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Abstract
Most star formation in galaxies takes place in embedded clusters, within Giant Molecular

Clouds (GMCs). Stars also generally form as part of binary star systems, with almost

all massive stars having at least one close companion. Binaries shape the physical prop-

erties of older star clusters by setting their central density and ejecting low-mass stars,

but also play a role during cluster formation by modifying the mechanical and radiative

feedback from massive stars and shedding enriched material in the cluster’s gas reser-

voir. Conversely, dynamical interactions between stars in dense stellar environments are

known to form, modify, and destroy binary systems. In consequence, the populations

of binaries observed in the Galactic field and in old stellar clusters are understood to

be shaped by a combination of the physics of star formation and subsequent dynamical

interactions in embedded clusters, although the relative importance of these processes

remains unknown. In this thesis, we implement a prescription for an initial population of

binaries in the coupled N-body and radiation hydrodynamics star cluster formation code

Torch, and investigate how this initial population is modified in the earliest stages of

cluster formation, while gas and stars coexist. As an ansatz for the initial population of

binaries, we use the properties of main-sequence binaries in the Galactic field. We first

perform a suite of simulations initialized from a 104 M� cloud, in which the simulations

only differ by their stellar content (i.e. presence or absence of an initial population of

binaries, and stochasticity of star formation). We compare the populations of binaries

identified 1.2–2 Myr after the onset of star formation and find that an initial population

of binaries is needed at all masses to reproduce the multiplicity fraction observed in

main-sequence stars. We also show that this initial population is modified in a system-

atic manner before the effects of feedback from massive stars shape the gas. We further

find evidence of both preferential formation and preferential destruction of binaries via

dynamical interactions. The net effect of these interactions shifts the distributions of

primary masses and semi-major axes to lower values, and the distributions of mass ratios
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and eccentricities to larger values. In a second time, we perform simulations with dif-

ferent virial parameters and initial turbulent velocity patterns, and find that the trends

previously identified are robust to those changes in our initial conditions. We however

find that both the virial parameter and the initial turbulent velocity pattern have a

strong influence on the star formation rate, and therefore on the rapidity with which

the distributions are modified. We conclude that dynamical interactions in embedded

clusters are important for shaping the populations of binaries observed in the Milky Way,

thus opening the floor to future investigations of the impact of binaries on star cluster

formation.
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CHAPTER 1

INTRODUCTION

Stars form within turbulent clouds of molecular hydrogen, from the gravitational frag-

mentation of clumps of cold, dense gas (e.g. Jeans 1928; Hoyle 1953; Larson 1981). This

process often occurs in a clustered fashion, with stars forming alongside tens to hundreds

of thousand of others. Most stars form within embedded clusters (collections of young

stars fully or partially shrouded in their natal gas) although many will not spend most of

their lives as parts of gravitationally bound star clusters (Lada & Lada 2003; Portegies

Zwart et al. 2010). Most stars also form as part of multiple stellar systems (Reipurth

et al. 2014, and references therein), which are gravitationally bound systems of a few

stars orbiting a common centre of mass. Multiple stellar systems are most commonly

made up of two stars; such systems are thus called binary star systems or, more suc-

cinctly, binaries. For massive stars, hierarchical systems with three or four stars – where,

for example, an outer component orbits an inner massive binary or a pair of binaries

orbit each other – are also frequent (e.g. Sana et al. 2012; Moe & Di Stefano 2017, and

references therein). It could be said, in a simple manner, that stars form alongside other
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stars, on both small and large scales. The formation of binary systems within embedded

clusters is therefore an ubiquitous outcome of star formation.

The interplay between star clusters and binaries is complex. Observations reveal

correlations between stellar multiplicity and environment, with multiplicity generally

decreasing with increasing stellar density in clusters (e.g. Duchêne et al. 1999; Milone

et al. 2016). They also reveal a decrease of multiplicity with stellar age (e.g. Duchêne &

Kraus 2013, and references therein). Observations of embedded clusters, as well as star

forming regions and young stellar associations, highlight this complexity by revealing

a wide variety of behaviours from different surveys: some clusters and associations are

observed to have fewer binaries than the Galactic field, while others have similar (e.g.

Sana & Evans 2011; Duchêne et al. 2018) or higher multiplicities (e.g. Duchêne et al.

1999; Duchêne et al. 2018). Simulations of star clusters with (e.g. Parker & Meyer 2014)

and without (e.g. Wall et al. 2019) an initial population of binaries further reveal both

formation and destruction of binaries in clusters via dynamical interactions between the

stars. This indicates that the properties – and indeed, the very existence – of binaries in

clusters and in the Galactic field are directly impacted by the stars’ birth environment.

Previous numerical studies of the interplay between gravitational dynamics in star

clusters and binaries are however insufficient to fully address the question of how dy-

namical interactions in star clusters act upon a population of binaries arising directly

from the physics of star formation (i.e. primordial binaries). Indeed, many (if not all)

of these studies have been conducted without modelling hydrodynamics, let alone active

star formation. Modelling star formation, hydrodynamics and stellar dynamics concur-

rently on the scale of binary systems is computationally challenging, but is likely to be

fundamental to our understanding of the formation and long-term evolution of the most

massive, densest clusters, globular clusters (GCs). As binaries are more massive than
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single stars, mass segregation causes them to sink to the core of GCs, where they un-

dergo numerous gravitational interactions. Dynamically, they set the maximum stellar

density in a GC by halting core collapse. Gravitational interactions between binaries

and single stars, or between pairs of binaries, also tighten the orbits of binaries and

inject kinetic energy into the cluster, thus contributing to its dissolution (e.g. Heggie

1975; Hills 1975). Binaries may further play a role in the rise of the chemical abundance

variations (so-called multiple populations) observed in globular clusters by enriching the

gas before the end of star formation via mass loss from O-star binaries (De Mink et al.

2009; Howard et al. 2019).

An accurate and complete understanding of star formation requires an understanding

of physical processes ranging from the sub-astronomical units (AU) scale fragmentation

of protostellar disks and cores to the kiloparsec (kpc) scale behaviour of Giant Molecular

Clouds (GMCs) in their galactic environments. Even without attempting to account

for galactic effects or resolve the physics governing the formation of individual stars,

numerical work remains challenging due to the highly multi-scale, multi-physics nature

of clustered star formation. Gravitational interactions between the stars must be resolved

down to a few AUs, to encapsulate the behaviour of short-period binaries. These systems

are often interacting, and their evolution is important for the larger-scale evolution of

the cluster – for example, a massive star may lose enough mass to delay its explosion as

a supernova, which will in turn influence the global star formation efficiency of the natal

cloud. Gas flows on the scale of a few parsecs (pc) must also be properly traced to account

for the spatial distribution of star formation within the cloud, and to follow the effects

of stellar winds and supernovae. A large range of physical scales must thus be captured

by numerical work to encapsulate the relevant physical processes of star formation –

taking place in embedded clusters, and giving rise to a population of multiple stellar

systems. Despite these challenges, simulations are a useful tool to study the interplay

between star cluster formation and binaries, by giving direct insights into the evolution
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of a system over time.

In this thesis, we introduce an initial populations of binaries in simulations of star

cluster formation including radiation hydrodynamics, stellar dynamics, stellar evolution

and stellar feedback. We investigate the modifications to this initial population of bi-

naries in the early stages of cluster formation, before the first supernova. This chapter

reviews our current understanding of star cluster formation in Section 1.1 by surveying

the physical processes governing clustered star formation as well as seminal and recent

insights from observations and simulations. A discussion of the effects of early stellar

feedback on embedded clusters is presented in Section 1.2. An overview of stellar mul-

tiplicity and the properties of multiple stellar systems in different environments then

follows in Section 1.3. The structure of this thesis is outlined in Section 1.4.

1.1 Star cluster formation

Stars form within massive clouds of molecular hydrogen, called Giant Molecular Clouds

(GMCs). Within the Milky Way, most star formation takes place within clouds with

masses between 105 M� and 5 x 106 M�, but a larger number of clouds have lower

masses (Heyer & Dame 2015). Extragalactic GMCs are observed with masses between

104 M� and 107 M� (Fukui & Kawamura 2010). We can thus reasonably consider that

star formation generally takes place in clouds of masses 104-107 M�. GMCs are cold –

with temperatures on the order of 10 K (Heyer & Dame 2015) – and turbulent, which

promotes the formation of high density filaments. The densest regions, often at the

intersection of filaments, collapse under their own gravity and form first dense cores,

then stars, on timescales of a few million years (Myr). Each dense region may form tens

or hundreds of stars, and the larger scale gravitational interactions within a molecular

cloud may then bring together these groups of stars as they move along filaments. We

understand cluster formation to be a hierarchical process, with the merging of many
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small groups of stars building up the stellar mass of a cluster over a few Myr (Vázquez-

Semadeni et al. 2017; Grudić et al. 2018; Howard et al. 2018).

The balance between the effects of self-gravity in a cloud and its support by turbulence

is described by the virial parameter α,

α ≡ 2T
|U |

= 5σ2R

GM
(1.1)

where T is the kinetic energy of the cloud and U its gravitational binding energy, σ

is the velocity dispersion, R is the radius, M is the mass and G is the gravitational

constant (Bertoldi & McKee 1992, for a spherical cloud). Similarly, the energetic state

of a stellar system such as a cluster is described by the virial ratio, defined as the ratio

between kinetic and gravitational binding energy (following Portegies Zwart et al. 2010),

Qvir ≡
T

|U |
. (1.2)

We adopt here this second convention for both the virial parameter of GMCs α and the

virial ratio Qvir of star clusters, for consistency. In later sections of this thesis, the virial

parameter will therefore be defined as

α ≡ T

|U |
= 5σ2R

2GM . (1.3)

GMCs with α = 0.5 are thus in virial equilibrium, while GMCs with α < 0.5 are sub-

virial and those with α > 0.5 are super-virial; clouds with α . 1 are gravitationally

bound (see e.g. Sun et al. 2018). A wide range of virial parameters is observed for

molecular clouds in galaxies, from . 0.4 to & 5 (Lee et al. 2016a; Sun et al. 2018;

Schruba et al. 2019). Lower mass clouds tend to have lower virial parameters (e.g.

Schruba et al. 2019), as do dense clumps within larger GMCs. This is consistent with

the multi-scale, hierarchical structure of GMCs – the densest regions may be collapsing
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while the larger scale global structure appears supported by turbulence (see Chevance

et al. 2020, and references therein). Nonetheless, most surveys find median values of α

of ∼ 1 − 2 in nearby galaxies: for example, Sun et al. (2018) obtain galaxy-averaged

values of 0.75-1.50 while Schruba et al. (2019) obtain values slightly above 2.

Star formation is an inefficient process. Indeed, only a small fraction (often quoted

as 1%, see Dobbs et al. 2014; Krumholz et al. 2019; Chevance et al. 2020, and refer-

ences therein) of the gas in a cloud is turned into stars per free fall time. The star

formation efficiency (SFE) also depends on the boundedness of the cloud or, implic-

itly, on whether the full cloud or only the star-forming, densest regions are considered:

Schruba et al. (2019) find a star formation efficiency per free fall time εff = 1% − 3%

for GMCs with virial parameters α = 0.5 − 1.5 and εff = 0.1% − 0.7% for GMCs with

α = 2.5 − 5.0. This low efficiency is driven by the properties of the clouds themselves,

as well as the effects of the stars unto their surroundings. Molecular clouds are sup-

ported against collapse under their own gravity by supersonic turbulence and magnetic

fields (see Padoan et al. 2014, and references therein). Turbulence both prevents and

promotes star formation: on global scales, turbulence prevents gravitational collapse

while on small scales, turbulence gives rise to regions of high density that are perfectly

suited to star formation (Ballesteros-Paredes et al. 2007). The amount of turbulence in a

GMC is often measured via its virial parameter, from the velocity dispersion. On cloud

scale, supervirial GMCs have lower star formation rates (SFR) than virial or subvirial

GMCs. Magnetic fields also play a role in supporting molecular clouds against collapse

and are likely to slow down star formation or delay its onset (Price & Bate 2008).

Star cluster masses’ span a few orders of magnitudes, from stellar clusters and asso-

ciations (not gravitationally bound, Krause et al. 2020) with masses on the order of 102

M� to the massive, dense and old Globular Clusters (GCs) and their younger counter-

parts, Young Massive Clusters (YMCs) with masses of up to 107 M� (Krumholz et al.
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2019, and references therein). Although star formation in embedded clusters is the most

ubiquitous mode of star formation in galaxies, most stars will become unbound from

their natal cluster – or were never bound to the stars they formed with – and join the

Galactic field over timescales of a few Myr to a few Gyr (e.g. Lada & Lada 2003; Krause

et al. 2020, and references therein). The boundedness of young clusters or associations

is hard to determine observationally. Indeed, boundedness is often estimated from the

stars’ virial ratio and thus from the observed stellar velocity dispersion. A large number

of unresolved binaries may however lead to an overestimate of the velocity dispersion,

which should be calculated from the motions of bound systems’ centres of mass, and

not from the motions of individual stars. Star clusters that are gravitationally bound

may thus appear unbound (e.g. Gieles et al. 2010; Hénault-Brunet et al. 2012). The

effects of this overestimate of the velocity dispersion are also seen in the context of mass

estimates (see e.g. Rastello et al. 2020).

The main driver of cluster dissolution within the first few Myr of evolution (often

known as infant mortality, Lada & Lada 2003) is the rapid removal of the gravitational

potential of the gas from feedback from massive stars. The low cluster formation effi-

ciency (CFE, the fraction of the stellar mass found in bound clusters) – around 10% (see

e.g. Lada & Lada 2003; Kruijssen 2012) – may also be driven by what Krumholz et al.

(2019) refer to as infant weight loss: upon gas removal, a large fraction of the stars

become unbound from their natal cluster. On longer timescales, clusters may also lose

mass via stellar evolution (in the form of winds and supernovae), by tidal shocks with

GMCs and by tidal stripping (Krumholz et al. 2019; Krause et al. 2020, and references

therein). The position of a cluster within the gravitational potential of its host galaxy

– and so the tidal forces it experiences, as well as how often it crosses the disk of the

galaxy – will influence how much mass is lost. Cluster survival on Gyr scale will thus

be influenced by mass and environment. Note that on timescales comparable to that

of star formation, however, Galactic effects are unlikely to have much of an effect; the
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dissolution of clusters on Myr timescales is driven by rapid gas expulsion.

Despite the different fates of embedded clusters, it is now understood that a common

physical process governs star cluster formation on all scales (Kruijssen 2015; Howard et

al. 2018), with the most massive clusters arising from the hierarchical merging of small

sub-clusters (Vázquez-Semadeni et al. 2017; Grudić et al. 2018; Howard et al. 2018).

Although a significant fraction of stars does not form in bound clusters (e.g. Kruijssen

2012), most stars form in an environment where they are likely to undergo dynamical

interactions with other stars. It is thus expected that the populations of binaries in

both bound star clusters and the Galactic field will be set by a superposition of primor-

dial binaries – arising directly from the physics of star formation – and the dynamical

formation or destruction of binaries by gravitational interactions during clustered star

formation or cluster evolution.

1.2 Stellar feedback in embedded clusters

The rate of star formation in GMCs is also regulated by feedback from the stars em-

bedded within the star-forming gas. The effects of feedback are most important during

cluster formation itself, while there are still stars forming and the most massive stars

have not yet reached the end of their lives. Feedback depletes the reservoir of molecular

gas available for star formation by either removing mechanically the gas from the star

forming region or by raising its temperature enough to prevent its collapse. Different

feedback mechanisms act on different time and spatial scales; the types of feedback that

have the strongest influence on an embedded cluster depend on the properties – mass,

size, stellar content – of the cluster itself (Krumholz et al. 2019, and references therein).

An illustration of the regions of parameter space at which different forms of feedback

are most effective is shown in Figure 1.1. Feedback eventually carves away the cold gas
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supply and clears out the regions surrounding massive stars. An observational illustra-

tion of the effects of feedback can be seen in the Trapezium Cluster, in Figure 1.2, where

the bright O-stars in the centre have carved away the gas along our line of sight. We

present here an overview of recent and seminal observational, theoretical and computa-

tional work on feedback in embedded clusters, with a focus on the effects of stellar winds

and photoionizing radiation.

Protostellar outflows

The form of feedback that acts first on an embedded cluster is protostellar outflows and

jets. Simulations (e.g. Federrath 2015; Offner & Chaban 2017) indicate that the combi-

nation of magnetic fields, turbulence and protostellar outflows is effective at lowering the

star formation efficiency per free-fall time, by ejecting approximately 75% of the mass

accreted onto an individual protostar (Offner & Chaban 2017). The momentum per unit

mass of protostellar outflows is set by the escape velocity at the surface of protostars,

and thus depends only weakly on stellar mass: protostellar feedback is provided not

only by massive stars, but also by low-mass stars (Matzner & McKee 2000). Observa-

tions (e.g. Plunkett et al. 2015) and theoretical models (e.g. Matzner & Jumper 2015)

however indicate that outflows are most effective in low-mass star forming regions and

that massive stars, when present, dominate the feedback budget of the embedded clus-

ter. Only feedback from massive stars succeeds in disrupting the cloud: outflows lower

the star formation rate but have little influence on the time-integrated star formation

efficiency as they are unable to eject the outflowing material from the embedded cluster.

Protostellar feedback is thus the dominant feedback channel only in the lowest-mass

clusters (. 102 M�, see Figure 1.1).
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Figure 1.2: Hubble Space Telescope view of the Trapezium cluster,
processed by Robert Gendler. The Trapezium cluster lies within the Orion
Nebula (M42), a star-forming region with a total mass in gas of at least
10,000 times the mass of the Sun and 3,500 stars. The four bright stars
in the middle of the image are massive O-stars that are likely responsible
for removing the gas from within the cluster via radiative and momentum
feedback. At least two of these massive stars are in binaries. Credit: R.
Gendler and NASA/ESA/Hubble.

11

http://www.mcmaster.ca/
http://www.physics.mcmaster.ca/


M.Sc. – Claude Cournoyer-Cloutier – McMaster University – Physics & Astronomy

Supernovae

Conversely, the form of feedback that likely acts last on an embedded cluster is core-

collapse (or type II) supernovae (SNe) arising from the violent death of massive stars.

Unlike other forms of stellar (or protestellar) feedback, SNe are singular events and are

delayed from star formation: the first supernova cannot be expected before ∼ 3 Myr, or

even longer if the most massive stars are in interacting binaries (e.g. Sana et al. 2012).

