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Abstract

5-year survival rate of patients with metastasized non-small cell lung cancer
(NSCLC) who received chemotherapy was less than 5% (Kathryn C. Arbour,
2019). Our ability to provide survival status of a patient i.e. Alive or death at
any time in future is important from at least two standpoints: a) from clinical
standpoint it enables clinicians to provide optimal delivery of healthcare and b)
from personal standpoint by providing patient’s family with opportunities to

plan their life ahead and potentially cope with emotional aspect of loss of life.
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Chapter 1
Introduction

According to American Cancer Society, lung cancer is the leading cause of
cancer death among men and women, for almost 25% of all cancer deaths. As
the mortality rate of lung cancer is high, it belongs to a group that has the worst

survival prognosis (Camilla Mattiuzzi, 2019).

Generally, after diagnosis the patient's family expects to know the patient's
chances of survival from a clinician. An ability to predict life expectancy can be
beneficial from both emotional standpoint and clinical standpoint, as it reduces
stress on patient’s family to cope with situation and can also allow clinicians to
evaluate patients' risk, likelihood of survival and postoperative treatment
procedures. Due to the very nature of the disease, lung cancer datasets are
generally imbalanced where majority of patient population has low chances of
survival. As a result, predictive modeling on imbalanced datasets where the
majority of patients have low chances of survival (Liang, 2019) makes it more
challenging to accurately predict survival status of patients with higher chances

of survival. Thus, for clinicians to accurately evaluate patients’ risk and further
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design appropriate post treatment procedures it is equally important to

accurately predict both true negatives and true positives.

Increasing diagnostic lab tests indicates a potential of vast biomedical data
assuming there are plenty of electronic health records of patients. As a result,
rapid increase in volume and complexity of biomedical data can be utilized to
draw patterns and inferences. One of the promising techniques that can be
helpful in finding patterns from a large patient cohort data is predictive
modeling which utilizes biomedical data to investigate relationships between
the factors and the dependencies that further help us predict survival status of
patient. Ultimately, this can help patients with personalized medication and risk
assessment. Developing algorithms and mathematical models that can generate
reliable predictions on an imbalanced dataset is a daunting task because of the
underlying dependencies and bias which can be complex. As a result, number
of factors influencing the predictions are huge. To implement this technique in
medical practice we need rigorous training procedures for complexities. Even
in this case, the underlying assumption of these techniques is that certain
statistical/probabilistic models can describe these dependencies which may not
be true in certain cases (i.e., there may exist certain number of outliers in every
dataset). In addition, we need to design vigorous testing, validation, and
verification procedures because of overwhelming intricacies such as variability

from patient- to -patient that needs to be evaluated.

1.1 Motivation
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Unequal distribution of data between majority class 1 (Dead) i.e. patients that
are less likely to survive and minority class 0 (Alive) i.e. patients that are likely
to survive can induce bias towards majority class, leaving minority class
samples to be often misclassified. Misclassification of minority class can lead
to hectic post-operative treatment procedures, high dosage of recommended
drugs and accelerated health follow-ups and diagnostic tests which can cause

stress both physically and psychologically.

deadstatus event

Figure 1: Class count for non-small cell lung cancer data

An ability to correctly predict survival status of patient at a given time by
clinician can alleviate this stress. Hence, to use machine learning models in
clinical practice they should be designed in such a way that they are robust

towards bias induced by majority class. These models play an important role in
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developing a computerized decision-making support systems for clinicians.
Prediction of survival status at a given point in time reflects risk status of patient.
These models can also be used as a risk assessment tool to help us determine
which patients should be offered imaging. However, all these tools suffer from
aforementioned common challenge of bias towards majority class. Furthermore,
they are also dynamic in nature and needs to be updated continuously as the
environment changes. Hence, model should be constructed and designed in such
a way that it can adjust if there are changes in the subset of the population.
However, the importance of different factors varies at different stages of
treatment. The predictive values of different features for different patients may
be changed. From clinician’s perspective they would want various things such
as predicting results, optimizing the treatment, healthcare planning and patients
planning. Models are developed based on data that includes patient events,
relationships between factors, parameters, treatments and outcome events.
Laboratory indicators such as results of biochemical tests can also be used in

model development.
1.2 Challenges

Performance of machine learning models varies from field to field as well as
from application to application. For example, financial institutions that use
analytics as a service (AaaS) focus on trade-offs between false positives and
false negatives and as a result, model prediction is sent to a queue which is then

analyzed by risk analysts before coming to a decision whereas an automobile
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company working on a vision related project generally uses confidence score as
a threshold in each detection for making a prediction. Often machine learning
results are compared to that of an expert opinion leading to a hybrid decision
making system in some industries. The comparison is still under investigation
as machine learning systems take less time, are cheaper to deploy and perform
better in some areas. Consider this scenario, when a human mind is going
through 10,000 records with 100 feature columns, it is highly likely for mind to
lose track of patterns and going through such a cumbersome process is not
feasible. On the other hand, machines can perform these computations faster

and draw patterns by scanning through high dimensional matrices quickly.

Generally, medical datasets regardless of its size cannot cover all the possible
cases as the problem is stochastic in its essence. Hence, clinicians often estimate
the overall survival (OS) or progression free survival (PFS) with a confidence
interval. One of the reasons behind this is that there are no pre-defined
guidelines that a certain parameter decides survival prediction. Similarly, when
it comes to different categories of physician, every clinician gives a different
survival time estimation for patients in a recent study. The difference in
accuracy of survival estimates by clinicians among the three categories of
physicians i.e., residents, younger physicians and registrars needs explanation
and basis. Physicians overestimated the survival status of patients, albeit

resident doctors were the most accurate (Christelle Clément-Duchéne, 2010).
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1.2.1 Training challenges

One of the many current challenges in translating machine learning algorithms
to clinical practice are related to the fact that healthcare data is not readily
available for machine learning. Datasets are often siloed in a multitude of
medical imaging archival systems, pathology systems, EHRs, and insurance
databases which are difficult to bring together. Adapting unified data formats,
such as Fast Healthcare Interoperability Resources (Joshua C Mandel, 2016),
offer better aggregation of data, albeit improved interoperability does not
necessarily fix the problem of inconsistent semantic coding in EHR data
(William R Hersh, 2013).

1.2.2 Evaluation challenges

1.2.2.1 Adaptability of model results by clinicians

Metrics currently provided by software’s used in Machine learning are not in
concordance to data useful to clinicians. Accuracy results from a machine
learning model does not mean model will be efficient when used in medical
practice (Pearse A. Keane, 2018) and is not easily understood by many
clinicians. There is no single metric that captures all the properties of a model.
However, metrics are typically used to summarise model’s performance.

1.2.2.2 Benchmarked dataset

The comparison of algorithms across studies is challenging due to each study’s
performance being reported using variable predictive modelling techniques on

different populations with different sample distributions and properties.
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Algorithms need to be subjected to comparison on a benchmarked dataset that
is representative of the inference population, using same evaluation metrics.
Without this, clinicians will have difficulty determining which algorithm is
likely to perform best for their patients.

1.2.3 Model issues

1.2.3.1 Bias and Variance trade-off

Outliers in machine learning can reflect ignored society biases, with a risk of
unknown accuracies in minority subgroups, posing a risk of amplifying biases
present in the historical data (Kate Crawford, 2016). Algorithmic bias can be
categorized into three fields: model bias, model variance, outcome noise (Irene
Chen, 2018). A greater awareness of these risks and biases is needed to empower
clinicians to participate critically in system design. Ultimately, this will help
guide researchers to ensure correct order of steps is followed that quantify bias
before deploying models. Vigorous validation on metrics by population
subgroups should be performed including age, ethnicity, gender, socio-
demographic status and location.

