5.4.24 showed that the

new AVM-based relaxations are guaranteed to be at least as tight as both the SBM relax-

ations and the OBM relaxations. A proof-of-concept implementation of the AVM-based

relaxations in Julia was outlined in Section 5.4.5. Section 5.4.6 presented several numeri-

cal examples to show that the new AVM-based relaxation approach can effectively handle

repeated factors as in Definition 5.4.26 and employ convex envelopes of multivariate in-

trinsic functions of f, to yield significantly tighter state relaxations than the SBM and OBM

relaxations. Lastly, Example 5.5 is concerned with the application to a chemical reaction

network model, and discussed different types of AVM-based relaxations by constructing

closed-form, LP-based, and NLP-based right-hand side functions.

Future work will involve developing more efficient implementation of the AVM-based

relaxations, using the techniques outlined in Section 5.4.3. Besides, subgradients of state

relaxations with respect to p may be developed, to aid local NLP solvers in obtaining lower

bounds for the globally optimal objective values in branch-and-bound. The new state re-

laxations may then be applied to deterministic algorithms of global dynamic optimization.
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Chapter 6

Constructing Subgradients for Convex

Relaxations of Nonconvex Parametric

Systems of ODEs

This chapter, reproduced from the submitted journal article [92], proposes novel subgradi-

ent evaluation methods for state relaxations obtained using the state-of-the-art Scott–Barton

ODE relaxation framework, for solving lower-bounding problems in the algorithms of de-

terministic global dynamic optimization. The subgradients are computed as the unique so-

lution of an auxiliary parametric affine ODE system, analogously to classical forward sen-

sitivity evaluation methods for smooth dynamic systems. Unlike established approaches

that propagate valid subgradients for nonsmooth dynamic systems, this new method is

compatible with existing subgradient evaluation methods for convex functions, and thus

allows using well-developed subgradient libraries such as EAGO and MC++ for implemen-

tation. Moreover, we show that a subgradient of the objective function of a lower-bounding
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problem in global dynamic optimization can be directly evaluated using adjoint sensitiv-

ity analysis, which may reduce the overall computational effort for an overarching gloal

optimization method. Numerical examples are presented to illustrate our new forward sub-

gradient evaluation methods, based on proof-of-concept implementations in Julia. Further

implications are discussed.

6.1 Introduction

This chapter focuses on computing subgradients of state relaxations for the original para-

metric ODE system (1.1.2) formalized in Section 2.3. As discussed in Section 1.1, state

relaxations (formalized in Definition 2.4.1) are valid underestimators and overestimators

of x in (1.1.2), whose components are respectively convex and concave with respect to

p for each fixed t. Such relaxations are useful in deterministic global optimization algo-

rithms [27–31], for computing lower bounds of the globally optimal objective values of a

nonconvex dynamic optimization problem with (1.1.2) embedded. Subgradients provide

useful local sensitivity information for convex functions (analogously for concave func-

tions), which are typically required by convex optimization methods such as level method

and subgradient method proposed by Nesterov [40] and general nonsmooth local optimiza-

tion methods such as bundle methods [41–43]. Without subgradients, an overarching global

optimization method may fail to compute correct lower bounds when attempting to mini-

mize convex relaxations, which may ultimately lead the method to either report an incorrect

global minimum or incorrectly conclude that the problem is infeasible. Moreover, subgra-

dients are useful for constructing piecewise affine relaxations by a finite combination of the

corresponding subtangents [34, 44, 45], and each subtangent can be efficiently constructed

by a single evaluation of the original convex relaxation and an associated subgradient [46].
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Subgradients of state relaxations may also be used for constructing a convex polyhedral

enclosure of the reachable set for x in (1.1.2) [47].

As summarized in Section 2.4, Scott and Barton [2] have developed a general ODE re-

laxation framework, which computes nonsmooth state relaxations for (1.1.2) by construct-

ing and solving an auxiliary parametric ODE system. This framework requires furnishing

relaxations for the initial-value function x0, state bounds (c.f. [2, Definition 2]) for x that

are independent of p, and crucial right-hand side (RHS) functions based on relaxations

of f in (1.1.2). There are thus far two established state relaxation methods [2, 3] in this

framework, which describe relaxations as solutions of auxiliary ODEs with different RHS

functions. Scott and Barton [2] construct the RHS functions by composing the general-

ized McCormick relaxations [2] of f with interval flattening operations; the resulting state

relaxations will be referred as Scott–Barton–McCormick (SBM) relaxations. Our previous

work [3] constructs different RHS functions as optimal-value functions (in the sense of

e.g. [114]) with embedded convex optimization problems, which may employ any convex

and concave relaxations of f. These state relaxations will be called optimization-based (OB)

relaxations in this article. While these state relaxations [2, 3] have been shown to exhibit

desirable tightness and convergence properties, there are thus far no established methods

to evaluate subgradients for these relaxations when nonsmoothness is encountered, which

limits the use of these relaxations in global dynamic optimization. Song et al. [4] propose

an approach for tractably constructing closed-form affine relaxations via black-box eval-

uations of an original convex relaxation, without knowing subgradients. However, these

affine relaxations are likely to be more conservative than subtangents derived from sub-

gradients, which may in turn provide overly conservative bounds in global optimization.

Hence, there is a need to develop new dynamic subgradient evaluation methods for these
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state relaxations [2, 3].

In general, established methods for evaluating subgradients for convex parametric ODE

solutions are somewhat limited. [46, Theorem 3.2] shows that if the ODE RHS is convex,

then subgradients of the solution uniquely solve an auxiliary ODE system, whose RHS re-

quires subgradients of the original ODE RHS. This result is applicable to an earlier weaker

ODE relaxation method in [75], but not the superior Scott–Barton ODE relaxation frame-

work [2], since the latter framework’s RHS is not convex. [46, Theorem 3.3] does not

require a convex ODE RHS, but instead differentiability is required throughout. Recently,

Yuan and Khan [130] show that for bivariate convex functions, centered finite differences

will always converge to a subgradient, and a subgradient may be efficiently evaluated from

directional derivatives. However, these results are not extendable to higher dimensions.

When convexity is not exploited, classical forward sensitivity [131, 132] or adjoint

sensitivity [90] evaluation methods for smooth dynamic systems are not applicable here,

since the mentioned state relaxations are nonsmooth in general. In the field of nonsmooth

dynamic sensitivity analysis, several approaches [133–135] extend the smooth sensitiv-

ity evaluation methods to nonsmooth dynamic systems defined by smooth functions and

discrete events, assuming that the systems are well-behaved around discrete events. [136,

Theorem 7.4.1] proposes sufficient conditions under which a parametric ODE system with

non-differentiable RHS has differentiable parametric solutions. Pang and Stewart [137]

compute linear Newton approximations [138] of the solutions of parametric ODEs with

RHS that are semismooth [139]. Yunt [140] then extends their results to compute linear

Newton approximations using adjoints. However, as illustrated in [97], the linear Newton

approximations of a convex function may contain elements that are not subgradients, and
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do not have associated sufficient optimality conditions unlike the gradient. Recently, meth-

ods [97, 141, 142] have been proposed to compute lexicographic derivatives [143] of the

solutions of nonsmooth parametric ODE systems, differential-algebraic equation (DAE)

systems, and hybrid systems. These lexicographic derivatives reduce to valid subgradi-

ents in a convex case. However, these methods involve solving auxiliary dynamic systems

whose RHS functions are generally discontinuous in state variables, and thus require tai-

lored numerical solvers.

In this chapter, we propose a new general dynamic subgradient evaluation framework

for any state relaxations obtained using the Scott–Barton ODE relaxation framework [2].

This subgradient framework assumes that the underlying state relaxations do not touch

the predefined state bounds during integration, which is guaranteed to be satisfied for a

sufficiently small domain of the parameters p, since state relaxations have been shown to

converge to the original trajectory x faster than state bounds as p’s domain shrinks [79].

This framework also requires the convex state relaxations to never overlap with the con-

cave relaxations; this can be easily guaranteed by adding an arbitrarily small perturbation

to the original state relaxation system, as will be seen in Section 6.4.4. For each fixed p,

we construct subgradients of state relaxations as the unique solution of a forward auxil-

iary ODE system, to be integrated simultaneously with the state relaxation ODE system.

The RHS of this forward sensitivity system is constructed by combining subgradients of

relaxations of f with new flattening operations that play an analogous role to the interval

flattening operations at Scott–Barton framework’s RHS. While plausible, this result is pre-

viously unknown and requires sophisticated justification. Unlike the established dynamic

subgradient evaluation method [46, Theorem 3.2], our new method does not require the

relaxation system’s RHS to be convex, and thus is applicable to Scott–Barton framework.
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Unlike the method [97] that requires computing a specific lexicographic derivative of the

relaxation system’s RHS for each time t, this new method permits any subgradients of

relaxations of f to be used, and thus is compatible with existing subgradient evaluation

methods [7,33,35,144,145] for convex functions. Subgradients of McCormick relaxations

for example, are readily available from well-developed libraries such as EAGO [94] and

MC++ [35, 96]. Moreover, we show that if the subgradients of relaxations of f follow clas-

sical chain rule as for gradients, then the resulting forward subgradient propagation system

is in fact an affine parametric ODE system (analogously to the forward sensitivity system

for smooth ODE systems), which may be easily integrated using off-the-shelf numerical

ODE solvers. Based on this, we furthermore show that a subgradient of nonsmooth convex

relaxations of objective functions in nonconvex dynamic optimization problems may be ef-

ficiently evaluated using adjoints, analogously to classical dynamic adjoint sensitivity anal-

ysis [90]. Ruban [135] and Hanneman-Tamás et al. [134] have proposed adjoint sensitivity

evaluation methods for nonsmooth dynamic systems, which are under certain regularity

assumptions. For example, these methods consider nonsmooth dynamic systems defined

using smooth functions and discrete events, and the state variables are assumed to satisfy

certain transition conditions around discrete events. Under these conditions, the resulting

generalized states are actually continuously differentiable with respect to uncertain param-

eters. On the other hand, our new adjoint subgradient evaluation method considers an ODE

system with nonsmooth RHS but without discrete events; no additional regularity assump-

tions are required, and yields valid subgradients for nonsmooth convex parametric ODE

solutions. Adjoint sensitivity evaluation methods [90] have been shown to be empirically

more efficient than forward methods in smooth dynamic optimization for a large number

of decision variables. We expect that this extension to nonsmooth subgradient evaluation
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would speed up computation of subgradients for solving the lower-bounding problems, and

ultimately reduce computational effort for deterministic global dynamic optimization.

Based on the general subgradient evaluation framework presented above, we then pro-

pose new numerical methods for evaluating subgradients for the SBM relaxations [2] and

our newer OB relaxations [3]. For the SBM relaxations, we propose to construct a forward

subgradient propagation system based on Mitsos et al.’s vector forward mode subgradi-

ent automatic differentiation for McCormick relaxations [35]. Correspondingly, we pro-

pose a new adjoint ODE subgradient evaluation system constructed from Beckers et al.’s

adjoint mode computation for subgradients of McCormick relaxations, for use in lower

bounding in global dynamic optimization. For the OB relaxations, we propose a new for-

ward subgradient propagation system based on a recently established subgradient evalua-

tion method [145, Theorem 5.3.2] for multivariate McCormick relaxations [7, Theorem 2].

While the OB relaxation ODE system solves convex optimization problems at RHS, the

new forward system’s RHS is efficiently evaluated in closed form; no need to solve opti-

mization problems. We have also developed proof-of-concept implementations in Julia [95]

for forward subgradient evaluation for both the SBM relaxations and the OB relaxations.

Numerical examples show that these new methods indeed yield valid subgradients. We

leave implementation for dynamic adjoint subgradient evaluation for future work, since

there is no off-the-shelf implementation of adjoint subgradient evaluation for McCormick

relaxations and no appropriate adjoint ODE sensitivity solver in Julia. The adjoint solver

provided by the package DifferentialEquations [123] appears to be incomplete, and we

were unable to adapt it for our systems.

The remainder of this chapter is organized as follows. Section 6.2 summarizes relevant

mathematical background including subgradients and directional derivatives of parametric
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ODE solutions. The Scott–Barton ODE relaxation framework [2] was already summarized

in Section 2.4. Section 6.3 formalizes the problem formulation for this article. Section 6.4

presents a new general subgradient propagation framework, where a forward subgradient

evaluation system and an adjoint sensitivity system are constructed. Section 6.5 then pro-

poses new numerical methods for evaluating subgradients of the SBM relaxations [2] and

the OB relaxations [3]. Lastly, Section 6.6 presents numerical examples to illustrate the

correctness of the proposed forward sensitivity methods, based on a proof-of-concept im-

plementation in Julia.

6.2 Mathematical preliminaries

This section summarizes the mathematical preliminaries of this article. Section 6.2.1 presents

the standard definitions of directional derivatives and subgradients in convex analysis [146].

Section 6.2.2 presents an established method [97] for propagating directional derivatives of

parametric ODE solutions, which is essential for validating the new subgradient evaluation

methods of this article.

6.2.1 Directional derivatives and subgradients

Definition 6.2.1 (from [127]). Given an open set Y ⊂ Rn, a function h : Y → Rm, some

y ∈ Y , and some d ∈ Rn, the limit

lim
α↓0

h(y+αd)−h(y)
α

is called the directional derivative of h at y if it exists, and is denoted as h′(y;d). The

function h is directionally differentiable at y if h′(y;d) exists and is finite for each d ∈ Rn.
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The function h is said to be directionally differentiable if it is directionally differentiable at

every y ∈ Y .

The following definitions of subgradients and subdifferentials are standard in convex

analysis [146].

Definition 6.2.2 (adapted from [146]). Given an open convex set Y ⊂ Rn and a convex

function hcv : Y → R, scv ∈ Rn is a subgradient of hcv at y ∈ Y if

hcv(ηηη)≥ hcv(y)+ ⟨scv,ηηη−y⟩, ∀ηηη ∈ Y.

Similarly, given a concave function hcc : Y →R, scc ∈Rn is a subgradient of hcc at y ∈Y if

hcc(ηηη)≤ hcc(y)+ ⟨scc,ηηη−y⟩, ∀ηηη ∈ Y.

The subdifferential ∂hcv(y)⊂ Rn (resp. ∂hcc(y)⊂ Rn) is the collection of all subgradients

of hcv (resp. hcc) at y.

Theorem 6.2.3 (adapted from [146]). Given functions hcv and hcc in Definition 6.2.2, scv ∈

Rn is a subgradient of hcv at y ∈ Y if

[hcv]′(y;d)≥ ⟨scv,d⟩, ∀d ∈ Rn.

Similarly, scc ∈ Rn is a subgradient of hcc at y ∈ Y if

[hcc]′(y;d)≤ ⟨scc,d⟩, ∀d ∈ Rn.
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6.2.2 Directional derivatives of parametric ODE solutions

Pang and Stewart [137] showed that the directional derivatives of an ODE solution with

respect to its initial condition uniquely solve an auxiliary ODE system. Khan and Barton

[97] extended this result to parametric ODE systems whose right-hand side functions are

discontinuous in t. The following theorem is adapted from [97, Theorem 4.1].

Theorem 6.2.4. Let I := [t0, t f ] where t0 < t f , and let D̃⊂Rn and P̃⊂Rm be open. Consider

a Lipschitz continuous and directionally differentiable function y0 : P̃→ D̃. Suppose that a

function g : I× P̃× D̃→ Rn satisfies the following conditions:

1. the mapping g(·,p,ηηη) : I→ Rm is measurable for each p ∈ P̃ and ηηη ∈ D̃,

2. there exist Lebesgue integrable functions kg,mg : I→ R+∪{+∞} for which

∥g(t,p,ηηη)∥ ≤ mg(t), ∀t ∈ I, ∀p ∈ P̃, ∀ηηη ∈ D̃,

and

∥g(t,pA,ηηηA)−g(t,pB,ηηηB)∥ ≤ kg(t)
(
∥pA−pB∥+∥ηηηA−ηηη

B∥
)
,

∀t ∈ I, ∀pA,pB ∈ P̃, ∀ηηηA,ηηηB ∈ D̃,

3. for each t ∈ I except in a zero-measure subset Zg, the mapping g(t, ·, ·) : P̃× D̃→Rn

is directionally differentiable.

For each p ∈ P̃, with y(·,p) denoting any solution of the parametric ODE system:

ẏ(t,p) = g(t,p,y(t,p)), y(t0,p) = y0(p), (6.2.1)
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suppose that there exists a solution {y(t,p) : t ∈ I} ⊂ D̃. Then, for each t ∈ I, the function

yt ≡ y(t, ·) is well-defined and Lipschitz continuous on P̃ with a Lipschitz constant that is

independent of t. Moreover, yt is directionally differentiable for each t ∈ I, and for each

p ∈ P̃ and d ∈ Rm, the mapping t 7→ [yt ]
′(p;d) is the unique solution (in the Carathéodory

sense [102]) on I of the ODE system:

ż(t) = [ĝt ]
′((p,y(t,p));(d,z(t))), z(t0) = [y0]

′(p;d), (6.2.2)

where ĝt : P̃× D̃→Rn is defined in terms of g as follows and is directionally differentiable

for each t ∈ I\Zg: for each (t,p,ηηη) ∈ I× P̃× D̃,

ĝt(p,ηηη) :=


g(t,p,ηηη), if t ∈ I\Zg,

0, if t ∈ Zg.

6.3 Problem statement

Assumption 6.3.1. Suppose that initial relaxations (xcv
0 ,xcc

0 ) for (2.3.1) satisfy the follow-

ing: for each p ∈ P, xL(t0)≤ xcv
0 (p)≤ xcc

0 (p)≤ xU(t0).

The assumption above is for simplicity of analysis. Under this assumption, the ini-

tial conditions in the Scott–Barton framework (2.4.1) becomes xcv
i (t0,p) = xcv

0,i(p) and

xcc
i (t0,p) = xcc

0,i(p).

Assumption 6.3.2. Consider the original parametric ODE system (2.3.1) formalized in

Assumption 2.3.2. Suppose that appropriate state bounds (xL,xU) in Assumption 2.4.5 and

initial relaxations (xcv
0 ,xcc

0 ) in Assumption 6.3.1 are available. Denote the interior of P as P̃.