The importance of SNe compared to stellar winds and radiation is still debated, although

the amount of energy injected from SNe and winds is comparable (see Krumholz et al.

2019). Rogers & Pittard (2013) find that stellar winds are more effective than SNe at

disrupting molecular clouds: SNe ejecta couple weakly with the surrounding gas, already

shaped by the effects of stellar winds, and thus most (99%) of the SN energy is radiated

away. Körtgen et al. (2016) conclude that SNe can only remove the gas from ∼ 10 pc

regions but fail to affect the entire GMC, unless many SNe are clustered in time and

space. Similarly, Geen et al. (2016), in simulations including SNe and photoionizing

radiation, find that a single SN fails to regulate star formation. A schematized picture

of stellar feedback would thus suggest that supernovae are not the dominant feedback

mechanism in embedded clusters.

Stellar winds

Stellar winds from main-sequence stars, variable or eruptive stars, and Wolf-Rayet stars

influence both the evolution of stars (e.g. by delaying SNe if the star is in an interacting

binary) and of the molecular cloud in which it sits. Winds inject momentum and energy

into the gas in the form of fast (∼ 103 km/s) material escaping the stars, giving rise to

hot (∼ 107 K) shock fronts (Krumholz et al. 2019, and references therein). Despite recent

work showing that classical empirical (De Jager et al. 1988) and theoretical (Vink et al.

2000) estimates of the mass-loss rates are likely overestimated by a factor of ∼ 3 (Smith

2014, and references therein), winds are still understood as an important component of
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stellar and cluster evolution. The interplay between stellar winds and binaries is also

both central to the evolution of embedded clusters, and complex: most massive stars

are in binary systems that will interact over their lifetimes (Sana & Evans 2011; Sana

et al. 2012), but these stars are also those with the most violent winds. Simulations

show that winds have a strong effect on the gas morphology of embedded clusters, and

participate in reducing the star formation efficiency. Rogers & Pittard (2013) find that

the sparsest regions of GMCs are dispersed by winds but that the densest regions are

resistant to wind feedback; 60%-75% of the energy from the winds escapes the cluster.

They also note that winds sweep up from the surrounding GMC a few 102 times the

amount of mass that is ejected from the stars – the cluster’s mass loss from winds is thus

several orders of magnitude larger than the stars’ mass loss rates. In simulations with

momentum-driven winds and radiation, Dale et al. (2014) find that winds are effective

at carving out cavities on the scale of 10 pc; for clouds with escape velocities . 5

km/s, the combination of winds and photoionization is highly destructive. Most of the

effective feedback from winds is mechanical, not thermal: winds drive out large amounts

of material from the star-forming regions, but shock fronts cool rapidly due to their large

surface (arising from their asymmetrical structure) and turbulent mixing (see Lancaster

et al. 2021a; Lancaster et al. 2021b).

Direct radiation pressure

Direct radiation pressure – deposition of momentum into the gas by the ultraviolet

photons from massive stars – participates in mechanically removing gas from embedded

clusters. During the early stages of YMC formation, direct radiation pressure suppresses

gas accretion and thus prevents cluster growth. Krumholz & Matzner (2009) compare

the effects of direct radiation pressure to those of stellar winds and supernovae, and

argue that direct radiation pressure dominates the evolution of HII regions in the most

massive clusters. Murray et al. (2010) find that direct radiation pressure dominates over
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stellar winds and protostellar jets for clusters with masses 107 − 108 M�. Howard et al.

(2018) further compare the effects of direct radiation pressure and photoionization, and

conclude that radiation pressure dictates the evolution of clusters forming within GMCs

of masses ∼ 107 M�. It is likely the prevalent form of feedback in YMCs, and is most

effective in clusters with large escape velocities (vesc & 10 km/s, Krumholz et al. 2019).

Photoionizing radiation

Photoionizing radiation ionizes the hydrogen gas near massive stars and heats it to

∼ 104 K, corresponding to the energy required for ionization. The hot gas then escapes

the embedded clusters via leakage through the sparser regions. Photoionization is most

effective in GMCs with masses . 104 M� or the less dense GMCs with masses up to

105 M�, for which the escape velocities are below the HII region expansion speed of

10 km/s (e.g. Dale et al. 2012). Conversely, photoionization is not sufficient to regu-

late star formation in higher mass clouds (106-107 M�, Howard et al. 2018). From

magneto-hydrodynamics simulations of 105 M� GMCs, Geen et al. (2016) conclude that

photoionization is sufficient to disperse the cloud if the star formation efficiency is at

least 10%. These results are likely lower limits, however, at least in terms of the num-

ber of photoionizing photons emitted. A common technique to estimate the number of

photionizing photons is to treat the stars as blackbody emitters, using surface temper-

atures from stellar evolution models (e.g. Wall et al. 2019), which depends strongly on

mass. The ionization budget is therefore dominated by the most massive stars, which

are most often part of binary systems that will interact on the main sequence (Sana et al.

2012). Stars that are stripped from their outer layers by binary interactions are very

luminous at ionizing luminosities, which is not accounted for by single star evolution

models (Götberg et al. 2018). Simulations (e.g. Gritschneder et al. 2009; Dale et al.

2013) and observations (e.g. Glatt et al. 2010) also suggest that photoionization may

promote the formation of dense pillars of gas or interacting shells, that in turn trigger
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star formation.

For clusters like the Orion Nebula Cluster, shown in Figure 1.2, with a gas mass of

& 104 M� and a stellar mass of ∼ 103 M� (Hillenbrand & Hartmann 1998), the dominant

feedback mechanisms acting on timescales of . 3 Myr after the onset of star formation

are stellar winds and photoionizing radiation. Binary interactions may further amplify

these mechanisms, by promoting mass transfer, stripping away the envelopes obscuring

the UV-emitting cores of stars and delaying SNe by reducing the mass of the most

massive stars.

1.3 Stellar multiplicity in different environments

Stellar multiplicity is a common outcome of star formation, with more than 20% of all

stars in the Milky Way in multiple stellar systems (Duchêne & Kraus 2013) and almost

all massive stars in close binary systems (Sana et al. 2012). Such close binaries play

a crucial role in stellar evolution by giving rise to type Ia supernovae, blue stragglers,

classical novae and X-ray binaries, among others. Interacting binaries are also a possible

explanation for the spread in chemical abundances observed in a large number of globular

clusters (De Mink et al. 2009).

Setting the stage for a discussion of stellar multiplicity requires an overview of some

commonly-used vocabulary. In each multiple stellar system, the most massive star is

called the primary, while the other stars are called companions. Two numbers are often

used to characterize how likely it is for stars to be in multiple stellar systems. The mul-

tiplicity frequency N denotes the average number of companions attached to a star while

the multiplicity fraction F denotes the fraction of stars with at least one companion.

The multiplicity frequency can be larger than one for some stellar populations, such as

O-stars, which often have two or three companions. Binary systems are generally char-

acterized, both individually and as a population, by four different properties: (1) the
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primary mass, (2) the mass ratio of the two components (defined as the companion mass

over the primary mass), (3) the orbital period or the semi-major axis of the system, and

(4) its eccentricity. Primary masses cover more than three orders of magnitude in range

– from brown dwarfs to massive O-stars – while orbital periods go from a few hours to

millions of years (Duchêne & Kraus 2013; Moe & Di Stefano 2017). By definition, mass

ratios and eccentricities are between 0 and 1.

Different physical processes may lead to the formation of multiple stellar systems

either during or after star formation. We refer to the multiple systems formed during

star formation as primordial systems and to those formed after star formation via inter-

actions with stars in the embedded cluster as dynamical systems. The fragmentation of

protostellar disks is responsible for primordial binary formation on the smallest scales –

a few tens of AUs. The stability of rotating disks can be measured from their Toomre

(1964) Q parameter,

Q = csΩepi

πGΣ (1.4)

where cs denotes the isothermal sound speed, Ωepi denotes the epicyclic frequency (or

angular velocity for a Keplerian disk), G is the usual gravitational constant and Σ de-

notes the surface density of the disk. Recent work by Takahashi et al. (2016) proposes

that disks with Q < 1 (the traditional criterion for stability) are susceptible to spiral arm

formation, and that fragmentation takes place in disks with Q < 0.6. There is evidence

from observations (e.g. Tobin et al. 2016a) and simulations (e.g. Sigalotti et al. 2018)

that disk fragmentation is a viable mechanism for binary formation. Kratter (2011),

in an overview of the formation of close binaries, suggests that disk fragmentation is

most prevalent at high masses, and is the mechanism responsible for the formation of

close, massive binaries. Tokovinin & Moe (2020) also propose disk fragmentation as the

formation mechanism for close binary formation, with contributions from migration to
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reach small separations, below the ∼ 10 AU limit set by the opacity limit to fragmen-

tation. On larger scales (∼ 1000 AU), the turbulent fragmentation of cores (Boss &

Bodenheimer 1979) gives rise to multiple stellar systems. Simulations including proto-

stellar feedback (Offner et al. 2010; Guszejnov et al. 2017) and observations of misaligned

outflows in protostellar binaries (Lee et al. 2016b; Lee et al. 2017) indicate that core frag-

mentation is a viable mechanism for the formation of multiple stellar systems. Binaries

can also form as a by-product of dynamical interactions during clustered star formation,

either from nearby cores than have low relative velocities (Tokovinin 2017), from the

dissolution of the cluster into the Galactic field (e.g. Kouwenhoven et al. 2010) or its

early evolution (e.g. Parker & Meyer 2014; Wall et al. 2019).

Protostars are understood to have higher multiplicity than main-sequence field stars,

at equal masses (Duchêne & Kraus 2013; Reipurth et al. 2014) – it is however worth

noting that the large-scale surveys available for main-sequence field stars are currently

not available for protostars embedded in gas. Tobin et al. (2016b) report a decrease in

multiplicity with increasing age for protostars in the Perseus molecular cloud, associated

with an excess of wide binaries for the youngest systems. The effects of age and environ-

ment are not easily disentangled: in their review of stellar multiplicity in main-sequence

stars, Duchêne & Kraus (2013) find that multiplicity is constant at twice the field frac-

tion over the first . 50 Myr of evolution of low-density star-forming regions, while it is

consistent within uncertainties for young clusters, open clusters, and the Galactic field.

The idea that dense environments may disrupt primordial binaries and lead to an over-

all decrease of the multiplicity fraction is also supported by observations of decreasing

binary fraction with increasing cluster mass in GCs (e.g. Milone et al. 2016).

The population of multiple stellar systems observed in the Galactic field likely arises

from a combination of primordial multiplicity and subsequent dynamical modifications

within different environments. Reviews of stellar multiplicity in the Galactic field by
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Duchêne & Kraus (2013) and, more recently, by Moe & Di Stefano (2017), nonetheless

reveal trends that are likely robust to changes in environment:

1. Multiplicity increases with primary mass. Massive O-stars have on average more

than one companion, and most have at least one companion with which they will

interact over their main-sequence lifetime (Sana et al. 2012). Dynamical interac-

tions likely increase this fraction, as a massive O-star is expected to replace the

lowest-mass object if it interacts with a binary (Sigurdsson & Phinney 1993).

2. Even at low masses, multiplicity is common (e.g. Winters et al. 2019). Since

low-mass stars account for most of the stars in the Galaxy, dynamical interaction

mediated by low-mass binaries likely play a role in cluster evolution.

3. The distribution of mass ratios depends on the mass of the primary. At large

masses, equal-mass pairs are favoured; in particular, massive stars tend to have at

least one close, massive companion (Sana et al. 2012). Observational limits make

it likely the number of companions with low mass ratios is underestimated.

4. The distributions of orbital periods (or separations) and eccentricities depend on

the mass of the primary. Massive stars span a large range of separations, from

very short period systems that will interact over their main-sequence lives to wide

systems that are only stable due to large gravitational attraction between their

components (Moe & Di Stefano 2017).

The key takeaway from the reviews by Duchêne & Kraus (2013) and Moe & Di Stefano

(2017) is that the pairing of stars in binary systems is not random (see Kouwenhoven et

al. 2010, for a discussion of pairing functions consistent with observations). Some systems

are more likely to form than others, whether primordially or dynamically. The relative

importance of primordial and dynamical formation of multiple stellar systems in setting

the populations of binaries in the field and in clusters is however currently unknown.
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Simulations of young clusters with a field-like initial population of binaries (Parker &

Meyer 2014) and the similarities between the binary fraction in the field and in young

clusters (Duchêne & Kraus 2013) nonetheless suggest that the field population is a

reasonable first-order estimate of the properties of binaries at birth.

1.4 Thesis outline

As outlined above, stars form alongside other stars, on both small and large scales,

in environments that are shaped by the stars themselves via radiative and mechanical

feedback. In the earliest stages of a star’s life, it is likely to interact gravitationally with

other stars, which makes it non-trivial to determine the properties of binary systems

at birth from the population of binaries in the Galactic field or in older star clusters.

In this thesis, we are interested in disentangling how a primordial population of binary

systems is modified by gravitational interactions with other stars in embedded clusters

and by interactions with the surrounding gas. We probe these questions using numerical

simulations conducted using Torch (Wall et al. 2019).

In particular, we are interested in modelling a system that is not too computationally

expensive but that is massive enough to allow massive stars – which are almost always

in binaries – to form. We include in Figure 1.2 a picture of the Orion Nebula Cluster,

with the bright stars of the Trapezium Cluster in the foreground, as an observational

counterpart to what we are modelling. The gas mass associated with the cluster is on

the order of ∼ 104 M�, and the cluster contains ∼ 3500 stars (Hillenbrand & Hartmann

1998). Images of the Orion Nebula Cluster are dominated by the massive Trapezium

stars, at least two of which are in binary or higher order systems (e.g. Grellmann et al.

2013). To model a similar system, we start from 104 M� of gas and model active star

and binary formation, with implementations of stellar feedback in the form of stellar

winds, ionizing radiation and radiation pressure.
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In Chapter 2, we present an overview of the general numerical methods used in this

work for stellar and gas dynamics, as well as stellar feedback. We also review other recent

numerical work on star cluster formation. Chapter 3 is the main chapter of this thesis. It

was published in the Monthly Notices of the Royal Astronomical Society in March 2021

and is reproduced here in full. In this chapter, we present the implementation of our

new binary generation algorithm and sketch a picture of how a primordial population of

binaries is modified by dynamical interactions before the evolution of the cluster becomes

dominated by feedback. In Chapter 4, we outline the key results from our published suite

of simulations and discuss their broader implications. We also present a discussion of

our ongoing work and of possible directions for further research.
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CHAPTER 2

NUMERICAL METHODS FOR STAR CLUSTER FORMATION

We present in this chapter the relevant numerical methods for our work. In Section 2.1,

we discuss the equations of hydrodynamics and the numerical tools and techniques we

use to solve them. In Section 2.2, we present the subgrid model for star formation in our

simulations. The methods specific to binary formation, developed as part of this thesis,

are presented in Chapter 3. In Section 2.3, we discuss the numerical methods we use to

calculate stellar dynamics on both cluster and binary scales. In Section 2.4, we outline

the models for wind and radiation feedback in our simulations, and their numerical

implementation. Recent and relevant advances in multi-physics numerical methods for

star cluster formation are summarized in Section 2.5.

2.1 Numerical hydrodynamics

Numerical hydrodynamics are concerned with providing numerical solutions to the equa-

tions governing the dynamics of fluids. Astrophysical applications of numerical hydro-

dynamics (HD) are focused on compressible (and often supersonic) gas flows. These
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methods can be applied to problems ranging from cosmological simulations of galaxy

formation (e.g. FIRE, Hopkins et al. 2014; EAGLE, Crain et al. 2015, Schaye et al. 2015;

Auriga, Grand et al. 2017) to simulations of the formation of a stellar system (e.g. Boss

& Bodenheimer 1979; Bate et al. 1995; Sigalotti et al. 2018). In star and star cluster

formation, numerical hydrodynamics focus on describing the behaviour of the turbulent

interstellar medium (ISM) in the form of molecular clouds, filaments and outflows (re-

cently, Gavagnin et al. 2017; Grudić et al. 2018; Howard et al. 2018; Wall et al. 2019;

Guszejnov et al. 2020, and others).

The equations of HD can be written in a conservative form as a set of five equations,

often referred to collectively as the Euler equations (Bodenheimer et al. 2006, §1; Toro

2009, §1). The variables conserved by this hyperbolic set of partial differential equations

(PDEs) are the mass density ρ, the momenta ρvx, ρvy and ρvz, and the total energy per

unit mass. These conservation laws thus arise naturally from conservation of mass and

energy, and Newton’s second law of motion (see Toro 2009, §1 for an overview). The

Euler equations are laid out in Equation 2.1 (c.f. Fryxell et al. 2000),

∂ρ

∂t
+∇ · ρv = 0 (2.1a)

∂

∂t

(
ρv
)

+ (∇ · ρv
)
v +∇P = ρg (2.1b)

∂ρE

∂t
+∇ ·

(
ρE + P

)
v = ρv · g (2.1c)

where ρ denotes the fluid density, v denotes the fluid velocity, P denotes the pressure,

E denotes the total energy per unit mass and g denotes the acceleration due to gravity.

The total fluid energy per unit mass E is the sum of the internal energy ε and the kinetic

energy per unit mass,

E = 1
2v

2 + ε. (2.2)

The variables can be related via a closure relation, in the form of an equation of state.
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Under the assumption of an adiabatic gas (if heating and cooling are present, they are

not handled by the HD solver), the equation of state is

P =
(
γ − 1

)
ρε (2.3)

where γ is the adiabatic constant of the fluid. For an ideal gas,

γ = N + 2
N

(2.4)

where N is the number of degrees of freedom of a gas particle (Toro 2009, §1). Ionized

and neutral atomic hydrogen have three degrees of freedom; although molecular hydrogen

nominally has five degrees of freedom, its vibrational states are hard to excite (Rybicki

& Lightman 2004, §11), allowing us to model it with three degrees of freedom for all

practical purposes. Setting γ = 5/3 is thus a standard choice in simulations of the ISM,

as it accounts for molecular and atomic hydrogen, as well as hot ionized gas around

massive stars.

