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Lay Abstract

This thesis focuses on model averaging, a leading approach for handling model uncertainty,

which is the likelihood that one’s econometric model is incorrectly specified. I examine the

performance of model averaging compared to conventional econometric methods and to

more recent machine learning algorithms in simulations and applied settings, and show

how easily model averaging can be applied to empirical problems in economics. This the-

sis makes a number of contributions to the literature. First, I focus on frequentist model

averaging instead of Bayesian model averaging, which has been studied more extensively.

Second, I use model averaging in empirical problems, such as estimating the returns to edu-

cation and using model averaging with COVID-19 data. Third, I compare model averaging

to machine learning, which is becoming more widely used in economics. Finally, I focus

attention on different approaches for constructing the set of candidate models for model

averaging, an important yet often overlooked step.
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Abstract

This thesis focuses on a leading approach for handling model uncertainty: model averag-

ing. I examine the performance of model averaging compared to conventional econometric

methods and to more recent machine learning algorithms, and demonstrate how model av-

eraging can be applied to empirical problems in economics. It comprises of three chapters.

Chapter 1 evaluates the relative performance of frequentist model averaging (FMA) to

individual models, model selection, and three popular machine learning algorithms – bag-

ging, boosting, and the post-lasso – in terms of their mean squared error (MSE). I find that

model averaging performs well compared to these other methods in Monte Carlo simula-

tions in the presence of model uncertainty. Additionally, using the National Longitudinal

Survey, I use each method to estimate returns to education to demonstrate how easily model

averaging can be adopted by empirical economists, with a novel emphasis on the set of can-

didate models that are averaged. This chapter makes three contributions: focusing on FMA

rather than the more popular Bayesian model averaging; examining FMA compared to ma-

chine learning algorithms; and providing an illustrative application of FMA to empirical

labour economics.

Chapter 2 expands on Chapter 1 by investigating different approaches for constructing

a set of candidate models to be used in model averaging – an important, yet often over-

looked step. Ideally, the candidate model set should balance model complexity, breadth,

and computational efficiency. Three promising approaches – model screening, recursive

partitioning-based algorithms, and methods that average over nonparametric models – are

discussed and their relative performance in terms of MSE is assessed via simulations. Addi-



tionally, certain heuristics necessary for empirical researchers to employ the recommended

approach for constructing the candidate model set in their own work are described in detail.

Chapter 3 applies the methods discussed in depth in earlier chapters to currently timely

microdata. I use model selection, model averaging, and the lasso along with data from the

Canadian Labour Force Survey to determine which method is best suited for assessing the

impacts of the COVID-19 pandemic on the employment of parents with young children in

Canada. I compare each model and method using classification metrics, including correct

classification rates and receiver operating characteristic curves. I find that the models se-

lected by model selection and model averaging and the lasso model perform better in terms

of classification compared to the simpler parametric model specifications that have recently

appeared in the literature, which suggests that empirical researchers should consider statis-

tical methods for the choice of model rather than relying on ad hoc selection. Additionally,

I estimate the marginal effect of sex on the probability of being employed and find that

the results differ in magnitude across models in an economically important way, as these

results could affect policies for post-pandemic recovery.
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Chapter 1

Handling Model Uncertainty: Model

Averaging and Machine Learning

Methods for Empirical Problems in

Economics

1.1 Introduction

Standard practice in economics typically proceeds as follows: the researcher selects a para-

metric model, then carries on with estimation and inference asserting that the chosen model

could have plausibly generated the data; in other words, as though this model represents

the true, unknown data generating process (DGP). Often, the model is chosen out of con-

venience or convention, that is, with no relation between the asserted model and the data.

Although common practice, model assertion – the practice of selecting a model in an ad

hoc manner – can have serious consequences stemming from the fact that it is impossible

to know whether the chosen model is correctly specified or not. Estimates may hinge on

the model selected and, when these estimates inform policy, the consequences of ignoring
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the uncertainty in the model specification can be severe and unforgiving. Consider the ba-

sic assumption underlying simple ordinary least squares (OLS) estimation that the linear

additive functional form must mimic the true (unknown) DGP. If this assumption fails, the

finite sample properties of the OLS estimator, such as unbiasedness (for the DGP), do not

hold and any subsequent inference falls apart. Additionally, valid inference (for the DGP)

relies on having the correct model specification. Consequently, ignoring model uncertainty

may lead to inference that is overly optimistic and potentially misleading.

Consider the simple simulated illustrative example in Figure 1.1. This simulation

generates 1,000 observations for x drawn from the uniform distribution. The DGP is

f(x) = sin(2πx). The outcome y is generated as y = f(x) + ϵ, where ϵ ∼ N(0, 0.5σf(x))

and σf(x) is the standard deviation of the DGP. Suppose the researcher asserts a naïve spec-

ification that is linear in regressors and additive, and uses OLS to estimate the model. It is

evident that the linear specification is not a good fit to the data.1 Suppose, instead, that the

researcher uses model averaging. She does not need to make any assumptions about the un-

derlying (unknown) functional form and instead simply averages over a set of, in this case,

polynomials of differing degrees, and produces a better fit to the data. In reality, unlike

in this example, we do not know the functional form of the DGP. As such, the probability

that the model asserted by the researcher is correctly specified may be low and should be

addressed.

1This is a very simple example used to illustrate, firstly, the consequences of ignoring model uncertainty
and asserting a particular functional form and, secondly, the accuracy of model averaging and ease with which
it can be implemented. Of course, in practice, some researchers do examine plots of data and the goodness of
fit of models before asserting a particular parametric model specification. This is good practice. However, it
becomes more complicated when there is more than one regressor. Additionally, given that the model space
is dense, the selected parametric model may be misspecified. As such, methods like model averaging may be
considered as an alternative to traditional econometric methods.

2
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Figure 1.1: Simulation comparing model averaging (MA) and ordinary least
squares (OLS) estimation.

Uncertainty in this context exists at two levels: uncertainty regarding the parameter es-

timates, which is addressed in nearly all economic papers, and uncertainty regarding the

model specification, which is often ignored (Moral-Benito, 2015). Model uncertainty –

the likelihood that one’s model is incorrectly specified – is typically disregarded by eco-

nomic researchers.2 One approach that is sometimes adopted and acknowledges model

uncertainty is model selection, which selects the single “best” (in other words, least mis-

specified) model among a set of candidate models. The model selected as the “best” model

is the one that minimizes some criterion, such as the Akaike information criterion (AIC;

2Some researchers may attempt to acknowledge model uncertainty by reporting results from multiple
model specifications that include a different set of regressors, or that have a different functional form alto-
gether. While this practice is a step in the right direction (away from simply reporting the results of a single
preferred model), there still exists the possibility that all of these models are misspecified. As stated in Xie
& Lehrer (2017), “Researchers who ignore model uncertainty implicitly assume their selected model is the
‘true’ one that generated the data”, and when this assumption fails, the reported results may not be able to
tell us much. Thus, there is a benefit to considering other methods, like model averaging, that explicitly
acknowledge model uncertainty.

3
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Akaike, 1970) or the Bayesian information criterion (BIC; Schwarz, 1978). Model selec-

tion acknowledges that the selected model is, at best, an approximation to the DGP and is

an improvement over model assertion. However, empirical researchers typically entertain

only a small number of models and there is no guarantee that the DGP lies within this

limited set, especially when the set of candidate models is chosen in an ad hoc manner.

Model averaging, on the other hand, is a leading approach for handling model uncertainty.

Model averaging constructs a weighted average over a set of candidate models. The goal is

to reduce estimation variance, while controlling for misspecification bias (Hansen, 2007).

While model averaging has been embraced in fields such as statistics, mathematics and

biology, it has not been as widely adopted by empirical economists, despite its advantages

over conventional methods such as model assertion and model selection (Steel, 2020).

Some advantages of model averaging include better predictive ability than using any

single model among the set of candidate models (Hoeting, Madigan, Raftery, & Volinsky,

1999), more robust results compared to model assertion or model selection (Moral-Benito,

2015), broad applicability, fewer assumptions compared to conventional econometric meth-

ods, and standard errors that account for the bias that arises from model uncertainty (Tobias

& Li, 2004). With regard to the latter, it is important to recognize that results from model

assertion and model selection may be overly optimistic since these methods ignore model

uncertainty. Model averaging, in contrast, can report standard errors that account for model

uncertainty.3 Some limitations of model averaging include increased computational burden,

lack of closed-form solutions for some estimators, and lack of precedent for post-model-

average inference. Additionally, one barrier to the adoption of model averaging methods

by empirical economists may be that there is no universal standard for constructing the set

of candidate models, something that I will address in Section 1.3.

In addition to model averaging, I also assess the relative performance of three machine

3When model uncertainty is ignored, the variance of the parameter of interest β is biased: Var(β|y) =
EM [Var(β|M, y)] + VarM [E(β|M, y)]. Variance estimates obtained from model selection approximate the
first term, but ignore the second. Thus, the variance from model averaging can be larger than those obtained
from model assertion or model selection, as it accounts for model uncertainty (Tobias & Li, 2004).
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learning algorithms that, like model averaging, acknowledge model uncertainty. These

machine learning algorithms are boosting, bagging and the post-lasso. There are very few

papers that assess the relative performance of traditional econometric methods, model aver-

aging, and machine learning algorithms. The ones that do use a dataset that combines social

media data with film industry data, providing limited external validity of their findings (see

Xie & Lehrer, 2017, 2018; and Liu & Xie, 2019). This chapter adds to the literature by

assessing the relative performance of a number of machine learning algorithms compared

to model assertion, model selection, and model averaging in simulated Monte Carlo exper-

iments that cover a wide range of sample sizes, signal-to-noise ratios, and DGPs.

This chapter can serve as a guide for empirical economists who wish to use model

averaging in their own work. First, it highlights the gains in prediction error, as measured

by MSE, that model averaging has over conventional econometric methods and machine

learning algorithms. Second, it illustrates the ease with which model averaging can be

adopted by researchers, with clear steps for using frequentist model averaging and a novel

emphasis on how to construct the set of candidate models.

This chapter proceeds as follows. Section 1.2 gives an overview of two of the most

popular model averaging methods, Bayesian model averaging and frequentist model aver-

aging. Section 1.3 outlines two approaches for constructing the set of candidate models, a

key step in implementing model averaging. Section 1.4 describes three machine learning

algorithms – bagging, boosting, and the post-lasso – that, similar to other model selection-

based methods, address model uncertainty and can improve predictive performance of an

estimator. In Section 1.5, I run a Monte Carlo experiment and rank model averaging, model

assertion, model selection, and the machine learning algorithms according to their MSE to

evaluate relative performance in a simple single predictor setting. Section 1.6 demonstrates

how model averaging can be applied to an empirical problem in labour economics, using

the National Longitudinal Survey to estimate returns to education. The Monte Carlo ex-

periment and empirical example show two different applications of model averaging; the
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former involves a prediction, whereas the latter estimates a causal relationship. These two

exercises exhibit the breadth of applicability of model averaging methods (in contrast to,

for example, machine learning algorithms that can only be used for prediction problems).

Section 1.7 concludes.

1.2 Model Averaging Methods

Model averaging can be approached from a Bayesian or frequentist perspective. Currently,

there exists a comprehensive literature on Bayesian model averaging (BMA; see Raftery,

Madigan, & Hoeting, 1997; Claeskens & Hjort, 2008; Hoeting et al., 1999). BMA requires

priors on parameters and models in order to construct the BMA estimator. Following Hoet-

ing et al. (1999), let M = {M1, ..., MK} denote the set of all models under consideration.

Given some quantity of interest, ∆, its posterior distribution given observed data D is:

Pr(∆|D) =
K∑

k=1
Pr(∆|Mk, D)Pr(Mk|D). (1.1)

The posterior distribution of ∆ not conditioned on a particular model is a weighted average

of the posterior distributions under each of the models, Pr(∆|Mk, D), weighted by the

posterior model probabilities, Pr(Mk|D).

Using Bayes’ theorem, the posterior probability for model Mk is:

Pr(Mk|D) = Pr(D|Mk)Pr(Mk)∑K
j=1 Pr(D|Mj)Pr(Mj)

, (1.2)

where Pr(Mk) is the prior probability that Mk is the true model and the marginal likelihood

of model Mk is given by:

Pr(D|Mk) =
∫

Pr(D|θk, Mk)Pr(θk|Mk)dθk, (1.3)
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where θk is the vector of parameters of model Mk, Pr(θk|Mk) is the prior density of θk

under model Mk, and Pr(D|θk, Mk) is the likelihood (Hoeting et al., 1999). The calculation

of the posterior model probabilities is non-trivial. However, with linear regressions, the

calculation can be solved analytically.

One limitation of BMA is that it can be computationally inefficient when there is a

large number of models under consideration (e.g. M = 2q, where q represents the number

of potential independent variables to be included). Algorithms such as Occam’s window

(Madigan & Raftery, 1994) and Markov chain Monte Carlo model composition (Madigan,

York, & Allard, 1995) can drastically reduce the number of models under consideration,

which reduces computation time.

Economists – especially empirical economists – typically operate within a frequentist

framework rather than a Bayesian one. For this reason, frequentist model averaging (FMA)

is quite appealing and will be used exclusively in this chapter. FMA exploits nonparametric

principles to construct a combined estimator that is a weighted average of estimators from

each model in a set of candidate models. The steps for constructing the FMA estimator are

as follows: First, choose a set of M candidate models. The set can be flexible to include,

for example, non-linearities in regressors along with interactions. Construction of the set

of candidate models is an important component because the FMA estimator will inherit

properties from the candidate models. Two approaches for constructing the set of candidate

models will be discussed in detail in Section 1.3. Second, solve for the model weights, ωm,

m = 1, ..., M , for each model in the set of candidate models using some criterion and,

typically, quadratic programming, which turns out to be a straightforward exercise. Some

popular criteria include AIC, BIC, the focused information criterion (FIC; Claeskens &

Hjort, 2003), Mallows’ model average criterion (MMA; Hansen, 2007), and the jackknife

model average criterion (JMA; Hansen & Racine, 2012). The choice of criterion for model

weights is important because different model weights will result in different asymptotic

properties of the FMA estimator (Claeskens & Hjort, 2008). Finally, for some quantity
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of interest (e.g. a coefficient estimate, βj), construct a weighted average over the set of

candidate models using the estimated model weights, ω̂m, and the estimates, β̂j,m, from

each of the candidate models. Some models may receive a weight of 0, but no one model

will receive a weight of 1, except possibly if the “true” model lies in the set of candidate

models.

While model selection and model assertion rely on having a good approximation to

the DGP, model averaging does not require the “true” model – or a good approximation

to the DGP – to be included in the set of candidate models. Thus, one would expect

model averaging to outperform model selection or model assertion when the DGP is not

within the set of candidate models. This relaxes the strong assumption on which traditional

econometric methods rely, that of “correct” parametric specification.

After obtaining the model average weights, ωm, m = 1, ..., M , the FMA estimator of

the regression coefficient (in this case, a scalar and assumed to be common to all models),

β̂j,F MA, is:

β̂j,F MA =
M∑

m=1
ωmβ̂j,m, (1.4)

where j = 1, ..., q indexes the regression coefficient, m = 1, ..., M indexes the candidate

model, 0 ≤ ωm ≤ 1 and
∑M

m=1 ωm = 1.

The construction of the FMA estimator of the coefficient estimate β̂j,F MA, in particular

via summation, follows the common practice of assuming a linear additive model and a

constant marginal effect. This common approach has the advantage of highly interpretable

models. However, there exist many other functional forms that would result in a marginal

effect which is not a scalar but, instead, a function of one or more regressors. For example,

consider a simple function that is an additive model with one regressor and includes one

additional layer of complexity: g(x) = β1 +β2x+β3x
2. Assuming that the functional form

of g(x) is a linear additive model (i.e. β1+β2x), it produces a marginal effect that is a scalar

8



Ph.D. Thesis - C. Simardone; McMaster University - Economics

(i.e. β2). In reality, the marginal effect of x is itself a function of x: dg(x)
dx

= β2 + 2β3x.

Thus, it would be beneficial to go beyond the common approach of assuming a linear

additive model with a constant marginal effect and embrace models that allow for greater

model flexibility. The suggested approach would be to obtain marginal effects vectors,

which will be functions of regressors, and use these in model averaging. One drawback to

this improvement, however, is potentially decreased interpretability.

Buckland, Burnhamn, & Augustin (1997) propose model weights of the following

form:

ωm = exp(−Im/2)∑M
j=1 exp(−Ij/2)

, m = 1, ..., M, (1.5)

where Im is the information criterion for model m and the sum in ωm extends over every

model in the set of candidate models. Thus, two models with the same information criterion

score (i.e. Im) will be given the same weight. FMA can handle a large set of candidate mod-

els. Currently, however, FMA lacks a comprehensive framework for post-model-average

inference (Hansen, 2014).

1.3 Constructing the Set of Candidate Models

Both model averaging and model selection methods require a set of candidate models. For

model averaging, it is important to construct the set of candidate models with care, as the

model average estimator will inherit properties from the candidate models. Current practice

is to write down models that have a common parameter (as detailed in the construction of

the FMA estimator of the parameter vector in Section 1.2). For example, Moral-Benito

(2015) uses model averaging to estimate the effect of capital punishment in the United

States, where the coefficient on a particular regressor (in this case, the execution rate) is

common to all models. First, the author compares three parametric models – specifications

typically chosen in an ad hoc manner by economic researchers – that attempt to describe the
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relationship between the death penalty and murder rate. He finds that the resulting estimates

contradict each other – one estimate shows a positive effect of the death penalty on the

murder rate, one shows a deterrent (negative) effect, and the final one shows no statistically

significant effect – and it is not clear which is the best model among the three. Next, Moral-

Benito implements model averaging – three variations of BMA (using different priors) and

three alternative weighting schemes for FMA (using different criteria) – using a set of

candidate models that is constructed from all possible combinations of the 16 optional

control variables, resulting in 216 = 65,536 candidate models. The execution rate, which

is the variable of interest, and a constant are included in every model specification. The

author finds similar results across all six model average estimates. Furthermore, the results

are statistically insignificant. However, due to limitations – such as not accounting for

reverse causality – the author states that “[o]ne should interpret these results with caution,

and only as an illustration of the usefulness of model averaging techniques summarized in

this paper” (Moral-Benito, 2015, p. 63). Even with this ad hoc approach, averaging cannot

be expected to perform any worse than any one model from the set of candidate models.

Another approach to constructing the set of candidate models is one that could be

adopted widely in the near future. It is nonparametric in nature and follows Racine (2019).

Consider any transformation of a regressor as forming a basis. For example, experience

and experience2 are two bases. The candidate models should span a rich set of models in

order to capture a wide range of DGPs, which requires a broad set of bases. In the univari-

ate case, bases can be constructed using orthogonal polynomials, Bernstein polynomials,

B-splines, or Bezier curves. With more than one regressor, one must consider not only

higher-order polynomials and the inclusion or exclusion of regressors, but also the interac-

tions between regressors. As such, multivariate bases could be constructed using additive

models (e.g. y = f(x1)+f(x2)), multivariate Taylor approximations (e.g. y = f(x1, x2) =

f(a, b) + fx(a, b)(x − a) + fy(a, b)(y − b) + 1
2!

[
fxx(a, b)(x − a)2 + 2fxy(a, b)(x − a)(y −

b) + fyy(y − b)2
]

+ ...), or tensor products (e.g. y = x1 ⊗ x2). As a practical matter,
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model selection methods can be used to select the basis function type for each candidate

model (e.g. additive or tensor). In small sample settings, the maximum dimension must be

restricted. Thus, the complexity of the candidate models will be tied to the sample size, n,

and some assumed smoothness class.

1.4 Other Approaches for Dealing with Model Uncer-

tainty

Model averaging has been shown to have better predictive performance and can deliver

more robust results than methods using a single candidate model, whether obtained through

model assertion or model selection (Hansen, 2007; Hoeting et al., 1999). This begs the

question: Is there another method that exists that can outperform model averaging? To an-

swer this, I look to the machine learning literature and evaluate three machine learning al-

gorithms that, like other model selection-based methods, acknowledge model uncertainty:

bagging (Breiman, 1996), boosting (Breiman, 1996; Freund & Schapire, 1997) and the

post-lasso (Belloni & Chernozhukov, 2013).

Bagging (short for bootstrap aggregating) is a machine learning algorithm that gen-

erates multiple versions of a predictor using bootstrap resamples with replacement, then

constructs a single predictor that is an unweighted average over these multiple versions

(Breiman, 1996). Note that in the machine learning literature, the term “predictor” is anal-

ogous to “fitted values”, whereas in economics, “predictor” is often synonymous with “re-

gressor” or “independent variable”. Some statistical methods may have improved accuracy

through this process of “perturbing and combining” to reduce variance (Breiman, 1998).

Suppose we have a random sample L = {(yi, xi), i = 1, ..., n} where xi is a p-dimensional

vector of independent variables. Suppose we wish to predict y by some predictor (a func-

tion or model) denoted f(x, L). Ideally, we would have a sequence of K random samples

{Lk, k = 1, ..., K} each consisting of n independent observations from the same under-
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lying distribution as L. We could then use the sequence of random samples to get a bet-

ter predictor than the single learning set predictor by replacing f(x, L) by the average of

f(x, Lk) over k. However, in reality, we usually only have a single random sample. To

overcome this limitation, take B bootstrap resamples of size n with replacement from L to

form a sequence of bootstrap resamples {L(b), b = 1, ..., B}. Then, for each bootstrap re-

sample, form a set of bootstrap predictors (i.e. fitted values from each bootstrap resample)

f (b)(x, L(b)), b = 1, ..., B. Finally, take an average over the B bootstrap resamples to create

the bagged predictor:

fbagg(x) = 1
B

B∑
b=1

f (b)(x, L(b)), b = 1, ..., B. (1.6)

Unlike model averaging, where the data are fixed and the model changes, in bagging, the

model is fixed and the data change in each resample. In order to give this algorithm the

opportunity to perform as well as possible, a model selection method such as stepwise AIC

or stepwise BIC can be used as a preliminary step to select the model to be bagged. In this

way, bagging can be construed to be a model specification exercise.

Some advantages of this approach are that the mean squared error (MSE) of the bagged

predictor may be lower than the MSE of the unbagged predictor and bagging may improve

the accuracy of unstable predictors, such as subset selection, classification and regression

trees (Breiman, 1996). A prediction method is said to be unstable if small perturbations

in the data can result in large changes in the predictor. A limitation of bagging is that as

stability increases, the bagged predictor may do worse than the unbagged predictor in terms

of prediction error, and so bagging works best for unstable predictors.

Boosting, also known as arcing (short for adaptive resampling and combining), follows

a similar process of perturbing and combining to generate an improved predictor (Breiman,

1998; Freund & Schapire, 1997). Given a random sample L = {(yi, xi), i = 1, ..., n},

suppose we wish to predict y using a predictor f(x, L). The boosting algorithm maintains
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an n-dimensional vector of weights w(b) over the observations which specifies the proba-

bility that each observation will be drawn in the next resample. Weights at all times must

be non-negative and all weights of the initial weight vector w(1) must be non-negative and

sum to one, i.e.
∑n

i=1 w
(1)
i = 1. The initial weights are set equally so that w

(1)
i = 1/n.

For b = 1, ..., B, draw a bootstrap resample of size n with replacement from L using these

weights. Each bootstrap resample L(b) is used to generate a predictor f (b)(x, L(b)) which,

in turn, is used to generate the next weight vector w(b+1) by increasing the weights for

observations that were poorly predicted. After B bootstrap resamples, the final boosted

predictor is computed by combining each of the B bootstrap predictors using a weighted

average, with higher weight given to more accurate predictors (Freund & Schapire, 1996,

1997):

fboost(x) =
B∑

b=1
w(b)f (b)(x, L(b)), (1.7)

where b = 1, ..., B, w
(b)
i ≥ 0∀b, and

∑n
i=1 w

(1)
i = 1.

Like bagging, model selection methods such as the stepwise AIC or stepwise BIC can

be used before boosting to select the model to be boosted. One difference between boost-

ing and bagging is that boosting resamples with replacement in a way such that the weights

on the observations are increased for observations that are poorly predicted, so that these

observations are more likely to be drawn in the next resample, whereas bagging simply

sets weights on observations equal to 1/n for each resample. Another difference is that

boosting combines the B bootstrap predictors using a weighted average whereas bagging

constructs the final predictor using an unweighted average over the multiple predictors.

Boosting has some advantages over bagging, namely that it has been shown to have bet-

ter performance; both bagging and boosting decrease bias, but boosting reduces variance

more than bagging does (Breiman, 1998). Boosting is simple and easy to program, may

mitigate over-fitting, and, like bagging, may improve the accuracy of unstable predictors.
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However, relative performance depends heavily on the data. Consequently, in the presence

of insufficient data, boosting can perform poorly and is sensitive to noisy data and outliers

(Freund, Schapire, & Abe, 1999). Many boosting algorithms exist, the most famous being

the AdaBoost (short for adaptive boosting) (Freund & Schapire, 1996). A popular choice

for boosting regressions is the gradient boost (Friedman, 2001).

