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Abstract 

According to the Centre for Research on the Epidemiology of Disasters, the global 

average number of CID has tripled in less than four decades (from approximately 

1,300 Climate-Induced Disasters (CID) between 1975 and 1984 to around 3,900 

between 2005 and 2014). In addition, around 1 million deaths and $1.7 trillion 

damage costs were attributed to CID since 2000, with around $210 billion incurred 

only in 2020. Consequently, the World Economic Forum identified extreme 

weather as the top ranked global risk in terms of likelihood and among the top five 

risks in terms of impact in the last 4 years. These risks are not expected to diminish 

as: i) the number of CID is anticipated to double during the next 13 years; ii) the 

annual fatalities due to CID are expected to increase by 250,000 deaths in the next 

decade; and iii) the annual CID damage costs are expected to increase by around 

20% in 2040 compared to those realized in 2020. Given the anticipated increase in 

CID frequency, the intensification of CID impacts, the rapid growth in the world’s 

population, and the fact that two thirds of such population will be officially living 

in urban areas by 2050, it has recently become extremely crucial to enhance both 

community and city resilience under CID. Resilience, in that context, refers to the 

ability of a system to bounce back, recover or adapt in the face of adverse events. 

This is considered a very farfetched goal given both the extreme unpredictability of 

the frequency and impacts of CID and the complex behavior of cities that stems 

from the interconnectivity of their comprising infrastructure systems. With the 

emergence of data-driven machine learning which assumes that models can be 
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trained using historical data and accordingly, can efficiently learn to predict 

different complex features, developing robust models that can predict the frequency 

and impacts of CID became more conceivable. Through employing data analytics 

and machine learning techniques, this work aims at enhancing city resilience by 

predicting both the occurrence and expected impacts of climate-induced disasters 

on urban areas. The first part of this dissertation presents a critical review of the 

research work pertaining to resilience of critical infrastructure systems. Meta-

research is employed through topic modelling, to quantitatively uncover related 

latent topics in the field. The second part aims at predicting the occurrence of CID 

by developing a framework that links different climate change indices to historical 

disaster records. In the third part of this work, a framework is developed for 

predicting the performance of critical infrastructure systems under CID. Finally, the 

aim of the fourth part of this dissertation is to develop a systematic data-driven 

framework for the prediction of CID property damages. This work is expected to 

aid stakeholders in developing spatio-temporal preparedness plans under CID, 

which can facilitate mitigating the adverse impacts of CID on infrastructure systems 

and improve their resilience.  
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Chapter 1  

INTRODUCTION 

1.1. BACKGROUND AND MOTIVATION 

 Hazards are nature- or human-induced events that can cause potential damage 

(Zimmerman, Zhu, De Leon, & Guo, 2017). Natural hazards are typically impossible to 

control and include those climate-induced such as tornados, floods, hurricanes, and 

wildfires, and those that are not related to climate such as volcanos and earthquakes. 

Anthropogenic (human-induced) hazards are deliberately or unintentionally caused by 

human activities such as wars, terroristic attacks, industrial accidents and computer viruses. 

Those hazards can be identified as disasters if they induce adverse impacts on people or 

properties. These negative impacts can be quantified through three parameters 

(Zimmerman et al., 2017): (1) the number of people affected by the disaster referred to as 

System Average Interruption Frequency Index, (2) the total duration of the aftermath of 

the disaster referred to as Average Interruption Duration, and (3) the total cost for bouncing 

back to a normal condition after the disaster referred to as Performance Loss Costs.  

 The frequency and impacts of Climate-Induced Disasters (CID) have been 

increasing drastically over the past few of decades (Thomas, Albert, & Hepburn, 2014). 

These CID are driven by the changing climate (i.e., temperature and precipitation) and can 

be divided into climatological (i.e., heat waves and droughts), meteorological (i.e., wind 

and winter storms) and hydrological disasters (i.e., floods and flash floods) (“Climate 

change | EU Science Hub,” 2018; Shaftel, 2018a, 2018b). According to the Centre for 

Research on the Epidemiology of Disasters, the global average number of CID has tripled 
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in less than four decades (from approximately 1,300 Climate-Induced Disasters (CID) 

between 1975 and 1984 to around 3,900 between 2005 and 2014) (Thomas & López, 2015). 

In addition, around 1 million deaths and $1.7 trillion damage costs were attributed to CID 

since 2000 (Guha-sapir, Hoyois, & Below, 2015; Thomas & López, 2015), with around 

$210 billion incurred only in 2020 (Newburger, 2021). Consequently, the World Economic 

Forum identified extreme weather as the top ranked global risk in terms of likelihood and 

among the top five risks in terms of impact in the last 4 years (World Economic Forum, 

2020). Furthermore, almost quarter of the world’s  population is officially threatened by 

storm surges and tsunamis (“Climate Change - Oxfam Canada,” n.d.). Moreover, since mid 

2017, floods have affected about 41 million people with 150 million people living in areas 

that will be officially under sea level by the end of this century (“Five Ways Climate 

Change Is Already Affecting Canada,” n.d.; Impacts of climate change - Canada, n.d.). 

These risks are not expected to diminish as: i) the number of CID is anticipated to double 

during the next 13 years (Lopez, Thomas, & Troncoso, 2020); ii) the annual fatalities due 

to CID are expected to increase by 250,000 deaths in the next decade (World Health 

Organization, 2018); and iii) the annual CID damage costs are expected to increase by 

around 20% in 2040 compared to those realized in 2020 (“Natural Disasters Could Cost 20 

Percent More By 2040 Due to Climate Change - Yale E360,” 2020; “New approaches to 

help businesses tackle climate change | University of Cambridge,” 2020). 

 Given that 70% of the world population will be living in urban centres by 2050 

(Haggag, Ezzeldin, El-Dakhakhni, & Hassini, 2020) together with the increasing 

complexity of modern cities, the effects of CID on both the human- and community- levels 

is expected to intensify in the coming decades. In this context, cities can be visualized as 
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complex systems comprised of interdependent infrastructure systems that provide the 

necessary services to carry out basic operational functions. Among such infrastructure 

systems, some are extremely vital for cities to preserve their adaptive nature. As per the 

Executive Order 13010 “certain national infrastructures are so vital that their incapacity 

or destruction would have a debilitating impact on the defense or economic security of the 

United States” (Moteff & Parfomak, 2004). These systems include, but are not limited to, 

electric power systems, telecommunication system, gas and oil storage and transportation 

systems, water supply systems, and transportation systems. The interdependence among 

the critical infrastructure systems is what increases the complexity and vulnerability of 

cities under CID. To minimize the negative impacts of interdependence, complex systems 

within cities must be resilient enough to absorb any disturbance and retain their basic 

functions during and following any extreme event. Within this context, Thomas Frieden, 

director of the US Centers for Disease Control, noted that "resilient systems are everyday 

systems that can be scaled up. Managing in an emergency is like managing normally, 

except more so” (“Toronto - 100 Resilient Cities,” n.d.).  

1.1.1. SYSTEM RESILIENCE: DEFINITIONS AND METRICS 

Resilience is the ability of a system to adjust and adapt to internal and external changes 

(Pickett, Cadenasso, & Grove, 2004). Another definition of resilience is the ability of a 

system to be restored to its original balance (Holling, 1973). Resilience determines “the 

persistence of relationships within a system and is a measure of the ability of these systems 

to absorb changes and still persist” (Holling, 1973). Furthermore, resilience is a function 

of time or how long it takes a system to bounce back after a shock (Spaans & Waterhout, 

2017). Resilience is also about the amount of disturbance a system can take and yet remain 



May Haggag 
Ph.D. Thesis 

McMaster University 
Department of Civil Engineering 

 

 4 

within its “critical thresholds” (Davoudi et al., 2012). Moreover, resilience pertains to 

planning and evaluation to decrease the vulnerability of the underlying system (Desouza & 

Flanery, 2013). Finally, resilience refers to the act of bouncing back (Vale, 2014). 

In 2013 and as part of the Rockefeller Foundation’s efforts to promote the well-

being of humanity and improve the quality of life of humans, the foundation adopted a new 

program that focuses on urban resilience. The program, under the name of 100 Resilient 

Cities, is currently helping cities worldwide to fight shocks and stresses pertaining to the 

physical, social and economic aspects of daily life. The program defines urban resilience 

as the capacity of individuals, communities, institutions, businesses and systems within a 

city to survive, adapt and grow no matter what kind of chronic stresses or acute shocks 

happen (“About Us | 100 Resilient Cities,” n.d.; Spaans & Waterhout, 2017). The City 

Resilience framework, developed by Arup in conjunction with the Rockefeller Foundation, 

proposed four basic city elements, twelve performance indicators and seven qualities that 

are measures of a city’s ability to adapt to extreme events and their consequences 

(Rockefeller Foundation, 2014). 

System resilience quantification has proved to be a highly complicated issue given 

the diverse definitions and metrics that are currently being used to measure resilience. 

Resilience for environmental, physical and social systems was defined as a term that 

consists of four dimensions (Bruneau et al., 2003), each has to be optimized in order to 

exploit system resilience. These four dimensions are: (1) robustness: the ability of a system 

to maintain its functionality under adverse events, (2) rapidity: the time it takes the system 

to bounce back to a pre-existing state, (3) redundancy: the availibi8lity of replacement 

components in the system, (4) resourcefulness: the availability of resources that aid the 
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system at the time of disaster including forecasting services and preparedness plans. The 

first two dimensions (i.e., robustness and rapidity) are referred to as resilience goals which 

can be achieved through maximizing the last two dimensions of resilience (i.e., redundancy 

and resourcefulness) which are referred to as resilience means (Rose & Krausmann, 2013).  

Through analyzing resilience research trends three actions were proposed to 

improve the quality of resilience research which are (Opdyke, Javernick-Will, & 

Koschmann, 2017): (1) conducting resilience-related studies in developing countries; (2) 

using mixed-methods (qualitative and quantitative) in order to evaluate the resilience of the 

underlying system; and (3) analyzing critical infrastructure systems closely by including 

both social (i.e., “the capacity of social ties and networks in limiting negative impacts from 

hazards”) (Aldrich & Meyer, 2015) and environmental (i.e., “the perturbation of hazard 

impacts through ecological systems”) (Prior & Eriksen, 2013) dimensions of resilience 

which relate to individuals/groups and ecological systems, respectively. As such, the first 

part of the thesis focuses on analyzing both qualitatively and quantitively previous research 

work pertaining to interdependence of critical infrastructure systems and city resilience.  

This analysis aims to: (1) assess in a quantitative manner the current status of systems 

resilience research, (2) evaluate the different resilience metrics used in literature, (3) 

categorize the different types of systems interdependencies, (4) compare the mostly used 

system modelling techniques and identify their drawbacks, and (5) uncover key research 

gaps and vulnerable critical infrastructure systems.  

Given that resourcefulness is key for maximizing the resilience of a system, it 

recently became extremely crucial to develop effective and efficient models that could 

predict both the frequency and impacts of CID which in return would ultimately increase 
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the preparedness of communities to such disasters. This is considered a challenging goal 

given both the extreme unpredictability of the frequency and impacts of CID and the 

complex behavior of cities that stems from the interconnectivity of their comprising 

infrastructure systems. Fortunately, the emergence of data-driven modelling and machine 

learning techniques which assume that models can be trained using historical data and 

accordingly, can efficiently learn to predict different complex features, developing robust 

models that can predict the frequency and impacts of CID became more conceivable. 

Accordingly, recent research studies have started to employ data analytics and machine 

learning in disaster prediction and mitigation.  

1.1.2. DATA ANALYTICS FOR CID RISK MITIGATION 

Data Analytics which is a relatively new field that has been developing rapidly since the 

1960’s (Keith Foote, 2018), pertains to analyzing raw data to derive meaningful 

information in an attempt to assist decision makers answer key questions regarding a 

certain problem or phenomena (Liberty, 2019). It is divided into three main categories: (1) 

descriptive analytics; (2) predictive analytics; and (3) predictive analytics (“The Power of 

Analytics,” n.d.). Descriptive analytics aims at analyzing historical data to answer key 

questions concerning complex processes.  On the other hand, predictive analytics is more 

concerned with future rather than historical conditions, thus, in predictive analytics the aim 

is to predict the future behavior of entities. Finally, prescriptive analytics is concerned with 

making the best decision after analyzing outcomes of the first two data analytics classes.  

The three categories of data analytics were extensively employed in literature to 

answer key question about CID, derive meaningful relationships between the different 
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variables related to these disasters, and reach important conclusions that aid the decision-

making processes related to disaster impact reduction and risk mitigation. In that context, 

historical data of the number of fatalities and incurred damages due to natural disasters was 

used to make inferences on the relationships between those disasters and social and 

economic aspects. Regression models were used to derive such relationships and the results 

showed that the impacts of natural disasters are inversely proportional to the increase in 

social and/or economic conditions (Toya & Skidmore, 2007). The role of social work was 

identified through qualitatively analyzing interview data in South Africa, where it was 

found that social work intervention is essential for disaster impact mitigation (Shokane, 

2019). Furthermore, the impact of natural disasters on economic growth was studied by 

qualitatively analyzing case studies following large disasters. It was shown that only very 

high impact disasters that essentially lead to rebellions have an impact on economic growth 

(Cavallo, Galiani, Noy, & Pantano, 2013). Instead, empirical analysis for historical disaster 

data showed that climate related disasters have an effect on economic growth which was 

attributed to the increased productivity due to adopting new technologies for future disaster 

mitigation. (Skidmore & Toya, 2002). On another perspective, natural disasters were linked 

to instability and conflicts using a multivariate model. Historical data from 1990 to 1999 

was used to derive relationships between natural disasters and social conflicts, and it was 

found that both are directly related (Bhavnani, 2006). In addition, natural disasters data 

from 1971 to 2000 was used to identify and assess risks related to climate variability. 

Among the identified risks are the number of fatalities and people affected by climate 

related disasters. The study showed that developing countries are the ones with the highest 

risk pertaining to climate related disasters (Brooks & Adger, 2003). The link between 
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natural disasters and population mobility was also established using historical household 

and natural disasters data. The multivariate analysis performed showed that crop failure 

due to climate disasters is strongly related to long-term population mobility (Gray & 

Mueller, 2012). Alternatively, the cost of damage related to a tropical cyclone landfall in 

China was used to estimate historical damage functions, which were found to be different 

for each damage dataset analyzed. This difference lead to divergence in future predictions, 

which calls for standardizing the damage reporting of international disaster (Bakkensen, 

Shi, & Zurita, 2018). Focusing on disaster direct loss estimation, billion-dollar disasters in 

the United States from 1980 to 2011 were used to detail the methodology used to convert 

from insured costs to direct disaster losses. The analysis showed that for the direct losses 

estimate to be more accurate, the spatial and temporal differences in insurance rates have 

to be considered in the analysis (Smith & Katz, 2013). Descriptive analytics was also 

employed to draw meaningful conclusions from a developed climate disaster dataset in 

Greece for the period from 2001 to 2011. The analysis was able to highlight the most 

frequent disasters, the months when disasters occur the most, the most costly disasters, and 

the spatial distribution of disasters  in Greece (Papagiannaki, Lagouvardos, & Kotroni, 

2013).  Turning to Asia-Pacific, historical data was used to assess factors related to climate 

disasters. It was shown that the changes in temperature are highly associated with 

climatological disasters, whereas the high fluctuations in precipitation together with the 

increased population exposure are associated with hydrological disasters (Thomas et al., 

2014).  
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1.1.3. CID PREDICTION USING MACHINE LEARNING APPLICATIONS 

Machine learning, a class of artificial intelligence, assumes that models can be trained using 

data and thus, can efficiently learn to predict different complex phenomena. The two 

classes of machine learning are: (1) supervised learning, and (2) unsupervised learning. 

The first class uses labelled data to train and test the model, whereas the second class used 

unlabelled data for building the model. The two classes have experienced rapid 

advancements in natural phenomena simulation and prediction recently. For example, 

flood damage was linked to some household predictors including house structure, flood 

awareness, literacy and other factors using three types of models: linear regression, random 

forests and artificial neural networks (Ganguly, Nahar, & Hossain, 2019). Neural network 

models were also proposed to predict number of hurricanes per season in a specific place, 

with a prediction accuracy of 73% (Kahira, Gomez, & Badia Sala, 2018). Machine learning 

was also recently used for wildfire event prediction, specifically anthropogenic wildfire 

events were predicted using random forests, boosting and support vector machines 

(Rodrigues & De la Riva, 2014). Additionally, a spatial prediction of wildfire probabilities 

was proposed by combining different machine learning models with optimization 

algorithms (i.e., genetic algorithms), and the results showed that optimization algorithms 

were able to refine the developed machine learning model (Jaafari, Zenner, Panahi, & 

Shahabi, 2019). Neural networks and logistic regression were used to predict binary and 

four-class wind damage (Hanewinkel, Zhou, & Schill, 2004), whereas wind gust 

occurrence was predicted as binary outcome using the same two techniques together with 

decision trees (Sallis, Claster, & Herna, 2011). Decision trees together with bagging, 

random forest and boosting were also used to predict heavy rain damage as binary outcome 
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(Choi et al., 2018), while both neural networks and random forest were employed to 

classify flood severity into three classes (Khalaf et al., 2018) and predict flood household 

damage (Ganguly et al., 2019). Moreover, neural networks were used to predict property 

damage caused by tornado disasters (Diaz & Joseph, 2019). Furthermore, unsupervised 

machine learning was used to quantify community flood resilience across different US 

counties (Abdel-Mooty, Yosri, El-Dakhakhni, & Coulibaly, 2021).  

While the majority of the previous studies focus on predicting the frequency and 

direct impacts of CID, these studies clearly lack several key considerations which include:  

(1) establishing the link between climate change and CID occurrences, (2) predicting the 

specific impacts of CID on critical infrastructure systems rather than their lumped monetary 

impacts, (3) integrating different types of data (i.e., hazard, socio-economic, and climate, 

etc.) for the prediction of CID impacts, (4) developing systematic and standardized 

approaches for the prediction of both CID occurrences and impacts. Consequently, the 

second, third and fourth phases of this work aim to address the above-mentioned gaps in 

an attempt to enhance the preparedness, and thus, the overall resilience of urban 

communities.  

1.2. RESEARCH OBJECTIVES AND PHASES 

The aim of this work is to enhance urban centre preparedness and resilience to CID by 

employing data analytics techniques. To achieve this goal the following specific objectives 

were outlined:  
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(1) Conducting, both qualitatively and quantitively, a comprehensive review of the 

previous research work pertaining to resilience of cities and their comprising 

critical infrastructure systems through employing text analytics. 

(2) Developing a deep learning modelling approach that predicts CID occurrences 

through linking different climate change indices to historical disaster records. 

(3) Developing a standardized data-driven framework for predicting the performance 

of critical infrastructure systems under CID by employing text mining and data 

imputation techniques. 

(4) Developing a standardized data-driven framework for predicting the lumped 

impacts of CID on urban communities through integrating different types of data 

and employing feature selection techniques. 

To attain the above-mentioned objectives, this dissertation is divided into four main phases 

as shown in Figure 1-1. In Phase 1 a comprehensive field exploration is conducted through 

employing meta research. As such, previous publications in the field of infrastructure 

systems resilience and interdependence are analyzed quantitatively using topic modelling, 

and qualitatively using a detailed critical review process. Upon the completion of this 

exploration, it was shown that a key gap in systems resilience research pertains to hazard 

considerations including the availability of resources that aid in predicting the occurrences 

and impacts of disasters on both the system- and community-levels. Moreover, it was 

shown that the most critical infrastructure system that all other systems depend on for their 

daily operations is the power system.  

To increase the preparedness of urban communities and thus, foster their resilience, 

Phases 2, 3, and 4 of this dissertation focuses on developing systematic approaches for the 
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prediction of various CID-related aspects. These aspects include the occurrences of CID, 

their impacts on specific critical systems, and their related damages.  As such, Phase 2 

focuses on predicting the occurrences of CID through establishing a link between these 

disasters and climate change, which is considered their key drive. Phase 3, on the other 

hand, aims at predicting the specific impacts of CID on critical infrastructure systems. In 

that context, a standardized data-driven framework that utilizes data analytics in the form 

of text mining, data imputation, and predictive modelling is developed. Finally, in Phase 4 

of the current dissertation the monetary cost of CID is predicted using a systematic data-

driven approach that integrates different data types and applies several machine learning 

techniques to select the optimal prediction model.   

 

 

Figure 1-1: Research Phases 
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- Chapter 1 provides the background and motivation for the research conducted 

herein, together with an outline for the specific research objectives, a description of 

the employed research phases and a summary of the contents of the dissertation. 

- Chapter 2 presents a critical review of the research work pertaining to resilience 

of critical infrastructure systems. First, a meta-research approach is employed in 

the form of topic modelling to quantitatively uncover latent topics and their 

statistical distributions in pertinent literature. Subsequently, the identified topics are 

qualitatively analyzed in terms of established resilience definitions and 

quantification metrics as well as currently adopted simulation approaches for city 

infrastructure systems interdependence. Moreover, the contribution of the 

identified topics and the research gaps pertaining to systems resilience research are 

uncovered in an attempt to identify possible blue ocean research opportunities.  

- Chapter 3 presents a deep learning modelling approach that aims to predict CID 

occurrences by linking historical disaster records to different climate change 

indices. The chapter is divided into two main parts, the first part details the general 

methodology which can be employed to predict any class of CID in any location. 

The four stages that comprise this methodology are outlined which include the 

model architecture analysis, input variable analysis, model selection and prediction, 

and model validation. The second part of the chapter demonstrates the applicability 

of the developed model using the province of Ontario’s disaster rerecords and 

relevant climate change indices data.  

- Chapter 4 discusses the developed systematic framework for predicting 

infrastructure system damages under CID. The chapter is divided into two main 
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sections, the first section details the damage prediction framework’s stages, 

whereas the second section demonstrates the framework’s applicability through a 

case study. As detailed in the first section, the internal processes of the framework 

consist of four main stages: linking CID to infrastructure systems, investigating and 

exploiting the influencing attributes, employing data imputation, and developing 

and testing the machine learning model. To demonstrate its applicability and 

viability, the second section of this chapter presents the application of the 

framework to the historical disaster data collected by the US National Weather 

Services between 1996 and 2019. 

- Chapter 5 presents a systematic framework that aims to predict CID direct impacts 

through employing data-driven approaches. This chapter is divided into two main 

parts: the first part explains in detail the systematic stages pertaining to the CID 

direct impact prediction framework, and the second part includes a demonstration 

case study that is used to assess the viability of the proposed framework. In the first 

part, a detailed description of the framework’s four main phases is provided. These 

stages are: data collection and compilation, feature selection, model development, 

and result analysis and interpretation. The second part of this chapter presents the 

case study which is used to assess the applicability of the proposed framework by 

linking wind disaster data collected by the National Weather Services to climate, 

land cover, social, housing, demographic, and economic data in the state of New 

York from 2010 to 2018. 

- Chapter 6 provides a summary for the dissertation and its main conclusions and 

findings. Recommendations for future work are also provided in this chapter. 
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Chapter 2  

RESILIENT CITIES CRITICAL INFRASTRUCTURE INTERDEPENDENCE: A 

META-RESEARCH  

ABSTRACT 

Given the unforeseen events that take place worldwide, most cities are experiencing rapid 

transformations. To maintain their basic functions, cities have to be resilient– possess the 

ability to bounce back to their original state following extreme events. Unfortunately, the 

behavior of cities is complex because of the high degree of interdependence among their 

comprising infrastructure systems which stems from their systems-of-systems architecture. 

The current work presents a critical review of the research work pertaining to resilience of 

cities’ critical infrastructure systems. To conduct such critical review, meta-research is 

employed through text analytics, in the form of topic modelling, to quantitatively uncover 

related latent topics and their statistical distributions in pertinent literature. Subsequently, 

the identified topics are qualitatively analyzed in terms of established resilience definitions 

and quantification metrics as well as currently adopted simulation approaches for city 

infrastructure systems interdependence. Based on the text analytics conducted, nine 

common topics and five major research gaps are identified. Through both its quantitative 

and qualitative analyses, this meta-research study is a steppingstone towards better 

understanding of city infrastructure systems interdependence simulation and their 

resilience quantification.  

Keywords: Cities; Complex Systems; Meta-Research, Resilience; Topic Modelling   
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2.1. INTRODUCTION 

Cities are conceived as complex adaptive systems with inherent abilities to reorganize their 

comprising components to reach an equilibrium state under unforeseen circumstances. 

Cities are also spatial and temporal systems-of-systems as per Figure 2-1, comprised of 

different infrastructure systems that facilitate performing their basic functions, with some 

of these systems being key to preserve cities’ adaptive nature (Moteff and Parfomak 2004). 

Such systems include electric power, telecommunication, oil and gas, water, and 

transportation infrastructure. In addition to their own intra-complexity, predicting the 

behavior of these systems is further complicated due to their interdependence-induced 

vulnerability (Zimmerman, Zhu, and Dimitri 2016).  

