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Lay Abstract

Synergistic activity in specific brain regions gives rise to large-scale brain networks,

linked to specific cognitive tasks. Interactions between three such brain networks

are believed to underlie healthy behavior and cognition, and these are found to be

disrupted in those with mental health disorders. The ability to cheaply and effec-

tively detect these networks can enable routine network-based clinical assessments,

improving diagnosis of mental health disorders and tracking their response to treat-

ment. The first study in this thesis found major flaws in a popular method to assess

these networks using a suitably cheap imaging method called electroencephalogra-

phy(EEG). The remainder of the thesis addressed these issues by first identifying

healthy patterns of network activity, followed by designing a novel method to iden-

tify network activity using EEG. The final study validates the developed method by

tracking network changes after lifestyle interventions. In sum, this thesis takes a step

towards improving the clinical accessibility of such brain network-based biomarkers.
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Abstract

Several major functional networks in the brain have been identified, based on sub-

regions in the brain that display functionally correlated, synchronous activity and

perform common cognitive functions. Three such brain networks (default mode net-

work - DMN, central executive network - CEN, and salience network - SN) form a

tri-network model of higher cognitive functioning and are found to be dysregulated

in a number of psychopathologies, such as PTSD, autism, schizophrenia, anxiety,

depression, bipolar disorder and fronto-temporal dementia (FTD). Current thera-

pies that improve the patient’s cognitive and behavioural states are also found to

re-normalize these dysregulated networks, suggesting a correlation between network

dysfunction and behavioural dysregulation. Hence, assessing tri-network activity and

its dynamics can be a powerful tool to objectively assess treatment response in such

psychopathologies. Doing so would most likely rely on functional magnetic resonance

imaging (fMRI), as one of the most commonly used modalities for studying such

brain networks. While fMRI allows for superior spatial resolution, it poses serious

challenges to widespread clinical adoption due to MRI’s high operational costs and

poor temporal resolution of the acquired signal. One potential strategy to overcome

this shortcoming is by identifying the activity of these networks using their EEG-

based temporal signatures, greatly reducing the cost and increasing accessibility of
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using such measures. This thesis takes a step towards improving the clinical accessi-

bility of such brain network-based biomarkers.

Doing so first required the exploration of a popular EEG-based method currently

being used to study brain networks in mental health disorders - Microstates. This

work uncovered flaws in the core assumptions made in assessing Microstates, necessi-

tating the development of an alternate method to detect such network activity using

EEG. To accomplish this, it was important to understand the healthy dynamics be-

tween the three brain networks constituting the tri-network model and test one of

the core predictions of this model, i.e. the SN gates the DMN and CEN activation

based on interoceptive and exteroceptive task demands. Probing this question next

uncovered mechanistic details of this process, discovering that the SN co-activates

with the task-relevant network. Using this information, a novel machine learning

pipeline was developed that used simultaneous EEG-fMRI data to identify EEG-

based signatures of the three networks within the tri-network model, and could use

these signatures to predict network activation. Finally, the novel machine learning

pipeline was trialed in a study investigating the effects of lifestyle interventions on

the network dynamics, showing that CEN-SN synchrony can predict response to in-

tervention, while DMN-SN synchrony can develop in those that fail to respond. The

understanding of healthy network dynamics gathered from the earlier study helps in-

terpret these results, suggesting that the non-responders persistently activated DMN

as a maladaptive strategy.

In conclusion, the studies discussed in this thesis have improved our understanding

of healthy network dynamics, uncovered critical flaws in currently popular methods
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of EEG-based network analysis, provided an alternative methodology to assess net-

work dynamics using EEG, and also validated its use in tracking changes in network

synchrony. The identified EEG signatures of widely used functional networks, will

greatly increase the clinical accessibility of such brain network measures as biomark-

ers for neuropathologies. Monitoring the level of network activity in affected subjects

may also lead to the development of novel individualized treatments such as brain

network-based neurofeedback interventions.
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”Research is what I’m doing when I don’t know what I’m doing.”

- Wernher von Braun
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Chapter 1

Introduction

In recent years, Canada has faced an increasing prevalence of mental health disorders.

With approximately one in ten Canadians developing either post traumatic stress dis-

order (PTSD) or major depressive disorder (MDD) in their lifetime, this country has

one of the highest rates of mental health disorders among developed nations (Gold-

stein et al., 2016). Current clinical practices have to rely on unreliable self-reported

measures of symptom severity to develop treatment plans and track treatment re-

sponse. Often, this approach does not adequately characterize the symptom profile

of each individual patient, especially for those with heterogeneous psychopathologies

such as PTSD. This leads to challenges in adequately personalizing therapies, result-

ing in sub-optimal treatment outcomes, longer hospital stays and increased burdens

on the Canadian healthcare infrastructure. Thus, there is an urgent need to develop

objective measures that can be used to adequately characterize each patient’s disease

profile and develop personalized treatment plans. One promising, yet underutilized

category of measures is brain network-based biomarkers (Parkes et al., 2020).

Several major functional networks in the brain have been identified, based on
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sub-regions in the brain that display functionally correlated, synchronous activity

and perform common cognitive functions (Relión et al., 2017). Three such brain

networks form a tri-network model of higher cognitive functioning and are found to

be dysregulated in a number of psychopathologies, such as PTSD (Connolly et al.,

2014; Menon, 2011), autism, schizophrenia, anxiety, depression, bipolar disorder and

fronto-temporal dementia (FTD). Current therapies that improve the patient’s cog-

nitive and behavioural states are also found to re-normalize these dysregulated net-

works (Kluetsch et al., 2014), suggesting a correlation between network dysfunction

and behavioural dysregulation. Hence, assessing tri-network activity and its dynamics

can be a powerful tool to objectively assess treatment response in such psychopatholo-

gies.

Doing so would typically rely on functional magnetic resonance imaging (fMRI),

the most commonly used imaging modality for studying such brain networks. While

fMRI allows for excellent spatial resolution, it presents serious barriers to widespread

clinical adoption for a number of reasons. First, MRI’s high operational costs and

limited availability mean it is not widely used for routine health assessments. Fur-

thermore, fMRI scanning can be claustrophobic and stressful, and therefore not well

tolerated by many patients with severe mood disorders. Finally, because fMRI mea-

sures blood flow, an indirect correlate of neural activity, it has relatively poor temporal

resolution; it can resolve brain activity on the timescale of several seconds, but not

the millisecond level time-scale of actual underlying neural events. This calls for a

cheaper, less invasive modality that is capable of acquiring neural signals at much

higher temporal resolutions. Electroencephalography (EEG) is one such modality

that uses surface electrodes on the scalp to acquire neural signals from the underlying
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cortex (Gloor, 1969). Despite its benefits, however, EEG has not been widely used

for probing network dynamics due to its poor spatial resolution.

One potential strategy to overcome this shortcoming is by identifying the activity

of intrinsic connectivity networks (ICNs) using their EEG-based temporal signatures.

There is some evidence that the discussed brain networks have EEG signatures such

as specific frequency band power activity (Sauseng et al., 2005; Scheeringa et al.,

2008; Shah et al., 2017), phase signatures (Dimitriadis et al., 2015) and other spa-

tiotemporal patterns (Charbonnier et al., 2016) that could potentially be used to

identify the level of activity in each of the three networks of the tri-network model.

Identification and development of such EEG signatures of ICNs as brain network-

based biomarkers will be particularly useful for tracking progress in the treatment

of neuropathologies in which network dynamics within and between these three net-

works is dysregulated. Monitoring the level of network activity in affected subjects

may also lead to the development of novel individualized treatments such as brain

network-based neurofeedback interventions.

This thesis takes a step towards improving the clinical accessibility of such EEG-

based ICN biomarkers by 1) exploring currently used EEG-based methods to study

brain networks, 2) understanding the healthy dynamics between the three brain net-

works constituting the tri-network model, 3) creating a novel EEG-based method

to detect such network activity and dynamics of the three networks, and finally 4)

showing its utility in tracking intervention-linked changes in brain network dynamics.

Accomplishing this involved four major steps constituting four studies, as discussed

below.
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1. The first study explored the adequacy of core assumptions made by EEG Mi-

crostates, a popular EEG-based method currently used to study network dy-

namics in mental health disorders.

2. The second study investigated the network dynamics of the healthy brain during

task switching, as predicted by the tri-network model, using fMRI, the current

standard for studying brain networks.

3. Using information gathered from study 2, the third study identified the EEG

signatures of the three networks by using simultaneously acquired EEG-fMRI

data, and created a machine learning model capable of predicting ICN activation

based on EEG data alone.

4. Finally, the fourth study validated the use of the machine learning model devel-

oped in study 3 by using it to investigate the ICN changes due to two lifestyle

interventions, aerobic exercise and neurofeedback, in a sample of healthy un-

dergraduate students.

These studies have collectively identified unique task-linked ICN dynamics that

can be identified using the newly developed machine learning model, and have shown

its proof-of-concept application in studying intervention-linked changes in ICN dy-

namics. Designed to be used clinically in characterizing and tracking treatment of

individuals with psychopathologies such as PTSD, the EEG-based ICN analysis tools

developed by these studies have greatly increased the clinical accessibility of brain

network measures as biomarkers for neuropathologies.

This thesis is organized into 8 Chapters. Chapter 2 presents a detailed review of

large-scale brain networks and general network structure in the human brain. Chapter

4
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3 introduces the challenges of collecting simultaneous EEG-fMRI data, and presents

a collection of newly developed solutions that resolve these challenges. Chapter 4

presents the results of study 1, scrutinizing the assumptions underlying EEG mi-

crostate analyses, while chapter 5 discusses the results of study 2 – the fMRI-based

assessment of ICN dynamics. Chapter 6 and 7 present the results of studies 3 and

4 respectively, discussing the developed machine learning model capable of detecting

ICN activation using EEG data alone, and its application in assessing ICN changes

after lifestyle interventions in a population of healthy undergraduate students. Fi-

nally, chapter 9 concludes the thesis by discussing the future possibility of applying

the created framework for diagnostic purposes, summarizing the major contributions

of this thesis.
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Chapter 2

Functional Brain Networks

2.1 Introduction

The brain is a complex interconnected system that determines and modulates an

individual’s personality, behavior, and their abilities to perform simple and complex

tasks. Features of this complicated system have been studied at varying scales ranging

from individual synapses, to single neurons, to aggregates of a few hundred neurons,

and finally to large scale brain regions (Varela et al., 2001).

Over the past two decades, the study of the neural correlates of human behaviour

and cognition have transitioned from a modular localist approach to a more dis-

tributed, networked systems approach (Bressler and Menon, 2010). Termed intrin-

sically connected brain networks (ICN) or simply, functional networks (FN), each

networked region forms a cluster of nodes that activate synchronously and perform

a cohesive functional role. These ICNs cover a wide range of cortical brain regions

and span numerous functions required for performing everyday actions and cognitive

processing. A subset of these ICNs are shown in Figure 2.1 (see Thomas Yeo et al.
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Figure 2.1: Seven major intrinsic connectivity networks (ICNs) found using
spatiotemporal ICA analyses on fMRI BOLD signal, labeled based on results

from Shirer et al. (2012a). Activity shown is thresholded at FDR-corrected p < 0.05.

(2011) for more ICNs). In addition to task-linked roles, some of these networks are

also essential for the thought processes ongoing in the absence of overt tasks (Raichle

and Mintun, 2006) and are involved in the integration of previous experiences and

potential future experiences into a cohesive experiential timeline, creating the concept

of the ”self” (Spreng et al., 2010).

Apart from cortical nodes, recent advances in high-resolution neuroimaging have

also uncovered the involvement of sub-cortical structures such as the cerebellum in

such cognitive processes (Diedrichsen et al., 2009), suggesting their inclusion within

these distributed large-scale brain networks (Dosenbach et al., 2008).

This chapter provides an introductory exposition of ICNs by discussing key network-

based characteristics of ICNs and popular ICN-based models of cognition.

9
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Figure 2.2: Inter-hemispheric white matter tracts connecting the two cerebral
hemispheres via the Corpus Callosum. Such tracts form the edges of the structural

connectome. See Oishi et al. (2008) for more details.

2.2 The Connectome

Mirroring the ”genome” that represents the collection of genes subserving all pheno-

types, the connectome refers to the collection of connectivity patterns between brain

regions that underlie complex behaviour, emotions and cognition [SBS:cite Sporns,

2005 and Hagmann, 2005]. The connectome is often described by the functional

connectivity (functional connectome) that arises between brain regions that are also

structurally connected through white-matter tracts (structural connectome). As ex-

pected, the structural connections remain relatively stable over time (Bullmore and

Sporns, 2009), while the functional connections are found to dynamically change with

task-specific demands.

10
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2.2.1 Terminology

The connectome has been popularly characterized using graph theory, where each

brain region forms a node, and each connection between a pair of brain regions forms

an edge with an associated edge weight that corresponds to the strength of the connec-

tion between these brain regions. The edge represents a physical connection between

brain regions via white-matter tracts for structural networks, and a functional link in

the case of a functional network. Additionally, each edge can also have an associated

direction representing the direction of information flow, making the graph a directed

graph.

Constructing graphs using these principles gives rise to natural node-based net-

work measures that can characterize local and global brain network structure. One

such measure is the node degree, which refers to the number of other nodes connected

to a given node. Highly connected nodes (high degree) can be critical for information

transfer, forming a hub (van den Heuvel et al., 2010; Power et al., 2013). Such hubs

are often also associated with low average path length, referring to the average number

of nodes that need to be traversed before reaching the current node. Hence, the hubs

can be reached quickly from other nodes in the network, and conversely, the hub node

can reach other network nodes without needing many intermediate nodes. Hubs are

also characterized by low clustering, which represents the extent to which the current

node forms isolated clumps of nodes. In other words, hubs are connected to a wide

range of nodes in the network and rarely form isolated clusters of connections with a

limited number of nodes. Finally, hubs also portray high betweeness centrality, which

is the number of shortest paths connecting other pairs of nodes passing through the

current node. This measure represents the ”connector” property of the node and a

11
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Figure 2.3: A graph of major characters in Les Miserables. A. Each node represents
a character, while each edge represents a scene in which the characters appear

together. The communities/modules are shown in different colors. B. The node with
the largest degree and betweeness centrality is highlighted, showing its hub-like

properties. The data was sourced from The Stanford Graphbase, and visualized by
Connectthedots.

high value means that other nodes can use the current node as an intermediate node

to quickly to get to other nodes in the network.

These brain networks are analogous to social networks, where each person is a

represented by a node and some relationships between people form the edges of the

social graph. This is portrayed in Figure 2.3, where a graph is constructed based

on the on-screen appearance of actors in the Les Miserables movie. In this example,

Valjean is well connected to other actors (high degree), and can reach most other

actors through his current acquaintances (low average path length). Furthermore,

Valjean interacts with a wide range of actors, not limiting himself to a select few

(low clustering). Finally, if some actor wanted to convey a message to another actor,

12
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they could do so quickly by asking Valjean to convey the message, either directly, or

through his primary contacts (high betweeness centrality). Hence, Valjean would be

considered a hub in this network.

Study of the brain-derived graph has uncovered numerous hubs within the brain (Power

et al., 2013), some of which are even connected to other high degree nodes, forming

”rich clubs”. These clusters of high degree nodes are critical for information trans-

fer (van den Heuvel and Sporns, 2011), and are found at highly connected brain

regions such as the hippocampus, precuneus, thalamus, and key fronto-parietal re-

gions (van den Heuvel and Sporns, 2011). Interestingly, these regions also are key

hubs within major ICNs and are essential nodes for connecting different sub-regions

within the network, as discussed below.

In addition to hub-driven connectivity seen in the human brain, study of the local

and global graph structure of the human connectome has revealed a ”small-world”

organization, referring to a structure that has numerous local connections with few

long distance connections. Continuing with the social network analogy, this phrase is

derived from the sensation of a ”small-world” that one may feel after finding common

acquaintances with a new person that they may meet. This is a by-product of most

social networks usually being limited to numerous close people (short-distance/local

connections) with a few long-distance acquaintances (long-distance connections), that

allows disconnected clusters of people to be connected. Such an organization is con-

sidered efficient, since people perform most tasks with their local social circles, while

occasionally connecting with new people in other social circles via their acquaintances.

In the context of neural processing, a small-world network organization allows for ex-

tensive lower level processing within local clusters, followed by processed information
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being transferred between distant brain regions over longer-range connections. The lo-

cal connections are known to be much more stable under normal cognition, compared

to the longer range connections, which can change based on task demands (Park et al.,

2012). Such a small-world organization can also be disrupted by psychopathologies

such as schizophrenia (Bassett et al., 2008), or even psychedelic drugs such as psilo-

cybin (Petri et al., 2014). In fact, schizophrenia is known to affect some of the hubs

discussed above, affecting information flow between major sections of the ICNs (Van

Den Heuvel et al., 2013). Interestingly, the small-world structure seems critical for

extremely basic cognitive functions such as consciousness, with propofol-induced loss

of consciousness leading to a breakdown of longer-range connections and reorganiza-

tion of hub structure, which re-emerge once the effects of the anesthetic wear off and

the patients gain consciousness (Lee et al., 2013).

This small-world organization results in an efficient hierarchical system that shows

high clustering, and short path lengths, that are repeated at multiple scales (scale-

free). The dense local connections form sub-modules/sub-networks, that in turn

connect with other sub-modules/sub-networks to form the modules/ICNs described

earlier, which communicate across the longer range global connections (Park and Fris-

ton, 2013). Given that the intrinsically connected networks (ICNs) are a byproduct

of heirachical organization of the small-world brain architecture, disruptions in the

small-world architecture lead to dysregulated ICN activity and dynamics. Conse-

quently, a wide range of psychopathologies that disrupt the graph structure of the

human connectome (Van Den Heuvel et al., 2013) also show disruptions in ICN con-

nectivity and dynamics (Menon, 2011). Hence, ICN changes can be a promising

indicator of changes in the underlying connectome, and can be used as biomarkers
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for the characterization of psychopathologies.

Around the turn of the previous decade, researchers started synthesizing these

links between network structure, cognition and behaviour into network-based cogni-

tive frameworks that could explain a wide range of network, behavioural and cognitive

dysfunctions observed in such psychopathologies (Dosenbach et al., 2008; Bressler and

Menon, 2010; Menon, 2011). Two such influential network-based models of cognition

were largely adopted to describe behaviour, attention and cognitive control, and are

discussed in detail in the following sections.

2.2.2 Dual-networks model

Over the past few decades, numerous studies have attempted to understand the neu-

ral underpinnings of top-down cognitive control and develop practically relevant mod-

els (Hammond and Summers, 1972; MacDonald et al., 2000; Koechlin et al., 2003).

Many of the earliest findings of focal neural activation underlying cognitive control

found that the dorso-lateral prefrontal cortex (dlPFC) and the anterior cingulate

cortex (ACC) were both activated during top-down control and working memory

tasks (D’Esposito et al., 1995; MacDonald et al., 2000; Koechlin et al., 2003). Inter-

estingly, this was often accompanied by coherent activation in some parietal (poste-

rior parietal cortex - PPC) and opercular (insula) brain regions (D’Esposito et al.,

1995; Cohen et al., 1997). These connected brain regions were eventually found to

exhibit ”small-world” architecture, and constituted two functionally distinct brain

networks that worked together to accomplish working memory and top-down cog-

nitive control (Dosenbach et al., 2008). Under this model, the frontal and parietal
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brain regions form a fronto-parietal control network (FPN), while the anterior cingu-

late and insulo-opercular regions form a secondary cingulo-opercular control network

(CON), with some cerebellar nodes bridging these two networks. This model posits

that both networks maintain task-relevant information, albeit for different purposes.

The FPN is ascribed an adaptive control role that rapidly adapts to changes in the

task, while the CON performs stable set-maintenance. These related yet distinct

roles are thought to run in parallel, leading to a ”reactionary” FPN network that

can quickly react to changes/errors in the environment, which is then integrated over

a longer time period within the CON to create a more stable representation of the

relevant items in working memory. Follow-up work has shown that these networks are

comprised of multiple sub-networks, much like the small-world architecture discussed

in the previous section.

The FPN is found to have numerous distinct sub-networks (Thomas Yeo et al.,

2011; Dixon et al., 2018), that have distinct functional roles (Nee, 2021). For instance,

a gradient of functional hierarchy exists within the frontal and parietal brain regions,

such that regions most distal to the sensory-motor cortices process the most abstract

levels of information that are relevant for future decisions (internal), while regions

that are proximal to the sensory-motor cortices process progressively less complex

information, which are based on the current inputs (external) (Nee, 2021). In the

context of this gradient, the dlPFC and the PPC of the FPN seem to be located in

an ”intermediary” zone that is thought to facilitate integration of FPN-based cog-

nition with goal-directed behaviour and lower-level attentional control. The former

is achieved by integrating with default mode network (DMN) sub-regions located
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distally along the sensory-motor axis, while the latter involves integration with dor-

sal attention network (DAN) nodes located proximal to the sensory-motor cortices.

Hence, integration between various large-scale brain networks seems necessary for

appropriately processing and interacting with events in everyday life.

An alternate model was proposed based on this principle of network interactions

that modeled cognitive and behavioural dysfunctions as disruptions in network inter-

actions. This model is described in detail next.

2.2.3 Tri-network model

Out of the large number of previously identified FNs spanning a wide range of brain

functions, the dynamics of three large-scale brain networks are thought to underlie

the majority of behavioural and cognitive processes while performing everyday tasks.

This tri-network model (Menon, 2011) extends the Dosenbach et al. (2008) model

described above by including the FPN and CON as the central executive network

(CEN) and the salience network (SN), respectively, in addition to the default mode

network (DMN). The tri-network model posits that the CEN is involved in extro-

ceptive processing, working memory and other executive functions; the default mode

network (DMN) is involved in interoceptive processing, autobiographical memory re-

trieval, imagining the future, spatial planning and navigation and self-reflection; and

the salience network (SN) modulates switching attention between exteroceptive and

interoceptive cognitive processes by switching between the engagement of the CEN

and the DMN, respectively. Recent evidence suggests that performing tasks reliant on

these networks, such as recalling previous autobiographical memories and remember-

ing a word seen in a stream of words, requires dynamic interaction between the three
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networks and that task switching is modulated by the SN, that co-activates with the

task-appropriate network (Shaw et al., 2021). Appropriate network switching dynam-

ics between these three core networks is thought to be critical for healthy cognitive

and behavioural processing, and disruptions in normal inter- and intra-network ac-

tivity between these networks have been observed in numerous neuropsychological

conditions affecting emotion and cognition. For instance, in Major Depressive Disor-

der (MDD) (Connolly et al., 2014), patients have trouble down-regulating activity

within the DMN resulting in symptoms such as persistent rumination (Nejad et al.,

2013). Furthermore, increased connectivity of the dorsal mid-insular cortex has been

shown to be associated with increased depressive symptom severity. Another example

of aberrant interaction of these brain networks associated with neuropathology is seen

in Post-Traumatic Stress Disorder (PTSD), where disruptions in the integration of

various DMN, CEN and SN components have been observed, including the posterior

cingulate cortex (PCC)/Precuenus (Bluhm et al., 2009; Rabellino et al., 2015; Lanius

et al., 2015), ventrolateral prefrontal and anterior cingulate cortex (Rabellino et al.,

2015), ventromedial prefrontal cortex (vmPFC) and hippocampus (Sripada et al.,

2012). Abnormal activation of the DMN has also been observed in PTSD patients

while switching to a working memory task that normally recruits the CEN (Daniels

et al., 2010). The neural substrates of numerous other psychological disorders, such as

bipolar disorder, schizophrenia and mild cognitive impairment (MCI) (Menon, 2011),

also overlap with critical DMN, CEN and SN nodes and it is therefore clinically rele-

vant to effectively study and track the dynamics of these three networks. The nodes

constituting these networks, and their functional roles, are further discussed in the

following sub-sections.
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Default Mode Network (DMN)

The default mode network (DMN) consists of some key nodes within the pre-frontal

cortex (PFC), posterior parietal cortex (PPC) and medial and lateral temporal cor-

tices (MTC/LTC) (Raichle, 2015) and is the predominantly active network when the

person is not performing any particular task (Raichle, 2015). For this reason, this

network was initially mis-characterized as simply reflecting the brain’s idling state

and was also referred to as the default network or task-negative network. However,

a large body of evidence shows that the DMN subserves a wide range of cognitive

tasks involved in internally-directed thoughts, spanning numerous distinct functional

domains, which map onto three distinct sub-networks (Andrews-Hanna et al., 2014;

Thomas Yeo et al., 2011).

The dorso-medial sub-network is comprised of the temporal pole (TP), lateral

temporal cortex (LTC), temporo-parietal junction (TPJ) and the dorso-medial PFC

(dmPFC). This sub-network has been linked to semantic comprehension and social

cognition or ”Theory of Mind” tasks such as associating emotions and desires to one-

self and/or others and processing of social and non-social touch interactions (Lee Mas-

son et al., 2020).

While the dmPFC is heavily involved in knowledge of others, the ventromedial

prefrontal cortex (vmPFC), discussed in the next sub-section, is more responsive to

self-referential information (Raichle, 2015).

The medio-temporal sub-network is comprised of the hippocampus, parahip-

pocampus, retrosplenial cortex, posterior inferior parietal lobule (pIPL) or angular
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gyrus (AG) and the ventromedial PFC (vmPFC). This sub-network has been associ-

ated with autobiographical memory retrieval, episodic future thinking and contextual

memory retrieval.

The vmPFC is a key hub of this sub-network that receives external sensory input

from the orbitofrontal cortex and relays it to deeper structures such as the hippocam-

pus, amygdala and even the periaqueductal-grey (PAG) (Nicholson et al., 2017) that

are important for episodic memory, scene construction (Hassabis and Maguire, 2007)

and emotion regulation (Raichle, 2015). Reciprocal connections with these deeper

structures can also modulate the activity of the vmPFC (Raichle, 2015; Lanius et al.,

2006).

The core network, also known as the cortical-midline sub-network (Kim, 2012),

first mentioned byNorthoff and Bermpohl (2004), integrates information from the

two sub-networks discussed above, and is composed of the posterior cingulate cortex

(PCC) and the antero-medial PFC (amPFC). It is primarily involved in self-referential

processing and emotion evaluation, while also co-activating with the medio-temporal

and dorso-medial sub-networks during autobiographical memory and social cognitive

processes respectively.

More specifically, the ventral PCC (vPCC) correlates with the rest of the network

during most of the previously mentioned tasks, while the dorsal PCC (dPCC) is

associated with salient environmental cue detection and monitoring for behaviourally

relevant , and is connected with key cognitive control centres in the brain (Leech

et al., 2011). PCC is also heavily connected to the precuneus and this link is essential

for the DMN’s involvement with spatial navigation (Byrne et al., 2007).
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The amPFC is heavily connected to other DMN nodes and is involved in autobi-

ographical memory retrieval, episodic future thinking, affect and arousal regulation,

positive and negative emotional reward and perceived value (Andrews-Hanna et al.,

2014). Hence the amPFC is considered an integrative hub for salient external infor-

mation, prior episodic memories and current affective state. Given its proximity to

the vmPFC, the amPFC and vmPFC share some common affect processing functions,

however, they may have unique roles in self related and situational processing (Lieber-

man et al., 2019).

The amPFC and PCC hubs are thought to drive active and passive self-referential

thoughts, respectively, where a self-reference task activates the amPFC, while passive

resting state activates the PCC (Benjamin et al., 2010). Additionally, Self-related

memory encoding and retrieval processes were originally thought to be left and right

lateralized, respectively (Craik et al., 1999), however, there is now considerable evi-

dence surrounding the left lateralization of self-referential processing (Axelrod et al.,

2017) and autobiographical memory retrieval (Kim, 2012).

The dorso-medial and the medio-temporal sub-networks are often pooled into a

larger parieto-temporal subnetwork (PTS) involved in memory retrieval tasks (Kim,

2012), containing the inferior parietal lobule (containing the temporo-parietal junction

and angular gyrus), medial temporal lobe and lateral temporal cortex nodes (Kim,

2012).

Interestingly, the dynamics of DMN activation is known to change depending on

the dynamics of the task being performed. For example, the DMN is heavily involved

in the retrieval of autobiographical memories and shows different temporal activation

dynamics depending on the nature of the AM. General AMs that have sparser details
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and are more generalized have a shorter time-to-retrieval, compared to specific AMs

that have a greater amount of detail about the specifics of the memory (Addis et al.,

2004).

Central Executive Network (CEN)

The central executive network (CEN) is a complex attentional control system that is

anchored in the dorso-lateral prefrontal cortex (dlPFC) and some parietal regions. For

this reason, it is sometimes referred to as the frontoparietal attention, frontoparietal

control network, or task-positive network and is responsible for a host of executive

functions such as updating working memory, inhibitory control or selective attention,

multiple task coordination (Collette and Van der Linden, 2002; Baddeley, 1996), and

random sequence generation (Baddeley et al., 1998).

Norman et al. (1986)’s two-pronged model suggests that executive functioning is

a part of the supervisory activating system (SAS) that takes over attentional con-

trol from an implicit habit-based system when schema-based actions are no longer

appropriate. This requires multiple component systems working in concert with one

another to perform the task at hand, as described by the three-component Baddeley

and Hitch (1974) model. Under this model, a modality-invariant central executive

system receives information from the visuospatial and verbal subsystems through the

visuospatial scratchpad and the phonological loop respectively. Each of these sub-

systems has distinct storage-rehearsal substructures, with rehearsal processes main-

taining the stored objects in the respective short term memory (Smith and Jonides,

1997; Barton et al., 1995; Washburn and Astur, 1998).
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The visuospatial scratchpad maintains and manipulates visuospatial representa-

tions of task relevant objects (Vallar and Pagano, 2002). The storage of these visu-

ospatial representations is subserved by the right posterior parietal cortex (PPC) (Smith

and Jonides, 1997; Byrne et al., 2007; Dhindsa et al., 2014), while the rehearsal-

based maintenance of these representations involves right premotor areas (Smith and

Jonides, 1997).

The phonological loop maintains verbal/phonological short term memory, which

is refreshed by an articulatory rehearsal process (Vallar and Pagano, 2002). The

phonological storage is responsible for verbal/phonological short term memory and is

centered around the left inferior parietal cortex (BA 40) (Smith and Jonides, 1997),

whereas the loci for sub-vocal rehearsal that maintain these objects in storage are

the left Broca’s area/inferior frontal gyrus, left premotor area and left supplementary

motor areas (Smith and Jonides, 1997; Fegen et al., 2015). The medial frontal gyrus

(MFG) and superior parietal lobule (SPL) are also involved in the rehearsal process

albeit in a general supervisory role (Fegen et al., 2015).

Representations of task relevant objects can exist in either of these two systems

as visual or verbal objects, and can transform from one to another via a fourth

component - the episodic buffer (Baddeley, 2000). This buffer integrates information

across the sensory subsystems and long-term episodic, visual and linguistic memory,

forming a modality-invariant representation and is known to have a limited capacity of

around 7 ± 2 objects (Kamiński et al., 2011). Such distributed patterns of modality-

specific information localized in respective sensory cortices that are integrated at the

parietal and prefrontal structures over increasing time lags has led to a more modern

distributive view of working memory (Christophel et al., 2017).
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The central executive processes that function at the level of modality-invariant

working memory, such as temporal coding, integrate across the sensory subsystems

and are located in the dorsolateral prefrontal cortex (dlPFC). Unlike the visuospatial

and the verbal subsystems that are right and left lateralized respectively, dlPFC is

found to be bilaterally activated (Smith and Jonides, 1997; Baddeley, 2003).

Numerous tasks have been used to probe executive functioning, with each task

activating different executive subprocesses. For example, while the Wisconsin card

sorting test (WCST), the go-no-go task and stroop interference trials all rely on in-

hibitory control processes, the WCST additionally relies on the executive function of

shifting task attention (Collette and Van der Linden, 2002). Towers of Hanoi/London

is an example of a task that relies on frontal lobe-linked planning and strategy (Sulli-

van et al., 2009) in addition to some inhibitory control (Collette and Van der Linden,

2002). N-back tasks are another popular task that relies on the multi-component

executive process of temporal coding (Collette and Van der Linden, 2002; Smith and

Jonides, 1997) and reliably activates frontal regions such as frontal poles, dlPFC,

vlPFC, and latero-medial premotor cortices, in addition to some parietal regions such

as medio-lateral posterior parietal cortices, dorsal cingulate (Owen et al., 2005; Yaple

et al., 2019), and the precuneus (Yaple et al., 2019).

Interestingly, some brain regions such as IFG/vlPFC and the inferior parietal cor-

tex (BA 40), that constitute some CEN sub-networks, are also found to integrate with

the DMN, and are consequently thought to also be a part of DMN sub-networks. In

fact, recent work in dynamic functional connectivity find that such association cor-

tices can dynamically switch network membership, and that this switching behaviour

is desirable for optimal cognitive functioning (Pedersen et al., 2018).
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Salience (SN)

The salience network is composed primarily of two major cortical nodes, the anterior

insula (AI) and the dorsal anterior cingulate cortex (dACC) (Menon, 2011), and

some non-cortical structures such as the amygdala, ventral striatum and the ventral

tegmental area/substantia nigra (VTA). It is responsible for detecting higher-level

emotional and reward-linked salience of incoming stimuli, and driving goal-directed

behaviours (Sridharan et al., 2008; Menon and Uddin, 2010; Menon, 2015).

The anterior insula (AI)/frontoinsular cortex (fIC) receives a wide range of

sensory input, along with emotional and reward-linked salience information from the

sub-cortical nodes of the SN. Consequently, AI is thought to integrate across these

inputs to detect stimuli coherent with behaviourally relevant actions in a goal-directed

manner.

The dorsal anterior cingulate cortex, unlike the afferent-heavy connection struc-

ture of AI, has extensive efferent connections to somatomotor and primary motor

areas (Menon, 2015), along with some outputs to hypothalamus and peri-aqueductal

grey (PAG) Menon and Uddin (2010). The dACC node is heavily involved with

response selection, introceptive and autonomic processing (Mesulam, 1998).

The sub-cortical structures that constitute the SN include key nodes of the limbic

system and reward circuitry - the amygdala and the ventral striatum/VTA respec-

tively, which detect negative valence and reward salience of received stimuli. These

feed into the AI to be integrated with other sensory input.

The two primary nodes of the SN have a very characteristic cytoarchitecture
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involving single spindle neurons called Von Economo neurons, which seem to be pri-

marily localized at the AI and dACC in the primate brain (Menon, 2015). This

provides an extremely efficient communication pathway between the AI and dACC

via the white matter tracts of the uncinate fasciculus (Menon, 2015).

After detecting the emotional, social or task-linked salience of an input, the SN

acts as a ”gate” by activating the relevant functional network to further process and

respond with an appropriate action, as described in the following section.

While the nodes described above constitute the canonical salience network in-

cluded in the original tri-network model, recent evidence has shown that this network

is in fact a smaller anterior component of a larger salience system (Shirer et al., 2012b).

A secondary salience sub-network (named the posterior salience sub-network) is found

to closely interact with the above discussed nodes, performing multisensory integra-

tion in the context of emotions and processing embodiment (Harricharan et al., 2021).