For any Scott–Barton right-hand side functions (u,o), suppose that the mappings u(t, ·, ·, ·)
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and o(t, ·, ·, ·) are directionally differentiable and Lipschitz continuous on P̃×Rnx ×Rnx ,

uniformly over t ∈ I. Consider state relaxations (xcv,xcc) for (2.3.1) obtained via (2.4.1),

and suppose that for all t ∈ (t0, t f ] and p ∈ P̃,

xL(t)< xcv(t,p)< xcc(t,p)< xU(t). (6.3.1)

Definition 6.3.3. For any state relaxations (xcv,xcc) for (2.3.1), functions Scv,Scc : I× P̃→

Rnx×np are called state relaxation subgradients if, for each i ∈ {1, ...,nx}, t ∈ I, and p ∈ P̃,

[scv
(i)(t,p)]

T is a subgradient of xcv
i (t, ·) at p, and [scc

(i)(t,p)]
T is a subgradient of xcc

i (t, ·) at p.

As discussed in Section 6.1, state relaxation subgradients are useful in deterministic al-

gorithms of global dynamic optimization [2,12,18,108], for computing the required lower

bounds by minimizing convex relaxations constructed from state relaxations. To the au-

thors’ knowledge, [97] is the only established method which may be used for computing

subgradients of state relaxations obtained using the Scott–Barton framework (2.4.1) un-

der Assumption 6.3.2. This method computes valid lexicographic derivatives [143] for

nonsmooth parametric ODE solutions via an auxiliary ODE system. These lexicographic

derivatives reduce to subgradients in a convex case. However, this method has the follow-

ing disadvantages. Firstly, the auxiliary ODE system’s RHS is in general discontinuous

with respect to state variables, and thus tailored ODE solvers are required. Secondly, this

method does not allow efficient dynamic sensitivity evaluation using adjoints. Thirdly,

the auxiliary ODE system’s RHS requires a specific lexicographic derivative of the nons-

mooth ODE RHS, which is not compatible with established subgradient evaluation meth-

ods [7, 33, 35, 145]. This will increase the difficulty for implementation.

Thus, under Assumption 6.3.2, the goal of this article is to propose a new framework for
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constructing subgradients (Scv,Scc) for state relaxations (xcv,xcc) for (2.3.1) obtained us-

ing the Scott–Barton framework (2.4.1), and also propose efficient subgradient evaluation

methods for the established state relaxations [2, 3] in this framework. These new meth-

ods construct new auxiliary ODEs that are easily integrated with off-the-shelf numerical

solvers, enable dynamic adjoint subgradient evaluation, and are compatible with estab-

lished subgradient evaluation methods. Under Assumption 6.3.2, the ODE system (2.4.1)

reduces to
ẋcv(t,p) = u(t,p,xcv(t,p),xcc(t,p)), xcv(t0,p) = xcv

0 (p),

ẋcc(t,p) = o(t,p,xcv(t,p),xcc(t,p)), xcc(t0,p) = xcc
0 (p).

(6.3.2)

We note that our new framework for evaluating state relaxation subgradients will only be

valid under (6.3.1), so that (xcv,xcc) can be obtained using (6.3.2). However, the require-

ment xcc(t,p) > xcv(t,p) will generally be satisfied if f(t, ·, ·) in (2.3.1) is nonlinear for

each t > t0, and this can also be guaranteed by adding an arbitrarily small perturbation to

(u,o,xcv
0 ,xcc

0 ), as will be shown in Section 6.4.4. As concluded in [79], in the Scott–Barton

framework (2.4.1), the state relaxations (xcv,xcc) converge faster to the original trajectory

x than the state bounds (xL,xU) as the domain P shrinks. Thus, xL(t) < xcv(t,p) and

xU(t) > xcc(t,p) in (6.3.1) are guaranteed to be satisfied for a sufficiently small P. More-

over, we suspect that the requirement (6.3.1) could be weakened, but there is no clear way

to do this using currently established differential inequalities.

Section 6.4 below presents sophisticated mathematical foundations of the new subgra-

dient evaluation methods. For practical methods for evaluating subgradients of the estab-

lished state relaxations [2, 3], readers are recommended to look at Sections 6.5 and 6.6.
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6.4 Subgradient evaluation framework

In this section, we present a new framework to evaluate subgradients for state relaxations

constructed using (6.3.2). This framework constructs state relaxation subgradients (Scv,Scc)

as the solutions of a new auxiliary ODE system. In Section 6.6, numerical examples will

use this framework to compute subgradients.

6.4.1 Subgradient propagation functions

Our new subgradient evaluation framework requires furnishing crucial subgradient prop-

agation functions, for use in an auxiliary ODE system that will be constructed in the next

subsection.

Definition 6.4.1. Suppose that Assumption 6.3.2 holds. Functions V,W : I× P̃×Rnx×np×

Rnx×np → Rnx×np are called subgradient propagation functions for (u,o) if the following

conditions are satisfied: for any interval Z ∈ IRnx×np ,

I.1 for each p ∈ P̃ and M,N ∈ Z, the functions V(·,p,M,N) and W(·,p,M,N) are mea-

surable on I,

I.2 there exist functions mZ,kZ : I× P̃→ R+∪{+∞} so that for each t ∈ I, p ∈ P̃, and

MA,NA,MB,NB ∈ Z, mZ(·,p) and kZ(·,p) are Lebesgue integrable, and

∥V(t,p,MA,NA)∥+∥W(t,p,MA,NA)∥ ≤ mZ(t,p)

and

∥V(t,p,MA,NA)−V(t,p,MB,NB)∥+∥W(t,p,MA,NA)−W(t,p,MB,NB)∥

≤ kZ(t,p)
(
∥MA−MB∥+∥NA−NB∥

)
,
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I.3 for a.e. t ∈ I, any i ∈ {1, ...,nx}, p ∈ P̃, h ∈ Rnp , dA,dB ∈ Rnx , and M,N ∈ Rnx×np

such that
Mh≤ dA,

Nh≥ dB,

the following conditions hold:

(a) if ⟨m(i),h⟩= dA
i , then

⟨v(i)(t,p,M,N),h⟩ ≤ [ui,t ]
′((p,xcv(t,p),xcc(t,p));(h,dA,dB)),

(b) if ⟨n(i),h⟩= dB
i , then

⟨w(i)(t,p,M,N),h⟩ ≥ [oi,t ]
′((p,xcv(t,p),xcc(t,p));(h,dA,dB)),

where ut ≡ u(t, ·, ·, ·) and ot ≡ o(t, ·, ·, ·).

The conditions in the definition above may look cumbersome. However, Section 6.4.3

below will present a practical method to construct subgradient propagation functions (V,W)

for any (u,o) satisfying (2.4.2).

6.4.2 Subgradient evaluation ODE system

As the core result of this article, the following theorem shows that the unique solution of

a certain auxiliary parametric ODE system describes valid state relaxation subgradients

(Scv,Scc) for the state relaxations (xcv,xcc) obtained using (6.3.2). This auxiliary ODE

system employs subgradient propagation functions (V,W).
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Theorem 6.4.2. Suppose that Assumption 6.3.2 holds and that valid subgradient propaga-

tion functions (V,W) for (u,o) are available. Define functions Scv
0 ,Scc

0 : P̃→Rnx×np so that

for each i ∈ {1, ...,nx} and p ∈ P̃, [scv
(i),0(p)]

T is a subgradient of xcv
i,0 at p, and [scc

(i),0(p)]
T is

a subgradient of xcc
i,0 at p. Consider the following parametric ODE system:

Ṡcv(t,p) = V(t,p,Scv(t,p),Scc(t,p)), Scv(t0,p) = Scv
0 (p),

Ṡcc(t,p) = W(t,p,Scv(t,p),Scc(t,p)), Scc(t0,p) = Scc
0 (p).

(6.4.1)

Then, for each p∈ P̃, local existence and uniqueness of a Carathéodory solution (Scv(·,p),Scc(·,p))

of (6.4.1) are guaranteed. Moreover, (Scv,Scc) are valid subgradients for state relaxations

(xcv,xcc) as in Definition 6.3.3.

Proof. Since Conditions I.1 and I.2 in Definition 6.4.1 hold, [102, §1, Theorems 1 and 2]

imply local existence and uniqueness of a Carathéodory solution of (6.4.1) for each p ∈ P̃.

Let xcv
t ≡ xcv(t, ·) and xcc

t ≡ xcc(t, ·). Since xcv
t and xcc

t are respectively convex and

concave on P for each t ∈ I, Theorem 6.2.3 implies that, for proving the claimed result, it

is sufficient to show that for all t ∈ I, p ∈ P̃, and directions h ∈ Rnp ,

Scv(t,p)h≤ [xcv
t ]′(p;h) and Scc(t,p)h≥ [xcc

t ]′(p;h).

Consider any fixed p ∈ P̃ and direction h ∈ Rnp . Since xcv
0 and xcc

0 are respectively convex

and concave on P, [146, Theorems 10.4 and 23.4] imply that they are Lipschitz contin-

uous and directionally differentiable on P̃. Furthermore, since Assumption 6.3.2 holds,

by applying Theorem 6.2.4 to a reformulated (6.3.2) where the states xcc are replaced by

their negatives, the mapping t 7→ ([xcv
t ]′(p;h), [xcc

t ]′(p;h)) may be described as the unique
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solution (zA,zB) of the following ODE system:

żA(t) = [ut ]
′((p,xcv

t (p),xcc
t (p));(h,zA(t),zB(t))

)
, zA(t0) = [xcv

0 ]′(p;h),

żB(t) = [ot ]
′((p,xcv

t (p),xcc
t (p));(h,zA(t),zB(t))

)
, zB(t0) = [xcc

0 ]′(p;h).

For simplicity of notation, define functions gu,go : I×Rnx ×Rnx → Rnx so that for each

(t,dA,dB) ∈ I×Rnx×Rnx ,

gu(t,dA,dB) := [ut ]
′((p,xcv

t (p),xcc
t (p));(h,dA,dB)),

go(t,dA,dB) := [ot ]
′((p,xcv

t (p),xcc
t (p));(h,dA,dB)).

Since (u,o) satisfy relevant conditions in Assumption 6.3.2, [127, Theorem 3.1.2] implies

that there exists a scalar l > 0 so that for each t ∈ I and dA,dB, d̂A, d̂B ∈ Rnx ,

∥gu(t,dA,dB)−gu(t, d̂A, d̂B)∥+∥go(t,dA,dB)−go(t, d̂A, d̂B)∥≤ l
(
∥dA−d̂A∥+∥dB−d̂B∥

)
.

(6.4.2)

We proceed in this proof by showing that for all t ∈ [t0, t f ], Scv(t,p)h ≤ [xcv
t ]′(p;h).

That Scc(t,p)h ≥ [xcc
t ]′(p;h) can be proved similarly. The rest of this proof is based on

the differential inequality results developed in [39, 91]. According to the construction of

Scv
0 , Scv(t0,p)h ≤ [xcv

t0 ]
′(p;h). For all t ∈ (t0, t f ], to arrive at a contradiction, suppose that

there exists t̃ ∈ (t0, t f ] for which [xcv
i,t̃ ]
′(p;h)< ⟨scv

(i)(t̃,p),h⟩ for some i∈ {1, ...,nx}, and thus

define

t1 := inf{t ∈ (t0, t f ] : ∃κ ∈ {1, ...,nx} for which [xcv
κ,t ]
′(p;h)< ⟨scv

(κ)(t,p),h⟩} ≤ t f .
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Define a function δδδ : I→ R2nx so that for each t ∈ I,

δδδ (t) := (Scv(t,p)h− [xcv
t ]′(p;h), [xcc

t ]′(p;h)−Scc(t,p)h).

Observe that δδδ is absolutely continuous. Applying [39, Lemmata 3.3.4 and 3.3.5] to δδδ and

t1, we obtain the following.

Let 1 ∈ Rn be a vector whose components are all equal to 1. It holds that t1 < t f ,

and, for any t4 ∈ (t1, t f ], there exist j ∈ {1, ...,nx}, ε > 0, an absolutely continuous and

non-deceasing function ρ : [t1, t4]→ R whose derivative a.e. on [t1, t4] is denoted as ρ̇ , and

scalars t2, t3 ∈ [t1, t4] with t2 < t3 such that

0 < ρ(t)≤ ε, ∀t ∈ [t1, t4], (6.4.3)

ρ̇(t)> 2lρ(t), a.e. t ∈ [t1, t4], (6.4.4)

Scv(t,p)h−ρ(t)1 < [xcv
t ]′(p;h), ∀t ∈ [t2, t3), (6.4.5)

Scc(t,p)h+ρ(t)1 > [xcc
t ]′(p;h), ∀t ∈ [t2, t3), (6.4.6)

[xcv
j,t2]
′(p;h) = ⟨scv

( j)(t2,p),h⟩, (6.4.7)

[xcv
j,t3]
′(p;h) = ⟨scv

( j)(t3,p),h⟩−ρ(t3), (6.4.8)

[xcv
j,t ]
′(p;h)< ⟨scv

( j)(t,p),h⟩, ∀t ∈ (t2, t3). (6.4.9)

Define functions z̃, ỹ : I→ Rnx so that for each t ∈ I and κ ∈ {1, ...,nx},

z̃κ(t) := max(⟨scv
(κ)(t,p),h⟩, [x

cv
κ,t ]
′(p;h)),

ỹκ(t) := min(⟨scc
(κ)(t,p),h⟩, [x

cc
κ,t ]
′(p;h)).
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Moreover, since (6.4.7) and (6.4.9) hold, it follows that for all t ∈ [t2, t3),

z̃(t)≥ Scv(t,p)h,

z̃ j(t) = ⟨scv
( j)(t,p),h⟩,

ỹ(t)≤ Scc(t,p)h.

Since Condition I.3 in Definition 6.4.1 holds, it follows that

gu
j(t, z̃(t), ỹ(t))≥ ⟨v( j)(t,p,Scv(t,p),Scc(t,p)),h⟩, a.e. t ∈ [t2, t3). (6.4.10)

Now, for each t ∈ [t2, t3) and each κ ∈ {1, ...,nx}, one of the following cases will occur:

1. if [xcv
κ,t ]
′(p;h)≥ ⟨scv

(κ)(t,p),h⟩, then

z̃κ(t)− [xcv
κ,t ]
′(p;h) = 0, (6.4.11)

2. if [xcv
κ,t ]
′(p;h) ≤ ⟨scv

(κ)(t,p),h⟩, then z̃κ(t) = ⟨scv
(κ)(t,p),h⟩; moreover, since (6.4.5)

holds,

0 < z̃κ(t)− [xcv
κ,t ]
′(p;h)< ρ(t). (6.4.12)

The following inequality follows from (6.4.11) and (6.4.12):

∥z̃(t)− [xcv
t ]′(p;h)∥< ρ(t), ∀t ∈ [t2, t3). (6.4.13)

Similarly, for all t ∈ [t2, t3),

∥ỹ(t)− [xcc
t ]′(p;h)∥< ρ(t), ∀t ∈ [t2, t3). (6.4.14)
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Combining (6.4.13) and (6.4.14) with (6.4.2) yields

|gu
j(t, z̃(t), ỹ(t))−gu

j(t, [x
cv
t ]′(p;h), [xcc

t ]′(p;h))|< 2lρ(t), a.e. t ∈ [t2, t3). (6.4.15)

Applying (6.4.10) yields

⟨v( j)(t,p,Scv(t,p),Scc(t,p)),h⟩< gu
j(t, [x

cv
t ]′(p;h), [xcc

t ]′(p;h))+2lρ(t), a.e. t ∈ [t2, t3).

Since ρ̇(t)> 2lρ(t) for a.e. t ∈ [t2, t3] according to (6.4.4), rearranging the above inequality

yields

⟨v( j)(t,p,Scv(t,p),Scc(t,p)),h⟩−gu
j(t, [x

cv
t ]′(p;h), [xcc

t ]′(p;h))− ρ̇(t)< 0, a.e. t ∈ [t2, t3],

which implies that
(
⟨scv

( j)(t,p),h⟩− [xcv
j,t ]
′(p;h)− ρ(t)

)
is decreasing on [t2, t3], which in

turn implies

⟨scv
( j)(t2,p),h⟩− [xcv

j,t2]
′(p;h)−ρ(t2)> ⟨scv

( j)(t3,p),h⟩− [xcv
j,t3]
′(p;h)−ρ(t3). (6.4.16)

However, since (6.4.7) and (6.4.8) hold, then (6.4.16) becomes ρ(t2)< 0 which contradicts

(6.4.3). Thus t̃ cannot exist.

Since the choices of p and h are arbitrary in the proof above, it follows that for all

t ∈ (t0, t f ], p ∈ P̃, and h ∈ Rnp ,

Scv(t,p)h≤ [xcv
t ]′(p;h).
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6.4.3 Constructing subgradient propagation functions

In this subsection, we show that for any Scott–Barton right-hand side functions (u,o) in

Assumption 6.3.2 that are constructed using (2.4.2), the subgradient propagation functions

(V,W) in Theorem 6.4.2 can be constructed by leveraging the subgradient information of

(ũ, õ) in Assumption 2.4.11.

Besides Assumption 2.4.11, suppose that functions (ũ, õ) in (2.4.2) satisfy the following

assumption.

Assumption 6.4.3. Suppose that Assumption 2.4.11 holds. Suppose that the mappings

ũ(t, ·, ·, ·) and õ(t, ·, ·, ·) in (2.4.2) are directionally differentiable and Lipschitz continuous

on P̃×Rnx×Rnx , uniformly over t ∈ I.

The following proposition will be useful for the subsequent theory development.

Proposition 6.4.4. Suppose that functions ũ, õ : I×P×Rnx×Rnx→Rnx describe convexity

amplifying dynamics as in [2, Definition 5]. Then, these functions also satisfy the following

condition. For a.e. t ∈ I, any P̂ ∈ IP̃, and arbitrary functions ααα,βββ : P̂→ Rnx for which the

following conditions hold:

1. for each p̂ ∈ P̂, xL(t)< ααα(p̂)≤ βββ (p̂)< xU(t) and

2. ααα and βββ are respectively convex and concave on P̂,

then, the mappings p 7→ ũ(t,p,ααα(p),βββ (p)) and p 7→ õ(t,p,ααα(p),βββ (p)) are respectively

convex and concave on P̂.

Proof. This result can be verified by applying [2, Definition 5] of convexity amplifying

dynamics of (ũ, õ) to any pA,pB, p̃∈ P̂ and λ ∈ (0,1) for which p̃ := λpA+(1−λ )pB.
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In concert with the functions (ũ, õ) in Assumptions 2.4.11 and 6.4.3, we shall consider

functions (Ṽ,W̃) that satisfy the following assumption.