 

Figure 2-1: Spatio-temporal Evolution of Cities as Systems-of-Systems 

The devastating consequences of such interdependence were vividly displayed during the 

North-eastern blackout which crippled parts of Canada and the United States in 2003. The 
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time taken to restore different power-dependent infrastructure systems to their initial states 

varied significantly (Zimmerman and Restrepo 2006). For example, the power 

infrastructure took a full 72 hours to restore, whereas the New York rail transit, New York 

traffic signals and Detroit water supply systems took about 94, 188 and 216 hours, 

respectively. Such a major blackout, among other disruptive events, the most recent of 

which is the currently evolving COVID-19 epidemic, demonstrates the interdependence-

induced cascade vulnerability of our societies’ critical systems. Accordingly, there exists 

an urgent need to evaluate the interdependence of infrastructure systems and, more 

importantly, to minimize the negative impacts of such interdependence through adopting a 

resilient-by-design philosophy.  

 Resilience is a multidisciplinary concept that has roots and is perceived differently 

across different fields including material science (Davoudi et al. 2012; Lu and Stead 2013), 

ecology (Holling 1996; Standish et al. 2014), urban planning (Spaans and Waterhout 2017), 

organizational management (Vale 2014), engineering (Vale 2014) and many others. In 

applied science, resilience was first used to describe the stability of materials under shocks 

(Davoudi et al. 2012; Lu and Stead 2013). In  ecology, resilience indicates how much 

disturbance an ecosystem can absorb before switching to another state (Holling 1996; 

Standish et al. 2014). Urban resilience was also advocated for by the Rockefeller 

Foundation as the capacity of city systems to survive, adapt and grow in spite of “chronic 

stresses or acute shocks” (Spaans and Waterhout 2017). In another example, 

decisionmakers define resilience as the ability of their organization/facility/system to 

recover from a certain disruption and return to its original operations (Vale 2014) . In 

engineering, resilience is the ability of a system to bounce back to a pre-existing or a more 
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desirable state (Vale 2014). As such, a city that is resilient-by-design have to meet some 

contradictory objectives to improve inhabitants’ everyday life, where it should include 

redundant (alternative) components/systems yet remain efficient, be diverse (i.e., with some 

aspects of independence) but benefit from interdependence, operate autonomously but 

behave collaboratively, and be structured but remain adaptable.  

Reviewing relevant literature showed that topics addressing resilience of city 

infrastructure systems are very broad due to both the multiplicity of quantification metrics 

and the diversity of city system types and components. As such, a meta-research 

(conducting research on research) approach, in which text analytics - a field of machine 

learning which extracts meaningful information from text data through topic modelling 

(Blei, Andrew, and Micheal 2003), was adopted. In this study, topic modelling is employed 

to quantitatively identify common topics presented in relevant research publications and 

subsequently gain corresponding insights (Gatti, Brooks, and Nurre 2015). In this respect, 

topic modelling has been used to identify research trends in different fields such as 

transportation (L. Sun and Yin 2017), operational research (Gatti, Brooks, and Nurre 2015), 

and structural engineering (Ezzeldin M and El-Dakhakhni W. 2019).  

The main objective of the current work is to present a critical review of the research 

work pertaining to the resilience of city interdependent critical infrastructure systems. To 

conduct such critical review, latent topics are uncovered using topic modelling in Stage 1, 

as shown in Figure 2-2. Subsequently, the identified topics are then qualitatively analyzed 

in Stage 2 to review established definitions and quantifiable metrics for resilience of city 

infrastructure systems, and also to categorize their simulation approaches. Such definitions 

and approaches are presented to provide a basis for establishing metrics for quantifying 
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system resilience. It is worth noting that although quantifying the immediate impact (risk) 

of adverse events in terms of inhabitants’ lives and injuries is important, the current work 

mainly focuses on literature pertaining to quantifying the time-dependant recovery 

(resilience), following risk realization, of city infrastructure systems. 

 

Figure 2-2: The Main Stages of City/Complex Systems Resilience Study 

The articles considered in this study were selected from over 600 originally identified 

publications by considering the latter’s relevance to the current field (i.e., city/complex 

systems resilience). The exploration process started by searching through the Web of 

Science (https://www.webofknowledge.com) from 1990 to 2017 using the following 

keywords: City, Resilience, Infrastructure, Interdependence. This search was first 

performed by topic which resulted in enormous number of publications with the majority 

of them not related to the current area of study. Thus, the search was further guided by title 

which resulted in over 600 publications. These publications were subsequently filtered after 

exploring the abstract of each publication and evaluating each article’s relevance to the 

field. Following this abstract-based screening, the chosen publications were further filtered 

which yielded the 124 publications that were selected based on their relevance to the field. 
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2.2. CITY/ SYSTEMS RESILIENCE LITERATURE TEXT ANALYTICS 

Instead of subjectively selecting the topics which are relevant in the field and subsequently 

critically reviewing them, text analytics was used as an objective tool to identify and 

classify (based on topic modeling) relevant topics prior to reviewing them. Accordingly, 

the current section is divided into Subsection 2.1 which focuses on highlighting the 

methodology adopted along with the keywords used in the field; and Subsection 2.2 which 

focuses on analyzing the results of the topic models generated and selecting the most 

appropriate accordingly.  

2.2.1. METHODOLOGY 

PRE-PROCESSING 

Following data collection, the raw abstract dataset was processed using a package that 

applies different transformation features on text (i.e., tm_map) and is available in R 

(tm_map function | R Documentation 2019). The abstracts were preprocessed through four 

steps as in (Miner et al. 2012): (1) transformation, which was used to change all words to 

be in a lower case format; (2) tokenization, where unstructured text was converted into 

words in preparation for analysis; (3) treatment, where a standard filter “stop” list was used 

to remove common words; (4) stemming, where all the affixes were removed. 

WORD IMPORTANCE  

A word importance can be evaluated through the frequency of this word in the abstract 

dataset. Figure 2-3 (a and b) show the word cloud before and after pre-processing the 

abstract dataset, respectively, where large size words have a higher probability of 
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occurrence compared to that of small size words. The raw abstract dataset has numerous 

nontechnical common words (i.e., the, this, and) with high frequency, whereas the 

preprocessed dataset contains technical words, related to city/infrastructure resilience, with 

high frequency which shows the importance of pre-processing data in text mining. 

  

 

Figure 2-3: Word Cloud for the Terms with the Highest Frequencies (a) Before Pre-
processing; (b) After Pre-processing 

LATENT DIRICHLET ALLOCATION (LDA) 

Latent Dirichlet Allocation (LDA) is a generative probabilistic model that focuses on 

identifying key topics from a collection of textual documents (Blei, Andrew, and Micheal 

2003). The following steps describe how the LDA algorithm adopted herein is used to 

identify common topics: 

1. The user selects the documents to be analyzed (M) 

2. The user selects the number of Topics (K) 

3. The algorithm starts by randomly assigning a topic to each word (w) in a document 

(m) 

(a) (b) 
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a. Initial per document per topic representation (Gamma) 

b. Initial per topic per word representation (Beta) 

4. To improve on Gamma and Beta, for each document (m), the algorithm checks 

every word (w) and computes two metrics 

a. P (topic I | document m): percentage of words in document (m) that are 

assigned to a certain topic (i) 

b. P (word w | topic i): percentage of assignments to topic i across all 

documents (M) for this word w 

5. The algorithm assigns the word (w) a revised topic based on the above two metrics 

which together represent the probability that topic (i) generated word (w) 

6. The algorithm repeats Steps 3-5 for all words across all documents (M) 

Figure 2-4 shows the methodology used to determine the optimum number of topics—one 

of the main challenges in topic modelling. A threshold of 30 topics was chosen as the 

maximum number of topics to be considered which is a relatively large number compared 

to the number of publications under consideration. This high threshold was chosen to 

visualize how evaluation metrics change as the number of topics is varied. The first metric 

is the perplexity (Labs n.d.), which is a statistical metric to evaluate the model’s ability to 

predict the sample through calculating the relative degree of uncertainty among models. 

Generally, lower perplexity values indicate better fitted models; the second metric is the 

Griffiths’ measure (Griffiths et al. 2004), which is based on the Gibbs sampling algorithm. 

The best number of topics is represented as the measure is maximized.  
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Figure 2-4: Topic Modelling Methodology 

2.2.2. RESULTS 

MODEL SELECTION 
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Figure 2-5 shows the sensitivity of the evaluation measures to the number of topics (k).  

Considering perplexity, the best number of topics should be attained at the least value of 

perplexity calculated, which is 30 topics. This number of topics is quite large considering 

the number of publications considered. In addition, perplexity decreases with a high and an 

almost constant rate as the number of topics is increased. The maximum value of Griffiths’ 

measure was attained at 14 topics. However, as can be seen from Figure 5b, the measure 

experiences a sharp increase at 8 topics, and between 9 and 12 topics, the measure is 

maximum and is close to its maximum value at 14 topics. Thus, the range of optimal topics 

is between 9 and 14 topics as proposed by the perplexity and Griffiths’ measures. For the 

purpose of this analysis and due to the number of papers considered, nine topics were chosen 

to conduct the analysis herein. 

 

Figure 2-5: (a) Perplexity, vs. the number of topics, and (b) Griffiths vs. the number of 
topics 

TOPIC ANALYSIS  

The nine identified topics are shown in figures 6 and 7. Figure 2-6 shows per-topic-per-

word probabilities (Beta) for the most ten frequent words within each topic, while Figure 

2-7 shows the word cloud for each of the extracted topics. In the former figure, Beta can 

  
 (a) (b) 

Number of Topics 
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be interpreted as the probability that a certain term is generated from a specific topic. It can 

be observed that, within some of the extracted topics, the most frequent words have very 

high Beta values compared to other extracted topics. For example, comparing the Beta 

values for the most probable word in Topics A and B, Beta is calculated as 0.169 for the 

term “resili” in Topic A and 0.026 for the term “citi” in Topic B. This comparison shows 

that the probability that the term “resili” is generated from Topic A is more than six times 

the probability that the term “citi” is generated from Topic B. In Figure 2-7, words with 

higher probabilities are shown in larger font sizes compared to those of lower probability 

words.  

Starting with Topic A, the words “resilience, analysis, framework, etc.” are typically 

related to (system resilience analysis and related frameworks), whereas the words “city, 

urban, plan, assess, etc.” in Topic B are typically related to (city assessment and urban 

planning), and the words “infrastructure, critical, effect, etc.” in Topic C are typically 

related to (critical infrastructure systems). Furthermore, the words “interdependence, 

vulnerability, infrastructure, etc.” in Topic D are typically related to (infrastructure systems 

interdependence and vulnerability). Moreover, the words “risk, disrupt, hazard, method, 

etc.” in Topic E are mostly related to (risk and disruption due to hazards), whereas the 

words “model, interdependence, system, etc.” in Topic F are typically related to (modelling 

infrastructure systems interdependence). On the other hand, the words “network, complex, 

etc.” in Topic G are typically connected to (complex network theory), whereas the words 

“system, power, water, restore, gas, etc.”  in Topic H are mostly related to (performance 

and restoration of the three systems: power, gas and water). The LDA model also identified 

a cross-cutting topic (i.e., Topic I) characterized by the words “approach, disrupt, event, 
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disaster, etc.” This topic relates the probability of disasters and their adverse impacts on 

the disruption of infrastructure systems which is the reason behind the study of system 

interdependence, vulnerability, risk and resilience. Given the fact that Topic I can be 

considered as the natural trigger behind all other identified topics, it will not be discussed 

separately herein. Consequently, research in the field is mainly dominated by concepts 

pertinent to resilience, risk, and vulnerability. Moreover, the analysis shows that power, 

water and gas systems are perceived as key to maintaining functionality of cities. 
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Figure 2-6: Beta Distribution for Extracted Topics  
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 Topic A Topic B          

Topic C Topic D          

Topic E Topic F          

Topic G Topic H          

Topic I 

 

 

Figure 2-7: Word Clouds for Extracted Topics 
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2.3. CITY/COMPLEX SYSTEMS RESILIENCE PREVIOUS 

RESEARCH 

The current section reviews some of the research studies that have been conducted together 

with a critical analysis of each of the identified topics. The chosen publications (among the 

124 modelled ones) are the ones that significantly add to the analysis of the identified 

topics. It is worth mentioning that the identified topics are titled hereafter as per Figure 

2-8.  

 

Figure 2-8: Extracted Topics within City/Complex Systems Resilience Field 

2.3.1. TOPIC A: THE CONCEPT OF RESILIENCE 



May Haggag 
Ph.D. Thesis 

McMaster University 
Department of Civil Engineering 

 

 38 

Resilience is related to both the time it takes the system to bounce back after a shock and 

the magnitude of disturbance a system can absorb and yet remain within its “critical 

thresholds” (Davoudi et al. 2012). Reduction of recovery time (Bruneau et al. 2003) was 

proposed as a resilience assessment measure which was further divided into three distinct 

processes which are recovery planning, execution and closure (Sharma, Tabandeh, and 

Gardoni 2017). The main goal of having a resilient city/system is not to prevent the hazard 

realization per se, but to enhance the performance of the city/system when such hazard 

materializes (About Us | 100 Resilient Cities n.d.). 

RESILIENCE METRICS  

Quantifying system resilience is a challenging and controversial subject due to the 

availability of many measures and metrics which claim to capture the full definition of 

system resilience. Resilience metrics fall under one of three approaches including those 

related to: (1) system properties (i.e., the four dimensions of resilience) (Bruneau et al. 

2003); (2) system behaviour (i.e., the three resilience capabilities) (Ouyang 2017); and (3) 

other system requirements/characteristics (Hamida, Amine, and Mostafa 2016; Martin and 

Ludek 2013; Slivkova et al. 2017). Figure 2-9 shows the three approaches together with 

the interaction between the different metrics. 
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Figure 2-9: The Different Metrics of Resilience (Bruneau et al. 2003; Hamida, Amine, 

and Mostafa 2016; Martin and Ludek 2013; Ouyang 2017; Slivkova et al. 2017) 

APPROACH I: THE FOUR DIMENSIONS OF RESILIENCE  

Several studies have been conducted to assess resilience of different systems in terms of 

four dimensions, each is related to a certain system property. The four dimensions (Bruneau 

et al. 2003) are: (1) Robustness: the ability of a system to remain operational after an 

extreme event; (2) Redundancy: the availability of replacement components within a 

system; (3) Resourcefulness: the availability of resources that can help in detecting, 

diagnosing and surviving an extreme event; and (4) Rapidity: the time it takes a system to 

bounce back to an initial, or other predefined, state following an extreme event (i.e., 

recovery time). Robustness and rapidity can both be considered as resilience goals which 

are achieved through improving the two resilience means: redundancy and resourcefulness 
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(Rose and Krausmann 2013). As such, increasing the number of alternative (redundant) 

components as well as ensuring resourcefulness is key to alleviate the impact of adverse 

events by enhancing the system’s immediate response (robustness) and functionality 

recovery (rapidity) following these events. Both goals can be measured by assessing system 

functionality at time of crisis when it comes to robustness and at full operation after crisis 

when it comes to rapidity. The complexity of quantifying resilience in terms of the two 

means resides in the fact that they are hard to directly relate to the loss of functionality of 

the system.  

As shown in Figure 2-10, following a hazard realization at time th, the system 

recovers its functionality from just before th to tnr and the functionality loss area (i.e., 

reflected by the red and blue areas together) is used to represent the system’s loss of 

functionality which in turn illustrates how non-resilient or vulnerable the system is. As this 

area is minimized (e.g., to the red area only), the system is considered to be more resilient 

as it is able to retain almost 70% of its functionality (compared to the previous 30%) and 

is also able to recover at an earlier time tr instead of tnr. The concept of a system being 

resilient-by-design aims at minimizing the loss of functionality area which can be easily 

achieved by maximizing the system robustness and/or minimizing the rapidity. 



May Haggag 
Ph.D. Thesis 

McMaster University 
Department of Civil Engineering 

 

 41 

 

Figure 2-10: Definition of System Resilience (Shen and Tang 2015) 

Consequently, resilience of environmental, physical and social systems was qualitatively 

defined through the aforementioned four dimensions based on the reduction of three system 

related measures: (1) adverse consequences following a hazard; (2) failure probability 

when the hazard materializes; and (3) required recovery time after a hazard, reduction 

(Bruneau et al. 2003). Moreover, resilience of critical infrastructure systems was quantified 

in terms of recovery time (i.e., rapidity) (Shen and Tang 2015), where it was measured as 

the ratio between the area under the actual system performance curve and that under the 

targeted performance curve. Furthermore, two functionality metrics were proposed for 

measuring the robustness of transportation systems which are topological and traffic related 

metrics (W. Sun, Bocchini, and Davison 2018), whereas the importance of robustness to 

resilience evaluation was emphasized (Martin and Ludek 2013) where component 

redundancy together with other system related metrics including the latter’s (i.e., topology, 
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complexity, technologies, flexibility, and geography) were proposed to evaluate 

infrastructure systems robustness. Assuming that robustness can be solely used for 

resilience quantification, the resilience of infrastructure systems under spatially localized 

attacks was assessed in terms of system performance level following a hazard and before 

any restoration is carried out (Ouyang 2017).  Furthermore, the distinction between 

resilience, robustness and rapidity concepts was presented by the “resilience triangle” 

concept in (Chang et al. 2014). Moreover, it was highlighted that system maintenance, 

design, capacity, planning initiative, redundancy and learning abilities are directly related 

to enhancing both robustness and rapidity (McDaniels et al. 2008). A framework was also 

developed to include the two dimensions of resilience goals (i.e., robustness and rapidity) 

(McDaniels et al. 2008) in which flow diagrams were used to evaluate potential decisions 

that can strengthen the two dimensions within infrastructure systems.  

APPROACH II: THE THREE RESILIENCE CAPABILITIES 

The second resilience metrics quantification approach relates system resilience to its 

behaviour, whereby three capabilities were suggested (Ouyang 2017) to measure system 

resilience as shown in Figure 2-9 as: (1) Absorptive Capability: the ability of a system to 

minimize the consequences of an extreme event, which can be linked to the robustness of 

the underlying system and can be enhanced by increasing resilience means (i.e. redundancy 

or resourcefulness); (2) Adaptive Capability: the ability of a system to adapt (i.e., 

reorganize) itself after an extreme event to minimize the corresponding consequences, 

which can also be linked to the two resilience means; and (3) Restorative Capability: the 

ability of a system to be repaired after an extreme event, which can be directly related both 

resourcefulness as a resilience mean and rapidity as a resilience goal (Rose and Krausmann 
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2013). As can be observed from the definitions of the three resilience capabilities, they can 

be related to the system behavior rather than its inherent properties. Nevertheless, these 

capabilities can be related to the previously established dimensions of resilience (i.e., goals 

and means). Based on these three capabilities, different frameworks for quantifying and 

evaluating system resilience were proposed (Francis and Bekera 2014; Ouyang 2017; Zhao, 

Liu, and Zhuo 2017).  

APPROACH III: OTHER RESILIENCE METRICS 

In addition to the previously discussed approaches for resilience metrics/quantification, 

frameworks were presented to assess the resilience of critical infrastructure systems based 

on preparedness and responsiveness (Slivkova et al. 2017) and protection, monitoring, 

maintenance and evaluation (Martin and Ludek 2013). Furthermore, a two-stages strategy 

for resilience evaluation was outlined (Hamida, Amine, and Mostafa 2016), where Stage I 

includes defence, detection, remediation and recovery, while Stage II includes cause 

diagnosis and future refinement.  

2.3.2. TOPIC B: CITY ASSESSMENT AND URBAN PLANNING 

Several frameworks were developed to define, analyze and assess resilience of cities. The 

Resilient Cities Framework (Rockefeller Foundation; Arup 2014) highlighted four city 

elements, twelve performance indicators and seven qualities for resilient cities as per 

Figure 2-11. The seven qualities that were demonstrated to be consistent with all resilient 

cities are: (1) Reflectiveness: the ability of individuals, communities and institution to build 

on past experiences (i.e., shared history) that can affect their current and future decisions; 

(2) Resourcefulness; (3) Robustness; (4) Redundancy; (5) Flexibility: the ability of a 
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system to adapt in the face of an extreme event; (6) Inclusiveness: the ability of a system 

to engage different experiences and visions to build or plan for city resilience; and (7) 

Integration: the ability of a system to bring together resources and share them across 

various systems. Actions to build resilience within cities were also identified (Bruneau et 

al. 2003; Chang et al. 2014; Desouza and Flanery 2013; Martin and Ludek 2013; Shen and 

Tang 2015) as per Figure 2-11. Acknowledging the importance of physical infrastructure 

systems for city resilience, a framework was proposed which specifies core systems for 

ensuring city resilience as: green infrastructure, transportation, energy, communication, 

water, sanitation and buildings (Reiner and McElvaney 2017). Another framework (Yang 

et al. 2018) provided a way for multisystem asset management to enhance city resilience.  

 
 

Figure 2-11: Actions for City Resilience (Bruneau et al. 2003; Chang et al. 2014; 
Desouza and Flanery 2013; Martin and Ludek 2013; Shen and Tang 2015) 
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2.3.3. TOPIC C: CRITICAL INFRASTRUCTURE SYSTEMS 

The importance of designing a resilient critical infrastructure system was comprehensively 

discussed (Hudson, S., Cormie 2012), whereas resilient infrastructure rating systems and 

design tools were presented (Pitilakis et al. 2016) and a cycle for infrastructure resilience 

management was proposed (Yang et al. 2019). An approach was further introduced 

(Ouyang and Dueñas-Osorio 2012) to assess the time-dependent resilience of infrastructure 

systems where three values of resilience were proposed at different times to account for 

the fact that infrastructure systems are continuously evolving. Furthermore, (Timashev 

2015) defined infrastructure resilience in probabilistic terms to represent the random 

parameters of resilience. The use of the three branches of data analytics (i.e., descriptive, 

predictive and prescriptive) in infrastructure systems resilience enhancement was also 

investigated (Kash Barker et al. 2017).  

 The influence of climate-induced risks on infrastructure systems was also explored 

(Giordano 2012). More specifically, infrastructure planning processes were reviewed to 

ensure that these systems can adapt to climate-induced hazards (Giordano 2012). Moving 

from system resilience to system protection, a methodology was presented to evaluate 

critical infrastructure systems in which protection of critical infrastructures was considered 

to depend on acceptance, anticipation, and planning (Robert et al. 2015). Furthermore, 

different modelling tools for infrastructure systems protection were evaluated (Santella, 

Steinberg, and Parks 2009). 

2.3.4. TOPIC D: INFRASTRUCTURE INTERDEPENDENCE 
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To address interdependencies of infrastructure systems, researchers outlined several 

interdependence types. Four types of interdependence, among infrastructure systems, were 

specified (Gillette et al. 2002; Rinaldi, Peerenboom, and Kelly 2001): 

(1) Physical: when interdependence is due to reliance on material flow between 

two or more systems;  

(2) Cyber:  when interdependence is due to reliance on information transfer 

between two or more systems;  

(3) Geographic: when interdependence is due to proximity of two or more 

systems; and 

(4) Logical: when interdependence is due to other factors that do not fall into 

the three above categories. 

Whereas, other five types of infrastructure interdependence were presented (Lee, Mitchell, 

and Wallace 2007; Wallace et al. 2003): 

(1) Input Dependence: when an infrastructure requires input from another 

infrastructure; 

(2) Mutual Dependence: when at least one activity in an infrastructure is 

dependent upon another activity from another infrastructure, while at least 

one activity in the later infrastructure is dependent upon another activity 

from the former infrastructure; 

(3) Shared Dependence: when physical components or activities are shared 

between infrastructures; 
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(4) Exclusive/Or Dependence: when an infrastructure is unable to operate once 

another infrastructure is operating; and 

(5) Collocated Dependence: when components of two or more infrastructures 

are in the same location. 

Relationships can be established between the four and five types of interdependence 

discussed above. The physical and cyber dependences which entitle system dependence of 

material or non-material components can be closely related to input and mutual 

dependence, whereas the geographic and collocated dependence are both related to 

proximity of system components locations. Finally, both shared and exclusive are logical 

types of systems dependence.  

2.3.5. TOPIC E: RISK AND DISRUPTION 

Most studies, among the considered 124 publications, do not relate the concepts of risk and 

resilience. In the context of infrastructure systems, risk assessment depends on the threat 

level of the hazard (i.e., probability) realization, the consequences of such a hazard 

realization on the system (i.e., impacts) and the vulnerability of the exposed 

systems/components to a specific hazard (Linkov et al. 2014), whereas resilience focuses 

on achieving system adaptation and recovery goals through working on both redundancy 

and resourcefulness as means. One way of looking at the resilience’s relationship to risk is 

through considering that the former builds on the latter. The reason is that beyond 

quantifying system functionality loss or robustness through traditional risk analysis, 

resilience considers the temporal dimension of restoring system’s functionality (rapidity), 

whereas risk focuses on the immediate system functionality loss through assessing 
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disruptive event threat level, related consequences and system vulnerabilities (Salem et al. 

n.d.). 