A core node within this sub-network is the posterior insula, which is thought to pro-

cess thermosensory and pain information. In fact, the primary thermosensory cortex

is believed to be located in the posterior insula, allowing it to cohesively integrate

these experiences with other bottom-up sensory information reaching the posterior

insula via thalamic, limbic and brainstem structures (, Bud). Hence, the posterior

insula is able to identify internal bodily changes, and is found to be dysregulated

in the dissociative subtype of PTSD, where processing of body-related sensations or

embodiment is lacking (Harricharan et al., 2020).
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2.2.4 Detecting Intrinsically Connected Networks (ICNs)

The connected nature of these network nodes poses a particularly difficult challenge in

adequately detecting their activation. Firstly, non-invasively collecting signals from

small nodes located deep within the brain requires a functional imaging modality,

such as functional magnetic resonance imaging (fMRI), that can identify regions with

high spatial resolution. However, this comes at the cost of poor temporal resolu-

tion since fMRI requires considerable time to collect signals from the entire brain

at each time point, and is limited by the slow haemodynamic response (as described

below). Conversely, functional imaging modalities with fine temporal resolution, such

as electroencephalography (EEG) and magnetoencephalograpy (MREG), suffer from

poor spatial resolution. This trade-off between spatial resolution and temporal reso-

lution is at the heart of this thesis, as we use multi-modal methods to combine these

two modalities, combining the strengths of the respective modalities. Each individ-

ual imaging modality is briefly described next, while the next chapter explores the

challenges of combining these modalities together.

Functional Magnetic Resonance Imaging (fMRI)

First discovered by Seiji Ogawa in 1990, functional magnetic resonance imaging has

become one of the most popular imaging modalities over the past three decades.

FMRI senses neural activity by identifying changes in levels of blood oxygenation

(i.e. Blood Oxygen Level Dependent (BOLD) signal), due to the phenomenon of

increased blood flow in the local area of increased neural activity. This ”haemody-

namic response” results in an increase in the local ratio of oxygenated/deoxygenated

blood, which in turn changes the local magnetic properties due to deoxyhaemoglobin’s
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paramagnetic nature, leading to an increase in the local T ∗2 relaxation time. This T ∗2

relaxation time refers to the time it takes the Hydrogen (H) atoms in the brain tissue

to move out of phase with each other, after all the H atoms have been simultane-

ously excited by a pulse of energy (aligning their phases together). The rate at which

this occurs depends on the local inhomogeneity of the magnetic field, since this in-

homogeneity causes the H atoms at different locations to spin at slightly different

speeds. Therefore, MRI imaging sequences that are T ∗2 weighted (i.e. sensitive to

the T ∗2 relaxation time) show increased intensity in local areas of increased neural

activity. Each voxel’s intensity then represents the aggregate activity of the neurons

contained within that voxel at a given time. Multiple whole-brain T ∗2 weighted images

detect the temporal progression of neural activity at each voxel, resulting in a BOLD

time-series.

The activity-linked peak in blood flow (haemodynamic response) occurs around

3-6 seconds after activity onset (Weiskopf et al., 2004), leading to a significant delay

in detecting neural activity using the BOLD signal. Additionally. the time required

to image the whole brain at each time point often limits the sampling rates of this

modality to < 1Hz. Together, these factors severely limit the temporal resolution of

the fMRI-derived BOLD signal to several seconds. Yet another drawback of fMRI is

the high cost of acquisition and operation, which limits the ability to use this modality

for repeated assessments of neural activity.

Despite these shortcomings, fMRI is one of the most commonly used modalities

for studying large-scale brain networks due to its excellent spatial resolution that

allows for effective identification of spatially separated clusters.
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Electroencephalography (EEG)

EEG is an alternate imaging modality that is considerably less expensive than MRI,

and boasts much higher temporal resolution (on the order of microseconds). Elec-

troencephalography (EEG) uses surface electrodes on the scalp to detect neural signals

from the underlying cortex (Gloor, 1969).

The neural origin of the EEG signals are thought to be the graded postsynap-

tic potentials of the neural cell body (soma) and the apical dendrites of vertically

orientated pyramidal cells in cortical layers three, four and five (Mayer and Bellgo-

wan, 2014), caused by their synchronized polarization and depolarization. The EEG

electrodes are also sensitive to vertical currents that are flowing perpendicular to the

scalp, in the extracellular space (?). Since the source of these stray currents could

be neurons other than those directly underneath the electrode, the EEG signal at an

electrode is influenced by a fuzzy ”ball” of neural tissue centered at the electrode.

Furthermore, the impedance of the overlying CSF, skull and tissues further attenuate

and spatially blur the neural signal (Rice et al., 2013), thereby reducing the spatial

resolution of the EEG signal to an area of 10 cm2 due to limited conductance of the

neural tissue, and the distance-dependent attenuation of the electrical fields gener-

ated by the cortical apical dentrites (Buzsáki et al., 2012). Furthermore, since the

EEG electrode is sensitive to all electric currents generated close to the scalp, it is

often contaminated with other electrical activity such as cardiac activity, underlying

muscle activity, eye movements, eye blinks, power line noise and motion artifacts.

Hence, despite its advantages, EEG is not the preferred modality for probing network

dynamics.

However, improvements in signal processing and the potential benefits of using
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EEG have motivated the development of numerous EEG-based network measures in

recent years.

One notable EEG-based measure being used to probe network dynamics is EEG

Microstates. Thought to represent ”atoms of thought” (Koenig and Lehmann, 1996),

EEG microstates describe the continuous changes in EEG scalp topology as discon-

tinuous transitions between quasi-stable ”microstates” with fixed scalp topologies.

This analysis method has been popularized due to its ease of use and the correla-

tion between the identified microstates and some major ICNs (Britz et al., 2010).

However, there is some disagreement in the network-based interpretation of some of

these microstates, and recent work (some in chapter 3 of this thesis) shows that some

major assumptions underlying EEG microstate analysis might not be appropriate for

representing network dynamics. This is further discussed in chapter 3.

Other amplitude and phase-based EEG-based measures of connectivity have also

shown promise in detecting ICN activity. These are discussed in detail in chapter 6.

Bibliography

Addis, D. R., McIntosh, A. R., Moscovitch, M., Crawley, A. P., and McAndrews, M. P.

(2004). Characterizing spatial and temporal features of autobiographical memory

retrieval networks: A partial least squares approach. NeuroImage, 23(4):1460–1471.

Andrews-Hanna, J. R., Smallwood, J., and Spreng, R. N. (2014). The default network

and self-generated thought: component processes, dynamic control, and clinical

relevance. Annals of the New York Academy of Sciences, 1316(1):29–52.

30



Ph.D. Thesis – S.B.Shaw McMaster University

Axelrod, V., Rees, G., and Bar, M. (2017). The default network and the combi-

nation of cognitive processes that mediate self-generated thought. Nature Human

Behaviour, 1(12):896–910.

Baddeley, A. (1996). Exploring the Central Executive. The Quarterly Journal of

Experimental Psychology Section A, 49(1):5–28.

Baddeley, A. (2000). The episodic buffer: a new component of working memory?

Trends in Cognitive Sciences, 4(11):417–423.

Baddeley, A. (2003). Working memory: looking back and looking forward. Nature

Reviews Neuroscience, 4(10):829–839.

Baddeley, A., Emslie, H., Kolodny, J., and Duncan, J. (1998). Random Genera-

tion and the Executive Control of Working Memory. The Quarterly Journal of

Experimental Psychology Section A, 51(4):819–852.

Baddeley, A. D. and Hitch, G. (1974). Working Memory. In ReCALL, volume 255,

pages 47–89.

Barton, A., Matthews, B., Farmer, E., and Belyavin, A. (1995). Revealing the basic

properties of the visuospatial sketchpad: The use of complete spatial arrays. Acta

Psychologica, 89(3):197–216.

Bassett, D. S., Bullmore, E., Verchinski, B. A., Mattay, V. S., Weinberger, D. R., and

Meyer-Lindenberg, A. (2008). Hierarchical organization of human cortical networks

in health and Schizophrenia. Journal of Neuroscience, 28(37):9239–9248.

Benjamin, C., Lieberman, D. A., Chang, M., Ofen, N., Whitfield-Gabrieli, S.,

Gabrieli, J. D. E., and Gaab, N. (2010). The Influence of Rest Period Instructions

31



Ph.D. Thesis – S.B.Shaw McMaster University

on the Default Mode Network. Frontiers in Human Neuroscience, 4(December):1–

9.

Bluhm, R. L., Williamson, P. C., Osuch, E. A., Frewen, P. A., Stevens, T. K., Boks-
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Chapter 3

Simultaneous EEG-fMRI:

Challenges & Solutions

3.1 Introduction

One solution to overcome the respective shortcomings of EEG and fMRI (discussed

in the previous chapter) is to concurrently record both EEG and fMRI data. This

poses several technical challenges stemming from the interaction of EEG electrodes

and the rapidly changing magnetic fields used during fMRI scanning.

This is similar to the home experiment performed by repeatedly moving a perma-

nent magnet in and around a loop of wire. This small-scale experiment shows a small

current induced in the wire loop due to the magnetic field. The induced current is

proportional to the change in magnetic flux (number of magnetic field lines per unit

area) passing through the wire coil, and can therefore also be induced by a rapidly

changing external magnetic field. The impact of the magnet on the current in the

wire loop in this experiment is identical to fluctuating currents in the EEG electrodes
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induced currents by the rapid changes in magnetic field required during fMRI imag-

ing. Unfortunately, the magnitude of this induced current is orders of magnitude

larger (on a scale of volts) than the EEG signal of interest (on a scale of microvolts),

requiring additional filtering before the EEG signal can be used for further analysis.

Since this artifact is derived from the MRI gradient fields, this artifact is called the

gradient artifact (GA).

The paper discussed in this chapter describes the simultaneous EEG-fMRI setup

used for the EEG-fMRI data collected in this thesis, and provides an overview of pop-

ular methods used to filter the GA. The paper additionally introduces two alternate

GA filtering methods -

1. A parallelized implementation of FASTR, a popular GA filtering method, that

leverages the multiple cores available on modern computers to greatly accelerate

the GA filtering process.

2. A novel frequency-domain based GA filtering method that further reduces the

computation time required to filter the GA.

The results of this paper informed the development of our EEG-fMRI analysis

pipeline and validated the integrity of the filtered EEG data. Method 1 was ul-

timately incorporated into our analysis pipeline, greatly reducing the computation

time required for the subsequent analysis steps in this study.

The primary author of this study (SBS) conceptualized and designed this study,

collected the data, performed the analysis and wrote the manuscript.
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3.2 Real-Time Filtering of Gradient Artifacts from

Simultaneous EEG-fMRI Data

Shaw, S. B. (2017, June). Real-time filtering of gradient artifacts from simultane-

ous EEG-fMRI data. In 2017 International Workshop on Pattern Recognition in

Neuroimaging (PRNI) (pp. 1-4). IEEE.
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Real-Time Filtering of Gradient Artifacts from
Simultaneous EEG-fMRI Data

Saurabh Bhaskar Shaw, PNB, McMaster University

Abstract—EEG and fMRI are extremely popular tools to
study patterns of functional brain activity. Their utility can be
further enhanced when used together in simultaneous EEG-fMRI
recordings. However, such recordings are ridden with artifacts
due to the gradients switching within an MRI machine. These
artifacts need to be filtered before the data can be further
processed. Numerous tools exist for filtering such data. However,
if one needed to use the data for real-time feedback (such
as neurofeedback), the current methods would be too slow.
This paper discusses parallel versions of the current methods
and a novel FFT based method that reduces the computation
time of current methods by a factor of 3 and 23 respectively.
This facilitates the use of an EEG-fMRI dataset in real-time
neurofeedback studies.

Index Terms—Electroencephalography, EEG, functional Mag-
netic Resonance Imaging, fMRI, Gradient artifacts, real-time.

I. INTRODUCTION

BOTH Electroencephalography (EEG) and functional mag-
netic resonance imaging (fMRI) are popular tools to

probe the functional activity of the human brain. However,
both have certain drawbacks owing to the nature of signals
they are sensitive to. EEG has extremely high temporal reso-
lution, however, it suffers from poor spatial resolution. This is
due to the limited depth of neural tissue capable of influencing
EEG voltages, and volume conduction effects that spatially
blur the voltage recorded at each electrode1. On the other
hand, fMRI has comparatively excellent spatial resolution, but
poor temporal resolution due to the long acquisition times
of fMRI scans and the lag introduced by the haemodynamic
response driving the blood oxygen level dependent (BOLD)
signal2. It is therefore beneficial to combine the two modal-
ities together to obtain EEG and fMRI signals concurrently,
providing high temporal and spatial resolutions respectively.
Such data has been used to identify BOLD correlates of EEG
evoked potentials and shifts in EEG band power3, localize
foci of intractable seizures for surgical planning purposes4,
and better constrain the EEG source localization problem for
a more robust solution5. The equipment setup to acquire such
simultaneous EEG-fMRI data is shown in figure 1. However,
such a setup introduces a host of artifacts linked to the
switching MRI gradients into the EEG signal and requires
extensive filtering before it can be used. This paper explores

Saurabh Bhaskar Shaw was with the School of Biomedical Engineering,
McMaster University before joining the Department of Psychology, Neuro-
science and Behaviour (PNB), McMaster University.
E-mail: shaws5@mcmaster.ca

Fig. 1. The equipment setup for an EEG-fMRI system showing the com-
ponents in the MRI scanner room (blue box), and the recording equipment
outside the scanner room. The recording computer is placed outside the
magnet room, with the amplified EEG data being transmitted via optic fiber
cables going through the MRI room wave guide, ensuring integrity of the
MRI magnet room RF shielding. The SyncBox is required to sync the clocks
of the scanner and the acquisition computer. It also records the exact moment
of the MRI Gradients switching on/off as markers in the EEG recording. This
is essential for the GA filtering process.

current methods of filtering such gradient artifacts (GA) and
proposes a novel method that allows for quick computation
time.

II. GRADIENT ARTIFACTS (GA)

During BOLD fMRI scanning, the MRI gradients switch
back and forth rapidly to acquire multiple full brain images
during the course of the scan. These rapidly switching mag-
netic fields induce a voltage in the electrodes of the EEG cap
(according to Faraday’s law). These result in massive spikes
in the EEG signal trace and completely mask the underlying
EEG data6, as shown in figure 2.

Numerous approaches have been developed to remove such
GAs7 - Adaptive filtering, optimal basis set removal (OBS),
alignment and subtraction (ITAS), and a realtime carbon-
wire loop based method8. Combining multiple methods into a
composite algorithm is known to increase the overall filtering
efficacy of the system. One of the most popular combinations
is the FASTR algorithm9 implemented in the EEGLAB tool-
box10.

Another well packaged set of GA filtering tools is the
FACET toolbox11 for MATLAB, which implements sections978-1-5386-3159-1/17/$31.00 ©2017 IEEE
45



PATTERN RECOGNITION IN NEUROIMAGING, JUNE 2017 2

Fig. 2. Morphology of a typical gradient artifact observed over the course of
1 TR (2 seconds) is shown in panel (a). This is composed of 39 slices. One
such slice is highlighted in the red box and presented in more detail in panel
(b). The features seen in the artifact are a direct consequence of the EPI MR
sequence used to acquire fMRI signals.

of FASTR along with another algorithm FARM, useful for
electromygraphic (EMG) acquisitions in the scanner.

All algorithms work on a basic framework set by Allen, et.
al.12, where a GA model is created by averaging segments of
gradient artifacts. The deterministic nature of these artifacts
allows for the use of such a model to describe the GA
throughout the signal block. The input signal (x) is segmented
into recurring segments of the GA using gradient markers
representative of the gradients switching on and off. The
segmented data is averaged to obtain the GA model (y).

A. The FASTR Algorithm

The segmented input signal and the GA model are interpo-
lated to a higher sampling rate, aligned and then subtracted
(as shown in equation 1).

zk = xk − y (1)

where, xk and zk are the raw version and filtered version of
the kth epoch, respectively. The residual artifact in the filtered
signal is further minimized by using an optimal basis set
(OBS) filtering algorithm9. This involves fitting the principal
components from a PCA decomposition of the filtered signal
(zk) to that of the GA model (y), and removing the components
with significant fits. Any further residual artifact is removed
by using a recursive least squares (RLS) adaptive filter.

B. The ITAS Algorithm

This is a variant of the FASTR algorithm, where the
template used for subtraction is generated by giving a greater
weighting to artifact epochs closer to the current epoch while
averaging. Such an algorithm helps in compensating for any
drift in the GA template structure7. An example of such a
weighting is shown in equation 2

yk =

n∑
i=1

w|k−i| · xk

n∑
i=1

w|k−i|
(2)

where w is the weight factor (0.9) and n is the total number
of epochs available. This template is then subtracted from the
raw signal for the kth epoch as follows

zk = xk − yk (3)

C. Custom FFT Algorithm

This algorithm relies on the assumption that the noisy input
signal (x) is a convolution of the EEG signal (xEEG) and the
gradient noise (nGA).

x = xEEG ? nGA (4)

The clean EEG signal (xEEG) is recovered by de-
convolving the EEG signal and the gradient noise, estimated
using the GA model. De-convolution is difficult in the time
domain, however, can be accomplished by division in the
frequency domain. Applying a Fourier transform (F) to the
equation 4,

F [x] = F [xEEG ? nGA] (5)

X = XEEG ·NGA (6)

The estimated clean EEG signal can then be expressed as
shown in equation 7, given that NGA is non-zero.

xEEG = F−1
[

X

NGA

]
(7)

III. METHODS

Simultaneous resting EEG-fMRI data (eyes-closed) was
acquired from a 30 year old, healthy male subject using a GE
MR750 3T MRI and 32 channel head, neck and spine (HNS)
RF coil (General Electric Healthcare, Milwaukee, WI). The
fMRI scans were acquired using a 2D GRE EPI sequence with
a TE of 35 ms and TR of 2000 ms. Each volume consisted of
39 slices. A BrainProducts (Brain Products GmbH, Gilching,
Germany) 64 channel MR compatible EEG cap was used (BC-
MR 64) to acquire the EEG data at a sampling rate of 5000 Hz.
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TABLE I. The computational time taken by various versions of GA filtering
algorithms on two computers with different computational power

Run Type Computer 1 Computer 2

FASTR Stock code 1.876s ± 0.047s 0.819s ± 0.041s
FASTR CPU Parallelized code 0.675s ± 0.034s 0.338s ± 0.036s

Custom FFT 0.080s ± 0.041s 0.043 ± 0.036s

ITAS (FACET) 2.493s ± 0.071s 2.355s ± 0.232s

The setup shown in figure 1 was used to acquire the markers
for the MR gradient onsets each fMRI slice acquisition.

The EEG data was segmented into 2 second long (1 TR
length) epochs and each epoch was subject to 4 filtering
algorithms:

1) Stock FASTR: The unchanged algorithm from the FM-
RIB plugin in the EEGLAB toolbox (http://fsl.fmrib.ox.
ac.uk/eeglab/fmribplugin/).

2) CPU Parallelized FASTR: The stock FASTR code was
modified to make use of multiple cpu cores.

3) Custom FFT algorithm: The custom algorithm based on
deconvolution as described in section II-C.

4) ITAS algorithm: The ITAS algorithm implemented by the
FACET toolbox11(https://github.com/hansiglaser/facet).

The computation was performed on two computers of
differing capabilities. Computer 1 was a Dell XPS 15 laptop
with a 6th generation Intel i7 quad core processor (2.5 GHz),
16 GB RAM, and an Nvidia GeForce 750M graphics card.
Computer 2 was a Dell desktop with a 4th generation Intel i7
quad core processor (3.5 GHz), 32 GB RAM and an Nvidia
GeForce 760 graphics card.

IV. RESULTS

The GA artifacts seen in figure 2 are greatly reduced and
not noticeable in the filtered EEG traces shown in figure 3.
Using the output from the stock FASTR algorithm as the stan-
dard, the custom FFT algorithm and ITAS algorithm achieved
temporal correlations of 65% and 91%, respectively. Spectral
correlations were much much higher and peaked at 85% and
98%, respectively. The custom FFT algorithm outperformed
the other algorithms in computation time (shown in table I).

V. DISCUSSION

The use of real-time processing in the study of neural
patterns has steadily risen due to applications such as neu-
rofeedback in EEG13, fMRI14 and even simultaneous EEG-
fMRI3. However, real-time processing of EEG signal from
a simultaneous EEG-fMRI recording requires the removal
of gradient artifacts as discussed earlier. Apart from com-
mercially available software (BrainVision RecView3), this is
not feasible using currently available open-source tools, due
to long computation times (as seen in table I). The use of
commercial software is non-ideal for research as transparency
and control over the modifications applied to the signal is lost.
Hence there is a need to create open-source tools capable of
performing GA filtering in real-time.

Fig. 3. The clean EEG signal from channel Fp1, filtered by (a) FASTR
algorithm; (b) custom FFT algorithm; (c) ITAS algorithm. Both versions of
the FASTR algorithm (stock and CPU accelerated) produced identical results.

Fig. 4. The spectral content of the raw EEG signal from channel Fp1 (with
the GA) is shown in panel (a). Note the high frequency spikes characteristic
of the harmonics associated with the GA. The spectral content of the Fp1
EEG signal filtered using the FASTR algorithm, custom FFT algorithm, and
the ITAS (FACET) algorithm, is shown in panel (b). The GA spectral spikes
are missing in (b), and there is very little difference in the spectral content of
the filtered signals from all three algorithms.

This study created two such tools - a modified version
of the existing FASTR algorithm, and a novel FFT based
algorithm. The use of parallelization to accelerate execution
of the FASTR algorithm resulted in a x3 reduction in compu-
tational time. Since this relies on CPU parallelization, a faster
CPU (Computer 2), outperformed a slower CPU (Computer
1) where the number of CPU cores was the same. The
parallelization resulted in each CPU core filtering GAs on an
independent EEG channel, accelerating the computation by
roughly (n− 1) times, where n is the number of CPU cores.
This reduced the latency of the FASTR algorithm from 1.9
seconds to 675 ms

The novel FFT based algorithm led to a greater boost in
performance (x23) due to the extremely efficient operations
involved in computing the fourier transform and the inverse
fourier transform of the signals. Although this algorithm is
effective in quickly filtering the GA (latency of 80 ms), the
resultant signal carries some temporal distortions as compared
to FASTR and ITAS (shown by lower temporal correlation
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values in figure 3). However, the higher spectral correlation
values indicate that all algorithms preserve the spectral content
of the clean EEG data (shown in figure 4). Hence, the novel
FFT algorithm will be ideal for real-time applications that
primarily rely on spectral features. For applications that utilize
temporal EEG features, the cpu accelerated FASTR is a better
option.

VI. FUTURE DIRECTIONS

The real-time GA filtering algorithms described in this paper
need to be further verified in tasks with known expected
EEG patterns (such as ERPs). Modifications to the current
algorithm need to be explored to reduce the temporal distor-
tions. This will ensure that downstream processing of EEG
temporal features remains unaffected. Furthermore, real-time
algorithms need to be developed to filter ballistocardiogram
(BCG) artifacts15,16 present in EEG-fMRI recordings. This can
be accelerated by using the GPU in addition to the CPU for
parallelization.
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3.3 Discussion

The two methods described in this study for filtering GA artifacts in EEG data col-

lected concurrently with fMRI, each reduced the computation time of GA filtering

by leveraging parallel computing and frequency-domain based deconvolution, respec-

tively. While the latter method showed the greatest reduction in computation time,

it was susceptible to distortions of EEG data in the time-domain.

Consequently, all EEG-fMRI analyses reported in the remainder of this thesis were

performed using the parallelized GA filtering method, which provided an acceleration

factor that scaled with the number of processor cores available in the computer;

these analyses were performed using Compute Canada’s ”Graham” super-computing

cluster, which allows for processing jobs with up to 32 cores, and resulted in an

approximately 25-fold reduction in GA filtering time compared to the traditional,

non-parallel implementation of GA filtering.

The novel methods described in this chapter address gradient artifacts that the

magnetic field induces on the recorded EEG signal. In addition to gradient artifacts,

the subtle movements caused by the cardiac pulse induce EEG artifacts due to the

motion of the EEG electrodes within the large static magnetic field of the MRI scan-

ner. While this artifact is also present in regular EEG recordings outside the MRI

scanner, its amplitude is negligible due to Earth’s extremely weak magnetic field.

However, a 3 Tesla MRI scanner creates a magnetic field that is 60,000 times stronger

than the Earth’s magnetic field, resulting in the amplification of this ballistocardio-

gram (BCG) artifact to levels comparable to EEG signals. Hence, the BCG artifact

also needs to filtered before further EEG analysis is possible.

Since the source of the BCG data is rhythmic, the creation of a template BCG
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artifact followed by its’ aligned subtraction from the signal removes majority of the

BCG artifact (Allen et al., 1998; de Munck et al., 2013; Kruggel et al., 2000). Another

strategy to remove the BCG artifact utilizes ICA to remove the BCG component in

the EEG data (Srivastava et al., 2005). Any residual BCG artifacts can be further

removed via optimal basis set (OBS) estimation and removal. This method assumes

that each artifact instance is a linear combination of a set of orthogonal basis func-

tions, which can be used to create an accurate model of each artifact instance (Niazy

et al., 2005). Lastly, data driven methods (Gonçalves et al., 2007) and wavelet trans-

forms (Wan et al., 2006) can also be used to generate the templates for subtraction.

Due to the superior performance of OBS-based BCG filtering, it was used as the

preferred algorithm to remove the BCG artifact from all EEG-fMRI data in this

thesis.
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Chapter 4

EEG Microstates

4.1 Introduction

The benefits of using EEG to detect the activity and dynamics of large-scale brain

networks have motivated the development of numerous EEG-based measures that cor-

relate with ICN activity. EEG-based microstates is one such method that has gained

considerable popularity in recent years (see Figure 4.1), especially in characterizing

psychopathologies such as schizophrenia (Nishida et al., 2013; Rieger et al., 2016;

Strelets et al., 2003; Stevens et al., 1997), Alzheimer’s (Strik et al., 1997; Khanna

et al., 2015), Tourette’s syndrome (Khanna et al., 2015), Panic Disorder (Kikuchi

et al., 2011), multiple sclerosis (Gschwind et al., 2015), and concussion (Corradini

and Persinger, 2014). This measure derives clusters of EEG scalp topologies that are

assumed to be discontinuous quasi-stable states that the brain switches between while

performing everyday tasks. The pathological changes in these quasi-stable states cor-

responding to such mental health disorders are given in table 4.1.
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Figure 4.1: Number of publications investigating EEG microstates from 1994 to
2019. Note the recent increase in publications. Data extracted from Web Of Science.

However, despite such widespread adoption, a principled assessment of the core

assumptions made during EEG Microstate analysis was missing at the time of per-

forming this study. This motivated the study presented in this chapter that scruti-

nized each of microstates’s three major assumptions, assessing its adequacy for use

as an EEG-based biomarker of ICN activity.

The primary author of the paper was involved in the conception and development

of the idea, with the help of the co-authors. The primary author also performed all

the analyses and primarily wrote the paper.
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Microstate changes

Condition Studies DUR COV OCC

A B C D A B C D A B C D

Healthy
Resting EC

Koenig et al. (2002);
Milz et al. (2017)

0 0 0 0 0 0 0 0 0 0 0 0

Healthy
Resting EO

Seitzman et al.
(2017)

- 0 0 - 0 + 0 - 0 + + -

Healthy Task† Seitzman et al.
(2017)

0 0 - 0 0 0 - + 0 0 - +

Meditation Faber et al. (2017) 0 0 0 - + 0 0 - + 0 0 -

Fluid
Intelligence

Santarnecchi et al.
(2017)

0 0 0 0 0 0 0 0 0 - - 0

Schizophrenia Strelets et al. (2003);
Stevens et al. (1997);
Nishida et al. (2013);
Rieger et al. (2016)

0 - 0 - 0 0 0 0 + 0 + 0

FTD Nishida et al. (2013) 0 0 - 0 0 0 0 0 0 0 0 0

Alzheimer†† Strik et al. (1997);
Khanna et al. (2015)

- - - - - 0 0 0 0 0 0 0

Depression†† Khanna et al. (2015) - - - - - 0 0 0 0 0 0 0

Tourette’s Khanna et al. (2015) 0 0 0 0 0 0 0 0 + 0 0 0

Panic Disorder Kikuchi et al. (2011) + 0 0 0 0 0 0 0 0 0 - 0

Multiple
Sclerosis

Gschwind et al.
(2016)

+ + 0 0 + + 0 0 0 0 0 0

Concussion Corradini and
Persinger (2014)

- 0 - - 0 0 0 0 0 0 0 0

Table 4.1: Changes in microstate metrics due to various cognitive states and
pathophysiologies. Abbreviations are EC - Eyes Closed, EO - Eyes Open and FTD -

Fronto-temporal Dementia. The symbol ”-” corresponds to a significant decrease,
”+” corresponds to a significant increase; and ”0” corresponds to no significant
change in the microstate metric during the given condition, as compared to the

healthy resting eyes closed condition. †Milz et al. (2016) find conflicting evidence
where COV and OCC of microstate D are decreased (-). †† These studies also report
a decrease in overall average microstate duration, albeit with different microstates

than the 4 mentioned here.
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4.2 Capturing the Forest but Missing the Trees:

Microstates Inadequate for Characterizing Shorter-

Scale EEG Dynamics

Shaw, S. B., Dhindsa, K., Reilly, J. P., & Becker, S. (2019). Capturing the Forest

but Missing the Trees: Microstates Inadequate for Characterizing Shorter-Scale EEG

Dynamics. Neural computation, 31(11), 2177-2211.
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The brain is known to be active even when not performing any overt cog-
nitive tasks, and often it engages in involuntary mind wandering. This
resting state has been extensively characterized in terms of fMRI-derived
brain networks. However, an alternate method has recently gained popu-
larity: EEG microstate analysis. Proponents of microstates postulate that
the brain discontinuously switches between four quasi-stable states de-
fined by specific EEG scalp topologies at peaks in the global field po-
tential (GFP). These microstates are thought to be “atoms of thought,”
involved with visual, auditory, salience, and attention processing. How-
ever, this method makes some major assumptions by excluding EEG data
outside the GFP peaks and then clustering the EEG scalp topologies at
the GFP peaks, assuming that only one microstate is active at any given
time. This study explores the evidence surrounding these assumptions by
studying the temporal dynamics of microstates and its clustering space
using tools from dynamical systems analysis, fractal, and chaos theory
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to highlight the shortcomings in microstate analysis. The results show
evidence of complex and chaotic EEG dynamics outside the GFP peaks,
which is being missed by microstate analysis. Furthermore, the winner-
takes-all approach of only one microstate being active at a time is found
to be inadequate since the dynamic EEG scalp topology does not always
resemble that of the assigned microstate, and there is competition among
the different microstate classes. Finally, clustering space analysis shows
that the four microstates do not cluster into four distinct and separable
clusters. Taken collectively, these results show that the discontinuous de-
scription of EEG microstates is inadequate when looking at nonstation-
ary short-scale EEG dynamics.

1 Introduction

The brain is an extremely complex system driven by electrical and metabolic
activity that enables us to assess our environment, adequately respond to
stimuli, and formulate complex thoughts that ultimately determine our per-
sonality and behavior. This is accomplished by an intricate network of bil-
lions of neurons, glia, and other cell types that actively work together to
perform complex cognitive tasks. The brain is also active when one is not
overtly performing a cognitive task (Sadaghiani, Hesselmann, Friston, &
Kleinschmidt, 2010), whether the mind is wandering involuntarily or en-
gaged voluntarily in internally driven, purposeful thought. These states of
the brain are often referred to collectively as the “wakeful resting state,” or
simply the “resting state” (Meehan & Bressler, 2012). Characterizing the na-
ture of this resting state activity has been an area of active research over the
past few decades.

A very well-documented approach to study resting state activity is to
search for networks of subregions that fire in a functionally correlated and
synchronous manner. This reveals numerous functional networks (Wang,
Kang, Kemmer, & Guo, 2016; Hutchison et al., 2013) that have been associ-
ated with various cognitive processes, including vision, audition, working
memory, attention, and salience detection. The coordinated activity of these
functional networks is thought to be essential for normal behavior and cog-
nition and is dysregulated in neuropsychological pathologies like concus-
sion (Mayer & Bellgowan, 2014), posttraumatic stress disorder (Parlar et al.,
2017), depression (Greicius et al., 2007), schizophrenia, Alzheimer’s (Sun,
Yin et al., 2014), mental fatigue (Sun, Lim, Kwok, & Bezerianos, 2014), and
alcohol and drug impairment (Mayhugh et al., 2016). Studying the spatial
characteristics and temporal dynamics of these networks can help improve
our understanding of neuropathologies and potentially create tools for clin-
ical treatment.

Functional magnetic resonance imaging (fMRI) has predominantly been
used to study such networks, owing to the excellent spatial resolution of
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Figure 1: The four widely used microstates as defined by Milz et al. (2015).
Microstates A, B, C, and D are are thought to be responsible for, respectively,
auditory processing, visual processing, saliency processing, and attention re-
orientation (Van de Ville et al., 2010; Britz et al., 2010). This represents the scalp
from a top-down view with the nose at the top of the map.

the modality. However, the high spatial resolution of fMRI acquired BOLD
signal comes at the cost of poor temporal resolution (Menon & Kim, 1999;
Shaw, 2017), as events can only be resolved in fMRI on a timescale of several
seconds (Kim, Richter, & Ugurbil, 1997), whereas neural activity evolves
on a millisecond timescale. Hence, alternate modalities with finer temporal
resolution are used to study the temporal dynamics of resting state brain ac-
tivity. One such modality is electroencephalography (EEG), which records
electrical voltages on the scalp, generated by the summed activity of pyra-
midal neurons in the cortex (Mayer & Bellgowan, 2014).

While most research on resting-state EEG (rsEEG) has involved the use
of methods from dynamical systems, including embedded state-space mod-
els (Wackermann, 1999) and chaotic time series modeling (Natarajan et al.,
2004), an alternate method based on the identification of EEG microstates
(Michel & Koenig, 2018) has gained popularity in recent years. Lehmann
(1971) introduced the concept of microstates as quasi-stable (relatively
stable over short 60–120 ms time periods; Michel & Koenig, 2018), period-
ically recurring patterns in the spatial distribution of EEG voltage topolo-
gies. Identified by clustering EEG activity at the peaks of the global field
potential, these recurring patterns have come to be referred to as microstates
and are postulated to be the basic “atoms of thought” (Lehmann & Koenig,
1997) making up complex conscious thought processes. These recurring
patterns were originally used by Lehmann (1971) and Lehmann and Koenig
(1997) to better describe the structure of the neural populations creating
the patterns of inverting spatial polarity observed in EEG alpha band ac-
tivity. However, it has since become a method to more generally describe
EEG dynamics in terms of the scalp topologies (Khanna, Pascual-Leone,
Michel, & Farzan, 2015). These microstates are clustered into a discrete
set of characteristic scalp topologies, defining distinct microstate classes,
as shown in Figure 1. The evolution of these microstates is described as
a discontinuous process that periodically switches between the different
microstate classes (Lehmann & Koenig, 1997; Lehmann et al., 2005; Milz,
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Pascual-Marqui, Achermann, Kochi, & Faber, 2017; Van de Ville, Britz, &
Michel, 2010). The occurrence of each microstate class is found to shortly
precede perceived spontaneous thought processes such as visual imagery,
verbal imagery, and abstract imagery and is consequently postulated to rep-
resent atoms of thought that need to be concatenated together to form com-
plete thoughts (Lehmann, 1990; Lehmann & Koenig, 1997; Lehmann, Strik,
Henggeler, Koenig, & Koukkou, 1998; Koenig, Kochi, & Lehmann, 1998).