Assumption 6.4.5. Suppose that functions (ũ, õ) satisfy Assumptions 2.4.11 and 6.4.3.

Suppose that functions Ṽ,W̃ : I× P̃×Rnx ×Rnx ×Rnx×np ×Rnx×np → Rnx×np satisfy the

following conditions. Consider a.e. t ∈ I, any P̂ ∈ IP̃, arbitrary functions ααα,βββ : P̂→Rnx , p

in the interior of P̂ and M,N ∈ Rnx×np for which the following conditions hold:

1. for each p̂ ∈ P̂, xL(t)< ααα(p̂)≤ βββ (p̂)< xU(t),

2. ααα and βββ are respectively convex and concave on P̂, and

3. for each i ∈ {1, ...,nx}, m(i) and n(i) are respectively subgradients of αi and βi at p.

According to Proposition 6.4.4, the mappings ũ(t, ·,ααα(·),βββ (·)) and õ(t, ·,ααα(·),βββ (·)) are

respectively convex and concave on P̂. Assume that for each i ∈ {1, ...,nx},

ṽ(i)(t,p,ααα(p),βββ (p),M,N) and W̃(i)(t,p,ααα(p),βββ (p),M,N)

are subgradients of ũi(t, ·,ααα(·),βββ (·)) and õi(t, ·,ααα(·),βββ (·)) at p, respectively.

Theorem 6.4.8 below shows that valid subgradient propagation functions (V,W) in

Definition 6.4.1 may be constructed by composing functions (Ṽ,W̃) in Assumption 6.4.5

with new matrix flattening operations as in Definition 6.4.7 below. This theorem requires

the following lemma as an intermediate result.

Lemma 6.4.6. Suppose that Assumption 6.4.5 holds. For a.e. t ∈ I, any p ∈ P̃, ξξξ
cv
,ξξξ

cc ∈

Rnx , M,N ∈ Rnx×np , dA,dB ∈ Rnx , and h ∈ Rnp for which the following conditions hold:

1. xL(t)< ξξξ
cv ≤ ξξξ

cc
< xU(t),
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2. for each i ∈ {1, ...,nx} such that ξ cv
i < ξ cc

i ,

⟨m(i),h⟩ ≤ dA
i and ⟨n(i),h⟩ ≥ dB

i , (6.4.17)

3. for each j ∈ {1, ...,nx} such that ξ cv
j = ξ cc

j ,

m( j) = n( j), dA
j = dB

j , and ⟨m( j),h⟩= dA
j , (6.4.18)

then the following inequalities hold:

Ṽ(t,p,ξξξ cv
,ξξξ

cc
,M,N)h≤ [ũt ]

′(p,ξξξ cv
,ξξξ

cc;h,dA,dB)

and W̃(t,p,ξξξ cv
,ξξξ

cc
,M,N)h≥ [õt ]

′(p,ξξξ cv
,ξξξ

cc;h,dA,dB).

(6.4.19)

Proof. Consider a.e. t ∈ I, any p ∈ P̃, ξξξ
cv
,ξξξ

cc ∈ Rnx , M,N ∈ Rnx×np , dA,dB ∈ Rnx , and

h ∈ Rnp as in the lemma’s statement.

Define functions ααα,βββ : Rnp → Rnx in the following way.

1. Choose vectors q(i),e(i) ∈ Rnp for which ⟨q(i),h⟩ = dA
i and ⟨e(i),h⟩ = dB

i . For each

i ∈ {1, ...,nx} such that ξ cv
i < ξ cc

i and each p̃ ∈ Rnp , define

αi(p̃) := max(ξ cv
i + ⟨m(i), p̃−p⟩,ξ cv

i + ⟨q(i), p̃−p⟩)

and βi(p̃) := min(ξ cc
i + ⟨n(i), p̃−p⟩,ξ cc

i + ⟨e(i), p̃−p⟩).

Observe that αi(p) = ξ cv
i , βi(p) = ξ cc

i , αi and βi are piecewise affine, αi is convex, βi

is concave, and m(i) and n(i) are respectively subgradients of αi and βi at p. Besides,

since (6.4.17) holds, and since ⟨q(i),h⟩ = dA
i and ⟨e(i),h⟩ = dB

i , [129, Example 3.4,

Page 260] implies that [αi]
′(p;h) = dA

i and [βi]
′(p;h) = dB

i .
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2. For each j ∈ {1, ...,nx} such that ξ cv
j = ξ cc

j and each p̃ ∈ Rnp ,

α j(p̃) := ξ
cv
j + ⟨m( j), p̃−p⟩

and β j(p̃) := ξ
cc
j + ⟨n( j), p̃−p⟩.

Since (6.4.18) holds, it follows that α j and β j are the same affine function, α j(p) =

ξ cv
j = β j(p) = ξ cc

j , [α j]
′(p;h) = dA

j = [β j]
′(p;h) = dB

j , m( j) and n( j) are respectively

slopes of the affine functions α j and β j.

Moreover, since functions (ααα,βββ ) are continuous by construction, and since xL(t)< ξξξ
cv ≤

ξξξ
cc
< xU(t), there exists a set P̂ ∈ IP̃ such that p is in the interior of P̂ and xL(t)< ααα(p̃)≤

βββ (p̃)< xU(t) for each p̃ ∈ P̂.

Now, since (ũ, õ) and (Ṽ,W̃) satisfy Assumption 6.4.5, according to the construction

of (ααα,βββ ), for all h̃ ∈ Rnp

Ṽ(t,p,ααα(p),βββ (p),M,N)h̃≤ [ũt ]
′(p,ααα(p),βββ (p); h̃,ααα ′(p; h̃),βββ ′(p; h̃))

and W̃(t,p,ααα(p),βββ (p),M,N)h̃≥ [õt ]
′(p,ααα(p),βββ (p); h̃,ααα ′(p; h̃),βββ ′(p; h̃)).

Then, (6.4.19) is proved by substituting (ααα(p),βββ (p)) with (ξξξ
cv
,ξξξ

cc
), letting h̃ := h, and

substituting (ααα ′(p;h),βββ ′(p;h)) with (dA,dB).

Definition 6.4.7. For each i ∈ {1, ...,nx}, define functions Ri,L,Ri,U : Rnx×np ×Rnx×np →

Rnx×np×Rnx×np by:

1. Ri,L(MA,NA) := (MA,NB) where nB
(k) := nA

(k), for all k ∈ {1, ...,nx} and k ̸= i and

nB
(i) := mA

(i),
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2. Ri,U(MA,NA) := (MB,NA) where mB
(k) := mA

(k), for all k ∈ {1, ...,nx} and k ̸= i, and

mB
(i) := nA

(i).

Theorem 6.4.8. Suppose that functions ũ, õ : I×P×Rnx ×Rnx → Rnx satisfy Assump-

tion 6.4.3. Construct functions u,o : I×P×Rnx ×Rnx → Rnx using (2.4.2). Then, the

mappings u(t, ·, ·, ·) and o(t, ·, ·, ·) are directionally differentiable and Lipschitz continu-

ous on P̃×Rnx ×Rnx , uniformly over t ∈ I. Suppose that the remaining conditions in

Assumption 6.3.2 also hold. Consider a set X̃ ∈ IRnx for which X(t) ⊂ X̃ ,∀t ∈ I. Sup-

pose that functions (Ṽ,W̃) satisfy Assumption 6.4.5 and the following conditions: for any

Z ∈ IRnx×np ,

II.1 for each p∈ P̃ and M,N∈ Z, the functions Ṽ(·,p, ·, ·,M,N) and W̃(·,p, ·, ·,M,N) are

Borel measurable (c.f. [147]),

II.2 there exist scalars m̃Z, k̃Z > 0 so that for each t ∈ I, p∈ P̃, ξξξ
cv
,ξξξ

cc ∈ X̃ , and MA,NA,MB,NB ∈

Z,

∥Ṽ(t,p,ξξξ cv
,ξξξ

cc
,MA,NA)∥+∥W̃(t,p,ξξξ cv

,ξξξ
cc
,MA,NA)∥ ≤ m̃Z (6.4.20)

and

∥Ṽ(t,p,ξξξ cv
,ξξξ

cc
,MA,NA)− Ṽ(t,p,ξξξ cv

,ξξξ
cc
,MB,NB)∥

+∥W̃(t,p,ξξξ cv
,ξξξ

cc
,MA,NA)−W̃(t,p,ξξξ cv

,ξξξ
cc
,MB,NB)∥

≤ k̃Z(∥MA−MB∥+∥NA−NB∥).

(6.4.21)

Define functions V,W : I× P̃×Rnx×np ×Rnx×np → Rnx×np so that for each i ∈ {1, ...,nx}
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and (t,p,M,N) ∈ I× P̃×Rnx×np×Rnx×np ,

v(i)(t,p,M,N) := ṽ(i)(t,p,ri,L(xcv(t,p),xcc(t,p)),Ri,L(M,N)),

and w(i)(t,p,M,N) := w̃(i)(t,p,ri,U(xcv(t,p),xcc(t,p)),Ri,U(M,N)).

(6.4.22)

Then, the functions (V,W) are valid subgradient propagation functions for (u,o) as in

Definition 6.4.1.

Proof. Since the functions (ũ, õ) satisfy Assumption 2.4.11, [2, Lemmata 10 and 11] im-

ply that (u,o) are valid Scott–Barton right–hand side functions. Since (ri,L,ri,U) are linear

mappings, (u,o) also inherits the directional differentiability and uniform Lipschitz conti-

nuity of (ũ, õ) in Assumption 6.4.3. Thus, the mappings u(t, ·, ·, ·) and o(t, ·, ·, ·) are direc-

tionally differentiable and Lipschitz continuous on P̃×Rnx×Rnx , uniformly over t ∈ I.

Next, we show that the (V,W) in (6.4.22) are valid subgradient propagation functions

by verifying all conditions in Definition 6.4.1. Since for each p∈ P, (xcv(·,p),xcc(·,p)) are

continuous, it follows that (xcv(·,p),xcc(·,p)) are Borel measurable. Since a composition

of two Borel measurable functions is also Borel measurable (c.f. [147, Section 2.12(ii)]),

Condition II.1 implies that V(·,p,M,N) and W(·,p,M,N) satisfy Condition I.1. More-

over, since xcv(t,p),xcc(t,p) ∈ X(t)⊂ X̃ ,∀(t,p) ∈ I×P according to [2, Lemma 1], Con-

dition II.2 implies that Condition I.2 is satisfied with mZ(t,p) := m̃Z and kZ(t,p) := k̃Z .

Now, we verify Condition I.3. Consider a.e. t ∈ I, any p ∈ P̃, i ∈ {1, ...,nx}, M,N ∈

Rnx×np , dA,dB ∈ Rnx , and h ∈ Rnp such that

Mh≤ dA,

Nh≥ dB.

(6.4.23)
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Further assume that ⟨m(i),h⟩= dA
i . Let

(ξ̂ξξ
cv
, ξ̂ξξ

cc
) := ri,L(xcv(t,p),xcc(t,p)),

(M̂, N̂) := Ri,L(M,N),

(d̂A, d̂B) := ri,L(dA,dB).

(6.4.24)

Since xL(t) < xcv(t,p) < xcc(t,p) < xU(t) by assumption, since (6.4.23) holds, and based

on the definitions of ri,L and Ri,L, it follows that xL(t)< ξ̂ξξ
cv

and ξ̂ξξ
cc
< xU(t), and for any

index j ∈ {1, ...,nx} with j ̸= i,

ξ̂
cv
j < ξ̂

cc
j , ⟨m̂( j),h⟩ ≤ d̂A

j , ⟨n̂( j),h⟩ ≥ d̂B
j ,

and

m̂(i) = n̂(i) = m(i), ξ̂
cv
i = ξ̂

cc
i = xcv

i (t,p), d̂A
i = d̂B

i = dA
i .

Moreover, since ⟨m(i),h⟩= dA
i , it follows that ⟨m̂(i),h⟩= d̂A

i . Thus, Proposition 6.4.4 and

Lemma 6.4.6 imply that

⟨ṽ(i)(t,p, ξ̂ξξ
cv
, ξ̂ξξ

cc
,M̂, N̂),h⟩ ≤ [ũi,t ]

′((p, ξ̂ξξ
cv
, ξ̂ξξ

cc
);(h, d̂A, d̂B)).

According to (6.4.24),

⟨ṽ(i)(t,p,ri,L(xcv(t,p),xcc(t,p)),Ri,L(M,N)),h⟩

≤ [ũi,t ]
′((p,ri,L(xcv(t,p),xcc(t,p)));(h,ri,L(dA,dB))

)
.
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Moreover, since (2.4.2) and (6.4.22) hold, the inequality above becomes

⟨v(i)(t,p,M,N),h⟩ ≤ [ui,t ]
′((p,xcv(t,p),xcc(t,p));(h,dA,dB)).

If we instead assume that ⟨n(i),h⟩= dB
i , it can be shown similarly that

⟨w(i)(t,p,M,N),h⟩ ≥ [oi,t ]
′((p,xcv(t,p),xcc(t,p));(h,dA,dB)).

Thus, (V,W) satisfy Condition I.3 of Definition 6.4.1.

Remark 6.4.9. The requirement xcv(t,p) < xcc(t,p) in Assumption 6.3.2 is essential for

the theorem above. To illustrate this point, consider any i ∈ {1, ...,nx} and a index j ̸= i for

which xcv
j (t,p)= xcc

j (t,p). In this case, for Lemma 6.4.6 to be applicable in the proof above,

we must have dA
j = dB

j . However, Condition I.3 of Definition 6.4.1 requires considering

any dA
j ,d

B
j ∈ R. Thus, coinciding xcv(t,p) and xcc(t,p) cannot be applied.

6.4.4 Accommodating coinciding state relaxations

According to [2, Corollary 1], any state relaxations (xcv,xcc) obtained using (2.4.1) satisfy

xcv(t,p)≤ xcc(t,p), for each (t,p)∈ I×P. In this subsection, still assuming that valid state

relaxations (xcv,xcc) are obtained using (6.3.2), we show that the requirement xcv(t,p) <

xcc(t,p) in Assumption 6.3.2 can be guaranteed by adding an arbitrarily small perturbation

ε > 0 to (u,o,xcv
0 ,xcc

0 ) in (6.3.2). This result requires the following additional assumption.

Assumption 6.4.10. Consider functions (ũ, õ) that satisfy Assumption 2.4.11. Further as-

sume that for each t ∈ I, p ∈ P, and ξξξ
cv,A

,ξξξ
cv,B

,ξξξ
cc,A

,ξξξ
cc,B ∈ Rnx for which ξξξ

cv,A ≤
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ξξξ
cv,B ≤ ξξξ

cc,B ≤ ξξξ
cc,A,

ũ(t,p,ξξξ cv,A
,ξξξ

cc,A
)≤ ũ(t,p,ξξξ cv,B

,ξξξ
cc,B

)≤ õ(t,p,ξξξ cv,B
,ξξξ

cc,B
)≤ õ(t,p,ξξξ cv,A

,ξξξ
cc,A

).

The assumption above is mild and is already required in [39, 79]. This assumption is

necessary for the resulting state relaxations to exhibit desirable convergence properties (in

the sense of [79]) to x as P shrinks in methods for deterministic global dynamic optimiza-

tion. The following proposition establishes strict inequalities between xcv and xcc.

Proposition 6.4.11. Consider functions (ũ, õ) that satisfy Assumption 6.4.10, and consider

functions (u,o) constructed using (2.4.2). Consider the following (p,ε)–dependent ODE

system: for each i ∈ {1, ...,nx},

˙̂xcv
i (t,p,ε) = ui(t,p, x̂cv(t,p,ε), x̂cc(t,p,ε))− ε, x̂cv

i (t0,p,ε) = xcv
i,0(p)− ε,

˙̂xcc
i (t,p,ε) = oi(t,p, x̂cv(t,p,ε), x̂cc(t,p,ε))+ ε, x̂cc

i (t0,p,ε) = xcc
i,0(p)+ ε.

(6.4.25)

For each p ∈ P and ε ∈ R, any solution (x̂cv(, ·,p,ε), x̂cc(, ·,p,ε)) is understood in the

classical sense. Consider an arbitrarily small ε̂ > 0 and suppose that for each p ∈ P and

t ∈ I,

xL(t)≤ x̂cv(t,p, ε̂) and x̂cc(t,p, ε̂)≤ xU(t), (6.4.26)

and also suppose that

xL(t)≤ x̂cv(t,p,0) and x̂cc(t,p,0)≤ xU(t). (6.4.27)

Then, (x̂cv(·, ·,0), x̂cc(·, ·,0)) and (x̂cv(·, ·, ε̂), x̂cc(·, ·, ε̂)) are both valid state relaxations for
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(2.3.1). Moreover,

x̂cv(t,p, ε̂)< x̂cv(t,p,0)≤ x̂cc(t,p,0)< x̂cc(t,p, ε̂), ∀t ∈ I, ∀p ∈ P. (6.4.28)

Proof. Since (ũ, õ) in Assumption 2.4.11 are continuous, the definition of a solution of

(6.4.25) is appropriate. Since (ũ, õ) satisfy Assumption 2.4.11 and (u,o) are constructed

using (2.4.2), [2, Lemmata 10 and 11] imply that (u,o) are valid Scott–Barton right-hand

side functions. Moreover, it is readily verified that (u− ε̂,o+ ε̂) are also valid Scott–Barton

right-hand side functions. Thus, since (6.4.26) and (6.4.27) are assumed, [2, Corollary 1

and Theorem 3] imply that both (x̂cv(·, ·,0), x̂cc(·, ·,0)) and (x̂cv(·, ·, ε̂), x̂cc(·, ·, ε̂)) are valid

state relaxations for (2.3.1).

Since (x̂cv(·, ·,0), x̂cc(·, ·,0)) are valid state relaxations, it follows that x̂cv(t,p,0) ≤

x̂cc(t,p,0) for each t ∈ I and p ∈ P. Now, we prove the remaining inequalities in (6.4.28)

using a differential inequality result [77, Theorem III, §12]. Consider any fixed p ∈ P.

Consider any t ∈ I, i ∈ {1, ...,nx}, and ξξξ
cv
,ξξξ

cc ∈ Rnx so that x̂cv(t,p, ε̂)≤ ξξξ
cv ≤ ξξξ

cc ≤

x̂cc(t,p, ε̂). Further assume that ξ cv
i = x̂cv

i (t,p,ε). Since Assumption 6.4.10 holds, accord-

ing to the definition of ri,L,

ũi(t,p,ri,L(ξξξ
cv
,ξξξ

cc
))≥ ũi(t,p,ri,L(x̂cv(t,p, ε̂), x̂cc(t,p, ε̂))).