1.2.3.2 Rigorous quality control

In order to have safe and efficient deployment of machine learning algorithms
formulation of necessary regulatory frameworks are important (Christopher J.
Kelly, 2019). This is challenging given the current pace of innovation, risks
involved and dynamic nature of machine learning models. These regulations

will give confidence to clinicians and healthcare systems. U.S. Food and Drug
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Administration guidance has begun developing regulations ensuring safe
deployment of artificial intelligence devices to patients (Food and Drug
Administration. Proposed Regulatory Framework for Modifications to Artificial
Intelligence/Machine Learning (Al/ML)-Based Software as a Medical Device
(SaMD), 2019).

1.2.3.3 Adoption in healthcare

In order to ensure machine learning solutions can reach patients, it is important
to focus on clinical application, patient outcomes, develop advance methods for
algorithmic interpretability and achieving better understanding of human—

computer interaction (Christopher J. Kelly, 2019).

1.3 Thesis structure

In this thesis, we investigate different approaches for predicting survival status
of patients suffering from non-small cell lung cancer. In Chapter 2, we review
background of machine learning and related work in cancer prediction followed
by steps to follow before applying machine learning classifiers to training
dataset. In chapter 3, we present different classifiers on which our analysis will
be performed and later in the chapter we list evaluation metrics for measuring
performance. In chapter 4, related dataset and results from different tests
performed on training data will be discussed. In last chapter, we conclude our

findings for this study and present suggestions for future work.
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Chapter 2

Background and related work

2.1 Machine learning background

Machine learning has been used in healthcare for nearly 30 years. In other
words, machine learning is being used as a tool in cancer diagnosis, detection,
prediction, and prognosis (Joseph A. Cruz, 2007) from a long time.

Aim of cancer prediction and prognosis are different from aim of cancer
detection and diagnosis. In cancer prediction or prognosis one is concerned with
three goals: 1) risk assessment 2) cancer recurrence and 3) cancer survivability.
In the first case, we are trying to predict the likelihood of developing a type of
cancer before occurrence of the disease (Joseph A. Cruz, 2007). In the second
case, we are trying to predict recurrence of cancer once its resolved. In the third
case we are trying to predict an outcome such as life expectancy and
survivability chances. In last two situations success of the prognostic prediction

is dependent on the quality of the diagnosis.
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Machine learning is a subset branch of artificial intelligence that learns from
past examples later uses that learning to identify patterns or predict trends in the
data. Machine learning methods can utilize Boolean logic, absolute
conditionality, conditional probabilities (the probability of X given Y) and
unconventional optimization strategies for model building and identifying
patterns which are not employed in statistics (Joseph A. Cruz, 2007). These
latter methods resemble the approaches that is used naturally by humans and
animals i.e., learning from experience. Machine learning uses concepts from
statistics and probability, but it is more powerful because as it allows inferential
learning which is not possible using conventional statistical methodologies
(Richard O. Duda, 2001). Although powerful, these approaches assume that the
variables are independent, and that data is linear i.e., it can be modeled using
linear combinations of these variables. However, when the relationships are
non-linear, and the variables are interdependent (or conditionally dependent)
conventional statistics is not sufficient. Under these circumstances machine
learning tends to offer promising results. Many biological and environment
systems are non-linear, and their parameters are also conditionally dependent.
Many physical systems are linear, and their parameters are essentially
independent. As with any method, one should understand the limitations and
assumptions associated with dataset and the algorithms being applied. If a
machine learning experiment is properly designed taking all assumptions into
account, implemented, with result validation and testing, there is a good chance

of success for the problem at hand. However, in many cases that is not the case.

10
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For example, as dimensionality in a dataset increases, variables span a lower-
dimensional subspace in which some of the dimensions become redundant in
terms of other dimensions, thus yielding perfect multiple correlation (Lever,
2017).The only solution is to reduce the number of features or increase the
number of training records. As a general rule, the records-per-feature ratio
should always exceed 5:1 (Somorjai RL, 2003). Size of the training set is as
important as the variety of the training set. Training observations should be
selected in a way such that it is similar to what classifier expects to encounter
during inference. Training repeatedly on less examples with too low variability
leads to over-training or training on noise (Rodvold DM, 2001). An over-trained
classifier, will generally perform poorly when it tries to identify patterns in
unseen data. There are cases when conventional statistics becomes more
powerful or more accurate than machine learning due to wrong initial notions
about the interdependence and non-linearity of the data. Similarly, not all
machine learning methods are equal. Some are better for certain kinds of
problems while others are better for other kinds of problems. For instance, some
machine learning algorithms are scaled to the size of the biological domains,
others do not. Similarly, some methods may have assumptions or data
requirements that render them inapplicable to the problem we are trying to
solve. Performance of machine learning algorithms depends on both the dataset
and the algorithms, finding an optimal solution can be a challenging. Therefore,
it is critically important to try more than one machine learning method on any

given training set.

11
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Machine learning algorithms can be classified into three categories:

1) supervised learning

2) unsupervised learning

3) reinforcement learning.

Supervised learning are algorithms that involve direct supervision of a target
label. In this case, a person labels sample data and sets strict boundaries upon
which the algorithm operates. The model learns through perception and
identifies structures in the information. When the model is given a dataset, it
consequently discovers patterns in the dataset.

Depending on the type of outcome one can choose suitable machine learning
methods for model building. Supervised machine learning methods can be used
in two kinds of applications regression and classification. Regression analysis
is used to estimate a target variable based on a set of features by estimating the
relationships between a dependent variable i.e., outcome variable and one or
more independent variables called predictors, or features. Classification is a
process of categorizing data into respective classes. These classes are often
referred to as target, label, or categories. The whole process of predictive
modeling involves series of steps ranging from data pre-processing, feature

correlation, feature selection, model building and testing.

2.2 Data pre-processing

12
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2.2.1 Missing data in clinical records

Clinically captured data often presents the challenge of missing data leading to
bias or negative impact on analytical outcomes (Harshad Hegde, 2019) .For
example, failure of staff to consistently document a value in an electronic health
record, or technical failures precluding data capture by a device designed to
track specific data, or capture of data mainly in unstructured formats not mined
electronically without manual abstraction or pre-processing, making these data
not readily available for analysis. Data that is not consistently recorded leads to
missing records and consequently limiting the analysis.

Machine learning algorithms may not perform well on missing data as they
depend on finding relationships between the variables. For a dataset that is very
large and the number of missing values in the data are very small (less than 5%),
these values can be ignored and analysis can be performed on the rest of the data
(Janus Christian Jakobsen, 2017).

Sometimes in lung cancer datasets, there is a feature column for smoking.
Generally, not all the records have an entry for that field and information for
some patients is missing. This can be because person diagnosed with lung
cancer did not smoke or there can be other reasons for an empty entry. However
in our dataset all the missing values are less than 5% and are omitted for our

analysis.

2.3 Feature selection

13
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Electronic health records (EHRS) contain variety of information about patients
and their stays in health facilities (Elyne Scheurwegs, 2017). Clinical codes
reflect diagnoses and procedures related to a patient stay and are primarily
assigned for reporting and reimbursement purposes. Their widespread adoption
in hospitals makes them a viable information source in research and monitoring
applications.

However, not all the information present in the dataset may contribute to
estimating the outcome and may result in information overlap. Using feature
selection, we can prevent less information overlap and use it to provide a dense
representation of contributing features.

Feature selection is the process of selecting the most relevant features for
building a model such that the performance of the model is not affected. For
example, in a model that inferences on predicting survival status of a patient at
a given time, two features such as survival time and date of demise are highly
correlated, resulting in information overlap. Removing multicollinearity
generally improves the accuracy. This method is different from dimensionality
reduction as it excludes and includes features present in the data without
changing them often acting as a filter muting the irrelevant features. Ultimately,
it helps in making the model simpler by reducing the complexity and sometimes
also increases the accuracy of the model. Not every time a dataset needs feature
selection techniques, but it is a useful practice to compare relationships between

the features ultimately, removing multicollinearity if there is any present.

