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Lay Abstract

The quality of video is improving as cameras improve, but the size of the video is also in-

creasing. As a result, we will need to compress the video. Video compression, on the other

hand, is always accompanied with a loss of video quality. Deep learning approaches have

made tremendous progress in improving the quality of compressed video in recent years.

In this paper, we propose an effective method PEN for Video Quality Enhancement(VQE)

task by parallel processing of multiple frames.
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Abstract

Recent years, we have witnessed significant progress in the quality enhancement of com-

pressed video by deep learning methods. In this paper, we propose an effective method

for Video Quality Enhancement(VQE) task. Our method is realized via A Parallel Net-

work for Compressed Video Enhancement(PEN). To tackle optical flow estimates and

complicated motion, PEN has two branches which are Offset Deformable Fusion Net-

work(ODFN) and Complex Motion Solution Network(CMSN). During the alignment

stage, existing methods typically estimate optical flow for temporal motion compensa-

tion. However, because the compressed video may be severely distorted as a result of

various compression artifacts, the estimated optical flow is typically inaccurate and unre-

liable. Therefore in ODFN we use deformable convolution to align frames in a fast and

efficient way. At the same time, we adopt pyramidal processing and cascading refinement

in CMSN which can address complex motions and large parallax problems in alignment.

Furthermore, we use the target frame’s neighbor Peak Quality frames(PQFs) as reference

frames, which adjusts for video quality variations. Extensive experiments show that our

method has improved the average video quality by 0.7 decibel.
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Chapter 1

Introduction

The popularity of video on the Internet has increased dramatically in recent years. With

limited bandwidth, video compression is necessary to reduce the bit rate. However, com-

pression algorithms, such as H.264/AVC(Wiegand et al. (2003)) and H.265/HEVC (Sulli-

van et al. (2012)), frequently create numerous video distortions, especially at low bit rates.

As shown in Figure 1.2, such artifacts may considerably jeopardize video quality, result-

ing in the deteriorated Quality of Experience (QoE). The distorted contents of low-quality

compressed video may also impair subsequent vision tasks (e.g., recognition, detection,

and tracking) in low-bandwidth applications. As a result, it’s critical to increase the com-

pressed video’s quality.

In the past few decades, extensive work has been done on artifact removal or quality

enhancement of a single compressed image. Earlier research mainly focused on the en-

hancement of single image quality by traditional methods(Foi et al. (2007),Zhang et al.

(2013),Liew and Hong Yan (2004),Shen et al. (2011),Chang et al. (2014)). Traditional

methods reduced artifacts by optimizing the transform coefficients for specific compres-

sion standard, thus they are hard to extend to other compression schemes.
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Figure 1.1: Illustration of traditional compression process

With the recent advances in Convolutional Neural Networks (CNNs), CNN-based meth-

ods have also emerged for image quality enhancement(Dong et al. (2015),Tai et al. (2017)).

For example, Dong et al. (2015) designed a four-layer Convolutional Neural Network

(CNN), named AR-CNN, which considerably improves the quality of JPEG images. Deep

learning methods usually learn Non-linear mappings that can directly regress images with-

out artifacts from a large amount of training data to obtain impressive results with high

efficiency. However, these methods cannot be directly extended to compressed video since

they treat frames independently and thus fail to exploit temporal information.

On the other hand, there is only limited study on quality enhancement for compressed
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Figure 1.2: Illustration of compression artifacts.

video. Yang et al. first proposed the Multi-Frame Quality Enhancement (MFQE 1.0) ap-

proach to leverage temporal information for Video Quality Enhancement(VQE) (Yang et al.

(2018)). High-quality frames in the compressed video are utilized as reference frames to

help enhancing the quality of neighboring low-quality target frames. Recently, an upgraded

version MFQE 2.0 (Guan et al. (2021)) was introduced to improve the efficiency of MF-

CNN further and achieved the state-of-the-art performance. In order to aggregate infor-

mation from the target frame and reference frames, both MFQE methods adopt a widely

used temporal fusion scheme that incorporates dense optical flow for motion compensa-

tion(Kappeler et al. (2016)).