Considerable work has gone into identifying the number of unique
microstate classes required to adequately describe the variability in EEG
scalp topologies across individuals. Despite the possibility of cluster-
ing into many more classes (Yuan, Zotev, Phillips, Drevets, & Bodurka,
2012), a cross-validation-based optimization of residual clustering vari-
ance finds that four or five classes (Pascual-Marqui, Michel, & Lehmann,
1995; Brodbeck et al., 2012) capture a large portion of the variance in the
microstate data across multiple participants. Consequently, the most widely
used number of clusters is four, which explains around 60% to 80% of to-
tal variance in the EEG microstates across different individuals (Britz, Van
De Ville, & Michel, 2010; Koenig et al., 2002). The topologies of these four
microstates are illustrated in Figure 1. Some studies have tried to iden-
tify the functional significance of these microstates by identifying the ac-
tive brain regions seen in simultaneously acquired fMRI BOLD signal (Britz
et al., 2010) or by using EEG source localization to identify the sources gen-
erating the scalp topology that constitutes each microstate (Custo, van der
Ville, Wells, Tomescu, & Michel, 2017; Milz et al., 2016; Pascual-Marqui et al.,
2014). According to these studies, the activity of the four microstates can
be interpreted as visual, auditory, salience, and attention network activity.
However, different studies lead to different conclusions about the signifi-
cance of each microstate, as summarized in Table 1. For example, Britz et al.
(2010) find microstates A and B linked with activation in predominantly au-
ditory and visual areas, respectively, while Milz et al. (2016) find the reverse.
Furthermore, the morphology of each microstate class varies considerably
among different individuals (see Figure 1 of Britz et al., 2010) when studied
using a dense electrode array (30 or more electrodes) and varies much less
when the signal is sampled by a smaller number of electrodes (8 electrodes)
(Khanna, Pascual-Leone, & Farzan, 2014). This suggests that the microstate
class topologies only accurately capture global structure in the scalp topol-
ogy, and that they miss the local variability in the global structure, which
starts to show in finer-scale spatial topologies made possible by using ar-
rays with a higher number of electrodes.

Given that current microstate analysis assumes that brain states transi-
tion between discrete microstates, a first-order Markov chain model can be
used to estimate the transition probabilities. Assuming a conventional mi-
crostate analysis with four unique microstates, this is often summarized as
a 4 × 4 matrix of transition probabilities for every possible transition. This
could serve as a powerful descriptor of brain states and has been used as
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Table 1: The Anatomical and Functional Significance of Each of the Four Major
Microstate Classes.

Microstate Regions Significance

A • Bilateral superior and middle
temporal gyri (Britz et al., 2010)
• Left middle frontal gyrus

• Auditory phonological processing
(Britz et al., 2010)a

• Visualization (Milz et al., 2016;
Faber, Travis, Milz, & Parim, 2017)a

• Sensorimotor processing (Yuan
et al., 2012)

B • Bilateral occipital areas (Britz
et al., 2010) including bilateral
inferior occipital gyri, bilateral
cuneus, left lingual, and middle
occipital gyrus

• Visual processing (Britz et al.,
2010)a

• Verbalization (Milz et al., 2016)

C • Insular-cingulate network (Britz
et al., 2010) and hubs of default
mode network (DMN)
(Pascual-Marqui et al., 2014),
including anterior cingulate
cortex bilateral inferior frontal
gyri, right anterior insula, right
amygdala
• Salience network

• Salience and emotion regulation
(Nishida et al., 2013)
• Subjective interoceptive autonomic

processing (Mantini, Perrucci,
Del Gratta, Romani, & Corbetta,
2007)
• Switching between DMN and

central executive network (Menon,
2011)
• Increased OCC linked to

hallucinations (Khanna et al., 2015)
• Task-negative microstate (Seitzman

et al., 2017)
D • Fronto-parietal regions (Britz

et al., 2010), including right
superior and middle frontal
gyrus, right superior and
inferior parietal lobes
• Dorsal attentional control

network (Seitzman et al., 2017)

• Executive control, working
memory (Britz et al., 2010)
• Focus-switching and attention

reorientation (Milz et al., 2016)
• Decreased DUR causes

hallucinations (Nishida et al., 2013)
• Task-positive microstate (Seitzman

et al., 2017)

aThere is contradictory evidence surrounding the significance of microstates A and B:
Britz et al. (2010) find microstates A and B linked with activation in predominantly audi-
tory and visual areas respectively, while Milz et al. (2016) finds the reverse.

such in numerous studies (Lehmann et al., 2005; Nishida et al., 2013; Brod-
beck et al., 2012). However, recent studies have falsified the memoryless
assumption of Markov processes (that the probability distribution of fu-
ture transitions does not depend on past states) with respect to microstate
transitions while also showing that there is considerable nonstationarity in
short-range microstate transitions (von Wegner, Tagliazucchi, & Laufs,
2017; Gärtner, Brodbeck, Laufs, & Schneider, 2015), implicating longer
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Table 2: Commonly Used Metrics to Describe Group Microstate Differences and
Their Definitions.

Microstate Metric Abbreviation Definition

Duration/life span DUR The length of continuous time (in
ms) for which a microstate class
persists without switching to
other microstate classes.

Coverage/percentage total
time

COV The percentage of epoch time
occupied by each microstate class.

Occurrence/microstates per
second/frequency

OCC The number of times a microstate
class recurred per second.

Global explained variance GEV The percentage of global variance
explained by each microstate
class.

Transition probability TP The probability of transition from
one microstate class to another.

Note: Refer to Koenig et al. (2002) for normative values of duration, percentage total time,
and microstates per second across different age groups.

range dependencies (LRD) in microstate transitions (Gschwind, Michel,
& Van De Ville, 2015). Simultaneous EEG-fMRI studies have also found
long-range dependencies in microstate transitions that correlate with fMRI
BOLD signal along longer timescales (Van de Ville et al., 2010). These find-
ings imply that analyses of microstate dynamics over short timescales might
yield inaccurate results and suggest reserving microstate transition analysis
for studying longer timescales.

Despite these shortcomings, microstate computation procedures are in-
cluded in several widely used EEG software packages and have come into
widespread use as biomarkers for characterizing both normal and clinical
populations (for a review, see Michel & Koenig, 2018). For example, in-
dividuals with schizophrenia show increased occurrence of microstates A
(Nishida et al., 2013) and C (Nishida et al., 2013; Rieger, Hernandez, Baen-
ninger, & Koenig, 2016), and decreased average duration of microstates B
and D (Nishida et al., 2013). A decrease in the average duration of each mi-
crostate is also found in depression (Khanna et al., 2015) and concussion
(Corradini & Persinger, 2014). Individuals with multiple sclerosis exhibit
an increase in the average duration of microstates A and B (Gschwind et al.,
2016). Trends observed in such metrics computed from the sequence of mi-
crostate transitions (refer to Table 2 for definitions of the metrics) have been
used as biomarkers for identifying certain neuropathologies, understand-
ing their neurological underpinnings, and even as a neurofeedback target in
a neurofeedback protocol aimed to increase the average duration spent in
one microstate, in order to move the microstate metrics toward normalcy
(Diaz Hernandez, Rieger, Baenninger, Brandeis, & Koenig, 2016). Such
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differences in microstate metrics have been observed not only in various
neuropathologies but also in healthy participants during various stages of
consciousness and sleep (Brodbeck et al., 2012).

Despite the increasing acceptance of microstate analysis as a valid mea-
sure of brain dynamics, the approach has some serious methodological
limitations:

1. GFP peaks: Most studies consider EEG data only at the GFP peaks for
microstate clustering, thereby ignoring the majority (more than 90%) of the
data. This removes most of the time periods from the EEG data, effectively
downsampling to an extremely low sampling rate of approximately 20 Hz
(based on the average interval between consecutive GFP peaks). Based on
the Nyquist criterion, this signal cannot adequately represent dynamics
occurring at rates above 10 Hz, which is the purported frequency of mi-
crostate transitions occurring every 60 ms to 120 ms (Michel & Koenig,
2018). One might then wonder if the observed dynamics of microstate tran-
sitions might be an artifact of such a subsampling of data. A caveat is that
it assumes uniform sampling, which might not be the case when sampling
at GFP peaks occurring at nonuniform intervals, resulting in nonuniform
data sampling. Such nonuniform sampling could represent signal dynam-
ics of rates up to a magnitude higher than the Nyquist limit, given that the
spectrum of the signal is sparse (Wakin et al., 2012). However, the spectra of
EEG signals do not satisfy this sparsity constraint due to relevant neural in-
formation being represented in a contiguous chunk of frequencies between
0 and 50 Hz and therefore cannot exploit the higher Nyquist limit afforded
by nonuniform sampling. Consequently, the true Nyquist limit of the EEG
signal sampled at GFP peaks is closer to that assuming uniform sampling.

Gärtner et al. (2015) and Custo et al. (2017) rationalize subsampling at the
GFP peaks by viewing the peaks as time points of maximal signal-to-noise
ratio (SNR), arguing that the nonstationarity in the data between GFP peaks
is due to noise. However, this is not necessarily true, as nonstationarity can
arise from meaningful changes in a dynamical system rather than noise.
No evidence is provided to decisively rule out such dynamical changes
as the contributing factor for the nonstationarity. Furthermore, GFP peaks
could refer to time periods where a single neural source might be driving
most of the EEG topology. Limiting analysis to just the GFP peaks would
consequently pick time periods of single-source activity a priori, and it is
therefore not surprising that the subsequent microstate analysis identifies
microstate classes representing separate sources a posteriori (Custo et al.,
2017). This is in line with the original intent of microstates as a method
of describing distinct neural populations generating different EEG scalp
topologies (Lehmann, 1971; Lehmann & Koenig, 1997). This leaves open
the possibility that multiple neural sources might be active between GFP
peaks, which could correspond to active information transfer between dif-
ferent brain regions. Consequently, there may be complex brain dynamics
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reflected in the EEG data between GFP peaks that is being missed by ig-
noring time segments between GFP peaks on the premise of maximizing
SNR.

2. One microstate at a time: Microstate analysis is based on the assump-
tion that no more than one microstate is active at any given time. Justifi-
cation for this assumption relies on the discontinuous description of brain
state dynamics adopted by this analysis pipeline. Michel and Koenig (2018)
argue that sufficient changes in the substates constituting a global state can
be viewed as a new global state with distinct functional significance that
does not overlap with the other global states. However, this assumption
does not hold true, given that the different microstate classes are shown
to correspond to functional networks in the brain (Custo et al., 2017) that
are known to continuously vary and might also be simultaneously active
(Menon, 2011). Hence microstate analysis might be imposing a discontinu-
ous model on activity that is inherently continuous and dynamically chang-
ing.

3. Clustering: The analysis pipeline uses clustering for identification of
the microstate class topologies, most often using k-means clustering (as well
as a few other clustering algorithms, described in the next section: Brunet,
Murray, & Michel, 2011; Custo et al., 2017; Pascual-Marqui et al., 1995). K-
means clustering assumes that the prior probabilities of the k clusters are
equal, implying that the occurrences of the microstates should be equal.
However, this is clearly not the case, since microstate C is the most fre-
quently observed microstate, while A and B are the least frequent in adults
(Koenig et al., 2002). Also, most clustering is performed on EEG channel
voltages with 32 to 256 channels, creating a high-dimensional space that
might lead to the artificial separation of data into clusters. Furthermore, k-
means clustering often finds the local minima, which may be far from the
globally optimal class structure of the data due to the tendency to arrive at
suboptimal solutions for nonconvex optimization problems and thus may
not be reliable for microstate clustering. For example, a single cluster that
has a much larger variance in some dimensions than others (e.g., an ellip-
soid) might be mistakenly divided into two clusters that seem orthogonal.
This is of particular concern for microstates, since classes A and B are or-
thogonal and might inherently be better described as a larger single cluster.
This may be why different studies find opposing results for the functional
significance of microstates A and B (Britz et al., 2010; Milz et al., 2016).
Hence, from points 2 and 3, little to no evidence supports the view that
clustering, which assumes a discrete state space, is an appropriate model to
describe continuous EEG data.

The evidence presented above suggests that clusters of activation identi-
fied by microstate analyses capture longer-scale brain dynamics, averaged
over a large spatial domain and fail to capture finely grained spatio tempo-
ral EEG dynamics. In this letter, we apply several methods from complex
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dynamical systems to study EEG dynamics. Our results call into question
the major assumptions embedded in standard microstate analysis. We first
consider whether EEG scalp topologies evolve discontinuously over time,
as assumed, while computing microstates from the GFP peaks. Next, the
validity of the winner-takes-all model is assessed, followed by an analysis
of the clustering space to ask if clustering into four classes is an appropriate
model to use.

2 Methods

We conducted a series of analyses of resting-state EEG data to assess the ad-
equacy of the microstate description for characterizing the spatiotemporal
dynamics of brain activity. Specifically, we sought to assess the adequacy of
the following assumptions:

1. GFP peaks. Are there complex dynamics between GFP peaks that are
being missed by the microstate analysis since it only considers EEG
scalp topologies at GFP peaks?

2. One microstate at a time. The winner-takes-all model of a single
microstate being active at a time assumes trivial activity of the
nonwinning microstate classes. Is there evidence that supports this
assumption?

3. Clustering. Clustering as a required step in identifying microstates
assumes that microstates constitute a discrete set of patterns of brain
activity. Is that assumption justified, or is there really a continuous
space of microstates?

To address these questions, we employed a range of methods, including
a study of the clustering space generated by microstate analysis, dynamical
systems analysis, and analysis of chaotic and fractal structure of the EEG
scalp topologies.

A publicly available data set containing eyes-closed, resting-state EEG
data from 12 right-handed healthy participants (26.6 ± 2.1 years) was used
for the analyses reported here (Sockeel, Schwartz, Pélégrini-Issac, & Benali,
2016). The data were acquired at a sampling rate of 5 kHz using a 64-channel
BrainProducts BrainAmp (Brain Products GmbH, Gilching, Germany) sys-
tem, featuring 62 EEG channels (based on the international 10-20 system), 1
ECG channel, and 1 EOG channel. The data were preprocessed by bandpass
filtering between 0.1 Hz and 50 Hz, followed by manual ICA-based removal
of eye and muscle artifacts, after which the data were average-referenced
and downsampled to 500 Hz. An artifact-free duration of 300 seconds (5
minutes) was used for all analyses.

2.1 Microstate Computation. EEG microstates are identified from the
electrode voltages at peaks of the global field potential (GFP), computed
from the preprocessed data for each participant. The GFP for an n channel
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EEG system at time t is the spatial standard deviation (square root of the
spatial variance) in the EEG signal across all electrodes, given by

GFP(t) =
√∑n

i=1(vi(t) − v̄ (t))2

n
, (2.1)

where vi(t) is the voltage at channel i and v̄ (t) is the mean voltage across all
channels. The local maxima in GFP are peaks in EEG field strength (Milz
et al., 2016). The EEG activity coinciding with all such peaks, across all elec-
trodes, is then considered when computing the EEG microstates. Impor-
tantly, the EEG data at all times between these GFP peaks, which account for
most of the data, are excluded from traditional microstate analyses. Thus,
the GFP peaks are inherently assumed to represent discontinuities in the
EEG topology that form quasi-stable attractor states, where the EEG scalp
topology remains stable over a short time duration.

The EEG patterns across the entire set of electrodes at each GFP peak are
aggregated across all participants and analyzed by a clustering algorithm
(k-means or topographic atomize and agglomerate hierarchical clustering
(TAAHC; Khanna et al., 2014) to identify classes of microstate topologies.
This clustering process ignores the polarity of the EEG topologies, cluster-
ing opposite polarities into the same microstate class. Once the classes are
identified, the scalp topology corresponding to each GFP peak is classified
into one of the identified microstate classes based on a spatial similarity
metric. The microstate with the highest spatial similarity is the assigned
microstate class for that peak duration. This generates a time series of the
similarity of the microstate classes to the spatial topology of rsEEG at each
time point. The sequence of the assigned microstate classes creates a time
series of microstate transitions. Microstate metrics, defined in Table 2, are
extracted from this time series. This procedure is summarized in Figure 2.
Numerous toolboxes have implemented this pipeline. Keypy (Milz, 2016)
is one such package (implemented in Python) that uses precomputed maps
from Milz et al. (2016) to sort the identified microstate classes into previ-
ously identified microstates A,B,C, and D (as shown in Figure 1). CARTOOL
(Brunet et al., 2011) is another such package that uses a stand-alone program
to compute these parameters.

This study used the Python Keypy package to compute the microstate
class topologies and transitions, followed by temporal dynamics and clus-
tering analyses of the identified microstates using custom scripts in Matlab.

2.2 Temporal Dynamic Analysis. The traditional view of microstates is
that they represent a series of topographically discontinuous quasi-stable
states in EEG that remain stable over 60 ms to 120 ms (Michel & Koenig,
2018). By this view, we should see a persistent scalp topology corresponding
to the identified microstate for a period of close to 60 ms to 120 ms, followed
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Figure 2: The procedure to identify microstate sequences. The EEG channel
data (a) are used to compute GFP time series (b) using equation 2.1. The peaks
in the GFP are identified (red arrows) and the EEG topologies at these peaks
are recorded as the microstates. This is shown in panel c, where the boxed seg-
ment of the GFP trace is magnified. The identified microstates undergo k-means
clustering (illustrated in panel d using two electrodes, which are the two axes
shown) to identify dominant microstate topologies (e), while ignoring polarity.
These dominant microstate classes are backprojected onto the microstate time
series to generate the microstate sequence shown in panel f.

by an abrupt transition from one microstate to another at the next GFP peak.
The EEG may exhibit much more complex dynamics between GFP peaks
(assumption 1 at the start of section 2), that may or may not support the
winner-takes-all model imposed on microstates (assumption 2 at the start of
section 2). To assess this, we studied the temporal dynamics and the chaotic
and fractal behavior of EEG data between the GFP peaks.

2.2.1 Descriptors of Microstate Transitions. To determine the behavior of
EEG scalp topologies between the GFP peaks, we extracted:

• Adistance measure—the Euclidean distances (L2-norm version of the
Minkowski distance) between the four microstate cluster centroids
and the EEG scalp topology, at each time point (including the time
between GFP peaks)

• The path-step length—the Euclidean distances between each pair of
consecutive time points along the trajectory of the EEG scalp topolo-
gies over time
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To characterize the complex dynamics in microstate transitions, the frac-
tal dimension, phase space, and Lyapunov exponents of the distance mea-
sure and path-step length (defined above) were computed using a sliding
window of 256 ms and a step size of 2 ms.

2.2.2 Fractal Dimension. Fractal distance (FD) is a method to quantify the
level of complexity in time series data. Patterns that have a fractal struc-
ture maintain similar structure across different scales. Fractal structure is
abundant in physiological signals, and fractal dimension characterizes the
degree of complexity in the data (Eke, Hermán, Bassingthwaighte et al.,
2000).

Numerous algorithms exist to estimate the level of fractality in a data set,
one of which is the box-counting method (Eke, Hermán, Kocsis, & Kozak,
2002). This method tries to cover the data set (normalized to unit length) us-
ing nonoverlapping boxes of progressively smaller edge lengths (ε) (start-
ing with the trivial case of one box for the whole data set), and counting
the minimum number of boxes required (Nε) to cover the entire data set for
each edge length. If the complexity of the data set is low (i.e., a low topo-
logical dimension), the number of boxes required to cover the data set is on
the order 1/ε for each ε. However, if the data set has a high topological di-
mension, the required number of boxes will be 1/εd, for each ε, where d > 1
is the topological dimension:

Nε = 1/εd. (2.2)

This is computationally estimated by embedding the data set in the unit
box (box of unit length), normalizing the time series, and then computing
Nε for progressively smaller boxes ε. The fractal dimension d is then given
as the slope of the log of Nε as a function of the log of 1/ε:

d = log Nε

log 1/ε
. (2.3)

The fractal dimension is also referred to as the capacity dimension or
counting dimension and is a practical method to estimate the more general
Hausdorff dimension of the data set (Eke, Hermán, Kocsis et al., 2002). In-
tuitively, the fractal dimension captures the degree to which data exhibit
complexity at many different scales.

Compared to other measures of quantifying complexity in biomedical
time series data, measures such as FD and sample entropy (Richman &
Moorman, 2000) are relatively invariant to the number of data used (win-
dow length) for estimating the measure (Ferenets et al., 2006). This is of par-
ticular importance in the context of studying microstates due to the short
timescale of its dynamics (on the order of a few hundred milliseconds).
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2.2.3 Phase Space. Any system might exist in a range of different states
and could have different paths of transitioning from one state to another.
The phase space of a system represents this state space that the system could
potentially occupy and shows the various trajectories the system takes over
time (called orbits). The pattern of the phase-space orbits shows the dynam-
ical characteristics of the system (Suzuki, Lu, Ben-Jacob, & Onuchic, 2016).
Visualizing the phase space of an oscillatory time series is a useful way to
qualitatively understand its temporal dynamics. One way to quantify this
is by using Lyapunov exponents, described next.

2.2.4 Lyapunov Exponent. Lyapunov exponent (LE) is a quantitative de-
scriptor of the phase-space trajectory dynamics that estimates the rate of
divergence of infinitesimally close phase space trajectories. Since different
initial conditions might have different divergence rates, a spectrum of Lya-
punov exponents is computed, and the maximum Lyapunov exponent is
taken as an upper bound on the divergence rate (Wolf, 1986). Henceforth,
when this letter refers to the Lyapunov exponent, we are referring to the
maximum Lyapunov exponent. Chaotic phase-space trajectories eventually
diverge and, hence, have a positive LE, compared to a negative LE for non-
chaotic phase space trajectories (periodic/oscillatory).

Neural circuits are known to produce chaotic dynamics (Skarda & Free-
man, 1987; Stam, 2005) and can even switch between periodic and chaotic
dynamics (Alonso, 2017). Studying descriptors of chaotic dynamics (such
as LE) alongside microstate transitions can help identify the dominant dy-
namical operating paradigm.

The Jacobian method of computing LE (BenSaïda, 2015) from a scalar
time series ({xt}) was used in the analyses reported here and is briefly de-
scribed. Any time series ({xt}) can be expressed as a noisy chaotic system in
terms of a time delay (L), embedding dimension (m), and added noise (εt):

xt = f (xt−L, xt−2L, . . . , xt−mL) + εt . (2.4)

The function f can be estimated using nonlinear least squares (see equa-
tion 2.5) implemented using a neural network with q hidden layers and
tanh activation function:

xt ≈ α0 +
q∑

j=1

α jtanh

(
β0, j +

m∑
i=1

βi, jxt−iL

)
+ εt (2.5)

This estimate of the function f is used to compute TM = ∏M−1
t=1 JM−t , a prod-

uct of Jacobian matrices (Jt):
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Jt =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂ f
∂xt−L

∂ f
∂xt−2L

. . .
∂ f

∂xt−mL+L

∂ f
∂xt−mL

1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.6)

The LE is then estimated as LE = 1
2M ln(ν1), where M is an integer that is

picked to be M ≈ T2/3 and ν1 is the largest eigenvalue of (TMU0)′(TMU0).
This is repeated of each triplet of (L, M, q), generating a spectrum of Lya-
punov exponents, from which the largest LE is picked.

To appropriately verify the existence of nonlinear structure in the data,
surrogate tests were performed by comparing the LE computed from sur-
rogate data to that derived from actual data using a one-tailed t-test. Only
significant (p > 0.05) LE values were retained for this analysis.

2.3 Predictions for Microstate Analysis. The traditional view of mi-
crostates is that EEG scalp topologies move between discontinuous quasi-
stable states with a single active state at any one time. If this view is
correct, we predict that the time of the transitions between microstates will
be less than the time spent in a given microstate. This would be reflected in
lower FD (less complexity), negative LE (nonchaotic behavior), and higher
path-step lengths (large jump in state-space) during the microstate transi-
tions between two GFP peaks. However, if there is competition between
the different microstates during the transitions, the FD should be higher
(higher complexity), with positive LE (chaotic behavior) and shorter path-
step lengths (smaller steps) in this time span as the scalp topologies traverse
a few different states before finally resulting in one microstate.

Furthermore, if the phase space and LE indicate that the brain is oper-
ating under chaotic dynamics, representing it using a small number of dis-
continuous states might not be appropriate.

2.4 Clustering Analysis. As stated in assumption 3, there is little ev-
idence supporting that microstates are indeed a discrete set of states that
can be adequately described by clustering. To investigate this, the k-means
clustering algorithm was rerun, varying the number of clusters from two to
eight, computing the gap statistic and Davies-Bouldin index for each num-
ber of clusters. The high-dimensional clustering space was also embedded
into three dimensions using t-SNE (Van Der Maaten & Hinton, 2008) for
visualization of the cluster separation and spread. The time course of the
data was also plotted within the clustering space to visualize the trajectory
of EEG scalp topologies.
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2.4.1 Gap Statistic. The gap statistic compares the intracluster dispersion
of a clustering solution with that derived from a null distribution (random
uniform distribution), defined as

Gapn(k) = E∗
n

{
logWk

} − logWk, (2.7)

where n is the sample size and k is the number of clusters being evaluated.
Wk is a pooled within-cluster dispersion measurement given by

Wk =
k∑

r=1

1
2nr

Dr, (2.8)

where, Dr = ∑nr
i, j=1;i �= j ‖xj − xi‖2 is the summed Euclidean distance between

each pair of points in cluster r containing a total of nr data points. The
optimal number of clusters is identified as the smallest cluster number at
which the intracluster dispersion falls farthest below the null distribution,
as identified by a formalization of the “elbow method” (Tibshirani, Walther,
& Hastie, 2001). Mathematically, this is expressed as identifying the smallest
k, such that Gap(k) ≥ Gap(k + 1) − std(k + 1) (Tibshirani et al., 2001). Hence,
the appropriate number of clusters occurs at the maximum of the gap statis-
tic, where the distributions found in the data are farthest from that of a ran-
dom uniform distribution.

2.4.2 Davies-Bouldin Index. The Davies-Bouldin (DB) index is based on
the ratio of the within-cluster distances to the between-cluster distances,
indicating the spread of the identified clusters. For k clusters, it is defined
as

DB = 1
k

k∑
i=1

max
i �= j

{
(d̄i + d̄ j )

di, j

}
, (2.9)

where d̄i and d̄ j represent the average distance between each point in the
cluster and the cluster centroid for the ith and jth clusters, and ¯di, j is the
Euclidean distance between the centroids of the ith and jth clusters.

Minimizing this index gives the optimal number of clusters with small
within-cluster spread and large between-cluster distances.

2.4.3 t-Distributed Stochastic Neighbor Embedding. t-SNE is a dimension-
reducing algorithm that embeds a higher-dimensional space into a lower
number of dimensions and is particularly useful for visualizing high-
dimensional clustering spaces in two or three dimensions (Van Der Maaten
& Hinton, 2008). This is an iterative procedure that attempts to maintain
the local structure of the high-dimensional space, such that points that are
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Figure 3: The individual differences in microstate maps identified from the data
set, along with the participant level maps. Note the variability between the maps
of different participants. The microstate maps are sorted according to the maps
shown in Figure 1 (Milz et al., 2015). Note that the microstate maps ignore the
polarity of the EEG scalp topology. This is seen in map D of participant 2, where
the map polarity is opposite that of other participants. Also, note the similarity
between maps A and D of participant 12. This is why they cluster together in
the clustering space shown in Figure 12a.

closer together in the original high-dimensional space remain close in the
lower-dimensional space. This allows for visualization of the local (and po-
tentially global) structure of the higher-dimensional space. This algorithm
was used to visualize the clustering space generated by microstate analysis.

3 Results

3.1 Individual Variability in Identified Microstates. The four mi-
crostate class topologies computed from the aggregate rsEEG data of the
participants are shown at the top in Figure 3. The topologies identified on a
per participant basis are also shown. The large variance in interparticipant
microstate class topologies is evident from Figure 3 and is in line with the
current literature (Britz et al., 2010).
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3.2 Temporal Dynamic Analysis

3.2.1 Distance from Microstate Classes. Visualizing the distance of the GFP
scalp topology to each microstate cluster centroid over time and its FD re-
veals temporal dynamics between GFP peaks and microstate transitions
that are inconsistent with the view that microstates are quasi-stable discrete
states.

The time series of the distance between the topology at a given time
point and the four microstate classes is shown to vary with time, lead-
ing to a lower distance from one of the microstate centroids at each GFP
peak. However, the other microstates with larger distances still show non-
trivial activity at the peaks. Furthermore, the assigned microstate label did
not always correspond to the cluster with the lowest distance, as seen in
Table 2. Microstates A, B, C, and D were closest to the respective cluster cen-
troids only 50%, 46%, 44%, and 38% of the time, respectively. Time points
labeled as microstate A were often closest to the centroids of microstates B
(19%) and D (20%), while 25% of the time points labeled as B were closest
to microstate A centroid. Time points labeled as microstate C were found
to be closest to the centroids of microstate D and B 25% and 22% of the
time, respectively, whereas 26% of the time points labeled as microstate D
were closest to microstate A centroid. Also, the distances of the GFP peak
topology from the microstate classes were sometimes equal, with no clear
winner. These results might stem from competition between the different
microstates, suggesting the inadequacy of a winner-takes-all model to de-
scribe the dynamics of rsEEG. This is shown in Figure 4 and summarized
in Table 3.

Fractal dimension. The fractal dimension (FD) of the microstate distances
is observed to be higher (1.38 ± 0.11) than the baseline FD (equal to 1, as de-
scribed in section 2.2.2), not only at GFP peaks as suggested by assumption
1, but also between the GFP peaks (see Figure 5). This indicates dynamic
events occurring between GFP peaks that could contain useful information
regarding the ongoing dynamics of rsEEG. However, microstate analysis
could be missing these dynamic events, given that it considers only GFP
peaks. This might explain the poor reliability and nonstationarity of mi-
crostates at determining short-range dynamics.

3.2.2 Path-Step Length. The step lengths of the EEG scalp topology tra-
jectory (see Figure 6) show a more continuous traversal of the EEG scalp
topology space than is implied by the discontinuous microstate description.

The lengths were found to be mostly small (0.09 ± 0.04), with some oc-
casional peaks. The small step path lengths indicate a smooth traversal of
most of the EEG scalp topology space. The majority (71.8%) of the peaks
in step path lengths were located close to the GFP peaks and associated
with a polarity reversal in scalp topology rather than following microstate
attractor-like behavior expected to cause peaks in step path lengths close to
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Table 3: Distribution of Distances from the Time Points Labeled as a Particular
Microstate to the Cluster Centroids of All Microstate Classes.

Closest Labeled Microstate Class

Microstate A B C D

Class A B C D A B C D A B C D A B C D

1 (closest) 50 19 10 20 25 46 18 11 10 22 44 25 26 13 22 38
2 23 26 16 35 28 25 28 18 12 18 34 35 22 14 29 34
3 14 24 31 30 20 14 30 36 30 30 14 26 29 23 30 18
4 (Farthest) 12 31 42 15 26 15 24 35 48 30 8 14 23 49 18 10

Notes: This is expressed in terms of the percentage of time points that ranked closest
(shortest distance) to a microstate cluster, while being labeled a particular microstate class.
If data were well clustered, the closest microstate cluster should be the same as the labeled
class (marked in bold). However, as evident from the table, a sizable proportion of time
points show proximity to microstate clusters other than their labeled class. This can be
due to the poor separation of the clusters, as shown in Figure 12a. The Euclidean distance
(L2-norm version of the Minkowski distance) was used for this computation.

microstate transitions (seen only in 28.2% of step path length peaks, shown
in Table 4).

Fractal dimension. The FD of the step length is found to be high (1.57 ±
0.13), indicating many small changes in step lengths throughout the time
duration studied.

Phase space. The phase space of the step lengths of the EEG scalp topology
trajectory (shown in Figure 7) resembles that of a chaotic system (Suzuki
et al., 2016). This is confirmed by the positive Lyapunov exponents seen
in Figure 8. Some regions of negative Lyapunov exponents further suggest
periods of nonchaotic behavior interspersed between chaotic dynamics.

Lyapunov exponent. The LE of the step length (see Figure 8) is found to be
mostly positive, with some periods of negative values, indicating chaotic
dynamics interspersed with some periods of nonchaotic behavior.

3.3 EEG Scalp Topologies. Qualitatively, the EEG topology was found
to vary smoothly between different scalp topologies (shown as a montage
in Figure 9). Furthermore, the trajectory of EEG topology within the clus-
tering space (see Figure 12b) seems to have smooth segments (short path-
step length) as well as sharp jumps (large path-step length). These sharp
jumps are found to be primarily located away from microstate transitions
between different states (see Table 4) and correspond to within-microstate
transitions, that is, transition from one polarity of the microstate class topol-
ogy to the opposite polarity of the same microstate class. This is seen in the
first two microstates shown in Figure 9, where the EEG topology flips in
polarity and stays in microstate B. This in contrast to the discontinuous be-
havior suggested by the quasi-stable description of EEG microstates, which

74



2196 S. Shaw, K. Dhindsa, J. Reilly, and S. Becker

Fi
gu

re
5:

T
he

fr
ac

ta
ld

im
en

si
on

(F
D

)o
fd

is
ta

nc
e

be
tw

ee
n

th
e

pe
ak

to
po

lo
gy

an
d

th
e

fo
ur

m
ic

ro
st

at
es

is
sh

ow
n:

m
ic

ro
st

at
e

A
(b

lu
e)

,
B

(o
ra

ng
e)

,C
(y

el
lo

w
),

D
(p

ur
pl

e)
.T

he
G

FP
cu

rv
e

(g
re

en
)u

se
d

to
id

en
ti

fy
m

ic
ro

st
at

es
is

al
so

sh
ow

n
al

on
g

w
it

h
it

sp
ea

ks
(r

ed
ve

rt
ic

al
lin

es
).

T
he

m
ic

ro
st

at
e

la
be

la
ss

ig
ne

d
by

th
e

m
ic

ro
st

at
e

al
go

ri
th

m
is

in
d

ic
at

ed
by

th
e

co
lo

r
of

th
e

ba
ck

gr
ou

nd
.A

n
in

cr
ea

se
in

FD
is

no
ti

ce
d

be
tw

ee
n

G
FP

pe
ak

s,
in

d
ic

at
in

g
an

in
cr

ea
se

in
co

m
pl

ex
d

yn
am

ic
s

d
ur

in
g

th
is

ti
m

es
ca

le
th

at
m

ig
ht

be
m

is
se

d
by

fo
cu

si
ng

on
ly

on
G

FP
pe

ak
s.

75



Capturing the Forest but Missing the Trees 2197

Fi
gu

re
6:

T
he

st
ep

le
ng

th
s

of
th

e
E

E
G

sc
al

p
to

po
lo

gy
tr

aj
ec

to
ry

pl
ot

te
d

ov
er

a
sh

or
t

ti
m

e
co

ur
se

.T
he

G
FP

cu
rv

e
(g

re
en

)
us

ed
to

id
en

ti
fy

m
ic

ro
st

at
es

is
al

so
sh

ow
n

al
on

g
w

it
h

it
s

pe
ak

s
(r

ed
ve

rt
ic

al
lin

es
).