We consider the Eulerian formulation of hydrodynamics, in which we solve the Euler

equations for fixed volume elements by calculating the flows of mass, momentum and

energy in and out of the volume elements (Bodenheimer et al. 2006, §6). In Eulerian

numerical HD, the computational domain is separated into finite volume elements, often

called cells, that cover the entire domain. For each pair of adjacent cells, the Rankine-

Hugoniot conditions (Macquorn Rankine 1870; Hugoniot 1885) apply: the fluxes of mass,

momentum and energy must be equal on both sides of the shock or contact. Numerically,

solving the equations of hydrodynamics amounts to solving the Riemann problem in

three dimensions, between each pair of adjacent cells: given the pressure and density on

each side of the cell boundary and the Rankine-Hugoniot conditions, we calculate the

pressures, densities and velocities after a time interval ∆t. Different Riemann solvers use

different schemes for advection (i.e. different numerical approximations for the fluxes),
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which differ in their accuracy, stability and computational cost. Eulerian codes, or

grid codes, can have non-uniform levels of spatial resolution in different regions of the

computational domain, to allow for a good resolution in the regions of interest (e.g.

dense star-forming filaments) while reducing the computational costs elsewhere in the

domain (e.g. sparse and uniform background gas, Bodenheimer et al. 2006, §6). This

technique is called Adaptive Mesh Refinement (AMR). Flash (Fryxell et al. 2000), which

we use in the thesis, is an AMR code.

Although our current suite of simulations does not include magnetic fields, Torch is a

magneto-hydrodynamics (MHD) code, and the methods it was developed with reflect the

need for solving the full MHD equations instead of merely the Euler equations. We thus

use a three dimensional unsplit staggered mesh MHD solver (Lee 2013), which reduces

to the unsplit HD solver in the absence of magnetic fields. It uses a predictor-corrector

method (Press et al. 2007, §17). The predictor states are calculated using a third order

piecewise parabolic reconstruction method (Colella & Woodward 1984), before they are

corrected with a Harten–Lax–van Leer Riemann solver resolving discontinuities (HLLD,

Miyoshi & Kusano 2005), which reduces to a Harten–Lax–van Leer contact Riemann

solver (HLLC, Toro et al. 1994) in the absence of magnetic fields. The gas self-gravity is

handled by solving the Poisson equation with Dirichlet boundary conditions in each cell,

with a multigrid solver (Ricker 2008). We also use artificial viscosity (Von Neumann

& Richtmyer 1950) to improve numerical stability at shocks, common in astrophysical

simulations.

We use simultaneously two types of refinement criteria for the adaptive grid in our

simulations. We first refine based on the Truelove et al. (1997) criterion as implemented

by Federrath et al. (2010), which states that the Jeans length λJ (Jeans 1902)

λJ =
(
πc2

s

Gρ

)1/2

, (2.5)
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must be resolved by at least four resolution elements in order to avoid numerical frag-

mentation. In Equation 2.5, cs denotes the sound speed and ρ denotes the density, while

G is the gravitational constant. The second criterion is based on the second deriva-

tive (Lohner 1987; MacNeice et al. 2000): we refine where the magnitude of the second

derivative of a variable is of the order of the sum of its gradients. We refine on pres-

sure, temperature, total energy and internal energy, which improves numerical stability

compared to refining only based on the Truelove criterion.

The gas is also influenced by the gravitational attraction from the stars, and vice-

versa. We account for their effects on one another with a leapfrog-type bridge scheme (Fu-

jii et al. 2007) implemented in Torch by Wall et al. (2019). The gravitational attraction

from the gas on the stars is calculated directly from the potentials obtained with the

multigrid Poisson solver (Ricker 2008). The gravitational attraction from the stars on the

gas is calculated via a cloud-in-cell mapping of stars’ masses on the grid that is then used

to calculate the potentials (and thus the accelerations) with the Poisson solver (Wall et

al. 2019). This scheme allows for the hydrodynamics and the stellar dynamics (discussed

in Section 2.3) to be evolved in parallel.

2.2 Sink particles

Sink particles (Bate et al. 1995; Krumholz et al. 2004, for Eulerian codes) are used in

numerical simulations to replace collapsing regions – ranging in size from individual stars

or protostars (e.g. Offner et al. 2010; Federrath 2015; Haugbølle et al. 2018; Guszejnov

et al. 2020) to entire star clusters (e.g. Dale et al. 2014; Howard et al. 2016; Körtgen et al.

2016) – by a sub-grid representation. This allows the simulations to retain a timestep

consistent with the physical timescales involved in the simulations, while avoiding impor-

tant slow-down due to the smallest collapsing regions. In our simulations, sink particles

represent individual dense regions in molecular clouds. Sink particles are implemented
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in Torch following Federrath et al. (2010). For each cell where the density exceeds a

density threshold

ρres = πc2
s

Gλ2
J

(2.6)

a series of verifications is performed before forming a sink particle with an accretion

radius of 2.5 resolution elements. The sink itself is a point particle. In Equation 2.6,

the variables are all defined as above and the Jeans length λJ is set to five resolution

elements at the highest refinement level to enforce the Truelove et al. (1997) criterion.

In our simulations, this length scale also corresponds to the scale at which turbulence

goes from supersonic to subsonic (Federrath et al. 2021). The checks from Federrath

et al. (2010), outlined below, are performed on all the cells within a spherical volume

defined by the accretion radius:

1. The cells must be at the highest level of refinement.

2. The gas flow must be converging.

3. The cells must have a gravitational potential minimum at the centre of the volume.

4. The gas within the cells must be gravitationally bound.

5. The gas within the cells must be Jeans unstable.

6. The cells must not be located within another sink particle’s accretion radius.

The same sink implementation and sink formation checks are used in Howard et al.

(2016), to represent full clusters with a sub-grid model. By contrast, sink particles in

Torch are used as factories for star formation: a list of stars is generated upon sink

formation, then stars are individually formed and placed in the simulation as enough

mass is accreted by the sink. New stars can be formed at each simulation timestep, which

is on the order of 10 years in simulations that are actively star forming. Once decoupled
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from the sink particle, the individual stars can then be integrated by the N-body solver.

For each sink, the number of stars in each region of the initial mass function (IMF,

using here Kroupa 2001) is drawn by Poisson sampling of 100 bins equally spaced in

mass (Sormani et al. 2017; Wall et al. 2019). For each bin, the calculated number of

stars is then drawn randomly from the IMF, and the full list of stars is randomized.

Each star receives a position and a velocity upon formation (see Chapter 3 for more

details). Additionally, sinks must be located in cold gas (T . 100 K) to be allowed to

form stars, although they may accrete warm gas.

2.3 Numerical stellar dynamics

As stated in the previous section, we decouple the stars from the sink particle in which

they form and follow closely their dynamics. Stellar dynamics is concerned with using the

positions of stars in a system to calculate their accelerations from the net gravitational

force exerted on them, and from there using the accelerations to calculate the new

positions after a given time interval (Bodenheimer et al. 2006, §3). In other words,

stellar dynamics is concerned with solving Newton’s second law for a system ofN objects,

moving under gravity alone,

d2xi
dt2

= −
N∑

j=1;j 6=i

Gmj(xi − xj)
|xi − xj |3

(2.7)

where xk denotes a particle’s position, mk its mass and G is the gravitational constant.

When N > 2, there exists no analytic solution to Equation 2.7, which is a non-linear

second order differential equation: the equations of motions for a system of N particles

must thus be solved numerically. The most exact methods can only be used for systems

with few (i.e. N ≤ 10) particles, due to their large computational cost. Reasonably

accurate methods can nonetheless be used for the type of system we are interested

in, with a few 103 bodies. We present an overview of the relevant techniques below.

27

http://www.mcmaster.ca/
http://www.physics.mcmaster.ca/


M.Sc. – Claude Cournoyer-Cloutier – McMaster University – Physics & Astronomy

Furthermore, the very accurate methods required to resolve the orbits of tight binaries

are computationally expensive, as the gravitational attraction between two arbitrarily

close bodies becomes arbitrarily large (Bodenheimer et al. 2006, §3). The star clusters

with a large fraction of binaries we are interested in have both a fairly large number of

particles (a few 103) and a fairly large number of binaries (a few 102). We thus use a

different scheme to handle close binaries.

Torch handles the long-range dynamical interactions between the stars with ph4

(McMillan et al. 2012), a direct N-body code which uses a fourth-order Hermite predictor-

corrector scheme (Makino & Aarseth 1992). ph4 is designed for systems with . 105 par-

ticles (Portegies Zwart & McMillan 2019, §2), which is appropriate for our simulations.

The relevant equation are outlined below (Portegies Zwart et al. in prep.). The scheme

calculates, for each star, the acceleration a and jerk j (second derivative of the velocity)

and uses them to predict the position x and velocity v after a time interval ∆t,

ṽ(t+ ∆t) = v(t) + a(t)∆t+ 1
2 j(t)(∆t)2 (2.8a)

x̃(t+ ∆t) = x(t) + v(t)∆t+ 1
2a(t)(∆t)2 + 1

6 j(t)(∆t)3. (2.8b)

where x̃ and ṽ respectively denote the predicted position and velocity. A predicted

acceleration ã and a predicted jerk j̃ are then calculated from the old and predicted

position and velocity, for each star. The scheme then corrects the new position and

velocity using the predicted acceleration and jerk,

v(t+ ∆t) = v(t) + 1
2
(
a(t) + ã(t+ ∆t)

)
∆t+ 1

12
(
j(t)− j̃(t+ ∆t)

)
(∆t)2 (2.9a)

x(t+ ∆t) = x(t) + 1
2
(
v(t) + v(t+ ∆t)

)
∆t+ 1

12
(
a(t)− ã(t+ ∆t)

)
(∆t)2 (2.9b)

Equations 2.8 and 2.9 have leading errors O((∆t)5), making the full scheme fourth-order

accurate (Portegies Zwart et al. in prep.).
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The Amuse module multiples (Portegies Zwart & McMillan 2019)1 handles stable

binaries and higher order systems, resonant encounters and scattering (hereafter mul-

tiples and encounters). It makes use of the smallN (Hut et al. 1995; McMillan &

Hut 1996) and Kepler codes, both originally developed as part of Starlab (Porte-

gies Zwart et al. 1999; Hut et al. 2010). Multiples identifies close encounters between

stars (or stable multiples) and follows them to completion using its internal N-body

solver, smallN. To be removed from the N-body code and picked up by multiples,

pairs of stars or stable multiples undergoing an encounter must satisfy the following

conditions (Wall et al. 2019):

1. The stars or multiples must be approaching.

2. The stars or multiples must be located within twice the sum of their dynamical

radii, set to 100 AU for stars and twice the semi-major axis for binaries in Torch.

3. The system comprised of the two stars or multiples must be unperturbed by nearby

stars. The system is considered unperturbed if, for a primary massM1, a compan-

ion mass M2 and a semi-major axis a, no neighbour with mass Mp and distance d

to the system’s centre of mass has

4a2

M1M2

∣∣∣∣∣ M1Mp

(d− a)2 −
M2Mp

(d+ a)2

∣∣∣∣∣ > 0.05. (2.10)

If any of the above conditions is not satisfied, the encounter is left to handle by the main

N-body code, ph4, until all three conditions are satisfied. If the encounter is handled

by multiples, it is evolved as an isolated scattering experiment until the encounter is

resolved or a limiting timescale or size is exceeded. Those limits are implemented to

avoid the spurious formation of triple systems. Aside from these conditions, there are
1https://github.com/amusecode/amuse/blob/python2/src/amuse/couple/multiples.py

commit dc69d0e9c3fe04ae9d67a782909f35a48f8a99cd
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two possible outcomes to an encounter. If it does not result in a bound system, the stars

or systems are returned to ph4. If the encounter results in a bound system, the stars

are retained by multiples as a stable multiple and the centre of mass of the system

is returned to the main N-body code. An additional criterion, aside from boundedness,

is applied to the systems retained by multiples: the distance between the system’s

centre of mass and the point on the orbit furthest from the centre of mass (i.e. the

apocentre, as calculated by Kepler) is less than 100 AU and either the perturbation

criterion outlined in Equation 2.10 gives give a value of at most 0.08 or the same pair

of objects has been picked up by multiples for the 10th time. If a wide binary is not

retained by multiples, it will be placed back in the N-body code at pericentre (i.e.

closest approach). As long as a stable multiple is retained by multiples, its orbital

motion does not influence the global timestep of the N-body code; in other words, the

orbits of stable, unperturbed close binaries are considered frozen until a perturbation

occurs. The treatment of multiples and encounters in Torch thus follows the traditional

Monte-Carlo approach: multiples are treated as unperturbed until they undergo a strong

encounter with another star or multiple system. Portegies Zwart & McMillan (2019)

argue that this approach is as accurate as the more computationally expensive approach

to perturbations often adopted in N-body codes.

2.4 Early stellar feedback: winds & radiation

As discussed in Section 1.2, numerous feedback channels participate in the regulation

of star formation in embedded clusters, on different time and cluster mass scales. The

suites of simulations presented in this work include a total initial gas mass of ∼ 104 M�

and a final stellar mass of ∼ 103 M�, with clusters of radius ∼ 1 pc. In this regime, the

most important feedback mechanisms are stellar winds, ionizing radiation and super-

novae, all of which are implemented in Torch. The details of their implementation are
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presented in Wall et al. (2020). Protostellar jets and outflows may have a stronger im-

pact on the small subclusters forming from individual sink particles, before they merge.

A model for protostellar jets for Torch is currently under construction (Appel et al.,

in prep.). Torch (Wall et al. 2020) also includes a prescription for core-collapse su-

pernovae, however none of our simulations have yet progressed far enough in time for a

supernova.

Far ultraviolet (FUV, between 5.6 eV and 13.6 eV) and ionizing (above 13.6 eV) radi-

ation is emitted by the star particles with masses above 7 M� (hereafter massive stars)

in our simulations. The radiative feedback is implemented within Flash as a modi-

fied (Wall et al. 2020) version of the adaptive ray-tracing module Fervent (Baczynski

et al. 2015). Ionizing radiation heats and ionizes the hydrogen gas. The photon counts

and average energies, as well as the cross-sections and ionization fractions, are calculated

for each star from the surface temperature and mass as evolved with SeBa (Portegies

Zwart & Verbunt 1996). FUV radiation also heats the gas and injects momentum in

the form of radiation pressure, which is an important contribution to the feedback from

intermediate mass stars (e.g. 7M� ≤ M∗ ≤ 13M�, Wall et al. 2020). The injected

momentum is calculated from the energy of the photons absorbed in each cell, divided

by the speed of light. The details of the radiative feedback implemented in Torch are

presented in Wall et al. (2020).

All massive stars in our simulations also provide feedback in the form of momentum-

driven winds. Numerous wind models have been used in the literature in simulations

of star cluster formation. Winds can be folded into a generalized momentum feedback

prescription alongside protostellar outflows and radiation (e.g. Li et al. 2019), as well as

injected directly on the grid in the form of thermal energy (e.g. Rogers & Pittard 2013)

or momentum (e.g. Haid et al. 2018). We use the momentum-conserving wind scheme

developed by Wall et al. (2020), which is implemented directly in Flash and allows for
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mass injection on the grid. As shown in Wall et al. (2020), this model reproduces well

the analytic solution for the expansion of a wind bubble in a uniform medium presented

by Weaver et al. (1977). The mathematical expressions governing the changes in density

and velocity in each cell within the injection volume of a wind-blowing star are outlined

below, in Equation 2.11,

ρ = ρ0 + ∆ρ (2.11a)

~p = ~vinj∆ρ+ ~v0ρ0 (2.11b)

~v = ~p

ρ
= ~vinj∆ρ+ ~v0ρ0

ρ0 + ∆ρ (2.11c)

where ρ0, ρ and ∆ρ denote respectively the initial, final and injected densities; ~v0, ~v and

~vinj denote the initial, final and wind velocities, and ~p denotes the final momentum. In

Equation 2.11a, the injected density ∆ρ is calculated from

∆ρ = Ṁ∆t
Vinj

(2.12)

where Ṁ is the star’s mass loss rate from Vink et al. (2000), ∆t is the simulation’s

timestep and Vinj is the cell volume overlapped by the star’s wind injection radius. The

injection radius for each star is set by the numerical resolution.

The wind scheme described above was developed and implemented originally for

single massive stars, however most massive, wind-blowing stars are in close binaries,

which should dominate their evolution (Sana et al. 2012). We thus verify that our wind

scheme properly reproduces the large-scale behaviour of colliding winds from massive

stars. We present examples for an equal-mass system in Figure 2.1 and for a system

with a mass ratio of ∼ 1/3 in Figure 2.2. Winds from different stars acting on the same

cell are applied sequentially, which adequately reproduces the required vector addition.

The equal-mass system gives rise to a shock at the symmetry interface. At the stagnation
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Figure 2.1: Density slices of the time evolution of the wind bubbles for
two 25 M� stars formed at the same time, 5 kyr (left) and 15 kyr (right)
after their formation, with overlaid velocity vectors. The black circles
denote the wind injection radii. A shock forms at the interface between
the two wind bubbles and the structure is symmetric about the shock
front.

point (halfway between the stars), there is no net flow and the velocity is 0 (Stevens

& Pollock 1994). The non-equal mass system is dominated by the most massive star,

with a mass of 70 M�. This system shows indications of radiative braking (Gayley et al.

1997): the wind from the most massive star will be inhibited by the wind from the least

massive 25 M� star. Although a detailed comparison between simulations of colliding-

wind binaries and the behaviour of the O-star binaries in our simulations is beyond the

scope of this thesis, we note that our wind model adequately handles winds from close

pairs of massive stars.