Deng et al. proposed a fast yet effective method for compressed video quality enhance-

ment by incorporating a novel Spatio-Temporal Deformable Fusion (STDF)(Deng et al.

(2020)) scheme to aggregate temporal information. Specifically, the proposed STDF takes

3
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a target frame along with its neighboring reference frames as input to jointly predict an

offset field to deform the Spatio-Temporal sampling positions of convolution.

In this paper, inspired by STDF(Deng et al. (2020)), we introduce a Parallel Enhance-

ment Network of Compressed Video scheme(PEN) for VQE task. The PEN has two

branches which are Offset Deformable Fusion Network(ODFN) and Complex Motion So-

lution Network(CMSN). The first ODFN branch is primarily concerned with flow predic-

tion in the multiframes alignment task. We first attempted optical flow estimation(Dosovitskiy

et al. (2015)) in our network during the alignment stage. We discovered that optical flow

estimation may be suboptimal in the context of the VQE task. Because compression ar-

tifacts can heavily distort video content and disrupt pixel-wise distances between frames,

the estimated optical flow tends to be inaccurate and unreliable, thereby resulting in inef-

fective quality enhancement. Optical flow estimation needs to be repeatedly performed for

different reference target frame pairs in a pairwise manner, which involves substantially

increased computational cost to explore more reference frames. Therefore we followed

Deng et al. (2020) to use deformable convolutional networks(DCN)(Dai et al. (2017)) to

aggregate temporal information while avoiding explicit optical flow estimation. Then to

address complex motions and large parallax problems in alignment. Inspired by Wang

et al. (2019), we add a second branch CMSN to improve the network’s performance and

robustness. The CMSN mainly contains two parts: Pyramid, Cascading and Deformable

convolutions (PCD) alignment module at the feature level and the Temporal and Spatial

Attention(TSA) fusion module at the image level.

At last, inspired by (Yang et al. (2018); Guan et al. (2021)), we found that the frame’s

PSNR varies significantly fluctuated. This indicates that there exists considerable quality

fluctuation in compressed video sequences for (MPEG-1, MPEG-2, MPEG-4, H.264/AVC

4
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and HEVC). Due to that, we decided to take the Peak Quality frames(PQFs) as the reference

frame instead of neighboring frames. The main contributions of this paper are summarized

as follows:

1.An end-to-end CNN-based method was proposed for the VQE task.

2.Compare the proposed PEN to prior fusion schemes analytically and experimentally, and

demonstrate its enhanced flexibility and robustness.
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Chapter 2

Related Work

2.1 Image and Video Quality Enhancement

Over the past decade, an increasing number of works have focused on quality enhance-

ment for compressed image.(Foi et al. (2007),Zhang et al. (2013),Liew and Hong Yan

(2004),Shen et al. (2011),Chang et al. (2014),Dong et al. (2015),Tai et al. (2017),Guo and

Chao (2016),Wang et al. (2016),Zhang et al. (2017),Li et al. (2015)). Specifically, Foi

et al. (2007) applied point-wise Shape-Adaptive DCT (SA-DCT) to reduce the blocking

and ringing effects caused by JPEG compression. Later, (Jancsary et al. (2012)) proposed

the approach of reducing JPEG image blocking effects by adopting Regression Tree Fields

(RTF). Recently, deep learning has also been successfully applied to improve the visual

quality of compressed images. Particularly, Dong et al. (2015) proposed a four-layer AR-

CNN to reduce the JPEG artifacts of images. Afterward, D3(Wang et al. (2016)) and Deep

Dual-domain Convolutional Network (DDCN)(Guo and Chao (2016)) were proposed as

advanced deep networks for the quality enhancement of JPEG image, utilizing the prior

knowledge of JPEG compression. Later, DnCNN was proposed in (Zhang et al. (2017)) for