14
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Chapter 3
Methodology

3.1 Introduction

In this chapter, we will present the classifiers that will be used in our study and
later in chapter we describe the evaluation metrics for inferencing on testing

dataset.
3.2 Classifiers

Training a model that predicts the survival status at a given time, means
forecasting the odds of outcome instead of forecasting the point estimate of the
occurrence. In our case there are two disease outcomes i.e. Alive and death, if
the result of odds are greater than 50% then the predicted class is assigned value

1 otherwise it is 0.

3.2.1 Logistic Regression
Logistic regression models are statistical models describing relationship
between a qualitative dependent variable and an independent variable. They are

often used to study the effects of predictor variables and gives probability as an

15
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outcome for each observation which further depending upon the threshold can
further categorize survival status into two outcomes i.e., 0 (Alive) or 1 (Death).
In such cases the model is called a binary logistic model. Apart from getting a
binary outcome, binary logistic model can be used to answer different questions
such as probability of getting lung cancer with the change in additional pounds
a person gains, or every pack of cigarettes smoked per day. It can also provide
answers based on the relationships between features such as how smoking, age
and previous histopathology of patient can have an influence on the probability
of having a lung cancer.

Logistic Regression is a kind of classification algorithm which finds relationship
between the features and probability of event status i.e., death or alive using

logit function.

The sigmoid function can be written as:

_ 1
T 14ey

p

where p is the value of probability
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Figure 2: Sigmoid function

Sigmoid function is commonly used in machine learning as it maps an arbitrary
real value to (0,1) range which means it can be interpreted as probability. For
large values of z (nonlinearly dependent on a particular patient data) the
probability (p) goes to one which can be interpreted as a patient being dead at a
given time. Similarly, if value of argument z is small the probability of survival

becomes 0 i.e., patient is alive at a given time.

3.2.2 Decision Trees

A Decision tree is in the form of flowchart like tree structure where node on the
top is called the root node, the middle nodes are the internal nodes, and the
bottom nodes are called leaf nodes. The lines connecting these nodes are called

branches.
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In a decision tree, each internal node splits the instance space into two or more
subsets according to a discrete function of the input attributes values. This
process is repeated on each derived subspace in a recursive manner called
recursive partitioning. The recursion take place until, splitting no longer adds
value to the predictions as seen in Figure 3. The main goal of the decision tree
system is to decrease class entropy or increase the information gain at every
child node creation. Given below is the equation of entropy E for a dataset with

k classes and Information gain 1G(S,t) of an attribute t .

k
ES)=e= —ZpiZOQZ(pi)
i=1

where pi is the probability of randomly picking an element of a class

1G(S,t) = E(S) — Z ISTillCE(Si)

i € Values(t)

The Gini index is a measure of inequality in the sample. Its value ranges from 0
to 0.5. A value of 0 indicates samples are homogeneous whereas 0.5 reflects

maximal inequality among elements.

n
Gini Index = 1 — ZPLZ

=1

Using decision trees for predictive modelling of biomedical dataset increases

interpretation and can be used to explain the underlying decision process.
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Figure 3: Decision tree classifying the disease outcome

3.2.3 Gradient Boosting

Boosting is defined as a strategy that involves combination of multiple simple
models resulting in an overall stronger model. The simple models are called as
weak learners. For example, the flow chart in Figure 4 below explains the
gradient boosting method for N trees. Tree 1 is trained using a feature matrix
X and target variable y. The predictions yi(hat) are used in evaluation of training
set loss function ri1. Tree 2 is trained using the feature column matrix X and the
loss function r1 of Tree 1 as target variable. The predicted results ri(hat) are
further used to evaluate loss function ro. The entire process is repeated till all

the N trees forming the ensemble are trained.
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Figure 4: Flow chart for Gradient boosting

An initial model Fo is defined for predicting the label y. The residual (y — Fo) is

related to this model. Another new model hs is fit to the residuals from the last
step. Foand h; are added to give F1

Fi(X) = Fo(X) + hy(X)

To improve the performance of F1, as seen in previous step we can model after

the residuals of F1 and create a new model F»:
F,(X) = Fi(X) + hy(X)
This is done for ‘m’ iterations, until the residuals are minimized:
Fin(X) = Fp1(X) + hy (X)

In other words, instead of fitting a model on the data at each iteration, it fits a

new model to the residual errors made by the previous model.
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Gradient boosting is a type of boosting where the objective is to minimize the
loss function by adding weak learners using Gradient descent. It helps minimize

any differentiable function.

At each node, a factor y is multiplied with hn(X). This accounts for the
difference in impact of each branch of the split. Gradient boosting helps in
predicting the optimal gradient for the additive model, whereas for other

gradient descent techniques aims at reducing error in the output at each run.
The following steps are involved in gradient boosting:

e Fo(X) for initializing the boosting algorithm and can be defined as:

Fo(X) = argminy Z L(yi,v)

i=1

e Computation of loss function is performed iteratively:

= I(L(yu F(x)
tm  OF(x)

F(X)=Fm-1(X)
where « is learning rate and L(y;, F (x;) is loss function
e Each hm(X) is fit on the gradient obtained at each iteration

o The multiplicative factor y m for each terminal node is derived and the

boosted version of model Fm(X) is given as:

Fm(X) = Fm—l(X) + Ym hm(X)
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3.2.4 XGBoost

XGBoost stands for extreme gradient boosting as it uses second-order Taylor
expansion of the loss function to iterate and calculate weights o at leaf nodes of
the new tree K as seen in Figure 5 (Wanyue Zhao, 2020). Additionally, a
regularization term is added to the loss function to control the complexity of the
model and prevent it from overfitting. Therefore, XGBoost performs better in
training efficiency, massive parallelism, and quadratic convergence (Wanyue

Zhao, 2020).

Tree 1 Tree 2 " Tree K

Figure 5: Iteration diagram for XGboost

It can perform well on imbalanced datasets as it calculates the second order
gradients i.e., second partial derivatives of loss function ultimately giving more

information about the direction of gradients and minimizes loss function.
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Survival.time<2691

yes, missing
leaf=-0.00667298958 leaf=0.095312275

Figure 7: Fourth tree in the model
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Figure 8: Tenth decision tree in the model
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Figure 9: Twentieth decision tree in the model

We can see each decision tree is using different feature as the algorithm is
trained. The first decision tree as seen in Figure 6 is making prediction solely
on one feature i.e. survival time. However, as training progresses the model

learns by from its predecessor to make accurate prediction thereafter using other

features.
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3.2.5 Balanced Bagging

Ensembles are the most efficient methods for improving the predictions of the
minority class. Most of them use strategies from bagging and boosting. (Jerzy
Blaszczynski, 2017). Bootstrap aggregation or bagging uses bootstrap sampling
with replacement technique to estimate a population statistic from a subset
sample by drawing multiple bootstrap samples. In a classification problem,
predictions are made by taking the majority vote for the classes from all the

predictions made by decision trees.

Bootstrap_1 ®—> o

Bootstrap_2 ®—>
1 1 Final
: : Prediction
| |
| |

1
\. Bootstrap_k ®_. o

Bootstrap sets Hypotheses Predictions

Train set

Figure 10: Iteration diagram for bagging

Each model hy,hz....hk are made from different bootstrap sets. This ensemble

method reduces the variance in the model without affecting bias.
Fbag = Fl + F2 + -+ FM(X)

The term on the left side are predictions and on the right side are the individual

learners.
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3.2.6 Random Forests

Random forest is one of the most used ensembles learning method. It uses
bagging and feature randomness when building each tree creating an
uncorrelated forest of trees which makes decision by aggregating the votes from
different trees. Due to random feature selection, the trees are more independent
of each other as compared to regular bagging, which often results in better

predictive performance.