It is less straightforward to compare our wind model to theoretical expectations in a

non-uniform medium – and embedded clusters, with their dense and cold star-forming

filaments and their sparse and hot HII regions, are highly non-uniform. We can nonethe-

less compare the wind model implemented in Torch to recent models and simulations

of stellar winds in star forming regions. Our simulations reproduce the general results

from Lancaster et al. (2021a, 2021b): the wind bubbles develop highly asymmetrical
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Figure 2.2: Density slices of the time evolution of the wind bubbles for
a 25 M� and a 70 M� star formed with a time delay of 10 kyr before
the formation of the most massive star, at the time of formation of the
most massive star (left) and 10 kyr after (right). Velocity vectors are
overlaid and the wind injection radii are denoted by black circles. After its
formation, the most massive star dominates the evolution of the system.
The presence of the other star results in a non-symmetric structure for
the wind bubble.

geometry, which promotes effective radiative cooling at the bubble interface by increas-

ing its area. Some caveats of our wind model are worth highlighting; combined, they

suggest that the contribution of massive stars to momentum feedback in our simulations

should be treated as an upper limit. First, the mass loss rates implemented by Wall

et al. are those of Vink et al. (2000); more recent work (Smith 2014) suggest that these

are overestimated by a factor of ∼ 3 because they do not take into account the clumpy

nature of stellar winds. Second, the contributions of less massive stars to the feedback

budget, in the form of protostellar jets and outflows, are ignored. Finally, mass transfer

in binary systems is ignored, while binary interactions should dominate the evolution of

the most massive stars in our simulations (Sana et al. 2012).
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2.5 Multi-physics simulations and their challenges

State-of-the-art simulations of star cluster formation must include numerous physical

processes, which we can break down here into four main categories, as discussed above:

(1) hydrodynamics, (2) star and binary formation, (3) stellar dynamics and (4) stellar

feedback. Hydrodynamics must be followed properly to account for the formation of

filaments and the collapse of the gas, in order to accurately localize the regions in which

star formation must take place. Modelling concurrently star formation and cluster-scale

hydrodynamics is not feasible numerically, due to the many (& 10) orders of magni-

tude difference in scale between stars and GMCs. There is a wide variety of models

for sub-grid star formation; we are interested in the ones that still allow the stars to

form at locations consistent with the large-scale hydrodynamic behaviour of the forming

cluster. These models generally do not include binaries. Many simulations of binaries

in star-forming regions altogether ignore the presence of gas, while more complex and

realistic simulations of cluster formation tend to ignore the presence of primordial bina-

ries. Modelling both hydrodynamics and binary dynamics concurrently also has a large

computational cost. We stress that no previous work has thus simultaneously included

the four elements above – hydrodynamics, star and binary formation, stellar dynamics,

stellar evolution – in a self-consistent way. Simulations of star-forming regions including

feedback and simulations coupling hydrodynamics and stellar dynamics have neverthe-

less become more common in the last decade. We summarize here recent numerical work

relevant to the interplay between binary and cluster formation.

Effective coupling of stellar dynamics and hydrodynamics, often also with stellar

evolution, is possible within the Amuse (Astrophysical MUlti-purpose Software Envi-

ronment, Portegies Zwart & McMillan 2019) framework. In particular, the use of a

gravity bridge (Fujii et al. 2007) allows the gas and stars to evolve in parallel, with

different timesteps, while accurately modelling the gravitational attraction of one on

35

http://www.mcmaster.ca/
http://www.physics.mcmaster.ca/


M.Sc. – Claude Cournoyer-Cloutier – McMaster University – Physics & Astronomy

the other. Pelupessy & Portegies Zwart (2012) have conducted simulations of embedded

clusters with 1000 stars, a few 102 − 103 M� of gas (modelled with smoothed particles

hydrodynamics, SPH) and mechanical stellar feedback accounting for stellar winds and

supernovae as predicted by stellar evolution schemes. Sills et al. (2018) use a similar

scheme (albeit without stellar evolution) to model the dynamical evolution of embed-

ded clusters initialized from initial conditions taken from observations. Neither of these

simulations explicitly address star formation, however both use state-of-the-art N-body

integrators. Gavagnin et al. (2017) use an AMR code coupled with star formation via

sink particles, stellar dynamics and photoionizing feedback to investigate star cluster for-

mation. Each sink particle formed in their simulation is treated as a star; stellar dynam-

ics are handled by a second-order leapfrog scheme, less accurate than the fourth-order

predictor-corrector scheme used in Torch. Their simulations do not include momentum

feedback, radiation pressure or any prescription for primordial binaries. Gavagnin et al.

(2017) however track the dynamical formation of binaries and higher order systems, and

find that the fraction of stable binaries tends to decrease with increasing stellar density,

in line with observations (Milone et al. 2016; Duchêne et al. 2018).

Ballone et al. (2021) and Torniamenti et al. (2021) adopt a different approach to

model gas and stars during cluster formation. They first consider pure hydrodynamical

simulations, in which sink particles are allowed to form; after 3 Myr, they remove all

the gas and rearrange the mass between sink particles by splitting and joining the sink

particles, to sample a Chabrier (2003) IMF. They use the instantaneous removal of the

gas as a proxy for supernova feedback, but include no radiative or momentum feedback.

Torniamenti et al. (2021), in work published after the publication of Chapter 3 of this

thesis, modified the joining–splitting algorithm described above to include a prescription

for primordial binaries based on the field binary properties and similar to the ansatz we

adopt here for our binary generation algorithm.
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More complex feedback prescriptions are included in simulations of hierarchical star

cluster formations within GMCs. Howard et al. (2016, 2017, 2018, 2019) show, in a

seminal series of papers, that YMC (and GC) formation and the rise of multiple stellar

populations within them is the natural extension of normal star cluster formation within

the most massive GMCs. Their simulations include hydrodynamics handled by Flash,

active formation of subgrid stellar populations via sink particles and radiative feedback,

in the form of direct radiation pressure and ionizing radiation. Li et al. (2019) conduct

simulations of star cluster formation within GMCs including hydrodynamics, active for-

mation of subgrid stellar populations via non-accreting star particles, and momentum

stellar feedback as a proxy for stellar winds. They find that the SFR in their simulations

increases linearly until it is halted by stellar feedback, leading to a superlinear growth of

the stellar mass, consistent with observed dynamic SFRs in GMCs (Lee et al. 2016a). In

a follow-up paper, Chen et al. (2021) find that GMCs with shallow density profiles give

rise to hierarchical cluster assembly, in agreement with Howard et al. (2018), but that

a single massive cluster is formed directly in GMCs with steep density profiles. Both

suites of simulations include heating and cooling, and do not resolve stellar dynamics;

they nonetheless provide very good models for radiative (Howard et al. 2018) and mo-

mentum (Li et al. 2019) feedback, that result in highly valuable insights into the process

of cluster formation.

The first code to simultaneously resolve hydrodynamics, active star formation (albeit

without primordial binaries), stellar dynamics and the effects of stellar evolution onto

the surrounding gas via stellar feedback, is Torch (Wall et al. 2019, 2020). Torch

uses Flash to handle hydrodynamics (with magnetic fields), with radiative heating

and cooling. Feedback prescriptions from stellar evolution models are also included, in

the form of stellar winds, supernovae, direct radiation pressure and ionizing radiation.

Stellar dynamics are handled by an accurate fourth-order predictor-corrector Hermite

scheme, with an additional module to handle binary formation and disruption. Star
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formation takes place via sink particles, from which stars are decoupled upon formation.

Simulations conducted with Torch give rise to gas behaviour as seen in state-of-the-art

hydrodynamical simulations, in GMCs with masses 103 − 105 M� (e.g. formation of

dense gas shells due to the effects of feedback, hierarchical cluster growth via motions

along filaments, Wall et al. 2020) while also giving rise to stellar dynamics behaviour as

seen in pure or direct N-body simulations (e.g. increase of binary fraction with mass,

Wall et al. 2019).

Another multi-physics star cluster formation code has been developed in the wake

of Torch. Starforge (Guszejnov et al. 2021; Grudić et al. 2021) is also a magneto-

hydrodynamics code including the same feedback mechanisms as Torch, with the ad-

dition of protostellar outflows. Additionally, stars are formed from individual sink par-

ticles. The N-body integrator used in Starforge is however less accurate than that

used in Torch and, at this time, no prescription for primordial binaries is included in

Starforge.
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CHAPTER 3

IMPLEMENTING PRIMORDIAL BINARIES IN SIMULATIONS

OF STAR CLUSTER FORMATION WITH A HYBRID MHD

AND DIRECT N-BODY METHOD

Abstract

The fraction of stars in binary systems within star clusters is important for their evo-

lution, but what proportion of binaries form by dynamical processes after initial stellar

accretion remains unknown. In previous work, we showed that dynamical interactions

alone produced too few low-mass binaries compared to observations. We therefore im-

plement an initial population of binaries in the coupled MHD and direct N-body star

cluster formation code Torch. We compare simulations with, and without, initial bi-

nary populations and follow the dynamical evolution of the binary population in both

sets of simulations, finding that both dynamical formation and destruction of binaries

take place. Even in the first few million years of star formation, we find that an initial

population of binaries is needed at all masses to reproduce observed binary fractions for
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binaries with mass ratios above the q ≥ 0.1 detection limit. Our simulations also indi-

cate that dynamical interactions in the presence of gas during cluster formation modify

the initial distributions towards binaries with smaller primary masses, larger mass ra-

tios, smaller semi-major axes and larger eccentricities. Systems formed dynamically do

not have the same properties as the initial systems, and systems formed dynamically in

the presence of an initial population of binaries differ from those formed in simulations

with single stars only. Dynamical interactions during the earliest stages of star cluster

formation are important for determining the properties of binary star systems.

3.1 Introduction

A complete picture of star cluster formation must account simultaneously for stars form-

ing on the sub-AU scale, stellar dynamics taking place on the cluster’s scale and gas flows

at the scale of the surrounding giant molecular cloud. Even when star formation is re-

solved by a sub-grid model, as is most often the case in simulations, close dynamical

encounters between stars must be resolved at the same time as star-gas interactions

and large scale stellar dynamics. Effective numerical modelling of cluster formation

must therefore be highly multi-scale. Despite these challenges, it is essential to address

the problem of star cluster formation, as most stars are formed in a clustered environ-

ment (Lada & Lada 2003; Portegies Zwart et al. 2010).

Recent reviews of stellar multiplicity in the Galactic field (Duchêne & Kraus 2013;

Moe & Di Stefano 2017) and of protostars embedded in gas (Reipurth et al. 2014) show

that most stars, at all evolutionary stages, live in binaries or higher order systems.

Surveys of low mass stars (e.g. Fischer & Marcy 1992; Reid & Gizis 1997; Delfosse et al.

2004; Winters et al. 2019), solar-type stars (e.g. Abt & Levy 1976; Duquennoy & Mayor

1991; Raghavan et al. 2010) and intermediate and high mass stars (e.g. Sana & Evans

2011; Sana et al. 2012; Chini et al. 2012) also reveal a correlation between multiplicity
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and stellar mass. Both the fraction of stars in multiple systems and the average number

of companions per primary increase with increasing primary mass: about 27% of low

mass stars are in multiple systems (Delfosse et al. 2004; Winters et al. 2019), while

multiplicity fraction is about 45% for solar-type (Raghavan et al. 2010) and A-type (De

Rosa et al. 2014) stars, and is larger than 90% for high mass stars (Moe & Di Stefano

2017, and references therein).

Despite the ubiquity of binary systems, simulations of star cluster formation and

dynamical evolution often use simplistic prescriptions for primordial binaries (i.e. bi-

naries formed during star formation, e.g. Kroupa 1995; Sills & Bailyn 1999; Portegies

Zwart et al. 2001; Leigh et al. 2013; Rastello et al. 2020) or ignore them altogether (e.g.

Portegies Zwart et al. 1999; Pelupessy & Portegies Zwart 2012; Sills et al. 2018; Wall

et al. 2019), primarily because primordial binaries remain poorly understood via either

observations or simulations. Most observations of binaries in star forming regions (e.g.

Kouwenhoven et al. 2005; Reipurth et al. 2007; King et al. 2012) are of visual bina-

ries, with intermediate separation; binaries with smaller or larger separations are hard

to observe. Nonetheless, a significant proportion of stars in star forming regions and

in clusters are found in binary systems. Observations of stellar multiplicity in proto-

stars indicate that binary fraction decreases with age, which is attributed to dynamical

interactions between the stars (Tobin et al. 2016b).

Multiplicity is also influenced by environment. Binarity in globular clusters is anti-

correlated with cluster luminosity (Milone et al. 2016), and binarity in open clusters is

anti-correlated with cluster density (Duchêne et al. 1999). Young clusters have field-like

binary fractions (Duchêne et al. 1999; Duchêne et al. 2018; Sana & Evans 2011), and there

is no clear difference between the distributions of periods, mass ratios and eccentricities

in the field and in young clusters for massive stars (Sana & Evans 2011). Conversely,

loose stellar associations have binary fractions higher than in the field (Duchêne et al.
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1999; Duchêne et al. 2018). The presence of binary systems in star clusters influences

their dynamical evolution, for example by facilitating evaporation. Binaries with low

binding energy are disrupted, while energetic binaries become more tightly bound and

transfer kinetic energy to the cluster, thus accelerating its dissolution (e.g. Heggie 1975;

Hills 1975). Appropriate choices of sub-grid model for binary formation and binary

parameters – such as the separation or mass ratio of the generated systems – are therefore

also required for realistic star cluster formation simulations.

The fact that binary systems can be both formed (e.g. Kouwenhoven et al. 2010;

Parker & Meyer 2014) and destroyed (e.g. Parker et al. 2009; Parker & Goodwin 2012) by

the evolution of young clusters further complicates the problem. Although a reasonable

assumption would be that some separations (and hence some periods) are associated

with primordial formation and others with dynamical formation, it is not so simple.

Simulations (e.g. Offner et al. 2010; Sigalotti et al. 2018) and observations (e.g. Tobin et

al. 2016a; Lee et al. 2017) show that turbulent core fragmentation and disk fragmentation

are viable mechanisms to form binaries during star formation, with separations up to ∼

1000 AU. Simulations have also shown that binaries with semi-major axes between 1000

AU and 0.1 pc can be formed during the dissolution of young star clusters (Kouwenhoven

et al. 2010). Tokovinin (2017) argues that binaries with such separations are more

prevalent than what would be predicted by dynamical interactions alone, and proposes

that stars forming in adjacent cores could be bound as primordial binaries. Conversely,

dynamical interactions in a young cluster can also form binaries with separations well

below 1000 AU (e.g. Parker & Meyer 2014; Wall et al. 2019).

We develop a new binary generation algorithm consistent with observations of mass

dependent binary fraction and distributions of orbital periods, mass ratios and eccentric-

ities. As an ansatz, we use the observed distribution of zero-age main sequence binary

systems in the Galactic field to generate our population. Our choice is motivated by
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the quality of the observations for this population and by the simulations conducted

by Parker & Meyer (2014): with pure N-body simulations of star forming regions, they

find that using the distributions of binary fraction, mass ratio and period in the field

as initial conditions can reproduce the field distribution after dynamical evolution. Our

distributions can however be readily modified to investigate different primordial binary

distributions. We use the star cluster formation code Torch (Wall et al. 2019) to

demonstrate the impacts of our new binary generation algorithm on the earliest stages

of star cluster formation, up to the formation of the first massive stars.

In Section 3.2, we describe our simulation environment and our binary generation

algorithm. In Section 3.3, we present our suite of simulations. In Section 3.4, we compare

the properties of binary systems in the simulations including primordial binaries and

in those starting with only single stars. We summarize our results and discuss their

implications in Section 3.5.

3.2 Methods

3.2.1 Simulating cluster formation with Torch

Torch1 uses the AMUSE framework (Portegies Zwart & McMillan 2019) to couple

self-gravitating, magnetized gas modelled by the magnetohydrodynamics (MHD) adap-

tive mesh refinement (AMR) code Flash (Fryxell et al. 2000) with the N-body code

ph4 (McMillan et al. 2012) and the stellar evolution code SeBa (Portegies Zwart &

Verbunt 1996). We use Flash with a Harten–Lax–van Leer Riemann solver resolving

discontinuities (HLLD, Miyoshi & Kusano 2005) and an unsplit MHD solver (Lee 2013)

with third order piecewise parabolic method (PPM) reconstruction (Colella & Wood-

ward 1984) for gas dynamics, and a multigrid solver for gravity (Ricker 2008). We handle

the gravitational effects of the gas and the stars on one another by a leapfrog integration
1https://bitbucket.org/torch-sf/torch/branch/binaries

commit 28a27574f667e8a580fe964f5ff185d4fb63f1e7
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between the two systems (see Wall et al. 2019). Similar gravity bridges have been used

previously to couple direct N-body codes with smoothed particle hydrodynamics (SPH)

codes (e.g. Pelupessy & Portegies Zwart 2012; Sills et al. 2018) and with the AMR code

RAMSES (Gavagnin et al. 2017).

Torch is also optimized to deal with multiple stellar systems. Resolving repeated

close encounters between the members of a stable, unperturbed system (e.g. a binary or

a hierarchical triple) with the N-body integrator prohibitively shortens the timestep. For

each binary or higher order system deemed stable by the Mardling criterion (Mardling

2008, by which triples can have at most one orbital resonance to avoid instability due

to large energy exchanges between the orbits), we use multiples (Portegies Zwart &

McMillan 2019), which replaces the stars by the systems’ centres of mass in ph4. The

internal configuration of the system is saved, and the positions of the stars within the

system are only computed if the system is perturbed. The encounter between the system

and the perturbing star is then resolved with the few-body solver smallN (Hut et al.

1995; McMillan & Hut 1996).

Star formation is handled by a sub-grid model via sink particles, which are formed

in regions of high local gas density and converging flows, following Jeans’ criterion and

the additional conditions detailed in Federrath et al. (2010). When a sink forms, we use

Poisson sampling to generate a list of stars it will form by drawing stellar masses from

a Kroupa 2001 initial mass function (IMF, Sormani et al. 2017; Wall et al. 2019), with

a minimum sampling mass of 0.08 M� and a maximum sampling mass of 150 M�. We

randomize the list of stars; each star is then formed in order when the sink has accreted

sufficient mass. Once it is formed, the sink follows the location of the centre of mass of

the local stars and gas, and continues accreting gas.

Torch also includes stellar feedback, heating and cooling, which are handled via

sub-grid models. The amount and location of the feedback depends on the evolution
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(via SeBa) of the specific stars formed in the simulation. It uses the Flash module

Fervent (Baczynski et al. 2015) for photoionization, direct ultra-violet (UV) radiation

pressure from massive stars and photoelectric heating from far-UV radiation. It uses

the method of Wall et al. (2020) for stellar winds, and does not include either indirect

radiation pressure or protostellar outflows.

3.2.2 Binary generation algorithm

We want to generate a final stellar population that is consistent with the observed IMF,

and that also ultimately reproduces the observed binary properties after cluster interac-

tions. However, the effects of the cluster interactions on the primordial binary population

are still poorly understood, and observations are not sufficient to have a complete and

accurate picture of the properties of binary systems at birth. Nonetheless, observa-

tions (e.g. Sana & Evans 2011) and simulations (e.g. Parker & Meyer 2014) suggest that

the multiplicity fraction and period, mass ratio and eccentricity distributions in young

clusters are consistent with the field population. Volume-limited observations of binary

systems in the galactic field, for systems with mass ratios M2/M1 ≥ 0.1, are complete

for a very large range of orbital periods (Moe & Di Stefano 2017; Winters et al. 2019).

They are also obtained from much larger samples than observations of young clusters.

We therefore adopt for our first suite of simulations a population of primordial bina-

ries with mass-dependent binary fraction and properties consistent with observations of

zero-age main sequence stars in binary systems in the Galactic field. Our framework can

also be adapted to explore other primordial binary populations.

