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Abstract

In this thesis, we investigate loss reserving with classical methods and deep learn-

ing approach. Claim reserving is a crucial task in non-life insurance. Insurance

companies have historical data on claim amounts. These data are usually aggre-

gated to loss triangles, which can be analyzed to predict the claim reserve. The

reserves for different business lines are related and a copula regression model can

link the claims of different business lines. We apply the models on real data and

obtain both reserve estimates and risk capitals. Product copula, Gaussian copula,

Frank copula and Student’s t copula are used to model the dependence of the two

business lines. The AIC of Student’s t copula model is 1.3 percent smaller than

the AIC of the Gaussian copula model. The AIC of Frank copula model and Prod-

uct copula model is within 0.9 percent of the Gaussian copula model’s AIC. The

Gaussian copula model generates the largest risk capital gain among all the copula

models. Neural networks are popular machine learning methods and have been

applied to the loss reserving problem. The DeepTriangle model is a deep learning

framework for forecasting paid losses. At each accident year and development year

for which we have data, we predict future losses based on observed history. Each

training and testing sample is associated with an accident year - development year

pair. The input for the training and testing sample is the observed incremental

paid loss and claims outstanding as of the accident - development year pair. To

capture the dependency between two lines of business, we use the incremental

paid loss from two business lines as input to the deep triangle model. The incre-
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mental paid loss from the personal auto line and the incremental paid loss from

the commercial auto line correspond to the first and the second component of the

sample. The predicted reserve from the deep triangle model is within two percent,

three percent and nine percent of the predictions from the Gaussian copula, Frank

copula and Student’s t copula models, respectively.
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Chapter 1

Introduction

Insurance companies need to set up funds for future compensation of policy holders

who have made claims. This amount is called the claims reserve. It is important

that the claims reserve is calculated carefully. On the basis of historical data

one can estimate the expected outstanding claims. The reserving methods used

in practice are frequently deterministic. For instance, the claims reserve is often

obtained with the chain-ladder method (Mack, 1993). Hence, people calculate the

reserve estimates without explicit reference to a stochastic model.

However, due to poor data quality or even lack of data, the uncertainty of the

best estimate can be quite high. In order to manage this risk it is important that

the claim reserve estimate is complemented by some measure of uncertainty.

In Chapter 2, we introduce the common loss models for reserving. For the

statistical approach, we first specify a model and then find an estimate of the

outstanding claims under that model. Standard statistical software packages can

be used to obtain maximum likelihood estimates for the model parameters. The

model can be used to find the variability of the estimate. The object of these

papers is to find a model under which the estimate is the same as the one given

by the chain-ladder method, see e.g. Verrall (2000), Mack and Venter (2000) and

Verrall and England (2000).
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The variability of the claims reserve can be obtained analytically or by simula-

tion. For example, Mack (1993) derived the mean squared error of prediction for

the chain-ladder method. The variability of the reserve can be difficult to calculate

analytically since the reserve estimators are complex functions. England and Ver-

rall (1999, 2002) introduced the bootstrapping method for the chain-ladder. The

mean squared error of prediction can be estimated with bootstrap simulation.

Insurance companies may have multiple lines of business. Assuming that there

is no dependency between different lines of business, the total reserve is the sum

of the reserves for separate lines of business. However, there may be dependence

between multiple lines of business in practice. The model of Shi and Frees (2011)

capture the dependence between two lines of business with a copula that links

the claims with the same accident and development year. We present the copula

regression models and applications in Chapter 3. Product copula, Gaussian copula,

Frank copula and Student’s t copula are used to model the dependence between

the personal auto line and the commercial auto line. Tail value at risk (TVaR) is

calculated as the risk measure for the portfolio. Compared with the silo model,

the Gaussian copula model results in the largest risk capital gain among all the

copula models.

Neural networks are popular methods in machine learning. Feed-forward neural

networks are inspired by the functionality of the brains. The generic architecture

of feed-forward neural networks are described in Chapter 4. It first computes

an intermediate variable z from the input x. z is formed by applying weights w

and bias b to the input x. The network layer is also equipped with an activation

function designed to reproduce the output of interest. The activation function is

non-linear and applied to the intermediate variable z. For example, in a regression

model, the activation can be the ReLu function, whereas in a classification model

with two classes, the sigmoid activation is used since it provides an output which

can be interpreted as a probability.

2
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To fit the neural network, a loss function L(y, ŷ), measuring the quality of the

predicted output of the model, ŷ, compared to the observations y is specified. The

loss function L() can be chosen flexibly based on the problem. For regression,

common loss functions are the mean squared error (MSE) or the mean absolute

error (MAE), while for classification the cross-entropy loss is often used. The model

is then fit by back-propagation (Rumelhart et al., 1986) and gradient descent. The

gradient descent updates the parameters of the model by computing the gradient

and adjusting the parameters in the direction of the gradient. For each round of

gradient descent, a small step in the direction of the gradient is taken to ensure

that the minimum of the loss function is found.

The application of deep learning techniques to loss reserving problems seems

to be a rapidly emerging field. Recently, Kuo (2019) proposed the DeepTriangle

model for loss reserving based on deep neural networks. In Chapter 5, following

Kuo (2019), we present the training data and testing data setup for the deep trian-

gle model. Each training sample is associated with an accident year - development

year pair. A mask value is used if there is no data at that time step. The sequences

consists of 9 time steps. At each accident year and development year for which we

have data, we predict future incremental paid loss and claims outstanding based

on the observed history. We applied Kuo’s DeepTriangle model to one of the loss

triangles from the commercial line. The model is trained for a maximum of 1000

epochs with early stopping scheme. We keep the data with development lag less

or equal than 10 years for the predictions. The same model is also applied to a

dataset from a major US property-casualty insurer. The first component of the

sample is the incremental paid loss from the personal line of business, and the

second component of the sample corresponds to the incremental paid loss from the

commercial line of business. Kuo’s DeepTriangle can predict the reserves for the

personal line and commercial line simultaneously. We run the DeepTriangle 100

times and use the average as the predicted reserve.

3



Chapter 2

Loss reserving

2.1 Loss triangles

Insurance companies have data bases with historical information on incurred claims.

These information can be the number of claims, the origin year of the accidents,

the year of the payments and claim amounts. These data can be analyzed to

predict the claim reserve. Loss triangles are usually used to aggregate the data.

Let us denote the aggregated incremental payments of all claims with accident

year i(0 ≤ i ≤ I) and development year j(0 ≤ j ≤ J) by Yi,j. Here Yi,j refers

to all payments in development year j for the claims occurred in year i. The

corresponding cumulative payments for the claims with accident year i after j

development years are denoted as

Ci,j =

j∑
k=0

Yi,k (2.1)

We now consider such an incremental triangle of paid claims {Yi,j; i,j∈ ∇},

where the business has been observed during I years, i.e. ∇={i=0,...,I;j=0,...,I-i}

(Table 2.1). The indexes i and j of the paid claims refer to the origin year and the

development year, respectively. In addition, the diagonals of ∇ are the calendar

4
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years.

If we assume that the claims are settled within the J observed years, then we

would like to predict the claim amounts in the lower, unobserved future triangle

{Yi,j; i,j ∈ ∇}, where ∆={i=1,...,I;j=I-i+1,...,J}, see Table 2.2. The sum R =∑
∆ Yij is the outstanding claims for which the insurance company must hold a

reserve.

Table 2.1: The triangle of observed incremental claims

Development year
Origin year 0 1 2 ... J-1 J

0 Y00 Y01 Y02 ... Y0,J−1 Y0,J

1 Y10 Y11 Y12 ... Y1,J−1

2 Y20 Y21 Y22 ...
... ... ... ...
I-1 YI−1,0 YI−1,1

I YI,0

Further, the claims reserves for accident year i can be shown as

Ri =
J∑

j=I+1−i

Yi,j i ∈ {I + 1− J, .., I} (2.2)

The total reserve for the outstanding payments at time I are given by

R =
I∑
i=1

J∑
j=I−i+1

Yi,j (2.3)

We have observations Yi,j(i + j ≤ I) in the upper triangle. The goal is to

predict the total reserve R. We use the predicted mean as the estimate for Yi,j

in lower triangle. The means µi,j of Yi,j are related to the explanatory variable:

accident year i and development year j.

5
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Table 2.2: The triangle of future incremental claims

Development year
Origin year 0 1 2 ... J-1 J

0
1 Y1,J

2 Y2,J−1 Y2,J

... ... ...
I-1 YI−1,2 ... YI−1,J−1 YI−1,J

I YI,1 YI,2 ... YI,J−1 YI,J

2.2 Mack’s Chain-ladder

Mack’s chain-ladder model (Mack, 1993) is probably the most popular loss reserv-

ing method in theory and practice. Individual claim payments are aggregated by

accident year and development year. Let indexes 0 ≤ i ≤ I denotes the accident

years and 0 ≤ j ≤ J denotes the development years. Ci,j is the cumulative claims

payments with accident year i and development year j. Ci,J is the total ultimate

claim amount of accident year i.

Model Assumptions

• Cumulative claims Ci,j of different accident years i are independent.

• There exist factors f0, ..., fJ−1 ≥ 0 and variance parameters σ2
0, ..., σ

2
J−1 ≥ 0

such that for all 0 ≤ i ≤ I and 1 ≤ j ≤ J we have

E[Ci,j|Ci,j−1] = fj−1Ci,j−1 (2.4)

V ar(Ci,j|Ci,j−1) = σ2
j−1Ci,j−1 (2.5)

• Here we do not make assumptions on the explicit distribution of Ci,j given

Ci,j−1. We just made assumptions on the first two moments.

Parameter estimation

6
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The parameters fj and σ2
j are estimated by

f̂j =

∑I−j−1
i=0 Ci,j+1∑I−j−1
i=0 Ci,j

=

I−j−1∑
i=0

Ci,j∑I−j−1
k=0 Ck,j

Ci,j+1

Ci,j
(2.6)

σ̂2
j =

1

I − j − 1

I−j−1∑
i=0

Ci,j(
Ci,j+1

Ci,j
− f̂j)2 (2.7)

If we denote the individual development factors by Fi,j+1 =
Ci,j+1

Ci,j
,

then the factor estimates f̂j are weighted averages of Fi,j+1, that is,

f̂j =

I−j−1∑
i=0

Ci,j∑I−j−1
k=0 Ck,j

Fi,j+1 (2.8)

Based on the estimations of fj, we can show that the claim reserve for accident

year i is

R̂i = Ci,J − Ci,I−i = Ci,I−i(f̂I−i...f̂J−1 − 1) (2.9)

Finally, the total outstanding losses is estimated by

R̂ =
I∑
i=1

R̂i (2.10)

2.3 Generalized linear models - background

In this section, we first introduce the generalized linear models (GLM) as a class

of statistical models. As a generalization of the classical linear models, this class

includes for example the Poisson model, log-normal model and the gamma model.

7
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2.3.1 Exponential family of distributions

Before applying the generalized linear models in claims reserve problems, we de-

scribe the theoretical background of the GLM. The theory of the generalized linear

models is introduced in Nelder and Wedderburn (1972). The response variable can

be any distribution from the exponential family. The probability density function

of the exponential family has the general form

f(y) = c(y, φ)exp{yθ − a(θ)

φ
}, (2.11)

where θ is the canonical parameter and φ is the dispersion parameter. Different

choice of the function a(θ) and c(y, φ) determine the actual probability function

such as the normal, Poisson or gamma.

Lemma 1. For exponential family response distributions, we have the following

identity

a′′(θ) = V ar(y)/φ. (2.12)

Proof. We first define f ′(y) and f ′′(y) as the first and second derivatives of f(y)

with respect to θ. Then

f ′(y) = f(y)

(
y − a′(θ)

φ

)
(2.13)

f ′′(y) = f(y)

(
y − a′(θ)

φ

)2

− f(y)
a′′(θ)

φ
(2.14)

Integrating both sides of each of these expressions with respect to y yields

0 =
E(y)− a′(θ)

φ
(2.15)

0 =
E[(y − a′(θ))2]

φ2
− a′′(θ)

φ
. (2.16)

8
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The left hand sides are zeros since

∫
f ′(y)dy =

∂

∂θ

∫
f(y)dy, (2.17)

∫
f ′′(y)dy =

∂2

∂θ2

∫
f(y)dy, (2.18)

where
∫
f(y)dy = 1 and assuming integration and differentiation can be inter-

changed.

The mean and variance of y is given by

E(y) = a′(θ), V ar(y) = φa′′(θ), (2.19)

where a′(θ) and a′′(θ) are the first and second derivatives of a(θ) with respect

to θ.

distribution θ a(θ) φ E(y) V (µ) = V ar(y)
φ

N(µ, σ2) µ 1
2
θ2 σ2 µ 1

Poisson(µ) lnµ eθ 1 µ µ
Gamma(µ, ν) − 1

µ
−ln(−θ) 1

ν
µ µ2

Table 2.3: Exponential family distributions and their parameters

The exponential family includes a number of the well-known distributions, as

illustrated in Table 2.3.