Considering the previously established definition of risk, a framework was 

proposed  to present a risk informed decision-making approach for the lifecycle 

performance of infrastructure systems (Lounis and McAllister 2016). Focusing on the 

consequence component of risk, a method was proposed (Bristow and Hay 2017) to 

estimate probabilities after a shock to derive a model that can assess risk consequences and 

treatment options.  Focusing on the vulnerability component of risk, vulnerability and risk 

assessment frameworks for transportation systems were presented (Blockley, Agarwal, and 

Godfrey 2012; Pitilakis et al. 2016). Furthermore, it was emphasized that when considering 

the resilience of critical infrastructure systems, interdependence actually signifies the 

highest risk (Risk and Critical Infrastructure System Protection 2917). This was illustrated 

by highlighting the effect of the breakdown of a natural gas transmission line on power 

system generation plants in a southern state in USA. To study these risks and in aim of 

having a resilient infrastructure system, an algorithm was developed to simulate the effect 

of the worst-case failure scenario on the power grid network. 

2.3.6. TOPIC F: INTERDEPENDENCE MODELLING 

Topic F presents research conducted on simulating interdependence among infrastructure 

systems. Existing approaches for simulating complex infrastructure systems were divided 

into four main categories: multi agent-based, system dynamics, economic theory, and 

complex network theory. Three of these approaches (i.e., multi agent-based, system 

dynamics, and economic theory) are outlined in the current subsection. The fourth approach 

(i.e., complex network theory) is thoroughly detailed in the next subsection (i.e., Topic G). 
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Table 2-1 lists the techniques together with their applications and reference for Topics F, 

G, and H.  

Table 2-1: Complex Systems Resilience and Interdependence Modelling Techniques 

Application Reference  

Multi-Agent Simulation   

Conceptual simulation of infrastructure interdependence  
(Dudenhoeffer, 
Permann, and 
Manic 2006) 

 

Modelling interdependence among power, water and wastewater 
systems 

(Pereyra, He, 
and Mostafavi 

2016) 

 

System Dynamics   

Employing mitigation strategies to increase transportation system 
resilience 

(Croope and 
McNe 2011) 

 

Building transportation, energy and telecommunication system 
maps from defining system relations  

(Cavallini et al. 
2014) 

 

Input-Output Inoperability Model    

Characterizing interdependence for power and telecommunication 
systems  

(Reed, Kapur, 
and Christie 

2009) 

 

Probabilistic assessment for the resilience of interdependent 
infrastructure 

(Xu et al. 2013)  

Uncertainty recovery analysis for two hypothetical interdependent 
systems  

(Xu et al. 2015)  

Uncertainty recovery analysis for transportation, utilities, 
construction, manufacturing and mining 

(K Barker and 
Haimes 2009) 

 

Complex Network Theory   

Resilience assessment for high-pressure natural gas system (Golara and 
Esmaeily 2017) 

 

Resilience and reliability assessment of transportation system (Lam and Tai 
2012) 

 

Analyses of vulnerabilities and resilience of railway system (Chopra et al. 
2016) 
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Evaluate performance of energy, water and wastewater systems (Holden et al. 
2013) 

 

Assessment of the effect of interdependence on resilience of 
power, water and telecommunication systems 

(Mao and Li 
2017) 

 

Simulation of power distribution, gas pipeline and telephony 
transport 

(Svendsen and 
Wolthusen 

2007) 

 

Simulation of the vulnerability and resilience of power and water 
systems 

(Zhang, Yang, 
and Lall 2016) 

 

Modelling edge attack strategies on power and gas systems (Wang et al. 
2013) 

 

Studying the behaviour of power and water systems at the time of 
flood 

(Val, Holden, 
and Nodwell 

2014) 

 

Characterizing infrastructure interdependence under the power 
outages 

(McDaniels et 
al. 2008) 

 

Other Techniques   

Ranking the IEEE 30 bus system components (Fang, Pedroni, 
and Zio 2016) 

 

Evaluating restoration and planning of high-voltage power 
transmission lines 

(Fang and 
Sansavini 2017) 

 

Simulating interdependence within power systems (Rahman et al. 
2008) 

 

Assessment of interdependence in Taiwan’s Northern region 
power systems 

(Chou, Tseng, 
and Ho 2009) 

 

Maximizing the global connectivity of two interdependent power 
systems 

(Chen and Zhu 
2016) 

 

Resilience evaluation of power and gas systems (Liu, Ferrario, 
and Zio 2017) 

 

Power and gas interdependence enhancement using microgrids (Yodo and Arfin 
2020) 

 

Quantifying the performance of power and water systems after an 
earthquake 

(Omidvar, 
Malekshah, and 
Omidvar 2014) 

 

Resilience assessment for power and water systems (Ulieru 2007)  



May Haggag 
Ph.D. Thesis 

McMaster University 
Department of Civil Engineering 

 

 51 

Assessing the effect of spatially localized attacks on power and 
water systems 

(Ouyang 2017)  

Assessing the effect of spatially localized attacks on power and gas 
systems 

(Ouyang 2016)  

Analyzing joint restoration processes for power and gas systems 
resilience assessment 

(Ouyang and 
Wang 2015) 

 

Resilience evaluation for power, water and gas systems using 
restoration measures 

(Cimellaro, 
Solari, and 

Bruneau 2014) 

 

Power, water and gas systems interdependence modelling using 
Bayesian networks 

(Johansen and 
Tien 2018) 

 

 MULTI-AGENT-BASED SIMULATION  

Multi-agent-based simulation approach is associated with a relatively recent style of 

programming called “object oriented programming”, in which programming languages are 

“encapsulated” in objects that can control their own behavior, and interact with other 

objects (Rouse n.d.). The agent-level represents the basic elements or the physical 

components that make up the entire system. The next level is the system-level, which is 

made up of aggregating the agent-level. Finally, the system-of-system-level integrates all 

systems to represent the highest and more sophisticated systemic level  (Pereyra, He, and 

Mostafavi 2016). Using this approach, a framework was proposed for the simulation of  

infrastructure components (Dudenhoeffer, Permann, and Manic 2006) and to simulate the 

components of power, water and wastewater systems (Pereyra, He, and Mostafavi 2016).  

SYSTEM DYNAMICS 

Control theory is an interdisciplinary branch of engineering and mathematics that deals 

with the control of continuously operating dynamic processes and machine systems, and 

how their behaviour is modified by feedback loops (Teknomo 2004). System dynamics 
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simulation approach extends the toolbox of the control theory from machines to systems 

(How does system dynamics relate to control theory? - Quora n.d.). More specifically, 

system dynamics—originally developed in the 1950s, is based on the fact that any system 

can rely on circular, interlocking and time-delayed relationships among its comprising 

components (Croope and McNe 2011). This approach was adopted to develop a decision 

support system that aims to reduce the vulnerability of transportation (Croope and McNe 

2011) and energy/telecommunication (Cavallini et al. 2014) systems. 

ECONOMIC THEORY (INPUT-OUTPUT INOPERABILITY MODEL) 

The input-output model was first proposed by Wassily Leiontief in 1973 to describe the 

equilibrium between economic sectors through modelling the interconnections among 

these sectors (Haimes et al. 2005). The model was applied to assess the behaviour of power 

and telecommunication systems under natural hazards (Reed, Kapur, and Christie 2009). 

The static input output inoperability model is presented in Equation 2.1 (Reed, Kapur, and 

Christie 2009). 

!! = #!" + %             Equation 2-1 

where !! and !" 	are vectors of systems’ “i” and “j” inoperability, respectively, A is the 

interdependence matrix between the different subsystems and C is a disturbance or 

perturbation vector. The values of matrix A coefficients range from 0 to 1, where aij 

represents the probability of inoperability that system “j” contributes to system “i”. When 

the failure of system “j” leads to 100% failure in system “i”, aij is equal to 1. Conversely, aij 

is equal to 0 if the failure of system “j” has no effect on system “i”. Finally, C represents the 

direct reduction of functionality resulting from exposure to the hazard. 
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The concept of the static evaluation (i.e., only at a given time) was further 

developed to propose a dynamic input-output inoperability model, where a continuous 

evaluation (i.e., overtime) is permitted (Miller and Blair 1985). The dynamic input out[put 

inoperability model is presented in Equation 2.2 (Miller and Blair 1985). 

'()) = +[#∗'()) + -∗()) − '())]      Equation 2-2 

Where, '()), #∗, and -∗()) are defined as X, A and C in the static input-output inoperability 

model, respectively. The difference between the static and dynamic inoperability models is 

that the variables !! , !"  and C in the static model are modelled as !())! , !())"  and %()) to 

account for the time dimension. On the other hand, + is a resilience coefficient that 

represents the system’s ability to recover following a disruption where the higher the value 

of +, the better the system is with respect to its response. Based on the dynamic 

inoperability input-output model, frameworks for resilience (Xu et al. 2013) and recovery 

(K Barker and Haimes 2009; Xu et al. 2015) assessment of interdependent infrastructure 

systems were developed.  

2.3.7. TOPIC G: COMPLEX NETWORK THEORY 

Thriving as of the first decade of the 21st century, Complex Network Theory (CNT) builds 

upon the use of the mathematical graph theory (Barabasi 2016). In CNT, a system is 

typically simulated by nodes and links; each has unique attributes based on the underlying 

application. Most CNT based models fall under one of two main types as per Figure 2-12. 

The first type is the physical network-based model, in which the relationships between 

different network components is based on a system architecture property (i.e., their 

geographical proximity). The second type is the functional network-based model, in which 
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the rate of flow of system commodities (i.e., water, power, etc.) derives the relationships 

between network components. In the functional network-based model, the capacity of each 

component in the network is of key importance.  

 

Figure 2-12: Types of Network-based Models 

The resilience of transportation systems was evaluated using CNT (Lam and Tai 2012) 

where the network’s ability to maintain basic functions under an extreme event was 

determined using “the weighted sum of the resilience of all the reliable independent 

connection paths between all pairs of nodes.” A framework was also developed to 

investigate the topology, spatial organization and passenger flow of metro networks 

(Chopra et al. 2016). Similarly, electrified railway systems were simulated to consider 

structural, functional and geographical system properties (Johansson and Hassel 2010). In 

addition the resilience of high pressure natural gas networks was evaluated using CNT 

(Golara and Esmaeily 2017).  

Recently, CNT was used to simulate interdependence among infrastructure 

systems. Physical and functional network-based models were adopted and used to simulate 

the interdependence of power, water and telecommunication systems where it was shown 

that interdependence between the three systems minimize their resilience (Mao and Li 
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2017). Likewise, CNT flow models were proposed (Holden et al. 2013) to evaluate the 

performance of energy, water and wastewater systems at times of flood.   

2.3.8. TOPIC H: POWER, WATER AND/OR GAS SYSTEMS 

The reliance of infrastructure systems on power was clearly illustrated in the consequences 

of many disasters including the 2003 North-eastern blackout mentioned earlier. As such, 

among the keywords in Topic H, power systems have the highest probability of occurrence 

which is about three times that of water or gas systems. Thus, focusing on power systems, 

empirical approaches were used to develop a framework to evaluate how power outages, 

due to extreme events, can lead to failures in other interdependent infrastructure systems 

(McDaniels et al. 2007). Furthermore, ranking among power system components was 

performed based on the optimal repair time by considering the IEEE bus 30 components 

(Fang, Pedroni, and Zio 2016). Focusing on transmission lines, a credibility-based fuzzy 

mixed integer programming approach was proposed  to evaluate the restoration and 

planning of high-voltage power transmission lines (Fang and Sansavini 2017). Adding 

interdependence to the picture, a matrix-based technique (Rahman et al. 2008), a 

knowledge discovery process (Chou, Tseng, and Ho 2009), and game theoretic approach 

(Chen and Zhu 2016) were used to simulate interdependence among power systems.  

As per the topic analysis results, the three critical infrastructure systems that were 

considerably tackled together in the literature are the power, water and gas systems. This 

linkage may indicate the importance of interdependence between these systems. In that 

sense, the vulnerability of power and water systems was evaluated (Zhang, Yang, and Lall 

2016). In addition, CNT was used to simulate power, gas and telephony transport 

(Svendsen and Wolthusen 2007), power and gas (Wang et al. 2013), and power and water 
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systems (Val, Holden, and Nodwell 2014).  The resilience of power and gas systems was 

also assessed using differential equations (Liu, Ferrario, and Zio 2017) and the effect of 

installing microgrids on the interdependence of both systems was investigated using 

complex network theory (Yodo and Arfin 2020). Similarly, the performance of power and 

water systems following an earthquake was quantified using a Markov chain approach 

(Omidvar, Malekshah, and Omidvar 2014), whereas a probabilistic procedure was 

proposed to assess their resilience (Ulieru 2007).  Additionally, the effect of spatially 

localized attacks which were found to have the ability to cause “direct damage or 

interruption of system components that exist within some localized area while those outside 

this area remain operating” (Ouyang 2017) on power and water systems, and power and 

gas systems was presented in (Ouyang 2017) and (Ouyang 2016), respectively. By focusing 

on joint restoration processes a framework was used to assess the resilience of power and 

gas systems (Ouyang and Wang 2015). Furthermore, resilience of power, water and gas 

systems was evaluated by quantifying restoration measures under natural disasters 

(Cimellaro, Solari, and Bruneau 2014), whereas the interdependence among the three 

systems was modeled using a Bayesian approach (Johansen and Tien 2018).  
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2.4. DISCUSSION AND RESEARCH OPPORTUNITIES 

This section aims to explore research gaps pertaining to the resilience of complex systems 

in an attempt to create blue ocean research opportunities (i.e., opportunities within 

unexplored research areas) (Ezzeldin M and El-Dakhakhni W. 2019). Prior to uncovering 

these gaps, the per-document-per-topic probability (gamma) values are evaluated to assess 

the contribution of each topic to the content of the publications used in the proposed LDA 

topic model. The gamma probabilities are summed up for each topic over the analyzed 

documents and are shown in Figure 2-13. Topic C (Critical Infrastructure Systems), Topic 

D (Infrastructure Interdependence), and Topic H (Power, and/or Water, and/or Gas 

Systems) have the highest sum of gamma for the publications considered which indicates 

that these topics contribute more with respect to the overall content of the considered 

publications.  

 

Figure 2-13: Summation of the Per-Document-Per-Topic Contribution for all Topics 

Figure 2-14 summarizes the five gaps uncovered based on the current analysis. These gaps 

were identified based on a qualitative assessment for the identified topics (i.e., shown in 
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Figure 2-13) that constitute the current state-of-the-art. It is worth mentioning that although 

some topics have (quantitatively) high contributions to the considered documents, gaps still 

remain (qualitatively) in terms of the research breadth/depth within these topics. Therefore, 

the current discussion of the knowledge/research gaps is a key complement to the topic 

contribution analysis discussed earlier.  

The first research gap is related to resilience quantification in complex systems 

which pertains to Topic A. Several resilience metrics were previously proposed including 

the four dimensions of resilience and the three resilience capabilities, as well as others. 

Nevertheless, previous research studies either failed to quantify some of these metrics or 

were not able to reach a consensus on how to quantify them. Specifically, resilience was 

either quantified based on repair time, repair cost or loss of system functionality. However, 

to have a comprehensive resilience metric, in addition to repair time (i.e., rapidity), repair 

cost, or loss of functionality (i.e., robustness), other identified resilience metrics have to be 

quantified. These measures include, to name but a few examples, the availability of 

redundant components in the system (i.e., redundancy), the availability of resources in the 

system that can help diagnose and control system failure (i.e., resourcefulness), the ability 

of a system to be structured yet adaptable under extreme events (i.e., system adaptability), 

the ability of the system to activate its comprising components to restore its functionality 

(i.e., responsiveness), the number of people affected by system’s lack of resilience.   
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Figure 2-14: City/Complex Systems Resilience Research Gaps 

The second research gap exists in defining interdependence between different systems 

which relates to Topic D. Given the complexity of infrastructure systems and their 

interrelated components, there exists a gap in quantifying the defined interdependence 

types. Further research is critically needed to quantify all types of interdependence 

between modelled systems to have a comprehensive system-of-systems model that can 

evaluate the behaviour of complex systems as close to real life as possible (e.g., city’s 

digital twin). This comprehensive system-of-systems model would face three key 

challenges, (1) data acquisition; (2) computational ability for modelling; and (3) 

availability of accurate metrics for quantification. 

The third research gap is related to modelling of real-life systems which is associated 

with Topic F. Most previous research studies simulated either small parts of existing 

systems without being able to capture the behaviour of the entire system or hypothetical 

systems (i.e., IEEE power systems). As mentioned before, the unavailability of data and 

the limited computation ability hinder the future development required to model entire 

real-life systems. Nevertheless, given the current availability of data worldwide and given 

the high computation ability reached, it is expected that future research would have the 



May Haggag 
Ph.D. Thesis 

McMaster University 
Department of Civil Engineering 

 

 60 

sufficient resources to tackle such systems. The fourth research gap pertains also to 

Topics F and G and is related to considering the effect of time (i.e., dynamic) when 

modelling complex systems. Future research should focus more on the dynamic 

behaviour of systems to mimic the behaviour of real-life systems. 

The fifth research gap exists in linking hazards which are the main cause behind system 

disruption to the performance of infrastructure systems. This gap can be related to Topic I 

which is the cross-cutting topic related to disasters and subsequent disruption of 

infrastructure systems. Given the fact that ensuring system’s resilience is key to protect 

the system against damages and adverse consequences of future disasters, there is a 

pressing need to predict the occurrence of these events, and thus, prepare the system 

accordingly which in return can optimize relevant system’s resources and significantly 

enhance its resilience capabilities. This is especially important given the fact that almost 

quarter of the world’s population is officially threatened by storm surges and tsunamis 

(Climate Change - Oxfam Canada n.d.), and that, since the 1990s, natural disasters have 

affected 217 million people annually with damages of more than $1.2 trillion from 2001 

to 2010 compared to $528 billion from 1981 to 1990 (Are Natural Disasters Increasing? 

n.d.). 

2.5. CONCLUSIONS 

It is estimated that more than 50% of the world population will be living in cities by the 

year 2050. These cities are currently experiencing rapid transformations due to the 

unforeseen extreme events that disturb their basic functions. However, only a few studies 

focused on comprehensively simulating the infrastructure systems of these cities or 
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assessing their corresponding resilience. The current study utilized a meta-research 

approach which aims at quantitatively and qualitatively assessing previous work pertaining 

to the resilience of critical infrastructure systems. Using topic modelling, nine common 

topics were identified from 124 research publications. Such topics are: the concept of 

resilience, city assessment and urban planning, critical infrastructure systems, 

infrastructure interdependence, risk and disruption, complex systems modelling, complex 

network theory, power, gas and/or water systems, and disasters and system disruption 

which is the trigger behind studying complex systems and designing for their resilience. 

Following topic extraction, several complex systems resilience metrics along with 

simulation approaches were reviewed from previous studies. This paper also outlined 

existing research/knowledge gaps including those pertaining to quantifying resilience, 

quantifying interdependence, modelling of full/real life systems, incorporating the dynamic 

behaviour of complex systems, and linking adverse/extreme events to system performance. 

Finally, the current study is expected to guide future research thrusts by highlighting 

knowledge gaps and research opportunities to make a real impact on the existing field of 

resilient cities and their interdependent infrastructure systems.   
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Chapter 3  

A DEEP LEARNING NEURAL NETWORK MODEL FOR PREDICTING CLIMATE-

INDUCED DISASTERS 

ABSTRACT 

The increased severity and frequency of Climate-Induced Disasters (CID) including those 

attributed to hydrological-, meteorological-, and climatological effects are testing the 

resilience of cities worldwide. The World Economic Forum highlights - in its 2019 Global 

Risk Report - that from 2017 to 2019 the top five risks with respect to likelihood and impact 

are all climate related with the highest ranked risk being extreme weather events. To 

alleviate the adverse impacts of CID on cities, this paper aims at predicting the occurrence 

of CID by linking different climate change indices to historical disaster records. In this 

respect, a deep learning (neural network) model was developed for spatial-temporal 

disaster occurrence prediction. To demonstrate its application, flood disaster data from the 

Canadian Disaster Database was linked to climate change indices data in Ontario in order 

to train, test and validate the developed model. The results of the case study showed that 

the model was able to predict flood disasters with an accuracy of around 96%. In addition 

to its association with precipitation indices, the study results affirm that flood disasters are 

closely linked to temperature-related features including the daily temperature gradient, and 

the number of days with minimum temperature below zero. This work introduces a new 

perspective in CID prediction, based on historical disaster data, global climate models, and 

climate change metrics, in an attempt to enhance urban resilience and mitigate CID risks 

on cities worldwide.  
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3.1. INTRODUCTION 

Climate change has been linked to increased loss of snow cover, accelerated sea level rise, 

more frequent heat waves and droughts, more intense hurricanes, and more importantly, a 

continuous and rapid rise in global temperatures (Callery, 2018; “Climate change | EU 

Science Hub,” 2018; Shaftel, 2018a, 2018b). Since 1960s, the number of climate-induced 

hazards worldwide has tripled (World Health Organization, 2018), and comparing the total 

number of climate-induced hazards in 2011 and 2012, a total of 183 and 905 hazards were 

recorded worldwide, respectively, ranging between storms, tornados, hurricanes, floods, 

and wildfires (Nestler & Jackman, 2014; The Brookings Institution - London School of 

Economics project on Internal Displacement, 2012). The World Economic Forum - in its 

2019 Global Risk Report - highlights that from 2017 to 2019 the top three risks with respect 

to likelihood are all climate related with the highest ranked risk being extreme events. The 

three climate related risks have also been among the top five highest impact risks for the 

last three years (Global Risks Report, 2019).  

Generally, climate-induced hazards can be classified into three main categories (The 

International Federation of Red Cross and Red Crescent Society, 2019): (1) hydrological 

hazards, governed by hydrological processes and include floods, droughts, and avalanches; 

(2) climatological hazards, concerned with extreme temperature related hazards including 

heat waves, cold waves and wildfires; and (3) meteorological hazards, representing storms 

of all types including snow storms, thunderstorms, hurricanes and tornados. Such hazards, 

on their own, do not necessarily signify risks unless they influence elements-at-risk (i.e., 

located within an urban setting) that are both exposed (i.e., unprotected) and vulnerable 

(i.e., susceptible to damage) under such hazard levels, thus leading to possible disasters as 
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per Figure 3-1. A disaster, thus can be defined as a “devastating impact of a hazard that 

negatively affects life, health, property or the environment on a scale sufficient to require 

outside assistance” (Babu, 2017).  

 

Figure 3-1: Relationships between Hazard, Risk, and Disaster 

Between 2000 and 2012, a total of $1.7 trillion were reported as disaster-induced damages 

with more than 2.9 billion people affected by these disasters globally (Nestler & Jackman, 

2014). Furthermore, about 60,000 people die annually due to such disasters, which are 

expected to cause 250,000 additional annual deaths between 2020 and 2030 (World Health 

Organization, 2018). By 2050, about 570 cities and 800 million people around the world 

will be threatened by rising sea levels and storm surges (Muggah, 2019). Over the last 

decade, more than 90 coastal cities in the United States alone are experiencing chronic 

flooding as a result of sea level rise (Muggah, 2019). In addition to the expected fatalities, 

adverse health impacts are expected to reach $2 to $4 billion annually by year 2030 (World 
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Health Organization, 2018). Moreover, the organization for economic cooperation and 

development has been showing in its annual reports that floods are causing more than $40 

billion worth of damage annually (CHRISTINA, 2019). Currently, the annual liabilities of 

the Disaster Financial Assistance Arrangement program in Canada have increased from 

“$10 million in 1970-1995 to $110 million in 1996-2010 to $360 million in 2011-2016” 

(Public Safety Canada, 2017). In 2018 alone, the world has incurred a total of $160 billion 

cost of natural disasters, whereas the United States recorded a total natural disaster cost of 

about $91 billion with the camp wildfire of California and Hurricane Michael having a total 

cost of $16.5 and $16 billion, respectively (Chappell, 2019; Wright, 2019).    

To minimize the impacts of Climate-Induced Disasters (CID), cities must be 

resilient—able to absorb disturbance and retain their basic functions, during and following 

such disturbances (Nan & Sansavini, 2017).  One way of addressing the preparedness 

aspect of resilience is through disaster forecasting which would enable adequate planning 

and proactive risk management.  In this respect, machine learning can be employed because 

of its ability to as an efficient modelling tool for the prediction of different processes 

including extreme weather driven hazard realizations (Zanchetta & Coulibaly, 2020).  

Originating from artificial intelligence, machine learning assumes that machines (i.e., 

computational models) can be trained using data records and subsequently, can learn to 

efficiently predict different complex phenomena. Machine learning was recently used for 

wildfire event prediction, specifically anthropogenic wildfire events were predicted using 

random forests, boosting and support vector machines (Rodrigues & De la Riva, 2014). 