T
he

m
ic

ro
st

at
e

la
be

la
ss

ig
ne

d
by

th
e

m
ic

ro
st

at
e

al
go

ri
th

m
is

in
d

ic
at

ed
by

th
e

co
lo

r
of

th
e

ba
ck

gr
ou

nd
:m

ic
ro

st
at

e
A

(b
lu

e)
,B

(o
ra

ng
e)

,C
(y

el
lo

w
—

no
t

pr
es

en
t

in
th

is
ex

am
pl

e)
,D

(p
ur

pl
e)

.
A

n
in

cr
ea

se
in

st
ep

le
ng

th
is

no
ti

ce
d

ar
ou

nd
G

FP
pe

ak
s,

in
d

ic
at

in
g

a
la

rg
e

ch
an

ge
in

th
e

E
E

G
sc

al
p

to
po

lo
gy

(s
ee

n
in

Fi
gu

re
12

b)
.

M
os

to
ft

he
pe

ak
le

ng
th

s
ar

e
sm

al
la

nd
co

rr
es

po
nd

to
sm

oo
th

tr
av

er
sa

lo
ft

he
cl

us
te

ri
ng

sp
ac

e.
T

he
pe

ak
s

in
st

ep
le

ng
th

s
oc

cu
rc

lo
se

to
G

FP
pe

ak
s

an
d

co
rr

es
po

nd
to

re
ve

rs
al

of
E

E
G

po
la

ri
ty

,m
ea

ni
ng

th
at

,b
y

d
efi

ni
ti

on
,i

tr
em

ai
ns

in
th

e
sa

m
e

m
ic

ro
st

at
e

(a
s

se
en

in
th

e
la

st
tw

o
G

FP
pe

ak
s

in
th

is
fi

gu
re

).

76



2198 S. Shaw, K. Dhindsa, J. Reilly, and S. Becker

Table 4: Distribution of Path-Step Lengths Plotted in Figure 6.

During Not During
Metric Microstate Transition Microstate Transition

Latency (in ms) from step-path peaks 5.7 ± 5.7 —
Percentage of step-path peaks 28.2 71.8

Figure 7: The phase space of the step lengths of the EEG scalp topology trajec-
tory plotted over a short time course. The orbits of this phase space resemble
that of a chaotic system (Suzuki et al., 2016).

would have shown abrupt and discontinuous variation in scalp topolo-
gies between different microstates rather than transitions within the same
microstate.

3.4 Clustering Analysis. The gap statistic and Davies-Bouldin index for
varying numbers of clusters are shown in Figures 10 and 11, respectively.
The gap statistic values for the widely used cluster number of four show
that it is close to the clustering structure derived from a random uniform
distribution (since it is close to unity), indicating that representing the EEG
sequence by four microstate clusters constitutes an inadequate description
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Figure 9: Chronological progression of the EEG topographic maps, plotted over
the course of 300 ms. The EEG topologies at the GFP peaks during this time
segment are shown separately, along with the classified microstate class. Note
that the topologies smoothly vary over time, in contrast to the abrupt changes
suggested by the discontinuous microstate model. Furthermore, note that the
first two GFP peak topologies are opposite in polarity and are classified into the
same microstate class (B), since microstate analysis ignores EEG polarity.

of the data at the GFP peaks. The Davies-Bouldin index also shows that
four clusters is nonoptimal, when considering the within-cluster spread to
between-cluster distance, indicating that there may be overlap between the
clusters identified. Both methods identified two clusters as being the most
appropriate clustering solution. Visualization of the clustering space using
t-SNE (see Figure 12a) illustrates why four clusters is not a good descrip-
tion of the data. The EEG scalp topology data forms a ring structure, where
opposite polarities of the same microstate classes are seen on opposite ends
of the ring. The wide spread in the clusters and poor separation between
different clusters are detected by the Davies-Bouldin index, showing poor
clustering structure within the EEG scalp topology data.

4 Discussion

Studying the dynamics of brain activity at a finer time resolution (on the
order of hundreds of milliseconds) can be extremely useful in uncovering
the mechanisms of behavior and cognition in healthy and diseased pop-
ulations. Microstate analysis is a relatively new method that attempts to
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Figure 10: The gap statistic is shown for varying cluster numbers (2–8), with
the optimal value identified as 2 to 3. The optimal cluster number is the one
that maximizes the gap statistic, indicating maximal deviation from a random
uniform clustering pattern. Note that the widely used cluster number of 4 is
nonoptimal.

describe complex brain dynamics by sequences of discrete patterns in EEG
scalp topology, termed microstates. In doing so, it makes some key assump-
tions about the spatiotemporal dynamics of EEG data, which have not been
carefully scrutinized. Here, we report the results of a series of nonlinear dy-
namic analyses to test some of these basic assumptions and found that they
do not hold up to scrutiny.

Assumption 1: GFP peaks. Complex dynamics does exist between GFP
peaks and is being missed by microstate analysis One of the primary
assumptions inherent in the computation of EEG microstates is that scalp
topology at the GFP peaks defines approximately four quasi-stable states
that the brain spends most of its time in, switching between the states every
60 to 120 ms (Michel & Koenig, 2018). If this assumption is correct, the EEG
topology over time should not vary smoothly, spending most of its time in
a particular microstate class topology and then rapidly accelerating toward
another microstate class topology while spending minimal time in the tran-
sition. However, EEG scalp topologies are observed to vary smoothly, as
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Figure 11: The Davies-Bouldin index is shown for varying cluster numbers (2–
8), with the optimal value identified as 2. The optimal cluster number is the
one that minimizes this index, indicating minimal within-cluster spread and
maximal distance between the clusters. The widely used cluster number of 4 is
found to be nonoptimal, with the closest local-minimum occurring at 5 clusters.

evident from the EEG scalp topologies over time (see Figure 9), the step-
path length (see Figure 6), and the trajectory of EEG scalp topology in the
clustering space (see Figure 12b). Most of the abrupt changes in scalp topol-
ogy are found to represent polarity reversals within the same microstate
(70%) rather than transitions between different microstate classes (see
Table 4). Furthermore, despite the GFP peaks lasting only a short duration
(full-width-half-maximum = 22 ms ± 20 ms), the microstate assigned at the
GFP peak is assumed to be quasi-stable for a much longer duration before
and after the GFP peak, thereby missing EEG dynamics between the peaks
(shown in Figures 4 and 5).

Assumption 2: One microstate at a time. The winner-takes-all ap-
proach might not be appropriate due to observed competition between
the microstate classes The clustering assumption implies a winner-takes-
all approach. This is appropriate where there is good separation between
the classes and physiologically appropriate when only one class is active at
one time. However, previous evidence suggests significant overlap between
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the classes (Custo et al., 2017) and suggests no reason for the regions identi-
fied in Table 1 to remain mutually exclusive. This can also be seen in the dis-
tance from microstate centroids over time (see Figure 4), where the distances
from cluster centroids are sometimes equal at the GFP peaks, showing com-
petition between the different microstate classes. This is further supported
by the data in Table 2, which show that the EEG scalp topology is not always
closest to its labeled microstate class centroid. This can happen if the closer
cluster is much more compact and is assigned a lower probability. For most
clustering methods, distance to class centroids is not linearly correlated
with the probability of belonging to that cluster, suggesting that if a pattern
belongs to one microstate, it might not be the microstate it is most similar
to. However, this goes against the winner-takes-all approach, assigning the
microstate class on the basis of the cluster it is most similar to. Furthermore,
visualizing the trajectory of the EEG scalp topologies (see Figure 12b) in the
clustering space shows the competition between the different microstate
classes, as the scalp topology smoothly traverses through the space, occa-
sionally jumping to the opposite polarity. The Davies-Bouldin index (see
Figure 11) and the clustering space visualization (see Figure 12a) also in-
dicate that the four-class data structure is nonoptimal because of overlap
between clusters, further suggesting that the winner-takes-all approach is
inadequate for EEG scalp topologies.

Assumption 3: Clustering. The different clusters representing the four
microstate classes have significant overlap and inhomogeneity Another
assumption made is the existence of clusters in the EEG scalp topologies at
GFP peaks. However, visualizing the clustering space in Figure 12a shows
significant overlap between these clusters, as supported by the quantita-
tive results of the gap statistic (see Figure 10) and Davies-Bouldin index
(see Figure 11). This is also supported by the large variance observed in
the clustered scalp topologies between participants (see Figure 3) and the
nonstationarity of EEG data, suggesting that the microstate class topolo-
gies are not stable and might vary with time. This is supported by the gap
statistic results (see Figure 10), showing that a four-class EEG clustering is
most similar to clusters in a random uniform data set, most likely causing
the large variance seen in the clustered scalp topologies and the nonstation-
ary behavior. This suggests that a discontinuous description of four stable
classes that the brain switches between might not be accurate.

EEG chaotic dynamics might contribute to the nonstationarity ob-
served in microstate analyses over short timescales Stemming from the
assumption of a discrete winner-takes-all approach resulting in one mi-
crostate active at a time (see assumption 2) is yet another assumption: the
Markov property of microstates. This assumption has been previously ex-
amined and consequently is not explicitly studied in this letter. Numerous
studies using microstate analysis have assumed that microstate transitions
portray first-order Markovian behavior and have computed transition ma-
trices accordingly. However, recent evidence suggests that this Markovian
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assumption is appropriate only for longer timescales and falls apart over
short time ranges. Von Wegner et al. (2017) find a lack of Markov prop-
erty (of any order) and stationarity in short-range microstate transitions.
This implicates the existence of either complex or chaotic microstate be-
havior that translates to long-range dependencies over longer timescales
(Gschwind et al., 2015; Van de Ville et al., 2010). This is in line with our FD
(see Figure 5) and phase space (see Figure 7) results, which suggest com-
plex dynamics (peak in FD) while switching between microstate classes,
in the periods between GFP peaks. Switching of the dominant dynamical
paradigm (see Figure 8) from chaotic to nonchaotic and back to chaotic
may contribute to the instability of microstate transitions over shorter
timescales. This nonstationarity might also arise from the discontinuous
parsing of EEG data into microstates when EEG data are not inherently
discontinuous.

All of the evidence we have presented goes against the assumption of
quasi-stable discontinuous behavior inherent in microstate analysis and is
in agreement with a large body of work suggesting that EEG data have com-
plex dynamics and can exhibit chaotic behavior, leading to nonstationarities
in the data. Using techniques from dynamical systems analysis, some stud-
ies have embedded EEG data in state-space to study general EEG dynam-
ics (Wackermann, 1999) and synchronization between hubs of EEG activity
(Carmeli, Knyazeva, Innocenti, & De Feo, 2005). Other nonlinear chaotic de-
scriptors of EEG data have also been used to characterize dynamics of nu-
merous brain states (Stam, 2005). These include fractal dimension (Nan &
Jinghua, 1988), chaotic Lyapunov exponents (Natarajan et al., 2004), and en-
tropy of EEG data (Kannathal, Choo, Acharya, & Sadasivan, 2005; Mizuno
et al., 2010). Entropy has also proven to be a useful predictor of a partic-
ipant’s ability to control a brain-computer interface (BCI)—the BCI ineffi-
ciency effect (Zhang et al., 2015).

In addition to the questionable assumptions inherent in microstate anal-
yses, another issue is the lack of correspondence between the four com-
monly identified microstates and the core functional brain networks well
characterized in resting-state fMRI. In particular, given the predominence
of default mode network (DMN) activity in rsfMRI, one would expect to see
DMN activity in rsEEG. However, there is conflicting evidence regarding
the correlation of the DMN with EEG microstates. Some studies find no cor-
relation between any of the four traditional EEG microstates and DMN ac-
tivity (Britz et al., 2010), which seems to generate its own unique EEG scalp
topologies (Panda et al., 2016). Other studies have found that microstate
class C has some link with the DMN (Custo et al., 2017) or that DMN activ-
ity is distributed over all four microstate classes and is not specific to any
one class (Pascual-Marqui et al., 2014). This might be due to the assump-
tion of only one microstate being active at any one time, whereas the DMN
is shown to be the predominantly active network during rsEEG. One other
reason for this might be the inadequacy of microstate analysis to study short
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timescale variations (Gschwind et al., 2015), since the DMN shows multiple
temporal signatures when studied at high temporal resolution (Gschwind
et al., 2016; Panda et al., 2016). This could be missed by microstate anal-
ysis, which is better able to capture longer-range dependencies than fine
timescale spatiotemporal dynamics. Yet another reason for microstates in-
adequately describing the DMN could be its inability to capture common
or latent inputs that modulate the behavior between two brain regions, as
seen in the DMN, where the posterior cingulate cortex (PCC) and ventral
anterior cingulate cortex (vACC) nodes behave differently when coupled
with other networks in the brain (Uddin et al., 2009; Das et al., 2017).

5 Conclusion

We have found that several assumptions underlying the extraction and in-
terpretation of EEG microstates do not hold under empirical investigation,
and as a result, microstates may not be an accurate description of the tempo-
ral dynamics of the EEG. Although the discontinuous behavior suggested
by the microstate model might capture some information relating to the
global scalp topologies over longer timescales, it seems to be inadequate
to describe the nonstationary and chaotic nature of EEG data over shorter
timescales. Consequently, those using this method should be cautioned
that it may severely underrepresent, or miss entirely, the detailed complex
spatiotemporal dynamics that are crucial to many research questions and
applications of EEG. Future work should focus on developing better dy-
namical methods that can capture such complex behavior from continuous
EEG data.
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4.3 Discussion

The results of this paper identified major flaws in each of the three assumptions

made during EEG microstate analysis, making it unsuitable for use as a biomarker

for ICN activity. Most notably, this paper identified that assuming discontinuity of

EEG microstates is incorrect, laying the foundation for a revised continuous-time

interpretation of EEG microstates (Mishra et al., 2020). Follow-up work stemming

from this study has also shown that the periodicity observed in EEG microstates can

be a by-product of the rotating phase of alpha-oscillations (von Wegner et al., 2020).

Yet another finding from this paper was the inadequacy of the requirement for

only one microstate being active at a given time. This was shown to be an artifi-

cially imposed requirement since there was considerable overlap between the EEG

scalp topology at any given time and the pattern of more than one EEG microstate.

This is also at odds with the ICN-linked interpretation of EEG microstates which

posits that the distinct microstate topologies represent activation of distinct ICNs.

However, co-activation of multiple ICNs has been well documented (Dosenbach et al.,

2008), and can be a method for various brain regions to dynamically connect and

communicate (Fries, 2015).

Furthermore, while EEG microstates have been used as EEG correlates of ICNs (Britz

et al., 2010), there are inconsistencies in the correspondence of the clusters and the

three core brain networks, especially the DMN.

Taken together, these shortcomings make it difficult to adequately infer network-

level dynamics on the basis of EEG microstate dynamics, thereby eliminating EEG

microstates as a viable EEG-based method to detect ICN activity and study their

dynamics. Therefore, there is an apparent need for an EEG-based analysis method
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that can detect ICN activity, in the context of the tri-network model.

Furthermore, in light of the identified shortcomings, the widespread clinical use

of EEG microstates as a biomarker of the disease state, and even as a neurofeedback

target (Diaz Hernandez et al., 2016), is particularly concerning. This further high-

lights the urgent need for a novel analysis method that can be clinically informative

and practical.
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Chapter 5

Study of the Tri-network Model

5.1 Introduction

The tri-network model constitutes a powerful neuroscientifically-informed model of

cognition and behaviour; it proposes three core networks, the CEN handling exteroceptively-

driven cognitive functions, the DMN handling interoceptively-driven cognitive func-

tions, and the SN gating the switching between these two networks (Menon, 2011).

This model has improved our understanding of the network-level dysfunctions that

underlie numerous psychopathologies (as discussed in Chapter 2), and the activity of

the constituent ICNs have helped characterize sub-types of complex psychopatholo-

gies (Nicholson et al., 2020). Hence the detection of such ICN activity could provide

clinically relevant biomarkers of pathological brain activity.

However, upon reviewing the current literature at the time of performing this

study, it was apparent that a core aspect of this model remained to be tested, namely,

the SN-based gating of DMN and CEN activation in the healthy brain, driven by in-

teroceptive versus experoceptive task demands (as posited by the tri-network model).
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The model was primarily derived from observations of dysfunctions in the three core

ICNs in various psychopathologies (Menon, 2011), however the healthy network dy-

namics was not directly tested or experimentally characterized.

The study presented in this chapter addressed this gap in the literature by in-

vestigating the ICN dynamics in the context of a novel task-switching paradigm that

randomly switched between interoceptive and exteroceptive processing task demands.

A secondary goal of the study was to better understand the mechanisms underlying

the gating function of the SN, since it is found to be disrupted in a wide range of

mental health disorders.

The primary author (SBS) of the study conceptualized and designed the functional

task used in this study with the last author (SB). The primary author (SBS) also

performed all data collection, analysis and wrote the first draft of the manuscript. All

co-authors contributed to the writing of the manuscript. MM, JH and SB contributed

funding to this study.
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5.2 Dynamic task-linked switching between brain

networks - A tri-network perspective

Shaw, S. B., McKinnon, M. C., Heisz, J., & Becker, S. (2021). Dynamic task-linked

switching between brain networks–A tri-network perspective. Brain and cognition,

151, 105725.
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1. Introduction 

Traditionally the functional correlates of brain activity have been 
studied one region at a time. However, mounting evidence indicates that 
the brain is organized into functional networks of interacting brain re-
gions. These clusters of sub-regions fire in a functionally correlated and 
synchronous manner, and are engaged for specific cognitive tasks, and 
are hence called functional networks (FN). Out of a large number of 
previously identified FNs (Yeo et al., 2011), three major brain networks 
are of particular interest to the cognitive neuroscience community. The 
central executive network (CEN), salience network (SN) and default 
mode network (DMN) form a tri-network system that is postulated to 
explain much of cognition and behaviour (Menon, 2011). The CEN is 
responsible for externally-directed cognitive tasks including working 
memory and other executive functions, while the DMN is involved in 
internally-directed cognitive tasks including autobiographical memory 
retrieval, imagining the future, spatial planning and navigation and self- 
reflection. Even while the person is not outwardly performing any 
explicit task (i.e. resting state), the brain is still active with internally- 
directed cognitive activities driven by the DMN, such as daydreaming, 
mind-wandering or more focused thought. According to Menon’s tri- 
network model, the SN is involved in modulating the switching of 
attention between cognitive processes subserved by the CEN and DMN. 
This mediates the switch between externally-directed and internally- 
directed thoughts, respectively, a process required for successful 
cognition and balanced emotion regulation. Importantly, the inter- and 
intra-network connectivity between these three core networks is found 
to be dysregulated in psychiatric conditions such as depression (Ham-
ilton et al., 2011; Yang et al., 2016), schizophrenia (Moran et al., 2013) 
and PTSD (Menon, 2011). Hence, studying the tri-network activity and 
its switching dynamics is essential to understanding the neurological 
underpinnings of the aberrant thought processes and emotional dysre-
gulation observed in such complex neuropsychological disorders. This 
study investigates the temporal dynamics of various sub-components of 
the tri-network model with a composite memory task designed to acti-
vate the three networks. 

1.1. The tri-network model 

An important prediction of the tri-network model is that the DMN 
and CEN are anti-correlated under the control of the SN, such that if a 
task engages one of the two, the SN inhibits the activation of the other 
(Uddin, 2015). 

There is a large body of work supporting SN’s gating function, using 
dynamic causal modelling and Granger causality analysis to study major 
network nodes (Friston et al., 2014) during resting state (Sridharan 
et al., 2008, 2014, 2017), visual or auditory attention-switching (Srid-
haran et al., 2008), Go-No-Go and congruent/incongruent flanker tasks 
(Cai et al., 2016) and magnitude and parity judgement tasks (Sidlaus-
kaite et al., 2014). These causal analyses support the gating function of 
the SN within tasks (Chand and Dhamala, 2016) and even more so when 
switching between externally-oriented tasks (Sidlauskaite et al., 2014). 

More specifically, these studies identify the right anterior insula (rAI) 
as the node with the lowest latency of the event-related activity and the 
highest net causal “outflow” to other SN, CEN and DMN nodes, impli-
cating a central role for rAI as a hub responsible for switching between 
different tasks, requiring a switch in the predominantly active network 
(Sridharan et al., 2008). Neurofeedback training is also known to 
improve AI-linked network regulation of the CEN and DMN, supporting 
the hub-like role of this region (Zhang et al., 2015). Furthermore, 
stimulating other cortical nodes of the salience and central executive 
networks using transcranial magnetic stimulation (TMS) causes deacti-
vation of DMN nodes, suggesting that it is under the inhibitory control of 
CEN/SN nodes (Chen et al., 2013). 

However, most of the evidence surrounding the functions of these 
three core networks comes from either resting state analyses (Goulden 

et al., 2014; Taghia et al., 2017; Ryali et al., 2016) or paradigms where 
brain network activation is studied in the context of a single task relative 
to rest (Sidlauskaite et al., 2014). Few studies have investigated multiple 
tasks simultaneously (see Spreng et al. (2010)), and even fewer have 
attempted to characterize the dynamics of task switching (see Bréchet 
et al. (2019, 2014)). Bréchet et al. (2019) characterized the spatial re-
gions activated across two different tasks, while describing the temporal 
dynamics using EEG microstates, a method that makes some faulty as-
sumptions (Shaw et al., 2019). Furthermore, most findings supporting 
the gating function of SN has either been in the context of resting state 
(Chand et al., 2017), or in the context of suppressing DMN and recruiting 
CEN during externally-directed tasks (Sridharan et al., 2008; Chen et al., 
2013; Chand and Dhamala, 2016), and has not assessed the network 
switching dynamics when recruiting DMN for self-related tasks in 
healthy participants. Additionally, these studies do not look at the 
temporal sequence of activity while switching between tasks that rely on 
different networks, that can provide a dynamic view of the switching 
process. Hence, a detailed investigation of the temporal dynamics of 
network activity during task switching is warranted. 

This study attempts to address these shortcomings by studying three 
major aspects of CEN, SN and DMN functioning in the context of a 
paradigm that involves dynamic task switching designed to activate 
these three networks. This involves  

1. identification of the nodes and sub-networks within the three major 
networks that are involved in such dynamic network switching,  

2. characterization of the temporal pattern of activation of these nodes 
and sub-networks, and finally  

3. investigation of the causal influence that these nodes and sub- 
networks exert on each other over the course of the tasks. 

To fulfill these aims, the spatiotemporal pattern of activating each of 
the networks while performing the tasks is first described using data- 
driven patterns of voxel-to-voxel connectivity and event-related activ-
ity timecourses, followed by multivariate Granger causality analysis to 
probe the patterns of causality between the network nodes. 

2. Methods 

In this study, fMRI data were collected from 14 healthy participants 
(8 females, mean age 22 ± 3 years) while they performed a complex 
memory task expected to evoke dynamic switching between intrinsic 
networks. The complex memory task consisted of randomly interleaved 
blocks of autobiographical memory (ABM) retrieval trials and working 
memory (WM) trials, expected to activate the DMN and CEN respec-
tively. At the end of some blocks, a task-switching cue prepared par-
ticipants to switch from an AM to a WM block or vice versa, and was 
expected to activate the SN. All participants provided informed consent 
prior to their participation in the study, in accordance with the approved 
Hamilton Integrated Research Ethics Board (HiREB) protocol. 

2.1. Memory assessment 

Each participant engaged in a pre-scanning phase, during which 
detailed autobiographical memories were recorded by the participant. 
Following this, participants completed a 1 h 20 min long memory 
assessment in the MRI scanner, comprised of randomly ordered 30-s 
blocks of either cued AM retrieval (remembering previous autobio-
graphical memories - ABM) or a 2-back WM task (remembering which 
word they saw 2 words ago in a stream of words). These two block types 
were predicted to activate the DMN and CEN respectively, while a cue to 
a pending task switch between blocks was expected to activate the SN. 
Participants completed as many blocks as possible within 80 min, up to a 
maximum of 64 blocks (32 ABM, 32 WM), in chunks of 16 blocks. Each 
block was followed by a 60 s rest period to prevent fatigue. 

Autobiographical memory (ABM) task Our ABM task was modeled 
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after a similar protocol used by Addis et al. (2004), with some modifi-
cations to balance the visual stimulus processing and motor response 
demands between the ABM and WM tasks. Prior to entering the scanner, 
the participant was asked to recall and record within an Excel sheet up to 
10 positive or neutral autobiographical memories in vivid detail. The 
participant was then asked to identify descriptive words corresponding 
to each memory, that would serve as cues during the ABM retrieval task. 
During each ABM block within the scanner, the participant was shown a 
series of cue words pertaining to one of the previously described auto-
biographical memories and was instructed to vividly imagine the cor-
responding memory in detail. Each ABM block included 10 cues 
pertaining to the same memory, shown for 2 s each. In each different 
ABM block, a different memory was cued. To ensure that the participant 
was staying on task, at random points within each block, they were 
asked to perform a 4-alternative forced choice trial in which they should 
select the word that represents the memory they were currently recalling 
from a selection of four words. 

Working Memory (WM) task: During the WM blocks, the partici-
pant was presented with a sequence of neutral words (not expected to 
elicit the autobiographical memories recorded) and was asked to 
remember the word that was presented two words back. At random 
points within each block, they were asked to perform a 4-alternative 
forced choice trial in which they should choose the word they saw 
two words ago from a selection of four words. 

Task cue period: The words “Word Memory” and “Autobiographical 
Memory” were shown for 2 s before the onset of the WM and ABM 
blocks, respectively. A schematic illustrating the task paradigm is shown 
in Fig. 1. 

2.2. MRI acquisition 

A GE MR750 3T MRI scanner and an 8 channel RF coil (General 

Electric Healthcare, Milwaukee, WI) were used for data acquisition. 
FMRI data were acquired using an axial 3D fSPGR pulse sequence (2D 
gradient echo EPI, FA = 90o, TE/TR = 35/2000 ms, 64x64 matrix, 39 
interleaved 3.8 mm slices, 1200 temporal points). 

2.3. MRI data analysis 

The raw fMRI data were first bandpass filtered (0.008 Hz - 0.09 Hz), 
motion corrected, and aligned with the MNI standard space after 
applying a 2 mm Gaussian blur. These pre-processed fMRI data were 
used for all subsequent analyses. 

To accomplish the three major study aims described at the end of 
Section 1, we conducted a series of analyses probing the spatio-temporal 
patterns of activity in the three networks of interest. These analyses are 
discussed below, in the same order as the corresponding study objectives 
they are accomplishing.  

1. We first identified brain regions differentially activated by the ABM 
and WM tasks, and during task switching, using whole-brain con-
nectome multivariate pattern analysis (connectome-MVPA), fol-
lowed by a group-wide independent component analysis (group- 
ICA). Both of these analyses are data-driven and hence avoided any a 
priori biases or assumptions around the network nodes and sub- 
networks that might participate in the tasks being studied. The 
group-ICA components corresponding to independent CEN, DMN 
and SN sub-networks were then identified for further analysis.  

2. Next, temporal patterns of task-linked network activation were 
studied using two complementary approaches. First, an ICA-based 
data-driven approach was used to identify and study the temporal 
activation patterns of the three networks. This was followed by a 
region of interest (ROI)-driven analysis, based on evidence from the 

Fig. 1. A. Schematic of the dynamic switching task. Each block is either an autobiographical memory retrieval task (ABM task) or a 2-back working memory (WM) 
task. Each block consists of exactly 10 task cue trials and 4 four alternative forced choice (4-AFC) trials placed at random locations within the block. Each trial is 
presented to the participant for 2 s, except the 4-AFC trials that persist until the participant has made a choice. The structure of an ABM block and a WM block are 
shown in more detail in panels B (top) and C (bottom) respectively. During the ABM blocks (panel B), the task cues are memory keywords that correspond to one of 
the participant’s autobiographical memories, thereby cuing that particular memory. The trials within a block consists of different memory cues from a single 
autobiographical memory. On the other hand, the task cues during the WM blocks (panel C) are a sequence of words from which the participant needs to remember 
the word shown 2 words ago. 
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literature to identify temporal patterns of activity within key nodes 
of the CEN, DMN and SN.  

3. Finally, these activity time courses were analyzed using multivariate 
Granger causality (MVGC) analysis to identify the causal influence of 
these nodes and sub-networks on one another. 

These analyses were carried out using the SPM12 and CONN tool-
boxes (Whitfield-Gabrieli and Nieto-Castanon, 2012a), along with 
custom MATLAB scripts and are described in detail in the following sub- 
sections. 

2.3.1. Connectome Multivariate Pattern Analysis (connectome-MVPA) 
In order to identify brain regions activated by the ABM and WM tasks 

without any a priori biases (study aim 1), we used data-driven whole- 
brain connectome multivariate pattern analysis (connectome-MVPA). 
This analysis identifies whole-brain multivariate patterns of functional 
connectivity (MCOR), allowing for discovery of task-linked patterns of 
voxel-to-voxel functional connectivity (Beaty et al., 2015; Thompson 
et al., 2015; Whitfield-Gabrieli et al., 2016). 

Mathematically, the MCOR connectivity maps refer to the top M 
spatial principal component scores of the seed-based correlation matrix 
containing the correlation between each seed voxel and all other voxels 
in the brain, aggregated across all participants and conditions. 

The whole-brain connectome-MVPA maps are identified by 
repeating the following procedure for each of the K voxels, x, in the 
brain. First, for each voxel x, the 1× (K)-dimensional seed-based cor-
relation map is computed using x as the seed, for each participant- 
condition pair. Assuming a total of N participant-condition pairs, these 
seed-based correlation maps are aggregated into a N × K seed-based 
correlation matrix (R) for each voxel x. 

Next, the top M principal spatial components of R are identified 
using principal component analysis (PCA), as shown in Eq. (1). 

R = Q⋅Λ⋅QT (1)  

where Λ is the M × M square diagonal matrix of eigenvalues corre-
sponding to the principal spatial components (eigenvectors) contained 
in the K × M dimensional Q matrix. These components form an 
orthogonal basis set that span the space of the seed-based correlation 
patterns observed across all participants and conditions. 

The N × M dimensional component scores matrix (MCOR) is 
computed using the R matrix and Q as shown in Eq. (2), giving a 1 × M 
dimensional component score for each of the N participant-condition 
pairs, for each voxel x: 

MCOR(x) = R⋅Q (2)  

Consequently, each element r(x,y), of the nth participant-condition pair 
seed-based correlation matrix (R) can be written as, 

Rn : rn(x, y) =
∑M

i=1
MCORn,i(x)Qi(x, y) (3)  

The MCOR maps provide a multivariate low-dimensional representation 
of the between-subjects/conditions variance of the seed-based func-
tional connectivity between each voxel x and the rest of the brain. Task- 
linked differences in these whole-brain patterns of connectivity can then 
be identified by performing a second-level between condition/partici-
pant analysis by performing an F-contrast on the MCOR spatial maps 
between the task conditions of interest. 

First-level connectome-MVPA analyses were run using the CONN 
toolbox (Whitfield-Gabrieli and Nieto-Castanon, 2012b) with M = 4 top 
components, followed by a second-level contrast between the ABM and 
WM task conditions to identify the multivariate voxel-to-voxel patterns 
of connectivity that differ between these task conditions. 

2.3.2. Independent Component Analysis (group-ICA) 
We studied the temporal dynamics of the 3 networks (study aim 2) 

using two different approaches, a data-driven approach to identifying 
the three networks and a more traditional ROI-driven approach. For the 
data-driven approach, following connectome-MVPA, we used group 
wide independent component analysis (group-ICA) for the identification 
of spatio-temporally independent CEN, DMN and SN sub-networks 
without any a priori biases (study aim 1). 

The group-ICA decomposition (Calhoun et al., 2009) was performed 
on the pre-processed voxel data using tanh as the non-linear contrast 
function with the iterative FastICA algorithm to identify 20 group-ICA 
spatial components. The group-level ICA components were labeled 
based on their spatial overlap (quantified using the Dice coefficient) 
with known functional networks (described in Shirer et al. (2012) and 
downloaded from https://findlab.stanford.edu/functional_ROIs.html) 
and back-projected to individual participants’ data, using GICA3 back- 
projection (Erhardt et al., 2011), to obtain the activity timeseries of 
each ICA component. These timeseries were used for the temporal 
analysis of CEN, DMN and SN sub-network activity (study aim 2). 

2.3.3. Regions-of-Interest (ROI) Definitions 
The temporal dynamics of CEN, DMN and SN node activity (study 

aim 2) were also studied using an ROI approach, based on the average 
BOLD activity within major nodes of the three networks. Two network 
configurations were studied, each using a different set of nodes to define 
the three networks, to identify the appropriate collection of nodes that 
adequately described tri-network dynamics in the context of a task 
paradigm. The first network configuration included an abridged set of 
10 nodes that has been extensively used to define the three networks in 
most prior studies investigating the tri-network model. Additionally, 
since this widely used set of tri-network nodes did not include key DMN 
and SN nodes, such as medial-temporal lobe (MTL) nodes and the pos-
terior insula (PI), a second network configuration was defined by adding 
8 nodes that span the MTL and PI, to the earlier set of nodes comprising 
the DMN and the SN respectively. 

The nodes for the abridged and extended network configurations 
were defined using a combination of standard and custom regions of 
interest (ROI), as described in Tables S1 and S2, respectively. The 
standard ROIs from the Harvard-Oxford atlas (H-O atlas) were used to 
define the posterior cingulate cortex (PCC), precuneus (PreC), right and 
left posterior parietal cortex (r/l PPC), hippocampal (r/l HC) and par-
ahippocampal (r/l pHC) ROIs. The rest of the ROIs were created using a 
sphere of radius 5 mm, centered at pre-defined MNI coordinates, given 
in Tables S1 and S2. 

2.3.4. Multivariate Granger Causality (MVGC) Analyses 
In order to assess the causal interactions between the networks 

(study aim 3), the causal influence between the identified sub-networks 
and network nodes were studied using multivariate causality analyses 
on the ICA component timeseries and the ROI timeseries, respectively. 

Granger causality has been extensively used to characterize data- 
driven estimates of directional causality between two sources of activ-
ity in EEG and fMRI (Iwabuchi et al., 2017; Seth et al., 2015). It relies on 
information-theoretic principles of causality, asserting that a signal xi 
causally influences signal xj if predictions about the future samples of xj 

can be improved by including past samples of xi in addition to past 
samples of xj itself. The multivariate version of Granger causality (Bar-
nett and Seth, 2014) extends this univariate description by also 
considering activity from nodes in the system that may indirectly in-
fluence the causality from i→j. Within this framework, two vector 
autoregressive (VAR) models are fitted - a ’full’ or ’unrestricted’ VAR 
model that models the activity of all system nodes (x(t)) as a function of 
their past activity; and a ’reduced’ or ’restricted’ VAR model that esti-
mates future activity of the system excluding node i (x(t)|xi), as shown in 
Eqs. 4 and 5 respectively. 
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x(t) − ÃLP(x(t)) = ∊̃ (full
/

unrestrictedmodel) (4)  

(x(t)|xi) − ALP(x(t)|xi) = ∊ (reduced
/

restrictedmodel) (5)  

where A and Ã are (n − 1) × P and n × P dimensional coefficient matrices 
respectively, for a system with n nodes. LP is the lag operator such that 
LP(x(t)) gives a vector with the last P values in x(t), and ∊ and ̃∊ are white 
time-uncorrelated noise processes with covariance D and D̃ respectively 
(Duggento et al., 2018). 