2.3.2 Model introduction

The generalized linear model is

f(y) = c(y, φ)exp{yθ − a(θ)

φ
}, g(µ) = xTβ. (2.20)

Here we assume observations y are independent. The first equation describes

the distribution of the random variable y. g(µ) is called the link function and

9
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it determines how the mean of y is related to the explanatory variables x. For

example, the link function for the normal linear model is identity and the rela-

tionship is described as µ = xTβ. In GLM, it is generalized to g(µ) = xTβ, where

the function g is monotonic and differentiable. Given x, µ is determined by g(µ).

Then θ is calculated from a′(θ) = µ.

Let η = g(µ) = xTβ, then η is the so-called linear predictor. Generalized linear

models are extensions of classical linear models that allow the mean of the response

variable y to depend on linear predictors through a link function.

The choice of a suitable link function g depends on the specific distribution

assumption for the response variable y. For each distribution in the exponential

family, there is a so-called canonical link function. The canonical link function g

relates the canonical parameter θ directly to the linear predictor η,

η = g(µ) = θ (2.21)

Since a′(θ) = µ, this implies that g(a′(θ)) = θ. Therefore the canonical link

function is given by g = (a′)−1.

With the canonical link function, we have the linear model θ = η for the

canonical parameter. For the over-dispersed Poisson model, a log link is a natural

choice in the insurance reserving context (Wüthrich and Merz, 2008).

Here we summarize the steps in generalized linear modeling. Given a response

variable y such as incremental claim amounts, constructing a GLM consists of the

following steps:

• Choose a response distribution f(y). This is guided by the nature of the

response variable.

• Choose a link g(µ). The choice is suggested by the relationship between the

response and explanatory variables.

10
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• Collect observations y1, .., yn on the response y. Successive observations are

assumed to be independent.

• Fit the model by estimating β. The fitting is usually done using software

such as R, which implements maximum likelihood estimation or its variants.

• Given the estimates of β, generate predictions of y for different explanatory

variable x.

2.3.3 Maximum likelihood estimation

The estimators of the model parameters are obtained by maximum likelihood

estimation (MLE). MLE is a method of estimating the parameters of a probability

distribution by maximizing a likelihood function, so that the observed data is most

probable under the assumed model. The parameter that maximizes the likelihood

function is called the maximum likelihood estimate. It is convenient to work with

the natural logarithm of the likelihood function, called the log-likelihood.

In case of the GLM’s, the corresponding log-likelihood function is

`(β, φ) =
n∑
i=1

ln f(yi; β, φ) =
n∑
i=1

{ln c(yi, φ) +
yiθi − a(θi)

φ
} (2.22)

For the maximum likelihood estimators of model parameters β, we have

∂`

∂βj
=

n∑
i=1

∂`

∂θi

∂θi
∂βj

. (2.23)

These two terms can be further written as

∂`

∂θi
=
yi − a′(θi)

φ
=
yi − µi
φ

,
∂θi
∂βj

=
∂θi
∂ηj

∂ηi
∂βj

=
∂θi
∂ηi

xij, (2.24)

where ηi = xTi β and xij is component i of xj.

Setting ∂`
∂βj

= 0 yields the first order conditions for likelihood maximization:

11
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n∑
i=1

∂θi
∂ηi

xij(yi − µi) = 0⇔ X ′D(y − µ) = 0, (2.25)

where D is the diagonal matrix with diagonal entries ∂θi
∂ηi

,

(
∂θi
∂ηi

)(−1) =
∂ηi
∂θi

=
∂ηi
∂µi

∂µi
∂θi

= g′(µi)a
′′(θi) = g′(µi)V (µi) (2.26)

Here D is diagonal with entries {g′(µi)V (µi)}−1. β is implicit in these equations

and it is related to µ and D. The equations in 2.25 are called the estimation

equation for β.

The estimation equation for β is usually difficult to solve directly except for

the normal distribution with identity link (De Jong and Heller, 2008). We can

use an iterative algorithm such as Newton-Raphson method to compute the maxi-

mum likelihood estimation numerically. To obtain the numerical solutions for MLE

estimation of the parameters, we can use GLM software packages in R. The Chain-

Ladder package in R provides various GLM models and corresponding parameter

estimations.

2.4 Loss models

The application of the GLM’s to the claims reserving problem will be introduced.

The GLM’s provide us a wide range of distributions from the exponential family.

With these distributions and link functions, we can estimate reserves by the loss

triangle of an insurance company. We assume that the incremental payments Yi,j

are independent. Accident year and development year are used as two factors for

the regression model.

At the end of calendar year I, we have the following data available

Yi,j; 0 ≤ i ≤ I, 0 ≤ j ≤ J, i+ j ≤ I (2.27)

12
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2.4.1 Normal model

We start with the normally distributed response variables and their combinations

with the identity link function. The probability density function of a normally

distributed random variable with mean µ and variance σ2 is

f(y) =
1√

2πσ2
exp{−(y − µ)2

2σ2
}, y ∈ (−∞,+∞) (2.28)

One of the models for dependent variables with normal distribution is given by

the following assumptions.

Incremental claims amounts Yi,j are independently normally distributed ran-

dom variables with

E(Yi,j) = µi,j, and var(Yi,j) = φ (2.29)

The relation between the linear predictor and the mean µi,j is defined as

ηi,j = µi,j = αi + βj + γ, (2.30)

with α0 = β0 = 0.

The parameters αi and βj denote the effects of the i-th accident year and j-th

development year on the expected value of the incremental claims, respectively. γ

is the intercept. Hence, the expected incremental claim is

E(Yi,j) = µi,j = αi + βj + γ (2.31)

As can be seen, this model with the identity link is a classical linear model with

normally distributed error terms. Here the dispersion parameter φ is equal to σ2.

13
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2.4.2 Log-normal model

The log-normal model assumes that the incremental claims Yi,j are independent

log-normally distributed with

log(Yi,j) ∼ N (µi,j, σ
2) (2.32)

The density function for a log-normally distributed random variable y with

mean µ and variance σ2 is

f(y) =
1√

2πσ2y
exp{−(log(y)− µ)2

2σ2
}, y ∈ (0,+∞) (2.33)

We consider the form µi,j = ηi,j for a log-normal distribution with location

parameter µi,j and scale parameter σ.

Here

ηi,j = αi + βj + γ, (2.34)

E(Yi,j) = eµi,j+σ2/2 and V ar(Yi,j) = e2µi,j+σ2

(eσ
2 − 1) (2.35)

Note that the above model is not a GLM. It models the log of the incremental

claims. The first step is to transform the incremental claims by taking their natural

logarithm. A model is then fitted to the transformed values with least squares

regression. For instance, we can use lm function in R. Within the linear regression

framework we forecast the incremental claims. µ and σ are the mean and standard

deviation of the logarithm, respectively. It is different from other models in that

the logarithm of the incremental claims is used as the response. However, in

other models, the incremental claims, themselves, are used as the response for the

models.

14
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2.4.3 Over-dispersed Poisson model

For the over-dispersed Poisson (ODP) model, the variance is not equal, but pro-

portional to the mean. It provides the same estimate as the Chain Ladder method,

which is proved in Mack (1993). The probability function of the Poisson distribu-

tion is

f(y) =
µy

y!
e−µ, y = 0, 1, 2, ..., µ > 0 (2.36)

µ is the expected value of Y. The model for an incremental loss triangle is

defined as follows: Incremental claims Yi,j are independent over-dispersed Poisson

random variables, with

E(Yi,j) = µi,j and V ar(Yi,j) = φµi,j, (2.37)

where φ is a scalar.

The linear predictor is related to the mean µi,j by a log link function

ηi,j = log(µi,j) = αi + βj + γ, (2.38)

with α0 = β0 = 0.

This formula for the linear predictor can be rewritten as

ηi,j = γX0 + βTC + αTL, (2.39)

where

• γ is the intercept;

• X0 is a vector of ones;

• α is the vector of αi for i ∈ {1, ..., n};

• β is the vector of βj for j ∈ {1, ..., n};
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• C is the vector of cj for j ∈ {1, ..., n};

• L is the vector of li for i ∈ {1, ..., n},

with lk = 1 for Yi,j if i = k (and 0 otherwise), and ck = 1 for Yi,j if j = k (and

0 otherwise).

Hence, the expected incremental claim and the corresponding variance is

E(Yi,j) = µi,j = eαi+βj+γ, (2.40)

V ar(Yi,j) = φµi,j = φeαi+βj+γ (2.41)

2.4.4 Gamma model

The gamma model assumes that the incremental claims Yi,j are independent and

follows gamma distribution G(k, θi,j). Here k is the shape parameter and θi,j is

the scale parameter.

The probability density function for a gamma random variable y is

f(y) =
1

Γ(k)θk
yk−1e−y/θ, y > 0 (2.42)

where k is the shape parameter and θ is the scale parameter.

E(Y ) = kθ, V ar(Y ) = kθ2 (2.43)

As pointed out by Wuthrich and Merz (2008), a log link ηi,j = log(kθi,j) is a

natural choice in loss reserving.

ηi,j = αi + βj + γ, (2.44)

with α0 = β0 = 0.
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E(Yi,j) = kθi,j V ar(Yi,j) = kθ2
i,j (2.45)

The expected incremental claim is

E(Yi,j) = kθi,j = eαi+βj+γ (2.46)

2.4.5 Log likelihood function

The formula for the linear predictor η can be rewritten as:

η = xTβ (2.47)

Here the parameter vector β is as follows

β = (γ, α1, ..., αn, β1, ..., βn)T (2.48)

x contains categorical variables accident year and development year. x can be

written as

x = (1, a1, ..., an, b1, ..., bn)T , (2.49)

where ai = 1 if i = k1 (and 0 otherwise), and bj = 1 if j = k2 (and 0 otherwise)

for accident year k1 and development year k2.

With the above notation, we obtain the log-likelihood functions.

• Normal distribution

`(β) =
n∑
k=1

(−(yk − xTk β)2

2σ2
− 1

2
lnσ2 − 1

2
ln(2π)) (2.50)
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• Poisson distribution

`(β) =
n∑
k=1

(ykx
T
k β − exp(xTk β)− ln yk!) (2.51)

• Gamma distribution

`(β) =
n∑
k=1

(−ykκxTk β + (κ− 1) ln yk − ln(Γ(κ)) + κ ln(κxTk β)) (2.52)

Here n is the number of the observed data. In this case, we have n = I ∗ (J +

1)/2. yk is the observed data in the upper triangle.

2.4.6 Estimating the dispersion parameter

After the estimation of β parameter, we can determine the means for each cell of

the triangle. The estimated means are then used to compute the dispersion param-

eter. The dispersion parameter φ is usually estimated by the Pearson χ2 statistic

divided by a difference between the number of observations and the number of

model parameters. The generalized Pearson χ2 statistic is used for measuring the

discrepancy of a fit and is defined by

χ2 =
n∑
k=1

(yk − µ̂k)2

V (µ̂k)
, (2.53)

where V (µ̂k) = Var(yk)/φ and µ̂k is the predicted mean.

The estimation for φ is

φ =
χ2

n− p
, (2.54)

where n is the number of observations and p is the number of model parameters.

In this case, we have n = I ∗ (J + 1)/2 and p = I + J + 1.
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For normal distribution, we have V (µk) = 1 and

φ =
χ2

n− p
=

1

n− p

n∑
k=1

(yk − µ̂k)2

V (µ̂k)
=

1

n− p

n∑
k=1

(yk − µ̂k)2 (2.55)

For Poisson distribution,V ar(yk) = V (µk)φ = µkφ

so V (µk) = µk and

φ =
χ2

n− p
=

1

n− p

n∑
k=1

(yk − µ̂k)2

V (µ̂k)
=

1

n− p

n∑
k=1

(yk − µ̂k)2

µ̂k
(2.56)

For Gamma distribution,

V ar(yk) = V (µk)φ = µ2
kφ (2.57)

so V (µk) = µ2
k and

φ =
χ2

n− p
=

1

n− p

n∑
k=1

(yk − µ̂k)2

V (µ̂k)
=

1

n− p

n∑
k=1

(yk − µ̂k)2

µ̂k
2 (2.58)

2.5 Model selection

To evaluate the goodness-of-fit of the models, we can use statistical tests. For

example, Kolmogorov-Smirnov test and Cramer-von Mises test can be used to

assess the fit. A large p-value indicates the model fitting is reasonable.