Additionally, a spatial prediction of wildfire probabilities was proposed by combining 

different machine learning models with optimization algorithms (i.e., genetic algorithms), 
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and the results showed that optimization algorithms were able to refine the developed 

machine learning model (Jaafari, Zenner, Panahi, & Shahabi, 2019). Furthermore, different 

machine learning techniques were used to develop binary predictions related to CID. Crop 

losses were  predicted as binary outcome on village level due to droughts using random 

forests (Mann, Warner, & Malik, 2019). Moreover, heavy rain damage was predicted as a 

binary outcome using decision trees, bagging, random forests and boosting (Choi et al., 

2018). 

Initially formulated in an attempt to simulate the behavior of the human brain, 

artificial neural networks were first proposed by Warren McCulloch and Walter Pitts in 

1943 (Abiodun et al., 2019; Jaspreet, 2016). Generally, an artificial neural network consists 

of an input layer, an output layer and a hidden layer(s). The input layer consists of the input 

attributes, whereas each hidden layer extracts different features from the input data to 

finally allow the network to formulate the desired outcome which is represented by the 

output layer (Dormehl, 2019; Kurt Hornik, 1991). The fact that hidden layers work as a 

black box is considered the main limitation of artificial neural networks as such ambiguity 

fails to provide the user with information behind the reasoning of the network’s outputs. 

Another disadvantage of artificial neural networks is the fact that their performance 

depends on many parameters including the number of hidden layers and the number of 

neurons per layer. To develop a robust artificial neural network model the user needs to 

first optimize such parameters to meet the intended modeling objectives with the least 

possible computational effort (Donges, 2019; Hagan, Demuth, & Beale, 1997). 

Nevertheless, the main advantage of artificial neural networks lies in its strong ability to 

learn composite behaviors and thus, predict complex phenomena from large datasets. 
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Within each hidden layer, relevant information is drawn from the input data which explains 

the typically enhanced performance facilitated by using multilayer (i.e., deep) networks. 

As such, over the last few decades, applications and modeling approaches adopting 

artificial neural networks in natural phenomena simulation and prediction have been 

experiencing rapid advancement. For example, rainfall runoff processes were simulated 

using artificial neural networks which proved to be more efficient than most used physical 

models for rainfall runoff simulation (Hu et al., 2018). In addition, simplified deep 

learning-based extreme learning machine was used in rainfall prediction (Cholissodin & 

Sutrisno, 2018). On the other hand, deep learning artificial neural networks were used in 

flash flood mapping prediction and showed excellent results compared to support vector 

machine models (Bui et al., 2020). Flood damage was also linked to some household 

predictors including house structure, flood awareness, literacy and other factors using three 

types of models: linear regression, random forests and artificial neural networks (Ganguly, 

Nahar, & Hossain, 2019). Neural network models were also proposed to predict the number 

of hurricanes per season in vulnerable areas, with a prediction accuracy of 73% (Kahira, 

Gomez, & Badia Sala, 2018). In addition, hurricane path was predicted using a neural 

network model which proved to be of comparable efficiency of traditional prediction 

models (Alemany, Beltran, Perez, & Ganzfried, 2018; Giffard-roisin et al., 2018). Artificial 

neural networks and support vector machines were also used to predict the binary 

occurrence of wildfires using satellite images (Sayad, Mousannif, & Al Moatassime, 2019). 

In addition, both logistic regression and artificial neural networks were used to classify 

wind damage to forests as a binary outcome (Hanewinkel, Zhou, & Schill, 2004). 
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Subsequently, in this paper a deep learning (neural network) model for CID 

prediction is developed by linking historical disaster records to different climate change 

indices. The paper is divided into two main parts, the first part involves the general model 

structure that is generic enough to be employed to predict any class of CID in any location 

given the availability of the influencing spatiotemporal climate data. The second part 

demonstrates the applicability of the developed model using Ontario’s disaster rerecords 

and relevant climate change indices data. This work is considered the first step in CID 

prediction, based on historical disaster data, global climate models, and climate change 

metrics, in an attempt to maximize urban resilience and mitigate CID impacts on cities 

worldwide. 

3.2. CLIMATE-INDUCED DISASTER PREDICTION MODEL 

Through employing deep learning, the CID prediction model developed herein utilizes 

previous disaster records and specific climate change indices as inputs and returns whether 

or not (Yes/No) a given type of disaster would occur in a given place and time as a binary 

output. Following four main stages, the model takes in the inputs and generates the required 

outputs as per Figure 3-2.  
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(a) 

  
(b) 

 
(c) 
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(d) 

 
(e) 

Figure 3-2: Deep Learning Model(a) Concept; (b) Stages 1; (c) Stages 2; (d) Stages 3; 
and (e) Stages 4 

3.2.1. MODEL INPUTS: DISASTER DATA & CLIMATE CHANGE INDICES 

As a prerequisite for any machine learning model, relevant data availability is key for 

training, testing and validating the model. Within the context of the current study, the 
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variables considered for CID prediction are: (1) type of disaster (i.e., hydrological, 

climatological or meteorological), (2) date of occurrence; and (3) specific location.  

The Expert Team on Climate Change Detection and Indices (Expert Team on 

Climate Change Detection and Indices, 2009) and the Working Group on Climate Change 

Detection (Peterson et al., 2001) developed a set of standardized indices to be used by 

stakeholders around the world for monitoring climate change (Karl, Nicholls, & Ghazi, 

1999; Peterson, 2005; Peterson et al., 2001). In total, 40 indices were approved, 27 of which 

were considered to be core indices. These 27 climate change indices are divided into two 

distinct subsets. The first subset of indices represents different measures that captures the 

variations in temperature as per Table 3-1, whereas the second subset is mainly related to 

detecting the change in precipitation as per Table 3-2 (Expert Team on Climate Change 

Detection and Indices, 2009). These two subsets of indices will be used together with 

disaster data to predict CID occurrence.  

Table 3-1: The 16 Climate Change Temperature Indices 

Index Definition 

FD- Number of Frost Days Annual count of days when TN (i.e., daily minimum temperature) 
< 0oC 

IC - Number of Icing Days Annual count of days when TX (i.e., daily maximum 
temperature) < 0oC 

SU - Number of Summer 
Days 

Annual count of days when TX > 25oC 

TR - Number of Tropical 
Nights 

Annual count of days when TN > 20oC 

GSL - Growing Season 
Length 

Annual (1st Jan to 31st Dec in Northern Hemisphere, 1st July 
to 30th June in Southern Hemisphere) count between first 
span of at least 6 days with TG (i.e., daily mean temperature) 
> 5oC and first span after July 1st (Jan 1st in Southern 
Hemisphere) of 6 days with TG < 5oC 
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DTR - Daily Temperature 
Range 

Monthly mean difference between TX and TN 

TN10p Percentage of days when TN < 10th percentile 
TX10p Percentage of days when TX < 10th percentile 
TN90p Percentage of days when TN > 90th percentile 
TX90p Percentage of days when TX > 90th percentile 
TXX Monthly maximum value of daily maximum temperature 
TNX Monthly maximum value of daily minimum temperature 
TXN Monthly minimum value of daily maximum temperature 
TNN Monthly minimum value of daily minimum temperature 
WSDI - Warm Spell 
Duration Index 

Annual count of days with at least 6 consecutive days where 
TX > 90th percentile 

CSDI - Cold Spell 
Duration Index 

Annual count of days with at least 6 consecutive days where 
TN < 10th percentile 

 

Table 3-2: The 11 Climate Change Precipitation Indices 

Index Definition 

CDD - Maximum Length 
of Dry Spell 

Maximum number of consecutive days with RR (i.e., daily precipitation) 
< 1mm 

CWD - Maximum Length 
of Wet Spell 

Maximum number of consecutive days with RR ≥ 1mm 

R10 Annual count of days when RR ≥ 10 

R20 Annual count of days when RR ≥ 20mm 

PRCPTOT Annual total precipitation in wet days (i.e., days with precipitation over 
1mm) 

R95 Annual total precipitation when RR > 95th percentile 

R99 Annual total precipitation when RR > 99th percentile 

Rx1day Monthly maximum 1-day precipitation 

Rx5day Monthly maximum consecutive 5-day precipitation 

SDII - Simple 
Precipitation Intensity 
Index 

The sum of precipitation in wet days during the year divided by the 
number of wet days in the year 

Rnn Annual count of days when PRCP ≥ nn, where nn is a user defined 
threshold 
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3.2.2. OUTPUT: FORECASTED CLIMATE CHANGE INDUCED DISASTERS 

The developed model aims to predict CID occurrence in a specific location on an annual 

basis. Thus, the output of the model would be either a “Yes” if a disaster is predicted or a 

“No” if no disaster is predicted in a certain location.   

3.2.3. STAGE 1: MODEL ARCHITECTURE ANALYSIS 

Stage 1, as per Figure 3-2(b), involves determining the model architecture which, in the 

case of artificial neural networks, involves determining which model class to use (i.e., 

multiple- or single- layer model). This stage also entitles selecting the most suitable number 

of hidden layers and neurons to use in the prediction model. Multiple layer models are 

developed for different input variables trials. The trials are comprised of 27 single variable 

models corresponding to the 27 climate change indices defined earlier as well as any two, 

three, four or five index combinations of the 27 indices resulting in a total of 101,583 model 

trials.  Model architecture analysis is based on the combination of one to five input 

variables instead of the combination of the total number of variables (i.e., 1 to 27 input 

variables) in an attempt to minimize both the modelling time and computational effort. For 

each set of inputs, the model is trained and tested, and the misclassification error is 

recorded. Furthermore, for each number of layers, the number of neurons is specified. The 

average of all misclassification errors for the models with a specific number of layers 

together with the number of models with the least misclassification error are compared to 

help in selecting the best performing model and thus, comply with this specific number of 

layers and neurons for the rest of the analysis.  
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3.2.4. STAGE 2: INPUT VARIABLES ANALYSIS 

Stage 2, as per Figure 3-2(c) aims to select the significant input variables among the 27 

available variables to be used for disaster predictions.  A sensitivity analysis involving all 

input variable combinations is conducted, resulting in a total of more than 16.6 million 

models with different combination of input variables ranging from 1 to 10 variables as 

shown in Figure 3-3. For instance, Combination 4 refers to combining any four variables 

out of the 27 input variables. In each model trial, the model inputs are changed, the model 

is trained, tested, and the misclassification error is calculated. The models with the least 

misclassification error are then selected as the best models among all model trials.  

 

Figure 3-3: Different Number of Input Variables Combinations 

3.2.5. STAGE 3: MODEL SELECTION & PREDICTION 
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Stage 3 involves model selection and prediction as per Figure 3-2 (d). Based on the 

sensitivity analysis performed in Stage 2, the best performing models is selected (i.e., 

among the models with the lowest misclassification error). Furthermore, the confusion 

matrix of the selected models will be compared to select the best performing model 

accordingly. Following model selection, disaster prediction analysis can be conducted. 

3.2.6. STAGE 4: MODEL VALIDATION 

Finally, as per Figure 3-2 (e), in Stage 4 model validation is employed by comparing the 

model prediction results to actual disasters records that are not included in the model input 

data.  

3.3. APPLICATION: PREDICTING FLOOD DISASTERS IN ONTARIO, CANADA 

To demonstrate its applicability, the developed model was applied to predict disasters in 

Ontario which is Canada’s most populated province and the one with the highest number 

of recorded CID between 1900 and 2016 as per Figure 3-4. The model is specifically 

employed to predict flood disasters in Ontario as they account for 42% of the total number 

of CID from 1900 to 2016 as per Figure 3-5, which have at least four times the frequency 

of occurrence of any other CID in Ontario for this period of analysis. 
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Figure 3-4: CID per province from 1900 to 2016 

 

Figure 3-5: CID Distribution in Ontario  
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3.3.1. DATA PREPARATION  

The Canadian Disaster Database used in this paper was created by Public Safety Canada 

(Public Safety Canada, 2019). The database includes approximately 1,000 significant 

disaster events (i.e., natural, technological and conflict events) with one or more of the 

following characteristics: (1) 10 or more people killed, (2) 100 or more people 

affected/injured/infected/evacuated or homeless, (3) an appeal for national/international 

assistance, (4) historical significance, and/or (5) significant damage/interruption of normal 

processes. As this case study focuses on flood prediction, the database was filtered to 

include only flood designated disasters in Ontario between 1900 and 2016 as shown on the 

map of Figure 3-6. The “Yes” to “No” ratio in the flood disaster data considered herein is 

around 7:3 which, while slightly imbalanced, is not expected to significantly affect the final 

model accuracy since data-driven models are considered to be biased when data imbalance 

reaches a ratio of 100:1 or more  (He & Shen, 2007; Kubat, Holte, & Matwin, 1998; 

Ramyachitra & Manikandan, 2014; Viola, Emonet, Habrard, Metzler, & Sebban, 2020). 

 

Figure 3-6: Flood Disasters Spatial Distribution in Ontario 

Furthermore, the 27 climate change indices were calculated at 24 different watersheds in 

Ontario as shown in Figure 3-7. The indices were calculated based on  historical and future 
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climate data from 1950 to 2016 and from 2017 to 2100, respectively (Wazneh, Arain, & 

Coulibaly, 2019). 

 

Figure 3-7: The 24 Ontario Watershed Locations 

To initiate global climate model simulations, IPCC proposed different “benchmark 

emission scenarios” widely known as Representative Pathway Concentrations (RCP). 

These scenarios represent greenhouse gas concentrations based on different proposed 

volume of greenhouse gas emissions in the future. There are currently four RCP values that 

are approved by the IPCC and widely adopted in climate model simulations. The first is 

RCP 2.6 which assumes that a reduction in greenhouse gas emission will occur over the 

next few decades and is referred to as the peak scenario. Specifically, RCP 2 .6 assumes 

that carbon dioxide emission will not only start declining over the next couple of years but 

will reach zero by 2100. RCP 8.5, on the other hand, is based on the assumption that 

greenhouse gas emissions will increase rapidly over time as such it is considered the worst-

case scenario among all proposed RCPs. The two other pathways, RCP 6 and RCP 4.5, are 

both stabilization scenarios (i.e., intermediate scenarios) that assume greenhouse gas 
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emissions to reach a peak and then decline after 2040 and 2080, respectively. Both 

pathways assume that different decisions, techniques and laws will be established by 

governments around the world which will contribute to stabilizing greenhouse gas 

emissions on the long run (Kolp & Riahi, 2009; Meehl et al., 2013; Wayne, 2013). The 

indices used herein were calculated based on the 12 global climate models (Bi et al., 2013; 

Block & Mauritsen, 2013; Chylek, Li, Dubey, Wang, & Lesins, 2011; Collier et al., 2011; 

Flato et al., 2013; Gent et al., 2011; Griffies et al., 2010; Meehl et al., 2013; Ongoma, Chen, 

& Gao, 2019; Tongwen et al., 2014; Voldoire et al., 2013; Volodin, Dianskii, & Gusev, 

2010) given in Table 3-3 and are based on RCP 4.5 and 8.5 (Wazneh et al., 2019). The 

models simulated will employ the indices calculated based on RCP 4.5, the reason for this 

resides in the fact that RCP 8.5 is characterized by a steady and large increase in the 

greenhouse gas emissions over time which represents the worst-case scenario with respect 

to dealing with these emissions. Given the fact that governments are working on controlling 

greenhouse gas emissions (Prairie Climate Centre, 2018), in this paper the model is based 

on the more conservative assumption for forecasting of greenhouse gas emissions rather 

than the worst-case scenario (Collins et al., 2013).  

Table 3-3: The 12 Global Climate Models 

Model  Institution 

ACCESS1 Commonwealth Scientific and Industrial Research Organization (CSIRO) 
and Bureau of Meteorology (BOM), Australia  

BCC-
CSM1 Beijing Climate Center, China Meteorological Administration  

CanESM2 Canadian Centre for Climate Modelling and Analysis  
CCSM4 National Center for Atmospheric Research (NCAR) 
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3.3.2. MODEL ARCHITECTURE ANALYSIS 

The model architecture, including the number of neurons in hidden layers, is formulated 

based on guidance of previous artificial neural networks research (Hagan et al., 1997; 

Heaton, 2017) and including the least number of input variables, out of the 27 studied 

indices, that would yield accurate predictions. As such, the size of the hidden layer was 

selected based on the following conditions: 1) be less than the sizes of the input and the 

output variables; 2) be at most 2/3 the size of both the input and output layers; and 3) be 

less than two times the input layer size. Increasing the number of hidden neurons has two 

widely acknowledged drawbacks (Cybenko, 1989; Hinton, Osindero, & Teh, 2006; Kurt 

Hornik, 1991). The first is related to overfitting, when the training information available is 

not enough to train the considered number of neurons, and as such the model fails in terms 

of generalizability as it memorizes the training data. The second shortcoming of having a 

CESM1-
BGC Community Earth System Model Contributors  

CNRM-
CM5 

Centre National de Recherches Météorologiques/ Centre Européen de 
Recherche et Formation Avancée en Calcul Scientifique  

CSIRO-
MK3-6-0 

Commonwealth Scientific and Industrial Research Organization, 
Queensland Climate Change Centre of Excellence 

GFDL-
ESM2G NOAA Geophysical Fluid Dynamics Laboratory  

Inmcm4 Institute for Numerical Mathematics  
IPSL-
CM5A-LR Institut Pierre-Simon Laplace  

MICROC5 
Atmosphere and Ocean Research Institute (The University of Tokyo), 
National Institute for Environmental Studies, and Japan Agency for 
Marine-Earth Science and Technology  

MPI-ESM-
LR 

Max-Planck-Institut für Meteorologie (Max Planck Institute for 
Meteorology)  
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wide network is the excessive computational effort required to train the model. As such, 

the study commenced with a relatively narrow network configuration and its performance 

(i.e., accuracy) was checked through testing and validation. Furthermore, as the number of 

neurons in the input layer is much larger than that in the output layer, adopting a narrowing 

neural network (i.e., inverted pyramid network architecture) leads to data noise removal 

since, as each layer is further narrowed, the model is forced to drop irrelevant information 

which explains why such models were shown to yield higher accuracy at lower 

computational cost (Czanner et al., 2015; Srivastava, 2019).  

As such, to select the most suitable number of hidden layers and neurons for the artificial 

neural network model, the model was simulated with 1, 2, 3 and 4 hidden layers. The 

number of neurons was specified for each model i.e., for the single layer models 3 neurons 

were specified, as for the two layers model, 5 neurons were selected for layer one and 3 for 

layer two. For the three layers models, 5, 3, and 2 neurons were selected for layers 1, 2 and 

3, respectively. Finally, for the four layers models, 5, 3, 2, and 2 neurons were selected for 

Layers 1, 2, 3 and 4, respectively. To choose the model with the optimum number of layers 

the average of misclassification errors for all models with a specific number of layers was 

calculated. In addition, the minimum error was compared across the models with different 

number of hidden layers. Figure 3-8 shows the misclassification error plotted against the 

101,583 models; the red dots represent the models’ which yielded the minimum error 

reached which is 3.8%. As can be observed, the number of models with minimum error is 

decreasing rapidly as the number of hidden layers increases. Fig. 8 also shows the box plots 

for the misclassification error of the four simulated layers which includes the average and 

the 25th and 75th percentiles.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3-8: Hidden Layers Misclassification Error Analysis, (a), Single Hidden Layer, 
(b) Two Hidden Layers, (c) Three Hidden Layers, and (d) Four Hidden Layers 

Table 3-4 shows the average misclassification error together with the number of models 

with the least error (i.e., 3.8%) for the four model types simulated.  The average 
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misclassification error for the models with two hidden layers is the lowest among the 

number of layers simulated. Excluding the models with two layers, the average of the 

misclassification errors decreases as the number of layers increases. 

Table 3-4: Hidden Layers Sensitivity Analysis 
 

One Hidden 
Layer 

Two Hidden 
Layers 

Three Hidden 
Layers 

Four Hidden 
Layers 

Average Error 0.21 0.24 0.20 0.19 

Minimum Error 
Models 

114 37 5 0 

As per (D. Liu, Zhang, Polycarpou, Alippi, & He, 2011), increasing the number of hidden 

layers in a neural network may sometimes cause the network to overfit (i.e., influenced by 

the training dataset) which results in lower prediction ability when it comes to the testing 

dataset. This is the reason why the single layer trials resulted in better performing models 

compared to the multiple layer models. The universal approximation theorem also confirms 

the usefulness of single-layer networks (Dong & Li, 2012; Kumar, 2019; Sanger, 1989; 

Stathakis, 2009). Consequently, the model with one hidden layer and three neurons was 

proved to be the best performing model for flood disaster prediction in Ontario.  

3.3.3. INPUT VARIABLES ANALYSIS 

After selecting the number of hidden layers, input variables sensitivity analysis was carried 

out and the models with up to 10 variables were evaluated. The best performing models 

were selected based on the least obtained misclassification error which was found to be 

3.8% corresponding to 20,093 models out of more than 16.6 million models (i.e., only 

0.12% of the models had such a low error) as per Figure 3-9.  
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Figure 3-9: Total Number of Models versus Number of Models with Least 
Misclassification Error 

The input variables together with the number of times each variable was repeated in the 

20,093 models are shown in Fig. 10 which reflects the importance of each input variable 

in flood disaster prediction in Ontario. As per Figure 3-10, the four most reoccurring 

climate change indices in the 20,093 models are:  

(1) DTR (daily temperature range) (Expert Team on Climate Change Detection and 

Indices, 2009; Wazneh, Arain, & Coulibaly, 2017) represented by equation 1, where 

TXij and TNij are the daily maximum and minimum temperature respectively on day i in 

period j. If I represents the number of days in period j, then: 
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(2) CWD (maximum length of wet spell) (Expert Team on Climate Change Detection and 

Indices, 2009; Wazneh et al., 2017) which is calculated by counting the largest number of 

consecutive days where RRij ≥ 1mm, where RRij is the daily precipitation amount on day i 

in period j; 

(3) TN10P (Expert Team on Climate Change Detection and Indices, 2009; Wazneh et al., 

2017) refers to the percentage of days when TNij < TNin10, where TNij is the daily 

minimum temperature on day i in period j and TNin10 is the calendar day 10th percentile 

centred on a 5-day window for the base period 1961-1990; and  

(4) FD (number of frost days) (Expert Team on Climate Change Detection and Indices, 

2009; Wazneh et al., 2017) which refers to the annual count of days when TN < 0oC. To 

calculate FD, let TNij be the daily minimum temperature on day i in year j. Count the 

number of days where TNij < 0oC.  

On the other hand, the least four repeated indices are:  

(1) CSDI (cold spell duration index) (Expert Team on Climate Change Detection and 

Indices, 2009; Wazneh et al., 2017)  which refers to the annual count of days with at least 

6 consecutive days when daily minimum temperature < 10th percentile;  

(2) R99 (Expert Team on Climate Change Detection and Indices, 2009; Wazneh et al., 

2017) which refers to the sum of annual total precipitation in days with precipitation more 

than 1 mm when RR > 99th percentile; 

(3) R95 (Expert Team on Climate Change Detection and Indices, 2009; Wazneh et al., 

2017) which refers to the sum of annual total precipitation in days with precipitation more 

than 1 mm when RR > 95th percentile; and  
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(4) CDD (maximum length of dry spell) (Expert Team on Climate Change Detection and 

Indices, 2009; Wazneh et al., 2017) which refers to the maximum number of consecutive 

days with RRij < 1mm, where RRij is the daily precipitation amount on day i in period j. It 

is calculated by counting the largest number of consecutive days where RRij < 1mm. 

 

Figure 3-10: Input Variable Frequency Analysis 

The variable frequency analysis shown in Fig. 10 shows that three of the most frequent 

variables are actually temperature related which supports the direct and strong relationship 

that exists between temperature changes and flooding. As air gets warmer, its ability to 

hold water vapour increases (e.g., air contains around 7% more moisture for each 1°C 

temperature increase), and this moisture turns into rain when condensation occurs due to 

temperature drop (American Association for the Advancement of Science, 2011). 

Moreover, 1- to 5-day-long intense precipitation episodes are intensified with continued 

warming (Min, Zhang, Zwiers, & Hegerl, 2011). The interdependence and feedbacks 

between temperature and precipitation are well documented in the literature (Cong & 

Brady, 2012; Mishra, Wallace, & Lettenmaier, 2012; Wazneh, Arain, Coulibaly, & 

Gachon, 2020). Furthermore, different studies (Liu, Cheng, & Su, 2014; Mirza, 2011; 
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Wasko & Sharma, 2017) demonstrated strong correlation between air temperature changes 

and flooding. As such, the input variable sensitivity analysis which indicates that three of 

the four most frequently introduced variables are temperature-related, confirms the ability 

of the developed data-driven model to establish physical relationship between temperature 

changes and flooding. 

To further validate the number of hidden layers and neurons selected in Stage 1, 

Figure 3-11 shows the results of the misclassification error for the model with the four 

most frequent input variables as the number of layers is varied from 1 to 4 and for each 

hidden layer 3, 10, 15, 20, 25, and 30 neurons are modelled. It can be observed that the 

least misclassification error is reached when the single hidden layer model is comprised of 

3 neurons. It can also be observed that generally as the number of hidden layers increase, 

the misclassification error increases. 