The MVGC strength for the connection from i→j is given by esti-
mating the additional information gained about future xj samples by 
including previous xi samples, ignoring the information provided by the 
other nodes in the system (Eq. (6)): 

MVGCi,j = log
Dj,j

D̃j,j
(6)  

The optimal value for P of the lag operator LP can be estimated from the 
time series data using the Akaike information criterion (AIC) or Bayesian 
information criterion (BIC), to maximize the fit of the VAR model while 
minimizing overfitting (Barnett and Seth, 2014). Optimal values of P = 3 
have been previously observed when applying MVGC analysis on BOLD 
fMRI data (Duggento et al., 2018). 

MVGC analyses were performed on the ICA and ROI timecourses 
using the MVGC Toolbox (Barnett and Seth, 2014). The AIC was used to 
estimate the optimal lag for fitting the VAR model, followed by splitting 
the time courses into 14 s long sliding windows with a step size of 2 s (1 
TR). This provided a dynamic estimate of the MVGC values over time, 
that was compared against the null MVGC estimate using time-permuted 
surrogate signals. The connections that were significantly different from 
their surrogate estimates were retained. A unique directed graph was 
constructed from the MVGC estimates for each sliding window, gener-
ating a series of graphs. 

To characterize the changing role of each network node in this series 
of graphs, the net causal outflow was estimated for each network node 
by subtracting the weighted sum of incoming connections to the node, (i. 
e. importance weighted in-degree of the node) from the weighted sum of 
outgoing connections from the node (i.e. importance weighted out- 
degree of the node). A hubness score was also estimated for each node 
of these graphs by identifying the nodes that have high node degree, 
high node betweenness, low clustering coefficients and low average path 
length. This combination of four sub-measures is thought to indicate 
hub-like behaviour within a network, and has been used to define a 
composite hubness score (van den Heuvel et al., 2010). This composite 
hubness score was derived from sub-scores of each of the four sub- 
measures. A sub-score of 1 was assigned to each node if it ranked in 
the top 20% of nodes that matched the aforementioned hub-like pattern 
of the four sub-measures, while a sub-score of 0 was assigned to all nodes 
that failed to meet this criteria. The sub-scores for each of the four sub- 
measures were then added together to identify the composite hubness 
score for each node. Consequently, this score ranged from 0, repre-
senting no hub-like behaviour, to 4, indicating the presence of all four 
hub-like characteristics. Further details on this composite hubness score 
can be found in van den Heuvel et al. (2010). 

3. Results 

This section first discusses the results of the connectome-MVPA and 
group-ICA analyses in sub-section 3.1, accomplishing the goals of study 
aim 1 to spatially characterize the tri-network activity by identifying 
sub-networks and dominant regions of interest. Next, the results per-
taining to study aim 2 are discussed by exploring the temporal charac-
teristics of the ICA and ROI time courses in sub-section 3.2. Finally, the 
results of the MVGC analyses performed to investigate study aim 3 are 
presented in sub-section 3.3, characterizing the patterns of causality 

between the identified nodes and sub-networks using multivariate 
Granger causality analysis. 

3.1. Spatial characterization of tri-network activity 

3.1.1. Connectome-MVPA Analysis 
The connectome-MVPA analysis for the contrast between the ABM 

trials and WM trials revealed that when contrasted against the WM tri-
als, the ABM trials more strongly activated the right and left parietal 
cortices and the posterior cingulate cortex (PCC), while the WM trials 
more strongly activated supplementary motor areas, right and left 
middle frontal gyri, and some medial frontal cortical and right cerebellar 
regions. These results, shown in Fig. 2 and Table 1, are consistent with 
previous findings of activation within the medio-temporal subnetwork 
of the DMN in autobiographical memory recall (Andrews-Hanna et al., 
2014), and activation of phonological loop structures in working 
memory (Yaple et al., 2019). 

3.1.2. ICA Networks - Spatial Pattern Analysis 
Of the 20 identified ICA components, 11 were found to have signif-

icant overlap with various functional networks (Shirer et al., 2012), with 
5 of these 11 external to the networks of interest (spanning language, 
visual, auditory, cerebellar and somato-motor networks), while the 
remaining 9 components appeared to be artefactual or noise compo-
nents. The remaining 6 ICA components were identified as sub-networks 
of CEN, DMN and SN and were isolated for further analyses. These 
include the.  

• Left CEN comprised of left dlPFC and parietal structures  
• Bilateral CEN comprised of bilateral dlPFC and parietal structures,  
• Dorsal DMN comprised of posterior cingulate cortex (PCC) and MPFC 

nodes,  
• Ventral DMN comprised of retrosplenial cortex and medial temporal 

lobe structures,  
• Anterior SN comprised of anterior insula and dorsal ACC nodes, and  
• Posterior SN comprised of posterior insula. 

The spatial patterns of these components are shown in Fig. 3. 

3.2. Temporal characterization of tri-network activity 

3.2.1. ICA Networks - Timecourse Analysis 
The ICA timecourses for the CEN, DMN and SN networks are shown 

in Figs. 4a and 4b, averaged over all ABM and WM trials respectively. 
During the ABM trials (Fig. 4a), as predicted, the SN was observed to 

coactivate with the DMN, jointly increasing after t = 0, and peaking at 
12s post-task onset. At the same time, the CEN activity decreased 
through the first half of the ABM trials, with its lowest point coinciding 
with the DMN/SN activity peak. Surprisingly, after the point of peak 
DMN and minimum CEN activity at 12 s, DMN activity decreased while 
CEN activity increased, reaching its peak at 18s, suggesting there may be 
greater demands on executive functions during the latter half of the trial. 
This peak in CEN activity, however, was not accompanied by a peak in 
SN activity. 

During WM trials, unexpectedly the SN did not seem to coactivate 
with the CEN. Instead, the activity of all three networks increased after t 
= 0s, reaching their maximum levels at different times. The SN was the 
first to reach its peak at 5s, followed by the DMN at 8s, ending with the 
CEN peak at 13s. 

The observed pattern of SN network activity was unexpected in both 
ABM and WM trials. We predicted that the SN would control the selec-
tion between the CEN and DMN according to task demands and there-
fore expected SN activity to rise at the start of each block, followed by 
activation of either the CEN or DMN in a task dependent manner. 
Additionally, we expected the DMN to be activated during ABM trials 
but not WM trials and the CEN to be activated during WM trials but not 
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ABM trials, however, as noted above, there was cross-network activation 
in both types of trials. We postulated that this pattern of tri-network 
activity could be due to differential activity within its constituent sub- 
networks and we therefore investigated the anterior vs posterior sub- 
networks of the SN, alongside the CEN and DMN sub-networks 

identified by the group-wide ICA analysis, described in Section 3.1.2. 
The activation timecourses of these SN, CEN and DMN subnetworks are 
shown in Fig. S1. 

The correlated increase in DMN and SN activity during ABM trials 
observed in Fig. 4a was found to be due to the correlated increase in 
activity of the ventral DMN and anterior SN sub-networks (seen in 
panels b and c respectively), whereas the later increase in CEN activity in 
Fig. 4a was due to an increase in activity of the bilateral CEN network 
(panel a). In contrast, during the WM trials, the posterior SN (panel f) 
and the dorsal DMN activity (panel e) seemed to underlie the early SN 
and DMN peaks, while the LCEN subnetwork (panel d) contributed to 
the later CEN peak at 13s observed in Fig. 4b. An early peak in bilateral 
CEN activity was also observed, coinciding with the increase in dorsal 
DMN and posterior SN activity in panels d, e and f of Fig. S1, 
respectively. 

In sum, two key patterns emerged in these sub-network analyses. 
Firstly, the anterior SN subnetwork showed co-activation with the task- 
relevant network (ventral DMN during ABM trials and LCEN during WM 
trials). In contrast, the posterior SN subnetwork was anti-correlated with 
the anterior SN, and instead consistently co-activated with the bilateral 
CEN and dorsal DMN subnetworks during both ABM and WM trials. 
Secondly, the LCEN co-activated with the bilateral CEN during the ABM 
trials, however, the LCEN showed a distinctly different activation 
pattern during WM trials, increasing in activity during the latter half of 
the trials (Fig. S1d). 

The network dynamics of these sub-networks were further studied 
using multivariate Granger causality (MVGC) analyses and are discussed 
later in Section 3.3.1. 

While the above analyses are based on the data-driven (ICA) iden-
tification of the networks and sub-networks, we also examined the tri- 
network activation in terms of ROI analyses in the next section. 

3.2.2. ROI-to-ROI Timecourse Analysis 
In addition to ICA based tri-network definitions, we investigated the 

tri-network activation using two different sets of ROIs to describe the 
CEN, DMN and SN. The first network configuration utilized an abridged 
set of ROIs widely used in the literature to study the tri-network model, 
while the second network configuration extended the set of ROIs 
defining the DMN and SN to include medial temporal lobe (MTL) and 
posterior insula (PI) nodes. The results from these ROI analyses are 

Fig. 2. Connectome-MVPA activation for the contrast between ABM>WM with positive contrast clusters (ABM > WM) shown in red/yellow (panel A on the left) and 
negative contrast clusters (WM > ABM) shown in blue/purple (panel B on the right). The identified clusters of activity, along with their MNI coordinates are listed in 
Table 1. Abbreviations: PCC - posterior cingulate cortex, mPFC - medial prefrontal cortex, MidFG - Middle Frontal Gyrus, Supp Motor Cortex - Supplementary Motor 
Cortex. A cluster-discovery threshold of p-uncorrected < 0.001 and cluster-visualization threshold of FDR-corrected p < 0.05 was used to generate this image. 

Table 1 
Clusters of voxels identified in a two-sided ABM > WM contrast of connectome- 
MVPA values. The abbreviations used are aSMG = Anterior Supramarginal 
Gyrus, PostCG = Post Central Gyrus, PO = Parietal Opercular Cortex, PT =
Planum Temporale, CO = Central Opercular Cortex, MidFG = Middle Frontal 
Gyrus, SFG = Superior Frontal Gyrus, SMA = Supplementary Motor Cortex, LG 
= Lingual Gyrus.  

MNI coordinates 
ofactivation 

clustercentroids [x y z] 

Brain regions activated Number of Voxels 

ABM > WM   
− 60 − 32 + 24 Parietal Cortex L 182   

aSMG L 68   
PO L 53   
PT L 39   
PostCG L 22  

+62 − 18 + 32 Parietal Cortex R 155   
aSMG R 80   
PostCG R 32   
PO R 30   
CO R 13  

+00 − 44 + 20 Posterior Cingulate 55 
WM > ABM   

− 26 + 02 + 58 Middle Frontal Gyrus L 73   
MidFG L 36   
PreCG L 15   
SFG L 11  

− 02 + 04 + 64 Supplementary Motor Cortex 53   
SMA L 22   
SMA R 19   
ParaCingG L 12  

+08 − 92 − 02 Occipital Pole R 46  
+10 − 80 − 16 Cerebellum 34   

LG R 18   
Cereb 6 R 11   
Vermis 6 4  

+36 + 04 + 66 Middle Frontal Gyrus R 16  
+00 + 50 − 16 Frontal Medial Cortex 17  
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discussed in this section. 
The average BOLD activity timecourses of each of the three major 

networks, gathered by summing together the activity of the corre-
sponding nodes, is shown in Figs. 4c and 4d, averaged across all ABM 
and WM task trials respectively. 

During the ABM trials, consistent with our findings from the ICA- 
based sub-network analyses, SN activity was the first to increase, 
reaching its peak at 8 s, followed by an increase in DMN activity which 
peaked at 11 s. As expected, CEN activity decreased by the same amount 
during the same time frame, and increased only after the DMN activity 
had returned to baseline around 18 s post-task onset. This change in CEN 
activity was accompanied by a decrease in SN activity at 18 s post-task 
onset. During the WM trials, the DMN activity increased rapidly, peak-
ing around 6 s, while the SN and CEN activity decreased during the same 
time frame. This was followed by an increase in SN and CEN activity, 
peaking at 17 s and 19 s respectively. This was accompanied by a large 
decrease in DMN activity, reaching its lowest activity level at 20 s post- 
task onset. Across both ABM and WM trials, the SN was found to co- 
activate with the activity of the network predominantly expected to 
activate, i.e. DMN during the ABM trials and CEN during the WM trials. 
Furthermore, SN activity was observed to lead the activity of the acti-
vated network, consistent with the activation pattern expected for a 
network gating the onset of another network. 

The activity of each network was further broken down into the ac-
tivity of its constituent nodes for more detailed analysis, as shown in 
Fig. S2. During the ABM trials, there was an increase in vmPFC activity 
at 5 s post-task onset (panel b), followed by dACC, right AI and left AI 
activity around 8 s post-task onset (panel c), after which PCC activity 
increased to its maximum value around 10 s post-task onset (panel b). 
The amPFC activity followed an opposite trend to that of PCC (panel b). 
During the latter half of the trial, right and left dlPFC activity were found 
to increase around 18 s post-stimulus onset (panel a). During the WM 
trials, the activity of SN and CEN nodes was found to be biphasic. First, 
the dACC activity increased at 14 s post-stimulus onset (panel f), 
immediately followed by an increase in right PPC activity (panel d). In 
the second phase, the right and left AI activity increased to their 
maximum values at 16 s and 20 s post-task onset respectively (panel f). 
This was followed by an increase in left PPC, left dlPFC and finally right 
dlPFC, peaking at 18, 20 and 22 s respectively (panel d). Activity of the 

DMN nodes during the WM trials was dominated by an early increase in 
PCC activity around 7 s (panel e), which was accompanied by a decrease 
in right and left AI node activity (panel f). 

Taken together, the results described above and illustrated in Fig. 4 
suggest that different nodes dominated the activity of each network 
during the two different tasks. The observed increase in DMN activity 
during the ABM task might have been due to an increase in vmPFC and 
PCC activity driven by rAI, lAI and dACC activity, whereas, the early 
increase in DMN activity during the WM trials was primarily due to a 
corresponding increase in PCC and amPFC activity. This increase in PCC 
activity during WM trials was accompanied by a decrease in SN node 
activity indicating that this activation might be negatively correlated to 
the SN. Furthermore, the similar patterns of PCC activity observed 
during both ABM and WM trials might indicate some common compo-
nent processes required to adequately complete both tasks. The late 
increase in CEN activity during the ABM task was dominated by an in-
crease in right and left dlPFC activity, and was also accompanied by a 
decrease in SN node activity. However, the increase in net CEN activity 
during the WM task was found to be due to an underlying increase in 
right PPC activity and that of the dACC node of the SN, followed by an 
increase in left PPC and bilateral dlPFC activity, shortly preceded by an 
increase in bilateral AI activity. Consequently, this CEN activation might 
have been driven by the SN. To better investigate the causal patterns 
underlying the observed network dynamics, multivariate Granger cau-
sality (MVGC) analysis was performed using the described network 
nodes, and its results are discussed in Section 3.3.2. 

While the above described results rely on a small subset of nodes 
used to describe the CEN, DMN and SN in prior studies investigating the 
tri-network model (abridged ROIs), they omit a key set of medial tem-
poral lobe (MTL) nodes implicated in DMN-linked memory tasks, in 
addition to the posterior insula (PI), which is thought to participate in 
the bottom-up salience detection functions of the SN. To investigate the 
impact of including these key nodes within the network definitions on 
tri-network activity, we added right and left hippocampus (r/l HC), right 
and left parahippocampus (r/l pHC) and the retrosplenial cortex (RSC) 
to the set of DMN nodes. Additionally, we also included the right and left 
posterior insula (r/l PI) in the set of SN nodes. The impact of including 
the extended set of nodes on tri-network activity is discussed below. 

During the ABM trials, the addition of the MTL nodes in the DMN 

Fig. 3. Spatial maps of ICA components with significant overlap with CEN, DMN and SN. Two ICA components were identified to have significant overlap with each 
one of the three networks. 
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network definition introduced a second peak in DMN activity in the 
latter half of the trials around 18s post-task onset (Fig. 4e). This peak 
coincided with the peak in CEN activity during the ABM trials and was 
not accompanied by a corresponding SN peak. This second peak could be 
attributed to the increase in activity within the MTL nodes, as seen in 
Fig. S3b. Interestingly, this late DMN peak was also accompanied by an 
increase in PI activity (panel c), although this increase was not sufficient 
to increase the overall SN activity seen in Fig. 4e. In addition to this late 

peak in DMN activity, the MTL nodes also showed an increase in activity 
during the first 5-6 s of the trial, co-activating with the increase in PCC 
activity during the same time period (panel b). 

This early increase in MTL node activity was also observed during the 
WM trials, however, in contrast to the ABM trials, there was no increase 
in MTL activity in the latter half of the trials (panel e). The PI activity 
was observed to be elevated during the early increase in MTL node ac-
tivity, followed by a decrease in activity during the latter half of the WM 

Fig. 4. Activity timecourses of the ICA networks corresponding to the CEN (blue), DMN (orange) and SN (purple), averaged over all a. ABM trials, and b. WM trials. 
Time is shown with respect to the task onset (time = 0s). BOLD activity timecourses of the CEN (blue), DMN (purple) and SN (orange), computed from activity of the 
corresponding nodes, shown averaged over all c. ABM trials, and d. WM trials. BOLD activity timecourses of the CEN (blue), DMN (purple) and SN (orange), 
computed from activity of the corresponding nodes using the extended set of ROIs, averaged over all e. ABM trials, and f. WM trials. BOLD activity is shown in units of 
percent signal change from mean activity (represented by the dotted line). (For interpretation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.) 
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trials dominated by bilateral AI activity (panel f). 
In conclusion, the findings including the extended set of DMN and SN 

nodes indicate the involvement of key memory-linked MTL nodes in the 
cognitive processes required during the ABM and WM trials. A common 
pattern of increased MTL activity was observed during the first half of 
both ABM and WM trials, that correlated with a similar increase in PCC 
and PreC activity, potentially indicating that some of the common 
component processes between the two tasks relied on key MTL nodes 
and could be related to memory processing. 

3.3. Causality analysis of tri-network activity 

To appropriately understand the causal influence of the above 
described sub-networks and ROIs, we conducted multivariate Granger 
causality analyses and describe them below. 

3.3.1. ICA Networks - Multivariate Granger Causality (MVGC) Analysis 
MVGC analyses revealed that the optimal model order for estimating 

the VAR was 3–4 time points using an AIC criterion, implying that lag-
ging signals most likely had a lag of 6 to 8 s (model order x TR). 
Furthermore, the MVGC connectivity patterns generally supported the 
observations made in the previous sections. 

ABM Trials - During the onset of the ABM Trials, the strength of the 
pairwise-conditional causal outflow from the anterior SN sequentially 
increased to the left CEN, bilateral CEN, the ventral DMN and then the 
dorsal DMN. The anterior SN to ventral DMN direction (Fig. 5) causality 
was at its peak around the same time as the peak in ventral DMN activity 
(Fig. S1b) post-task onset, also seen in the sub-network graphs from time 
t = 1s through t = 7s in Fig. 5. This observed increase in causality 
accompanying the correlated increase in anterior SN and ventral DMN 
activity could be indicative of the anterior SN recruiting the ventral 
DMN sub-network post-ABM task onset. 

Net causal inflow to the ventral DMN increased during the first few 
seconds (t = 1s to t = 15s) post-task onset, primarily due to an increase 
in anterior SN to ventral DMN causality. It was also supplemented by an 
early increase in input from the posterior SN (t = 1s to 3s), followed by 
an increase in bilateral CEN input (t = 3s to 7s). The direction of net 
causal flow to the ventral DMN switched from primarily causal inflow to 
primarily causal outflow around t = 7s, and lasted until t = 17s. This 
pattern of causal flow might represent the recruitment of the ventral 
DMN sub-network by the anterior SN during the first few seconds of the 
ABM trials, followed by DMN-generated recruitment of other regions 
during AM memory retrieval and elaboration. 

The peak in anterior SN to ventral DMN causality was preceded by a 
biphasic peak in anterior SN to bilateral CEN causality, followed by a 
peak in anterior SN to dorsal DMN causality. However, the activity of 
these sub-networks were anti-correlated with that of the anterior SN 
(Fig. S1), potentially indicative of the anterior SN’s role in suppressing 
dorsal DMN and bilateral CEN activity when recruiting the ventral DMN 
during the ABM trials. 

The dorsal DMN sub-network was found to have a mix of incoming 
and outgoing connections to other sub-networks shortly after ABM-task 
onset, followed by predominantly incoming connections from the left 
CEN, anterior SN and posterior SN during the latter half of the ABM trials 
(t = 17s onwards), as seen in the corresponding panels in Fig. 6. These 
causal patterns for the dorsal DMN are distinctly different from that of 
the ventral DMN, indicating different ABM-linked activity in the nodes 
comprising these sub-networks. 

WM Trials - After WM task onset, the pairwise conditional causality 
from anterior SN, ventral DMN and posterior SN to left CEN increased. 
The causality from left CEN to bilateral CEN also increased along with a 
concomitant increase in bilateral CEN activity (Fig. S1d). Furthermore, 
the causality from posterior SN to dorsal DMN also increased along with 
an increase in dorsal DMN activity. These changes in pairwise causality 

Fig. 5. MVGC values between the six sub-networks, as they vary across the ABM and WM trials, shown in blue and purple respectively. Each MVGC value is 
estimated using sliding window of width 14 s and step 2 s. Null MVGC values are also shown (orange) along with the threshold for FDR-corrected significance at p <
0.05 (dotted red line). Each column is a source node, while each row is a sink node, with each row-column intersection representing the connection going from the 
corresponding source node to the sink node. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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contributed to the co-activation of bilateral CEN, dorsal DMN and the 
posterior SN during the first 10 s of WM trials (Fig. S1 d, e and f). This 
pattern is also observed in the latter half of the ABM trials, potentially 
indicative of CEN-mediated working memory maintenance processes 
common to both ABM and WM trials. 

The pairwise-conditional causality from ventral DMN to left CEN also 
increased close to the task onset, continuing to increase until 10 s. 
Accompanied by an increase in causal inflow from dorsal DMN and 
bilateral CEN, this peak in causal input to the left CEN coincided with an 
increase in left CEN activity (Fig. S1d), which persisted through the rest 
of the trial. This causal pattern is indicative of left CEN activation, 
potentially for the maintenance of working memory. 

In sum the above results suggest the anterior SN sub-network influ-
enced the key task-relevant networks, while the posterior SN sub- 
network consistently interacted with working memory-linked sub-net-
works common to both ABM and WM tasks. The observed causal pat-
terns also emphasise the different functional roles of the bilateral CEN 
and left CEN sub-networks, potentially involved in initializing working 
memory processes and the maintenance of working memory, 
respectively. 

3.3.2. ROI-to-ROI - Multivariate Granger Causality (MVGC) Analysis 
In addition to exploring the causality of data-driven ICA sub- 

networks, we conducted MVGC analysis on the ROI-to-ROI data to un-
derstand causal interactions between an abridged set of widely 
described nodes of tri-network model, as well as an extended set of 
nodes representing the tri-network model. 

The AIC criterion analysis found 4 time points to be the optimal lag 

for the VAR model used in the MVGC analysis. This corresponded to an 
average time lag of 8 s for the pairwise conditional Granger causality 
between two nodes. The timecourses of the MVGC estimates between 
each pair of nodes for the ABM and WM trials are shown in Fig. S4. The 
connectivity between this abridged set of tri-network nodes is further 
visualized from t = -1 s to t = 23 s post-task onset for the ABM and WM 
trials in Figs. 8 and 9 respectively. This is contrasted with the temporal 
changes in connectivity between the extended set of tri-network nodes, 
shown in Figs. S5 and S6 for the ABM and WM trials respectively. The 
size of each node in these graphs corresponds to their net causal outflow 
(outflow - inflow), which is shown separately for the ABM and WM trials 
in Fig. 10. The hubness score of each node is also shown in Fig. 11. Key 
observations from these results are discussed below. 

ABM Trials - The DMN node with maximal outgoing causal influence 
during the ABM trials was the vmPFC for the model using the abridged 
set of tri-network nodes, with outgoing connections to dACC and left AI 
of the SN during the first 8–10 s post-task onset (solid lines in Fig. 10b). 
During this time period, a bi-directional connection between vmPFC and 
the right PPC of the CEN was also observed, with the vmPFC to right PPC 
direction being much stronger than the rPPC to vmPFC direction. 
Combined with the peak in vmPFC activity (Fig. S2b) and the high 
hubness score (solid line in Fig. 11b) during the same time period, these 
causal patterns might represent vmPFC-driven memory processes that 
also rely on posterior parietal cortex and left anterior insular nodes. 

While the amPFC showed similar, albeit weaker causal influence on 
other nodes, the observed casual pattern of the PCC was markedly 
different. The PCC was the DMN node with maximal incoming causal 
influence during the first 8–10 s of the ABM trials, receiving input from 

Fig. 6. MVGC connections between the six sub-networks, shown for all ABM trials. Connections passing FDR correction at p < 0.05 level are shown. A. The MVGC 
connections estimated using the entire trial duration; B. The MVGC connections estimated using a sliding window of width 14 s and step 2 s. The time label for each 
graph corresponds to the center of each window. The sizes of each node is scaled according to the MVGC weighted out-degree/in-degree. The thickness of each edge 
is scaled according to the MVGC value representing the edge. 
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the left AI of the SN and the left PPC of the CEN. This is also reflected in 
the low hubness score of the PCC (solid line in Fig. 11b) and follows the 
predominantly anterior to posterior pattern of causal influence during 
this time period. 

The SN nodes showed mostly incoming connections during the first 8 
s post-task onset, compared to primarily outgoing connections during 
the rest of the trial. The early incoming connections were predominantly 
from the vmPFC, adding further evidence for vmPFC-driven memory 
processes during the early period of ABM trials. The CEN nodes were 
sparsely connected to other nodes during the first half of the ABM trials, 
however, showed increased PPC-driven causal influence during the 
latter half of the ABM trials, potentially indicative of the involvement of 
these nodes in maintenance of ABM. 

These causal patterns were further investigated using the extended 
set of tri-network nodes, revealing that vmPFC remained the dominant 
DMN hub with maximal causal outflow during the first half of the ABM 
trials, and was followed by extensive causal outflow from the amPFC 
towards the end of the ABM trials (solid lines in Fig. 10e). The causal 
influence from these mPFC nodes was also accompanied by high causal 
outflow from the right HC node throughout the ABM trials. Additionally, 
the newly added MTL nodes also received strong incoming connections 
from other DMN and SN nodes during the first 10 s of ABM trials 
(Fig. S5). This is seen in Fig. 10e, in the form of negative net causal flow 
into these nodes, and in Fig. 11e, as high hubness scores for bilateral HC, 
pHC and RSC nodes during this time period. Furthermore, the PCC is 
found to be heavily connected to other tri-network nodes during the 
same time period, resulting in hub-like behaviour shortly after ABM task 
onset (Fig. 11e). These results indicate highly connected hippocampal 
and parahippocampal hubs, that work together with a PCC hub and a 

mPFC hub during the first half of the ABM task, switching to a pre-
dominantly mPFC hub during the second half of the ABM trials. 

The SN nodes showed numerous connections to other DMN and CEN 
nodes during the first half of the ABM trials, followed by a widespread 
increase in the hub-like properties of all SN nodes during the latter half 
of the ABM trials (solid lines in Fig. 11d). This included the newly added 
PI nodes and coincided with the increase in PI activity and the second 
peak in MTL activity observed in Fig. S3c and b, respectively. These 
findings might represent extensive PI-mediated processing throughout 
the ABM trials, and show its collaborative integration with other SN 
nodes. 

Lastly, the addition of the MTL and PI nodes to the tri-network model 
led to an increase in hub-like behaviour within CEN nodes, with right 
PPC and dlPFC showing increased hubness score during the first half of 
the ABM trials, followed by a second peak in the hub-like properties of 
the right PPC during the latter half of the ABM trials (solid lines in 
Fig. 11f). The continued involvement of these posterior parietal CEN 
nodes throughout the ABM trials might indicate a multi-functional role 
of these nodes in working memory and autobiographical memory recall. 

Collectively, the MVGC results support an mPFC-based hub involved 
in autobiographical memory retrieval, that dynamically interacts with 
MTL nodes and other hubs anchored within SN nodes, and the regions 
within the parietal cortex, such as the PPC, RSC and PCC. 

WM Trials - Similar to the ABM trials, PCC of the DMN received 
significant causal input from the left AI of the SN during the first 8–10 s 
of the task trials, corresponding with an increase in PCC activity during 
this time (Fig. S2e), potentially representative of common memory- 
linked processes required during both ABM and WM trials. 

However, contrary to the ABM trials, all SN nodes of bilateral AI and 

Fig. 7. MVGC connections between the six sub-networks, shown for all WM trials. Connections passing FDR correction at p < 0.05 level are shown. A. The MVGC 
connections estimated using the entire trial duration; B. The MVGC connections estimated using a sliding window of width 14 s and step 2 s. The time label for each 
graph corresponds to the center of each window. The sizes of each node is scaled according to the MVGC weighted out-degree/in-degree. The thickness of each edge 
is scaled according to the MVGC value representing the edge. 
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dACC exerted extensive causal influence on left CEN structures, such as 
PPC and dlPFC, and frontal DMN nodes such as amPFC and vmPFC 
during the first half of the WM task. This is reflected in the high net 
causal outflow from SN nodes, seen in Fig. 10a (dotted lines), and high 
hubness score of SN nodes during this time period (dotted lines in 
Fig. 11a). Combined with the subsequent decrease in amPFC activity 
after the first 8 s of the WM trials (Fig. S2e), such causal patterns might 
represent the inhibition of DMN nodes, while the CEN nodes were 
recruited for executive processing. 

Furthermore, in the first half of the WM trials, the CEN nodes of left 
dlPFC and left PPC received causal input from bilateral AI and dACC of 
the SN respectively. This was followed by extensive outgoing causal 
influence from bilateral PPC and right dlPFC during the latter half of the 
WM trials, leading to an increase in its net causal outflow and hub-like 
behaviour shown using dotted lines in Figs. 10c and 11c, respectively. 
This might be representative of working memory processes mediated by 
the PPC and dlPFC nodes of the CEN, reaching its peak during the latter 
half of the WM trials. 

Reanalyzing these causal patterns with the extended set of tri- 
network nodes revealed some finer details in the dynamic causality of 
the tri-network nodes. Similar to the ABM trials, the RSC was found to be 
a major hub in the first half of the WM trials (dotted line in Fig. 11e), 
however, unlike the ABM trials, this was the result of primarily outgoing 
causality from the RSC to other tri-network nodes, as seen in Figs. S6 and 
10e. This was also accompanied by some hub-like behaviour from right 
HC and the mPFC nodes during this time period. This was followed by 
extensive incoming causal connections to the PreC, which in turn con-
nected with other MTL nodes and posterior parietal CEN nodes during 
the second half of the WM trials, seen in Figs. S6 and 10e. This led to an 

increase in the hub-like behaviour of the PreC, left HC and left pHC, 
potentially indicating a shift from RSC-centric processing early in WM 
trials, to more PreC-centric processing within the DMN in the latter half 
of the WM trials. 

The newly added PI nodes also showed extensive hub-like behaviour 
shortly after WM task onset, alongside the bilateral AI and dACC nodes, 
that continued throughout the WM trials (dotted line in Fig. 11d). High 
causal outflow was observed from these PI nodes to CEN nodes such as 
the dlPFC, and DMN nodes including the MTL and mPFC nodes, seen in 
Fig. S6. These causal properties of the PI nodes added to the previously 
observed patterns of task-linked SN influence on DMN and CEN nodes 
and might warrant its inclusion in the standard set of nodes used to 
define the SN within the tri-network model. 

Lastly, the causal patterns of the CEN nodes using the extended set of 
tri-network nodes were similar to that using the abridged set of tri- 
network nodes, with the right PPC and dlPFC showing extensive 
causal outflow during the first half of the WM trials, switching to mostly 
incoming causal links in the second half. In contrast, the left PPC and 
dlPFC displayed mostly incoming causal connections in the first half of 
the WM task, followed by some outgoing connections in the latter half of 
the WM trials (dotted lines in Fig. 10f). This resulted in high left dlPFC 
hubness score shortly after WM task-onset, followed by an increase in 
the hub-like properties of the remaining CEN nodes during the last 15 s 
of the WM trials, coinciding with a similar increase in hub-like proper-
ties of the PreC and left HC and pHC nodes, as seen in Figs. 11f and e. 
These results show significant functional lateralization of working 
memory processing within CEN nodes, and the dynamically shifting 
hub-like properties within the CEN nodes, which coincides with that of 
other DMN and MTL nodes during the second half of the WM trials. 

Fig. 8. MVGC connections between the network nodes, shown for all ABM trials. Only connections passing FDR correction at p < 0.05 level are shown. A. The MVGC 
connections estimated using the entire trial duration; B. The MVGC connections were estimated using a sliding window of width 14 s and step 2 s. The time label for 
each graph corresponds to the center of each window. The size of each node is scaled according to the MVGC weighted out-degree/in-degree, whereas the thickness of 
each edge is scaled according to the magnitude of the corresponding MVGC value. Furthermore, the color of each edge corresponds to that of the source node and, 
along with the direction of the arrowhead, represents the edge direction. 
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In conclusion, unlike the ABM trials, bilateral AI and PI showed hub- 
like causal properties indicative of some DMN node suppression while 
recruiting CEN nodes for working memory processes shortly after WM 
task-onset, accompanied by a left dlPFC-centric hub and RSC-centric 
hub. This transitioned to a highly connected network structure during 
the latter half of the WM trials, with some HC, pHC, mPFC, PreC and all 
CEN nodes displaying hub-like properties, potentially indicative of 
working memory maintenance processes. The results also support 
lateralization of WM processes between left and right CEN nodes. 

4. Discussion 

The triple network model of Menon (2011) postulates that network 
switching between the default mode network (DMN) and central exec-
utive network (CEN), gated by the salience network (SN), is essential for 
everyday tasks requiring switching between internally directed and 
externally directed thought processes. This study adds to the growing 
body of evidence showing the gating function of SN while dynamically 
switching between two tasks specifically designed to engage these three 
networks. It additionally investigates the differential role of the various 
SN sub-networks and sub-nodes in the context of a complex switching 
task that utilized an autobiographical memory recall task and a 2-back 
working memory task to activate the DMN and CEN respectively. 

The data-driven analyses performed to characterize spatial patterns 
of tri-network activity during the ABM and WM trials (study aim 1) 
identified a set of brain regions and sub-networks that are known to be 
associated with a wide range of functions necessary for adequate task 
performance, as discussed in the following paragraphs. 