—_—

Overall.Stage <= 1.5
entropy = 1.0
samples = 45

value = [36.5, 36.5]
class = alive

- Survival time <= 2690.5
entropy = 0.983
samples = 34
value = [36.5, 26.805)
class = alive

ivolue = [12.167, 14.828]
class = Dead |

Figure 11: First decision tree in the random forest model
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Survival.time <= 2686.0
entropy = 1.0
samples = 44

value = [36.5, 36.5]
class = alive

samples =9
value = [4.056, 6.273]
EH08C.

class

Clinical.N.Stage <= 1.5
entropy = 0.943

samples =4
value = (4.056, 2.281]
gt b

Figure 12: Fourth decision tree
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Figure 13: Tenth decision tree

3.3 Evaluation Metrics

After training classifiers on training data, our next step is to devise evaluation
strategies to measure model performance on unseen dataset.

3.3.1 Confusion Matrix

It is a performance metric representing a tabular construct. It is atwo-
dimensional matrix, indexed in one dimension by the true class of survival

status and the other by the class that the classifier assigns.
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Predicted
Death Alive
Actual Death True Positive False Negative
Alive False Positive True Negative

Based on values in confusion matrix, we can calculate accuracy, recall,

precision, specificity and misclassification rate for our model.

Accuracy: It determines the overall accuracy of the model.

True positive + True Negatives

Accuracy =
Y True Positive + True Negatives + False Positives + False negatives

Recall: It indicates how many positive values, out of all the positive values,

have been correctly predicted. It is also known as Sensitivity or Recall.

True positives

Recall = — ;
True positives + False negatives

Specificity: It indicates how many negative values, out of all the negative

values, have been correctly predicted.

True negatives

Specificity =
pectficity True negatives + False positives

Precision: It indicates how many values, out of all the predicted positive values

are actually positive.

True positives

Precision = — —
True positives + False positives

29



M.A.Sc. — Aishwarya Mohan McMaster University — Electrical & Computer
Engineering

F-1 Score: F-1 score is the harmonic mean of precision and recall. It lies

between 0 and 1. Higher score results in a better model.

(Precision = Recall)
F1 Score =2

(Precision + Recall)

Often, for imbalance datasets such as Lung cancer, because of the nature of the
disease majority of records belong to one class i.e. 1 ( Death ). In such datasets,
accuracy can give false interpretations on classifier’s performance. It
recommended to look at metrics that provide a balanced view like specificity,

recall and F-1 score.

3.3.2 Cumulative Gain charts

Cumulative gain charts and lift charts are metrics that evaluates model
performance on portions of the total population as compared to a confusion
matrix which determines the performance of the model on the entire population.
In other words, we have a score for every percentage of population. For
example, Figure 14 represents cumulative gain chart for a Logistic regression
model that indicates ~78% of patients whose disease outcome at a given time is
alive are captured in top 20% of data based on model i.e., we can identify and
target ~78% of patients who will be alive if this model was used in clinical

practice.
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Figure 14: Cumulative gain chart for logistic regression model

3.3.3 Lift curves

Lift curve measures improvement a machine learning model brings in
comparison to random predictions or in a case without a model. The
improvement is called as lift. For example, figure 15 is the lift chart for logistic
regression model indicating that we have a lift of ~3.8 for top two deciles, i.e.,
selecting top 20% of the records based on the model, we can get 3.8 times the
total number of patients whose survival status is alive found by randomly

selecting 20% without the model.

Lift curve for Logistic Regression

e Clas5 0
Class 1
1 —=—Baseline

00 02 04 06 08 10
Percentage of sample
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Figure 15: Lift curve for logistic regression model

3.3.4 K-S statistic charts

K-S or Kolmogorov-Smirnov chart measures the degree of separation between
the positive and negative class. If K-S is 100, the patient population is
partitioned into two separate groups in which one group contains all positives
and the other has all the negatives. K-S will be 0, if the model cannot
differentiate between both the groups. Figure 16 is K-S chart of logistic
regression model indicating that by targeting top 57.4% patients we can capture

~95% of patients whose survival status is alive at a K-S value of 0.760.

K-S statistic for Logistic Regression
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Figure 16: K-S statistic chart

3.3.5 Receiver Operator Characteristic (ROC)

ROC curves determine model's accuracy using Area Under Curve (AUC). The
area under the curve (AUC), also referred to as index of accuracy (A) or
concordant index, represents the performance of the ROC curve. Higher area
results in better model. It is plotted between True Positive Rate on Y-axis and

False Positive Rate on X-Axis. The dashed line represents the ROC curve at 0.5
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threshold. At this point, sensitivity = specificity. As the curve gets higher, for
example looking at ROC curve of Decision tree in the Figure 17, indicates

model will have a higher accuracy.

Receiver Operating Characteristic
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0.2 1 —— XGBoost
— BalancedBagging
0.0 1 - RandomForest

0.0 0.2 0.4 0.6 0.8 10
FPR

Figure 17: ROC curve

3.3.6 Precision — Recall Curve

A P-R curve is a graph with Precision values plotted on the y-axis and Recall
values on the X-axis. Generally, a classifier with higher AUC on the ROC curve
has higher AUC on the P-R curve. Figure 18 and Figure 17 are the P-R and ROC
curve of the same testing set. We can see that AUC on ROC and P-R is higher

for both Logistic regression and decision tree.
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Figure 18: P-R curve

34



M.A.Sc. — Aishwarya Mohan McMaster University — Electrical & Computer
Engineering

Chapter 4
Results and Discussions

In the previous section, the fundamental theory required to construct the model
predicting disease outcome and the evaluation metrics to be used on testing set
were presented. In this section, the results of models proposed in Chapter 3, will

be shown. Furthermore, the results and their significance will also be discussed.
4.1 Dataset

The dataset used for evaluation of the proposed model is from MAASTRO
Clinic, (Maastricht, The Netherlands). This dataset is open source and can be

found at TCIA (The cancer imaging archive) under NSCLC (Aerts, 2019).

Four hundred and twenty-two consecutive patients were included (132 women
and 290 men), with inoperable, histologic or cytologic conferred NSCLC, UICC
stages I-I11b, treated with radical radiotherapy alone (n = 196) or with chemo-

radiation (n = 226). Mean age was 67.5 years (range: 33-91 years). The study
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has been approved by the institutional review board. All research was carried
out in accordance with Dutch law. The Institutional Review Board of the
Maastricht University Medical Centre (MUMC+) waved review due to the

retrospective nature of this study.

Out of 422 records, we have only 365 patients with all the information. The
survival time (in days) in the dataset is from the start of the treatment and there
is a possibility that the status of patient recorded may not be accurate i.e. the
clinicians may not have received the information right when the event outcome

occurred.

We used a combination of machine learning models, out of which some are
prone to class imbalance and some are resistant to class imbalance in the dataset.
The models we have used for our evaluation are decision trees, gradient
boosting, balanced bagging, logistic regression and XGBoost. The
hyperparameters were tuned with grid search cross validation. We also
performed analysis on the effect of oversampling and undersampling on the
dataset to overcome class imbalance and measure model performance.
Furthermore, we experimented with different training and testing splits for
optimal model performance and N-1 testing to measure metrics for both the
classes. At last, we also perform unsupervised learning on the dataset. All of
these approaches are aimed at recognizing optimal predictive modelling
techniques for an imbalanced dataset, ensuring accurate predictions for both the

disease outcomes.
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4.2 Performance of model on different training testing splits

4.2.1 Train test split ratio of 50:50
As per the evaluation metrics defined in Chapter 3, Table 1 shows the results of

metrics for all the models followed by Gain charts, Lift curves and K-S statistic

charts.
Methods Accuracy | Precision | Recall | Flscore | Specificity | Mis-classification
Logistic 86% 73% 88% 79% 73% 14%
regression
Decision 94% 64% 98% 7% 60% 6%
Tree
Gradient 95% 64% 99% 7% 64% 5%
Boosting
XGBoost 93% 50% 99% 67% 50% 7%
Balanced 90% 77% 91% 84% 7% 10%
Bagging
Random 91% 27% 99% 43% 27% 9%
Forests