The lasso is an acronym for least absolute shrinkage and selection operator (Tibshirani,

1996). It was originally developed for OLS regression models, but its applicability has

been extended to generalized linear regression models, proportional hazards models, and

M-estimators, to name a few. The lasso shrinks some coefficients and sets others to zero,

essentially performing selection of regressors. The lasso estimator is defined as:

β̂ = arg min
n∑

i=1

(
yi −

∑
j

βjxij

)2
subject to

∑
j

|βj| ≤ t, (1.8)

where i = 1, ..., n, j indexes the regressor, β represents regression coefficients, and t ≥

0 represents the tuning (or penalty) parameter. Selection of the tuning parameter, t, is

important as it controls regressor selection as well as how much shrinkage is applied to

the coefficients. Cross-validation is commonly used to select the tuning parameter. The

advantages of the lasso include highly interpretable models, increased stability under data

perturbations, and improved prediction accuracy with relative computational efficiency.

However, the non-zero coefficients resulting from the lasso tend to be biased towards zero,

due in part to shrinkage (Belloni, Chernozhukov, & Hansen, 2014).

A solution to mitigate this bias is the post-lasso (Belloni & Chernozhukov, 2013).

The post-lasso allows for the possibility that model selection is not perfect. It has two

steps. First, the lasso is used for variable selection by determining which regressors can be

dropped. In this way, the post-lasso is effectively a model specification exercise. Second,

OLS estimation is performed on the variables that were selected in the first step (i.e. on the

variables with non-zero first-step coefficients). The post-lasso is easy to implement and has
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smaller bias compared to the lasso (Belloni & Chernozhukov, 2013; Belloni et al., 2014).

1.5 Monte Carlo Experiment

To assess relative performance in a simple one regressor setting, I run a Monte Carlo exper-

iment that compares the performance of model averaging to model assertion, model selec-

tion, bagging, boosting, and the post-lasso. The true DGP is chosen to be f(x) = 1+x6/σx6

(see Appendix Section 1.8.1 for results from a different DGP). The response variable y

is chosen to be y = f(x) + ϵ where x ∼ N(0, 1) and ϵ ∼ N(0, σϵ = cσx6), where

c ∈ {0.25, 0.50, 1.0, 2.0} determines the signal-to-noise ratio (SNR). The figures and ta-

bles below display the results for c = 0.50 (see Appendix Section 1.8.1 for results from

changes in the SNR). I take n = 100 random draws of x from the normal distribution

and conduct 1,000 Monte Carlo replications (see Appendix Section 1.8.1 for results from

changes in the sample size). I consider the case where the true DGP is omitted from the

set of candidate models. There are M = 9 candidate models, which are orthogonal poly-

nomials of order 1 through 5 and 7 through 10. In this simulation, the exact functional

form of the DGP is known, unlike in applied settings, where it is impossible to know the

exact functional form of the DGP with one hundred percent certainty. Asymptotically, the

model averaging and model selection criteria would select the true model from the set of

candidate models if it were included in the set. Therefore, in this Monte Carlo experiment,

the true or oracle model – a polynomial of order 6 – is omitted from the set of candidate

models in order to evaluate the relative performance of model averaging in a setting where

the true model is not within the set of candidate models.

R (version 4.0.2) is used throughout for ease of replicability. The following packages

are used:

• quadprog, “Functions to Solve Quadratic Programming Problems” (version 1.5-

8), contains functions to solve quadratic programming problems and is used to solve
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for the model average weights,

• caret, “Classification and Regression Training” (version 6.0-86), contains func-

tions for training and plotting classification and regression models and is used for

boosting and bagging, and

• hdm, “High-Dimensional Metrics” (version 0.3.1), allows for the implementation of

high-dimensional statistical and econometric methods for estimation and inference

and is used for the post-lasso.

The mean squared error (MSE) is used to evaluate the relative performance of each method

and is computed as follows:

MSE = 1
n

n∑
i=1

(
DGPi − ŷi

)2
, i = 1, ...n, (1.9)

where DGPi is the DGP, which was chosen to be 1 + x6/σx6 , and ŷi are the fitted values

from each method.

The criterion used to select the model average weights is Mallows’ Model Average

Criterion (MMA) (Hansen, 2007). The MMA criterion is defined as follows:

Cn(ω) = ω′Ê
′
Êω + 2σ̂2K ′ω, (1.10)

where Ê is the n × M matrix with columns containing the residual vector from the mth

candidate model, σ̂2 is the estimated variance from the largest dimensional model, and K

is the M × 1 vector of the number of parameters in each model. The MMA criterion is

used to solve for the weight vector, ω̂ = argminwCn(ω). As mentioned in Section 1.2, this

problem can easily be solved using quadratic programming.

Mallows’ Cp is used for model selection (Mallows, 1973) and is defined as follows
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(Mallows, 1973):

Cp = SSRp

σ̂2 + 2p − n, (1.11)

where SSRp is the sum of squared residuals (
∑n

i=1(yi − ŷi)2) in the model with p regressors

and σ̂2 is the estimated variance from the largest dimension model in the set of candidate

models. A low Cp value is desirable. Therefore the model with the lowest Cp value in the

set of candidate models is selected.

In this simulation, stepwise AIC is used as a preliminary step to select the model to be

bagged and boosted for each Monte Carlo replication. A stepwise procedure can be used

when there is a large number of nested candidate models by performing stepwise model

selection using the Akaike information criterion (AIC; Akaike, 1970). The AIC criterion is

defined as follows:

AIC = −2ln(L̂) + 2p, (1.12)

where ln(L̂) is the maximum value of the log-likelihood function of a model with p regres-

sors. The AIC balances goodness of fit (as measured by the log-likelihood) and parsimony

(as measured by the penalty for the number of regressors included in the model). A low

AIC value is desirable.

A bagged classification and regression tree (CART) is used for bagging, with cross-

validation as the resampling method so that there are B = n bootstrap resamples of size

n − 1. The train function from the caret package is used.

A boosted linear model is used for boosting, with bootstrapping as the resampling

method.The train function from the caret package is used. The tuning parameters

are mstop, which sets the number of boosting iterations, and nu, which specifies the level

of shrinkage. In this simulation, the values of these tuning parameters are selected using a

grid search and are nu = 0.1 and mstop = 150. The root mean squared error (RMSE;
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√
MSE) was used to select the optimal model using the smallest value.

Recall that the selection of the tuning parameter (t in
∑

j βj ≤ t) is an important step

for the post-lasso because the tuning parameter determines both variable selection and the

degree of shrinkage. In this simulation, the value of the tuning parameter for the post-lasso

is selected using cross-validation and this optimal value is used.

1.5.1 Results

I summarize results using Tukey’s box-and-whisker plot (Tukey, 1970).4 Figure 1.2 shows

a box-and-whisker plot of the MSE for each method, each candidate model, and the true

model over 1,000 Monte Carlo replications. Some methods and candidate models clearly

perform poorly compared to others in terms of MSE, namely bagging, k = 1, k = 2, and

k = 3.

4A box-and-whisker plot is a nonparametric method of displaying data that offers a graphical overview of
the data by summarizing key features such as the median and upper and lower quartiles.
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Figure 1.2: Box-and-whisker plot of MSE of each method, each candidate
model, and the true model over 1,000 Monte Carlo replications (k = 6 is
the DGP).

While there are nine candidate models in this simulation (as well as the true DGP,

k = 6), in reality there is an infinite number of models. The MSE over 1,000 Monte Carlo

replications each of model (k = 1, ..., 10) represents the case where a researcher always

asserts, for example, a linear model (i.e. k = 1), even when she encounters 1,000 different

datasets. This practice is deterministic in that it uses the same model from replication to

replication and it would be extremely naïve to do so in applied settings. However, compar-

ing the mean MSE of each candidate model can give us insight into some of the potential

consequences of model assertion in the presence of model uncertainty. Figure 1.3 shows

the MSE of each candidate model (k = 1, ..., 5, 7, ..., 10) and the true model (k = 6) over

1,000 replications. The MSE for k < 6 is higher than that of k = 6, the true model,

(especially k = 1, k = 2, and k = 3) as these models are underspecified and have non-
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zero bias. Note that the MSE can be calculated as the sum of bias squared and variance

(i.e. MSE(f̂(x)) = Bias(f̂(x))2 + Var(f̂(x))). For k > 6, the bias is zero, which, all else

being equal, lowers the MSE. However, these models are overspecified, which increases

the variance, contributing to higher MSE. This is why k = 7 performs relatively well, as it

is only slightly misspecified, and the MSE grows for k = 8 to k = 10. This can be seen

more clearly in Figure 1.4, which gives a closer look at the models that perform relatively

well in terms of MSE, namely k = 4, ..., 10.
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Figure 1.3: Box-and-whisker plot of MSE of each candidate model and the
true model over 1,000 Monte Carlo replications (k = 6 is the DGP).
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Figure 1.4: Box-and-whisker plot of MSE of the models that perform rela-
tively well over 1,000 Monte Carlo replications (k = 6 is the DGP).

If models k = 1, ..., 10 are deterministic across 1,000 Monte Carlo replications, then

model averaging, model selection, bagging, boosting, and the post-lasso can be thought

of as stochastic methods, as they select a different model from replication to replication.

Figure 1.5 shows the MSE for each of these methods. Model averaging using Mallows’

Model Average (MMA) criterion performs the best in terms of MSE among the stochastic

methods, whereas bagging performs the worst in terms of MSE. As expected, boosting out-

performs bagging, because both bagging and boosting decrease bias, but boosting reduces

variance by more, leading to a lower MSE. Figure 1.6 gives a closer look at the relative

performance of model averaging, model selection, boosting, and the post-lasso over 1,000

Monte Carlo replications. Model selection using Mallows’ Cp performs relatively well

in terms of MSE, as do boosting and the post-lasso. None of these stochastic methods,

however, perform better than model averaging.
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Figure 1.5: Box-and-whisker plot of MSE of each method over 1,000 Monte
Carlo replications.
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Figure 1.6: Box-and-whisker plot of MSE of the methods that perform rel-
atively well over 1,000 Monte Carlo replications.

Table 1.1 shows the mean MSE over 1,000 replications for each method, each candidate

model, and the true model. It ranks each in terms of MSE performance overall and among

its competitors (i.e. among stochastic methods and among deterministic methods). As one

would expect, the oracle model – a polynomial of order k = 6 – performs the best overall in

terms of mean MSE. While we might hasten to use this as evidence for asserting a particular

model, it must be stressed that this is a simulation where the functional form of the DGP is

known. In reality, it is virtually impossible to know the functional form of the DGP. Thus,

model assertion is strongly discouraged, as asserting the wrong model may perform much

worse than model averaging. For example, the linear specification (k = 1) does extremely

poorly in this simulation compared to the oracle model (as well as compared to every other

method and model). Again, the good overall performance of the true (unknown) model as

well as the polynomial of order k = 7 in this simulation should not be taken as evidence in
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support of model assertion because, due to model uncertainty and the density of the model

space, it is impossible to know with one hundred percent certainty the true functional form

of the DGP when working in applied settings.

Model averaging using the MMA criterion performs third best overall (tied with the

polynomial of order k = 5) and performs the best among stochastic methods, suggesting

that one may be better off averaging over the set of candidate models rather than perform-

ing model selection-based exercises. Bagging, boosting and the post-lasso are effectively

model selection methods, and consequently suffer from the same limitations as model se-

lection using Mallows’ Cp, namely that the DGP is not guaranteed to lie among the set

of candidate models. Thus, these methods simply select the best approximation to the

DGP among the set of candidate models. Model selection using Mallows’ Cp ranks sec-

ond among the stochastic methods. As expected, boosting performs better than bagging in

terms of MSE, as boosting reduces variance more than bagging does, resulting in smaller

MSE (which is the sum of the bias squared and the variance). Results from changes in

the SNR, different sample sizes, and with an alternate DGP lead to the same conclusions.

See Appendix Section 1.8.1 for details. Table 1.2 displays the mean MMA model weights

over 1,000 Monte Carlo replications. As expected, given that the true model is omitted

from the set of candidate models, no one model is assigned a weight of 1 while all other

models are assigned weights of 0, demonstrating the existence of model uncertainty, thus

demonstrating that there is a probability greater than zero that any of the models in the set

of candidate models are incorrectly specified. Table 1.3 displays how often Mallows’ Cp

selected each of the candidate models. Models that were never selected are not included

in the table. Mallows’ Cp selected the polynomial of order k = 4 more than any other

model over 1,000 Monte Carlo replications. The polynomial of order k = 4 was selected

by Mallows’ Cp 44.2 percent of the time. However, this means that for a non-zero fraction

of replications, the model selection criterion selected a different model. Thus, there is un-

certainty regarding which model in the set of candidate models is the best approximation
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Table 1.1: Mean MSE and ranking of MSE performance (k = 6 is the DGP).

Mean MSE Relative Efficiency Overall Rank Stochastic Rank Det. Rank

MMA 0.0205 1.00 4 1 NA
Bagging 0.4025 19.66 14 5 NA
Boosting 0.0251 1.22 9 3 NA
Post-Lasso 0.0268 1.31 11 4 NA
Cp 0.0220 1.07 6 2 NA

k = 1 0.9247 45.18 15 NA 10
k = 2 0.3192 15.59 13 NA 9
k = 3 0.2213 10.81 12 NA 8
k = 4 0.0220 1.07 7 NA 5
k = 5 0.0205 1.00 3 NA 3

k = 6 0.0170 0.83 1 NA 1
k = 7 0.0192 0.94 2 NA 2
k = 8 0.0215 1.05 5 NA 4
k = 9 0.0240 1.17 8 NA 6
k = 10 0.0263 1.29 10 NA 7

Table 1.2: Mean MMA model weights.

ω̂i

k = 1 0.0084
k = 2 0.0253
k = 3 0.0073
k = 4 0.7338
k = 5 0.1180

k = 7 0.0818
k = 8 0.0232
k = 9 0.0006
k = 10 0.0016

of the true model.

1.6 Model Averaging using Wage Data: An Applied Illus-

tration

Section 1.5 demonstrated the good performance of model averaging relative to model as-

sertion, model selection, and three machine learning algorithms in the presence of model
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Table 1.3: Mallows’ Cp model selection proportion among the candidate
models (k = 1, k = 2, and k = 3 were never selected).

Model Selection Proportion

k = 4 0.442
k = 5 0.211
k = 7 0.222
k = 8 0.105
k = 9 0.010

k = 10 0.010

uncertainty. This exercise was concerned with prediction. In what follows, I demonstrate

the broad applicability of model averaging by using it in an empirical setting.

The standard approach to estimating the returns to education is to estimate a set of para-

metric models and either include the results from every model or simply report the results

from one preferred model specification. However, this approach ignores the possibility that

each model may be misspecified, thus invalidating inference. An approach to estimating

returns to education in the presence of model uncertainty is to employ model selection

techniques (such as model selection using Mallows’ Cp) and then report the estimates of

the selected model. However, there is no guarantee that the DGP lies within the set of

candidate models considered by the researcher.

Given uncertainty in model specification, Tobias & Li (2004) use BMA to estimate re-

turns to education. In labour economics, the model specification used for estimating returns

to education has been observed to vary widely across researchers. Tobias and Li reviewed

38 articles published in the years 1970-2015 that focused on returns to education and were

published in general-interest economics journals, and then recorded the model specifica-

tions used in each paper. They selected variables with the highest probability of being

included in the log-wage equation to construct a set of control variables. The models in-

cluded the variable of interest (education), as well as experience, experience2, and regional

and urban indicators, and all possible combinations of 4 optional control variables: cogni-

tive ability, an ability-education interaction term, and indicator variables for greater than 12
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years of education and greater than 16 years of education. These variables are potentially

correlated with education; consequently, whether or not variables are included could have

a significant impact on the estimated returns to education. This resulted in 24 = 16 model

specifications. Tobias and Li found that the estimated returns to education depend crucially

on the model specification. Using data from the National Longitudinal Survey of Youth

(NLSY), the estimated returns to a college degree relative to a high school diploma varied

in magnitude from 30 to 50 percent, depending on cognitive ability.5 Additionally, the data

do not favor any particular model, as none of the 16 candidate models receive a weight

close to 1. The authors conclude that they “are not certain what is the ‘correct’ specifica-

tion of the log wage equation [. . . ] thus it is important to account for model uncertainty

when estimating the returns to education” (Tobias & Li, 2004, p. 173).

The following empirical illustration is inspired by Tobias and Li’s work. I use FMA

instead of BMA to illustrate the advantages of FMA in an empirical setting. FMA is ap-

pealing to empirical economists, as they typically work within a frequentist framework.

The data are from the Young Men’s Cohort of the National Longitudinal Survey (NLS) for

the year 1980.6 There are 935 observations and 17 variables, including the following vari-

ables that will be used in subsequent analysis: the natural log of monthly earnings (1980

USD), education (in years), a regional indicator, an urban indicator, and cognitive abil-

ity as measured by an IQ score7). From the data set, I construct the following variables:

experience squared, an ability-education interaction term, a indicator variable indicating

that the individual has completed at least 12 years of education, and an indicator variable

indicating that the individual has completed at least 16 years of education. In order to

evaluate each method out-of-sample – as in-sample performance may be overstated (Mul-

lianathan & Spiess, 2017) – this exercise first shuffles the observations to randomize their

5It is not stated whether this difference is statistically significant or not, but certainly the difference would
be economically meaningful.

6This dataset is available as wage2 through the R package wooldridge (sourced from Blackburn &
Neumark (1992)) and was chosen for ease of replicability by other researchers.

7The IQ scores were collected as part of a survey administered by the respondents’ schools in 1968.
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order and then makes 1,000 splits of the data, separating the observations into a training

set (95 percent of the data; used for estimation) and a testing set (5 percent of the data;

used to evaluate out-of-sample predictive performance). I use the predicted squared error

(PSE) as a measure of out-of-sample predictive performance. These results can be found

in Appendix Section 1.8.2.

Following Tobias & Li (2004), I consider the following log-wage equation:

ln w = Zβfixed + Xβopt + ϵ, ϵ ∼ N(0, σ2In), (1.13)

where w represents earnings, Z is a n × p matrix of p “fixed” variables that will appear

in every regression (education, experience, experience2, a regional indicator, and an ur-

ban indicator), and X is a n × q matrix of q = 4 optional variables (ability, ability×educ,

I(educ ≥ 12), and I(educ ≥ 16)).8 The inclusion or exclusion of the elements of X will

define the set of M = 2q = 24 = 16 candidate models (see Table 1.4 for reference).

β = [βfixed, βopt] is a (p + q)-dimensional vector of regression coefficients. Again, this

empirical example follows current practice for constructing the set of candidate models.

With this approach, model averaging cannot perform any worse than any one model. Re-

call that model uncertainty occurs when the probability that a model is correctly specified

is less than one. When using model averaging, if no one model receives a weight of 1 (and

all other models receive weights of 0), model uncertainty is expected to exist. Table 1.5

shows that model weights are non-zero for more than one model, indicating the presence of

model uncertainty. Models 1, 2, 3, 5, and 10 were assigned non-zero weights, and since ev-

8The inclusion of indicator variables for high school completion (I(educ ≥ 12)) and college completion
(I(educ ≥ 16)) changes the interpretation of βeduc. Excluding these indicator variables, βeduc represents
the returns to education from an additional year of education, regardless of the level of schooling that the
individual has already achieved. It implies that there is a linear relationship between (log of) wage and ed-
ucation. Including these indicator variables allows for the possibility that there are non-linearities in the
response of (log of) wage to education. There is evidence to support the idea of sheepskin effects, where
achieving a degree or diploma results in a wage premium greater than the gain from previous years of school-
ing (see Hungerford & Solon, 1987; Belman & Heywood, 1991; Heywood, 1994; and Jaeger & Page, 1996).
The inclusion of these indicator variables allows for jumps upon degree or diploma completion and allows
the returns to education to vary across the educational support. Thus, while βeduc represents the returns to
education, it does not include potential non-linearities in education captured by the indicator variables.
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Table 1.4: List of models.

Explanatory variables

Model 1 educ, exper, exper2, south, urban
Model 2 educ, exper, exper2, south, urban, ability
Model 3 educ, exper, exper2, south, urban, ability × educ
Model 4 educ, exper, exper2, south, urban, I(educ ≥ 12)
Model 5 educ, exper, exper2, south, urban, I(educ ≥ 16)
Model 6 educ, exper, exper2, south, urban, ability, ability × educ
Model 7 educ, exper, exper2, south, urban, ability, I(educ ≥ 12)
Model 8 educ, exper, exper2, south, urban, ability, I(educ ≥ 16)
Model 9 educ, exper, exper2, south, urban, ability × educ, I(educ ≥ 12)
Model 10 educ, exper, exper2, south, urban, ability × educ, I(educ ≥ 16)
Model 11 educ, exper, exper2, south, urban, I(educ ≥ 12), I(educ ≥ 16)
Model 12 educ, exper, exper2, south, urban, ability, ability × educ, I(educ ≥ 12)
Model 13 educ, exper, exper2, south, urban, ability, ability × educ, I(educ ≥ 16)
Model 14 educ, exper, exper2, south, urban, ability, I(educ ≥ 12), I(educ ≥ 16)
Model 15 educ, exper, exper2, south, urban, ability × educ, I(educ ≥ 12), I(educ ≥ 16)
Model 16 educ, exper, exper2, south, urban, ability, ability × educ, I(educ ≥ 12), I(educ ≥ 16)

ery model specification is supported by labour economic theory, it is not clear which model

is “best”, that is, closest to the true unknown DGP. In the presence of model uncertainty,

it may be better to explicitly acknowledge model uncertainty by adopting an approach like

model averaging, rather than to make ad hoc decisions regarding the model specification

(Xie & Lehrer, 2017). Examining results from the model selection criterion, Mallows’ Cp

Table 1.5: Average of MMA model weights over 1,000 data splits.

ω̂i

Model 1 0.0329
Model 2 0.6922
Model 3 0.2688
Model 5 0.0009
Model 10 0.0052

selects only 3 models over 1,000 splits of the data (models 2, 3 and 10; Table 1.6). These

models were also assigned non-zero weights by the MMA criterion. Thus, if one were to

use model selection, there may be ambiguity regarding the model specification preferred

by the data. Table 1.7 displays the estimated marginal effect of an additional year of edu-
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Table 1.6: Mallows’ Cp model selection proportion among the candidate
models.

Model Selection Proportion

Model 2 0.826
Model 3 0.172
Model 10 0.002

cation from model averaging and each model in the set of candidate models. The returns to

education are calculated for an additional year of education for an individual with 11 years

of education and the mode value for discrete variables and the median value for continu-

ous variables. The returns to education vary widely across models, ranging from 0.0585

Table 1.7: Estimated marginal effect of 1 additional year of education at 11
years of eduation.

Marginal Effect

MMA 0.0597
Model 1 0.0763
Model 2 0.0593
Model 3 0.0585
Model 4 0.1120

Model 5 0.0868
Model 6 0.0597
Model 7 0.0699
Model 8 0.0674
Model 9 0.0874

Model 10 0.0693
Model 11 0.1041
Model 12 0.0666
Model 13 0.0674
Model 14 0.0622

Model 15 0.0784
Model 16 0.0613

to 0.112. Labour economists argue over much smaller differences in magnitudes. Inter-

estingly, the estimates for the models that were given the highest model weights (models

2 and 3; these models were also selected by Mallows’ Cp) are similar, yet these estimates
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differ in magnitude substantially from the estimates from other models. This wage data ex-

ample highlights how marginal effect estimates depend greatly on the model specification

chosen by the researcher. Thus, in the face of model uncertainty, it is sub-optimal to assert

a particular model specification. Model averaging is strongly recommended for dealing

with model uncertainty in empirical problems in economics, such as estimating returns to

education.

1.7 Conclusion

This chapter demonstrates the advantages of model averaging over conventional econo-

metric methods (model assertion and model selection) and machine learning algorithms in

the presence of model uncertainty. Selecting a parametric model in an ad hoc manner and

proceeding with estimation and inference asserting that this model could plausibly have

generated the data can be misleading if the model does not accurately represent the DGP.

Given that the model space is dense, the probability of selecting a model that represents

the true, unknown DGP may be low. Model selection is an improvement over model as-

sertion. However, selecting the least misspecified model among a finite set of candidate

models does not guarantee that the DGP lies within the set of candidate models. Model

averaging recognizes model uncertainty and reduces estimation variance while controlling

for misspecification bias by constructing a simple weighted average over a set of candidate

models. While model selection and model assertion rely on having a good approximation

to the DGP, model averaging does not require a good approximation to the DGP to be in-

cluded in the set of candidate models. Additionally, model averaging can be easily adopted

by empirical economists, as demonstrated in this chapter. The results of Monte Carlo ex-

periments show that model averaging performs as well as, and often better, in terms of

MSE than model selection and machine learning methods (boosting, bagging and the post-

lasso) in the presence of model uncertainty. While model assertion may, in some cases,
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do better than model averaging when the DGP is known (as in Monte Carlo simulations),

selecting a model in an ad hoc manner may do much worse than model averaging. Thus,

model averaging is a feasible approach with good MSE performance for cases where model

uncertainty is a concern.

I address one of the possible limitations to the adoption of model averaging methods,

which is the lack of a universal standard for constructing the set of candidate models, a

key step in implementing model averaging. The first approach follows the current practice

for model averaging and consists of simply writing down a set of candidate models that

have a common parameter (such as the coefficient on the execution rate in estimating the

plausible deterrent effect of capital punishment). The second approach involves creating

a set of candidate models that span a rich set of bases in order to capture a wide range of

DGPs. The basis function type can be selected using a model selection criterion.