6
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several tasks of image restoration, including quality enhancement. Li et al. (2015) proposed

a 20-layer CNN for enhancing image quality. Most recently, the memory network (Mem-

Net) (Tai et al. (2017)) has been proposed for image restoration tasks, including quality

enhancement. In the MemNet, the memory block was introduced to generate the long-term

memory across CNN layers, which successfully compensate the middle and high-frequency

signals distorted during compression. It achieves the state-of-the-art quality enhancement

performance for compressed images.

On the other hand, MFQE 1.0 (Yang et al. (2018)) pioneered the application of multi-

frame CNN to take advantage of temporal information for compressed video quality en-

hancement, where high-quality frames are utilized to enhancing the quality of the adjacent

low-quality frames. To exploit long-range temporal information, Yang et al. later intro-

duced a modified convolutional long short-term memory network(Yang et al. (2019)) for

video quality enhancement. Most recently, Guan et al. (2021) proposed MFQE 2.0 to

upgrade several key components of MFQE 1.0. Deng et al. (2020) proposed STDF in

2020 to further improve the performance of the deep learning method on video quality en-

hancement. The STDF(Deng et al. (2020)) takes a target frame along with its neighboring

reference frames as input to jointly predict an offset field to deform the Spatio-Temporal

sampling positions of convolution and achieved state-of-the-art performance in terms of

accuracy and speed.

7
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Figure 2.1: The framework of MFQE(source: Guan et al. (2021))

Figure 2.2: The framework of STDF(source:Deng et al. (2020))

8



M.A.Sc. Thesis – W. Hao McMaster University – Video Coding

2.2 Multi-frame Super-Resolution

In the early years, Brandi et al. (2008) and Song et al. (2011) proposed to enhance video

resolution by taking advantage of high-resolution vital frames. Recently, many multi-frame

super-resolution approaches have employed deep neural networks. For example, Huang

et al. (2018) developed a Bidirectional Recurrent Convolutional Network (BRCN), which

improves the super-resolution performance over traditional single-frame approaches. Kap-

peler et al. proposed a Video Super-Resolution network (VSRnet)(Kappeler et al. (2016)),

in which the neighboring frames are warped according to the estimated motion, and then

both the current and warped neighboring frames are fed into a super-resolution CNN to

enhance the resolution of the current frame. Later, Li and Wang (2017) proposed replacing

VSRnet with a deeper network with residual learning strategy. All these multi-frame meth-

ods exceed the limits of single-frame approaches (e.g., SRCNN(Dong et al. (2016))) for

super-resolution, which only utilize the spatial information within one single frame. Then,

Caballero et al. (2017) designed a spatial transformer motion compensation network to de-

tect the optical flow for warping neighboring frames. The current and warped neighboring

frames were then fed into the Efficient Sub-Pixel Convolution Network (ESPCN)(Shi et al.

(2016)) for super-resolution. Wang et al. (2019) proposed a unified framework, called

EDVR, which is extensible to various video restoration tasks, including super-resolution

and deblurring.

9
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Figure 2.3: The framework of EDVR(source:Wang et al. (2019))
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2.3 Image Quality Assessment

Mittal et al. proposed a natural scene statistic-based distortion-generic blind/no-reference

(NR) image quality assessment (IQA) model that operates in the spatial domain. To il-

lustrate a new practical application of Blind/Referenceless Image Spatial QUality Eval-

uator(BRISQUE), Mittal et al. describe a non-blind image denoising algorithm that can

be augmented with BRISQUE in order to perform blind image denoising. Results show

that BRISQUE augmentation leads to performance improvements over the state-of-the-art

methods.