Table 1: Metric results for train test split ratio of 50:50

4.2.1.1 Dependence on training dataset

It is common for machine learning algorithms to give different results on each
run. In our dataset, due to the very nature of the disease most of the patient
population belongs to one class i.e., Death because of which the overall
accuracy is mostly the contribution of the majority class and due to dependence
of model on training dataset the specificity of the model has more variance due
to limited samples of minority class in the dataset. The average specificity of

each model and the variance is in Table 2.
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Methods Average Specificity Variance
Logistic 77% 1.2%
regression
Decision Tree 49.2% 1.8%
Gradient 65.5% 0.7%
Boosting
XGBoost 56.9% 0.5%
Balanced Bagging 76.9% 1.5%
Random 53.8% 1.6%
Forests
Table 2: Average specificity and variance for all models
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Gain curve far Bagging Gain curve far RandomFonest
e 2 1

Figure 19: Cumulative gain charts for all the models

In all the gain charts for 50:50 split, Decision trees gives the highest gain for
capturing patients whose survival status at a given time is alive, when targeting
top 20% of the patient population in the testing set as compared to other models.
However, there is a high variance for Decision trees and cannot be deemed as a
robust model for both the classes. Logistic Regression can be a good choice as
it has high gain, average specificity is greater than 77% and variance is 1.2%

across ten runs of the model.
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Figure 20: Lift charts for all the models

In all the lift charts for 50:50 split, Decision trees give the highest lift ~4.2 for

capturing patients whose survival status at a given time is alive, when targeting

top 20% of the patient population in the testing set as compared to other models.

However, as discussed previously they suffer from low stability.
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K-S statistic for Logistic Regression
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Figure 21: K-S statistic charts for all the models

In all the K-S charts for 50:50 split, Decision trees give the maximum separation

between both the classes at K-S statistic value of 0.789. However, similar value

of K-S statistic 0.76 can be achieved at lesser percentage of sample i.e., at top

57.4% of patient population in Logistic Regression as compared to top 86.8%

in Decision trees.
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4.2.2 Train test split ratio 60:40
As per the evaluation metrics defined in Chapter 3, Table 3 shows the results of

metrics for all the models followed by Gain charts , Lift curves and K-S statistic

charts.
Methods Accuracy Precision Recall Flscore Specificity Mis-classification
Logistic 84% 78% 84% 81% 78% 16%
regression
Decision 95% 67% 98% 79% 67% 5%
Tree
Gradient 95% 61% 99% 76% 61% 5%
Boosting
XGBoost 93% 50% 99% 66% 50% %
Balanced 88% 89% 88% 88% 89% 12%
Bagging
Random 92% 39% 100% 56% 39% 8%
Forests

Table 3: Metric results for train test split ratio of 60:40

4.2.2.1. Dependence on training dataset

The average specificity of each model and the variance for a test size of 40%
can be seen in Table 4. This analysis is done only for 50:50 and 60:40 training
testing data split as in further splits the number of samples increases in the

training dataset and it becomes difficult to assess on a small test set.

Methods Average Specificity Variance
Logistic 79.9% 0.8%
regression

Decision Tree 58.4% 1.2%
Gradient 54.5% 1.3%
Boosting
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XGBoost 55% 0.5%
Balanced Bagging 82% 0.8%
Random 58.4% 1.3%
Forests
Table 4: Average specificity and variance for all models
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Figure 24: Gain curves for 60:40 training-testing data split for all the models
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In all the gain charts for 60:40 split, Gradient Boosting gives the highest gain
for capturing patients whose survival status at a given time is alive, when
targeting top 20% of the patient population in the testing set as compared to
other models. However, it may not be the best balanced model given the low F-
1 score, recall and specificity as compared to other models. On the other hand,
Balanced bagging is an appropriate choice with low variance and performs well

for both the classes.
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Figure 25: Lift curves for 60:40 training-testing data split for all the models

In all the lift charts for 60:40 split, Gradient Boosting gives the highest lift ~4.5
for capturing patients whose survival status at a given time is alive, when
targeting top 20% of the patient population in the testing set as compared to

other models.
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Figure 26: K-S statistic curves for 60:40 training-testing data split for all the models

In all the K-S charts for 60:40 split, Bagging give the maximum separation

between both the classes at K-S statistic value of 0.818 which explains a high

F1-score of 0.81 ensuring accurate predictions for both the classes.
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Figure 27: ROC curve
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Figure 28: PR curve

4.2.3 Train test split ratio 80:20
As per the evaluation metrics defined in Chapter 3, Table 5 shows the results of

metrics for all the models followed by Gain charts, Lift curves and K-S statistic

charts.
Methods Accuracy Precision Recall Flscore Specificity Mis-classification
Logistic 84% 89% 83% 86% 89% 16%
regression
Decision 97% 78% 100% 88% 78% 3%
Tree
Gradient 95% 56% 100% 71% 56% 5%
Boosting
XGBoost 99% 89% 100% 94% 89% 1%
Balanced 86% 89% 86% 87% 89% 12%
Bagging
Random 96% 67% 100% 80% 67% 4%
Forests

Table 5: Metric results for train test split ratio of 80:20
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Figure 29: Gain curves for 80:20 training-testing data split for all the models

In all the gain charts for 80:20 split, all the models except logistic regression
gave a gain of greater than 80% for capturing patients whose survival status at
a given time is alive, when targeting top 20% of the patient population in the

testing set. XGBoost performs well on all evaluation metrics with just 1% of
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misclassification, high F-1 score and specificity making it a robust model

towards both the classes.
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Figure 30: Lift curves for 80:20 training-testing data split for all the models

In all the lift charts for 80:20 split, Gradient Boosting gives the highest lift ~4.5
for capturing patients whose survival status at a given time is alive, when
targeting top 20% of the patient population in the testing set as compared to

other models.
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Figure 31: K-S statistic for 80:20 training-testing data split for all the models

In all K-S charts for 80:20 split, XGBoost and Random forest give the maximum
separation between both the classes at K-S statistic value of 0.891 followed by

Bagging. However, as discussed previously XGBoost is a more robust classifier.
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Figure 33: PR curve
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4.2.4 Train test split ratio 90:10
As per the evaluation metrics defined in Chapter 3, Table 6 shows the results of

metrics for all the models followed by Gain charts , Lift curves and K-S statistic

charts.
Methods Accuracy Precision Recall Flscore Specificity Mis-classification
Logistic 86% 75% 88% 81% 75% 14%
regression
Decision 92% 25% 100% 40% 25% 8%
Tree
Gradient 92% 25% 100% 40% 25% 8%
Boosting
XGBoost 97% 75% 100% 86% 75% 3%
Balanced 89% 75% 91% 82% 75% 11%
Bagging
Random 92% 25% 100% 40% 25% 8%
Forests

Table 6: Metric results for train test split ratio of 90:10
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Figure 34: Gain curves for 90:10 training-testing data split for all the models

In all the gain charts for 90:10 split, all the models except logistic regression
and Balanced bagging give a gain of greater than 95% for capturing patients
whose survival status at a given time is alive, when targeting top 20% of the

patient population in the testing set. Decision trees and Gradient Boosting are
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not an appropriate choice to be used in clinical practice due to low precision, F-

1 score and specificity, ultimately making it a less robust choice.
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Figure 35: Lift curves for 90:10 training-testing data split for all the models
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In all the lift charts for 90:10 split, Random Forest and XGBoost gave the
highest lift greater than 5 for capturing patients whose survival status at a given
time is alive, when targeting top 20% of the patient population in the testing set
as compared to other models. However, XGBoost performs well on all
evaluation metrics specially high F-1 score, precision and specificity making it
more robust as compared to Random forest with lowest misclassification

percentage.
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Figure 36: Gain curves for 90:10 training-testing data split for all the models

In all the K-S charts for 90:10 split, XGBoost and Random forest give the

maximum separation between both the classes at K-S statistic value of 0.909

followed by Bagging which is highest across all the split ratios. This can also

be due to small testing set size and more examples from the minority class

provided during the training improved the performance of the model.
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Figure 37: ROC curve
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Figure 38: P-R curve

4.3 Model performance after sampling training dataset

From previous results for different combination of splits, we saw that a higher
accuracy does not necessarily confirm model performance, whereas accurate
predictions for both the outcomes in our case is equally important. For example,
in above results for a split of 90:10 decision tree had a high accuracy for majority
class as the algorithm itself does not handle the minority class well resulting in
low specificity. Hence, for an imbalanced dataset specificity ,sensitivity and F1
score are appropriate metrics to choose a more balanced model. Furthermore,
the model that performs good on both of these metrics such as Balanced bagging
and XGBoost out of which, one has in-built sampling and the latter uses second

order approximation of the scoring function. This approximation allows
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XGBoost to calculate the optimal “if” condition and can then store these in its
memory for the next decision tree to save time in recomputing it. In other words,
it progressively adds more and more "if" conditions to the decision tree to build

a stronger model.