Mass-dependent binary fraction

For simplicity, and following previous studies of binary population synthesis (e.g. Kroupa

2001; Kouwenhoven et al. 2009; Parker & Meyer 2014), we do not form any triple or

quadruple systems primordially. These are known to be ubiquitous for B and O-type
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primaries (e.g. Sana et al. 2012; Moe & Di Stefano 2015), but represent only 3% of

systems for M-dwarfs (Winters et al. 2019) and 10% of systems for solar-type stars (Moe

& Di Stefano 2017), which account together for > 90% of main-sequence stars (Kroupa

2001). We treat the mass dependent multiplicity fraction as a mass dependent binary

fraction, in order to include all systems included in studies of stellar multiplicity. Since

it is hard to determine observationally if there are any unresolved components to a

system, most reviews of stellar multiplicity make no distinction among binaries, triples

and higher order systems in their distributions of multiplicity fraction, period, mass ratio

and eccentricity. We hence implement a mass dependent binary fraction, which reflects

observed distributions of multiplicity fraction.

For each list of stellar masses obtained at the formation of a sink, we treat each star

as a potential primary, and use the primary mass dependent binary fraction to determine

if the star is in a binary system. Single stars and primaries are therefore drawn directly

from the IMF, while companions are drawn from mass ratio distributions. For each

potential primary, we use a random number generator to obtain a number between 0

and 1; the star is found to be in a binary system if the random number is below the

mass dependent multiplicity fraction. After a large number of draws, the binary fraction

approaches the prescribed multiplicity fraction.

For low-mass stars, we use the observed multiplicity fraction of M-dwarfs in the solar

neighbourhood, for primary masses in the mass bins 0.08 – 0.15 M�, 0.15 – 0.30 M�

and 0.30 – 0.60 M� (Winters et al. 2019). For solar-type stars and above, we use the

observed multiplicity fractions for primary masses 0.8 – 1.2 M�, 2 – 5 M�, 5 – 9 M�,

9 – 16 M� and above 16 M� (Moe & Di Stefano 2017). Between 0.6 M� and 0.8 M�,

and between 1.2 M� and 2 M�, we interpolate linearly between the observed multiplicity

fractions. We summarize the multiplicity fractions in Tables 3.1 and 3.2.
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Table 3.1: Multiplicity properties from Winters et al. (2019). M1 is the
primary mass, F is the binary fraction, µa is the mean projected separa-
tion around which the lognormal probability distribution is centered, µP

(days) is the corresponding period in days (assuming a circular orbit) and
log σP is the standard deviation of the lognormal distribution. With the
exception of the binary fraction and the period, all the other properties
for systems with M1 ≤ 0.60 M� are obtained from the same distributions
as systems with M1 ∼ 1 M� (see Table 3.2, top row).

M1 F µa (AU) µP (days) log σP
0.08− 0.15 M� 0.16 7 103.83 4.12
0.15− 0.30 M� 0.21 11 104.12 4.37
0.30− 0.60 M� 0.28 49 105.10 4.78

Table 3.2: Multiplicity properties from Moe & Di Stefano (2017). M1
is the primary mass, F is the binary fraction, P is the period range, FP

is the relative probability for a system to have a period in a given range;
γ≥0.3 is the power-law exponent of the mass ratio distribution for q ≥ 0.3
and γ<0.3 is the power-law exponent of the mass ratio distribution for
q < 0.3.

M1 F P (days) FP γ≥0.3 γ<0.3
0.8− 1.2 M� 0.40 100.5−1.5 0.06 −0.5 0.3

102.5−3.5 0.13 −0.5 0.3
104.5−5.5 0.22 −0.5 0.3
106.5−7.5 0.17 −1.1 0.3

2− 5 M� 0.59 100.5−1.5 0.10 −0.5 0.2
102.5−3.5 0.16 −0.9 0.1
104.5−5.5 0.18 −1.4 −0.5
106.5−7.5 0.12 −2.0 −1.0

5− 9 M� 0.76 100.5−1.5 0.11 −0.5 0.1
102.5−3.5 0.18 −1.7 −0.2
104.5−5.5 0.16 −2.0 −1.2
106.5−7.5 0.09 −2.0 −1.5

9− 16 M� 0.84 100.5−1.5 0.13 −0.5 0.1
102.5−3.5 0.17 −1.7 −0.2
104.5−5.5 0.15 −2.0 −1.2
106.5−7.5 0.09 −2.0 −2.0

≥ 16 M� 0.94 100.5−1.5 0.14 −0.5 0.1
102.5−3.5 0.16 −1.7 −0.2
104.5−5.5 0.15 −2.0 −1.2
106.5−7.5 0.09 −2.0 −2.0
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Period distribution

Periods also depend on primary mass. For each primary, we obtain the orbital period by

drawing it from the chosen probability distribution for the corresponding mass range,

sampled with the rejection method (Von Neumann 1951). For each primary, we pick a

pair of random numbers – here, a period between 100.5 and 107.5 days and a number

between 0 and the maximum value of our probability distribution surface – and accept

the pair if the point it defines in parameter space lies below our probability distribution.

If it lies above our probability distribution, we reject the pair and repeat the algorithm

until a pair is accepted (following the algorithm from Press et al. 2007, §7.3.6). For

primary masses below 0.60 M�, we use the lognormal distributions from Winters et al.

(2019), which are given for each of the primary mass bins discussed above. For each

primary mass range, Moe & Di Stefano (2017) give probabilities at different period

values; we extend each given value over one order of magnitude in period (in days), then

linearly interpolate between two different period ranges. We use the same mass bins as

defined above, but extend the 0.8 – 1.2 M� range down to 0.6 M� and up to 1.6 M�,

while we extend the 2 – 5 M� range down to 1.6 M�. We therefore have a probability

distribution depending on both primary mass and period.

Companion mass distribution

We obtain the companion masses from distributions of mass ratios q = M2/M1, whereM1

is the primary mass, M2 is the companion mass and q ≤ 1 by definition. Kouwenhoven

et al. (2009), in a review of binary pairing functions, summarize as follows the different

possible ways to assemble a binary system:

1. Random pairing Two stars are independently drawn from the IMF; the most

massive is labelled as the primary. Random pairing of stars from the Kroupa IMF

results in a uniform distribution of system masses (Kroupa 2001), which Kouwen-

hoven et al. (2009) find to result in mass ratios inconsistent with observations.
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2. Primary-constrained random pairing The primary is drawn randomly from the

IMF; the companion is then also drawn from the IMF, but with the constraint that

it must be less massive than the primary. This pairing function does not reproduce

observed mass ratios either (Kouwenhoven et al. 2009).

3. Primary-constrained pairing The primary is drawn randomly from the IMF; the

companion is then drawn from the mass ratio probability distribution. This tech-

nique is meant to be used with a stellar IMF (e.g. Kroupa 2001). It is compatible

with observations, and allows for the use of a primary mass dependent mass ratio

distribution, which is observed in nature.

4. Split-core pairing The system mass is drawn randomly from a distribution of

system or core masses, then fragmented as a mass ratio is drawn from an observed

probability distribution. This technique is meant to be used with a system initial

mass function (e.g. Chabrier 2003). It is also compatible with observations.

Both primary-constrained pairing (iii) and split-core pairing (iv) can reproduce obser-

vations of stellar masses and mass ratios concurrently, as well as of a mass dependent

binary fraction. They require different pieces of information to implement. Primary-

constrained pairing requires a distribution of stellar masses, and primary mass dependent

binary properties; split-core pairing requires a distribution of system masses, and can be

implemented with primary mass dependent binary properties. We choose to assemble

the binary systems with primary-constrained pairing, by drawing primary masses from

a Kroupa (2001) IMF then obtaining the companion masses from the observed primary

mass and period-dependent mass ratio distributions. Torch uses by default the Kroupa

(2001) initial mass function, and it is the initial mass function that was used in the orig-

inal suite of simulations (Wall et al. 2019; Wall et al. 2020). We use the same initial

mass function for ease of comparison and consistency.
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We use the probability distributions from Moe & Di Stefano (2017), which we extend

to lower masses. The mass ratio probability distributions are modelled as power laws,

pq ∝ qγ (3.1)

where the exponent γ is a function of the mass ratio range, the primary mass and the

orbital period. We consider three primary mass ranges, 0.08−2 M�, 2−5 M� and above

5 M�; the first mass range is extended from the 0.8−1.2 M� range provided by Moe & Di

Stefano (2017) since Winters et al. (2019) admit that their results are likely incomplete

at low companion masses. For each of these mass ranges, we consider a broken power

law, with γ defined for mass ratios between 0.1 and 0.3, and above 0.3. Finally, the

probability is given at different values of the period, between which we interpolate with

the same technique as for the period probability distribution. From there, we use the

rejection method to obtain a mass ratio.

We reject mass ratios that would result in substellar companions. We also note that

observations are unreliable below q ≤ 0.1 (Duchêne & Kraus 2013; Moe & Di Stefano

2017; Winters et al. 2019). Price-Whelan et al. (2020), in their analysis of 20,000

close binary systems, acknowledge that their observations are incomplete at low mass

ratios. At the high mass end, the problem is most prevalent for spectroscopic searches at

intermediate separations (Kobulnicky et al. 2014). In open clusters, Sana & Evans (2011)

are only confident in their observations for q ≥ 0.2 for massive binaries, while Deacon

& Kraus (2020) are unable to detect companions with q ≤ 0.1 and estimate that they

detect only ∼ 50% of systems with q = 0.3 in their surveys of wide binaries in Alpha

Per, the Pleiades and Praesepe. Following the completeness limit of Moe & Di Stefano

(2017) and Winters et al. (2019), we therefore also reject mass ratios below q = 0.1.
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Eccentricity distribution

The eccentricity probability distribution is similarly modelled as a broken power law, as

a function of primary mass and period,

pe ∝ eη (3.2)

where η = 1 would result in a thermal distribution and η = 0 would result in a uniform

distribution. Following Moe & Di Stefano (2017), we define

η = 0.6− 0.7
(log(P/days)− 0.5) (3.3)

for primary masses up to 5 M�, while for primary masses above 5 M�, we define

η = 0.9− 0.2
(log(P/days)− 0.5) . (3.4)

We further define a period-dependent upper limit on the eccentricity, to avoid binary

systems with filled Roche lobes. We use the analytic form of the maximum eccentricity

from Moe & Di Stefano 2017,

emax(P ) = 1−
(

P

2 days

)−2/3

(3.5)

which is defined for orbital periods longer than 2 days; we assume all binary systems with

shorter periods are circularized (Raghavan et al. 2010). We use the rejection method to

obtain the eccentricities.

Algorithm test

We test our algorithm by generating a list of stars starting from an initial mass function

normalized to 10,000 M� and our ansatz of observed field binary properties. We then
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Figure 3.1: Mass dependent binary fraction, for main sequence stars in
the solar neighbourhood (Moe & Di Stefano 2017; Winters et al. 2019) and
for our binary generation algorithm. The errors in x correspond to the
bin widths; the errors in y in the observations are from the observational
uncertainties while the errors in y on the algorithm data are from the
Poisson statistical error.

apply our algorithm to determine which stars are in binary systems; we obtain the period,

companion mass and eccentricity for each binary system. We verify that our algorithm

indeed reproduces the mass dependent binary fraction observed in the galactic field

(Figure 3.1) and compare our full stellar mass distribution to the initial mass function

(Figure 3.2). We also consider our distributions in the primary mass vs. mass ratio

parameter space (Figure 3.3). We generate no systems with a mass ratio q < 0.1 and

form no stars with a mass below the hydrogen burning limit.

3.2.3 Implementing primordial binaries in Torch

To place a star within the simulation, it must be the next star in the list of stars to

be formed by a sink particle, and the sink must have accreted a gas mass equal to or

greater than the star’s mass. When a star is formed, its mass is subtracted from the
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Figure 3.2: Distribution of stellar masses, for the single stars and pri-
maries drawn from the Kroupa initial mass function (red) and the com-
panions obtained from the mass ratio probability distribution (grey). The
Kroupa initial mass function normalized to 10,000 M� (solid line) and to
the total stellar mass (dotted line) is provided as a guide for the eye.
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Figure 3.3: Distribution of mass ratios against primary masses. Our
algorithm restricts mass ratios to be higher than 0.1, as observations are
highly incomplete below this value. The red line denotes the companion
mass corresponding to the hydrogen-burning limit; note that no substellar
companions are generated.
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sink mass. The star thus formed can be located within the sink’s accretion radius, but

will be treated by the simulation as a particle distinct from the sink. The local gas

temperature must be below 100 K at the time of star formation; if the gas temperature

is higher, star formation is delayed. Assuming primordial binaries formed through disk

or core fragmentation would become stars at the same time, we ensure that stars formed

in a binary system are formed at the same time in the simulation. We therefore modify

the condition for star formation to require that the mass of a system (whether a single

star or a binary) must be accreted by the sink particle before either star is formed. This

additional mechanism does not modify the routine to form single stars, but ensures that

primaries and their companions are formed simultaneously in the simulation.

The binary systems we generate with our algorithm must be introduced in the simula-

tion with positions and velocities consistent with their orbital properties. We randomize

the orbit’s orientation by randomizing the inclination, longitude of the ascending node

and argument of periapsis, and obtain the relative positions and velocities of the stars

by picking a random time in the orbit. The locations of the binaries’ centres of mass

are chosen in the same way as single stars’ positions in Torch (Wall et al. 2019). The

position of each star within the simulation domain is finally obtained by adding together

the position of the sink in which it forms, the position vector of the centre of mass of

the system relative to the sink, and the position vector of the star relative to its sys-

tem’s centre of mass. For binaries with long periods or very eccentric orbits, a star can

be formed outside the sink if required by their orbital parameters. Single stars inherit

the velocity of the sink at the time of formation, plus a random fraction of the local

sound speed (Wall et al. 2019). We adopt this prescription for the systems’ centres of

mass. For stars in a binary system, their velocity is obtained from the addition of the

sink’s velocity, the random component from the local sound speed, and the velocity with

respect to the centre of mass velocity.
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3.3 Simulations

Initial tests of Torch (Wall et al. 2019; Wall et al. 2020) have shown that the time

evolution of the star formation rate and the spatial distribution of star formation are

highly stochastic, and depend strongly on the initial conditions. We therefore adopt a

single set of initial conditions for our full suite of simulations, to investigate solely the

impact that the presence or absence of primordial binaries has on the final distributions

of binaries. We initialize all our simulations from the same spherical cloud of dense

neutral gas with a mass of 104 M�, a virial parameter of 0.4, a radius of 7 pc and

a Gaussian density profile with central density 8.73 x 10−22 g/cm3. The initial cloud

has a central temperature of 20.64 K and sits in a medium of warm neutral gas with a

temperature of 6.11 x 103 K and a density of 2.18 x 10−22 g/cm3. Each simulation uses

the same initial turbulent Kolmogorov velocity spectrum but a different random seed

for the stellar masses. There is no initial magnetic field. The gas follows an adiabatic

equation of state with γ = 5/3. The simulations include atomic, molecular and dust

cooling, as well as ionization, following Wall et al. (2020).

Galactic effects are ignored, as the clusters are evolved for t . 3.2 Myr. Tidal

perturbations or disk crossing effects are unlikely to have an impact on the cluster’s

structure on such a timescale (e.g. Kruijssen et al. 2011; Miholics et al. 2017). The

size of the simulation box (∼ 18 pc) is large enough to ensure the choice of boundary

conditions does not have a strong impact on the outcome of the simulation: observed

star clusters in nearby galaxies with the same stellar mass as our simulations have half-

mass radii one order of magnitude smaller than the box size (Krumholz et al. 2019, and

references therein). We use zero-gradient boundary conditions, which allow the gas and

stars to leave the domain. The choice of spatial resolution (∼ 0.05 pc) is appropriate

to model the gas dynamics in the cluster, excluding star formation which is treated

by a sub-grid model. The resolution is approximately one order of magnitude smaller
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than the average separation between stars in dense clusters (Krumholz et al. 2019, and

references therein) and thus resolves well the behaviour of the gas between the stars.

We perform a total of 15 simulations, at two different maximum Flash refinement

levels. At our lowest refinement level, we perform five simulations with primordial bi-

naries and five without primordial binaries; at our highest refinement level, we perform

four simulations with primordial binaries and one simulation without primordial bina-

ries. The least resolved regions in all our simulations are at refinement level 4 and have

a gas spatial resolution of 0.136 pc. The spatial and mass resolutions of our simulations

are presented in Table 3.3. In our analysis, we use the combined results of groups of

simulations to ensure we have a large population of systems to analyze. We will use the

variation between simulations to quantify the uncertainty in our results and the numeri-

cal effects of resolution. We denote our suites of simulations with primordial binaries at

refinement levels 5 and 6 as respectively M4r5b and M4r6b, and our suite of simulations

without primordial binaries at refinement level 5 as M4r5s. We refer to our full suites

of simulations at refinement levels 5 and 6 as respectively M4r5 and M4r6; similarly, we

refer to our full suite of simulations with primordial binaries as M4b and to our full suite

of simulations without primordial binaries as M4s. We perform our analysis with 9866

stars in M4r5b, 9016 stars in M4r5s, 6384 stars in M4r6b and 1517 stars in M4r6s. We

plot the results from M4r5, as this suite of simulations has the most stars.

