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Abstract 
 

5-year survival rate of patients with metastasized non-small cell lung cancer 

(NSCLC) who received chemotherapy was less than 5% (Kathryn C. Arbour, 

2019). Our ability to provide survival status of a patient i.e. Alive or death at 

any time in future is important from at least two standpoints: a) from clinical 

standpoint it enables clinicians to provide optimal delivery of healthcare and b) 

from personal standpoint by providing patient’s family with opportunities to 

plan their life ahead and potentially cope with emotional aspect of loss of life. 
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Chapter 1  

Introduction  
 

According to American Cancer Society, lung cancer is the leading cause of 

cancer death among men and women, for almost 25% of all cancer deaths. As 

the mortality rate of lung cancer is high, it belongs to a group that has the worst 

survival prognosis (Camilla Mattiuzzi, 2019).  

Generally, after diagnosis the patient's family expects to know the patient's 

chances of survival from a clinician. An ability to predict life expectancy can be 

beneficial from both emotional standpoint and clinical standpoint, as it reduces 

stress on patient’s family to cope with situation and can also allow clinicians to 

evaluate patients' risk, likelihood of survival and postoperative treatment 

procedures. Due to the very nature of the disease, lung cancer datasets are 

generally imbalanced where majority of patient population has low chances of 

survival. As a result, predictive modeling on imbalanced datasets where the 

majority of patients have low chances of survival (Liang, 2019) makes it more 

challenging to accurately predict survival status of patients with higher chances 

of survival. Thus, for clinicians to accurately evaluate patients’ risk and further 
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design appropriate post treatment procedures it is equally important to 

accurately predict both true negatives and true positives. 

Increasing diagnostic lab tests indicates a potential of vast biomedical data 

assuming there are plenty of electronic health records of patients. As a result, 

rapid increase in volume and complexity of biomedical data can be utilized to 

draw patterns and inferences. One of the promising techniques that can be 

helpful in finding patterns from a large patient cohort data is predictive 

modeling which utilizes biomedical data to investigate relationships between 

the factors and the dependencies that further help us predict survival status of 

patient. Ultimately, this can help patients with personalized medication and risk 

assessment. Developing algorithms and mathematical models that can generate 

reliable predictions on an imbalanced dataset is a daunting task because of the 

underlying dependencies and bias which can be complex. As a result, number 

of factors influencing the predictions are huge. To implement this technique in 

medical practice we need rigorous training procedures for complexities. Even 

in this case, the underlying assumption of these techniques is that certain 

statistical/probabilistic models can describe these dependencies which may not 

be true in certain cases (i.e., there may exist certain number of outliers in every 

dataset). In addition, we need to design vigorous testing, validation, and 

verification procedures because of overwhelming intricacies such as variability 

from patient- to -patient that needs to be evaluated. 

1.1 Motivation 
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Unequal distribution of data between majority class 1 (Dead) i.e. patients that 

are less likely to survive and minority class 0 (Alive) i.e. patients that are likely 

to survive can induce bias towards majority class, leaving minority class 

samples to be often misclassified. Misclassification of minority class can lead 

to hectic post-operative treatment procedures, high dosage of recommended 

drugs and accelerated health follow-ups and diagnostic tests which can cause 

stress both physically and psychologically.  

 

Figure 1: Class count for non-small cell lung cancer data 

An ability to correctly predict survival status of patient at a given time by 

clinician can alleviate this stress. Hence, to use machine learning models in 

clinical practice they should be designed in such a way that they are robust 

towards bias induced by majority class. These models play an important role in 
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developing a computerized decision-making support systems for clinicians. 

Prediction of survival status at a given point in time reflects risk status of patient. 

These models can also be used as a risk assessment tool to help us determine 

which patients should be offered imaging. However, all these tools suffer from 

aforementioned common challenge of bias towards majority class. Furthermore, 

they are also dynamic in nature and needs to be updated continuously as the 

environment changes. Hence, model should be constructed and designed in such 

a way that it can adjust if there are changes in the subset of the population. 

However, the importance of different factors varies at different stages of 

treatment. The predictive values of different features for different patients may 

be changed. From clinician’s perspective they would want various things such 

as predicting results, optimizing the treatment, healthcare planning and patients 

planning. Models are developed based on data that includes patient events, 

relationships between factors, parameters, treatments and outcome events. 

Laboratory indicators such as results of biochemical tests can also be used in 

model development.  

1.2 Challenges 
 

Performance of machine learning models varies from field to field as well as 

from application to application. For example, financial institutions that use 

analytics as a service (AaaS) focus on trade-offs between false positives and 

false negatives and as a result, model prediction is sent to a queue which is then 

analyzed by risk analysts before coming to a decision whereas an automobile 



M.A.Sc. – Aishwarya Mohan   McMaster University – Electrical & Computer 

engineering 

 

Engineering 

5 
 

company working on a vision related project generally uses confidence score as 

a threshold in each detection for making a prediction. Often machine learning 

results are compared to that of an expert opinion leading to a hybrid decision 

making system in some industries. The comparison is still under investigation 

as machine learning systems take less time, are cheaper to deploy and perform 

better in some areas. Consider this scenario, when a human mind is going 

through 10,000 records with 100 feature columns, it is highly likely for mind to 

lose track of patterns and going through such a cumbersome process is not 

feasible. On the other hand, machines can perform these computations faster 

and draw patterns by scanning through high dimensional matrices quickly.  

Generally, medical datasets regardless of its size cannot cover all the possible 

cases as the problem is stochastic in its essence. Hence, clinicians often estimate 

the overall survival (OS) or progression free survival (PFS) with a confidence 

interval. One of the reasons behind this is that there are no pre-defined 

guidelines that a certain parameter decides survival prediction. Similarly, when 

it comes to different categories of physician, every clinician gives a different 

survival time estimation for patients in a recent study. The difference in 

accuracy of survival estimates by clinicians among the three categories of 

physicians i.e., residents, younger physicians and registrars needs explanation 

and basis. Physicians overestimated the survival status of patients, albeit 

resident doctors were the most accurate (Christelle Clément-Duchêne, 2010).  
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1.2.1 Training challenges 

One of the many current challenges in translating machine learning algorithms 

to clinical practice are related to the fact that healthcare data is not readily 

available for machine learning. Datasets are often siloed in a multitude of 

medical imaging archival systems, pathology systems, EHRs, and insurance 

databases which are difficult to bring together. Adapting unified data formats, 

such as Fast Healthcare Interoperability Resources (Joshua C Mandel, 2016), 

offer better aggregation of data, albeit improved interoperability does not 

necessarily fix the problem of inconsistent semantic coding in EHR data 

(William R Hersh, 2013). 

1.2.2 Evaluation challenges 

1.2.2.1 Adaptability of model results by clinicians  

Metrics currently provided by software’s used in Machine learning are not in 

concordance to data useful to clinicians. Accuracy results from a machine 

learning model does not mean model will be efficient when used in medical 

practice (Pearse A. Keane, 2018) and is not easily understood by many 

clinicians. There is no single metric that captures all the properties of a model. 

However, metrics are typically used to summarise model’s performance.  

1.2.2.2 Benchmarked dataset 

The comparison of algorithms across studies is challenging due to each study’s 

performance being reported using variable predictive modelling techniques on 

different populations with different sample distributions and properties. 
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Algorithms need to be subjected to comparison on a benchmarked dataset that 

is representative of the inference population, using same evaluation metrics. 

Without this, clinicians will have difficulty determining which algorithm is 

likely to perform best for their patients. 

1.2.3 Model issues 

1.2.3.1 Bias and Variance trade-off 

Outliers in machine learning can reflect ignored society biases, with a risk of 

unknown accuracies in minority subgroups, posing a risk of  amplifying biases 

present in the historical data (Kate Crawford, 2016). Algorithmic bias can be 

categorized into three fields: model bias, model variance, outcome noise (Irene 

Chen, 2018). A greater awareness of these risks and biases is needed to empower 

clinicians to participate critically in system design. Ultimately, this will help 

guide researchers to ensure correct order of steps is followed that quantify bias 

before deploying models. Vigorous validation on metrics by population 

subgroups should be performed including age, ethnicity, gender, socio-

demographic status and location.   

