ASSURANCE CASE TEMPLATES: PRINCIPLES FOR
THEIR DEVELOPMENT AND CRITERIA FOR THEIR
EVALUATION

ASSURANCE CASE TEMPLATES:
PRINCIPLES FOR THEIR DEVELOPMENT
AND CRITERIA FOR THEIR EVALUATION

By
THOMAS CHOWDHURY, M.ScC.

A Thesis

Submitted to the School of Graduate Studies
in Partial Fulfillment of the Requirements for the Degree

Doctor of Philosophy

McMaster University
(© Copyright by Thomas Chowdhury, August, 2021

DOCTOR OF PHILOSOPHY (August, 2021) McMaster University

(Software Engineering)

TITLE:

AUTHOR:

SUPERVISOR:

NUMBER OF PAGES:

Hamilton, Ontario

Assurance Case Templates: Principles for Their Develop-
ment and Criteria for Their Evaluation

Thomas Chowdhury, M.Sc. (University of Quebec)

Dr. Alan Wassyng

xiii, 233

i

Lay Abstract

This thesis contributes specifically to how we build effective Assurance Cases
(ACs) for safety-critical systems, and how we can evaluate the quality of an
AC. An Assurance Case (AC) captures and presents explicit reasoning asso-
ciated with assuring critical properties of a software-intensive system, such as
safety. Concerning this, we defined principles to develop an Assurance Case
Template (ACT) that complies with a standard and applied those principles to
ISO 26262 (functional safety for automotive vehicles) and SAFE J3061 (cyber-
security). An Assurance Case Template (ACT) is a complete assurance case
that guides the development of systems within a product line. Later we used
the resulting ACT’s modification in a case study to guide us to pre-emptively
mitigate against potential vulnerabilities in automotive over-the-air update
implementation. Furthermore, we defined effective evaluation criteria for an
AC and developed a systematic evaluation process to make it less subjective.

il

Abstract

An Assurance Case (AC) captures and presents explicit reasoning associated
with assuring critical properties of a software intensive system, such as safety.
This thesis contributes specifically to how we build effective ACs, and how
we can evaluate the quality of an AC. Rather than simply add yet another
set of patterns to the existing AC literature, we developed ten principles for
constructing ACs from existing safety and security standards. This is our first
contribution in this thesis. An Assurance Case Template (ACT) is a complete
assurance case that guides the development of systems within a product line.
In most cases safety critical systems have to comply with existing standards.
Thus, an ACT that complies with a relevant standard can be used to guide
development of systems that must comply with that standard. We applied our
principles to ISO 26262 (functional safety for automotive vehicles) and SAE
J3061 (cyber-security), and used the resulting ACT’s specialization in a case
study to guide us to pre-emptively mitigate against potential vulnerabilities
in automotive over-the-air update implementations. A vital attribute of an
AC is to facilitate the identification of fallacies in the validity of any claim.
There is considerable published research related to confidence in ACs, which
primarily relates to a measure of the soundness of reasoning. Evaluation of
an AC should be more general than measuring confidence and should con-
sider multiple aspects of the quality of an AC. Standard evaluation criteria
could play a significant role in making the evaluation process more systematic.
Another contribution of this research is the identification of effective evalua-
tion criteria for ACs. Concerning this, we developed five criteria for structure
evaluation and seven criteria for content evaluation of an assurance case. A
final contribution of the thesis is the development of detailed AC evaluation
methods that use the aforementioned evaluation criteria from the perspective
of the developer of the AC as well as from the perspective of an external re-
viewer. The evaluation criteria and methods are applied in a simple case study
to demonstrate how they may be used in practice.

v

Acknowledgments

I would like to express my gratitude towards my supervisor, Dr. Alan Wassyng
for his superb advice, ideas, and continued support throughout my graduate
study. I enjoyed our discussions and appreciated the way Dr. Wassyng an-
swered all questions with care. I asked him (still T do!) a lot of questions
even they are not related to my studies. As a part of his dynamic team, I was
involved in several projects that gave me diverse experience and invaluable
knowledge. I won’t hesitate to take his opinion in future if I come across any
technical issue.

Many thanks to Dr. Mark Lawford and Dr. Spencer Smith for serving on
my supervisory committee, as well as for providing me constructive feedback
and guidelines throughout this journey that improved my knowledge as well
as research outcomes.

Many thanks to Dr. Richard Paige for his support. I enjoyed our interesting
discussions and I learned a lot from him.

Many thanks to my external examiner, Dr. John Rushby, for reviewing my
thesis and for insightful discussions at my defence.

I appreciate the interesting discussions with friends, fellow graduate stu-
dents and colleagues from McSCert that I enjoyed a lot.

Last but not least, I truly believe that without blessings from my parents,
Gopal Krishna Chowdhury and Nilima Chowdhury, it would not be possible to
achieve this. I am very grateful to my parents for their support. I would like
to thank Pinkey, my life partner, for supporting me throughout this incredible
journey. It would not be possible without her constant mental support. It
would be incomplete if I forgot the contribution of my little daughter, Audrinal
She always makes our life joyous and keeps us smiling.

Contents

Descriptive Note ii
Lay Abstract iii
Abstract iv
Acknowledgments v
Table of Contents xiii
List of Figures Xiv
List of Tables Xix
List of Acronyms XX
Declaration of Academic Achievement xxii
1 Introduction 1
1.1 Motivation 2
1.2 Research objectives oo 4
1.3 Challenges)
1.4 Papers published on research outcomes 5
1.5 Outline. 6

2 Preliminaries 7
2.1 Assurance Case 7
2.1.1 Assurance Case notation 8

2.1.2 Toulmin’s style for argumentation 10

vi

2.2 Assurance Case Template
2.2.1 Benefits of Assurance Case Templates
2.2.2 Features of Assurance Case Templates

2.3 Featuremodelo
2.3.1 Benefits of feature diagram
2.3.2 Notations for feature diagram

2.4 Relevent standardso
24.1 ISO 26262

2.5 Over-The-Air update (OTA)
2.6 Uptane
2.7 STRIDE
2.8 CIAtriad
2.9 Microsoft threat analysis tool

Literature Review

3.1 Focus of our literature review

3.2 Research related to Assurance Case compliant with standards

3.3 Safe and secure Assurance Case Template

3.4 Research related to Assurance Case evaluation
3.4.1 Review of Assurance Cases
3.4.2 Research related to regulatory guidance of evaluation . .
3.4.3 Research related to confidence

Principles for Assurance Case Templates
4.1 Principles for developing an Assurance Case Template
4.2 Methodology
4.2.1 Principles for constructing a template complying with
ISO 26262
4.3 Principle coverage in a safety standard, ISO 26262
4.4 Application to cybersecurity guidelines
4.4.1 Coverage of our principles in the cybersecurity guide-
lines, SAE J3061

vil

21
21
22
23
25
25
28
30

5 Case Studies: Principles and Safe and Secure Over-the-Air

Updates

5.1 Assurance Case Template complying with ISO 26262
5.2 Assurance Case Template complying with both ISO 26262 and

SAE J3061 .

5.3 Extensions for Over-the-air (OTA) updates
5.3.1 An ACT for safety & security of OTA updates
5.4 Identification of potential vulnerability using ACT for OTA up-

6 Criteria for Evaluation

6.1 Criteria for evaluation of ACs

6.2 Criteria for evaluating structure/notation

6.2.1 Syntax check 0
6.2.1.1 Overview
6.2.1.2 Rationale
6.2.1.3 Developer’s perspective
6.2.1.4 External reviewer’s perspective

6.2.2 Traceability
6.2.2.1 Overview,
6.2.2.2 Rationale
6.2.2.3 Developer’s perspective
6.2.2.4 External reviewer’s perspective

6.2.3 Robustness
6.2.3.1 Overview
6.2.3.2 Rationale
6.2.3.3 Developer’s perspective
6.2.3.4 External reviewer’s perspective

6.2.4 Understandability
6.2.4.1 Overview
6.2.4.2 Rationale
6.2.4.3 Developer’s perspective
6.2.4.4 External reviewer’s perspective

6.2.5 Efficiencyo

viil

6.2.5.1 Overview 91

6.2.5.2 Rationale 91

6.2.5.3 Developer’s perspective 91

6.2.5.4 External reviewer’s perspective 92

6.3 Criteria for evaluating content 92
6.3.1 Convincing basis for the AC 92
6.3.1.1 Overview 92

6.3.1.2 Rationale, 94

6.3.1.3 Developer’s perspective 95

6.3.1.4 External reviewer’s perspective 95

6.3.2 Rigour of the argument 95
6.3.2.1 Overview, 95

6.3.2.2 Rationale 96

6.3.2.3 Developer’s perspective 96

6.3.2.4 External reviewer’s perspective 96

6.3.3 Quality of the hazard analysis 97
6.3.3.1 Overview, 97

6.3.3.2 Rationale 97

6.3.3.3 Developer’s perspective 97

6.3.3.4 External reviewer’s perspective 98

6.3.4 Arguing completeness 98
6.3.4.1 Overview, 98

6.3.4.2 Rationale 99

6.3.4.3 Developer’s perspective 99

6.3.4.4 External reviewer’s perspective 100

6.3.5 Repeated arguments 100
6.3.5.1 Overview, 100

6.3.5.2 Rationale 100

6.3.5.3 Developer’s perspective 101

6.3.5.4 External reviewer’s perspective 101

6.3.6 ALARP 101
6.3.6.1 Overview 101

6.3.6.2 Rationale 102

6.3.6.3 Developer’s perspective 102

X

6.3.6.4 External reviewer’s perspective 102

6.3.7 Confidence 102
6.3.7.1 Overview 102

6.3.7.2 Rationale 102

6.3.7.3 Developer’s perspective 103

6.3.7.4 External reviewer’s perspective 103

7 Evaluation of Assurance Cases 104
7.1 Evaluation process 104
7.2 Evaluation of structure of an assurance case 108
7.2.1 Syntaxcheck 0oL 108
7.2.1.1 Refinement of the evaluation model 109

7.2.1.2 Instantiated evaluation process 109

7.2.2 Traceability 111
7.2.2.1 Refinement of the evaluation model 111

7.2.2.2 Instantiated evaluation process 113

7.2.3 Robustness L. 115
7.2.3.1 Refinement of the evaluation model 115

7.2.3.2 Instantiated evaluation process 117

7.2.4 Understandability 118
7.2.4.1 Refinement of the evaluation model 118

7.2.4.2 Instantiated evaluation process 120

7.2.5 Efficiencyo 121
7.2.5.1 Refinement of the evaluation model 121

7.2.5.2 Instantiated evaluation process 123

7.3 Evaluation of content of an assurance case 124
7.3.1 Convincing basis 124
7.3.1.1 Refinement of the evaluation model 124

7.3.1.2 Instantiated evaluation process: 126

7.3.2 Rigour of the argument 128
7.3.2.1 Refinement of the evaluation model 128

7.3.2.2 Instantiated evaluation process: 130

7.3.3 Quality of the hazard analysis 131
7.3.3.1 Refinement of the evaluation model 132

7.3.3.2 Instantiated evaluation process 134

7.3.4 Arguing completeness 135
7.3.4.1 Refinement of the evaluation model 135

7.3.4.2 Instantiated evaluation process 137

7.3.5 Repeated arguments 138
7.3.5.1 Refinement of the evaluation model 139

7.3.5.2 Instantiated evaluation process 139

7.3.6 ALARP 141
7.3.6.1 Refinement of the evaluation model 141

7.3.6.2 Instantiated evaluation process 143

7.3.7 Confidence. 143
7.3.7.1 Refinement of the evaluation model 144

7.3.7.2 Instantiated evaluation process 146

8 Case Study: Evaluation of Assurance Cases 147
8.1 Evaluation performed by a developer 147
8.1.1 Structure evaluation 148
8.1.1.1 Syntax Check 148

8.1.1.2 Traceability 150

8.1.1.3 Robustness 155
8.1.1.4 Understandability 169

8.1.1.5 Efficiency 171

8.1.2 Content evaluation 174
8.1.2.1 Convincing basis 174

8.1.2.2 Rigour of the argument 176

8.1.2.3 Quality of the hazard analysis 178

8.1.2.4 Arguing completeness 184

8.1.2.5 Repeated arguments 188

8126 ALARP, 193
8.1.2.7 Confidence 194

8.2 Evaluation performed by an external reviewer 198
8.2.1 Structure evaluation 198
8.2.1.1 Syntaxcheck 198

8.2.1.2 Traceability 199

x1

8.2.1.3 Robustness 202

8.2.1.4 Understandability 203

8.2.1.5 Efficiency 205

8.2.2 Content evaluation 207

8.2.2.1 Convincing basis 207

8.2.2.2 Rigour of the argument 209

8.2.2.3 Quality of the hazard analysis 210

8.2.2.4 Arguing Completeness 212

8.2.2.5 Repeated arguments 214

8226 ALARP 215

8.2.27 Confidence 216

9 Conclusion 218
9.1 Research Objectives Revisited 218
9.2 Personal Contributions 220
9.3 Future Worko 220
Appendices 1

A Assurance Case Template complying with ISO 26262 and
SAFE J3061

A.1 Partial Assurance Case Template complying with ISO 26262 . . 2

A.2 Partial Assurance Case Template complying with both ISO 26262
and SAFE J3061 10

A.3 Partial Assurance Case Template for OTA updates complying

with both ISO 26262 and SAFE J3061 11
B Preliminary Evaluation of Assurance Cases 22
B.1 Preliminary Evaluation Result of ADS-B-APT Assurance Case . 22
B.1.1 Evaluating structure/notation of an assurance case . . . 23
B.1.1.1 Syntax. oo 23
B.1.1.2 Traceability 23
B.1.1.3 Robustness 23
B.1.1.4 Understandability 24
B.1.1.5 Efficiency 24

x1i

C.1 Assurance Case for a Coffee Cup

B.1.2 Evaluating the content of an assurance case

B.1.2.1 Convincing Basis
B.1.2.2 Rigour of the arguments
B.1.2.3 Quality of the hazard analysis . . .
B.1.2.4 Arguing completeness
B.1.2.5 Repeated arguments
B.1.2.6 ‘ALARP’
B.1.2.7 Confidence
B.1.3 Outcome of the evaluation
B.2 Partial Evaluation of AFI RVSM Safety Case

B.2.1 Validation of “Syntax check” (A Structure Criterion)
B.2.2 Validation of “Traceability” (A Structure Criterion) . . .

C Assurance Case for a Coffee Cup

C.2 Acceptance Criteria from an ACT for a Coffee Cup

xiii

List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8

4.1
4.2
4.3

4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11

4.12
4.13
4.14
4.15

GSN example [12]o o 9
CAE Notation [8] 9
Toulmin’s Style Notation for Argumentation [7] 10
Assurance case template (modified from [15]). 11
Feature Diagram Notation [16] 13
Parent-Child Relationships in Feature Diagram [16] 13
Overview of ISO 26262 [3] 15
Overview of SAE J3061 [22] 16
Major Process Flow & Work Products in ISO 26262 34
Extract from a conceptual model [85] of ISO 26262 35
Extract from the list of the consolidated work products of ISO

20202 36
An example feature diagram of Adaptive Cruise Control 38
Sequence of Process Clauses in ISO 26262 Part 3. 39
[lustration of the Flip-It principle. (modified from [84]) 40
Process Sequence in ISO 26262 Part 3 for determining the ASIL. 42
Part 3, Clause 7.4.4.1 of ISO 26262 [3] 43
[lustration of the Conjunctive principle. (modified from [84]) . . 43
Part 3, Clause 5.4.1 of ISO 26262 [3] 44
Example of developing claims from clause 5.4.1 (ISO 26262,

part 3) using principle 4. (modified from [84]) 44
Example of optional argument path. 46
Example of optional argument path. (modified from [84]) 47
Part 4, Clause 6.5.1 of ISO 26262 [3] 48
Part 8, Clause 6.2.4 of ISO 26262 [3] 48

Xiv

4.16
4.17

4.18
4.19
4.20
4.21

5.1
5.2
5.3
5.4
9.5
5.6
5.7

5.8
9.9
5.10
5.11

5.12

5.13

5.14
5.15

5.16

6.1
6.2

7.1

Part 8, Clause 6.4.5 of ISO 26262 [3] 48

Example of specifying evidence from parts 4 (clause 6.5.1) and 8

(clauses 6.2.4 and 6.4.5) of ISO 26262 using Principle 6. (mod-

ified from [84]) 49
Example of different types of evidence (modified from [84]) . . . 51
Example of completeness argument 53
Example of argument options o4
Example of feature options 56
Top-Level of a Safety ACT 61
Part 3, Clause 8.4.5.1 of ISO 26262 [3] 63
An excerpt of the argument supporting claim ‘GS™ 63
Part 8, Clause 9.4.3 of ISO 26262 [3] 64
An excerpt of the argument supporting claim ‘GS1.1° 65

Top-Level of a Safety and Security ACT (modified from [87]) . . 67

An excerpt of arguments supporting claim ‘GS’ for safety and

SeCurity 69
Clause 8.3.6 from SAE J3061 [22] 70
An excerpt of arguments supporting claim ‘GS2’ for cybersecurity 71
Clauses 8.3.4 and 8.3.5 from SAFE J3061 [22] 72
An excerpt of arguments supporting claim ‘GS2.1° for cyberse-

curity . .o .o 78
Extract from Assurance Case for Maintenance of Automotive

Vehicles (GPM) [87]. 79
Excerpt of an ACT for assuring safety of Over-The-Air (OTA)

updated 80
Excerpt of an ACT for assuring security of OTA updated 81
Data Flow Diagram of a partial vehicle network based on Up-

tane [23] [87] 81
Slice of safe & secure ACT for OTA Updates [87]. 82
High Level View of the Evaluation Process 85
Example in GSN Illustrating Differences in Efficiency 93
Generic Model of the AC Evaluation Process [97]. 106

XV

7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13

8.1
8.2

8.3
8.4
8.5
8.6
8.7
8.8
8.9

8.10
8.11
8.12
8.13
8.14

8.15
8.16
8.17

Evaluation Process for
Evaluation Process for
Evaluation Process for
Evaluation Process for
Evaluation Process for
Evaluation Process for
Evaluation Process for
Evaluation Process for
Evaluation Process for
Evaluation Process for
Evaluation Process for

Evaluation Process for

Top two level claims of an AC for a coffee cup [97]

“Syntax check of an AC”
“Traceability”

“Robustness”
“Understandability check of an AC” . . .
“Efficiency check of an AC”
“Convincing basis for the AC” [97].

“Rigour of the arguments”

“Quality of the hazard analysis”
“Arguing Completeness”
“Repeated Arguments”
“ALARP”

“Confidence”

An excerpt of evidence complying with acceptance criteria for

a coffee cup example [97].

Change management argument branch of an AC for a coffee cup 151

Testability branch of an AC for a coffee cup

Hazard identification branch of an AC for a coffee cup

Requirement consistency branch of an AC for a coffee cup

Requirement correctness branch of an AC for a coffee cup

Requirement branch of an AC for a coffee cup-(part 1)

Requirement correctness branch of an AC for a coffee cup-(part

Maintenance argument branch of an AC for a coffee cup

. 162

Design of container argument branch of an AC for a coffee cup . 163

Production branch of an AC for a coffee cup

Change management argument branch of an AC for a coffee cup 165

Operational assumption argument branch of an AC for a coffee

An argument of an AC for a coffee cup for alternative evidence . 167

Hazard Analysis argument branch of an AC for a coffee cup

Fault Tree Analysis (FTA) argument branch of an AC for a

coffee cup

Xvi

171

8.18 System Theoretic Process Analysis (STPA) argument branch of

an AC foracoffeecup 180
8.19 Mitigation of hazards in an AC for a coffee cup 181
8.20 Start of requirements complete argument branch of an AC for

acoffeecup 185
8.21 More of requirements complete argument branch of an AC for

acoffeecup 186
8.22 Hazard analysis argument branch due to likely changes of an

ACforacoffeecup 189
8.23 Instantiated ALARP argument branch of an AC for a coffee cup

(part 1) 190
8.24 Instantiated ALARP argument branch of an AC for a coffee cup

(part 2) . . . 191
8.25 Confidence assessment of an argument of an AC for a coffee cup

using a method proposed in [77] 195
A.1 Top Level Claim for <ADAS> with Argument 3
A.2 Claim GS with Arguments 4
A.3 Claim GS1.1 with Arguments 5
A4 Claim GS1.2.2.1 with Arguments 6
A5 Claim GS1.2.2.2 with Arguments 7
A.6 Claim GoalGR2.1.2.2.1.1 with Arguments 8
A7 Claim GS2.1.2.1.1.1 with Arguments 9
A.8 Claim GI1.2 with Arguments 10
A9 <X> Top Level Claim with Argument 11
A.10 Claim ‘GS’ with Arguments 12
A.11 Claim ‘GS2’ with Arguments 13
A.12 Claim ‘GS2.1" with Arguments 14
A.13 Claim ‘GS2.1.1.1° with Arguments 15
A.14 Claim ‘GS2.1.1.1.1.1" with Arguments 16
A.15 Claim ‘GS2.1.1.1.1.2" with Arguments 17
A.16 Claim ‘GS2.1.1.1.2.3” with Arguments 18
A .17 Claim GPM with Arguments 19
A.18 OTA updates Safety Arguments 20

XVvil

A.19 OTA updates Security Arguments 21

C.1 Coffee Cup Top Level, ‘C’ with Arguments 33
C.2 Claim ‘CR’ with Arguments 34
C.3 Claim ‘CR1” with Arguments 35
C.4 Claim ‘CR1.1.2" with Arguments 36
C.5 Claim ‘CR2.1" with Arguments 37
C.6 Claim ‘CR2.1.3.1" with Arguments 38
C.7 Claim ‘CR3” with Arguments 39
C.8 Claim ‘CR6’ with Arguments 40
C.9 Claim ‘CA’ with Arguments 41
C.10 Claim ‘CA2.1" with Arguments 42
C.11 Claim ‘CPM’ with Arguments 43
C.12 Claim ‘CI’ with Arguments 44
C.13 Claim ‘CI1.1” with Arguments 45
C.14 Claim ‘CI1.1.2” with Arguments 46
C.15 Claim ‘CI1.1.2.2" with Arguments 47
C.16 Mathematical Analysis Argument 48
C.17 Safety Assessment Argument 49
C.18 Mathematical Analysis Argument 51
C.19 Safety Assessment Argument 52

xXviil

List of Tables

4.1 Coverage of ISO 26262 clauses.
4.2 Coverage of SAE J3061 clauses

XixX

84 .

List of Acronyms

AC Assurance Caseouiit e iii
ACT Assurance Case Template i, iii
ACC Adaptive Cruise Control.........o i, 37
ASIL Automotive Safety Integrity Level 41
HARA Hazard Analysis and Risk Assessment 14
TARA Threat Analysis and Risk Assessment 58
OTA Over-The-Air e XV
FTA Fault Tree Analysis. ... xXVi
STPA System Theoretic Process Analysis.............................. xvii
GSN Goal Structuring Notation i 7
CAE Claims, Arguments and Evidence 8
OEM Original Equipment Manufacturer 3
FDA U.S. Food and Drug Administration................................ 98

ALARP As Low As Reasonably Practicable............................ 101

MITM Man-In-The-Middle attack........ 76

ECU Electronic Control Unit

DST Dempster-Shafer Theory ... 194

poel

Declaration of

Academic Achievement

[, Thomas Chowdhury, declare this thesis to be my work. I am the sole author
of this document.

My supervisor, Dr. Alan Wassyng, as well as the members of my super-
visory committee, Dr. Mark Lawford and Dr. Spencer Smith, provided me
guidance and support at all stages of this research. I completed all of the

research work contained within this document.

xxi1

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

Chapter 1
Introduction

If a safety-critical system fails in some way, it can endanger human life and /or
cause harm to its environment. It is thus crucial that we are able to develop
safety-critical systems in ways that we can convince ourselves and others that
they are safe to deploy. Concerning this, we need to plan the development
and assessment of system functionality proactively. Assurance Cases (ACs)
are a generalization of Safety Cases and are gaining momentum as a preferred
way of demonstrating assurance of critical properties (e.g. safety, security)
in complex software-intensive systems. Currently, the U.S. Food and Drug
Administration (FDA) guidelines for some medical device submissions recom-
mend the development of safety assurance cases. According to Bloomfield et
al. “An assurance case is a documented body of evidence that provides a
convincing and valid argument that a specified set of critical claims about a
system’s properties are adequately justified for a given application in a given
environment” [1].

It is a widespread belief that a “good” AC provides adequate confidence
to stakeholders regarding the critical properties of their products. However,
there is no standardized pattern to document ACs, which results in differently
structured assurance cases for different products in a particular product family.
This thesis focuses on the development of effective ACs. Concerning this,
we develop principles to document an Assurance Case Template (ACT) from
existing safety and security standards/guidance (e.g. ISO 26262, SAE J3061).
An ACT is a complete assurance case that guides the development of systems

within a particular product line. An ACT has characteristics of optionality and

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

multiplicity to provide support for the inclusion of likely changes. Furthermore,
it also guides us in choosing real evidence based on defined acceptance criteria.
In most cases, safety-critical systems have to comply with existing standards.
Thus, an ACT that complies with a relevant standard can be used to guide the
development of systems that must comply with that standard. We applied our
principles to ISO 26262 (functional safety for automotive vehicles) and SAE
J3061 (cyber-security) and used the resulting ACT’s specialization in a case
study to guide us to pre-emptively mitigate against potential vulnerabilities
in automotive over-the-air update implementations.

Furthermore, this research focuses on a qualitative evaluation of ACs. ACs
should be free from fallacies to provide adequate confidence to stakeholders.
There is considerable published research related to confidence in ACs, which
refers primarily to a measure of the soundness of reasoning. This is not the
only way to evaluate ACs. Multiple aspects of an AC should be taken into
consideration for an “effective” evaluation. We focus on two issues: structure
and content evaluation of an AC. For an “effective” evaluation, we first define
criteria for both structure and content analysis and then develop a systematic
evaluation process using those criteria. Moreover, this thesis illustrates the
evaluation process from two perspectives: developers and external reviewers.
In general, the developer of the AC will have a more detailed knowledge of
the AC than any future external reviewer. Furthermore, developers are in an
advantageous position of having multiple ACs to compare during an evaluation,

whereas external reviewers use their expertise and experience for evaluation.

1.1 Motivation

The value of an AC depends on how it presents arguments of assuring a crit-
ical property (e.g. safety, security, dependability). Developing an AC is of-
ten viewed as something that needs to be done simply to obtain regulatory
approval, and in many cases, is prepared after the product has been built.
However, an AC should be documented before a product is built to guide the
development of a safe system.

In this thesis, we primarily focus on how an effective AC is built and how

we effectively perform a qualitative evaluation of ACs. Instead of developing

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

ACs directly, we have chosen to develop ACTs and then instantiate an AC
from the ACT. This is advantageous because an ACT is a complete assurance
case for a particular product family and takes into account variations in the
product family. Instantiating an ACT produces an AC for a product within
that product family. This facilitates incremental assurance which is otherwise
much more difficult to achieve. If we develop the ACT such that it is compliant
with an existing, relevant standard, such as ISO 26262, then documenting
compliance with that standard for a product within the product family is
substantially complete, as long as the variations in the product were foreseen in
the ACT. To this end, we have developed principles for systematically building
an ACT from an existing standard. This is demonstrated in Chapter 4.

Relatively recently, automotive Original Equipment Manufacturers (OEMs)
have focused on Over-The-Air (OTA) updates to save time and cost for cus-
tomers. The original motivation for OTA updates to automotive software was
that customers view a trip to the dealership to install a software patch an
avoidable waste of their time. This is true even when the patch introduces a
new exciting feature that they may be willing to install. An OTA can take
place without the presence of the owner. Whether the update is installed au-
tomatically or needs approval before driving depends on the criticality of the
update. For example, if the update is for parts of the infotainment system,
perhaps it can be installed automatically. If the update is for a critical compo-
nent of the vehicle, it may be necessary to have driver approval for an update.
Also, OEMs hope that OTA updates can be a lot more cost-effective than
paying dealerships for update installation. However, with the implementation
of OTA firmware updates come new entry points for hackers to tamper with a
vehicle’s software. Not only do we introduce the potential for hacking, but we
also remove a trained technician from the process. These trained professionals
help validate that the new firmware installation is successful and ensure that
no safety hazards result from the update. For example, in a real incident,
a simple update to an infotainment system caused cycles of rebooting the
heads-up display, accompanied by distracting bright purple flashes, resulting
in a severe safety concern [2].

A vital attribute of an AC is to facilitate the identification of fallacies in

the validity of any claim. There is considerable published research related to

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

confidence in ACs, which primarily relates to a measure of the soundness of
reasoning. Evaluation of an AC should be more general than measuring con-
fidence and should consider multiple aspects of the quality of an AC. The
evaluation process typically identifies structural errors and errors in content
in an AC and makes it more comprehensible to stakeholders. At least two
types of experts are involved in the AC evaluation process: developers and
external reviewers. Developers consist of system developers, software develop-
ers, assurance case developers, system verifiers, validators, internal reviewers,
etc. External reviewers are reviewers from regulatory organizations or third
party organizations, etc. Criteria systematically guide the evaluation process
to discover incorrect, incomplete or inconsistent argument structures. The
motivation for developing a systematic evaluation process is to make it less
subjective. However, it is not possible to make a completely objective one due
to its qualitative nature. A widely accepted concept is that a quantitative
evaluation is not possible because it is not free from subjectivity, and in some
cases, the confidence measure is an error-prone process as it depends on expert

knowledge.

1.2 Research objectives

Throughout the thesis, we focus on the following research objectives:

R1. We have identified a lack of methods to develop an ACT complying
with standards. Our way of dealing with this was to define principles to

develop an ACT that complies with a standard such as ISO 26262 [3].

R2. We applied our principles to ISO 26262 (functional safety for automo-
tive vehicles) and SAE J3061 (cybersecurity), and used the resulting
ACT’s specialization in a case study to guide us to pre-emptively miti-
gate against potential vulnerabilities in automotive over-the-air update

implementations.

R3. Evaluation of an AC should be more general than measuring confidence
and should consider multiple aspects of the quality of an AC. Standard
evaluation criteria play a significant role in making evaluation more sys-

tematic. Concerning this, we define effective evaluation criteria.

4

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

R4.

To perform an effective evaluation using these criteria, we developed a

systematic evaluation process to make it less subjective.

1.3 Challenges

This research faced the following challenges:

Cl.

C2.

C3.

C4.

C5.

C6.

C7.

In some cases, the standards-writing process may not follow a consis-
tent process flow, which, in turn, obstructs the development of an ACT

complying with that standard;

The combined safety and security argument is still in a preliminary stage

of research, and no industry best practice is known;

There are no standardized requirements for OTA updates during the

maintenance of an automotive vehicle;

An AC of a complex system is typically very large and difficult to evaluate

by a single person;

There is no standardized or formal approach to represent an argument
in an AC. As a result, arguments are expressed in different styles, using

different patterns, and exhibit different characteristics;

The guidelines provided by regulators and current standards are inade-
quate in their description of acceptable context, assumptions, and struc-

ture;

An AC may be subject to confirmation bias [4].

1.4 Papers published on research outcomes

The following papers presented research outcomes in reputable conferences:

1.

Thomas Chowdhury, Chung-Wei Lin, BaekGyu Kim, Mark Lawford,
Shinichi Shiraishi, Alan Wassyng: “Principles for systematic develop-
ment of an assurance case template from ISO 26262”. In: 28" Interna-
tional Symposium on Software Reliability Engineering Workshops (ISS-
REW). pp. 69-72. IEEE (2017)

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

2. Thomas Chowdhury, Eric Lesiuta, Kerianne Rikley, Chung-Wei Lin,
Eunsuk Kang, BaekGyu Kim, Shinichi Shiraishi, Mark Lawford, Alan
Wassyng: “Safe and Secure Automotive Over-the-Air Updates”. In: 37"
International Conference on Computer Safety, Reliability and Security
(SAFECOMP). Lecture Notes in Computer Science, Springer, pp. 172-
187 (2018)

3. Thomas Chowdhury, Alan Wassyng, Richard F. Paige, Mark Lawford:
“Criteria to Systematically evaluate (Safety) Assurance Cases”. In: 30"

International Symposium on Software Reliability Engineering (ISSRE).
pp. 380-390. IEEE (2019)

4. Thomas Chowdhury, Alan Wassyng, Richard F. Paige, Mark Law-
ford: “Systematic Evaluation of (Safety) Assurance Cases”. In: 39"
International Conference on Computer Safety, Reliability and Security
(SAFECOMP). Lecture Notes in Computer Science, Springer, pp. 18-33
(2020)

1.5 Outline

In this thesis, three research problems are resolved through rigorous analysis.
In Chapter 2, preliminaries are described to provide a glimpse into the topic
that is dealt with throughout the thesis. In Chapter 3, previous research re-
lated to the research problems is discussed. In Chapter 4, principles to develop
an ACT complying with standards (e.g. ISO 26262) are developed and pre-
sented. In Chapter 5, development of a partial ACT using principles complying
with both standard ISO 26262 and guidebook SAFE J3061 are explained and
an extension of the ACT including arguments related to OTA is presented. In
Chapter 6, all criteria to evaluate an AC, both from the developer’s perspective
and the regulator’s perspective, are presented. In Chapter 7, the evaluation
process of an AC based on Chapter 6 is explained. In Chapter 8, one AC is
considered as an example to apply the evaluation process described in Chap-
ter 7. Two other evaluation results are illustrated in Appendix B. Chapter 9

concludes with a recap of the outcome of this research.

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

Chapter 2
Preliminaries

Before illustrating technical details for defining principles for an ACT and

evaluation for an AC, this chapter discusses the useful entities of this research.