We summarize the time of onset of star formation, the time at which the simulation

is ended, the maximum stellar mass, the number of stars and the total stellar mass for

each of our simulations in Table 3.4. Since the only difference between the different

simulations at the same resolution is in the stellar sampling, star formation starts at

the same time and the first sink forms at the same location for all simulations at the

same resolution. We present two examples of the time evolution of the star formation

rate in Figure 3.4. In Figure 3.5, we present the projected density for nine simulations,
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Table 3.3: Spatial and mass resolution, at maximum refinement level ref.
∆x denotes the minimum zone size while ∆m and ρc denote respectively
the maximum mass and the maximum density in a grid cell to trigger
sink formation, assuming a sound speed cs = 1.9 x 104 cm s−1 (following
Federrath et al. 2010)

.
ref ∆x (pc) Sink diameter (AU) ∆m (M�) ρc (g cm−3)
5 6.83 x 10−2 7.05 x 104 1.80 x 10−2 3.82 x 10−21

6 3.42 x 10−2 3.53 x 104 9.00 x 10−3 1.53 x 10−20

a minimum of ∼ 1.5 Myr after the onset of star formation. We note that the general

structure of the gas and the sink locations are very similar in all simulations, as expected

since all the simulations start from the same initial gas conditions. Nevertheless, the

number of stars and their locations, as well as the total stellar mass, differ among the

simulations. At similar times, there are spreads of 18% in number of stars and 24% in

stellar mass. Our simulations end at 1.5 – 2 Myr after the start of star formation, at

the time when feedback from massive stars starts to have a significant impact on the gas

properties. Therefore, our simulations probe the earliest stages of star cluster formation,

when the dominant physical effects are gas collapse and star formation, combined with

dynamical interactions between stars, binary systems, and their natal gas.
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Figure 3.4: Star formation rates for M4r5b-4 (top) and M4r6s (bottom).
The solid black line shows the rate smoothed over 1 kyr (left axis) and
the blue points shows the masses of the individual stars formed in the
simulation (right axis). The total stellar masses are respectively 2.14
x 103 M� and 7.60 x 102 M� for M4r5b-4 and M4r6s. Peaks in star
formation rate coincide with the formation of massive stars, and there is
an overall increase of the star formation rate as the simulation progresses.
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Figure 3.5: Final projected density distribution in the simulations (from
top left to bottom right) M4r5b-1, M4r5b-3, M4r5b-4, M4r5s-2, M4r5s-3,
M4r5s-4, M4r6b-2, M4r6b-4 and M4r6s. The white circles are the full
sample of stars in the simulations; the radius of the circle is proportional
to the stellar mass. All simulations use the same initial conditions, which
is reflected by the very similar gas configurations. We note however dif-
ferences in the locations and masses of the stars, and expect to see these
differences reflected in the gas configuration once feedback becomes more
important. The total stellar mass and number of stars for each simulation
can be found in Table 3.4.
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Table 3.4: Simulations. All simulations have a total gas mass 104 M�
and a minimum refinement of 4. The number after r denotes the max-
imum refinement level and the last letter indicates if the simulation in-
cludes primordial binaries (b) or single stars only (s). t∗ denotes the time
of the onset of star formation and t denotes the time at which the simu-
lation has ended; Mm denotes the mass of the most massive star, N∗ is
the number of stars in the simulation, and M∗ is the total stellar mass.

Name t∗ (Myr) t (Myr) Mm (M�) N∗ M∗ (M�)
M4r5b-1 1.12 2.61 17.61 1575 706
M4r5b-2 1.12 2.43 67.13 976 490
M4r5b-3 1.12 2.64 40.25 1661 774
M4r5b-4 1.12 3.20 57.65 4704 2143
M4r5b-5 1.12 2.36 32.83 950 417
M4r5s-1 1.12 2.43 59.25 877 473
M4r5s-2 1.12 2.91 22.87 2487 1204
M4r5s-3 1.12 2.65 68.49 1493 806
M4r5s-4 1.12 2.94 78.84 2719 1400
M4r5s-5 1.12 2.64 68.49 1440 774
M4r6b-1 1.21 2.65 10.92 1749 685
M4r6b-2 1.21 2.68 38.85 1650 734
M4r6b-3 1.21 2.60 16,42 1531 610
M4r6b-4 1.21 2.66 20.23 1454 659
M4r6s 1.21 2.68 46.57 1517 760
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3.4 Binary properties

As discussed in Section 3.2.2, observations of binary stars in the galactic field and in

open clusters are only complete for mass ratios q ≥ 0.1; consequently, our algorithm

only generates primordial binaries with such mass ratios. Our work differs from previous

studies of dynamical binary formation in clusters (e.g. Wall et al. 2019) or of evolution of

a population of primordial binaries in clusters (e.g. Parker & Meyer 2014) by taking into

account this observational limit, and comparing directly our population of binary systems

with q ≥ 0.1 to the observed field population. We emphasize that any system with mass

ratio q < 0.1 would not have been included in the surveys on which our work is based.

Where applicable, we therefore present two different sets of comparison: the comparison

between our full simulation results and the field population (for consistency and ease of

comparison with earlier literature), and the comparison between our simulation results

with q ≥ 0.1 (hereafter, observable simulation results) and the field population.

To consider stars to be members of a binary, we require the stars to be gravitation-

ally bound and perturbations by the other cluster stars must be comparatively small.

Following Wall et al. (2019), we consider a system with primary mass M1, companion

mass M2 and semi-major axis a to be perturbed if there is a star with mass Mp and

within a distance d of the system’s centre of mass such that

4a2

M1M2

∣∣∣∣∣ M1Mp

(d− a)2 −
M2Mp

(d+ a)2

∣∣∣∣∣ > 3. (3.6)

To avoid considering stable triple systems as perturbed binaries, we add a condition that

the system will not be considered perturbed if the third star is gravitationally bound

to either the primary or the companion. Our conclusions are robust to the addition

of this condition. To account for possible triple or higher order systems, we calculate

the binary fraction as a function of primary mass as the fraction of stars in each mass

range that are primaries (i.e. the most massive star in a stable system) but include each
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Figure 3.6: Binary fraction as a function of primary mass in M4r5, for
the full binary population (top) and for observable systems (bottom). The
primordial binaries formed in M4r5b, the binaries present at the end of
M4r5b and those present at the end of M4r5s are denoted respectively
by the black, red and blue thin crosses. The primordial and final binary
fractions are exactly equal for the highest mass bin in the bottom panel.
Observations from main sequence stars in the solar neighbourhood (Moe &
Di Stefano 2017; Winters et al. 2019), with mass ratios ≥ 0.1, are provided
for comparison as the solid grey crosses. Binaries from the simulations
of Wall et al. (2019), which do not include primordial binaries, are denoted
by the thick black crosses. All the errors in x correspond to the bin
widths and the errors in y in the observations are from the observational
uncertainties. The y errors on the simulation data from Wall et al. are
1/
√
N (see Wall et al. 2019). The y errors on our simulation data are

from the Poisson statistical errors: 1/
√
N for N > 100 and the tabulated

1 σ confidence interval for N ≤ 100 (Gehrels 1986; Hughes & Hase 2010).
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primary-companion pair in our analysis of binary properties.

3.4.1 Binary fractions

We compare the binary fraction from observations of main sequence field stars (Moe &

Di Stefano 2017; Winters et al. 2019), the fraction of stars we form in primordial binaries,

and the fraction of stars in unperturbed binary systems at the end of M4b and M4s. We

plot the binary fraction as a function of primary mass for our full binary population (all

q’s) and for observable systems (q ≥ 0.1) in M4r5 in Figure 3.6.

We first consider our observable simulation results, which only include binary systems

with q ≥ 0.1. As expected, primordial binaries generated with our algorithm result in

field-like binary fractions at all masses (see Figure 3.1). The final distribution in M4b is

consistent within uncertainties with observations and primordial fractions at all primary

masses; we nevertheless note that the final fraction tends to be lower than either the

observations or the primordial fraction. This trend is present at both resolutions; in

M4r6b, the observable binary fraction between 0.30 and 0.60 M� is lower than what

would be predicted by observations of main sequence field stars. This indicates that some

primordial binaries are destroyed by dynamical interactions during cluster formation.

The final distribution in M4s is not consistent within uncertainties with observations,

at any primary mass. It is however consistent within uncertainties with the primordial

and final distributions in M4b for the two highest mass bins, where uncertainties are very

large.

For the full population of binary systems, we reproduce the results from Wall et

al. (2019) and find that, at high primary masses, pure dynamical formation results in

binary fractions consistent with observations of main sequence field stars. We also find

that with our field-like prescription for primordial binaries, our full binary population

is consistent with observed binary fractions at all primary masses. We emphasize that
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these results should be used for comparison with previous literature, but do not reflect

what we can observe due to the q ≥ 0.1 detection limit in solar-neighbourhood surveys.

Although pure dynamical formation leads to observable binary fractions consistent

within uncertainties with observations at high primary masses, we argue that this is due

only to the large uncertainties arising from the very small number of stars in the highest

mass bins. In contrast with Wall et al. (2019), we find that we need primordial binaries

at all primary masses in order to be consistent with observations of main sequence field

stars, due to the additional constraint that our systems must have large enough mass

ratios to be seen in observations.

3.4.2 Final binary properties

We compare the final distributions of primary masses, mass ratios, semi-major axes and

eccentricities in our simulations, and test the null hypothesis that they are drawn from

the same distribution with the Mann-Whitney-Wilcoxon U -test (Wilcoxon 1945; Mann

& Whitney 1947), which is similar to the Kolmogorov-Smirnov test but more suitable

for larger numbers of data points. We consider the primordial distributions, and the full

and observable final distributions in M4b and M4s. Where relevant, we quote the lowest

confidence level we have between M4r5 and M4r6. The qualitative conclusions are always

the same at both resolutions for observable systems. When comparing the primordial

and final distributions, we find that our conclusions hold for each individual simulation.

We present the plot of the cumulative primary mass distributions for M4r5 in Fig-

ure 3.7. We do not reject the null hypothesis that the primordial and full final distribu-

tions of primary masses in M4b are drawn from the same underlying distribution. If we

consider only observable systems, however, we find that the systems detected at the end

of M4b have lower primary masses than the systems formed primordially in these simu-

lations (93.5% confidence). Furthermore, primary masses at the end of M4s are higher
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Figure 3.7: Cumulative distribution of primary masses in M4r5, for the
full binary population (top) and observable systems (bottom). The solid
black line denotes the primordial primary mass distribution in M4r5b, the
solid red line denotes the final distribution in M4r5b and the solid blue
line denotes the final distribution in M4r5s. The fainter lines denote the
corresponding primary mass distribution in individual simulations. Pure
dynamical formation results in systems with higher primary masses, while
the dynamical evolution of the cluster with primordial binaries favours
lower-mass primaries.
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Figure 3.8: Cumulative distribution of mass ratios in M4r5, for the full
binary population (top) and observable systems (bottom). The solid black
line denotes the primordial mass ratio distribution in M4r5b, the solid red
line denotes the final distribution in M4r5b and the solid blue line denotes
the final distribution in M4r5s. The fainter lines denote the corresponding
mass ratio distribution in individual simulations. Dynamical formation
in both M4r5b and M4r5s favours systems with smaller mass ratios: up to
50% of the systems formed in M4r5s have mass ratios below the detection
limit.
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Figure 3.9: Cumulative distribution of semi-major axes in M4r5, for the
full binary population (top) and observable systems (bottom). The solid
black line denotes the primordial semi-major axis distribution in M4r5b,
the solid red line denotes the final distribution in M4r5b and the solid
blue line denotes the final distribution in M4r5s. The fainter lines denote
the corresponding semi-major axis distribution in individual simulations.
Pure dynamical formation results in systems with much larger semi-major
axes; conversely, dynamical evolution during cluster formation results in
smaller semi-major axes.
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Figure 3.10: Cumulative distribution of eccentricities in M4r5, for the
full binary population (top) and observable systems (bottom). The solid
black line denotes the primordial eccentricity distribution in M4r5b, the
solid red line denotes the final distribution in M4r5b and the solid blue
line denotes the final distribution in M4r5s. The fainter lines denote the
corresponding eccentricity distribution in individual simulations. Pure
dynamical formation results in systems with much larger eccentricities.
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than in M4b, both at the beginning and end of the simulations (> 99.9% confidence).

We plot the cumulative mass ratio distributions for M4r5 in Figure 3.8. The mass

ratios for the full binary distributions at the end of M4b are consistent with having

been drawn from the same distribution as the primordial mass ratios. This result is in

agreement with previous studies of binaries in clusters (e.g. Parker & Reggiani 2013).

Mass ratios of observable systems, however, are larger than primordial mass ratios (91.6%

confidence). This alteration of the mass ratio distribution is in agreement with the results

from simulations of young (e.g. Parker & Goodwin 2012) and globular (e.g. Sollima 2008)

clusters. Mass ratios in M4s are smaller than those in M4b, either at the time of star

formation or at the end of the simulation (> 99.9% confidence).

The cumulative semi-major axis distributions for M4r5 are shown in Figure 3.9. We

find that the semi-major axes of systems detected at the end of M4b are smaller than

those of the primordial systems. We are confident at respectively 96.9% and > 99.9%

that it is the case for our full sample of systems, and our sub-sample of observable

systems. Conversely, the systems in M4s have larger semi-major axes than those formed

primordially or those detected at the end of M4b (> 99.9% confidence). This suggests

that systems with large semi-major axes are preferentially formed dynamically.

We also plot the cumulative distribution of eccentricities in M4r5 in Figure 3.10.

The systems detected at the end of M4b are more eccentric than the primordial sys-

tems formed in the simulation for either our full sample (99.6% confidence) or just the

observable systems (98.3%). This result is consistent with what we would expect of

long-term dynamical evolution of binary systems in clusters, where repeated dynamical

encounters increase eccentricities (e.g. Hills 1975; Heggie & Rasio 1996; Ivanova et al.

2006). Similarly, we are also confident at > 99.9% that systems in M4s have larger ec-

centricities than either those formed primordially or those detected at the end of M4b.

We argue that dynamical interactions form eccentric systems preferentially, causing the
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larger eccentricities in M4b and especially M4s.

All the changes we detect in the distributions are small but statistically significant.

They suggest that very early during cluster formation, while there is still a significant

amount of gas and active star formation, dynamical interactions between the stars al-

ready modify binary systems in a non-random way. This highlights the need for the

concurrent inclusion of gas and binaries in star cluster formation and early evolution

simulations.

3.4.3 Modification of primordial binaries

We investigate the fate of the systems formed primordially in our simulations. We

present the cumulative distributions of semi-major axes and eccentricities for surviving

systems (i.e. systems that have the same companion at the time of formation and

at the end of the simulation) in M4r5 in Figure 3.11. For M4r5b and M4r6b, we are

confident at respectively 96.2% and 85.2% that the primordial and final semi-major axes

are drawn from the same distribution. We are also confident at 83.1% and 89.7% that the

surviving systems are more eccentric at the end of the simulation than when they form.

This change in eccentricity of the surviving systems is consistent with our earlier result

that systems at the end of M4b tend to have larger eccentricities than the primordial

systems. Despite this result, the changes in the eccentricity distribution are very small,

and are unlikely to be dynamically significant. We would expect long term evolution to

cause an increase in eccentricity of hard binaries through dynamical interactions (Hills

1975; Heggie & Rasio 1996; Ivanova et al. 2006); we may see here the beginnings of this

phenomenon.

We also compare the properties of the surviving subset of primordial systems to

those of the full primordial population. The relevant primary masses, mass ratios, semi-

major axes and eccentricities are plotted in Figure 3.12. We quote our lowest confidence
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Figure 3.11: Cumulative distributions of semi-major axes (top) and ec-
centricities (bottom) for the primordial systems in M4r5b surviving to the
end of our simulations. The solid grey lines represent the initial properties
of the surviving systems, while the solid cyan lines represent their final
properties. The fainter lines denote the corresponding distributions in in-
dividual simulations. Out of the 1274 binary systems we detect in M4r5b,
1077 systems are surviving systems. The distribution of the semi-major
axes of the surviving systems at the end of the simulations is consis-
tent with their distribution at the time of star formation (96.2% confi-
dence). The final values of eccentricity are systematically larger (83.1%
confidence). By definition, the primary masses and mass ratios of these
systems are unchanged.
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level between M4r5b and M4r6b, and verify that our conclusions hold for the surviving

primordial binaries in any individual simulation. We are confident at 99.6% that the

primordial systems surviving to the end of the simulation have smaller primary masses

than the full primordial population. We are also confident at 98.5% that surviving

primordial systems have larger mass ratios than the full population of primordial systems.

This suggests that systems with high primary masses and small mass ratios are the

most likely to either be dynamically destroyed or change companion due to three-body

interactions.

We are confident at > 99.9% that surviving primordial systems have smaller semi-

major axes than the full primordial distribution. As the semi-major axes of surviving

systems are not modified, we attribute this to the preferred dynamical destruction or

modification of systems with large semi-major axes, as expected from the Heggie-Hills

Law (Heggie 1975; Hills 1975). Finally, we are confident at 67.9% that surviving primor-

dial systems have larger eccentricities than the full sample of primordial systems. On its

own, this result does not indicate that systems with smaller eccentricities are preferen-

tially destroyed, as it appears that the eccentricities of surviving systems increase during

the simulation. Our results indicate that primordial binaries are destroyed within our

simulations, and that systems may be more likely to be destroyed if they have certain

properties. They also suggest that the orbital properties of primordial systems may

already be modified in the earliest stages of cluster formation.

3.4.4 Dynamical binary formation

We also investigate whether the properties of the binaries formed dynamically in M4b

and M4s are the same. We present plots of the primary masses, mass ratios, semi-major

axes and eccentricities for binaries formed dynamically in M4r5 in Figure 3.13. In M4b,

we consider that a binary is formed dynamically if the primary changed companion or

the primary was not previously in a binary system.
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Figure 3.12: Cumulative distributions of primary masses, mass ratios,
semi-major axes and eccentricities for the primordial systems in M4r5b.
The black solid lines represent all the primordial systems formed in our
simulations and the solid cyan lines represent the primordial systems that
survive until the end of simulations. The fainter lines denote the corre-
sponding distributions in individual simulations. Out of 1789 primordial
systems, 260 were fully destroyed and 66 changed companions; 1463 sys-
tems survived to the end of our simulations. The distributions of primary
masses, mass ratios and semi-major axes are different for the full pri-
mordial population and the subset of surviving systems; it is ambiguous
whether the eccentricity distribution changed.

We find, with confidence > 99.9%, that the properties of binaries formed dynamically

in simulations including primordial binaries are different from either the properties of

primordial binaries or the properties of binaries formed dynamically in a simulation

without primordial binaries. Furthermore, we find that the cumulative distributions

of properties of binaries formed dynamically in M4b always lie between the cumulative

distributions for primordial binaries and for M4s. Binaries formed dynamically in the

presence of primordial binaries tend to have smaller primary masses than those arising

from pure dynamical formation, but larger primary masses than primordial binaries.

Conversely, they tend to have mass ratios smaller than the systems formed by pure

dynamical interactions, but larger than the primordial systems. In M4b, dynamical

binaries form with semi-major axes and eccentricities larger than the primordial systems,

but smaller than they do in M4s.