Finally, I apply model averaging to an empirical problem in labour economics and

demonstrate another application of model averaging (causal estimation). Using the Na-

tional Longitudinal Survey, I demonstrate how easily model averaging can be used to esti-

mate returns to education. The non-zero weights assigned to more than one model among

the 16 candidate models demonstrates the presence of model uncertainty. Additionally, the

estimated returns to education vary widely across models, ranging from 0.0585 to 0.112,

which is an economically meaningful range. This highlights how marginal effect estimates

depend greatly on the model specification. Given the presence of model uncertainty and

the variation in marginal effect estimates across models, model averaging is recommended

for handling model uncertainty in empirical economic problems.

This chapter has given an introduction to model averaging methods and applications in

an empirical economic environment. Further research must be done to set up best prac-

tices for post-model-average inference. Additionally, it would be compelling to reassess

the performance of model averaging relative to boosting, bagging and the post-lasso in

a prediction problem, as machine learning algorithms have been built for these types of
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problems rather than for estimating causal relationships.

1.8 Appendix

1.8.1 Monte Carlo Experiments

Results from Different Signal-to-Noise Ratios

The tables below summarize the mean MSE for changes in the signal-to-noise ratio (SNR).

Recall that in this Monte Carlo experiment, the true DGP is f(x) = 1 + x6/σx6 and y =

f(x) + ϵ, where x ∼ N(0, 1) and ϵ ∼ N(0, σϵ = cσx6). The constant c, where c ∈

{0.25, 0.50, 1.0, 2.0}, determines the SNR (c = 0.25 being the highest SNR and c = 2.0

being the lowest SNR). See Section 1.5 for the results for c = 0.50.

The results from Table 1.8 (c = 0.25) show that model selection using Mallows’ Cp

performs slightly better than model averaging using Mallows’ Model Averaging criterion,

but model averaging performs better than the machine learning algorithms. Tables 1.9 and

1.10 (c = 1.0 and c = 2.0 respectively) show that model averaging performs better than

model selection and the machine learning algorithms across changes in the SNR. Some

other models in the set of candidate models may do better than model averaging. However,

this is a simulation where the DGP is known. In reality, it may be unwise to assume the

functional form of the DGP in an ad hoc manner, as it is impossible to know whether the

model is correctly specified and the consequences of a misspecified model can be severe.

Based on these results, model averaging may be the preferred method.

Results from Different Sample Sizes

In order to assess the performance of each method under a variety of sample sizes, I run a

Monte Carlo experiment (identical to that in Section 1.5). In the following simulation, the

DGP is f(x) = 1+x6/σx6 and y = f(x)+ϵ, where x ∼ N(0, 1), ϵ ∼ N(0, σϵ = cσx6), and
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Table 1.8: Mean MSE and ranking of MSE performance (k = 6 is the oracle
model; c = 0.25).

Mean MSE Relative Efficiency Overall Rank Stochastic Rank Det. Rank

MMA 0.0062 1.00 6 2 NA
Bagging 0.3869 62.61 14 5 NA
Boosting 0.0080 1.29 8 3 NA
Post-Lasso 0.0091 1.47 9 4 NA
Cp 0.0058 0.93 4 1 NA

k = 1 0.9212 149.07 15 NA 10
k = 2 0.3141 50.82 13 NA 9
k = 3 0.2136 34.56 12 NA 8
k = 4 0.0129 2.09 11 NA 7
k = 5 0.0095 1.54 10 NA 6

k = 6 0.0043 0.69 1 NA 1
k = 7 0.0049 0.79 2 NA 2
k = 8 0.0054 0.88 3 NA 3
k = 9 0.0061 0.98 5 NA 4
k = 10 0.0067 1.08 7 NA 5

Table 1.9: Mean MSE and ranking of MSE performance (k = 6 is the oracle
model; c = 1.0).

Mean MSE Relative Efficiency Overall Rank Stochastic Rank Det. Rank

MMA 0.0707 1.00 4 1 NA
Bagging 0.5211 7.37 14 5 NA
Boosting 0.0857 1.21 7 3 NA
Post-Lasso 0.1915 2.71 11 4 NA
Cp 0.0712 1.01 5 2 NA

k = 1 0.9375 13.26 15 NA 10
k = 2 0.3396 4.80 13 NA 9
k = 3 0.2502 3.54 12 NA 8
k = 4 0.0589 0.83 1 NA 1
k = 5 0.0648 0.92 2 NA 2

k = 6 0.0682 0.97 3 NA 3
k = 7 0.0772 1.09 6 NA 4
k = 8 0.0865 1.22 8 NA 5
k = 9 0.0962 1.36 9 NA 6
k = 10 0.1056 1.49 10 NA 7

c ∈ {0.25, 0.50, 1.0, 2.0}, determines the SNR. I take n = 500 random draws of x from

the normal distribution and conduct 1,000 Monte Carlo replications. There are M = 9

candidate models, which are orthogonal polynomials of order 1 through 5 and 7 through

34



Ph.D. Thesis - C. Simardone; McMaster University - Economics

Table 1.10: Mean MSE and ranking of MSE performance (k = 6 is the
oracle model; c = 2.0).

Mean MSE Relative Efficiency Overall Rank Stochastic Rank Det. Rank

MMA 0.2833 1.00 4 1 NA
Bagging 0.9621 3.40 14 5 NA
Boosting 0.3356 1.18 7 3 NA
Post-Lasso 0.6646 2.35 13 4 NA
Cp 0.2836 1.00 5 2 NA

k = 1 0.9906 3.50 15 NA 10
k = 2 0.4217 1.49 11 NA 8
k = 3 0.3691 1.30 9 NA 6
k = 4 0.2066 0.73 1 NA 1
k = 5 0.2419 0.85 2 NA 2

k = 6 0.2733 0.96 3 NA 3
k = 7 0.3089 1.09 6 NA 4
k = 8 0.3452 1.22 8 NA 5
k = 9 0.3848 1.36 10 NA 7
k = 10 0.4229 1.49 12 NA 9

10 (omitting the true DGP, a polynomial of order 6). Tables 1.11 to 1.14 display the mean

MSE over 1,000 Monte Carlo replications. In Table 1.11, model averaging using Mallows’

Model Averaging criterion ranks third after the oracle model (k = 6) and another model in

the set of candidate models. In reality, it is almost impossible to know for certain what is the

true functional form of the DGP. In the presence of model uncertainty, one may do worse by

asserting the functional form than model averaging (for example, specifying a linear model

in this simulation, k = 1, performs the worst in terms of MSE). Thus, it may be prudent

to use model averaging. Model averaging ranks fourth in Table 1.12 after some models in

the set of candidate models. In Table 1.13, model averaging ranks fifth best after the oracle

model, some candidate models, and boosting. While boosting performs relatively well in

terms of MSE in this case, it is not consistently in the top five, unlike model averaging.

Finally, model averaging using the MMA criterion ranks second overall (after the oracle

model) in Table 1.14. In the next simulation, the DGP is f(x) = 1 + x6/σx6 and

y = f(x) + ϵ, where x ∼ N(0, 1), ϵ ∼ N(0, σϵ = cσx6), and c ∈ {0.25, 0.50, 1.0, 2.0}

determines the SNR. This time, I take n = 1, 000 random draws of x from the normal
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Table 1.11: Mean MSE and ranking of MSE performance (k = 6 is the
oracle model; n = 500; c = 0.25).

Mean MSE Relative Efficiency Overall Rank Stochastic Rank Det. Rank

MMA 0.0010 1.00 3 1 NA
Bagging 0.2444 242.01 12 5 NA
Boosting 0.0020 2.03 9 4 NA
Post-Lasso 0.0011 1.06 4 2 NA
Cp 0.0011 1.11 6 3 NA

k = 1 0.9816 972.15 15 NA 10
k = 2 0.4463 442.02 14 NA 9
k = 3 0.3746 371.03 13 NA 8
k = 4 0.0220 21.79 11 NA 7
k = 5 0.0163 16.12 10 NA 6

k = 6 0.0008 0.82 1 NA 1
k = 7 0.0010 0.95 2 NA 2
k = 8 0.0011 1.07 5 NA 3
k = 9 0.0012 1.19 7 NA 4
k = 10 0.0013 1.32 8 NA 5

Table 1.12: Mean MSE and ranking of MSE performance (n = 500; c =
0.50).

Mean MSE Relative Efficiency Overall Rank Stochastic Rank Det. Rank

MMA 0.0042 1.00 4 1 NA
Bagging 0.2498 59.01 12 5 NA
Boosting 0.0049 1.15 7 3 NA
Post-Lasso 0.0056 1.33 9 4 NA
Cp 0.0043 1.03 5 2 NA

k = 1 0.9827 232.13 15 NA 10
k = 2 0.4479 105.79 14 NA 9
k = 3 0.3762 88.85 13 NA 8
k = 4 0.0237 5.61 11 NA 7
k = 5 0.0184 4.34 10 NA 6

k = 6 0.0032 0.76 1 NA 1
k = 7 0.0038 0.89 2 NA 2
k = 8 0.0042 0.99 3 NA 3
k = 9 0.0047 1.11 6 NA 4
k = 10 0.0052 1.23 8 NA 5

distribution and conduct 1,000 Monte Carlo replications. There are M = 9 candidate

models and the true DGP is omitted. Tables 1.15 to 1.18 display the mean MSE over 1,000

Monte Carlo replications. Model averaging ranks third after the oracle model (k = 6)
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Table 1.13: Mean MSE and ranking of MSE performance (n = 500; c =
1.0).

Mean MSE Relative Efficiency Overall Rank Stochastic Rank Det. Rank

MMA 0.0182 1.00 5 2 NA
Bagging 0.2792 15.31 12 5 NA
Boosting 0.0173 0.95 4 1 NA
Post-Lasso 0.0330 1.81 11 4 NA
Cp 0.0189 1.04 7 3 NA

k = 1 0.9857 54.04 15 NA 10
k = 2 0.4510 24.73 14 NA 9
k = 3 0.3817 20.93 13 NA 8
k = 4 0.0306 1.68 10 NA 7
k = 5 0.0268 1.47 9 NA 6

k = 6 0.0128 0.70 1 NA 1
k = 7 0.0150 0.82 2 NA 2
k = 8 0.0167 0.92 3 NA 3
k = 9 0.0187 1.03 6 NA 4
k = 10 0.0208 1.14 8 NA 5

Table 1.14: Mean MSE and ranking of MSE performance (n = 500; c =
2.0).

Mean MSE Relative Efficiency Overall Rank Stochastic Rank Det. Rank

MMA 0.0577 1.00 2 1 NA
Bagging 0.5107 8.85 14 5 NA
Boosting 0.0706 1.22 8 3 NA
Post-Lasso 0.1224 2.12 11 4 NA
Cp 0.0688 1.19 7 2 NA

k = 1 0.9977 17.30 15 NA 10
k = 2 0.4684 8.12 13 NA 9
k = 3 0.4040 7.00 12 NA 8
k = 4 0.0582 1.01 3 NA 2
k = 5 0.0604 1.05 5 NA 4

k = 6 0.0512 0.89 1 NA 1
k = 7 0.0602 1.04 4 NA 3
k = 8 0.0670 1.16 6 NA 5
k = 9 0.0749 1.30 9 NA 6
k = 10 0.0832 1.44 10 NA 7

and another candidate model in Tables 1.15 and 1.16. Model averaging using the MMA

criterion performs fourth best in terms of MSE after the oracle model and some models

in the set of candidate models in Tables 1.17 and 1.18. Some candidate models perform
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well in these simulations. However, the functional form of the DGP is unknown when

working with real data, and asserting a particular model specification may be worse than

model averaging. For example, specifying a linear or quadratic functional form with the

data from this simulation would be much worse in terms of MSE than model averaging. In

Table 1.15: Mean MSE and ranking of MSE performance (k = 6 is the
oracle model; n = 1, 000; c = 0.25).

Mean MSE Relative Efficiency Overall Rank Stochastic Rank Det. Rank

MMA 0.0005 1.00 3 1 NA
Bagging 0.2086 394.81 12 5 NA
Boosting 0.0017 3.18 9 4 NA
Post-Lasso 0.0005 1.04 4 2 NA
Cp 0.0006 1.12 6 3 NA

k = 1 0.9896 1873.00 15 NA 10
k = 2 0.4919 931.05 14 NA 9
k = 3 0.4311 815.95 13 NA 8
k = 4 0.0290 54.90 11 NA 7
k = 5 0.0215 40.73 10 NA 6

k = 6 0.0004 0.84 1 NA 1
k = 7 0.0005 0.96 2 NA 2
k = 8 0.0006 1.08 5 NA 3
k = 9 0.0006 1.20 7 NA 4
k = 10 0.0007 1.32 8 NA 5

general, as the sample size (n) increases, MSE decreases for all methods. However, model

averaging using the MMA criterion consistently ranks among the top methods (except in

one case where boosting outperforms model averaging; see Table 1.13), while there is some

variability in the performance of the other methods. Thus, it is advisable to use model

averaging in the presence of model uncertainty.

Results from a Different Data Generating Process

In order to assess the performance of each method under a variety of DGPs, a different

DGP is selected. In the following Monte Carlo experiment, the DGP is set to f(x) = ex

and y = f(x) + ϵ where x ∼ N(0, 1) and ϵ ∼ N(0, σϵ = cσf(x)). As before, the constant

c, where c ∈ {0.25, 0.50, 1.0, 2.0}, determines the SNR. I take n = 100 random draws
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Table 1.16: Mean MSE and ranking of MSE performance (n = 1, 000;
c = 0.50).

Mean MSE Relative Efficiency Overall Rank Stochastic Rank Det. Rank

MMA 0.0021 1.00 3 1 NA
Bagging 0.2116 98.54 12 5 NA
Boosting 0.0033 1.52 9 4 NA
Post-Lasso 0.0025 1.16 6 3 NA
Cp 0.0024 1.11 5 2 NA

k = 1 0.9892 460.76 15 NA 10
k = 2 0.4929 229.58 14 NA 9
k = 3 0.4293 199.95 13 NA 8
k = 4 0.0298 13.88 11 NA 7
k = 5 0.0221 10.30 10 NA 6

k = 6 0.0017 0.79 1 NA 1
k = 7 0.0020 0.92 2 NA 2
k = 8 0.0023 1.05 4 NA 3
k = 9 0.0025 1.18 7 NA 4
k = 10 0.0028 1.30 8 NA 5

Table 1.17: Mean MSE and ranking of MSE performance (n = 1, 000;
c = 1.0).

Mean MSE Relative Efficiency Overall Rank Stochastic Rank Det. Rank

MMA 0.0094 1.00 4 1 NA
Bagging 0.2213 23.54 12 5 NA
Boosting 0.0098 1.05 6 3 NA
Post-Lasso 0.0155 1.65 9 4 NA
Cp 0.0097 1.03 5 2 NA

k = 1 0.9907 105.38 15 NA 10
k = 2 0.4953 52.69 14 NA 9
k = 3 0.4322 45.97 13 NA 8
k = 4 0.0334 3.56 11 NA 7
k = 5 0.0264 2.81 10 NA 6

k = 6 0.0068 0.72 1 NA 1
k = 7 0.0079 0.84 2 NA 2
k = 8 0.0090 0.96 3 NA 3
k = 9 0.0101 1.07 7 NA 4
k = 10 0.0111 1.18 8 NA 5

of x from the normal distribution and conduct 1,000 Monte Carlo replications. There are

M = 10 candidate models, which are orthogonal polynomials of order 1 through 10. The

set of candidate models follows the current practice of selecting a set of candidate models
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Table 1.18: Mean MSE and ranking of MSE performance (n = 1, 000;
c = 2.0).

Mean MSE Relative Efficiency Overall Rank Stochastic Rank Det. Rank

MMA 0.0362 1.00 4 1 NA
Bagging 0.2693 7.44 12 5 NA
Boosting 0.0390 1.08 5 2 NA
Post-Lasso 0.0586 1.62 11 4 NA
Cp 0.0403 1.11 6 3 NA

k = 1 0.9970 27.54 15 NA 10
k = 2 0.5042 13.93 14 NA 9
k = 3 0.4442 12.27 13 NA 8
k = 4 0.0479 1.32 10 NA 7
k = 5 0.0438 1.21 8 NA 5

k = 6 0.0271 0.75 1 NA 1
k = 7 0.0317 0.88 2 NA 2
k = 8 0.0361 1.00 3 NA 3
k = 9 0.0404 1.12 7 NA 4
k = 10 0.0445 1.23 9 NA 6

in an ad hoc manner, rather than using the approach outlined in the latter half of Section

1.3, which suggests a nonparametric approach for selecting the set of candidate models.

The DGP (in this case, f(x) = ex) is once again omitted from the set of candidate models.

Tables 1.19 to 1.22 show the mean MSE over 1,000 replications for model averag-

ing using Mallows’ Model Average (MMA), model selection using Mallows’ Cp, bagging,

boosting, the post-lasso, and each candidate model, and ranks each in terms of MSE per-

formance. Across the different SNR, model averaging consistently ranks third after some

candidate models. Results are similar to those from Section 1.5. Although some candidate

models may do better than model averaging in this Monte Carlo experiment, many do far

worse. Consequently, in empirical settings where the true DGP is unknown, model aver-

aging may be a better approach. Additionally, once again, model averaging outperforms

model selection and three machine learning algorithms. This suggests that one may prefer

averaging over the set of candidate models rather than using model selection-based exer-

cises. Even when the set of candidate models are chosen in an ad hoc manner and have

no relation to the DGP, model averaging performs better than the model selection-based
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methods in terms of MSE.

Table 1.19: Mean MSE and ranking of MSE performance (ex is the DGP;
c = 0.25).

Mean MSE Relative Efficiency Overall Rank Stochastic Rank Det. Rank

MMA 0.0184 1.00 3 1 NA
Bagging 0.8665 46.97 14 5 NA
Boosting 0.0237 1.29 8 3 NA
Post-Lasso 0.0239 1.29 9 4 NA
Cp 0.0194 1.05 5 2 NA

k = 1 1.5223 82.52 15 NA 10
k = 2 0.3131 16.97 13 NA 9
k = 3 0.0427 2.31 12 NA 8
k = 4 0.0158 0.85 1 NA 1
k = 5 0.0163 0.88 2 NA 2

k = 6 0.0185 1.00 4 NA 3
k = 7 0.0208 1.13 6 NA 4
k = 8 0.0233 1.26 7 NA 5
k = 9 0.0259 1.40 10 NA 6
k = 10 0.0284 1.54 11 NA 7

Table 1.20: Mean MSE and ranking of MSE performance (ex is the DGP;
c = 0.50).

Mean MSE Relative Efficiency Overall Rank Stochastic Rank Det. Rank

MMA 0.0685 1.00 3 1 NA
Bagging 0.8829 12.89 14 5 NA
Boosting 0.0839 1.23 8 3 NA
Post-Lasso 0.0905 1.32 10 4 NA
Cp 0.0715 1.04 4 2 NA

k = 1 1.4769 21.57 15 NA 10
k = 2 0.3183 4.65 13 NA 9
k = 3 0.0738 1.08 6 NA 4
k = 4 0.0563 0.82 1 NA 1
k = 5 0.0633 0.92 2 NA 2

k = 6 0.0719 1.05 5 NA 3
k = 7 0.0801 1.17 7 NA 5
k = 8 0.0900 1.31 9 NA 6
k = 9 0.1006 1.47 11 NA 7
k = 10 0.1099 1.60 12 NA 8
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Table 1.21: Mean MSE and ranking of MSE performance (ex is the DGP;
c = 1.0).

Mean MSE Relative Efficiency Overall Rank Stochastic Rank Det. Rank

MMA 0.2333 1.00 3 1 NA
Bagging 1.3239 5.68 14 5 NA
Boosting 0.3258 1.40 8 3 NA
Post-Lasso 0.3630 1.56 9 4 NA
Cp 0.2627 1.13 5 2 NA

k = 1 1.5373 6.59 15 NA 10
k = 2 0.4078 1.75 12 NA 8
k = 3 0.2075 0.89 1 NA 1
k = 4 0.2211 0.95 2 NA 2
k = 5 0.2559 1.10 4 NA 3

k = 6 0.2906 1.25 6 NA 4
k = 7 0.3239 1.39 7 NA 5
k = 8 0.3641 1.56 10 NA 6
k = 9 0.4070 1.74 11 NA 7
k = 10 0.4444 1.90 13 NA 9

Table 1.22: Mean MSE and ranking of MSE performance (ex is the DGP;
c = 2.0).

Mean MSE Relative Efficiency Overall Rank Stochastic Rank Det. Rank

MMA 0.7870 1.00 3 1 NA
Bagging 3.0599 3.89 15 5 NA
Boosting 1.2275 1.56 8 3 NA
Post-Lasso 2.3545 2.99 14 4 NA
Cp 0.9212 1.17 5 2 NA

k = 1 1.7578 2.23 12 NA 9
k = 2 0.7615 0.97 2 NA 2
k = 3 0.7377 0.94 1 NA 1
k = 4 0.8729 1.11 4 NA 3
k = 5 1.0158 1.29 6 NA 4

k = 6 1.1535 1.47 7 NA 5
k = 7 1.2860 1.63 9 NA 6
k = 8 1.4417 1.83 10 NA 7
k = 9 1.6159 2.05 11 NA 8
k = 10 1.7665 2.24 13 NA 10
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1.8.2 Model Averaging using Wage Data: Predicted Squared Error

In Section 1.6, I illustrate the advantages of FMA in an empirical setting using data from

the Young Men’s Cohort of the National Longitudinal Survey (NLS) for the year 1980.

The data are split into a testing set and a training set. This sample splitting procedure is

described in detail in Section 1.6. Here, I compute the predicted squared error (PSE) for

each method using the testing data (a 5 percent random sample of the data) to evaluate

each method out-of-sample. I use the predicted squared error (PSE) as a measure of out-

of-sample predictive performance. PSE is calculated as follows:

PSE = 1
n

n∑
i=1

(
yi − ŷi

)2
, i = 1, ...n, (1.14)

where yi is the observed dependent variable (in this case, the natural log of monthly earn-

ings) and ŷi are the predicted values from each respective method obtained from the testing

data. PSE differs from MSE because the true DGP is unknown.

Table 1.23 displays the mean PSE over 1,000 splits of the data for each method used in

the wage example, as well as for the three machine learning algorithms. Note that ranking

methods by PSE is not the same as ranking by MSE (which cannot be computed in applied

settings since the DGP is unknown). While model averaging does not rank highly relative

to the candidate models in terms of PSE, the magnitude of its PSE is extremely close to

that of the candidate models ranking above it. In principle, bootstrapping could be used to

test whether the magnitude of one method’s PSE is significantly different from another, but

I have not done that here. Potential reasons for the relatively poor performance of model

averaging could be low explanatory power of the models or a low in-sample SNR.
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Table 1.23: Mean predicted squared error (PSE) and ranking of mean PSE
performance.

Mean PSE Rank

MMA 0.142362 7
Cp 0.142413 10
Bagging 0.148186 20
Boosting 0.164819 21
Post-lasso 0.141688 1

Model 1 0.145595 16
Model 2 0.142047 2
Model 3 0.142133 3
Model 4 0.145806 17
Model 5 0.145833 18

Model 6 0.142392 9
Model 7 0.142324 5
Model 8 0.142318 4
Model 9 0.142373 8
Model 10 0.142352 6

Model 11 0.146101 19
Model 12 0.142675 14
Model 13 0.142661 13
Model 14 0.142602 11
Model 15 0.142632 12

Model 16 0.142951 15
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Chapter 2

In Search of the Optimal Model Set:

Methods for Generating Candidate

Models for Model Averaging

2.1 Introduction

Model selection and model averaging are useful in situations where there are a number of

competing models that are supported by economic theory, yet it is unclear which model

is the “best” model among them. These methods use statistical approaches to deal with

this inherent model uncertainty to obtain an improved estimator of the quantity of interest.

Selecting the set of candidate models to be used in model selection or model averaging is

an important step when dealing with model uncertainty because the resulting estimator will

inherit properties from the candidate models, yet it is often overlooked. Current practice is

to write down a handful of parametric models that have a common parameter of interest,

estimate each model individually, and then either use a model selection criterion to select

one model from the set of candidate models or obtain model average weights to compute the

model average estimator, which is a weighted average of the estimates from each individual
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model. A limitation of this approach is that it often relies on ad hoc decisions on the part of

the researcher, for example, with regard to the functional form specification of each model

and the set of regressors to include in each model.

Ideally, the set of candidate models would have these key features:

1. number of candidate models tied to the sample size and assumed smoothness class

(i.e. data generating process, DGP),

2. number of parameters tied to the sample size and assumed smoothness class, and

3. a broad set of functions, or “bases”, to cover a wide range of potential DGPs that are

simple enough to average over.

Thus, we need a statistical procedure that balances complexity, breadth, and computational

efficiency. This chapter investigates promising approaches that have the potential to pro-

duce a set of candidate models for model averaging with the key features outlined above.

Additionally, I develop useful heuristics to guide practitioners in implementing the recom-

mended methods. I consider three bodies of work from econometrics and machine learning

to guide my research. First, model screening is appealing because it can shrink the set of

potential candidate models prior to model averaging to improve computational efficiency.