The Akaike Information Criterion (Akaike, 1974) is used to choose between

different types of models that seek an appropriate trade-off between goodness of

fit and model complexity. It balance the goodness of fit of a model with a penalty

term for the number of parameters p. AIC is defined as:

AIC = −2`+ 2p, (2.59)

where ` is the log-likelihood of the model. A good fit means a high value for
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the likelihood, and therefore a low value for −2`. Given a collection of models for

the data, AIC estimates the quality of each model, relative to other models. The

model with the lowest value of AIC is selected.

Bayesian Information Criterion introduced by Schwarz (1978) can also be used

to choose models. Its definition is as following:

BIC = −2`+ p ∗ log(n), (2.60)

where ` is the log-likelihood of the model, p the number of parameters and n

is the number of records in the data. The model with the lowest value of BIC is

selected.

2.6 Mean squared error of prediction

Mean squared error of prediction (MSEP) is used to measure the uncertainty of

the estimated claims reserves. It includes the process variance (variability of any

random variable) and the estimation or parameter variance (variability from the

model parameter estimate).

First of all, we denote R̂ as an estimation for the claim reserve R. Then it is

possible to get the following decomposition:

MSEP (R̂) = E[(R− R̂)2]

= E[(R− E(R) + E(R)− R̂)2]

= E[(R− E(R))2] + E[(R̂− E(R))2]

= V ar(R) + V ar(R̂)

(2.61)

Here Var(R) is the process variance and Var(R̂) is the parameter variance.

The covariance term is canceled out because of the assumption of independence

between past observations and future predictions.
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England and Verrall (1999) show the analytical expression of the mean squared

error of prediction. Denoting the triangle of predicted claims contributing to the

final claim reserve by ∆, the MSEP of the total reserve is given by

MSEP (R̂) = V ar(R) + V ar(R̂)

=
∑
i,j∈∆

φµρi,j +
∑
i,j∈∆

µ2
i,jV ar(ηi,j) + 2

∑
i1j1∈∆
i2j2∈∆
i1j1 6=i2j2

µi1j1µi2j2Cov(ηi1j1 , ηi2j2),

(2.62)

where ρ = 0 for the normal model, ρ = 1 for the over-dispersed Poisson model

and ρ = 2 for the gamma model.

The process variance V ar(R) =
∑

i,j∈∆ φµ
ρ
i,j can be calculated easily. The

estimation variance V ar(R̂) is difficult to calculate and can be estimated with

bootstrap simulation. Bootstrap method is used to generate a large number (say,

N) of reserve estimates. The bootstrap standard error is the standard deviation

of the N bootstrap reserve estimates. The bootstrap standard error is an estimate

of the square root of the estimation variance. With the MSEP, we can obtain the

confidence intervals for the reserve estimates. Based on Central Limit Theorem, we

approximate the reserve by means of a normal distribution with expected value

given by the predicted mean and the standard deviation given by the standard

error of prediction.

2.7 Bootstrapping

The bootstrap technique is a resampling method which repeatedly resamples the

original data and makes inferences from the resamples. For loss reserving, boot-

strapping approach can be used to simulate the full predictive distribution of the

reserves. The quantiles of the predictions can be computed based on the simulation

results.
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As in Efron and Tibshirani (1993) we let {y1, y2, ..., yn} be a random sample

from an unknown distribution F with parameter θ. θ can be estimated as a function

of the given random sample, i.e. θ̂ = s(y1, ..., yn). Given θ̂, the bootstrap sample

{y∗1, y∗2, ..., y∗n} is then drawn from the distribution F. A bootstrap replication of θ̂

is given by θ̂∗ = s(y∗1, y
∗
2, ..., y

∗
n).

The applications of the bootstrap method in the context of reserves were pro-

posed in Lowe (1994) and Taylor et al. (2008). The bootstrap algorithm for loss

triangles are as follows:

• Given the parameters estimated on the upper triangle data with GLM, we

generate samples for the upper triangle.

• Estimate the parameters with the same method on this new upper triangle

data.

• With these new estimated parameters, we generate predictions for the lower

triangle.

• Repeat the above steps n times.

In the context of the claim reserving, the resampling is applied to the residuals

of the model. To implement a bootstrap analysis we need to choose a model and

an adequate residual. The resampling is based on the hypothesis that the residuals

are independent and identically distributed. There is no difference to resample the

residuals or the residuals multiplied by a constant, as long as we take that fact

into consideration in the generation of the pseudo data. Our starting point will be

the Pearson residuals defined by

r
(p)
ij =

yij − µ̂ij√
ˆvar(Yij)

=
yij − µ̂ij√
φ̂V (µ̂ij)

(2.63)
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Since φ is constant for the data set, we can use

r
(p∗)
ij =

yij − µ̂ij√
V (µ̂ij)

(2.64)

instead of r
(p)
ij in the bootstrap procedure. At this stage, the scale parameter

is ignored. When using a normal model it is obvious that these residuals are

equivalent to the classical residuals, yij − µ̂ij, since V (µij) = 1.

As in the classical linear model (Efron and Tibshirani, 1993), it is more ade-

quate to work with the standardized Pearson residuals. The standardized Pearson

residuals can be considered as identically distributed. The well known standard-

ized Pearson residuals are given by

r
(p∗∗)
ij =

r
(p)
ij√

1− hij
, (2.65)

where the factor hij is the corresponding element of the diagonal of the hat

matrix. For the classical linear model, this hat matrix is given by

H = X(XTX)−1XT (2.66)

and it can be generalized for a GLM using

H = X(XTWX)−1XTW, (2.67)

where W is a diagonal matrix with generic element given by

(
V (µij)

(
∂ηij
∂µij

)2
)−1

. (2.68)
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Chapter 3

Claim reserving using copulas

The reserves for different lines of business are often related. Shi and Frees (2011)

propose a copula regression model which links the claims of different business lines.

This model assumes that claims from different triangles with the same accident

year and development period are dependent. The copula regression model can

be estimated with maximum likelihood estimation. Dependence modeling allows

analysts in risk capital analysis to quantify the diversification effect. We first

replicate the results of Shi and Frees (2011) regarding the estimation of the claims

reserve. Then we calculate the risk capital for different copula models.

3.1 Copula model

Assume that an insurance portfolio consists of N triangles. Define Y
(n)
ij as the

incremental claims in the ith accident year and jth development year. The super-

script (n), n ∈ {1, ..., N}, indicates the nth run-off triangle. Assume that Y
(n)
ij is

from a parametric distribution:

F
(n)
ij = Prob(Y

(n)
ij ≤ y

(n)
ij ) = F (n)(y

(n)
ij ; η

(n)
ij , γ

(n)), n = 1, ..., N. (3.1)

Here F (n)(·) is the distribution function for incremental losses from different
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lines of business. The parameter η
(n)
ij denotes the systematic component, which

determines the location. η
(n)
ij is a linear function of explanatory variables, that is

η
(n)
ij = x

(n)
ij β

(n). x
(n)
ij includes the predictive variables in the nth triangle, and β(n)

are the coefficients to be estimated. γ(n) summarizes the additional parameters in

the distribution of Y
(n)
ij .

The copula model assumes that claims from different triangles with the same

accident year and development period are dependent. This means that two differ-

ent lines of business Y
(1)
ij and Y

(2)
ij are related for a given pair (i, j).

According to Sklar’s theorem (Nelsen, 2006), a copula can uniquely represent

the joint distribution of n random variables Y (1), ..., Y (n) as

F (y(1), ..., y(n)) = C(F (1), ..., F (n); θ), (3.2)

where C(·; θ) denotes the copula function with dependence parameter θ, and

F (1), ..., F (n) are the marginal distribution functions of Y (1), ..., Y (n).

We consider a simple case when an insurance portfolio consists of two lines

of business (N=2). The joint distribution of incremental claims Y
(1)
ij , Y

(2)
ij can be

uniquely represented by a copula function as

Fij(y
(1)
ij , y

(2)
ij ) = Prob(Y

(1)
ij ≤ y

(1)
ij , Y

(2)
ij ≤ y

(2)
ij ) = C(F

(1)
ij , F

(2)
ij ; θ), (3.3)

where C(·; θ) is the copula function with parameter θ, and F
(1)
ij and F

(2)
ij are the

marginal distribution functions.

Model 3.3 can be estimated using the likelihood based estimation method. Let

c(·) denote the probability density function for the copula distribution function

C(·). The log-likelihood function for the insurance portfolio is:

L =
I∑
i=1

I−i+1∑
j=1

log c(F
(1)
ij , F

(2)
ij ; θ) +

I∑
i=1

I−i+1∑
j=1

(log f
(1)
ij + log f

(2)
ij ), (3.4)
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where f
(n)
ij denotes the density function of the marginal distribution F

(n)
ij for

n = 1, 2.

Maximizing the log-likelihood of model 3.3 results in estimates of the param-

eters, which are used to calculate the claim reserve. This changes the estimates

of the parameters for each triangle compared to the parameter estimates of the

independence model.

3.2 Reserve prediction

The dataset, which are from the Schedule P of the National Association of Insur-

ance Commissioners database, is the same as the one that Shi and Frees (2011) use.

The claim triangles consist of two lines of business, personal auto (Table 3.1) and

commercial auto (Table 3.2). For the marginal distribution, we use the log-normal

and the gamma distributions for personal and commercial lines of business (Shi

and Frees, 2011). We consider the form η
(n)
ij = µ

(n)
ij for a log-normal distribution

with location parameter µ
(n)
ij and shape parameter σ(n). For a gamma distribution

with location parameter µ
(n)
ij and shape parameter φ(n), we use the exponential

link µ
(n)
ij =

exp(η
(n)
ij )

φ(n) , which is the same as Abdallah et al. (2015).

Table 3.1: Incremental paid losses for personal auto line

year premium 1 2 3 4 5 6 7 8 9 10

1988 4711333 1376384 1211168 535883 313790 168142 79972 39235 15030 10865 4086
1989 5335525 1576278 1437150 652445 342694 188799 76956 35042 17089 12507
1990 5947504 1763277 1540231 678959 364199 177108 78169 47391 25288
1991 6354197 1779698 1498531 661401 321434 162578 84581 53449
1992 6738172 1843224 1573604 613095 299473 176842 106296
1993 7079444 1962385 1520298 581932 347434 238375
1994 7254832 2033371 1430541 633500 432257
1995 7739379 2072061 1458541 727098
1996 8154065 2210754 1517501
1997 8435918 2206886

We first use the Gaussian copula to model dependence between two lines of
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Table 3.2: Incremental paid losses for commercial auto line

year premium 1 2 3 4 5 6 7 8 9 10

1988 267666 33810 45318 46549 35206 23360 12502 6602 3373 2373 778
1989 274526 37663 51771 40998 29496 12669 11204 5785 4220 1910
1990 268161 40630 56318 56182 32473 15828 8409 7120 1125
1991 276821 40475 49697 39313 24044 13156 12595 2908
1992 270214 37127 50983 34154 25455 19421 5728
1993 280568 41125 53302 40289 39912 6650
1994 344915 57515 67881 86734 18109
1995 371139 61553 132208 20923
1996 323753 112103 33250
1997 221448 37554

business. The two-dimensional Gaussian copula is:

C(u1, u2) = ΦΣ(Φ−1(u1),Φ−1(u2)), u1, u2 ∈ (0, 1) (3.5)

where Σ is the 2 × 2 matrix with 1 on the diagonal and ρ otherwise. ρ is

the linear correlation between Φ−1(u1) and Φ−1(u2). Φ denotes the cumulative

distribution function (cdf) of a standard normal distribution while ΦΣ is the cdf

for a bivariate normal distribution with zero mean and covariance matrix Σ. The

copula can also be written as

C(u1, u2) =

∫ Φ−1(u1)

−∞

∫ Φ−1(u2)

−∞

1

2π
√

1− ρ2
exp

(
−s

2
1 − 2ρs1s2 + s2

2

2 (1− ρ2)

)
ds1ds2 (3.6)

The bivariate Frank copula is also used to model the dependence. It is defined

as

C(u1, u2) =
1

θ
log

(
1 +

(
e−θu1 − 1

) (
e−θu2 − 1

)
e−θ − 1

)
, u1, u2 ∈ (0, 1) (3.7)

We use the gjrm function from the R package GJRM (Marra and Radice, 2019)

to construct the copula. The reserve estimations for the independence model and

the copula model are shown in Table 3.3. The corresponding parameter estimates

are shown in Table 3.4. The Log-Likelihood and AIC are provided in Table 3.5.
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Table 3.3: Estimation of the reserve for different models

Reserves
Model LoB 1 LoB 2 Total

Product Copula 6 464 083 490 653 6 954 736
Gaussian Copula 6 423 246 495 925 6 919 171

Frank Copula 6 511 360 487 893 6 999 253
Student’s t Copula 6 800 554 554 426 7 354 980

Table 3.4: Parameter estimates for different models

Independence Gaussian Frank Student t
LoB 1 LoB 2 LoB 1 LoB 2 LoB 1 LoB 2 LoB 1 LoB 2