1.2.3.2 Rigorous quality control 

In order to have safe and efficient deployment of machine learning algorithms 

formulation of necessary regulatory frameworks are important (Christopher J. 

Kelly, 2019). This is challenging given the current pace of innovation, risks 

involved and dynamic nature of machine learning models. These regulations 

will give confidence to clinicians and healthcare systems. U.S. Food and Drug 
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Administration guidance has begun developing regulations ensuring safe 

deployment of artificial intelligence devices to patients (Food and Drug 

Administration. Proposed Regulatory Framework for Modifications to Artificial 

Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device 

(SaMD), 2019). 

1.2.3.3 Adoption in healthcare 

In order to ensure machine learning solutions can reach patients, it is important 

to focus on clinical application, patient outcomes, develop advance methods for 

algorithmic interpretability and achieving better understanding of human–

computer interaction (Christopher J. Kelly, 2019). 

1.3 Thesis structure 
 

In this thesis, we investigate different approaches for predicting survival status 

of patients suffering from non-small cell lung cancer. In Chapter 2, we review 

background of machine learning and related work in cancer prediction followed 

by steps to follow before applying machine learning classifiers to training 

dataset. In chapter 3, we present different classifiers on which our analysis will 

be performed and later in the chapter we list evaluation metrics for measuring 

performance. In chapter 4, related dataset and results from different tests 

performed on training data will be discussed. In last chapter, we conclude our 

findings for this study and present suggestions for future work. 
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Chapter 2 
 

Background and related work 
 

2.1 Machine learning background 

 

Machine learning has been used in healthcare for nearly 30 years. In other 

words, machine learning is being used as a tool in cancer diagnosis, detection, 

prediction, and prognosis (Joseph A. Cruz, 2007) from a long time. 

Aim of cancer prediction and prognosis are different from aim of cancer 

detection and diagnosis. In cancer prediction or prognosis one is concerned with 

three goals: 1) risk assessment 2) cancer recurrence and 3) cancer survivability. 

In the first case, we are trying to predict the likelihood of developing a type of 

cancer before occurrence of the disease (Joseph A. Cruz, 2007). In the second 

case, we are trying to predict recurrence of cancer once its resolved. In the third 

case we are trying to predict an outcome such as life expectancy and 

survivability chances. In last two situations success of the prognostic prediction 

is dependent on the quality of the diagnosis.  
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Machine learning is a subset branch of artificial intelligence that learns from 

past examples later uses that learning to identify patterns or predict trends in the 

data. Machine learning methods can utilize Boolean logic, absolute 

conditionality, conditional probabilities (the probability of X given Y) and 

unconventional optimization strategies for model building and identifying 

patterns which are not employed in statistics (Joseph A. Cruz, 2007). These 

latter methods resemble the approaches that is used naturally by humans and 

animals i.e., learning from experience. Machine learning uses concepts from 

statistics and probability, but it is more powerful because as it allows inferential 

learning which is not possible using conventional statistical methodologies 

(Richard O. Duda, 2001). Although powerful, these approaches assume that the 

variables are independent, and that data is linear i.e., it can be modeled using 

linear combinations of these variables. However, when the relationships are 

non-linear, and the variables are interdependent (or conditionally dependent) 

conventional statistics is not sufficient. Under these circumstances machine 

learning tends to offer promising results. Many biological and environment 

systems are non-linear, and their parameters are also conditionally dependent. 

Many physical systems are linear, and their parameters are essentially 

independent. As with any method, one should understand the limitations and 

assumptions associated with dataset and the algorithms being applied. If a 

machine learning experiment is properly designed taking all assumptions into 

account, implemented, with result validation and testing, there is a good chance 

of success for the problem at hand. However, in many cases that is not the case. 
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For example, as dimensionality in a dataset increases, variables span a lower-

dimensional subspace in which some of the dimensions become redundant in 

terms of other dimensions, thus yielding perfect multiple correlation (Lever, 

2017).The only solution is to reduce the number of features or increase the 

number of training records. As a general rule, the records-per-feature ratio 

should always exceed 5:1 (Somorjai RL, 2003). Size of the training set is as 

important as the variety of the training set. Training observations should be 

selected in a way such that it is similar to what classifier expects to encounter 

during inference. Training repeatedly on less examples with too low variability 

leads to over-training or training on noise (Rodvold DM, 2001). An over-trained 

classifier, will generally perform poorly when it tries to identify patterns in 

unseen data. There are cases when conventional statistics becomes more 

powerful or more accurate than machine learning due to wrong initial notions 

about the interdependence and non-linearity of the data. Similarly, not all 

machine learning methods are equal. Some are better for certain kinds of 

problems while others are better for other kinds of problems. For instance, some 

machine learning algorithms are scaled to the size of the biological domains, 

others do not. Similarly, some methods may have assumptions or data 

requirements that render them inapplicable to the problem we are trying to 

solve. Performance of machine learning algorithms depends on both the dataset 

and the algorithms, finding an optimal solution can be a challenging. Therefore, 

it is critically important to try more than one machine learning method on any 

given training set.  
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Machine learning algorithms can be classified  into three categories: 

1) supervised learning 

2) unsupervised learning 

3) reinforcement learning. 

Supervised learning are algorithms that involve direct supervision of a target 

label. In this case, a person labels sample data and sets strict boundaries upon 

which the algorithm operates. The model learns through perception and 

identifies structures in the information. When the model is given a dataset, it 

consequently discovers patterns in the dataset.  

Depending on the type of outcome one can choose suitable machine learning 

methods for model building. Supervised machine learning methods can be used 

in two kinds of applications regression and classification. Regression analysis 

is used to estimate a target variable based on a set of features by estimating the 

relationships between a dependent variable i.e., outcome variable and one or 

more independent variables called predictors, or features. Classification is a 

process of categorizing data into respective classes. These classes are often 

referred to as target, label, or categories. The whole process of predictive 

modeling involves series of steps ranging from data pre-processing, feature 

correlation, feature selection, model building and testing. 

2.2 Data pre-processing 
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2.2.1 Missing data in clinical records 

Clinically captured data often presents the challenge of missing data leading to 

bias or negative impact on analytical outcomes (Harshad Hegde, 2019) .For 

example, failure of staff to consistently document a value in an electronic health 

record, or technical failures precluding data capture by a device designed to 

track specific data, or capture of data mainly in unstructured formats not mined 

electronically without manual abstraction or pre-processing, making these data 

not readily available for analysis. Data that is not consistently recorded leads to 

missing records and consequently limiting the analysis.  

Machine learning algorithms may not perform well on missing data as they 

depend on finding relationships between the variables. For a dataset that is very 

large and the number of missing values in the data are very small (less than 5%), 

these values can be ignored and analysis can be performed on the rest of the data 

(Janus Christian Jakobsen, 2017).  

Sometimes in lung cancer datasets, there is a feature column for smoking. 

Generally, not all the records have an entry for that field and information for 

some patients is missing. This can be because person diagnosed with lung 

cancer did not smoke or there can be other reasons for an empty entry. However 

in our dataset all the missing values are less than 5% and are omitted for our 

analysis. 

2.3 Feature selection     
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Electronic health records (EHRs) contain variety of information about patients 

and their stays in health facilities (Elyne Scheurwegs, 2017). Clinical codes 

reflect diagnoses and procedures related to a patient stay and are primarily 

assigned for reporting and reimbursement purposes. Their widespread adoption 

in hospitals makes them a viable information source in research and monitoring 

applications. 

However, not all the information present in the dataset may contribute to 

estimating the outcome and may result in information overlap. Using feature 

selection, we can prevent less information overlap and use it to provide a dense 

representation of contributing features. 

Feature selection is the process of selecting the most relevant features for 

building a model such that the performance of the model is not affected. For 

example, in a model that inferences on predicting survival status of a patient at 

a given time, two features such as survival time and date of demise are highly 

correlated, resulting in information overlap. Removing multicollinearity 

generally improves the accuracy. This method is different from dimensionality 

reduction as it excludes and includes features present in the data without 

changing them often acting as a filter muting the irrelevant features. Ultimately, 

it helps in making the model simpler by reducing the complexity and sometimes 

also increases the accuracy of the model. Not every time a dataset needs feature 

selection techniques, but it is a useful practice to compare relationships between 

the features ultimately, removing multicollinearity if there is any present.  
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Chapter 3 

Methodology 

3.1 Introduction 
 

In this chapter, we will present the classifiers that will be used in our study and 

later in chapter we describe the evaluation metrics for inferencing on testing 

dataset. 