However, this approach has a number of limitations, detailed in Section 2.2. Second, com-

puter automated algorithms such as recursive partitioning-based methods have the potential

to produce an optimal set of candidate models by automatically generating a rich set of

bases based on the data (see Section 2.3). Last, existing frequentist model average methods

that average over nonparametric models are considered (see Section 2.4). The merits and

limitations of each method are discussed in depth, especially with regard to their ability

to generate a set of candidate models with the key features listed above. Heuristics are

developed to guide practitioners in their research; however, a careful examination of ex-

isting methods is needed to fully understand their potential and their limitations. Section

2.5 evaluates the relative performance of the most promising approaches in a Monte Carlo

experiment in order to determine whether one approach, if any, performs better than the

46



Ph.D. Thesis - C. Simardone; McMaster University - Economics

others in terms of mean squared error. Section 2.6 concludes.

2.2 Model Screening

Model screening encompasses model selection and variable selection methods. It can be

used to shrink the set of candidate models prior to model averaging, which may be helpful

in balancing complexity, breadth and computational efficiency. There exists some evidence

that supports the use of model screening prior to model averaging. Zhu, Wan, Zhang, &

Zou (2019) claim that “removing the poorest models before averaging can contribute to

greater estimation and predictive efficiency”.

In model selection, model screening can be used as a method for constructing the set

of candidate models. Examples of model screening methods that result in a single model

specification to be used for subsequent estimation, forecasting or inference include stepwise

regression and the lasso and variations thereof.

Stepwise regression uses a sequence of t- and/or F-tests or criteria such as adjusted R2,

the Akaike information criterion (AIC; Akaike, 1970), the Bayesian information criterion

(BIC; Schwarz, 1978), or Mallows’ Cp (Mallows, 1973) to select a single model. AIC and

BIC are defined as follows:

AIC = −2 ln(L̂) + 2p (2.1)

BIC = −2 ln(L̂) + log(n)p (2.2)

where ln(L̂) is the maximum value of the log-likelihood function of a model with p re-

gressors and n is the sample size. These information criteria balance goodness of fit (as

measured by the log-likelihood) and parsimony (as measured by the penalty for the number

of regressors included in the model). A low AIC or BIC value is desirable.
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Mallows’ Cp is defined as follows:

Cp = SSRp

σ̂2 + 2p − n, (2.3)

where SSRp = ∑n
i=1(yi − ŷi)2 is the sum of squared residuals (yi is the response variable

(the observed outcome) and ŷi are the fitted values) in the model with p regressors and σ̂2

is the estimated variance from the largest dimension model in the set of candidate models.

A low Cp value is desirable. Therefore the model with the lowest Cp value in the set of

candidate models is selected.

The main stepwise regression approaches are forward selection and backwards elimi-

nation. Forward selection begins with the null model and iteratively adds one variable at

a time (Claeskens, Croux, & VanKerckhoven, 2005). Backwards elimination begins with

a full or general unrestricted model and iteratively eliminates the variable which gives the

largest reduction or smallest increase to the value of the information criterion. An exam-

ple of a backwards elimination procedure is automated general-to-specific (PcGets) model

selection algorithm (Campos, Hendry, & Krolzig, 2003; Castle, 2006; Krolzig & Hendry,

2001, 2011). This algorithm does both model selection (through variable selection) and

diagnostic tests to check the validity of the reductions. The goal of the algorithm is to

select a congruent, parsimonious terminal model through a procedure that explores multi-

ple paths, but not so many that search costs are too high, while avoiding getting stuck in

a path that inadvertently deletes variables that matter. The algorithm begins with a single

general unrestricted model (GUM) that undergoes an initial misspecification test. A pre-

selection screening step eliminates highly irrelevant variables based on t- and F-tests. It

then iteratively simplifies the model by eliminating insignificant variables until only rele-

vant variables remain, using t- and/or F-tests as the simplification criteria. Encompassing

tests test all distinct contending model specifications. Any model that survives these tests

is retained. If multiple models survive, a new general model is formed from their union,
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and the model simplification step is re-applied. This repeats until either a unique model

specification emerges or the previous union is reproduced. If the previous union is repro-

duced (that is, multiple model specifications remain), a final selection is made using an

information criterion, such as AIC or BIC. Diagnostic tests are applied at every reduction

stage to test for congruency. A model is “congruent” if the model “matches evidence in

all measured aspects” (Castle, 2006). Reliability scores are assigned to variables to guide

the model choice of researchers. Monte Carlo experiments show that PcGets can recover

the DGP from a general model, with size and power close to using the DGP itself (Castle,

2006). However, PcGets has a number of limitations. For one, an absence of an optimal

sequence for simplification makes the choice of reduction path unclear. Additionally, when

there is insufficient data, the algorithm may perform poorly in specifying the best approx-

imation to the DGP. Lastly, and perhaps most importantly, the good performance of the

algorithm relies crucially on the researcher specifying the GUM, consequently relying on

ad hoc parametric model specification by the researcher. Thus, PcGets may not be the best

strategy for selecting the set of candidate models to be used in model averaging.

The lasso, or least absolute shrinkage and selection operator, can be used for model

screening (Belloni & Chernozhukov, 2013; Tibshirani, 1996). The lasso shrinks some

model coefficients and sets others to zero, essentially performing selection of regressors to

select a single model. The lasso estimator is defined as:

β̂ = arg min
n∑

i=1

(
yi −

∑
j

βjxij

)2
subject to

∑
j

|βj| ≤ t, (2.4)

where i = 1, ..., n, j indexes the regressor, β represents regression coefficients in the model

yi = xiβ + ϵi , and t ≥ 0 represents the tuning (or penalty) parameter. Selection of the

tuning parameter, t, is important as it controls regressor selection as well as how much

shrinkage is applied to the coefficients. Cross-validation is commonly used to select the

tuning parameter. The advantages of the lasso include highly interpretable models, in-
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creased stability, and improved prediction accuracy with relative computational efficiency.

However, the non-zero coefficients resulting from the lasso tend to be biased towards zero,

due in part to shrinkage (Belloni et al., 2014).

In model averaging, model screening can be used as a preliminary step to reduce the to-

tal number of candidate models in order to improve computational efficiency and perhaps

even estimation or predictive efficiency (note the two different meanings of efficiency).

Some examples of model screening applied to model averaging include pre-selection and

model averaging post-lasso. Pre-selection applies a backwards elimination procedure like

PcGets to a large set of candidate models to reduce the size of the set prior to model aver-

aging. Xie & Lehrer (2017) applied a version of PcGets (Campos et al., 2003) as a model

screening step prior to model averaging in a forecasting exercise using film industry and

social media data to predict movie success. Initially, a total of 16,777,216 potential models

for open box office and 4,294,967,296 potential models for retail movie sales were screened

using the estimated p-values for tests of statistical significance.1 If the maximum of the p-

values corresponding to the regression coefficients for each potential model exceeded some

pre-specified benchmark – 0.1 and 0.65, for open box office and retail movie sales, respec-

tively – the corresponding model was excluded. After this pre-selection step, they were

left with 95 and 56 models respectively. Using the same data set, Xie & Lehrer (2018) use

model screening before model averaging due to a large set of regressors (23 and 29 for open

box office and movie unit sales respectively) resulting in hundreds of millions of potential

candidate models (223 = 8, 388, 608 and 229 = 526, 870, 912). Thus, the authors use model

screening based on an automated general-to-specific (PcGets) model selection algorithm to

reduce the set of models for model selection and model averaging methods. First, based

on OLS results, they restrict each model to a constant and at most 7 (11) relatively signif-

1Xie and Lehrer assume that the DGP for outcome yi is given as yi = µi + ui, where µi =
∑∞

j=1 βjxij ,
where ui is mean-zero and homoskedastic. Their candidate models take the following form: yi =∑k(m)

j=1 β
(m)
j x

(m)
ij + u

(m)
i for i = 1, ..., n and m = 1, ..., M , where β

(m)
j is a coefficient in the model m

and x
(m)
ij is a regressor in the model m. The p-values are estimated for each coefficient within each model.
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icant parameters for open box office (movie unit sales). Then, PcGets is used to control

the total number of potential models by examining estimated p-values for each parameter

in each potential model. If the maximum of these p-values exceeds some pre-specified

benchmark, the corresponding model is excluded, eliminating models with low-t-statistic

coefficients from the set of candidate models. This results in 105 and 115 potential models

for open box office and retail movie unit sales respectively. The authors acknowledge that

this reduction in potential models is severe, but justify it by stating that only a “handful”

of models account for more than 95% of the total weight of the model average estimate.

Xie & Lehrer (2018) propose a strategy for model screening with model averaging using a

Mallows-type criterion (an extension of X. Zhang & Liang, 2016) to improve the selection

of candidate models. This significantly increases computational efficiency with no lack

of forecast accuracy. They show that the model average estimator using weights obtained

from a screened model set is asymptotically optimal in the sense of achieving the lowest

possible mean squared error (MSE), even compared to a model average estimator that used

all potential candidate models in its set.

Model averaging post-lasso applies the lasso to remove irrelevant variables from candi-

date models prior to model averaging (Xie & Lehrer, 2017, 2018). One could also employ

model screening using an information criterion like AIC or BIC to select the top M∗ models

prior to model averaging, where M∗ is an integer pre-specified by the researcher. Yuan &

Yang (2005) propose a model combining method, adaptive regression by mixing with model

screening (ARMS), which adds a model screening step to adaptive regression by mixing

(ARM) proposed by Yang (2001). Model screening shrinks the set of candidate models

before combining, which can reduce the computational cost, as there will be fewer weights

to calculate and to assign to models, and can improve estimation accuracy by removing

very poor candidate models.

Let yi = f(Xi) + ϵi, i = 1, ..., n, where yi is the response variable, Xi is a vector of d

explanatory variables, f(·) is the true regression function (i.e. the data generating process
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or DGP), and ϵ is the random error. Consider M candidate models, where model m is given

by yi = fm(Xi; θm) + ϵi. Let Γ denote the set of all candidate models being considered

and M be the size of Γ. For model screening, the data are split into two equal parts: Z(1) =

(Xi, yi), 1 ≤ i ≤ n/2 is for estimation and screening, and Z(2) = (Xi, yi), n/2+1 ≤ i ≤ n

is for prediction. Model screening proceeds as follows. First, estimate each candidate

model m using Z(1) to obtain f̂m(x) = f̂m(x; θ̂m). For each model m, obtain an estimate

of σ2
m, σ̂2

m. Next, calculate the model selection criterion (such as AIC or BIC) for each

model m using Z(2). Rank the models by AIC and/or BIC value and keep only the top M∗

models, where M∗ is an integer chosen by the researcher. Let Γs denote the set of chosen

candidate models and Ms be the size of Γs. These are the models that are used in the

combining step of ARMS. Alternatively, these models could be used in model averaging.

The researcher must balance the cost of screening (increasing the risk of omitting a good

model) with the potential advantage of screening (reducing the negative influence of poor

models). The potential advantage is greater when M is large and Ms is small. In other

words, model screening should balance the probability of capturing the “best” model and

the size of Γs.

Xie & Lehrer (2018) show that using a screened model set produces a model average

estimator that is asymptotically optimal in the sense of achieving the lowest possible MSE.

While model screening may improve estimation or prediction by removing poor candidate

models, it has some limitations. Model screening requires the researcher to specify one or

more models at the outset (for example, specifying a general unrestricted model). There-

fore, model screening relies on ad hoc decisions on the part of the researcher. The aim of

this chapter is to introduce statistical procedures in order to move away from this type of ad

hoc decision-making. Additionally, model screening is essentially variable selection and

does not provide any guidance with regard to the functional form specification of candi-

date models. Model screening has the potential to result in a number of candidate models

tied to the sample size and assumed smoothness class. However, current practice relies on
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the researcher specifying the maximum number of candidate models they wish to keep for

model averaging; therefore, the number of candidate models is arbitrarily chosen. Addi-

tional research is required in order to tie this number to the sample size and assumed DGP.

Thus, while model screening has some advantages and may have one of the ideal features

of the set of candidate models outlined earlier, additional methods are required to generate

a rich set of bases in order to capture a wide range of potential DGPs.

2.3 Recursive Partitioning-Based Algorithms

2.3.1 Machine Learning in Combination with Model Averaging

Xie & Lehrer (2018) use recursive partitioning in combination with model averaging in

a forecasting exercise using film industry and social media data to predict movie success.

The goal is to use this hybrid model average/learning strategy to capture richer patterns

of heterogeneity that machine learning or econometric methods alone may fail to capture,

as well as to improve forecast accuracy. The authors propose a hybrid strategy that uses

recursive partitioning to first develop sub-groups or sub-regions, then implement model

averaging within these groups to generate forecasts. Allowing for model uncertainty in the

leaves of a regression tree allows for richer heterogeneity in the resulting forecasts.

Recursive partitioning strategies, such as classification and regression trees (CART),

partition the data into sub-regions by splitting on the domain of a regressor. The split is

chosen at the point where the sum of squared residuals (SSR) is minimized, resulting in two

nodes. The partitioning, or splitting, continues for each node until further splits no longer

contribute to the accuracy of the forecast. The final terminal nodes are called the leaf nodes

or leaves. For each leaf l, the forecast is the fitted values from a regression model of the

form yi = a + ui, i ∈ l, where a is a constant and ui is the error term. The ordinary least

squares estimate of a is â = ȳi∈l. CART are able to capture non-linearities in the data.

However, they inherently assume that any resulting heterogeneity in the outcomes within
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each terminal leaf of the tree is random. CART perform well in-sample but may perform

poorly out-of-sample.

Xie & Lehrer (2018) use two recursive partitioning-based ensemble methods in com-

bination with model averaging: random forests and bagging (short for bootstrap aggre-

gating). These methods create multiple bootstrapped samples of size n with replacement

and multiple decision trees from a single sample, then combine the predictions from each

tree using an aggregation technique with weights based on the sample proportion in each

leaf of the tree. This improves predictive accuracy out-of-sample compared to CART. No

structure is imposed on the data, which is not the case for parametric econometric mod-

els. However, they do assume homogeneity due to the use of the equally weighted sum of

squared residuals in the algorithms.

Using random forest, the authors suggest that at each tree leaf l, there is a sequence of

M linear candidate models, in which the regressors of each model m, m = 1, ..., M , is a

subset of the regressors belonging to that tree leaf. The regressors Xm
i∈l for each candidate

model within each tree leaf are such that the number of regressors km
l ≪ nl for all m,

where nl is the number of observations in a tree leaf l. Using these candidate models, the

method then performs model average estimation and obtains

β̂l(ω)
(K×1)

=
M∑

m=1
ωm β̃m

l
(K×1)

, (2.5)

which is a weighted average of the “stretched” estimated coefficients β̃m
l for each candidate

model m. The K × 1 sparse coefficient vector β̃m
l is constructed from the km

l × 1 least

squares coefficient vector β̂m
l by filling in the extra K − km

l elements with 0s. Therefore,

the forecast for all observations is

ŷt∈l = Xp
t∈lβ̂l(ω). (2.6)

Model average bagging (MAB) applies model averaging to each of the B samples used to
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construct a bagging tree. In other words, for each bootstrap sample b, there is a sequence

of M linear candidate models, in which the regressors of each model m, m = 1, ..., M , is a

subset of the total number of regressors K. The final MAB forecast is an equally weighted

average of the B model average tree forecasts. One difference between model average

random forests (MARF) and MAB is that MARF only considers k ≤ K predictors for

splitting at each node, so that the candidate model set for each leaf l considers only those k

regressors.

The authors conduct a simulation to assess the relative prediction efficiency of differ-

ent estimators with different sets of covariates. The sample consists of movies released

in North America between October 2010 and June 2013. The data are from the film in-

dustry as well as social media (Twitter), with the latter containing sentiment towards a

particular movie and volume of tweets regarding a particular movie as predictor variables.

The set of estimation strategies evaluated consist of traditional econometric approaches

(including model specification, model selection and model averaging approaches), model

screening approaches, machine learning approaches (regression trees, bagging, and ran-

dom forests), and the proposed model average learning methods (MARF and MAB). The

exercise involves shuffling data into a training set of size nT and an evaluation set of size

nE = n − nT . The training set is used to first obtain estimates from each strategy then

forecast the outcomes for the evaluation set. The evaluation set is used to evaluate each

strategy in terms of mean squared forecast error (MSFE) and mean absolute forecast error

(MAFE), which are defined by

MSFE = 1
nE

(yE − xEβ̂T )′(yE − xEβ̂T ) (2.7)

MAFE = 1
nE

|yE − xEβ̂T |′ιE, (2.8)

where ιE is a nE × 1 vector of ones. This exercise is repeated 10,001 times for varying

sizes of nE .
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A model screening step is applied before all model selection and model average ex-

ercises because, with a large regressor set (23 and 29 for open box office and movie unit

sales respectively), there are millions of potential candidate models (223 = 8, 388, 608 and

229 = 526, 870, 912 respectively). After model screening, 105 and 115 potential models

remain for open box office and retail movie unit sales, respectively. Results are reported

relative to the MSFE and MAFE of model selection by the heteroskedasticity-robust Mal-

lows’ Cp criterion (HRCp), a model selection strategy. The authors find that recursive par-

titioning algorithms like bagging and random forests alone yield on average 30-40% gains

in forecast accuracy relative to econometric approaches that use either a model selection

criteria or model averaging. Out of all the strategies evaluated, MAB performed the best.

Adding model averaging to bagging led to gains of 10%. MARF had relatively moderate

performance. The proposed model average learning methods may perform better relative

to pure econometric approaches because the full set of predictors is considered. Recall that

model screening was used as a preliminary step prior to model averaging and model selec-

tion so that only a subset of variables were used in estimation. However, the authors rule

out this explanation because they found that when MAB and MARF were restricted to the

variables obtained from model screening, there still existed large gains in predictive perfor-

mance of the hybrid strategies relative to econometric strategies. This suggests that these

gains may come from relaxing the linearity assumption rather than from using a larger set

of predictors.

A major drawback of this approach is that it still relies on a set of ad hoc parametric

models. For both MARF and MAB, the final model average learning estimator is based

on a sequence of M linear candidate models. The goal of this chapter is to move away

from parametric model specifications, which may not be flexible enough to approximate

the unknown underlying DGP. While combining machine learning (in particular, recursive

partitioning-based methods) with model averaging may result in improved performance in

this context, in general, a broader set of bases is more desirable in order to encompass a
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wider range of potential DGPs. An alternative recursive partitioning-based algorithm is

considered in the following section.

2.3.2 Multivariate Adaptive Regression Splines

Standard parametric regression requires the researcher to first determine which explanatory

variables to include in the regression, then to explicitly identify and incorporate the specific

degree of interaction for each explanatory variable. Today, given the rise of big data, a

dataset can easily contain dozens, if not hundreds, of variables. Manually determining

if and how each variable enters into the regression equation would be labour-intensive

and the resulting regression equation may not fully capture the underlying DGP when the

researcher is forced to make arbitrary decisions on, for example, the degree of interactions.

Multivariate adaptive regression splines (MARS) (Friedman, 1991b) offers an alterna-

tive approach to standard parametric regression that can potentially capture non-linearities

present in the data. It is a method for flexible nonparametric regression modeling of high

dimensional data using an expansion in product spline basis functions, where the num-

ber of basis functions and the number of parameters are automatically determined by the

data. MARS is able to capture high order interactions and, unlike recursive partitioning,

produces continuous models with continuous derivatives. Although it may produce com-

plex models with high order interactions, the approximating functions are interpretable

through an ANOVA decomposition and visualized by slicing. Additionally, extensions to

MARS enable the algorithm to handle categorical explanatory variables, nested variables,

and missing input values (Friedman, 1991a). Finally, the flexibility and adaptability of

MARS allows the researcher to impose constraints on the final model based on knowl-

edge of the system under study, such as limiting the maximum interaction order or limiting

the specific variables that can participate in interactions. One limitation of MARS is that

the implementation can be computationally demanding; however, updating formulae can

be used to reduce the computational demands (see Friedman, 1993 for details). Another
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limitation is that collinearity may lead to spurious interaction effects.

MARS is an extension of recursive partitioning. Recursive partitioning creates a de-

cision tree that attempts to correctly classify observations by splitting the data into sub-

regions (or partitions) based on independent variables. Partitioning is done through the

recursive splitting of previous sub-regions, beginning with the entire domain and continued

until a stopping criterion is met and a large number of sub-regions have been generated.

Sub-regions are then re-combined in a reverse manner until an optimal set is reached based

on a criterion that penalizes lack of fit and increasing the number of regions. Recursive

partitioning is viewed as a geometrical procedure; however, geometrical elements (such

as regions and splitting) can be replaced with arithmetic counterparts (such as adding and

multiplying). In this way, MARS can be built as a stepwise regression procedure.

Again, let yi = f(Xi) + ϵi, i = 1, ..., n, where yi is the response variable, Xi is a vector

of q explanatory variables, f(·) is the true regression function (i.e. the data generating pro-

cess or DGP), and ϵ is the random error. A challenge is selecting the appropriate functional

class for f̂(Xi), as it should represent the unknown function f(Xi) as accurately as possi-

ble while avoiding overfitting. Let the approximating function be an expansion in a set of

basis functions:

f̂(x) =
M∑

m=1
amBm(x). (2.9)

where the weights am are estimated by minimizing the sum of square residuals (SSR =∑n
i=1(yi − ŷi)2 where yi is the response variable and ŷi are the fitted values) (Hastie, Tib-

shirani, & Friedman, 2009, p. 322).

There are M basis functions Bm that take the following form:

Bm(x) = I[x ∈ Rm], (2.10)

where I[·] is an indicator function and Rm are disjoint sub-regions of the domain D such
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that x ∈ Rm. Given that the sub-regions are disjoint, only one basis function is non-zero

for any point x. The goal is to simultaneously derive a good set of basis functions (in other

words, sub-regions) based on the data and to estimate the parameters of each function in

each sub-region to best fit the data.

The algorithm proceeds as follows. Setting the initial region to the entire domain D, a

forward iterative splitting procedure generates a set of basis functions given a final number

of regions (or basis functions), Mmax. A basis function Bm∗ , predictor variable xv∗ , and

split point or knot t∗ are selected by minimizing the lack-of-fit (LOF) of a model with Bm∗

replaced by its product with the step function H[+(xv∗ − t∗)] and the addition of a new

basis function that is the product of Bm∗ and the reflected step function H[−(xv∗ − t∗)].

This is equivalent to splitting the region Rm∗ on variable v∗ at split point t∗. This produces

basis functions of the form

Bm(x) =
Km∏
k=1

H[skm · (xv(k,m) − tkm)], (2.11)

where H[·] is the step function, Km is the total number splits, or knots, that gave rise to

basis function Bm, skm = ±1 indicates the left/right sense of the associated step function,

v(k, m) = 1, ..., q labels the predictor variables, and tkm is the knot location on each corre-

sponding variable. The optimal number of knots can be selected using cross-validation and

the knot location can be chosen using the so-called TURBO method, a forward stepwise

strategy for knot placement (Friedman & Silverman, 1989).

The forward iterative splitting procedure generates more basis functions than optimal,

deliberately overfitting, to allow for the next step: backwards stepwise deletion. Given

the disjoint sub-regions, removing a single basis function will leave a gap in the predictor

variable space. Thus, backwards stepwise subset selection removes basis functions that

no longer contribute to the accuracy of fit by deleting splits rather than regions (or basis

functions) and selects the final appropriately sized basis function set (M∗) from the set of
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Mmax basis functions. Typically, Mmax = 2M∗. The backwards stepwise subset selection

strategy uses a modified generalized cross-validation criterion (GCV) to select the final

functional estimate:

GCV (M) =
1
n

∑n
i=1[yi − f̂M(xi)]2[
1 − C(M)

n

]2 . (2.12)

The numerator represents LOF and the denominator represents a penalty for increasing

model complexity, defined as C(M) = (d/2 + 1)M + 1, where d is a smoothing parameter

that can be selected by bootstrapping or cross-validation. The model that minimizes this

criterion is taken to be the final model.

A major limitation of recursive partitioning is that the approximating function is discon-

tinuous at sub-region boundaries due to the use of step functions, which severely limits the

accuracy of the approximation. A modification to the aforementioned algorithm that will

produce continuous functions with continuous derivatives is to replace the (discontinuous)

step function H[·] with a (continuous) truncated power basis function of the form

b±
q (x − t) = [±(x − t)]q+, (2.13)

where q is the order of the spline, t is the knot location, and the subscript + indicates

the positive part of the argument. For q > 0, the spline approximation is continuous and

has q − 1 continuous derivatives. The step function H[·] is considered to be a two-sided

truncated power basis function for q = 0 splines. The truncated power basis automatically

selects both the number of knots (Km) (global smoothing) and their locations (t) (local

smoothing) (Friedman & Roosen, 1995).