2.1 Assurance Case

An AC is a living document that assures a critical property of a system under
consideration. An AC is a generalization of a safety case. According to Ade-
lard [1], “An assurance case is a documented body of evidence that provides
a convincing and valid argument that a specified set of critical claims about a
system’s properties are adequately justified for a given application in a given
environment.”

Furthermore, according to FDA Draft Guidance document [5] “An assur-
ance case 1s a formal method for demonstrating the validity of a claim by
providing a convincing argument together with supporting evidence. It is a
way to structure arguments to help ensure that top-level claims are credible
and supported. In an assurance case, many arguments, with their supporting
evidence, may be grouped under one top-level claim. For a complex case, there
may be a complex web of arqguments and sub-claims.”

Moreover, according to the Goal Structuring Notation (GSN) committee,
the definition of assurance case is [6], “A reasoned and compelling argument,
supported by a body of evidence, that a system, service or organisation will
operate as intended for a defined application in a defined environment.”

From the above definitions of an assurance case, the compelling and explicit

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

argument is the necessary part of an assurance case. The argument is the link
between the claim and the evidence. The structure of claim, argument and
evidence is the foundation to assure and certify the safety or other critical
features of any system [7]. Assurance cases must be clear and straightforward,
characteristics that are enforced by practitioners, evaluators, and regulators
8].

2.1.1 Assurance Case notation

There are two popular graphical notations used in assurance cases. They
are: Goal Structuring Notation (GSN) [9], developed by John McDermid and
others, and Claims-Argument-Evidence Notation (CAE) by Adelard [10].

Goal Structuring Notation

GSN is a graphical representation for ACs popularized by Tim Kelly [11]. The
main concept of GSN is to decompose the claim into subclaims as a form
of goal and subgoals. The elements of GSN are ‘goal’, ‘strategy’, ‘context’,
‘assumption’, ‘justification’ and ‘evidence’. GSN itself is considered as an
argument. The goal is decomposed into subgoals using a strategy where the
evidence supports the lowest subgoals. Contexts support goals for further
clarification. Assumptions are considered true without evidence. Justification,
explaining why the decomposition is necessary, supports the strategy. A simple

example of a GSN structure is shown in figure 2.1

Claim-Argument-Evidence notation

Adelard, a U.K. company, is extensively involved in safety assurance cases
development using Claims, Arguments and Evidence (CAE) notation. It is a

straightforward graphical format; An CAE structure is expressed in figure 2.2.

Ph.D. Thesis — Thomas Chowdhury

McMaster University — Computing and Software

c1 G1

Operating Role
and Context

operate

Control System is
acceptably safe to

>

—

c3 G2

c4

Tolerability

targets (Ref Z) Hazards identified

from FHA (Ref Y)

Al identified hazards have
been eliminated or
sufficiently mitigated

A1

$1 i

All hazards have
been identified

Argument over each

identified hazard SIL apportionment is

correct and complete

—

c2

Control System
Definition

G3

involved

Software in the Control System
has been developed to SIL
appropriate to hazards

S2

Argument over

e

C5

SIL Guidelines
and Processes

Ccé

SIL for Primary and
Secondary elements

P |

software hazards

G6

Probability of Hazard H3
occuring < 1x10-3 per
year

G5

Probability of Hazard H2
occuring < 1x10-6 per
year

G4

Hazard H1 has been
eliminated

G7

Primary Protection
System Developed to
SIL 4

Y

Sn1

Sn2

Formal
Verification

Fault Tree
Analysis

Figure 2.1:

Sn3

Process
Evidence for
SiL4

GSN example [12]

Suonns

Argument

Bbclaim of

Is evidence for

Evidence

Is a sub

Figure 2.2: CAE Notation [§]

G8

Secondary Protection
System Development to
SiL2

Sn4

Process
Evidence for
SiL2

aim of

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

Similar to GSN, figure 2.2 shows each claim is supported by sub-claims
or evidence through arguments. The claim may contain additional contextual
information, assumption etc. For instance, an item of evidence may be test

results or validation results or a list of hazards.

2.1.2 Toulmin’s style for argumentation

Toulmin’s [13] argumentation is used in situations that are not amenable to
typical logical argumentation, for instance, in legal arguments. Kelly’s [11]

goal structuring notation is also based on Toulmin’s notation. Figure 2.3

: ! Grounds : Grounds
i i apmsion ; i -— Clai —
E subclaim . - - (Evidence) —_— Qualifier arm - E (Evidence) .
. W arrant
Backing (Argument) Hehnet

Figure 2.3: Toulmin’s Style Notation for Argumentation [7]

shows Toulmin’s model of argument that has six elements: claim, grounds,

qualifier, warrant, backing, rebuttal.

2.2 Assurance Case Template

The main drawback of documenting an AC is that each system may have a
differently structured AC, making it very difficult for a regulator to evaluate it.
Recently, an assurance case template (ACT) was proposed, which represents
a class of assurance cases for a specified product line [14]. An ACT is thus
a complete assurance case that guides the development of a product, and the
instantiation of the template for that product becomes the assurance case for
that product. Figure 2.4 demonstrates an ACT documented using GSN like
notation. The rationale of calling it a GSN like notation is optional paths that
exist differently in GSN.

2.2.1 Benefits of Assurance Case Templates

The reasons behind the assurance case template are manifold:

10

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

.

=
-
e

A

[}

g g

3 i

Z. @

° =
-1 0-1 2 TE
: s S 00
g g [] - Claim or sub-claim
= = O - Evidence
& =4 . .
= = A->»B Adisclaim

o B is premise

Figure 2.4: Assurance case template (modified from [15]).

1. An assurance case template can be used as an alternative to a standard.

2. It helps regulators and lay people understand the assurance case with

ease because of its common structure.
3. We can design assurance case templates for a hierarchy of product lines.
4. Tt is postulated that an assurance case template can be documented in

a way that makes it robust with respect to incremental changes.

2.2.2 Features of Assurance Case Templates

Two specific features of an ACT are optional paths and evidence with accep-
tance criteria [14].

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

Optional paths

The paths in blue, purple or red in figure 2.4 are showing all alternative ar-
gument paths that apply to products within that product line. The number
beside the optional paths represents the multiplicity of the paths.

1. Optional 0-1(highlighted in red colour): This is a single path that may

or may not be necessary for a specific product.

2. Exclusive-Or 1 (highlighted in blue colour): One of the paths (there can

be more than 2) must be instantiated for a specific product.

3. Non-exclusive-Or 1-n(highlighted in purple colour): One or more of the

paths can be instantiated for a specific product.

Evidence with acceptance criteria

The evidence in the assurance case template supports the claim. The evidence
should be unique for each terminal claim. To define evidence node in the

assurance case template, the following are required:
1. the description of the evidence

2. the acceptance criteria of the evidence for a specific claim which denotes

what must be true to raise the level of confidence of that claim

2.3 Feature model

A key technical innovation of software product-lines is the use of feature to
distinguish product-line members. The unique combination of features [16]
defines a specific member of a product line. A feature is a system property
that is relevant to some stakeholders and is used to capture commonalities or
discriminate among systems in a family [17]. A feature model is a hierarchically
arranged set of features. A feature diagram is a graphical representation of
a feature model [18]. It is a tree where primitive features are leaves and

compound features are interior nodes [16].

12

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

2.3.1 Benefits of feature diagram

A feature model helps to develop the assurance case template for a specific

product domain. The reasons to develop a feature diagram before ACT are:

1. Identify specific features of a product from a feature diagram to define a

specific assurance case for the product domain.

2. Define optional paths of the assurance case template

2.3.2 Notations for feature diagram

Current feature modeling notations may be of three main groups:
1. Basic feature models
2. Cardinality-based feature models

3. Extended feature models

Figure 2.5: Feature Diagram Notation [16]

In this research, only the basic feature models are discussed shown in figure 2.5.
Relationships between a parent feature and its child features (or subfeatures)

are categorized as (figure 2.6):
1. Mandatory — child feature is required.

2. Optional — child feature is optional.

() [s |
(R
[e1] [ea] [en]

Figure 2.6: Parent-Child Relationships in Feature Diagram [16]

13

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

3. Or — at least one of the sub-features must be selected.

4. Alternative (XOR) — one of the sub-features must be selected.

2.4 Relevent standards

Throughout this research, we particularly focus on one ISO standard, ISO
26262 and one cybersecurity guidebook, SAE J3061. There is also an unpub-
lished standard ISO/SAFE 21434 [19] for cybersecurity of automotive vehicles.
ISO/SAE 21434 defines requirements for cybersecurity risk management for
road vehicles throughout the development process [20]. This standard is cur-

rently under development.

2.4.1 1ISO 26262

ISO 26262 [3] has become the de facto functional safety standard for electric
and software components in automotive vehicles loosely based on IEC' 61508
[21]. Almost all OEMs and their suppliers voluntarily comply with ISO 26262
to ensure functional safety. ISO 26262 provides a strong way of risk analysis
called Hazard Analysis and Risk Assessment (HARA). ISO 26262 defines an
item of interest for the functional safety, and calls it an ‘item.” The item is
typically a vehicle feature. To resolve risks, ISO 26262 provides guidance by
given appropriate requirements and processes. An overview of ISO 26262 is

given in figure 2.7.

14

McMaster University — Computing and Software

Ph.D. Thesis — Thomas Chowdhury

292Z9¢ OS] uo suljeping 01

sesf|eue fjajeg -6 [SIUSLUB|S JO BOUS)SIX80D 10} BIBIIT) 9-§

seinjie} juspuadap Jo sisAjeuy 2-g| _ Buiope) 1Sy 0} Joedses ypm uoiysodwoosp sjuswelinbay m.a_

sasAjeue pajuaiio-Ajajes pue pajualio-JISyY 6

ewnbie asn ui usAold pL-8 uolleaylIe A 6-8

sjusuodwiod aIEMPIBY JO LUOREDJEND £1-8 wewebeuew sbueyy g-g
sjusuodod BIEMYOS JO LOREIYEND ZL1-8 weawebeuew uoneinbyuo) L-g
S|00} BIEM}JOS JO 8SN 8U) U] 80USPYUDD) |}-8 sjuslualnbai Ajajes jo juswaeBeuew pue uonesiyoeds g-g
uojejuswnoog 0L-8 sjualudojeAsp pajNqUIsIp UIU)m Seoejalu| -8

sassasosd Buipoddng -g

sjuaLuannb
Ajejes eJemyos JO UOIBAYLIBA ||

_ Buyse)
pue uofeBau aiemos, _\pue opeiBajul elempieH 01-5
sain|e

2y Wopue: o) enp SuopEloR
B Aigjes auy Jo uoReniens 6-g

i soLeul [Binoe)yole
By oy} JO UDHEN[EAT 8-G

jdaouoo
Ayejes [euonound g-g

JuBLISSBSsE
ysK pue sishleue plezeH L-g

Bujuoissiwiwo2ap
PUB ‘(JjledeJ puE BoUBUBIUIEL)
aoines ‘uoljesadQ

aphasy| Aleyes ey) Jo uopeniu| m.ni

uoniuysp wey| g-g

2B Wejshs au) je
7 uojonpold _ leas) Eﬂu:uo_.m:o.uo_

‘Woionpoud o eseejay :-.__

uojesado pue UoOINPOId |aAa] waysAs ayj je Juawdojanap Jonpoid ‘v aseyd jdasuo) g

uononpoud 10)

eses|al s,wejl ey Jeye ewebeuew Aojes s-z) aseyd jdesuoo ey} Buunp juswebeuew ABJES 9-Z

7 juswidojaasp jonpoid sy} pue

7 juewebeuew Aejes ||18A0 m.Ni

Kjajes jeuonouny jo juawabeuey z

Kiejngeaop 'L _

Figure 2.7: Overview of ISO 26262 [3]

15

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

2.4.2 SAE J3061

SAE J3061 is a cybersecurity guidebook [22] that provides a similar frame-
work to ISO 26262 for the security life-cycle for cyber-physical automotive
vehicle systems. It is intended as a companion standard to SO 26262 and has
been organized to mesh well with ISO 26262, but its written structure differs
significantly from SO 26262. The security lifecycle defined in SAE J3061 is
heavily influenced by ISO 26262. In some processes, SAE J3061 mentions
communication between safety and security engineers to perform combined
safety and security analysis. An overview of SAE J3061 is given in figure
2.8. Similar to ISO 26262, SAE J3061 also has similar phases to synchronize

Management of Cybersecurity

Concept Phase) Inftiation of Product Releasefor |y~ Production and
\ Development at System Level Production Dpe ration
Completed prior to A (Flanning)

Carried on after

Initiation of Product Product Development:

release for
Development at = e I'e\ml— :

production, but
System Level, but ! :

information

information
determined in this
phase applies to all

determined in other
phases to the left
(Product

Product
Development:

activities to the Product \ Hardware Level Development and
right: Product Development) Concept Phase)
Development and Software Level applies to or affects
Production and this phase
Operaticn .

Supporting Processes

Figure 2.8: Overview of SAE J3061 [22]

appropriately with ISO 26262. 1t also has supporting processes, e.g. change,

quality management.

2.5 Over-The-Air update (OTA)

Nowadays, modern vehicles rely on a software-based systems which contain

more than 100 computing units with millions of lines of code. These complex

16

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

systems sometimes require updates to improve user satisfaction. Sometimes
going to the dealership is not feasible to customers due to time and expense.
To update software and add new functionalities during its lifetime while sav-
ing time and expenses, remote updates popularly known as “Over-The-Air”
updates may take place. However, OTA update is not free from vulnerabilities
as a trained technician is removed from the process to validate the update. As

such, safety is a critical concern with OTA updates.

2.6 Uptane

‘Uptane’ [23] is the first software update framework that protects software from
a comprehensive array of security attacks and is resilient to partial compro-
mise. Uptane performs the countermeasures by adding features to the popular
software update framework, ‘TUF’. Uptane adds the following features to the

traditional software update framework to protect a vehicle from threats:

e Additional storage: Uptane adds additional storage to save Electronic
Control Units (ECUs) from attacks where incorrect data may be over-
written in ECUs.

e Broadcasting metadata: Uptane adds broadcasting metadata to prevent

attacks where different ECUs use different versions of metadata.

e Vehicle version: Uptane uses a vehicle version to detect appropriate soft-
ware that is updated in ECUs.

e Time server: Uptane uses time servers to limit attacks and prevent ECUs

from holding back from the latest updates.

2.7 STRIDE

“STRIDE” is a threat model developed by Praerit Garg and Loren Kohnfelder
at Microsoft [24]. It is an acronym of six types of security threats. They are
25]:

e Spoofing: Spoofing attacks occur when a person’s credentials are used to

access a secure location without his knowledge or permission. This attack

17

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

usually targets weak authentication. For instance, a simple password or

hint can help malicious attackers to get in.

e Tampering: Data tampering is to modify the existing data for malicious
intent. For instance, changing or modifying data in a database results in
wrong execution or a security breach of personal identity. This degrades

confidence in security assurance.

e Repudiation: Repudiation means the first user denies some action that
was performed by him to the second user as the second user does not
have any proof to prove that fact. It is an illegal operation to make
the security system weak and non-reliable. For instance, if the first user
accesses the system and does modification without leaving any traces and
denies having performed any action, it degrades the confidence. Non-
repudiation is a way to resolve the issue by proving the evidence of

malicious action.

e Information disclosure: Information disclosure attack releases informa-
tion to unauthorized personnel due to malicious intent. For example, an
unauthorized person gains access to confidential information that should
not be disclosed to him. This is a violation of the security of that infor-

mation.

e Denial of service: Denial of service attack denies access to authorized
users due to malicious intent. This attack should be prevented to increase

availability and reliability.

e Elevation of privilege: In this attack, a user without an appropriate
access privilege accesses a system for malicious intent. It decreases the

reliability of the system.

2.8 CIA triad

Security attacks consistently target and exploit weaknesses of four main se-
curity properties: confidentiality, integrity, availability, and authenticity [26].

By adequately protecting these four main properties, which have been at the

18

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

root of all known attacks, it is possible to provide security assurance for the
system. The first three of these properties are widely considered to be the
most crucial components of information security [27], and are known as the
CIA triad. CIA is currently being used to analyze the security requirements
of more than one hundred use cases of the connected vehicle proposed by the
ARC-IT project funded by the U.S. Department of Transportation [28].

e Confidentiality: Confidentiality of communicated information is put at
risk by reading attacks. Data encryption is suggested to mitigate these
attacks [26].

e Integrity: The integrity of data can be protected through the use of
hashing, cyclic redundancy checks (CRC) and signatures, preferably used

in combination.

e Availability: A comprehensive backup strategy, anomaly detection, and

timeouts are recommended to mitigate different attacks [26].

2.9 Microsoft threat analysis tool

The Microsoft threat modeling tool [29] performs threat analysis using a data
flow diagram of a system. Microsoft accomplishes the analysis using the fol-

lowing three steps in sequence:

1. Diagramming: The data flow diagram is the first essential element
for the threat analysis. Microsoft has introduced the notion of trust
boundaries to show the data flow from one privilege level to another
privilege level, such as network sockets, external entities, and processes

with different trust levels.

2. Threat Analysis: Threats are generated based on the STRIDE method

for each interaction.

3. Mitigation: Mitigation information should be included for each threat

based on priority unless it does not apply to the system.

Furthermore, the Microsoft tool has the capability of adapting a new template

to create a data flow diagram of a system. In addition to this, the tool has

19

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

options for adding user-defined threats. For the automotive domain, the NCC
group [30] created a customized template for the automotive domain to perform

threat analysis using the Microsoft threat analysis tool.

20

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

Chapter 3
Literature Review

This chapter presents previous research on ACT development complying with
standards, and on ACs related to integrated safety and security. Furthermore,

we discuss relevant research on the evaluation of assurance cases.

3.1 Focus of our literature review

There is extensive published research on ACs. There is far too much to include
a review of all AC research in this thesis. We have thus focused on the research
papers that are aligned with our scope of work. In particular, for research in
building ACs compliant with standards we focused on previous work regarding
safety cases in compliance with any standard, e.g. ISO 26262, DO 178C, BS
7799-2. For safety and security, we focused on publications that integrated
assurance of safety and security. For publications on evaluation of ACs we
used criteria or keywords to assess an AC, review methods for ACs, and quan-
titative methods for evaluating ACs. To focus on confidence assessment, we
searched for confidence assessment using uncertainty modeling, Bayesian be-
lief networks, subjective logic, Belief networks, Dempster-Shafer theory, and
expert review.

The databases we relied on most were IEEE Xplore, ScienceDirect, and

SpringerLink.

21

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

3.2 Research related to Assurance Case com-

pliant with standards

Here we focus on previous research on safety case development, complying
with standards.

The first publication as far as we are aware, that examined the link between
ACs and standards, was published in 2005 [31]. In this work the authors exam-
ined three standards and developed a framework for ‘structured” ACs derived
from these standards. The standards they used were: the Common Criteria
(security), DO-178B (digital avionics) and ISO 14971 (risk management for
medical devices).

In [32], the authors propose a model-based approach to develop a generic
safety case pattern for a future automotive safety case. However, they did not
validate the proposed method for complex scenarios.

In [33], the author develops an AC from DO 178C. The author transforms
different chapters of DO 178C' into subclaims of an AC. Concerning this, the
author classifies objectives of DO 178C into three categories. After several
revisions of ACs, the author proposes four fundamental concepts in [34] to
develop explicit ACs: transforming safety into correctness, allowing life-cycle
flexibility, using confidence arguments, and explicating before evaluating.

In [35], the authors describe an approach to develop an assurance case
complying with ISO 26262. They consider three types of arguments: standard
compliance arguments, requirement-satisfaction arguments, and hazardous mit-
igation arguments. For software compliance, they use fitness-for-purpose ar-
guments. The authors validate the approach by using an electronic control
system of a hypothetical anti-lock braking system.

In [36], The authors propose a generic conceptual model for “chain of evi-
dence” to argue about software safety compliant with /EC 61508. This model
consists of several concepts and helps to understand TEC 61508, generate safety
reports and perform automatic rule checking.

In [37], the authors describe industrial experience (a fuel level estimation
and display system of heavy trucks manufactured by Scania) in building a
safety case in compliance with ISO 26262. They focus on part 3 of 1SO

26262. The authors create process-based and product-based arguments col-

22

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

lected through interviews and observations during the safety case development.

In [38], the authors describe patterns of developing a ISO 26262 safety
case with several reusable safety arguments using GSN patterns and modules.
They propose a “product safety” argument as the top-level argument, which
is then supported by three separate arguments: crash protection, particular
risks, E/E system safety modules. However, the authors did not present their
instantiated model due to confidentiality.

In [39], the authors categorize and analyze what they consider to be the
main argument structures for a safety case. In this scenario, they mainly focus
on product-based safety rationale within these arguments to assess functional
safety.

In [40], the authors describe a template complying with BS 7799-2. How-
ever, the paper does not mention any technique or principles about how the

requirements can be converted to claims.

3.3 Safe and secure Assurance Case Template

Various threat analysis methods are described in [41, 29, 42, 43, 44]. OTA
Update specific security is discussed in [26, 23, 45]. In particular, the Uptane
Project (23, 45] defines an open-source software security system with a flexi-
ble design, allowing it to be adapted easily to various systems. The Uptane
project presents a comprehensive look at common types of attacks that an
unsecured vehicle will be vulnerable to, specifically when updated remotely.
The attacks described in [23] are: Read Attacks, Replay Attacks, Denial-of-
Service (DoS) Attacks (including Drop Attacks, Slow Retrieval Attacks, Flood
Attacks, Freeze Attacks), Rollback Attacks, Modify Attacks (including Par-
tial Bundle Attacks, Mixed Bundle Attacks, Mix-and-match Attacks), Spoof
Attacks and Control Attacks.

Long-term, we believe that the best way of integrating safety and security is
to use an integrated hazard/threat analysis and risk management. Implement-
ing safety and security requirements derived separately from independent haz-
ard analysis and threat analysis may lead to conflicting requirements which re-
sult in new hazards and/or vulnerabilities, and also may miss hazards/threats

resulting from combined security/safety concerns. There are some early at-

23

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

tempts at this in the literature. Unfortunately, this is not yet a common ap-
proach, simply because the relevant “standard” ISO 26262 and “guidebook”
SAFE J3061 deal with the two aspects separately to limit their scope during
their initial development. Our work is currently based on compliance with ISO
26262 and SAFE J3061.

Systems-Theoretic Process Analysis (STPA) [46], developed by Nancy Leve-
son, is a well-regarded hazard analysis technique that is focused strictly on en-
suring safety. STPA-Sec [47], developed by Leveson and Young, is a derivative
of STPA in the security domain. STPA-Sec is an extension of STPA consid-
ering security aspects in a top-down fashion. However, in striving to integrate
safety and security analysis, a separate analysis of safety and security does not
seem to cover the combined effects of safety and security adequately. Another
method, STPA-SafeSec [48], based on STPA, proposes a more unified analysis
technique for safety and security. To support the unified approach, STPA-
SafeSec defines the component layer diagram and extends the causal factors
of security domains. This method considers the cyberattacks on integrity and
availability at the component layer. The authors do not show a relationship
between safety and security, and how conflicts can be resolved is not explicitly
defined.

In [49], the authors propose a method called SAFE (Systematic Analy-
sis of Faults and Errors). To combine safety and security, SAFE considers
a semantic framework of error “effect” that integrates an adversary model
used in security analysis with fault/error categorization used in hazard anal-
ysis. Safety and security analysis are also combined in [50]; namely, STPA
and NIST SP800-30 [51] are considered to derive the safety constraints and
security constraints, respectively. The authors use an automatic scheme to
detect conflicts and reinforcement. However, they do not define the automatic
scheme precisely, which is the key mechanism in detecting conflicts. In [41],
the SAHARA (Security Aware Hazard Analysis and Risk Assessment) method
derives a measure of the security impact on the “Automotive Safety Integrity
Levels” (ASILs). This approach uses STRIDE (Spoofing identity, Tampering
with data, Repudiation, Information disclosure, Denial of service, Elevation
of privilege) to derive “Security Levels” to combine with the ASILs based on
ISO 26262’s HARA (Hazard analysis and risk assessment). Amorim et al [52]

24

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

use patterns to interlink safety and security in the development process. Some
of the authors of this paper were also involved in creating SAHARA, described
above.

In [53] the authors describe a structured way of creating security informed
safety case that shows justification of safety taking security into consideration.
This paper also provides an overview of a structured assurance case concept,
security-informed safety methodology and a layered approach to create a safety
case. A security gateway used to control data flow between security domains
in the avionics environment is used as an example.

In [54] the authors emphasize a security-informed safety approach. The
paper shows a structured safety case and an impact of security on that safety
case and how they can be resolved to make it safe and secure. The authors
also mention some challenges to create security-informed safety cases.

In [26], the author proposes a proof of concept implementation to secure
a part of the update system of an electronic control unit (ECU) in cars. The
proposed system ensures different aspects, e.g. confidentiality, authenticity
and integrity of a supplied update. However, the author does not consider

vehicle-to-vehicle (V2V) communication.

3.4 Research related to Assurance Case eval-

uation

Previous research on AC development considered evaluation issues implicitly
in the form of methods, processes and guidelines for the construction of ACs
and explicitly in specific evaluation methods. Of note is that across all of this

research, there has been a noticeable lack of defined criteria for AC evaluation.

3.4.1 Review of Assurance Cases

Kelly [55] presents what he considers to be the primary problems in review-
ing an AC. Kelly describes the following problems: implicit arguments and
reviewers not having sufficient knowledge of the system under consideration
to comprehend the arguments that are presented. He prescribes a staged re-

view process for an assurance case: argument comprehension, well-formedness

25

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

check, expressive sufficiency checks and argument criticism and defeat. For
argument criticism and defeat, the author considers both deductive and in-
ductive arguments. He claims that supporting inductive reasoning necessitates
sufficiency that depends on coverage, dependency, definition, directness, rel-
evance, robustness. Moreover, he postulates factors for evidence evaluation:
buggy-ness, level of review, experience and competency, tool qualification and
assurance. To review, the author proposes two forms of argument defeat:
rebuttal and undercutting. Kelly, in a book chapter [56], points out the im-
portance of identifying weaknesses of an assurance case early to make a valid
and sound argument. Thus, he emphasizes reviewing an AC during the initial
stage of its development.

In [57] the authors introduce a dialectical model SARM to review argu-
ments. To facilitate reviewing, the model satisfies six requirements: a) sup-
port persuasive dialogues, b) support information-seeking dialogues, ¢) equal-
ity between participants, d) sufficient room for opinion expression, e) prevent
fallacious argument, and f) high usability, a low cognitive load on the user.
The process in the model goes through three distinct phases: initiation, re-
view and revision. The revised version is reviewed by the external reviewer
until reviewers accept or reject the argument, or the proposer withdraws the
argument. The number of iterations depends on mutual agreement between
the proposer and external reviewer.

A system theory-based assurance case review is proposed in [58]. The
approach uses a systemigram to show a configuration diagram consisting of
artifact models, quality attributes and risk definitions. The review process
generates claims, evidence and mitigations from GSN. Claims are divided into
two groups: attribute claims and measure claims. Attribute claims are higher-
level claims defining system constituency, whereas measure claims are the low-
est claims, and are supported by evidence. The review process follows the
steps: a) context understanding; b) problem identification; c¢) cause analysis;
and d) revision. Thirteen review rules guide the review process. One drawback
is that a simplified assurance case was used to validate the rules. Furthermore,
transformation rules for converting an assurance case to a systemigram should
be unambiguous and adequately defined, but systemigrams are notoriously

subjective.

26

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

A preliminary work on safety case review using Verification studio, an in-
dustrial tool for system artefact quality analysis, is defined in [59]. The authors
include ASCE (Assurance and Safety Case Environment) within Verification
Studio to assess safety case quality. The quality analysis is still in the primitive
stage and does not take essential aspects into account. The paper highlights
requirements for a safety case assessment. Essential requirements are a sin-
gle framework to collect quality from different domains; quality metrics for
assessing a safety case; a quality check that combines syntax, structural and
semantic checks; effective ways to review textual safety cases; an effective way
to check quality of artefacts of a system that impacts safety case quality; and
a quality assessment of safety cases along with safety case development. They
use RSHP language, a basis for artefact representation in Verification studio.
They utilize OSLC-KM technology to integrate ASCE with Verification stu-
dio which converts an ASCE generated safety case into an RSHP formatted
artefact in Verification studio. They used default metrics used by Verification
studio to assess the quality of a safety case after conversion to RSHP format.

In [60] the author extends GSN to include attributes to quantify architec-
tures based on quality claims such as safety and security. The approach pro-
vides a technique of quantitative evaluation of arguments for assuring safety
and security architectures.

In [61] the authors develop a method to identify argument fallacies using
predicate logic. Instead of counting different fallacies, the authors focus on
argument fallacy using DiaSAR with the help of an SARM model. Thus, a
complete evaluation does not take place in this research.

In [62], the author prescribes some criteria to evaluate an assurance case.
They are quality, correct symbols, correct relationships, and correct argument.
The fourth criterion should be used both by the author of an assurance case
and an external reviewer.

In [63], the researchers describe an evaluation of an assurance case. For
an effective evaluation, the regulator may take a slice or full assurance case.
Moreover, the reviewer may compare the assurance case with the model case
they have, or they can develop an approval case.

In [64], the authors proposed a safety case assessment process consists

of five steps: preparation, logic and structure validation, quality evaluation,

27

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

record and feedback and revision. The first four steps are performed by a
safety assessor and based on their recommendations; a safety case developer
performs the revision step.

In [65], the authors mention some challenges of developing and reviewing
safety cases: size and complexity, readability, a variety of evidence, challenges
with context and assumption, challenges with arguments, misleading notation,
confirmation bias, challenges of the process and product-based approach. Fur-
thermore, the authors argue that regulators should thoroughly analyze the
argument for completeness and soundness.

In [66] the group develops some checklists to assess the safety case based
on safety case presentation, argument structure, evidence, caveats (e.g. as-
sumption, all outstanding issues, etc.)

In [7] Rushby describes a two-part process to assess arguments of assurance
cases. One part uses epistemic methods to assess the credibility of evidential
steps. Another part uses deductive logic to assess the truth of reasoning steps.

In [67] the researchers mention some factors responsible for losing assurance

case persuasiveness:

1. Incompleteness including incomplete argument, incomplete claim, in-

complete evidence, interdependent argument/evidence.
2. Fallacious arguments, including indirect effect and circular reasoning.

Reference [68] presents an assessment process for a safety case evaluation.
The author uses checks based on guidewords and proposes brief solutions on

how to fix problems related to those guidewords.

3.4.2 Research related to regulatory guidance of evalu-

ation

Regulatory organizations also provide guiding principles to evaluate an assur-
ance case. The motivation is to increase their reviewers’ competency as well as
developers’ competency. Good guidance helps a developer create a valid and
sound assurance case.

The FDA provides some recommendations based on their experience in

reviewing safety cases for infusion pumps [5]:

28

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

1. separate argument structure showing the completeness of the hazard

analysis, including techniques, procedures, results etc.;

2. specific argument structures for particular domains such as software,

human factors and reliability;

3. arguments should include justification for the selection of acceptability

criteria for safety control;
4. atraceability analysis is useful to trace all identified hazardous situations;

5. if a safety case is documented using user-defined notation, an executive

summary should be provided to assist the FDA in navigating safety cases;
6. the FDA uses post-market data to verify the safety argument;
7. the FDA also provides feedback through the pre-submission process.

In the U.K., the Offshore Installation Regulations 2005 defines the regula-
tion of submitting safety cases for installation related to oil and gas operations
in offshore waters [69]. There is a corresponding document for internal wa-
ters. The Health and Safety Executive (HSE) assesses safety cases for validity.
They define 36 principles categorized into factual information, management
of health and safety, major accident hazard identification, major accident risk
evaluation, major accident risk management, emergency response, rescue and
recovery, life cycle requirements, combined operations and decommissioning
and dismantlement to assess safety cases.

Reference [70] provides guidance on purpose, qualities, structure and con-
tent of a safety case. To review a safety case, inspectors should use their ex-
perience. Inspectors should analyze evidence and discuss with a licensee how
the lessons can be implemented to improve safety. Inspectors should check
whether or not the causes of problems are addressed.

Although not specifically related to assurance cases, in [71], the Office of
Nuclear Regulatory Research provides guidelines to evaluate an applicant’s
hazard analysis and corresponding acceptance criteria. It also provides tech-
nical knowledge to the US Nuclear Regulatory Commission (NRC’s) licensing
staff.

29

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

3.4.3 Research related to confidence

There is extensive research on the confidence assessment of an assurance case.
Publications that seemed most relevant to our work are listed below.

Reference [72] presents a confidence measure technique ‘INCIDENCE’ that
considers both design time and run time evidence . The authors also measure
the uncertainty measure of technical debt (requirement debt) for software sys-
tems. The proposed method has two disadvantages: their method is not backed
by a robust empirical validation that can prove their trustworthiness to deploy
the system and they did not consider all the scenarios of requirement debt.

In [73] the authors propose a quantitative approach to assess confidence in
assurance cases. The authors follow different models: Toulmin model, Hitch-
cock’s evaluation criteria and Bayesian Belief Network to quantify confidence.

In [74] the authors propose a subjective logic-based approach to assess
confidence in an assurance case. The authors define four basic argument types
and confidence propagation rules for them. They calculate confidence in a
bottom-up fashion.

Reference [75] presents an evidential reasoning approach to assess confi-
dence in safety evidence, which propagates to a top-level claim of a safety
case. Concerning this, the authors define a confidence argument pattern to
assess confidence in safety evidence. Then they use the evidential reasoning
approach to a) explicitly details reason of confidence in safety evidence, b)
identifies uncertainties and c¢) describes confidence at each level of a safety
case visually and quantitatively.

In [76] the authors propose an approach to evaluate a defeasible argument
and describe how they relate to the confidence modeling for the safety case.
The authors propose to treat rebuttals formally, and dialectical interpretation
provides a sound foundation for evaluation.