Moreover, since (2.4.2) holds and ε̂ > 0,

ui(t,p,ξξξ
cv
,ξξξ

cc
)≥ ui(t,p, x̂cv(t,p, ε̂), x̂cc(t,p, ε̂))

> ui(t,p, x̂cv(t,p, ε̂), x̂cc(t,p, ε̂))− ε̂.
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Similarly, if we instead assume ξ cc
i = x̂cc

i (t,p, ε̂), it can be shown that

oi(t,p,ξξξ
cv
,ξξξ

cc
)< oi(t,p, x̂cv(t,p, ε̂), x̂cc(t,p, ε̂))+ ε̂.

Moreover, since xcv
i,0(p)− ε̂ < xcv

i,0(p) and xcc
i,0(p) + ε̂ > xcc

i,0(p) and since the ODE solu-

tions (x̂cv(·,p,0), x̂cc(p, ·,0)) and (x̂cv(·,p, ε̂), x̂cc(·,p, ε̂)) are continuously differentiable,

(6.4.28) follows by applying [77, Theorem III, §12] to (6.4.25) reformulated with ε := 0

and with ε := ε̂ , where the states x̂cc are replaced by their negatives.

Note that x̂cv(·, ·, ε̂) and x̂cc(·, ·, ε̂) still have desirable convergence properties to x as P

shrinks, if ε̂ is set to be a fixed fraction of the diameter of P. Moreover, the subgradient

evaluation results Theorems 6.4.2 and 6.4.8 are still applicable to (6.3.2) if (u− ε̂,o+ ε̂) is

embedded instead of (u,o). The following proposition shows that if an extremely small ε̂ >

0 is chosen, subgradients of the “ε̂-perturbed” state relaxations approximate subgradients

of the original state relaxations.

Proposition 6.4.12. Consider the setup in Proposition 6.4.11. For any 0 < ε ≤ ε̂ , consider

the resulting state relaxations (x̂cv(·, ·,ε), x̂cc(·, ·,ε)) obtained using (6.4.25), and for each

t ∈ I, denote the subdifferential of x̂cv
i (t, ·,ε) and x̂cc

i (t, ·,ε) at a p ∈ P̃ as ∂ x̂cv
i (t,p,ε) and

∂ x̂cc
i (t,p,ε), respectively. Then,

lim
ε↓0

sup∂ x̂cv
i (t,p,ε)⊂ ∂ x̂cv

i (t,p,0)

and lim
ε↓0

sup∂ x̂cc
i (t,p,ε)⊂ ∂ x̂cc

i (t,p,0)

(c.f. [148, Definition 4.1] for “limsup”).

Proof. Since functions (u,o) satisfy the first two conditions in Definition 2.4.9, for any
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p ∈ P̃ and ε ∈ R, [99, Theorem 6.1, §III] implies that (6.4.25) has exactly one solution on

I. Moreover, since functions (u,o,xcv
0 ,xcc

0 ) are continuous, [99, Theorem 2.1, §V] implies

that the solution (x̂cv, x̂cc) are continuous on I×P̃×R. Thus, for any t ∈ I, as ε ↓ 0, the map-

pings x̂cv(t, ·,ε) and x̂cc(t, ·,ε) converge pointwise to x̂cv(t, ·,0) and x̂cc(t, ·,0), respectively.

Then, the claimed result follows by applying [146, Theorem 24.5] to (x̂cv
i (t,p, ·), x̂cc

i (t,p, ·))

for each i ∈ {1, ...,nx} and (t,p) ∈ I× P̃.

6.4.5 Adjoint subgradient evaluation

In this subsection, we propose to evaluate the subgradients described by Theorem 6.4.2

via an adjoint ODE system. Since adjoint sensitivity evaluation is relatively computational

inexpensive, we expect that this will be useful when solving lower-bounding problems in

deterministic algorithms of global dynamic optimization. Consider a nonconvex dynamic

optimization problem with (2.3.1) embedded:

min
p∈P

c(p) := g(t f ,p,x(t f ,p)), (6.4.29)

where p ∈ P denotes decision variables, c : Rnp → R is an objective function based on

a continuous cost function g : I×P×Rnx → R. A lower-bounding problem for (6.4.29),

embedded in an overarching global optimization method, is typically a convex optimization

problem whose optimal objective value is a valid lower bound of the optimal objective

value of (6.4.29). Consider any state relaxations xC := (xcv,xcc) for (2.3.1) obtained using

(6.3.2). A lower-bounding problem for (6.4.29) is typically constructed as:

min
p∈P

ccv(p) := gcv(t f ,p,xC(t f ,p)), (6.4.30)
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where the function ccv :Rnp→R is a convex relaxation of c on P, and gcv : I×P×R2nx→R

may be constructed using various adaptations [6, 7, 33, 34] of the McCormick relaxation

method [5]. When solving (6.4.30) with nonsmooth NLP solvers, Subgradients of ccv

are typically required by these solvers to proceed effectively. In a forward subgradient

evaluation method, given state relaxation subgradients

SC :=

Scv

Scc


for the state relaxations xC obtained by solving (6.4.1), subgradients of ccv may be com-

puted by applying certain subgradient evaluation rules (e.g. [7, 33, 35, 145]) for gcv. How-

ever, since the ODE system (6.4.1) has 2nx× np state variables, as nx and np increase,

the number of state variables of (6.4.1) will significantly increase, and thus solving (6.4.1)

may become intractable. As summarized in [90], reverse (adjoint) sensitivity analysis is

more efficient for the situation of computing gradients of a scalar function of state vari-

ables with respect to a large number of parameters. In smooth dynamic optimization, an

adjoint sensitivity approach allows evaluating derivatives of the objective function without

evaluating the partial derivatives of state variables with respect to the uncertain param-

eters. The following theorem shows that if the subgradients of ccv can be evaluated by

applying the classical chain rule as for gradients, and if the forward subgradient evaluation

system (6.4.1) is an affine ODE system, then the subgradients of ccv may be evaluated di-

rectly using adjoints. The assumptions of this theorem can often be satisfied in practice.

For example, given (Scv,Scc), the methods for evaluating subgradients of ccv in [7,35,145]

satisfy the classical chain rule. As will be seen in Section 6.5, the forward subgradient

evaluation systems derived from (6.4.1) for the established state relaxations [2,3] are affine
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ODE systems. Thus, this result essentially extends classical dynamic adjoint sensitivity

methods to nonsmooth subgradient evaluation.

Theorem 6.4.13. Consider the lower bounding problem (6.4.30) where the state relaxations

xC := (xcv,xcc) are constructed by solving (6.3.2). Suppose that the following conditions

hold for a fixed p̃ ∈ P̃.

III.1 Let (ρρρ0,ρρρ) be the transpose of a subgradient of gcv(t f , ·, ·) at (p̃,xC(t f , p̃)). Denote

the transpose of a subgradient of ccv at p̃ as s̃. Suppose that

s̃ := ρρρ0 +ρρρSC(t f , p̃). (6.4.31)

III.2 State relaxation subgradients SC(·, p̃) := (Scv(·, p̃),Scc(·, p̃)) for xC(·, p̃) as in Def-

inition 6.3.3 are computed by solving (6.4.1) with p := p̃, and (6.4.1) also has the

following affine form:

ṠC(t, p̃) = ΘΘΘ
A(t, p̃)SC(t, p̃)+ΘΘΘ

B(t, p̃),

SC(t0, p̃) = SC
0 (p̃).

(6.4.32)

where ΘΘΘ
A,ΘΘΘB : I× P̃→ R2nx×2nx and SC

0 := (Scv
0 ,Scc

0 ) in (6.4.1).

Let λλλ : I→R2nx be a Carathéodory solution (as described in [102]) of the following adjoint

ODE system on I:

(λ̇λλ (t))T =−(λλλ (t))T
ΘΘΘ

A(t, p̃),

(λλλ (t f ))
T = ρρρ.

(6.4.33)
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Then, the following holds:

s̃≡ (λλλ (t0))TSC
0 (p̃)+ρρρ0 +

∫ t f

t0
(λλλ (t))T

ΘΘΘ
B(t, p̃)dt. (6.4.34)

Proof. Define a function γγγ : I×Rnp×R2nx→R2nx so that for each (t,p,z)∈ I×Rnp×R2nx ,

γγγ(t,p,z) := ΘΘΘ
A(t, p̃)(z−xC(t, p̃))+ΘΘΘ

B(t, p̃)(p− p̃).

Consider the following affine ODE system on I for each p ∈ Rnp :

ẏ(t,p) = γγγ(t,p,y(t,p)),

y(t0,p) = SC
0 (p̃)(p− p̃).

(6.4.35)

For a.e. t ∈ I, since γγγ(t, ·, ·) is affine, the Clarke’s generalized Jacobian (c.f. [136, Defini-

tion 2.6.1]) of γγγ(t, ·, ·) at each (p,z) ∈ Rnp×R2nx reduces to a singleton. Thus, [136, The-

orem 7.4.1] implies that the function y(t f , ·) is strictly differentiable (c.f. [136, Proposi-

tion 2.2.1]) on Rnp . Furthermore, according to [97, Corollary 4.3], for each p ∈ Rnp , the

mapping t 7→ ∂y
∂p(t,p) may be described as the solution of the following ODE system on I:

Ḣ(t) = ΘΘΘ
A(t, p̃)H(t)+ΘΘΘ

B(t, p̃), H(t0) = SC
0 (p̃), (6.4.36)

which indicates that dy
dp(t,p) is independent of p, and thus the mapping y(t, ·) is affine for

each t ∈ I. Observe that (6.4.36) and (6.4.32) are the same ODE system, which implies that

SC(t f , p̃)≡
∂y
∂p

(t f , p̃). (6.4.37)
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Now define g̃ : Rnp×Rnx → R so that for each p ∈ Rnp and z ∈ Rnx ,

g̃(p,z) := ρρρ(z−xC(t f , p̃))+ρρρ0(p− p̃),

and define c̃ : Rnp → R so that for each p ∈ Rnp ,

c̃(p) = g̃(p,y(t f ,p)).

Since y(t f , ·) is differentiable and g̃ is differentiable by construction, c̃ is differentiable and

dc̃
dp

(p̃) = ρρρ0 +ρρρ
∂y
∂p

(t f , p̃).

Since (6.4.31) and (6.4.37) hold,

dc̃
dp

(p̃)≡ s̃ = ρρρ0 +ρρρ
∂y
∂p

(t f , p̃). (6.4.38)

Now, we show that dc̃
dp(p̃) can be evaluated using adjoints. The remainder of this proof

is similar to the proof for adjoint sensitivity analysis for differentiable dynamic systems

(c.f. [90, Section 2.1]), but with essential differences, since y(t, p̃) is not differentiable

everywhere in t.

Consider an absolutely continuous function λλλ : I→ R2nx . It follows that for each p ∈

Rnp ,

c̃(p) = g̃(p,y(t f ,p))

= ρρρ(y(t f ,p)−xC(t f , p̃))+ρρρ0(p− p̃)

−
∫ t f

t0
(λλλ (t))Tẏ(t,p)dt +

∫ t f

t0
(λλλ (t))T

γγγ(t,p,y(t,p))dt.

(6.4.39)
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Note that the integral terms above are understood as Lebesgue integrals. Moreover, [147,

Corollary 5.4.3] implies that

∫ t f

t0
(λλλ (t))Tẏ(t,p)dt =(λλλ (t f ))

Ty(t f ,p)−(λλλ (t0))Ty(t0,p)−
∫ t f

t0
(λ̇λλ (t))Ty(t,p)dt. (6.4.40)

By construction, all integrands in (6.4.40) and (6.4.39) are differentiable with respect to p∈

Rnp . According to [147, Corollary 2.8.7], plugging (6.4.40) into (6.4.39) and differentiating

at p := p̃ yields

dc̃
dp

(p̃) = ρρρ
∂y
∂p

(t f , p̃)+ρρρ0− (λλλ (t f ))
T ∂y

∂p
(t f , p̃)+(λλλ (t0))T ∂y

∂p
(t0, p̃)

+
∫ t f

t0
(λ̇λλ (t))T ∂y

∂p
(t, p̃)dt +

∫ t f

t0
(λλλ (t))T

(
∂γγγ

∂p
(t, p̃,y(t, p̃))+

∂γγγ

∂y
∂y
∂p

(t, p̃,y(t, p̃))
)

dt.

By construction of γγγ and the initial values in (6.4.36), it follows that

dc̃
dp

(p̃) = ρρρ
∂y
∂p

(t f , p̃)+ρρρ0− (λλλ (t f ))
T ∂y

∂p
(t f , p̃)+(λλλ (t0))TSC

0 (p̃)

+
∫ t f

t0
(λ̇λλ (t))T ∂y

∂p
(t, p̃)dt +

∫ t f

t0
(λλλ (t))T

(
ΘΘΘ

B(t, p̃)+ΘΘΘ
A(t, p̃)

∂y
∂p

(t, p̃)
)

dt.
(6.4.41)

Now, for a.e. t ∈ I, let

(λ̇λλ (t))T =−(λλλ (t))T
ΘΘΘ

A(t, p̃),

(λλλ (t f ))
T = ρρρ.

(6.4.42)

Then, (6.4.41) reduces to

s̃≡ dc̃
dp

(p̃) = (λλλ (t0))TSC
0 (p̃)+ρρρ0 +

∫ t f

t0
(λλλ (t))T

ΘΘΘ
B(t, p̃)dt.
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Remark 6.4.14. For each t ∈ I, the integrand (λλλ (t))TΘΘΘ
B(t, p̃) in (6.4.34) may be computed

based on the states (λλλ (t))T. Thus,
∫ t f

t0 (λλλ (t))
TΘΘΘ

B(t, p̃)dt may be computed simultaneously

with numerical integration of (6.4.33).

6.5 New subgradients of established state relaxations

Based on the general subgradient evaluation results established in the previous sections,

we now propose new numerical methods for evaluating subgradients of the two estab-

lished state relaxation methods in the Scott–Barton framework (2.4.1): the Scott–Barton–

McCormick (SBM) relaxations [2] and the optimization-based (OB) relaxations [3]. These

subgradient evaluation methods assume that the underlying state relaxations do not touch

the predefined state bounds; i.e. (2.4.1) reduces to (6.3.2). Roughly, a forward subgradient

evaluation ODE system for the SBM relaxations will be constructed from Mitsos et al.’s

subgradients [35] of McCormick relaxations [5, 6], and an adjoint ODE sensitivity system

for the SBM relaxations will be constructed from Beckers et al.’s method for adjoint mode

computation of subgradients for McCormick relaxations. A forward subgradient evaluation

system for the OB relaxations will be constructed from a subgradient evaluation method for

the multivariate McCormick relaxations [7] proposed in [145].

6.5.1 Subgradients of Scott–Barton–McCormick relaxations

As mentioned in Section 2.4, Scott and Barton [2] construct functions (ũ, õ) in Assump-

tion 2.4.11 using the generalized McCormick (gMC) relaxations [6] of f in (2.3.1), and then

construct appropriate (u,o) in (2.4.1) via (2.4.2). [2, Corollary 1 and Theorem 3] show that

by such construction, the unique solution (xcv,xcc) of (2.4.1) is a valid state relaxation for
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(2.3.1). Mitsos et al. [35] propose a forward subgradient evaluation method for the standard

McCormick (MC) relaxations, analogously to the forward mode of automatic differentia-

tion [149, 150]. The gMC relaxation method generalizes the standard MC relaxations by

allowing previously established relaxations to be inputs. Similarly, the subgradient evalu-

ation rules of Mitsos et al. may also be generalized to evaluate subgradients of the gMC

relaxations, by taking in valid subgradients of previously established relaxations. The fol-

lowing proposition formalizes this result for the gMC relaxations of f in (2.3.1).

Proposition 6.5.1. Denote the generalized McCormick relaxations [6, Definition 15] of f

in (2.3.1) on P as ũgMC, õgMC : I×P×Rnx×Rnx→Rnx . Encode the subgradient evaluation

procedure of [35] for (ũgMC, õgMC) as functions ṼgMC,W̃gMC : I×P̃×Rnx×Rnx×Rnx×np×

Rnx×np →Rnx×np , by finitely composing the addition rule for subgradients in [35, Proposi-

tion 2.9], the multiplication rule for subgradients in [35, Theorem 3.3], and the univariate

composition rule for subgradients in [35, Theorem 3.2]. Then, Assumption 6.4.5 is satisfied

with (ũ, õ) := (ũgMC, õgMC) and (Ṽ,W̃) := (ṼgMC,W̃gMC).

Proof. Firstly, we verify Assumptions 2.4.11 and 6.4.3 that are required in Assumption 6.4.5.

According to [2, 6], the functions (ũgMC, õgMC) satisfy Assumption 2.4.11 and have the

uniform Lispchitz continuity required in Assumption 6.4.3. To establish the directional

differentiability requirement of Assumption 6.4.3, observe from [6] that the functions (c.f.

[6, Definition 15]) for computing relaxations for each binary addition, binary multiplica-

tion, and univariate composition are Lipschitz continuous and directionally differentiable.

Then [127, Theorem 3.1.2] implies that these functions are B-differentiable (c.f. [127, Sec-

tion 3.1]). According to [127, Theorem 3.1.1], (ũgMC, õgMC) are also B-differentiable since

they are finite compositions of B-differentiable functions. This implies that (ũgMC, õgMC)

are directionally differentiable.
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The remaining conditions for (ṼgMC,W̃gMC) except Assumptions 2.4.11 and 6.4.3 in

Assumption 6.4.5 can be verified based on [35].

The following lemma establishes important bounds and measurability of the constructed

(ṼgMC,W̃gMC). These properties guarantee that a subgradient propagation ODE system

which will be constructed in Corollary 6.5.3 has solutions.

Lemma 6.5.2. Conditions II.1 and II.2 of Theorem 6.4.8 are satisfied with the substitution

(Ṽ,W̃) := (ṼgMC,W̃gMC).