3.2 Classifiers 
 

Training a model that predicts the survival status at a given time, means 

forecasting the odds of outcome instead of forecasting the point estimate of the 

occurrence. In our case there are two disease outcomes i.e. Alive and death, if 

the result of odds are greater than 50% then the predicted class is assigned value 

1 otherwise it is 0. 

3.2.1 Logistic Regression 

Logistic regression models are statistical models describing relationship 

between a qualitative dependent variable and an independent variable. They are 

often used to study the effects of predictor variables and gives probability as an 
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outcome for each observation which further depending upon the threshold can 

further categorize survival status into two outcomes i.e., 0 (Alive) or 1 (Death). 

In such cases the model is called a binary logistic model. Apart from getting a 

binary outcome, binary logistic model can be used to answer different questions 

such as probability of getting lung cancer with the change in additional pounds 

a person gains, or every pack of cigarettes smoked per day. It can also provide 

answers based on the relationships between features such as how smoking, age 

and previous histopathology of patient can have an influence on the probability 

of having a lung cancer.  

Logistic Regression is a kind of classification algorithm which finds relationship 

between the features and probability of event status i.e., death or alive using 

logit function. 

The sigmoid function can be written as: 

𝑝 =
1

1 + 𝑒−𝑦
 

where p is the value of probability 
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Figure 2: Sigmoid function 

Sigmoid function is commonly used in machine learning as it maps an arbitrary 

real value to (0,1) range which means it can be interpreted as probability. For 

large values of z (nonlinearly dependent on a particular patient data) the 

probability (p) goes to one which can be interpreted as a patient being dead at a 

given time. Similarly, if value of argument z is small the probability of survival 

becomes 0 i.e., patient is alive at a given time. 

3.2.2 Decision Trees 

A Decision tree is in the form of flowchart like tree structure where node on the 

top is called the root node, the middle nodes are the internal nodes, and the 

bottom nodes are called leaf nodes. The lines connecting these nodes are called 

branches. 
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In a decision tree, each internal node splits the instance space into two or more 

subsets according to a discrete function of the input attributes values. This 

process is repeated on each derived subspace in a recursive manner called 

recursive partitioning. The recursion take place until, splitting no longer adds 

value to the predictions as seen in Figure 3. The main goal of the decision tree 

system is to decrease class entropy or increase the information gain at every 

child node creation. Given below is the equation of entropy E for a dataset with 

k classes and Information gain IG(S,t) of an attribute t . 

𝐸(𝑆) = 𝑒 = − ∑ 𝑝𝑖𝑙𝑜𝑔2(𝑝𝑖)

𝑘

𝑖=1

 

where pi is the probability of randomly picking an element of a class  

𝐼𝐺(𝑆, 𝑡) = 𝐸(𝑆) −  ∑
|𝑆𝑖|

|𝑆|
𝐶𝐸(𝑠𝑖

𝑖 ∈ 𝑉𝑎𝑙𝑢𝑒𝑠(𝑡)

) 

The Gini index is a measure of inequality in the sample. Its value ranges from 0 

to 0.5. A value of 0 indicates samples are homogeneous whereas 0.5 reflects 

maximal inequality among elements. 

𝐺𝑖𝑛𝑖 𝐼𝑛𝑑𝑒𝑥 = 1 − ∑ 𝑝𝑖
2

𝑛

𝑖=1

 

Using decision trees for predictive modelling of biomedical dataset increases 

interpretation and can be used to explain the underlying decision process. 
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Figure 3: Decision tree classifying the disease outcome 

3.2.3 Gradient Boosting 

Boosting is defined as a strategy that involves combination of multiple simple 

models resulting in an overall stronger model. The simple models are called as 

weak learners.  For example, the flow chart in Figure 4 below explains the 

gradient boosting method for  N trees. Tree 1 is trained using a feature matrix 

X and target variable y. The predictions y1(hat) are used in evaluation of training 

set loss function r1. Tree 2 is trained using the feature column matrix X and the 

loss function r1 of Tree 1 as target variable. The predicted results r1(hat) are 

further used to evaluate loss function r2. The entire process is repeated till all 

the N trees forming the ensemble are trained. 
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Figure 4: Flow chart for Gradient boosting 

An initial model F0 is defined for predicting the label y. The residual (y – F0) is 

related to this model. Another new model h1 is fit to the residuals from the last 

step. F0 and h1 are added to give F1 

𝐹1(𝑋) = 𝐹0(𝑋) + ℎ1(𝑋) 

To improve the performance of F1, as seen in previous step we can model after 

the residuals of F1 and create a new model F2: 

𝐹2(𝑋) = 𝐹1(𝑋) + ℎ2(𝑋) 

This is done for ‘m’  iterations, until the residuals are minimized: 

𝐹𝑚(𝑋) = 𝐹𝑚−1(𝑋) + ℎ𝑚(𝑋) 

In other words, instead of fitting a model on the data at each iteration, it fits a 

new model to the residual errors made by the previous model.  
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Gradient boosting is a type of boosting where the objective is to minimize the 

loss function by adding weak learners using Gradient descent. It helps minimize 

any differentiable function. 

At each node, a factor γ is multiplied with hm(X). This accounts for the 

difference in impact of each branch of the split. Gradient boosting helps in 

predicting the optimal gradient for the additive model, whereas for other 

gradient descent techniques aims at reducing error in the output at each run. 

The following steps are involved in gradient boosting: 

• F0(X) for initializing the boosting algorithm and can be defined as: 

𝐹0(𝑋) = 𝑎𝑟𝑔𝑚𝑖𝑛 𝛾 ∑ 𝐿(𝑦𝑖, 𝛾)

𝑛

𝑖=1

 

• Computation of loss function is performed iteratively: 

𝑟𝑖𝑚 = −∝ ⌊
𝜕(𝐿(𝑦𝑖, 𝐹(𝑥𝑖))

𝜕𝐹(𝑥𝑖)
⌋

𝐹(𝑋)=𝐹𝑚−1(𝑋)

 

where α is learning rate and 𝐿(𝑦𝑖, 𝐹(𝑥𝑖) is loss function 

• Each hm(X) is fit on the gradient obtained at each iteration 

• The multiplicative factor 𝛾 m for each terminal node is derived and the 

boosted version of model Fm(x) is given as: 

𝐹𝑚(𝑋) = 𝐹𝑚−1(𝑋) + 𝛾𝑚 ℎ𝑚(𝑋) 
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3.2.4 XGBoost 

XGBoost stands for extreme gradient boosting as it uses second-order Taylor 

expansion of the loss function to iterate and calculate weights ω at leaf nodes of 

the new tree K as seen in Figure 5 (Wanyue Zhao, 2020). Additionally, a 

regularization term is added to the loss function to control the complexity of the 

model and prevent it from overfitting. Therefore, XGBoost performs better in 

training efficiency, massive parallelism, and quadratic convergence (Wanyue 

Zhao, 2020). 

 

Figure 5: Iteration diagram for XGboost 

It can perform well on imbalanced datasets as it calculates the second order 

gradients i.e., second partial derivatives of loss function ultimately giving more 

information about the direction of gradients and minimizes loss function.  
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Figure 6: First decision tree 

 

Figure 7: Fourth tree in the model 
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Figure 8: Tenth decision tree in the model 

 

 

Figure 9: Twentieth decision tree in the model 

We can see each decision tree is using different feature as the algorithm is 

trained. The first decision tree  as seen in Figure 6 is making prediction solely 

on one feature i.e. survival time. However, as training progresses the model 

learns by from its predecessor to make accurate prediction thereafter using other 

features. 
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3.2.5 Balanced Bagging  

Ensembles are the most efficient methods for improving the predictions of the 

minority class. Most of them use strategies from bagging and boosting. (Jerzy 

Blaszczynski, 2017). Bootstrap aggregation or bagging uses bootstrap sampling 

with replacement technique to estimate a population statistic from a subset 

sample by drawing multiple bootstrap samples. In a classification problem, 

predictions are made by taking the majority vote for the classes from all the 

predictions made by decision trees. 