Figure 2.4: The performance of Brisque(source:Mittal et al. (2012))
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2.4 Frame-level quality fluctuation

Yang et al. first observed that the PSNR varies significantly fluctuates across the com-

pressed frames. Fig 2.5 shows the PSNR curves of 6 video sequences, which are com-

pressed by different compression standards. It can be seen that PSNR fluctuates signifi-

cantly across the compressed frames. This indicates that there exists considerable quality

fluctuation in compressed video sequences for MPEG-1, MPEG-2, MPEG-4, H.264/AVC

and HEVC. In addition, Fig. 2.6 visualizes the subjective results of some frames in one

video sequence, which is compressed by the latest HEVC standard. We can see that visual

quality varies across compressed frames, also implying the frame-level quality fluctuation.

Figure 2.5: PSNR (dB) curves of compressed video by various compression
standards.(source:Guan et al. (2021))
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Figure 2.6: An example of frame-level quality fluctuation in video Football compressed
by HEVC.(source:Guan et al. (2021))
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2.5 Optical Flow Prediction

2.5.1 Learning Optical Flow with Convolutional Networks

In FlowNet1.0(Dosovitskiy et al. (2015)), the authors proposed and compared two archi-

tectures: FlowNetSimple and FlowNetCorr. Both of the two architectures are end-to-end

learning approaches. In FlowNetSimple, as shown in Fig.2.7, the authors simply stack two

sequentially adjacent input images together and feed them through the network. Compared

with FlowNetSimple(top), FlowNetCorr(bottom) first produces representations of the two

images separately, and then combines them together in the ‘correlation layer’, and learns

the higher representation together. Both of the two architectures have refinements which

are used for upsampling resolution.

Figure 2.7: The two network architectures: FlowNetSimple (top) and FlowNetCorr
(bottom).(source:Dosovitskiy et al. (2015))

14



M.A.Sc. Thesis – W. Hao McMaster University – Video Coding

FlowNet2.0(Ilg et al. (2017)) is much better than FlowNet1.0(Dosovitskiy et al. (2015)).

Compared with FlowNet1.0, FlowNet2.0 has a large improvement in quality as well as

speed. The main architecture is shown in Fig 2.8. It has four main contributions:

1. The schedule of presenting data is significant in training progress.

2. Proposed a stacked architecture.

3. Introduced a sub network specializing on small motions.

4. Proposed a fusion architecture.

Figure 2.8: Schematic view of complete flownet2 architecture.(source:Ilg et al. (2017))

15
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2.5.2 Learning Optical Flow with Deformable Convolutional Networks

Dai et al. (2017) first proposed deformable convolutions, in which additional offsets are

learned to allow the network to obtain information beyond its regular local neighbor-

hood, improving the capability of regular convolutions. Later, several works (Tian et al.

(2020),Wang et al. (2019)) extended it along temporal direction to implicitly capture mo-

tion cues for video-related applications and achieved better performance than traditional

methods.

Figure 2.9: Illustration of the sampling locations in 3 × 3 standard and deformable
convolutions. (a) regular sampling grid (green points) of standard convolution. (b)

deformed sampling locations (dark blue points) with augmented offsets (light blue arrows)
in deformable convolution. (c)(d) are special cases of (b), showing that the deformable
convolution generalizes various transformations for scale, (anisotropic) aspect ratio and

rotation.(source:Dai et al. (2017))

16
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Figure 2.10: Illustration of 3 × 3 deformable convolution.(source:Dai et al. (2017))
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However, these methods perform deformable convolution in a pairwise manner, thus

fail to fully explore temporal correlations across multiple frames. Deng et al. (2020) pro-

posed STDC to jointly consider a video clip rather than splitting it into several reference-

target frame pairs, leading to more effective use of contextual information.