Proof. Denote the subgradient evaluation rules [35] for binary addition, binary multipli-

cations, and univariate composition as functions (ṽ+, w̃+), (ṽ×, w̃×), and (ṽUni, w̃Uni), re-

spectively. Let wcv := (wcv
1 ,wcv

2 ) and wcc := (wcc
1 ,wcc

2 ). Let scv
w1
,scv

w2
,scv

w3
,scc

w1
,scc

w2
,scc

w3
∈ Rnp

be arbitrary row vectors. Let

Scv
w :=

scv
w1

scv
w2

 and Scc
w :=

 scc
w1

scc
w2
,


Observe from [35] that the subgradient evaluation functions (ṽ+, ṽ×, ṽUni) have the follow-

ing affine forms:

ṽ+ : (t,wcv,wcc,Scv
w ,Scc

w ) 7→ Θ̃ΘΘ
+
(t,wcv,wcc)

Scv
w

Scc
w

 ,
ṽ× : (t,wcv,wcc,Scv

w ,Scc
w ) 7→ Θ̃ΘΘ

×
(t,wcv,wcc)

Scv
w

Scc
w

 ,
and ṽUni : (t,wcv

3 ,wcc
3 ,scv

w3
,scc

w3
) 7→ Θ̃ΘΘ

Uni
(t,wcv

3 ,wcc
3 )

scv
w3

scc
w3

 ,
222



Ph.D. Thesis – Y. Song McMaster University – Chemical Engineering

where Θ̃ΘΘ
+
,Θ̃ΘΘ
×

: I×R2×R2→ R1×4 and Θ̃ΘΘ
Uni

: I×R×R→ R1×2 are coefficient matrix-

valued functions. Also observe that the functions (Θ̃ΘΘ
+
,Θ̃ΘΘ
×
,Θ̃ΘΘ

Uni
) are piecewise continuous

in the sense of Filippov [102], and thus these functions are bounded on any bounded do-

main, and are Borel measurable. Similarly, the functions (w̃+, w̃×, w̃Uni) also have similar

affine structure and the corresponding coefficient matrix functions are bounded and Borel

measurable. Since (ṼgMC,W̃gMC) are constructed by finitely composing these functions

(ṽ+, ṽ×, ṽUni, w̃+, w̃×, w̃Uni), they have the following affine forms:

ṼgMC : (t,p,ξξξ cv
,ξξξ

cc
,M,N) 7→ Θ̃ΘΘ

cv,A
(t,p,ξξξ cv

,ξξξ
cc
)

M

N

+ Θ̃ΘΘ
cv,B

(t,p,ξξξ cv
,ξξξ

cc
)

and W̃gMC : (t,p,ξξξ cv
,ξξξ

cc
,M,N) 7→ Θ̃ΘΘ

cc,A
(t,p,ξξξ cv

,ξξξ
cc
)

M

N

+ Θ̃ΘΘ
cc,B

(t,p,ξξξ cv
,ξξξ

cc
),

(6.5.1)

where Θ̃ΘΘ
cv,A

,Θ̃ΘΘ
cc,A

,Θ̃ΘΘ
cv,B

,Θ̃ΘΘ
cc,B

: I× P̃×Rnx×Rnx → Rnx×2nx . Since (Θ̃ΘΘ
+
,Θ̃ΘΘ
×
,Θ̃ΘΘ

Uni
) are

bounded and Borel measurable, (Θ̃ΘΘ
cv,A

,Θ̃ΘΘ
cc,A

,Θ̃ΘΘ
cv,B

,Θ̃ΘΘ
cc,B

) are bounded on the bounded

domain I× P̃× X̃ × X̃ , and are Borel measurable according to [147, 2.12(ii) and Theo-

rem 2.1.5]. Thus, (ṼgMC,W̃gMC) in (6.5.1) are Borel measurable, which indicates that

Condition II.1 is satisfied. Moreover, since Z ∈ IRnx×np is also bounded, (ṼgMC,W̃gMC)

satisfy Condition II.2.

The following corollary shows that we may combine (ṼgMC,W̃gMC) above with the

flattening operations in Definitions 2.4.3 and 6.4.7 to construct valid subgradient propaga-

tion functions (V,W) for (ũgMC, õgMC) in (6.4.1). Then, the unique solution (Scv,Scc) of

(6.4.1) is guaranteed to comprise valid subgradients of the SBM relaxations obtained using

(6.3.2).
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Corollary 6.5.3. Consider functions (ũgMC, õgMC, ṼgMC,W̃gMC) as in Proposition 6.5.1.

Define functions u,o : I×P×Rnx×Rnx → Rnx using (2.4.2) with (ũ, õ) := (ũgMC, õgMC).

Then, the mappings u(t, ·, ·, ·) and o(t, ·, ·, ·) are directionally differentiable and Lipschitz

continuous on P̃×Rnx×Rnx , uniformly over t ∈ I. Suppose that the remaining conditions of

Assumption 6.3.2 also hold. Define functions V,W : I× P̃×Rnx×np×Rnx×np→Rnx×np us-

ing (6.4.22) with (Ṽ,W̃) := (ṼgMC,W̃gMC). Then, (6.4.1) has local existence and unique-

ness of solutions, and the unique solution (Scv,Scc) comprises valid state relaxation sub-

gradients of (xcv,xcc).

Proof. Since Proposition 6.5.1 and Lemma 6.5.2 hold, Theorem 6.4.8 implies that (V,W)

are valid subgradient propagation functions for (u,o). Then, the claimed result follows

from Theorem 6.4.2.

Remark 6.5.4. Since the functions (ṼgMC,W̃gMC) have the affine forms as in (6.5.1), and

since (Ri,L,Ri,U) are affine functions, the functions (V,W) in the corollary above also

have similar affine forms to (6.5.1), as follows. For each i ∈ {1, ...,nx}, define identity

matrices Φi,Ψi ∈ R2nx×2nx , and then replace the (nx + i)th row of ΦΦΦ
i by [0, ...,0︸ ︷︷ ︸

i−1

,1,0, ...,0︸ ︷︷ ︸
2nx−i

],

and replace the ith row of ΨΨΨ
i by [0, ...,0︸ ︷︷ ︸

nx+i−1

,1,0, ...,0︸ ︷︷ ︸
nx−i

]. Then, for each i ∈ {1, ...,nx}, observe
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that v(i)(t,p,M,N) and w(i)(t,p,M,N) are equivalent to the following:

v(i)(t,p,M,N)≡ θ̃θθ
cv,A
(i) (t,p,ri,L(xcv(t,p),ξξξ cc

(t,p)))ΦΦΦi

M

N


+ θ̃θθ

cv,B
(i) (t,p,ri,L(xcv(t,p),ξξξ cc

(t,p))),

and w(i)(t,p,M,N)≡ θ̃θθ
cc,A
(i) (t,p,ri,U(xcv(t,p),ξξξ cc

(t,p)))ΨΨΨi

M

N


+ θ̃θθ

cc,B
(i) (t,p,ri,U(xcv(t,p),ξξξ cc

(t,p))).

(6.5.2)

Thus, the constructed subgradient propagation system (6.4.1) is actually an affine paramet-

ric ODE system, which may be easily integrated by off-the-shelf numerical ODE solvers.

Corollary 6.5.3 and Remark 6.5.4 above show that subgradients of the SBM relaxations

may be computed by solving a forward affine parametric ODE system constructed from

Mitsos et al.’s vector forward mode subgradient automatic differentiation [35]. Beckers et

al. [144] propose a method for adjoint mode computation of subgradients for McCormick

relaxations, which is empirically more efficient than Mitsos et al.’s subgradient evaluation

method for a large number of parameters. Based on these results, analogously to the adjoint

sensitivity analysis for smooth dynamic systems [90], the following corollary and remark

propose a new adjoint subgradient evaluation method for the objective function ccv of the

lower bounding problem (6.4.30) in global dynamic optimization. This method may re-

duce the computational effort required to evaluate the subgradients required by nonsmooth

optimizers for minimizing ccv, and may thus speed up an overarching global dynamic opti-

mization method.

Corollary 6.5.5. For each p∈ P, consider computing the objective value ccv(p) of (6.4.30)
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by first constructing the SBM relaxations [2] xC(t f ,p) := (xcv(t f ,p),xcc(t f ,p)) for which

(xcv,xcc) satisfy (6.3.1), and then evaluating gcv(t f ,p,xC(t f ,p)) using the generalized Mc-

Cormick relaxation method [6]. Consider the functions and quantities in (6.5.2), and define

functions ΘΘΘ
A,ΘΘΘB : I× P̃ := R2nx×R2nx so that for each i ∈ {1, ...,nx} and (t,p) ∈ I× P̃,

θθθ
A
(i)(t,p) := θ̃θθ

cv,A
(i) (t,p,ri,L(xcv(t,p),ξξξ cc

(t,p)))ΦΦΦi,

θθθ
A
(nx+i)(t,p) := θ̃θθ

cc,A
(i) (t,p,ri,U(xcv(t,p),ξξξ cc

(t,p)))ΨΨΨi,

θθθ
B
(i)(t,p) := θ̃θθ

cv,B
(i) (t,p,ri,L(xcv(t,p),ξξξ cc

(t,p))),

and θθθ
B
(nx+i)(t,p) := θ̃θθ

cc,B
(i) (t,p,ri,U(xcv(t,p),ξξξ cc

(t,p))).

Consider any fixed p̃ ∈ P̃. Let (ρρρ0,ρρρ) ∈ Rnp ×R2nx be the transpose of a subgradient

of gcv(t f , ·, ·) at (p̃,xC(t, p̃)). Let SC
0 := (Scv

0 ,Scc
0 ) as in (6.4.1). Let λλλ : I → R2nx be a

Carathéodory solution (c.f. [102]) of the following reverse ODE system on I:

(λ̇λλ (t))T =−(λλλ (t))T
ΘΘΘ

A(t, p̃),

(λλλ (t f ))
T = ρρρ.

(6.5.3)

Then, the quantity (equation (6.5.4) below) is the transpose of a subgradient of ccv at p̃:

s̃ := (λλλ (t0))TSC
0 (p̃)+ρρρ0 +

∫ t f

t0
(λλλ (t))T

ΘΘΘ
B(t, p̃)dt. (6.5.4)

Proof. Since gcv is constructed using the generalized McCormick relaxation method, Con-

dition III.1 of Theorem 6.4.13 is satisfied when using the subgradient propagation method

in [35] for computing s̃ based on (ρρρ0,ρρρ,SC(t f , p̃)). According to the discussion in Re-

mark 6.5.4, Condition III.2 is also satisfied when using the dynamic forward subgradi-

ent propagation system constructed in Corollary 6.5.3 for computing SC(t f , p̃). Then, the
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claimed results follow from Theorem 6.4.13.

Remark 6.5.6. In the corollary above, the subgradients (ρρρ0,ρρρ) and the term (λλλ (t))TΘΘΘ
B(t, p̃)

may be computed efficiently using an established method for adjoint mode subgradient

computation [144] for McCormick relaxations. The term (λλλ (t))TΘΘΘ
A(t, p̃) may be com-

puted efficiently by an easy modification of this adjoint subgradient computation method,

which incorporates the operations (ΦΦΦi,ΨΨΨi).

6.5.2 Subgradients of optimization-based relaxations

This subsection first summarizes our recent OB state relaxations [3], and then presents a

new dynamic forward subgradient evaluation method for the relaxations.

Formulation of optimization-based relaxations

Define a function v : Rnx×Rnx×Rnx → Rnx so that for all i ∈ {1, ...,nx} and ααα,ξξξ
cv
,ξξξ

cc ∈

Rnx ,

vi(ααα,ξξξ
cv
,ξξξ

cc
) := 1

2 [(αi +1)ξ cc
i − (αi−1)ξ cv

i ]. (6.5.5)

Consider functions fcv, fcc : I×P×Rnx → Rnx that satisfy [3, Assumption 3]. Roughly,

for each t ∈ I, the mappings fcv(t, ·, ·) and fcc(t, ·, ·) are, respectively, convex and concave

relaxations of f(t, ·, ·) in (2.3.1) on P×X(t). [3] construct the following u,o : I×P×Rnx×

Rnx→Rnx for use in (2.4.1): for each i∈ {1, ...,nx} and (t,p,ξξξ cv
,ξξξ

cc
)∈ I×P×Rnx×Rnx ,

ui(t,p,ξξξ
cv
,ξξξ

cc
) := min

ααα∈[−1,1]nx
f cv
i (t,p,v(ααα,ξξξ

cv
,ξξξ

cc
)) subject to αi =−1,

and oi(t,p,ξξξ
cv
,ξξξ

cc
) := max

ααα∈[−1,1]nx
f cc
i (t,p,v(ααα,ξξξ

cv
,ξξξ

cc
)) subject to αi =+1.

(6.5.6)

227



Ph.D. Thesis – Y. Song McMaster University – Chemical Engineering

Then, [3, Lemmata 1 and 2] show that these functions (u,o) are valid Scott–Barton right-

hand side functions, and [3, Theorems 3 and 4] show that the unique solution (xcv,xcc) of

(2.4.1) comprises valid state relaxations for (2.3.1). Now, define functions ũOB, õOB : I×

P×Rnx×Rnx →Rnx so that for each i ∈ {1, ...,nx} and (t,p,ξξξ cv
,ξξξ

cc
) ∈ I×P×Rnx×Rnx ,

ũOB
i (t,p,ξξξ cv

,ξξξ
cc
) := min

ααα∈[−1,1]nx
f cv
i (t,p,v(ααα,ξξξ

cv
,ξξξ

cc
))

and õOB
i (t,p,ξξξ cv

,ξξξ
cc
) := max

ααα∈[−1,1]nx
f cc
i (t,p,v(ααα,ξξξ

cv
,ξξξ

cc
)).

(6.5.7)

Observe that
ui(t,p,ξξξ

cv
,ξξξ

cc
)≡ ũOB

i (t,p,ri,L(ξξξ
cv
,ξξξ

cc
))

and oi(t,p,ξξξ
cv
,ξξξ

cc
)≡ õOB

i (t,p,ri,U(ξξξ
cv
,ξξξ

cc
)).

(6.5.8)

On a set S := {(t,p,ξξξ cv
,ξξξ

cc
) ∈ I×P×Rnx ×Rnx : ξξξ

cv
,ξξξ

cc ∈ X(t) and ξξξ
cv ≤ ξξξ

cc}, the

functions (ũOB
i , õOB

i ) in (6.5.7) reduce to

ũOB
i (t,p,ξξξ cv

,ξξξ
cc
)≡ min

ξξξ∈[ξξξ cv,ξξξ cc]
f cv
i (t,p,ξξξ ),

and õOB
i (t,p,ξξξ cv

,ξξξ
cc
)≡ max

ξξξ∈[ξξξ cv,ξξξ cc]
f cc
i (t,p,ξξξ ).

(6.5.9)

Dynamic subgradient evaluation method

Lemma 6.5.8 below shows that under mild assumptions on (fcv, fcc), the functions (ũOB, õOB)

in (6.5.7) satisfy Assumption 6.4.3.

Assumption 6.5.7. Suppose that functions fcv, fcc : I×P×Rnx→Rnx satisfy the following

conditions:

IV.1 The mappings fcv(t, ·, ·) and fcc(t, ·, ·) are Lipschitz continuous on P̃×Rnx , uniformly

over t ∈ I.
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IV.2 There exist functions fcv,1, fcv,2, ..., fcv,k, fcc,1, fcc,2, ..., fcc,κ : I×P×Rnx→Rnx so that

for each t ∈ I, each fcv, j(t, ·, ·) and fcc, j(t, ·, ·) is continuously differentiable, and is

respectively convex and concave on P×Rnx . Moreover, for each i ∈ {1, ...,nx} and

(t,p,ξξξ ) ∈ I×P×Rnx ,

f cv
i (t,p,ξξξ )≡max( f cv,1

i (t,p,ξξξ ), f cv,2
i (t,p,ξξξ ), ..., f cv,k

i (t,p,ξξξ ))

and f cc,
i (t,p,ξξξ )≡min( f cc,1

i (t,p,ξξξ ), f cc,2
i (t,p,ξξξ ), ..., f cc,κ

i (t,p,ξξξ )).

Lemma 6.5.8. Consider functions (fcv, fcc) that satisfy [3, Assumption 3] and Assump-

tion 6.5.7. Then, Assumptions 2.4.11 and 6.4.3 are satisfied with (ũ, õ) := (ũOB, õOB) in

(6.5.7).

Proof. Since Condition IV.1 holds, by an analogous argument to the proof of [3, Propo-

sition 2], (ũOB, õOB) have the uniform Lipschitz continuity required in Assumption 6.4.3.

Since (6.5.9) holds, [7, Theorem 2] implies that (ũOB, õOB) satisfy Assumption 2.4.11.

Now, we prove the directional differentiability in Assumption 6.4.3. Consider any

(t,p,ξξξ cv
,ξξξ

cc
)∈ I×P×Rnx×Rnx . Since Condition IV.2 holds, we may reformulate ũOB

i (t,p,ξξξ cv
,ξξξ

cc
)

as

ũOB
i (t,p,ξξξ cv

,ξξξ
cc
)≡ min

γ∈R,ααα∈[−1,1]nx
γ

subject to f cv,m
i (t,p,v(ααα,ξξξ

cv
,ξξξ

cc
))≤ γ, ∀m ∈ {1, ...,k}.

(6.5.10)

Observe that since v is affine in ααα and due to the convexity of f cv,m
i , the mapping

f cv,m
i (t,p,v(·,ξξξ cv

,ξξξ
cc
)) is convex. Since ũOB

i (t,p,ξξξ cv
,ξξξ

cc
) inherently minimizes a finite

convex function on a box domain as in (6.5.7), ũOB
i (t,p,ξξξ cv

,ξξξ
cc
) in the form of (6.5.10)

is finite. Observe that the domain of the right-hand side optimization problem in (6.5.10)
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has nonempty interior, and the optimal solution set is nonempty and bounded. Moreover,

since f cv,m
i (t, ·, ·) is assumed to be continuously differentiable, [151, Theorem 2] implies

that ũOB
i (t, ·, ·, ·) is directionally differentiable. By a similar argument, õOB

i (t, ·, ·, ·) is also

directionally differentiable.

Remark 6.5.9. Appropriate functions (fcv, fcc) in the lemma above may be constructed by

first constructing Lipschitz continuous and piecewise differentiable (in the sense of e.g.

Scholtes [127]) relaxations of f(t, ·, ·) on P×X(t), such as McCormick relaxations [5] and

αBB relaxations [9]. Then, an appropriate convex extension ( [129, Proposition 3.1.4]) of

such relaxations from P×X(t) to P×Rnx may be applied.