 

Figure 10: Iteration diagram for bagging 

Each model h1,h2….hk are made from different bootstrap sets. This ensemble 

method reduces the variance in the model without affecting bias. 

𝐹𝑏𝑎𝑔 = 𝐹1 + 𝐹2 + ⋯ + 𝐹𝑀(𝑋) 

The term on the left side are predictions and on the right side are the individual 

learners. 
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3.2.6 Random Forests 

Random forest is one of the most used ensembles learning method. It uses 

bagging and feature randomness when building each tree creating an 

uncorrelated forest of trees which makes decision by aggregating the votes from 

different trees. Due to random feature selection, the trees are more independent 

of each other as compared to regular bagging, which often results in better 

predictive performance. 

 

Figure 11: First decision tree in the random forest model 
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Figure 12: Fourth decision tree 
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Figure 13: Tenth decision tree 

3.3 Evaluation Metrics 
 

After training classifiers on training data, our next step is to devise evaluation 

strategies to measure model performance on unseen dataset.  

3.3.1 Confusion Matrix 

It is a performance metric representing a tabular construct. It is a two-

dimensional matrix, indexed in one dimension by the true class of survival 

status and the other by the class that the classifier assigns. 
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  Predicted 

Death Alive 

Actual Death True Positive  False Negative 

Alive False Positive True Negative  

                                                                                           

Based on values in confusion matrix, we can calculate accuracy, recall, 

precision, specificity and misclassification rate for our model. 

Accuracy: It determines the overall accuracy of the model.  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

Recall: It indicates how many positive values, out of all the positive values, 

have been correctly predicted. It is also known as Sensitivity or Recall. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

Specificity: It indicates how many negative values, out of all the negative 

values, have been correctly predicted.  

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

Precision: It indicates how many values, out of all the predicted positive values 

are actually positive.  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
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F-1 Score: F-1 score is the harmonic mean of precision and recall. It lies 

between 0 and 1. Higher score results in a better model.  

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 (
(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)
) 

Often, for imbalance datasets such as Lung cancer, because of the nature of the 

disease majority of records belong to one class i.e. 1 ( Death ). In such datasets, 

accuracy can give false interpretations on classifier’s performance. It 

recommended to look at metrics that provide a balanced view like specificity, 

recall and F-1 score.  

3.3.2 Cumulative Gain charts 

Cumulative gain charts and lift charts are metrics that evaluates model 

performance on portions of the total population as compared to a confusion 

matrix which determines the performance of the model on the entire population. 

In other words, we have a score for every percentage of population. For 

example, Figure 14 represents cumulative gain chart for a Logistic regression 

model that indicates ~78% of patients whose disease outcome at a given time is 

alive are captured in top 20% of data based on model i.e., we can identify and 

target ~78% of patients who will be alive if this model was used in clinical 

practice. 
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Figure 14: Cumulative gain chart for logistic regression model 

3.3.3 Lift curves 

Lift curve measures improvement a machine learning model brings in 

comparison to random predictions or in a case without a model. The 

improvement is called as lift. For example, figure 15 is the lift chart for logistic 

regression model indicating that we have a lift of ~3.8 for top two deciles, i.e., 

selecting top 20% of the records based on the model, we can get 3.8 times the 

total number of patients whose survival status is alive found by randomly 

selecting 20% without the model. 
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Figure 15: Lift curve for logistic regression model 

3.3.4 K-S statistic charts 

K-S or Kolmogorov-Smirnov chart measures the degree of separation between 

the positive and negative class. If K-S is 100, the patient population is 

partitioned into two separate groups in which one group contains all positives 

and the other has all the negatives. K-S will be 0, if the model cannot 

differentiate between both the groups. Figure 16 is K-S chart of logistic 

regression model indicating that by targeting top 57.4% patients we can capture 

~95% of patients whose survival status is alive at a K-S value of 0.760.   

 

Figure 16: K-S statistic chart  

3.3.5 Receiver Operator Characteristic (ROC) 

ROC curves determine model's accuracy using Area Under Curve (AUC). The 

area under the curve (AUC), also referred to as index of accuracy (A) or 

concordant index, represents the performance of the ROC curve. Higher area 

results in better model. It is plotted between True Positive Rate on Y-axis and 

False Positive Rate on X-Axis. The dashed line represents the ROC curve at 0.5 
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threshold. At this point, sensitivity = specificity. As the curve gets higher, for 

example looking at ROC curve of Decision tree in the Figure 17, indicates 

model will have a higher accuracy. 

 

Figure 17: ROC curve 

3.3.6 Precision – Recall Curve 

A P-R curve is a graph with Precision values plotted on the y-axis and Recall 

values on the X-axis. Generally, a classifier with higher AUC on the ROC curve 

has higher AUC on the P-R curve. Figure 18 and Figure 17 are the P-R and ROC 

curve of the same testing set. We can see that AUC on ROC and P-R is higher 

for both Logistic regression and decision tree. 
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Figure 18: P-R curve 
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Chapter 4 

Results and Discussions 
 

In the previous section, the fundamental theory required to construct the model 

predicting disease outcome and the evaluation metrics to be used on testing set 

were presented. In this section, the results of models proposed in Chapter 3, will 

be shown. Furthermore, the results and their significance will also be discussed.  

4.1 Dataset  
 

The dataset used for evaluation of the proposed model is from MAASTRO 

Clinic, (Maastricht, The Netherlands). This dataset is open source and can be 

found at TCIA (The cancer imaging archive) under NSCLC (Aerts, 2019). 

Four hundred and twenty-two consecutive patients were included (132 women 

and 290 men), with inoperable, histologic or cytologic conferred NSCLC, UICC 

stages I-IIIb, treated with radical radiotherapy alone (n = 196) or with chemo-

radiation (n = 226). Mean age was 67.5 years (range: 33–91 years). The study 
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has been approved by the institutional review board. All research was carried 

out in accordance with Dutch law. The Institutional Review Board of the 

Maastricht University Medical Centre (MUMC+) waved review due to the 

retrospective nature of this study. 

Out of 422 records, we have only 365 patients with all the information. The 

survival time (in days) in the dataset is from the start of the treatment and there 

is a possibility that the status of patient recorded may not be accurate i.e. the 

clinicians may not have received the information right when the event outcome 

occurred. 

We used a combination of machine learning models, out of which some are 

prone to class imbalance and some are resistant to class imbalance in the dataset. 

The models we have used for our evaluation are decision trees, gradient 

boosting, balanced bagging, logistic regression and XGBoost. The 

hyperparameters were tuned with grid search cross validation. We also 

performed analysis on the effect of oversampling and undersampling on the 

dataset to overcome class imbalance and measure model performance. 

Furthermore, we experimented with different training and testing splits for 

optimal model performance and N-1 testing to measure metrics for both the 

classes. At last, we also perform unsupervised learning on the dataset. All of 

these approaches are aimed at recognizing optimal predictive modelling 

techniques for an imbalanced dataset, ensuring accurate predictions for both the 

disease outcomes. 
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4.2 Performance of model on different training testing splits  
 

4.2.1 Train test split ratio of 50:50 

As per the evaluation metrics defined in Chapter 3, Table 1 shows the results of 

metrics for all the models followed by Gain charts, Lift curves and K-S statistic 

charts. 

Methods Accuracy Precision Recall F1score Specificity Mis-classification 

Logistic 

regression 

86% 73% 88% 79% 73% 14% 

Decision 

Tree 

94% 64% 98% 77% 60% 6% 

Gradient 

Boosting 

95% 64% 99% 77% 64% 5% 

XGBoost 93% 50% 99% 67% 50% 7% 

Balanced 

Bagging 

90% 77% 91% 84% 77% 10% 

Random 

Forests 

91% 27% 99% 43% 27% 9% 

Table 1: Metric results for train test split ratio of 50:50 

4.2.1.1 Dependence on training dataset 

It is common for machine learning algorithms to give different results on each 

run. In our dataset, due to the very nature of the disease most of the patient 

population belongs to one class i.e., Death because of which the overall 

accuracy is mostly the contribution of the majority class and due to dependence 

of model on training dataset the specificity of the model has more variance due 

to limited samples of minority class in the dataset. The average specificity of 

each model and the variance is in Table 2. 
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Methods Average Specificity Variance 

Logistic 

regression 

77% 1.2% 

Decision Tree 49.2% 1.8% 

Gradient 

Boosting 

65.5% 0.7% 

XGBoost 56.9% 0.5% 

Balanced Bagging 76.9% 1.5% 

Random 

Forests 

53.8% 1.6% 

Table 2: Average specificity and variance for all models 
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Figure 19: Cumulative gain charts for all the models 

In all the gain charts for 50:50 split, Decision trees gives the highest gain for 

capturing patients whose survival status at a given time is alive, when targeting 

top 20% of the patient population in the testing set as compared to other models. 