Another limitation of recursive partitioning is that it is unable to provide good approx-

imations to some simple functions because the curse of dimensionality requires a large

number of basis functions to get a good approximation to functions of low order inter-

actions. Thus, the algorithm is modified so that parent functions Bm∗(x) are simply not
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removed after their split and, consequently, are eligible for further splitting. Previously, a

parent function was removed after its split and replaced with its product with a truncated

power spline basis function (or, in recursive partitioning, the step function H[·]). Friedman

(1991b) also restricts the product associated with each basis function to factors involving

distinct predictor variables. These modification makes MARS more adaptive than recur-

sive partitioning because it allows recursive splitting of all basis functions in the model

instead of only those that are terminal and gives MARS the ability to make good approx-

imations of simple functions, such as linear and additive ones. Finally, Friedman (1991b)

suggests imposing continuity (q) of only the approximating function and its first derivative

and argues that there is little to be gained by imposing continuity beyond that of the first

derivative. These modifications complete the MARS algorithm. After generating Mmaxq

(where, typically, q = 1) multivariate spline basis functions of the form

B(q)
m (x) =

Km∏
k=1

[skm · (xv(k,m) − tkm)]q+. (2.14)

This set of basis functions then undergoes a backwards stepwise deletion strategy to pro-

duce a final set of basis functions. Unlike recursive partitioning, the corresponding regions

of each basis function overlap rather than being disjoint. Thus, removing a basis function

does not produce a hole in the predictor space and so a simple one-at-a-time backward step-

wise procedure, akin to regression subset selection, can be used. This constructs a sequence

of Mmax − 1 models, each one having one less basis function than the previous one in the

sequence. Knot locations associated with this approximation are used to derive a piecewise

cubic basis with continuous derivatives. The “best” model (in terms of LOF) is returned

upon termination.

The final model takes the following form:

f̂(x) = a0 +
M∑

m=1
am

Km∏
k=1

[skm · (xv(k,m) − tkm)]+, (2.15)
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where a0 is the coefficient of the constant basis function B1 = 1, the sum is over the basis

functions Bm, m = 1, ..., M , that survive backwards deletion, and skm = ±1. This model

can be recast into what Friedman (1991b) calls the ANOVA decomposition, which allows

for greater interpretability.

In simulations, the MARS algorithm performs well in terms of predicted squared error

(Friedman, 1991b). The MARS algorithm is flexible, adaptable, and avoids finding struc-

ture when there is none (such as in cases of pure noise or simple additive models). The

main advantage of MARS over existing methodologies is realized in high dimensional set-

tings, but it is also competitive in low dimensions (q ≤ 2). The algorithm is likely to favour

lower order interaction terms, which has an advantage when the true underlying DGP is not

dominated by high order interactions. For small sample sizes, the MARS algorithm will

try to produce models involving lower order interactions, whereas for larger sample sizes,

it will likely favour high order interactions as potential candidates. MARS allows the re-

searcher to specify the maximum interaction order, mi, where mi = 1 is an additive model,

mi = 2 has interactions involving at most 2 variables, and mi = q has no constraints on

the number variables that can enter into interactions.

MARS is a promising method for generating the set of candidate models to be used in

model averaging because it can generate a rich set of basis functions which can then be

combined into a single model. This is an improvement over the candidate models used

in the model average learning methods proposed by Xie and Lehrer, who showed that

combining machine learning and model averaging improved estimator performance. Rather

than combining the bases in the way that Friedman suggests, where the weights am are

estimated by minimizing the SSR, I propose combining the bases using a model average

criterion, such as MMA or JMA.

It is known that the forward iterative splitting procedure produces more bases than op-

timal, after which the set is trimmed to an appropriate size by backwards stepwise deletion,

resulting in M∗ basis functions from an initial set of Mmax. The backwards stepwise dele-
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tion strategy is akin to a model screening step. This means that MARS has the potential to

tie the number of basis functions to the sample size and/or assumed smoothness class, one

of the desirable features of a set of candidate models. However, just like model screening,

the desired number of candidate models is chosen arbitrarily: Mmax = 2M∗, where M∗ is

an integer specified by the researcher .

It seems like the number of parameters is tied to the sample size and assumed smooth-

ness class because the algorithm automatically generates bases based on the data and per-

forms well in simulations. However, we don’t know how this mechanism works exactly (it

is unclear to this author, at least, how exactly the number of parameters is tied to the sample

size and underlying DGP).

2.4 Averaging over Nonparametric Models

Racine, Li, & Zheng (2018) propose a fully nonparametric approach that averages over

mixed-data kernel-weighted spline regressions. The set of candidate models admits both

continuous and categorical predictors. The goal of the proposed approach is to not only

average over a sufficiently rich set of candidate models in order to consistently estimate

a large class of potential DGPs, but to also present a method that is valuable to practi-

tioners who are to working with parametric models. Spline regressions have a number of

advantages, namely that they are global in nature, computationally efficient (as they are a

simple weighted least squares problem), and accessible to those who routinely use least

squares and polynomials, making them a good alternative to parametric candidate mod-

els. Additionally, the B-spline basis functions offer the maximally differentiable spline

basis. However, one major limitation of regression spline methods is that there is a loss

in efficiency due to their inability to handle the presence of categorical predictors without

resorting to sample-splitting. Ma, Racine, & Yang (2015) propose a tensor-product spline

approach that overcomes the efficiency loss from sample-splitting in traditional regression
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splines, is sufficiently flexible to allow for non-linearities, and is asymptotically normal,

allowing for the construction of confidence intervals. Nonparametric mixed-data kernel re-

gression methods have been proposed, but many applied economists resist their use due to

certain drawbacks: they are local, rather than global, approximations; bandwidth selection

is not always straightforward and can be numerically demanding; and it can be difficult

to interpret results. Thus, the tensor-product kernel-weighted spline approach provides a

good alternative to kernel estimators that admit both continuous and categorical predictors.

Racine et al. (2018) make use of the nonparametric approach of Ma et al. (2015) to

generate a flexible set of candidate models for model averaging. Consider a nonparametric

regression model with both continuous and categorical predictors:

Yi = µi + ϵi

= g(Xi, Zi) + ϵi, i = 1, ..., n, (2.16)

where g(·, ·) is an unknown smooth function, X is a q-dimensional vector of continuous

predictors, and Z is an r-dimensional vector of categorical predictors. Note that q < ∞

and r < ∞. Assume without loss of generality that for 1 ≤ l ≤ q, each Xl is distributed

on interval [al, bl] = [0, 1]. Let zs denote the sth component of z, 1 ≤ s ≤ r and as-

sume zs takes cs different values in Ds = {0, 1, ..., cs − 1}, where s = 1, ..., r and cs is

a finite positive constant. To allow for heteroskedasticity, assume E[ϵi|Xi, Zi] = 0 and

E[ϵ2
i |Xi, Zi] = σ2(Xi, Zi) ≡ σ2

i , i = 1, ..., n.

The goal is to approximate µi using M candidate nonparametric regression models to

approximate the regression equation above. For m = 1, ..., M , let the mth candidate model

take the following form:

Yi = g(m)(Xi,(m), Zi,(m)) + ei,(m), i = 1, ..., n, (2.17)

where g(m)(·, ·) is an unknown smooth function, Xi,(m) is a qm-dimensional sub-vector of
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Xi, Zi,(m) is a rm-dimensional sub-vector of Zi, and ei,(m) represents the approximation

error in the mth model.

To handle the presence of both continuous and categorical predictor variables, estimate

each candidate model by tensor product polynomial splines, B(m)(x(m)), weighted by cate-

gorical kernel functions, L(Zi,(m), z(m), λ(m)) (Ma et al., 2015).

To specify the categorical kernel function, let the univariate categorical kernel function

l(Zil,(m), zl,(m), λl,(m)) be defined as follows:

l(Zil,(m), zl,(m), λl,(m)) =


λl,(m) if Zil,(m) ̸= zl,(m),

1 otherwise.
(2.18)

Then the categorical kernel function, L(Zi,(m), z(m), λ(m)), is:

L(Zi,(m), z(m), λ(m)) =
rm∏
l=1

l(Zil,(m), zl,(m), λl,(m))

=
rm∏
l=1

λ
1(Zil,(m) ̸=zl,(m))
l,(m) , (2.19)

where 1(·) is the indicator function, and λ(m) = (λ1,(m), ..., λr(m),(m))′ is the r(m)-

dimensional vector of bandwidths for each categorical predictor.

To specify the tensor product polynomial splines, B(m)(x(m)), let {tjl,l,(m)}
Nl,(m)
jl=1 be a se-

quence of interior knots. Let Kn,l,(m) = Nl,(m)+dl,(m) where Nl,(m) is a pre-selected integer

representing the number of interior knots and dl,(m) is the spline order. Let Bl,(m)(xl,(m)) =

{Bjl,l,(m)(xl,(m)) : 1 − dl,(m) ≤ jl ≤ Nl,(m)} be a basis system of the space Gl,(m) =

G
(dl,(m)−2)
l,(m) of polynomial splines of order dl,(m).

Define the space of tensor product polynomial splines by G(m) = ⊗qm

l=1Gl,(m), where
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G(m) is a linear space of dimension K(m) ≡ Kn,(m) = ∏qm

l=1 Kn,l,(m). Then:

B(m)(x(m)) =
[
{Bj1,...,jqm

(x(m))}
N1,(m),...,Nqm,(m)
j1=1−d1,(m),...,jqm =1−dqm,(m)

]
= B1,(m)(x1,(m)) ⊗ ... ⊗ Bqm,(m)(xqm,(m)) (2.20)

is a basis system of the space G(m), where x(m) = (xl,(m))qm

l=1.

Approximate the function g(m)(x(m), z(m)) by B(m)(x(m))′β(m)(z(m)), where β(m)(z(m))

is a Kn,(m)-dimensional vector with Kn,(m) → ∞ as n → ∞. Estimate β(m)(z(m)) as

follows:

β̂(m)(z(m)) = arg min
β∈RKn,(m)

n∑
i=1

[Yi − B(m)(Xi,(m))′β]2L(Zi,(m), z(m), λ(m)), (2.21)

where B(m)(·) and L(·) are defined above. Thus, ĝ(m)(x(m), z(m)) = B(m)(x(m))′β̂(m)(z(m)).

Let B(m) = [{B(m)(X1,(m)), ..., B(m)(Xn,(m))}′]n×K(m) and L be a diagonal matrix with

L(Zi,(m), z(m), λ(m)), 1 ≤ i ≤ n, as the diagonal entries.

Then β̂(m)(z(m)) can be written as as a linear function of Y :

β̂(m)(z(m)) = (B′
(m)Lz(m)B(m))−1B′

(m)Lz(m)Y. (2.22)

Thus, the estimator is simply a weighted least squares estimator where the continuous

predictors have been replaced by their B-spline representations.

With this, µi,(m) can be estimated by:

µ̂i,(m) = B(m)(Xi,(m))′β̂(m)(Zi,(m))

= B(m)(Xi,(m))′(B′
(m)LZi,(m)B(m))−1B′

(m)LZi,(m)Y. (2.23)

This can be expressed as µ̂(m) = P(m)Y where µ̂(m) = (µ̂1,(m), ..., µ̂n,(m))′ and P(m) is a n-

dimensional square matrix with the ith row vector being B(m)(Xi,(m))′(B′
(m)LZi,(m)B(m))−1B′

(m)LZi,(m) .
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Note that the number of interior knots, Nl,(m), as well as the bandwidths, λ(m), can be

jointly selected by minimizing a cross-validation criterion:

CV(N, λ) = 1
n

n∑
i=1

(Yi − Bd(Xi)′β̂−i(Zi))2, (2.24)

where β̂−i(Zi) is the leave-one-out estimate of β. Ma et al. (2015) illustrate the finite-

sample behaviour of the fully data-driven cross-validation selection of N and λ by consid-

ering four simple DGPs, using the cubic B-spline basis throughout. The results show that

the choices of N and λ differ depending on the DGP; larger values of λ are selected when

Zi is independent of Yi. This method is computationally more efficient than multivariate

cross-validated kernel regression.

Once each candidate model has been estimated by tensor product polynomial splines,

the next step in this procedure is to select the model weights. Let ω = (ω1, ..., ωM)′ be

the weight vector, and let 0 ≤ ωm ≤ 1, m = 1, ..., M and
∑M

m=1 ωm = 1. Let P (ω) =∑M
m=1 ωmP(m). Then the model average estimator of µ is given by

µ̂(ω) =
M∑

m=1
ωmµ̂(m)

= P (ω)Y. (2.25)

Racine et al. (2018) propose a Mallows-type criterion for selecting the model weights:

Cn(ω) = 1
n

||P (ω)Y − Y ||2 + 2
n

tr[P (ω)Ω], (2.26)

where Ω = E[ϵϵ′] = diag(σ2
1, ..., σ2

n)is the variance-covariance matrix of the highest dimen-

sion model. When Ω is known, the optimal choice of the weight vector is given by

ω̃ = arg min
ω

Cn(ω). (2.27)
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In this case, the optimal model average estimator of µ is µ̂(ω̃) = P (ω̃)Y . Under certain

regularity conditions, the weight vector ω̃ is asymptotically optimal.

When Ω is unknown, the feasible Mallows-type criterion is:

Ĉn(ω) = 1
n

||P (ω)Y − Y ||2 + 2
n

tr[P (ω)Ω̂(ω)] (2.28)

where Ω̂(ω) = diag(ϵ̂2
1(ω), ..., ϵ̂2

n(ω)) and the new optimal weights are:

ω̂ = arg min
ω

Ĉn(ω). (2.29)

In this case, the optimal model average estimator of µ is µ̂(ω̂) = P (ω̂)Y . The weight

vector ω̂ is (still) asymptotically optimal.

2.4.1 Evidence from Monte Carlo Experiments and Empirical Exam-

ples

Racine et al. (2018) conduct two Monte Carlo experiments to assess the finite-sample

performance of the proposed kernel-weight spline model average approach. The data gen-

erating process (DGP) was chosen to be:

y = x1 + x2 + x1x2 + x2
1 + x2

2 + x3 + x1x3 + x2x3 + x4 + x1x4 + x2x4 + ϵ, (2.30)

where x1, x2, x4 are continuously distributed as U[−1, 1] and x3 has discrete support, gen-

erated from the binomial distribution with n = 3 and p = 1/2.

In the first experiment, there were six under-specified candidate models that include
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different combinations of the independent variables:

Model 1: yi = g1(x1i) + ϵi (2.31)

Model 2: yi = g2(x2i) + ϵi (2.32)

Model 3: yi = g4(x1i, x2i) + ϵi (2.33)

Model 4: yi = g5(x1i, x3i) + ϵi (2.34)

Model 5: yi = g6(x2i, x3i) + ϵi (2.35)

Model 6: yi = g(x1i, x3i, x3i) + ϵi (2.36)

For each candidate model, cross-validation was used to select the degree of the tensor

spline as well as the smoothing parameter for the discrete predictor, then each model was

estimated by the nonparametric method described previously. Weights were assigned to

each model using the Mallows-type criterion Ĉn(ω). This exercise was repeated 1,000

times. The kernel-weight spline approach was then compared in terms of mean MSE (over

1,000 replications) to model selection using the AIC, model selection using the BIC, model

selection using Mallows’ Cp, and, finally, the largest model. The authors find that their

proposed model averaging approach has the smallest estimation mean MSE in all cases.

In the second Monte Carlo experiment, the set of candidate models contains the true

model, which coincides with the largest model. The experiment uses the same DGP and the

same set of candidate models as the first experiment, with the exception that x4 is removed

from the DGP and set of candidate models. Following the same steps of the first Monte

Carlo, the authors find that even when the true model is included in the set of candidate

models (which would be highly unlikely in reality), model averaging can outperform model

selection in small sample settings.

In an empirical setting, the authors use panel data to model the growth rates of per

capita GDP using panel data for countries. The predictors are OECD status (categorical),

human capital (continuous), and initial GDP (continuous). The data were shuffled into two
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samples, one of size n1 = 600 and the other of size n2 = 16, where n1 were used for es-

timation and n2 were used to evaluate predictive performance. This exercise was repeated

1,000 times. The proposed kernel-weighted regression spline model average approach was

compared in terms of mean predicted square error (PSE) to models selected by AIC, BIC,

and Mallows’ Cp, as well as the largest model. They use the same set of candidate models

as in the Monte Carlo experiments (described above). Their results show that no model

selection method does better than the proposed kernel-weighted spline regression model

averaging approach, and all six candidate models receive non-zero model weights, indicat-

ing the presence of model uncertainty.

2.4.2 Heuristics

The goal of this chapter is to recommend a method for generating an ideal set of candidate

models to be used in model averaging. This is an important step when dealing with model

uncertainty, as the resulting model average estimator will inherit properties from the candi-

date models. However, the selection of the candidate models is typically done in an ad hoc

manner. The nonparametric kernel-weighted spline regression model average approach de-

scribed above produces a rich set of candidate models that are able to capture a wide range

of potential DGPs. This method is fully data-driven and does not rely on arbitrary deci-

sions on the part of the researcher. In this section, some heuristics are developed in order

to satisfy the three features of an ideal set of candidate models, which are repeated below:

1. number of candidate models (M ) tied to the sample size (n) and assumed smoothness

class (DGP),

2. number of parameters tied to the sample size and assumed smoothness class, and

3. a broad set of functions (“bases”) to cover a wide range of potential DGPs that are

simple enough to average over.

Additionally, some suggestions are made to mitigate the curse of dimensionality that may

arise when automatically generating a large set of complex candidate models with many
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parameters to be estimated, as well as to improve computation time. None of these recom-

mendations substantially change the performance of the resulting estimator.

In order for the number of candidate models (M ) to be tied to the sample size and as-

sumed smoothness class, use an information criterion, such as AIC or BIC, to automatically

reduce the number of candidate models if the number of candidate models exceeds some

preset maximum number of candidate models (Mmax). This is essentially a model screening

step. The suggested value for the maximum number of candidate models is Mmax = 2500.

This retains degrees of freedom and reduces computation time. This should not signif-

icantly affect the performance of the resulting model average estimator. Future work is

needed to tie this maximum number of candidate models to the sample size and assumed

smoothness class.

Similarly, it is recommended to restrict the maximum dimension for each candidate

model in order to tie the number of parameters to the sample size and assumed smoothness

class. The suggested value for the maximum dimension is pmax = 5000. Future work

should specify the maximum dimension in such a way that it is tied to the sample size and

assumed smoothness class.

The nonparametric kernel-weighted spline regression produces a rich set of candidate

models – or “bases” – that are flexible enough to cover a wide range of DGPs. The re-

searcher can use an information criterion, such as AIC or BIC, to automatically select the

basis function type for each candidate model. Three basis function types are recommended:

1. Tensor product basis: the most flexible of the three options and the one used by

Racine et al. (2018). However, this may limit degrees of freedom quickly due to the

large number of parameters to be estimated as the dimension of the model increases.

2. Generalized Taylor polynomial (e.g. with two predictors, y = f(x1, x2) = f(a, b) +

fx(a, b)(x − a) + fy(a, b)(y − b) + 1
2!

[
fxx(a, b)(x − a)2 + 2fxy(a, b)(x − a)(y − b) +

fyy(y − b)2
]

+ ...).

3. Additive basis: allows for non-linearities in the predictors, but imposes additivity be-
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tween terms, making it the least flexible basis function type (e.g. with two predictors,

y = f(x1) + f(x2)).

The bases are of the Bernstein polynomial class, as opposed to raw polynomials, and allow

for differing degrees across multivariate predictors. When there are two or more continuous

predictors, the generalized Taylor polynomial includes interaction terms up to the degree

minus one. If the researcher has some preexisting knowledge about the underlying structure

of the relationship between variables, the researcher can specify the desired basis function

type for each candidate model; however, the recommended approach is to automatically

select the basis function type based on the data. Additionally, this approach allows for all

possible combinations of degrees, segments, knots, and bandwidth values of the explana-

tory variables to be attempted. If the researcher has some pre-existing knowledge about the

underlying structure of the data, or wishes to restrict this option due to data limitations (for

example, a small sample size), this can be changed so that it is restricted to combinations

between only certain parameters or values in order to retain degrees of freedom.

To specify the tensor product polynomial splines, a sequence of interior knots can be

included. When interior knots are included, the Bernstein polynomials become B-spline

bases. The suggested increment in segments sequence is 2, the minimum number of seg-

ments is 1 (which is the number of knots minus 1; there always exist at least 2 knots, the

endpoints), and the maximum number of segments is 3 by default (which is the number of

knots plus 1).

If the set of explanatory variables includes categorical variables – which would be ex-

pected for many empirical applications – a kernel function is included in the construction

of the set of candidate models, so that this method admits both categorical and continuous

variables (Ma et al., 2015; Racine et al., 2018). These kernel weight functions have smooth-

ing parameters or bandwidths (λ) associated with each categorical predictor. The largest

value for the smoothing parameters can be specified, such that 0 ≥ λ ≤ 1. Additionally,

the maximum value for the smoothing parameter grid in each dimension can be specified.

72



Ph.D. Thesis - C. Simardone; McMaster University - Economics

The suggested value is max(2, ceiling(log(n) − Slog(1 + p))), where p is the number of

categorical predictors and n is the number of observations. The suggested value for S is

2. Categorical predictors can enter a model either additively and linearly (in which case,

only the intercept would be allowed to shift) or in a semi-parametric varying coefficient

structure (in which case, all parameters would be allowed to shift). It is recommended to

allow categorical variables to enter a model with a varying coefficient specification to allow

for greater flexibility in the model specification.

It is recommended to specify a maximum value for the basis degree in each dimension.

The suggested value is max(2, ceiling(log(n) − Slog(1 + k))), where k is the number of

continuous predictors and n is the number of observations. The suggested value for S is 1.

The minimum value for the basis degree in each dimension can also be specified, with the

suggested value being 0. Additionally, the increment in degree sequence can be specified,

with the suggested value being 2.

In frequentist model averaging (FMA), a number of criteria can be used to estimate

the model average weights, including, but not limited to, AIC, BIC, the focused informa-

tion criterion (FIC; Claeskens & Hjort, 2003), Mallows’ model average criterion (MMA;

Hansen, 2007), and the jackknife model average criterion (JMA; Hansen & Racine, 2012).

It is recommended that the researcher specify a cutoff below which a model weight is es-

sentially zero. The suggested value for this cutoff is 10−4 = 0.0001. Typically, the sum of

the model average model weights is restricted such that
∑M

m=1 ωm = 1, though this is not,

strictly speaking, necessary.

When derivatives are required, one must specify the order thereof. For most applica-

tions, the order of the derivative is typically set to 1, but can be set to any value, if required.

Since this method averages over models that are nonlinear in the predictors, the derivatives

will be vectors, rather than constants, functions that potentially depend on the values of all

predictors.

This approach frees the user from using either model assertion or selection methods
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and thereby attenuates bias arising from model misspecification. Simulations reveal that

this approach is competitive with some semi- and nonparametric approaches. Because it

uses only least squares fits, it can be more computationally efficient than its nonparametric

counterparts. The goal here is consistent estimations, hence the emphasis on basis function

complexity, sample size, and number of predictors.

2.5 Monte Carlo Experiment

The approaches discussed in this chapter hold promise for being able to generate a set of

candidate models based on the data that have the three key features previously mentioned

(number of candidate models tied to the sample size and assumed smoothness class, num-

ber of parameters tied to the sample size and assumed smoothness class, and a broad set

of bases to cover a wide range of potential DGPs that are simple enough to average over).

While more work needs to be done to fulfill these criteria, the three approaches studied here

– model screening, recursive partitioning, and model averaging over nonparametric mod-

els – are an improvement to the current practice of writing down a handful of parametric

models in an ad hoc manner as the candidate models used in model averaging.

In this section, I conduct a Monte Carlo experiment to evaluate the relative perfor-

mance of the approaches discussed in this chapter. The goal of this exercise is to determine

whether one method – if any – performs better than the others. I compare model averaging

over a set of parametric models (with no model screening), the nonparametric approach that

automatically selects the basis function type for each basis used in model averaging (Racine

et al., 2018), and the recursive-partitioning-based MARS algorithm (Friedman, 1991b).

Following the heuristics described in Section 2.4.2, a model screening step is included in

the nonparametric model average approach; however, the default value for the maximum

number of candidate models is Mmax = 2500, which does not bind in this Monte Carlo

experiment. Therefore, this Monte Carlo experiment does not include a model screening
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step. See Section 2.5.2 for the results when a model screening step is included.

The data generating process (DGP) is set to be:

f(x) = 1 + x1 + x2 + x1x2 + x2
1 + x2

2 + x3 + x1x3 + x2x3 + x4 + x1x4 + x2x4

σf(x)
, (2.37)

where x1, x2, x4 are continuously distributed as N(0, 1) and x3 has discrete support, gener-

ated from the binomial distribution with n = 3 (number of trials) and p = 1/2 (probability

of success). The response variable y is chosen to be y = f(x) + ϵ where ϵ ∼ N(0, σϵ =

cσf(x)) and c ∈ {0.25, 0.50, 1.0, 2.0} determines the signal-to-noise ratio (SNR). I take

n = 100 random draws for each variable from their respective distributions.

R (version 4.0.2) is used throughout for ease of replicability. The following packages

are used:

• quadprog, “Functions to Solve Quadratic Programming Problems” (version 1.5-

8), contains functions to solve quadratic programming problems and is used to solve

for the model average weights,

• ma, “Model Averaging” (version 1.0-8), contains functions to implement the non-

parametric model average approach using a variety of multivariate bases, and

• earth, “Multivariate Adaptive Regression Splines” (version 5.3.0), contains func-

tions to build a regression model using MARS (Friedman, 1991b).