Since some algorithms in our results are good at handling imbalanced dataset,
this also led us to an inference that sampling the training dataset can be
beneficial to accurately predict both the outcomes. We will be oversampling and
undersampling our training dataset for different splits and measure model

performance.

4.3.1 Oversampling

Oversampling in signal processing is sampling of a signal with sample rate
higher than the Nyquist rate. Similarly, in machine learning oversampling is
selecting more samples by duplication from the minority class to compensate
for the imbalance. However, in machine learning these samples are data and not

actual signal.

4.3.1.1 Train test split ratio 50:50

Before oversampling After oversampling

Training data shape {1: 160, 0: 22} {0: 160, 1: 160}

Oversampling increased the samples of the minority class from 22 to 160. We

have used random oversampling which means selecting random examples from
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the minority class with replacement and supplementing the training data with
multiple copies of this instance, which can lead to overfitting as a single instance

may be selected multiple times.

As per the evaluation metrics defined in Chapter 3, Table 7 shows the results of

metrics for all the models followed by Gain charts , Lift curves and K-S statistic

charts.
Methods Accuracy Precision Recall Flscore Specificity Mis-classification
Logistic 86% 68% 88% 7% 68% 14%
regression
Decision 81% 100% 79% 88% 100% 19%
Tree
Gradient 94% 68% 98% 80% 68% 6%
Boosting
XGBoost 95% 64% 99% 7% 64% 5%
Balanced 93% 55% 99% 70% 55% 7%
Bagging
Random 93% 50% 99% 66% 50% 7%
Forests

Table 7: Metric results for train test split ratio of 50:50

Oversampling for a split of 50:50 performed well on our defined evaluation
metrics except precision for some models and became more robust towards
minority class. Even though the misclassification rate for Decision trees
increased considerably, the model became robust towards minority class with
high specificity and F-1 score. However, the increment in precision and

accuracy is not significant.
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Figure 39: Gain curves for 50:50 training-testing data split for all the models

In all the gain charts for 50:50 split, Decision tree gave the highest gain of ~84%
for capturing patients whose survival status at a given time is alive, when
targeting top 20% of the patient population in the testing set. Undersampling
improved performance of decision tree classifier which does not handle

imbalanced classes well.
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Figure 40: Lift curves for 50:50 training-testing data split for all the models

In all the lift charts for 50:50 split, Decision trees gave the highest lift of greater
than 4 followed by Gradient boosting and Random forest for capturing patients
whose survival status at a given time is alive, when targeting top 20% of the

patient population in the testing set as compared to other models.
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Figure 41: K-S curves for 50:50 training-testing data split for all the models

In all the K-S charts for 50:50 split, Decision trees gave the maximum separation

between both the classes at K-S statistic value of 0.789.
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4.3.1.2 Train test split ratio 60:40

Before oversampling After oversampling

Training data shape {1: 193, 0: 26} {1: 193, 0: 193}

As per the evaluation metrics defined in Chapter 3, Table 8 shows the results of

metrics for all the models followed by Gain charts , Lift curves and K-S statistic

charts.
Methods Accuracy | Precision | Recall | Flscore | Specificity | Mis-classification
Logistic 85% 78% 86% 82% 78% 15%
regression
Decision 82% 89% 80% 84% 89% 18%
Tree
Gradient 92% 2% 95% 76% 2% 8%
Boosting
XGBoost 94% 72% 97% 83% 72% 6%
Balanced 94% 56% 99% 71% 56% 6%
Bagging
Random 96% 67% 100% | 80% 67% 4%
Forests

Table 8: Metric results for train test split ratio of 60:40

Oversampling training dataset for a split of 60:40 did not make an impact on
evaluation metrics considerably but it improved precision and F-1 score for
models trained on data without sampling. Oversampling training data can be an
appropriate choice as it improves metrics for all models except Balanced
bagging, which performed well on imbalanced data without performing

oversampling.
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Figure 44: Gain curves for 60:40 training-testing data split for all the models

In all the gain charts for 60:40 split, Bagging gave the highest gain of ~90%
followed by Gradient boosting for capturing patients whose survival status at a
given time is alive, when targeting top 20% of the patient population in the
testing set. On comparing this with previous experiment when the data was not

sampled, Gradient boosting had the highest gain although it has low F-1 score.
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Random forests and XGBoost performed well on all the evaluation metrics and

are more robust to class imbalance.

Lift curve for Logistic Regression Lift curve for Decision Trees
. -
7
6
5
=
3
4
3
: —— Class 0 — Class
e 355 1 T Class T
1 —= Basclre —= Baseire
20 02 04 oS o8 10 (1] 02 0t 08 3 10
Percentage of sample Percentap: of sample
Lift curve for Gradient Boosting Lt curve curve for XGBoost
84 ]
1 T
64 6
54 €
5 &
44 g 4
34 '
w— Class 0
14 L e Claw 1
114 14 == Hacne
00 02 Y] Y 08 10 00 02 24 06 Y] 10
Percentage of sample Pertentage of sample
Lift curve for Bagging Lift curve for RandomForest
5 ! E
7 7-
13 B+
54 5+
3 =
b=t 3
4 2~
3 33
— Class 0
24 23
= e Cl255 1
1 14 == Basslee
20 02 04 a6 s 10 a0 0z 14 16 o8 10
Percentags of sample Percentage of samipie

Figure 45: Lift curves for 60:40 training-testing data split for all the models
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In all the lift charts for 60:40 split, Bagging gave the highest lift of ~ 4.2 for
capturing patients whose survival status at a given time is alive, when targeting

top 20% of the patient population in the testing set as compared to other models.
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Figure 46: K-S curves for 60:40 training-testing data split for all the models

In all the K-S charts for 60:40 split, XGboost gave the maximum separation
between both the classes at K-S statistic value of 0.83 which also explains the

high F1 score and specificity of the model. As discussed previously, Gradient
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boosting had the highest gain but suffered from low F-1 score and XGBoost is

an appropriate choice for more balanced model.
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Figure 47: ROC curve
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Figure 48: P-R curve

4.3.1.3 Train test split ratio 80:20

Before oversampling After oversampling

Training data shape {1: 257, 0: 35} {0: 257, 1: 257}

As per the evaluation metrics defined in Chapter 3, Table 9 shows the results of

metrics for all the models followed by Gain charts , Lift curves and K-S statistic

charts.