However, there is a high variance for Decision trees and cannot be deemed as a 

robust model for both the classes. Logistic Regression can be a good choice as 

it has high gain, average specificity is greater than 77% and variance is 1.2% 

across ten runs of the model. 
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Figure 20: Lift charts for all the models 

In all the lift charts for 50:50 split, Decision trees give the highest lift ~4.2 for 

capturing patients whose survival status at a given time is alive, when targeting 

top 20% of the patient population in the testing set as compared to other models. 

However, as discussed previously they suffer from low stability. 
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Figure 21: K-S statistic charts for all the models 

In all the K-S charts for 50:50 split, Decision trees give the maximum separation 

between both the classes at K-S statistic value of 0.789. However, similar value 

of K-S statistic 0.76 can be achieved at lesser percentage of sample i.e., at top 

57.4% of patient population in Logistic Regression as compared to top 86.8% 

in Decision trees. 
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Figure 22: ROC curve 

 

Figure 23: PR curve 
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4.2.2 Train test split ratio 60:40 

As per the evaluation metrics defined in Chapter 3, Table 3 shows the results of 

metrics for all the models followed by Gain charts , Lift curves and K-S statistic 

charts. 

Methods Accuracy Precision Recall F1score Specificity Mis-classification 

Logistic 

regression 

84% 78% 84% 81% 78% 16% 

Decision 
Tree 

95% 67% 98% 79% 67% 5% 

Gradient 
Boosting 

95% 61% 99% 76% 61% 5% 

XGBoost 93% 50% 99% 66% 50% 7% 

Balanced 
Bagging 

88% 89% 88% 88% 89% 12% 

Random 

Forests 

92% 39% 100% 56% 39% 8% 

Table 3: Metric results for train test split ratio of 60:40 

4.2.2.1. Dependence on training dataset 

The average specificity of each model and the variance for a test size of 40% 

can be seen in Table 4. This analysis is done only for 50:50 and 60:40 training 

testing data split as in further splits the number of samples increases in the 

training dataset and it becomes difficult to assess on a small test set. 

Methods Average Specificity Variance 

Logistic 

regression 

79.9% 0.8% 

Decision Tree 58.4% 1.2% 

Gradient 

Boosting 

54.5% 1.3% 
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XGBoost 55% 0.5% 

Balanced Bagging 82% 0.8% 

Random 

Forests 

58.4% 1.3% 

Table 4: Average specificity and variance for all models 

 

Figure 24: Gain curves for 60:40 training-testing  data split for all the models 
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In all the gain charts for 60:40 split, Gradient Boosting gives the highest gain 

for capturing patients whose survival status at a given time is alive, when 

targeting top 20% of the patient population in the testing set as compared to 

other models. However, it may not be the best balanced model given the low F-

1 score, recall and specificity as compared to other models. On the other hand, 

Balanced bagging is an appropriate choice with low variance and performs well 

for both the classes. 
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Figure 25: Lift curves for 60:40 training-testing data split for all the models 

In all the lift charts for 60:40 split, Gradient Boosting gives the highest lift ~4.5 

for capturing patients whose survival status at a given time is alive, when 

targeting top 20% of the patient population in the testing set as compared to 

other models.  
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Figure 26: K-S statistic curves for 60:40 training-testing data split for all the models 

In all the K-S charts for 60:40 split, Bagging give the maximum separation 

between both the classes at K-S statistic value of 0.818 which explains a high 

F1-score of 0.81 ensuring accurate predictions for both the classes.  
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Figure 27: ROC curve 
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Figure 28: PR curve 

4.2.3 Train test split ratio 80:20 

As per the evaluation metrics defined in Chapter 3, Table 5 shows the results of 

metrics for all the models followed by Gain charts, Lift curves and K-S statistic 

charts. 

Methods Accuracy Precision Recall F1score Specificity Mis-classification 

Logistic 

regression 

84% 89% 83% 86% 89% 16% 

Decision 
Tree 

97% 78% 100% 88% 78% 3% 

Gradient 
Boosting 

95% 56% 100% 71% 56% 5% 

XGBoost 99% 89% 100% 94% 89% 1% 

Balanced 
Bagging 

86% 89% 86% 87% 89% 12% 

Random 

Forests 

96% 67% 100% 80% 67% 4% 

Table 5: Metric results for train test split ratio of 80:20 
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Figure 29: Gain curves for 80:20 training-testing data split for all the models 

In all the gain charts for 80:20 split, all the models except logistic regression 

gave a gain of greater than 80% for capturing patients whose survival status at 

a given time is alive, when targeting top 20% of the patient population in the 

testing set. XGBoost performs well on all evaluation metrics with just 1% of 
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misclassification, high F-1 score and specificity making it a robust model 

towards both the classes. 

 

Figure 30:  Lift curves for 80:20 training-testing data split for all the models 

In all the lift charts for 80:20 split, Gradient Boosting gives the highest lift ~4.5 

for capturing patients whose survival status at a given time is alive, when 

targeting top 20% of the patient population in the testing set as compared to 

other models.  
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Figure 31: K-S statistic for 80:20 training-testing data split for all the models 

In all K-S charts for 80:20 split, XGBoost and Random forest give the maximum 

separation between both the classes at K-S statistic value of 0.891 followed by 

Bagging. However, as discussed previously XGBoost is a more robust classifier. 
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Figure 32:  ROC-AUC 

 

Figure 33:  PR curve 
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4.2.4 Train test split ratio 90:10 

As per the evaluation metrics defined in Chapter 3, Table 6 shows the results of 

metrics for all the models followed by Gain charts , Lift curves and K-S statistic 

charts. 

Methods Accuracy Precision Recall F1score Specificity Mis-classification 

Logistic 

regression 

86% 75% 88% 81% 75% 14% 

Decision 
Tree 

92% 25% 100% 40% 25% 8% 

Gradient 
Boosting 

92% 25% 100% 40% 25% 8% 

XGBoost 97% 75% 100% 86% 75% 3% 

Balanced 
Bagging 

89% 75% 91% 82% 75% 11% 

Random 

Forests 

92% 25% 100% 40% 25% 8% 

Table 6: Metric results for train test split ratio of 90:10 
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Figure 34: Gain curves for 90:10 training-testing data split for all the models 

In all the gain charts for 90:10 split, all the models except logistic regression 

and Balanced bagging give a gain of  greater than 95% for capturing patients 

whose survival status at a given time is alive, when targeting top 20% of the 

patient population in the testing set. Decision trees and Gradient Boosting are 
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not an appropriate choice to be used in clinical practice due to low precision, F-

1 score and specificity, ultimately making it a less robust choice. 