Reference [77] presents a structured approach to measure the sufficiency
and insufficiency of an argument node of a safety case. Initially, the degree of
belief and degree of belief of evidence is measured. Then an aggregation rule
is applied to measure the sufficiency and insufficiency of conclusions.

In [78] the authors present a framework using Dempster-Shafer theory to
assess argumentation based on experts’ opinion and confidence in the lowest

level claim of the arguments.

30

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

Reference [79] presents a confidence calculation framework using Dempster-
Shafer theory and vector space model to assess confidence for the leaf claims
of an assurance case. The framework initially takes an acceptable assurance
case for an extensive system and generates assurance cases similar to the input
assurance case except for leaf claims, which are supported by real evidence.
The confidence of leaf claims is adapted by checking similarity in its supporting
evidence node.

In [80] the authors present an extension of Baconian probability with the
use of the Beta distribution, opinion triangle to calculate confidence. The au-
thors also derive uncertainty associated with evidence. They also incorporate
a weighting scheme to calculate confidence realistically. However, the authors
do not mention how to deal with low-threshold confidence value.

Reference [81] presents an approach combining Beta distribution with opin-
ion triangle and subjective logic to assess confidence in an assurance case. The
analysts provide an opinion of evidence in terms of the degree of belief, dis-
belief or uncertainty. Then these values are calculated using Beta distribution
and subjective logic.

In [82] the authors propose an approach to compute the uncertainty in
safety claims by building Bayesian Belief Networks analogous to the structure
of a safety argument. In the Bayesian network, leaf node models, each source
of uncertainty and intermediate nodes combine confidence of leaf nodes. The
authors also mention if an only subjective judgement is available, for quanti-
tative information, the Goal-Question-Metric (GQM) method [83] may be a

suitable candidate.

31

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

Chapter 4

Principles for Assurance Case

Templates

This chapter presents principles we developed that help to create an assur-
ance case template from existing safety and security standards. This chapter
extends work published in [84].

4.1 Principles for developing an Assurance Case

Template

Coping with the sheer amount of work we need to perform daily, there is a
growing interest in automating tasks. Also, automation often helps to reduce
human error that can negatively bias and otherwise impact the assurance. At
this stage of our research, full automation is a dream. However, the principles
we have developed allow us to start developing structured, manual methods
for building assurance case templates from safety and security standards and
start planning tools that will help us semi-automate the production of these

templates in the future.

4.2 Methodology

Our first attempt to develop principles to build an assurance case template
complying with a standard, targeted ISO 26262 [3]. The objective was to

32

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

convert requirements in ISO 26262 into claims and acceptance criteria for

evidence.

4.2.1 Principles for constructing a template complying
with ISO 26262

We developed /discovered 10 principles to develop an Assurance Case Template
that complies with a safety standard e.g. ISO 26262. The benefit of these
principles is to motivate the semi-automation of the development of ACTs.

The principles with examples are now described in detail.

m Principle 1: Modeling a standard: To develop an assurance case
template complying with ISO 26262, it is mandatory to understand the
standard properly. Reading the standard (many times) does not give a
complete idea about the standard. Thus, in our example, we used three
models to understand the standard more completely, especially depen-
dencies in the standard. The first of these is a diagrammatic flow diagram
(figure 4.1) of the interrelation among processes and work products in
ISO 26262. The second model is a conceptual model of ISO 26262. This
model captures definitions and dependencies in the standard.This con-
ceptual model will help to automate the aspects of the assurance case
template (such as checks on completeness, etc) as well as being useful
in understanding the standard. Figure 4.2 represents an extract from a
conceptual model [85] of ISO 26262.

!Diagram provided by Neeraj Kumar Singh.

33

ing and Software

ty — Comput

1versl

McMaster Un.

Thomas Chowdhury

Thesis —

Ph.D.

[
oo vongomen (553)

s voen 1 555)

==

P —

ﬁmn@@\.@m OS] Ut s1onpotd MIOA 7y MO[] SS9001q Hoﬁﬁz 4 @.Hﬁwﬁm

[——
e ——

i oo 59

ok s v s

a0

(o) s s 5211

protresn

s

E— bt

Pt

o i st s o

[— e v oo (558

o v5ea)
p— e st o 1 505)
[RE s intiered

awponsowed (v509)

s 2509) s s (55990

s 59) pres

i wousteuen
[eoond

) e o 6

s 15921 o o sovamy
o s ot o o

R o s 4 oo Yoy s o o

e oo SR s ()

Pb it st

e

wozzzazaz o8 (o ot e oS (5019
Preacasad (i et vt A (7 012
oS e 1 552)

o

e

oo

(e me o

oo e Ao

Prired

e s
oo on 15531

e)

34

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

subSystem
Item }—{>{ System
0..n
superSystem| 1..n

(omprises‘ 0.n

l Element l

4\?4

0..n 0..n
l HardwarePart }(—{ Component }—){ SoftwareUnit l

A T T A
2.n 2.n
l HardwareC | [

[1 SoftwareComponent l

l Sensor l l Actuator l l Controller l

Figure 4.2: Extract from a conceptual model [85] of ISO 26262

We also used a list of “consolidated work products”. “Consolidated”
meaning that some work products are generated in a process and then
refined in later processes. The processes are then grouped accordingly
in this list. Since work products in ISO 26262 will typically be used
as evidence in ACs, this list also helps to understand the standard by
presenting a view that is focussed on the work products within the overall

process flow. Figure 4.3 shows an extract from a list of the consolidated

work products.

35

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

CONSOLIDATED WORK PRODUCTS —1SO 26262

2-5.5.1 Organization-specific rules and processes for functional safety, resulting from 5.4.2 and 5.4.5.
2-5.5.2 Evidence of competence, resulting from 5.4.3.

2-5.5.3 Evidence of quality management, resulting from 5.4.4.

2-6.5.3 Safety case, resulting from 6.4.6.

2-6.5.5 Confirmation measure reports, resulting from 6.4.7 to 6.4.9.

2-7.5.1 Evidence of field monitoring, resulting from 7.4.2.4.

3-5.5 Item definition resulting from the requirements of 5.4.

3-6.5.1 Impact analysis resulting from the requirements of 6.4.2.1 to 6.4.2.4.

3-7.5.1 Hazard analysis and risk assessment resulting from the requirements of 7.4.1.1t0 7.4.4.2
3-7.5.2 Safety goals resulting from the requirements of 7.4.4.3t0 7.4.4.6

3-7.5.3 Verification review report of the hazard analysis and risk assessment and the safety goals
resulting from the requirement of 7.4.5.

3-8.5.1 Functional safety concept resulting from the requirements of 8.4.1 to 8.4.4.
3-8.5.2 Verification report of the functional safety concept resulting from the requirements of 8.4.5.

2-6.5.2 Project plan (refined), resulting from 6.4.3.4. (Original is “external’?)
4-5.5.1 Project plan (refined) resulting from requirement 5.4.4.

2-6.5.4 Functional safety assessment plan, resulting from 6.4.9.
4-5.5.5 Functional safety assessment plan (refined) resulting from requirement 5.4.3.

4-6.5.1 Technical safety requirements specification resulting from requirements 6.4.1 to 6.4.5.
4-7.5.1 Technical safety concept resulting from requirements 7.4.1 and 7.4.5.
4-7.5.2 System design specification resulting from requirements 7.4.1 to 7.4.5.

4-7.5.4 Specification of requirements for production, operation, service and decommissioning
resulting from requirements 7.4.7.

4-7.5.6 Safety analysis reports resulting from requirement 7.4.3.

4-5.5.3 Item integration and testing plan resulting from requirement 5.4.1.
4-8.5.1 Item integration and testing plan (refined) resulting from requirement 8.4.1.

4-8.5.2 Integration testing specification(s) resulting from requirements 8.4.1.

Figure 4.3: Extract from the list of the consolidated work products of ISO
26262

m Principle 2: Modeling system variability: This principle is also rea-

sonably evident in that we cannot assure safety and dependability of a

36

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

system without understanding it completely. However, aspects of the
system are crucially important to building an effective assurance case
template that we may sometimes not explore adequately. In particular,
the assurance case template is designed for assuring products within a
product family. It is thus essential that we document variations in the
product family. An assurance case template should have all the argu-
ments related to different products’ different options in the same product

family.

A feature model attempts to show all the optional features of a particular
product family. For example, to create an assurance case template for
an Adaptive Cruise Control (ACC) we need to consider all variations
in an ACC family. As a start, we need to develop and document a
Feature Diagram for the product family. Figure 4.4 shows an example of
a feature model for an ACC family. This example feature diagram shows
mandatory, optional, and alternative features. ACTSs include this kind of
variability. Optional (0-1), Exclusive-Or (1) and Non-exclusive-Or (1-n)
arguments are thus possible. Our example feature diagram for ACC has
three components: Input, Controller and Output. Input and Controller
both have Non-exclusive-Or constructs for their components. In other
words, they can each have either one of the identified components, or
both of them. Output has an ‘alternative’ construct (Exclusive-Or) and

so can have one of the other identified component.

37

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

.
".__ ot m|
et e
{ sermmenesanay |
- — S_MechSteared/intenna
S_RADAR 2 ——
[Sogesenser {5 iomR
;_MiimeterRADAR
P |5 Fusion [e
=
N, K@l
\ | M_RADAR
o -
| MuitSonaor {Muoar
__@M_MimeterRADAR
-u 1_Fusion
Wik Slerocrmenn
MaintsinValocity oMot
MaintainVarSpeed :
| Sopands|

e

Figure 4.4: An example feature diagram of Adaptive Cruise Control

m Principle 3: Flip-it: There is a widespread assumption that a good
process will lead to a good product, but it is often not true. ISO 26262
is mainly a process-oriented standard, but it also deals with product-
related requirements. An assurance case expresses the argument using
claims and sub-claims supported by evidence. The sequence of steps
in a standard translates into an argument branch consisting of claims,
subclaims in an ACT. For instance, in part 3 of ISO 26262, we find

38

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

the clauses shown in Figure 4.5. Note that < p — s > indicates ‘Part p,
Section s’, in ISO 26262.

<3-5> ltem definition

Process flow

<3-6> Initiation of the safety life cycle

<3-7> Hazard analysis and risk
assessment

<3-8> Functional safety concept

Figure 4.5: Sequence of Process Clauses in ISO 26262 Part 3.

Figure 4.5 shows a process flow that shows sequential processes in part 3.
Each of these processes can be transformed into a necessary claim in the
associated argument fragment. The following shows a transformation of

clauses into claims or subclaims:

e Item definition — “Product is defined as an item”, in compliance
with <3-5>.

39

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

o Initiation of the safety life cycle — “Safety plan exists, and is refined

if necessary” (item is not new), in compliance with <3-6>.

e Hazard analysis & risk assessment — “Safety goals are verified”, in
compliance with HARA (hazard and risk analysis) <3-7>.

e Functional safety concept — “Functional safety concept is verified”,

in compliance with <3-8>.

We observe that the last process claim “Functional safety concept is
verified” depends on the previous process claim “safety goals are verified”
with appropriate reasoning, and process claim “safety goals are verified”
relies on the process claim “safety plan exists, and is refined if necessary”.
So, we flip the order of the claims with respect to the process steps.
Figure 4.6 shows how the process claims are flipped with respect to

process order.

<3-5> Item definition CL- Funcfuonal‘ ity
concept is verified
y Process flow \
<3-6> Initiation of the .
oty T eyle C2 - Safety goals are verified
A4 A4
<3-7> Hazard analysis C3 - Safety plan exists, and
and risk assessment is refined if necessary
Y Y
<3-8> Functional safety concept C4 - Product is defined as an item
(a) Process steps in 1SO 26262 (b) Related claims

Figure 4.6: Illustration of the Flip-It principle. (modified from [84])

It is important here to realize that in GSN the arrows were designed to
show decomposition of claims (goals). We use GSN notation in our ACT's
and so the arrows go downward from C1 to C2 to C3 to C4. However, in

terms of reasoning within the argument, what we are saying is that if we

40

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

want to show that the Safety plan exists, and is refined if necessary then
we must first show that the Product is defined as an item is demonstrated
to be true. Similarly, to show that the Safety goals are verified we must
first show that the Safety plan exists, and is refined if necessary is true.
And finally to show that the Functional safety concept is verified we
must demonstrate that the Safety goals are verified is true. Of course,
there may be additional claims and evidence required to demonstrate the
truth of these claims, and they must be added to the ACT.

m Principle 4: Conjunctive: In our previous principle, “Flip-it”, we
show that a top-level process claim is supported only by process sub-
claims. However, not all arguments are quite that simple. For example,
three parameters (estimates of severity, the probability of exposure and
controllability of hazardous event) determine the Automotive Safety In-
tegrity Level (ASIL) associated with a hazard. All three of these esti-
mates are required, but they do not have to be obtained in any specific
order. What is important is that we need all three to determine the
ASIL. The clauses in ISO 26262 for determining the ASIL can be rep-
resented by figure 4.7. Similar to figure 4.5, <p-s> indicates “Part p,
Section clause s”, in ISO 26262 in this diagram.

41

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

<3-7.4.3.2> Severity of potential harm is
estimated

Process flow

<3-7.4.3.4> Probability of exposure of
operational situation is estimated

<3-7.4.3.7> Controllability of hazardous
event is estimated:

<3-7.4.4.1> ASIL is determined

Figure 4.7: Process Sequence in ISO 26262 Part 3 for determining the ASIL.

If we applied the ‘flip-it” principle, the claims transformed from clauses
would be in the reverse order. However, analysis of these clauses reveals
that the flip-it principle is not applicable in this case. Instead, we have
the conjunction of these three claims that will support the top claim of
“ASIL is determined correctly”. Figure 4.8 shows clause 7.4.4.1 from
part 3 of ISO 26262 that describes how ASIL can be determined. Figure
4.9 shows the combination of the three process claims supporting the

top-level claim.

42

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

7.4.4 Determination of ASIL and safety goals Principle 4

7.4.41 An ASIL shall be determined for each hazardous event using the parameters "severity",
"probability of exposure" and "controllability" in accordance with Table 4.

Figure 4.8: Part 3, Clause 7.4.4.1 of 1SO 26262 [3]

<<ASIL is C1 -
determined>> ASIL is determined correctly
v Process flow

<<Severity of
potential harm is

estimated>> \ 2
v C2 -Severity C3- C4-
<<Probability of of potential | | Probability of| [Controllability
exposure of operational harm is exposure of | | of hazardous
situation is estimated>> estimated operational event is
v correctly situation is estimated
<<Controllability of estimated correctly
hazardous event correctly
1s estimated>>
(a) Process steps in 1SO 26262 (b) Related claims

Figure 4.9: Illustration of the Conjunctive principle. (modified from [84])

Another example of the principle is illustrated in figure 4.11. According
to ISO 26262 part 3 and clause 5.4.1, functional and non functional re-
quirements of the item as well as the dependencies between the item and

its environment have six components. Figure 4.10 shows six components.

43

Ph.D. Thesis — Thomas Chowdhury

McMaster University — Computing and Software

5.4.1

This information includes:

b) the operational and environmental constraints;

d) behaviour achieved by similar functions, items or elements, if any;

e) assumptions on behaviour expected from the item; and

Principle 4

c) legal requirements (especially laws and regulations), national and international standards;

f) potential consequences of behaviour shortfalls including known failure modes and hazards.

The functional and non-functional requirements of the item as well as the dependencies between the
item and its environment shall be made available.

a) the functional concept, describing the purpose and functionality, including the operating modes and states
of the item;

CIl -

The functional and non-
functional requirements of the
item as well as the dependencies
between the item and its
environment are described in the
definition of <ACC>, in
compliance with ISO 26262

/

\

Figure 4.10: Part 3, Clause 5.4.1 of ISO 26262 [3]

CIl.1 -
(3-5.4.1.a)
The functional
concept of
<ACC>is
described
adequately

CIl1.2 -
(3-5.4.1.b)

The operationall
and
environmental
constraints of
<ACC> are
described
adequately

CI1.3 -
(3-5.4.1.¢)
The legal
requirements,
national and
international
standards
applying to
<ACC> are
described
adequately

CI14 -
(3-5.4.1.d)
The behaviour
achieved by
similar
functions,
<ACC>, or
other items, or
elements of
<ACC>, are
described
adequately

CI1.5 -
(3-54.1.¢)
Assumptions
on behaviour
expected from
<ACC> are
described
adequately

CI1.6 -
(3-5.4.1.9)
The potential
consequences
of behaviour
shortfalls of
<ACC> are
described
adequately

Figure 4.11: Example of developing claims from clause 5.4.1 (ISO 26262, part
3) using principle 4. (modified from [84])

Thus, the definition of an item related claim is supported by six sub-

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

claims (figure 4.11). It is noted that the argument branch consisting of a
top-level claim with supporting sub-claims created using the conjunctive

principle will work as a unit when using the “Flip-it” principle.

m Principle 5: Optional pattern: Sometimes the standard does not have
a specific guideline of a process involved in developing the product. A
manufacturer may develop a product or outsource or buy off-the-shelf.
In this scenario, an assurance case will potentially have an alternative
argument branch for different product development approaches. Part 8
of ISO 26262 describes the safety compliance of the product developed
by a third-party, namely a supplier. Figure 4.12 shows an example ar-
gument branch related to a supplier of a specific item or element. This
is an optional argument in an ACT because an OEM does not need a
supplier for all items or elements and the assurance depends on these
details related to various options associated with parts and services from

third-party suppliers.

45

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

C1 <8-5.4.6>

The Supplier provides evidence
of process capability,
maintenance, responsibilities for
functional safety in accordance
with 1ISO 26262, to the customer.

r l

C2 <8-5.4.5> C3 <8-5.4.4>

Functional safety assessments The supplier resolved safety

were carried out in accordance related issues, informed

with ISO 26262 based on customer regarding anomalies,

different ASILs at supplier's determined compliance of safety

premises. requirements with ISO 26262

¢ J,

C3.1.1 <8-5.4.2.1> C3.1 <8-5.4.3>

The supplier was selected The customer and supplier

based on selection criteria agreed on development interface

including supplier's capability to g |agreement, functional safety

produce items and elements of requirements and the customer

comparable complexity and verified the hazard analysis and

ASIL according to ISO 26262 risk assessment performed by
the supplier.

v i

C3.1.2.1 <8-5.4.1.2> C3.1.2 <8-5.4.2.2>

Each level of the customer- The customer defined and

supplier relationship followed the provided the RFQ to the supplier

requirements on the customer- |¢ |that includes formal request for

supplier requirements correctly. compliance with ISO 26262, item
definition and safety goals with
corresponding ASIL if already
available.

<

Figure 4.12: Example of optional argument path.

Another example is that verification of the implementation complying

46

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

with its requirements can be performed by either/both mathematical
analysis and testing. So, an assurance case template will potentially
have two branches of argument; one will be optional because testing
of verification is mandatory, and the mathematical analysis is a plus.

Figure 4.13 shows the optional pattern of the argument.

C1

Implementation complies with its
requirements within tolerance

Optional

C1.1

Mathematical analysis proves that
the implementation behaviour is
equivalent to required behaviour
within the stated tolerances

C1.2

Testing proves that the
implementation behaviour is
equivalent to required behaviour
within the stated tolerances

l

Figure 4.13: Example of optional argument path. (modified from [84])

Similarly, since we are developing a template for a product family, dif-
ferent features in a family, and even different sensors, for example, will

require different claims and evidence.

Principle 6: Evidence specification: ISO 26262 is better than many
other standards in that it specifies desired attributes and characteristics
for various artefacts. For example, Part 8, clause 6, specifies attributes
and characteristics for safety requirements. Evidence plays a vital role
in the assurance case argument. It grounds the support for terminal
claims using tangible, verifiable artefacts. It is vital that the evidence
really does adequately support the claim. To this end, ACTs specify
acceptance criteria in evidence nodes so that the instantiation of the ACT

can be check to see that the actual evidence satisfies the predetermined

47

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software
acceptance criteria. The desired attributes and characteristics in the
standard can be used as acceptance criteria in the associated evidence
nodes. An example from ISO 26262 is shown in figure 4.17.

6.5 Work products

6.5.1 Technical safety requirements specification resulting from requirements 6.4.1 to 6.4.5. Principle 6
Figure 4.14: Part 4, Clause 6.5.1 of 1SO 26262 [3]

6.4.2.4 Safety requirements shall have the following characteristics:

a) unambiguous and comprehensible,

b) atomic,

c) internally consistent,

d) feasible, and

e) verifiable.

Principle 6

Figure 4.15: Part 8, Clause 6.2.4 of 1SO 26262 [3]

a) a

b)

c)

6.4.2.5 Safety requirements shall have the following attributes:

Principle 6

unique identification remaining unchanged throughout the safety lifecycle,

a status, and

an ASIL.

Figure 4.16: Part 8, Clause 6.4.5 of 1SO 26262 [3]

48

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

Cl.nm -
Software safety
requirements pass
quality review

El.n.m(1) -Kind
of Evidence:
Technical safety
requirements
specification, WP
4-6.5.1

El.n.m(2) -
Kind of Evidence:
Review report
concerning quality of
technical safety
requirements. Acceptance
Criteria: 8-6.4.2.4 a)-e)
and 8-6.4.2.5 a)-c)

Figure 4.17: Example of specifying evidence from parts 4 (clause 6.5.1) and 8
(clauses 6.2.4 and 6.4.5) of ISO 26262 using Principle 6. (modified from [84])

This example describes characteristics and attributes of the safety re-
quirements, so we annotate the extract to show that we will use Principle
6. Figure 4.17 shows the acceptance criteria in the evidence nodes, di-
rectly extracted from ISO 26262 (shown in figures 4.15, and 4.16). In this
instance, goal Cl.n.m is supported by two pieces of evidence: E1.n.m(1)
and E1.n.m(2). Evidence E1.n.m(1) is supported by work product from
part 4, clause 6.5.1 of ISO 26262 (shown in figure 4.14) that illustrates
technical safety requirements specification. Evidence E1.n.m(2) has ac-
ceptance criteria taken from part 8, clauses 6.4.2.4 and 6.4.2.5 of ISO
26262 (shown in figures 4.15 and 4.16) that show characteristics and

attributes of safety requirements.

m Principle 7: Evidence classification: We have identified evidence as-
sociated with four types of claims. The first three types were identified
in ISO 26262. The last type is one that we should observe in assurance

cases, but is often missing.

49

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

1) Evidence for claims related to planning

)

2) Evidence for claims related to process

3) Evidence for claims related to verification/qualification of tools
)

4) Evidence for claims related to expertise

Figure 4.18 shows the different types of evidence with their acceptance

criteria.

20

Ph.D. Thesis — Thomas Chowdhury

McMaster University — Computing and Software

C_Expert -
The team ‘X’ is competent to
perform the analysis

vidence Expert -
Kind of Evidence: Documentation
of credentials and experience of the
team to show competency.
Acceptance Criteria: 1. Previous
experience should be mentioned in
the document; 2. Team member's
credentials should be mentioned;

3. The number of accomplished samg
type of work should be considered

C_Process —

'X', an industry practice hazard
analysis technique, is selected
to perform the analysis

Evidence Process -
Kind of Evidence: Documentation
of the hazard analysis technique.

Acceptance Criteria: 1. Recognized
as a good technique by the domain
experts; 2. Expected type of results
are defined; 3. System description
motivates to choose the technique

C_Plan -
The safety plan including all
activities is defined adequately

Evidence Plan -
Kind of Evidence: Documentation
of the safety plan covering all safety
activities. Acceptance Criteria:

1. Objective of each activity should
be described; 2. Dependencies on
other activities should be described
3. Identification of required and
responsible resources should be
accomplished

C_Verify —
The functional safety concept is
verified

vidence Verify -
ind of Evidence: Documentation o
verification results of the functional
concept; Acceptance Criteria: 1. The
reference to the verification plan and
verification specification should be
defined; 2. An unambiguous statement
of whether the verification passed or
failed should be mentioned; 3. The
level of compliance of the verification
results with the expected results shoulg
be defined

Figure 4.18: Example of different types of evidence (modified from [84])

o1

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

Claim ‘C_Plan’ is supported by evidence related to a plan. Evidence
provides documentation for a safety plan, and acceptance criteria de-
fine the specifications of a safety plan. For instance, work products 2-
6.5.2 (project plan-refined), 2-6.5.4 (functional safety assessment plan),
4-5.5.3 (item integration and testing plan), 4-5.5.4 (validation plan), 6-
5.5.2 (software verification plan), 8-12.5.3 (safety plan-refined), etc. are
evidence related to plan. Note that each work product is represented
as ‘part x-clause no’ of ISO 26262. Claim ‘C_Process’ is supported by
evidence related to processes. Evidence mentions a description of a pro-
cess with associated acceptance criteria that illustrate characteristics of
a process description. For instance, work products 6-8.5.2 (software unit
implementation), 7-6.5.2 (repair instructions), 5-10.5.1 (hardware inte-
gration and testing report), etc. are evidence related to processes. Claim
‘C_Verify’ is supported by evidence related to verification or qualification.
For instance, work products 3-8.5.2 (verification report of the functional
safety concept), 4-9.5.2 (validation report), 5-7.5.3 (hardware design ver-
ification report), 6-7.5.6 (software verification report), etc. are evidence
related to verification. Identifying the type of claim supported by evi-
dence helps us define the type of evidence required and the acceptance
criteria for the evidence. In some cases, the standard will help us with at-
tributes and characteristics such as mentioned above. Much of the time,
we have to rely on our knowledge of software engineering and safety-
critical systems to specify appropriate acceptance criteria. The above
classification helps us organize our knowledge so that we can reuse (or

slightly modify) appropriate acceptance criteria.

m Principle 8: Completeness arguments: One of the most challenging
arguments we have to contend with in assurance is one that depends on
completeness. For example, the claim that “all hazards are mitigated” is
vital in arguing safety — if all hazards were identified. In such a case, we
insist on adding a claim that explains why the best effort was expended in
determining that “no additional hazards were identified”. The sub-claims
that support such a claim must include claims as to why the process
was thorough enough to have discovered additional hazards; claims that

the results of these investigations show conclusively that no additional

02

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

hazards are likely to exist; and claims regarding the expertise of the

people who conducted this investigation. Figure 4.19 illustrates how an

alternative hazard analysis argues that no additional hazard exists.

CR2.2.1.1.3

No unidentified hazard
exists to mitigate

R-CR2.2.1.1.3

To prove that no unidentifed hazard exists, it is required
to show that:

1. All known hazards have been identified by an
alternative approach, STPA

2. An alternative hazard analysis, STPA was used
correctly.

3. Hazards identified by FTA and hazards identified by
STPA are same.

Thus, [CR2.2.1.1.3.1 and CR2.2.1.1.3.2 and CR2.
2.1.1.3.3]->CR2.2.1.1.3

CR2.2.1.1.3.1 CR2.21.1.3.2 CR2.21.1.3.3

All known hazards have An alternative hazard Hazards identified by
been identified by an analysis, STPA was FTA and hazards
alternative approach, used correctly. identified by STPA are
STPA same.

E-CR2.2.1.1.3.1
List of identified hazards

Acceptance criteria:
1. description of each
hazard.

R-CR2.2.1.1.3.2

An alternative hazard analysis, STPA identifies all known hazards if used correctly.
So, it is required:

1. All required steps of an alternative hazard analysis technique, STPA was
performed correctly

2. Academic/industry review assures that STPA is also an industry best practice
hazard analysis technique

Rebuttal:

Incompetent people sometimes can not identify some hazards even if they follow the
procedure {R4}

3. Mitigate{R4}: STPA was performed by a competent team.

E-CR2.2.1.1.3.3

Comparison of
Hazard developed by
both FTA and STPA.
Acceptance criteria:

1. Comparison chart.
2. approve by domain
experts.

Thus, [CR2.2.1.1.3.2.1 and CR2.2.1.1.3.2.2 and CR2.2.1.1.3.2.3]--> CR2.2.1.1.3.2

]

CR2.2.1.1.3.21 CR2.2.1.1.3.2.2 CR2.2.1.1.3.2.3
All required steps of an Academic/Industry STPA was performed by a
alternative hazard analysis review assures that competent team
technique, STPA was STPA is also an industry
performed correctly best practice hazard

analysis technique

analysis.

four categories

E-CR2.2.1.1.3.2.1
Documentation of STPA

Acceptance criteria:
1. Control structure
2. Unsafe control actions in

3. Causal factors analysis.

E-CR2.2.1.1.3.2.2

Technical
documentation (journal,
report, etc) for STPA

E-CR2.2.1.1.3.2.3

Qualification of people
involved in STPA analysis

Acceptance criteria:
1. Previous experience of
each team member.

2. Educational qualification of
each team member

Acceptance criteria:
1. Technical journals

Figure 4.19: Example of completeness argument

Figure 4.19 shows that arguments related to an alternative hazard STPA

are used to assure that no unidentified hazard exists. Furthermore, an

argument related to competency shows that experts performed an alter-

23

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

native approach, STPA. In general, the completeness principle calls on
the developer of the ACT to supplement the straight forward argument
that supports the completeness claim by an additional claim related to

negating a due diligence effort devoted to refuting the claim.

m Principle 9: Argument options: Since an assurance case template is
developed prior to developing a system, it must take into account that
there may be multiple ways of achieving a convincing argument. For
instance, a claim that the implementation complies with its requirements
may be supported by mathematical analysis and/or testing. This is an
example of an argument options, as shown in figure 4.20. In this figure,
a red arrow represents an optional argument path and a black arrow
represents a mandatory argument path. Testing will always be used, but
mathematical analysis may not be. In general, we may need optional
paths, exclusive-or paths, or non-exclusive-or paths. This principle is

really just a specialization of Principle 5.

c1

Implementation complies
_|with its requirements

L within tolerance \\l

c1.1 C1.2
Math analysis proves that Testing proves that the
the implementation implementation behaviour
|behaviour is equivalent to is equivalent to required
required behaviour within behaviour within the
the stated tolerances. stated tolerances.
: [Bl { ™
v
C1.1.1 C1.1.2 C1.1.3 C1.21 C1.2.2
Analysis method 'X' | |Method 'X' shows Staff who Testing with 'Z' coverage Staff who
is valid. implemented behaviour is performed method | [shows implemented behaviour | |performed the
equivalent to required X' have the is equivalent to required testing have the
behaviour within tolerance required expertise.| |behaviour within tolerance required expertise.

v

3

E1.1.2

Kind of evidence:
Math verification of

E1.1.3

Kind of evidence: List
of names, and

E1.1.1

Kind of evidence:
Literature survey

E1.21

Kind of evidence:
Test reports and

E1.2.2

Kind of evidence: List of
names and

regarding 'X'. behaviour qualifications. coverage. qualifications
Acceptance criteria: Acceptance criteria: Acceptance criteria: Acceptance criteria: Acceptance criteria:
Agreement by multiple Approval of PhD in formal Validity of coverage PhD in formal methods

authors, or published verification document methods

version of 'X'

and no failed tests or 10 years experience

Figure 4.20: Example of argument options

m Principle 10: Feature options: Analogous to the argument motivated
options discussed above, we may need optional, exclusive-or, or non-

exclusive-or argument paths because of differences in features between

o4

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

products within a product family. For example, we already saw in sec-
tion 4.2.1 that figure 4.4 shows an example feature diagram for ACC. We
have different possibilities within this product family concerning hard-
ware (typically sensors and actuators) and features (behaviour). These
differences dictate different claims and evidence to support safe, de-
pendable and secure vehicles. Again, this principle is a specialization
of Principle 5. Figure 4.21 shows an example of feature options. In
this argument branch, a black arrow represents a mandatory argument,
and a red arrow represents an optional argument branch. Here, claim
‘CI1.1.2.1.2" is supported by three mandatory sub-claims ‘CI1.1.2.1.2.17,
‘CI1.1.2.1.2.2" and ‘CI1.1.2.1.2.3’ and zero or more optional sub-claims
denoted by ‘CI1.1.2.1.2.4+’ that denotes different features of a product
in a particular product family. In this scenario, it deals with mandatory
three modes: cruise, follow and critical. Optional modes exist as optional
features in an ACC of a specific product family. Moreover, all these ter-
minal claims are supported by evidence. Similar to optional terminal
sub-claims, evidence is also optional that supports an optional termi-
nal claim. This specialization of Principle 5 is useful because feature
variability is at the heart of product lines, and the development of ACs
that can cope well with product lines is extremely important in many

industries. In particular this is essential in the automotive industry.