Intercept -1.1367 -1.6703 -1.1311 -1.6585 -1.1404 -1.6137 -1.1334 -1.7434
AY 1989 -0.0327 -0.1286 -0.0319 -0.135 -0.0338 -0.1378 -0.0314 -0.0698
AY 1990 -0.0284 -0.1416 -0.0295 -0.1505 -0.0098 -0.2239 -0.0452 -0.0285
AY 1991 -0.1309 -0.289 -0.131 -0.3009 -0.1204 -0.3531 -0.1473 -0.1920
AY 1992 -0.1747 -0.2722 -0.1749 -0.2866 -0.1685 -0.3355 -0.1935 -0.1373
AY 1993 -0.1745 -0.252 -0.1768 -0.2711 -0.158 -0.3516 -0.2134 -0.0714
AY 1994 -0.1729 -0.1242 -0.1771 -0.1446 -0.1629 -0.2243 -0.2174 0.0093
AY 1995 -0.2234 -0.0891 -0.2365 -0.1001 -0.2224 -0.1317 -0.1424 -0.1531
AY 1996 -0.2444 0.1348 -0.265 0.1676 -0.2435 0.1206 -0.1224 0.3744
AY 1997 -0.2042 -0.1041 -0.2064 -0.1159 -0.1942 -0.1618 -0.2053 -0.0207

Dev 2 -0.2244 0.1955 -0.227 0.2004 -0.2261 0.2414 -0.1863 0.2013
Dev 3 -1.0469 -0.0227 -1.0516 -0.0201 -1.0481 -0.006 -1.0178 -0.0198
Dev 4 -1.6441 -0.4088 -1.6479 -0.4119 -1.6374 -0.4169 -1.6488 -0.3781
Dev 5 -2.254 -1.0477 -2.2592 -1.0558 -2.2458 -1.0979 -2.2749 -0.9663
Dev 6 -3.013 -1.4632 -3.0171 -1.4691 -3.0006 -1.4984 -3.0094 -1.2971
Dev 7 -3.6713 -2.0885 -3.6754 -2.0994 -3.6544 -2.1342 -3.6886 -1.8934
Dev 8 -4.4935 -2.7831 -4.5022 -2.809 -4.4831 -2.8982 -4.5389 -2.6214
Dev 9 -4.9109 -3.1106 -4.9136 -3.1198 -4.9006 -3.164 -4.9122 -3.0569
Dev 10 -5.9134 -4.1705 -5.9157 -4.1823 -5.9034 -4.2282 -5.9146 -4.0870

Scale/Shape 0.0887 10.0925 0.0888 10.0793 0.0908 9.9170 0.0865 11.2900

Table 3.5: Fit statistics for different models

Copula
Fit statistics Independence Gaussian Frank Student’s t
Dependence Parameter . -0.3656 -2.7977 -0.2657
Log-Likelihood 346.6 350.4 350.3 355.4
AIC -613.2 -618.9 -618.5 -626.9

3.3 Parametric bootstrap for the copula model

In practice, reserving actuaries are also interested in reserve ranges. Here we de-

scribe a simulation method and a parametric bootstrap which are used to generate

the predictive distribution of the reserve.

The simulation method in this section is equivalent to the ones described in Shi
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and Frees (2011). The simulation procedure is described by the following steps:

• Simulate realizations u
(n)
ij (n = 1, ..., N) from the corresponding copula regres-

sion model for all accident years i and development period j which satisfy

i+ j − 1 > I.

• Transform these simulations to predictions of the lower triangles by y
(n)
ij =

F (n)(−1)(u
(n)
ij ; η̂

(n)
ij , γ̂

(n)). Here η̂
(n)
ij and γ̂(n) denote the estimates of the linear

predictor and the additional parameters.

• Obtain a prediction of the outstanding claim reserve for the entire insurance

portfolio by
N∑
n=1

I∑
i=2

I∑
j=I−i+2

ω
(n)
i y

(n)
ij . (3.8)

Here ω
(n)
i denotes the exposure for the ith accident year in the nth triangle.

Repeat the above steps for the total number of simulations to obtain a predic-

tive distribution of the reserve.

Shi and Frees (2011) expand the above simulation method to include parameter

uncertainty by using a bootstrapping approach. In this approach, we generate a

new upper triangle for each simulation and fit the corresponding copula regression

model to this new upper triangle. Thus, this approach uses different parameters

for each simulation. The predictive distribution generated by bootstrapping in-

cludes parameter uncertainty. This parametric bootstrap (Shi and Frees, 2011) is

described as follows:

• Simulate realizations u
(n)
ij (n = 1, ..., N) from the corresponding copula regres-

sion model for all accident years i and development period j which satisfy

i+ j − 1 ≤ I.

• Transform these simulations to estimates of the upper triangles by y
∗(n)
ij =

F (n)(−1)(u
(n)
ij ; η̂

(n)
ij , γ̂

(n)). Here η̂
(n)
ij and γ̂(n) denote the estimates of the linear
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predictor and the additional parameters.

• Obtain estimates of the linear predictors η̂
∗(n)
ij , the additional parameters

γ̂∗(n) and dependence parameter θ̂∗ by maximizing the log-likelihood of the

corresponding copula regression model for the created y
∗(n)
ij .

• Using these new parameter estimates, simulate the lower triangle by per-

forming the steps of the simulation procedure.

Repeat the above steps for the total number of simulations to obtain a predic-

tive distribution of the reserve.

Based on the techniques described above, a predictive distribution could be

generated for the reserve. In Table 3.6, we show the bootstrapping reserve, bias

and standard errors for different models.

Table 3.6: Bootstrap bias for different models

Reserve Bootstrap reserve Bias Std Error
Product Copula 6 954 736 6 994 653 0.57% 401 431
Gaussian Copula 6 919 171 6 953 469 0.50% 377 904
Frank Copula 6 999 253 7 044 507 0.65% 395 374
Student’s t Copula 7 354 980 7 387 915 0.45% 402 437

In table 3.7, we also report the confidence intervals for the predicted reserves.

The lower and upper bounds are calculated using the 5th and 95th percentile of

the predictive distribution, respectively.

Table 3.7: Confidence intervals for different models

lower bound upper bound
Product Copula 6 342 244 7 660 710
Gaussian Copula 6 344 747 7 589 519
Frank Copula 6 448 667 7 700 954
Student t Copula 6 767 624 8 075 700

Insurance companies are also interested in other risk measures such as the

Value-at-Risk (VaR) and the Tail Value-at-Risk (TVaR) (Côté et al., 2016). One
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way to calculate the risk measure for the entire portfolio (i.e. the personal auto

line and the commercial auto line) is to use the simple sum of the risk measures

for each subportfolio. This is the result under the silo method. We also report

the risk measures calculated from the product copula and the Gaussian copula

models. The risk measures are compared in Table 3.8 for different models. The

risk measures from both copula models are smaller than the silo method. This is

explained by the negative association between the two lines of business. The silo

method assumes a perfect positive linear relationship between subportfolios. The

Gaussian copula model allows diversification effect in the portfolio.

The predictive distribution of unpaid losses is also helpful to obtain risk capital,

which is the amount that insurance companies set aside as a buffer against potential

losses from extreme events. It can be calculated as the difference between risk

measure and the expected unpaid losses of the portfolio. For the risk measure, we

use the TVaR which is more informative than VaR. In practice, the risk capital is

calculated as the difference between the risk measure and the reserve. The reserve

is usually set at a risk tolerance between 60% and 80%, according to the risk

appetite. Here we set the risk tolerance at 60% for the reserve in our analysis. See

(Abdallah et al., 2016) for further details on risk capital analysis. Mathematically,

the risk capital is calculated as follows:

Risk capital = TVaR− TVaR60%. (3.9)

Table 3.8 shows the risk capital for the silo method, product copula model,

Gaussian copula model and Student’s t copula model. The silo method gives

more conservative risk capital, while the Gaussian copula model results in more

aggressive risk capital. We show in Table 3.9 that the gain in terms of risk capital

is important when we capture the association between the two lines of business.

The Gaussian copula model is the best in terms of risk capital gain.
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Table 3.8: Risk capital estimation for different methods

Risk measure TVaR (60%) TVaR (80%) TVaR (85%) TVaR (90%) TVaR (95%) TVaR(99%)
Silo 7 437 089 7 665 227 7 747 424 7 856 726 8 029 590 8 400 998

Product copula 7 366 110 7 556 391 7 623 324 7 711 546 7 849 315 8 156 210
Gaussian copula 7 309 225 7 486 336 7 553 536 7 640 866 7 779 089 8 081 251

Frank copula 7 412 858 7 597 721 7 663 806 7 752 307 7 895 450 8 203 132
Student’s t copula 7 777 369 7 969 783 8 040 971 8 136 747 8 288 298 8 628 209
Risk capital

Silo 228 138 310 335 419 637 592 501 963 909
Product copula 190 281 257 214 345 436 483 205 790 100
Gaussian copula 177 111 244 311 331 641 469 864 772 026

Frank copula 184 863 250 948 339 449 482 592 790 274
Student’s t copula 192 414 263 602 359 378 510 929 850 840

Table 3.9: Risk capital gain for different methods

Risk capital gain TVaR (80%) TVaR (85%) TVaR (90%) TVaR (95%) TVaR(99%)
Product copula vs Silo 16.59% 17.12% 17.68% 18.45% 18.03%
Frank copula vs Silo 18.97% 19.14% 19.11% 18.55% 18.01%

Gaussian copula vs Silo 22.37% 21.28% 20.97% 20.70% 19.91%
Student’s t copula vs Silo 15.66% 15.06% 14.36% 13.77% 11.73%
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Chapter 4

Overview of neural networks

Artificial Neural Networks (ANNs), sometimes referred to as multilayer percep-

trons (MLPs), have become increasingly popular tool in machine learning. The

ideas for ANNs were first introduced in McCulloch and Pitts (1943), and the ap-

plication of backpropagation came in the 1980s, see Werbos (1975) and Rumelhart

et al. (1986). Recent advancements in processor speed and memory have enabled

widespread use of these models in a diverse set of fields, including medical care,

autonomous navigation, and marketing analytics. Neural Networks can be used

for discrete classification and continuous value prediction.

4.1 Universal approximation theorem

Let L ∈ N and the tuple (N1, N2, ..., NL) ∈ NL denote the number of layers and the

number of nodes (neurons) on each layer respectively. Furthermore, we introduce

the function

zl : RNl 7→ RNl+1 for 1 ≤ l ≤ L− 1

x 7→ wl+1x+ bl+1

(4.1)

acting between layers. Each entry wl+1
i,j denotes the weight connecting node
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i ∈ Nl of layer l with node j ∈ Nl+1 of layer l + 1. bl+1 is the so called bias term.

A neural network F : RN0 7→ RNL is defined as the composition:

F = FL ◦ · · · ◦ F1 (4.2)

where each component is of the form Fl = σl ◦ zl. The function σl is the

so called activation function. The activation function is typically nonlinear and

applied component wise on zl. The first layer F1 is the input layer and the last

layer FL is the output layer. F2, ..., FL−1 are the hidden layers.

The following central result of Hornik et al. (1989) justifies the use of neural

networks as approximators for any continuous functions.

Theorem 2 (Universal approximation theorem). Let NN σ
d0,d1

be the set of neural

networks with activation function σ : R 7→ R, input dimension d0 ∈ N and output

dimension d1 ∈ N. Then, if σ is continuous and non-constant, NN σ
d0,d1

is dense

in Lp(µ) for all finite measures µ.

Basically, this theorem states that neural networks allow us to approximate

any continuous function arbitrarily well if we allow for arbitrarily many neurons

Nl in the hidden layer.

4.2 Single layer: the perceptron

The simplest neural network is also known as the perceptron. It contains a single

input layer and an output node. The basic structure of the perceptron is shown in

Figure 4.1 . The input layer has d neurons which transmit the d features (x1, ..., xd)

to an output neuron. The output layer applies weight (w1, ..., wd) to the input data

and generates the linear combination
∑d

i=1wixi. The sign of this real value is used

to make prediction. The prediction ŷ is computed as follows:
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ŷ = sign{
d∑
i=1

wixi} (4.3)

In many cases, there is a bias component of the prediction. For example, when

the feature variables are mean centered, the mean of the binary class prediction

from {−1, 1} is not 0. This is the case when the binary class distribution is highly

imbalanced. It is necessary to include a bias variable b:

ŷ = sign{
d∑
i=1

wixi + b} (4.4)

x1Input #1

x2Input #2

x3Input #3

x4Input #4

x5Input #5

ŷ Output

Figure 4.1: Perceptron

The perceptron algorithm was proposed by Rosenblatt (1958) and the opti-

mizations were performed in a heuristic way. It performs well at classifying data

sets which are linearly separable. However, it performs poorly on data sets when

the data are not linearly separable.