 

Figure 35: Lift curves for 90:10 training-testing data split for all the models 
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In all the lift charts for 90:10 split, Random Forest and XGBoost gave the 

highest lift greater than 5 for capturing patients whose survival status at a given 

time is alive, when targeting top 20% of the patient population in the testing set 

as compared to other models. However, XGBoost performs well on all 

evaluation metrics specially high F-1 score, precision and specificity making it 

more robust as compared to Random forest with lowest misclassification 

percentage. 
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Figure 36: Gain curves for 90:10 training-testing data split for all the models 

In all the K-S charts for 90:10 split, XGBoost and Random forest give the 

maximum separation between both the classes at K-S statistic value of 0.909 

followed by Bagging which is highest across all the split ratios. This can also 

be due to small testing set size and more examples from the minority class 

provided during the training improved the performance of the model.  
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Figure 37: ROC curve 
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Figure 38: P-R curve 

4.3  Model performance after sampling training dataset 
 

From previous results for different combination of splits, we saw that a higher 

accuracy does not necessarily confirm model performance, whereas accurate 

predictions for both the outcomes in our case is equally important. For example, 

in above results for a split of 90:10 decision tree had a high accuracy for majority 

class as the algorithm itself does not handle the minority class well  resulting in 

low specificity. Hence, for an imbalanced dataset specificity ,sensitivity and F1 

score are appropriate metrics to choose a more balanced model. Furthermore, 

the model that performs good on both of these metrics such as Balanced bagging 

and XGBoost out of which, one has in-built sampling and the latter uses second 

order approximation of the scoring function. This approximation allows 
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XGBoost to calculate the optimal “if” condition and can then store these in its 

memory for the next decision tree to save time in recomputing it. In other words, 

it progressively adds more and more "if" conditions to the decision tree to build 

a stronger model.  

Since some algorithms in our results are good at handling imbalanced dataset, 

this also led us to an inference that sampling the training dataset can be 

beneficial to accurately predict both the outcomes. We will be oversampling and 

undersampling our training dataset for different splits and measure model 

performance. 

4.3.1 Oversampling 

Oversampling in signal processing is sampling of a signal with sample rate 

higher than the Nyquist rate. Similarly, in machine learning oversampling is 

selecting more samples by duplication from the minority class to compensate 

for the imbalance. However, in machine learning these samples are data and not 

actual signal. 

4.3.1.1 Train test split ratio 50:50 

 Before oversampling After oversampling 

Training data shape {1: 160, 0: 22} {0: 160, 1: 160} 

 

Oversampling increased the samples of the minority class from 22 to 160. We 

have used random oversampling which means selecting random examples from 
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the minority class with replacement and supplementing the training data with 

multiple copies of this instance, which can lead to overfitting as a single instance 

may be selected multiple times. 

As per the evaluation metrics defined in Chapter 3, Table 7 shows the results of 

metrics for all the models followed by Gain charts , Lift curves and K-S statistic 

charts. 

Methods Accuracy Precision Recall F1score Specificity Mis-classification 

Logistic 

regression 

86% 68% 88% 77% 68% 14% 

Decision 

Tree 

81% 100% 79% 88% 100% 19% 

Gradient 
Boosting 

94% 68% 98% 80% 68% 6% 

XGBoost 95% 64% 99% 77% 64% 5% 

Balanced 

Bagging 

93% 55% 99% 70% 55% 7% 

Random 
Forests 

93% 50% 99% 66% 50% 7% 

Table 7: Metric results for train test split ratio of 50:50 

Oversampling for a split of 50:50 performed well on our defined evaluation 

metrics except precision for some models and became more robust towards 

minority class. Even though the misclassification rate for Decision trees 

increased considerably, the model became robust towards minority class with 

high specificity and F-1 score. However, the increment in precision and 

accuracy is not significant.  
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Figure 39: Gain curves for 50:50 training-testing data split for all the models 

In all the gain charts for 50:50 split, Decision tree gave the highest gain of ~84% 

for capturing patients whose survival status at a given time is alive, when 

targeting top 20% of the patient population in the testing set. Undersampling 

improved performance of decision tree classifier which does not handle 

imbalanced classes well. 
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Figure 40: Lift curves for 50:50 training-testing data split for all the models 

In all the lift charts for 50:50 split, Decision trees gave the highest lift of greater 

than 4 followed by Gradient boosting and Random forest for capturing patients 

whose survival status at a given time is alive, when targeting top 20% of the 

patient population in the testing set as compared to other models.  
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Figure 41: K-S curves for 50:50 training-testing data split for all the models 

In all the K-S charts for 50:50 split, Decision trees gave the maximum separation 

between both the classes at K-S statistic value of 0.789. 
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Figure 42: ROC curve 

 

Figure 43: PR curve 
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4.3.1.2 Train test split ratio 60:40 

 Before oversampling After oversampling 

Training data shape {1: 193, 0: 26} {1: 193, 0: 193} 

 

As per the evaluation metrics defined in Chapter 3, Table 8 shows the results of 

metrics for all the models followed by Gain charts , Lift curves and K-S statistic 

charts. 

Methods Accuracy Precision Recall F1score Specificity Mis-classification 

Logistic 

regression 

85% 78% 86% 82% 78% 15% 

Decision 

Tree 

82% 89% 80% 84% 89% 18% 

Gradient 

Boosting 

92% 72% 95% 76% 72% 8% 

XGBoost 94% 72% 97% 83% 72% 6% 

Balanced 

Bagging 

94% 56% 99% 71% 56% 6% 

Random 

Forests 

96% 67% 100% 80% 67% 4% 

Table 8: Metric results for train test split ratio of 60:40 

Oversampling training dataset for a split of 60:40 did not make an impact on  

evaluation metrics considerably but it improved precision and F-1 score for 

models trained on data without sampling. Oversampling training data can be an 

appropriate choice as it improves metrics for all models except Balanced 

bagging, which performed well on imbalanced data without performing 

oversampling. 
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Figure 44: Gain curves for 60:40 training-testing data split for all the models 

In all the gain charts for 60:40 split, Bagging gave the highest gain of ~90% 

followed by Gradient boosting for capturing patients whose survival status at a 

given time is alive, when targeting top 20% of the patient population in the 

testing set. On comparing this with previous experiment when the data was not 

sampled,  Gradient boosting had the highest gain although it has low F-1 score. 
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Random forests and XGBoost performed well on all the evaluation metrics and 

are more robust to class imbalance. 

 

Figure 45: Lift curves for 60:40 training-testing data split for all the models 



M.A.Sc. – Aishwarya Mohan   McMaster University – Electrical & Computer 

engineering 

 

Engineering 

70 
 

In all the lift charts for 60:40 split, Bagging gave the highest lift of ~ 4.2 for 

capturing patients whose survival status at a given time is alive, when targeting 

top 20% of the patient population in the testing set as compared to other models.  

 

Figure 46: K-S curves for 60:40 training-testing data split for all the models 

In all the K-S charts for 60:40 split, XGboost gave the maximum separation 

between both the classes at K-S statistic value of 0.83 which also explains the 

high F1 score and specificity of the model. As discussed previously, Gradient 
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boosting had the highest gain but suffered from low F-1 score and XGBoost is 

an appropriate choice for more balanced model. 

 

Figure 47: ROC curve 
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Figure 48: P-R curve 

4.3.1.3 Train test split ratio 80:20 

 Before oversampling After oversampling 

Training data shape {1: 257, 0: 35} {0: 257, 1: 257} 

 

As per the evaluation metrics defined in Chapter 3, Table 9 shows the results of 

metrics for all the models followed by Gain charts , Lift curves and K-S statistic 

charts. 

Methods Accuracy Precision Recall F1score Specificity Mis-classification 

Logistic 

regression 

85% 89% 84% 87% 89% 15% 

Decision 

Tree 

84% 100% 81% 90% 100% 16% 
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Gradient 

Boosting 

95% 89% 95% 92% 89% 5% 

XGBoost 96% 89% 97% 93% 89% 4% 

Balanced 

Bagging 

96% 78% 98% 87% 78% 4% 

Random 

Forests 

97% 89% 98% 93% 89% 3% 

Table 9: Metric results for train test split ratio of 50:50 

Oversampling improved specificity and precision of the models as compared to 

models with no sampling, ultimately making them more robust towards 

minority class. The highest change can be seen in  Decision trees, Gradient 

boosting and Random forests models. 
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Figure 30:  Gain curves for 80:20 training-testing data split for all the models 

In all the gain charts for 80:20 split, all models except logistic regression gave 

gain of greater than ~90% for capturing patients whose survival status at a given 

time is alive, when targeting top 20% of the patient population in the testing set. 