18



Chapter 3

Proposed Method

3.1 overview

Given a compressed video, the aim is to obtain a network design /solution capable of

producing high quality results with the best perceptual quality and fidelity to the refer-

ence ground truth. To be specific, we conduct the enhancement separately for each com-

pressed frame ILQt0 ∈ RH×W at time t0. We take the preceding and succeeding peak PSNR

frames as reference to help enhancing quality of each target ILQt0 . The enhanced solution

ÎLQt0 ∈ RH×W can then be expressed as

ÎHQt0 = Fθ(ILQt0−1, I
LQ
t0 , ILQt0+1) (3.1.1)

where Fθ represents the proposed quality enhancement model and θ are the learnable pa-

rameters.
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Figure 3.1 demonstrates the framework of our method.

Figure 3.1: Overview of the proposed framework for compressed video quality
enhancement. Firstly, we choose the current frame and its neighbor peak Quality Frames

as the input data. Then send them to the two branches ODFN and CMSN. As a result,
complementary information from both target and reference frames can be fused within the

operation. Finally, we add the two residual frames on the raw target frame.

20
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3.2 PQF Detection

In the training step, we calculated the PSNR of each frame in video series. Only frames

whose quality is better than its neighbors’ will be labeled as a PQF. Then we send the target

frame and its neighboring PQFs to the input of the PEN. In the validation and test steps, due

to the absence of raw videos, we used Brisque (Mittal et al.) to perform blind/Referenceless

image quality. The blue line in Figure 3.2 represents the result of PSNR, while the red line

is the result of Brisque. We can observe that PQFs are in very similar positions, which

demonstrates the correctness of using Brisque to detect PQFs.

Figure 3.2: Comparison of PSNR and Brisque score
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3.3 Offset Deformable Fusion Network(ODFN)

The ODFN can be divided into two separate parts: Deformable Convolution Fusion Module

and Quality Enhancement Module.

3.3.1 Deformable Convolution Fusion Module

For a three frames input group ILQt0−1,ILQt0 ,ILQt0+1 ,the most straightforward fusion method

is to apply convolution directly on the compressed frames. For example, Karpathy et al.

have proposed a large-scale method EF for video classification in 2014 (Karpathy et al.

(2014)) as:

F (p) =

t0+1∑
t0−1

K2∑
K=1

Wt,k � I
LQ
t (p+ pk) (3.3.1)

where F is the resulting feature map, K represents the size of convolution kernel, Wt ∈

RK2is the kernel for t-th channel, p indicates arbitrary spatial position and pk represents

the regular sampling offsets. For example, pk ∈ {(−1,−1), (−1, 0)...(1, 1)}for K=3. De-

spite the high efficiency, EF(Karpathy et al. (2014)) may easily introduce noisy content and

reduce the performance of subsequent enhancement due to temporal motion. Inspired by

Dai et al. (2017). and Deng et al. (2020), we address this issue by introducing a Spatio-

Temporal deformable Convolution to augment the regular sampling offset with extra learn-

able offset δt,p ∈ R2K2 as

pk ← pk + δ(t,p),k. (3.3.2)

It is worth noting that the deformable offset δt,p are position-specific, i.e., individual δt,p

will be assigned for each convolution window centered at spatio-temporal position (t,p).
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Thus, spatial deformations as well as tempora dynamics within the video clip can be si-

multaneously modeled. Since the learnable offsets can be fractional, we follow Dai et al.

(2017) and Deng et al. (2020) to apply the differentiable bilinear interpolation to sample

sub-pixel ILQt (p+ pk).

Unlike previous VQE methods(Yang et al. (2018); Guan et al. (2021)) which perform

explicit motion compensation before fusion to alleviate the effect of temporal motion. We

implicitly combines motion cues with position-specific sampling while conducting fusion.

This leads to higher flexibility and robustness because adjacent convolution windows can

sample contents independently. Unlike STDF(Deng et al. (2020)) which takes the neigh-

boring 2R+1 frames as input, our method takes the proceeding and succeeding Peak Quality

Frames that contain richer information compared with neighboring Low Quality Frames.