In concert with (ũOB, õOB), the following proposition constructs new functions (ṼOB,W̃OB)

that satisfy Assumption 6.4.5, based on a recently established subgradient evaluation method

[145, Theorem 5.3.2] for multivariate McCormick relaxations (mMC) [7]. The mMC re-

laxation method computes convex and concave relaxations for multivariate composite func-

tions by solving convex optimization problems. Unlike the original subgradient evaluation

method for mMC relaxations that solves dual NLPs proposed in [7, Theorem 4], once

the optimization problems for computing the mMC relaxations are solved, [145, Theo-

rem 5.3.2] evaluates the subgradients in closed form, and no NLPs need to be solved.

Proposition 6.5.10. Consider functions (fcv, fcc) that satisfy [3, Assumption 3] and the

functions (ũOB, õOB) defined in (6.5.7). For any σ ∈R, let σ+ denote σ+ =max(0,σ), and

let σ− denote σ− = min(0,σ). Define functions ṼOB,W̃OB : I× P̃×Rnx×Rnx×Rnx×np×

Rnx×np → Rnx×np so that for each i ∈ {1, ...,nx}, t ∈ I, p ∈ P̃, ξξξ
cv
,ξξξ

cc ∈ X(t) for which

ξξξ
cv ≤ ξξξ

cc, and M,N ∈ Rnx×np , ṽOB
(i) (t,p,ξξξ

cv
,ξξξ

cc
,M,N) and w̃OB

(i) (t,p,ξξξ
cv
,ξξξ

cc
,M,N) are

defined by the following procedure:
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1. Compute an optimal solution ξξξ
∗,ũ of the optimization problem for defining ũOB

i (t,p,ξξξ cv
,ξξξ

cc
)

in (6.5.9), and compute an optimal solution ξξξ
∗,õ of the optimization problem for

defining õOB
i (t,p,ξξξ cv

,ξξξ
cc
) in (6.5.9).

2. Compute a subgradient (sp,ũ,s∗,ũ) ∈Rnp×Rnx of f cv
i (t, ·, ·) at (p,ξξξ ∗,ũ), and compute

a subgradient (sp,õ,s∗,õ) ∈ Rnp×Rnx of f cc
i (t, ·, ·) at (p,ξξξ ∗,õ).

3. Set

ṽOB
(i) (t,p,ξξξ

cv
,ξξξ

cc
,M,N) := sp,ũ +

nx

∑
j=1

(
[s∗,ũj ]+m( j)+[s∗,ũj ]−n( j)

)
and w̃OB

(i) (t,p,ξξξ
cv
,ξξξ

cc
,M,N) := sp,õ +

nx

∑
j=1

(
[s∗,õj ]−m( j)+[s∗,õj ]+n( j)

)
.

Then, Assumption 6.4.5 is satisfied with (ũ, õ) := (ũOB, õOB) and (Ṽ,W̃) := (ṼOB,W̃OB).

Proof. By Lemma 6.5.8, (ũOB, õOB) satisfy Assumptions 2.4.11 and 6.4.3. Since (ũOB
i , õOB

i )

reduce to (6.5.9) on the set S, (ṼOB,W̃OB) satisfying Assumption 6.4.5 can be verified

by applying [145, Theorem 5.3.2] to ũOB
i (t, ·, ·, ·) and −õOB

i (t, ·, ·, ·) for a.e. t ∈ I and

i ∈ {1, ...,nx}.

The following corollary shows that we may construct valid subgradient propagation

functions (V,W) for (u,o) defined in (6.5.6), based on the (ṼOB,W̃OB) constructed in the

previous proposition. Using such (V,W), the subgradient evaluation ODE system (6.4.1)

yields valid state relaxation subgradients (Scv,Scc) for the OB relaxations (xcv,xcc). Even

though the state relaxation system’s right-hand side nominally requires solving convex op-

timization problems as in (6.5.6), the new subgradient propagation system’s right-hand side

only employs closed-form functions which can be evaluated efficiently. However, we have

to generally assume that these functions have the measurability and bounds required in
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Conditions II.1 and II.2 in Theorem 6.4.8. These properties are essential for guaranteeing

the local existence and uniqueness of solutions of (6.4.1).

Corollary 6.5.11. Consider functions (fcv, fcc) that satisfy [3, Assumption 3] and Assump-

tion 6.5.7, and consider functions (u,o) defined in (6.5.6). Then, the mappings u(t, ·, ·, ·)

and o(t, ·, ·, ·) are directionally differentiable and Lipschitz continuous on P̃×Rnx ×Rnx ,

uniformly over t ∈ I. Suppose that the remaining conditions in Assumption 6.3.2 also

hold. Consider the notations (σ+,σ−) and functions (ṼOB,W̃OB) as in Proposition 6.5.10,

and suppose that Conditions II.1 and II.2 of Theorem 6.4.8 are satisfied with (Ṽ,W̃) :=

(ṼOB,W̃OB). Define functions V̂,Ŵ : I×P̃×Rnx×Rnx×Rnx×np×Rnx×np→Rnx×np so that

for each i∈{1, ...,nx}, t ∈ I, p∈ P̃, ξξξ
cv
,ξξξ

cc ∈X(t) for which ξξξ
cv≤ ξξξ

cc, and M,N∈Rnx×np ,

v̂(i)(t,p,ξξξ
cv
,ξξξ

cc
,M,N) and ŵ(i)(t,p,ξξξ

cv
,ξξξ

cc
,M,N) are defined by the following proce-

dure:

1. Compute an optimal solution ξξξ
∗,u of the optimization problem for defining ui(t,p,ξξξ

cv
,ξξξ

cc
)

in (6.5.6), and compute an optimal solution ξξξ
∗,o of the optimization problem for

defining oi(t,p,ξξξ
cv
,ξξξ

cc
) in (6.5.6).

2. Compute a subgradient (sp,u,s∗,u) ∈Rnp×Rnx of f cv
i (t, ·, ·) at (p,ξξξ ∗,u), and compute

a subgradient (sp,o,s∗,o) ∈ Rnp×Rnx of f cc
i (t, ·, ·) at (p,ξξξ ∗,o).
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3. Set

v̂(i)(t,p,ξξξ
cv
,ξξξ

cc
,M,N) := sp,u +

nx

∑
j=1, j ̸=i

(
[s∗,uj ]+m( j)+[s∗,uj ]−n( j)

)
+([s∗,ui ]++[s∗,ui ]−)m(i)

and ŵ(i)(t,p,ξξξ
cv
,ξξξ

cc
,M,N) := sp,o +

nx

∑
j=1, j ̸=i

(
[s∗,oj ]−m( j)+[s∗,oj ]+n( j)

)
+([s∗,oi ]−+[s∗,oi ]+)n(i).

Define functions V,W : I× P̃×Rnx×np×Rnx×np → Rnx×np by setting

V(t,p,M,N) := V̂(t,p,xcv(t,p),xcc(t,p),M,N)

and W(t,p,M,N) := Ŵ(t,p,xcv(t,p),xcc(t,p),M,N).

Then, (6.4.1) has local existence and uniqueness of solutions, and its unique solution

(Scv,Scc) comprises valid state relaxation subgradients of (xcv,xcc).

Proof. Observe that

V̂(t,p,ξξξ cv
,ξξξ

cc
,M,N)≡ ṼOB(t,p,ri,L(ξξξ

cv
,ξξξ

cc
),Ri,L(M,N))

and Ŵ(t,p,ξξξ cv
,ξξξ

cc
,M,N)≡ W̃OB(t,p,ri,L(ξξξ

cv
,ξξξ

cc
),Ri,L(M,N)).

Since (6.5.8) holds, Lemma 6.5.8, Proposition 6.5.10, and Theorem 6.4.8 imply that (V,W)

are valid subgradient propagation functions for (u,o). Then, the claimed result follows

from Theorem 6.4.2.

Remark 6.5.12. Observe that the functions (V,W) constructed in the corollary above have

similar affine forms to (6.5.2), which implies that the constructed forward subgradient prop-

agation system for the OB relaxations is an affine ODE system. Thus, in principle, there is

233



Ph.D. Thesis – Y. Song McMaster University – Chemical Engineering

also a corresponding adjoint subgradient evaluation system for the OB relaxations, accord-

ing to Theorem 6.4.13. However, implementing this adjoint method would require develop-

ing new adjoint counterparts of the forward subgradient evaluation functions (ṼOB,W̃OB).

6.6 Implementation and examples

6.6.1 Implementation

Proof-of-concept implementations were developed in Julia v1.4.2 [95] to compute sub-

gradients for the SBM relaxations [2] and the OB relaxations [3], according to Corollar-

ies 6.5.3 and 6.5.11. These implementations simultaneously integrate state bounding sys-

tems, state relaxation systems, and subgradient propagation systems. Harrison’s bounding

method [69] is employed, which computes state bounds (xL,xU) via an auxiliary ODE sys-

tem whose right-hand side is derived from natural interval extensions [48]. The SBM state

relaxation system [2] introduced in Section 2.4 is constructed. The corresponding subgradi-

ent propagation system is thus constructed according to Corollary 6.5.3, whose right-hand

side employs subgradients of generalized McCormick relaxations by Mitsos et al. [35].

We have developed a new implementation of the OB relaxations [3] in Julia. Similarly to

to the MATLAB implementation used in [3], the new Julia implementation automatically

constructs (fcv, fcc) as the McCormick relaxations of f in (2.3.1), and then the right-hand

side functions (u,o) are evaluated naively by solving the convex optimization problems

in (5.2.2) using numerical NLP solvers. The local optimizer IPOPT v3.13.2 [120] is em-

ployed in the Julia implementation with a convergence tolerance of 10−8. The subgradients

of (fcv, fcc), as described by Mitsos et al. [35], are supplied to IPOPT in place of gradients.

Refer to [3,124] for further discussion about using IPOPT to solve nonsmooth optimization
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problems. The corresponding subgradient propagation system is thus constructed accord-

ing to Corollary 6.5.11. EAGO v0.4.1 [94] is used to automatically compute natural interval

extensions, generalized McCormick relaxations, and Mitsos et al.’s subgradients via opera-

tor overloading. We employ the ODE solver BS3() from the package DifferentialEquations

v6.15.0 [123] with an absolute tolerance of 10−6 and a relative tolerance of 10−6 to solve

all ODE systems. We employ JuMP v0.21.3 [121] as an interface with IPOPT. All compu-

tation in this section was performed on a Dell desktop computer with two 3.00 GHz Intel

Core i7-9700 CPUs and 16.0 GB of RAM.

6.6.2 Numerical examples

Using the implementations described in Section 6.6.1, this subsection presents two nu-

merical examples to illustrate our new forward dynamic subgradient evaluation methods

proposed in Corollaries 6.5.3 and 6.5.11.

The following example is adapted from [2, Example 1], and shows that the new subgra-

dient propagation system proposed in Corollary 6.5.3 appears to yield valid subgradients

for the SBM relaxations [2].

Example 6.1. Let P := [−3.0,3.0]× [0.21,0.5] and I := [0,4.0], and consider the following

instance of (2.3.1):

ẋ1(t) =−(2+ sin(p1/3))x2
1 + p2x1x2, x1(0) = 1.0,

ẋ2(t) = sin(p1/3)x2
1− p2|x1x2|, x2(0) = 0.5.

(6.6.1)

The SBM relaxations (xcv,xcc) for (6.6.1) were generated numerically by applying our Julia

implementation, and it was observed that (xcv,xcc) satisfied (6.3.1). We arbitrarily picked

two mesh points pκ ∈ P̃, and then (Scv(t f ,pκ),Scc(t f ,pκ)) were generated numerically at
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the two mesh points pκ by applying our Julia implementation of the new subgradient prop-

agation system in Corollary 6.5.3. Figure 6.1 presents two cross-sectional plots, which de-

pict the original parametric solution of (6.6.1), the SBM relaxations, and two candidate sub-

tangent cross-sections derived from (Scv(t f ,pκ),Scc(t f ,pκ)) and (xcv(t f ,pκ),xcc(t f ,pκ)).

Observe that these candidates are indeed valid subtangent cross-sections in both smooth and

nonsmooth cases, which implies that our new dynamic subgradient propagation system ap-

pears to yield valid subgradients for the SBM relaxations, as guaranteed by Corollary 6.5.3.

Figure 6.1: A cross-section at p2 := 0.4 of the solution x1(4.0, ·) (left, dashed black) and
x2(4.0, ·) (right, dashed black) of the ODE system (6.6.1) from Example 6.1, along with
corresponding SBM relaxations (solid red) and subtangent cross-sections (dotted blue) de-
rived from the subgradients at two reference points (blue circle)

The following example is a model of catalytic cracking of gas oil from [152, Exam-

ple 15.3.5], which was studied in [108] for global optimization. This example shows that

the new subgradient propagation system proposed in Corollary 6.5.11 appears to yield valid

subgradients for the OB relaxations [3] as summarized in Section 6.5.2.
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Example 6.2. Let P := [11.0,14.0]× [7.0,10.0]× [1.0,3.0] and I := [0,0.95], and consider

the following instance of (2.3.1):

ẋ1(t) =−(p1 + p3)x2
1, x1(0) = 1.0,

ẋ2(t) = p1x2
1− p2x2, x2(0) = 0.0.

(6.6.2)

The OB relaxations (xcv,xcc) for (6.6.2) were generated numerically by applying our Ju-

lia implementation, and it was observed that (xcv,xcc) satisfied (6.3.1). We arbitrarily

picked two mesh points pκ ∈ P̃, and then (Scv(t f ,pκ),Scc(t f ,pκ)) were generated nu-

merically at the two mesh points pκ by applying our Julia implementation of the new

subgradient propagation system according to Corollary 6.5.11. Figure 6.2 presents two

cross-sectional plots, which depict the original parametric solution of (6.6.2), the OB relax-

ations, and two candidate subtangent cross-sections derived from (Scv(t f ,pκ),Scc(t f ,pκ))

and (xcv(t f ,pκ),xcc(t f ,pκ)). Observe that these candidates are indeed valid subtangent

cross-sections in both smooth and nonsmooth cases, which implies that our new dynamic

subgradient propagation system appears to yield valid subgradients for the OB relaxations,

as guaranteed by Corollary 6.5.11.
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Figure 6.2: A cross-section at (p2, p3) := (8.5,2.0) of the solution x1(0.95, ·) (left, dashed
black) and x2(0.95, ·) (right, dashed black) of the ODE system (6.6.2) from Example 6.2,
along with corresponding OB relaxations (solid red) and subtangent cross-sections (dotted
blue) derived from the subgradients at two reference points (blue circle)

6.7 Conclusions and future work

This article has proposed new methods for evaluating subgradients of state-of-the-art ODE

relaxations [2, 3] in the Scott–Barton ODE relaxation framework (2.4.1), which enable

computing lower bounds with these ODE relaxations in deterministic algorithms of global

dynamic optimization. These methods assume that the underlying state relaxations (xcv,xcc)

do not touch the predefined state bounds (xL,xU), which is guaranteed to be satisfied for a

sufficiently small domain of the uncertain parameters. Unlike a recent sensitivity evaluation

approach [97] for nonsmooth dynamic systems, the new forward subgradient propagation

systems constructed in Corollaries 6.5.3 and 6.5.11 are affine ODE systems, which may

be easily integrated using off-the-shelf numerical solvers. Besides, the RHS of these ODE

systems are constructed based on arbitrary subgradients of the relaxations embedded in

the relaxation systems’ RHS, which may be easily computed by established subgradient
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evaluation methods. Theorem 6.4.13 and Corollary 6.5.5 for the first time show that a

subgradient of the objective function of a lower-bounding problem in global dynamic opti-

mization can be directly evaluated using dynamic adjoint sensitivity evaluation approaches,

which would speed up the lower-bounding procedure in global dynamic optimization.

Future work may involve developing subgradient evaluation methods for the Scott–

Barton ODE relaxation framework without satisfying (6.3.1). This is important since at a

node of the branch-and-bound tree in global optimization, the satisfaction of (6.3.1) may

not be known a priori. Future work will also involve developing an implementation for the

dynamic adjoint subgradient evaluation method in Corollary 6.5.5.
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Chapter 7

Bounding Convex Relaxations of Process

Models from Below by Tractable

Black-Box Sampling

As mentioned in Section 1.1, when computing lower bounds in global dynamic/non-dynamic

optimization methods by minimizing convex relaxations, subgradients are typically re-

quired by nonsmooth local optimization solvers to proceed effectively. However, due to

limitations in convex analysis theory, there are currently no methods for computing sub-

gradients for certain useful convex relaxations, such as state relaxations obtained using the

Scott–Barton framework as summarized in Section 2.4. Recall that the dynamic subgra-

dient evaluation methods for these state relaxations proposed in Chapter 6 require certain

assumptions. In the case where convex relaxations are known to be correct but subgradients

are unavailable, this chapter, reproduced from the published journal article [4], proposes a

new approach for tractably constructing useful, correct affine underestimators and lower
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bounds of the original convex relaxations just by black-box sampling. No additional as-

sumptions are required, and no subgradients or gradients must be computed at any point.

The new affine underestimators are shown to converge rapidly to an original nonconvex

function as domain shrinks, which is beneficial in global optimization. Variants of these

methods are presented to account for numerical error or noise in the sampling procedure.

Notably, [4, Example 7] successfully employed the SBM relaxations [2] for solving a dy-

namic parameter estimation problem, without access to dynamic subgradients. The associ-

ated article [4] was written in collaboration with colleagues, but this chapter only presents

the contributions of the author of this thesis.

7.1 Introduction

This chapter considers general nonconvex dynamic/non-dynamic optimization problems.

Models of chemical processes may exhibit nonconvexity [30], thus complicating simulation

and optimization. Nonconvexity in process models may arise, for instance, due to process

dynamics [1,2], standard thermodynamic relationships such as the Peng-Robinson equation

of state, discrete switches between design choices [153] or operating regimes [154], or

established correlations used to model individual process units such as compressors [155].