25

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

SRI1.1.2.1

To define all operating modes, it requires:

1. the identification of all operating modes (See Cl.1.1.2.1.1)
ci.1.22 2. the description of all operating modes (See Cl1.1.2.1.2)
All ACC operating modes
are identified and described [~ Reasoning Proof:

adequately Premise: CI1.1.2.1.1 and Cl1.1.2.1.2 are true
Conclusion: CI1.1.2.1 is true
Reasoning:

if C11.1.2.1.1 and Cl1.1.2.1.2 are true, it means the definition of ACC includes
1SO 26262 3-5.4.1.a

~
CcH1.1.2.11 CHl.1.21.2
All ACC operating All ACC operating modes are
modes are identified described appropriately
SRI1.1.2.1.1 SRI1.1.2.1.2
In order to satisfy this claim we need to show that: There are three known ACC operating modes to be described:
1. all known operating modes have been identified (Cl1.1.2.1.1.1), and 1. ACC Cruise Mode (see Cl1.1.2.1.2.1)
2. that there has been an appropriate attempt to determine if there are likely to be 2. ACC Follow Mode (see Cl1.1.2.1.2.2)
additional operating modes in the future (CI11.1.2.1.1.2) 3. ACC Safety Critical Mode (see CI1.1.2.1.2.3)
4. In case any additional modes are introduced in the future, an optional claim is introduced
Reasoning Proof: here (see CI1.1.2.1.2.4+)
Premise: CI1.1.2.1.1.1, CI1.1.2.1.1.2, are true
Reasoning Proof:
Conclusion: CI1.1.2.1.1 is true Premise: CI1.1.2.1.2.1, CI1.1.2.1.2.2, CI1.1.2.1.2.3 and CI1.1.2.1.2.4 are true
Reasoning: Conclusion: CI1.1.2.1.2 is true
if C11.1.2.1.1.1, C11.1.2.1.1.2, are true, it means all known operating modes have been
identified (CI1.1.2.1.1.1), and we do not believe there are any other modes (Cl1.1.2.1.1.2) Reasoning:
if C11.1.2.1.2.1, CI1.1.2.1.2.2 and CI1.1.2.1.2.3 are true (and since they are the only known
operating modes of ACC), Cl1.1.2.1.2 must be true

Cl1.1.2.1.2.4+ is introduced to cope with any additional modes in the future

} I [3

Cin.1.21.1.1 Ccn.1.21.1.2 Ccin.1.21.24 Cin.1.21.22 CH1.1.21.23 |

All known operating modes No other operating modes of ACC Cruise Mode is ACC Follow Mode is ACC Critical Mode is “ 0.n
of ACC are identified ACC have been identified described accurately described accurately described accurately |
|

R L

CHM.1.2.1.2.4+

ACC Other Modes are
described accurately

El.1.2.1.1 (WP: 3-5.5 <List of Modes>)

Expected Evidence:

List of known operating modes, plus a
description of why other modes are not
likely

Acceptance Criteria:

1. List of known ACC modes

2. Convincing reasons as to why
additional modes are not likely to be
defined

El1.1.2.1.2.1 (WP: 3-5.5<0} ing Modes>)

Expected Evidence:
Overview of Cruise Mode, Follow Mode,
Critical Mode and any other modes identified,
in terms of externally visible behaviour, and
internal states

Acceptance Criteria:

1. Description must be understandable in
terms of behaviour visible external to the
vehicle

2. Each mode must be mutually exclusive to
all other modes

3. Values of system states that identify each
mode must be documented

Figure 4.21: Example of feature options

4.3 Principle coverage in a safety standard,
IS0 26262

We applied our principles to develop an ACT that complies with ISO 26262.
We can now demonstrate coverage of our principles as applied to ISO 26262.
Principle 1 is obvious and will not be demonstrated in this section. We start
by annotating major sections of the standard with the relevant principles for
each section. We can take Part 3, Section 5.4.1 as an example. The top part
of figure 4.11 shows the specific sections on the relevant page of the standard

with our annotations. Table 4.1 shows the percentage of ISO 26262 covered

26

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

by each principle. Our calculations are based on 349 core requirements (Parts
2-7), 519 total requirements (Parts 2-9, including core requirements), 118
work products, and 23 HARA requirements (Part 3 only). We calculated
the percent coverage of each principle based on total requirements, except for
principles 3, 7 and 8. For example, principle 4 is applicable to 192 out of 519
total requirements. So, the percent coverage of principle 4 is 37%. Principle
3 is applicable to 218 out of 349 core requirements. So the percent coverage
of principle 3 is 63%. We need to point out that more than one principle
can apply to a set of clauses in the standard, so the coverage of the various
principles will sum to more than 100%. Note that we have not yet come across
requirements in the standard that we cannot include in the assurance case

template.

Table 4.1: Coverage of ISO 26262 clauses. [84]

Principle Target %
1 Total Requirements | 100
2 Total Requirements | 100
3 Core Requirements | 63
4 Total Requirements | 37
) Total Requirements | 9
6 Total Requirements | 5
7 Work Products 75
8 HARA 1
9 Total Requirements | 7
10 Total Requirements | 7

4.4 Application to cybersecurity guidelines

Generally, security and safety are considered separate disciplines because of
their own regulations, standards and methodologies [54]. It is clear that we
cannot assume that a cyber-physical system is immune to cyber threats, and
it is not feasible to assure the safety of the cyber-physical system independent
of security. In this regard, a safety case is incomplete and unconvincing with-
out consideration of the impact of security. In [54], the authors emphasize

that the impact of security on the safety case should be explicitly mentioned

27

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

to make the system safe and secure. In [86], the authors describe a layered
assurance approach that combines safety and security. Once the SAE cyber-
security guidelines SAFE J3061 [22] were published, we decided to apply our
principles to SAFE J3061 and thus develop an ACT that assures both safety
and security. We selected SAFE J3061 specifically because it is intended as a
companion standard to ISO 26262 and has been organized to mesh well with
ISO 26262.

We now show coverage metrics of using our principles to develop an ACT
complying with SAE J3061[22].

4.4.1 Coverage of our principles in the cybersecurity
guidelines, SAF J3061

Table 4.2 shows the percentage of SAFE J3061 covered by each principle. The
significant difference between ISO 26262 and SAE J3061 is the written style.
Our calculations are based on 47 core requirements. This includes the overall
management of cybersecurity to the production phase. The total require-
ments are 53, that includes the previous requirements along with supporting
processes. SAFE J3061 does not have any defined work products, and 1 Threat
Analysis and Risk Assessment (TARA) requirement (concept phase only). We
calculated the percent coverage of each principle based on total requirements
except principle 3. For example, principle 4 applies to 23 out of 53 total re-
quirements. So, the percent coverage of principle 4 is 43%. Principle 3 applies
to 31 out of 47 core requirements. So the percent coverage of principle 3 is 66%.
We can not calculate coverage for Principle 7 because there is no defined work
product in SAE J3061. Note that we have not yet come across requirements

in the guidelines that we cannot include in the assurance case template.

o8

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

Table 4.2: Coverage of SAE J3061 clauses.

Principle Target %
1 Total Requirements | 100
2 Total Requirements | 100
3 Core Requirements | 66
4 Total Requirements | 43
) Total Requirements | 19
6 Total Requirements | 6
7 Work Products -
8 TARA 2
9 Total Requirements | 4
10 Total Requirements | 2

29

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

Chapter 5

Case Studies: Principles and

Safe and Secure Over-the-Air
Updates

Chapter 4 presented our proposed development principles along with coverage
metrics of both ISO 26262 and SAFE J3061. This chapter shows an excerpt
of an ACT for safety and security complying with ISO 26262 and SAFE J3061
by applying these principles. Furthermore, we discuss the extension of our
template to comply with both ISO 26262 and SAE J3061 in building an ACT
that assures safety and security for automotive Over-the-air updates, which we
will represent simply by (OTA). We will also highlight how an ACT developed
for OTA can guide us in identifying potential threats along with suggesting a
mitigation strategy. This chapter extends work published in [87].

5.1 Assurance Case Template complying with
ISO 26262

We started this aspect of the research by developing an ACT for an Advanced
Driver Assistance System (ADAS) compliant with SO 26262. We will later
add compliance with SAE J3061. Concerning this, figure 5.1 shows the top-
level of a safety ACT. The top-level claim is: “<ADAS> considered as an 1SO

26262 item, delivers the behaviour required and does not adversely affect the

60

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

safety in the vehicle, over its expected lifetime in its intended environment.”.
Six sub-claims support the top-level claim. All six sub-claims deal with safety.
The tabs on the top left of a claim node indicate that this is a module, and the
remainder of that argument path can be seen by “opening” that module (in
the tool we use, achieved by double-clicking the tab). The relevant ISO part-

clauses are indicated inside a smaller text box within the claim. In terms of

Top Claim, G &

<ADAS> considered as an I1SO 26262 item,
delivers the behaviour required and does not
adversely affect the safety in the vehicle, over
its expected lifetime in its intended
environment

.

e

1 — —
GS 1S0 3-8.4.5.1 GR [1so4-1042 GPM [1s07-5431.7-64.22 GC | 1so8-745 GCM | 1sos-s8.45.1 GA
The safety pt | [Impl tation of Safety of the Configuration Change Operation of the
of <ADAS> is <ADAS> complies vehicle is t t hicle in whi
verified [This with its fi 1 d during K with K with <ADAS> is
includes all safety the production 1SO 26262 1SO 26262 installed is not
functional safety requirements phase and also requir t requir ts on pected to
requir that in tolerance throughout its on change violate
are derived from a [The technical operating life configuration t d ted
vehicle level hazard | [requirements are [This p with t operational
analysis and risk unambiguous and production assumptions [All
assessment, and all | |complete on input requirements, operational
of these domain and service assumptions are
requirements are internally maintenance adequately
validated, and non- consistent. They requirements and documented]
interfering] include all decommissioning

functional, and requirements in 1ISO

safety 26262]

requirements

derived from HARA]

Figure 5.1: Top-Level of a Safety ACT

software engineering, four argument paths can be shown to adequately support
this top claim of a specific system’s safety. An informal description of the four
sub-claims supported by these arguments is:

1. The system’s requirements are validated. [GS in Figure 5.1.]

2. The system is implemented to meet its requirements. [GR in Figure 5.1.]

3. The system is safe even when maintenance is performed. [GPM in
Figure 5.1.]
4. The system is operated within its operational assumptions. [GA in

Figure 5.1.]

61

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

IS0 26262 takes a similar approach, and add two more claims:

1. Compliance with configuration management requirements. [GC in Fig-
ure 5.1.]

2. Compliance with change management requirements. [GCM in Fig-
ure 5.1.]

Claim ‘GS’ shows the generation of functional safety requirements and valida-
tion of requirements related arguments. Note that “all” requirements include
functional safety requirements derived from hazard analysis and risk assess-
ment. This claim is supported by sub-claims transformed from clauses of
part 3, ISO 26262. Claim ‘GR’ shows arguments of compliance of the im-
plementation with requirements. It assures that the implementation meets
its requirements (within tolerance). This claim is supported by sub-claims
transformed from part 4 of ISO 26262. Claim ‘GPM’ deals with production,
maintenance and decommission related arguments in compliance with 150
26262. This claim is supported by sub-claims transformed from clauses of
part 7, ISO 26262. Claim ‘GC’ shows configuration management related argu-
ments in compliance with ISO 26262. This claim is supported by sub-claims
transformed from clauses of part 8, ISO 26262. Claim ‘GCM’ shows change
management related arguments in compliance with ISO 26262. This claim
is supported by sub-claims transformed from clauses of part 8, ISO 26262.
Claim ‘GA’ is not a part of ISO 26262. However, it is necessary to assure that
<ADAS> does not violate any assumption that may make it unsafe during
operation. Each of the claims (‘GS’, ‘GR’, ‘GPM’, ‘GC’, ‘GCM’ and ‘GA’) is
true and together imply that top claim ‘G’ is true. The benefit of the top-level
structure in the ACT is that it makes it easier to understand the reasoning
built into ISO 26262.

We now focus on the argument structure supporting claim ‘GS.” Figure 5.3

illustrates the first few levels of the argument supporting claim ‘GS.’

62

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

8.4.5 Verification of the functional safety concept

8.4.5.1 The functional safety concept shall be verified in accordance with ISO 26262-8:2011, Clause 9, to
show

a) its consistency and compliance with the safety goals; and PrmClple 4

b) its ability to mitigate or avoid the hazardous events.

Figure 5.2: Part 3, Clause 8.4.5.1 of 1SO 26262 [3]

GS [1s03-8.4.5.1

The safety concept of <ADAS> is verified.
[This includes that all necessary functional
safety requirements are derived from a
vehicle level hazard and risk analysis and
validated]
v
SS

According to 26262, verifying the functional safety concept of <ADAS> complies with
1. verification execution and evaluation (26262 see GS1.1);

and shows

2. that safety concept consistent and compliant with safety goals (26262 see GS1.2)

3. that safety concept able to mitigate and avoid hazardous events (26262 see GS1.3)
Reasoning proof:

Premise: GS1.1, GS1.2 and GS1.3 are true
Conclusion: GS is true
Reasoning:

if GS1.1, GS1.2 and GS1.3 are true, it means that the verification of safety concept of <ADAS> complies with

1ISO 26262 3-8.4.5.1
GS1.2 ISO 3-8.4.5.1.a GS1.3 1SO 3-8.4.5.1.b
GS1.1 1SO 8-9.4.3

Safety concept of <ADAS> is <ADAS> is able to mitigate and
consistent and compliant with avoid hazardous events
safety goals

The verification is executed
and evaluated correctly.

v <Q

S$81.2

Safety concept of <ADAS> derive funcational safety requirements and allocate them to the preliminary

architectural elements of the item, or to external measures. To derive correct safety requirements, it is
required to prove that:

1. safety concept is consistent (see GS1.2.1)

2. safety concept of <ADAS> is compliant with safety goals (see GS1.2.2)

Reasoning proof:

Premise: GS1.2.1 and GS1.2.2 are true

Conclusion: GS1.2 is true

Reasoning:

if GS1.2.1 and GS1.2.2 are true, it means safety concept complies with ISO 26262 3-8.4.5.1.a

GS1.2.1 / l

GS1.2.2
The safety concept of <ADAS>
is consistent The safety concept of
<ADAS> is compliant with its
safety goals

&

Figure 5.3: An excerpt of the argument supporting claim ‘GS’

63

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

9.4.3 Verification execution and evaluation

9.4.3.1 The verification shall be executed as planned in accordance with 9.4.1 and specified in
accordance with 9.4.2.

9.4.3.2 The evaluation of the verification results shall contain the following information:

Principle 4
a) the unique identification of the verified work product,
b) the reference to the verification plan and verification specification,

c) the configuration of the verification environment and verification tools used, and the calibration data used
during the evaluation, if applicable,

d) the level of compliance of the verification results with the expected results,

e) an unambiguous statement of whether the verification passed or failed; if the verification failed the
statement shall include the rationale for failure and suggestions for changes in the verified work product,
and

NOTE The verification is evaluated according to the criteria for completion and termination of the verification
[see 9.4.1.1 c)] and to the expected verification results.

f) the reasons for any verification steps not executed.

Figure 5.4: Part 8, Clause 9.4.3 of ISO 26262 [3]

Figure 5.3 shows a claim ‘GS’ that mentions “The safety concept of <ADAS>
is verified. [This includes that all necessary functional safety requirements are
derived from a vehicle level hazard and risk analysis and validated.]” This
claim is converted from a clause in ISO 26262 (part 3, clause 8.4.5.1). Figure
5.2 shows a clause ‘8.4.5.1" of part 3, ISO 26262. The clause mentions that
functional safety concept shall be verified according to clause 9 of part 8 of
ISO 26262 and show consistency, compliance with safety goals and mitigate
or avoid hazardous events. Claims ‘GS’, ‘GS1.1°, ‘GS1.2” and ‘GS1.3’ are con-
verted from clauses 8.4.5.1 of part 3 (ISO 26262), 9.4.3 of part 8 (ISO 26262),
8.4.5.1.a of part 3 (ISO 26262) and 8.4.5.1.b of part 3 (ISO 26262) respec-
tively. Based on “Principle 4 (Conjunctive)”, argument ‘SS’ argues sub-claims
'GS1.1°, ‘GS1.2” and ‘GS1.3" support upper-claim ‘GS’ if all sub-claims are
valid. ‘SS” argues that safety concept verification execution and evaluation
comply with ISO 26262 clauses from part 8. Furthermore, ‘SS’ argues that
safety concept is verified to show that safety concept is consistent, compliant
and able to mitigate or avoid hazardous events complying with ISO 26262.
Similarly, claim ‘G1.1" is supported by an argument branch converted from a
clause ‘9.4.3” of part 8, ISO 26262, shown in figure 5.4. Figure 5.5 shows a
claim ‘GS1.1° that mentions “The verification is executed and evaluated cor-

rectly”. Based on “Principle 4 (Conjunctive)”, argument ‘SS1.1° argues that

64

ty — Computing and Software

1versl

McMaster Un

Ph.D. Thesis — Thomas Chowdhury

<O <O <O <O

"paquosep | pajiey
Jo passed uonesyLaA
2y} Jayjaym Jo jJuswajels
snonBiqueun uy

STLLSO

‘pauysp

S| synsai pajoadxa ayy
U}IM S}NSS1 UOHEDLISA B}
0 8oUE|dWOD JO 98] By |

V2SO

"paulap aie payNoaxa
jou sdajs uoneoyLan
Aue Joj suoseal ay |

9CT’L'LSO

€ Y6-8 0S| | 92 EeY6-8 OSI

PZe Y68 08I

$2€%'6-8 OSI

‘paulep aJe uolen[eAd
ay} Buunp pasn ejep uolelqied
BU} PUE ‘Pasn S|00} UOHEILISA
pUE JUBLUUOIIAUS UOIEDILLISA
2y} Jo uoneINBlUod By

<&

pauyep si uoneoyoads
pue ue|d uonesyLIBA
ay) 0} @ouBIB)Rl BY |
TTL'LSD

€TLLSO 9Z€'6-8 OSI

<&

S110NPO.d HI0M PBYLISA BU}
4O uonesyRUSp! dnbiun 8y

B'ZEY6-8 OSI

‘pauyep

L'TLLSO

2°€7'6-8 29292 OSI UM $81jdwoo 1deouco Arejes
feuolouny aU) SUBaW) ‘N 81e 9°Z°L LSO PUB G'ZLLSD 2L LSD ‘€T L LSO TZ LSO '1'T L LSO Jl Buiuosesy

an) sl g'}’ LSO :UoIsnjouoy
SN} BIB Q'L LSO PUBGZLLSD ‘P'T'L'LSD ‘€T LSO ‘T LSO 'L'TLLSD esiwald
:jooud Bujuoseay

(9'2'1°1.SD 99s Z9Z9g) PaIN0axa Jou sdajs UoEesLLIaA AU IO} SUoseal 8y} 'g

(5°2°1°1.SO @9s Z9z9z) pajie} Jo passed UOIEDYLIBA Y} JaUldUM JO Juswaje)ls snonbiqueun ue g

(#'Z°L'1LSO 99s 29zZ92) S)nsal pajoadxe ayj YiIMm S)nsal UoIeORLIaA au) Jo 9oueldwod Jo [9A3] dU}

(£°Z'1°1SD 988 29Z97) Uoneniers

ay} Buunp pasn ejep UoNeIqI[ED 8Y) PUE ‘PAsN S|00} LUOIEDNLISA PUE JUSWUUOIIAUS UOHEDILISA BU) JO UolenByuod ay) '¢
(Z'Z'1'1SO 99s g9z9g) uoneoyioads pue ue|d uoeoyLIdA U} 0} douUBISJRI g

(1°Z°1°1.SO 99s g9z9z) 1onpoud 310m palLIaA 8y} Jo uoiesyiuapl anbiun ayy °|

“llom Ajayenbape paonpoud aq jsnw asay} Jo Yoea pue (9-| 99s) sjusuodwod XIs Sey ,uolenjeas,, z9z9z o) Buipioooy

<O

‘uonedlluaA

UONEDNIISA BY L

C'v'68 0S|

‘JNo palLed s
Buiuue|d uonesyuaA 8y L

LLLLSO

| '¥'6-8 OS|

LSO
J

_

1"€'¥'6-8 29292 OSI UM sa1jdwiod 1daouod Ajojes Jo UONeoLIaA ay) SuBaW)i ‘N ale L' LSO PuUe |’} LSO

:Bujuoseay
any sl |°|° 1S9O UOISN|oU0D
|anlyale gL’ LSO pue L' SO eslwald

(Z'1'1' 1S9O 99 29Z92)A1109.1100 UONEOYLISA 10} SPOYIdW S}I9]9S UOlje:

:Jooud Bujuoseay

09ds uoneoylan syl ‘g

(1'1'1'1L.SD 99s 2929z) N0 palied si ueld uonesylaA 8yl |

0 SBI[9J UOEOLIBA

JO uonnoaxa sny| "uonesyoads pue ueld uonedlLIdA 0} Bulplodde PaINdaxa S UOEIILIBA ‘2929z 0} Bulpiodoy

L°L°LSS|

'LLSS|
i

A13091100 BUOP SI
UOA BU} JO UOHEN|BAS 8|

LS9

/

2ev'6-80SI

i

Apoa.1109 uoneoyoads pue ueld UonedyLIaA
0} BUIPI0OOE PBINOBXS SI UOHE:

L'€1'6-8 OS|

oA 8y |
LS9

_

“€'7'6-8 29292 OS| UM $31jduI0o) pUE PajenieAs pue PaINosXa i <gYAY: 4O 1d30UD AJBJES JO LOJBOLLISA B} SUBSW }i ‘ONl} 818 Z9Z9Z OS| UM BuiAdwoo z'| LSO pue || LSO 4

(11189 998 z9z9z) Uone

:Buluoseay

anu} si |'1.S9 :UoISNjouo)
anij aie Z'L LSO pUe L'} 'LSO esiwald
:jooud Buiuoseay

(Z'L'1LSO 98S 29Z92) UONEDNLISA JO UOeN|eAd dU) '

0ads pue ue|d 0} Buipioooe uone:

A JO U

noaxe

aur |

:sa1inbal Z9Z9z YN BUIAIdWOD ‘sny | 1deouod AJajes Jo SSaUI0aLI00 BU) 0} PAJEN[EAS PUE PAINOSXa SI UOHEOLLIGA ‘Z9Z9Z O) BUIPIoODY

L'1SS

i

€v'6-8 OSI

pue pajNoaxa SI UOHEDYLISA BYL

*Ajoa1100 pajen|ens

1’19

An excerpt of the argument supporting claim ‘GS1.1’

Figure 5.5

65

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

verification of safety concept is executed and evaluated complying with 15O
26262. Concerning this, ‘SS1.1’ argues that verification execution is done in
accordance with ISO 26262 and the verification is evaluated also in accor-
dance with ISO 26262. When both claims ‘GS1.1.1” and ‘GS1.1.2" are valid,
then can support the upper level claim based on “Principle 4 (Conjunctive)”.
Two subclaims ‘GS1.1.1" and ‘GS1.1.2" are converted from clauses ‘9.4.3.1” and
‘9.4.3.2" of part 8, ISO 26262. Similarly, claim ‘GS1.1.1" is supported by two
sub-claims ‘GS1.1.1.1" and ‘GS1.1.1.2° that are converted from clauses ‘9.4.1.1°
and ‘9.4.2.1°. Argument ‘SS1.1.1" argues that the verification is executed ac-
cording to plan and specification when the verification plan is carried out
correctly and specification selected methods for verification according to ISO
26262. Argument ‘SS1.1.1° follows “Principle 3 (flip-it)” that guides how two
subclaims support top-claim. Claim ‘GS1.1.27 is supported by six sub-claims
‘GS1.1.2.17, ‘GS1.1.2.2°, ‘GS1.1.2.3°, ‘GS1.1.2.4°, ‘GS1.1.2.5” and ‘GS1.1.2.6’
that are converted from clauses ‘9.4.3.2.a’, ‘9.4.3.2.b’, ‘9.4.3.2.¢’, ‘9.4.3.2.d’,
‘9.4.3.2.¢” and ‘9.4.3.2.f” of part 8, ISO 26262 (shown in figure 5.4) respec-
tively. Argument ‘SS1.1.2" argues that evaluation is performed by adequately
completing six components in accordance with ISO 26262. Argument ‘SS1.1.2’
follows “Principle 4 (Conjunctive)”. The rest of the argument supporting claim
‘GS’ can be found in Appendix A.

5.2 Assurance Case Template complying with
both ISO 26262 and SAFE J3061

Nowadays, it is widely accepted that a cyber-physical system must be immune
to cyber threats. Thus, it is not feasible to assure the safety of a cyber-
physical system independent of security. In the previous section we applied
our development principles to ISO 26262 in order to construct an ACT that
assures the safety of <ADAS>. We now apply these principles to SAE J3061
to modify that ACT to build a version that assures both safety and security of
<ADAS>, in compliance with both ISO 26262 and SAE J3061. 1t is important
to note that the writing style of SAE J3061 is a bit different in comparison
with ISO 26262. For instance, ISO 26262 illustrates each requirement in a

66

Ph.D. Thesis — Thomas Chowdhury

McMaster University — Computing and Software

separate clause whereas SAF J3061 describes more than one requirements in

a single clause.

Figure 5.6 shows the top-level of a “security informed safety ACT”. The
top-level claim is “<ADAS> considered as an SO 26262 item/SAE J3061

feature, delivers the behaviour required and does not adversely affect the safety

or create security vulnerabilities in the vehicle, over its expected lifetime in

its intended environment”. Six sub-claims support the top-level claim. All

six sub-claims deal with safety and security issues together with consistent

interaction. Similar to figure 5.1, the relevant ISO and SAE clauses/sections

are indicated inside a smaller text box within the claim. In terms of software

Top Claim, G

environment

<ADAS> considered as an ISO 26262 item/SAE
J3061 feature, delivers the behaviour required
and does not adversely affect the safety or
create security vulnerabilities in the vehicle,
over its expected lifetime in its intended

[l

|

—

assessment, and all
of these
requirements are
validated, and non-
interfering]

combined hazard internally
and threat lysi: istent. They
and risk include all

functional, safety
and cybersecurity
requirements
derived from HARA
and TARA
respectively]

maintenance
requirements and
decommissioning
requirements in ISO
26262 and SAE
J3061]

—1 — —1 —1 —1 1

cs S ek [EEET | [em [SEETT)lee [R5 |[oom [SRT)[ea

The safety pt Impl of Safety and Configuration Change Operation of the
of <ADAS> is <ADAS> complies cybersecurity of the t t hicle in whict
verified and interim with its functional vehicle is p with K with <ADAS> is
cybersecurity of safety and maintained during 1SO 26262 and 1SO 26262 and installed is not
<ADAS> is cybersecurity the production SAE J3061 SAE J3061 expected to
assessed [These requir t: h and also requirements requirements on ||violate

include all within tolerance throughout its on change documented
functional safety [The technical operating life configuration management operational

and cybersecurity requirements are [This plies with t assumptions [All
requirements that unambiguous and production operational

are derived from a complete on input requirements, assumptions are
vehicle level domain and service adequately

documented]

Figure 5.6: Top-Level of a Safety and Security ACT (modified from [87])

engineering, four argument paths can be shown to adequately support this top

claim of a specific system’s safety and security. An informal description of the

four sub-claims supported by these arguments is:

1. The system’s requirements are validated. [GS in Figure 5.6.]

67

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

2. The system is implemented to meet its requirements. [GR in Figure 5.6.]

3. The system is safe and secure even when maintenance is performed.

[GPM in Figure 5.6.]

4. The system is operated within its operational assumptions. [GA in
Figure 5.6.]

IS0 26262 and SAE J3061 take a similar approach, and add two more claims:

1. Compliance with configuration management requirements. [GC in Fig-
ure 5.6.]

2. Compliance with change management requirements. [GCM in Fig-
ure 5.6.]

Functional safety and cybersecurity requirements are derived from a vehicle
level hazard and threat analysis and risk assessment. This claim ‘GS’ is sup-
ported by sub-claims transformed from a clause 8.4.5.1 of part 3, ISO 26262
and a clause 8.3.6 of SAE J3061. Claim ‘GR’ shows arguments of compliance of
the implementation with requirements. It assures that implementation meets
the requirements. This claim is supported by sub-claims transformed from
part 4 of ISO 26262 and clauses (8.4.8) of SAE J3061. Claim ‘GPM’ deals
with production, maintenance and decommission related arguments in com-
pliance with both ISO 26262 and SAE J3061. This claim is supported by
sub-claims transformed from clauses of part 7, ISO 26262 and clauses (6.2.4)
of SAE J3061. Claim ‘GC’ shows configuration management related argu-
ments in compliance with both ISO 26262 and SAFE J3061. This claim is
supported by sub-claims transformed from clauses of part 8, ISO 26262 and
clauses (8.8.1) of SAE J3061. Claim ‘GCM’ shows change management related
arguments in compliance with both ISO 26262 and SAFE J3061. This claim is
supported by sub-claims transformed from clauses of part 8, ISO 26262 and
clauses (8.8.3) of SAE J3061. Claim ‘GA’ is not a part of ISO 26262 and SAE
J3061. However, it is necessary to assure that <ADAS> does not violate any
assumption that may make it unsafe and insecure during operation. Each of
the claims (‘GS’, ‘GR’, ‘GPM’, ‘GC’, ‘GCM’ and ‘GA’) is true and together
imply that top claim ‘G’ is true.

68

Ph.D. Thesis — Thomas Chowdhury

McMaster University — Computing and Software

—

1

1SO 26262(3-8.4.5.1)
GS SAE J3061(8.3.6)

The safety concept of <ADAS> is
verified and interim cybersecurity
of <ADAS> is assessed [These
include all functional safety and
cybersecurity requirements that
are derived from a vehicle level
combined hazard and threat
analysis and risk assessment,
and all of these requirements are
validated, and non-interfering]

1

1SO 26262(3-8.4.5.1)

Gs1

The safety concept of <ADAS> is
verified. [This includes all
functional safety requirements,
that are derived from safety
goals through a vehicle level
hazard analysis and risk
assessment, and then validated]

SAE J3061(8.3.6)

GS2

The interim cybersecurity of
<ADAS> is assessed. [This
includes all cybersecurity goals
derived from a vehicle level
threat analysis and risk
assessment, and then validated]

T

GS3

The safety requirements and
cybersecurity requirements are
consistent, ie there is no
unintentional interaction
between them

ES3

Documentation of analysis
performed on interaction

between safety and cyber-
security requirements

[Acceptance criteria to be
developed]

Figure 5.7: An excerpt of arguments supporting claim ‘GS’ for safety and

security

69

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

In figure 5.7, claim ‘GS’ mentions that “The safety concept of <ADAS>
is verified, and interim cybersecurity of <ADAS> is assessed. [These include
all functional safety and cybersecurity requirements that are derived from a
vehicle level combined hazard and threat analysis and risk assessment, and
all of these requirements are validated and non-interfering]” and is supported
by three sub-claims, ‘GS1’, ‘GS2’ and ‘GS3’. Claim ‘GS1’ deals with safety
argument complying with a clause 8.4.5.1 of part 3, ISO 26262. The upper
right corner of claim ‘GS1’ represents a clause of ISO 26262. Claim ‘GS2’ deals
with security argument complying with a clause 8.3.6 of SAE J3061. Claim
‘GS3’ assures consistency of safety requirements and cybersecurity require-
ments. Claim ‘GS1’ follows the same argument shown in figure 5.3. Claim
‘GS2’ shows an argument branch that deals with the interim cybersecurity

assessment. Figure 5.8 shows a clause 8.3.6 of SAE J3061. It demonstrates

8.3.6 Initial Cybersecurity Assessment

Principle 4

At this stage, the interim Cybersecurity assessment may only contain the high-level Cybersecurity goals identified during
the TARA, the risks associated with each of the Cybersecurity goals, and any open Cybersecurity issues that may be
identified at this early stage. Open Cybersecurity issues at this point may simply be that a threat has been identified and
one or more high-level Cybersecurity goals have been identified for addressing the threat, but a strategy to address the
threat and to satisfy the Cybersecurity goals for the threat may not be determined yet and requires further analysis. Any
open Cybersecurity issues should be addressed in subsequent updates to and refinements of the initial Cybersecurity
assessment.

Figure 5.8: Clause 8.3.6 from SAE J3061 [22]

that assessment of interim cybersecurity, which includes high-level cybersecu-
rity goals identified during the TARA and risks associated with each of the
cybersecurity goals and any open cybersecurity issues identified at this stage.
In figure 5.9, claim ‘GS2’ is converted from a clause 8.3.6 of SAFE J3061. Based
on “Principle 4 (Conjunctive)”, argument ‘SS2’ argues that interim cyberse-
curity assessment is performed when high-level cybersecurity goals along with
risks are assessed, and any open cybersecurity issues are determined. Thus,
claim ‘GS2’ can be supported by two sub-claims when both ‘GS2.1” and ‘GS2.2’
are valid. It is important to note that claims ‘GS2.1” and ‘GS2.2” are also con-
verted from clause 8.3.6 of SAE J3061. This argument is considered a single

unit in argument branches based on “Principle 4 (Conjunctive)”. Figure

70

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

GS2 | sAE J3061(8.3.6)

The interim cybersecurity of
<ADAS> is assessed. [This
includes all cybersecurity goals
derived from a vehicle level
threat analysis and risk
assessment, and then validated]

Y

S§82

The interim cybersecurity can be assessed if each of the following is done correctly:

1. High level cybersecurity goals are identified along with risk associated with each of the
cybersecurity goals correctly (see GS2.1)

2. Any open cybersecurity issues are identified and refined in subsequent stage. (see GS2.2)

Reasoning Proof:
Premise: GS2.1 and GS2.2 are true.
Conclusion: GS2 is true.

Reasoning:
If GS2.1 and GS2.2 are true, it means that they comply with SAE J3061 (8.3.6)

E— 7 N

GS2.1 [e ss0618:36) | GS2.2 [sre 081836]
High level cybersecurity goals are Any open cybersecurity issues are
assessed along with the risk associated identified and refined in subsequent
with each of the cybersecurity goals. stage.