Autobiographical memory (ABM) retrieval is a complex multiphasic 

process with an initial memory instantiation/retrieval phase that is 
subserved by the right hippocampus, right/medial prefrontal cortices 
and retrosplenial cortex, followed by an elaboration phase that is found 
to be associated with increased activity in the left prefrontal cortex, 
precuneus and visual cortex (Daselaar et al., 2008). Each of these phases 
can take up to 12 s (Daselaar et al., 2008), with memory retrieval being 
faster for general autobiographical memories compared to specific ones 
(Addis et al., 2004). Furthermore, according to Kim (2012)’s dual- 
subsystem model of the DMN, cortical midline nodes such as amPFC 
and PCC are involved in the self-related processing aspects of autobio-
graphical memory (ABM) recall, while the parieto-temporal nodes, 
including inferior parietal lobule and medial/lateral temporal cortices, 
are associated with the memory retrieval aspects of the ABM task. The 
precuneus is also implicated in ABM retrieval (Svoboda et al., 2006; 
Addis et al., 2004). More specifically, the BBB model postulates a central 
role for the precuneus in representing the products of memory retrieval 
and mental imagery (Byrne et al., 2007). Our MVPA results (Fig. 2 and 
Table 1) are in agreement with these findings showing activation of the 
medio-temporal subnetwork of the DMN, including the inferior parietal 
lobule of the supramarginal gyrus (SMG) and the PCC, during autobio-
graphical memory recall (Andrews-Hanna et al., 2014) trials. The 
involvement of the parietal cortical structures such as bilateral anterior 
supramarginal gyri (aSMG) in autobiographical memory recall align 
with its involvement in self-referential processing tasks vs non self- 
referential processing tasks (Axelrod et al., 2017), and redirecting 
attention on internal representations (Sestieri et al., 2011). Further-
more, the observed ABM-linked activation in parietal opercular struc-
tures show involvement of secondary somatosensory areas during 
autobiographical memory recall, providing evidence for distributed 

Fig. 9. MVGC connections between the network nodes, shown for all WM trials. Only connections passing FDR correction at p < 0.05 level are shown. A. The MVGC 
connections estimated using the entire trial duration; B. The MVGC connections were estimated using a sliding window of width 14 s and step 2 s. The time label for 
each graph corresponds to the center of each window. The sizes of each node is scaled according to the MVGC weighted out-degree/in-degree, whereas the thickness 
of each edge is scaled according to the magnitude of the corresponding MVGC value. Furthermore, the color of each edge corresponds to that of the source node and, 
along with the direction of the arrowhead, represents the edge direction. 
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constructive processes during autobiographical memory recall. 
On the other hand, the N-back task is a popular working memory task 

that relies on the multi-component executive process of temporal coding 
(Collette and Van der Linden, 2002; Smith and Jonides, 1997), involving 
frontal brain regions such as the frontal poles, dlPFC, vlPFC, and latero- 
medial premotor cortices, in addition to posterior parietal regions such 
as medio-lateral posterior parietal cortices, dorsal cingulate (Owen 
et al., 2005; Yaple et al., 2019), and the precuneus (Yaple et al., 2019). 
The observed activation of the dlPFC in the MidFG (Fig. 2 and Table 1) 
during the working memory trials indicates activity of this core fronto- 
parietal CEN subsystem (Yaple et al., 2019). Furthermore, the engage-
ment of supplementary motor areas might indicate the involvement of 
sub-vocal rehearsal structures (Smith and Jonides, 1997; Fegen et al., 
2015) for maintaining the presented words in working memory through 
articulatory rehearsal processes (Vallar and Pagano, 2002). 

The ICA analyses identified data-driven differences in activity, 

finding two functionally distinct sub-networks within each of the three 
networks (Fig. 3). These sub-networks significantly overlapped with the 
networks presented in Shirer et al. (2012) and showed distinct activation 
patterns between the ABM and WM trials, indicating functionally 
distinct activation of various nodes within each of the networks to 
accomplish the complex ABM and WM tasks. 

Characterization of the temporal and causal patterns of tri-network 
(study aims 1 and 2 respectively) yielded five key findings, which are 
discussed below. 

4.1. Different DMN and CEN nodes and sub-networks activated during 
both task conditions 

Both DMN and CEN were observed to be active during the ABM and 
WM trials, although different nodes and sub-networks of the networks 
were predominantly active during each task (Fig. 4). 

Fig. 10. The net pairwise causal outflow from each network node (causal outflow - causal inflow) for the abridged set of a. SN, b. DMN and c. CEN nodes, alongside 
the causal outflow from the extended set of d. SN, e. DMN and f. CEN nodes. Each panel shows the time course of the causal outflow from a single network node, 
during the ABM (solid line) and WM trials (dashed line). A positive value corresponds to a new causal outflow and a negative value corresponds to a net causal inflow. 
Note the different range of causal outflow values for each network node. This allows for adequate visualization of the temporal patterns in causal outflow for all 
network nodes. 
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DMN activity during ABM trials was expected due to its key 
involvement in self-related processing and memory retrieval (Spreng 
et al., 2010), however, contrary to expectations, the CEN was also 
observed to be active during the ABM trials, as seen in Figs. 4a and S1a, 
where the activity of the CEN network and its sub-networks increased 
during the latter half of the ABM trials. Fig. S2a shows that the observed 
increase in CEN activity was due to an underlying increase in dlPFC 
activity which might have been due to the working memory needed to 
maintain the retrieved memory throughout the trial duration, once it 
had been recalled. This increase in dlPFC activity began around 8–12 s 
post-task onset, aligning with the time required to fully retrieve an ABM 
(Addis et al., 2004; Daselaar et al., 2008). This could also have been due 
to the involvement of executive processing during autobiographical 
memory recall (Unsworth et al., 2012) used for searching autobio-
graphical information. Such a pattern of DMN recruitment at the onset 
of a DMN-linked task, followed by CEN recruitment is also seen in cre-
ative idea production (Beaty et al., 2015). 

Furthermore, the hippocampus and associated medial temporal lobe 

structures (MTL) co-activated with the aforementioned peak in dlPFC 
and PPC activity (Fig. S3a and b). This was accompanied by an increase 
in hub-like behaviour within the HC, pHC and RSC nodes shortly after 
ABM task-onset, followed by a second increase in hub-like activity of the 
right PPC and some MTL nodes during the latter half of the ABM trials 
(Fig. 11e and f). These results are consistent with the BBB model that 
implicates the hippocampus and associated MTL structures in the 
retrieval and reconstruction of details associated with a particular 
autobiographical memory, followed by its representation within parietal 
lobe structures, forming mental imagery representations within the 
“parietal window” that enables conscious access to these products of 
memory retrieval (Byrne et al., 2007). 

During WM trials, the DMN was also found to be active in addition to 
the expected CEN activity. More specifically, the dorsal DMN sub- 
network was found to be active during the first half of the WM trials, 
compared to the ventral DMN being predominantly active during the 
ABM trials (Fig. S1e). This difference can be attributed to the higher 
activity of the amPFC (a node of the dorsal DMN) during the WM trials, 

Fig. 11. The hubness score for each network node for the abridged set of a. SN, b. DMN and c. CEN nodes, alongside the hubness score for the extended set of d. SN, e. 
DMN and f. CEN nodes. Each panel shows the time course of the hubness score from a single network node, during the ABM (solid line) and WM trials (dashed line). 
The hubness scores range from 0 to 4 and is scored according to the procedure described in Section 2.3.4. 
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in contrast to the ABM trials (Fig. S2e). Another contributing factor 
could have been the participation of posterior parietal nodes of the 
dorsal DMN sub-network (Fig. 3), which are also associated with n-back 
working memory tasks (Owen et al., 2005). These posterior parietal 
nodes also showed increased hub-like behaviour towards the latter half 
of the WM trials (Fig. 11f), a causal pattern that was also observed 
within the precuneus and some other MTL nodes (Fig. 11e), consistent 
with the role of these parietal structures in maintaining mental images of 
items in working memory (Byrne et al., 2007). 

Interestingly, the PCC node of the DMN also showed increased ac-
tivity during the initial phase of the WM task, followed by a large 
decrease in activity when DMN nodes increased their activity later in the 
WM trials (Fig. S2e). PCC activity was also observed to increase during 
the initial 8–10 s of the ABM trials, followed by a subsequent decrease in 
activity, however, not decreasing to the extent seen during the WM 
trials. Although seemingly contrary to the expected inactivation of PCC 
during WM, the observed pattern is consistent with the role of PCC in 
self-related processing, while also participating in cognitive control 
tasks under high task load (Leech et al., 2011). 

4.2. The SN recruited the task-appropriate network by synchronizing its 
activity with the desired network 

Despite both DMN and CEN being active during both conditions, 
global SN activity was found to correlate with the task-appropriate 
network, and anti-correlate with the “task-opposite” network. Fig. 4c/ 
d show that SN activity was correlated with the early peak in DMN ac-
tivity during ABM trials and the late peak in CEN activity during WM 
trials and that it was anti-correlated with the later peak in CEN activity 
during ABM trials and the early peak in DMN activity during WM trials. 
The peaks in global SN activity were also observed to lead the corre-
sponding peaks in DMN or CEN activity by 2-4 s (Fig. 4c/d). These 
findings, combined with the observed causal patterns of SN nodes 
driving the DMN and CEN nodes (Fig. S4), indicate that the SN might 
have been gating the activity of the corresponding network by syn-
chronizing its activity with that of the task-appropriate network. Inter-
estingly, this pattern of network co-activation is similar to that observed 
within the dual-network model of cognitive control, wherein the 
salience network (cingulo-opercular network) is observed to co-activate 
with the central executive network (fronto-parietal network) during 
executive task performance (Dosenbach et al., 2008). The dual-network 
model ascribes this pattern of co-activation to the set-maintenance role 
of the SN, which when combined with its role in salience assignment 
(Menon, 2011) could explain its gating function within the tri-network 
model. In this paradigm, the SN would use key salience signals to 
identify the task-appropriate network based on the interoceptive or 
exteroceptive nature of the task demands, and then co-activate with the 
identified network to stably maintain task sets during task performance. 
This effectively selects the task-appropriate network by providing stable 
set-maintenance to the network deemed appropriate for the task at 
hand, following the general principle of ’connection through coherence’ 
(Fries, 2015), albeit in the context of network connectivity. 

4.3. Different sub-networks of the SN showed different causal properties 

Data driven ICA analysis revealed two distinct sub-networks that 
have significant overlap with SN nodes (Fig. 3), forming anterior and 
posterior salience sub-networks, similar to those described by Shirer 
et al. (2012). The anterior SN seemed to co-activate with the task- 
appropriate network in both ABM and WM trials, however, posterior 
SN seemed to correlate with bilateral CEN and dorsal DMN activity 
(Fig. S1). While the anterior SN causally influenced most of the other 
sub-networks, owing to its hub-like properties, the posterior SN network 
causally inhibited ventral DMN activity during the latter half of the ABM 
trials, while causally stimulating dorsal DMN activity during the first 
half of the WM trials (Fig. 6). 

Posterior SN was also closely linked to the LCEN activity, providing 
causal input during both WM and ABM trials. This could be owing to its 
role in maintaining a representation of the passage of time (Wittmann 
et al., 2010), which could be important for successfully performing an N- 
back task by keeping track of the word seen 2 words ago. Posterior SN 
deactivation has also been observed in the case of 2-back verbal working 
memory (Sweet et al., 2008). This combination of posterior SN activa-
tion, owing to its time-keeping role, and its deactivation observed in n- 
back working memory tasks might explain the activation-inactivation 
pattern of posterior SN activity observed in Fig. S1c and f. 

The posterior insula (PI) is one of the major constituent nodes of the 
posterior SN subnetwork, as previously described (Shirer et al., 2012) 
and seen in Fig. 3. However, its role in network switching has been 
relatively understudied compared to that of the AI (Menon and Uddin, 
2010) and dACC (Crottaz-Herbette and Menon, 2006). The high hubness 
score of the PI and extensive integration with other SN, DMN and CEN 
nodes observed in this study (Figs. S5, S6, and 11d) indicate the dynamic 
role played by the PI in autobiographical memory retrieval and working 
memory processes. The PI is well positioned to integrate various aspects 
of salient information and guide network switching, given its multi- 
sensory inputs (Björnsdotter et al., 2009), and its connectivity with 
the emotionally salient ventral AI, and the cognitively salient dorsal AI 
(Davidovic et al., 2019). Dysfunctional PI activity has also been 
observed with abnormal cognitive behaviour, as seen in autism spec-
trum disorders (Ebisch et al., 2011) and PTSD (Nicholson et al., 2020). 

4.4. Distinct causal roles of the right AI and the left AI 

As has been extensively discussed in the literature, the right AI is a 
key hub region that modulates network switching by recruiting the CEN 
and inhibiting the DMN during externally directed tasks (Sridharan 
et al., 2008), as also seen in this study by the patterns of rAI to amPFC/ 
vmPFC causality (Fig. 10, panel a and d, and Fig. 9). However, this study 
also found that the right AI was not the primary causal outflow hub 
during self-directed processing, and that the left AI alongside the dACC 
and vmPFC played a much larger role in recruiting other DMN nodes 
when required in the ABM trials (Fig. 10, panel a and d, and Fig. 8). 

In light of the results from Sections 4.3 and 4.4, the bilateral insula 
seems to form a set of key nodes that modulate inter-network connec-
tivity in a task-linked manner, and has been also observed to couple with 
the DMN at the onset of creative idea production (Beaty et al., 2015). 

4.5. Left CEN nodes formed a separate cluster (from Bilateral CEN) that 
was uniquely activated for each of the two tasks 

The data-driven ICA analyses revealed that left CEN nodes engaged 
in distinct connectivity patterns, compared to the rest of the CEN 
(Fig. 7), and was hence identified as an independent spatiotemporal 
component (Fig. 3) by the data-driven group-ICA algorithm. This was 
further supported by the ROI-to-ROI analyses revealing primarily left 
CEN nodes receiving incoming connections during the onset of WM 
trials (Figs. S4 and 10c/f). Left lateralization has been extensively 
documented in some key working memory sub-systems, most notably 
the subvocal rehearsal sub-systems of the phonological loop (Smith and 
Jonides, 1997; Fegen et al., 2015). This might also be the underlying 
reason for the observed increase in hubness score of the left dlPFC 
during the first half of the WM trials (Fig. 11f), nd the subsequent in-
crease in activity of the left CEN sub-network during the latter half of the 
WM trials (Fig. S1). 

These findings consolidate a normative view of network dynamics 
within Menon (2011)’s tri-network model, that had originally emerged 
from a large body of clinical research, suggesting that many psychopa-
thologies can be viewed as a dysregulation of these three key networks. 
For example, an overly dominant DMN is associated with maladaptive 
rumination in depression (Hamilton et al., 2011), while dysregulated SN 
nodes lead to aberrant network switching in schizophrenia (Moran et al., 
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2013), and Post-traumatic stress disorder (PTSD) (Lanius et al., 2015). 
PTSD is an especially relevant example with patients suffering from 
improper recruitment of the DMN during a working memory task (?), 
while their DMN was under-recruited during an autobiographical 
memory task (St. Jacques and De Brigard, 2015). Given the critical role 
of the SN and its sub-networks in healthy network-switching, such 
PTSD-linked network dysfunctions might be due to an aberrant SN 
causing disruptions in normal salience detection (Rabellino et al., 2015). 
This might lead to a breakdown of the SN-linked co-activation dynamics 
described in Section 4.2, which can provide a mechanistic explanation of 
how abnormal recruitment of task-opposite networks can lead to poor 
task performance in patients with PTSD. For example, the abnormal 
recruitment of DMN during a working memory task observed in PTSD 
patients (Daniels et al., 2010), is also associated with an absence of 
correlated activity between SN and CEN. This absence of SN-linked 
stable set-maintenance might result in the rapid decay of the working 
memory items maintained by the CEN, ultimately resulting in poor 
working memory performance in patients with PTSD. Such improved 
understanding of the mechanisms underlying healthy and dysfunctional 
SN-gated switching between DMN and CEN could inform the develop-
ment of specialized treatment plans that directly target the dysfunc-
tional tri-network dynamics (Lanius et al., 2015) in patients with various 
psychopathologies. 

This study used MVGC analysis to probe the patterns of causal in-
fluence between the SN, CEN and DMN. However, some considerations 
should be kept in mind when using MVGC analysis with BOLD fMRI 
signals due to the poor time resolution of the BOLD signal, reliance of the 
BOLD signal on the haemodynamic response, and the susceptibility of 
GC estimates to poor signal-to-noise ratio (SNR) (Ramsey et al., 2010). 
Despite these concerns, GC estimates have been found to be robust in the 
context of haemodynamic response function confounds (Schippers and 
Keysers, 2011), and its multivariate version is found to appropriately 
represent the connectivity patterns in low density networks (Duggento 
et al., 2018). The impact of the other factors can be minimized by using 
sliding windows to maximize signal stationarity, performing “vertical 
regression” across trials that are expected to have similar stochastic 
generative processes, and comparing the MVGC estimates of the signal 
with those of the time-permuted surrogate signals to minimize spurious 
connectivity estimates, as performed here. 

One caveat to the ROI analyses performed in this study is that the 
network membership assigned to inherently multi-functional nodes such 
as vmPFC and PPC is based on the definitions used by the current work 
surrounding this tri-network model (Menon, 2011). However, as evident 
from the BBB model, there is a complex interplay between fronto- 
parietal areas in encoding, maintaining and manipulating the products 
of memory retrieval (Byrne et al., 2007). For example, in addition to its 
role within the DMN, vmPFC is also an integral component of reward 
processing circuits and can be heavily involved in some executive tasks 
(Gerlach et al., 2013). The PPC, similarly, has a broader role in repre-
senting mental imagery, which is important for both working memory 
and maintaining the retrieved components of autobiographical memory 
(Byrne et al., 2007). This is supported by our results showing activation 
of these structures during the ABM trials (Fig. 2) and WM trials (Fig. S2). 
Thus nodes such as vmPFC and PPC can be expected to dynamically shift 
network membership, as a function of dynamic cognitive processing, 
and should be considered as cross-network nodes (Pedersen et al., 2018). 
As such, these multi-functional nodes are considered within the context 
of the tri-network model in this study, however, future studies could 
look into a dynamic version of the tri-network model with flexible node- 
membership. 

In conclusion, results from the current study add to the growing body 
of evidence showing the complex interplay of CEN, DMN and SN nodes 
and sub-networks required for adequate task-switching. Furthermore, 
the discovery that the SN co-activates with the task-relevant network 
provides mechanistic insight into SN-mediated network selection in the 
context of explicit tasks. Finally, the results from this study indicate 

active involvement of the posterior insula and some MTL nodes in task- 
linked functions of the SN and DMN, warranting their inclusion as 
network nodes in future studies of the tri-network model. 
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5.3 Discussion

The results of this study provided the first direct empirical validation of the SN-based

gating of the DMN and CEN during interoceptive and exteroceptive processing in a

cohort of healthy participants. While both the DMN and CEN were active during

both tasks, the SN was found to co-activate with the task-relevant network. This

finding indicated that the SN’s gating behaviour might be actualized by inter-network

coherence. While such co-activation of the SN and CEN was previously observed

during working memory and executive tasks (Dosenbach et al., 2008), this study

shows that SN co-activation generalizes to other ICNs in a task-relevant manner.

This mechanistic insight provided further evidence of network co-activation being

an important feature of ICN dynamics, further invalidating a major assumption of

EEG microstate-based analyses, namely, that only one microstate is active at a time,

as discussed in chapter 4.

Critically, this study characterized healthy patterns of fMRI-derived ICN activity

during interoceptive and exteroceptive processing, an important step that could in-

form the development of an EEG-based ICN analysis tool, as described in the next

chapter. Understanding such healthy network dynamics is also necessary for un-

derstanding the trajectory of network changes representative of an improvement or

deterioration in network dynamics. This is especially relevant for assessing the im-

pacts of treatments and interventions on ICNs, as shown in chapter 7, and could lead

to improved objective treatment tracking in clinical settings.
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Chapter 6

EEG-based tracking of ICNs

6.1 Introduction

The need for an alternate EEG-based method for assessing ICN activity and dynam-

ics is apparent from the scrutiny of EEG microstates in chapter 4. Ideally, such a

method would leverage the pattern of healthy network dynamics identified in chapter

5 to detect any deviations indicative of network dysfunctions in the context of the tri-

network model. This approach could predict cognitive and behavioural deficits due to

changes in ICN dynamics involved in interoceptive and exteroceptive processing. The

ability to monitor the pattern of activity between these networks can also provide a

better network-level understanding of the neural mechanisms underlying the mood

and cognitive impairments observed in psychological disorders and characterize the

network-level changes caused by current clinical therapies such as exposure therapy

and cognitive behavioural therapy, known to improve mood and cognitive processing

in such psychological disorders (Lanius et al., 2015). Furthermore, the use of a cheap

and accessible neuroimaging modality, such as EEG, to monitor the activity of these
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three networks will greatly increase the clinical accessibility of brain network-based

biomarkers in the treatment planning and tracking of psychopathologies. Addition-

ally, such a system could lead to the development of more promising interventions

such as network-based neurofeedback training (Sitaram et al., 2016).

While others have attempted to develop such a system, most other approaches

overlook the spatio-temporal hallmarks of each ICN that could be predictive of its

activation. This chapter discusses a unique signal processing and machine learning

pipeline that uses simultaneous EEG-fMRI data to first identify such spatio-temporal

signatures of the three ICNs within the tri-network model (CEN, DMN, SN), followed

by training a classifier to predict ICN activation based on these spatio-temporal sig-

natures of each ICN.

The primary author (SBS) of the study conceptualized and designed this study,

along with the last author (SB). SBS and SB also developed the functional task used

in cohort 1 of this study. SBS also performed all data collection of the 1st cohort

of participants. AHH and JFC designed the functional task used in cohort 2 of this

study, and collected data from all participants within this cohort. SBS and SB co-

developed the novel analysis pipeline discussed in this paper and wrote the first draft

of the manuscript. All co-authors contributed to the writing of the manuscript. MM,

JH and SB contributed funding to this study.
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6.2 Tracking the Brain’s Intrinsic Connectivity Net-

works in EEG
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Abstract

Functional magnetic resonance imaging (fMRI) has identified dysfunctional network dynamics underlying a num-
ber of psychopathologies, including post-traumatic stress disorder, depression and schizophrenia. There is tremendous
potential for the development of network-based clinical biomarkers to better characterize these disorders. However,
to realize this potential requires the ability to track brain networks using a more affordable imaging modality, such as
Electroencephalography (EEG). Here we present a novel analysis pipeline capable of tracking brain networks from
EEG alone, after training on supervisory signals derived from data simultaneously recorded in EEG and fMRI, while
people engaged in various cognitive tasks. EEG-based features were then used to classify three cognitively-relevant
brain networks with up to 75% accuracy. These findings could lead to affordable and non-invasive methods to ob-
jectively diagnose brain disorders involving dysfunctional network dynamics, and to track and even predict treatment
responses.

Keywords: Intrinsic Connectivity Networks (ICN), Default Mode Network (DMN), Central Executive Network
(CEN), Salience Network (SN), Simultaneous EEG-fMRI, Machine Learning

1. Introduction

A large body of neuroimaging research over the past
decade indicates that the brain is organized into func-
tional networks of interacting brain regions, called in-
trinsic connectivity networks (ICNs). The study of
large-scale ICNs has provided considerable insight into
the neural basis of human cognition and behaviour in
the healthy and diseased brain [52, 23]. There is im-
mense potential to use features of ICN dynamics as clin-
ical biomarkers in patients with various psychopatholo-
gies [23] and even track their response to treatments.
However, the predominant imaging modality used to
study ICNs, functional magnetic resonance imaging
(fMRI), is expensive, lacks the necessary temporal res-
olution, and is not readily available for performing rou-
tine neurocognitive assessments in patients with brain

disorders. A major breakthrough would be to track
ICNs using a non-invasive and more widely accessible
modality such as electroencephalography (EEG). Here
we present a significant advancement towards this goal.
We apply machine learning methods to simultaneously
recorded EEG and fMRI data, to derive supervisory sig-
nals for learning EEG-based ICN features, permitting
highly accurate classification and tracking of ICNs from
EEG alone.

Three predominant networks have been extensively
studied [23] using fMRI: the central executive network
(CEN) generally involved in exteroceptive processing,
i.e. tasks involving attention to external stimuli; the
default mode network (DMN) involved in interocep-
tive processing tasks, e.g. autobiographical memory re-
trieval, imagining the future, spatial planning and nav-
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igation, and self-reflection; and the salience network
(SN), thought to modulate switching between CEN-
mediated exteroceptive and DMN-mediated interocep-
tive cognitive processes [44]. Appropriate network
switching dynamics between these three core networks
is thought to be critical for healthy cognitive function-
ing. Disruptions in normal inter- and intra-network
connectivity in these ICNs have been observed in nu-
merous neuropsychological conditions affecting emo-
tion and cognition. For instance, those with Major De-
pressive Disorder (MDD) [7] exhibit deficits in down-
regulating activity within the DMN in association with
persistent rumination [29]. Those with Post-Traumatic
Stress Disorder (PTSD) exhibit disruptions in the acti-
vation and functional connectivity of DMN, CEN and
SN [2, 34, 20, 48]. For example, abnormal activation
of the DMN has been observed in PTSD patients while
switching to a working memory task that normally
recruits the CEN [8]. Disrupted ICN dynamics are
also observed in numerous other psychological disor-
ders [23], such as bipolar disorder [56, 51], schizophre-
nia [57] and mild cognitive impairment (MCI) [55].
Therefore, it is extremely promising to track the net-
work dynamics within these ICNs as clinical markers
of brain disorders. The ability to monitor such network
activity will be particularly useful for tracking progress
in the treatment of such neuropathologies, where net-
work dynamics is dysregulated, and may also lead to the
development of novel individualized treatments such as
network-based neurofeedback interventions.

Unfortunately, doing so using fMRI would be pro-
hibitively expensive. Moreover, fMRI lacks the tempo-
ral resolution to track the temporal dynamics of the net-
works on a millisecond timescale. An appealing alter-
native is electroencephalography (EEG), a cheaper and
more widely accessible imaging modality with excellent
temporal resolution.

In previous work some EEG features of these brain
networks have been identified. For instance, working
memory load on the CEN is found to modulate fronto-
parietal EEG power in theta and upper alpha frequency
bands [37], fronto-parietal phase-based functional con-
nectivity graphs [10], and common spatial patterns [5].
Frontal lobe EEG activity in the theta frequency band is
also found to negatively correlate with the DMN [39],
and when combined with delta and alpha band powers,
is capable of discriminating the DMN from the senso-
rimotor network [41]. Furthermore, theta-gamma cou-
pling is a key mechanism driving hippocampal memory
processes required by the DMN during autobiographical
memory retrieval and is found to be dysfunctional in pa-
tients with memory impairments [28]. Hence, a combi-

nation of within-frequency and cross-frequency phase-
based and amplitude-based connectivity measures could
capture various component neural processes inherent to
the CEN, DMN and SN. An open question is whether
unique signatures of each of these networks can be iden-
tified, allowing us to track each of the three networks as
distinct from the other two.

Rather than focusing on such temporal dynamics,
most previous attempts to identify EEG features of
ICNs have relied on spatial filtering analyses such as
beamforming and blind source separation [46]. These
analyses are especially susceptible to signal leakage due
to volume conduction [32], and specific data acquisi-
tion parameters [21], limiting their utility as clinical
tools for tracking ICN dynamics. One alternate ap-
proach is to track EEG microstates [17], which are spa-
tial correlates of ICNs identified by spatial clustering.
However, despite its increasing popularity in probing
dysfunctional ICN dynamics in numerous psychologi-
cal conditions [26], this analysis is riddled with flawed
assumptions that lead to inaccuracies at finer temporal
scales [43, 27].

To date no one has identified unique signatures that
permit classification and tracking of ICNs using EEG
alone. To accomplish this, we developed a machine
learning model that learns EEG signatures of the ICNs
using supervisory labels derived from simultaneously
recorded fMRI. The simultaneous EEG-fMRI data were
collected from two cohorts of participants that per-
formed two different multi-task paradigms: a dual task-
switching paradigm designed to activate the DMN, CEN
and SN [44]; and a multi-task paradigm that cycles
through a series of seven tasks, a subset of which rely
on the three networks of interest [16]. A large battery
of approximately 40M amplitude and phase-based fea-
tures were computed from the EEG data collected dur-
ing these tasks. Classification labels for the DMN, CEN
and SN were derived from the thresholded activity of
these ICNs, identified using group-wide ICA analysis
of the simultaneously acquired fMRI data. These labels
were used to select the optimal feature set for a mul-
ticlass SVM classifier, using a hierarchical minumum-
redundancy-maximum-relevance (mRMR) [33] feature
selection algorithm. Importantly, having identified these
features from the simultaneous EEG-fMRI data, there
is the potential to track the ICNs using EEG data alone.
The ability of the EEG features alone to classify the pre-
dominantly active network was validated on testing sets
from the above described datasets using 20-fold cross-
validation.
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2. Results

2.1. FMRI Networks as labels

The first step in our analysis pipeline (see Figure 1C)
was to identify the “ground-truth” ICN activity, i.e. the
correct network labels, as identified using fMRI. This
involved a group-wide independent component analysis
(group-ICA) to discover components that overlap with
the ICNs of interest.

The group-ICA analysis identified a total of 20 com-
ponents with distinct spatio-temporal patterns of activ-
ity. Of these, 11 components showed significant spa-
tial overlap (high Dice coefficient) with well known
ICNs [45], while the remaining 9 components repre-
sented unwanted noise and artefacts. We focused on
the 6 components representing CEN, DMN and SN sub-
networks (Figure 1C.iii), and extracted the time-courses
of overall ICN activity by averaging the activity of each
ICNs’ component sub-networks (Figure 1C.v). The
temporal dynamics of these components matched those
expected from the CEN, DMN and SN within the dy-
namic task-switching paradigm used in cohort A, with
the SN causally influencing the CEN and DMN in a
task-linked manner. The fMRI temporal dynamics of
the ICNs lie outside the scope of this paper and are fur-
ther explored in Shaw et al. [44].

The component time courses for the CEN, DMN
and SN were partitioned into overlapping windows of
5 fMRI time points, using a sliding-window approach
and advancing by 1 fMRI time point for each window.
Each time window was labeled with the most active
ICN during the corresponding time period, creating the
class labels for feature selection and classification of the
EEG data to predict the predominantly active ICN dur-
ing each time window.

2.2. Learning EEG features from fMRI-derived labels

The next step in our processing pipeline (see fig-
ure 1C) involved using the fMRI labels identified in sec-
tion 2.1 to select relevant EEG features.

2.2.1. Generalized EEG features
A generalized feature set was identified using mRMR

on the features extracted from the EEG data, using la-
bels derived from the simultaneously acquired fMRI
data. Here mRMR tries to find EEG features that are
maximally relevant to the fMRI-derived class labels
across all participants, while being minimally redun-
dant.

2.2.2. Individualized EEG features
An individualized EEG feature set was also identi-

fied using a similar procedure for each individual par-
ticipant. Here mRMR tries to find separate EEG fea-
tures for each participant that are maximally relevant to
the fMRI-derived class labels for that participant, while
being minimally redundant.

Having obtained these features, they can now be ap-
plied to EEG data from other datasets. We now investi-
gate the ability of these features to predict ICN activity.
Researchers can then utilize the trained classifiers with
the corresponding EEG features dervied from their own
datasets to assess ICN activity using EEG data only.

2.3. ICN activation can be identified using EEG fea-
tures alone

Using the optimal feature sets identified in the pre-
vious section, we trained three versions of the classi-
fier to predict CEN, DMN and SN activation, represent-
ing three scenarios of data availability while using this
pipeline. The first two scenarios (generalized classifier
and semi-supervised individualized classifier) represent
a use case where the researcher has access to only EEG
data from their participants. They can use our models
trained on EEG-fMRI derived features to predict ICN
activity using only EEG data from their participants.
The third scenario (fully-supervised individualized clas-
sifier) represents a use case where the researcher has
access to simultaneous EEG-fMRI data from their own
participants. The observed classification performance
for each of the three scenarios is detailed below.

2.3.1. Generalized classifer
The first classifier was trained on the generalized fea-

ture set from all but one participant. This classifier
was then tested on the left-out participant’s EEG data,
comparing the predicted labels to the “ground-truth” la-
bels derived from their corresponding fMRI data. These
classifiers achieved an average classification accuracy
of 58% ± 6% for cohort A and 61% ± 5% for cohort B,
and performed significantly better than the correspond-
ing surrogate null models (p < 0.001), trained using ran-
domly permuted training labels.

2.3.2. Semi-supervised individualized classifier
We then explored a semi-supervised approach to

boost the classification performance of the generalized
classifier, by training a custom classifier for each par-
ticipant’s EEG data using the predicted class labels
from section 2.3.1. To accomplish this, the time points
with a confidently predicted label (maximum posterior

125



Figure 1: The simultaneous EEG-fMRI data used in this study were collected from two cohorts of participants that performed two different multi-
task paradigms, shown in panels A and B. Cohort A used a dual task-switching paradigm (shown in panel A) designed to activate the DMN, CEN
and SN, identical to the paradigm used in Shaw et al. [44]; and Cohort B performed a multi-task paradigm (shown in panel B) that cycled through
a series of seven tasks [16], a subset of which relied on the three networks of interest. Refer to the methods section for a detailed description of the
tasks. Panel C details the analysis pipeline used in this study to analyze the simultaneous EEG-fMRI data collected from Cohorts A and B. The
top row illustrates the analysis steps for fMRI data (sub-panels i., iii., and v.), while that for EEG data is shown in the bottom row (sub-panels ii.,
iv., and vi.). Top row (fMRI data analysis): i. Preprocessing - The fMRI scans were first realigned and unwarped, followed by motion correction,
slice timing correction (STC), ART-based outlier identification and scrubbing, normalization to the MNI152 atlas, spatial smoothing using a 2mm
Gaussian kernel, and band-pass filtering between 0.008Hz−0.09Hz.; iii. The fMRI data was then decomposed into 20 independent components
using ICA, of which 6 components were found to be relevant to the DMN, CEN and SN (shown here). v. Classification labels for the DMN,
CEN and SN were derived from the thresholded activity of these three ICNs. Bottom row(EEG data analysis): ii. The concurrently collected
EEG data was preprocessed by first removing the gradient artefact (GA) using a parallel optimized version of the FASTR gradient artefact removal
toolbox Shaw [42], followed by ballistocardiogram (BCG) filtering using optimal basis set filtering (OBS). The artefact-free EEG data were then
downsampled from 5000Hz to 500Hz, followed by temporal band-pass filtering into six different frequency bands - full (1-50Hz), delta (1-4Hz),
theta (4-8Hz), alpha (8-13Hz), beta (13-30Hz), and gamma (30-50Hz). Bad channels were then detected and removed based on their spectral
characteristics, followed by an ICA decomposition to identify and remove artefacutal components such as ocular artefacts, eye blinks and muscle
artefacts. Finally, the EEG data were referenced to average EEG channel data, after which the previously removed bad channels were interpolated
using spherical interpolation. iv. A large battery of approximately 40M amplitude and phase-based features were computed from the preprocessed
EEG data. vi. The previously derived classification labels were used to select the optimal feature set for a multiclass SVM classifier, using a
hierarchical minumum-redundancy-maximum-relevance (mRMR) [33] feature selection algorithm. vii. These features were used to classify the
three ICNs. The clear separation of the three classes shown results in high classification accuracy.