These early results are consistent with our expectations of dynamical formation of bi-

naries. In the case where binaries are formed primarily though single-single interactions,
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Figure 3.13: Cumulative distributions of primary masses, mass ratios,
semi-major axes and eccentricities for binary systems formed dynamically
in M4r5, and primordial binaries in M4r5b. The solid blue lines represent
the 281 systems detected in M4r5s, the solid orange lines represent the
66 systems where the primary changed companions and the 341 systems
formed dynamically with new primaries in M4r5b, and the solid black lines
represent the primordial binaries in M4r5b. The fainter lines denote the
corresponding distributions in individual simulations. The distributions
are different for all four parameters; we note that the cumulative distribu-
tions for dynamical binaries in M4r5b always lie between the cumulative
distributions for primordial binaries and M4r5s.

the resultant systems are more likely to have large primary masses, wide separations,

small mass ratios, and large eccentricities as seen in Figure 3.13. When binaries can be

formed through single-binary or higher order interactions, more complicated outcomes

occur. High-mass primaries are still favoured, but systems with lower primary masses

and high total mass (i.e. high mass ratio) are also likely to be involved in a dynam-

ical encounter. During higher-order encounters, the rule of thumb is that the lowest-

mass object involved in the encounter is ejected and replaced with a higher-mass object

(Sigurdsson & Phinney 1993). Therefore, we might expect that dynamical encounters

would tend to shift the mass ratio distribution towards larger values: the ejection of the

lowest-mass object would result in an increase of a system’s mass ratio following each

higher-order encounter. What we see in our simulations is that the systems which lose

their original companion and later gain another one are typically high mass systems with

comparatively very small companions at large semi-major axes, as shown in Figure 3.14.

These systems tend to replace their original companion by a lower-mass one, which goes
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Figure 3.14: Cumulative distributions of primary masses, mass ratios,
semi-major axes and eccentricities for surviving, modified and new binary
systems in M4r5b. The solid green lines represent the 341 systems formed
dynamically with new primaries in M4r5b, the solid magenta and orange
lines represent the 66 systems where the primary changed companions
respectively when they are formed and at the end of M4r5b, and the solid
cyan lines represent the surviving systems in M4r5b. The fainter lines
denote the corresponding distributions in individual simulations. The
distributions are all different except for the primary mass distribution,
which is by definition the same for the modified systems when they are
formed and at the end of the simulation.

against our expectations for higher-order encounters. However, we see evidence that

some of these weakly-bound binaries are broken up very soon after formation: some

primaries lose their original companion within the first 0.1 Myr after they are formed.

The massive primary then essentially acts like a single star, capturing low-mass single

stars on wide eccentric orbits, or exchanging into a lower-mass binary system.

We also create new binaries from primaries which were originally single stars. Those

primaries also have slightly higher masses than the underlying population, and be-

come binaries by capturing a lower-mass single star or exchanging into a binary sys-

tem. Tighter binary systems with smaller semi-major axes can be created through these

exchange encounters than in the single-single case, and the extreme eccentricities that

come from the near-parabolic encounters are not necessary when one of the original

systems is already a binary.
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3.5 Summary and discussion

3.5.1 Summary

We implement primordial binaries in the coupled MHD and direct N-body code Torch (Wall

et al. 2019), which couples Flash (Fryxell et al. 2000) with the N-body code ph4 (McMil-

lan et al. 2012) and the stellar evolution code SeBa (Portegies Zwart & Verbunt 1996) via

the AMUSE framework (Portegies Zwart & McMillan 2019). We develop an algorithm

to generate a population of binaries with mass-dependent binary fractions, periods, mass

ratios and eccentricities. We also modify the star formation routine in Torch to force

the concurrent formation of the stars in a binary system. As an ansatz, we use the field

distribution as our initial population of binaries. We perform 15 simulations; after the

initial onset of star formation in each simulation, we see continuous and increasing star

formation. Nine of our simulations include a population of primordial binaries, intro-

duced following an extensive set of prescriptions. We follow the dynamical evolution of

the binary population, and characterize it at the end of the simulations, 1.2–2 Myr after

the onset of star formation. These first results suggest that concurrently modelling gas,

stellar dynamics and binary systems during the earliest stages of star cluster formation

is important, as binary systems are already being modified.

We investigate the impact of dynamical interactions during cluster formation on the

primordial population of binaries. Our results indicate that dynamical interactions cause

small but statistically significant changes in the distributions of binaries’ primary masses,

mass ratios, semi-major axes and eccentricities for systems above the q ≥ 0.1 detection

limit. We note that if we consider the full binary population (i.e. if we also consider

systems with mass ratios q < 0.1), the differences in the distributions of primary masses

and mass ratios are not obvious. We also find that primordial binaries are needed at all

primary masses to reproduce the observed binary fraction above the q ≥ 0.1 detection

limit. We argue that the distinction between the full binary population and the subset
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of observable systems is important, as observations are incomplete for q < 0.1 and

considering only the systems with q ≥ 0.1 significantly affects our conclusions. We find

that all our conclusions are robust to a change in spatial resolution by a factor of 2.

We observe both dynamical formation and destruction of binary systems in M4b,

which includes an initial population of binaries. In these simulations, we see that sys-

tems formed dynamically do not have the same properties as primordial systems, and

more importantly, that systems formed dynamically in M4b do not have the same prop-

erties as those formed in M4s, which includes only single stars initially. The cumulative

distributions of primary masses, mass ratios, semi-major axes and eccentricities formed

dynamically in M4b lie between the primordial distribution and the distribution resulting

from pure dynamical formation in M4s. The presence of an initial population of binary

stars has a significant impact on the subsequent binary properties in the star cluster.

We find that systems with higher primary masses, lower mass ratios, larger semi-major

axes and larger eccentricities are preferentially formed dynamically. We also find that

systems with higher primary masses, smaller mass ratios and larger semi-major axes are

preferentially destroyed or modified by dynamical interactions. Globally, dynamical evo-

lution of a field-like primordial population favours systems with smaller primary masses,

larger mass ratios, smaller semi-major axes and larger eccentricities. Most importantly,

our results demonstrate that even in the earliest stages of cluster formation, when there

is still a significant amount of gas and active star formation, dynamical interactions

modify the binary population.

3.5.2 Discussion

These simulations indicate that dynamical interactions in embedded clusters modify the

properties of the primordial distribution of binaries by forming and destroying systems,

but do not modify the mass-dependent binary fraction. We emphasize that our simula-

tions model the earliest stages of star cluster formation, and thus that we are probing
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those dynamical interactions that act on the binary systems on short timescales. Our

analysis is conducted 1.2 – 2 Myr after the onset of star formation, while there is still ac-

tive star formation and there has been very little feedback from the stars. Furthermore,

protostellar outflows, which we do not include, play a role in regulating star formation

efficiency in low-mass star forming regions (Matzner & McKee 2000). With protostellar

outflows, fewer stars would be formed during the earliest stages of cluster formation,

and thus dynamical interactions between these stars would likely have a smaller impact

on the properties of the binary distribution. Magnetic fields, which are absent from our

simulations, also participate in the regulation of star formation (Price & Bate 2008). Gas

dynamical friction, which acts on scales smaller than our gas spatial resolution, may be

a channel for the formation of short-period binaries with circular orbits (Gorti & Bhatt

1996; Stahler 2010). Its absence may play a part in driving the shift towards larger

semi-major axes and eccentricities. Our simulations were also conducted with a single

choice for the initial gas properties (total mass, initial size of the cloud, etc). Additional

simulations are needed to determine whether the global gas properties play a significant

role in modifying the population of binary stars.

The next steps are to investigate the impact of an initial magnetic field on the evolu-

tion of an initial population of binaries, as well as the impact of stellar winds. Massive

stars will have a significant impact on the forming cluster: they interact gravitationally

with other stars and deplete the supply of cold molecular gas available for star formation

by heating it and ejecting it from the cluster.

In future work, we will alter our assumed primordial binary distribution to empir-

ically determine what distribution leads to the field binary distribution observed after

dynamical interactions in the embedded cluster. An important feature of the dynam-

ical evolution appears to be the destruction of systems with massive primaries, or the

replacement of the observable companion by a companion with q < 0.1 in such systems.
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Our altered distribution should therefore favour the retention of the original companion

in systems with massive primaries, which could be done by assuming smaller semi-major

axes. This would be expected for primordial binaries forming from the fragmentation of

a single core. In addition, primordial binaries with mass ratios q < 0.1 likely do form

primordially and may have a dynamically interesting effect on the binary populations.

Similarly, our primordial binary population is based on the full distributions of param-

eters for observed primary-companion pairs in the field: the distributions include mass

ratios and semi-major axes from the outer components of triples and higher order sys-

tems. Such systems are ubiquitous at high masses but the outer components are likely to

have small mass ratios and large semi-major axes. An avenue to explore for our altered

distribution would be to use distributions derived exclusively from only binaries and the

inner components of hierarchical systems. It is likely some of the systems detected in

our simulations are dynamically formed stable triples or higher order systems, which we

will also address in future work.
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CHAPTER 4

DISCUSSION & FUTURE WORK

The formation of star clusters within GMCs is governed by the interplay among hy-

drodynamics, stellar dynamics, radiative transfer and stellar evolution. In recent years,

multi-physics simulations including these processes, as well as active star formation,

have become possible, with in particular the advent of Torch (Wall et al. 2019; Wall

et al. 2020) and Starforge (Guszejnov et al. 2021; Grudić et al. 2021). An important

limitation of these suites of simulations lies in their subgrid star formation recipe, which

does not allow, in its original form, the formation of binary star systems as a direct re-

sult of star formation. Primordial binaries are however required for any comprehensive

treatment of cluster formation: most stars are formed in binaries (Reipurth et al. 2014)

and massive stars are almost always formed with a close companion (Sana et al. 2012).

These massive binaries likely shape the dynamical evolution of star clusters, and their

feedback is predicted to have a very strong influence on the surrounding GMC.

In this thesis, we have presented the implementation of a recipe for primordial binary

formation in Torch. We enforced a distribution of primordial binaries with properties
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drawn from field-like distributions, based on the analytic probability distributions found

by Moe & Di Stefano (2017), supplemented by the results from Winters et al. (2019) at

low masses. We obtained a first series of results, demonstrating that an initial popula-

tion of binaries is modified during the earliest stages of star cluster formation, before

the evolution of the cluster becomes dominated by stellar feedback. At this date, our

simulations are still ongoing, as is a new suite of simulations with variations in the gas

initial virial parameter α and random turbulent velocity pattern. We stress that the

work presented in this thesis is the first numerical study to include concurrent modelling

of hydrodynamics, active star formation and stellar dynamics with an initial population

of binaries, combined with radiative and momentum stellar feedback.

We summarize the key results from our published paper and their implications in

Section 4.1. In Section 4.2, we present the evolution of our simulations since the pub-

lication of Chapter 3. In Section 4.3, we discuss our most recent work on the influence

on the gas initial conditions. In Section 4.4, we conclude with an overview of possible

directions for further investigation.

4.1 Key results and their implications

We conducted a suite of 15 simulations, 9 of which included primordial binaries. All of

our simulations were initialized from the same collapsing turbulent sphere of cold gas

with mass ∼ 104 M�. We compared the distributions of primordial binaries formed in

our simulations to the distributions of binaries found 1.2–2 Myr after the onset of star

formation, when feedback from massive stars start to dominate the simulations. We

also investigated the effects of dynamical binary formation and destruction. The main

results and their implications are outlined below.

We compare the mass-dependent binary fraction for binaries formed in our simula-

tions without primordial binaries to observations of the mass-dependent binary fraction
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in the Galactic field. With a mass ratio threshold of q ≥ 0.1, we find that primordial

binaries are necessary at all masses to reproduce the binary fraction observed in the

Galactic field. This result contrasts with the conclusions from Wall et al. (2019), who

use Torch without a prescription for primordial binaries: they find that dynamical

interactions suffice in obtaining field-like multiplicity fractions at large primary masses.

Similarly, Torniamenti et al. (2021), in their N-body simulations with binaries, find that

dynamical interactions reproduce the trend of monotically increasing multiplicity with

primary mass. Despite the apparent tension between our results, the three suites of

simulations are in fact in agreement: when all binary systems are considered, dynamical

interactions alone reproduce the increase of multiplicity with mass and lead to field-like

binary fractions at high masses. When considering only the subset of binaries with

q ≥ 0.1, however, this trend does not arise naturally from pure dynamical interactions.

Any attempt at reproducing the observed binary fraction in clusters or in the field should

thus include a primordial binary population at all masses.

We also investigate the possibility of preferential formation or destruction of binary

systems via dynamical interactions in the embedded cluster. We verify the presence of

preferential destruction by comparing the primordial systems formed in our simulations

to the subset of primordial systems surviving to the end of the simulation. We verify

the presence of preferential formation by comparing the systems formed dynamically in

our simulations with binaries to the primordial systems formed in these simulations. We

find that dynamical interactions result in a combination of preferential formation and

preferential destruction of binary systems. Systems with lower mass ratios and larger

semi-major axes tend to be both formed and destroyed more frequently. Systems with

smaller primary masses are more likely to be destroyed or modified; systems with larger

primary masses and larger eccentricities are more likely to be formed. The net effect

of dynamical interactions modifies the initial distribution of binary properties: primary

masses and semi-major axes tend to decrease, while mass ratios and eccentricities tend
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to increase. This informs what primordial distribution of binaries should be adopted in

order to recover the field – or young cluster – population after dynamical interactions.

In particular, the mass distribution of primaries with companions above the q ≥ 0.1

threshold is shifted to smaller values; the primordial distribution should thus include an

excess of intermediate and high mass binaries compared to the field distribution. Such

a change would also address the slight decrease in the fraction of observable systems.

The key result from our first published suite of simulations could thus be summarized

as follows: dynamical interactions during the earliest stages of star cluster formation,

when the cluster is still fully embedded in gas, are important for determining the prop-

erties of binary star systems. This suggests that even observations of binaries in star

forming regions (e.g. Kouwenhoven et al. 2005; Duchêne et al. 2018) already carry an

imprint from dynamical interactions, and are thus not fully representative of the pri-

mordial population. Observations of protostars embedded in gas, made easier in recent

years with the Atacama Large Millimeter/submillimeter Array (ALMA) may provide

better constraints on the primordial population from the observational side. ALMA

observations have already revealed evidence of both disk and core fragmentation (Tobin

et al. 2016b; Lee et al. 2017), however mass estimates and the observation of orbital

parameters are less straightforward for protostars. Multi-physics simulations of embed-

ded clusters therefore emerge as a likely source of insights in constraining the primordial

binary population. The inclusion of gas in our simulations, and thus the possibility to

model gas-mediated interactions, appear important: Wall et al. (2019), using Torch,

argue that gas-mediated interactions modified some of their dynamically-formed bina-

ries. Furthermore, Parker & Meyer (2014), using a similar prescription for primordial

binaries but without modelling hydrodynamics, find that there is no net effect from the

dynamical interactions on the population of binaries. Another relevant feature of our

simulations is the hierarchical assembly of our clusters, from the motion of subclusters

along dense filaments. Dynamically, merging subclusters are more complicated than
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spherical cluster models often used in N-body simulations. This indicates that the con-

current modelling of gas and stars, along with active star formation and stellar feedback,

is a key ingredient in determining what dynamical modifications take place and thus,

what is the primordial population of binaries.

4.2 Current state of our simulations

Most of the simulations presented in Chapter 3 are still ongoing, with the aim to reach

gas expulsion. Since we found the results to be qualitatively unaffected by an increase

in spatial resolution by a factor of 2, we continue only the simulations at maximum

refinement 5, corresponding to a spatial resolution of 6.8 x 10−2 pc. The work discussed

here consists of preliminary results for a paper in preparation, exploring the variations

in the binary distributions driven by differences in the stellar populations and their

feedback, the boundedness of the initial cloud and its turbulent velocity pattern. We

present the current properties of our simulations – such as number of stars on the grid,

formed stellar mass and mass of the most massive star – in Table 4.1. All the simulations

have progressed a minimum of 1.6 Myr since the onset of star formation, and each

simulation includes at least one massive O-star. For the analysis, we limit ourselves to

the subset of binaries with q ≥ 0.1, which is the completeness limit of the observational

surveys used to generate our primordial binaries.

In particular, we are interested in the variations between the simulations. In Fig-

ure 4.1, we present our two simulations most advanced in time, M4b4 (M4r5b-4 in Chap-

ter 3) and M4s4 (M4r5s-4), having reached respectively 3.26 Myr and 3.11 Myr. In

contrast with the analysis presented in Chapter 3, the effects of feedback from massive

stars now influence the evolution of the gas structures (and thus of the star formation)

in the simulations. Winds and radiation from the very massive 78.8 M� star formed 0.2

Myr ago in M4s4 have carved out a cavity in the gas, most obvious in the y-projection
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Figure 4.1: Projected gas densities for M4b4 (left) and M4s4 (right),
respectively 3.26 Myr and 3.11 Myr after the beginning of the simulation.
The massive 78.8 M� star in M4s4, formed 0.2 Myr ago, has blown away
a cavity from its wind and radiation (see middle right panel).
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in Figure 4.1. We expect the differences will increase with time: the 78.8 M� star in

M4s4 may blow out more gas while the 86.2 M� star in M4b4 (formed 0.02 Myr ago) is

expected to start carving away the nearby gas.

Our first point of comparison between our simulations is their star formation rate

(SFR) as a function of time. If our simulations behave similarly to star-forming GMCs,

we expect the SFR to increase monotonically with time until star formation is halted, and

the scatter between the different simulations to span up to an order of magnitude (see

e.g. Lee et al. 2016a, and references therein). We plot the evolution of the SFR as a

function of time after the onset of star formation for our five simulations with primordial

binaries and our five simulations without primordial binaries (hereafter, our fiducial suite

of simulations), and present it in Figure 4.2. All simulations are initialized from the

same initial turbulent sphere of gas; the only differences in the SFR are thus a direct

consequence of which stars form and the influence they exert upon the gas. We find that

the SFR generally increases exponentially for each simulation, although it may decrease

momentarily while a sink is accreting material to form a massive star. We also note

that, at any given time, the SFR may vary by almost an order of magntiude between

simulations. There is however no systematic difference between the SFRs in different

simulations: there is no simulation in which the SFR remains systematically higher or

lower than in the others.

We are also interested in the spread of binary properties – i.e. mass ratios q, primary

masses M1, semi-major axes a and eccentricities e – at equal times. Our simulation

that is the least advanced in time, M4b2, has now evolved for 1.6 Myr after the onset

of star formation. We thus consider the distributions of binary properties for our five

simulations with primordial binaries at this time. We plot the cumulative distributions

of binary properties in Figure 4.3. With the Mann-Whitney-Wilcoxon U -test (Wilcoxon

1945; Mann & Whitney 1947), we verify if the distributions of binary properties are
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Figure 4.2: Star formation rate as a function of time after the onset
of star formation. A Gaussian filter is applied to smooth the SFR over
50 kyr. The simulations with primordial binaries are shown in black;
the simulations without primordial binaries are shown in blue. At equal
times, SFRs vary by about half an order of magnitude.