Figure 5.9: An excerpt of arguments supporting claim ‘GS2’ for cybersecurity

5.10, shows two clauses 8.3.4 and 8.3.5 of SAE J3061. Clause 8.3.4 illustrates
the cybersecurity concept, and clause 8.3.5 illustrates functional cybersecu-
rity requirements. Claim ‘GS2.1" and supporting two sub-claims ‘GS2.1.17
and ‘GS2.1.2" are converted from three clauses 8.3.6, 8.3.4 and 8.3.5 of SAE
J3061. Based on “Principle 3 (flip-it)”, argument ‘SS2.1° argues that cyber-
security goals and risks associated with each of the cybersecurity goals are
assessed when the cybersecurity concept is defined, and functional cybersecu-
rity requirements are determined correctly. Thus, claim ‘GS2.1" is supported
by two sub-claims, ‘GS2.1.1" and ‘GS2.1.2°, when both sub-claims are valid.
Similarly, claims ‘GS2.1.17, ‘GS2.1.1.17, ‘GS2.1.1.2°, and ‘GS2.1.1.3” are con-
verted from clause 8.3.4 of SAE J3061. Based on “Principle 4 (Conjunctive)”,
argument ‘SS2.1.17 argues that the cybersecurity concept is defined if cyberse-
curity goals, risks associated with cybersecurity goals and potential high-level

strategy for satisfying cybersecurity goals are determined adequately. Thus,

71

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

8.3.4 Cybersecurity Concept Principle 4

The Cybersecurity concept is a description of the high-level strategy for obtaining Cybersecurity for the feature. At this stage,
the Cybersecurity concept may contain the high-level Cybersecurity goals identified during the TARA, the risks associated
with each of the Cybersecurity goals, and a potential high-level strategy for satisfying the Cybersecurity goals. The strategy
for addressing the Cybersecurity goals may be dependent on the potential risk level of the threat associated with the
Cybersecurity goals. An organization may be able to create a template of high-level strategies for the different classifications
of potential threats that are identified. Creating a template based on threat risk level would simplify and streamline creation
of a Cybersecurity concept. During the next phase of development, product development at the system level, the
Cybersecurity concept will be updated and refined to a technical level. That is, the high-level Cybersecurity strategy will be
refined from a functional level strategy to a technical strategy.

8.3.5 Identify Functional Cybersecurity Requirements

Once the high-level strategy is determined for satisfying the Cybersecurity goals for the identified threats, the functional
Cybersecurity requirements can be determined. Essentially, the Cybersecurity goals identified during the TARA are the
highest-level Cybersecurity requirements. These functional Cybersecurity requirements are derived from the Cybersecurity
strategy and derived and refined from the Cybersecurity goals. Figure 18 provides a graphical depiction of the flow from the
Cybersecurity goals to the functional Cybersecurity requirements.

Figure 5.10: Clauses 8.3.4 and 8.3.5 from SAE J3061 [22]

claim ‘GS2.1.17 is supported by three sub-claims ‘GS2.1.1.1°, ‘GS2.1.1.2°, and
‘GS2.1.1.3" are valid. The remaining argument branches are shown in the
Appendix A.

5.3 Extensions for Over-the-air (OTA) updates

As an example of applying this assurance to a specific example, we chose
OTA. OTA is being used by OEMs to maintain software in vehicles. The
original motivation for over-the-air (OTA) updates to automotive software
seems to have been a realization that customers view a trip to the dealership
to install a software patch as an avoidable waste of their time. This is true
even when the patch introduces a new feature that they are pleased to install.
An update can take place without the presence of the owner. Whether the
update is installed automatically or needs approval before driving depends on
the criticality of the update. For example, if the update is for parts of the
infotainment system, perhaps it can be installed automatically. If the update
is for a critical component of the vehicle, it may be necessary to have driver
approval. In all cases, the update will be installed when the car is stopped
or in park mode. In addition, OEMs hope that OTA Updates will be a lot
more cost-effective than paying dealerships to install the updates. However,
with the implementation of OTA firmware updates come new entry points

for hackers to tamper with a vehicle’s software. Not only do we introduce the

72

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

potential for hacking, but we also remove a trained technician from the process.
These trained professionals help validate that the new firmware installation
is successful and ensure that there are no safety hazards resulting from the
update. For example, even a simple update to an infotainment system caused
cycles of rebooting the heads-up display, accompanied by distracting bright
purple flashes, thus resulting in a severe safety concern [2]. We now extend
our template for safety and security to cover specific arguments related to
OTA. It is important to note that we are primarily interested in the final
safety of the vehicle. To this end, we have to consider safety aspects of OTA
independent of security concerns, as well as the effect of security issues on

vehicle safety - and even the adverse effect of safety mitigation on security.

5.3.1 An ACT for safety & security of OTA updates

Our approach here is to modify the previously developed ACT to include
assurance when maintenance is performed using OTA Updates. This approach
is used since both of the relevant standards do not include specific guidance
for OTA updates, and we believe that there is general guidance we can provide
that covers both maintenances implemented at a dealership and through OTA
updates.

Part 7 of ISO 26262 and Section 6 of SAE J3061 define maintenance re-
quirements on production, and operation. We highlight this path because it
is of central importance in arguing the safety and security of OTA Updates.
The rationale of highlighting this path is this path deals with the safety of
maintenance-related arguments and OTA is a process for updating a vehicle’s
features. Figure 5.12 shows a slice of “GPM” developed from SO 26262 and
SAFE J3061. The assurance argument is primarily structured on the structure
visible in ISO 26262 and SAE J3061. For example, the safety argument is
in the ‘GPM1’ branch and the security argument in the ‘GPM2’ branch. ISO
26262 describes requirements on production, maintenance, and decommission-
ing. One option would have been to split these at the sub-claim level shown in
Figure 5.6. We chose to combine them in a single claim, and so the premises for
‘GPM1’ are ‘GPM1.1" (production), ‘GPM1.2’ (maintenance) and ‘GPM1.3’
(decommissioning). Similarly, the premises for ‘GPM2’ are ‘GPM2.1" (produc-
tion), ‘GPM2.2’ (maintenance).

73

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

Figure 5.12 shows compliance with the ISO and SAE standards before any
specialization for OTA Updates. It is reasonably obvious that OTA Updates
will affect claim ‘GPM1.2” and its argument path (safety) and claim ‘GPM2.2’
and its argument path (cyber-security) — primarily the ‘GPM2.2.1" argument
path. In order to include OTA Updates explicitly in the ACT, we have to
analyze exactly what is different between traditional at the dealership main-
tenance and OTA Update maintenance. This involves both hazard and threat
analyses. OTA updates introduce both safety hazards and security vulnera-
bilities. The manufacturer will have thoroughly tested the update, but there
are significant issues of completeness that complicate this task. An obvious
example is the malfunctioning heads-up display discussed in chapter 1:1.1. In
terms of safety, OTA updates are performed remotely, without the aid of a
knowledgeable technician responsible for testing the update. It is important
to assure two things concerning safety: OTA updates are performed correctly,
and there is no unidentified hazard after updates. Figure 5.13 shows an argu-
ment branch that supports claim ‘GPM1.2’. In that argument branch, claim
‘GPM1.2.8" mentions that the installed update does not create any hazard
and claim ‘GPM1.2.1.2" mentions that OTA activities follow the procedure
correctly. Proving that updates do not create any hazard (claim ‘GPM1.2.8’),
all identified hazards have been mitigated, and no unidentified hazard exists
are assured. Similarly, proving that installation follows all procedures, tests
are done correctly, and an expert’s review is assured.

In terms of security, SAE J3061 describes in general how to protect the
vehicle from cyber-security attacks. The guidebook does not explicitly con-
sider what is necessary when maintenance is performed through OTA. We
want to include the option of OTA updates in our ACT. To do this, we use
the work reported in the design of Uptane [23, 45] as the basis of the OTA-
specific arguments in the ACT, as far as security is concerned. Once we have
a design in mind (and Uptane is sufficiently generic in terms of identification
of communication channels), we are in a position to generate threats and mit-
igations that can be used as a base for the assurance case argument. Figure
5.14 shows arguments related to OTA complying with cybersecurity related
requirements for update procedures. Claim ‘GPM2.2.1.5" mentions that OTA

updates comply with cybersecurity-related requirements, further supported by

74

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

two sub-claims (claims ‘GPM2.2.1.5.1°, and ‘GPM2.2.1.5.2’) that argue no se-
curity vulnerability in OEM update server and primary and secondary ECUs
based on Uptane.

When analyzing OTA Updates, not only must the security of data be con-
sidered, but the protocols that handle this data must also be considered. We
note that relevant attacks consistently target and exploit weaknesses of four
main security properties: confidentiality, integrity, availability, and authen-
ticity [26]. By adequately protecting these four main properties, which have
been the root targets of all known attacks, it is possible to provide security
assurance for the system.

Although the ‘CIA’ triad are considered the most crucial components of
information security, they are not enough to completely secure the system.
The ‘STRIDE’ Threat Model from Microsoft [42] recommends protection of
Authenticity, Authorization, and Non-repudiation as well.

Authenticity: Authenticity ensures that the data received comes from a
trustworthy source. This protects against man in the middle (MITM) and
spoofing attacks [26].

Authorization: Authorization prevents unprivileged parties gaining access
44].

Non-repudiation: Maintaining secure logs of activities and the entities to
which they are attributed protects non-repudiation scenarios [44].

We also need to consider two generic security measures — private key
protection and version control. Private key protection can help prevent
“key extraction” [26], and version control is essential in general, but can also
help protect against installation of an older version of software.

There exist several tools and methodologies for classifying and managing
security-related threats. Many of these are outlined in SAE J3061. We chose
to use Microsoft’s threat modelling tool which performs threat analysis using
‘STRIDE’ [42] and a data flow diagram of the system [29]. ‘STRIDE’ clas-
sifies attacks (threats) into six categories — Spoofing identity, Tampering with
data, Repudiation, Information disclosure, Denial of service, and Elevation of
privilege.

For each type of threat presented by ‘STRIDE’, Microsoft suggests a secu-

rity property countermeasure.

75

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

We created a data flow diagram using the template developed by the ‘NCC’
group [30] that describes relevant communication flow in the connected car as
input to ‘STRIDE.” We modelled our data flow diagram on a Uptane design
(Figure 1 in [23]). Our data flow diagram of a partial vehicle network illus-
trating OTA Updates is shown in Figure 5.15. We used the ‘NCC’ template
together with the data flow diagram in Figure 5.15 to analyze OTA Updates
for the connected car, to generate threats and corresponding mitigations to
include in our ACT.

A slice of ‘GPM’ specialized for OTA Updates using the results from the
‘STRIDE’ analysis, is shown in figure 5.16. We discuss this in more detail in

the following section.

5.4 Identification of potential vulnerability us-
ing ACT for OTA updates

We use this slice (see figure 5.16) of the ACT to explore what we need to do to
develop a safe and secure OTA update design. Thanks to the extensive work
in the Uptane project, we could use their design and a python implementation
as an example. We found that part of the implementation does not satisfy one
of the threat mitigation requirements in the acceptance criteria of the ACT
(see figure 5.16).

In particular, Threat 2 in ‘EPM 2.2.1.1.1.a.2.1" refers to a Man-In-The-
Middle attack (MITM) threat. This may lead to a vulnerability in the Uptane
implementation. The suggested mitigation strategy is that communication
must be secured (using ‘TLS’ or cryptographically signed). In the sample
implementation, requests from the primary ECU to the OEM’s time server
for an updated timestamp are sent as unsigned plain text. (The OEM time
server is included in the OEM Update Server in Figure 5.15). Although the
communication is just a pseudorandom nonce from each secondary ECU, this
allows MITM agents to alter the communication as they see fit, and force the
system into an unexpected state. Depending on a vendor’s implementation,

attacks such as a buffer overflow could be possible. In this case, editing the

76

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

packet to contain no nonces, then allowing it to go through, causes the primary
ECU to ignore the updated time. However, it will then make its next request
to the time server without sending any nonces, at which point the MITM can
inject a subset of the previously blocked nonces, and the primary ECU will
accept the reply from the time server. The primary ECU will then pass the
message from the time server along with all the secondary ECUs, but since
the MITM manipulated the exchange to only contain a subset of nonces, only
secondary ECUs in this selected subset will accept the updated time. If a
vendor decides to implement a check for a recent timestamp from the time
server on each secondary ECU before installing an update, a Mixed Bundle
Attack could be possible. The ACT suggests mitigating this vulnerability by
signing the packet of nonces from the primary ECU to the time server. If the
developer does this, this specific MITM attack can be mitigated. This example
demonstrates one of the benefits of pre-determining acceptance criteria for

evidence.

7

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

GS2.1 | SAE J3061(8.3.6)

High level cybersecurity goals
are assessed along with the
risk associated with each of
the cybersecurity goals.

v
$52.1

According to SAE J3061, cybersecurity goals along with the risks associated with each of
the cybersecurity goals can be assessed when cybersecurity concept and functional
cybersecurity requirements are defined. Thus:

1. Cybersecurity concept is defined correctly (see GS2.1.1)

2. functional cybersecurity requirements are determined correctly (see GS2.1.2)

Reasoning proof:

Premise: GS2.1.1 and GS2.1.2 are true

Conclusion: GS2.1 is true

Reasoning:

if GS2.1.1 and GS2.1.2 are true, it means that they comply with SAE J3061 (8.3.6)

N

GS2.1.2

Functional cybersecurity
requirements are
determined correctly

N\ <
$S2.1.1

According to SAE J3061, the cybersecurity concept is defined when each of the following
is determined adequately:

1. Cybersecurity goals (see GS2.1.1.1)

2. the risk associated with cybersecurity goals (see GS2.1.1.2)

3. a potential high-level strategy for satisfying cybersecurity goals (see GS2.1.1.3)

| saE Ja061(8.3.4) | sae J3061(8.3.5)

GS2.1.1

Cybersecurity concept is
defined correctly

Reasoning proof:
Premise: GS2.1.1.1, GS2.1.1.2 and GS2.1.1.3 are true
Conclusion: GS2.1.1 is true

Reasoning:
if GS2.1.1.1, GS2.1.1.2 and GS2.1.1.3 are true, it means cybersecurity concept is defined
correctly

G82-1 -1 1 I YT G321 1 2 I SAE J3061(8.3.4) G82.1.1 3 I SAE J3061(8.3.4)

Cybersecurity goals are
defined adequately.

The risks associated
with cybersecurity goals
are defined.

Figure 5.11: An excerpt of arguments supporting claim ‘GS2.1" for cybersecu-

rity

o

78

A potential high level
strategy for satisfying
cybersecurity goals is
defined.

<

Ph.D. Thesis — Thomas Chowdhury

McMaster University — Computing and Software

GPM

1SO 7-5.4.3.1,7-6.4.2.2
SAE 6.2.4
Safety and cybersecurity of the vehicle is maintained during the production phase
and also throughout its operating life

[This

with pr
and decommissioning requirements in ISO 26262 and SAE J3061]

requir

service

requirements

GPM1
Safety of the vehicle

operating life

is maintained during the

production phase and also throughout its

GPM2
Cybersecurity of the vehicle is maintained
during the production phase and also

throughout its operating life

SAE 6.2.4

\+

GPM1.1 1SO 7-5.4.3.1

<ADAS> is built
complying with
production
requirements

GPM1.2 1SO 7-6.4.2.2

Service of <ADAS> is
conducted according
to the maintenance
plan & i &

1SO 7-6.4.2.2

GPM1.3

<ADAS> is
decommissioned, when

GPM2.1 SAE 6.2.4

<ADAS> is built
according to

it is required, plying

Ppre plan

with d

repair instructions

requir

-

==

L

<

cybersecurity
requirements

GPM2.2 SAE 6.2.4

<ADAS> complies
with the operation
and service procedure
relating to the
cybersecurity
requirements.

\L

s

GPM1.1.1 ePMm1.1.2| 527 | |lePM1.1.3 GPM2.1.1 GPM2.1.2 GPM2.2.3 | 725 | |ePM2.2.2| 725
Production Production Capability of Cybersecurity Cybersecurity Incident Field
plan is pr and pr { pr i pr i r was i ing
complete control plan was plan is plan was 1 d and is was
and does es d as 1 and followed in effect to lized and
not were adequate. appropriate correctly handle is in effect to
degrade implemented <> <> reported cyber | [report
safety and security cybersecurity
maintained as SAE inci incid
planned 1SO 7-5.4.3.3 GPM2.2.1 624
Service in operation phase
including normal maintenance
and repair complies with cyber
security-related requirements
I < [
GPM1.1.2.1 [075414 Jgpme.1.2.2 5073415]| [gpma..2.3 [5075425 | [Gpmd.1.2.4 [S078436 |
All required All sequences, Control plan was Configuration was
descriptions and methods, tests, tools, followed, and results approved for
criteria have been and test criteria are are appropriate production
considered documented
< < < Ee
m SAE
\i\l 624 ?l oh% %
GPM1.1.3.1 GPM1.1.3.2 |GPM1.1.3.3 GPM2.2.1.1 GPM2.2.1.2 GPM2.2.1.3 GPM2.2.1.4
Production Means of Tools and Tel i hicle/cl d Reflashi C ting to
pr was | |producti test y ing ECU's, when it the on-board
assessed as was i P interfaces is required, diagnostics
d t d were during service ||during service | |during the port during
as d h ly h ply | [service phase service phase
adequate as with with i with pli with
adequate cybersecurity cybersecurity | |cybersecurity- cyber security-
[1s07-5433.a [1so7-54330] [1so75422c r d rel d related related
&3 requirements. requirements requirements requirements
pes po2 < [

Figure 5.12:

Extract from Assurance Case for Maintenance of Automotive
Vehicles (GPM) [87].

79

ty — Computing and Software

1versl

McMaster Un

Ph.D. Thesis — Thomas Chowdhury

‘s)sixa
pJezey paynuspiun ou
ey} anoid o) uoseay °|,

anbiuyosy
uopebriw Jo 3s17 °|
elsju) souejdesoy

spJezey Joisi |
elgju0 souejdesoy

uoneonps ‘¢
ainpaoold Jo abpajmouy ‘'z
qof Jejiwis ul adusuadxs |
eus)u) 9ouejdesoy

s[enuapai
s,uosiad Jo uojejuswnoog

CTLVT NG

uondt
R)

JO uonejuswnd0g

|tey/ssed ‘g
10S8p 159) *|
aoueydaooy

s)|nsal sjsa}

3

TLTLNdE

Aue puy jou

"spoyjew ‘sainpaooid Jo u
onjeoyipow/abueyo/ssaooe

pazioyneun
pip ‘passed pue auop

‘U8 9oue}dasdy pue o)y Bo| ay} pamainal uaaq aAey sainpaosoid
SpJezey uemIuYoa) Padxa uy [E 1ey) Moys 0} S1sa 1
Al Jou ale spiezey pannuap! jo uonebniw spJezey umouy o, e
X 4O uopeusWNO0Qg 40 uopeuBWNO0Q TTLVTLNDD VT LT LNDD
28T LNdT 1'8°C’ LINd3
<O <o <O
‘passed pue *Aposu102 *A[}08.1100 spoyiow
ajepdn ue JnoyIm/yim spoyjew ‘ainpadoid ‘alnpasoud 8y} moj|oy *Aoailod
‘sjsixe -pejebniw useq arey ‘painuapl <Svay> 0} paw.opad SOIJIAIO. UolE|[EISUl sda}s >iom 8y} smoj|0}
plezey payiuapiun oN splezey paynuapl ||V uaaq aAey splezey ||y aue saupnos onsoubelq sajepdn Jle-ayi-1anQ <SvQv> Jo 92IAIeS
€8 LINdD 8T LINdD 1'8'Z LINdD YLeINdD ZVTLNdD V2 LINGD
O LT LNdS
O & < O ‘BLBIIO (&
Josu0d Buimoljoy pue sdajs
“90IAI9S By} 103U02 8y} JO Spoy}sw pue
‘Aiessadau §l ‘<Syqys Jo Buninp junoooe oy usye} ‘sainseaw Ay aouanbas ay) Buiwiopad *‘Aposuiod

‘psezey Aue ajeald
Jou pip 8jepdn pajielsul 8y L

‘<Svav>
10 9DIAISS BY} JO} PBJUSWNIOP SI
sped juswade|dal Jo uoIsInOId

L'TLNdD

(6¢°)'4'9-2)29292 0S|

90IAI8s ay) Bulinp wuojul

0} 1day sI sebueyo pue
SUOIBAIOBSP Pamo||e sy}
10} UOIBWLIOJUI JOALIP BY 1

s| ‘sabueyo Aressadau
pue sjusuodwod

S} 10 ‘<Y QV> 8U} JO
UONBAIJOESP PaMO|[e BY |

Buipnjoul ‘suoneinbyuod Aq 901n18S Jaye/Buunp

sjusuodwod PpayLIBA usaqg aney
S}l 10 <SYQY> SIopISUod <SVQV> Jo soisusjoeleyd
<SVYQV> JO 9918 leads pajejol-Aojes

Gervouemsos | 9T HNAD

Gervenwezos | 9 ¢ HNDD

e rvouesscos | V' HANDD €TINDD

e rez9z9z o8 |

pawopad/pazin

8le sueaw pue s|00}
9ouBUSUIBW ‘<SYAY>
Jo @o1M8s By} Buung

‘spoyjew ‘saunnos
onsoubelp ‘ainpasoid
‘sda)s 1om ay) smoj|oy
<Svayv> Jo MBS

CTINdD

(a€''v'9-1)2929¢ 0S|

L'T'LNdD

(e°€L ¥'9-2)2929Z 0S|

8¢’ LNdD
il

‘suononJisul

Jledal pue soueusjulew
pue uejd soueusjuleWw

ay} 0} Bulp10d9e pPajONPUOD
I <SVQAV> JO 80IAIeS
TLNdOD

(z2'v'9-4)29292 OSI

ing safety of OTA updated

for assur
R0

Excerpt of an ACT

Figure 5.13

Ph.D. Thesis — Thomas Chowdhury

McMaster University — Computing and Software

GPM2.2.1 ‘SAE J3061(6.2.4)

Service in the operation
phase, including normal
maintenance and repair,
complies with
cybersecurity-related
requirements.

Telematics system
updates during the service
phase comply with

Vehicle/cloud computing
interfaces during the service
phase comply with

Reflashing ECU's, when it is
required, during the service
phase complies with

Connecting to the on-board
diagnostics port during the
service phase complies with

SPM2.2.1
GPM2.2.1.1 [2E50e29 | [gpm2.21.2 [2€2%629 | [GpM2.2.1.3 [sesoiczs | [gpm2.2.1.4 [senmezy | [gpm2.2.1.5

Over-the-air update installed
service activities of all components
of <ADAS> comply with

cybersecurity related
requirements.

cybersecurity related
requirements.

cybersecurity-related
requirements.

cybersecurity-related
requirements.

cybersecurity-related requirements.

& & & &
SPM2.2.1.5
I
GPM2.2.1.5.1 GPM2.2.1.5.2

Adequate care was taken to ensure
no security vulnerability in the OEM
update server, including image
repository, director repository and
time server based on Uptane.

Adequate care was taken to
ensure no security vulnerability in
the primary and secondary ECUs
based on Uptane.

Figure 5.14: Excerpt of an ACT for assuring security of OTA updated

" Vehicle |

S R T

LTI LIN bus
OEM Tele-
Update matics
Server

CAN: Controller Area Network

LIN: Local Interconnect Network

HTTPS: Hyper Text Transfer Protocol with Secure Sockets Layer (SSL)
ECU: Electronic Control Unit

Figure 5.15: Data Flow Diagram of a partial vehicle network based on Uptane
23] [87]

81

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

. — T

GPM2.2.1.1.1.a.1 GPM2.2.1.1.1.a.2
<T> All threats have been All identified threats have
reprggents a identified been mitigated
specific threat

analysis name
e.g. STRIDE

GPM2.2.1.1.1.a.1.1 GPM2.2.1.1.1.a.1.2 GPM2.2.1.1.1.a.1.3

<T> was selected <T> was No other threat exists GPM2.2.1.1.1.a.2.1 GPM2.2.1.1.1.a.2.2

and meets industry performed by a . . o »

best practice for competent team Identified th_rea_ts relating to the Remaining identified

threat analysis data transmission between OEM threats have been
server and primary ECU have mitigated or compromise
been mitigated or compromise resilience has been
resilience has been achieved achieved

EPM2.2.1.1.1.a.1.3

Documentation to show
effort to find other

EPM2.2.1.1.1.a.1.1

Documentation to suppport
the claim

List of personnel, their specific
tasks & qualifications/

N A threats.

Acceptance Criteria: experience o EPM2.2.1.1.1.a.2.2
1. Reviews of <T> from Acceptance Criteria: Accgpta?ce Crltelrla. bl EPM2.2.1.1.1.a.2.1 .
industry & academia indicate 1. Each person qualified to do L. List of other plausible Documentation of

methods used to find

Threats & Mitigation.
additional threats

Threat 1: Compromise the <X> ECU
in Order to Deliver Malicious Updates;
Threat 2: Modify Data Being Sent to
or from the Telematics ECU While in

that it is a best practice threat
analysis.

2. Internal company evidence
shows that it is the best threat
analysis for the scenario

their task.

2. Min requirement is a post
graduate degree in software
or system engineering, and at
least 2 years experience of

mitigation/ compromise
resilience of remaining
identified threats
Acceptance Criteria:

1. list of threats

using <T> Transit 2. corresponding
mitigation/ compromise
All other threats along with their Acceptance Criteria: Mitigation of resilience for each threat
mitigations have been listed in a threats: Threat 1 - Server kept up to
document that can be linked to date & regular security testing done.
the evidence Threat 2 - secure communication

channel between car & server. ...
. Threat 2 was used to

explore a possible
vulnerability in an Uptane
implementation

Figure 5.16: Slice of safe & secure ACT for OTA Updates [87].

82

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

Chapter 6
Criteria for Evaluation

This chapter demonstrates the criteria to evaluate ACs. The criteria are cat-
egorized into two groups: the structure and content of an AC. Furthermore,
we highlight two perspectives of performing evaluation of ACs: developers and

external reviewers. This chapter extends work published in [88].

6.1 Criteria for evaluation of ACs

Evaluation of an AC is used to identify weaknesses in reasoning or evidence.
For example, criteria to evaluate the structure and content of an AC will
improve understanding of weaknesses or considerations left implicit in an ar-
gument, and provide guidance to make them explicit and more compelling.
Criteria systematically guide the evaluation process to discover incorrect, in-
complete or inconsistent argument structures. Criteria play a vital role in
guiding the evaluation process. An AC has a defined structure and content.
For a complete evaluation, content and structure criteria should be defined
separately to perform systematic evaluation. There are two perspectives from

which to view AC evaluation:

e the Developer perspective: which includes system developers, software

engineers, AC developers, etc.

e an External perspective: which includes external reviewers from regula-

tory and other third party organizations.

83

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

As mentioned before, we have divided criteria into two sets: Criteria in the
first set are designed to be used in evaluating the structure/notation of an
AC. Criteria in the second set are to be used in evaluating the content of an
AC. In both cases we discuss each criterion under the headings of “Overview”,
“rationale” and then describe additional detail regarding the “Developer’s per-
spective” and “External Reviewer’s perspective”. The developer of an AC has

several tasks:

1. to document honest and explicit reasoning as to why the system is safe

(or not);

2. to provide guidance to the developers of the system that demonstrates

what they need to do in order to build a safe system;
3. and to continuously question the validity of the AC as it is developed.

In general, the developer of the AC will have a more detailed knowledge of
the AC than any future external reviewer. Developers have an additional
advantage as far as evaluation is concerned. They are able to apply “pairwise
comparison” for specific evaluation criteria. This occurs quite naturally in
developing the product, and it seems obvious to apply it during evaluation.
In some cases, developers create more than one AC for a product. They may
also have an assurance case template for their product line, which can be used
as a basis for argument comparison. This allows the development of a “good”
argument in an AC. A quantitative assessment may not be a right candidate,

for several reasons:

1. To perform a quantitative assessment, in some cases, the probability of

a basic element must be assigned which is subjective;

2. Similar to software development, the selection of metrics in an AC is not
purely mathematical, which can result in a lower confidence quantitative

assessment.

However, the external reviewer has the advantage of not being influenced by
beliefs and views that the AC developer may share with the system develop-
ment team. The external reviewer may also benefit from experience gained

by reviewing ACs created by different development teams. In some cases, the

84

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

external reviewer will benefit from information provided by the AC developer
specifically included aiding external review. Figure 6.1 shows a high-level view
of the evaluation process. However, this high-level view is useful in under-

standing the big picture.

Develop
AC Assurance
Case

‘Developer’s,
Evaluate ='= =) Evaluation ,
AC 1 Report ,

Legend
Evaluate

AC

Dev Process

Dev Document

====l) ExtProcess

- Ext Document

Pre-existing EVaI_uat_lon
Entity Criteria

= = = NMay/may not exist

Figure 6.1: High Level View of the Evaluation Process

6.2 Criteria for evaluating structure/notation

AC can be structured in many ways and use different notations; the struc-
ture and notation used may have a profound impact on the effectiveness of the
AC, particularly when tools that do not provide syntax-aware support for con-
structing the AC. The following criteria guide the evaluation of the structure

and notation of an AC.

85

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

6.2.1 Syntax check
6.2.1.1 Overview

A syntax check can provide an indication of the quality of the AC. Aside from
its effect on understandability, if there are syntax errors in the AC, it may be
an indication of the care the developer took in its construction. For example,
if the AC is presented using GSN, then there are expectations that specific
shapes and connectors have been used in specific ways. This is independent
of the content of those shapes. A GSN-specific tool will generally either only
allow syntactically valid GSN to be produced, or will provide ways to check
that syntactic rules have not been violated. Syntax errors are likely to indicate
a degraded quality of care or competence of the developer. In general, tools
are invaluable (even necessary) for performing syntax checks. However, they
typically do produce both false-positives and false-negatives. Apart from bugs
in tools, incorrect or incomplete requirements are responsible for producing
unexpected results. False-positives are annoying. False-negatives result in not
detecting syntax errors. Thus the AC still needs to be checked by humans.
Syntax-aware tools (e.g. a GSN editor) need not be used; in some cases an
AC may be presented in a textual format, or via a general-purpose tool such
as Powerpoint. In such cases, it is still vital that the presentation be checked

for consistent formatting, notation and structure.

6.2.1.2 Rationale

We realize that many (useful) ACs may not have a well-defined semantics.
However, they really must have a well-defined syntax. Without that, develop-
ers of the AC and readers/users of the AC will have great difficulty in navigat-
ing and understanding the “case” presented — especially since industrial level
ACs are likely to be huge.

6.2.1.3 Developer’s perspective

The developer’s task is eased considerably if the AC is developed using an AC
tool. In this scenario, it should be trivial for the AC developer to perform
a syntax check to ensure that the AC’s syntax is correct. The developer can

then also document this information for any external reviewers. Knowing that

86

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

the syntax is correct enables the developer to focus on the content of the AC.
Conversely, lack of a tool will result in the AC developer having to check
consistency and structure, etc. and thus not focus as much on content — or not

worry about syntax and possibly deliver a document of much lower quality.

6.2.1.4 External reviewer’s perspective

Explicitly checking the syntax of an AC is time-consuming at best, and perhaps
too time-consuming if the external reviewer does not have suitable tools for
that specific AC. If the developer of the AC has not documented checks done
to protect against syntax errors, the external reviewer may rather just note
syntax errors when coming across them. Too many errors may be a cause
to doubt the quality of the AC. Syntax errors may also cause difficulties in
understanding the AC well enough to evaluate the argument regarding the

system’s safety.

6.2.2 Traceability
6.2.2.1 Overview

Links between assurance and system development artefacts are of crucial im-
portance in dealing with evidence that supports a claim [89]. No matter what
notation we use, we need to use a cross-reference to an item in the system
development to demonstrate convincingly that a claim is valid. The finer the
granularity of this evidence, the more useful it is in understanding why it sup-
ports the claim. This is true when we create the initial AC. It is even a more
significant advantage in dealing with the system’s future maintenance and as-
surance. A significant concern with ACs is that after a design change, for
instance, updating the AC to take into account that change without redoing
the entire AC is extremely challenging. Incremental assurance after a change
in the system, or in its environment, or the AC itself, requires that we perform
an effective change impact analysis, even in the case of assuring emergent prop-
erties such as safety. Performing an adequate change impact analysis requires

extensive and thorough traceability links between all the relevant artefacts.

87

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

6.2.2.2 Rationale

Thorough traceability between all assurance, system and environmental arte-

facts is absolutely essential for effective maintenance of the system and its

AC.

6.2.2.3 Developer’s perspective

Maintenance of an AC differs from the maintenance of the system itself. ACs
are much more effective when developed (or widely developed) before the sys-
tem development is started [90]. During system development, it may become
necessary to make changes to the AC. So, we can see that AC maintenance
takes place even during the initial development of the system. Thus, the AC
developer will create, maintain and use the traceability links throughout the

development of a system.

6.2.2.4 External reviewer’s perspective

An external reviewer should evaluate how well the traceability of the various
artefacts was achieved. The mechanisms the AC developer used for creating,
maintaining and using the traceability links should be obvious to an exter-
nal reviewer. The external reviewer’s motivation for evaluating traceability
is to gauge how easy it was for the AC developer to understand the complex

interactions between artefacts.

6.2.3 Robustness
6.2.3.1 Overview

Kelly defines robustness of an AC as follows: “how fragile is the argument
to possible changes in the evidence and consequent claims?” [55]. We assume
that changes will be made, during the development of the initial AC, and
after future changes in the associated product itself. We want the AC to be
robust in the sense that changes should be as contained as possible. In other
words, the effect of a change should be constrained to be as local as possible.
The principle of information hiding from software design [91] could serve as

an excellent model for creating and evaluating the robustness of an AC. For

88

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

example, it was suggested in [15] that GSN ACs will be more robust if the
sub-claims likely to change are located “lower” in the GSN graph. A robust
AC should facilitate incremental assurance. However, incremental assurance

will require much more than robustness — extensive traceability, for instance.

6.2.3.2 Rationale

In general, an AC should be robust with respect to likely changes. Incremental
assurance highly depends on the robustness of an AC. More robust AC leads
to more feasible AC due to less effort for changeability. Incremental assurance
guides the future development of a product in a particular product line. Robust
AC can accelerate an incremental assurance process. However, it is not feasible
to construct ACs so that they are robust with respect to all changes. However,
robust with respect to likely changes are more tractable and may prove to be

very effective.

6.2.3.3 Developer’s perspective

The developer of the AC should have knowledge of the likely variability in
the AC (and associated system). The developer should also take into account
likely rebuttals of the current argument and alternatives in the evidence that
could support terminal sub-claims in GSN-like ACs. The AC developer could
then gauge the robustness of the AC by simulating the likely changes. In this
way, the developer will be able to use robustness as an effective evaluation
criterion for that AC.