3.3.2 Quality Enhancement Module

The main idea of QE module is to fully explore complementary information from fused

feature maps F and accordingly generate the enhanced target frame IHQt0 . In order to

take advantage of residual learning(Kim et al. (2016)), we first learn a non-linear mapping

Fθqe (�) to predict the enhancement residual as

R̂HQ
t0 = Fθqe (F ) . (3.3.3)

The enhanced target frame can then be generated as

ÎHQt0 = R̂HQ
t0 + ILQt0 . (3.3.4)

23



M.A.Sc. Thesis – W. Hao McMaster University – Video Coding

The last convolutional layer outputs the enhancement residual. Without bells and whistles,

such plain QE network is able to achieve satisfactory enhancement results.
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3.4 Complex Motion Solution Network(CMSN)

The input of CMSN is the same as the input of ODFN, we have added two modules to

this branch:Pyramid, Cascading and Deformable convolutions (PCD) alignment module at

the feature level and the Temporal and Spatial Attention(TSA) fusion module at the image

level(Wang et al. (2019)). These can improve the network’s ability for complex motion and

large parallax issues in alignment and fusion.

3.4.1 PCD Module

Compared with previous deforamble convolution fusion methods, we followed Wang et al.

(2019) to use a PCD module which mainly introduces two well established principles in op-

tical flow: pyramidal processing(Ranjan and Black (2017)) and cascading refinement(Hui

et al. (2018)) which can address complex motions and large parallax problems. The offset

and alignment feature prediction of the pyramid structure is shown in Figure 3.3. As shown

with purple lines, to generate feature at the l-th level, we use strided convolution filters to

downsample the features at the (l-1)-th pyramid level by a factor of 2, obtaining L-level

pyramids of feature representation. At the l-th level, offsets and aligned features are pre-

dicted also with the ×2 upsampled offsets and aligned features from the upper (l+1)-th level,

respectively (Dark and light green lines). Following the pyramid structure, a subsequent

deformable alignment is cascaded to further refine the coarsely aligned features (the part

with light yellow background in Figure 3.3). PCD module in such a coarse-to-fine manner

improves the alignment to the sub-pixel accuracy. It is noteworthy that the PCD alignment

module is jointly learned with the whole framework, without additional supervision(Tian

et al. (2020)) or pretraining on other tasks.
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3.4.2 TSA Module

Inter-frame temporal relation and intra-frame spatial relation are critical in fusion because

1. Different neighboring frames are not equally informative due to occlusion, blurry regions

and parallax problems;

2. Misalignment and unalignment arising from the preceding alignment stage adversely

affect the subsequent reconstruction performance.

Therefore, dynamically aggregating neighboring frames in pixel-level is indispensable

for effective and efficient fusion. In order to address the above problems, we added a TSA

fusion module(Wang et al. (2019)) to assign pixel-level aggregation weights on each frame.

Specifically, we adopt temporal and spatial attentions during the fusion process, as shown

in Figure 3.4.

Intuitively, a neighboring frame that is more similar to the reference one should be paid

more attention. For each frame i ∈ [−N : N ], the similarity distance h can be calculated

as:

h(Ft+i, Ft) = sigmoid(θ(Ft+i)
Tφ(Ft)) (3.4.1)

where θ(Ft+i)
T and φ(Ft) are two feature maps, which can be achieved with simple con-

volution filters. The sigmoid activation function is used to restrict the outputs in [0, 1],

stabilizing gradient back-propagation. Note that, the temporal attention is spatial-specific

for each spatial location. The temporal attention maps are then multiplied in a pixel-wise

manner to the original aligned features Ft+i. An extra fusion convolution layer is adopted

to aggregate these attention-modulated features F̂t+i:

F̂t+i = Ft+i
⊙

h(Ft+i, Ft) (3.4.2)
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Ffusion = Conv([F̂t−1, F̂t, F̂t+1]) (3.4.3)

where
⊙

denote the element-wise multiplication. Spatial attention masks are then com-

puted from the fused features. A pyramid design is employed to increase the attention

receptive field. After that, the fused features are modulated by the masks through element-

wise multiplication and addition, similar to Wang et al. (2019).
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Figure 3.3: PCD alignment module with Pyramid, Cascading and Deformable
convolution.
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Figure 3.4: TSA fusion module with Temporal and Spatial Attention.
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3.5 Training Scheme

Since ODFN and CMSN are fully-convolutional and thus differentiable, we jointly op-

timize them in an end-to-end fashion. The overall loss function L is set to the Sum of

Squared Error (SSE) between the enhanced target frameÎHQt0 and the raw one IHQt0 as:

L = ||ÎHQt0 − I
HQ
t0 ||

2

2
(3.5.1)

Note that, as there is no ground-truth for deformable offsets, learning for offset prediction

network is totally unsupervised and fully driven by the final loss L.
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Experiments and Results

4.1 Datasets

The organiser of NTIRE 2021 provided us with a total of 230 uncompressed videos. There

are currently 230 videos in the collection, with a variety of content types, motion types, and

frame rates. The training set consists of 200 videos. The video is compressed at a given

bitrate and a fixed QP. For fixed-rate, the videos are compressed in the YUV domain by

x265 of ffmpeg 4.3.1 at 200kbps. The raw YUV videos are losslessly compressed to mkv

via ffmpeg x265 to reduce the file sizes. For fixed-QP, videos are compressed in the YUV

domain by the Low-delay P mode HM 16.20 at QP 37. We calculated the PSNR of each

frame and labeled out the PQFs for training.

Because we don’t have the original lossless videos during the real video improvement

process, we followed Mittal et al.Mittal et al. (2012) to detect each frame’s quality and

score them which is used for labeling PQFs. The compressed videos and their correspond-

ing label files are then used as input for validation and test.
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4.2 Implementation Details

The proposed method is implemented based on PyTorch framework. For training, we ran-

domly crop 64 × 64 clips from raw and the corresponding compressed videos as training

samples. Data augmentation (i.e., rotation or flip) is further used to better exploit those

training samples. We train all models using Adam optimizer(Kingma and Ba (2015)) with

β1 = 0.9, β2 = 0.999 and ε = 10−8. Learning rate is initially set to 10−4 and retained

throughout training. We adopt Peak Signal-to-Noise Ratio (PSNR) and Structural Similar-

ity (SSIM)(Zhou Wang et al. (2004)) to evaluate quality enhancement performance, which

measure the improvement of the enhanced video from the compressed one.

4.3 Comparison to State-of-the-arts

We compared the proposed method with the state-of-the-art video quality enhancement

methods: STDFDeng et al. (2020),MFQEYang et al. (2018),EDVRWang et al. (2019). For

fair comparison, all video quality enhancement methods are retrained on our training set.

The quantitative accuracy values are presented in Table 1. On the 20 test videos, our

method consistently outperformed all other methods in terms of average PSNR and SSIM,

as can be seen. For fixed-rate, our method can achieve 27.7 db, which can improve video

quality by an average of 0.7db. For fixed-QP, our method can achieve 29.76 db, which can

improve video quality by an average of 0.5db. Comparing these two sets of experiments,

the reason for better performance on fixed-rate is that the quality of videos compressed by

fixed-rate is worse. The network can work more efficient.
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Module PSNR SSIM MSE
COMPRESSED 27.09421633 0.999453141 167.3619876

MFQE 27.4443455 0.999634534 155.3454354
STDF 27.4695685 0.999671607 154.7390707
EDVR 27.56421974 0.999746318 152.4928956
PEN 27.6984277 0.999784724 149.0298929

Table 4.1: Qualitative results of our module compared to others on three measure
methods/fixed-rate

Module PSNR SSIM MSE
COMPRESSED 29.30123438 0.999905059 85.59711258

MFQE 29.52641928 0.999963452 79.74057344
STDF 29.51714474 0.999950214 83.1527412
EDVR 29.64081145 0.999943558 81.21837553
PEN 29.76772013 0.99996444 78.89882611

Table 4.2: Qualitative results of our module compared to others on three measure
methods/fixed-QP

Fig 4.1-4.6 are the histograms of the results, which give a more visual indication of

the better results of our model. For both PSNR and SSIM, our network achieves the best

results.