4.3 Activation functions

Activation function (Figure 4.2) is a critical component for a neural network.

Different types of functions such as linear, sigmoid, softmax, or Rectified linear

unit (ReLU) are used in various layers. A neuron computes two functions, which

are weighted summation and the activation. The value computed before applying

the activation function is used in the computation of the backpropagation.
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Figure 4.2: Activation function

• The most basic activation function is the linear or identity activation, which

provides no nonlinearity. The identity activation is often used in the output

node, when the target value is a real number.

• Rectified linear unit or ReLU ranges from 0 to infinity. All the negative

values are converted to zero. In other words, it computes the function

f(x) = max(0, x). (4.5)

It was found to accelerate the convergence of stochastic gradient descent

compared to the sigmoid functions. Compared to the sigmoid neurons which

need expensive operations, the ReLU is simply an activation at zero. Neu-

ral networks with ReLU tend to learn several times faster than saturating

activation functions, such as sigmoid function. However, the ReLU can be

fragile and the corresponding units will be zero forever if the learning rate is

set too high.
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• Compared to the ReLU function, a leaky ReLU will have a small negative

slope when x < 0. The corresponding function is

f(x) = 1(x < 0)(αx) + 1(x >= 0)(x), (4.6)

where α is a small constant. Because of the small scaling for the negative

values, the gradient would not saturate. The apparent advantage of Leaky

ReLU is that it does not saturate in the positive or negative region.

• The sigmoid activation function is a probabilistic approach and ranges in

between 0 and 1. Since the range is the minimum and the prediction would

be more accurate. The equation for the sigmoid function is

f(x) =
1

1 + e−x
. (4.7)

A very undesired property is that the gradient is almost zero when the neu-

ron’s activation saturates at either 0 or 1. If the initial weights are too large

then the neurons would become saturated and the network may not be able

to learn.

4.4 Neural network structure

Feedforward neural network (Figure 4.3) is designed to approximate some function

f ∗. A feedforward network defines a mapping y = f(x; θ) and learns the value of

the parameter θ which results in the best approximation to f ∗. Information flows

through the input layer and hidden layers, and finally to the output. There are no

feedback connections in which outputs are fed back into the model. The hidden

layer consists of many units that act in parallel. Each unit receives input from

many other units and computes its own activation value. A neuron can be thought

37



M.Sc. Thesis - Pengfei Cai McMaster - Mathematics and Statistics

of as a unit that accepts a number of inputs, combines them and generates an

output that is sent to one or more further neurons. Neurons are not all the same.

They come in a variety of different types. Neurons can differ in the number and

type of their inputs and outputs (Newman, 2018).

x1Input #1

x2Input #2

x3Input #3

x4Input #4

x5Input #5

a1
1

a1
10 a2

20

a1
2

a1
10 a2

20

a1
3

a1
10 a2

20

...

a1
5a
1
10 a2

20

Hidden
layer 1

a2
1

a1
10 a2

20

a2
2

a1
10 a2

20

a2
3

a1
10 a2

20

...

a2
5a1

10 a2
20

Hidden
layer 2

aL Output

Input
layer

Output
layer

Figure 4.3: A feed forward neural network with two hidden layers

The number of input neurons is corresponding to the number of input features.

For regression problems with one real valued output, there is one single node in

the output layer. There is one node per class in the output layer for classifica-

tion problems with multiple classes. Each neuron takes an input vector from the

previous layer al−1 and applies a weight vector wlj and a bias blj so that

zl,tj = wl,tj a
l−1,t + bl,tj (4.8)

or in matrix notation

zl,t = wl,tal−1,t + bl,t (4.9)

The result from layer l is then given by applying a non-linear activation function
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g(z),

al,t = g(zl,t) (4.10)

The calculation for the first hidden layer is as follows

a1
j = g(w1

jx+ b1
j) (4.11)

For the output layer l = L, we calculate the prediction

ŷ = aL = g(wLj a
L−1 + bLj ) (4.12)

The weights and bias parameters are updated to minimize the error between the

training data and the generated estimates. Let m denote the number of training

samples and C denotes the cost function which measures the error, and we have

Ct(wl, bl) =
m∑
i

L(ŷi, yi), (4.13)

where the function L is a measure of loss. The choices of the loss measure can

be the L2 or L1 norm. Here ŷi is the output vector from the neural network for

the ith training sample.

For example, the quadratic cost for a single training sample can be written as

Ct =
1

2

∑
j

(yi,j − aLi,j)2 (4.14)

The number of layers in the model, L and the number of neurons for each layer

are considered as hyperparameters. In general, their optimal values are not known

a priori. These parameters can be optimized using hyperparameter tuning over a

portion of the training data set. Models with many hidden layers are known as

deep neural network.
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4.5 The back propagation algorithm

An optimization procedure is used to find the minimum of the cost function. Gra-

dient descent methods can be used for this training process. These procedures

will require the calculation of the gradient of the cost function. The goal of back-

propagation is to compute the partial derivatives ∂C/∂w and ∂C/∂b of the cost

function (Nielsen, 2015).

Let’s first consider the values sent to the current layer before the activation

function was applied.

zl,tj =
∑
k

wl,tj,ka
l−1,t
k + bl,tj (4.15)

Consider the quantity

δlj =
∂C

∂zlj
(4.16)

With chain rule, we have

∂C

∂wlj,k
=
∂C

∂zlj

∂zlj
∂wlj,k

= δlja
l−1
k (4.17)

∂C

∂blj
=
∂C

∂zlj

∂zlj
∂blj

= δlj (4.18)

al−1
i is available for all the neurons in the network. To calculate the gradients,

we just need to obtain the value of the δlj’s.

We start with the last layer L of the network. By chain rule, it is easy to notice

that

δLj =
∂C

∂aLj

∂aLj
∂zLj

=
∂C

∂aLj
g′(zLj ) (4.19)
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With the Mean Square Error function, we get

δLj = (aLj − yj)g′(zLj ) (4.20)

The above result can be written in vector form as follows:

∆L = ∇aLC � g′(zL), (4.21)

where ∇aLC = ( ∂C
∂aL1

, ..., ∂C
∂aLk

) is the gradient of C taken with respect to the

elements of aL and � is the Hadamard Product or Schur product.

For two matrices A and B of the same dimension, the elements of the Hadamard

product A�B are given by

(A�B)ij = (A)ij(B)ij

We can propagate this backwards in the network to obtain δL−1
j .

δL−1
j =

∂C

∂zL−1
j

(4.22)

=
k∑
i

∂C

∂zLi

∂zLi
∂zL−1

j

(4.23)

=
k∑
i

δLi
∂zLi
∂zL−1

j

(4.24)

In order to calculate the term
∂zLi
∂zL−1

j

, we have
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∂zLi
∂zL−1

j

=
∂(
∑

k w
L
i,ka

L−1
k + bLi )

∂zL−1
j

(4.25)

=
∂(
∑

k w
L
i,kg(zL−1

k ) + bLi )

∂zL−1
j

(4.26)

=
∂(wLi,jg(zL−1

j ))

∂zL−1
j

(4.27)

= wLi,jg
′(zL−1

j ) (4.28)

Therefore,

δL−1
j =

k∑
i

δLi
∂zLi
∂zL−1

j

(4.29)

=
k∑
i

δLi w
L
i,jg
′(zL−1

j ) (4.30)

This formula shows that we can calculate any δlj in the network, assuming we

know δl+1
i . Propagating this method backwards through the layers of the network,

we are able to find all the partial derivatives. The derivatives of cost function C

with respect to the weights and biases of the network can be calculated.

The algorithm for back propagation is as follows:

• Input: Set the corresponding activation a1 for the input layer.

• Feedforward: For each l = 2, 3, ..., L compute zl,t = wl,tal−1,t + bl,t and

al,t = g(zl,t)

• Output δL: Compute δLj = (aLj − yj)g′(zLj ).

• Backpropagation: For each l = L−1, L−2, ..., 2 compute δlj =
∑k

i δ
l+1
i wl+1

i,j g
′(zlj).

• Output: The gradient of the cost function is given by ∂C
∂wl

j,k
= δlja

l−1
k and

∂C
∂blj

= δlj.
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4.6 Training the model

The weights and bias are updated as

wl,t+1 = wl,t − α 1

m

m∑
i

∂C(yi)

∂wl
(4.31)

bl,t+1 = bl,t − α 1

m

m∑
i

∂C(yi)

∂bl
. (4.32)

This means we need a term that sums up all the partial derivatives of the indi-

vidual sample cost function calculations. Let ∆wl and ∆bl denote these summing

up terms. Then the updates can also be written as

wl,t+1 = wl,t − α[
1

m
∆wl] (4.33)

bl,t+1 = bl,t − α[
1

m
∆bl] (4.34)

The algorithm for updating the weights and bias is summarized below:

Randomly initialise the weights for each layer wl

While iterations < iteration limit:

1. Set ∆w and ∆b to zero

2. For samples 1 to m:

(a) Perform a feed foward pass through all the L layers. Store the activation

function outputs h(`)

(b) Use backpropagation to calculate the gradient values for layers 2 to

L− 1.

(c) update the ∆wl and ∆bl for each layer

3. Perform a gradient descent step
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4.7 A simple network to predict digits

In this section we will implement a neural network that learns to recognize hand-

written digits. For this example, a simple neural network is used to perform

training and prediction on the MNIST dataset. It consists of images of handwrit-

ten digits with associated labels that tell us what the digit is. Each image is 28x28

pixels in size and the image data sample is represented by 784 data points which

denote the pixel intensity.

The input data ranges from 0 to 255. It’s standard practice to scale the input

data. It can help the convergence of the neural network and is especially important

if combining different data types. The amount of training data is always more

numerous than the testing data, and is usually between 60-80% of the total dataset.

We’ve made test set to be 20% of the total data, leaving 80% to train with.

The output layer needs 10 nodes to predict whether the digits represented by

the input pixels is between 0 and 9. When an image of the digit 5 is presented to

the neural network, the neuron in the output layer representing 5 has the highest

value. Ideally, the output looks like: (0. 0. 0. 0. 0. 1. 0. 0. 0. 0.). In reality, we can

see something like this: (0.01 0.1 0.2 0.05 0.3 0.8 0.4 0.03 0.25 0.02)

For the input layer, we need 784 nodes to cover 784 pixels in the image. We

need hidden layers to allow for the complexity of the task. The structure of the

network [784, 256, 10] The sigmoid activation function will be used. The source

code for training the model and making predictions are included in Appendix.

We run the model for 100 epochs on the training data set. During training, we

use 20 percent of the training data as a validation data. In Figure 4.4 we plot the

decrease of training loss and validation loss. After 84 epochs, the validation loss

starts to increase and the training stops. This trained model is used to predict

digit labels on the test data.
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Figure 4.4: Performance of the simple model, the red line shows the training loss
and the green line graphs the validation loss.

4.8 Stochastic gradient descent

In gradient descent, we are trying to minimize the cost function of the model by

moving the model parameters along the negative direction of the gradient. One

need to compute the cost function for all the training data simultaneously and cal-

culate the gradients. For large neural networks, the number of parameters can be

on the order of millions, and one needs to simultaneously run all samples forwards

and backwards to calculate the backpropagation updates. When we first initialize

the weights, they are far from the true values. Even a small number of samples

can provide an accurate direction of movement. The gradient is calculated as an

expectation, which may be approximated with a small set of samples (Goodfellow

et al., 2016).

For the stochastic gradient descent, training process involves randomly picking

out a small number n of randomly chosen training inputs. These random training

inputs x1, x2, ..., xn are referred as a mini-batch. Given that the sample size n is

large enough, the average of the gradient will be roughly equal to the average over
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all training data,

∑n
j=1∇C
n

≈
∑m

i=1∇C
m

,

where the second sum is over the entire set of training data.

The overall gradient can be estimated by calculating gradient for the randomly

chosen mini-batch. The weights and biases in our neural network can be updated

with the chosen mini-batch.

wl,t+1 = wl,t − α 1

n

n∑
i

∂C(yi)

∂wl
(4.35)

bl,t+1 = bl,t − α 1

n

n∑
i

∂C(yi)

∂bl
, (4.36)

where the sums are over all the training samples in the current mini-batch.

Then we train another randomly chosen mini-batch. An epoch of training is com-

pleted after we exhausted all the training inputs. Then we start another epoch

training.

The size of the mini batch is regulated by the amount of memory available on

the hardware. A small batch size is not efficient in terms of computational time. A

very large batch size may not lead to sufficient accuracy of gradient computation.

One can use powers of 2 for the mini batch size, because this design can provide

the best accuracy on most hardware. For example, the size can be set to 32, 64,

128, or 256.