Though stochastic global search algorithms can be useful for nonconvex process opti-

mization [156], deterministic methods for global (nonconvex) optimization typically guar-

antee that an ε-optimal solution will be located and verified in finite time under relatively

mild assumptions [30, 157]. Typical branch-and-bound methods for deterministic global

optimization proceed by generating upper and lower bounds on the globally minimal ob-

jective value on various subdomains. Upper bounds are generally computed by off-the-

shelf local nonlinear programming (NLP) solvers, whereas lower bounds are computed by
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constructing convex relaxations of the original problem, and minimizing these convex re-

laxations using local NLP solvers. Several established methods construct useful convex

relaxations automatically; for nontrivial composite nonconvex functions, these methods

include the Auxiliary Variable Method underlying BARON [30, 60], McCormick relax-

ations [5, 35] and later variants [7, 33, 34], αBB relaxations [9, 49], and convex envelopes

of edge-concave relaxations [158]. Beyond the context of global optimization, convex re-

laxations are also used to provide useful enclosures for reachable sets of uncertain dynamic

process models [81, 159].

When computing lower bounds in global optimization methods by minimizing convex

relaxations, typical local NLP solvers require gradient information to proceed effectively,

or subgradients in the case of nonsmoothness. The McCormick relaxations of functions are

often nonsmooth, for example [35]. However, for certain useful convex relaxations such as

the dynamic relaxations of [2], there are currently no methods to compute subgradients due

to limitations in convex analysis theory. As shown in [130], if subgradients are unavailable,

then finite differencing methods may also fail to approximate subgradients well even in the

absence of numerical error. Moreover, when testing new types of convex relaxation in

a global optimization setting, automatic differentiation tools for computing subgradients

correctly may be unavailable or difficult to implement in the employed software platform.

Thus, in a global optimization setting, this chapter considers convex relaxations that are

known to be correct, but are only available via black-box evaluation. Hence, subgradients

are unavailable, and we must resort to derivative-free techniques [160] instead. The main

contribution of this chapter is to show that, for a convex function of n variables defined

on a box, without any further assumptions, a guaranteed closed-form affine underestimator

of this function may be constructed by performing at most (2n+1) black-box evaluations
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of the function, and assembling the results tractably using a new variant of centered finite

differencing. Since global optimization methods typically require numerous lower bound

evaluations, computational tractability becomes particularly important. Being affine, this

new underestimator has a closed-form minimum on the domain box. These results are

generalized to account for uncertainty or errors in the function evaluations, and to relax

convex optimization problems by sampling the objective function and constraints. We also

show that, under mild assumptions, our sampling-based underestimators converge to the

original function rapidly in the sense of second-order pointwise convergence [36]. Thus,

our sampling approach may be deployed effectively in methods for global optimization

and reachable set estimation when subgradients are difficult or impossible to evaluate. No-

tably, [4, Example 7] successfully employed the dynamic SBM relaxations [2] (summarized

in Section 2.4) for solving a dynamic parameter estimation problem to global optimality,

without access to dynamic subgradients. In the vein of [9, Section 2.7], our approach also

permits global optimization solvers to handle sums of known nonconvex functions and

black-box convex functions, by using sampling to handle the latter. Another application

of affine relaxations involves sidestepping the nonsmoothness of McCormick relaxations

(c.f. [33]) during lower-bounding problems in global optimization.

We note that, as discussed by [160], black-box methods are only recommended when

gradients or subgradients really are unavailable. By construction, our new black-box affine

underestimators are guaranteed to underestimate the original convex relaxations they are

sampled from, and are guaranteed to underestimate affine relaxations constructed from

actual subgradients.

Larson et al. [161] recently considered a similar problem. In the context of mixed-

integer nonlinear programming, Larson et al. sample a convex function several times in
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a box, deduce secant information from these evaluations, and combine these secants to

construct a nonconvex discontinuous piecewise-affine underestimator of this function. This

underestimator may be evaluated by solving a mixed-integer linear program with a number

of constraints that grows exponentially with problem dimension. Unlike [161], we seek

to obtain underestimators that are convex and may be tractably constructed and evaluated.

Nevertheless, our results are related; we employ intermediate results obtained by [161] in

our proofs, and it can be shown that our new affine underestimators are also underestimators

of the discontinuous piecewise-affine relaxations of Larson et al. when the same sampled

points are chosen.

The remainder of this chapter is structured as follows. Section 7.2 presents the new

affine relaxation approach for a convex function via black-box sampling, and Sections 7.3,

7.4, and 7.5 summarizes Song’s contributions in theory development of [4]. Section 7.3

establishes tightness and convergence properties of the new affine underestimator. Sec-

tion 7.4 derives an extension of the new affine relaxation approach to account for numeri-

cal error or noise in the sampling procedure. Section 7.5 presents another extension of the

new approach, which employs a sampled set that is not centered within the considered box

domain.

7.2 New affine relaxation formulation

The new affine relaxation approach focuses on a generic convex function defined on a box

domain, as formalized in the following definition.

Definition 7.2.1. Consider vectors xL,xU ∈Rn for which xL ≤ xU, the nonempty box X :=

{ξξξ ∈Rn : xL≤ ξξξ ≤ xU}, and a convex function f : X→R. With slight abuse with notation,
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f and (xL,xU) in this chapter do not represent the original ODE right-hand side and state

bounds of x in (2.3.1).

Under this problem setup, we suppose that black-box evaluations of f are possible,

and we wish to generate a guaranteed affine relaxation of f on X without assuming any

additional knowledge of f . To proceed, we sample this function (2n+ 1) times in a star-

shaped stencil that is formalized in the following definition. This definition also describes

certain intermediate quantities that will be useful when formulating our results.

Definition 7.2.2. Consider the problem setup in Definition 7.2.1, and define the following

additional sets and quantities:

• a nondegenerate index set I := {i ∈ {1, . . . ,n} : xL
i < xU

i } (note that I here is not the

time horizon of ODE systems as in chapters above),

• the midpoint w(0) := 1
2(x

L +xU) of X ,

• let e(i) ∈ Rn denote the ith unit coordinate vector in Rn, for each i ∈ I: a step length

αi ∈ (0,1], and two vectors

w(±i) := w(0)± αi

2
(xU

i − xL
i )e(i),

• a sample set

W := {w(0)}∪{w(+i) : i ∈ I}∪{w(−i) : i ∈ I} ⊂ X ,

• function values y0 := f (w(0)) and y±i := f (w(±i)) for each i ∈ I,
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• a vector b ∈ Rn for which, for each i ∈ {1, . . . ,n}:

bi :=


y+i− y−i

αi(xU
i − xL

i )
=

y+i− y−i

∥w(+i)−w(−i)∥∞

if i ∈ I

0 if i /∈ I,

• a scalar c ∈ R for which

c := y0−
1
2 ∑

i∈I

(
y+i + y−i−2y0

αi

)
,

• and a scalar f L ∈ R for which

f L := y0−∑
i∈I

(
max(y+i,y−i)− y0

αi

)
.

Figure 7.1: Illustration of the domain of the function f described in Definition 7.2.2.

Some of these quantities are depicted in Figure 7.1. The vector b has been employed in

established derivative-free optimization approaches, where it is known as a centered sim-

plex gradient of f at w(0) sampled along the coordinate vectors [160]. If f were smooth,
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then b would also be a standard centered finite difference approximation of the gradient

∇ f (w(0)). The sum in the definition of c resembles a standard finite difference approxima-

tion of the (possibly nonexistent) second-order partial derivative ∂ 2 f
∂x2

i
(w(0)), except with a

different denominator.

Then, as proved in [4, Theorem 1 and Corollary 1], faff : x 7→ c+ ⟨b,x−w(0)⟩ is the

new affine underestimator of the convex function f on X , and f L is a lower bound of f on

X . For illustration, Figure 7.2 (reproduced from [4, Fig. 6]) depicts an original nonconvex

function, convex relaxations on various subdomains, and corresponding new sampling-

based affine relaxations derived from the convex relaxations.

Figure 7.2: Illustration of an original function φ (dotted blue), along with convex relax-
ations (dash-dotted) on various subdomains, and corresponding new sampling-based affine
relaxations (solid), from [4, Fig. 6]. One sample data point (w(0),y0) (circle) is depicted in
each case.

7.3 Tightness and convergence properties

[4, Theorem 1 and Corollary 1] show that the constructed faff and fL are guaranteed to be

respectively an affine relaxation and a lower bound of f on X in Definition 7.2.1. A tighter
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sampling-based affine relaxation formulation in a univariate case is discussed in [4, Sec-

tion 3.3]. This section then summarizes two theoretical results developed by the author of

this thesis. Theorem 7.3.1 below shows that the sampling-based affine relaxation is tighter

as each αi in Definition 7.2.2 shrinks. Theorem 7.3.4 shows that under mild assumptions,

the new affine relaxation is guaranteed to exhibit second-order pointwise convergence [36]

to an original nonconvex function, which help mitigate the cluster effects [37,38] in global

optimization.

Theorem 7.3.1. Consider the problem setup in Definition 7.2.1 and the auxiliary quantities

in Definition 7.2.2, except with two choices of αi for each i ∈ I, denoted with superscripts

“A” and “B”. Suppose that αA
i ≤ αB

i for each i ∈ I. Let quantities computed with αA
i in

place of αi be given the superscript “A”, and let quantities computed with αB
i in place of

αi be given the superscript “B”. Then, for each x ∈ X ,

cA + ⟨bA,x−w(0)⟩ ≥ cB + ⟨bB,x−w(0)⟩,

and f L,A ≥ f L,B.

Proof. For each i ∈ I, define a function hi : (0,1]× [xL
i ,x

U
i ]→ R for which

hi : (α,ξ ) 7→ y+i(α)− y−i(α)

α

(
ξ −w(0)

i

xU
i − xL

i

)
− y+i(α)+ y−i(α)−2y0

2α
,

where y+i(α) and y−i(α) are defined according to Definition 7.2.2 except with αi := α .

Thus, for each α ∈ (0,1],

hi(α,xL
i ) =

y0− y+i(α)

α
and hi(α,xU

i ) =
y0− y−i(α)

α
.
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[146, Theorem 23.1] implies that both mappings hi(·,xL
i ) and hi(·,xU

i ) are non-increasing,

and so

hi(α
B
i ,x

L
i )≤ hi(α

A
i ,x

L
i ) and hi(α

B
i ,x

U
i )≤ hi(α

A
i ,x

U
i ).

Thus, noting that hi(α
B
i , ·) and hi(α

A
i , ·) are affine on [xL

i ,x
U
i ], it follows that

hi(α
B
i ,ξ )≤ hi(α

A
i ,ξ ), ∀ξ ∈ [xL

i ,x
U
i ].

Hence, for each x ∈ X , we have

(cA + ⟨bA,x−w(0)⟩)− (cB + ⟨bB,x−w(0)⟩) = ∑
i∈I

(
hi(α

A
i ,xi)−hi(α

B
i ,xi)

)
≥ 0,

as claimed. Thus,

f L,A = inf
x∈X

(cA + ⟨bA,x−w(0)⟩)≥ inf
x∈X

(cB + ⟨bB,x−w(0)⟩) = f L,B,

as claimed.

Now, consider the following setup involving an underlying nonconvex function and a

scheme of convex relaxations.

Definition 7.3.2. Consider a nonempty open set Z ⊂ Rn, a nonempty compact set Q ⊂ Z,

and a nonconvex function g : Z → R. Let IQ denote the collection of boxes of the form

{x ∈Rn : xL ≤ x≤ xU} that are subsets of Q. For any box X ∈ IQ, define the width of X as

wid X := max{∥x−ξξξ∥∞ : x,ξξξ ∈ X}.

Consider a scheme of convex relaxations {gcv,X}X∈IQ of g for which, for any X ∈ IQ,
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gcv,X : X → R is a convex relaxation of g on X .

With this foundation, we now modify the setup of Definition 7.2.2 as follows by substi-

tuting gcv,X in place of f .

Definition 7.3.3. Under Definition 7.3.2, consider the quantities in Definition 7.2.2 for each

X ∈ IQ, with gcv,X in place of f . Denote the dependence of these quantities on X explicitly

with a superscript (e.g. xL,X , IX , w(0),X , αX
i ). Let gaff,X : X → R denote the corresponding

affine relaxation of gcv,X on X provided by [4, Theorem 1]. Thus, for each x ∈ X ,

gaff,X(x) := cX + ⟨bX ,x−w(0),X⟩. (7.3.1)

The following theorem shows that if a smooth function g has a scheme of convex re-

laxations with second-order pointwise convergence in the sense of [36, Definition 10], then

our new sampling-based affine relaxations of this scheme will inherit this second-order

pointwise convergence.

Theorem 7.3.4. Consider the setup of Definitions 7.3.2 and 7.3.3. Suppose that the func-

tion g is twice-continuously differentiable on Z, and that there is a scalar τcv > 0 for which

sup
x∈X

(
g(x)−gcv,X(x)

)
≤ τ

cv(wid X)2, ∀X ∈ IQ. (7.3.2)

Then, there exists another scalar τaff > 0 for which

sup
x∈X

(
g(x)−gaff,X(x)

)
≤ τ

aff(wid X)2, ∀X ∈ IQ. (7.3.3)

Proof. For each X ∈ IQ, consider a subgradient s(0),X of gcv,X at w(0),X (with s(0),Xi arbi-

trarily chosen to be 0 whenever i /∈ IX ), and let gsub,X : X → R denote the corresponding
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subtangent, so that:

gsub,X(x) = yX
0 + ⟨s(0),X ,x−w(0),X⟩, ∀x ∈ X .

Since w(0),X is in any centrally-scaled interval in X in the sense of [46, Definition 4.1],

since g is twice-continuously differentiable, and since (7.3.2) holds, [46, Theorem 4.2]

shows that there is a scalar τsub > 0 (independent of X) for which

sup
x∈X

(
g(x)−gsub,X(x)

)
≤ τ

sub(wid X)2. (7.3.4)

According to Theorem 7.3.1, for any X ∈ IQ and x ∈ X , gaff,X(x) decreases as any αX
i

increases. Thus, in the remainder of this proof, it suffices to consider only the case in which

αX
i := 1 for each X ∈ IQ and each i ∈ IX .

Now, consider any fixed X ∈ IQ and i∈ IX . Since g is twice-continuously differentiable,

Taylor’s Theorem (as described by [162, Theorem 2.1]) implies that there exists a point

dA := λ Aw(+i),X +(1−λ A)w(0),X for some 0 < λ A < 1 for which

g(w(+i),X)−g(w(0),X) =
1
2

∂g
∂xi

(dA)(xU,X
i − xL,X

i ). (7.3.5)

Similarly, there exists a point dB := λ Bw(−i),X +(1−λ B)w(0),X for some 0 < λ B < 1 for

which

g(w(−i),X)−g(w(0),X) =−1
2

∂g
∂xi

(dB)(xU,X
i − xL,X

i ). (7.3.6)
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Adding (7.3.5) and (7.3.6) yields

g(w(+i),X)+g(w(−i),X)−2g(w(0),X) =
1
2

(
∂g
∂xi

(dA)− ∂g
∂xi

(dB)

)
(xU,X

i − xL,X
i )

≤ 1
2

∣∣∣∣ ∂g
∂xi

(dA)− ∂g
∂xi

(dB)

∣∣∣∣wid X .

(7.3.7)

Now, Taylor’s Theorem implies there is a point dC := λ CdA +(1−λ C)dB for some 0 <

λ C < 1 for which
∂g
∂xi

(dA)− ∂g
∂xi

(dB) =
∂ 2g
∂x2

i
(dC)(dA

i −dB
i ).

Moreover, since g is twice-continuously differentiable and Q is compact, there exists τH > 0

(independent of X) for which

∣∣∣∣∣∂ 2g
∂x2

j
(x)

∣∣∣∣∣≤ τ
H, ∀ j ∈ {1, . . . ,n}, ∀x ∈ Q.

Thus, ∣∣∣∣ ∂g
∂xi

(dA)− ∂g
∂xi

(dB)

∣∣∣∣≤ τ
Hwid X . (7.3.8)

Combining (7.3.7) and (7.3.8) yields

g(w(+i),X)+g(w(−i),X)−2g(w(0),X)≤ 1
2

τ
H(wid X)2. (7.3.9)

Since gcv,X is a convex relaxation of g on X , we have

yX
+i−g(w(+i),X)≤ 0 and yX

−i−g(w(−i),X)≤ 0. (7.3.10)
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Moreover, (7.3.2) implies

2g(w(0),X)−2yX
0 ≤ 2τ

cv(wid X)2. (7.3.11)

Adding (7.3.10) to (7.3.11) yields

(
yX
+i + yX

−i−2yX
0
)
−
(
g(w(+i),X)+g(w(−i),X)−2g(w(0),X)

)
≤ 2τ

cv(wid X)2.

Moreover, since (7.3.9) holds and since gcv,X is convex, we have

0≤ yX
+i + yX

−i−2yX
0 ≤ (2τ

cv + 1
2τ

H)(wid X)2. (7.3.12)

Combining (7.3.12) for each i ∈ IX with the definition of cX , and recalling that αi = 1 for

each i ∈ IX by assumption, we obtain

0≤ yX
0 − cX =

1
2 ∑

i∈IX

(
yX
+i + yX

−i−2yX
0
)
≤ n(τcv + 1

4τ
H)(wid X)2. (7.3.13)

Next, consider any fixed i ∈ IX and any subgradient s(0),X of gcv,X at w(0),X . Thus,

±1
2
(xU,X

i − xL,X
i )s(0),Xi ≤ yX

±i− y0. (7.3.14)

The positive branch of (7.3.14) implies that

s(0),Xi ≤
2(yX

+i− yX
0 )

xU,X
i − xL,X

i

.
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Thus, according to (7.3.12) and the definition of bX
i ,

s(0),Xi −bX
i ≤

2(yX
+i− yX

0 )− (yX
+i− yX

−i)

xU,X
i − xL,X

i

=
yX
+i + yX

−i−2yX
0

xU,X
i − xL,X

i

≤
2τcv + τH

2

(xU,X
i − xL,X

i )
(wid X)2

Similarly, combining the negative branch of (7.3.14) with the definition of bX
i and (7.3.12)

yields

s(0),Xi −bX
i ≥−

2τcv + τH

2

(xU,X
i − xL,X

i )
(wid X)2.