M4b1 M4b2 M4b3 M4b4 M4b5
q smaller M4b3 > 99% 99% - 99% 96%
e larger M4b4 97% 97% 97% - 98%

Table 4.2: Difference in binary properties, 1.6 Myr after the onset of
star formation. The mass ratios q in M4b3 are smaller than in the other
simulations; the eccentricities e are larger in M4b4 than in the other sim-
ulations.

pairwise consistent with having been drawn from the same underlying distribution. We

find that no simulations are pairwise different for all properties, and that no simulation is

an outlier for more than one property. Only two simulations are systematically different

from the others, each for a single property; the confidences are listed in Table 4.2.

Some of our simulations have evolved for significantly longer than 1.6 Myr after the
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Figure 4.3: Cumulative distributions of mass ratios (top left), primary
masses (top right), semi-major axes (bottom left) and eccentricities (bot-
tom right) for our fiducial simulations with primordial binaries, 1.6 Myr
after the onset of star formation. The thick grey line represents the cumu-
lative distribution for the five simulations, while the colored lines represent
the individual simulations.

onset of star formation; M4b4, in particular, has evolved for more than 2.1 Myr after

the onset of star formation. For each of these simulations, we use the Mann-Whitney-

Wilcoxon U -test to test for the changes found in Chapter 3. We present the confidence

at which we detect these changes in Table 4.3. None of the simulations have undergone

changes that are in contradiction with our previous results. For all simulations, we detect

at least three of the four changes with confidence > 70%. In M4b4, which is the simulation

that has evolved for the longest – and thus presumably the one that carries the strongest
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Figure 4.4: Cumulative distributions of mass ratios (top left), primary
masses (top right), semi-major axes (bottom left) and eccentricities (bot-
tom right), for M4b4, 2.14 Myr after the onset of star formation. The
black lines represent the primordial binaries formed in the simulation and
the red lines represent the binaries detected at the current time. All four
distributions undergo statistically significant changes.

imprint from dynamical interactions – we detect all changes with confidence ≥ 88%. We

plot the cumulative distributions of binary properties in Figure 4.4. In M4b1, which is the

second most evolved simulation, changes in mass ratios, primary masses and semi-major

axes are detected with confidence ≥ 90%.

The more recent results from our fiducial suite of simulations thus confirm the con-

clusions from Chapter 3. We note that there is some spread in binary properties at

91

http://www.mcmaster.ca/
http://www.physics.mcmaster.ca/


M.Sc. – Claude Cournoyer-Cloutier – McMaster University – Physics & Astronomy

Mass ratio Primary mass Semi-major axis Eccentricity
Increase Decrease Decrease Increase

M4b1 92% 90% 97% 73%
M4b2 63% 70% 77% 93%
M4b3 82% 91% 96% 70%
M4b4 92% 90% > 99% 88%
M4b5 70% 45% 72% 83%

Table 4.3: Confidence at which we detect changes in our distributions
of binaries, for our five fiducial simulations with primordial binaries.

equal time between the different simulations, but that no simulation differs systemati-

cally from the others. We also note that the simulations that have undergone a larger

amount of dynamical evolution show clearer trends for the increase of mass ratios and

eccentricities, and the decrease of primary masses and semi-major axes.

4.3 The influence of initial conditions

Our fiducial suite of simulations uses a single set of initial conditions. However, we expect

the amount and strength of the dynamical interactions to be influenced by the density

of the stellar environment, which is in turn influenced by the conditions of the GMC in

which star formation takes place. The SFR within a GMC, and thus the number of stars

the GMC may form before it is dispersed by stellar feedback, is expected to decrease

with increasing virial parameter (see e.g. Schruba et al. 2019), defined here as

α ≡ T

|U |
(4.1)

following Equation 1.3. Our fiducial simulations are conducted with a virial parameter

α = 0.4, which is at the low end of virial parameters derived from observations (e.g. Lee

et al. 2016a). It was chosen originally to favour intense and abundant star formation, but

the amount of change in binary properties obtained from this sub-virial cloud may be an

upper limit. We thus conduct new simulations with and without a primordial population
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Figure 4.5: Projected gas density for V1-s (left) and V2-b (right). Some
elements of the gas structure – e.g.the horizontal trend in the y projection,
the inverted Y in the z projection – are similar (also see Figure 4.1 for
α = 0.4) but become more diffuse with increasing α.
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Figure 4.6: Projected gas density for M4S3 (left) and M3S7 (right). Due
to the different random velocity pattern of the initial turbulent spheres,
the gas structures in the two simulations are very different, and are also
different from the gas structure in the fiducial simulations. Nonetheless,
they display similar filamentary structures, within which star formation
takes place.

95

http://www.mcmaster.ca/
http://www.physics.mcmaster.ca/


M.Sc. – Claude Cournoyer-Cloutier – McMaster University – Physics & Astronomy

of binaries, from a marginally bound (α = 1.0, labelled V1-b and V1-s) and an unbound

(α = 2.0, labelled V2-b and V2-s) cloud. Those virial parameters match median values

for nearby galaxies (Sun et al. 2018; Schruba et al. 2019). We obtain these new initial

conditions by scaling up the velocity of the gas from our fiducial initial conditions; the

only difference is the virial parameter, but the velocity structure is fixed. Observations

also suggest that the virial parameter alone is not enough to explain the scatter in SFE in

GMCs (Lee et al. 2016a). We thus also generate two sets of initial conditions with α = 0.4

and the same total mass ∼ 104 M�, but with a different velocity pattern for the gas.

We perform one simulation with primordial binaries for each, labelled respectively M4S3

and M4S7. The current properties of our six new simulations are presented in Table 4.4;

the current properties of M4b4 and M4s4 are repeated there for ease of comparison. The

star formation efficiency per free-fall time εff is notably lower in the simulations with

larger virial parameters α, and a larger amount of gas leaves the computational domain

without forming stars, as demonstrated by the smaller gas mass on the grid coupled with

the lower stellar mass. Examples of the gas structure for different virial parameters and

different random velocity patterns are shown respectively in Figures 4.5 and 4.6.

The star formation rate as a function of time since the onset of star formation for

the simulations with different virial parameters is plotted in Figure 4.7. Star formation

starts earlier in the simulations with more turbulence: the first star forms after 1.04 Myr

in the simulations with α = 1.0 and after 0.87 Myr in the simulations with α = 2.0,

while it forms after 1.12 Myr in the simulations with α = 0.4. The SFRs are higher in

the simulations with lower virial parameters. This is consistent with our expectations:

turbulence both promotes and prevents star formation (Ballesteros-Paredes et al. 2007).

At equal times, we thus expect our fiducial simulations to be more dynamically evolved.

We investigate whether it is the case by comparing the distributions of binary properties:

we verify if the fiducial distribution is statistically different from the distribution from

the simulation with the larger α, in the same direction as what is expected from the
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Figure 4.7: Star formation rate as a function of time after the onset
of star formation, for the three different virial parameters. A Gaussian
filter is applied to smooth the SFR over 50 kyr. The simulations with
α = 0.4 (M4b4 and M4s4 are chosen as examples) are shown in black,
those with α = 1.0 are show in cyan and those with α = 2.0 are shown in
magenta; the solid lines denotes the simulations with primordial binaries
and the shaded lines the ones without primordial binaries. The SFR is
systematically lower in simulations with higher α.

dynamical interactions discussed in Chapter 3 and above. 1.6 Myr after the onset of star

formation, we are confident at ≥ 80% that the mass ratios and eccentricities in V2-b are

smaller than those in the fiducial runs, and that the primary masses are larger. We also

find that semi-major axes in V1-b are larger that those in the fiducial runs, with 75%

confidence. This would suggest that the binaries in our runs with larger α have been less

influenced by dynamical interactions than those in our fiducial runs, at the same time

after the onset of star formation. We can also investigate the difference between the

primordial and current distributions of binaries in V1-b and V2-b. We summarize our

confidence for the different expected changes in Table 4.5. For V1-b, we find a decrease
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Mass ratio Primary mass Semi-major axis Eccentricity
Increase Decrease Decrease Increase

V1-b 57% 69% 72% 70%
V2-b 91% 72% 95% 62%

Table 4.5: Confidence at which we detect changes in our distributions
of binaries, for our simulations with primordial binaries and larger virial
parameters, at the current time in the simulations.

in primary mass and semi-major axis, and an increase in eccentricity, with confidence

∼ 70%. This alone would not be enough to draw any conclusions about modifications

to the primordial population, however it is reassuring to note that the opposite trend –

e.g. an increase in semi-major axes – is not favoured. For V2-b, which is the simulation

that has evolved for the longest after the onset of star formation (2.3 Myr), we find an

increase in mass ratio and a decrease in semi-major axis with > 90% confidence, and a

decrease in primary mass with 72% confidence.

It is also possible to compare V1-b to our fiducial runs at equal stellar mass. We plot

the distributions of binary properties when the formed stellar mass is ∼ 550 M� in Fig-

ure 4.8. We compare the distributions for V1-b to the spread in the fiducial simulations,

and find that they generally fall within the range of values from the fiducial simulations.

The effects of dynamical interactions on the primordial population of binaries – increase

in mass ratio and eccentricity, decrease in primary mass and semi-major axis – thus

appear independent of the initial virial parameter of the cloud, although the observed

trends are stronger when the system is more dynamically evolved.

The next step is to investigate the effects of the random turbulent velocity pattern

on the SFR, plotted in Figure 4.9. The two new sets of turbulent initial conditions are

spheres with the same virial parameter, radius, density profile and temperature as our

fiducial initial conditions; the turbulence follows the same power-law spectrum. The

variations in total kinetic and potential energy, as well as in the sphere masses and free-

fall times, are within 1%. The first star forms later in M4S3 than in the fiducial runs
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Figure 4.8: Cumulative distributions of mass ratios (top left), primary
masses (top right), semi-major axes (bottom left) and eccentricities (top
right) when the stellar mass in the simulation is ∼ 550 M�. The solid
black lines denote the combined distributions for α = 0.4, the grey lines
denote the individual distributions for α = 0.4 and the cyan line denotes
the distributions for α = 1.0

(after 1.24 Myr); it forms earlier in M4S7 (after 1.08 Myr). At equal virial parameter but

different turbulent velocity pattern, there is a spread of 0.26 Myr in times for the onset

of star formation; at different virial parameters but same turbulent velocity pattern, the

spread is 0.25 Myr. The SFR as a function of time is also markedly different for the

different random initial velocity patterns: M4S3 and M4S7 both have SFRs as high as

one order of magnitude higher than the fiducial runs, 0.75–1.00 Myr after the onset of

star formation. We also conduct a test with our improved refinement criteria, timestep
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Figure 4.9: Star formation rate as a function of time since the onset
of star formation, for three different sets of turbulent initial conditions.
The grey lines are the fiducial simulations, the orange line is M4S3 and the
violet line is M4S7. The black line represents a test of the fiducial initial
conditions conducted with our most recent refinement criteria, also used
for M4S3 and M4S7.

Mass ratio Primary mass Semi-major axis Eccentricity
Increase Decrease Decrease Increase

M4S3 79% 76% 96% 88%
M3S7 82% 83% 96% 57%

Table 4.6: Confidence at which we detect changes in our distributions
of binaries, for our simulations with primordial binaries and different tur-
bulent initial conditions, at the current time in the simulations.

and solver (chosen for stability and speed), to verify that the discrepancy betweent the

fiducial runs and M4S3 and M4S7 is not a product of our numerical methods. We find that

this test run is consistent with the other SFRs obtained from our fiducial conditions.

This suggests that the virial parameter and the initial turbulent velocity pattern may have

comparable importance in shaping star formation in a GMC.
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We can also compare the distributions of binary properties for the different turbulent

initial conditions, at equal stellar mass. In Figure 4.10, we plot the cumulative distribu-

tions for M4b1, M4b3, M4b4, M4S3 and M4S7 at a stellar mass of ∼ 880 M�. We find that

the distributions for M4S3 and M4S7 lie within the range of values for our fiducial simu-

lations, despite the higher star formation rate. We also investigate how the primordial

population of binaries is modified, in M4S3 and M4S7. We find the same trends as above,

with confidence levels presented in Table 4.6. This would suggest that although the

initial turbulent velocity pattern, like the initial virial parameter, influences the SFR,

the trends for systems above the q ≥ 0.1 detection limit – increase in mass ratios and

eccentricities, decrease in primary mass and semi-major axis – are robust to changes in

the initial conditions.
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Figure 4.10: Cumulative distributions of mass ratios (top left), primary
masses (top right), semi-major axes (bottom left) and eccentricities (bot-
tom right) when the stellar mass in the simulation is ∼ 880 M�. The solid
black lines denote the combined distributions with the fiducial initial con-
ditions, the grey lines denote the individual distributions for the fiducial
initial conditions, the orange lines denote the distributions for M4S3 and
the violet lines denote the distributions for M4S7.
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4.4 Directions for future work

The natural endpoint of multi-physics simulations of star cluster formation is gas expul-

sion. It is expected to happen on a timescale . 10 Myr: most of the gas will be cleared

out by a combination of winds and radiation, and any remaining gas will be removed by

the first supernovae. The next logical step for our simulations is thus to extend them to

gas expulsion. This is non-trivial numerically: feedback reduces the simulation timestep

by creating zones with hot and fast gas while the increasing number of binaries drasti-

cally slows down the integration of binaries with multiples. The first issue is addressed

by using a combination of more relaxed timestepping criteria and increasing stability

by enforcing refinement in the regions affected by feedback. To tackle the second issue,

our current plan is the migration to a new stellar dynamics code, Petar (Wang et al.

2020a). Petar is more efficient for systems with large numbers of particles, or sys-

tems with a few 102 binaries. It uses a Barnes-Hut tree (less computationally expensive

than a pure or direct N-body code, Barnes & Hut 1986) for long-range interactions, a

fourth-order Hermite scheme for short-range interactions and a slow-down algorithmic

regularization scheme (SDAR, Wang et al. 2020b) for binaries and multiple systems. The

SDAR scheme artificially slows down orbital motions and interactions in order to average

any perturbation over many orbits; this improves numerical efficiency while conserving

angular momentum due to the algorithmic regularization. Using Petar should allow us

to reach gas expulsion in our simulations in a manner of a few months, instead of years.

After gas expulsion, our clusters could be compared to observations of open clusters.

Following the expulsion of the gas would also allow us to compare the importance of the

different feedback mechanisms we include – winds, direct radiation pressure, ionizing

radiation and supernovae – which are rarely all included in a single simulation.

Another natural extension of the work we present in this thesis is to test different

prescriptions for primordial binaries:
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• A possible approach would be to modify our current prescription by adding an

excess of the systems that are preferentially destroyed, to attempt to recover the

field population after dynamical interactions.

• Another approach would to be use a prescription motivated directly by observations

of embedded clusters or protostars.

• Extending the prescription to primordial systems below the detection threshold

of q ≥ 0.1 may also be valuable, as the companions to a massive star could be

reasonably massive (e.g. ∼ 1 − 2 M�) and still be well below that detection

limit. Stars with masses & 8 M� have, on average, as many companions with

0.1 < q < 0.3 as companions with q ≥ 0.3 (Moe & Di Stefano 2017); this suggests

that they might have a significant number of companions with q < 0.1.

• The inclusion of triples and quadruples, at least for massive stars, could be im-

portant for cluster dynamics: for O-stars, binaries, triples and quadruples each

account for ∼ 30% of systems.

Exploring different prescriptions for primordial binaries (and higher order systems) in our

simulations and comparing the resulting clusters and multiple systems to observations

may provide valuable insights on primordial multiplicity in embedded clusters.

Most massive stars are in interacting binaries (Sana et al. 2012), which influences

the feedback coming from these stars: supernovae may be delayed by mass transfer,

winds collide and interact, and stars stripped of their outer envelope emit more UV

radiation. Binary interaction prescriptions already exist in SeBa (Portegies Zwart &

Verbunt 1996), and they could be coupled to our binary dynamics code – either mul-

tiples or SDAR – within the Amuse framework. Implementing a scheme for binary

evolution in Torch would provide a more accurate modelling of stellar feedback, which
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may in turn influence star formation rates, termination of star formation and gas expul-

sion. The addition of pre-main sequence stellar evolution may also be relevant: it could

influence the number and properties of the binaries in the cluster (see e.g. Wiersma et al.

2006).

Most globular clusters present star-to-star chemical abundance variations, with a

population of stars enriched in He, N and Na, and depleted in C and O (hereafter enriched

population, Bastian & Lardo 2018). The cause of these variations is still unknown,

although numerous sources of enrichment have been proposed, including winds from

asymptotic giant branch stars, supermassive stars and interacting binaries. De Mink

et al. (2009) simulate an interacting binary with an orbital period of 12 days, a primary

mass of 20 M� and a companion mass of 15 M�, and find that the ejected material is

enriched in He, N and Na, and depleted in C and O. They propose that a combination of

the ejecta from massive and intermediate mass binaries and an equal amount of pristine

material leftover from star formation would allow for the formation of a second generation

of stars. Howard et al. (2019) track the evolution of the He abundance (which they use

as a proxy for the overall enrichment) in post-processing of their simulations of YMC

assembly within GMCs, and find that cluster assembly via repeated mergers of sub-

clusters reproduces well the spread in chemical abundance variations observed in GCs.

Our simulations, which include both a large, realistic number of massive binaries and

cluster assembly via merging of subclusters, are thus a natural playground to fully test

the viability of interacting binaries as the source of the enriched population. The first

step would be to extend De Mink et al.’s work to a larger range of primary masses, mass

ratios and orbital periods. If the yields from these interactions, applied to a reasonable

population of binaries, are still consistent with the expected enrichment, the next step

would be to track the gas chemical abundances in our simulations, post-processing.

Other possible extensions of our work are towards larger or smaller physical scales.
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More realistic initial conditions could be obtained from simulations of galaxy formation;

zoom-in simulations of binary systems at higher spatial resolution for the gas would

allow us to model the effects of gas dynamical friction (e.g. Stahler 2010). On the

analysis side, future avenues for investigation could include detailed investigations of

binary exchanges, and tracking the dynamical formation of higher order multiples in our

simulations. The work presented in this thesis, in showing that dynamical interactions

within embedded clusters modify the primordial populations of binaries, opens the floor

to more investigations of the impact of binaries on star cluster formation.
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