126



probability > 75%) from the generalized classifier were
picked as the labelled time points, while the rest of the
time points were considered unlabelled. When compar-
ing these EEG-only derived labels were then compared
to the “ground-truth” labels from the participants’ fMRI
data. the confidently labeled time points boosted the av-
erage classification accuracy to 82% ± 6%, while ac-
counting for only 25% of the participant’s time points.
Therefore, this process split each participants’ data into
a small labelled dataset with “expert” labels from the
generalized classifier, and a larger unlabelled dataset.

Optimal features were selected using a weighted-
mRMR approach that used labels predicted by the gen-
eralized classifier, and a weighted mutual information
estimate for identifying minimally redundant and max-
imally relevant features. The weighted mutual informa-
tion estimate weighted each time point by the maximum
posterior probability of the predicted label, giving more
importance to the time points with more confident pre-
dictions. A semi-supervised approach was then used
to predict the labels of the unlabelled data, achieving
an average accuracy of 57.9% ± 6% for cohort A and
65.5% ± 6% for cohort B.

2.3.3. Fully-supervised individualized classifier
Lastly, a fully-supervised individual classifier was

trained on a subset of each participants’ data, using
the individualized feature set identified in section 2.2.2
with their fMRI-derived labels. This classifier was
tested using a held-out subset of the same participants’
data, achieving an average classification accuracy of
98% ± 3% for cohort A and 96% ± 4% for cohort B.

Interestingly, the expansion of the EEG signal from
64 channels to an extremely high dimensional feature
space (40M), and its subsequent reduction to a 5000
dimensional space, made the classification task much
easier by transforming the EEG feature space from
an inseparable domain to a readily separable domain,
shown in Figure1C.vii. This allowed a simple clas-
sifier, a multi-class support vector machine (SVM) to
achieve the highest classification accuracy, substantially
outperforming several much more complicated deep
neural network classifiers (see supplementary figure).
These deep neural network methods perform notori-
ously poorly in domains where the number of observa-
tions is not significantly larger than the number of fea-
tures, where they are susceptible to overfitting.

2.4. Characterizing the features of each network

MRMR feature selection identified the top 5000 most
relevant features for discriminating between the CEN,

Figure 2: The test-set classification accuracies for predicting the acti-
vation of CEN, DMN and SN networks using EEG data alone across
cohorts A and B, shown in (a.) and (b.) respectively. The accuracy
of the null model is shown in blue, that of the generalized model is
shown in orange, and that of the fully-supervised model is shown in
yellow. while that of the surrogate null model, trained using random
labels, is shown in red. The average classification accuracy for the
three classifiers is shown in (c.), with cohort A shown in blue and
cohort B shown in orange.

DMN and SN. To gain a more intuitive understanding
of the EEG signatures uniquely representative of each
ICN’s activity, a Shapley additive explanations (SHAP)
analysis [22] was conducted for each feature within the
identified feature space for the generalized classifier.
The SHAP analysis explains the contribution of each
feature to the classification, by identifying the relative
change in log-odds of each ICN label, given an increase
in the corresponding feature value. The SHAP values of
each feature for the correct ICN label, averaged across
all trials, are shown in Figure 3 for the single-frequency
features and in Figure 4 for the cross-frequency features.
These are further discussed in the following sections.

Five connectivity features were included in our fea-
ture set - three single frequency features, and two cross
frequency features. The single frequency features iden-
tified the connectivity between pairs of EEG channels
within the same frequency band, and included phase lag
index (PLI), directed phase lag index (dPLI), and co-
herence (COH). The cross-frequency features describe
the connectivity between pairs of EEG channels across
different frequency bands, and include phase amplitude
coupling (PAC) and synchronization index (SI).

2.5. CEN Features
All five connectivity features contributed towards

the classification of the CEN network, with the PLI
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Pt.
Num-

ber

Cohort A Pt.
Num-

ber

Cohort B

Null
Class.

Gen.
Class.

Semi-sup.
Ind.

Fully-sup.
Ind.

Null
Class.

Gen.
Class.

Semi-sup.
Ind.

Fully-sup.
Ind.

Class. Class. Class. Class.

1 32.9 48.7 61.6 98.9 1 33.8 56.4 62.4 99.7
2 28.5 44.2 58.4 92.6 2 32.3 62.1 71.5 99.4
3 24.0 49.5 64.6 98.2 3 22.6 46.2 50.8 99.4
4 22.0 44.8 50.3 98.1 4 30.8 51.9 68.8 96.9
5 23.7 43.8 57.4 98.8 5 31.7 59.7 63.6 98.8
6 30.4 49.8 62.9 97.3 6 22.7 59.0 63.5 98.9
7 34.7 46.9 50.1 98.9 7 34.2 59.1 62.5 99.8
8 31.0 44.8 47.2 99.0 8 32.9 60.2 64.7 99.6
9 32.3 48.1 58.1 97.8 9 20.8 61.4 70.1 99.2

10 30.0 49.9 69.1 98.1 10 32.0 59.9 66.1 95.6
11 33.6 50.2 57.0 99.1 11 32.7 57.1 75.6 98.7
12 32.4 49.5 61.2 98.3 12 31.4 58.3 66.9 99.2
13 26.3 45.8 50.3 97.3 - - - - -
14 30.1 48.0 63.0 98.5 - - - - -

Table 1: Three-way classification accuracy (test set) for predicting the activation of the CEN, DMN and SN across cohort A and B. The reported val-
ues are the cross-validated (20-fold) mean accuracy of the multiclass-SVM model trained using a 75-25 train-test split of the data. All classification
accuracies of the trained model are significantly higher than that of the surrogate null model, trained using random labels.

and dPLI being the highest contributors (Figure 3a).
Among the single-frequency features, high connectivity
between fronto-temporal, intra-parietal and intra-frontal
electrodes (Figure 3g) across theta, alpha, beta and delta
bands (Figure 3d) were found to be indicative of CEN
activity.

Interestingly, the features most strongly influenc-
ing the CEN classification showed two unique later-
alization patterns (Figure 3g). The fronto-temporal
and intra-parietal connectivity features were left-
lateralized, alongside bilateral and cross-hemispheric
fronto-temporal and intra-frontal connectivity features.
These two lateralization patterns are consistent with the
bilateral and left-lateralized sub-networks of the CEN,
seen with the fMRI results in Figure 1C.iii.

A wide range of cross-frequency coupling (CFC)
features were also found to influence CEN classifica-
tion, as shown in Figure 4a. Among these, the con-
nectivity features between theta band and the full fre-
quency band were particularly predictive of CEN activ-
ity (Figure 4d). Furthermore, the channel-pairs commu-
nicating within these frequency bands included inter-
hemispheric frontal-frontal and fronto-temporal chan-
nels pairs, along with intra-hemispheric fronto-parietal
and fronto-occipital channels. The direction of the
fronto-temporal connections followed a theta to full-
band direction, with the phase of the theta frequency

at the frontal electrodes synchronizing with the full fre-
quency band activity at the temporal electrodes. This
pattern is consistent with frontal theta-driven processes
during executive tasks such as working memory [38]
and mental arithmetic [36].

2.6. DMN Features

Similar to the pattern seen in CEN classification, all
five connectivity features were informative in predicting
DMN activity, with dPLI, COH and SI being more in-
formative than PLI and PAC. However, in contrast to the
pattern seen in CEN classification, the most informative
single-frequency features included gamma, theta and al-
pha band activity within parietal-parietal channel pairs.
Furthermore, the intra-parietal connectivity within the
single-frequency features was restricted to ipsi-lateral
channel pairs with minimal inter-hemispheric connec-
tions. Such parietal-driven gamma activity could be in-
dicative of self-related processing occurring within key
parietal DMN nodes such as the posterior cingulate cor-
tex (PCC) and the Precuneus.

Additionally, fronto-parietal theta-gamma coupling
features were found to be the most informative CFC fea-
ture, following a fronto-parietal direction, with the theta
phase of frontal electrode activity synchronizing with
the gamma activity of the parietal electrodes. These in-
cluded bilateral cross-hemispheric fronto-parietal con-
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nections, and a right-lateralized fronto-parietal connec-
tion, with the latter being most informative of DMN ac-
tivity. These data are consistent with a large body of
research implicating theta-gamma coupling in the vari-
ous DMN-linked memory processes [12, 35, 31].

2.7. SN Features

In contrast to the pattern seen for CEN and DMN
classification, the cross-frequency coupling features
(SI and PAC) dominated the prediction of SN activ-
ity. The single-frequency features that contributed
to SN classification included a wide range of fronto-
temporal, temporal-temporal, occipito-frontal, parietal-
parietal and parieto-occipital connections. Furthermore,
these connections were within the beta, alpha, delta and
full frequency band, with no single-frequency features
within the gamma and theta bands.

Among the CFC features, coupling between alpha-
delta, gamma-full band and alpha-full band was found
to be most predictive of SN activity, across a wide com-
bination of channel-pairs. This is consistent with the
integrative role of the SN that involves communication
with numerous brain regions across a wide range of fre-
quency bands.

One notable observation is the concentration of
gamma and delta activity at the right frontal electrodes,
that might be linked to the activity of the right anterior
insula (rAI) node of the SN. This node is particularly
important for task-linked switching between the CEN
and DMN, and is well connected with other frontal,
parietal and temporal brain regions [47, 25, 24].

Taken together, the identified EEG feature set cap-
tures critical spatio-temporal characteristics of the CEN,
DMN and SN, that is consistent with their functional
roles and previously observed dynamics.

3. Discussion

In this study, we used cutting-edge machine learning
methods to classify and track the activity of three ma-
jor ICNs using EEG data, which was previously only
possible using fMRI data. We focused on three core
ICNs within Menon’s tri-network model [23] - the CEN,
DMN and SN, given their relevance in characterizing
a wide range of psychopathologies. FMRI studies in-
dicate that these intrinsic networks are dysregulated in
psychopathologies including PTSD, and can even be
used to predict patients’ PTSD subtype [30]. Moreover,
characterizing ICN dynamics has the potential to track
response to treatments and inform individualized treat-
ment planning decisions. However, despite its potential

as a clinical assessment tool, probing ICN dynamics us-
ing fMRI is prohibitively expensive. Other barriers to
routine clinicial use of fMRI in psychiatric disorders in-
clude the distress caused by the confined enclosure and
loud sounds made by the scanner, both of which can
be triggering for those with PTSD. EEG, by compari-
son, is much more affordable, relatively portable, and
does not carry with it the risk of claustrophobia- and
noise-related distress. Therefore, the potential to moni-
tor brain networks using EEG, as afforded by the present
study, can greatly improve the clinical accessibility of
ICN-based assessment.

To accomplish this, we used fMRI-derived ICN labels
to select relevant features from simultaneously-acquired
EEG data and classified the active ICNs using EEG data
alone. Three distinct classification scenarios were ex-
plored, providing investigators with three levels of per-
formance, depending on the type of data available to
them. The first scenario involves applying the gener-
alized model trained on our dataset to EEG data from
other participants to predict the active ICN. The second
scenario extends this approach by additionally apply-
ing semi-supervised learning to train a custom classi-
fier for each participant, improving classification accu-
racy by 5% to 15%. These two approaches represent
the most significant contribution of this work, allowing
investigators to probe ICN activity using the proposed
methods with EEG data from their participants. Lastly,
the third scenario demonstrates that higher classification
accuracy is achievable by fully-supervised learning, if
the investigator has access to simultaneously acquired
EEG-fMRI data from their participants.

It is important to note that the performance of the
classifiers in the three scenarios was not significantly
different between the two cohorts (p=0.6), demonstrat-
ing that our methods can be used to discriminate be-
tween the activity of the CEN, DMN and SN, across a
wide range of cognitive tasks.

This study also investigated the EEG features con-
tributing to the detection of each ICN, identifying EEG
signatures that uniquely characterize the CEN, DMN
and SN. Interestingly, the data-driven approach used in
this study identified EEG signatures that aligned with
major findings in the literature.

Frontal theta band activity, found to be predictive
of both CEN and DMN activation in this study (Fig-
ure 4), has been implicated in both executive processes
(CEN functioning) and autobiographical memory en-
coding and retrieval processes (DMN functioning). In
the context of executive tasks, frontal theta is thought to
synchronize the pre-frontal cortex with a wide range of
other brain regions [14], signalling the need for cogni-
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Figure 3: The influence of the identified feature set in increasing the log-odds of each network class (CEN, DMN and SN). The contributions of
the five features across different frequency bands and channel pairs are shown in the top, middle and bottom rows respectively.
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Figure 4: The influence of the identified feature set in increasing the log-odds of each network class (CEN, DMN and SN), shown for the cross-
frequency features (SI and PAC).
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tive control processes during periods of high risk and/or
high levels of uncertainty [4]. Doing so in a phase-
linked manner, it acts as an alarm signal for instanti-
ating cognitive control processes to better learn from
the higher error rates encountered during such scenar-
ios. Adaptations in theta band dynamics also assist
with optimizing this process, as observed with the re-
duction in peak theta frequency during higher cognitive
control loads. Simulated models show the slower theta
frequency increases the probability of success in more
difficult scenarios [40], better adapting to the task de-
mands. Given the diverse roles of theta band activity
and phase synchrony in executive tasks, it is not sur-
prising that it is highly predictive of CEN activity across
numerous executive tasks, as seen in Figure 4.

Theta band activity also plays a major role in the re-
trieval of autobiographical memories, increasing in am-
plitude during autobiographical memory recall [18]. It
also provides a mechanism for a vmPFC-linked schema
instantiation model, suggesting that the vmPFC mod-
ulates more posterior long-term memory representa-
tions [15]. Additionally, cross-frequency theta-gamma
coupling between medial temporal lobe (MTL) struc-
tures and cortical regions is critical for the recall of au-
tobiographical memories, and is disrupted in individ-
uals with severely deficient autobiographical memory
(SDAM) [13]. Our findings align broadly with this large
body of literature, with theta-gamma cross-frequency
coupling predicting DMN activity (see Figure 4), fur-
ther asserting that the trained classifiers identified crit-
ical EEG features that represent processes inherent to
each ICN.

Interestingly, cross-frequency coupling between
delta, alpha and gamma bands was found to be predic-
tive of SN activity, with the gamma and delta bands be-
ing concentrated at the right frontal electrodes (see Fig-
ure 4i). Combined with the predominantly right later-
alization of theta-gamma cross-frequency coupling in-
dicative of DMN activity (see Figure 4h), our results
point towards a broadband salience hub anchored close
to the right frontal region, which is also active during
DMN-linked tasks such as autobiographical memory re-
call and spatial navigation. This pattern of activity is
consistent with activation of the right anterior insula
(rAI), a major hub of the salience network [25]. In the
context of the tri-network model, the SN is thought to
control the switch between the CEN and DMN, and is
found to co-activate with the task-appropriate network
during the task used in Cohort A [44]. As such, across
a wider range of tasks, this node might need to synchro-
nize with numerous brain regions across a wide range
of frequencies, as seen in the cross-frequency results of

Figure 4i.
In sum, the data-driven analysis pipeline used in this

study identified EEG features that captured the core os-
cillatory dynamics of critical CEN, DMN and SN func-
tions. Furthermore, the classification results demon-
strate the collective utility of these salient features in
discriminating between CEN, DMN and SN activity.

While this study focused on the three major ICNs
within the tri-network model, the discussed approach
is equally applicable to identifying unique EEG signa-
tures of other fMRI-derived ICNs, such as ventral and
dorsal attention networks (VAN/DAN), somato-sensory
networks and the motor network [52, 45]. This opens
up the possibility of using EEG to detect the ICN dy-
namics of any fMRI-derived ICNs, greatly improving
the accessibility of such measures. To this end, the code
developed for this analysis pipeline, along with a pre-
trained generalized classifier, is available for download
from github.com/saurabhshaw/EEGnet.

The approach used in this study estimated ICN fea-
tures using connectivity measures of electrode-level
activity, rather than the traditionally used, and much
more computationally complex, source-localization
techniques. This permitted the exploration of a mas-
sive (4M-dimensional) feature space to find optimal fea-
tures predictive of ICN activity. Unfortunately, when
working with features in electrode space (rather than
source space), there is the problem of volume conduc-
tion, which distorts the neural signal measured at each
electrode. To mitigate this, phase-based functional con-
nectivity measures such as phase lag index (PLI) and di-
rected phase lag index (dPLI) were included in the fea-
ture space, given their immunity to volume conduction-
based distortions [19].

Furthermore, staying in electrode-space, rather than
transforming the data to source space, also reduced the
computational time required to extract relevant features
and predict the predominantly active ICN of a new EEG
window. Further algorithmic optimizations were made
to parallelize the computation of these features, allow-
ing the use of massively parallel super-computing clus-
ters to accelerate these computations. Future work can
use this ability to make rapid predictions of ICN activ-
ity to develop novel network-based neurofeedback in-
terventions to directly target the network dysfunction
observed in numerous psychopathologies.

In conclusion, this paper takes an important step to-
wards enabling EEG-based investigation of ICN dy-
namics, greatly increasing the accessibility of such mea-
sures in scenarios where fMRI-based ICN assessment
might not be practical or economically feasible. This
is particularly relevant for studying and characterizing
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complex psychopathologies such as PTSD, with various
disease subtypes that require drastically different treat-
ment plans. For example, the DMN is erroneously re-
cruited instead of the CEN during working memory in
PTSD patients [8], and the pattern of resting state ICN
activity can be predictive of the dissociative PTSD sub-
type [30]. Hence, identifying the pattern of disrupted
ICN switching dynamics can greatly help in charac-
terizing the patients’ psychopathology and inform their
treatment plans. This study makes it clinically feasible
to do so by successfully applying cutting-edge machine
learning techniques, such as semi-supervised learning,
to create an analysis pipeline capable of detecting ICN
activation using EEG data alone with high accuracy.

4. Methods

In this study, we developed a purely EEG-based
model capable of classifying and tracking ICNs, tradi-
tionally investigated using fMRI. To accomplish this,
we used simultaneously acquired EEG-fMRI data to
identify an optimal EEG-based feature set that could
predict the fMRI-derived ICN activation. To maximize
the ability of our model to predict ICN activity across
a wide range of cognitive tasks, we collected simulta-
neous EEG-fMRI data from two cohorts of participants
that engaged in two different task-switching paradigms,
as shown in Figure 1A and B.

4.1. Cohort A Task

The first cohort consisted of 14 participants that dy-
namically switched between a 2-back working memory
(WM) task and an autobiographical memory (ABM) re-
trieval task, designed to activate the CEN, DMN respec-
tively, and at task-switching points,to activate the SN.

Prior to scanning, each participant recorded up to 10
positive or neutral autobiographical memories in vivid
detail, as well as descriptive words corresponding to
each memory, that would serve as retrieval cues during
the ABM task. Following this, they completed a 1 hour
20 min long memory assessment in the MRI scanner,
comprised of randomly ordered 30-second blocks of ei-
ther cued autobiographical memory retrieval or a 2-back
working memory task. Each ABM block included 10
cues pertaining to one of the previously recorded mem-
ories, while each WM block included a sequence of
10 to-be-remembered, commonly used English words,
each shown for 2 seconds. The participants were in-
structed to recall the cued memory shown during the
ABM blocks, and to remember the word shown two
words ago during WM blocks. To assess whether the

participant was staying on task, at random points within
each block, they were asked to perform a 4-alternative
forced choice (4-AFC) trial. During ABM blocks, the
4-AFC trial required the participant to select, from four
displayed words, the one representing the memory they
were currently recalling from a selection of four words.
During WM blocks, the 4-AFC trial required the par-
ticipant to choose, from four displayed words, the one
they saw two words ago. Each pending task switch was
cued with 2-second trial showing either Word Memory
or Autobiographical Memory, representing an upcom-
ing WM block or ABM block respectively. Each run
of sixteen blocks was followed by a 60 second rest pe-
riod. Participants completed as many 16-block runs as
possible within 80 minutes, up to a maximum of 4 runs
(64 blocks - 32 ABM, 32 WM). The two distinct block
types (ABM and WM) were predicted to activate the
DMN and CEN respectively, while the cue to a pend-
ing task switch between blocks was expected to activate
the SN. Shaw et al. [44] reports the activation dynamics
of the DMN, CEN and SN observed during this study,
using fMRI data alone.

4.2. Cohort B Task

The second cohort consisted of 12 participants that
dynamically switched between 7 different tasks. Each
participant performed a total of 18 trials of each of the
following 7 tasks. This was split into three runs of 6
trials of each of the 7 different task types (42 trials/run),
ensuring that trials of the same task type were not re-
peated more than twice in a row. Each trial began with
a pre-recorded, single-word auditory cue indicating the
type of the upcoming trial to the participant, followed by
a 16-second imagery period. The participant was shown
a fixation cross at the center of the screen during this im-
agery period to avoid any eye movements.

1. Sport-related motor imagery Participants were
asked to imagine intensely performing a sport or
full-body activity (e.g., dancing, jumping jacks) of
their choice. Additionally, they were instructed to
focus on the kinesthetic and somatosensory aspects
of that activity rather than on visual aspects.

2. Navigation imagery Participants were asked to
imagine navigating around their home from room
to room, paying attention to all aspects of the
room (e.g., placement of furniture, decor, objects
in room).

3. Music imagery Participants were asked to imagine
listening to a familiar song of their choice through
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headphones, while concentrating on all aspects of
the song (e.g. the melody, instrumentation).

4. Mental arithmetic Participants were asked to
count backwards by threes from a random 3-digit
number of their choice. They were instructed to
choose a different 3-digit number for each trial.

5. Finger tapping imagery Participants were asked
to imagine pushing a button with each of the fin-
gers of the right hand in succession, repeatedly, fo-
cusing on the somatosensory and kinesthetic rather
than visual aspects of the imagery.

6. Running imagery Similar to the sport imagery
condition, the participants were instructed to imag-
ine only running, while attending to the kinesthetic
and somatosensory aspects of the imagery.

7. Rest Participants were asked to clear their mind
and think of nothing in particular.

Of these seven tasks, only two tasks were expected to
maximally activate the DMN, i.e. navigation imagery
and rest. The rest of the tasks were expected to activate
a combination of attention and somatosensory ICNs that
would work in tandem to successfully perform the rel-
evant imagery. Other results exploring the strength of
mental imagery in this dataset have been previously re-
ported in Harrison et al. [16].

4.3. Data acquisition

Data acquisition for both cohorts was performed at
the same site, using the same EEG system and MRI ma-
chine.

All EEG data were acquired using a BrainProducts
(Brain Products GmbH, Gilching, Germany) 64 channel
MR compatible EEG cap, at a sampling rate of 5000Hz.
The electrode locations followed the extended interna-
tional 10-20 system of electrode placement, with the
reference at FCz and the ground at AFz. The impedance
of each electrode was kept below 10kΩ. The physi-
cal setup used for this acquisition is further described
in Shaw [42].

All MRI data were acquired using a GE Discovery
MR750 3T MRI scanner and an 8 channel RF coil (Gen-
eral Electric Healthcare, Milwaukee, WI). A high reso-
lution anatomical scan was acquired for each participant
using an IR prepped axial 3D FSPGR sequence (Cohort
A: TI/TR/TE=450/7.7/2.2ms, 12◦ flip angle, 240mm
FOV, 2mm-thick slices of size 320 x 192, interpolated to
512 x 512; Cohort B: TI/TR/TE=900/10.312/3.22ms, 9◦

flip angle, 240 x 180mm FOV, 1mm-thick slices of size

512 x 248, interpolated to 512 x 512). These individual-
ized anatomical scans were used to prescribe the fMRI
scans, acquired using a 2D GRE EPI sequence (Cohort
A: TR/TE=2000/35ms, 90◦ flip angle, 240mm FOV,
3.8mm-thick slices of size 64 x 64, 39 slices/volume
interleaved, 300 volumes per functional run; Cohort B:
TR/TE=3200/35ms, 90◦ flip angle, 240mm FOV, 4mm-
thick slices of size 64 x 64, 40 slices/volume inter-
leaved, 214 volumes per functional run).

4.4. Pre-processing
4.4.1. fMRI pre-processing

All MRI pre-processing steps were performed using
SPM12 and the CONN toolbox [58]. The fMRI scans
were first realigned and unwarped, followed by motion
correction, performed by adding the participant’s esti-
mated motion (6 DOF) as a first-level covariate in a de-
noising general linear model (GLM). This was followed
by frequency-domain phase shift slice timing correction
(STC), and ART-based identification of outlier scans to
be scrubbed. The functional scans were then normalized
to the MNI152 atlas by aligning them to each partic-
ipant’s MNI-aligned anatomical scan, followed by seg-
mentation of the functional scans to remove skull, white
matter and cerebral spinal fluid (CSF). Spatial smooth-
ing was applied by convolving the BOLD signal with
a 2mm Gaussian kernel. Finally, the BOLD data was
band-pass filtered between 0.008Hz−0.09Hz.

4.4.2. EEG pre-processing
The gradient artefact (GA) in the EEG data, collected

concurrently with the fMRI data, was filtered using a
parallel optimized version of the FASTR gradient arte-
fact removal toolbox Shaw [42], which relies on the
GA template subtraction algorithm [1]. This was fol-
lowed by the detection of the QRS complex using data
from the ECG lead, which was then used to filter the
ballistocardiogram (BCG) using optimal basis set filter-
ing (OBS). The artefact-free EEG data were then down-
sampled from 5000Hz to 500Hz, followed by temporal
band-pass filtering into six different frequency bands -
full (1-50Hz), delta (1-4Hz), theta (4-8Hz), alpha (8-
13Hz), beta (13-30Hz), and gamma (30-50Hz). All
temporal filtering was performed twice, once in the for-
ward, and once in the reverse direction for zero phase
lag using a 12-order Butterworth IIR filter. Bad chan-
nels were then detected and removed based on their
spectral characteristics, followed by an ICA decomposi-
tion using the FAST-ICA algorithm implemented within
EEGLAB [9]. The EEG components representing ocu-
lar artefacts, eye blinks and muscle artefacts were de-
tected and removed using the automated ICLabel tool.
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Finally, the EEG data were referenced to average EEG
channel data, after which the previously removed bad
channels were interpolated using spherical interpola-
tion. The bad channels were only interpolated if the
number of bad channels was less than 5% of the to-
tal number of channels, while also ensuring no two bad
channels were neighbours.

4.5. Feature Extraction
4.5.1. FMRI Independent Component Analysis (ICA)

A group independent component analysis (group-
ICA) [3] was performed on the denoised fMRI voxel-
level data using the iterative FastICA algorithm. This
analysis identified 20 mutually independent spatio-
temporal patterns of activity, known to represent ICNs.
The spatial overlaps (Dice coefficients) of the group-
ICA components with known ICNs[45] were used to
label the ICA components, identifying the components
that corresponded to CEN, DMN or SN sub-networks,
as shown in Figure 1C.iii. These group-level ICA com-
ponents were then back-projected to individual partici-
pants’ data using GICA back-projection [11], to obtain
the activity timeseries of each ICA component. The ac-
tivity of the CEN, DMN and SN networks were identi-
fied by averaging the activity of their constituent sub-
networks. Using a sliding-window method, the time
courses were segmented into overlapping windows of
length 10 seconds (5 TRs) for cohort A and 9.6 sec-
onds (3 TRs) for cohort B. Using a time step of 1 fMRI
time point, the time series were segmented into 1184
windows for each participant in cohort A and 636 win-
dows for each participant in cohort B. Each window was
labeled with the most active ICN by first thresholding
the activity at 70%, followed by comparing the activ-
ity of the CEN, DMN and SN during that time period
to pick the ICN with the highest activity (shown in Fig-
ure 1C.v). These labels were used as the “ground-truth”
labels of the ICN activity for all subsequent analyses.

4.5.2. EEG Feature Extraction
A large battery of functional connectivity features

(>40 million) were extracted from the EEG data corre-
sponding to each fMRI window. These included single-
frequency features representing connectivity between
two channels within the same frequency band: coher-
ence (COH), phase lag index (PLI) and directed phase
lag index (dPLI); and cross-channel cross-frequency
coupling features representing connectivity between
two channels, across two different frequency bands: the
synchronization index (SI) and phase-amplitude cou-
pling (PAC). Each single-frequency feature was com-
puted for each of the 6 frequency bands (full band, delta,

theta, alpha, beta, gamma) described above, and each
cross-frequency feature was computed for all possible
pairs of the 6 frequency bands. Each fMRI window was
further divided into 99 windows of width 200ms, which
were used to estimate the features, described in more
detail below.

Coherence (COH). represents the synchrony between
two channels by comparing their power spectral densi-
ties [59], and is computed as follows

COHxy =
Pxy√

PxxPyy
(1)

where Pxx and Pyy are the power spectral densi-
ties (PSD) of two channels x and y, and Pxy is
the cross-spectral density (Fourier Transform of cross-
correlation) of the signals x and y. COHxy values range
between 0 and 1, with 0 representing no coherence be-
tween the two signals and 1 representing perfect coher-
ence. Since the power spectral densities are heavily de-
pendent on the signals’ amplitudes, COH is sensitive to
volume conduction effects.

Phase Lag Index (PLI). is another measure of func-
tional connectivity that addresses the susceptibility
of COH-based measures to volume conduction ef-
fects. PLI estimates the functional connectivity be-
tween two channels (x and y), by estimating the phase-
synchronization between them. This relies on the as-
sumption that two channels are functionally connected
if there is a consistent phase delay in the signals com-
ing from the two channels. This is defined in terms
of their cross-spectrum, given by Cxy = H(x) · H(y)∗,
where H(·) represents the Hilbert transform and ∗ rep-
resents the complex conjugate. The PLI is then de-
fined as PLIxy = |〈sgn(Im(Cxy))〉|, where Im(Cxy) is the
imaginary part of the cross-spectrum (Cxy), sgn(·) is the
“sign” operator, and 〈·〉 is the expected value operator. It
is important to note that Im(Cxy) is equivalent to ∆φxy-
based definition in Stam et al. [50]. To minimize spu-
rious noise, we used the weighted PLI variant in this
study [54], where the sgn(Im(Cxy)) is weighted by the
imaginary component of the cross-spectrum (|Im(Cxy)|),
as given in Equation 2.

PLIxy =
|〈|Im(Cxy)| · sgn(Im(Cxy))〉|

〈|Im(Cxy)|〉 (2)

PLI values lie between 0 and 1, with 0 representing
no consistent phase synchrony between channels x and
y, and 1 representing perfect phase-locking. To mini-
mize spurious PLI values, every PLI estimate was com-
pared against its surrogate, estimated by the PLI of the

135



signals spliced at random time points. Only those PLI
values that were significantly different from their surro-
gates were accepted.

Directed Phase Lag Index (dPLI). is a variant of PLI
that retains information on phase directionality [49].
This relies on the assumption that lagging signals occur
downstream from leading signals, establishing a direc-
tional link going from the leading channel to the lagging
channel. Equation 3 was used to compute the dPLI for
signals from two channels, x and y, of length N.

dPLIxy =
1
N

N∑

t=1

H(∆φxy(t)) (3)

where ∆φxy(t) = φx(t) − φy(t) is the difference in phases
of the two signals, and H(·) is the Heaviside step func-
tion. The value of dPLIxy represents the direction of
functional connectivity, with 0.5 < dPLIxy ≤ 1 repre-
senting x leading y (x → y), and 0 ≤ dPLIxy < 0.5
representing x lagging y (y → x). Given its similar-
ity, it is not suprising that PLI and dPLI are related:
PLIxy = 2|0.5 − dPLIxy|. Similar to PLI estimates, only
the dPLI estimates significantly different from its surro-
gates were retained.

Phase Amplitude Coupling (PAC). is a measure of
phase-amplitude cross-frequency coupling between two
channels, specifically probing the impact of the phase
of the signal in the lower frequency band on the ampli-
tude of the signal in the higher frequency band. Among
the several methods of estimating PAC, the modulation
index (MI) approach was used due to its superior perfor-
mance [53]. This approach estimates the PAC between
two channels x and y, between two frequency bands fA

and fB ( fA < fB) using the following steps:

1. Filter the x and y channel data into the respective
frequency bands, creating x fA and y fB .

2. Extract the phase time series of the lower fre-
quency signal using: φX fA

= phase(H(x fA )), and
the amplitude time series of the higher frequency
signal using: AY fB

= amplitude(H(y fB )), where
H(·) is the Hilbert transform.

3. Bin the lower frequency phases in φX fA
into N bins:

φX fA , j ∀ j = 1, 2, ...,N, and find the mean higher fre-
quency amplitudes for each phase bin j, denoted
by 〈AY fB , j〉φX fA

, j . This amplitude distribution is nor-
malized by its sum over all bins, as follows

Pxy( j) =
〈AY fB , j〉φX fA

, j

∑N
k=1〈AY fB ,k〉φX fA

,k

(4)

In the case of no PAC, the amplitude distribution
Pxy( j) is expected to be flat (uniform distribution)
since the higher frequency amplitudes will not vary
with the lower frequency phase. N = 20 was used
for estimating the amplitude distribution.

4. The phase amplitude coupling is then estimated as
the Kullback-Liebler (KL) divergence (DKL(·)) be-
tween the observed amplitude distribution Pxy( j)
and the uniform distribution U, normalized by the
maximal possible entropy value (occurs for the
uniform distribution).

PACxy =
DKL(Pxy,U)

log(N)
(5)

This procedure was repeated for each channel-
frequency band pair. Each PAC estimate was retained
only if it was significantly different from its surrogate,
estimated in a manner similar to the PLI and dPLI mea-
sures.

Synchronization Index (SI). is another measure of
cross-frequency coupling between two channels, prob-
ing the impact of the phase of the signal in the lower
frequency band on the phase of the power time series of
the signal in the higher frequency band [6]. The follow-
ing steps were followed to estimate the SI between two
channels x and y, between two frequency bands fA and
fB ( fA < fB).

1. Filter the x and y channel data into the higher fre-
quency band, creating y fB .

2. Extract the power time series of the signal in the
higher frequency band using: PY fB

= ‖H(y fB )‖2,
where H(·) is the Hilbert transform. To iden-
tify rhythmic fluctuations in this power time series
at the lower frequency, compute the FFT of PY fB

within the lower frequency band ( fA). The peak
in this FFT ( fAB = peak(F (PY fB

))) is the synchro-
nization frequency within fA, which is then used
to fine tune the bounds of fA. The revised lower
frequency band f̃A is defined by picking a window
around the empirically identified synchronization
frequency ( fAB), using f̃A = [( fAB − 3) ( fAB + 3)].

3. Extract the phase time series of the signal within
this revised lower frequency band ( f̃A) using:
φX fA

= phase(H(x fA )), and the phase time series
of the higher frequency band power time series us-
ing: φY fB

= phase(H(PY fB
)).
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4. The synchronization index is then calculated using
Equation 6

S Ixy =
∣∣∣∣
1
N
·

N∑

t=1

ei · [φX fA
(t) − φY fB

(t)]
∣∣∣∣ (6)

This procedure was repeated for each channel-
frequency band pair. Each SI estimate was retained only
if it was significantly different from its surrogate, esti-
mated in a manner similar to the PAC, PLI and dPLI
measures.