 

Figure 3-11: Misclassification Error versus Number of Hidden Layers and Neurons 

3.3.4. MODEL SELECTION 

To select the best performing model among the 20,093 models, two models are compared, 

the first model includes the most frequent four input variables (Model 1), while the second 
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model includes ten input variables among these variables are nine of the most repeated 

input variables (Model 2) as shown in Figure 3-12. The training of both models is shown 

in Figure 3-13. The developed artificial neural networks together with the weights to and 

from the single hidden layer are shown.  The models with four and ten input variables 

needed 174 and 52 steps to converge with sum of squares errors 6 and 5.58, respectively.  

 

Figure 3-12: Flood Disaster Prediction Models Input Variables 

 

Figure 3-13: Neural Network Model Training 
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To select the best performing model among Model 1 and Model 2, the confusion matrixes 
for both models were compared and were found to be identical as shown in Table 3-5. 

The matrix indicates that 22 flood disasters which actually occurred were correctly 
predicted, among the five years in which no flood disasters happened four of which were 
correctly predicted while one was misclassified. Additionally, the actual flood disasters as 

per the Canadian Disaster Database are compared to model predictions in  

Table 3-6. The results for the testing of the two models are also shown on the map in 

Figure 3-14. Locations where flood disasters were correctly predicted are shaded in blue, 

while the red shaded areas refer to locations where misclassifications were found. The 

yellow shades represent areas where no predictions were materialized.  

Table 3-5: Model Confusion Matrix 

 Actual 

Predicted 0 1 

0 4 0 

1 1 22 

 

Table 3-6: Actual versus Predicted Results 

Year Watershed Actual Model 1 Model 2 

1954 Niagara Yes Yes Yes 

1956 Niagara Yes Yes Yes 

1968 Beaver Yes Yes Yes 

1968 Niagara Yes Yes Yes 

1970 Abitibi Yes Yes Yes 

1979 Beaver Yes Yes Yes 

1979 South Yes Yes Yes 

1979 Wanapitei Yes Yes Yes 

1980 Trent Yes Yes Yes 

1985 Niagara Yes Yes Yes 

1989 Abitibi Yes Yes Yes 



May Haggag 
Ph.D. Thesis 

McMaster University 
Department of Civil Engineering 

 

 106 

1989 Nipigon Yes Yes Yes 

1992 Beaver Yes Yes Yes 

1996 Mattagami2 Yes Yes Yes 

1996 Niagara Yes Yes Yes 

1996 Rideau Yes Yes Yes 

2002 Mattagami1 Yes Yes Yes 

2002 Winnipeg Yes Yes Yes 

2004 Mattagami1 Yes Yes Yes 

2008 Nipigon Yes Yes Yes 

2013 Niagara Yes Yes Yes 

2016 Winnipeg Yes Yes Yes 

 

 

Figure 3-14: Actual versus Predicted Model Results 

 

 

3.3.5. DISASTER PREDICTION 
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After comparing the testing results of both models, it is apparent that both models yielded 

the same accuracy for predicting flood disasters. Thus, Model 1 with the four input 

variables is selected as it resulted in the same prediction accuracy with a smaller number 

of inputs which yields a simpler and more applicable model. Thus, Model 1’s flood disaster 

prediction from 2020 to 2030 is shown in Figure 3-15. The figure shows whether or not a 

flood disaster is expected to take place in a certain location during a specific year. For 

example, the model predicts yearly flood disasters in Kiministiquia over the next decade, 

whereas only a single flood disaster in Aguasabon in 2030. Furthermore, the model predicts 

no flood disasters in Niagara over the next decade. 

  

Figure 3-15: Flood Disaster Prediction until 2030 
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The Canadian Disaster Database used herein tracks flood disasters until 2016 thus, some 

events that actually took place in 2017 and that were predicted by the model are illustrated 

herein to validate the developed model. Figure 3-16 shows the model predictions for 2017 

which are linked to two of the actual flood disaster occurrences that were reported in 2017. 

An extraordinary warm winter resulted in a much higher water level in Lake 

Ontario which were raised 1.0 m beyond its normal levels, thus leading to flooding Toronto 

Island in May 2017 (Longley, 2017). These floods caused more than 40% of the islands to 

be overrun by water which resulted in a rehabilitation cost of about 7.38 million dollars 

(Roberts, 2017). These floods are predicted by the model as model predictions indicated 

that flood disaster will take place in proximity of Niagara watershed which is the closest to 

where Toronto Islands is located. Furthermore, Ottawa experienced devastating floods in 

May 2017. These floods turned fields and roads into lakes, destroyed homes, and led to the 

evacuation of about 500 homes which led the provincial government of Quebec to turn to 

the army to help mitigate the impacts of this disaster (Lynch & Meagher, 2017). The model 

was able to predict these floods by indicating that a flood disaster will take place in 

proximity of Rideau watershed. 
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Figure 3-16: Model Validation in 2017 

The occurrence of both the 2017 Toronto Islands and the 2017 Ottawa River flood disasters 

further validates the model. The ability of the model to predict disasters supports the 

evidence that a link actually exists between climate change and natural disasters.  The 

importance of this link resides in the fact that accurate disaster predictions can be reached 

given the availability of climate variability data. In this paper the case study was applied 

using annual climate change indices as climate variability data and the Canadian Disaster 

Database as historical disaster records to train and test the proposed model. However, the 

use of higher resolution indices would certainly improve the model’s accuracy and overall 

utility. Yet, currently available climate change indices are calculated in each location on a 

yearly basis as “the compilation, provision, and update of a globally complete and readily 

available full resolution daily dataset is a very difficult task” (Expert Team on Climate 

Change Detection and Indices, 2009). Nevertheless, the Expert Team on Climate Change 

Detection and Indices is currently working on higher resolution data which can enhance 
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the utility of the developed model as such higher resolution data become available in the 

future. 

3.4. CONCLUSIONS 

The aim of this paper is the prediction of CID occurrence in an attempt to enhance urban 

centers resilience under such disasters. The modelling approach proposed herein employs 

machine learning techniques to develop a spatio-temporal model for disaster prediction. 

The developed model links previous disaster records with climate change indices which 

represent the change in temperature and precipitation on a yearly basis. The spatial-

temporal model aims to predict both whether or not a disaster will occur and where it would 

take place on a yearly basis. The developed model is divided into four different stages 

which are: (1) Model Architecture Analysis; (2) Input Variables Analysis; (3) Model 

Selection and prediction, and (4) Model Simulation. To test the applicability of the 

proposed model, a case study was presented which focuses on flood disaster prediction in 

Ontario. In the case study, a machine learning model was developed using disaster data 

from the Canadian Disaster Database together with calculated historical and future climate 

change indices data (Wazneh et al., 2019). Upon testing, the model was able to predict 

flood disasters occurrence in Ontario with an average error of 4%. This work is considered 

the first step in CID prediction, based on historical disaster data, global climate models, 

and climate change metrics, in an attempt to maximize urban resilience and mitigate CID 

impacts on cities worldwide.  
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Chapter 4  

INFRASTRUCTURE PERFORMANCE PREDICTION UNDER CLIMATE-INDUCED 

DISASTERS USING DATA ANALYTICS 

ABSTRACT 

The frequency of Climate-induced Disasters (CID) has tripled in the last three decades, 

driving the World Economic Forum to identify them as the most likely and most impactful 

risks worldwide. With more than 70% of the world population expected to be living in 

cities by 2050, ensuring the resilience of urban infrastructure systems under CID is crucial. 

The present work employs data analytics and machine learning techniques to develop a 

performance prediction framework for infrastructure systems under CID. The framework 

encompasses four stages related to: extracting meaningful information about the impact of 

CID on infrastructure systems and identifying the latter’s performance; investigating the 

relationship between different CID attributes and previously identified system 

performance; employing data imputation using unsupervised machine learning techniques; 

and developing and testing a supervised machine learning model based on the different 

influencing CID attributes. To demonstrate its application, the developed framework is 

applied to disaster data compiled by the National Weather Services between 1996 and 2019 

in the state of New York. The analysis results showed that: i) power systems in New York 

are the most vulnerable infrastructure to CID, and particularly to wind-related hazards; ii) 

power system performance level depends on hazard-system interactions rather than solely 

hazard characteristics; and iii) a 4-predictors random forest-based model can effectively 

predict power system performance with an accuracy of 89%. This work is expected to aid 
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stakeholders in developing spatio-temporal preparedness plans under CID, which can 

facilitate mitigating the adverse impacts of CID on infrastructure systems and improve their 

resilience.  

Keywords: climate-induced disasters, urban centres, infrastructure system, resilience, 

machine learning, data analytics 
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4.1. INTRODUCTION 

Climatological, meteorological, and hydrological hazards have been increasing in 

magnitude and frequency due to the changing climate (i.e., temperature, precipitation, and 

humidity) [1]. The risks due to such hazards to urban areas can hinder daily activities, incur 

costly damages, and contribute to life losses, which is the reason why, when such risks are 

realized, they are often referred to as disasters [1]. More specifically, a disaster is 

manifested only when: i) a hazard is realized; ii) a vulnerable system is exposed to that 

hazard; and iii) severe negative consequences strike this exposed system. The frequency 

and magnitude of Climate-Induced Disasters (CID) have increased dramatically over the 

past three decades [1] leading to identifying CID to be the top risk in terms of both 

likelihood and impact in 2020 [2]. Globally over the last decade, CID resulted in a mortality 

rate of approximately 60,000 people per year [3]. In addition, around 25% of the world’s 

population live in coastal areas threatened by CID such as storm surges and tsunamis [4].  

In the United States alone, the average annual number of CID causing economic losses of 

more than $1 billion has increased from 2.9 CID from 1980 to 1989 to 11.9 CID from 2010 

to 2019 (cost adjusted using Consumer Price Index) [5]. It should also be noted that the 

increase in both population and “material wealth” contributes to such increasing CID-

induced losses [5]. Moreover, a total of $1.75 trillion were reported as CID-related 

damages, with windstorms being the most impactful meteorological events that caused 

more than $1 trillion economic losses and 5,000 fatalities over the past four decades [6–8]. 

Among the different types of windstorms that affected the United States, thunderstorms 

and tornado winds alone caused around $26 billion as economic losses between 2005 and 

2015 [8].  
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With more than 70% of the world’s population are expected to live in cities by 2050 

[9], and given the adverse impacts of CID on urban areas and their infrastructure systems, 

developing tools for predicting the impacts of different CID on critical infrastructure 

systems is critically urgent [2]. As such, several studies were conducted to predict the 

frequency of CID and their social and economic impacts using different  data analytics and 

machine learning techniques [10,11,12–19,20–22]. 

Data analytics aims at uncovering hidden information that cannot be explored 

through classic mathematical and statistical tools, and is generally divided into descriptive, 

predictive, and prescriptive analytics [23]. Descriptive analytics is concerned with 

analyzing historical data to understand the processes being studied, answering key 

questions about these processes, and subsequently drawing valuable conclusions. Building 

on such conclusions, predictive analytics aims at predicting the future behavior of systems 

and entities. Finally, prescriptive analytics focuses on finding the best future decision(s) 

supported by the outcomes of descriptive and predictive analytics. The three fields of data 

analytics were extensively employed to investigate CID consequences [24,25], derive 

meaningful relationships between the different attributes controlling CID [1,18,20,21,26], 

and develop effective risk reduction and mitigation strategies [17–19,22,27]. It is 

noteworthy that data analytics techniques can be applied using structured/unstructured data 

(i.e., text), quantitative/qualitative data, or a combination of different data types. 

Machine learning is a branch of artificial intelligence is built on the premise that a 

computer model can learn through being exposed to data and information representing real 

world interactions. Using different algorithms, machine learning techniques can 

automatically find solutions to complex problems by identifying patterns and relationships 
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within datasets [28]. In general, machine learning can be classified as either supervised or 

unsupervised learning, in which the former uses labelled data to train and test a model, 

whereas the latter employs unlabelled data for the model development and testing. Both 

machine learning classes have experienced rapid advances in natural phenomena 

simulation and prediction, and have been recently adopted for identifying the different 

factors controlling flood damage and severity [10,29], estimating the number of hurricanes 

per season [16], calculating wildfire risk [15,30], predicting wind risk [12,14], estimating 

heavy rain impacts [13], and predicting tornado-related damages [11]. 

Although it is essential to predict the damages induced by CID on different critical 

infrastructure systems, most previous work focused on predicting CID occurrence and 

lumped impacts (i.e., without segregating CID impacts on the affected infrastructure 

systems).  Therefore, the present work develops a systematic framework that can be used 

to predict infrastructure system damages under CID. As will be discussed next, the 

developed damage prediction framework (DPF) consists of three main phases:  the input 

phase, the internal processes phase, and the output phase. The internal processes phase is 

further divided into four stages in order to facilitate the prediction of infrastructure system 

damages. To demonstrate its applicability and viability, the developed DPF was applied to 

the historical disaster data collected by the National Weather Services (NWS) between 

1996 and 2019. This DPF provides a better conceptualization of CID impacts, which can 

aid the decision makers to develop effective preparedness plans and risk mitigation 

strategies under future CID risks. This can, in turn, improve the overall urban resilience 

under CID. The present work is organized as follows: a detailed description of the 

developed DPF including the methods and techniques to be implemented; a description of 
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the study used to demonstrate the applicability of the developed DPF; and finally, key 

decision-making insights and conclusions.  

4.2. INFRASTRUCTURE SYSTEMS DAMAGE PREDICTION FRAMEWORK 

The developed DPF shown in Figure 4-1 provides a systematic approach for predicting 

infrastructure system damage under CID. The input phase comprises collecting the data 

required to predict infrastructure system damages such as event related narratives (i.e., a 

description of the hazard and its impacts), geographic characteristics of the affected 

location (i.e., coordinates), time-related attributes (i.e., start and end time of the hazard), 

hazard-related attributes (i.e., magnitude, duration, intensity), and any other attributes (i.e., 

climate-related, social-related and economic-related). It is worth mentioning that, similar 

to any other data driven framework, the exactitude and certainty of the collected input data 

(i.e., event narratives) is key for the development of the DPF established herein. The 

internal processes phase consists of four main stages, where in Stage 1 the link between 

CID and infrastructure systems is established in two steps: the systems affected by CID are 

identified; and the distinct damages are subsequently defined. This can be achieved through 

mining the text data describing the hazards and their impacts provided in the input phase 

(i.e., event narratives). Upon identifying both the systems affected and their distinctive 

damages, influencing attributes are investigated and explicated to select those which will 

be employed in the model development and testing (i.e., Stage 2). In Stage 3, data 

imputation is performed in an attempt to enhance the predictive capability of the DPF. The 

predictive model is then developed in Stage 4, where different techniques can be used such 

as regression or classification trees with- and without ensample techniques (i.e., bagging, 

boosting, and random forests). The model is subsequently tested, and several evaluation 
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criteria can be used to assess the model performance such as the mean squared error, 

misclassification error, and the confusion matrix measures (i.e., precision, recall, f1-score). 

It is noteworthy that the use of ensemble techniques in Stage 4 can significantly boost the 

model accuracy, as will be discussed in greater detail next. It is important to note that both 

filled and unfilled data records can be used for the model development, and their 

corresponding performances can be compared. Finally, the output phase of the DPF 

involves predicting the infrastructure system damages which may include continuous 

monetary damages or damage severity classes as will be further illustrated.  

  

Figure 4-1: A Schematic of the Damage Prediction Framework  

4.2.1. STAGE 1: LINKING CID TO INFRASTRUCTURE SYSTEMS 

To explore the impacts of CID on infrastructure systems, event narratives describing the 

CID and their impacts are collected and investigated using text analytics as illustrated in 

Figure 4-2. Text analytics works on converting text data into quantifiable information in 
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order to extract patterns and draw viable conclusions [31]. Generally, text analytics is used 

to analyze text data through either semantic parsing, pertaining to the word type (i.e., being 

a positive or negative word); or bag of words, in which words are treated as single tokens 

without considering the word type or order [32,33]. The present DPF employs the bag of 

words analysis technique to investigate the characteristics and impacts of CID affecting 

infrastructure systems due to the insignificance of the word type in this type of 

investigation. This can be implemented using any available commercial or open-source 

packages such as the tm_map package (available in the R language) which will be 

employed in the framework demonstration study. Prior to applying the bag of words 

analysis, text data are preprocessed to convert it into quantifiable information. The 

preprocessing steps include [34]: i) transformation, where all words are converted into 

lower case format to avoid having the same word repeated in upper- and lower-cases; ii) 

tokenization, where the unstructured text is converted into words; iii) treatment, where a 

standard filter “stop” list is used to remove common words (i.e., the, to, a, an, and, or); and, 

vi) stemming, where all affixes are removed in order to return words to their roots. The 

resulting group of words is used to identify the frequent infrastructure systems being 

affected by CID based on a word frequency analysis. These systems can be subsequently 

linked to the CID that contribute mostly to their damage through a system-disaster 

association process.  

 To investigate the severity of system damages, an N-gram analysis [35] can be 

employed to estimate the frequency of N associated words. Consequently, the frequencies 

of N associated words are evaluated, and the system damage is classified according to the 

corresponding level of damage severity. For instance, damage severity levels can be 
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discriminated into the following wide-ranging categories: 1) no damage; 2) damage at the 

component-level; and 3) damage at the system-level. The N-gram analysis can be 

conducted using for example, the N-gram [36] package available R. 

 

Figure 4-2: Establishing the Link between CID and Infrastructure Systems 

4.2.2. STAGE 2: INVESTIGATING AND EXPLICATING INFLUENCING 

ATTRIBUTES 

At this stage, the interrelationship between the different inputs (i.e., location-, time-, 

hazard-related and any other attributes) and outputs (i.e., monetary damage or level of 

damage severity) are thoroughly investigated to determine the inputs that should be 

included in the predictive model.  Another objective of this stage is to explicate the 

identified influential factors in order to have a better understanding of the CID-system 

interaction. Such exploration can be conducted through exploratory-, sensitivity-, and 

correlation analyses; a feature selection/extraction process; or a combination of both. For 

example, in the demonstration study, the geographic distribution of each damage class can 
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be investigated to decide whether the spatial attribute of CID need to be included in the 

prediction stage.  

4.2.3. STAGE 3: DATA IMPUTATION 

The development of a data-driven model necessitates having a database that is as complete 

as possible, which is often very challenging. Several alternatives have therefore been 

proposed for filling missing data instances (i.e., data imputation), including: a complete 

removal from the database; a replacement with the average instance encountered; or, the 

use of unsupervised machine learning to divide the database into clusters and generate 

missing instances accordingly [37–39]. The latter approach is preferred over other former 

alternatives as the removal of missing instances decreases the model accuracy and the use 

of an average value to replace missing instances requires the underlying variable to be 

normally distributed [38,40,41] and ignores correlation [42] unless used with large datasets 

[43]. Clustering is an unsupervised learning technique that aims at grouping instances 

based on their degree of similarity [44]. Several clustering algorithms have been developed 

over the past decades such as K-Means Clustering (KMC) and Model-Based Clustering 

(MBC). KMC aims at grouping observations through minimizing their distance to the 

cluster center. KMC is the most widely applied clustering algorithm due to its simplicity 

and ability to partition data into clusters with a spectrum of shapes and sizes. However, the 

application of KMC requires predefining the number of clusters (K). Therefore, K-Means 

clustering is typically applied through changing K between 2 and X, where X is the 

maximum number selected by the user. The within-cluster-sum-of-squares (WCSS) is 

subsequently employed to determine the optimum number of clusters, where the highest 

drop in the value of WCSS corresponds to the optimum K value. MBC is, instead, used to 
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discretize observations into clusters based on an appropriate finite mixture model [45], 

where each of the resulting clusters is defined as a unimodal component within that model 

[45]. A Gaussian mixture model is typically employed, with parameters estimated using 

an Expectation Maximization algorithm. Bayesian Information Criterion (BIC) is 

subsequently used to estimate the optimum number of clusters (i.e., K), where the optimum 

number of clusters corresponds to the maximum BIC value. It is important to note that 

MBC is most often preferred over KMC as it does not require a prior definition of K. Both 

KMC and MBC, together with many other unsupervised machine learning techniques [37–

39], can be used within the DPF for filling the missing data records; however, the 

framework demonstration study uses the KMC and MBC only. The application procedures 

of both approaches are summarized in Figure 4-3. After identifying the optimum number 

of clusters, the CID records are assigned to clusters and missing data records (i.e., hazard-

related attributes) are replaced by the corresponding cluster average.  

 

Figure 4-3: The Application Procedures of KMC and MBC for Data Imputation 

4.2.4. STAGE 4: MODEL DEVELOPMENT AND TESTING  
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After filling the missing data records, a supervised machine learning model is developed 

to predict infrastructure system damages under CID. Unlike cluster analysis, supervised 

machine learning techniques rely on training and testing the model using specific input-

output pairs. A supervised machine learning model can be developed to predict continuous 

outputs (i.e., regression trees) or distinct classes (i.e., classification trees). Unlike 

regression trees which predict numerical outputs, classification trees discriminate instances 

and allocate them to different classes [51]. In both cases, the dataset is divided into training 

and testing subsets. The training subset is used for model development, whereas the testing 

subset is used to assess the model generalizability to the whole dataset. Several evaluation 

criteria are thus used to evaluate the model performance in both the development and 

testing stages. The mean squared error is commonly utilized to evaluate regression trees 

performance, whereas misclassification error and confusion matrix measure are typically 

used for evaluating the performance of classification trees.  

To improve the model accuracy, ensemble techniques such as bagging, random 

forest, and boosting [46] can be used. Bagging is an ensemble technique in which M 

bootstrap trees are generated from the training subset, and the resulting predictions are 

combined using the majority vote [13,47]. Random forest is a modification of the bagging 

technique in which M trees are distinguished from one another using a random sample of 

ℳ predictors at each split (i.e., sampling with replacement) rather than using all predictors 

[13,47]. This facilitates obtaining uncorrelated predictions, and thus enhance the model 

accuracy [13,47]. The value of ℳ for trees with 5 predictors should be equal to √5 [48,49]. 

Boosting is another ensemble technique that depends on sequentially developing n trees  

(classifiers) from the training subset, each with d splits and a shrinkage parameter (7) 
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[48,49]. To further enhance the model accuracy, classifiers are combined in each iteration 

and the misclassified data points are assigned higher weights so that they can be classified 

correctly during the following iterations [13].  

4.3. FRAMEWORK DEMONSTRATION STUDY 

4.3.1. DATA DESCRIPTION 

The disaster database provided by the NWS, a sub-agency under the National Oceanic and 

Atmospheric Administration (NOAA), is exploited to demonstrate the applicability of the 

DPF developed in the present study. The NWS database outlines different types of CID 

that affected the United States between 1950 and 2019 [50], and includes: i) storms and 

other weather phenomena that caused loss of life, injuries, significant property damage, 

and/or disruption to commerce; ii) rare, unusual, weather phenomena that generate media 

attention (i.e., snow flurries in South Florida or San Diego coastal areas); and, iii) severe 

meteorological events (i.e., maximum/minimum temperature, precipitation coupled with 

other events). From 1950 to 1995, only tornados, thunderstorm wind, and hail events were 

recorded by the NWS. As of 1996, more than 45 event types were added to the NWS 

database resulting in a total of 1,355,969 records from 1996 to 2019. Event types included 

in the NWS fall under the three types of CID discussed earlier (i.e., meteorological, 

hydrological, and climatological). Each recorded event is characterized by several variables 

categorized into location-, time-, and hazard-related. The DPF was applied using the NWS 

database to enable the prediction of infrastructure system damage severity within the state 

of New York following a classification approach. 

4.3.2. STAGE 1: LINKING CID TO INFRASTRUCTURE SYSTEMS 



May Haggag 
Ph.D. Thesis 

McMaster University 
Department of Civil Engineering 

 

 139 

A bag of words analysis is used to estimate the word frequency based on episode and event 

narratives of CID records in New York State between 1996 and 2019, as shown in Figure 

4-4(a). The word “wind” is the most frequent among all words mentioned in the CID 

narratives, followed by “thunderstorm”, “snow”, “storm”, and “damage”. The word 

“tree” is also among the highly mentioned words. For the affected infrastructure systems, 

the two highly mentioned words were “power” followed by “road”. The results from the 

bag of words analysis support that interruptions of power and transportation systems across 

New York state were mainly due to wind hazards, and also highlights that such 

interruptions may be related to fallen trees (an indirect effect of wind).  

To explore the dominant CID affecting power infrastructure (i.e., the most affected 

system based on the bag of words analysis), Figure 4-4(b) shows the results of the bag of 

words analysis based on episode and event narratives of power-related CID only. The 

results of such analysis support the strong relationship between power and wind as the word 

“wind” was also most frequent among the narratives of the power-related CID affecting 

New York. The word “line” also appeared frequently in these narratives, which indicates 

that the power system damage may be at the component level. It is worth mentioning that 

the power system in New York State may be also vulnerable to thunderstorms as the 

frequency of the word “thunderstorm” was relatively high. However, the vulnerability of 

New York’s power system to wind-related hazards only is considered in the current case 

study.  