Methods Accuracy | Precision | Recall | Flscore | Specificity | Mis-classification
Logistic 85% 89% 84% 87% 89% 15%
regression

Decision 84% 100% 81% 90% 100% 16%

Tree
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Gradient 95% 89% 95% 92% 89% 5%
Boosting

XGBoost 96% 89% 97% 93% 89% 4%
Balanced 96% 78% 98% 87% 78% 4%
Bagging

Random 97% 89% 98% 93% 89% 3%
Forests

Table 9: Metric results for train test split ratio of 50:50

Oversampling improved specificity and precision of the models as compared to
models with no sampling, ultimately making them more robust towards
minority class. The highest change can be seen in Decision trees, Gradient

boosting and Random forests models.
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Figure 30: Gain curves for 80:20 training-testing data split for all the models

In all the gain charts for 80:20 split, all models except logistic regression gave
gain of greater than ~90% for capturing patients whose survival status at a given
time is alive, when targeting top 20% of the patient population in the testing set.
Random forest model performs well on all the evaluation metrics with lowest

misclassification percentage and is an appropriate choice for medical practice.
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Figure 49: Lift curves for 80:20 training-testing data split for all the models

In all the lift charts for 80:20 split, all models except logistic regression gave a
high lift of greater than ~ 4.2 for capturing patients whose survival status at a
given time is alive, when targeting top 20% of the patient population in the

testing set as compared to other models.
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Figure 50: K-S curves for 80:20 training-testing data split for all the models

In all the K-S charts for 80:20 split, bagging gave the maximum separation
between both the classes at K-S statistic value of 0.891 followed by Random
forests and XGBoost with K-S statistic value of 0.889. However, Random
forests and XGBoost achieves this separation at top 41.2% and 29.3% of the

patient population as compared to the top 75% of the population in Bagging.
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Figure 52: P-R curve
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4.3.1.4 Train test split ratio 90:10

Before oversampling After oversampling

Training data shape {1: 288, 0: 40} {1: 288, 0: 288}

As per the evaluation metrics defined in Chapter 3, Table 10 shows the results
of metrics for all the models followed by Gain charts , Lift curves and K-S

statistic charts.

Methods Accuracy | Precision | Recall | Flscore | Specificity | Mis-classification
Logistic 81% 75% 82% 78% 75% 19%
regression

Decision 84% 100% 82% 90% 100% 16%
Tree

Gradient 92% 75% 94% 83% 75% 8%
Boosting

XGBoost 95% 75% 97% 85% 75% 5%
Balanced 97% 75% 100% | 86% 75% 3%
Bagging

Random 97% 75% 100% | 86% 75% 3%
Forests

Table 10: Metric results for train test split ratio of 90:10

Oversampling training data for a split of 90:10 lowered the specificity and F-1
score of the models making the model prone to inaccurate predictions on
minority class. However, precision increases considerably indicating overfitting

towards majority class.
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Figure 53: Gain curves for 90:10 training-testing data split for all the models

In all the gain charts for 90:10 split, Random forests and Bagging gave highest
gain for capturing patients whose survival status at a given time is alive, when
targeting less than top 20% of the patient population in the testing set. These
two models perform well on all the evaluation metrics and have the least

misclassification percentage.
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Figure 54: Lift curves for 90:10 training-testing data split for all the models

In all the lift charts for 90:10 split, Bagging and Random forests gave a high lift
of greater than ~ 4 for capturing patients whose survival status at a given time
is alive, when targeting top 20% of the patient population in the testing set as

compared to other models.
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Figure 55: K-S curves for 90:10 training-testing data split for all the models

In all the K-S charts for 90:10 split, Random forests gave the maximum
separation between both the classes at K-S statistic value of 1 at top 55% of the

population.
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Figure 56: P-R curve
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4.3.2 Undersampling

Undersampling involves removing some observations from the majority class

until the majority and minority class is balanced out.

4.3.2.1 Train test split ratio 50:50

Before undersampling

After undersampling

Training data shape

{1: 160, 0: 22}

{0: 22, 1: 22}

As per the evaluation metrics defined in Chapter 3, Table 11 shows the results

of metrics for all the

statistic charts.

models followed by Gain charts , Lift curves and K-S

Methods Accuracy

Precision Recall | Flscore

Specificity

Mis-classification

Logistic 84%
regression

86%

83% 85%

86%

16%

Decision 85%
Tree

91%

84% 87%

91%

15%

Gradient 80%
Boosting

86%

80% 83%

86%

20%

XGBoost 79%

82%

79% 80%

82%

21%

Balanced 85%
Bagging

91%

84% 88%

91%

15%

Random 83%
Forests

82%

83% 82%

82%

17%

Table 11: Metric results for train test split ratio of 50:50

Undersampling the training dataset for a split of 50:50 decreased the accuracy,
recall of all the models but increased the specificity, precision and F-1 scores

making the models more robust towards both the classes when compared to the
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models without sampling. On comparing these results with oversampling these
results give promising response for minority class as specificity for all the

models is greater than 80% whereas for oversampling it goes as low as 50%.
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Figure 57: Gain curves for 50:50 training-testing data split for all the models

In all the gain charts for 50:50 split, Bagging has the highest gain for capturing
patients whose survival status at a given time is alive, when targeting less than

top 20% of the patient population in the testing set. This explains for highest
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accuracy for balanced bagging, ultimately leading to lowest misclassification

rate across all models.
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Figure 58: Lift curves for 50:50 training-testing data split for all the models
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In all the lift charts for 50:50 split, Bagging gave a high lift of greater than ~ 4
for capturing patients whose survival status at a given time is alive, when

targeting top 20% of the patient population in the testing set as compared to

other models.
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Figure 59: K-S curves for 50:50 training-testing data split for all the models
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In all the K-S charts for 50:50 split, Bagging gave the maximum separation

between both the classes at K-S statistic value of 0.76 at top 45% of the

population.
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Figure 60: ROC curve
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Figure 61: PR curve

4.3.2.2 Train test split ratio 60:40

Before undersampling | After undersampling

Training data shape {1: 193, 0: 26} {0: 26, 1: 26}

As per the evaluation metrics defined in Chapter 3 Table 12 shows the results
of metrics for all the models followed by Gain charts , Lift curves and K-S

statistic charts.

Methods Accuracy | Precision | Recall | Flscore | Specificity | Mis-classification

Logistic 88% 78% 89% 83% 78% 12%
regression

Decision 82% 100% 80% 89% 100% 18%
Tree
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Gradient 85% 72% 87% 79% 72% 15%
Boosting

XGBoost 82% 89% 81% 85% 89% 18%
Balanced 84% 94% 82% 88% 94% 16%
Bagging

Random 86% 89% 86% 87% 89% 14%
Forests

Table 12: Metric results for train test split ratio of 60:40

Undersampling strategy for a split of 60:40 increased precision, recall, F-1 score
and specificity considerably as compared to a training data without

undersampling. However, there is a decrease in overall accuracy of the model.
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Gain curve for Decision Trees
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Figure 62: Gain curves for 60:40 training-testing data split for all the models

In all the gain charts for 60:40 split, XGBoost had the highest gain ~90%
followed by Logistic regression ~85% for capturing patients whose survival
status at a given time is alive, when targeting less than top 20% of the patient
population in the testing set. Random forest performs well on all metrics and

can be an appropriate choice for this split.
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Figure 63: Lift curves for 60:40 training-testing data split for all the models

In all the lift charts for 60:40 split, XGBoost model gave a high lift of ~ 4.5 for

capturing patients whose survival status at a given time is alive, when targeting

top 20% of the patient population in the testing set as compared to other models.
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Figure 64: K-S curves for 60:40 training-testing data split for all the models

In all the K-S charts for 60:40 split, XGBoost and Logistic regression gave the
maximum separation between both the classes at K-S statistic value of 0.81 and

0.812 at top 40% and top 62% of the population.
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4.3.2.3 Train test split ratio 80:20

Before undersampling | After undersampling

Training data shape

{1: 257, 0: 35} {1: 35, 0: 35}

As per the evaluation metrics defined in Chapter 3, Table 13 shows the results

of metrics for all the

statistic charts.

models followed by Gain charts , Lift curves and K-S

Methods Accuracy | Precision | Recall | Flscore | Specificity | Mis-classification
Logistic 85% 100% 83% 91% 100% 15%
regression

Decision 73% 100% 69% 81% 100% 27%
Tree

Gradient 81% 100% 78% 88% 100% 19%
Boosting

XGBoost 85% 100% 83% 91% 100% 15%
Balanced 82% 100% 80% 89% 100% 18%
Bagging

Random 84% 100% 81% 90% 100% 16%
Forests

Table 13: Metric results for train test split ratio of 80:20

Undersampling the training data for a split of 80:20 yields major improvements

in all the metrics except accuracy. The model is very confident in classifying

both the classes.
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Gamn curve for Logistic Regression
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Figure 65: Gain curves for 80:20 training-testing data split for all the models