6.2.3.4 External reviewer’s perspective

If the AC developer’s evaluation of robustness is well documented, the exter-
nal reviewer should be able to conduct an audit and arrive at an independent
evaluation of robustness. If the AC developer’s documentation is lacking, the
external reviewer has a much more difficult task. However, based on experi-
ence, the reviewer could simulate pertinent likely changes and ascertain how

constrained the impact of those changes would be.

89

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

6.2.4 Understandability
6.2.4.1 Overview

“Understandability” may look like it is more appropriate to include in crite-
ria for evaluation of content rather than in criteria for evaluation of struc-
ture/notation. Understandability with respect to content is dealt with in dis-
cussion related to arguments. This instance of understandability pertains to
how the structure of the AC, its appearance and notation help or hinder un-
derstandability of the AC. Structure related to navigation through the AC

may be especially important.

6.2.4.2 Rationale

Understanding an AC to serve the purpose is one of the critical elements in
evaluation. Ambiguous AC does not provide adequate confidence to stakehold-
ers about their product. “Understandability” criterion plays an active role in

facilitating the comprehensibility of the AC for evaluation.

6.2.4.3 Developer’s perspective

This is one criterion that is used entirely differently by developers of ACs
compared with external reviewers. The developer creates the AC, and so
bears the responsibility for ensuring that the AC is understandable by all

stakeholders. This can involve:

e Structuring the AC so it is easy to navigate. For instance, if the AC uses

GSN, modules should be used to encapsulate argument threads.
e Choosing font colours and sizes to enhance the AC’s readability.

e Laying out graphical ACs (like GSN) in a consistent way so as not to
mislead readers in understanding the structure of the argument. For
instance, keeping subclaims of a parent claim on the same decomposition

level in the graph.

e Using consistent assurance case patterns for similar arguments, to reduce
cognitive load on reviewers or the assurance case, who may benefit from

recurring structures in the ACs they must analyze.

90

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

6.2.4.4 External reviewer’s perspective

A simple checklist like the one described above can be used by an external
reviewer to evaluate how well the developer has managed to facilitate a deep
understanding of the AC. This is so important that we support the idea of
reviewers rejecting to evaluate an AC if it is not understandable because of

the structure/notation/appearance.

6.2.5 Efficiency
6.2.5.1 Overview

Efficiency in this context refers to how the structure/notation of an AC affects
the throughput and accuracy of people developing an AC, developing a system,

and reviewing an AC.

6.2.5.2 Rationale

An AC provides valid reasoning for the critical properties of a system. Evalu-
ation of an AC is time-consuming and requires extensive expertise. It is thus
vital to ensure that the AC’s structure/notation facilitates the ease with which
experts can perform this evaluation. FEfficiency guides the development and
review of an AC through easily comprehensible structure and notation, which

escalates a ‘good’ evaluation process.

6.2.5.3 Developer’s perspective

There is a stark difference between developers of the AC compared with ex-
ternal reviewers of the AC. The developer of the AC needs to consider how
the structure of the AC will impact the creation of the AC itself. For in-
stance, GSN ACs may require extensive duplication because of cross-cutting
concerns. In such a situation, the developer may decide to use patterns that
can be instantiated automatically with appropriate tooling. If the AC is used
to guide the development of a system, the AC developer may structure the
AC to include items that will facilitate the collection of evidence during the

development of a system.

91

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

6.2.5.4 External reviewer’s perspective

The earlier criterion of understandability assumes that there is an effort to
be made in understanding the AC. This criterion is really about whether the
structure /notation of the AC impacts that effort in a positive or negative way.
For example, in GSN ACs, there is leeway in where to include specific argu-
ments. The argument that each hazard has been mitigated adequately may
be described in a graphical GSN decomposition, or it could be implemented
by having a claim that all identified hazards have been mitigated, and then
evidence in the form of a work product that describes each hazard and how it
has been mitigated, and why that mitigation is adequate. The latter option is
more efficient in many ways, even for the external reviewer, as demonstrated

in figure 6.2.

6.3 Criteria for evaluating content

Claims made in the argument of an AC must be understood by stakehold-
ers within the context of the developed product and environment. As such,
evaluating the content of an AC is of critical importance, as this involves mak-
ing judgments about the argument in a particular context. We now present

criteria to assist in such an evaluation.

6.3.1 Convincing basis for the AC
6.3.1.1 Overview

To determine whether or not there is a convincing basis for an AC, the re-
viewer should understand and review the explicit argument presented in an
AC; understand and review the explicit relevant assumptions about the prod-
uct, its environment and the efficacy and quality of its development process;
and understand and review the context in which the product will be deployed.
There are three significant steps in this process: understand and review the
“top-level” claim of the AC; understand and review the detailed argument,
including how sub-claims support parent claims, and how evidence supports
terminal claims; and an explicit check that the review is not affected by “con-

firmation bias” [46].

92

Ph.D. Thesis — Thomas Chowdhury

McMaster University — Computing and Software

Layout option 1 T

\V/

C286.1

Hazard 1 has
been mitigated

E-286.1

Description of
mitigation of hazard 1
in section 15.6 of
hazard analysis, doc
reference XXX-14-
Rev12.

C286

All 307 identified
hazards have been
mitigated

v

e

C286.2

Hazard 2 has
been mitigated

E-286.2

Description of
mitigation of hazard 2
in section 15.6 of
hazard analysis, doc
reference XXX-14-
Rev12

C286.307

Hazard 307 has
been mitigated

E-286.307

Description of
mitigation of hazard
307 in section 15.6 of
hazard analysis, doc
reference XXX-14-
Rev12

Layout option 2 T

C286

All 307 identified
hazards have been
mitigated

E-286

Description of mitigation
of hazards 1 through
307 in section 15.6 of
hazard analysis, doc
reference XXX-14-
Rev12

Figure 6.2: Example in GSN Illustrating Differences in Efficiency

93

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

e Top-level claim: In general, the top-level claim of an AC describes a
claim about critical properties of a system under consideration. The
top-level claim must be supported by sufficient context for readers to
understand how the system fits within its environment and necessary
assumptions for the reader to understand the boundaries and limitations
of the argument. The top-level claim must also be achievable, given
the stated context and assumptions. For example, a top-level claim of

“System X is safe” is not feasible.

e Faxplicit reasoning for the arguments: The argument that supports the
top-level claim should be explicit. This criterion is not about the validity
or the rigour of the argument. Those are dealt with in other criteria
within this section. This criterion is simply about whether or not the
reasoning for the argument is explicit. It may be described in natural
language, a logic of some kind, or a combination of these. The important
point is that there needs to be some reasoning for every (sub)claim that
shows why, if its premises are true, then the parent claim is true. The
premises may be a combination of sub-claims and evidence. Sadly this
is often not the case in GSN-like ACs. Therein, the decomposition of

claims is explicit, but the reasoning is often left implicit.

e Avoiding “confirmation bias”: This is another challenge in ACs high-
lighted by Leveson [46]. A simple example is when people look for specific
evidence that supports a claim without considering counter-evidence.

Discovery of any confirmation bias clearly degrades confidence in an AC.

6.3.1.2 Rationale

A feasible top-level claim is essential as it is the starting point of assuring crit-
ical properties of a system, and it also initiates the assurance building process.
Moreover, reasoning needs to be explicit so that it can be reviewed. Without
an explicit argument, it always depends on the expertise of reviewers, which is
subjective in nature. Confirmation bias needs to be guarded against explicitly.
It can manifest itself in various ways in the reasoning steps. When developers
provide explicit reasoning, confirmation bias affects reasoning involving claims

as premises as well as evidence as support for a terminal claim. Even when

94

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

explicit reasoning is not provided, confirmation bias may affect the validity of

evidence.

6.3.1.3 Developer’s perspective

Developers should provide explicit argumentation for review, and they need to
review it themselves. This means that: i) they need to challenge their reason-
ing by explicitly documenting rebuttals and why the rebuttals are defeated,
and ii) they need to list acceptance criteria for evidence before the evidence
is generated (see discussion related to assurance case templates in [15]) and

document why each item of evidence meets its acceptance criteria.

6.3.1.4 External reviewer’s perspective

This is a difficult criterion for external reviewers to evaluate. If the developer
does not document the items suggested in i) and ii) above, an external reviewer
has to consider each step in the argument from the point of view of confirmation
bias. This can be onerous. If the AC developer does document i) and ii), then
the external reviewer is in a position to evaluate confirmation bias by reviewing
that documentation. This should prove to be both easier and potentially more
accurate since the developer is in a position to describe any steps taken to
avoid confirmation bias. Otherwise, the external reviewer has to guess at the

developer’s approach and frame of mind.

6.3.2 Rigour of the argument
6.3.2.1 Overview

One of the main characteristics of an AC is explicit argumentation. An addi-
tional evaluation criterion is the rigour of the argument. We should expect that
the reasoning steps are documented in a semi-formal way, or at least through
rigorous application of an argument pattern. Rushby [92], [7] argues that
the reasoning involving sub-claims as premises can be performed deductively,
while the reasoning that evidence supports a sub-claim is done inductively,
and that it then may be able to check many AC arguments mechanically. It

may be controversial to consider documenting a formal argument in current

95

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

ACs, but the point is that utterly informal reasoning in these complex systems
is subject to errors in which we miss ambiguities and logical fallacies. Even if
we cannot achieve formality, making these arguments more rigorous invites a
greater focus on the reasoning. Rigorous application of reasoning patterns in
natural language may also effectively improve the quality and thoroughness of

the reasoning.

6.3.2.2 Rationale

It is crucial that we trust the reasoning in the AC. Ad hoc, natural language
reasoning, while better than no reasoning at all, is not adequate to protect
against errors introduced merely through lack of appropriate precision and
rigour. Rigour is vital in making the reasoning less subjective and more re-
peatable. Less subjectivity in reasoning reduces the possibility of having fewer
fallacies. On the other hand, repeatability of arguments escalates possibilities

of automation in instantiation using tool support.

6.3.2.3 Developer’s perspective

The developer bears the responsibility of including rigorous reasoning in each
step of the argument. For example, in GSN if a goal (claim) A is decomposed
into subgoals (sub-claims) B and C, then the Strategy documents how the goal
A was decomposed into subgoals B and C. In addition, as discussed above,
there needs to be reasonably rigorous reasoning that demonstrates that if B
and C are both valid, then A will be valid. The existence of this reasoning and

the extent to which it can be considered to be rigorous should be evident.

6.3.2.4 External reviewer’s perspective

This is one case in which the external reviewer’s task is relatively easy. The
reviewer should not have to provide an argument. Evaluation of this criterion
involves only a judgement of what was achieved by the AC developer. We
note that it is not necessarily true that an utterly formal approach should be
evaluated to be better than a semi-formal approach, or one that uses natu-
ral language aided by argument patterns. For instance, a completely formal

approach may need to make unrealistic assumptions.

96

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

6.3.3 Quality of the hazard analysis
6.3.3.1 Overview

This is one of the criteria that applies to safety case evaluation in particular.
Adequate mitigation of all known hazards is a prerequisite for system safety.
In addition, we need to know with reasonable certainty that there are not
likely to be additional hazards that we have not considered. This criterion
is so important that many people have made it the primary focus of a safety
AC. While we disagree with that as a way of structuring ACs, we do agree
that it is of vital importance. There are a number of ways in which we can
gain confidence that “all” hazards have been identified, which is a necessary

precursor to all hazards have been mitigated. Details are included below.

6.3.3.2 Rationale

In the case of hazard identification and mitigation, we believe that there is
no alternative but that the AC developer must document the effort that went
into identifying hazards, as well as sufficient detail regarding mitigation of
those hazards. Again, we believe that the basic plan for hazard identification
and mitigation should start with the development of the AC, and that specific

detail has to be provided from system development documents.

6.3.3.3 Developer’s perspective

The AC developer needs to be able to include the following, before development

of the system starts:

e Specify claims and evidence acceptance criteria related to what hazard
analysis method(s) are acceptable. For instance, applicability of the haz-
ard analysis technique in that domain; published reports on how effective
the method has proven to be in practice; technical publications on the

soundness of the method, etc.

e Specify claims and evidence acceptance criteria related to the minimum
experience/educational requirements of people tasked with the hazard

analysis.

97

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

e Specify claims and evidence acceptance criteria related to a comparison
with known hazards. For instance, in many domains, a list of hazards
is already know, especially if the domain is regulated. For example, the
U.S. Food and Drug Administration (FDA) has identified infusion pump
system hazards [5] and recommended mitigation strategies. Moreover,
the FDA provides examples of hazards and their causes under headings

such as: operational, environmental, electrical, hardware, software, etc.

e Specify claims and evidence acceptance criteria related to what effort

must be expended in exploring whether there are additional hazards.

e Specify claims and evidence acceptance criteria related to what checks
must be performed on mitigation of hazards. Evidence derived from the
development of the system must satisfy the relevant acceptance criteria

and then be included in the AC documentation.

6.3.3.4 External reviewer’s perspective

The external reviewer’s task concerning this criterion is to review/audit the
specific material in the AC. In this case, it is mandatory that such material is
presented and argued thoroughly. The external reviewer may use the experi-
ence to supplement items in the AC. For instance, a knowledgeable reviewer
in a regulated domain with years of experience may be aware of hazards not
listed in the AC. This would naturally reduce the reviewer’s trust in the AC.

6.3.4 Arguing completeness
6.3.4.1 Overview

We already discussed the quality of the hazard analysis as an evaluation crite-
rion. One of the aspects of this criterion that we had to consider is the claim
that “all” hazards have been identified. This is an example of a completeness
claim that cannot be “proved”. There are typically many such claims in an
AC. Examples extend from modelling the system (did we include all relevant
system inputs and outputs) to implementing behaviour that copes with all
possible combinations of inputs. These same problems arise again when we
document the AC for that system.

98

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

6.3.4.2 Rationale

“Completeness” is an elusive property in system and software engineering.
We have numerous opportunities to err during system development simply
because we did not try hard enough to cope with a completeness requirement.
Deficiencies in completeness are a common source of error. We suggest that

there are consistent approaches to dealing with completeness.

6.3.4.3 Developer’s perspective

There is no single way of dealing with all the different completeness arguments.
The developer of the AC is in an excellent position to decide on an approach
depending on the specific situation at hand, and then guiding system devel-
opment by including that approach in the AC. We need to emphasize that we
know of no way of guaranteeing completeness in general. We see three different

kinds of completeness, captured as follows:

e A claim related to a property for which the subdomain that includes
all items with that property is unknown. This type of completeness,
such as identification of all hazards, is extremely difficult to deal with.
The important thing to note is that when we make such claims, we
have to explicitly show how we have justified using the word “all”. We
illustrated one way of justifying this type of claim in our discussion of
hazard analyses. Another way of justifying such a claim is to list rebuttals

of the claim and then document how these rebuttals can be overcome.

e A claim related to a property for which the subdomain that includes
all items with that property is known, but so large as to make dealing
with each item infeasible. An instance of this is well-known. Verification
of large, complex systems through testing acknowledges that we cannot
test every combination of inputs over all time steps. In this specific case
years of research have resulted in methods by which we may substitute a

less onerous claim that can adequately substitute for the original claim.

e A claim related to a property for which the subdomain that includes
all items with that property is known, and dealing with each item is

feasible. This is a claim for which we have developed many interesting

99

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

and successful arguments. For example, if we want to claim that we have
a requirement described by a mathematical function, we can claim that
we have specified complete and unambiguous behaviour of that function
by using a tabular expression [93]. Well-formed tabular expressions have
to be complete on the input domain, and also disjoint (unambiguous).
Mathematical expressions for completeness and disjointness are known

and can be used to check that the tabular expression is well-formed.

6.3.4.4 External reviewer’s perspective

The external reviewer can use this criterion in the same way but is likely re-
stricted to whether or not the AC developer has included sufficient information
to reach a conclusion. If the AC developer has not included documentation
to help with evaluating this criterion for any specific claim/argument, the ex-
ternal reviewer’s safest option is to call into question the completeness of the

specific claim/argument.

6.3.5 Repeated arguments
6.3.5.1 Overview

AC notations differ in how often we see similar arguments being used in a single
AC. For example, in GSN it is quite common to see very similar arguments
used in many parts of the AC. There are typically two different ways of
achieving this. The first is through the equivalent of “cut-and-paste”. The
second way, especially predominant in GSN, is through the use of so-called
“argument patterns” [94, 95]. A slightly different problem, but essentially
similar, is the use of similar arguments in many different ACs. The methods
of implementing them are the same, and argument patterns are much more

preferable.

6.3.5.2 Rationale

When AC patterns or argument patterns are used, it is important to check that
the patterns are used appropriately, and that the context and assumptions for

the pattern are in complete agreement with the context and assumptions for

100

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

the position in which they are placed in the AC. It is a source of error if they

are used where not completely appropriate.

6.3.5.3 Developer’s perspective

The AC developer is clearly responsible for deciding how to cope with similar
arguments in the AC. As usual, there is an onus on the AC developer to

document how patterns are used, for example.

6.3.5.4 External reviewer’s perspective

It may not always be evident to an external reviewer on how and where similar
arguments have been implemented in an AC. The external reviewer needs to
try and find these “repetitive” arguments. The reason is that the external
reviewer is unlikely to check absolutely everything in a specific AC, especially
if that reviewer is a regulator. It is too much to expect that external reviewers,
in general, spend as much or more time on the AC as compared with the de-
veloper. This means that the external reviewer may not find every occurrence
of the use of a pattern, and may then miss where a pattern has been used
inappropriately. This is slightly different for missing where an AC developer
has made an error in an argument, since the AC developer has likely not even

reviewed the local argument after instantiating a pattern.

6.3.6 ALARP
6.3.6.1 Overview

This is the other criterion specific to safety. As Low As Reasonably Practica-
ble (ALARP) has a number of counterparts depending on domain and country.
They are all quite similar, and while often viewed as a cost-benefit analysis,
it requires that we provide adequate confidence about safety based risk as-
sessment in a software-intensive system. This principle demonstrates that the
impact of risks associated with unmitigated hazards is low. To provide confi-
dence to stakeholders the ALARP principle should be incorporated into safety
ACs.

101

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

6.3.6.2 Rationale

ALARP and associated principles are essential in demonstrating cost-benefit

considerations and due diligence.

6.3.6.3 Developer’s perspective

The AC developer must explicitly deal with ALARP. One excellent way of
doing that is to use an argument pattern expressly designed and widely re-
viewed that demonstrates ALARP for the specific AC. One such pattern was
developed by Kelly [94], but more current patterns may exist.

6.3.6.4 External reviewer’s perspective

One of the key intentions of manufacturing safety critical systems is to build a
safe system. Any unmitigated risk may jeopardize this purpose. Nobody can
guarantee complete safety. So, demonstrating that the risk is as low as rea-
sonably practicable (ALARP) is necessary. The external reviewer should look

expressly for demonstration of ALARP and review the presented argument.

6.3.7 Confidence
6.3.7.1 Overview

Confidence in AC terminology refers to the trust we have in the overall argu-
ment presented by the AC. There is considerable published literature on confi-
dence in ACs. Different researchers have developed different confidence assess-
ment frameworks. Most of the confidence assessment frameworks use Bayesian
Belief Network, Dempster-Shafer Theory, Beta distribution, or weighted aver-

age. Confidence related to the claims, reasoning and evidence must be verified.

6.3.7.2 Rationale

We do not attempt to reproduce or critique the confidence literature and re-
sults. Probabilistic nature and subjective assumption lead to implausible con-
fidence measurements in some cases [96]. We simply reinforce that confidence

in the argument is critical, and it is thus an important evaluation criterion.

102

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

6.3.7.3 Developer’s perspective

In some cases, developers provide confidence assessment results. It is impor-
tant that if they presented, the basic methodology used is explained.

6.3.7.4 External reviewer’s perspective

In some cases, external reviewers review confidence assessment result. In other
cases, external reviewers may try to ascertain confidence in the AC themselves.
This is not feasible without adequate tool support built for this express pur-

pose.

103

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

Chapter 7
Evaluation of Assurance Cases

This chapter discusses a systematic evaluation process to review ACs using
the criteria described in Chapter 6. We illustrate a generic evaluation model
and later refine and instantiate that model for each criterion (criteria for both
structure and content of an AC evaluation). This chapter is based on work
published in [97].

7.1 Evaluation process

This section presents details of our systematic evaluation of ACs. To put this
on a well-structured footing, we start by modelling the evaluation process and
its relevant data, including all primary components of an AC, as well as de-
velopment artefacts from the system of interest in figure 7.1. The rationale
of having a class ‘ProcessX’, data classes of assurance case artefacts, system
artefacts and recommendation classes in a generic evaluation model is to show
an explicit data flow between processes and assurance case and system arte-
facts. ‘ProcessX’ represents the execution of different processes in a refined
and instantiated evaluation model of a criterion. The generic model contains

4 main components:
e The Process for evaluating the AC (represented by Green rectangles);

e The Recommendation arising from the evaluation (represented by Blue

rectangles);

104

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

e AC data that is the subject of the evaluation (represented by Yellow

rectangles);

e System development data that is referred to in the AC (represented by

Orange rectangles);

Moreover, there is a component for assumptions, e.g. assumptions for process,
assumptions for recommendations, criticality (represented by Grey rectangles).
In addition to these, the generic evaluation model shows associations (repre-

sented by arrows/lines):
e Black arrows/lines are used for input, output and associations;

e Red arrows/lines are used to highlight links between the AC and system

developments artefacts.

We illustrate four different components, along with associations among them.
The definition of the proposed generic model starts with system development
data. In this system development data, each artefact consists of a process
description and product description. For instance, an attribute ‘elicitDes:str’
in the ‘Requirements’ artefact describes the elicitation process, and ‘desc:str’
describes requirements. Thus, system development data includes require-
ments with the elicitation process documentation (represented by class ‘Re-
quirements’), detailed design with processes documentation (represented by
‘Design’), implementation process with work products documentation (repre-
sented by ‘Implementation’), and maintenance work with change information
documentation (represented by ‘Maintenance’). Furthermore, a class ‘People’
represents a documentation of the qualification of competent people involved
in system development and system operation. The principal input to an evalu-
ation process is AC data. AC data represents different artefacts of an AC. An
AC primarily consists of claims (represented by a class ‘Claims’), arguments
(represented by a class ‘Arguments’) and evidence (represented by a class ‘Ev-
idence’). However, claims can be of three types: top-level claim (represented
by a class ‘TopClaim’), sub-claims (represented by a class ‘Subclaims’) and
terminal claims (represented by a class ‘TerminalClaims’). Furthermore, an

AC includes other artefacts. They are supporting terms (represented by a

105

McMaster University — Computing and Software

Ph.D. Thesis — Thomas Chowdhury

"[L6] ss9001g wOIYRN[RAY)Y OYI JO [OPOJN OLIDULY) :T°) 9IS

1S : eaXa -
Anreonug : feono - L —
ns ._ osa@bns - | * O §s1089p - [g
HodayioL : 1oDI0ua - [* g 1S : UOIISOIOLS - } PUSWIWIOD3Y3)eIaUS)
jul:pl- ' pi- <<Ss9904d>>
Hodayjeury Jlodaylon] . %)
I e o
suondwnssypuswwossy
(psepuels ‘wodgal ‘wodalAlybly) : anjea - <<uopduwnssys>
Ayeanuo
<<uoljBIoWNUS>> uopepuUBWIWO0aY
_H‘o
.0 1S : 0sop - is _b_._.tm - swiepgns - om.w_o - b
= swiel) : wieyebie] - u .mc_ B uh_ 5[#= _ 2
i : pi- uieedbiy ainpop b1y J : $8650
s { { « | X Q& H_
lennqgey C <<ss8201d>>
- ¢ & 7
A T.
Js tuopeupsep - [°L 7S osen - 5 osop - L0
418 - 894nos - o " W pi- ns:eqel - [ssa%04dio4suonduinssy
syurjeoel - .
A .49.._‘._. I swiepojeurwie) wr:pl- <<uonduwnssys>>
"0 .. = T swie|pqns
! AN
\a SOUSPIAT : 80UBPIAS - k Seoo0id
5 J)s 1 oopjal - ns : Bujuoseas - Jd}s 1 os8p - = s - osop -
] Jis 1 osep - SWie[D : SWIeOpIYo - | | S 193] - wc_ Pl - -
) i pt- swie|D : wienjualed - r:pl- T s :oseq-
sousping |1 wipl- swie| wiejgdo ns:oseq- || 8- owmn_n”n.:n“ - Js :ose(q -
SjuswinBiy -0 _\/ - i E— | #is:s8000id - ul:pl 1S : 9889Qo0.d -
; _ * Y ¥ b : B i pl- [| uonejuswajdwi i pl-
0 * <L s :osep- |0 ~
S s : sypoddns - @oueUBUIRI] ubiseq
ot wp| il
43S - svM - 1S : UoNEJoU - * ur:pl-
ns:eAs - | :M : oEMcw\Aw ; b 1S : oousadxe - 1S : 0sep -
i pi- 1S : sweu - swuspoddng 1S : uonedNpa - 1S : saqyole -
ur:pl- ur:pl-
sjeuoney \ asepaoueINSSy el L
&“ Xosegaosueinssy s|doad sjuswalinbay
5) [)
? 1S : dWeu - m *.._‘7
@\ , woaysAs |
{ XwoisAs

Byd

106

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

class ‘SupportTerms’), e.g. context, assumptions in GSN, rationale, (repre-
sented by a class ‘Rationale’) e.g. justification in GSN, rebuttals (represented
by a class ‘Rebuttals’), trace links (represented by a class ‘Tracelinks’) illus-
trate associations between different artefacts of an AC, e.g. ‘supportedBy’,
‘InContextOf’ in GSN. Moreover, an AC may contain module (represented
by a class ‘ArgModule’) to make it easier to comprehend. Long branches of
arguments fit in one page due to modules. Besides, any argument branch
of an AC may comply with a pattern (represented by a class ‘ArgPattern’).
‘ProcessX’ represents different processes for the evaluation of an AC; each
process takes different artefacts of an AC and checks them based on rules
defined for that process and produces error output (represented by a class
‘ErrorReport’). ‘ProcessX’ can be one process or more based on an evalu-
ation criterion. For instance, in case of GSN syntax check, ‘ProcessX’ can
be refined to ‘CheckGraphSyntax’ only, that checks GSN syntax of an AC.
On the other hand, for traceability check, ‘ProcessX’ can be refined to three
processes ‘EvidenceToSystemTrace’, ‘RecentToPastVersionTrace’ and ‘Argu-
mentPatternTrace’. Another process for recommendations (represented by
‘GenerateRecommend’) takes error output (represented by a class ‘ErrorRe-
port’) and generates recommendations (represented by a class ‘Recommend’)
with criticality (represented by a class ‘Criticality’). Necessary assumptions
support each process, recommendations and the criticality (represented by
classes ‘AssumptionsForProcess’, ‘RecommendAssumptions’ and ‘Criticality’
respectively). The ‘criticality’ is an enumerated class consisting of one or more
criticality levels. Domain experts can define the criticality levels - highly rec-
ommended (‘highlyrecom’), recommended (‘recom’) and no recommendation
(‘standard’). Experts may determine the criticality levels based on workshops,
discussion, experience etc., thus it is subjective. Besides, qualitative assess-
ment motivates us to define qualitative criticality levels. This criticality level is
defined based on ‘ErrorReport’ and supports the recommendation process. For
instance, in the case of GSN syntax check, fixing wrong shapes or wrong as-
sociations is highly recommended, formatting labels of nodes is recommended,
and no further action is required (defined by ‘standard’) if there is no error.
The attribute ‘extra’ in the ‘FinalReport’ class represents what developers may

provide to external reviewers for facilitating evaluation.

107

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

The association represents an input dataflow between an assurance case
artefact (source-highlighted in yellow colour) and ‘ProcessX’, ‘ErrorReport’
and ‘GenerateRecommend’, ‘Criticality’ and ‘GenerateRecommend’. The as-
sociation represents an output dataflow between ‘ProcessX’ and ‘ErrorReport’,
‘GenerateRecommend’ and ‘FinalReport’. The association represents a com-
pliance between ‘Claims’ - ‘Arguments’ - ‘Evidence’ and ‘ArgPattern’. The rest
of them represent support relations, e.g. evidence support terminal claims.

The generic model must be refined and instantiated for specific evaluation
criteria. The generic model systematizes the process of defining an evaluation
process for arbitrary AC criteria, making AC evaluation more repeatable and
less error-prone. Refinement involves precisely modeling inputs and outputs of
individual steps in an evaluation process. Instantiation involves adding textual
descriptions for process stages, which can be checked for conformance with the
model’s components.

Section 7.2 shows refinement and instantiation for criteria to evaluate struc-
ture of an AC. Section 7.3 shows refinement and instantiation for criteria to

evaluate content of an AC.

7.2 Evaluation of structure of an assurance

case

This section describes how we refined the generic evaluation model in figure
7.1 for each of the evaluation criteria. We start with criteria related to the
structure of an AC and illustrate the major steps in evaluating each structure
criterion. We present a detailed evaluation process of five structure criteria:

syntax check, traceability, robustness, understandability and efficiency.

7.2.1 Syntax check

The “Syntax check” is an early but essential stage of the evaluation process.
Without valid syntax, an AC is unusable in more sophisticated evaluation
stages. A syntax check can be performed with or without tool support. If a
tool is used for syntax checking, experts should still briefly review the syntax

of an AC to guard against tool failures.

108

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

7.2.1.1 Refinement of the evaluation model

Figure 7.2 shows relevant aspects of a refinement of the model in figure 7.1.
We did not include the documentation resulting from the development of the
system, since that part of the model does not change depending on the specific
criterion being evaluated, and the links to that data are obvious.

The refinement shows that ‘ProcessX’ now consists of 1 step depending on
a notation for an AC development. If a graphical notation is used, the pro-
cess ‘CheckGraphSyntax’ will take place, and if a textual notation is used, the
process ‘CheckTextSyntax” will take place. It reviews the syntax of different
nodes of an AC. Inputs to this process are all AC data items, e.g. ‘Assurance-
Case’, ‘Claims’, ‘Arguments’, ‘Evidence’ etc. Output of this process merely is
to the ‘ErrorReport.” These links make it clear that the focus of this check
is the syntax of an AC. Assumptions and criteria for this check are found in

‘AssumptionForProcess.’

7.2.1.2 Instantiated evaluation process

We can now instantiate the model. We do this by describing rules for both
graphical and textual syntax. Reviewers can select a graphical syntax check or
textual syntax check process based on their specific AC notation. For instance,
in our example we consider graphical syntax checking for ACs only since our

example uses GSN.
o CheckGraphSyntax:

(1) Check what type of notation is defined. If it is a user-defined no-
tation, obtain the documentation. Otherwise, a standard for a par-

ticular notation should be followed;
Shapes of nodes shall be compliant with recommended shapes;

(2)
(3) There shall be one and only one association between any two nodes;
(4) Only valid associations shall exist between any two nodes;

()

The only terminal nodes in the AC are those that in the defined

syntax have no outgoing associated nodes;

(6) Label/identifier of a claim/argument/evidence should be defined in

an acceptable format;

109

McMaster University — Computing and Software

Ph.D. Thesis — Thomas Chowdhury

LV TR JO ¥0oUD XeIUAG, I0J SS000IJ UOIJen[eAY :7’), 9INSL]

NS : enxe -

Ayjeonug @ |eonuo - | ——

. ns:osagbns-| * 0) 5s 1osep - [
odeyJoui] : 1oDIods - [- . *
Hodeylou3 wc_ pi- | 0 s co_u._mon__o.tm - PUSWIWIODdYD)RIdUIL)
. i opi- <<Ss900.1d>>
Hodayeuld podayiolig
\M *..O ..o
10 * Y

(psepue)s ‘wogal ‘wodalAlybiy) : anjea -

Ayjeoanuo
<<uojelswnua>>

uolEPUAWIWIOIY

SwIejogng : 9sep -

suondwnssypuawwooay

<<uondwnssy>>

uripi-
a|npobay J
/ {
4 o
J)s : uojeunsap -
1S : 824N0S - Jd}s 1 osep - A}s 1 osep -
juripl- ns:aqgel- |1
s)uIjaoes] WUl pl-
TR swilejojeulwIa | o
0 . ,\x 3 SN A VN swyejoqns
- 90UBPIAT : DOUBPIAS -
J}s 1 o0pjad - J)s : Buluosea. - Als-osep - P~ 15 - o%ep - M
J}s - 9sep - swielD : swienpiyo - AS : [9A9] - .c_ A
i pt- swielD : wieDjuaied - 1 upi- 1 wep
80UdpIAg |l ur:pr- swie|y wiejgdoy
sjuswnBiy SO] *.r/h.o "
oW T i s :90sap - |0
: « b As : syuoddns - KV
Sl o - 1S : [oA9) -
s mMM_oﬁ_w:wm_ - 1S : uonejoU - « 0 ' pl-
r : B 1S : sweusAs -
i pl- N } s : aweu - swudoddng
ojeuoney asepaoueInssy
+ Xasenaoueinssy

xejuAgydeinyoayn
<<SS8201d>>

k0

ssa204d104suondunssy

<<uondwnssys>>

$S920.d

6yd

110

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

o CheckTextSyntax:

(1) Check what type of notation is defined. If it is a user-defined nota-

tion, then one should look for the documentation;

(2) All artefacts of an AC shall comply with notation mentioned in the

documentation.

(3) Label/identifier of a claim/argument/evidence should be defined in

an acceptable format;
e GenerateRecommend:

(1) For any error found in an AC, a recommendation should be made
with criticality (e.g. highly recommended, recommended, stan-
dard).

7.2.2 Traceability

Explicit and legitimate links between different artefacts in an assurance case
play a vital role. These links, often in the form of cross-references, are in
addition to the notational links used in the documentation of AC. For example,
GSN links, claims, sub-claims, evidence as indirected arcs. However, cross-
references can be added to evidence nodes to link to specific items of evidence.
The rationale of having explicit and valid links is to facilitate the maintenance

and robustness of ACs for future changes.