We can use early stopping to determine the number of training epochs. At the

end of each epoch, we compute the value of the loss function on the validation

data. When the error on the validation data begins to rise, the training is ended.

Early stopping automatically prevents us from overfitting.
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4.9 Choice of loss function

Consider a neural network whose input is x, and its output is y = fw,b(x). fw,b

is the input-output mapping of the network, which depends on the weight w and

bias b. ŷ is the predicted value. The error function measures a proximity be-

tween the predicted output ŷ and the target y. The mean squared error is usually

used for regression problem, while the cross-entropy is often useful in classification

problems.

• The mean squared error can be written as the expectation of their squared

difference

C(w, b) = E[(y − ŷ)2] (4.37)

We search for the pair (w, b) so that it reaches the minimum of the cost

function. In other words, we are computing arg min C(w, b). This can be

achieved with steep descent method.

If the measurements of random variables (x, y) are given by (x1, y1), (x2, y2),

... , (xn, yn), then the cost function is defined by the average

C(w, b) =
1

n

n∑
j=1

(yj − ŷj)2, (4.38)

which can be considered as the empirical mean of the squared difference

between y and ŷ.

• The cross entropy involves two distributions, p(x), the true distribution, and

q(x), the estimated distribution. It is summed over the variable x and is

defined as

H(p, q) = −
∑
x

p(x)log(q(x)) (4.39)
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For a single sample, the neural network cross entropy cost function is as

follows

C(w, b) = −y · log(ŷ), (4.40)

where · is the inner product.
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Chapter 5

Deep triangle

Machine Learning techniques are widely used in the field of data analytics. Differ-

ent neural network modelling approaches have been developed for loss reserving.

More recently, Kuo (2019) proposed to apply machine learning techniques on a

large triangle dataset of multilpe P&C companies. The paper (Kuo, 2019) in-

troduces a deep learning approach for loss reserving. This approach can produce

forecasts by jointly modeling paid losses and claims outstanding.

5.1 Introduction

The main goal of the DeepTriangle model is to predict future incremental paid

losses. It can also predict the outstanding claims at each point. For input to

the DeepTriangle model, the incremental paid losses and claims outstandings are

normalized by the earned premium. To fit the model, the data as of calendar year

1997 is used for training. The model is trained for a maximum of 1000 epochs with

early stopping scheme. Then the trained model is used to predict the loss amounts

after calendar year 1997. At each accident year and development year pair, the

model predicts future incremental paid loss and claims outstanding based on the

observed history data.

49



M.Sc. Thesis - Pengfei Cai McMaster - Mathematics and Statistics

5.2 Data and variables

The data are from the National Association of Insurance Commissioners (NAIC)

Schedule P triangles (Meyers and Shi, 2011). In Schedule P data, the data are

aggregated into accident year-development year records. Our analysis will focus

on one insurance company. Table 5.1 and Table 5.2 display the cumulative paid

losses and incurred losses, respectively. Each triangle contains data for accident

years 1988-1997 and ten development years.

The incremental paid losses and claims outstanding are shown in Table 5.3 and

Table 5.4. Claims outstanding is calculated as incurred loss less cumulative paid

loss.

Table 5.1: cumulative paid loss

year premium 1 2 3 4 5 6 7 8 9 10
1988 286 378 54 699 108 337 143 899 164 818 179 538 185 391 188 023 189 759 190 520 193 499
1989 308 908 60 091 119 366 151 151 174 665 185 469 192 213 196 152 198 013 199 997
1990 326 503 65 860 130 803 172 390 197 977 210 230 219 267 222 428 224 078
1991 332 616 61 946 121 108 158 880 182 689 195 247 201 854 204 911
1992 341 890 65 043 128 550 164 433 187 508 199 823 208 008
1993 355 840 72 295 144 579 185 446 208 388 219 345
1994 379 781 81 988 151 197 189 630 212 446
1995 398 755 83 207 152 470 190 974
1996 406 609 79 699 143 590
1997 406 516 75 827

Table 5.2: incurred loss

year premium 1 2 3 4 5 6 7 8 9 10
1988 286 378 172 262 180 112 187 158 188 775 190 569 190 701 190 344 191 752 192 087 194 099
1989 308 908 192 154 198 550 196 977 197 877 198 265 198 957 200 108 200 044 201 101
1990 326 503 215 766 218 769 222 694 225 682 226 110 226 247 226 698 226 739
1991 332 616 208 425 207 219 207 811 211 186 210 054 208 456 207 581
1992 341 890 216 172 217 665 216 400 214 510 212 937 214 979
1993 355 840 237 378 237 679 237 253 233 699 231 958
1994 379 781 249 592 248 849 242 493 243 140
1995 398 755 256 434 249 225 238 468
1996 406 609 237 860 227 353
1997 406 516 220 029

Let indices 1 ≤ i ≤ I and 1 ≤ j ≤ I denote accident years and development

years, respectively. The incremental paid loss is denoted as xpaidi,j and the total

claims outstanding or case reserve is denoted as xosi,j. We define the normalized in-

cremental paid losses as Y paid
i,j = (xpaidi,j /NPEi) and normalized claims outstanding
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Table 5.3: incremental paid loss

year premium 1 2 3 4 5 6 7 8 9 10
1988 286 378 54 699 53 638 35 562 20 919 14 720 5 853 2 632 1 736 761 2 979
1989 308 908 60 091 59 275 31 785 23 514 10 804 6 744 3 939 1 861 1 984
1990 326 503 65 860 64 943 41 587 25 587 12 253 9 037 3 161 1 650
1991 332 616 61 946 59 162 37 772 23 809 12 558 6 607 3 057
1992 341 890 65 043 63 507 35 883 23 075 12 315 8 185
1993 355 840 72 295 72 284 40 867 22 942 10 957
1994 379 781 81 988 69 209 38 433 22 816
1995 398 755 83 207 69 263 38 504
1996 406 609 79 699 63 891
1997 406 516 75 827

Table 5.4: claims outstanding

year premium 1 2 3 4 5 6 7 8 9 10
1988 286 378 117 563 71 775 43 259 23 957 11 031 5 310 2 321 1 993 1 567 600
1989 308 908 132 063 79 184 45 826 23 212 12 796 6 744 3 956 2 031 1 104
1990 326 503 149 906 87 966 50 304 27 705 15 880 6 980 4 270 2 661
1991 332 616 146 479 86 111 48 931 28 497 14 807 6 602 2 670
1992 341 890 151 129 89 115 51 967 27 002 13 114 6 971
1993 355 840 165 083 93 100 51 807 25 311 12 613
1994 379 781 167 604 97 652 52 863 30 694
1995 398 755 173 227 96 755 47 494
1996 406 609 158 161 83 763
1997 406 516 144 202

as Y os
i,j = (xosi,j/NPEi), where NPEi denotes the net earned premium for accident

year i. Then the normalized incremental paid loss triangle and normalized claims

outstanding triangle can be written as in Table 5.5 and Table 5.6.

Table 5.5: normalized incremental paid loss

1 2 3 4 5 6 7 8 9 10

1 Y paid
11 Y paid

12 Y paid
13 Y paid

14 Y paid
15 Y paid

16 Y paid
17 Y paid

18 Y paid
19 Y paid

110

2 Y paid
21 Y paid

22 Y paid
23 Y paid

24 Y paid
25 Y paid

26 Y paid
27 Y paid

28 Y paid
29

3 Y paid
31 Y paid

32 Y paid
33 Y paid

34 Y paid
35 Y paid

36 Y paid
37 Y paid

38

4 Y paid
41 Y paid

42 Y paid
43 Y paid

44 Y paid
45 Y paid

46 Y paid
47

5 Y paid
51 Y paid

52 Y paid
53 Y paid

54 Y paid
55 Y paid

56

6 Y paid
61 Y paid

62 Y paid
63 Y paid

64 Y paid
65

7 Y paid
71 Y paid

72 Y paid
73 Y paid

74

8 Y paid
81 Y paid

82 Y paid
83

9 Y paid
91 Y paid

92

10 Y paid
101

The observed data are xpaidi,j : i = 1, ..., I; j = 1, ..., I − i + 1 and xosi,j : i =

1, ..., I; j = 1, ..., I − i + 1. The goal is to predict the future values {x̂paidi,j : i =
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Table 5.6: normalized claims outstanding

1 2 3 4 5 6 7 8 9 10
1 Y os

11 Y os
12 Y os

13 Y os
14 Y os

15 Y os
16 Y os

17 Y os
18 Y os

19 Y os
110

2 Y os
21 Y os

22 Y os
23 Y os

24 Y os
25 Y os

26 Y os
27 Y os

28 Y os
29

3 Y os
31 Y os

32 Y os
33 Y os

34 Y os
35 Y os

36 Y os
37 Y os

38

4 Y os
41 Y os

42 Y os
43 Y os

44 Y os
45 Y os

46 Y os
47

5 Y os
51 Y os

52 Y os
53 Y os

54 Y os
55 Y os

56

6 Y os
61 Y os

62 Y os
63 Y os

64 Y os
65

7 Y os
71 Y os

72 Y os
73 Y os

74

8 Y os
81 Y os

82 Y os
83

9 Y os
91 Y os

92

10 Y os
101

2, ..., I; j = I− i+ 2, ..., I} and {x̂osi,j : i = 2, ..., I; j = I− i+ 2, ..., I}. The ultimate

losses (UL) for each accident year i = 1, ..., I is calculated as

ÛLi =
I−i+1∑
j=1

xpaidi,j +
I∑

j=I−i+2

x̂paidi,j , (5.1)

where xpaidi,j : j = 1, ..., I − i + 1 is the observed incremental paid loss and

x̂paidi,j : j = I − i + 2, ..., I is the predicted incremental paid loss. The predictive

performance will be evaluated on the ultimate losses.

5.3 Training setup

There are 45 samples for the training data. Each training sample is associated

with an accident year - development year pair. Training data are associated with

accident year i (1 ≤ i ≤ 9) and development year j (2 ≤ j ≤ 11− i). The input for

the training sample associated with accident year i (1 ≤ i ≤ 9) and development

year j (2 ≤ j ≤ 11−i) are the sequences (mask, ...,mask, Y paid
i,1 , Y paid

i,2 , ..., Y paid
i,j−1) and

(mask, ...,mask, Y os
i,1 , Y

os
i,2 , ..., Y

os
i,j−1). A mask value is used if there is no data at that

time step. The sequences consists of 9 time steps. There is no historic data before

development year 1. That’s why we use the mask value. The two components of

the input for the training data are shown in Table 5.7 and 5.8. The output for the
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training sample associated with accident year i (1 ≤ i ≤ 9) and development year

j (2 ≤ j ≤ 11 − i) are the sequences (Y paid
i,j , Y paid

i,j+1, ..., Y
paid
i,11−i,mask, ...,mask) and

(Y os
i,j , Y

os
i,j+1, ..., Y

os
i,11−i,mask, ...,mask). A mask value is used if there is no data at

that time step. The sequences consists of 9 time steps. The mask value is used

because we do not have the lower part of the triangle. The two components of the

output for the training data are shown in Table 5.9 and 5.10.

The loss function is the average over the predicted time steps of the mean

squared error of predictions. For each sample at cell (i, j), the per-sample loss is

defined as

1

I − i+ 1− (j − 1)

I−i+1∑
k=j

(Ŷ paid
i,k − Y paid

i,k )2 + (Ŷ os
i,k − Y os

i,k )2

2
(5.2)

The AMSGRAD (Reddi et al., 2019) variant of ADAM is used for optimization.