A bi-gram analysis (i.e., N-gram analysis with N=2) was further conducted to 

uncover the common power system damage scenarios due to CID. The frequency of two-

associated words highlighted that the power system damage can be in a form of: a power 
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line damage, a power pole damage, and an overall system failure. These scenarios represent 

component- (i.e., power line or pole damage) or system- (i.e., power outage) failures. The 

wind-related hazards affecting New York are thus divided into those causing no power 

damage (Class 1), a damage at the component level (Class 2), and a damage that led to a 

system-wide power failure (Class 3). The number and percentage of hazards allocated to 

Classes 1, 2, and 3 are 8,547 and 58%, 2,348 and 16%, and 3,932 and 26%, respectively. 

This supports the higher vulnerability of the power system in New York to wind-related 

hazards as around 42% of such hazards (Classes 2 and 3) caused adverse impacts to the 

system.  

Figure 4-4: Bag of Words Based on: (a) Episode and Event Narratives of all CID 
Records, and (b) Episode and Event Narratives of Power-Related CID Records only 

4.3.3. STAGE 2: INVESTIGATING AND EXPLICATING INFLUENCING 

ATTRIBUTES 

The relationship between each of the location-related, time-related, and hazard-related 

attributes and the damage class is investigated to determine which of these attributes can 

(a) (b) 
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significantly influence the power system damage severity. Figure 4-5 shows the spatio-

temporal distribution of each damage class for the periods of 1996-2003, 2004-2010, and 

2011-2019. Prior to 2004, hazards causing a system failure (i.e., Class 3) overnumbered 

those causing a component damage (i.e., Class 2) and impacted the whole state, particularly 

the eastern part. Between 2004 and 2010, hazards causing a component damage (i.e., Class 

2) were more common and were scattered across the state. However, hazards causing a 

system failure (i.e., Class 3) occurred significantly more frequently at the western part of 

the state. After 2010, the western part of New York experienced more frequent Class 2 

damages, the eastern part experienced a very high frequency of Class 3 with relatively a 

low frequency of Class 2, and the central part experienced a low frequency of both classes.  

 

Figure 4-5: Distribution of Wind-Related Hazards Affecting New York (a) between 
1996-2003, (b) 2004-2010, and (c) 2011-2019 

Figure 4-6 shows boxplots for the magnitude and duration of the wind-related hazard 

allocated to the three damage classes. It can be observed that the median and the 25th 

percentile of the wind magnitude are nearly similar for all classes (Figure 4-6(a)). This 

indicates that around 50% of hazards allocated to the three classes are of the same intensity. 

In addition, the maximum, minimum, and 75th percentile of the wind magnitudes for the 

(a) (b) (c) 
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hazards allocated to Classes 1 and 2 (i.e., causing no damage and component-level damage, 

respectively) are identical, which supports the observation that the statistical distributions 

of wind magnitude are nearly the same in these two classes (as the mean value is slightly 

different between the two classes). On the other hand, for Class 3 (i.e., power outage), wind 

magnitudes have a wider range compared to the other two classes. Furthermore, the 75th 

percentile of the wind magnitude is much higher for Class 3. This indicates that the 

magnitude of wind-related hazards causing power outages is expected to be higher than 

those causing either no damage or a damage at the component level. The mean wind 

magnitude of Class 3 was also found to be higher than that of Classes 1 and 2, indicating 

that, on average, the power damage gets more severe with the increasing wind magnitudes. 

For the duration of wind-related hazards, it is apparent from Figure 4-6(b) that the wind 

duration is not directly related to the damage severity, as the mean, median, maximum, and 

75th percentiles are all smaller for Class 2 followed by Classes 3 then 1. Overall, the 

analysis asserts that the severity of the power system damage depends on the complex 

hazard-system interactions rather than the hazard characteristics only supporting the need 

for a machine learning-based model to tackle the complexity associated with predicting the 

power system damage under CID. 
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Figure 4-6: Boxplots for the (a) Magnitude and (b) Duration of the Wind-Related 
Hazards that Affected New York verses the Three Power Damage Classes 

Finally, the monthly frequency of the wind-related hazards allocated to Classes 1, 2, and 3 

indicate that most of the power system damages (i.e., Classes 2 and 3) took place over May 

through August (Figure 4-7(a)). In addition, the distribution of the different types of wind-

related hazards among Classes 1, 2, and 3 show that most of the power system failures and 

component damages are due to thunderstorms and high winds (Figure 4-7(b)). 

Accordingly, both the occurrence month and type of the wind-related hazard should be 

considered in the model to account for the influence of both variables on the severity of the 

power system damage. 

(a) (b) 
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(a)  

 
(b) 

Figure 4-7: The Distribution of Power system Damage Classes over (a) Months and (b) 
Wind Types 

4.3.4. STAGE 3: DATA. IMPUTATION 

Filling the missing magnitude and duration records of the wind-related hazards affecting 

New York is key to develop a model capable of predicting the three power system damage 

classes discussed earlier. Therefore, KMC and MBC are used to cluster all of the wind-

related hazards affecting New York based on the hazard type, latitude, longitude, month, 

year, duration, and magnitude. The best clustering algorithm is subsequently selected based 
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on the performance of the resulting model and is used for filling the missing records. 

Figure 4-8 and Figure 4-9 show K-WCSS and K-BIC relationships for wind-related 

hazards allocated to the three classes of the power system damage, respectively. For Class 

1 (i.e., no damage), the use of nine clusters resulted in the minimum WCSS and the 

maximum BIC values. Accordingly, hazards allocated to Class 1 were divided into nine 

clusters and the missing magnitudes and durations were replaced by the corresponding 

cluster average. Of the 8,545 hazards allocated to Class 1, a total of 1,299 magnitude and 

5,850 duration records were missing. All of these missing records were filled except for 51 

magnitude records as they were in the same cluster. For Class 2, it can be observed that the 

elbow of the K-WCSS relationship is at six clusters whereas the maximum BIC value is 

achieved through five clusters only. Hence, hazards allocated to Class 2 (2,348 records) 

were discriminated into six clusters and the missing magnitude and duration records were 

filled similar to those of Class 1. Out of 339 missing magnitude records and 1,791 missing 

duration records, a total of 297 magnitude records were discarded as they were in the same 

cluster. For Class 3, the optimum number of clusters was found to be seven according to 

both KMC and MBC. Therefore, hazards allocated to Class 3 (3,932 records) were 

categorized into seven clusters and all of the missing magnitudes (303 records) and 

durations (2,364 records) were filled similar to those in Classes 1 and 2.   



May Haggag 
Ph.D. Thesis 

McMaster University 
Department of Civil Engineering 

 

 146 

 
Figure 4-8: WCSS for Class 1 (a), Class 2 (b), and Class 3 (c) 

 
     

Figure 4-9: BIC for Class 1 (a), Class 2 (b), and Class 3 (c) 
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It should be emphasized that data imputation can introduce bias in the developed model if 

the percentage of missing records is more than 10% of the total number of records available 

[51,52]. Accordingly, since 13% and 67% of magnitude and duration records, respectively, 

are missing, both filled and unfilled data will be used for the development of the predictive 

model to assess the effect of the data imputation process. 

4.3.5. STAGE 4: MODEL DEVELOPMENT AND TESTING 

The CID dataset is divided into training and testing subsets, where the training subset 

includes 70% of the CID and the testing subset includes the remaining 30% of the CID. 

The model inputs include the location-related, time-related and hazard-related attributes 

investigated in Stage 2, whereas the model output is the damage class of the infrastructure 

system. Two classification models are accordingly developed, where: Model 1 employs the 

filled data whereas, Model 2 uses the actual dataset (before filling). Both models are trained 

using 70% of the dataset (filled or unfilled records) and are subsequently tested using the 

remaining 30%. For each of the two models, classic classification tree together with three 

ensemble techniques (bagging with 1,000 trees, random forest with 2, 3, or 4 predictors at 

each split, and boosting with 5,000 trees, 4 splits, and a shrinkage parameter of 0.01) are 

employed. After training, the performance of each model (and associated ensemble 

technique) is assessed based on its ability to replicate the testing subset. This is achieved 

through evaluating the misclassification error (i.e., accuracy) and other confusion matrix 

measures (i.e., precision, recall, and f1-score), as summarized in Table 4-1. The overall 

model accuracy is calculated as the ratio between the number of true predictions and the 

total number of data instances in the testing subset. The other confusion matrix evaluation 

criteria are class-related, and include: the precision, recall (i.e., sensitivity), and f1-score 
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[29]. The precision of the model for predicting a certain class can be conceptualized as the 

model exactness and is calculated as the relative number of true predictions within that 

class. The recall is a measure of the model completeness and is concerned with the total 

number of actual records within each class. The recall is calculated as the ratio between the 

total number of true predictions within a certain class and the total number of actual records 

within that class. Assessing the model performance can be more effective when the 

precision and recall are integrated, rather than using each measure separately. Accordingly, 

the f1-score can be used as it combines the model precision and recall into a single 

informative measure. The f1-score is related to the precision and recall through: 

f1-score	= (2×precition×recall) (precision+recall)⁄ . 

To compare the accuracy of the models for both training and testing subsets, the 

overall model accuracy is also calculated for the training subset. The performance measures 

shown in Table 4-1 support that the performance of Model 1 outweighs that of Model 2. 

This boosted performance might be attributed to the fact that Model 1 includes filled data, 

whereas Model 2 uses only non-missing-data records. To assess whether data imputation 

has introduced bias in Model 1, the classification trees for both models are compared. It is 

observed that the first two splits in Model 2 are wind event type and magnitude attributes, 

whereas, in Model 1 the first split is the duration attribute which had about 68% of its 

records missing as per the results of Stage 3. This implies that the enhanced performance 

of Model 1 may be attributed to the bias introduced by the data imputation, accordingly, 

Model 2 is considered more robust. Comparing the performance of the different ensemble 

techniques for Model 2, it is apparent that the 4-predictors random forest technique yields 

the best performance.  
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Table 4-1: Performance Measures of Different Classification Models 

 

Model ID 
Ensemble 
technique 

Training 
Subset 

Accuracy 
(%) 

Testing 
Subset 

Accuracy 
(%) 

Precision (%) Recall (%) f1-score (%) 

Class 1 Class 2 Class 3 Class 1 Class 2 Class 3 Class 1 Class 2 Class 3 

 
Classification 

Tree 
88.2/11.8 88.2/11.8 91.9 75.3 87.3 90.9 97.6 79.6 91.4 95 83.3 

Model 1 

Bagging 99.5/0.5 95.9/4.1 97.5 87.8 96.8 97.8 93.0 93.6 97.6 90.3 95.2 

Random 
Forest with 2 

Predictors 
99.5/0.5 96.9/3.1 98.9 90.4 96.2 97.9 95.2 95.8 98.4 92.8 96.0 

Random 
Forest with 3 

Predictors 
99.3/0.7 96.5/3.5 98.6 90.4 95.3 97.4 93.8 95.8 98.0 92.0 95.5 

Random 
Forest with 4 

Predictors 
99.4/0.6 96.4/3.6 98.6 91.0 94.9 97.3 93.6 96.1 97.9 92.3 95.5 

Boosting 92.6/7.4 93.1/6.9 97.8 79.7 90.6 92.7 97.9 92.0 95.2 87.9 91.3 

 
Classification 

Tree 
64.3/35.7 62.1/37.9 83.6 4 51.5 62.1 55.6 62.3 71.3 7.4 56.4 

Model 2 

Bagging 97.8/2.2 86.5/13.5 93.3 46.8 89.8 87.4 73.8 87.6 90.3 57.3 88.7 

Random 
Forest with 2 

Predictors 
99.1/0.9 88.7/11.3 94.6 50 93.1 90.4 82.9 87.6 92.4 62.4 90.3 

Random 
Forest with 3 

Predictors 
99.3/0.7 88.6/11.4 93.8 53.2 92.9 90.6 80.7 87.6 92.2 64.1 90.1 
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Random 
Forest with 4 

Predictors 
99.4/0.6 89.0/11.0 93.5 54.8 93.9 91.4 77.5 88.3 92.4 64.2 91 

Boosting 88.1/11.9 81.1/18.9 90.1 35.7 83.2 83 67.2 80.6 86.4 46.6 81.9 
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4.4. DECISION-MAKING INSIGHTS  

The current work can support risk mitigation and resilience enhancement decision-

making in many ways including identifying specific at-risk systems under different 

types of CID spatially and temporally, thus facilitating effective and efficient 

planning to optimize the resilience goals of these systems through available means. 

In addition to identifying systems at risk, the methodology conducted herein for 

categorizing system damages enables classifying CID according to the severity of 

the corresponding system damage they induce which is key for infrastructure 

systems spatio-temporal resilience planning.  

Furthermore, in light of the specific analysis conducted in Stage 2 of the 

case study presented herein, a number of key decision-making insights can be 

drawn. For instance, the three maps shown in Figure 5 shows that, throughout the 

last decade, the eastern part of New York was highly susceptible to wind hazards 

causing power system failure. This should support power system decision makers 

to closely study the performance of eastern New York state power system and 

possibly introduce enough redundancy (i.e., either redundant overhead or 

underground cables) and/or resources to achieve higher overall power system 

robustness and minimal disruptions under wind-related disasters.  In addition, for 

the considered study space boundaries (NY State) it was found that power system 

damages (i.e., Classes 2 and 3) were more frequent in the summertime rather than 

the winter months (i.e., May through August), this indicates that system 
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performance evaluation and asset management need to be initiated well before the 

start of the summer season in order to alleviate component or system damages.  

Notwithstanding the value of the developed machine learning model in 

predicting the level of system performance based on various input attributes, further 

insights can be gained from the developed predictive model. For example, the 

model input attributes can be sorted according to the corresponding Mean Decrease 

in Gini (MDG) and Mean Decrease in Accuracy (MDA) [53]. The MDG depends 

on the Gini impurity of the model, which refers to the probability of incorrectly 

classifying a new record at a certain tree node. Accordingly, a higher MDG value 

indicates that the corresponding variable is more important for classifying the data. 

On the other hand, the MDA represents the decrease in the model accuracy due to 

the exclusion of a specific variable. Therefore, variables with higher MDA values 

are more important for predicating the severity of system damages.   Figure 4-10 

shows the MDA and MDG values for the attributes used in Model 2 random forest 

ensemble with 4-predictors. The MDG values support that the magnitude is the 

most important variable for prediction, and therefore its accurate measurement is 

key for the effective prediction of power damage severity under wind-related 

hazards. Moreover, as per the MDG values, year, duration and latitude can also be 

considered key attributes for predicting power system damage severity. Similarly, 

the MDA values support that the three most important attributes for damage 

severity prediction are year, magnitude and latitude.  
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Figure 4-10: Variable Importance for the 4-Predictors Random Forest Model 

The high importance of both spatial-related attributes (i.e., latitude) and time-

related attributes (i.e., year) show that the power system damage severity does not 

only depend on hazard-related characteristics (i.e., magnitude and duration), but it 

is also a function of the inherent system properties and the hazard-system 

interaction. In addition, the higher accuracy achieved by the random forest 

ensemble technique employed herein supports the potential of employing nonlinear 

methods in solving complex problems such as disaster and impact prediction as 

suggested by recent studies [29,54,55].  

4.5. CONCLUSIONS 
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Considering the significant adverse impacts of CID on infrastructure systems, the 

current work aims at: 1) identifying specific at-risk systems under different types 

of CID both spatially and temporally; 2) categorizing CID according to the severity 

of the resulting system damage; 3) developing a machine learning model which can 

be used to predict the level of system damage as a function of the CID attributes; 

and 4) identifying the primary parameters governing the severity of system damage. 

As such, an infrastructure Damage Prediction Framework (DPF) under Climate 

Induced Disaster (CID) is developed using textual data analytics and machine 

learning techniques. The DPF consists of input, internal processes, and output 

phases. The input phase comprises data collection processes. The internal processes 

phase incorporates four main stages: 1) establishing the link between CID and 

infrastructure systems affected; 2) investigating and explicating the influencing 

attributes; 3) employing data imputation to fill missing records; and 4) developing 

and testing a prediction model. The output phase of the DPF involves predicting 

infrastructure system damages using either regression or a classification technique. 

To demonstrate the applicability and viability of the developed DPF, it was applied 

to the historical disaster data collected by the National Weather Services (NWS) in 

New York State between 1996 and 2019.  

The results of the first stage of the DPF showed that the power system in 

New York is the most vulnerable infrastructure system to CID, especially to wind-

related hazards. The adverse impacts to the power system were found to range from 

a damage at the component level (i.e., power line or pole) to an overall system 
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failure (i.e., power outage). As such, wind-related hazards were classified 

depending on the corresponding severity of the power system damage into no 

damage (Class 1); component level damage (Class 2); and system-wide failure 

(Class 3). The spatio-temporal analysis conducted showed that, in the last decade, 

the eastern part of New York was highly susceptible to wind hazards causing power 

system failure compared to the western and central parts. Special attention should 

therefore be given to the power system in such region through improving the 

redundancy and resourcefulness aspects in order to boost the system’s resilience. 

In addition, power system damages were more frequent in May through August, 

which highlight the need to conduct system assessment and implement asset 

management programs prior to the start of the summer season in order to alleviate 

component or system damages. 

A supervised machine learning model was subsequently developed to 

predict the severity of the power system damage in New York under future spatio-

temporal projections of wind hazard characteristics. To enhance the accuracy of the 

predictive model: 1) a cluster analysis was used to predict missing magnitude and 

duration records; and 2) bagging, random forest, and boosting algorithms were 

utilized to augment the performance of the classical classification tree. Two 

different models were accordingly trained and tested: Model 1 employed filled data, 

whereas Model 2 used unfilled data (i.e., actual data). Although Model 1 

overperformed Model 2 for all ensemble techniques employed, after comparing the 

classification trees of both models, such high accuracy was attributed to the bias 



May Haggag 
Ph.D. Thesis 

McMaster University 
Department of Civil Engineering 

 

156 
 

introduced in the model through the data imputation performed in Stage 3. As such, 

Model 2 integrated with 4-predictors random forest, which yielded an overall 

accuracy of approximately 89% for the testing dataset, was chosen as the best 

performing model. In addition, hazard magnitude was found to be the most 

important variable controlling the power system damage severity under CID. This 

highlights the need for accurately estimating the wind magnitude for the efficient 

prediction of power system damage severity under CID. On the other hand, hazard 

duration was not identified as significantly governing the damage severity. Instead, 

the effects of time (i.e., year) and location were found to be more significant. This 

supports that the severity of the power system damage under CID depends on the 

interplay between hazard- and system-related attributes rather than solely the 

hazard characteristics.  

The DPF developed herein is expected to aid state governments and 

decision-making stakeholders in developing preparedness plans for possible CID. 

This would in return facilitate mitigating the adverse impacts of CID on 

infrastructure systems, and therefore improve the overall urban resilience under 

such disasters. Further research can be implemented to advance the developed DPF 

through: 1) incorporating detailed system-related data (i.e., type of system 

components, maintenance information, number of redundant components, number 

of simultaneous disruptions, overall system recovery time); 2) using different 

techniques for data imputation (i.e., k-means weighted and inverse weighted 

distance), 3) integrating the duration of the system disruption to further enhance the 
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reliability of categorizing the severity of system damages; and, 4) including 

historical mitigation strategies followed to alleviate the impacts of CID on the 

affected systems.  
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Chapter 5  

A DATA DRIVEN MODEL FOR CLIMATE-INDUCED DISASTER DAMAGE 

PREDICTION 

ABSTRACT 

Abstract: The frequency and magnitude of Climate-Induced Disasters (CID) has 

been increasing consistently over the past few decades and is expected to continue 

to escalate in the coming years. According to the Emergency Events Database, a 

three-fold increase in the number of CID was recorded in less than 4 decades, from 

around 1,300 CID in 1975–1984 to over 3,900 in 2005–2014. As such, alleviating 

the impacts of such disasters at both the individual and community levels is key. In 

this respect, the current work proposes a systematic data-driven framework for 

predicting CID-related damages. The framework encompasses four phases: (1) 

Data Collection and Integration in which spatial interpolation methods are proposed 

to facilitate integrating data from multiple sources, (2) Feature Selection, which 

aims at comparing several methods to select relevant input variables for inclusion 

in the prediction model, (3) Model Development where supervised machine 

learning techniques are employed to train and test the prediction model, and (4) 

Result Analysis and Interpretation in which the Blackbox nature of the machine 

model is decoded. To demonstrate the utility of the proposed framework, property 

damages due to wind disasters were linked to event type, magnitude, duration, time 

and location as well as climate, land cover, social, housing, demographic and 
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economic data recorded in the state of New York from 2010 to 2018. Features 

significantly important for the property damage prediction were selected using 

different feature selection approaches (i.e., filters, wrappers, and embedded 

methods), and a set of machine learning models were subsequently developed. The 

best performing model was found to be a random forest-based regression tree and 

yielded a Root Mean Squared Error of 0.32 and a coefficient of determination of 

0.79 between the actual and predicted property damages. Both the feature selection 

and model interpretation processes showed that, within the considered 

demonstration application wind-related damages were found to depend on the 

complete interplay between disaster, climate, socioeconomic, housing, and 

demographic conditions rather than wind hazard characteristics only. This 

highlights the need for accurately recording such factors for the effective prediction 

of wind-related damages. The proposed framework is considered a step forward in 

enhancing the preparedness of governments for CID, and thus alleviating their 

adverse impacts and reaching more resilient communities. 

KEYWORDS: climate-induced disasters, property damages, resilience, regression 

trees, machine learning, data-driven modelling 
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5.1. INTRODUCTION 

The frequency and magnitude of Climate-Induced Disasters (CID) has increased 

tremendously over the past few decades, and their adverse impacts have become 

more predominant. Such impacts include property and crop damages, evacuations, 

injuries, and life losses. According to the Emergency Events Database reported by 

the Centre for Research on the Epidemiology of Disasters, the global average 

number of CID has tripled in less than four decades (from approximately 1,300 CID 

between 1975 and 1984 to around 3,900 between 2005 and 2014) [1]. In addition, 

around 1 million deaths and $1.7 trillion property damages were attributed to CID 

since the year 2000 [1], [2], with around US $210 billion property damages (i.e., 

approximately 12.5%) incurred only in 2020 [3]. In the United States, the 2020 CID 

damage costs reached approximately US $95 billion [4], which is double those 

reported in 2019 [4], [5]. Consequently, the 2020 Global Risks Report continued to 

identify extreme weather as the top ranked global risk and among the top five risks 

in terms of likelihood and impact, respectively, according to the statistics of CID 

that occurred between 2017 and 2020 [6]. Such rankings are expected to remain 

unchanged since: (1) the number of CID is anticipated to double during the next 13 

years [7]; (2) the annual fatalities due to CID are expected to increase by 250,000 

deaths in the next decade [8]; and, (3) the annual CID damage costs are expected to 

increase by around 20% in 2040 compared to those realized in 2020 [9], [10].  
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Given the anticipated increase in CID frequency, the intensification of their 

impacts, the rapid growth of the world’s population, and the fact that more than two 

thirds of such population is expected to be living in urban areas by 2050 [11], it has 

recently become extremely crucial to enhance both community and city resilience 

under CID. This necessitates the effective prediction of CID impacts which requires 

the existence of massive databases that characterize the different drivers of CID 

(i.e., physical, social, economic, etc.). However, classic mathematical and statistical 

models are typically unable to describe interrelationships based on large databases. 

Thus, data-driven research that aims at aiding decision makers in reducing and 

mitigating CID risks has progressed rapidly. In that context, flood damage was 

linked to structure architype, flood awareness, and literacy in a regression fashion 

using different machine learning models [12]. Machine learning techniques were 

also employed to predict the number of hurricanes per season [13], wildfire 

frequency [14], spatial probabilities of wildfire [15], wind damage [16], wind gust 

occurrence [17], heavy rain occurrence [18], flood severity [19], flood-related 

household damage [12], property damage caused by tornado disasters [20], and also 

to interpret the spatial distribution of structural damage due to wind events [21].  

In addition, the use of data-driven modelling for relating the impacts of CID 

to the community physical, social, and economic attributes has highlighted that: (1) 

enhancing the social and/or economic conditions can significantly reduce the 

impacts of natural disasters [22]; (2)  the negatively changing environmental 

conditions are expected to increase the social vulnerabilities (i.e., sensitivity, 
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exposure and adaptivity) to natural disasters during the coming decades [23]; (3)  

adopting new technologies for mitigating CID risks can facilitate the economic 

growth through increasing productivity [24]; (4)  social work intervention is 

essential for mitigating CID risks [25]; (5)  crop failures due to climate disasters are 

strongly related to long-term population mobility [26]; and, (6) changes in 

temperature are highly associated with climatological disasters and the high 

fluctuations in precipitation are associated with hydrological disasters [27].  