7.2.2.1 Refinement of the evaluation model

Figure 7.3 shows relevant aspects of a refinement of the model in figure 7.1.
In this refined model, we took into account the documentation resulting from
the development of the system, since that part of the model is of significant
importance because of traceability among assurance case artefacts and system
artefacts.

The refinement shows that ‘ProcessX’ now consists of 3 main steps (reading

top to bottom) in figure 7.3:

e (Review) EvidenceToSystemTrace — a review of the traceability between

evidence and system artefacts. Inputs to this process are the AC data

111

ty — Computing and Software

1versl

McMaster Un

Ph.D. Thesis — Thomas Chowdhury

ANIqea0RIT,, 10J SS900I1J UOIYRN[RAY :€°) 9INSIq

ns :9saq -
As 10seq - ns : 0s9Q0Id -
4is : s9Q00.d - L pl- 4)s 1 0se(q -
Wi pi- 4)s 1 989Q00Id - s : enxe -
5s 1 9seq - e i pi- Ayjeonuo : [eonuo - N
1S 1 $9Q00Id - ublseq ns:osagbns- | * L 75 1089p - [
uodeyiow3 : togious - [< - 13S : UORISOGIOLD -]
Jwbpwabueyn utspt - i pl- PUSWILIOD3YI)JEIBUID
o i <<§58001d>>
1S : 0s8p - u Hodayion3
1S : SOOI - F.%* 0 «..o\ﬁ
43S : @ouauadxa - p!-
1) : UopEONpS - sjuswalinbay (p1epuejs ‘wooal ‘wodalA|yBly) : anjea - suonpdwnssypuaWwwodsy
U1 pl - dwnssy>>
ut s pt 1S : sweu - w Ayjeanuy <<uoly
a|doad Fo——rc | <<UoljesawNUD>>
wayshs [E uolEpPUSIWOITY
1S 1 90p*Jal -
' ns: %%,ou o ’|0 aoe.| usajedjuawnbiy
[w:_ 1pl- NS 1 9sap - sis - lqupe - SWIEOqNS : 9S8P - <<ss8001d>>
\a oUSPIATIS L_:o. swielD : wieebie] - ur:pr-
IA: 4 e
TS Y Wipi- ulsapedbiy anpobay \o
1S 1 o0p'Jau - sjenngay = =
[N— 1S :osap - - - soe1 UIBNE vuor v
s : oop'yel - THE L3 <<uondwnssy>>
1S : osep - Ll dolie 4)S 1 uoneunsap - —sop - 5 90m -
T30 /0" souspirguajureppalInbay 1S : 20IN0S - o e h. e _Eh N 7
2oUapIAT} ainbay Sjurjeoell o mE_m_o_m:_P._w.._. v}
J)s :oopyal - LN A S 129 aoe1] 19A\}SEJO | JU3IIY
&)s 1 9sap - ° k <<$s9001d>>
N i pi- 90UBPIAT : 80UBPIAS -
1 oopjal - “p! =Y J)s @ o0pjal - 4s : Buluoseal - ds 1 os9p - 1S : 0sep - \S
1S : uoneonps - | @2uspirgwijdwipainbay v ns:osep- SWwie|D : SWIROpIYD - || S 1 19A9 - i pi- 0
1)s : @ouaLadxa - 4 I s swiel : wieDjualed - juopt- =
ul: pl \7 - Jur:pl- swien wiegdoy jsedojjuadaysuondwinssy
- 1S o0p'jel - 82uspIng + & ERLL - . <<uopdwnssy>>
souapirgejdoad | 1S - 086p - syuawnBiy SO AT NS
1pI- . QL - ns:osep- [0
jur:pt 4
p 1}s : sypoddns - i
ﬁ asuapirgubisagpalinbay 15 9s9p - e L —
—— A)s : sypoddns - 11 : uojejou - +0 s pi- PRI P
S : [9A8] - . - —
05 00R oI~ is : MEM,HH i swiajpoddng ﬁ
ns :0sap - : — 0
r:pi- ase!
sAgo]asuspirgsuondwnssy
@ouaping-aiinbaypalinbay M «/ <<UondLINSSY>>
1S - o0p eI - 4s : uogejou - 4s: :o_ﬂmuw,: -
1)s : 0s9p - 1S @ aweusAs - 1S : aweusAs -
pI- 1)s : sweu - 1}s : sweu - e —|
enon v DVUOISIaAIU99Y OVUOISIOASNOIABI] _ Xasedaosueinssy _ 1

Byd

112

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

items of the ‘RequiredChangeMgmtEvidence’, ‘PeopleEvidence’, ‘Coun-
terEvidence’, ‘RequiredMaintenEvidence’, ‘RequiredlmplemEvidence’, ‘Re-
quiredDesignEvidence’, ‘RequiredRequire. Evidence” and ‘AcceptanceCri-
teria’. Output is simply to the ‘ErrorReport’. These links make it rea-
sonably clear that the explicit traceability exists among evidence and
system artefacts. Assumptions and criteria for this check are found in

‘AssumptionsEvidenceToSys’ .

e (Review) RecentToPastVerTrace — a review of all traceability between
artefacts of recent AC and artefacts of previous version of AC. Inputs
to this process are ‘RecentVersionAC’ and ‘PreviousVersionAC’. Output
is again to the ‘ErrorReport’. The focus of this check is on the explicit
traceability between previous version of AC and recent version of AC.
Assumptions and criteria for this check are to be found in ‘Assumption-
sRecentToPast’.

e (Review) ArgumentPatternTrace — a review that evaluates how claims,
arguments and evidence trace to claims, arguments and evidence of an
argument pattern. Inputs to this process are ‘Claims’, ‘Arguments’,
‘Evidence’ and ‘ArgPattern’. Output is again to the ‘ErrorReport’. As-
sumptions and criteria for this check are to be found in ‘AssumptionAr-

gumentPatternTrace’.

7.2.2.2 Instantiated evaluation process

We can now instantiate the model. We do this by describing rules for all

processes to review traceability.
e (Review) EvidenceToSystemTrace:

(1) An explicit link or reference shall exist between evidence supporting
a process related claim and a specific section of a document related

to that process.

(2) An explicit link or reference shall exist between evidence represent-
ing credentials of people for a process and a specific section of a

document related to credentials of people involved in that process.

113

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

(3)

An explicit link or reference shall exist between evidence supporting
a product-related claim and a specific section of a document related
to that product.

An explicit link or reference shall exist between evidence support-
ing a claim related to the validation of a product/process and the

description of validation of that product/process in a document.

Evidence shall comply with acceptance criteria defined for that ev-

idence.

An explicit link or reference shall exist between counter-evidence
(if it exists) and valid proof (deductive or inductive) defined in a

document.

An explicit link or reference shall exist between evidence supporting
claims related to change management and a specific section illus-

trating change management of that system in a document.

e (Review) RecentToPastVerTrace:

(1)

(2)

An explicit link or reference shall exist between the previous ver-
sion of claims / arguments / evidence and the current version of

claims/arguments/evidence.

An explicit link or reference shall exist between the previous version
of terms/rationale supporting claims/arguments and the current

version of terms/rationale.

e (Review) ArgumentPatternTrace:

(1)

An instantiated claims/arguments/evidence shall comply with an

argument pattern consisting of claims/arguments/evidence.

o GenerateRecommend:

(1)

For any missing trace found in an AC, a recommendation should
be made with criticality (e.g. highly recommended, recommended,
standard).

114

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

7.2.3 Robustness

Kelly defines robustness: “how fragile is the argument to possible changes in
the evidence and consequent claims?” [55]. The possible changes should be as
contained as possible to reduce their effect. During robustness evaluation, we
take into account the principle of “information hiding” from software design
[91]. We look for an argument that deals with changes and their effects on
other argument branches. We also look for the position of the argument in an
AC. For example possible changes in an argument branch at a lower level in a

GSN tree are more robust than an argument at a higher level in the tree [15].

7.2.3.1 Refinement of the evaluation model

Figure 7.4 shows the relevant aspects of a refinement of the model in figure 7.1.
We included the documentation resulting from the development of the system,
since that part of the model is of significant importance as traceability among
assurance case artefacts and system artefacts play a vital role in checking
robustness.

The refinement shows that ‘ProcessX’ now consists of 3 main steps (reading

top to bottom) in figure 7.4:

e (Review) SystemVariabilityInAC — a review of the robustness of an AC
for likely system variations. Inputs to this process are ‘Claims’, ‘Ar-
guments’, ‘DifferentAC’, ‘RequiredChangeMgmtEvidence’, ‘PeopleEvi-
dence’, ‘RequiredMaintenEvidence’, ‘RequiredImplemEvidence’, ‘Required-
DesignEvidence’, ‘RequiredRequire.Evidence’, ‘ArgModule’; ‘ACinCon-
sideration’. Output is simply to the ‘ErrorReport’. Assumptions and
criteria for this check are found in ‘AssumptionSysVarialnAC’. Assump-

tions for pairwise comparison are found in ‘Assumpt.PairWiseComp. .

e (Review) RebuttalsInAC — a review of the robustness of an AC for likely
rebuttals. Inputs to this process are ‘ACinConsideration’, ‘DifferentAC’,
‘Arguments’, ‘Claims’,'Rebuttals’, ‘CounterEvidence’, ‘ArgModule’. Out-
put is again to the ‘ErrorReport’. Assumptions and criteria for this check
are to be found in ‘AssumptionRebuttalsInAC’. There are assumptions

for pairwise comparison are found in ‘Assumpt.PairWiseComp. .

115

ty — Computing and Software

1versl

McMaster Un

Ph.D. Thesis — Thomas Chowdhury

SSOUISNqOY,, I0J SS9O0IJ UOIYen[eAf] :f°), 9INJIq

5s :oseq -
15)s 1 9seq - 1S : 95900.d -
1S : $9Q001d - 1 pl- 5s:oseq -
juL: pI- 1S 1 9s9Qo0ld - 1S : elXo -
Js :9se(- urpr- Ayjeonug : jeanuo - “0
1S : $9001d - ubIseq 5s:ose@gbns - | * Ll 5 osep-
jur:pr- HodoyIouT : 110Iowd - [F o 1}S : UoHISO4I0LI8 -
Jwbpabueyn JUIEPIS U1 pl- v:mEEoumzmmm‘_m:wo
- podoyeury Sdonion > <<s58001d>>
)s : osap - _ Hoday. 3 .
T -]
:_w«m. mw_m”wwmww H (i ‘wooal ‘wodalAybly) : anjen - suondwnssypuswwosay
T uondwnssy>>
i pl- 1S : sweu - M_ Aujeanu <<uor
d — <<uoelswnua>>
8idoad wayshs [Xwajshg
> N
e bsb- goReuIeY
- ! %c_. %. 1S : 9s9p - A - lqupe - SUIERANSEOSORRY <<858001d>>
-0 == swiepD : wiepabie] - ur: pt- N
9JuUdpIAZIaUNOD [8 N i pi- :hﬁuumlmh< 0
Jis 1 oopjal - s|eynqgay
ns 1 osep - | ! vuoy \/
1)s 1 o0p'Jal - it ' ' %_ 0 8 . <<uondwnssy>>
1S : 083p - ol 1S : uoneUlSap - P | & 0 ETToso0
w:_”v_. j NEil I lejypalinbay 1S : 92INn0S - ¥ - :mwhw.%_.)s : 9sep 7
L.E.__rcw.”_ l syuiases) L
s : o0pjel - -0 L & oV . ”
: - $58001
g o “%_ww% _ ©0UBPIAT : BOUBPIA® - () S s
1S 1 oop el - I P {1~ 1js : oop'yal - xs : Buuoseal - 418 1 0S8p - =y 1S : 9S9p - \ﬁ..o
1S : uoneonps - | | @ouspiagweidwipaninbay | U1~ ;s :osap - swiel) : swieopiyo - | Asipeasl- L | Wi pi-
: s0UE - ul:pl- : d - urpl- ==
215 - aouayadke : — | m i pl) swiey E_w_oﬁ_ﬂmu_ - L wielndoL ovulsienngayuondwnssy
s pt RS EooDIo @ouapIng L P swiejy] <<uopdwnssy>>
aouapiagajdoad - 1S 1 988p - sjuswnBiy 07] T o .
— = o . LS : ns:osep- [, — 1\
N oﬁl =] 5 w ._uw_ p C e -\ 2s : sypoddns - ‘
= ddudplAzubisagpalinbay A}s : osep - =5 SvuiRigereAwa)sAs
5 0op eI~ — —————\[| #is:svuoddns - 1S 1 uonejou - * <<558001d>>
a5 :9s3p - LN Y]] 7S To0p Rl - e SR8 QD swe [oddng
swiepleulwa] : wieiypoddng - ‘:Aw - 258p - 1)s : aweu - -0
20UspIAT : INZiebue) - [it pi - SIESORER CEZRERIEIES ueneAsAsuonduinssy
N~ @ouapiAg aiinbaypalinbay M ﬁ ov! _A.A:o_ﬁ_.m:mm.ivv
T 'l 7L -
y.) 35 o0p eI~ 1)s : uojejou - 1s - uopeyou - |-]
o o - s aweusAs - [«
— 1S : osep - a5 .wafM%M”) a8 TORCIE- “dwogesiieddunssy
= Wi pr- gs . <<uondwnssy>>]
P e e Z =
Lo z [eseossuemeny|)
«] — =

Byd

116

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

e (Review) AlternativeEvidence — a review of the robustness of an AC for
an alternative evidence. Inputs to this process are ‘AcceptanceCrite-
ria’, ‘Subclaims’, ‘AlternateEvidence’, ‘DifferentAC’, ‘Terminalclaims’,
‘Arguments’. Output is again to the ‘ErrorReport’. Assumptions and
criteria for this check are to be found in ‘AssumptionAlternativeEvi-
dence’. There are assumptions for pairwise comparison are found in

‘Assumpt.PairWiseComp. .

7.2.3.2 Instantiated evaluation process

We can now instantiate the model. We do this by describing rules for all
processes to review robustness. Reviewers may use pairwise comparison to
evaluate different schemes for robustness. The examples to compare may be
created so that they are tangible, but this can prove to be too time-consuming.
It may be sufficient to use “mental models” to effect such pairwise comparisons.
It may also be possible to simply rely on experience in evaluating some of these

robustness concerns.
e (Review) SystemVariabilityInAC:

(1) Pairwise comparisons are performed to identify lower and fewer
artefact changes or changes in an independent argument branch

due to a likely variability in a system.
e (Review) RebuttalsInAC:

(1) Pairwise comparisons are performed to identify lower and fewer
artefact changes or changes in an independent argument branch

due to a likely rebuttal.
e (Review) AlternativeEvidence:

(1) Alternative evidence shall comply with acceptance criteria.

(2) Pairwise comparisons are performed to identify fewer artifacts changes

in terminal claims due to alternative evidence.

o GenerateRecommend:

117

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

(1) Based on identifying lower level with a few numbers of changes in
an independent branch, a recommendation should be made with

criticality (e.g. highly recommended, recommended, standard).

7.2.4 Understandability

The AC has to be understandable by its target stakeholders.

7.2.4.1 Refinement of the evaluation model

Figure 7.5 shows the relevant aspects of a refinement of the model in figure 7.1.
We did not include the documentation resulting from the development of the
system, since that part of the model does not change depending on the specific
criterion being evaluated, and the links to that data are obvious.

The refinement shows that ‘ProcessX’ now consists of 4 main steps (reading

top to bottom) in figure 7.5:

e (Review) FontAttributes — a review of all fonts used in an AC. The ratio-
nale of reviewing font attributes is to check the readability of AC. Inputs
to this process are ‘SupportTerms’, ‘ArgModule’, ‘Claims’, ‘Arguments’,
‘Evidence’ and ‘Rationale’. Output is simply to the ‘ErrorReport’. These
links make it reasonably clear that the focus of this check is the font at-
tributes of an AC. Assumptions and criteria for this check are found in

‘AssumptionsFontAttributes’.

e (Review) ModuleArgument — a review of modules used in an AC. The
rationale of reviewing module argument is to check how modules are
used to encapsulate argument threads for easy viewing. Inputs to this
process are ‘Modulelnterface’, ‘ArgModule’. Output is again to the ‘Er-
rorReport’. The focus of this check is the creation of modules without
making it less understandable. Assumptions and criteria for this check

are found in ‘AssumptionsModArgu’.

e (Review) IntersectAssociation — a review that evaluates whether any in-
tersection among association arcs makes it less understandable. Thus,
this process identifies whether any association arc intersects with an-

other one and makes it less understandable. This process only applies to

118

McMaster University — Computing and Software

Ph.D. Thesis — Thomas Chowdhury

DV e JO Yoo AYN[IqePUR)SIOPU(),, I0J SS900IJ UOTJRN[RAG] :G"), 9INSTI]

ns:enxe - |
Ayreonuo : leapuo - | * 0 1 7S osen.
L ECR | 1}S : UonISO4JoLIa -
podayJolg : uojious - |+ 0 i pi -
i pi- - Pt
Hodayeulq Modayuouig

« 0
170

(psepue)s ‘wodal ‘wodalAlybiy) : anjea -

puaWIWO29Yyd}eIdUID)

<<Ss920.4d>>

0

suojdwnssypuawwoddy

<<uondwnssy>>

L

Ayjeonuo wie|gjarsjaWeg
<<uonelsswnua>> UOIJEPUAWILIODTY <<S$8004d>>
7-q
wiejgAaaweguondwnssy
] d
w Y <<uondwnssys>>
Js : uoneunsap -
J)s : 90Inos - swiejogns : 9sap - ﬁ UOREIo0SSY}0asIa|
aoeI9)uaINPO HM_ P A <<$59901d>>
a|npoBay .
] S A E
[4 «Q . r] eloossy.Jajujuondwnssy
Js @ uoneunsap - W TR *:w osop - <<uopdwnssy>>
J}S : 80INOS - . : :
—— mv_H:._moE._. « b L pl- 1S |9ge]| -
— swiedeuIWId] ur:pl- - juawnBiyanpop
. RN SRC o0 <<Ssao0ud>>
40 F_‘\\ =\ Mu lejpgng i
- 90UBPIAT : SOUBPIAS - %.o
et aema. e I $5emr - s :059p - nBiyposuondiunssy
ad ur:pr- swiejn : wiejnjusied - 1 uripi- w-p- <<uopduwnssy>>
aouaping) juripr- swie|d wiegdol
wE.wE:m.& SO] *..F/ﬁ.o
LT 1s:0sep - |0 sanqupvIuo4
<l ns: w<tOQQ3w o <<Ssa20.1d>>
~ His - osep - _ nsippael- L ||| T %
5s: mmwn.x_%:ow_” 1S : uonejou - + 0 wr:pl- a
1 .c_ ‘Dl - hs oc._mcw%) swia]oddng sajnqupyIuo4suondwnssy
P s - sweu - <<uondwnssys>
djeuoney aseDaoueINSSY
T Xasenaoueinssy
] R
AN ssaosolid

Byd

119

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

graphical notation. Inputs to this process is only ‘TraceLinks’. Output
is again to the ‘ErrorReport’. Assumptions and criteria for this check

are found in ‘AssumptionInterAssocia’.

e (Review) SameLevelClaim — a review that evaluates whether claims stay
in the same horizontal line, in general. The rationale of reviewing the
same level claim is to check the layout of graphical ACs whether they
mislead readers in understanding the structure of the arguments or not.
Inputs to this process are ‘TopClaim’, ‘Terminalclaims’ and ‘Subclaims’.
Output is again to the ‘ErrorReport’. Assumptions and criteria are found

in ‘AssumptionSameLevClaim’.

7.2.4.2 Instantiated evaluation process

We can now instantiate the model. We do this by describing rules for all

processes to review understandability.
e (Review) FontAttributes:

(1) An acceptable font shall be used in an AC documentation.

(2) Concerning graphical notation: Font size and colour of all nodes

shall be appropriate for ease of viewing, both on-screen and in print.
(3) Concerning textual notation: Font size and colour of description
shall be appropriate for ease of viewing both on screen and in print.

¢ (Review) ModuleArgument:

(1) Creation of a module in an AC makes it easier to comprehend, and
a module or a cohesive block of the AC shall fit in a single page

both on screen and in print and shall be comprehensible.
e (Review) IntersectAssociation:

(1) Concerning graphical notation: the number of intersections of as-
sociations connecting different nodes should be reasonably low, e.g.
that do not make an AC illegible. Fewer intersections improve un-
derstandability of the AC.

120

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

e (Review) SameLevelClaim:

(1) Concerning graphical notation: Claims of an AC shall be in the

same horizontal position based on the level of decomposition.

(2) Concerning textual notation: Description of any artefacts in an AC
shall be in the same horizontal position applying indentation based

on the level.
e GenerateRecommend:

(1) For any definciencies identified in an AC, a recommendation should
be made with criticality (e.g. highly recommended, recommended,
standard).

7.2.5 Efficiency

Efficiency in this context refers to how the structure/notation of the AC affects
the throughput and accuracy of people developing the AC, developing the

system, and reviewing the AC.

7.2.5.1 Refinement of the evaluation model

Figure 7.6 shows the relevant aspects of a refinement of the model in figure 7.1.
We also included the documentation resulting from the development of the
system, since that part of the model is of significant importance because of
efficiency in system development.

The refinement shows that “ProcessX” now consists of 3 main steps (read-

ing top to bottom) in figure 7.6:

e (Review) FacilitateSystemDevelopment — a review of facilitating a sys-
tem development. The focus of this check is how an AC can pro-
vide the required information to develop a system. Inputs to this pro-
cess are ‘PeopleEvidence’, ‘V&VResultEvidence’, ‘RequiredMaintenEvi-
dence’, ‘RequiredIlmplemEvidence’, ‘RequiredDesignEvidence’, ‘Require-
dRequir.Evidence’ and ‘AcceptanceCriteria’. Assumptions and criteria

for this check are found in ‘AssumptionsFaciliSysDevelop’.

121

ty — Computing and Software

1versl

McMaster Un

Ph.D. Thesis — Thomas Chowdhury

)V ue JO o970 .\AUQOMUW@E: I0J SS99014 uoIjenyeay :9°), @HS&T&

2s : @ousladxa -
1S : uoeInpa -
jur:pl-

ajdoad

NS :9saQ -
s 1 oseq - 1} : 9se@o0.d -
dis 1 s8Qqo0Id - L pl- As 1 0se(q -
i pl- 1S : 0s9Q20.d - s 1 eixe -
e - uripl- Ayjeonuo : [eonuo - L —
ubisag 4s : 9sagbns - k s 10s8p - [~
Hodoyiou3 : 10gi0Ld - [g 1S : UORISOIOLS -]
TR i pi- PUSWIWOI9YI)EIIUID
1)s 1 0sop - } d yodayiong <<ss8001d>>
s : saqyalle - <0 .
1 : seq . % o
sjuawalinbay (psepues ‘Wwodal ‘WwodalA|ubly) : enjen - suondwnssypuawwossy
1)s : aweu - w Ayeonuo <<uondwnssy>>
wayshs [m S EEINIESS uojepUBWIWIodaY
1s : oop'jal -
ns 1 osap - = : juawdojanagovajey
Wi pl- 1S 1 0sep - A1s - lauge - SUWIERANS : 9S8P - <<s50001d>>
L\\o 22UBpPIATYINSAY ABA swireld : wiepyebie] - i pr- s pr-
+ ul:pl- ulepedbiy a|npopbay -0
1S 1 oop'jal - s|ennqay
AN ans: mewm 0 N dojare@ovajelioejuondwnssy
| W i pl 73S : Uoneunsap - <<uondwnssys>
il) I nnbay 1S : 901N0S - . B NS 1 9sap - ns:osep- ||
& Wiipl- ns :jeqel - |1
syureses) = Wi :pl-
= swiedjeujwa] e
A 38 0pie . o2 ~ 1215q moAoxaIEN 19
s : -
N i pi- 90UBPIAT : BOUSPIAS - SETEAES
A1s : oop-jel - I — Jis 1 oopjel - 1)s : Bujuoseau - Jis 1 os9p - 1S - 0sap -
1S : uopeaNpe - {1 | @ouspiagwajdwipaiinbay [[~ ;s :osep - SWielD : Swiepye - | | 1S © [9A8] - Wc_ R %.
1)s : @ouspadxa - 4 L I p!- swie|D : wiejDjualed - uripr- S
jur: pt- s toopes - [\7 ?ouapIAg L uripr- swie|n wiejpdoy Bjl|1oe. I v
aosuapiagajdoad :.m” sjuswnbay 0 = I\8 <<uondwnssys>>
/x\M\\) o X P s : osap -
‘) | T\ ssuspingubisagpeinbay s osep - b UISE mﬁmw%hmm_” =
— A)s : sypoddns - 1S : uonejou - 0 i pi- s Jjoey
s :oopjel - 95 m:._m:w%) swiajyoddng
145 1 059p - NS : aweu - \ﬁ:o
! _» ase anssy |
b S B o _.\ 4 dojansgsAgiioeqsuondwnssy
> <<uondwnssys>>
WL 1S 1 00pjel - 1S : uopeonps - \Aﬂw “uopejou- |
— 1S 1 0sap - 1)s : @ouauadxa - [« ns:osep- [+h
ﬁ *.._w i pi- ns : sweu - ns @ aweu - |
v.ﬂ eLajg90L v yoddnguewny yoddngjool _ X@sedaoueinssy _ —
G $59201
Lo | =1
1

Byd

122

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

o (Check) FacilitateReview — a review that evaluates how an AC can facili-
tate its review. This process only applies to graphical notation. Inputs to
this process are ‘Rationale’, ‘SupportTerms’, and ‘ArgPattern’. Output
is again to the ‘ErrorReport’. Assumptions and criteria for this check

are found in ‘AssumtionsFacilitateReview’.

o (Review) FacilitateACDevelopment — a review of facilitating an AC de-
velopment. Inputs to this process are ‘ToolSupport’, ‘HumanSupport’,
‘Evidence’, ‘Arguments’, ‘Claims’ and ‘ArgPattern’. Output is simply to
the ‘ErrorReport’. These links make it reasonably clear that the focus of
this check is how it can facilitate an AC development. Assumptions and

criteria for this check are found in ‘AssumptionFacilitate ACDevelop’.

7.2.5.2 Instantiated evaluation process

We can now instantiate the model. We do this by describing rules for all

processes to review efficiency.

¢ (Review) FacilitateSystemDevelopment:

(1) Evidence complying with acceptance criteria guides system devel-
opment (e.g. design decision, credentials of people to be involved in
process development, validation and verification test) by indicating

measures to enact.

(2) Acceptance criteria help to define system development artefacts.
e (Check) Facilitate Review:

(1) An argument pattern in an assurance case shall be demonstrated

with all nodes.

(2) Rationale and context of using the recommended notation for de-

veloping an AC shall be demonstrated explicitly.
e (Review) Facilitate ACDevelopment:

(1) An argument pattern in an AC shall be instantiated with tool sup-

port or require less human intervention.

123

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

(2) The same type of claims/argument/evidence shall be represented
by a single claim/argument/evidence. In general, the same type of

claims assure the same quality of a product.
e GenerateRecommend:

(1) For any deficiencies identified in an AC, a recommendation should
be made with criticality (e.g. highly recommended, recommended,
standard).

7.3 Evaluation of content of an assurance case

Section 7.2 discusses the major steps in evaluating each structure criterion.
This section presents a detailed evaluation process of seven content criteria by
refining the generic evaluation model in figure 7.1: convincing basis, rigour of
the argument, quality of the hazard analysis, arguing completeness, repeated

arguments, ALARP, and confidence.

7.3.1 Convincing basis

To fully understand claims, arguments and evidence, they have to be explicit.
Claims are explicitly shown as well as evidence, but sometimes the evidence
is not precise enough. The arguments is often not explicitly presented in
sufficient detail. One of the main intentions of convincing basis is to check the
explicitness of claims, arguments, supporting terms and evidence. In addition
to this, a convincing basis looks for a complete top-level claim description,
and compliance of evidence with acceptance criteria to avoid confirmation
bias highlighted by Leveson[4].

7.3.1.1 Refinement of the evaluation model

Figure 7.7 shows relevant aspects of a refinement of the model in figure 7.1.
We did not include the documentation resulting from the development of the
system, since that part of the model does not change depending on the specific

criterion being evaluated, and the links to that data are obvious.

124

McMaster University — Computing and Software

Ph.D. Thesis — Thomas Chowdhury

‘[L6] OV o 10§

SISe(| SUIDUIAUO)), JI0J SS900IJ UOIJRN[RAY :/°), 9INSI]

I

1S : o0p'jel -
2L 1S : 0s8p -
i pl-

eld)lIasue}dasoy

S %_

1S : o0p'jel -
J}s 1 Jsep -
wrpl-

aouapiAgpalinbay

PUBWIWLIOD3Y3JeIdUdD)
<<Ss9001d>>

,..o%

<<uondwnssy>>

uondwnssyp 29y

1S @ enxa -
Ayeonug : [eonuo - 0
; IS .” osagbns - | * -l s osep -
Hoasxj1o13 too‘_o.._._m B P J}S : UOIJISO4JO.LId -
jur:pr- i pl-
Hodayjeuld Jodaysong
%0 >0
10 N
(pJepue)s ‘wodal ‘wodalAlybiy) : anjea - |10
Ayjeonuo
<<UoljeIaWwNUd>> uonepUBWIWOo9Y
) L J
. - N NS Lqupe - swiefqgng : 9sap - Al
| <0 1S : 0sep . >
> swie|n : wieebie] - Wi p- Wi pt-
I ul:pl- uianedbia a|npopba
—3 i pl dbiy INPONDbIY
s|epnqay Al
- x w
S0 1S : uoneunsap - L
1S : 80IN0S - * . W 5s 1 0sap - ns:osep - ||
Sl «b Wi:pl- ns:jeqe| - [¥F
SyurisvelL ' Wrpl- [
T swie|ojeujwia] VP ey
0 .. swiepqgng
e VA L
: : 9OUBPIAT : OUBPIAS - :
\/m\/b &is 1 90pjal - 1S : BujuOSEa! - Ais 1 0s8p - -
AS - 9sep - swielD : swieppyo - || S : 19nel- W pi-
= EIR swie|D : wieinjualed - s (= e
i 9oUapIAg wrp- swie|n 'e15doL
sjyuawnbay Y */o

¥28ygwie|gfeAsidoy

<<Ss900.4d>>

o

<<uopdwnssys>>

suondwnssyjaaajdo]

¥28yJwie|qns

<<S$59204d>>

g T \/*..o

suopdwnssyyoayjwie|agng

<<uondwnssys>>

juswnBiy3ioldxgy
<<$$9001d>>

5s:osep- | g

o |

. ;s :sypoddns - <6
. 1S 1 0sop - - 1S 1 |9A9)| -
J4is : sypoddns - 1S © uoneyoU - +0 Wi pl-
Ais - |9A8| - 1S : sweusAs - T
juripr- s : sweu - suueliioddng
aleuoney \ asepasueInssy
«0

_ swua] ‘ddngsjuawnbay

0

N0

suondwnssyjuawnBiy3iondxg

<<uondwnssys>>

seiguonjewayuo)
<<Ss9001d>>

N0

suondwnssyselguonew.uo0d)

<<uondwnssy>>

e N
gV Ny

Xa@sepaoueinssy

Byd

125

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

The refinement shows that ‘ProcessX’ now consists of 4 main steps (reading

bottom to top) in figure 7.7:

e TopLevelClaimCheck — a review of the top level claim. Inputs to this
process are the AC data items of the ‘TopClaim’ itself, and ‘TopClaim-
Supp.Terms’. Output is simply to the ‘ErrorReport’. These links make
it clear that the focus of this check is the wording of the top-level claim.
Assumptions and criteria for this check are found in ‘TopLevel Assump-

tions’.

e SubClaimCheck — a review of all subclaims. Inputs to this process are
‘Subclaims’, ‘SubclaimsSupp.Terms’, ‘Rationale’, ‘TerminalClaims’, ‘Ac-
ceptanceCriteria’ and the ‘RequiredEvidence’. Output is again to the
‘ErrorReport’. The focus of this check is on the wording and rationale
for the decomposition of the argument, and also on whether or not the
evidence required to support terminal claims makes sense. Assumptions
and criteria for this check are to be found in ‘SubclaimCheckAssump-

tions’.

e ExplicitArgument — a review that evaluates how explicit the argument
is, in general. Inputs to this process are ‘ArgumentsSupp.Terms’, ‘Ar-
guments’ and ‘Rationale’. Indirect inputs are ‘Claims’, ‘Evidence’, ‘Re-
buttals’, ‘ArgPatterns’ and ‘ArgModules’. Output is again to the ‘Er-
rorReport’. The focus of this check is on whether the argument, i.e.,

reasoning, is made visible explicitly in the AC.

e ConfirmationBias — a review that evaluates how susceptible the argu-
ment is to confirmation bias. Inputs to this process are ‘Rebuttals’,
‘RequiredEvidence’ and ‘AcceptanceCriteria’. Output is again to the
‘ErrorReport’. The focus of this check is to ensure that the AC has

specific safeguards against confirmation bias.

7.3.1.2 Instantiated evaluation process:

We can now instantiate the model. We do this by describing the major steps
in each of the 4 sub-processes. We can then check these steps to see that they

conform to the model.

126

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

e TopLevelClaimCheck:

(1)

(2)

(3)
(4)

Top-level claim should consist of two parts: subject and predicate.
The subject should represent a system or a component or subsystem
of a system and the predicate should represent critical properties of
that system to assure, contextual, environmental and operational

information.

The meaning of a top-level claim shall be clear and not create any

ambiguity.
All critical terms mentioned in a top-level claim shall be clarified.

Necessary assumptions shall be stated explicitly.

e SubClatmCheck:

The meaning of a claim shall be clear and not create any ambiguity.
All critical terms mentioned in a claim shall be clarified.