The default heuristics described in Section 2.4.2 are used for the nonparametric model

average approach. See Section 2.5.2 for the results when these heuristics are altered. Both

the nonparametric model average approach and model averaging over parametric candidate

models use Mallows’ Model Average (MMA) criterion (Hansen, 2007) to select the model

average weights. The MMA criterion is defined as follows:

Cn(ω) = ω′Ê
′
Êω + 2σ̂2K ′ω, (2.38)
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where Ê is the n × M matrix with columns containing the residual vector from the mth

candidate model, σ̂2 is the estimated variance from the largest dimensional model, and K

is the M ×1 vector of the number of parameters in each model. The MMA criterion is used

to solve for the weight vector, ω̂ = argminwCn(ω), which can be solved using quadratic

programming. Note that M may differ between approaches as well as from replication to

replication when using the nonparametric model average approach.

The following heuristics are followed for the MARS algorithm, which were chosen

based on the default parameter values specified by Friedman (1991b). For the forward it-

erative splitting procedure, the maximum degree of the interaction can be specified, with

the default value being 1, which specifies an additive model with no interaction terms. The

GCV penalty per knot has a default value of 3 when the maximum degree of the interac-

tion is greater than 1, and 2 otherwise. Simulation studies suggest a range of between 2

and 4. The maximum number of model terms (including the intercept) before the back-

wards stepwise deletion strategy is employed is calculated from the number of predictors

and the maximum degree of interactions permitted. The default value for the forward step-

ping threshold is 0.001. This determines the stopping rule: the forward iterative splitting

procedure ends when the addition of a term changes the R2 value by less than 0.001.

The default value for the maximum number of terms (including the intercept) included

in the backwards stepwise deletion strategy is all terms created by the forward procedure.

Note that this is different from the final terms in the model after backwards elimination.

This can be adjusted to enforce an upper bound on the final model size.

There are M = 6 parametric candidate models, which do not include the true DGP and
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are estimated by ordinary least squares (OLS). They are:

Model 1: y = x1 + ϵ1 (2.39)

Model 2: y = x1 + x2 + ϵ2 (2.40)

Model 3: y = x1 + x3 + ϵ3 (2.41)

Model 4: y = x1 + x4 + ϵ4 (2.42)

Model 5: y = x1 + x2 + x3 + ϵ5 (2.43)

Model 6: y = x1 + x2 + x3 + x4 + ϵ6 (2.44)

This exercise is repeated 1000 times. The average mean squared error (MSE) over 1000

replications is used as the performance metric to compare these approaches. The MSE is

computed as follows:

MSE = 1
n

n∑
i=1

(
DGPi − ŷi

)2
, i = 1, ...n, (2.45)

where DGPi is the DGP (defined above) and ŷi are the fitted values from each method.

2.5.1 Results

Figure 2.1 shows box-and-whisker plots of the MSE for each method across variations in

the SNR over 1,000 Monte Carlo replications (Tukey, 1970).2 Recall that the response

variable y is chosen to be y = f(x)+ ϵ where f(x) = 1+(x1 +x2 +x1x2 +x2
1 +x2

2 +x3 +

x1x3+x2x3+x4+x1x4+x2x4)/σf(x), ϵ ∼ N(0, σϵ = cσf(x)) and c ∈ {0.25, 0.50, 1.0, 2.0}

determines the SNR. From the top left plot to the bottom right plot, the SNR decreases. The

plots show that as the SNR decreases, the MSE of each method increases, as one would

expect since adding more noise increases MSE ceteris paribus. It is clear from the plots that

in all cases except for the bottom right plot, where the SNR is very low, the nonparametric
2A box-and-whisker plot is a nonparametric method of displaying data that offers a graphical overview of

the data by summarizing key features such as the median and upper and lower quartiles.
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model average method performs the best in terms of MSE relative to model averaging

over parametric models and the MARS algorithm. The MARS algorithm performs second

best, while model averaging over ad hoc parametric models performs the worst in almost

every case. This suggests that the nonparametric model averaging method discussed in this

chapter may perform the best relative to other methods, unless the SNR is low, in which

case it does not appear to offer any significant gains in MSE over model averaging over

parametric models nor the MARS algorithm.
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Figure 2.1: Box-and-whisker plot of MSE of each approach over 1,000
Monte Carlo replications across variations in the signal-to-noise ratio
(SNR). The approaches are nonparametric model averaging (NPMA),
model averaging over parametric models (MA), and multivariate adap-
tive regression spline (MARS). The response variable y is chosen to be
y = f(x) + ϵ where ϵ ∼ N(0, σϵ = cσf(x)) and c ∈ {0.25, 0.50, 1.0, 2.0}
determines the signal-to-noise ratio. (Top left: 0.25σ. Top right: 0.50σ.
Bottom left: 1.0σ. Bottom right: 2.0σ.)

Table 2.1 shows the mean MSE over 1,000 replications for each method across varia-
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tions in the SNR. Overall, the nonparametric model average method performs the best in

terms of mean MSE compared to the other two methods, except when the SNR is very low

(fourth column). For example, when the SNR is very high (column 1), the nonparametric

model average method performs extremely well, with a mean MSE of 0.0423248, com-

pared to the MARS algorithm (0.1735796) and model averaging over parametric models

(0.3503931). The MARS algorithm performs second best in every case except when the

SNR is very low. When the SNR is very low, model averaging over parametric models

outperforms the nonparametric model averaging method as well as the MARS algorithm

with a mean MSE of 0.6021255; however, given its extremely poor performance relative to

the other methods in other cases, this method is not recommended. From this Monte Carlo

Table 2.1: Mean MSE for each approach over 1,000 Monte Carlo replica-
tions (no model screening).

0.25σ 0.50σ 1.0σ 2.0σ

NPMA 0.0423 0.0963 0.2520 0.7334
MA 0.3504 0.3631 0.4216 0.6021
MARS 0.1736 0.2155 0.3471 0.7421

experiment, the one method that performs better than the others in terms of MSE in almost

every case is the nonparametric model averaging approach that automatically selects the

basis function type for each basis. As previously discussed, this approach improves upon

the standard practice of selecting a set of candidate models in an ad hoc manner by tak-

ing this arbitrary decision-making out of the hands of the researcher and, instead, using a

data-driven method to select the candidate models (or bases). This Monte Carlo experiment

shows that even compared to other promising methods, such as recursive-partitioning-based

approaches like the MARS algorithm, the nonparametric approach to model averaging has

the best performance overall.
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2.5.2 Results with Model Screening

The previous exercise compared the performance of model averaging over parametric mod-

els, the nonparametric approach that automatically selects the basis function type for each

basis used in model averaging (Racine et al., 2018), and the MARS algorithm (Friedman,

1991b) with no model screening. I repeat this Monte Carlo experiment but, this time, I

include a model screening step prior to the nonparametric model average approach to see

if and how performance in terms of MSE and mean MSE changes. Model screening is not

applied to the set of parametric models, as the set is already very small. Model screening

is also not applied to the MARS algorithm, as it has its own model screening step through

the use of a backwards elimination procedure.

The suggested value for the maximum number of candidate models for the nonpara-

metric model average approach is Mmax = 2500. This value is not binding for this Monte

Carlo experiment. As such, I change the maximum number of candidate models to be

Mmax = 100. This maximum is binding, as the number of candidate models generated in

this Monte Carlo experiment typically exceeds 100.

Figure 2.2 shows a box-and-whisker plot of the MSE for each method in the Monte

Carlo experiment from Section 2.5 as well as the nonparametric model average approach

with model screening across variations in the SNR over 1,000 Monte Carlo replications.
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Figure 2.2: Box-and-whisker plot of MSE of each method, including NPMA
with model screening (NPMA+MS), over 1,000 Monte Carlo replications
across variations in SNR. (Top left: 0.25σ. Top right: 0.50σ. Bottom left:
1.0σ. Bottom right: 2.0σ.)

Table 2.2 shows the mean MSE over 1,000 Monte Carlo replications. The MSE of the

nonparametric model average approach with model screening is slightly higher than that of

the nonparametric model average approach without model screening. However, the differ-

ence is not substantial. Therefore, based on the results of this experiment, model screening

appears to be a tool for reducing computation time rather than one to improve performance.

It is important to note that this simulation had very few variables. Model screening would

likely demonstrate its value in cases where there are many possible candidate models or

many possible variables by significantly reducing computation time without significantly

deteriorating performance.
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Table 2.2: Mean MSE over 1,000 Monte Carlo replications (including
model screening).

0.25σ 0.50σ 1.0σ 2.0σ

NPMA 0.0423 0.0963 0.2520 0.7334
MA 0.3504 0.3631 0.4216 0.6021
MARS 0.1736 0.2155 0.3471 0.7421
NPMA with model screening 0.0423 0.0963 0.2520 0.7334

2.6 Conclusion

This chapter reviewed three promising approaches for building an improved set of candi-

date models for model averaging. Selecting the candidate models is an important, but often

overlooked, step, as the resulting model average estimator will inherit its properties from

these candidate models. The standard practice of simply writing down a handful of para-

metric candidate models is not sufficient in building a rich set of candidate models, as it

relies on ad hoc decisions on the part of the researcher. The three ideal features of a set of

candidate models were identified to be:

1. number of candidate models tied to the sample size and assumed smoothness class,

2. number of parameters tied to the sample size and assumed smoothness class, and

3. a broad set of functions, or “bases”, to cover a wide range of potential DGPs that are

simple enough to average over.

I studied model screening, recursive partitioning-based algorithms such as multivariate

adaptive regression splines (Friedman, 1991b), and a nonparametric approach to model

averaging that automatically selects the basis function type based on the data (Racine et al.,

2018). None of these approaches alone can build a set of candidate models that satisfies all

the criteria listed above; however, these approaches are an improvement to model averaging

over a set of arbitrarily chosen parametric candidate models. The Monte Carlo experiment

demonstrates that the nonparametric model averaging approach performs the best in terms

of MSE compared to model averaging over parametric models and the MARS algorithm in
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almost every case. Model screening can be added as a means of decreasing computation

time without deteriorating performance. With more work, these approaches can be adapted

to produce a set of candidate models that fulfill the desirable criteria for a set of candidate

models to be used in model averaging.
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Chapter 3

Model Averaging and Machine Learning

Analysis of Employment Among Parents

in Canada during the COVID-19

Pandemic

3.1 Introduction

It is crucial to have robust estimates and predictions, especially when these results influ-

ence policy. Economists almost universally report uncertainty in parameter estimates by

reporting, for example, confidence intervals or standard errors. However, it is unusual for

empirical economists to acknowledge uncertainty in the selected model. Sometimes, em-

piricists will report the results from more than one model, but then it is unclear which results

should be used for reports and policy making, especially when results across models differ.

At most, researchers will sometimes conduct a model misspecification test to acknowledge

model uncertainty, i.e., the probability that one’s model is incorrectly specified. But when

a model is rejected by the data, it is unclear how to proceed.
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In this chapter, I use robust statistical methods such as model selection, model averag-

ing, and machine learning algorithms to assess the uncertainty inherent in model choice in

an applied setting. This chapter applies the methods discussed in depth in chapter 1 to cur-

rently timely microdata. I use model selection, model averaging, and the lasso along with

data from the Canadian Labour Force Survey to determine which model or combination of

models is best for assessing the impacts of the COVID-19 pandemic on the employment

of parents with young children in Canada during the first six months of the COVID-19

pandemic. Model selection methods acknowledge the uncertainty in the model chosen by

using a criterion to select the “best” or least misspecified model among a finite set of candi-

date models. Model averaging acknowledges model uncertainty by constructing a weighted

average over a set of candidate models. Model averaging has been shown to produce more

robust results while requiring fewer assumptions than standard econometric approaches

that use parametric models (Hansen, 2007; Hoeting et al., 1999). Additionally, model av-

eraging cannot be expected to do any worse than any one model in the set of candidate

models in the presence of model uncertainty. The lasso is itself a model selection exercise

that takes a large, unrestricted model and performs selection on variables to select a final

model.

I find that model selection and model averaging converge to select one model from the

finite set of parametric models considered in this analysis. The largest and second largest

models are chosen using different model selection criteria and across different subsamples

with different dependent variables. The largest model is assigned a weight of 1 by model

averaging across all subsamples and with different dependent variables. I compare each

model and method using correct classification rates (CCR) and receiver operating charac-

teristic (ROC) curves. I find that the models selected by model selection and model aver-

aging as well as the lasso model perform better in terms of classification compared to the

simpler parametric model specifications, which suggests that empirical researchers should

consider statistical methods for the choice of model rather than relying on ad hoc decision
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making. Additionally, I find that the choice of model matters. I estimate the marginal effect

of sex on the probability of being employed over six months and find that the results differ

in magnitude across models in an economically important way, as these results could affect

policies for post-pandemic recovery.

This chapter proceeds as follows. Section 3.2 describes the data used. Section 3.3 gives

an overview of the impact of the COVID-19 pandemic at the time of writing this chapter.

Section 3.4 describes the methods used. Section 3.5 presents and discusses the results from

using each method. Section 3.6 concludes.

3.2 Data

I use data from Statistics Canada’s Labour Force Survey (LFS) public use microdata files.

The LFS is a monthly survey with a cross-sectional design, sampling approximately 54,000

Canadian households every month. It is nationally representative data on the Canadian

working-age population when weighted. Responses are recorded for each month with the

outcomes for a single week, typically the 15th of the month. I use data from February 2020

to August 2020 which covers the period of school closures for the 2019-2020 academic

school year caused by the COVID-19 pandemic. The sample is weighted using the survey

weights included in the LFS public use microdata. I restrict my sample to adults aged 20-

64 years with a strong attachment to the labour force (that is, individuals that were either

currently employed or employed within the last year at the time of the survey) and with

a youngest child aged 0-12 years, to focus on parents with the greatest childcare respon-

sibilities. This brings my sample size to 95436. I then split the sample by the age of the

youngest child, so that I have two subsamples. The first subsample includes parents whose

youngest child is under 6 years (preschool-aged) and the second subsample includes par-

ents whose youngest child is 6-12 years (school-aged). Evaluating these two subsamples

will provide insights regarding whether parents with school-aged or preschool-aged chil-
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dren are more heavily impacted by the pandemic, or if both were impacted equally. The

subsample sizes are 51244 for parents of preschool-aged children and 44192 for parents of

school-aged children.

Table 3.1 displays summary statistics for the dependent and explanatory variables used

in the candidate model set for model selection and model averaging, as well as in the lasso

regression. My main dependent variable is an indicator of employment (1 = employed, 0

= otherwise), which includes individuals who are employed and at work or employed and

absent from work. Because employment is likely over-stated during the early months of the

COVID-19 pandemic due to individuals retaining their employment status but being absent

from work or reporting reduced pay or hours of work, I consider an alternative measure

of employment for my dependent variable: an indicator for being employed and at work

(1 = employed and at work, 0 = otherwise), which excludes individuals who are absent

from work. This measure can better capture the changes in the labour market activity in

Canada that would be masked by the traditional measure of employment, which is impor-

tant because individuals who are employed but absent from work are at greater risk of being

separated from their employer.

The explanatory variables included in my analysis are:

• survey month of LFS,

• sex of respondent,

• highest education level of respondent,

• age group of respondent,

• marital status of respondent,

• immigration status of respondent,

• province of residence of respondent,

• occupation of main job (40 categories),

• industry of main job (21 categories),

• category of main job,
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• full-time or part-time status of main job1,

• job tenure with current employer (in months)2, and

• type of economic family (8 categories).

The average job tenure with the current employer is 74 months for parents with a youngest

child under 6 years and 101 months for parents with a youngest child 6-12 years. The

proportions of individuals in the sample in various occupations and industries can be found

in the Appendix (Section 3.7).

A limitation of the LFS is that there are no data on important demographic character-

istics that would likely affect employment, such as race or total number of children in the

household, nor data on important market variables, such as vacancies. Additionally, there

are no data for the territories, thus any results from the LFS cannot be extrapolated to the

populations of the Northwest Territories, Nunavut, or Yukon.

Table 3.1: Summary statistics for Labour Force Survey subsamples of indi-
viduals aged 20-64 years, currently employed or employed within the last
year, and with a youngest child aged under 6 years (preschool subsample)
or 6-12 years (school subsample).

Description Preschool (Percent) School (Percent)

Employment

Not employed 10.69 10.09

Employed 89.31 89.91

Employed and at work

Not employed or employed but absent

from work

29.76 23.46

(continued . . . )
1For individuals who were not currently employed but were employed within the past year, full- or part-

time status of current employment, which had missing observations, was replaced with full- or part-time
status of previous employment.

2For individuals who were not currently employed but were employed within the past year, tenure with
current employer, which had missing observations, was replaced with tenure with previous employer.
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Table 3.1: Summary statistics for Labour Force Survey subsamples.

Description Preschool (Percent) School (Percent)

Employed and at work 70.24 76.54

Sex

Male 52.07 48.25

Female 47.93 51.75

Education

0-8 years 0.97 0.77

Some high school 3.57 3.73

High school 13.47 14.52

Some postsecondary 3.84 3.75

Postsecondary 40.43 41.27

Bachelor’s 25.18 23.77

Above bachelor’s 12.55 12.18

Age

20-24 2.11 0.13

25-29 12.34 1.43

30-34 30.64 7.23

35-39 33.20 23.70

40-44 16.24 34.05

45-49 4.13 23.17

50-54 0.95 7.89

55-59 0.39 1.85

60-64 0.01 0.55

Marital status

(continued . . . )
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Table 3.1: Summary statistics for Labour Force Survey subsamples.

Description Preschool (Percent) School (Percent)

Married 68.84 70.33

Common-law 25.23 16.23

Widowed 0.09 0.35

Separated 1.49 3.96

Divorced 0.47 3.07

Single 3.89 6.06

Immigration status

Immigrant, <10 years 11.76 7.37

Immigrant, >10 years 9.16 14.03

Non-immigrant 79.07 78.60

Province

NL 2.47 2.72

PE 2.77 2.84

NS 4.03 4.13

NB 3.79 4.99

QC 19.89 18.62

ON 26.82 28.05

MB 9.42 8.59

SK 7.97 7.72

AB 12.32 11.33

BC 10.53 11.00

Job category

Public 27.63 29.40

(continued . . . )
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Table 3.1: Summary statistics for Labour Force Survey subsamples.

Description Preschool (Percent) School (Percent)

Private 59.02 55.30

Self-employed 13.30 15.25

Unpaid family worker 0.04 0.05

Full- or part-time status

Full-time 86.84 86.52

Part-time 13.16 13.48

Type of economic family

Dual-earner couple, youngest child

0-17 years

68.09 65.53

Single-earner couple, male employed,

youngest child 0-17 years

16.58 12.77

Single-earner couple, female employed,

youngest child 0-17 years

6.26 5.84

Non-earner couple, youngest child 0-17

years

2.76 1.86

Lone-parent family, parent employed,

youngest child 0-17 years

5.15 11.97

Lone-parent family, parent not

employed, youngest child 0-17 years

1.15 2.03

Other families 0.01 0.01
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3.3 Initial Impact of the COVID-19 Pandemic on Canadi-

ans

The COVID-19 pandemic caused unprecedented declines in employment and aggregate

hours worked across Canada. Between February 2020 and April 2020, the employment

rate dropped sharply by 15 percent, after adjusting for usual changes in employment during

those months, which largely came from a decrease in employment in jobs that are not

amenable to working from home and jobs in non-essential industries (Lemieux, Milligan,

Schirle, & Skuterud, 2020). This resulted in both an increase in the unemployment rate

and a decrease in the labour force participation rate. Jones, Lange, Ridell, & Warman

(2020) estimate that approximately 45 percent of job losers transitioned to unemployment

while 55 percent of job losers exited the labour force entirely. The unemployment rate

nearly doubled in April 2020 compared to the pre-pandemic early-2020 rate due to an

increase in temporary layoffs, and then declined slightly in May 2020. Most unemployed

individuals were waiting to be recalled to former jobs and, consequently, not searching for

work. However, search unemployment has been increasing, likely due to the decline in

labour demand making it even more difficult to find employment.

The decline in employment understates the decline in actual work performed in April

and May 2020, as approximately 8 to 9 percent of the population reported full-week ab-

sences from work during that time period. Of those individuals who were employed but

absent from work for a full week, approximately half were not being paid. By May 2020,

paid absences had returned to pre-pandemic levels; however, unpaid absences continued

to be unusually high. Individuals who were not being paid nor being productive but still

reported an attachment to their employer may be vulnerable to separation from their em-

ployer, which may be contributing to the rise in search unemployment. Additionally, data

on vacancies, provided by Employment and Social Development Canada, show that there

was a 50 percent drop in labour demand from March to April 2020, with a small recovery
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in May and June. The increase in search unemployment and decrease in labour demand

makes it more difficult for individuals to find employment. Thus, standard measures of

unemployment or employment are not useful for evaluating the changes in work during the

COVID-19 pandemic because many workers were either laid off but waiting to be recalled,

transitioned from employment to non-participation while waiting to be recalled, or retained

as an employee but absent from work, marked by a substantial decline in hours (Jones et

al., 2020). It is for this reason that I use two different dependent variables in my analy-

sis: employment (including individuals both absent and not absent from work) and being

employed and not absent from work.

Lemieux et al. (2020) use the LFS to measure changes in aggregate weekly work

hours instead of using traditional measures such as labour force status. They found that

from February 2020 to April 2020, after adjusting for typical changes during these months,

there was a 32 percent decline in aggregate weekly work hours for individuals aged 20-64.

This was a huge, unprecedented loss, even compared to previous recessions such as the

Great Recession. This change in aggregate hours included both job losses on the extensive

margin as well as declines in hours worked on the intensive margin. The most affected

were workers in public-facing jobs in industries such as accommodation and food services,

as well as workers aged 20-29, hourly workers, non-unionized workers, and women.

Another major impact of the pandemic was on the availability of childcare, which could

impact the labour force participation and productivity of parents. In Canada, provincial

governments announced the closures of schools, day care centres, and childcare centres in

response to the COVID-19 pandemic, beginning with Ontario making an announcement

on March 12, 2020 and other provinces following suit, with British Columbia being the

last to announce the closures of public schools on March 17, 2020. While many provinces

announced – and anticipated – that closures would last for only two weeks following spring

break in March, every province extended the closures for many more weeks, and many for

the remainder of the school year. Lemieux et al. (2020) find that women with children

94



Ph.D. Thesis - C. Simardone; McMaster University - Economics

aged younger than 12 were hit harder by the pandemic than women with children aged 13-

17. Additionally, both hours and employment of mothers with preschool-aged and younger

children dropped substantially between February 2020 and April 2020. Given that many

schools and childcare centres remained closed until the end of the academic year, the lack

of regular childcare and schooling likely made it harder for families – and particularly

mothers, who typically bear the responsibility of childcare in dual-earning, heterosexual

couples – to supply labour. This will be explored using model selection, model averaging,

and machine learning in section 3.5.

Qian & Fuller (2020) estimate the gender employment gap among parents of young

children in Canada at the beginning of the pandemic using data from the Labour Force

Survey (LFS). Their sample consists of adults aged 25-54 years with children aged 12

years or younger and attached to the labour market (individuals currently employed or

who have been employed in the past year). Using a weighted logistic regression, Qian &

Fuller (2020) find that the gender employment gap widened between February 2020 and

May 2020. The gender gap in employment widened more for parents with school-aged

children (6-12 years) than for parents of preschool-aged children (under 6 years). The gap

also widened substantially more for less educated parents (high school diploma or less)

than for more educated parents (university graduates). This suggests that the COVID-19

pandemic exacerbates existing inequalities in employment. As the economy continues to

recover from the pandemic, without policies to address childcare needs such as flexible

leave policies, mothers will be left behind. The subsequent effects on the work experience

and human capital of women with young children, if left behind, can have severe long-

term impacts on their careers and future earnings. This would also cause the gender wage

gap and the gender employment gap to continue to widen, disrupting a trend of narrowing

gender gaps over the previous decades.
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3.4 Methods

3.4.1 Model Selection

Model selection methods use a criterion to select the single “best” or least misspecified

model among a finite set of candidate models. The selected model is, at best, an approx-

imation to the data generating process (DGP) and is an improvement over the practice of

selecting a model in an ad hoc manner. I use two model selection criteria in my analy-

sis: the Akaike information criterion (AIC; Akaike, 1970) and the Bayesian information

criterion (BIC; Schwarz, 1978). AIC is defined as:

AIC = −2ln(L̂) + 2k, (3.1)

where ln(L̂) is the maximum value of the log-likelihood function of a model with k being

the number of estimated parameters in the model. AIC balances goodness of fit (as mea-

sured by the log-likelihood) and parsimony (as measured by the penalty for the number of

parameters included in the model). A low AIC value is desirable.

BIC is defined as:

BIC = −2ln(L̂) + ln(n)k. (3.2)

A low BIC value is desirable. When the sample size is large, the penalty in BIC is larger

and so BIC tends to select smaller models in these cases relative to AIC.