Consequently, it can be inferred that the prediction of CID-related aspects 

doesn’t depend on a single data type, rather it often depends on the interaction 

between different feature categories. Hence, it is particularly crucial to both gather 

and integrate several types of input data to develop an effective data-driven model 

for predicting CID occurrences and/or their impacts. To build such an integrated 

database, spatial interpolation methods can be employed for forecasting feature 

values at disaster locations. Such methods were previously used to estimate 

environmental [28]–[30], socioeconomic [30]–[32], geotechnical [33], and health-

related features [30], [34]. Furthermore, given the correlation between CID-related 

aspects and different feature categories, selecting the most important features for 

the prediction of these aspects is key since it contributes to both model performance 

enhancement and computational efficiency. In this context, several feature selection 

methods were employed to decrease the dimensionality of socio-economic [35], 

[36] and environmental data [37], [38].  
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Despite the emerging efforts conducted to link CID impacts to their deriving 

factors using machine learning techniques [39], [40], a standardized approach that 

can be systematically used for the development of such linkage is yet to be 

developed. In this respect, this paper aims at developing a systematic framework 

that can be used for predicting CID damages by employing different data 

preprocessing and machine learning. To demonstrate the utility of the proposed 

framework, wind disaster data collected by the National Weather Services was 

linked to climate, land cover, social, housing, demographic, and economic data in 

the state of New York from 2010 to 2018. The proposed framework is considered 

a step forward in enhancing the preparedness of governments for CID, to 

subsequently alleviate their adverse impacts and reaching more resilient 

communities.  This paper is divided into two main parts: the first part explains in 

detail the systematic phases pertaining to the CID damage prediction framework, 

and the second part includes a demonstration application to highlight the utility of 

the proposed framework.  

5.2. CLIMATE-INDUCED DISASTER DAMAGE PREDICTION 

FRAMEWORK 

The data-driven damage prediction framework shown in Figure 5-1 presents a 

systematic approach for predicting CID direct impacts (i.e., human related impacts 

such as number of injuries, fatalities, or evacuations, and monetary related impacts 

such as property and crop damages) based on spatio-temporal (i.e., location, time), 
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community (i.e., social, economic), climate (i.e., temperature, precipitation), and 

hazard (i.e., magnitude, duration) attributes. The framework is comprised of four 

main phases: (1) data collection and fusion, (2) feature selection, (3) model 

development, and (4) result analysis and interpretation.  

The first and most important phase for CID impacts prediction is collecting 

the input data which includes hazard-, community-, and climate-related attributes. 

As multiple data sources are expected to be used, data collection should be followed 

by a compilation process to integrate the collected data into a single database that 

can be used for the development of a CID damage prediction model. The second 

phase of the framework aims at removing the redundant information present in the 

database through selecting a set of features that is significantly important for 

predicting the output of interest. Upon feature selection, the third phase of the 

framework involves developing multiple machine learning models using different 

supervised machine learning techniques (i.e., classical and ensemble decision trees, 

artificial neural networks, support vector regression). Such models are subsequently 

tested using different sets of input-output pairs and several measures are used for 

performance evaluation [i.e., Root Mean Squared Error (RMSE), Coefficient of 

Determination (R2)]. After selecting the best performing model, the fourth and final 

phase in the framework involves interpretating the results. In this phase, 

relationships between the model inputs and the predicted output are uncovered to 

decode the black-box nature of the machine learning techniques employed.  
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Figure 5-1: CID Impacts Prediction Framework 

5.2.1. PHASE 1 – DATA COLLECTION AND FUSION 

Data collection and fusion represent the most important phase in the framework as 

the quality of the data collected can significantly affect both the model 

predictability and the insights drawn from it. To effectively predict CID impacts, 

several input features are required and are typically categorized into disaster-, 

climate-, socioeconomic-, demographic, location-, and physical-related attributes. 

Disaster-related attributes include the type of the hazard (i.e., flood, tornado, 
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thunderstorm wind, drought, wildfire), geographical coordinates of the affected 

location (i.e., latitude and longitude), temporal aspects (i.e., month and year), innate 

characteristics of the hazard (i.e., scale, magnitude, duration), and induced damages 

and impacts (i.e., human, and monetary losses). Climate-related attributes include 

statistics of hourly, daily, or monthly temperature, precipitation, humidity, and air 

pressure. Socioeconomic-related attributes include nationalities, educational levels, 

household income and income per capita, whereas demographic-related attributes 

include the total population, age, and gender distribution in the area of interest. 

Location-related attributes, including land cover and housing information in the 

affected area, are also essential for predicting CID property damage. Moreover, 

information related to physical infrastructure systems (i.e., age and status) at the 

disaster location are crucial for estimating the system damages induced by CID.  

 As various categories of input data are required for the accurate prediction 

of CID impacts, data fusion represents a key step in developing the data-driven 

model. Such compilation is challenging as each category of the input data may be 

recorded at different spatial and temporal resolutions. As such, after collecting the 

different categories of input data, a spatial interpolation is essential to facilitate 

integrating the different input features into a single database. Through assuming 

that “everything is related to everything else, but near things are more related than 

distant things” [41], [42], point spatial interpolation uses the known values of a 

certain feature at several locations (i.e., control points) to estimate unknown values 

at other locations. Point spatial interpolation methods can be classified according 
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to the spatial extent (i.e., global verses local methods) and exactness (i.e., exact 

verses approximate methods) [43]. In global methods (i.e., trend surface analysis) 

values at all known points are employed to determine those at unknown locations, 

whereas in local methods (i.e., local polynomial interpolation) only nearby 

locations are used [43], [44]. On another perspective, the difference between exact 

and approximate methods is the fact that exact methods reserve the original data 

point values (i.e., generates a surface that passes through the control points) [43], 

[44]. Several interpolation methods have been developed to date. Among those 

methods, inverse distance weighting, kriging, and spline are the most widely used 

spatial interpolation methods [45]. The inverse distance weighting method enables 

estimating feature values at unknown points deterministically using a combination 

of weights from nearby points. Within such method, weights from further points 

are typically smaller compared to those from nearby points, and thus they have less 

effects on the value to be estimated [46].  Inverse distance weighting has been used 

in several applications, including rainfall variability estimation [28], temperature 

mapping [29], socio-economic feature prediction [30], [31], and disease risk 

prediction [34]. Kriging interpolation uses known observations (i.e., feature values) 

to infer the covariance structure of the underlying feature. Weights are subsequently 

obtained based on a variogram analysis and then used to estimate the feature values 

at unknown locations [46]. Kriging was previously employed in several 

applications including environmental [47], [48] and geotechnical [49], [50] feature 

estimation. Spline interpolation is a deterministic method that fits several 
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polynomials to different subsets of the feature values rather than using a single 

polynomial for all values [33]. Spline interpolation was used to estimate several 

feature types including environmental [51], [52] and demographic [53], [54] 

features. It should be noted that there is no preference for a specific spatial 

interpolation method in a certain situation. Therefore, most related studies either 

use several methods and select the best performing one or employ methods that 

proved to be viable for similar data types. It is also noteworthy to mention that given 

the availability of significant missing records in the integrated database, data 

imputation becomes key for obtaining an effective and accurate predictive model. 

This imputation can be performed using several unsupervised machine learning 

techniques including clustering methods.  

5.2.2. PHASE 2 – FEATURE SELECTION 

Whereas the vast success of machine learning models in predicting CID-related 

aspects is clear, the data driven nature of such models increases the sensitivity of 

their predictions to the input features employed. As some input features may be 

strongly correlated, and thus convey similar information, appropriate selection of 

input features is crucial for developing an efficient machine learning model. Using 

the most relevant input features and removing those with redundant information has 

proved to boost the model performance and decrease the computational cost [55]. 

Several feature selection methods have been developed in the past few decades, and 

are generally categorized under filter, wrapper, and embedded methods [56]–[58].  
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Due to their low computational cost, filter methods are often used for large 

databases with numerous input features under analysis [59]. These methods use raw 

data to select features (i.e., inputs) based on their correlation with the dependent 

variable (i.e., output) and their independence upon other predictors [60]. The value 

of the correlation coefficient (R) is used for such purposes and typically ranges from 

-1 to 1, where a negative R value indicates an inverse correlation, zero R values 

support the independence between variable pairs, and a positive R value indicates 

a direct relationship. Independent features that are more correlated with the 

dependent variable, and less correlated with one another, are considered the most 

significant for prediction. 

In wrapper methods, relevant features are selected based on evaluating the 

performance of the developed data-driven model [61]. The application of wrapper 

methods start by developing multiple models using different subsets of input 

features, and subsequently adding new features or removing existing ones based on 

assessing the model performance [62]. Sequential feature selection is the most 

widely used wrapper method and can be typically conducted through: (1) backward 

elimination, in which all available features are initially employed in the model and 

insignificant features are removed at each iteration; or (2) forward addition, in 

which significant features are added with each iteration until adding more features 

cease to have a positive effect on the performance of the model. Recursive feature 

elimination is another wrapper method which relies on developing numerous 

models, removing worst performing features, and subsequently ranking the input 
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features after comparing the performance of such models [62]. Boruta is another 

wrapper feature selection method that uses a top-down approach for finding the 

relevant features based on their random forest importance score. Through 

comparing features with their randomized versions (i.e., shadow features), the 

Boruta method filters features that have higher importance than the highest 

randomized feature’s importance and marks them as significant. Genetic algorithms 

(GA) represent another type of wrapper feature selection which starts by randomly 

creating an initial population of models (each with a different set of inputs), assesses 

their performance, and reproduces the next generation of models through 

adding/removing a subset of inputs using genetic operations (i.e., elitism, mutation, 

and crossover). The reproduction step is repeated until the algorithm reaches a 

certain termination criterion.  

In embedded methods, the feature selection process is inherently included 

within the developed machine learning model. As such, embedded feature selection 

methods are basically metrics rooted in the model’s training process [61]. Examples 

of embedded methods include variable importance metrics that are part of the 

random forest- and boosting-based regression trees. Random Forest variable 

importance uses either the Mean Squared Error (MSE) and the node impurity to 

rank input features when the variable to be predicted is continuous, or the mean 

decrease accuracy and mean decrease gini within categorical variable prediction 

models. Furthermore, the boosting relative importance algorithm is used to rank the 

input features based on their relative influence on the performance of the resulting 
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gradient boosted trees. As in random forest variable importance, the relative 

influence algorithm ranks features by computing the average increase in prediction 

error after permuting each input feature. 

Prior to model development, it is noteworthy to emphasize the importance 

of both label encoding and data transformation (i.e., power transforms). Given the 

availability of different categorical variables, label encoding is crucial before 

training the machine learning model. As such, different categorical variables are 

encoded with numerical values (i.e., month names are substituted with month 

numbers). Moreover, given the vast value ranges for the different variables 

employed in the model, data transformation (i.e., power transforms) which aims at 

removing the skewness from the data is key prior to building the model.  

5.2.3. PHASE 3 – MODEL DEVELOPMENT 

The third phase of the framework involves the development of the machine learning 

model.  As discussed previously, several techniques can be utilized for the 

prediction of CID-related aspects including artificial neural networks and decision 

trees. The choice of an appropriate machine learning technique depends on the type 

of the variable under prediction (i.e., continuous, or categorical), where: (1) 

artificial neural networks are among many techniques that can be used regardless 

of the type of the output variable; (2) regression trees are used for continuous 

outputs; and (3) classification trees are used in case of categorical outputs. In 
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addition, ensemble techniques (i.e., bagging, random forests, and boosting) can be 

employed to boost the model performance [63]–[65].  

In the framework developed herein, several machine learning and ensemble 

techniques can be used, and their evaluation criteria should be compared to select 

the best performing model. In all techniques, the input data is divided into training 

and testing subsets. Depending on the type of the prediction (i.e., regression or 

classification), the model performance is assessed using certain evaluation criteria. 

For instance, the misclassification error can be used when the model output is 

categorical (i.e., classification), whereas the RMSE can be utilized when the output 

of the model is continuous (i.e., regression).  

5.2.4. PHASE 4 – RESULT ANALYSIS AND INTERPRETATION 

The black-box nature of most machine learning models is the primary limitation of 

such techniques, and this ambiguity hinders the user’s ability to interpret the 

resulting input-output interrelationships. As such the last phase of the framework 

aims at overcoming this limitation through visualizing the relationships and patterns 

that the model has already learned. An example of the methods employed for such 

purpose include partial dependence plots (PDP) in which the input-output 

relationships are depicted and classified into linear and complex relationships [66]. 

In PDP, the marginal effect of a single or a group of input features on the predictor 

is expressed in terms of the average prediction corresponding to all values of other 

inputs [66]. The key disadvantage of PDP is that these plots are informative when 
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the input features are not strongly correlated [66], [67]. Other methods can also be 

used for interpretating the model result such as accumulated local effect plots and 

sensitivity analysis.  

5.3. DEMONSTRATIVE APPLICATION: PREDICTION OF WIND-

RELATED PROPERTY DAMAGE IN NEW YORK STATE  

5.3.1. PHASE 1 – DATA COLLECTION AND FUSION 

The current case study aims at assessing the applicability and viability of the 

developed framework through predicting wind-related property damages in the 

state of New York based on disaster-, landcover-, climate-, social-, economic -, 

housing-, and demographic- related records collected by different agencies from 

2010 to 2018. Disaster data was obtained from the National Weather Services 

Database (NWS), which aims at providing historical and forecasts of weather and 

climate data [68]. The collected disaster attributes include location, time, and 

hazard related properties. Landcover data was represented by the 30-m Landsat 

obtained from the National Land Cover Database (NLCD) [69]. Climate data was 

collected from the National Oceanic and Atmospheric Administration (NOAA) 

online search tool [70], and include statistics of the daily temperature (i.e., 

minimum, and maximum). Social, economic, housing, and demographic data were 

obtained from the American Community Survey (ACS) which provides population 

and housing information in the United States on a yearly basis [71]. More 

specifically, the social attributes collected include nationality, educational level, 



May Haggag 
Ph.D. Thesis 

McMaster University 
Department of Civil Engineering 

 

184 
 

and spoken languages; economic features include mean and median household 

income and income per capita; housing attributes include total housing units, 

number of mobile homes, year of household construction, number of vehicles per 

household, and household value; and demographic attributes include population 

size, gender, age, and race. It is noteworthy to mention that logarithmic 

transformation is used to minimize the skewness in the data. Table 5-1 shows the 

attributes considered in this case study together with their type (i.e., continuous, or 

categorical), location (disaster, county center, or stations inside counties), and 

source.  

Table 5-1: iCase Study Input Features   

  Code Type Location Source 

Disaster Attributes   

NWS 

Longitude DS5 Continuous Disaster 

Latitude DS6 Continuous Disaster 

Year DS1 Continuous Disaster 

Month DS2 Continuous Disaster 

Event Type DS4 Continuous Disaster 

Magnitude DS3 Continuous Disaster 

Duration DS7 Continuous Disaster 

Property Damage DS8 Continuous Disaster 

Land Cover Attributes   

NLCD Type of Land Cover L1 Continuous Disaster 

Climate Attributes 
 

  

NOAA Daily Maximum Temperature T1 Continuous Station 

Daily Minimum Temperature T2 Continuous Station 
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Social Attributes 
 

  

ACS 

Number of High School Graduates S1 Continuous County  

Number of College Graduates S2 Continuous County  

Number of Associate Degree Graduates S3 Continuous County  

Number of Bachelor’s degree Graduates S4 Continuous County  

Number of Post Graduate Degree Graduates S5 Continuous County  

Number of Foreign-Born US Citizens S6 Continuous County 

Number of US Born US Citizens S7 Continuous County  

Number of Non-US Citizens S8 Continuous County  

Number of People with English Speaking Homes S9 Continuous County  

Number of People with Non-English-Speaking Homes S10 Continuous County  

Housing Attributes 
  

ACS 

Number of Housing Units H1 Continuous County  

Number of Mobile Homes H2 Continuous County 

Number of Households Built on or after 2000 H3 Continuous County  

Number of Households Built on or before 1999  H4 Continuous County  

Number of Households with No Vehicles H5 Continuous County  

Number of Households with Vehicles H6 Continuous County  

Number of Households with Value of $0 to $99,999 H7 Continuous County  

Number of Households with Value of $100.000 to 
$199,999 H8 Continuous County  

Number of Households with Value of $100.000 to 
$199,999 H9 Continuous County  

Number of Households with Value of $500,000 to 
$999,999 H10 Continuous County  

Number of Households with Value of $1,000,000 or 
more H11 Continuous County  

Demographic Attributes 
 

ACS 
Total Population D1 Continuous County  

Number of Males D2 Continuous County  

Number of Females D3 Continuous County  
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Median Age D4 Continuous County  

Number of People 65 Years and Over D5 Continuous County  

Number of White People D6 Continuous County  

Number of Other than White People D7 Continuous County  

Economic Attributes 
  

ACS 

Number of Households with Income Less than 10K E1 Continuous County  

Number of Households with Income 10K to 50K E2 Continuous County  

Number of Households with Income 50K to 100K E3 Continuous County  

Number of Households with Income 100K to 200K E4 Continuous County  

Number of Households with Income 200K or More E5 Continuous County  

Median Household Income E6 Continuous County  

Mean Household Income E7 Continuous County  

Per Capita Income E9 Continuous County  

It should be emphasized that wind-related disasters are recorded at scattered 

locations across the state of New York (as shown in Figure 5-2), whereas climate, 

social, economic, housing, and demographic data are collected at specific locations 

within each county. To have a fully integrated database, all input features are 

predicted at disaster locations using an inverse distance weighting (IDW) spatial 

interpolation method described earlier.  

 

Figure 5-2: Spatial Distribution of Disasters, Counties, and Monitoring Stations 
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IDW spatial interpolation method estimates feature values at unknown locations 

using the following equation [29]. 

!! 	= 	∑ %"!"#
"$% 		      Equation 5-1 

where !! is the feature value to be estimated at location j, !" is feature value at a 

known location i, & is the number of points to be used in the interpolation process, 

and %" is the interpolation weight of Zi which can be calculated as per Equation 5-

2: 

%" =	
&!"
#$

∑ &!"
#$%

!&'
			       Equation 5-2 

where ℎ"! 	is the distance between locations i and j, and p is a power factor that 

determines the weight strength. When p equals 0, the weight becomes independent 

of the distance and Zj would turn out to be equal to the mean value of Zi. As p 

increases, the weights of further points decrease dramatically. Finally, the distance 

ℎ" can be quantified using Equation 5-3. 

ℎ" =	()*! − *",
( + ).! − .",

(		     Equation 5-3 

where *" and ." are the coordinates of the location i, while *! and .! are the 

coordinates of the location j. Figure 5-3 shows an example of applying the IDW 

method with p equals 2 to estimate per capita income at disaster locations in 2018, 

where each observation of the per capita income is weighted based on the distance 

from the county center to the disaster location. The same procedure has been 
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conducted to interpolate the other input features at the disaster locations for the time 

frame from 2010 to 2018. 

 

Figure 5-3: Per Capita Income in 2018 (a) Recorded at the County Center and (b) 
Interpolated at Disaster Locations 

5.3.2. PHASE 2 – FEATURE SELECTION 

The second phase of the framework aims at optimizing the performance of the 

machine learning model through selecting the most significant features for property 

damage prediction (out of the ones listed in Table 1). Several feature selection 

methods are employed in this application and their results are compared to select 

the most significant subset of features. These methods are the correlation matrix (a 

filter approach); the random forest and the relative influence algorithm (embedded 

approaches); and the Boruta and genetic algorithms (wrapper approaches).  

The first feature selection method used herein is filtering based on the 

correlation between the independent features (i.e., the input variables) and the 

dependent variable (i.e., the output of interest). Figure 5-4 shows the correlation 

matrix that include R values between each input and input-output pair for the 

(a) (b) 
(a) (b) 
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features considered in this study. It can be inferred that the social, economic, 

housing, and demographic features are highly correlated, whereas the disaster-

related features are mostly not correlated with each other. Furthermore, the 

independent variable (i.e., wind-related property damages) has its highest 

correlation with a few number of independent variables (i.e., year, disaster type, 

wind magnitude, and median age). The high correlation between the independent 

features together with the minimal correlations between property damages (i.e., the 

dependent variable) and other input variables calls for the use of other feature 

selection methods that could aid in determining he most significant set of features 

for prediction. As such, several embedded methods that rank features according to 

their importance in the development of a machine learning model are employed 

hereafter.  

 

Figure 5-4: Features Correlation Matrix 
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The first embedded method used herein is the random forest based variable 

importance algorithm which ranks the independent features according to the Mean 

Squared Error (MSE) and the node impurity, as shown in Figure 5-5. According to 

both the MSE and node impurity plots, the most important disaster-related features 

are the magnitude year, event type, duration, and month. Both measures also 

indicate that the climate-related features considered in this study (i.e., the maximum 

and minimum temperatures) are key for property damage prediction, whereas the 

per capita income was found to be the most vital economic feature. Among the 

housing attributes, the number of households built after the year 2000 and those 

with a value less than US $100,000 were found to be the most important housing 

attributes based on MSE and node impurity values, respectively. Finally, the 

number of non-US citizens and the number of high school graduates are the most 

important social variables according to the values of MSE and node impurity, 

respectively. It should be highlighted that the node impurity metric shows that the 

location is key for property damage prediction as latitude was found to be the top 

5th ranked attribute.  
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Figure 5-5: Random Forest Variable Importance  

The second embedded feature selection method employed in this study relies on the 

relative influence algorithm, which is rooted within the boosting ensemble, as 

shown in Figure 5-6. As can be observed, the three most important features for 

prediction are the magnitude, event type, and duration, which are the same features 

identified by the variable importance algorithm embedded in the random forest 

ensemble technique illustrated before. Moreover, as specified by the node impurity, 

the latitude is identified as 4th most significant feature, whereas the year is identified 

among the five highest ranked features as per the MSE and node impurity. In 
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addition, the maximum temperature, the minimum temperature, and the per capita 

income are identified among the highest ranked 10 features which conforms with 

the results obtained from the random forest variable importance measures. On the 

other hand, the median age is identified as the 10th ranked feature according to the 

boosting relative influence. 

 

Figure 5-6: Boosting Relative Influence for Features 
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The first wrapper selection method employed here in is the Boruta algorithm. 

Figure 5-7 shows the Boruta importance plot for the features listed in Table 5-1. 

The boxplots displayed in the figure show the distribution of feature’s importance 

over 100 iterations, where the colors of the boxplots are used to distinguish the 

selected features. It can be observed that all input features are considered significant 

as per the Boruta algorithm; however, the magnitude, duration, year, event type, 

month, temperatures, and per capita income are ranked as the seven most important 

features. This confirms the results of the random forest importance and the boosting 

relative influence.  

 

Figure 5-7: Boruta Algorithm Importance Plot 
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To boost the predictability of the model even further, GA are also employed for 

feature selection. Being a wrapper feature selection method, GA are integrated 

herein within a random forest model. After each generation, the out-of-bag RMSE 

is estimated as shown in Figure 5-8.    

 

Figure 5-8: Out-of-Bag RMSE of the Integrated GA-Random Forest Model 

It should be emphasized that the input features selected by the GA may be sensitive 

to the initial population when the algorithm converges to a local, rather than a 

global, optimal solution. To reach a robust model with the optimal set of input 

features, the integrated GA-random forest model is run for 25 realizations of initial 
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populations, and the out-of-bag RMSE values are obtained for each generation 

within each realization. As it can be noticed from Figure 8, the out-of-bag RMSE 

decreases over the generations, but the rate of decrease of the out-of-bag RMSE can 

be considered negligible after around 60 generations. As such, for all GA-random 

forest runs, the criterion is fixed as 60 generations. Table 5-2 shows the out-of-bag 

RMSE, R2, generation at which the minimum out-of-bag RMSE was attained (i.e., 

the Best Generation), and the number of variables selected at the best generations 

(i.e., Number of Variables). The average out-of-bag RMSE and R2 are 0.32 and 

0.79 respectively, whereas the average number of selected variables is 18.  