Fig 4.7 and 4.8 shows that our results not only achieve higher PSNR/SSIM/MSE but

also better perceptually quality than reference methods. For example, in the horse picture,

we can see smoother lines and less blurring on the horse’s body.
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Figure 4.1: Histogram of experimental comparison of PSNR results/fixed-QP

Figure 4.2: Histogram of experimental comparison of SSIM results/fixed-QP
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Figure 4.3: Histogram of experimental comparison of MSE results/fixed-QP

Figure 4.4: Histogram of experimental comparison of PSNR results/fixed-rate
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Figure 4.5: Histogram of experimental comparison of SSIM results/fixed-rate

Figure 4.6: Histogram of experimental comparison of MSE results/fixed-rate
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Figure 4.7: Qualitative results of videos compressed by fixed rate.

Figure 4.8: Qualitative results of videos compressed by fixed QP.
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4.4 Ablation Study

4.4.1 PQF detector

In this section, we validate the necessity and effectiveness of utilizing PQFs to enhance

the quality of non-PQFs. To this end, we retrain the PEN approach to enhance non-PQFs

with the help of adjacent frames, instead of PQFs. The retrained model is represented by

PEN NF (i.e.,PEN with Neighboring Frames), and the experimental results are shown in

Table 4.3, which are obtained by averaging over all 20 test sequences. We can see that

our approach without considering PQFs can only result in 27.44 dB for PSNR gain. By

contrast, as aforementioned, our approach with PQFs can achieve 27.7 dB enhancement in

PSNR.

4.4.2 Deformable Offset Prediction

To demonstrate the effectiveness of deformable fusion, we compare it with a previous fu-

sion scheme-flownet(Dosovitskiy et al. (2015),Ilg et al. (2017)). The experimental results

are shown in Table 4.3, which are obtained by averaging over all 20 test sequences. We can

see that our approach with flownet can only result in 27.45dB for PSNR gain.

4.4.3 Ensemble models

As shown in Table 4.3, the single ODFN can result in 27.47db for PSNR while the single

CMSN can result in 27.56db, and the whole PEN approach can achieve 27.7db in PSNR.

This indicates that combining two branches is a good idea.
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Module PSNR SSIM MSE
COMPRESSED 27.09421633 0.999453141 167.3619876

PEN NF 27.443040304 0.999454351 169.34234425
flownet 27.450897878 0.999458685 155.4656307
ODFN 27.4695685 0.999671607 154.7390707
CMSN 27.56421974 0.999746318 152.4928956
PEN 27.6984277 0.999784724 149.0298929

Table 4.3: ablation study
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Conclusion

In this paper, we have proposed a CNN-based PEN approach for improving the quality

of compressed video by reducing compression artifacts. Different from the current multi-

frame quality enhancement approaches, we use the neighboring Peak Quality frames as

reference to improve the quality of target frame. We also implement Deformable Convo-

lution on fusion stage to improve the accuracy and efficiency. In the mean time, we have

integrated a second branch which applies temporal and spatial attention to improve the

quality and stability of the output. In the future, we will mainly focus on three points:

1. Modify the loss function further. Compare the benefits and drawbacks of L1 and L2,

and decide whether to regularize.

2. Not only using Peak PSNR frames as reference frames, but also use adjacent low-PSNR

frames with useful information.

3. In order to evaluate performance under different compression levels, the compression

Quantization Parameters (QPs) can set to different values like 27,29,31,33.
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