The learning rate is set to be 0.0005. To fit the model, the data as of calendar

year 1997 is used for training. The model is trained for a maximum of 1000 epochs

with the following early stopping scheme: if the loss on the validation data does

not decrease over a 200-epoch window, training stops.
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Table 5.7: First component of input for training data

1 2 3 4 5 6 7 8 9

1 mask mask mask mask mask mask mask mask Y paid
11

2 mask mask mask mask mask mask mask Y paid
11 Y paid

12

3 mask mask mask mask mask mask Y paid
11 Y paid

12 Y paid
13

4 mask mask mask mask mask Y paid
11 Y paid

12 Y paid
13 Y paid

14

5 mask mask mask mask Y paid
11 Y paid

12 Y paid
13 Y paid

14 Y paid
15

6 mask mask mask Y paid
11 Y paid

12 Y paid
13 Y paid

14 Y paid
15 Y paid

16

7 mask mask Y paid
11 Y paid

12 Y paid
13 Y paid

14 Y paid
15 Y paid

16 Y paid
17

8 mask Y paid
11 Y paid

12 Y paid
13 Y paid

14 Y paid
15 Y paid

16 Y paid
17 Y paid

18

9 Y paid
11 Y paid

12 Y paid
13 Y paid

14 Y paid
15 Y paid

16 Y paid
17 Y paid

18 Y paid
19

10 mask mask mask mask mask mask mask mask Y paid
21

11 mask mask mask mask mask mask mask Y paid
21 Y paid

22

12 mask mask mask mask mask mask Y paid
21 Y paid

22 Y paid
23

13 mask mask mask mask mask Y paid
21 Y paid

22 Y paid
23 Y paid

24

14 mask mask mask mask Y paid
21 Y paid

22 Y paid
23 Y paid

24 Y paid
25

15 mask mask mask Y paid
21 Y paid

22 Y paid
23 Y paid

24 Y paid
25 Y paid

26

16 mask mask Y paid
21 Y paid

22 Y paid
23 Y paid

24 Y paid
25 Y paid

26 Y paid
27

17 mask Y paid
21 Y paid

22 Y paid
23 Y paid

24 Y paid
25 Y paid

26 Y paid
27 Y paid

28

18 mask mask mask mask mask mask mask mask Y paid
31

19 mask mask mask mask mask mask mask Y paid
31 Y paid

32

20 mask mask mask mask mask mask Y paid
31 Y paid

32 Y paid
33

21 mask mask mask mask mask Y paid
31 Y paid

32 Y paid
33 Y paid

34

22 mask mask mask mask Y paid
31 Y paid

32 Y paid
33 Y paid

34 Y paid
35

23 mask mask mask Y paid
31 Y paid

32 Y paid
33 Y paid

34 Y paid
35 Y paid

36

24 mask mask Y paid
31 Y paid

32 Y paid
33 Y paid

34 Y paid
35 Y paid

36 Y paid
37

25 mask mask mask mask mask mask mask mask Y paid
41

26 mask mask mask mask mask mask mask Y paid
41 Y paid

42

27 mask mask mask mask mask mask Y paid
41 Y paid

42 Y paid
43

28 mask mask mask mask mask Y paid
41 Y paid

42 Y paid
43 Y paid

44

29 mask mask mask mask Y paid
41 Y paid

42 Y paid
43 Y paid

44 Y paid
45

30 mask mask mask Y paid
41 Y paid

42 Y paid
43 Y paid

44 Y paid
45 Y paid

46

31 mask mask mask mask mask mask mask mask Y paid
51

32 mask mask mask mask mask mask mask Y paid
51 Y paid

52

33 mask mask mask mask mask mask Y paid
51 Y paid

52 Y paid
53

34 mask mask mask mask mask Y paid
51 Y paid

52 Y paid
53 Y paid

54

35 mask mask mask mask Y paid
51 Y paid

52 Y paid
53 Y paid

54 Y paid
55

36 mask mask mask mask mask mask mask mask Y paid
61

37 mask mask mask mask mask mask mask Y paid
61 Y paid

62

38 mask mask mask mask mask mask Y paid
61 Y paid

62 Y paid
63

39 mask mask mask mask mask Y paid
61 Y paid

62 Y paid
63 Y paid

64

40 mask mask mask mask mask mask mask mask Y paid
71

41 mask mask mask mask mask mask mask Y paid
71 Y paid

72

42 mask mask mask mask mask mask Y paid
71 Y paid

72 Y paid
73

43 mask mask mask mask mask mask mask mask Y paid
81

44 mask mask mask mask mask mask mask Y paid
81 Y paid

82

45 mask mask mask mask mask mask mask mask Y paid
91
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Table 5.8: Second component of input for training data

1 2 3 4 5 6 7 8 9

1 mask mask mask mask mask mask mask mask Y os
11

2 mask mask mask mask mask mask mask Y os
11 Y os

12

3 mask mask mask mask mask mask Y os
11 Y os

12 Y os
13

4 mask mask mask mask mask Y os
11 Y os

12 Y os
13 Y os

14

5 mask mask mask mask Y os
11 Y os

12 Y os
13 Y os

14 Y os
15

6 mask mask mask Y os
11 Y os

12 Y os
13 Y os

14 Y os
15 Y os

16

7 mask mask Y os
11 Y os

12 Y os
13 Y os

14 Y os
15 Y os

16 Y os
17

8 mask Y os
11 Y os

12 Y os
13 Y os

14 Y os
15 Y os

16 Y os
17 Y os

18

9 Y os
11 Y os

12 Y os
13 Y os

14 Y os
15 Y os

16 Y os
17 Y os

18 Y os
19

10 mask mask mask mask mask mask mask mask Y os
21

11 mask mask mask mask mask mask mask Y os
21 Y os

22

12 mask mask mask mask mask mask Y os
21 Y os

22 Y os
23

13 mask mask mask mask mask Y os
21 Y os

22 Y os
23 Y os

24

14 mask mask mask mask Y os
21 Y os

22 Y os
23 Y os

24 Y os
25

15 mask mask mask Y os
21 Y os

22 Y os
23 Y os

24 Y os
25 Y os

26

16 mask mask Y os
21 Y os

22 Y os
23 Y os

24 Y os
25 Y os

26 Y os
27

17 mask Y os
21 Y os

22 Y os
23 Y os

24 Y os
25 Y os

26 Y os
27 Y os

28

18 mask mask mask mask mask mask mask mask Y os
31

19 mask mask mask mask mask mask mask Y os
31 Y os

32

20 mask mask mask mask mask mask Y os
31 Y os

32 Y os
33

21 mask mask mask mask mask Y os
31 Y os

32 Y os
33 Y os

34

22 mask mask mask mask Y os
31 Y os

32 Y os
33 Y os

34 Y os
35

23 mask mask mask Y os
31 Y os

32 Y os
33 Y os

34 Y os
35 Y os

36

24 mask mask Y os
31 Y os

32 Y os
33 Y os

34 Y os
35 Y os

36 Y os
37

25 mask mask mask mask mask mask mask mask Y os
41

26 mask mask mask mask mask mask mask Y os
41 Y os

42

27 mask mask mask mask mask mask Y os
41 Y os

42 Y os
43

28 mask mask mask mask mask Y os
41 Y os

42 Y os
43 Y os

44

29 mask mask mask mask Y os
41 Y os

42 Y os
43 Y os

44 Y os
45

30 mask mask mask Y os
41 Y os

42 Y os
43 Y os

44 Y os
45 Y os

46

31 mask mask mask mask mask mask mask mask Y os
51

32 mask mask mask mask mask mask mask Y os
51 Y os

52

33 mask mask mask mask mask mask Y os
51 Y os

52 Y os
53

34 mask mask mask mask mask Y os
51 Y os

52 Y os
53 Y os

54

35 mask mask mask mask Y os
51 Y os

52 Y os
53 Y os

54 Y os
55

36 mask mask mask mask mask mask mask mask Y os
61

37 mask mask mask mask mask mask mask Y os
61 Y os

62

38 mask mask mask mask mask mask Y os
61 Y os

62 Y os
63

39 mask mask mask mask mask Y os
61 Y os

62 Y os
63 Y os

64

40 mask mask mask mask mask mask mask mask Y os
71

41 mask mask mask mask mask mask mask Y os
71 Y os

72

42 mask mask mask mask mask mask Y os
71 Y os

72 Y os
73

43 mask mask mask mask mask mask mask mask Y os
81

44 mask mask mask mask mask mask mask Y os
81 Y os

82

45 mask mask mask mask mask mask mask mask Y os
91
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Table 5.9: First component of output for training data

1 2 3 4 5 6 7 8 9

1 Y paid
12 Y paid

13 Y paid
14 Y paid

15 Y paid
16 Y paid

17 Y paid
18 Y paid

19 Y paid
110

2 Y paid
13 Y paid

14 Y paid
15 Y paid

16 Y paid
17 Y paid

18 Y paid
19 Y paid

110 mask

3 Y paid
14 Y paid

15 Y paid
16 Y paid

17 Y paid
18 Y paid

19 Y paid
110 mask mask

4 Y paid
15 Y paid

16 Y paid
17 Y paid

18 Y paid
19 Y paid

110 mask mask mask

5 Y paid
16 Y paid

17 Y paid
18 Y paid

19 Y paid
110 mask mask mask mask

6 Y paid
17 Y paid

18 Y paid
19 Y paid

110 mask mask mask mask mask

7 Y paid
18 Y paid

19 Y paid
110 mask mask mask mask mask mask

8 Y paid
19 Y paid

110 mask mask mask mask mask mask mask

9 Y paid
110 mask mask mask mask mask mask mask mask

10 Y paid
22 Y paid

23 Y paid
24 Y paid

25 Y paid
26 Y paid

27 Y paid
28 Y paid

29 mask

11 Y paid
23 Y paid

24 Y paid
25 Y paid

26 Y paid
27 Y paid

28 Y paid
29 mask mask

12 Y paid
24 Y paid

25 Y paid
26 Y paid

27 Y paid
28 Y paid

29 mask mask mask

13 Y paid
25 Y paid

26 Y paid
27 Y paid

28 Y paid
29 mask mask mask mask

14 Y paid
26 Y paid

27 Y paid
28 Y paid

29 mask mask mask mask mask

15 Y paid
27 Y paid

28 Y paid
29 mask mask mask mask mask mask

16 Y paid
28 Y paid

29 mask mask mask mask mask mask mask

17 Y paid
29 mask mask mask mask mask mask mask mask

18 Y paid
32 Y paid

33 Y paid
34 Y paid

35 Y paid
36 Y paid

37 Y paid
38 mask mask

19 Y paid
33 Y paid

34 Y paid
35 Y paid

36 Y paid
37 Y paid

38 mask mask mask

20 Y paid
34 Y paid

35 Y paid
36 Y paid

37 Y paid
38 mask mask mask mask

21 Y paid
35 Y paid

36 Y paid
37 Y paid

38 mask mask mask mask mask

22 Y paid
36 Y paid

37 Y paid
38 mask mask mask mask mask mask

23 Y paid
37 Y paid

38 mask mask mask mask mask mask mask

24 Y paid
38 mask mask mask mask mask mask mask mask

25 Y paid
42 Y paid

43 Y paid
44 Y paid

45 Y paid
46 Y paid

47 mask mask mask

26 Y paid
43 Y paid

44 Y paid
45 Y paid

46 Y paid
47 mask mask mask mask

27 Y paid
44 Y paid

45 Y paid
46 Y paid

47 mask mask mask mask mask

28 Y paid
45 Y paid

46 Y paid
47 mask mask mask mask mask mask

29 Y paid
46 Y paid

47 mask mask mask mask mask mask mask

30 Y paid
47 mask mask mask mask mask mask mask mask

31 Y paid
52 Y paid

53 Y paid
54 Y paid

55 Y paid
56 mask mask mask mask

32 Y paid
53 Y paid

54 Y paid
55 Y paid

56 mask mask mask mask mask

33 Y paid
54 Y paid

55 Y paid
56 mask mask mask mask mask mask

34 Y paid
55 Y paid

56 mask mask mask mask mask mask mask

35 Y paid
56 mask mask mask mask mask mask mask mask

36 Y paid
62 Y paid

63 Y paid
64 Y paid

65 mask mask mask mask mask

37 Y paid
63 Y paid

64 Y paid
65 mask mask mask mask mask mask

38 Y paid
64 Y paid

65 mask mask mask mask mask mask mask

39 Y paid
65 mask mask mask mask mask mask mask mask

40 Y paid
72 Y paid

73 Y paid
74 mask mask mask mask mask mask

41 Y paid
73 Y paid

74 mask mask mask mask mask mask mask

42 Y paid
74 mask mask mask mask mask mask mask mask

43 Y paid
82 Y paid

83 mask mask mask mask mask mask mask

44 Y paid
83 mask mask mask mask mask mask mask mask

45 Y paid
92 mask mask mask mask mask mask mask mask
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Table 5.10: Second component of output for training data