Table 5-2: GA-Random Forest Model Results for the 25 Initial Population 
Realizations 

Run Number 
Out-of-

Bag 
RMSE 

R2 Best 
Iteration 

Number of 
Variables 

1 0.3243 0.7842 45 21 

2 0.3211 0.7867 58 9 

3 0.3162 0.7945 60 21 

4 0.3241 0.7797 59 18 

5 0.3201 0.787 60 10 

6 0.3257 0.7812 53 18 

7 0.3209 0.7897 48 27 

8 0.3255 0.7856 50 15 

9 0.3184 0.7902 60 18 

10 0.3137 0.7945 59 11 

11 0.317 0.7924 60 24 

12 0.3258 0.7812 52 30 
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13 0.3244 0.7829 59 18 

14 0.3145 0.7926 54 15 

15 0.3324 0.7712 54 13 

16 0.3256 0.7819 60 18 

17 0.3216 0.7856 42 21 

18 0.3219 0.7845 59 18 

19 0.3148 0.7937 59 15 

20 0.321 0.7874 55 21 

21 0.3326 0.7718 54 10 

22 0.3181 0.7934 60 13 

23 0.3235 0.7827 59 15 

24 0.3227 0.7858 56 27 

25 0.3236 0.7822 46 19 

To select the optimum set of input features, a frequency analysis for the features 

selected at the best iterations is conducted as shown in Figure 5-9. It can be noticed 

that some features are selected consistently (i.e., DS1, DS2, DS3, DS5, DS6, DS7, 

L1, T1, and T2), whereas other features are selected only a few times (i.e., H2 and 

S9), which shows how some features are more significant for predicting property 

damage compared to others. 
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Figure 5-9: The Frequency of Selecting the Input Features within the GA-
Random Forest Model 

5.3.3. PHASE 3 – MODEL DEVELOPMENT 

To select the most efficient model which requires the least number of input features 

to reach a considerably high level of prediction accuracy, classic regression trees 

together with regression trees ensemble techniques (i.e., bagging, random forest, 

and boosting) are trained using four different sets of input features (i.e., four models 

are developed). For all models, the dataset is divided into a training and a testing 

subset with a ratio of 70/30. Model 1 is developed using all input features listed in 
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Table 1, whereas Model 2 is developed based on the feature ranking provided by 

the random forest feature importance, the Boruta algorithm, and the boosting 

relative influence algorithm. The ten highest ranked features obtained from each of 

the three algorithms are compared and those repeated twice, or more are selected 

as inputs for Model 2. As such, the input features for Model 2 are the magnitude, 

event type, duration, year, month, latitude, maximum temperature, minimum 

temperature, per capita income, and number of households built after the year 2000. 

Model 3 is developed using the nine features that are selected at every realization 

of the GA-random forest model, whereas Model 4 is developed using the nine 

features used in Model 3 together with the features that were selected in more than 

half of the genetic algorithm realizations conducted (i.e., those selected 12 times or 

more). The performance of all models is evaluated based on RSME and R2, as 

shown in Table 5-3. 

Table 5-3: Summary of Models Performance 

Model Number Modelling Technique RMSE R2 

Model 1 

Classic Regression Tree 0.38 0.69 

Bagging 0.36 0.72 

Random Forest 0.34 0.76 

Boosting 0.37 0.71 

Model 2 

Classic Regression Tree 0.38 0.70 

Bagging 0.36 0.72 

Random Forest 0.32 0.78 

Boosting 0.35 0.74 



May Haggag 
Ph.D. Thesis 

McMaster University 
Department of Civil Engineering 

 

199 
 

Model 3 

Classic Regression Tree 0.41 0.65 

Bagging 0.38 0.70 

Random Forest 0.31 0.79 

Boosting 0.36 0.73 

Model 4 

Classic Regression Tree 0.41 0.65 

Bagging 0.38 0.70 

Random Forest 0.33 0.78 

Boosting 0.35 0.75 

It can be observed that, on average, Model 2 is the best performing model in terms 

of both its RMSE and R2 values. Turning to the best modelling technique, it is 

apparent that random forests outperform the three other modelling techniques (i.e., 

classic regression trees, bagging, and boosting) for all of the four models. It can be 

also concluded that the reduced set of input features selected in Model 2 is able to 

accurately predict the property damages. As such, Figure 5-10 shows the actual 

versus predicted damages for all techniques used in Model 2, being the most 

efficient model for property damage prediction.  
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Figure 5-10: Model 2 Predicted verses Actual Property Damages 

5.3.4. PHASE 4 – RESULTS ANALYSIS AND INTERPRETATION 

PARTIAL DEPENDENCE PLOTS 

The last phase of the framework aims at understanding the relationships between 

the model inputs and the predicted property damages based on the selected model 
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(Model 2). Thus, the effect of changes in the input features on the property damages 

are depicted using single variable PDP, as shown in Figure 5-11(a). At each value 

of the input feature under consideration, the dependent variable is quantified for all 

values of the other input features, and subsequently the arithmetic mean is used as 

a representative value. The PDP shows that property damages increase significantly 

as the wind speed increases between 52 mph and 83 mph.  The effect of location on 

property damages can be depicted through the change in the predicted damages 

with changes in event latitude. On average, higher property damages are expected 

in the southern part of New York (i.e., latitudes below 42) compared to the mid-

state and up-state locations. Turning to the relationship between duration and 

property damages, it can be observed that for durations less than 500 min, as the 

event duration increases, the predicted property damages increase, whereas the 

duration and property damages have an inverse relationship between 500 min and 

1250 mins. For the effect of temperature on property damages, it can be observed 

that more property damages are expected during extremely cold and extremely hot 

days when the maximum temperature is below 15°C and the minimum temperature 

is above 10°C, respectively. Economic features can also affect wind disaster 

property damages as damages generally increase with the increasing income for 

incomes exceeding US $37,000. The relationship between the number of houses 

built after the year 2000 and property damages shows that property damages are 

highest when the number of houses built on or after the year 2000 is between 12,500 

and 57,500 houses. 
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The wind type is also important for the effective prediction of property 

damage as it can be observed that high wind (i.e., sustained non-convective winds 

of 40 mph or greater lasting for 1 hour or longer, or gusts of 58 mph or greater for 

any duration) produces higher property damages than both thunderstorm (i.e., 

winds arising from thunderstorms) and strong wind (i.e., non-convective winds 

gusting less than 58 mph, or sustained winds less than 40 mph). Inspecting the 

relationship between predicted property damages and the month when an event 

occurred shows that property damages are highest in January compared to all other 

months. 

 The effect of the interaction between different pairs of input variables on 

the predicted property damages can be visualized in Figure 5-11(b) in logarithmic 

scale. The figure shows the interaction between the magnitude and duration, the 

maximum and minimum temperatures, and the per capita income and the number 

of households built after the year 2000. The interaction between wind speed and 

duration shows that generally property damages increase with the increase in wind 

speed regardless of the duration of the wind event. Nevertheless, as wind speed 

exceeds 80 mph, higher property damages are expected as the wind event duration 

increases. Moreover, the effect of the interaction between the maximum and 

minimum temperatures on property damages shows that higher property damages 

are expected with the increase in minimum temperature or the decrease in 

maximum temperature. However, the highest property damages were observed at 

very hot days when both the maximum and minimum temperatures were 
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considerably high. Finally, the interaction between the per capita income and the 

number of households built after the year 2000 shows that for incomes between 

US$ 25,000 and US$ 35,000 together with less than 10,000 houses bult after the 

year 2000, property damages are expected to be considerably lower than those 

expected in places where the per capita income is lower than US$ 25,000 and the 

number of houses built after the year 2000 is higher than 10,000.  
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(a) 
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(b) 

Figure 5-11: Partial Dependence Plots for Model 2 Random Forest 

INSIGHTS FOR DECISION MAKING 

Several insights can be drawn from the case study conducted herein. The first and 

most important insight is related to the complexity of CID-related damages 

prediction. This complexity is apparent as different categories of input features 

were proven to be significant for the prediction of such damages, ranging from 

disaster-related, economic, housing, and climate attributes. This highlights the need 

for accurately recording such features for the effective prediction of CID-related 

aspects in the future. The current case study also ensures the effectiveness of data-

driven and machine learning techniques for predicting complex phenomena that 

would otherwise be hard to correlate. The results of applying Phase 4 on the current 

demonstration application asserts that the only drawback of using machine learning 

techniques which is the fact that they work as a blackbox can be eliminated through 

employing different techniques that can interpret and uncover the latent 

relationships learned by the model, these techniques include but are not limited to 
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partial dependence plots and accumulated local effects. Furthermore, the use of the 

feature selection methods proposed in Phase 2 resulted in having a model that both 

resulted in higher predictive ability and proved to be more efficient as it required 

considerably less inputs to achieve such performance. Moreover, it was shown in 

Phase 3 that the performance of the random forest variable importance, Boruta 

algorithm, and boosting relative influence matched that of genetic algorithms. This 

asserts that the use of a more resource demanding computational approach (i.e., 

genetic algorithms) for feature selection does not necessarily result in increased 

prediction accuracy. 

5.4. CONCLUSIONS 

The current work aims at developing a systematic data-driven framework for 

predicting Climate-Induced Disaster (CID) damages. The damage prediction 

framework (DFP) is comprised of four phases which are: (1) data collection and 

fusion, (2) feature selection, (3) model development, and (4) result analysis and 

interpretation. The first phase (i.e., data collection and fusion) comprises collecting 

the input data which includes hazard-, community, and climate-related attributes. 

Data collection is followed by a compilation process to integrate the collected data 

into a single database that can be used for the development of a CID damage 

prediction model. The second phase of the framework (i.e., feature selection) aims 

at removing the redundant information present in the database through selecting a 

set of features that is significantly important for predicting the output of interest. 



May Haggag 
Ph.D. Thesis 

McMaster University 
Department of Civil Engineering 

 

207 
 

Upon feature selection, the third phase (i.e., model development) involves 

developing multiple machine learning models using different supervised machine 

learning techniques (i.e., classical and ensemble decision trees, artificial neural 

networks, support vector regression). Such models are subsequently tested using 

different sets of input-output pairs and several measures are used for performance 

evaluation [i.e., Root Mean Squared Error (RMSE), Coefficient of Determination 

(R2)]. After selecting the best performing model, the fourth phase of the framework 

(i.e., result analysis and interpretation) involves interpretating the developed 

machine learning model. In this phase, relationships between the model inputs and 

the predicted output are uncovered to decode the black-box nature of the machine 

learning techniques employed.  

To demonstrate its utility, the framework was used to estimate the wind-

related property damages incurred in the state of New York from 2010 to 2018 

based on disaster characteristics, landcover, climatic conditions, socioeconomic 

attributes, housing information, and demographic statistics. It should be 

emphasized that wind-related disasters are recorded at scattered locations across the 

state of New York), whereas climate, social, economic, housing, and demographic 

data are collected at specific locations within each county. To have a fully 

integrated database, all input features are predicted at disaster locations using an 

inverse distance weighting (IDW) spatial interpolation method. This method 

enables estimating feature values at unknown points deterministically using a 

combination of weights from nearby points. Within such method, weights from 
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further points are typically smaller compared to those from nearby points, and thus 

they have less effects on the value to be estimated.  Prior to developing the data-

driven model, the most important features for estimating the property damages were 

selected using a set of filter (i.e., correlation matrix), wrapper (i.e., the Boruta 

algorithm, and genetic algorithms) and embedded (i.e., random forest variable 

importance, and boosting relative influence) feature selection methods. 

Consequently, four different sets of significant input features were identified based 

on the rankings obtained from the feature selection methods employed. Regression 

tree models with- and without ensemble techniques (i.e., bagging, random forest, 

and boosting) were developed based on each of the four input feature sets. For each 

set, the performance of the corresponding predictive models was compared based 

on the RMSE and R2 values. Such comparison revealed that the best performing 

model (i.e., RMSE = 0.32, and R2 = 0.79) is a random forest-based model with the 

following input variables: wind magnitude, wind type, wind duration, year, month, 

latitude, maximum temperature, minimum temperature, per capita income, and the 

number of households built after the year 2000.  

To uncover the relationships between the property damages and the model 

inputs, single feature partial dependence plots were formulated for the random 

forest-based model (i.e., the best performing model as described earlier). These 

plots showed that: (1) property damages increase significantly as wind speed 

increases between 52 and 83 mph, (2) higher property damages are expected in the 

southern part of New York, (3) property damages increase as the event duration 
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increases for durations less than 500 min,  (4) higher property damages are expected 

during extremely cold and extremely hot days when the maximum temperature is 

below 15°C and the minimum temperature is above 10°C, respectively, (5) property 

damages increase with the increasing per capita  income for incomes exceeding US 

$37,000, (6) property damages are high when the number of houses built on or after 

the year 2000 is between 12,500 and 57,500 houses, (7) sustained, non-convective 

winds of 40 mph or greater lasting for 1 hour or longer, or gusts with a speed larger 

than or equal 58 mph produce higher property damages compared to those induced 

by other wind types, and (8) property damages are significantly high in January 

compared to all other months.  

Given the proposed framework’s ability to develop an efficient and effective 

wind-related property damage prediction model, it can be considered a step forward 

in enhancing the preparedness of governments for CID, and thus alleviating their 

adverse impacts and reaching more resilient communities. To advance the 

developed framework, further research can be employed through considering the 

following key points: (1) implementing several spatial interpolation techniques 

(i.e., other point and area interpolation methods), (2) collecting infrastructure 

systems data (i.e., system maintenance information), and integrating it into the 

database, (3) employing other methods to uncover the relationships between the 

model variables (i.e., accumulated local effects). 
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https://www.ncdc.noaa.gov/stormevents/%5Cnfiles/5576/stormevents.html), (2) 

NLCD, National Land Cover Database (data available at 

https://www.usgs.gov/core-science-systems/science-analytics-and-

synthesis/gap/science/land-cover-data-download?qt-science_center_objects=0#qt-

science_center_objects), (3) NOAA, National Oceanic and Atmospheric 

Administration online search tool (data available at 

https://www.ncdc.noaa.gov/cdo-web/search), and (4) ACS, American Community 

Survey (data available at https://www.census.gov/acs/www/data/data-tables-and-

tools/data-profiles/2018/). 
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Chapter 6  

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

6.1. SUMMARY 

The work presented in this dissertation focuses on enhancing urban resilience under 

Climate-Induced Disasters (CID) through employing different data analytics 

techniques. To achieve this objective, the first phase of this work aimed at 

conducting a thorough exploration of the field of infrastructure system resilience. 

Accordingly, a meta-research approach was employed to quantitatively and 

qualitatively assess previous relevant work in the field. Consequently, the 

contribution of the different research topics and the research gaps pertaining to 

systems resilience research were uncovered. It was shown that to enhance system 

resilience maximizing the resources that aid in predicting both the occurrences and 

impacts of disasters is key. As such, Phases 1,2 and 3 of this work focused on using 

data-driven modelling to predict the occurrences, system-related impacts, and 

lumped costs of CID. In the second phase, a deep learning modelling approach was 

proposed to predict CID occurrences by linking historical disaster records to 

climate change indices. This approach was validated using a case study focused on 

the province of Ontario, Canada. To relate CID to their impacts on critical 

infrastructure systems, the third phase of this work focused on linking CID 

occurrences to their system-related impacts by employing different data analytics 

techniques including text mining and predictive modelling. A framework was 
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proposed, and a case study was presented to assess the framework’s applicability 

in the state of New York, USA. In the fourth and final phase, a framework for the 

prediction of CID costs was developed through integrating several types of input 

data including disaster-related, socio-economic, land cover, and climate features. 

The framework also employed diverse feature selection techniques to boost the 

prediction accuracy. As such, a case study was presented in the state of New York, 

USA.  

 

6.2. CONCLUSIONS  

The results of the research work conducted in this dissertation demonstrate the 

effectiveness of data analytics in explicating complex phenomena (i.e., CID 

occurrences and impacts). It can now be inferred that the use of machine learning 

techniques in predicting CID-related aspects presents an effective and efficient tool 

compared to the standard methods which include using physical and mathematical 

models. This efficiency was demonstrated through both the superior prediction 

accuracy and the reduced computational effort of the models employed herein.  

Specifically, the use of text mining in the form of topic modelling was proved 

to be a very efficient approach in conducting a thorough critical review. Together 

with its ability to uncover research topics and their respective contribution to the 

field, the developed models can also be used to identify research gaps. In terms of 

the infrastructure systems resilience research field exploration, it was shown that 
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quantifying systems interdependence, especially the relationships between power, 

water, and gas systems has the most contribution in the research carried out in the 

last couple of decades. It was also highlighted that quantifying systems resilience 

represents a key research gap despite the availability of several theoretically 

proposed metrics. Specifically, resilience was either quantified based on repair time 

(i.e., rapidity), or loss of system functionality (i.e., robustness). However, previous 

research failed to quantify the means to reach such a rapid and robust (resilient) 

system, which include, the availability of redundant components in the system (i.e., 

redundancy), the availability of resources in the system that can help diagnose and 

control system failure (i.e., resourcefulness). Moreover, a cross-cutting gap related 

to disasters and subsequent disruption of infrastructure systems was identified 

which showed that there is a pressing need to predict the occurrence of these events, 

and thus, prepare the system accordingly which in return can optimize relevant 

system’s resources and significantly enhance its resilience capabilities. This is 

especially important given the rising complexity of modern city systems, and the 

fact that the number of CID is anticipated to double within the next 15 years (Lopez, 

Thomas, & Troncoso, 2020).  

Despite the fact that the increased frequency of heat waves and droughts, 

more intense hurricanes, tornadoes and snow storms and exaggerated floods was 

generally attributed to climate change, previous research failed to link the 

occurrences of these disasters (i.e., CID) to climate change in a quantitative manner 

(Callery, 2018; “Climate change | EU Science Hub,” 2018; Shaftel, 2018a, 2018b). 
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As such, one of the key contributions of the work conducted in Phase 2 herein is 

that it successfully linked CID occurrences to climate change using standardized 

climate change indices that quantify the changes in both temperature and 

precipitation over the next decades depending on different greenhouse gas 

emissions scenarios. It was shown that flood disasters in North America were 

strongly correlated with temperature variations which supports the direct and strong 

relationship that exists between temperature changes and flooding. These 

temperature variations include the difference between the daily maximum and 

minimum temperatures, the number of days with minimum temperature below 10th 

percentile, and the number of days with minimum temperature below zero degrees 

Celsius.  

Employing deep learning neural networks to model CID occurrences showed 

that increasing the number of hidden layers in a neural network may sometimes 

cause the network to overfit which results in lower prediction accuracy as was 

previously confirmed by the universal approximation theorem (Yu Dong & Li, 

2012; Kumar, 2019; Sanger, 1989; Stathakis, 2009). Additionally, it was shown 

that increasing the number of hidden neurons doesn’t necessarily result in an 

increased model accuracy. This can be attributed to overfitting which is especially 

common when the training data is not enough to train the considered number of 

neurons, and as such the model fails in terms of generalizability as it memorizes the 

training data. Furthermore, it was also shown that when the number of neurons in 

the input layer is much larger than that in the output layer, adopting a narrowing 
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neural network (i.e., inverted pyramid network architecture) leads to data noise 

removal since, as each layer is further narrowed, the model is forced to drop 

irrelevant information which explains why such models were shown to yield higher 

accuracy at lower computational cost (Czanner et al., 2015; Srivastava, 2019). 

In terms of predicting the impacts of CID on critical infrastructure systems, 

the analysis showed that the use of text mining in the form of bag of words and n-

gram analysis can facilitate linking disasters to their respective infrastructure 

damages. It was shown that in North America, the most affected infrastructure 

system by wind-related disasters is the power system followed by the transportation 

system. It was also asserted that the power damage gets more severe with higher 

wind speed, whereas the changes in wind duration didn’t affect the severity of 

damage as much.  The results of the analysis conducted herein also showed that 

most of the power system damages took place over May through August and were 

due to thunderstorms and high winds. It was highlighted that throughout the last 

decade, the eastern part of New York was highly susceptible to power system 

failure due to wind-related disasters which calls for introducing either redundant 

overhead or underground cables and/or resources to achieve higher overall power 

system robustness. It was also shown that power system damage severity does not 

only depend on hazard-related characteristics (i.e., magnitude and duration), but it 

is also a function of the inherent system properties and the hazard-system 

interaction. 

mayhaggag
Highlight

mayhaggag
Highlight

mayhaggag
Highlight

mayhaggag
Highlight



May Haggag 
Ph.D. Thesis 

McMaster University 
Department of Civil Engineering 

 

229 
 

The work conducted in Phase 3 also confirms that ensemble techniques can 

be effectively used to boost the performance of both regression and decision trees. 

Among these techniques, random forests proved to be extremely reliable in 

predicting CID-related aspects (i.e., both system related impacts and lumped 

impacts). Moreover, after assessing the performance of different models before and 

after employing data imputation (i.e., filling missing records), it was clear that in 

some cases data imputation might introduce bias in the model especially when the 

attributes to be filled have more than 10% of their values missing (Yiran Dong & 

Peng, 2013; Jakobsen, Gluud, Wetterslev, & Winkel, 2017).  

The usefulness of using machine learning models in predicting CID-related 

aspects was illustrated in Phase 4. It was shown that a diverse range of data 

categories were significant for the prediction of CID lumped damages, ranging from 

disaster-related to economic, to housing, and climate attributes. It was also 

established that the only drawback of using machine learning techniques (i.e., their 

black box nature) can be overcome through employing different techniques that 

have the ability to interpret and uncover the latent relationships learned by the 

model, which include partial dependence plots, and accumulated local effects. In 

addition, the use of feature selection techniques proved to both increase the 

prediction accuracy as well as decrease the model’s computational time due to the 

exclusion of redundant input features. Moreover, it was highlighted that the 

performance of the random forest variable importance, Boruta algorithm, and 

boosting relative influence matched that of genetic algorithms in feature selection 
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which asserts that the use of a more resource demanding computational approach 

(i.e., genetic algorithms) for feature selection does not necessarily result in 

increased prediction accuracy. 

Upon assessing wind disaster property damages in North America, it was 

shown that these damages are decreasing in the last decade. It was also highlighted 

that for wind magnitudes between 52 and 83 mph, as wind speed increases the 

property damages induced by wind disasters increase significantly. Unlike power 

system damage severity, it was shown that for durations less than 500 min, property 

damages increase as the event duration increases.  It was also shown that instead of 

increasing in the summer as with power system damage severity, property damages 

generally are higher in January. The vulnerability of Southern New York State to 

wind disasters was also emphasized as higher property damages are expected 

around this part of the state. 

 

6.3. RECOMMENDATIONS FOR FUTURE RESEARCH 

The work conduced herein focused on enhancing urban resilience through 

employing data-driven modelling to predict CID-related aspects. In light of this 

work, the following issues still require further analysis and investigation: 

(1) This work aims to enhance the resilience of urban areas under CID through 

boosting their resourcefulness. This is accomplished through employing 

data analytics and machine learning techniques to predict CID occurrences 
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and impacts both on system and community levels. Since redundancy, along 

with resourcefulness, is key to enhance system resilience, it is considered 

extremely crucial to conduct further research to optimize such metric to 

enhance the resilience of urban systems. Consequently, conducting further 

research which aims at uncovering critical system components and 

assessing the economic feasibility of adding such replacement components 

to the system is essential.  

(2) Given the fact that the results of the field exploration conducted in Phase 1 

of this dissertation is dependant on the range of publications used in 

developing the topic model, it is envisioned that, as more relevant research 

articles are published, the topic model, and the subsequent critical analysis 

of the extracted topics should be updated. With the massive research being 

conducted in the field of infrastructure resilience, it is expected that the gaps 

uncovered herein will be tackled, and other ones will emerge over the next 

few decades.   

(3) The high predictive ability of the modelling approach presented in Phase 2 

of this work affirms that accurate disaster predictions can be reached given 

the availability of climate variability data. However, the use of annually 

calculated climate change indices is affecting the model’s overall utility. 

Nonetheless, currently available climate change indices are only available 

on a yearly basis as the compilation of a daily dataset is extremely difficult. 

Nevertheless, the Expert Team on Climate Change Detection and Indices is 
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currently working on higher resolution data which can enhance the utility 

of the developed model as such higher resolution data become available in 

the future. 

(4) The framework proposed in Phase 3 of this work is expected to facilitate 

mitigating the adverse impacts of CID on infrastructure systems, and 

therefore improve the overall urban resilience under such disasters. 

However, further research can be implemented to advance the developed 

framework through incorporating detailed system-related data which can 

increase the model’s accuracy, using different data imputation methods to 

eliminate the bias introduced after filling data records in several features, 

and integrating the duration and monetary cost of system disruption to 

further enhance the utility of the model.  

(5) The key advantage of the framework presented in Phase 4 resides in the fact 

that it was able to overcome the complexity of predicting CCID lumped 

impacts through integrating several data types in a single throughout 

database. Nevertheless, the case study demonstrated in this work applied 

point interpolation to integrate all data types which is the technique that is 

successfully employed in similar applications in the literature, however it 

still might not be the best spatial interpolation method for all features 

considered in the study. As such, to further advance the presented work, 

several techniques can be used to interpolate different input features and the 

best performing technique can be chosen for each feature distinctly. 
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(6) Although employing Partial Dependence Plots (PDP) to uncover latent 

relationships between the output and different model inputs facilitates the 

future implementation of machine learning methods in CID-related aspects 

prediction, it is noteworthy to mention that  PDP is only informative when 

the input features are not strongly correlated (Kabul, 2018; Molnar, 2021). 

As such other techniques may be used in case strong correlations exist 

between features. One of these techniques is Accumulated Local Effects 

(ALE) which is an unbiased approach that depicts the input-output 

relationships based on the conditional distribution of the input features. 

ALE is thus preferred over PDP when input variables are strongly correlated 

as it depicts the difference in prediction values rather than their averages 

which aids in eliminating the effect of correlated input features (Molnar, 

2021). 
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