4.6. Feature selection

The feature set was reduced from > 40million fea-
tures to 5000 features by using a hierarchical version of
the popular minimum redundancy maximum relevance
(mRMR) feature selection algorithm. mRMR mini-
mizes the mutual information between features while
maximizing the mutual information between the fea-
tures and the class labels [33]. The hierarchical mRMR
consisted of repeatedly applying mRMR to identify the
top 1000 features at the channel level, followed by se-
lection of the top 1000 features at the frequency band
level, followed by selection of the top 1000 features
at the window level. This resulted in 1000 top fea-
tures for each of the five feature types described above,
which were then concatenated to create the final 5000-
dimensional feature set used for classification. This pro-
cess is illustrated in Figure 1C.vi.

4.7. Classification

A multi-class support vector machine was trained
on the three-way classification task of predicting the
most active ICN during each fMRI window, using only
the 5000-dimensional EEG feature set identified in sec-
tion 4.6. Three classifiers were trained for each partici-
pant using the identified feature set: a generalized clas-
sifier, a semi-supervised individualized classifier and a
fully-supervised individualized classifier. The general-
ized classifier was trained using data from all partici-
pants, except the participant being tested (leave-one-out
cross validation), followed by prediction of the class la-
bels of the test-participant. The semi-supervised indi-
vidualized classifier used the highly confident label pre-
dictions as “expert” labels, while leaving the rest of the
time windows unlabelled to select a participant-specific
feature set, and use it to classify the unlabelled time
points. Finally, the fully-supervised individualized clas-
sifier was trained on a subset of the data from the same
participant being tested, ensuring that the training set
and test set did not contain overlapping windows. A

75/25 train/test split was used with 20-fold cross valida-
tion for testing the performance of this classifier.
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6.3 Discussion

This chapter develops an analysis pipeline that can track ICN activity using EEG

data alone. The resultant system relies on learned spatio-temporal features that are

unique to each of the three ICNs in the tri-network model.

The utilization of simultaneous EEG-fMRI data allowed the extraction of fMRI-

derived network labels; these labels were used as supervisory signals to train a classifier

to select relevant EEG features, which could then be applied to classify new EEG

data (without the need for fMRI labels). This created a machine learning EEG-

based model that can be directly interpreted in the context of fMRI-derived ICNs.

This multimodal analysis also integrated ICN features with high spatial and temporal

resolutions (including frequencies up to gamma frequency activity), generating a rich

description of the spatio-temporal characteristics of each ICN. These spatio-temporal

signatures form a generalized classifier that can be downloaded by any researcher and

used to probe ICN dynamics in their EEG data.

The accuracy of this machine learning model was further boosted by utilizing

semi-supervised learning to ”correct” the predicted ICN activation at the time points

where the generalized classifier was not very confident in its predictions. This semi-

supervised classifier can also be used by any researcher with EEG data, by download-

ing the analysis pipeline linked in the paper provided.

One caveat to this analysis is the use of an apparently large number of features

(around 5000) to characterize each ICN. While this might seem like a rather large

number of features for a classification task, it was empirically found to be the optimal

number of features that could characterize the connectivity between brain regions

that constitute each ICN, without suffering from overfitting.
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This ICN analysis tool greatly increases the accessibility of ICN-based analysis

and opens the door for its use as a clinical biomarker in characterizing and treating

mental health disorders. The next chapter validates this tool by using it to track

changes in ICN dynamics due to lifestyle interventions.
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Chapter 7

Intervention-linked changes in

ICNs

7.1 Introduction

This chapter builds upon the information gathered from chapters 4, 5, and 6 and

validates the developed EEG-based ICN analysis tool.

Given the ultimate use case of the developed EEG-based ICN analysis tool to de-

tect clinically significant abnormalities in brain dynamics and track their re-normalization

through a course of treatment, it needs to be sensitive to consistent changes in ICN

dynamics, such as those produced by psychiatric therapies or interventions (Lanius

et al., 2015).

The study presented in this chapter provides a proof-of-concept investigation of

such intervention-linked changes in ICN dynamics, assessed entirely using EEG data

and the analysis tool developed in chapter 6. Based on the characteristic healthy

network dynamics observed in chapter 5, the activation of DMN and CEN were
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Abstract

Lifestyle interventions have the potential to prevent mental health disorders in vul-
nerable populations, and prevent dysregulation of intrinsic brain network (ICN) dy-
namics, seen in many psychopathologies. Multiple lifestyle interventions can even be
combined to improve outcomes due to synergies between each individual intervention.
While some studies have shown the mood benefits of combining lifestyle interventions,
its effect on task-linked ICN dynamics is yet unknown. This study investigated the
separate and combined effects of two such lifestyle interventions - aerobic exercise and
mindfulness-like neurofeedback (NFB), on task-linked ICN dynamics of the default
mode network (DMN), central executive network (CEN), and the salience network
(SN). The recruited participants were divided into four experimental groups - Con-
trol, Running, NFB, and Combined, performing the corresponding intervention for 16
sessions distributed over 8-weeks. Intervention-linked changes in ICN dynamics were
studied using EEG-based neuroimaging scans before and after the 8-week intervention,
during which participants performed multiple blocks of autobiographical memory re-
call (AM) and working memory recall (WM), designed to activate the DMN, CEN and
SN. Combining the two interventions resulted in a more healthy CEN-SN synchrony
pattern in responders, and prevented a maladaptive pattern of persistent DMN-SN
synchrony in non-responders, compared to each intervention alone. Furthermore, the
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CEN-SN synchrony at baseline could predict NFB response with upto 80% accuracy,
demonstrating the utility of such network-based biomarkers in personalizing interven-
tion plans.

Keywords: Aerobic exercise, Mindfulness, Neurofeedback, Intrinsic Connectivity Net-
works (ICN), Default Mode Network (DMN), Central Executive Network (CEN), Salience
Network (SN), Tri-Network Model.

1 Introduction

Mood disorders are becoming increasingly prevalent in the general population, and young
adults are at a particularly elevated risk for depressive symptoms and suicidal thoughts
(Public Health Agency of Canada, 2014). After accidents, suicide is one of the most
frequent causes of death for Canadian youth between the ages of 15-24 years (Mental
Health Commission Of Canada, 2013). Moreover, youth in particular are much less likely
to seek traditional psychotherapy and pharmacological treatments for their mood disor-
ders (Campo and Bridge, 2009), leaving them uniquely vulnerable to the increasing amount
of stressors in their life. Making matters worse, such traditional therapies are often expen-
sive, not universally accessible, and are not always effective (Wang et al., 2019; Campo and
Bridge, 2009). Therefore, accessible alternative intervention strategies are urgently needed
to help youth at risk, ideally in the form of simple lifestyle interventions. We propose aer-
obic exercise and/or neurofeedback-based mindfulness as two such candidate interventions
and investigate their impact on mood and brain function in a cohort of university students.

Exercise has long known to ameliorate mood and cognitive deficits associated with
depression (Cooney et al., 2013; Keating et al., 2018), improve attention (Prakash et al.,
2011; Chang et al., 2015), some forms of memory (Monti et al., 2012; Baym et al., 2014;
Schwarb et al., 2017) and overall executive function (Guiney and Machado, 2013). It is
also hypothesized to improve adult neurogenesis within the dentate gyrus (DG), associated
with reduced memory interference (Déry et al., 2013), increased hippocampal volume and
improved memory performance (Erickson et al., 2011). Such benefits extend to the level of
large-scale intrinsic connectivity networks (ICNs), with aerobic fitness explaining individual
differences in functional connectivity within the central executive network (CEN), the de-
fault mode network (DMN), and dorsal/ventral attentional networks (DAN/VAN) (Taluk-
dar et al., 2018). Even a single bout of moderate intensity aerobic exercise can enhance
executive control-linked event related potentials (ERPs), indicating enhanced engagement
of executive networks (Chang et al., 2015).

Mindfulness or meditation is another lifestyle intervention found to be similarly effec-
tive in managing stress (Chiesa and Serretti, 2010), enhancing attention (Kozasa et al.,
2012), enriching executive functioning (Gallant, 2016) and improving mood. Mindfulness
training has also shown to increase grey matter in vital areas such as the cerebellum
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and posterior cingulate cortex (Holzel et al., 2011), increase telomerase activity associated
with reduced oxidative stress (Epel et al., 2010; Jacobs et al., 2011), and increase the
synchronization between cardiac and brain activity (Gao et al., 2016) important for ap-
propriate processing of emotional stimuli (Gray et al., 2012). Mindfulness based therapies
lead to increased connectivity of the DMN (posterior cingulate cortex - PCC) with critical
SN (dorsal anterior cingulate cortex - dACC) and CEN (dorsolateral pre-frontal cortex -
dlPFC) nodes (King et al., 2016; Doll et al., 2015), and have shown promise in amelio-
rating PTSD symptoms (King et al., 2016). Such therapies can also modify the temporal
dynamics of brain network connectivity, leading to a re-organization of EEG microstates
post-therapy (Brechet et al., 2021). However, despite its benefits, mindfulness-based ther-
apies traditionally require a highly trained practitioner/clinician leading the mindfulness
sessions. Much like traditional clinician-driven psychotherapies, this reduces the acces-
sibility of such lifestyle-based interventions. One alternative is to use mindfulness-like
therapies that can be self-administered, such as EEG-based neurofeedback (NFB) train-
ing, which have been found to be similarly impactful. A single NFB training session can
upregulate connectivity of critical SN nodes, such as the dACC (Ros et al., 2013) and right
insula (Kluetsch et al., 2014), in a manner similar to mindfulness training (Kilpatrick et al.,
2011). Consequently, it has been found to be clinically useful in improving working memory,
concentration, impulsivity and dissociative symptoms in a wide range of psychopathologies,
such as ADHD (Thibault et al., 2016; Escolano et al., 2014) and PTSD (?Sitaram et al.,
2016). While clinical NFB training therapies still rely on therapist-driven care, the advent
of commercially available, low-cost EEG systems has allowed the development of easy-to-
use mediation-like NFB training devices, such as the MUSE headband. When paired with
a smartphone app on the user’s phone, it can be used to administer EEG-based neuro-
feedback (NFB) training without the need for a trained clinician or practitioner. Hence,
such a system could be a viable self-driven alternative to traditional mindfulness training
protocols, while still providing similar cognitive and mood benefits.

Finally, there is some evidence surrounding the synergistic benefits of combining these
two interventions. For example, Mental and Physical (MAP) training, a combined med-
itation and aerobic exercise intervention, is thought to decrease symptoms of depression
and anxiety through improved neurogenesis (Shors et al., 2014). While, aerobic exercise
alone is well known to upregulate hippocampal neurogenesis, a sizeable proportion of new
neurons are lost to programmed apoptosis in the absence of intensive mental training pro-
cesses (Curlik and Shors, 2013). This synergistic effect is believed to underlie the benefits of
MAP training. Given the crucial role of hippocampal circuits in large-scale brain network
dynamics (Shaw et al., 2021a), such a combined aerobic exercise and mindfulness training
protocol can potentially augment network behaviour in individuals with dysfunctional net-
work dynamics, such as those seen in PTSD and bipolar disorder. In fact, MAP training
was found to be effective in reducing post-traumatic cognitions and ruminative thoughts
in a population of PTSD patients (Shors et al., 2018).

While studies using MAP training have shown that a combination of mental training
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and physical activity can act synergistically compared to each intervention alone (Shors
et al., 2018), this research is lacking in two key areas. Firstly, group mindfulness classes,
though effective, are not readily available or manageable by everyone. There is a need to
investigate more accessible mindfulness alternatives such as mindfulness-like NFB train-
ing. Secondly, the effects of exercise and/or NFB training on task-related brain network
dynamics is not well understood. While some studies have investigated exercise or NFB-
linked brain network changes (Kluetsch et al., 2014; Brechet et al., 2021; Talukdar et al.,
2018), none have studied the combined effect of both interventions. Furthermore, most
of these studies probe the resting-state dynamics of large-scale brain networks and do not
investigate the intervention-linked changes in network dynamics under task loads.

The current study addresses these knowledge gaps by investigating the separate and
combined effects of aerobic exercise and mindfulness-like NFB training on task-related
brain network dynamics in a cohort of healthy undergraduate students.

2 Methods

A total of 140 participants were recruited for the study, after excluding participants who
answered ”Yes” on any of the questions in the Get Active Questionnaire (GAQ). They
were randomly assigned to one of the four experimental groups - Control, Running, NFB,
and Combined (Running + NFB), as shown in Figure 1 and further detailed below.

1. Those in the Running group partook in an 8-week aerobic exercise protocol com-
prising of 2 sessions of 24 minutes each week. Inspired by Galloway (2016)’s Run-
Walk-Run method, each 24 minute session was further divided into 8 intervals of 3
minutes each, consisting of running and walking. The difficulty of each session was
increased over time by increasing amount of time participants spent running in each
3 minute interval (Table 1).

2. On the other hand, those within the Neurofeedback (NFB) group performed
mindfulness-like NFB training 2 times a week, for an 8-week period. Similar to
the exercise protocol, the difficulty of the NFB sessions were increased over time
by increasing the session lengths as the participants progressed through the weeks
(Table 1).

3. Finally, participants in the Combined group (Running + NFB) performed both,
the NFB training and the aerobic exercise protocol at each session.

4. Participants assigned to the Control group did not participate in any of the training
protocols.

Before and after the 8-week protocol, each participant also completed mood question-
naires, a VO2-max assessment and a task-based neuroimaging scan, as shown in Figure 1.
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Week
Running Protocol Neurofeedback Protocol

Run Interval Walk Interval NFB Length

1 1:00 2:00 5:00
2 1:15 1:45 7:00
3 1:30 1:30 9:00
4 1:45 1:15 11:00
5 2:00 1:00 13:00
6 2:15 0:45 15:00
7 2:30 0:30 17:00
8 2:45 0:15 19:00

Table 1: The running and NFB protocols used by participants in this study. Each running
session consisted of eight 3 minute intervals, which were split into varying amounts of
running and walking, as shown in the table. The difficulty of the running sessions increased
every week by increasing the proportion of time spent running in each 3 minute interval. In
contrast, the NFB difficulty was increased by increasing the length of time the participants
spent performing mindulness-like NFB.

Figure 1: A flowchart depicting the timing of the pre-intervention testing (2 weeks), the
intervention (8 weeks), and post-intervention testing (2 weeks). The timings were chosen
to fit within the first 3 months of the 4-month long university term.
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During the neuroimaging scan, high resolution (128-channel) EEG data was recorded while
participants performed multiple blocks of an autobiographical memory recall (AM) and a
2-back working memory task (WM). This memory paradigm is identical to that described
in Shaw et al. (2021a) and is designed to activate the three intrinsically connected net-
works (ICNs) of the tri-network model (Menon, 2011), namely, the default mode network
(DMN), the central executive network (CEN), and the salience network (SN). All research
protocols used in the study were scrutinized and approved by the McMaster University
Research Ethics Board (MREB).

Of the 140 recruited participants, 69 participants completed the full intervention pro-
tocol and pre/post-intervention testing yielding an attrition rate of 50%. This included 15
participants in the Control group, 20 participants in the Running group, 14 participants
in the NFB group, and 20 participants in the Combined group.

To study intervention-linked changes to large-scale brain networks, the task-based EEG
data from the pre-intervention and post-intervention testing sessions were processed using
a novel connectivity pipeline designed to detect ICN activation using EEG data alone, as
described in Shaw et al. (2021b). This provided the probability of DMN (Pdmn), CEN
(Pcen) and SN (Psn) activation over 5 second windows of EEG data. The pairwise cross-
entropy (PCE) between the probability distributions of each network pair was computed
to estimate their similarity/synchronization over the course of the WM and AM trials.
For example, equation 1 shows the process of estimating the PCE between DMN and SN
over M trials of either WM or AM task. According to this definition, a lower PCEdmn−sn

corresponds to higher similarity between the probability distributions of DMN activation
and SN activation across multiple trials of either WM or AM task, which can be interpreted
as higher DMN-SN synchronization over the M trials.

PCEdmn−sn = −
M∑

i=1

Pdmn × log(Psn) (1)

This was performed across the entire length of the WM and AM trials, followed by
separately estimating the PCE across the first half and second half of the WM and AM
trials.

We predicted that the Running group and the NFB training group would show im-
provements in their VO2-max levels and their NFB scores, respectively (hypothesis 1).
We further hypothesized that the combination of the two interventions would produce a
synergistic effect, and lead to significant enhancements in the Combined group. These en-
hancements are expected to be significantly greater than those seen in the separate exercise
protocol, and the separate NFB training protocol. Furthermore, the observed pattern of
inter-network activity between the three core networks discussed, was expected to change
over the course of the study (hypothesis 2).
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Figure 2: The change in VO2-max scores of participants within each experimental group.
The Running and Combined groups show a significant increase in VO2Max compared to
the Control and NFB groups.

3 Results

3.1 Intervention effectiveness

We first assessed the effectiveness of the aerobic exercise and mindfulness-like NFB inter-
ventions by conducting one-way ANOVAs with participant group as the independent factor
(IV), and various outcome variables as the dependent variable, as discussed below.

3.1.1 Aerobic exercise

The change in each particpants’ VO2-max level from baseline (Pre-timepoint) was used to
assess the effectiveness of the aerobic exercise protocol in increasing their aerobic fitness.
A significant effect of group was observed (F=3.43, p=0.028), with participants’ in the
Running and the Combined groups showing a significant increase in their VO2-max levels,
compared to the Control and NFB groups (shown in Figure 2). The exercise protocol
employed in this study was thereby effective in increasing the aerobic capacity of the
participants.

152



Figure 3: The distribution of the two metrics used to determine NFB ”Responders” and
”Non-Responders”. A. The mean slope of the amount of time participants spent in the
”Calm” state during their mindfulness-like NFB training sessions. B. The mean change in
the MUSE points during each mindufulness-like NFB training sessions.

3.1.2 Mindfulness-like NFB

Two different outcome measures were used to assess the efficacy of the NFB intervention
due to its bi-factorial nature, merging mindfulness-like aspects with NFB training. The
first dependent variable was the slope of the percentage of time spent in the ”calm zone”
over the course of the protocol. This provided an estimate of the participants’ meditative
ability. The second dependent variable used was the slope of the points awarded by MUSE
through the course of each NFB session. Although linked to the time spent in the calm
zone, this measure was more directly linked to the NFB performance of the participants.

While there was no statistically significant effect of the NFB protocol on the two out-
come measures described above, some participants were successful in achieving higher scores
(positive slope) while others were unable to do so (negative slope). These measures were
used to split the participants into responders and non-responders on the basis of their
success in increasing their NFB score over the 8-week period, as shown in Figure 3.

3.2 Network Dynamics

To study the impact of the interventions on task-dependent network dynamics, the co-
activation of the CEN and DMN with the SN were studied by assessing the pairwise cross-
entropy (PCE) between the task-linked probability distribution of CEN/DMN activation,
and that of SN activation during corresponding task intervals. The PCE between each
pair of networks was expected to be lower for higher synchronization/co-activation of the
networks with the SN. The interventions were expected to shift the participants’ network
dynamics towards a healthy pattern of network co-activation, where the SN was expected
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to co-activate with the task-appropriate network, i.e. the DMN during the AM trials,
and the CEN during the WM trials (Shaw et al., 2021a). Hence, the interventions were
expected to decrease the PCE between DMN and SN during the AM trials, and between
the CEN and SN during the WM trials. Conversely, the interventions were expected to
increase the PCE between the DMN and SN during the WM trials, and between the CEN
and SN during the AM trials.

To test this, two-way repeated measures ANOVA was performed with each of the
PCE as the outcome variable, Group and Responder as the two between-group factors,
and Session as the within-group factor. This was performed for each of the two outcome
variables of NFB response discussed in the previous section - Responder (calm state), and
Responder (NFB points). These findings are discussed below.

3.2.1 NFB non-responders show increased task-opposite DMN synchroniza-
tion with SN

A significant Session x Group x Responder (NFB points) interaction was observed for
the PCE between DMN and SN during the WM trials (F=6.859,p=0.002). The DMN-SN
PCE was found to be significantly lower in the non-responders within the NFB group at the
post-intervention session, compared to the responders within the same group (Figure 4A).
This implies that the DMN was more synchronized with SN during the WM trials in the
non-responders within the NFB group, indicating that NFB non-responders could have
shifted their task-linked network dynamics towards a more dysregulated state.

Furthermore, this pattern was observed in both halfs of the WM trials (First half:
F=3.398,p=0.041; Second half: F=5.968,p=0.018), as seen in Figure 4B and Figure 4C
respectively. This is in contrast to the healthy pattern of DMN deactivation observed
during the second half of the WM trials (Shaw et al., 2021a). This finding further suggests
that the non-responders within the NFB group might have trouble deactivating the DMN
according to changing task demands.

3.2.2 Addition of aerobic exercise to NFB training rescues task-opposite DMN-
SN synchronization within NFB non-responders

Interestingly, the pattern of lower DMN-SN PCE observed within the non-responders of the
NFB group, was not observed in the non-responders of the Combined group (Figure 4 A,B
and C). This suggests a protective role of aerobic exercise in preventing the development
of maladaptive network dynamics.

3.2.3 CEN more synchronized with SN during WM trials in responders within
the combined group

A significant Group x Responder (calm state) interaction was observed for the PCE between
CEN and SN during the WM trials (F=3.266,p=0.045). As seen in Figure 5A and D, the
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Figure 4: The pairwise cross-entropy (PCE) between the DMN and SN networks, estimated
over the A. full WM trials, B. first half of the WM trials, and the C. second half of the
WM trials, for the Non-Responders (left column) and Responders (right column). Kindly
note the absence of error bars on Non-Responders within the Running group is due to the
inclusion of only a single qualifying participant within this subgroup.
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responders within the combined group show a lower CEN-SN PCE compared to that of the
non-responders, as well as responders in the other groups. Given that there was no main or
interaction effect of Session (Pre/Post) on the CEN-SN PCE, this difference was present at
the start of the intervention and was not a result of the intervention. This implies that the
participants with higher CEN-SN synchronization during executive tasks at baseline, and
that participated in aerobic exercise were able to perform better on the mindfulness-like
NFB task of staying within the ”calm state”. Hence aerobic exercise modulated the impact
of CEN-SN synchrony on NFB training.

When this pattern was examined across the two halves of the WM trials, the CEN-
SN PCE did not show a Group x Responder (calm state) interaction effect during the
first half (F=2.819, p=0.067), as seen in Figure 5 B and E, while it did show an even
stronger Group x Responder (calm state) interaction effect during the second half of the
WM trials (F=3.556,p=0.035), seen in Figure 5 C and F. Therefore, the higher CEN-SN
synchronization observed within the responders of the combined group during the WM
trials is due to an increase in CEN-SN synchronization during the second half of the WM
trials, similar to the healthy pattern of network dynamics observed during WM (Shaw
et al., 2021a). This implies that the network dynamics within this group of participants
better follows task demands, and could be the reason they responded to the NFB task.

3.2.4 CEN-SN synchronization at baseline predicts NFB response

To further test the link between CEN-SN synchronization and NFB response suggested
in section 3.2.3, the PCE between CEN and SN at the pre-intervention time point was
used as the predictor variable to classify NFB response (calm state). The resultant 10-fold
cross-validated classification accuracy using a linear support vector machine (SVM) was
77.5 ± 12.4%. This implies that a participants’ response to future NFB training could be
predicted solely based on their present CEN-SN synchronization during a working memory
task.

Interestingly, performing this classification task within the NFB group and the com-
bined group separately did not show (p = 0.72) better classification accuracy for the com-
bined group (80.0 ± 25.8%), compared to the NFB only group (75.0 ± 35.3%).

4 Discussion

The promising mood and neurobiological benefits of lifestyle interventions such as aerobic
exercise and mindfulness training (Shors et al., 2014, 2018) could potentially make them
an effective prophylactic measure to prevent mental health deterioration in vulnerable and
at-risk populations. However, its widespread adoption is limited due to the requirement for
trained meditation and exercise coaches, making them prohibitively expensive for at-risk
populations with limited resources such as undergraduate university students. Further-
more, despite evidence on the benefits of combining multiple lifestyle interventions (Shors
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Figure 5: The pairwise cross-entropy (PCE) between the CEN and SN networks, estimated
over the A. full WM trials, B. first half of the WM trials, and the C. second half of the
WM trials, for the pre-intervention (left column) and post-intervention (right column) time
points.
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et al., 2014), the impact of combining such lifestyle interventions on task-based dynamics
of large-scale brain networks is poorly understood. This study is a first step towards under-
standing task-related changes in large-scale brain networks as a result of either a running-
based aerobic exercise protocol, or a self administered mindfulness-like NFB protocol, or
both in combination. This well controlled approach of studying each lifestyle interven-
tion separately, and then in combination allowed us to identify intervention-linked changes
in large-scale brain network dynamics that are unique to one intervention, and further
showed the added benefit of combining these interventions. Finally, the self-administered
nature of the NFB protocol increases the accessibility of such an intervention for popula-
tions with limited resources, addressing one of the major barriers for the adoption of such
interventions.

Interestingly, non-responders within the NFB group showed task-opposite DMN-SN
synchronization during the WM trials. The findings of Shaw et al. (2021a) suggest that
this could represent an abnormal DMN recruitment during the WM trials, implying that
non-responders within the mindfulness-like NFB training group adopted the maladaptive
strategy of persistently activating the DMN, even during executive tasks. Further evi-
dence of DMN-SN synchronization during the second half of the WM trials, during which
the DMN is expected to be deactivated (Shaw et al., 2021a), suggest that the NFB non-
responders might have difficulty suppressing the DMN when needed. Such maladaptive
strategies can be particularly problematic since they can result in poor cognitive perfor-
mance (Anticevic et al., 2012), higher mind-wandering (Xiao et al., 2019) and higher levels
of rumination, as seen in psychopathologies such as MDD (Goncalves et al., 2017) and
OCD (Hamilton et al., 2015).

However, the results further indicate that such maladaptive strategies linked to NFB
non-response can be mitigated by engaging in aerobic exercise in addition to mindfulness-
like NFB training. While the exact mechanism of such a synergistic action is yet unknown,
the aerobic exercise might act through hippocampal circuits which are known to feed into
posterior DMN nodes, such as the posterior cingulate cortex (PCC). These nodes are the
primary foci of DMN-linked changes after a short mindfulness training protocol (Xiao
et al., 2019), and could be modulated by the hippocampal changes brought about through
aerobic exercise. Another mechanism of action could be improvements in CEN dynamics
and executive processing often linked with aerobic exercise (Chang et al., 2015). CEN
activation can directly result in deactivating the DMN (Chen et al., 2013), resulting in the
suppression of any maladaptive mind-wandering or ruminative behaviours.

In fact, the CEN was found to be more synchronized with SN during the task-appropriate
WM trials, within responders of the Combined group. This difference was even seen at
the pre-intervention timepoint and could predict whether a participant would be able to
successfully perform the NFB training with upto 80% accuracy.

Predicting NFB response is a particularly important, albeit challenging task. If pos-
sible, such predictions could enable personalized intervention plans for each participant,
maximizing the impact of such protocols. While recent literature-wide surveys find that
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current predictors are incapable of predicting NFB response in healthy and clinical pop-
ulations (Weber et al., 2020), this study shows that NFB response can be predicted with
the participants’ task-based CEN-SN synchrony. These results highlight the importance
of novel EEG-based biomarkers (Shaw et al., 2021b), that have great clinical potential in
informing personalized therapy plans and improving overall treatment efficacy. The novel
analysis pipeline used in this study also allowed the use of the cheaper and more accessible
EEG modality to assess ICN synchrony, which would otherwise require more expensive
functional imaging modalities such as fMRI. This greatly increases the clinical accessibil-
ity of such biomarkers, reducing the barriers to adopt such biomarker-based predictive
strategies to treatment planning and personalization.

In sum, this study concludes that the combined effect of aerobic exercise and mindfulness-
like NFB is more beneficial for task-linked ICN synchrony than the individual effect of each
intervention. Combining these interventions results in more healthy CEN functioning in
responders, and prevents maladaptive persistent DMN activation in non-responders.
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7.3 Discussion

The results of the study presented in this chapter represent a first step toward the

validation of this novel EEG-based ICN tool, showing its potential significance in

tracking changes in ICN dynamics through the course of a clinical treatment.

Although the study presented here was performed in healthy undergraduate stu-

dents, it should be noted that about a third of our participants had extremely high

stress and depression scores. Thus, our results represent a promising proof of con-

cept, and suggest that a similar analysis protocol could be applicable in tracking the

progress of clinical patients undergoing therapy.

The results in this study also highlight the utility of examining the dynamic in-

teractions within and between nodes of the three core ICNs in predicting treatment

response. More specifically, improved co-activation of the CEN and SN was observed

in participants who had a higher success rate of performing the neurofeedback task.

This finding further validates the utility of such ICN biomarkers in predicting the

participants that might respond to a given therapy, allowing the clinician to better

customize each patient’s treatment plan.
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Chapter 8

General Discussion & Conclusion

8.1 Contribution to detecting ICN activation us-

ing EEG

The primary goal of this thesis was to develop and assess an EEG-based method of

detecting ICN activity and dynamics. Chapter 4 found that the currently popular

method of doing this using EEG microstates made assumptions that were incompat-

ible with known ICN dynamics, requiring the development of a novel method. Most

notably, EEG microstates required only one microstate pattern to be active at any

given time. However, this is in stark contrast to the co-activation of ICNs observed

in many scenarios, and even in chapter 5 of this thesis.

Hence, an alternate methodology was developed in chapter 6 by directly learning

EEG signatures of the three major ICNs in the tri-network model, using simultane-

ously collected EEG-fMRI data. This unique process developed a machine learning

model that can predict ICN activation using EEG alone, accomplishing the primary
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goal of this thesis. This model is freely available for download online, along with the

analysis pipeline used to develop it.

Chapter 7 tested the methodology developed in chapter 6 to identify DMN, CEN

and SN dynamics using EEG data alone, assessing intervention-linked changes in

these networks. Given the success of this methodology in detecting such changes in

ICN dynamics, we can conclude that this thesis has created and validated a novel

methodology to detect ICN activation using EEG alone.

This tangible outcome has immense implications for anyone that needs to study

ICNs, but cannot use an fMRI system. In particular, this will reduce the barriers

for the clinical adoption of such ICN-based biomarkers, especially in planning and

tracking treatment response of patients with mental health disorders.

8.2 Contribution to understanding mechanisms of

network dynamics

Starting from connected neurons performing synchronous tasks, to interconnected

large-scale brain regions forming intrinsically connected brain networks (ICNs), the

human brain shows a hierachical architecture of interconnected functional modules.

ICN-based analysis represents one of the highest levels of this hierarchy and can

therefore be readily linked to complex cognitive processes and behaviours. On the

other hand, the mechanisms underlying such ICN behaviour are much more complex,

and consequently harder to understand in the context of the behaviour and cognition.

This thesis undertook this difficult task of elucidating the mechanisms underly-

ing task-linked ICN dynamics within the tri-network model in a healthy population.
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Chapter 5 provided the first direct evidence of a major prediction of the tri-network

model, suggesting that the SN gates the activation of the DMN and CEN based on

task demands by co-activating with the task-relevant network. Such coherent acti-

vation for the purpose of selecting specific neural populations has been previously

observed in attentional control of incoming stimuli (Fries, 2015). Chapter 5 suggests

a similar ”connection through coherence” mechanism of SN’s gating behaviour.

The results of chapter 7 add to this newfound understanding by discovering that

increased CEN-SN synchrony during cognitive tasks is predictive of future neurofeed-

back (NFB) performance. Chapter 7 further shows that participants can develop

maladaptive ICN dynamics if they were unable to effectively perform the NFB train-

ing, and that additionally engaging in aerobic exercise mitigated the development of

such dysfunctional ICN dynamics.

These insights are critical if and when translating this research into clinical prac-

tice, leading to the development of ICN dynamics informed treatment plans.

8.3 Contribution to reframing our current under-

standing of EEG microstates

Given the wide-spread clinical adoption of EEG microstates in characterizing changes

in network dynamics in patients with numerous psychopathologies, and its use as

a neurofeedback target, it is critical to understand the validity of all assumptions

underlying this analysis method.

Chapter 4 of the thesis first showed that all three assumptions of EEG microstates

does not hold up to scrutiny, suggesting that the discontinuous, ”winner-takes-all”
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framework of EEG microstates is not an appropriate descriptor of neural dynamics.

The results of chapter 3 suggested that spatiotemporal patterns of EEG are much

more continuous in nature, leading to a revised view of EEG microstates.

Follow-up work based on this paper has shown that this continuous behaviour is

dominant in low amplitude periods of the global field potential (GFP), representing

periods of asynchronous neural activity, with brief periods of synchronized neural

activity (high GFP) (Mishra et al., 2020). Further work citing the research in chapter

4 showed that the periodic patterns of EEG scalp topology previously thought to

represent attractor-like dynamics are in fact a by product of rotating phase patterns

of resting-state alpha oscillations (von Wegner et al., 2020).

Interestingly, this revised understanding of EEG microstates reinforces the origin

of EEG microstates-based analysis, which was developed to understand alpha patterns

of resting-state EEG during a period where source-localization methods were not fully

developed. EEG microstates was developed as a workaround to interpret underlying

dipoles using rotating patterns of EEG scalp topology (Lehmann, 1971; Lehmann and

Skrandies, 1980; Lehmann, 1990).

8.4 Future work

An obvious next step is to clinically validate the developed model by testing it in a

cohort of patients with mental health disorders. An ideal study design would include

an intervention, similar to that described in chapter 7, to assess any changes in ICN

dynamics post-intervention, that are associated with an improvement in symptoms.

These changes in network dynamics post-intervention can also help create a novel
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neurofeedback target that can directly re-normalize the three networks in the tri-

network model, allowing for the development of novel individualized treatments to

neuropathologies. The EEG-based tool modeled from the identified EEG signatures

will also provide an objective treatment response prediction tool that can greatly

improve treatment planning and treatment response.

Patients with post traumatic stress disorder (PTSD) would be an ideal target for

this future work, given the wide range of tri-network ICN nodes implicated in the

cognitive dysfunctions observed in this psychopathology.

PTSD patients are found to show abnormally low connectivity within DMN nodes

at rest (Bluhm et al., 2009), associated with poor autobiographical memory recall

and emotion processing (Nicholson et al., 2018). Additionally, the DMN is abnor-

mally recruited, instead of the CEN, during executive task performance in PTSD

patients (Daniels et al., 2010), potentially explaining the cognitive and emotional

dysregulation seen in PTSD symptomatology (Lanius et al., 2015). This abnormal

recruitment can be reduced by neuromodulatory interventions such as neurofeed-

back (Nicholson et al., 2018) that decrease the level of activity in the amygdala. The

DMN is also found to be fractionated in PTSD, with a relatively spared posterior

DMN subnetwork (also called community) (Akiki et al., 2018). Neuromodulation of

the intact posterior DMN subnetwork could be used to access the other dysfunctional

ICNs in the brain, and could be the reason NFB down-regulation of alpha power

(oscillations within the 8-12 Hz range) at the Pz electrode, located directly above the

precuneus is found to be beneficial in PTSD patients (Nicholson et al., 2020), and

can modulate connectivity of the SN (Ros et al., 2013; Kluetsch et al., 2014).

Finally, the utility of the developed model extends beyond characterizing and
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tracking PTSD, and has much broader potential to investigate ICN dynamics in a

wide range of disorders affecting mental and brain health.
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