Claims related to process or product or people shall be clarified to

support upper-level claims.

Necessary assumptions to support claims related to process or prod-

uct or people shall be stated explicitly.

Terminal claims shall be supported by proper evidence and accep-

tance criteria for evidence shall be provided.

o FExplicitArgument:

(1)

The reasoning of how an upper-level claim is decomposed into sup-
porting claims and/or evidence and how lower-level claims and/or
evidence together support an upper-level claim shall be documented

explicitly. The latter is more important than the former one.
The rationale for reasoning shall be documented if it is necessary.
All key terms mentioned in reasoning shall be clarified.

Necessary assumptions in reasoning shall be provided.

e ConfirmationBias:

127

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

(1) Rebuttals shall be documented and resulting violation of a claim

shall be documented.
(2) Evidence to support rebuttals shall be clarified.

(3) Evidence description shall comply with acceptance criteria for that

specific evidence.
e GenerateRecommend:

(1) For any deficiencies identified in an AC, a recommendation shall be
made with appropriate criticality (e.g. highly recommended, rec-

ommended, standard).

7.3.2 Rigour of the argument

This criterion focuses on rigorous argument structure. Pattern instantiation
may guide in achieving this, or a thorough description of an argument may
help achieve a rigorous argument. Such descriptions may include a deductive

or an inductive proof in an argument.

7.3.2.1 Refinement of the evaluation model

Similar to convincing basis of the AC, figure 7.8 shows relevant aspects of a
refinement of the model in figure 7.1. We did not include the documentation
resulting from the development of the system, since that part of the model
does not change depending on the specific criterion being evaluated, and the
links to that data are obvious.

The refinement shows that ‘ProcessX’ now consists of 3 main steps (reading

bottom to top) in figure 7.8.

e CheckInformalArgument — a review of the informal argument. Concern-
ing the formal argument, ‘CheckFormal Argument’ replaces the ‘CheckIn-
formalArgument’ in case of formal arguments. Inputs to this process are
the AC data items: ‘Arguments’, ‘Rationale’; ‘ArgumentsSupp.Terms’,
‘Rebuttals’, ‘MitigatedRebuttals’, ‘Evidence’, ‘ArgPattern’. The output

is only to the ‘ErrorReport’. These links make it reasonably clear that

128

McMaster University — Computing and Software

Ph.D. Thesis — Thomas Chowdhury

13

sjyuewInGIe oy} Jo INOJIY,, I0J SS9001J UOIpenyesr] :g°) 2Insig

Js @ jooud -
sleuoney : ajeuoneyiebie] -
L pl-

sjeuoned;0AIPIEAIOOId

«0

1S : BAX® -
Ayjeonug : [eonuo -

129

<<uondwnssy>>

: [~ .
' bm.. 29sa@bns b 1S 1 0sep -
HOGSHIOLZ = LI0DIOLS = 7,) 1S : UORISOIOLIS - puBWIWOd9yaeIoUSD
juripl- 1 pi- <<ss820.d>>
Hodayjeurd podaylolg m/
«0 R -
_.% 0
d N
(psepuejs ‘wodal ‘wodaIAlybly) : anjea - |10 :AAco_ﬁm:ﬂ_mm/\vv =
Aujeoyug
<<uojjesawnua>> uolEpPUAILOIAY
C
I
v
N swiejpgng : 9sap - 3
9 15 osn - 1S Lqune - T P EcE:m.&_oE._ME_v_uw;o
-) 5 i pi- M —JA <<SS8201d>>
f swie| : wiejoyabie] - = = = a|npopbay
r Wi :pl- usapedbiy
[— PI- | -0
X\o S|epnqay * 1S :0sep - .
s|eyngay : ayjeble] - «0
"0 J}s : uopeunsep - L wp- [P
g e X R ﬂ 1S 0sap - SIERNGoNPaIEBRIN suondwnssyjuawnBiyjewioyu|
b M W pl- b <<uondwnssy>>
syuiases | . .
e swiejojeuIWId] !
40 . N\ v - d}s 1 os8p -
- _\x - & 3y s : |eqe| -
90UBPIAT : OUBPIAS - .
1S : o0p'jel - 1S : Buiuoses. - 1S 1 0sap - i Wi pl-
5s 1 0sap - SWielD : SWIeDPIIYD - 1S : |9A9) - swiepqng Aypijepsoqwie|ny)osyo
— e I - sw : | e H ssa00.d
ur:pl swiey) : wieojuesed - jur: pt | =< >>
QouapIAg [} Jul:pl- swie|n 1}s 1 0sep - .
sjuawnBiy 0 -) - pl- -0
“0 = " “FN_, 0 | wrerodoy
suondwnssyAypiieawie|

ns :9sap - ss:0s8p - | g
Js @ syuoddns - 1S : uonejou - 1S @ syuoddns -
21s © [9A9) - 1S : sweusAs - «0 IS 2 joAs] -
jur:pl- 1S @ dweu - juript-
sjeuoney asepeoueINSSy swidpoddng
M w [5S

Aypifeptodajeuoned29Y9

<<Ss9%04d>>

—

wie|030/M1piEAI00Id

*

sienngaxj0APIEAI00Nd | |

]
|
swia] "ddngsjuawnbiy _

)

i -
=1

T

-

Xasenaoueinssy

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

the focus of this check is rigour or thorough application of the pattern.
Assumptions and criteria for this check are found in ‘InformalArgument

Assumptions’.

e CheckClaimForValidity — a review of the validity of claims. Inputs to this
process are ‘Claims’, ‘ProofValidityOfClaims’, ‘Rebuttals’ and ‘ProofVa-
lidityOfRebuttals’, ‘Arguments’ and ‘Evidence’.The output is again to
the ‘ErrorReport’. The focus of this check is to review proofs of the
validity of claims and rebuttals. Assumptions and criteria for this check

are to be found in ‘ClaimValidity Assumptions’.

e CheckRationaleForValidity — a review that evaluates the validity of ratio-
nale. Inputs to this process are ‘Rationale’; ‘ProofValidityOfRationale’.
Indirect inputs are ‘Claims’ and ‘Arguments’. The output is again to
the ‘ErrorReport’. The focus of this check is on whether the rationale

supporting reasoning is valid or not.

7.3.2.2 Instantiated evaluation process:

We can now instantiate the model. We do this by describing the major steps in
each of the 4 sub-processes. We also include major steps for formal arguments

check. We can then check these steps to see that they conform to the model.
e CheckFormalArgument:

1) A formal argument shall be valid with necessary assumptions.

2) Rationale to support the formal argument shall be provided.

3) All terms supporting the formal argument shall be valid.

(1)
(2)
(3)
(4) Rebuttals in a formal argument shall be included, and they shall be

complete and consistent. (if they are present)

(5) Mitigation of rebuttals in a formal argument shall be included, and

they shall be complete and consistent. (if rebuttals exist)

(6) An argument branch in an AC complying with an argument pattern

shall thoroughly follow the pattern.

e CheckInformalArgument:

130

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

(1) An informal argument shall be described to prove that if premise
is true then conclusion is true, and the steps shall be complete and

consistent.
(2) Rationale to support the informal argument shall be included.

(3) All terms supporting the informal argument shall be complete and

consistent.

(4) Rebuttals in an informal argument shall be included, and they shall

be consistent. (if they are present)

(5) Mitigation of rebuttals in an informal argument shall be included,

and they shall be consistent. (if rebuttals exist)

(6) An argument branch in an AC complying with an argument pattern

shall thoroughly follow the pattern.
o CheckClaimForValidity:

(1) Claim shall be valid (by reviewing proofs deductive or inductive),

complete and consistent

(2) Rebuttals shall be valid (by reviewing proofs deductive or inductive)

and complete (if they are present)
e CheckRationaleForValidity:

(1) Rationale shall be supported by deductive or inductive proofs.(if

they are necessary).
o GenerateRecommend:

(1) For any deficiencies identified in an AC, a recommendation should
be made with criticality (e.g. highly recommended, recommended,
standard).

7.3.3 Quality of the hazard analysis

This is one of the criteria that applies to safety case evaluation in particular.
Adequate mitigation of all known hazards is a prerequisite for system safety. In

addition, we need to know with reasonable certainty that there are not likely to

131

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

be additional hazards that we have not considered. There are a number of ways
in which we can gain confidence that ‘all’ hazards have been identified, which
is a necessary precursor to all hazards have been mitigated. For a security case

evaluation, threat analysis will take place instead of hazards.

7.3.3.1 Refinement of the evaluation model

Figure 7.9 shows relevant aspects of a refinement of the model in figure 7.1.
We did not include the documentation resulting from the development of the
system, since that part of the model does not change depending on the specific
criterion being evaluated, and the links to that data are obvious.

The refinement shows that ‘ProcessX’ now consists of 4 main steps in figure
7.9.

e ClaimEvidenceHAMethod — a review of the hazard analysis method.
Inputs to this process are ‘SoundnessHAMethodEvi.”, ‘HAMethodEvi-
dence’, ‘ExpertAppraisalEvidence’ and ‘Claims’. The output is only to
the ‘ErrorReport’. These links make it clear that the focus of this check is
the soundness of the hazard analysis method. Assumptions and criteria
for this check are found in ‘AssumptionsCIEvHAMethod’.

e ClaimEvidencePeopleCredentials — a review of the competency of people.
Inputs to this process are ‘Claims’ and ‘PeopleEvidence’.The output is
again to the ‘ErrorReport’. The focus of this check is competency of
people involved in hazard analysis. Assumptions and criteria for this

check are to be found in ‘AssumptionsClEvPeopleCreden’.

e ClaimEvidenceComparison — a review that evaluates the validity of known
hazards and coverage of identified hazards. Inputs to this process are
‘ValidationKnownHazards’, ‘Claims’, ‘KnownHazards’, ‘IdentifiedHaz-
ards’. Indirect input is ‘Arguments’. The output is again to the ‘Er-
rorReport’. The focus of this check is performing comparison whether
identified hazards cover known hazards. Assumptions and criteria for

this check are to be found in ‘AssumptionClEvidenceComparison’.

e ClaimEvidenceMitigation — a review that evaluates the implementation

of mitigation. Inputs to this process are ‘Claims’, ‘AcceptanceCrite-

132

ty — Computing and Software

1versl

McMaster Un

Ph.D. Thesis — Thomas Chowdhury

SIsATeur prezey o) Jo AJ[enf), I0J SS900IJ UOIIRN[RAY 6/, 9INSI

b

ns :oopjel -
UBs|00q : JNSaY}SA) -

1S 1 o0p'jal -

Jjs I uoneonpa -
2)s : 9ouaLadxa -
Wi pr-

k—

@ouapiAgaldoad

1S 1 00p*Jal -
J)s : 9saapIezeH -

1S 1 oop'jal -
as : 9saquonebni -
SpJezeHpaynuap) : SpIEZeH -

aouapiagsdajsuonebnin

s enxe -
D [BONUOD -
A)s : o0sa@bns -

Aure

HodayJouT : 1I0DIoMS - 0
juripl-
Hodayjeury

+0
L

b J)s:989p - [0

1S : UoNISOI0u8 -

Wi pi-
Hodayiong

I R S—— [TETTTEE RN ETIEL)

<<$89004d>>

suondwnssypuswwosay
<<uondwnssy>>

uonebyINadULpPIATWIED
<<8s9201d>>

0

uonebnINIAgIQuondwnssy
<<uondwnssy>>

uosuedwo)adsuspiAgwie|)
<<8$8001d>>

fo

s :oopjel -
euinorioedwi -
A)s : ooqyooud -
90USPINIPOUISINYH : POYISIAl -

Wpl-

“IAPOYISNVHSSaUpUNog

)

Val

=

1S 1 00p*jal -
NS 1 0s8p -
juript-
eL19)11039ue}dadoy

1S : uonejou -
s : aweusAs -

J}s ! sweu -

1S : uonejou -
1S : sweusAs -
2s : aweu -

OVUOISIaAIUa3Y

DVUOISISASNOIADIH

J)s 1 0s3Q)Se) - = = TG
souapirgsdaiguoneby : ‘mebie] - (paepuess ‘wiooa. ‘wooauiybly) : anjen -
i pl- Ayreonuo
uoneBnINeIEPIEA <<uojeisuinue>> uopepuUBWILIoIRY

s - oopied - : ns: e - | swiejogns : osep -

uee|00q : 1) 1 0sep - g ﬂ zn_) 1epans o %_,

1) 1 80IN0S - swielD : wrepjeble) - : ' P
splezeHumouyj : g|piezeH - urpl- usapedbiy s|npop by
SpJezeHumouyuonepijep slepnqgay

B _w\ ol
1)s : uoneunsap - - -
1S : o0p*jal - 1)s : 904NO0S - + o &)s : 0s8p - “m : 0s8p - =
ns : 0saqpiezeH - SWurTeoelL - mc_ g o
N [N
spaezeHumouy| . A72 1oqng
\Lm = S0UBPIAT : 8OUSPIAG -
4is - oopjed - xs @ Buluoses - - -
— i3 @ s :0sap - swiejD : SWe|opIIYo - 4 Hhmwh B
:m‘:.wo.o%w*%m B juripr- swielD : wieiDjuaied - : n :
.) - Tpi- wrejodoy
ues|ooq : anoidde - [[82USPIAT I i p
r:pl- sjpuawnbay “n
aouapiagjesieiddypiadxy = X b ns ”mmmu. £0
¢ 2)s : syuoddns -
L 1S 1 9sap - 1S © S
A)s : syuoddns - - -
1)s 1 oopjal - b ‘_<M — J4js © uonejou
. B3 EE] 1S : BweusAs -
ues|ooq : Ajjiqedese - i pi- " swuajpoddng
s : 9S9QPOYIOI - S LIS
djeuoney asejaoueinssy

Xasegaoueinssy

uosi.

A3
<<uondwnssys>>

1991doa,

IAJwie|y
<<8$98001d>>

1

A

A

H..o

‘uapaia|doadagigsuonduinssy
<<uopdwinssys>>

POUISNVHA2USPIATWIEID
<<5S9204d>>

1o

POUIBNYHATIDSUoRdWINSSY
<<uondwnssy>>

Byd

133

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

ria’, ‘MitigationStepsEvidence’, ‘ValidationMitigation’ and ‘Arguments’.

The output is again to the ‘ErrorReport’. The focus of this check is on

whether the mitigations of hazards are implemented correctly or not.

7.3.3.2 Instantiated evaluation process

We can now instantiate the model. We do this by describing rules for all

processes to review quality of the hazard analysis.

o ClaimFEvidenceMitigation:

At least one claim shall mention mitigation of all identified hazards.

Evidence supporting claims shall document mitigation steps along

with hazards and comply with acceptance criteria.

Claims shall mention that each safety requirement must mitigate

atleast one hazard.

Evidence supporting claims shall document safety requirements for

mitigation complying with acceptance criteria.

e ClaimFEvidenceHA Method:

(1)

(2)

(3)

At least one claim supporting the hazard analysis used shall include

why it is considered best practice.

Evidence supporting the claim related to industry best practice haz-
ard analysis should include an expert appraisal to prove the sound-

ness of the hazard analysis.

Evidence supporting claims related to hazard analysis shall docu-
ment the execution of the hazard analysis and comply with accep-

tance criteria.

e ClaimFEvidencePeopleCredentials:

(1)

(2)

At least one claim shall mention that people with the necessary

competence performed the hazard analysis process.

Evidence supporting the claims related to credentials shall docu-
ment the experience and education to perform the hazard analysis

and comply with acceptance criteria.

134

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

e ClaimFEvidenceComparison:

(1) At least one claim shall mention that the identified hazard list in-
cludes all known prior to the hazard analysis performed-if such a

list is available.

(2) At least one claim shall assure the authenticity of a known hazards
list.

e GenerateRecommend:

(1) For any deficiencies identified in an AC, a recommendation should
be made with criticality (e.g. highly recommended, recommended,
standard).

7.3.4 Arguing completeness

We already discussed the quality of the hazard analysis as an evaluation crite-
rion. One of the aspects of this criterion that we had to consider is the claim
that ‘all’ hazards have been identified. This is an example of a completeness

claim that cannot be ‘proved’. There are typically many such claims in an AC.

7.3.4.1 Refinement of the evaluation model

Figure 7.10 shows relevant aspects of a refinement of the model in figure 7.1.
We did not include the documentation resulting from the development of the
system, since that part of the model does not change depending on the specific
criterion being evaluated, and the links to that data are obvious.

The refinement shows that ‘ProcessX’ now consists of 3 main steps in figure
7.10.

e HazardldentificationComplete — a review of the identification and miti-
gation of hazards. Inputs to this process are ‘MitigationStepsEvidence’,
‘AcceptanceCriteria’, ‘Arguments’, ‘SupportTerms’ and ‘Claims’. The
output is only to the ‘ErrorReport’. These links make it reasonably
clear that the focus of this check is the identification and mitigation of
rebuttals. Assumptions and criteria for this check are found in ‘Assump-

tionHazardldenComplete’.

135

(Ssouojordwo)) Sumsry, I0j $se00I1d UorjeneAr ()], oInsr

ty — Computing and Software

1versl

McMaster Un

Ph.D. Thesis — Thomas Chowdhury

s :enxs -
Ajjeonuo : jeono - | — UaWIWO023Y3)eIaud
4s : osagbns - r 1)S 1 0sap - . AAwwmothvv °
LodeHICSERICOICHaR " 1S : uolIsodJous -
uripl- i pl- «..o%
f._.oaww__m:_n_ Modayiong uond = o
F..%« 0 <<uondwnssy>>
(pJepue)s ‘wodal ‘wodalAlybly) : anjen -
Ayjeanuo
<<uopelswnua>> UoNEpUBWIWI0D9Y
J) ssauajs|dwowalshAgalqiseasy
<<$59904d>>
MM: “_E_._MMEM_M_M._. Bl - 1S 1 0sap - ns:Lqupe - Swieqgns : 9sap -
u IA uel 3 - . - -
PIAS U2 swielD : wieyeble] - e pl ur:pr 0
A L pl- usepedbiy anpo\ by
“0 i : ebeseno - Sennaed T n o
* Jis SUIBNISaL - — <<uondwnssy>>
wipl- +Q e
— - = x
)S : uoleunsap
abeianogbunsa) el - [1S : osop - 1S : 0sop -
= = x uript- As :ege) - |«
ns: wov 101 - syuljasel] | SWEp|EU] upi-
T a8 - ﬁmea - L) & 2 2 swiepang ssauaje|dwogwa)sAgebie]
4is : jooidiofjebue - - /Z k ~ <<S89904d>>
jurpt- 9OUBPIAT : SOUBPIAS -
aouapiAgjo0id U s oopyal - 5s : Buuosea. - 1)s : 0sep - 5 0s9p -
¥\ﬂ A)s 1 0sap - SWIeID : SWIEIOPIIYO - | | S : [9A8) - e
1S : 9s9QbeIaN00 - | — 1M s swieD : wieouased - Wi ipl- — «0
5s :oopjas- | aouapiAg) i pl- swie;y tejgdol
1}S 1 0S9p - syuawnBay . = - =g 9j9|dwopwa)sAgabiejuondwnssy
Jur:pl- - T =7 * 15 9s9p- .70 <<uonpdwnssy>>
aouapingauepinoadxy - M\ J1s @ sypoddns -
_ dBdEsEe - 1S : [ona - A
ns: w<tn.uaa:w = 1S © uonejoU - +0 ur:pr- 0
s : o0p'jal - 95 [R]) = 2S : BWeusAs - sueLyoddng I
ues|ooq : Ayjigeidesde - wr:pr- 5S : aweu - aje|dwoguonesyuap|piezey
1S : 9S8@POYIBA - ajeuoney asegeoueInssy <<$s9004d>>
i pi- b
9OUSBPIAIPOYIBNVH
S | 0
1S :oopyal - i LA — =
1S o0p el - J)s : uoneanpa - 19 Juap|plezeHsuoly '
:.w 080D - s : o0p-jal - s : 9ousuadxe - L <<uopdwnssy>>
L - Wi pi- Wipi- i
eLIejIe0uUR}da0Y aouapirgsdajguoneBbiin aouapinga|doag
,,:o; Xosedaosueinssy E

Byd

136

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

e LargeSystemCompleteness — a review of the completeness of a large sys-
tem which can not be fully analyzed. Inputs to this process are ‘Expert-
GuidanceEvidence’, ‘PeopleEvidence’, ‘TestingCoverage’, ‘Arguments’,
‘Claims’, ‘AcceptanceCriteria’ and ‘ToleranceEvidence’. The output is
again to the ‘ErrorReport’. The focus of this check is completeness of
large system argument. Assumptions and criteria for this check are to

be found in ‘AssumptionLargeSystemComplete’.

e FeasibleSystemCompleteness — a review that evaluates the completeness
of feasible system argument. Inputs to this process are ‘Acceptance-
Criteria’, ‘SupportTerms’, ‘Arguments’, ‘Claims’, ‘ProofEvidence’. The
output is again to the ‘ErrorReport’. The focus of this check is com-
pleteness of a feasible system argument. Assumptions and criteria for

this check are to be found in ‘AssumptionFeasibleSystemComplete’.

7.3.4.2 Instantiated evaluation process

We can now instantiate the model. We do this by describing rules for all

processes to review arguing completeness.
e HazardlIdentificationComplete:

(1) Arguments shall mention known hazards that may violate claims.

(2) All terms supporting arguments shall provide clarification and/or

proofs.

(3) Claims shall mention the implementation of mitigation to resolve

hazards.
(4) Evidence supporting claims related to mitigation of hazards shall
document mitigation steps complying with acceptance criteria.
e LargeSystemCompleteness:
(1) Claims related to testing coverage shall include an explicit tolerance
limit.
(2) Arguments supporting claims of testing shall provide reasoning on

how lower claims support the upper claim.

137

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

(3) Evidence shall document the testing coverage metric complying

with acceptance criteria.

(4) Claims related to people involved in the testing process shall include
that the people involved are competent to perform and plan the

relevant tests.

(5) Evidence supporting claims related to credentials of people shall
document education, experience complying with acceptance crite-
ria.

(6) Evidence related to a coverage metric mentioned in claims shall
comply with acceptance criteria.

e FeasibleSystemCompleteness:

(1) Arguments with formal/semiformal/informal reasoning shall be com-

plete, i.e. shall fulfil necessary assumptions.

(2) All key terms supporting formal/semiformal/informal arguments
shall be clarified and valid.

(3) Claims shall mention formal/semiformal/informal proof.

(4) All key terms supporting formal /semiformal /informal claims shall
be clarified and valid.

(5) Evidence supporting formal/semiformal /informal claims shall doc-

ument proof complying with acceptance criteria.
e GenerateRecommend:

(1) For any deficiencies identified in an AC, a recommendation should
be made with criticality (e.g. highly recommended, recommended,
standard).

7.3.5 Repeated arguments

During AC development, developers can use part of the AC using an instantia-
tion of argument patterns for automated development or an equivalent of “cut-
and-paste” to ease the development. The evaluation process checks whether a

pattern is instantiated in a proper order correctly or not. Sometimes, it is hard

138

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

to identify the instantiated argument pattern due to a lack of documentation

or even improper instantiation in some cases.

7.3.5.1 Refinement of the evaluation model

Figure 7.11 shows relevant aspects of a refinement of the model in figure 7.1.
We did not include the documentation resulting from the development of the
system, since that part of the model does not change depending on the specific
criterion being evaluated, and the links to that data are obvious.

The refinement shows that ‘ProcessX’ now consists of 2 main steps in figure
7.11.

e SimilarArgument — a review of similar arguments in an AC. Inputs to
this process are ‘ExternalNote’, ‘CriteriaForArgPattern’, ‘Claims’, ‘Ar-
guments’, ‘ArgPattern’. The output is only to the ‘ErrorReport’. These
links make it clear that the focus of this check is the identification of
similar arguments. Assumptions and criteria for this check are found in

‘AssumptionSimilarArgument’.

e ClaimArgumentEvidencePattern — a review of the compliance of claims,
arguments and evidence with pattern. Inputs to this process are ‘Con-
text Arg Pattern’, ‘Context’, ‘Assumptions’, ‘Justifications’, ‘Claims’,
‘Arguments’, ‘Evidence’, ‘ArgPattern’, ‘AssumptionArgPattern’, ‘Justi-
ficationArgPattern’. The output is again to the ‘ErrorReport’. The focus
of this check is compliance with argument pattern. Assumptions and
criteria for this check are to be found in ‘AssumptionClArEvidencePat-

tern’.

7.3.5.2 Instantiated evaluation process

We can now instantiate the model. We do this by describing rules for all

processes to review repeated arguments.
e SimilarArgument:

(1) Argument pattern with a similar context shall be instantiated to a

specific argument in an AC.

139

McMaster University — Computing and Software

Ph.D. Thesis — Thomas Chowdhury

SymewmnsIy pajyeadoy],, I0J SS900IJ UOIJen[eAr] 11/ 2InSIq

puUsWIWIOIYI)eIdUID)
<<SS9201d>>

N

<<uondwnssy>>

suodwinssypuawwossy

uidjjedasuapiagiuawnbiywie|d

<<SS9201d>>

|

« 0

uiajedasuspiagiy|osuondunssy

<<uondwnssy>>

—

juawnBayiejiwis
<<SS9201d>>

+ 0

juawnbayejiwiguondwnssy

1S : enxa -
Ajjeonug @ jeopuo - |-
Js:osagbns-| * 0 Ol s 0sap -
HodexIoLT 1 LODIOLS - X .-y 1)S UORISO4IOLIB -
L pl- - i pi-
Hodayjeuld Jodayiongy
+0
170
(psepue)s ‘wooal ‘wodalAlybiy) : anjea - L0
Ayeonud
<<uofesswnuUa>> UOHEPUBIWO29Y 7
ns : BayBupneloge)joo - L £ ﬂ
1)S : S}BIJUBISUI0IX8}U0D - x + 0
= - pr- uiapedbiyujuoneosyysnp uiapedbiyujsuondwnssy | | uiapedbiyulixajuod
ulayedbiyioqeriaju) T
. 0\ 2o e —— i
F A =i | 1l
N - swieoqgng : 9sep -
—— 1S 0s0p - 5s : Lqupe - i pi-
j swie|) : wieoyable] - - pl-
1 wrpl- wiapedbiy 2Inpowbiy
LS SN = J(\,J
sjepnqgay * L/O 1S : 0sap - g@ ﬁﬁ
s|epngay : ayiebie] -
+ J}s : uojjeunsep - L : jur:pl-
1 : 92.n0s - - e s wc”“w.m% ||| siennaeuperebmn
syurfadel iy - - [4
2 .._\\7; = * swie|ojeulw.d | % <l
0 - _‘\a =<\ NV Lw 1 1S : 0sep -
- ns @ |aqge| -
90UDPIAT : SOUBPIAS - ;
[l ns: o.ou.%w._ - 1s : Bujuosea - ns osep - b\ i pl-
1S : 0s9p - SWelD © SWielopiyo - |) 1S : |9A9) - swiepqns
- pr- .| swiern : wigpusied - s [oe
¥\/&\ aouaping | ¢ r Jur: pl- swie|n 4/ 1} @ 0sap -
j\(R syuownbay A RS Wrpl-
. = b “0 wiejpdoy
i g . :
L\/L\/(. 1S : 0sep - N« b s 089p - |0
ﬁ, as: méwaa:m - 1S : uone)ou - 1s : syuoddns -
ss: _w.>m_ - 1S : sweusAs - «0 As 1 |98 - AL
- pi- 1S : BWeu - W pl-
ajeuoney asenaoueINssy suudpoddng ﬁ
// m WA/ X] xn
0

ulepe

464y : uleyeda.nos -
jurpr-

9)JON|euId)X]

T

suopeoynsnr

suondwnssy

*

+ 0

Xosedaoueinssy

?

N7

A

\\\

ssa201d

Byd

140

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

(2) If any “cut-and-paste” occurs, then it shall be mentioned in an

external note/documentation to identify the source.

(3) If any “cut-and-paste” occurs, then a target argument branch shall

comply with a source argument branch.
e ClaimArgumentEvidencePattern:

(1) Claims, arguments, evidence in an instantiated argument branch
shall comply with claims, arguments and evidence of an argument

pattern.

(2) All terms supporting claims, arguments, and evidence shall comply

with all terms supporting those of an argument pattern.

(3) An argument developed using instantiation or “cut-and-paste” shall

be consistent with neighbouring arguments.
e GenerateRecommend:

(1) For any deficiencies identified in an AC, a recommendation should
be made with criticality (e.g. highly recommended, recommended,
standard).

7.3.6 ALARP

This is another criterion that applies to the safety case only. The main inten-
tion of this criterion is to ensure adequate confidence in risk assessment in a

software-intensive system.

7.3.6.1 Refinement of the evaluation model

Figure 7.12 shows relevant aspects of a refinement of the model in figure 7.1.
We did not include the documentation resulting from the development of the
system, since that part of the model does not change depending on the specific
criterion being evaluated, and the links to that data are obvious.

The refinement shows that ‘ProcessX’ now consists of 1 main step in figure
7.12.

141

VTV, 103 889001 UOTen[eAq] 7] omSL]

ty — Computing and Software

1versl

McMaster Un

Ph.D. Thesis — Thomas Chowdhury

1S eaxs -
Ayleanu : [2opuo - | —
ns:osegbns- | * 0 Ol 1S 1 0s3p
podayiony : dogious - [° - 11S : UOISOGIOLD - PUBWIWIOIIYI)RIBUID
ur: pi- i pi- <<ss9004d>>
Hodayjeuly podoyiong
%0
170
(pJepue)s ‘wodal ‘wodalAlybiy) : anjea -
Ayreonuo + 0
<<uojjessaWNUd>> uonepUsWWOoaY = = =
<<uondwnssy>>
ues|00q : 9|qISes) - 75 0sep - ns: Lqupe - I swieppgng : osep -
‘_.mu.cﬁ_v,.wgmwmu swiep) : wiepjebie] - urepr- ur-p-
| R i pl- usepedbiy aInpoNbiy
spiezeHpainusp| : piezey - L— sjlenngay
juripr- ..F]
A)1q1Sea4J0014adUdPIA; 1S : uoneunsap -
e LPE] ! :m._g mo._«:om _ 2 . 5s : osep - 1S 1 0sap -
— = b i pl- <L
1S 1 o0p'jal - syulasel) U
ueajooq : Ajjiqejdecoe - T swiepdeujwia)
1S : 089p - o . V2 N MN swiejpqng
wrept- = 90UBPIAT : 9OUBPIAG -
spJezeHpauiuap| T dis T oopyal - Js : Bujuoseal - A} 1 0s9p - N "
4 1S : 0sep - swieD : swieipIyo - 1S 1 [9A9) - oS .cn“m.wc_ R 3 juawnbuyisiya|qelajo
g . : urpl- . d-1 wi:pi- S RN <<$s9201d>>
(ajqess|0] ‘s|qessjoiu| ‘a|qibiBaN) : |oAs] - I Wq L pl swielD : wie|pjuale p! = \
spJezeHpaynuap| : sprezey - | | aouspIng k'L unpl- swie|n wiejgdol
NS I ysu - sjuawinBay) 1 *./ aTa)
i pi- I B T * ns:osap- |40
[9ASTSIYOOUBPIAT - "l Js : sypoddns -
415 :088p - _ 1S : [9AS) -
41 : sypoddns - 1S : uonEejoU - +0 W pl-
1S 00pJel - as r“_®>®_ H 1S : sweusAs - swae poddng
s : 0sep - jur - pl 1S : oWeu -
ues|ooq : anoidde - ajeuoney asepaoueINssy
wripr- || L =0
aouapiagjesieaddyiadxy
V jJuawnbayysiyalqessjo] dunssy
\Mn L Iy’ <<uopdwnssy>>
1S 1 o0p*yal -
1S : oopjal - ues|ooq : Ayjiqeydaooe -
1S 1 0sap - 1S : 9S9POYIB -
wep-l 5 Wi pi-
elia)lIg9duR)dadY | 9JUBPIATVHIARERUIR)Y]
Xosenasueinssy E
B:

d

142

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

e TolerableRiskArgument — a review of the tolerable risk argument. Inputs
to this process are ‘SupportTerms’, ‘EvidenceProofFeasibility’, ‘Argu-
ments’, ‘Claims’. The output is again to the ‘ErrorReport’. The focus of
this check is identification of tolerable risk arguments. Assumptions and

criteria for this check are to be found in ‘Assump.TolerableRiskArgument’.

7.3.6.2 Instantiated evaluation process

We can now instantiate the model. We do this by describing rules for all

processes to review ALARP.
e TolerableRiskArgument:
(1) Claims shall mention any benefit of having a specific hazard (if it
exists).

(2) Evidence shall document the benefit to support the claim mention-

ing benefit related to a hazard.
(3) Claims shall mention consideration of measures to reduce risks

(4) Evidence shall document measures to reduce risks associated with

each hazard.
(5) Claims shall mention the feasibility of the reduction of risk.
(6) Evidence supporting claims shall document proof of feasibility.

(7) All necessary terms supporting claims, arguments shall be clarified.
e GenerateRecommend:

(1) For any deficiencies identified in an AC, a recommendation should
be made with criticality (e.g. highly recommended, recommended,
standard).

7.3.7 Confidence

Confidence refers to trust or belief in claims, arguments or evidence. Many
researchers quantitatively define confidence assessments. We also consider con-
fidence as one of the evaluation criteria to be taken care of. There are several

confidence assessment methods. In our evaluation process, we do not criticize

143

Ph.D. Thesis — Thomas Chowdhury McMaster University — Computing and Software

those methods. Instead, we verify the confidence generated using any of the

methods.

7.3.7.1 Refinement of the evaluation model

Figure 7.13 shows relevant aspects of a refinement of the model in figure 7.1.
We did not include the documentation resulting from the development of the
system, since that part of the model does not change depe