Table 3.2 describes the set of candidate models used in this analysis. AIC and BIC are

computed for each of the 5 models and the model with the lowest value of AIC and BIC is

chosen.
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3.4.2 Model Averaging

Model averaging is useful in situations where more than one model is supported by eco-

nomic theory, yet it is unclear which is the “best” – in other words, least misspecified –

model among the set of models under consideration. Model uncertainty – that is, the prob-

ability that one’s model is incorrectly specified – can have unintended consequences, such

as inference that is overly optimistic or, at worst, completely invalid. Model averaging is

the leading approach for handling the issue of model uncertainty. Frequentist model aver-

aging, henceforth referred to simply as model averaging, constructs a combined estimator

that is a weighted average of estimators from a set of candidate models. Some advantages

of model averaging include better predictive ability than using any single model among the

set of candidate models (Hoeting et al., 1999), more robust results compared to any single

model among the set of candidate models (Moral-Benito, 2015), broad applicability, fewer

assumptions compared to conventional econometric methods, and standard errors that ac-

count for the bias that arises from model uncertainty (Tobias & Li, 2004). Some limitations

of model averaging include increased computational burden, although this is less of a con-

cern with the advance of technology; lack of closed-form solutions for some estimators;

and lack of precedent for post-model-average inference.

I use Mallows’ Model Average Criterion (MMA) (Hansen, 2007) in this chapter. The

MMA criterion is defined as follows:

Cn(ω) = ω′Ê
′
Êω + 2σ̂2K ′ω, (3.3)

where ω is the M -dimensional vector of model weights, Ê is the n×M matrix with columns

containing the residual vector from the mth candidate model, σ̂2 is the estimated variance

from the largest dimensional model, and K is the M × 1 vector of the number of param-

eters in each model. Typically, more than one model is assigned some non-zero model

weight, and some models may be assigned a weight of zero. If the “true” model – that
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is, a model that accurately represents the underlying, unknown data generating process –

lies within the set of candidate models, that model would be assigned a weight of 1. The

model average estimator is constructed using the estimated model weights obtained from

the MMA criterion, ω̂m, and the estimates from each of the candidate models. For example,

the model average estimator of the regression coefficient (in this case, a scalar and assumed

to be common to all models), β̂j,MA, is:

β̂j,MA =
M∑

m=1
ωmβ̂j,m, (3.4)

where j = 1, ..., q indexes the regression coefficient, m = 1, ..., M indexes the candi-

date model, β̂j,m represent the coefficients from each candidate model, 0 ≤ ωm ≤ 1 and∑M
m=1 ωm = 1.

In this chapter, I follow the common practice of writing down a set of parametric models

with a common variable of interest. The candidate model set is built from the following

general logistic regression:

Pr(E = 1|X, Z) = F (Xβ, Zα), (3.5)

where Pr(E = 1|X, Z) represents the conditional probability of being employed (i.e. em-

ployment = 1) or, using the alternative dependent variable, the conditional probability of

being employed and at work (i.e. employed and at work = 1); F is the cumulative distri-

bution function (CDF) of the logistic distribution3; Z is a matrix of explanatory variables

that are included in every model, which are sex, dummy variables for survey month (where

the number of dummy variables is the number of months minus 1), and interactions be-

tween these variables; and X is a matrix of optional explanatory variables, which includes

education, age, marital status, immigration status, province of residence, type of economic

family, occupation, industry, category, full- or part-time status, and tenure of main job.

3The CDF of the logistic distribution is: F (Xβ) = eXβ

1+eXβ .
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Table 3.2: List of candidate models. Note that every candidate model in-
cludes the variables sex, dummy variables for survey month, and interac-
tions between these variables.

Optional RHS Variables

Model 1 NA
Model 2 age, education, marital status, immigration status, province, economic

family
Model 3 occupation, industry, category, full- or part-time status, tenure
Model 4 age, education, marital status, immigration status, province, economic

family, occupation, industry, category, full- or part-time status, tenure
Model 5 age, education, marital status, immigration status, province, economic

family, occupation, industry, category, full- or part-time status, tenure,
tenure squared

Note that the number of dummy variables for each categorical variable is the number

of categories for that variable minus 1. The inclusion or exclusion of the elements of X

will differentiate one candidate model from another. Table 3.2 shows the optional control

variables that are included in each candidate model. The first model includes only those

variables that are included in every model: sex, dummy variables for survey month, and

interactions between those variables. Then, in addition, I include so-called demographic

variables: age, education, marital status, immigration status, province of residence, and

type of economic family. Then, instead of demographic variables, I include job-specific

variables: occupation, industry, category, full- or part-time status, and job tenure of the

main job of the respondent. Next, I include both groups of control variables. Finally, I in-

clude tenure squared as an additional control variable. This creates five candidate models to

be used in model averaging. Each candidate model is estimated using the two subsamples

described in Section 3.2: the subsample of parents whose youngest child is preschool-aged

and the subsample of parents whose youngest child is school-aged.

This set of candidate models was selected in an ad hoc manner. While there exist

statistical methods to generate the set of candidate models automatically based on the data,

model averaging should not perform any worse – and often, better – than any one model in
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the set of candidate models, regardless of how that set of models was chosen. An alternative

method for selecting the set of candidate models is one that is nonparametric in nature and

uses kernel-weighted regression splines (Racine, 2019) and is explored in Chapter 2.

3.4.3 Lasso

Machine learning algorithms are becoming more widely used in economics, despite the

fact that they are often used without a deep technical understanding of how they work,

leading people to refer to these algorithms as “black boxes”. In this chapter, I use the

least absolute shrinkage and selection operator, or “lasso” (Tibshirani, 1996). The lasso

performs selection on regressors by shrinking some coefficients towards zero while setting

others equal to zero. The lasso estimator is defined as:

β̂ = arg min
n∑

i=1

(
yi −

∑
j

βjxij

)2
subject to

∑
j

|βj| ≤ t, (3.6)

where i = 1, ..., n, j indexes the regressor, β represents the regression coefficients, and

t ≥ 0 represents the tuning parameter. Selection of the tuning parameter, t, is important

as it controls regressor selection as well as how much shrinkage is applied to the coeffi-

cients. Cross-validation is commonly used to select the tuning parameter and is used in this

chapter. Some advantages of the lasso are that it produces highly interpretable models, in-

creased stability, and improved prediction accuracy with relative computational efficiency.

The lasso and other machine learning algorithms are explored in depth in Chapter 1.

For my analysis, the model that is fed to the lasso algorithm is one that is complex

compared to the set of candidate models used in model selection and model averaging.

It includes sex, dummy variables for survey month, and interactions between these vari-

ables, as well as all possible interactions between the explanatory variables included in the

set of candidate models used with model selection and model averaging: age, education,

marital status, immigration status, province, type of economic family, occupation, indus-
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try, category of main job , full- or part-time status, and tenure. Thus, the initial regressor

set includes age; an interaction between age and education; an interaction between age,

education, and marital status; an interaction between age, education, marital status, and

immigration status; etc. When this large, complex model was estimated simply using the

logistic regression, the model did not converge, as almost every variable is a factor, which –

along with interactions – created a large number of explanatory variables. Thus, this large,

complex model was used with the lasso to perform selection on variables, while maintain-

ing a model with potentially greater complexity than those used in model selection and

model averaging.

3.5 Results

R (version 4.0.2) is used throughout for ease of replicability. The following packages are

used:

• quadprog, “Functions to Solve Quadratic Programming Problems” (version 1.5-

8), contains functions to solve quadratic programming problems and is used to solve

for the model average weights,

• glmnet, “Lasso and Elastic-Net Regularized Generalized Linear Models” (version

4.1-2), is used for the lasso, and

• pROC, “Display and Analyze ROC Curves” (version 1.16.2), is used to build the

ROC curves.

Table 3.3 shows the results from model selection using AIC. These results are consistent

across dependent variables and subsamples. The largest model (model 5) is selected in

every case, as it has the minimum AIC value across all models. Table 3.4 shows the re-

sults from model selection using BIC. These results differ from those using AIC as the

model selection criterion. The model that has the minimum BIC value for the subsample
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of parents with preschool-aged children using employment as the dependent variable is the

second-largest model (model 4). However, for this subsample but using employed and at

work as the dependent variable, it is the largest model (model 5) that has the minimum BIC

value. For the subsample of parents with school-aged children, the results are reversed;

using employment as the dependent variable, model 5 is selected and using employed and

at work as the dependent variable, model 4 is selected. BIC tends to select more parsi-

monious models compared to AIC because it more heavily penalizes increasing number of

parameters, which could explain this observed difference between model selection using

AIC versus BIC. However, the difference in the BIC values of models 4 and 5 when model

4 is selected is very small. Given that one or two models were selected from a set of five,

if a researcher chose one of the other models, they would be worse off than if they had

used model selection to select a model from a model selection perspective. Table 3.5

Table 3.3: Model selection using Akaike’s information criterion (AIC) for
two different dependent variables across 5 candidate models. The minimum
AIC for each column is in bold.

Preschool subsample School subsample

Employed Employed and at work Employed Employed and at work

Model 1 34355 59182 28322 46807
Model 2 12419 51044 9553 38879
Model 3 30011 57098 24074 43525
Model 4 11127 50018 8217 36809
Model 5 11115 49936 8182 36798

reports the model average weights using the MMA criterion for the subsamples of parents

with preschool-aged children (under 6 years) and school-aged children (6-12 years) for two

different dependent variables (employed and employed and at work) across five candidate

models. In all cases, the MMA criterion assigns a weight of 1 to the largest model (model

5), effectively resulting in a corner solution and collapsing model averaging to model se-

lection. Given that model 5 was assigned a weight of 1, if a researcher chose one of the

other 4 models among this finite set of parametric candidate models, they would do worse
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Table 3.4: Model selection using Bayesian information criterion (BIC) for
two different dependent variables across 5 candidate models. The minimum
BIC for each column is in bold.

Preschool subsample School subsample

Employed Employed and at work Employed Employed and at work

Model 1 34569 59394 28532 47017
Model 2 13038 51713 10156 39561
Model 3 31226 58323 25280 44717
Model 4 12702 51669 9733 38452
Model 5 12704 51604 9713 38455

than if they had used model averaging. While the final combined model average estimator

corresponds to the largest model, this is not always the case. Model averaging performs the

same or better than any one model in the set of candidate models under consideration based

on the model average criterion employed. In this particular case, one model was preferred

over all the others, but this does not mean that the model that was given a weight of 1 is

the “true” model (although if the “true” model were in the candidate model set, it would be

assigned a weight of 1). Thus, using model averaging yields results that are better or the

same as any one of the individual candidate models under consideration.

Given model uncertainty, one would expect more than one model to be assigned some

non-zero model weight. However, this exercise in using model averaging to construct a

combined estimator over a set of candidate models is still expected to result in an improve-

ment to selecting a model in an ad hoc manner, and there is a reasonable explanation for

seeing this vector of model weights. The set of candidate models is limited in a number

of ways. First, the set is finite and small at only five models. Including more models may

change the results. Second, the set of models are exclusively parametric, and so they are

limited in terms of functional form. Additionally, the set of candidate models are inflexible

in terms of interactions among variables and order of polynomial terms. Including more

interactions and higher order polynomials in the set of candidate models could change the

weight vector. However, when the model that was initially fed to the lasso was, instead, es-
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timated using the logistic regression, the model did not converge. Given that every variable

except for tenure is a factor, including just a few interactions significantly increases the rank

of each model. As such, the scope of this chapter is limited due to computational consider-

ations arising from an ill-conditioned design matrix. Additionally, repeating this analysis

using a nonparametric method for generating the set of candidate models, as explored in

Chapter 2, might be warranted, but lies beyond the scope of this chapter.

Table 3.5: Model average weights using Mallows’ model average (MMA)
criterion for two different dependent variables across 5 candidate models.
Weights are shown to the sixth digit.

Preschool subsample School subsample

Employed Employed and at work Employed Employed and at work

Model 1 0 0 0 0
Model 2 0 0 0 0
Model 3 0 0 0 0
Model 4 0 0 0 0
Model 5 1 1 1 1

3.5.1 Relative Classification Performance

To compare the relative performance of each model and method, I use a number of differ-

ent classification metrics and methods to assess model accuracy and overall model perfor-

mance.

The correct classification rate (CCR) evaluates how well a model does at predicting

the outcome for a binary variable (in this case, employment or employed and at work). It

represents the overall classification accuracy for a model (Alboukadel, 2018). It is defined

as:

CCR = (number of true positives + number of true negatives)/n, (3.7)

where the number of true positives is the number of observations that a model correctly
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predicts as employed or employed and at work (depending on which dependent variable is

used), i.e. is true; the number of true negatives is the number of observations that a model

correctly predicts as not employed or not employed and at work, i.e. is false; and n is the

sample size. The number of true positives (true negatives) is based on a comparison of the

estimated P (Y = 1|X = x) (P (Y = 0|X = x) with a cutoff or threshold probability τ

set by the researcher. Higher CCR values are more desirable. Table 3.6 shows the CCR

for each model and method using a standard 0.5 cutoff probability. A cutoff probability

of τ = 0.5 means that any observation with a predicted probability of being employed or

being employed and at work (depending on which dependent variable is used) greater than

0.5 is considered positive, i.e. employed, and below 0.5 is considered a negative, i.e. not

employed. If we were concerned about incorrectly predicting the status for individuals who

are truly not employed, we could adjust the cutoff to be higher (e.g. 0.8). Recall that model

selection using BIC selected models 4 and 5, model selection using AIC selected model 5,

and model averaging selected model 5. The CCR for the lasso is the largest, suggesting

that the lasso performs the best in terms of CCR. The CCR of models 4 and 5 are similar

in magnitude across dependent variables and subsamples and these models perform second

best in terms of CCR after the lasso. Model 1, which only includes survey month and sex

and interactions between those variables, has the smallest CCR across dependent variables

and subsamples, and yet this ad hoc model has been used by empirical researchers to evalu-

ate the impact of sex on labour force participation of parents in Canada using data identical

to that used herein (Qian & Fuller, 2020)4. The relative performance of each method and

model in terms of CCR suggests that using model selection, model averaging, or machine

learning over a simple model chosen in an ad hoc manner is better in terms of classification

accuracy. As mentioned above, a classification exercise relies on a cutoff probability τ ,

which is selected by the researcher, e.g. τ = 0.5. The receiver operating characteristic

(ROC) curve is a graphical summary of the overall performance of a model, including the

4Qian and Fuller use data from the Labour Force Survey public use microdata files for February to May
2020
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Table 3.6: Correct classification rate (CCR) of 5 models and the lasso model
across two different dependent variables and two subsamples. The maxi-
mum CCR for each column is in bold.

Preschool subsample School subsample

Employed Employed and at work Employed Employed and at work

Model 1 0.8931 0.7024 0.8991 0.7654
Model 2 0.9294 0.768 0.9513 0.8164
Model 3 0.8938 0.7251 0.9007 0.7761
Model 4 0.9445 0.7731 0.9563 0.8234
Model 5 0.9448 0.773 0.9565 0.824

Lasso 0.9733 0.804 0.9737 0.8517

proportion of true positive rates and false positive rates at all possible cutoff probabilities

τ ∈ (0, 1) (Fawcett, 2006). Sensitivity (on the y-axis) represents the true positive rate,

which is the proportion of correctly identified positives – in this case, employed or em-

ployed and at work – among the population of individuals who are employed or employed

and at work. Specificity (on the x-axis) represents the false negative rate, which is the pro-

portion of incorrectly identified negatives – in this case, a negative is not employed or not

employed and at work – among the population of individuals that are, in fact, employed or

employed and at work. In general, a model is a good classifier when its ROC curve has a

high true positive rate and/or a high false negative rate. Thus, an ROC curve above the 45

degree line is preferred, and a model is better than another if its ROC curve lies above and

to the left of the ROC curve for the other model. An ROC that falls along the 45 degree

line indicates that the model is no better at making predictions than random guessing.

Figure 3.1 shows the ROC curves for each model and method when employment is

used as the dependent variable for the subsample of parents with preschool-aged children.

Models 1 and 3 performed the worst based on the ranking of their ROC curves. The other

models, including the models selected by model selection and model averaging as well

as the lasso, all perform similarly, with the lasso having the highest ROC curve, followed

second by model 5.
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Figure 3.2 shows the ROC curves for each model and method when employed and at

work is used as the dependent variable for the subsample of parents with preschool-aged

children. Once again, models 1 and 3 have the worst overall performance based on their

ROC curves. Models 2, 4 and 5 perform better and their ROC curves overlap with one

another, suggesting that these models have roughly the same overall performance. The

lasso performs the best overall, given that its ROC curve lies above those of the other

models.

Figure 3.1: ROC curves for each method and model using employment as
the dependent variable for the subsample of parents with preschool-aged
children.
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Figure 3.2: ROC curves for each method and model using employed and at
work as the dependent variable for the subsample of parents with preschool-
aged children.

Figure 3.3 shows the ROC curves for each model and method when employment is used

as the dependent variable for the subsample of parents with school-aged children. Much

like with the subsample of parents with preschool-aged children, models 1 and 3 perform

the worst in terms of classification. Models 2, 4, 5 and the lasso model perform about the

same, given that their ROC curves overlap.

Figure 3.4 shows the ROC curves for each model and method when employed and

at work is used as the dependent variable for the subsample of parents with school-aged

children. The ranking of each model based on their ROC curves is more clear on this graph

compared to the other cases because there is not as much overlap of the ROC curves. Model

1 performs the worst, followed by model 3 and model 2. The ROC curves of models 4 and

5 overlap and the lasso’s ROC curve dominates, indicating that the lasso model has the best

overall performance in terms of classification. The results from the ROC curves for each

case suggest that one should use a statistical method to select or combine models because

the models that were selected by model selection, model averaging and machine learning
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are the models that perform the best in terms of classification.

Figure 3.3: ROC curves for each method and model using employment as
the dependent variable for the subsample of parents with school-aged chil-
dren.

Figure 3.4: ROC curves for each method and model using employed and at
work as the dependent variable for the subsample of parents with school-
aged children.
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We can also calculate the area under the curve (AUC) for each ROC curve. The AUC

is another measure of overall model performance. The AUC is a value between 0 and 1,

with no reasonable classifier having an AUC value less than 0.5, as this would correspond

to an ROC along the 45 degree line and thus be equivalent to random guessing (Fawcett,

2006). A higher AUC value is preferred. Table 3.7 shows the AUC for each method and

model across different dependent variables and subsamples. The results from the AUC

confirm the results from the ROC curves: the lasso model has the best overall classification

performance, followed by the models selected by model selection and model averaging

(models 4 and 5). Finally, we can obtain the “optimal” cutoff probability τ∗ from each

Table 3.7: Area under the curve (AUC) for two different dependent variables
across 5 candidate models. The maximum AUC for each column is in bold.
A higher AUC value is preferred.

Preschool subsample School subsample

Employed Employed and at work Employed Employed and at work

Model 1 0.607 0.665 0.62 0.631
Model 2 0.971 0.779 0.974 0.765
Model 3 0.776 0.709 0.801 0.713
Model 4 0.979 0.788 0.984 0.797
Model 5 0.979 0.789 0.984 0.796

Lasso 0.992 0.828 0.993 0.835

ROC curve using a criterion and recalculate the CCR at this cutoff instead of the standard

τ = 0.5 cutoff probability. Youden’s J statistic, or Youden’s index, can be used as the

optimal cutoff probability and is defined as:

J = sensitivity + specificity − 1. (3.8)

The value of Youden’s J statistic ranges from 0 to 1 (Youden, 1950). Youden’s J statistic

is defined for all points along an ROC curve and its maximum value can be used as the

optimal cutoff probability. Table 3.8 shows the CCR for each model and method using

the optimal cutoff probability obtained for each model across different dependent variables
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and subsamples using Youden’s J statistic to select the optimal cutoff for each model.

Compared to Table 3.6, models 1 and 3 perform the worst. The lasso has the highest

CCR for all cases, followed by models 4 and 5, which perform relatively the same in

terms of CCR with optimal cutoff probabilities. This provides further evidence that model

uncertainty must be addressed by using a method like model selection, model averaging,

or machine learning, as one can do much worse by choosing a model in an ad hoc manner

compared to using these methods.

Table 3.8: Correct classification rate (CCR) of 5 models and the lasso model
across two different dependent variables and two subsamples using optimal
cutoff points. The maximum CCR for each column is in bold.

Preschool subsample School subsample

Employed Employed and at work Employed Employed and at work

Model 1 0.4924 0.6515 0.4769 0.6066
Model 2 0.8967 0.7165 0.8755 0.7373
Model 3 0.6649 0.6537 0.7226 0.6676
Model 4 0.9115 0.7403 0.9052 0.7798
Model 5 0.9113 0.736 0.9153 0.7728

Lasso 0.9511 0.7688 0.9633 0.8044

3.5.2 Marginal Effects

Comparing the methods and models in the previous section using classification metrics

such as CCR, ROC curves, and AUC showed that some models perform markedly better

than others, and those models are the ones selected by model selection or model averaging

as well as the lasso model. Another important consideration is whether the estimates from

each model differ in an economically important way. If estimates differ in an economi-

cally meaningful way, this further emphasizes the importance of using a leading statistical

method to choose a model or combine models rather than choosing a model in an ad hoc

manner.

In this section, I calculate the marginal effect of sex on employment or being employed
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and at work by survey month for parents with young children over the first six months of the

COVID-19 pandemic. While this is but an illustrative exercise to see if and how estimates

from each method and model differ, the marginal effect of sex on employment – otherwise

known as the gender employment gap – is an interesting and timely effect to measure, as

the COVID-19 pandemic has disproportionately affected women. As Canadian provincial

governments closed schools, childcare facilities, and recreational programs to mitigate the

spread of the novel coronavirus, childcare and homeschooling responsibilities fell on the

mother in most heterosexual couples. Many women were forced to leave their jobs to take

on household and childcare work. Access to safe and affordable childcare may be one of

the biggest determinants of the speed of economic recovery of women in Canada. Some

work has already been done to estimate the early impact of the pandemic on the labour

force participation of women in Canada (Lemieux et al., 2020; Qian & Fuller, 2020). How-

ever, the papers cited above appear, without exception, to be based on a parametric model

chosen by the researcher from the universe of models available. That model may have been

selected by an arbitrary and ad hoc selection procedure or even by some model selection

criterion. However, this reliance on a single model, if misspecified, can have serious con-

sequences, such as inference that is overly optimistic or possibly misleading. Additionally,

the estimated effects and predictions may vary depending on the model selected and, when

these estimates are meant to be used by policymakers to respond to the recession caused

by the pandemic, the consequences of ignoring the uncertainty in the model specification

can be serious. Therefore, the comparison of methods and models above as well as the

exercise below, which compares the difference in magnitude of estimates resulting from

these methods and models, is timely and beneficial.

Due to the non-linear nature of the logistic model, the marginal effect of the change in

an explanatory variable, such as sex, on the conditional probability that employment = 1
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(or that employed and at work = 1) is:

dPr(E = 1|X, Z)
dxj

= F ′(Xβ, Zα)βj

= F ′(Xβ, Zα)(1 − F ′(Xβ, Zα))βj. (3.9)

The marginal effect depends on the values of X and Z. In my analysis, I calculate the

marginal effects at the mode for discrete variables and the median for continuous variables

(in this case, tenure is the only continuous variable). Table 3.9 shows the mode and median

values for each explanatory variable across each subsample. The coefficients β and α

indicate the sign of the marginal effects and can be thought of as placing an upper bound

on the marginal effect. My variable of interest is sex, and so the marginal effect of sex on

employment represents the gender employment gap. Table 3.10 shows the marginal effect

Table 3.9: Mode (for discrete variables) and median (for continuous vari-
ables) values of explanatory variables across 2 subsamples.

Preschool subsample School subsample

Province ON ON
Age 35-39 years 40-44 years
Marital status Married Married
Education Postsecondary Postsecondary
Immigration status Non-immigrant Non-immigrant

Occupation Industrial, electrical and
construction trades

Professional occupations in
education services

Industry Health care and social
assistance

Health care and social
assistance

Job category Private Private
Full- or part-time Full-time Full-time
Tenure 58 months 83 months

Type of economic family Dual-earner couple,
youngest child 0-17 years

Dual-earner couple,
youngest child 0-17 years

of sex by survey month for parents with preschool-aged children estimated in percentage

points (e.g. 6.0 is six percentage points). Using employment as the dependent variable,

we see that there is a difference in the magnitude of estimated marginal effects across the

113



Ph.D. Thesis - C. Simardone; McMaster University - Economics

models. The estimates from models 2, 4 (which was selected in some cases by BIC as the

model selection criterion), 5 (which was selected by model selection and model averaging)

and the lasso (which performed very well based on classification metrics) show no effect

of sex on the probability of being employed across these months for an individual with the

characteristics described in Table 3.9. The estimates from models 1 and 3, on the other

hand, show a widening gender employment gap from February to August 2020. Given that

model 4, model 5 and the lasso have controls for demographic characteristics, job-related

characteristics, and/or interactions among the explanatory variables, this means that some

of the gender gap observed using the simplest or most “naïve” model (model 1) can be

attributed to these explanatory variables. Using employed and at work as the dependent

variable, there is a widening gender gap across all models from February to August 2020,

with a partial recovery in April. This indicates that mothers were less likely to be employed

and at work during the pandemic compared to fathers, all else being equal. The magnitude

of the marginal effect of sex differs across models. Table 3.11 shows the magnitude of the

marginal effects relative to model 1, the “naïve” model. A value less than 100 shows that

the estimated marginal effect of sex from a model is smaller than that of model 1; a value

greater than 100 shows that the estimated marginal effect of sex is larger than that of model

1. These results show that model 1 tends to overstate the magnitude of the marginal effect

of sex on the probability of being employed and not absent from work compared to the

models that performed the best in terms of CCR, AUC, and ROC curves. Thus, different

models produce different estimates of the gender gap in employment and in being employed

and at work among parents with preschool-aged children over the first six months of the

pandemic.