Random forest model performs well on all the evaluation metrics with lowest 

misclassification percentage and is an appropriate choice for medical practice. 
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Figure 49:  Lift curves for 80:20 training-testing data split for all the models 

In all the lift charts for 80:20 split, all models except logistic regression gave a 

high lift of greater than ~ 4.2 for capturing patients whose survival status at a 

given time is alive, when targeting top 20% of the patient population in the 

testing set as compared to other models.  
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Figure 50: K-S curves for 80:20 training-testing data split for all the models 

In all the K-S charts for 80:20 split, bagging gave the maximum separation 

between both the classes at K-S statistic value of 0.891 followed by Random 

forests and XGBoost with K-S statistic value of 0.889. However, Random 

forests and XGBoost achieves this separation at top 41.2% and 29.3% of the 

patient population as compared to the top 75% of the population in Bagging.  
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Figure 51: ROC curve 

 

Figure 52: P-R curve 
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4.3.1.4 Train test split ratio 90:10 

 Before oversampling After oversampling 

Training data shape {1: 288, 0: 40} {1: 288, 0: 288} 

 

As per the evaluation metrics defined in Chapter 3, Table 10 shows the results 

of metrics for all the models followed by Gain charts , Lift curves and K-S 

statistic charts. 

Methods Accuracy Precision Recall F1score Specificity Mis-classification 

Logistic 

regression 

81% 75% 82% 78% 75% 19% 

Decision 

Tree 

84% 100% 82% 90% 100% 16% 

Gradient 

Boosting 

92% 75% 94% 83% 75% 8% 

XGBoost 95% 75% 97% 85% 75% 5% 

Balanced 

Bagging 

97% 75% 100% 86% 75% 3% 

Random 

Forests 

97% 75% 100% 86% 75% 3% 

Table 10: Metric results for train test split ratio of 90:10 

Oversampling training data for a split of 90:10 lowered the specificity and F-1 

score of the models making the model prone to inaccurate predictions on 

minority class. However, precision increases considerably indicating overfitting 

towards majority class.  
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Figure 53:  Gain curves for 90:10 training-testing data split for all the models 

In all the gain charts for 90:10 split, Random forests and Bagging gave highest 

gain   for capturing patients whose survival status at a given time is alive, when 

targeting less than top 20% of the patient population in the testing set. These 

two models perform well on all the evaluation metrics and have the least 

misclassification percentage. 
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Figure 54:  Lift curves for 90:10 training-testing data split for all the models 

In all the lift charts for 90:10 split, Bagging and Random forests gave a high lift 

of greater than ~ 4 for capturing patients whose survival status at a given time 

is alive, when targeting top 20% of the patient population in the testing set as 

compared to other models.  
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Figure 55: K-S curves for 90:10 training-testing data split for all the models 

In all the K-S charts for 90:10 split, Random forests gave the maximum 

separation between both the classes at K-S statistic value of 1 at top 55% of the 

population.  
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Figure 37: ROC curve 

 

Figure 56: P-R curve 



M.A.Sc. – Aishwarya Mohan   McMaster University – Electrical & Computer 

engineering 

 

Engineering 

83 
 

4.3.2 Undersampling 

Undersampling involves removing some observations from the majority class 

until the majority and minority class is balanced out. 

4.3.2.1 Train test split ratio 50:50 

 Before undersampling After undersampling 

Training data shape {1: 160, 0: 22} {0: 22, 1: 22} 

 

As per the evaluation metrics defined in Chapter 3, Table 11 shows the results 

of metrics for all the models followed by Gain charts , Lift curves and K-S 

statistic charts. 

Methods Accuracy Precision Recall F1score Specificity Mis-classification 

Logistic 

regression 

84% 86% 83% 85% 86% 16% 

Decision 

Tree 

85% 91% 84% 87% 91% 15% 

Gradient 

Boosting 

80% 86% 80% 83% 86% 20% 

XGBoost 79% 82% 79% 80% 82% 21% 

Balanced 

Bagging 

85% 91% 84% 88% 91% 15% 

Random 

Forests 

83% 82% 83% 82% 82% 17% 

Table 11: Metric results for train test split ratio of 50:50 

Undersampling the training dataset for a split of 50:50 decreased the accuracy, 

recall of all the models but increased the specificity, precision and F-1 scores 

making the models more robust towards both the classes when compared to the 
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models without sampling. On comparing these results with oversampling these 

results give promising response for minority class as specificity for all the 

models is greater than 80% whereas for oversampling it goes as low as 50%.  

 

Figure 57: Gain curves for 50:50 training-testing data split for all the models 

In all the gain charts for 50:50 split, Bagging has the highest gain for capturing 

patients whose survival status at a given time is alive, when targeting less than 

top 20% of the patient population in the testing set. This explains for highest 
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accuracy for balanced bagging, ultimately leading to lowest misclassification 

rate across all models. 

 

 

Figure 58: Lift curves for 50:50 training-testing data split for all the models 
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In all the lift charts for 50:50 split, Bagging gave a high lift of greater than ~ 4 

for capturing patients whose survival status at a given time is alive, when 

targeting top 20% of the patient population in the testing set as compared to 

other models.  

 

 

Figure 59: K-S curves for 50:50 training-testing data split for all the models 
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In all the K-S charts for 50:50 split, Bagging gave the maximum separation 

between both the classes at K-S statistic value of 0.76 at top 45% of the 

population.  

 

 

Figure 60: ROC curve 
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Figure 61: PR curve 

4.3.2.2 Train test split ratio 60:40 

 Before undersampling After undersampling 

Training data shape {1: 193, 0: 26} {0: 26, 1: 26} 

 

As per the evaluation metrics defined in Chapter 3 Table 12 shows the results 

of metrics for all the models followed by Gain charts , Lift curves and K-S 

statistic charts. 

Methods Accuracy Precision Recall F1score Specificity Mis-classification 

Logistic 

regression 

88% 78% 89% 83% 78% 12% 

Decision 

Tree 

82% 100% 80% 89% 100% 18% 
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Gradient 

Boosting 

85% 72% 87% 79% 72% 15% 

XGBoost 82% 89% 81% 85% 89% 18% 

Balanced 

Bagging 

84% 94% 82% 88% 94% 16% 

Random 

Forests 

86% 89% 86% 87% 89% 14% 

Table 12: Metric results for train test split ratio of 60:40 

Undersampling strategy for a split of 60:40 increased precision, recall, F-1 score 

and specificity considerably as compared to a training data without 

undersampling. However, there is a decrease in overall accuracy of the model.  
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Figure 62: Gain curves for 60:40 training-testing data split for all the models 

In all the gain charts for 60:40 split, XGBoost had the highest gain ~90% 

followed by Logistic regression ~85% for capturing patients whose survival 

status at a given time is alive, when targeting less than top 20% of the patient 

population in the testing set. Random forest performs well on all metrics and 

can be an appropriate choice for this split. 
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Figure 63: Lift curves for 60:40 training-testing data split for all the models 

In all the lift charts for 60:40 split, XGBoost model gave a high lift of  ~ 4.5 for 

capturing patients whose survival status at a given time is alive, when targeting 

top 20% of the patient population in the testing set as compared to other models.  
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Figure 64: K-S curves for 60:40 training-testing data split for all the models 

In all the K-S charts for 60:40 split, XGBoost and Logistic regression gave the 

maximum separation between both the classes at K-S statistic value of 0.81 and 

0.812 at top 40% and top 62% of the population.  
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4.3.2.3 Train test split ratio 80:20 

 Before undersampling After undersampling 

Training data shape {1: 257, 0: 35} {1: 35, 0: 35} 

 

As per the evaluation metrics defined in Chapter 3, Table 13 shows the results 

of metrics for all the models followed by Gain charts , Lift curves and K-S 

statistic charts. 

Methods Accuracy Precision Recall F1score Specificity Mis-classification 

Logistic 

regression 

85% 100% 83% 91% 100% 15% 

Decision 

Tree 

73% 100% 69% 81% 100% 27% 

Gradient 

Boosting 

81% 100% 78% 88% 100% 19% 

XGBoost 85% 100% 83% 91% 100% 15% 

Balanced 

Bagging 

82% 100% 80% 89% 100% 18% 

Random 

Forests 

84% 100% 81% 90% 100% 16% 

Table 13: Metric results for train test split ratio of 80:20 

Undersampling the training data for a split of 80:20 yields major improvements 

in all the metrics except accuracy. The model is very confident in classifying 

both the classes.  
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Figure 65: Gain curves for 80:20 training-testing data split for all the models 

In all the gain charts for 80:20 split, XGBoost had the highest gain ~90% 

followed by Logistic regression ~85% for capturing patients whose survival 

status at a given time is alive, when targeting less than top 20% of the patient 

population in the testing set. Both the models are robust towards both the 

classes. However, XGBoost gives low accuracy as compared to a case with 

oversampling and no sampling. Hence undersampling may not be an appropriate 
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choice as in most cases as misclassification percentage has increased 

considerably when compared to oversampling and no sampling. 