In all the gain charts for 80:20 split, XGBoost had the highest gain ~90%
followed by Logistic regression ~85% for capturing patients whose survival
status at a given time is alive, when targeting less than top 20% of the patient
population in the testing set. Both the models are robust towards both the
classes. However, XGBoost gives low accuracy as compared to a case with

oversampling and no sampling. Hence undersampling may not be an appropriate
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choice as in most cases as misclassification percentage has increased

considerably when compared to oversampling and no sampling.
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Figure 66: Lift curves for 80:20 training-testing data split for all the models

In all the lift charts for 80:20 split, XGBoost model gave a high lift of ~5 for
capturing patients whose survival status at a given time is alive, when targeting

top 20% of the patient population in the testing set as compared to other models.
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As discussed previously, XGBoost performs well on all metrics, but

undersampling the dataset may not be the best solution for this split.
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Figure 67: K-S statistic curves for 80:20 training-testing data split for all the models

In all the K-S charts for 80:20 split, XGBoost gave the maximum separation

between both the classes at K-S statistic value of 1 at top 12.9% of the

population.
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4.3.2.4 Train test split ratio 90:10

Before undersampling | After undersampling

Training data shape {1: 288, 0: 40} {1: 40, 0: 40}

As per the evaluation metrics defined in Chapter 3, we will measure the metrics

for all the models in Table 14.

Methods Accuracy | Precision | Recall | Flscore | Specificity | Mis-classification
Logistic 89% 100% 88% 94% 100% 11%
regression

Decision 84% 100% 82% 90% 100% 16%
Tree

Gradient 86% 100% 85% 92% 100% 14%
Boosting

XGBoost 92% 75% 94% 83% 75% 8%
Balanced 78% 100% 76% 86% 100% 22%
Bagging

Random 86% 100% 85% 92% 100% 14%
Forests

Table 14: Metric results for train test split ratio of 90:10

Undersampling for a split of 90:10 increased precision, F-1 score and specificity
of all the models. However like other splits, resulted in lowered accuracy

ultimately leading to high misclassification percentage.

97



M.A.Sc. — Aishwarya Mohan

McMaster University —

Electrical & Computer

ENgineering

Gain curve for Logestec Regrasson
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Figure 68: Gain curves for 90:10 training-testing data split for all the models

In all the gain charts for 90:10 split, all models except Bagging had the highest
gain achieved when targeting less than top 20% of the patient population in the
testing set. XGBoost had low specificity and precision as compared to other
models i.e. 75% as compared to 100%. However, other models have low
accuracy. Undersampling for a split of 90:10 case is better than no sampling for

some models that are highly biased towards majority class i.e. Decision tree,
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Gradient boosting and Random forests. On the other hand, choosing an
appropriate solution between oversampling and undersampling is a trade-off

between recall and precision.
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Figure 69: Lift curves for 90:10 training-testing data split for all the models

99



M.A.Sc. — Aishwarya Mohan McMaster University — Electrical & Computer
Engineering

In all the lift charts for 90:10 split, all models except Bagging gave a high lift of
greater than ~ 4.5 for capturing patients whose survival status at a given time
is alive, when targeting top 20% of the patient population in the testing set as
compared to other models. Balanced bagging also had the highest

misclassification percentage.
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Figure 70: K-S statistic curves for 90:10 training-testing data split for all the models
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In all the K-S charts for 90:10 split, Random Forest gave the maximum
separation between both the classes at K-S statistic value of 0.97 at top 29% of

the population.

Random forest and Logistic Regression are appropriate choices for a split of

90:10 undersampled training dataset.

4.4 Model performance on N-1 testing

In total there were 365 patient records, for N-1 testing model was trained on N-

1 records and tested on 1 observation in a rotation.

Methods Overall Accuracy Accuracy Mis-classification
Accuracy Class: Alive Class: Death

Logistic 87.39% 84.09% 87.85% 12.61%

Regression

Decision Tree 94.24% 65.90% 98.13% 5.76%

Gradient 93.97% 59.09% 98.75% 6.03%

Boosting

XGBoost 93.42% 63.63% 97.50% 6.58%

Balanced Bagging | 84.10% 79.54% 84.73% 15.9%

Random 93.42% 65.90% 97.19% 6.58%

Forests

Table 15: N-1 testing evaluation

Decision trees give highest accuracy of 94.24% overall as seen in Table 15.
However, they are highly biased towards majority class giving low accuracy for
minority class. A class weight balanced Logistic regression is highly robust

towards minority class without performing any sampling.
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4.5 Unsupervised learning

We have used K-means clustering for our evaluation in unsupervised learning.
Since the dataset has two outcome of patients i.e. Alive and Death. We have
used Elbow method and Silhouette analysis for measuring the performance of
the model. This can help us determine if the dataset needs to be modelled in a
way where we can introduce a third class where model is not able to make a

decision.

4.5.1 Elbow method

Elbow method gives us an estimate of what a good k number of clusters would
be based on the sum of squared distance (SSE) between data points and their
clusters centroids. An appropriate value of k can be found at a position where

SSE starts to flatten out and forming an elbow.
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Figure 71: Number of clusters based on Sum of squared distance

The graph above shows that k=2 can be a good choice, but so can be 3. It is
however hard to figure out a good number of clusters as the curve is
monotonically decreasing and may not show any elbow or has an obvious point

where the curve starts flattening.
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4.5.2 Silhouette Analysis
We used silhouette analysis to determine the degree of separation between the

clusters. The silhouette scores for different number of clusters are below as seen

in Figure 72.
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Figure 72: Silhouette plots for different number of clusters 2, 3 and 4

From the above plots, we can see having 2 clusters has the best average
silhouette score of around 0.7. Also, the thickness of silhouette plot gives an
indication of how much samples are present in the clusters. As we
increased number of clusters to 3 and 4, the average silhouette score decreased
to around 0.64 and 0.58 respectively. Moreover, the thickness of silhouette plot
shows wide fluctuations. Appropriate number of clusters will have above 0.5

silhouette average score and all our clusters have higher than the average score.
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Chapter 5
Conclusions

5.1 Research summary

The main objective of this research was to apply different machine learning
methods and provide an analysis of approaches to predictive modelling when
the nature of dataset is imbalanced. In NSCLC dataset, our objective was to
highlight machine learning classifiers that perform well on all the evaluation
metrics and are most robust towards minority classes. One of the classifiers used
in our analysis that performed well and is robust towards class imbalance in data

is XGBoost giving 99% accuracy and 89% specificity.

Generally, Decision trees are commonly used classifiers because of
interpretability but are often susceptible to bias. From our analysis, they can be
improved by performing sampling. In addition to performing sampling, one can
also use ensemble classifiers which make the model more robust towards both

the classes for an imbalanced dataset.
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Furthermore, we highlighted the performance analysis after undersampling and
oversampling. In our analysis, we saw using undersampling or oversampling
gave a significant improvement in precision and specificity for models that are
biased towards majority class. However, in undersampling misclassification

percentage increased for most models.

In addition to that, we performed N-1 testing to measure performance for both
the classes. Logistic regression gave highest accuracy 84.09% for minority class

and 87.85% for majority class.

At last, we used unsupervised learning approach to measure if the dataset can
be modelled differently for instances where model might be confused and to test
if introducing another class can be a beneficial for such datasets. From silhouette

scores we were able to see that having two clusters gave the best average score.

5.2 Future work

In this thesis, we propose different approaches for using machine learning
classifiers in medical practice when the very nature of disease is such that
majority of patient population are likely to be dead. Suggestions for future work
is to train and test these algorithms on different detailed datasets with similar
class imbalance. One example is to use datasets which include more feature
columns such as smoking information, number of diagnostic tests and accurate

information of the survival time. Another suggestion, is to use these datasets
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and perform unsupervised learning for introducing a third class which indicates

that the classifier is not sure on a particular record.
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