Table 3.12 shows the marginal effect of sex by survey month for parents with school-

aged children estimated in percentage points. Using employment as the dependent variable,

there is a difference in the estimated gender employment gap across models. Like with the

subsample of parents with preschool-aged children, the estimates from models 2, 4, 5 and
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the lasso show zero effect of sex on the probability of being employed across these months

for an individual with the characteristics described in Table 3.9, whereas the estimates

from models 1 and 3 show a widening gap from February to August 2020. Again, this

suggests that the observed gender gap in employment using the naïve model (model 1)

can be explained by demographic and job-related variables. Using being employed and at

work as the dependent variable, there exists a widening gender gap among parents between

February and August 2020, with some partial recovery in the intervening months. The

gender gap for parents with school-aged children is smaller in magnitude than the gap for

parents of preschool-aged children, possibly because preschool-aged children need more

time and attention from their parents compared to older children. This shows that while

there may not have been a gender employment gap among parents during the pandemic,

mothers were less likely to be employed and at work during the pandemic compared to

fathers, all else being equal. Additionally, the choice of model matters. Table 3.13 shows

the estimated marginal effect of sex for each model relative to the naïve model (model 1).

These results show that model 1 overstates the marginal effect of sex on the probability

of being employed and at work compared to the models that performed the best in terms

of CCR, AUC, and ROC curves (model 4, model 5 and the lasso). Interestingly, the lasso

yields a larger gender gap in being employed and at work for these parents in February 2020

compared to model 1. This exercise shows that different models will produce different

estimates of the gender gap in employment and in being employed and at work among

parents with school-aged children over the first six months of the pandemic.

Policymakers who are concerned about model uncertainty should consider adopting one

of the methodologies used in this chapter. Model selection, model averaging, and the lasso

acknowledge model uncertainty by taking the decisions with regard to model specification

out of the hands of the researcher and adopting a statistical approach to select or combine

models or regressors. Additionally, these methods are accessible and straightforward to

use, especially for those who routinely use parametric models; flexible, in that they can be
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applied to many different kinds of models; and produce results that, as demonstrated in this

chapter, can perform at least as well as or better than, in terms of classification metrics, any

other model in the set of candidate models.
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Table 3.10: Marginal effect of sex by survey month for parents with
preschool-aged children (under 6 years) for two different dependent vari-
ables across candidate models and the lasso model (percentage points).

Employed Employed and at work

Model 1 Model 2 Model 3 Model 4 Model 5 Lasso Model 1 Model 2 Model 3 Model 4 Model 5 Lasso

Feb -1.11 0.00 0.08 0.00 0.00 0.42 -14.81 -13.54 -15.15 -12.63 -13.39 -20.16
Mar -3.80 -0.01 -2.80 -0.01 -0.01 0.42 -25.05 -25.08 -25.18 -23.85 -24.84 -23.40
Apr -0.82 0.00 1.41 0.00 0.00 0.42 -17.85 -19.06 -16.73 -17.48 -18.07 -13.02
May -2.65 0.00 -1.80 0.00 0.00 0.42 -20.25 -20.00 -20.22 -18.92 -19.68 -26.10
Jun -3.87 -0.01 -3.47 -0.01 -0.01 0.42 -21.84 -20.63 -22.69 -19.85 -20.72 -20.43

Jul -6.29 -0.01 -6.27 -0.01 -0.01 0.42 -25.05 -24.33 -25.81 -23.46 -24.45 -20.40
Aug -6.00 -0.01 -6.05 -0.01 -0.01 0.42 -28.17 -27.27 -29.35 -26.54 -27.52 -23.97117
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Table 3.11: Magnitude of the marginal effect of sex by survey month for par-
ents with preschool-aged children relative to model 1 (percentage points).

Employed Employed and at work

Model 1 Model 2 Model 3 Model 4 Model 5 Lasso Model 1 Model 2 Model 3 Model 4 Model 5 Lasso

Feb 100 0.00 7.21 0.00 0.00 37.84 100 91.42 102.30 85.28 90.41 136.12
Mar 100 0.26 73.68 0.26 0.26 11.05 100 100.12 100.52 95.21 99.16 93.41
Apr 100 0.00 171.95 0.00 0.00 51.22 100 106.78 93.73 97.93 101.23 72.94
May 100 0.00 67.92 0.00 0.00 15.85 100 98.77 99.85 93.43 97.19 128.89
Jun 100 0.26 89.66 0.26 0.26 10.85 100 94.46 103.89 90.89 94.87 93.54

Jul 100 0.16 99.68 0.16 0.16 6.68 100 97.13 103.03 93.65 97.60 81.44
Aug 100 0.17 100.83 0.17 0.17 7.00 100 96.81 104.19 94.21 97.69 85.09
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Table 3.12: Marginal effect of sex by survey month for parents with school-
aged children (6-12 years) for two different dependent variables across can-
didate models and the lasso model (percentage points).

Employed Employed and at work

Model 1 Model 2 Model 3 Model 4 Model 5 Lasso Model 1 Model 2 Model 3 Model 4 Model 5 Lasso

Feb -0.78 0.00 0.45 0 0 0.45 -0.76 -1.81 1.90 0.23 0.25 -5.85
Mar -4.39 -0.01 -1.63 0 0 0.45 -13.09 -15.78 -9.35 -12.27 -11.77 -8.77
Apr -5.51 -0.01 -1.42 0 0 0.45 -8.97 -10.92 -4.40 -7.32 -6.98 -0.68
May -7.08 -0.01 -3.10 0 0 0.45 -9.67 -9.76 -5.51 -6.28 -5.98 -9.73
Jun -6.44 -0.01 -3.39 0 0 0.45 -10.56 -10.24 -7.89 -8.03 -7.66 -4.83

Jul -6.59 -0.01 -3.27 0 0 0.45 -12.76 -13.21 -9.77 -10.57 -10.15 -4.51
Aug -7.63 -0.01 -4.36 0 0 0.45 -13.37 -14.55 -10.26 -11.69 -11.24 -10.58119
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Table 3.13: Magnitude of the marginal effect of sex by survey month for
parents with school-aged children relative to model 1 (percentage points).

Employed Employed and at work

Model 1 Model 2 Model 3 Model 4 Model 5 Lasso Model 1 Model 2 Model 3 Model 4 Model 5 Lasso

Feb 100 0.00 57.69 0 0 57.69 100 238.16 250.00 30.26 32.89 769.74
Mar 100 0.23 37.13 0 0 10.25 100 120.55 71.43 93.74 89.92 67.00
Apr 100 0.18 25.77 0 0 8.17 100 121.74 49.05 81.61 77.81 7.58
May 100 0.14 43.79 0 0 6.36 100 100.93 56.98 64.94 61.84 100.62
Jun 100 0.16 52.64 0 0 6.99 100 96.97 74.72 76.04 72.54 45.74

Jul 100 0.15 49.62 0 0 6.83 100 103.53 76.57 82.84 79.55 35.34
Aug 100 0.13 57.14 0 0 5.90 100 108.83 76.74 87.43 84.07 79.13

120



Ph.D. Thesis - C. Simardone; McMaster University - Economics

3.6 Conclusion

This chapter uses model selection, model averaging, and machine learning to estimate

binary-choice regressions of employment among parents with preschool- and school-aged

children in Canada during the first six months of the COVID-19 pandemic. Using 5 para-

metric binary-choice models, I find that model selection using BIC selects the largest or

second largest model; model selection using AIC selects the largest model; and model

averaging selects the largest model. I use classification metrics to evaluate the relative per-

formance of each method and model – including a model obtained through the lasso – and

find that the models selected by model selection and model averaging as well as the lasso

model perform better than simpler parametric model specifications, which have been used

in practice based on identical data (Qian & Fuller, 2020). The lasso model performs the

best overall in terms of classification metrics. This demonstrates that there are methods that

perform better than others from a classification perspective and suggests that methods like

model selection, model averaging, or machine learning should be used instead of selecting

a model in an ad hoc manner. Finally, to further support the use of these methods, I show

that the marginal effect of sex on the probability of employment or being employed at work

varies across models in an economically meaningful way. Thus, the choice of model mat-

ters, especially when the estimates from these models could inform, for example, policies

for post-pandemic economic recovery. Future research should focus on evaluating the per-

formance of these methods across a larger set of candidate models that include interactions

among explanatory variables as well as higher order polynomials in explanatory variables.

121



Ph.D. Thesis - C. Simardone; McMaster University - Economics

3.7 Appendix

3.7.1 Descriptive Statistics

Table 3.14 shows the proportion of individuals in each occupational category for the Labour

Force Survey subsample of individuals aged 20-64 years, currently employed or employed

within the last year, and with a youngest child aged 0-12 years.

Table 3.14: Summary statistics of occupation for Labour Force Survey sub-
samples of individuals aged 20-64 years, currently employed or employed
within the last year, and with a youngest child aged under 6 years (preschool
subsample) or 6-12 years (school subsample).

Occupational category Preschool (Percent) School (Percent)

Senior management occupations 0.13 0.35

Specialized middle management

occupations

2.71 4.31

Middle management occupations in retail

and wholesale trade and customer services

2.11 2.98

Middle management occupations in

trades, transportation, production and

utilities

3.29 3.53

Professional occupations in business and

finance

4.44 4.53

Administrative and financial supervisors

and administrative occupations

5.25 5.86

Finance, insurance and related business

administrative occupations

1.30 1.42

Office support occupations 2.95 3.27

(continued . . . )
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Table 3.14: Summary statistics of occupation for Labour Force Survey sub-
samples.

Occupational category Preschool (Percent) School (Percent)

Distribution, tracking and scheduling

co-ordination occupations

1.19 1.34

Professional occupations in natural and

applied sciences

5.67 4.53

Technical occupations related to natural

and applied sciences

3.88 3.30

Professional occupations in nursing 2.95 2.06

Professional occupations in health (except

nursing)

2.48 2.39

Technical occupations in health 3.21 2.52

Assisting occupations in support of health

services

2.31 2.11

Professional occupations in education

services

6.22 6.89

Professional occupations in law and

social, community and government

services

3.43 3.27

Paraprofessional occupations in legal,

social, community and education services

3.18 3.16

Occupations in front-line public

protection services

1.01 1.21

(continued . . . )
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Table 3.14: Summary statistics of occupation for Labour Force Survey sub-
samples.

Occupational category Preschool (Percent) School (Percent)

Care providers and educational, legal and

public protection support occupations

1.61 2.09

Professional occupations in art and culture 0.65 0.74

Technical occupations in art, culture,

recreation and sport

1.32 1.13

Retail sales supervisors and specialized

sales occupations

2.96 3.30

Service supervisors and specialized

service occupations

2.63 2.65

Sales representatives and salespersons -

wholesale and retail trade

2.54 2.70

Service representatives and other

customer and personal services

occupations

3.09 2.91

Sales support occupations 1.33 1.41

Service support and other service

occupations, n.e.c.

2.69 3.05

Industrial, electrical and construction

trades

6.81 5.16

Maintenance and equipment operation

trades

3.99 3.75

(continued . . . )
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Table 3.14: Summary statistics of occupation for Labour Force Survey sub-
samples.

Occupational category Preschool (Percent) School (Percent)

Other installers, repairers and servicers

and material handlers

1.11 1.04

Transport and heavy equipment operation

and related maintenance occupations

3.51 3.51

Trades helpers, construction labourers and

related occupations

0.71 0.67

Supervisors and technical occupations in

natural resources, agriculture and related

production

1.73 1.55

Workers in natural resources, agriculture

and related production

1.02 0.86

Harvesting, landscaping and natural

resources labourers

0.49 0.43

Processing, manufacturing and utilities

supervisors and central control operators

1.24 1.25

Processing and manufacturing machine

operators and related production workers

1.52 1.46

Assemblers in manufacturing 0.77 0.64

Labourers in processing, manufacturing

and utilities

0.59 0.63

Table 3.15 shows the proportion of individuals in each industry for the Labour Force

Survey subsample of individuals aged 20-64 years, currently employed or employed within
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the last year, and with a youngest child aged 0-12 years.

Table 3.15: Summary statistics of industry for Labour Force Survey sub-
samples of individuals aged 20-64 years, currently employed or employed
within the last year, and with a youngest child aged under 6 years (preschool
subsample) or 6-12 years (school subsample).

Industry category Preschool (Percent) School (Percent)

Agriculture 2.17 2.13
Forestry and logging 0.45 0.40
Fishing, hunting and trapping 0.38 0.39
Mining, quarrying, and oil and gas extraction 2.99 2.44
Utilities 1.17 1.03

Construction 9.65 7.51
Manufacturing - durable goods 4.69 4.93
Manufacturing - non-durable goods 3.87 3.88
Wholesale trade 2.74 3.21
Retail trade 7.21 7.79

Transportation and warehousing 4.62 4.85
Finance and insurance 4.31 4.66
Real estate and rental and leasing 1.26 1.53
Professional, scientific and technical services 7.22 6.47
Business, building and other support services 3.12 3.01

Education services 9.33 11.46
Health care and social assistance 17.07 15.97
Information, culture and recreation 3.15 3.22
Accommodation and food services 3.79 3.80
Other services (except public administration) 3.79 3.60

Public administration 7.01 7.71
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Conclusion

My research focuses on model averaging, a leading approach for handling the issue of

model uncertainty – that is, the likelihood that one’s model is misspecified. I evaluate

the performance of model averaging compared to conventional econometric approaches as

well as machine learning algorithms, and show how model averaging can be applied to an

empirical problem in labour economics.

Chapter 1 evaluates the performance of frequentist model averaging (FMA) compared

to models in the set of candidate models as well as model selection and machine learning

algorithms. Results from Monte Carlo simulations show that model averaging does rel-

atively well compared to individual models and other methods in terms of mean squared

error (MSE) in the presence of model uncertainty. Additionally, using the National Longi-

tudinal Survey, I estimate the returns to education to demonstrate how easily model aver-

aging can be adopted by empirical economists. I also include a novel emphasis on the set

of candidate models that are averaged, highlighting this step of model averaging which is

further studied in Chapter 2.

Chapter 2 investigates three promising approaches for constructing a set of candidate

models to be used in model averaging: model screening, recursive partitioning-based al-

gorithms, and methods that average over nonparametric models. The candidate model set

should balance model complexity, breadth, and computational efficiency. The Monte Carlo

experiments demonstrate that the nonparametric model averaging approach performs the

best in terms of MSE compared to model averaging over parametric models and the MARS
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algorithm in most cases. None of these approaches alone can build a set of candidate mod-

els that satisfies all the desired criteria; however, these approaches are an improvement to

model averaging over a set of arbitrarily chosen parametric candidate models.

Chapter 3 uses the methods examined in Chapter 1 – model selection, model averaging,

and the lasso – to assess the impacts of the COVID-19 pandemic on the employment of

parents with young children in Canada. I use data from the Canadian Labour Force Survey

public use microdata files. I find that the models selected by model selection and model

averaging and the lasso model perform better in terms of classification compared to the

simpler parametric model specifications. Additionally, I estimate the marginal effect of sex

on the probability of being employed and find that the results differ in magnitude across

models in an economically important way, as these results could affect policies for post-

pandemic recovery.

My work shows how important model choice is to statistical and economic analysis, as

final estimates and predictions may rely on the model chosen. If one is concerned about

model uncertainty, model averaging, machine learning and model selection methods can be

used. These methods take ad hoc decision-making out of the hands of the researcher and

instead select or combine models based on the data.

128



References

Akaike, H. (1970). Statistical predictor identification. Annals of the Institute of Statistical

Mathematics, 22(1), 203–217.

Alboukadel, K. (2018). Machine learning essentials: Practical guide in r. Sthda.

Belloni, A., & Chernozhukov, V. (2013). Least squares after model selection in high-

dimensional sparse models. Bernoulli, 19(2), 521–547.

Belloni, A., Chernozhukov, V., & Hansen, C. (2014). High-dimensional methods and in-

ference on structural and treatment effects. Journal of Economic Perspectives, 28(2),

29–50.

Belman, D., & Heywood, J. S. (1991). Sheepskin effects in the returns to education: An

examination of women and minorities. The Review of Economics and Statistics, 73(4),

720–724.

Blackburn, M., & Neumark, D. (1992). Unobserved ability, efficiency wages, and in-

terindustry wage differentials. Quarterly Journal of Economics, 107(4), 1412–1436.

Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123–140.

Breiman, L. (1998). Arcing classifier (with discussion and a rejoinder by the author). The

Annals of Statistics, 26(3), 801–849.

Buckland, S. T., Burnhamn, K. P., & Augustin, N. H. (1997). Model selection: An integral



Ph.D. Thesis - C. Simardone; McMaster University - Economics

part of inference. Biometrics, 53, 603–618.

Campos, J., Hendry, D. F., & Krolzig, H.-M. (2003). Consistent model selection by an

automatic gets approach. Oxford Bulletin of Economics and Statistics, 65, 803–819.

Castle, J. L. (2006). Automatic econometric model selection using pcgets. Medium

Econometrische Toepassingen, 14(3), 16–19.

Claeskens, G., Croux, C., & VanKerckhoven, J. (2005). Variable selection for logistic

regression using a prediction focussed information criterion. Belgian Statistical Society.

Claeskens, G., & Hjort, N. L. (2003). The focused information criterion. Journal of the

American Statistical Association, 98(464), 900–916.

Claeskens, G., & Hjort, N. L. (2008). Model selection and model averaging. New York:

Cambridge University Press.

Fawcett, T. (2006). An introduction to roc analysis. Pattern Recognition Letters, 27(8),

861–874.

Freund, Y., & Schapire, R. E. (1996). Experiments with a new boosting algorithm. Inter-

national Conference on Machine Learning, 96, 148–156.

Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of online learning

and an application to boosting. Journal of Computer and System Sciences, 55(1), 119–

139.

Freund, Y., Schapire, R. E., & Abe, N. (1999). A short introduction to boosting. Journal of

Japanese Society for Artificial Intelligence, 14(5), 771–780.

Friedman, J. (1991a). Estimating functions of mixed ordinal and categorical variables using

adaptive splines. Stanford University Technical Report, (108), 1–49.

Friedman, J. (1991b). Multivariate adaptive regression splines. The Annals of Statistics,

130



Ph.D. Thesis - C. Simardone; McMaster University - Economics

19(1), 1–141.

Friedman, J. (1993). Fast mars.

Friedman, J. (2001). Greedy function approximation: A gradient boosting machine. Annals

of Statistics, 29(5), 1189–1232.

Friedman, J., & Roosen, C. (1995). An introduction to multivariate adaptive regression

splines. Statistical Methods in Medical Research, 4, 197–217.

Friedman, J., & Silverman, B. W. (1989). Flexible parsimonious smoothing and additive

modeling. Technometrics, 31(1), 3–21.

Hansen, B. E. (2007). Least squares model averaging. Econometrica, 75, 1175–1189.

Hansen, B. E. (2014). Model averaging, asymptotic risk, and regressor groups. Quantita-

tive Economics, 5(3), 495–530.

Hansen, B. E., & Racine, J. S. (2012). Jackknife model averaging. Journal of Economet-

rics, 167(1), 38–46.

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data

mining, inference and prediction (2nd ed.). Springer.

Heywood, J. S. (1994). How widespread are sheepskin returns to education in the u.s.?

Economics of Education Review, 13(3), 227–234.

Hoeting, J. A., Madigan, D., Raftery, A. E., & Volinsky, C. T. (1999). Bayesian model

averaging: A tutorial. Statistical Science, 14, 382–417.

Hungerford, T., & Solon, G. (1987). Sheepskin effects in the returns to education. The

Review of Economics and Statistics, 69(1), 175–177.

Jaeger, D. A., & Page, M. E. (1996). Degrees matter: New evidence on sheepskin effects

in the returns to education. The Review of Economics and Statistics, 78(4), 733–740.

131



Ph.D. Thesis - C. Simardone; McMaster University - Economics

Jones, S. R. G., Lange, F., Ridell, W. C., & Warman, C. (2020). Waiting for recovery: The

canadian labour market in june 2020.

Krolzig, H.-M., & Hendry, D. F. (2001). Computer automation of general-to-specific model

selection procedures. Journal of Economic Dynamics and Control, 25(6-7), 831–866.

Krolzig, H.-M., & Hendry, D. F. (2011). New developments in automatic general-to-

specific modeling.

Lemieux, T., Milligan, K., Schirle, T., & Skuterud, M. (2020). Initial impacts of the covid-

19 pandemic on the canadian labour market. Canadian Public Policy, 46(S1), S55–S65.

Liu, Y., & Xie, T. (2019). Machine learning versus econometrics: Prediction of box office.

Applied Economics Letters, 26(2), 124–130.

Ma, S., Racine, J. S., & Yang, L. (2015). Spline regression in the presence of categorical

predictors. Journal of Applied Econometrics, 30, 705–717.

Madigan, D., & Raftery, A. E. (1994). Model selection and accounting for model uncer-

tainty in graphical models using occam’s window. Journal of the American Statistical

Association, 89(428), 1535–1546.

Madigan, D., York, J., & Allard, D. (1995). Bayesian graphical models for discrete data.

International Statistical Review, 215–232.

Mallows, C. L. (1973). Technometrics, 15(4), 661–675.

Moral-Benito, E. (2015). Model averaging: An overview. Journal of Economic Surveys,

29(1), 46–75.

Mullianathan, S., & Spiess, J. (2017). Machine learning: An applied econometric ap-

proach. Journal of Economic Perspectives, 31(2), 87–106.

Qian, Y., & Fuller, S. (2020). COVID-19 and the gender employment gap among parents

132



Ph.D. Thesis - C. Simardone; McMaster University - Economics

of young children. Canadian Public Policy, 46(S2), S89–S101.

Racine, J. S. (2019). Reproducible econometrics using r (pp. 191–195). Oxford University

Press.

Racine, J. S., Li, Q., & Zheng, L. (2018). Optimal model averaging of mixed-data kernel-

weighted spline regressions. McMaster Department of Economics Working Paper Se-

ries.

Raftery, A. E., Madigan, D., & Hoeting, J. A. (1997). Bayesian model averaging for linear

regression models. Journal of the American Statistical Association, 92(437), 179–191.

Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2),

461–464.

Steel, M. F. J. (2020). Model averaging and its use in economics. Journal of Economic

Literature, 58(3), 644–719.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the

Royal Statistical Society, 58(1), 267–288.

Tobias, J. L., & Li, M. (2004). Returns to schooling and bayesian model averaging: A

union of two literatures. Journal of Economic Surveys, 18(2), 153–180.

Tukey, J. (1970). Exploratory data analysis. Addison-Wesley.

Xie, T., & Lehrer, S. (2017). Box office buzz: Does social media data steal the show

from model uncertainty when forecasting for hollywood? The Review of Economics

and Statistics, 99(5), 749–755.

Xie, T., & Lehrer, S. (2018). The bigger picture: Combining econometrics with analytics

improve forecasts of movie success. NBER Working Series.

X. Zhang, G. Z., D. Yu, & Liang, H. (2016). Optimal model averaging estimation for

133



Ph.D. Thesis - C. Simardone; McMaster University - Economics

generalized linear models and generalized linear mixed-effects models. Journal of the

American Statistical Association, 111(516), 1775–1790.

Youden, W. J. (1950). Index for rating diagnostic tests. Cancer, 3, 32–35.

Yuan, Z., & Yang, Y. (2005). Combining linear regression models: When and how? Jour-

nal of the American Statistical Association, 100(472), 1202–1214.

Zhu, R., Wan, A. T. K., Zhang, X., & Zou, G. (2019). A mallows-type model averaging

estimator for the varying-coefficient partially linear model. Journal of the American

Statistical Association, 114(526), 882–892.

134


	Chapter 1: Handling Model Uncertainty: Model Averaging and Machine Learning Methods for Empirical Problems in Economics
	Introduction
	Model Averaging Methods
	Constructing the Set of Candidate Models
	Other Approaches for Dealing with Model Uncertainty
	Monte Carlo Experiment
	Results

	Model Averaging using Wage Data: An Applied Illustration
	Conclusion
	Appendix
	Monte Carlo Experiments
	Model Averaging using Wage Data: Predicted Squared Error


	Chapter 2: In Search of the Optimal Model Set: Methods for Generating Candidate Models for Model Averaging
	Introduction
	Model Screening
	Recursive Partitioning-Based Algorithms
	Machine Learning in Combination with Model Averaging
	Multivariate Adaptive Regression Splines

	Averaging over Nonparametric Models
	Evidence from Monte Carlo Experiments and Empirical Examples
	Heuristics

	Monte Carlo Experiment
	Results
	Results with Model Screening

	Conclusion

	Chapter 3: Model Averaging and Machine Learning Analysis of Employment Among Parents in Canada during the COVID-19 Pandemic
	Introduction
	Data
	Initial Impact of the COVID-19 Pandemic on Canadians
	Methods
	Model Selection
	Model Averaging
	Lasso

	Results
	Relative Classification Performance
	Marginal Effects

	Conclusion
	Appendix
	Descriptive Statistics


	Conclusion
	References