 

Figure 66: Lift curves for 80:20 training-testing data split for all the models 

In all the lift charts for 80:20 split, XGBoost model gave a high lift of ~5 for 

capturing patients whose survival status at a given time is alive, when targeting 

top 20% of the patient population in the testing set as compared to other models. 
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As discussed previously, XGBoost performs well on all metrics, but 

undersampling the dataset may not be the best solution for this split. 

 

 

Figure 67: K-S statistic curves for 80:20 training-testing data split for all the models 

In all the K-S charts for 80:20 split, XGBoost gave the maximum separation 

between both the classes at K-S statistic value of 1 at top 12.9% of the 

population.  
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4.3.2.4 Train test split ratio 90:10 

 Before undersampling After undersampling 

Training data shape {1: 288, 0: 40} {1: 40, 0: 40} 

 

As per the evaluation metrics defined in Chapter 3, we will measure the metrics 

for all the models in Table 14. 

Methods Accuracy Precision Recall F1score Specificity Mis-classification 

Logistic 

regression 

89% 100% 88% 94% 100% 11% 

Decision 

Tree 

84% 100% 82% 90% 100% 16% 

Gradient 

Boosting 

86% 100% 85% 92% 100% 14% 

XGBoost 92% 75% 94% 83% 75% 8% 

Balanced 

Bagging 

78% 100% 76% 86% 100% 22% 

Random 

Forests 

86% 100% 85% 92% 100% 14% 

Table 14: Metric results for train test split ratio of 90:10 

Undersampling for a split of 90:10 increased precision, F-1 score and specificity 

of all the models. However like other splits, resulted in lowered accuracy 

ultimately leading to high misclassification percentage. 
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Figure 68: Gain curves for 90:10 training-testing data split for all the models 

In all the gain charts for 90:10 split, all models except Bagging had the highest 

gain achieved when targeting less than top 20% of the patient population in the 

testing set. XGBoost had low specificity and precision as compared to other 

models i.e. 75% as compared to 100%. However, other models have low 

accuracy. Undersampling for a split of 90:10 case is better than no sampling for 

some models that are highly biased towards majority class i.e. Decision tree, 
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Gradient boosting and Random forests. On the other hand, choosing an 

appropriate solution between oversampling and undersampling is a trade-off 

between recall and precision. 

 

 

Figure 69: Lift curves for 90:10 training-testing data split for all the models 
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In all the lift charts for 90:10 split, all models except Bagging gave a high lift of 

greater than  ~ 4.5 for capturing patients whose survival status at a given time 

is alive, when targeting top 20% of the patient population in the testing set as 

compared to other models. Balanced bagging also had the highest 

misclassification percentage. 

 

 

Figure 70: K-S statistic curves for 90:10 training-testing data split for all the models 
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In all the K-S charts for 90:10 split, Random Forest gave the maximum 

separation between both the classes at K-S statistic value of 0.97 at top 29% of 

the population.  

Random forest and Logistic Regression are appropriate choices for a split of 

90:10 undersampled training dataset.  

4.4 Model performance on N-1 testing 

 

In total there were 365 patient records, for N-1 testing model was trained on N-

1 records and tested on 1 observation in a rotation.  

Methods Overall 

Accuracy 

Accuracy  

Class: Alive 

Accuracy 

Class: Death 

Mis-classification 

Logistic 
Regression 

87.39% 84.09% 87.85% 12.61% 

Decision Tree 94.24% 65.90% 98.13% 5.76% 

Gradient 
Boosting 

93.97% 59.09% 98.75% 6.03% 

XGBoost 93.42% 63.63% 97.50% 6.58% 

Balanced Bagging 84.10% 79.54% 84.73% 15.9% 

Random 

Forests 

93.42% 65.90% 97.19% 6.58% 

Table 15: N-1 testing evaluation 

Decision trees give highest accuracy of 94.24% overall as seen in Table 15. 

However, they are highly biased towards majority class giving low accuracy for 

minority class. A class weight balanced Logistic regression is highly robust 

towards minority class without performing any sampling. 
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4.5 Unsupervised learning 

 

We have used K-means clustering for our evaluation in unsupervised learning. 

Since the dataset has two outcome of patients i.e.  Alive and Death. We have 

used Elbow method and Silhouette analysis for measuring the performance of 

the model. This can help us determine if the dataset needs to be modelled in a 

way where we can introduce a third class where model is not able to make a 

decision. 

4.5.1 Elbow method 

Elbow method gives us an estimate of what a good k number of clusters would 

be based on the sum of squared distance (SSE) between data points and their 

clusters centroids. An appropriate value of k can be found at a position where 

SSE starts to flatten out and forming an elbow. 
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Figure 71: Number of clusters based on Sum of squared distance 

The graph above shows that k=2 can be a good choice, but so can be 3. It is 

however hard to figure out a good number of clusters as the curve is 

monotonically decreasing and may not show any elbow or has an obvious point 

where the curve starts flattening. 
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4.5.2 Silhouette Analysis 

We used silhouette analysis to determine the degree of separation between the 

clusters. The silhouette scores for different number of clusters are below as seen 

in Figure 72. 
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Figure 72: Silhouette plots for different number of clusters 2, 3 and 4 

From the above plots, we can see having 2 clusters has the best average 

silhouette score of around 0.7. Also, the thickness of silhouette plot gives an 

indication of how much samples are  present in the clusters. As we 

increased number of clusters to 3 and 4, the average silhouette score decreased 

to around 0.64 and 0.58 respectively. Moreover, the thickness of silhouette plot 

shows wide fluctuations. Appropriate number of clusters will have above 0.5 

silhouette average score and all our clusters have higher than the average score. 

 

 

 

 



M.A.Sc. – Aishwarya Mohan   McMaster University – Electrical & Computer 

engineering 

 

Engineering 

106 
 

 

 

 

Chapter 5 

Conclusions 

5.1 Research summary 

The main objective of this research was to apply different machine learning 

methods and provide an analysis of approaches to predictive modelling when 

the nature of dataset is imbalanced. In NSCLC dataset, our objective was to 

highlight machine learning classifiers that perform well on all the evaluation 

metrics and are most robust towards minority classes. One of the classifiers used 

in our analysis that performed well and is robust towards class imbalance in data 

is XGBoost giving 99% accuracy and 89% specificity. 

Generally, Decision trees are commonly used classifiers because of 

interpretability but are often susceptible to bias. From our analysis, they can be 

improved by performing sampling. In addition to performing sampling, one can 

also use ensemble classifiers which make the model more robust towards both 

the classes for an imbalanced dataset. 
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Furthermore, we highlighted the performance analysis after undersampling and 

oversampling. In our analysis, we saw using undersampling or oversampling 

gave a significant improvement in precision and specificity for models that are 

biased towards majority class. However, in undersampling misclassification 

percentage increased for most models. 

In addition to that, we performed N-1 testing to measure performance for both 

the classes. Logistic regression gave highest accuracy 84.09% for minority class 

and 87.85% for majority class. 

At last, we used unsupervised learning approach to measure if the dataset can 

be modelled differently for instances where model might be confused and to test 

if introducing another class can be a beneficial for such datasets. From silhouette 

scores we were able to see that having two clusters gave the best average score. 

5.2 Future work 

In this thesis, we propose different approaches for using machine learning 

classifiers in medical practice when the very nature of disease is such that 

majority of patient population are likely to be dead. Suggestions for future work 

is to train and test these algorithms on different detailed datasets with similar 

class imbalance. One example is to use datasets which include more feature 

columns such as smoking information, number of diagnostic tests and accurate 

information of the survival time. Another suggestion, is to use these datasets 
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and perform unsupervised learning for introducing a third class which indicates 

that the classifier is not sure on a particular record.  
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