Combining the above results yields:

|s(0),Xi −bX
i | ≤

2τcv + τH

2

(xU,X
i − xL,X

i )
(wid X)2. (7.3.15)

Since (7.3.13) and (7.3.15) hold, for any X ∈ IQ, s(0),X , and x ∈ X , we have

|gsub,X(x)−gaff,X(x)|= |yX
0 − cX + ⟨s(0),X −bX ,x−w(0),X⟩|

≤ |yX
0 − cX |+ |⟨s(0),X −bX ,x−w(0),X⟩|

≤ n(τcv +
1
4

τ
H)(wid X)2 + ∑

i∈IX

(
|s(0),Xi −bX

i ||xi−w(0),X
i |

)
≤ n(τcv + 1

4τ
H)(wid X)2 + ∑

i∈IX

(
(2τ

cv + 1
2τ

H)(wid X)2
)

≤
(
3nτ

cv + 3
4nτ

H)(wid X)2.
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Thus, since (7.3.4) holds, we have

sup
x∈X

(
g(x)−gaff,X(x)

)
≤ sup

x∈X

(
g(x)−gaff,X(x)

)
+ sup

x∈X

(
gaff,X(x)−gsub,X(x)

)
≤ (τsub +3nτ

cv + 3
4nτ

H)(wid X)2.

Thus, the claimed result holds with τaff := τsub +3nτcv + 3
4nτH.

7.4 Accounting for noise of sampling

This section modifies [4, Theorem 1 and Corollary 1] to account for a case in which the

function evaluations y0 and y±i in Definition 7.2.2 are unavailable directly. Instead, we

suppose that corresponding approximations ỹ0 and ỹ±i are available, and it is known that

these approximations are valid to within a known absolute tolerance ε > 0.

These results permit us to construct guaranteed affine underestimators and lower bounds

for convex functions when there is empirical noise or numerical error in these functions’

evaluations, or when validated arithmetic or outward rounding are employed. Explicitly

accounting for noise in this context can be crucial; if neglecting noise leads us to construct

an approximate convex relaxation that is not in fact a valid relaxation, then we may inad-

vertently relax a feasible optimization problem into an infeasible approximate relaxation,

and incorrectly conclude that the original problem was infeasible.

Corollary 7.4.1. Consider the setup of Definition 7.2.2, and suppose that there exist values

ε > 0, ỹ0 ∈ R, and ỹ±i ∈ R for each i ∈ I, for which:

|ỹ0− y0| ≤ ε, |ỹ+i− y+i| ≤ ε, and |ỹ−i− y−i| ≤ ε ∀i ∈ I. (7.4.1)
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Define a vector b̃ ∈ Rn so that for each i ∈ {1, ...,n},

b̃i :=


ỹ+i− ỹ−i

αi(xU
i − xL

i )
if i ∈ I

0 if i /∈ I,

and a scalar c̃ ∈ R for which

c̃ := ỹ0− ε−∑
i∈I

(
ỹ+i + ỹ−i−2ỹ0 +4ε

2αi

)
.

Then f (x)≥ c̃+ ⟨b̃,x−w(0)⟩ for each x ∈ X .

Proof. Consider the following affine functions f aff, f̃ aff : [xL,xU]→ R:

f aff : x 7→ c+ ⟨b,x−w(0)⟩ and f̃ aff : x 7→ c̃+ ⟨b̃,x−w(0)⟩.

According to [4, Theorem 1], f aff is an affine relaxation of f on X . The claimed result will

be proved by showing that

f̃ aff(x)≤ f aff(x), ∀x ∈ X .

Now, for each i ∈ I, consider affine functions h̃i,hi : [xL
i ,x

U
i ]→ R for which, for each

ξ ∈ [xL
i ,x

U
i ],

hi(ξ ) =
y+i− y−i

αi(xU
i − xL

i )
(ξ −w(0)

i )− y+i + y−i−2y0

2αi
,

h̃i(ξ ) =
ỹ+i− ỹ−i

αi(xU
i − xL

i )
(ξ −w(0)

i )− ỹ+i + ỹ−i−2ỹ0

2αi
.
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Observe that the mapping hi(·)− h̃i(·) is also affine, and thus attains its extreme values on

X at xL
i and xU

i . Direct evaluation yields:

hi(xL
i )− h̃i(xL

i ) =
ỹ+i− y+i + y0− ỹ0

αi
,

hi(xU
i )− h̃i(xU

i ) =
ỹ−i− y−i + y0− ỹ0

αi
.

Moreover, it follows from (7.4.1) that for each ξ ∈ [xL
i ,x

U
i ],

|hi(ξ )− h̃(ξ )| ≤ 2ε

αi
. (7.4.2)

Observe that for each x ∈ X ,

f aff(x)− f̃ aff(x) = y0− ỹ0 + ε +∑
i∈I

(
hi(xi)− h̃i(xi)+

2ε

αi

)
.

Moreover, since (7.4.1) and (7.4.2) hold,

y0− ỹ0 ≥−ε and hi(xi)− h̃(xi)≥−
2ε

αi
∀i ∈ I.

Thus,

f aff(x)− f̃ aff(x)≥ 0, ∀x ∈ X ,

as required.

Corollary 7.4.2. Consider the setup of Corollary 7.4.1, and define a quantity:

f̃ L := ỹ0− ε−∑
i∈I

(max(ỹ+i, ỹ−i)− ỹ0 +2ε

αi

)
.
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Then f (x)≥ f̃ L for each x ∈ X .

Proof. Observe that f̃ L = min{c̃+ ⟨b̃,x−w(0)⟩ : x ∈ X}. The claimed result then follows

immediately from Corollary 7.4.1.

In the limit ε → 0+, these results converge to the corresponding noise-free results [4,

Theorem 1 and Corollary 1].

The proof of Corollary 7.4.1 also suggests the following way to choose the step length

quantities αi in general when the numerical error ε in evaluations of f is reasonably small.

Suppose that, for some scalar α f > 1, an absolute numerical error of a f ε is permitted

in evaluations of the affine underestimator provided by [4, Theorem 1]. Then, a similar

argument to the proof of Corollary 7.4.1 shows that whenever αi ∈ [ 3n
α f−1 ,1] for each i ∈ I,

this error bound will be satisfied.

7.5 Moving the sampled set

This section adapts the above results to accommodate sampled sets W for which w(0) is

not the midpoint of X , and so W is not centered within X . One benefit of the results of

this section is that these allow constructing piecewise-affine underestimators via black-box

sampling, by applying the sampling-based affine relaxation approach to multiple w(0)s on

a box domain. As shown in [44], piecewise-affine underestimators, constructed as point-

wise maximum of multiple affine underestimators, are efficient to evaluate and effective

for lower bounding in global optimization. Throughout this section, consider the following

variant of Definition 7.2.2.

Definition 7.5.1. Consider the problem setup in Definition 7.2.1, and define the following

additional sets and quantities:
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• an index set I := {i ∈ {1, . . . ,n} : xL
i < xU

i },

• the midpoint xmid := 1
2(x

L +xU) of X ,

• a scaled displacement λi ∈ (−1,1) for each i ∈ I,

• a central sampled point w(0) ∈ X for which, for each i ∈ I,

w(0)
i := xmid

i + 1
2λi(xU

i − xL
i ),

• for each i ∈ I, a step length αi ∈ (0,1−|λi|] and vectors

w(±i) := w(0)± αi

2
(xU

i − xL
i )e(i) ∈ X ,

• function values y0 := f (w(0)) and y±i := f (w(±i)) for each i ∈ I,

• a vector b ∈ Rn for which, for each i ∈ {1, . . . ,n}:

bi :=


y+i− y−i

αi(xU
i − xL

i )
=

y+i− y−i

∥w(+i)−w(−i)∥
if i ∈ I

0 if i /∈ I,

• a scalar c ∈ R for which

c := y0−∑
i∈I

(
(1+ |λi|)(y+i + y−i−2y0)

2αi

)
,

• and a scalar f L ∈ R for which

f L := y0−∑
i∈I

(
(1+ |λi|)(max(y+i,y−i)− y0)

αi

)
.
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Under this modified setup, a guaranteed affine underestimator and lower bound may still

be generated as before, and these results may be improved as before in the one-dimensional

case.

Corollary 7.5.2. Consider the problem setup in Definition 7.2.1 and the auxiliary quantities

in Definition 7.5.1. For each x ∈ X ,

f (x)≥ c+ ⟨b,x−w(0)⟩ ≥ f L.

Proof. This result follows from an analogous argument to the proofs of [4, Theorem 1 and

Corollary 1].

Corollary 7.5.3. Consider the problem setup in Definition 7.2.1 and the auxiliary quantities

in Definition 7.5.1. Suppose that n = 1, and define another quantity

ĉ := 2y0− 1
2(y+1 + y−1).

Then c≤ ĉ≤ y0. Moreover, for each x ∈ X , f (x)≥ ĉ+b1(x−w(0)).

Define another quantity

f̂ L := min{2y0− y+1, 2y0− y−1,

2(y−1− y0)

α1(xU
1 − xL

1 )
(w(0)

1 − xL
1 )+ y0,

2(y+1− y0)

α1(xU
1 − xL

1 )
(xU

1 −w(0)
1 )+ y0

}
.

Then f L ≤ f̂ L ≤ y0. Moreover, for each x ∈ X , f (x)≥ f̂ L.

Proof. This result follows from an analogous argument to the proofs of [4, Theorem 2 and

Corollary 2].
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An analogous argument to the proof of Theorem 7.3.1 shows that the affine underesti-

mators and lower bounds provided by Corollary 7.5.2 become tighter as any αi is decreased.

Theorem 7.3.4 still holds with Definition 7.5.1 in place of Definition 7.2.2, with the

additional requirement that there exists a scalar 0 < γ < 1 for which

|λ X
i | ≤ γ, ∀X ∈ IQ, ∀i ∈ IX .

This requirement is necessary to apply the result [46, Theorem 4.2] where required in

the theorem’s proof. Roughly, this avoids problems due to convex functions potentially

behaving oddly near their domains’ boundaries. Hence, with this requirement enforced,

second-order pointwise convergence is still inherited by the sampled affine underestimators

even when w(0),X is not the midpoint of X .

Lastly, uncertainty in the function evaluations in Definition 7.5.1 may be handled as

follows.

Corollary 7.5.4. Consider the setup of Corollary 7.5.2, and suppose that there exist values

ε > 0, ỹ0 ∈ R, and ỹ±i ∈ R for each i ∈ I, for which:

|ỹ0− y0| ≤ ε, |ỹ+i− y+i| ≤ ε, and |ỹ−i− y−i| ≤ ε ∀i ∈ I.

Define a vector b̃ ∈ Rn so that for each i ∈ {1, ...,n},

b̃i :=


ỹ+i− ỹ−i

αi(xU
i − xL

i )
if i ∈ I

0 if i /∈ I,
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and a scalar c̃ ∈ R for which

c̃ := ỹ0− ε−∑
i∈I

(
(1+ |λi|)(ỹ+i + ỹ−i−2ỹ0 +4ε)

2αi

)
.

Then f (x)≥ c̃+ ⟨b̃,x−w(0)⟩ for each x ∈ X . Moreover, for each x ∈ X ,

f (x)≥ ỹ0− ε−∑
i∈I

(
(1+ |λi|)(max(ỹ+i, ỹ−i)− ỹ0 +2ε)

αi

)
.

Proof. This result follows from an analogous argument to the proofs of Corollaries 7.4.1

and 7.4.2.

7.6 Conclusions and future work

This work shows that, given a convex function of n variables on a box, a correct closed-form

affine underestimator of this function may be constructed by sampling the function (2n+1)

times in a star-shaped stencil W . Such affine underestimator is particularly helpful for using

newly-developed convex relaxations whose subgradients are not yet available in global op-

timization. Subsequent results show that we can also compute an analogous lower bound,

and improve these results further when n = 1. Variants of these methods permit explicit

consideration of noise in the black-box function evaluations. The new affine underestima-

tors also inherit second-order pointwise convergence from an underlying scheme of convex

relaxations. Refer to [4, Section 4] for implementations and case studies which employ the

new affine underestimators in deterministic algorithms of global optimization.

The results in this chapter depend heavily on convexity of the sampled system; convex-

ity allows us to infer the global behavior of the considered function from samples that are
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restricted to certain search directions. It may be possible to use these new underestimators

in a derivative-free method for convex optimization. However, we do not expect this ap-

proach to generalize in a useful way to black-box nonconvex process models, beyond the

finite differencing results of [130].
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

This thesis has proposed novel approaches for computing convex relaxations with the corre-

sponding subgradients for the solution of the parametric ODE system (2.3.1), to ultimately

improve computational efficiency of deterministic global dynamic optimization. This work

is based on a state-of-the-art ODE relaxation framework (2.4.1) by Scott and Barton [2],

and achieve the various goals of this thesis by resolving the limitations of this framework

summarized in Section 1.3.

Firstly, in the Scott–Barton framework, it was previously unknown whether the tight-

ness of the original right-hand side’s relaxations translates into tightness of ODE relax-

ations. Hence, Chapter 3 proposes new ODE bounding and comparison results, which

have significantly less stringent conditions than the previously established results. These

new results are then applied to show for the first time that in the Scott–Barton framework,

tighter relaxations of the original right-hand side will necessarily lead to ODE relaxations

that are at least as tight.
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Secondly, since only generalized McCormick relaxations were previously allowed to

be used in the Scott–Barton framework, Chapter 4 proposes a new versatile optimization-

based (OB) ODE relaxation formulation by using Scott–Barton relaxation theory in a new

way. This new formulation allows using any convex and concave relaxations of the original

right-hand side, and tighter such relaxations necessarily lead to ODE relaxations that are at

least as tight, as indicated by the tightness results developed in Chapter 3. Notably, if Mc-

Cormick relaxations are applied in the new formulation, then the resulting ODE relaxations

are guaranteed to be at least as tight as the SBM relaxations [2]. Such tightness is shown

to lead to fewer iterations required in branch-and-bound in a global dynamic optimization

case study. An efficient evaluation method for the OB relaxations is described in Chap-

ter 5, provided that the employed right-hand side relaxations have known monotonicity.

Chapter 5 also proposes a new AVM-based ODE relaxation formulation based on the OB

formulation. The AVM-based formulation effectively handles a factorable original right-

hand side function using the Auxiliary Variable Method (AVM) [8, 50], which is shown to

yield ODE relaxations that are at least as tight as both the SBM relaxations and the OBM

relaxations.

Thirdly, since there was previously no subgradient evaluation approach for ODE re-

laxations obtained using Scott–Barton framework, Chapter 6 proposes new subgradient

evaluation theory, and proposes new forward sensitivity methods for evaluating subgradi-

ents of the SBM relaxations and the OB relaxations in the Scott–Barton framework. These

methods assume that the ODE relaxations are strictly within the predefined state bounds

during ODE solving, which is guaranteed to be satisfied for a sufficiently small domain of

the uncertain parameters. Moreover, it is shown for the first time that the dynamic sub-

gradients may be computed efficiently using a modified adjoint ODE sensitivity system,
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which would improve computational efficiency of the lower-bounding procedure in global

dynamic optimization.

Lastly, Chapter 7 proposes a new approach for bounding convex functions from below

via black-box sampling. This new approach allows computing bounding information in

global optimization using convex relaxations with unknown subgradients. The new bounds

are shown to have second-order pointwise convergence [36] to an original nonconvex func-

tion as domain shrinks, which may help mitigate the cluster effect [37, 38] in global opti-

mization. Numerical error or noise in the sampling procedure can be easily handled in the

new approach.

8.2 Future work

As introduced in Section 4.4.1, the current proof-of-concept implementation of OB relax-

ations numerically solves convex NLPs for each right-hand side evaluation, which may

lead to prohibitively expensive computational effort. In branch-and-bound deterministic

global optimization algorithms, both tightness and efficiency of convex relaxations are ex-

tremely important. If a convex relaxation is promisingly tight but very difficult to evaluate,

then this may still lead to expensive overall computational effort for an overarching global

optimization method. Thus, a first avenue for future work would be developing more effi-

cient implementations for the OB relaxations proposed in Chapter 4, using the techniques

outlined in Section 4.3.7. I believe that these techniques would indeed drastically improve

computational efficiency for evaluating the OB relaxations. From numerical experiments,

the active constraints of the right-hand side optimization problems typically only change

several times when computing the OB relaxations. This implies that if these active con-

straints are effectively tracked during ODE solving, then at most time steps, the right-hand
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side of OB relaxation system may be efficiently evaluated in closed form. Similar behaviour

is also observed for the AVM-based ODE relaxations in Chapter 5.

A second avenue for future work would be developing improved state bounds (xL,xU)

in Definition 2.4.2, which are employed in the Scott–Barton framework (2.4.1). As revealed

by the tightness results developed in Chapter 3, the tightness of these bounds necessarily

translates into the tightness of ODE relaxations. Moreover, if the employed state bound-

ing method is not applicable to the original ODE system (2.3.1), then all approaches in the

Scott–Barton framework, including the SBM relaxation approach, OB relaxation approach,

and AVM-based relaxation approach, cannot yield valid relaxations. For example, Harri-

son’s state bounding method [69] is prevalent over the past decades for its efficiency and

simplicity of implementation, and is employed in many dynamic reachable-set generation

researches [2, 3, 13, 75, 76, 78, 93, 104, 159]. However, for oscillating systems such as the

Lotka–Volterra system and the Lorenz attractor system, Harrison’s state bounds explode

very easily. Thus, no ODE relaxation approaches based on Harrison’s bounds would work

for these systems. Note that there are several recent advances [70,72,74] for state bounding.

It is also encouraged to use these bounds to construct ODE relaxations.

A third avenue for future work would be developing an implementation for the dynamic

adjoint subgradient evaluation proposed in Chapter 6. Unfortunately, due to time limitation,

the work in Chapter 6 only provides underlying mathematics for adjoint subgradient evalu-

ation. Considering the success of adjoint sensitivity analysis for smooth dynamic systems,

it is reasonable to expect that such adjoint subgradients could significantly improve compu-

tational efficiency for lower bounding in global dynamic optimization. Besides, it will be

promising to develop new subgradient evaluation methods for the Scott–Barton framework,

without assuming that the state relaxations are strictly within the state bounds; this seems
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to be difficult due to the switching conditions in (2.4.1). Currently, my colleague Huiyi

Cao is working on eliminating the switching conditions using a safe-landing mechanism.

The ultimate long-term goal for this line of research is to use deterministic global dy-

namic optimization techniques to solve problems in engineering applications. In the cur-

rent stage, by using our ongoing Julia global dynamic optimization implementation with

the new ODE relaxation and subgradient evaluation techniques embedded, we are already

able to solve several benchmark problems of dynamic parameter estimation and global op-

timal control in [152]. Here, I would suggest for researchers in this field to always publish

a usable version of their methods along with their publications. This will save much time

for researchers when reproducing others’ methods for comparison. Since significant state

bounding and relaxation research has been conducted over the past decades, I believe that

facilitating easy comparison between competing methods is important for the community

to foster future advances in this field.
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