1 2 3 4 5 6 7 8 9

1 Y os
12 Y os

13 Y os
14 Y os

15 Y os
16 Y os

17 Y os
18 Y os

19 Y os
110

2 Y os
13 Y os

14 Y os
15 Y os

16 Y os
17 Y os

18 Y os
19 Y os

110 mask
3 Y os

14 Y os
15 Y os

16 Y os
17 Y os

18 Y os
19 Y os

110 mask mask
4 Y os

15 Y os
16 Y os

17 Y os
18 Y os

19 Y os
110 mask mask mask

5 Y os
16 Y os

17 Y os
18 Y os

19 Y os
110 mask mask mask mask

6 Y os
17 Y os

18 Y os
19 Y os

110 mask mask mask mask mask
7 Y os

18 Y os
19 Y os

110 mask mask mask mask mask mask
8 Y os

19 Y os
110 mask mask mask mask mask mask mask

9 Y os
110 mask mask mask mask mask mask mask mask

10 Y os
22 Y os

23 Y os
24 Y os

25 Y os
26 Y os

27 Y os
28 Y os

29 mask
11 Y os

23 Y os
24 Y os

25 Y os
26 Y os

27 Y os
28 Y os

29 mask mask
12 Y os

24 Y os
25 Y os

26 Y os
27 Y os

28 Y os
29 mask mask mask

13 Y os
25 Y os

26 Y os
27 Y os

28 Y os
29 mask mask mask mask

14 Y os
26 Y os

27 Y os
28 Y os

29 mask mask mask mask mask
15 Y os

27 Y os
28 Y os

29 mask mask mask mask mask mask
16 Y os

28 Y os
29 mask mask mask mask mask mask mask

17 Y os
29 mask mask mask mask mask mask mask mask

18 Y os
32 Y os

33 Y os
34 Y os

35 Y os
36 Y os

37 Y os
38 mask mask

19 Y os
33 Y os

34 Y os
35 Y os

36 Y os
37 Y os

38 mask mask mask
20 Y os

34 Y os
35 Y os

36 Y os
37 Y os

38 mask mask mask mask
21 Y os

35 Y os
36 Y os

37 Y os
38 mask mask mask mask mask

22 Y os
36 Y os

37 Y os
38 mask mask mask mask mask mask

23 Y os
37 Y os

38 mask mask mask mask mask mask mask
24 Y os

38 mask mask mask mask mask mask mask mask
25 Y os

42 Y os
43 Y os

44 Y os
45 Y os

46 Y os
47 mask mask mask

26 Y os
43 Y os

44 Y os
45 Y os

46 Y os
47 mask mask mask mask

27 Y os
44 Y os

45 Y os
46 Y os

47 mask mask mask mask mask
28 Y os

45 Y os
46 Y os

47 mask mask mask mask mask mask
29 Y os

46 Y os
47 mask mask mask mask mask mask mask

30 Y os
47 mask mask mask mask mask mask mask mask

31 Y os
52 Y os

53 Y os
54 Y os

55 Y os
56 mask mask mask mask

32 Y os
53 Y os

54 Y os
55 Y os

56 mask mask mask mask mask
33 Y os

54 Y os
55 Y os

56 mask mask mask mask mask mask
34 Y os

55 Y os
56 mask mask mask mask mask mask mask

35 Y os
56 mask mask mask mask mask mask mask mask

36 Y os
62 Y os

63 Y os
64 Y os

65 mask mask mask mask mask
37 Y os

63 Y os
64 Y os

65 mask mask mask mask mask mask
38 Y os

64 Y os
65 mask mask mask mask mask mask mask

39 Y os
65 mask mask mask mask mask mask mask mask

40 Y os
72 Y os

73 Y os
74 mask mask mask mask mask mask

41 Y os
73 Y os

74 mask mask mask mask mask mask mask
42 Y os

74 mask mask mask mask mask mask mask mask
43 Y os

82 Y os
83 mask mask mask mask mask mask mask

44 Y os
83 mask mask mask mask mask mask mask mask

45 Y os
92 mask mask mask mask mask mask mask mask
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5.4 Testing setup

There are 9 samples for the testing data. Each testing sample is associated with an

accident year - development year pair. Testing data are associated with accident

year i (2 ≤ i ≤ 10) and development year j (j = 12 − i). For accident year 1, we

have all the data from development year 1 to development year 10. The input for

the testing sample associated with accident year i (2 ≤ i ≤ 10) and development

year j (j = 12 − i) are the sequences (mask, ...,mask, Y paid
i,1 , Y paid

i,2 , ..., Y paid
i,11−i) and

(mask, ...,mask, Y os
i,1 , Y

os
i,2 , ..., Y

os
i,11−i). A mask value is used if there is no data at

that time step. The sequences also consist of 9 time steps. There is no historic

data before development year 1. That’s why we use the mask value. The two

components of the input for the test data are shown in Table 5.11 and 5.12.

At each accident year and development year for which we have data, we predict

future incremental paid loss and claims outstanding based on the observed history.

We keep the data with development lag less or equal than 10 years for the predicted

output.

Table 5.11: First component of input for testing

1 2 3 4 5 6 7 8 9

1 Y paid
21 Y paid

22 Y paid
23 Y paid

24 Y paid
25 Y paid

26 Y paid
27 Y paid

28 Y paid
29

2 mask Y paid
31 Y paid

32 Y paid
33 Y paid

34 Y paid
35 Y paid

36 Y paid
37 Y paid

38

3 mask mask Y paid
41 Y paid

42 Y paid
43 Y paid

44 Y paid
45 Y paid

46 Y paid
47

4 mask mask mask Y paid
51 Y paid

52 Y paid
53 Y paid

54 Y paid
55 Y paid

56

5 mask mask mask mask Y paid
61 Y paid

62 Y paid
63 Y paid

64 Y paid
65

6 mask mask mask mask mask Y paid
71 Y paid

72 Y paid
73 Y paid

74

7 mask mask mask mask mask mask Y paid
81 Y paid

82 Y paid
83

8 mask mask mask mask mask mask mask Y paid
91 Y paid

92

9 mask mask mask mask mask mask mask mask Y paid
101
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Table 5.12: Second component of input for testing

1 2 3 4 5 6 7 8 9

1 Y os
21 Y os

22 Y os
23 Y os

24 Y os
25 Y os

26 Y os
27 Y os

28 Y os
29

2 mask Y os
31 Y os

32 Y os
33 Y os

34 Y os
35 Y os

36 Y os
37 Y os

38

3 mask mask Y os
41 Y os

42 Y os
43 Y os

44 Y os
45 Y os

46 Y os
47

4 mask mask mask Y os
51 Y os

52 Y os
53 Y os

54 Y os
55 Y os

56

5 mask mask mask mask Y os
61 Y os

62 Y os
63 Y os

64 Y os
65

6 mask mask mask mask mask Y os
71 Y os

72 Y os
73 Y os

74

7 mask mask mask mask mask mask Y os
81 Y os

82 Y os
83

8 mask mask mask mask mask mask mask Y os
91 Y os

92

9 mask mask mask mask mask mask mask mask Y os
101

5.5 Results and discussion

We run the model on the testing data and generated the lower triangle for both

the incremental paid losses and outstanding claims. We keep the data with de-

velopment lag less or equal than 10 years. Table 5.13 shows the full triangle of

incremental paid losses. The full triangle of claims outstanding is displayed in

Table 5.14.

Table 5.13: Full triangle of incremental paid loss. The predicted values are in red.

year 1 2 3 4 5 6 7 8 9 10
1988 54699 53638 35562 20919 14720 5853 2632 1736 761 2979
1989 60091 59275 31785 23514 10804 6744 3939 1861 1984 1856
1990 65860 64943 41587 25587 12253 9037 3161 1650 2054 1338
1991 61946 59162 37772 23809 12558 6607 3057 2249 1538 1312
1992 65043 63507 35883 23075 12315 8185 3055 2180 1882 1701
1993 72295 72284 40867 22942 10957 4503 2957 2414 2055 1805
1994 81988 69209 38433 22816 10785 6248 3704 2664 2104 1764
1995 83207 69263 38504 18277 10040 5679 3372 2403 1879 1553
1996 79699 63891 35140 22243 12447 6938 3934 2678 2121 1891
1997 75827 71068 42941 27347 14407 8018 4040 3286 3196 3187

Kuo’s Deep Triangle use randomness by design. One of the reason for ran-

domness is the dropout in neural network layers. During training, some number

of nodes are dropped out. By dropping a node out, we mean it is temporarily

removed from the network. The choice of which nodes to drop is random. Each

node is dropped with a given probability, in order to reduce overfiting, see page

6 in Kuo (2019). With limited training data, deep neural network could face
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Table 5.14: Full triangle of claims outstanding. The predicted values are in red.

year 1 2 3 4 5 6 7 8 9 10
1988 117563 71775 43259 23957 11031 5310 2321 1993 1567 600
1989 132063 79184 45826 23212 12796 6744 3956 2031 1104 1332
1990 149906 87966 50304 27705 15880 6980 4270 2661 1530 801
1991 146479 86111 48931 28497 14807 6602 2670 1758 903 813
1992 151129 89115 51967 27002 13114 6971 2599 1359 1108 1039
1993 165083 93100 51807 25311 12613 4020 2278 1583 1311 1174
1994 167604 97652 52863 30694 11629 5573 3096 2011 1528 1286
1995 173227 96755 47494 21285 10173 5015 2851 1907 1481 1293
1996 158161 83763 44051 25524 12915 6363 3442 2240 1768 1570
1997 144202 95724 55410 32782 15779 7767 3630 2888 2808 2800

the problem of overfitting. The deep triangle model implement dropout in the

layer gru function, which is explained in the appendix. The prediction from the

neural network model could be slightly different between runs since the dropout

is random. Another prediction for the full triangle of incremental paid loss and

claims outstanding is shown in Table 5.15 and Table 5.16.

Table 5.15: Full triangle of incremental paid loss. The predicted values are in blue.

year 1 2 3 4 5 6 7 8 9 10
1988 54699 53638 35562 20919 14720 5853 2632 1736 761 2979
1989 60091 59275 31785 23514 10804 6744 3939 1861 1984 1924
1990 65860 64943 41587 25587 12253 9037 3161 1650 2117 1505
1991 61946 59162 37772 23809 12558 6607 3057 2293 1654 1598
1992 65043 63507 35883 23075 12315 8185 2984 2223 2046 1973
1993 72295 72284 40867 22942 10957 4399 2908 2439 2156 1949
1994 81988 69209 38433 22816 10567 5608 3322 2355 1798 1407
1995 83207 69263 38504 19344 10691 5712 3291 2230 1607 1231
1996 79699 63891 33933 20975 12247 6720 3525 2379 1890 1646
1997 75827 71001 43430 27908 15287 7993 3822 3154 3048 2999

Deep triangle uses incremental paid loss and claims outstanding to predict loss

reserve for each line of business. To link the claims of two different business lines,

we provide the incremental claims of the two business lines to the deep triangle

model. With inputs from two lines of business, the deep triangle model can capture

the dependence structure between the two lines.
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Table 5.16: Full triangle of claims outstanding. The predicted values are in blue.

year 1 2 3 4 5 6 7 8 9 10
1988 117563 71775 43259 23957 11031 5310 2321 1993 1567 600
1989 132063 79184 45826 23212 12796 6744 3956 2031 1104 1369
1990 149906 87966 50304 27705 15880 6980 4270 2661 1537 847
1991 146479 86111 48931 28497 14807 6602 2670 1743 940 858
1992 151129 89115 51967 27002 13114 6971 2533 1455 1222 1157
1993 165083 93100 51807 25311 12613 4029 2193 1642 1402 1271
1994 167604 97652 52863 30694 11324 4853 2686 1775 1415 1235
1995 173227 96755 47494 22512 10794 4978 2896 1909 1452 1203
1996 158161 83763 42680 24221 12758 6064 3222 2009 1533 1356
1997 144202 96439 55947 33051 16188 7564 3434 2696 2561 2502

Table 5.17: Full triangle of personal line. The predicted values are in red.

year 1 2 3 4 5 6 7 8 9 10
1988 1376384 1211168 535883 313790 168142 79972 39235 15030 10865 4086
1989 1576278 1437150 652445 342694 188799 76956 35042 17089 12507 1287
1990 1763277 1540231 678959 364199 177108 78169 47391 25288 3968 820
1991 1779698 1498531 661401 321434 162578 84581 53449 14423 3061 3022
1992 1843224 1573604 613095 299473 176842 106296 41489 10112 5798 5674
1993 1962385 1520298 581932 347434 238375 114260 42362 17868 11448 9557
1994 2033371 1430541 633500 432257 207632 102930 44102 21960 14674 11913
1995 2072061 1458541 727098 363784 183649 92314 43428 24013 16999 14165
1996 2210754 1517501 777016 422457 235400 128214 60445 29120 20359 17887
1997 2206886 1814038 663834 370789 190152 93078 41316 24885 21977 21480

We apply the deep triangle model to the same data that Shi and Frees (2011)

use. The claim triangles consist of two lines of business, personal auto and com-

mercial auto. For the input to the deep triangle model, the incremental claims

loss triangles of the two business lines are normalized by earned premium. The

model is fit to incremental paid loss ratios of the personal auto line and commercial

auto line. The first component of the sample is the incremental paid loss from the

personal line of business, and the second component of the sample corresponds to

the incremental paid loss from the commercial line of business. Kuo’s deep tri-

angle use dropout, which may be interpreted as an ensemble model combination.

The predictions are averaged over an ensemble of neural networks (with parameter

sharing). It has long been observed that ensembles of models improve predictive

performance (Lakshminarayanan et al., 2017). We run the deep triangle model

many times and report the average predictions. The predicted full triangles are
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Table 5.18: Full triangle of commercial line. The predicted values are in blue.

year 1 2 3 4 5 6 7 8 9 10
1988 33810 45318 46549 35206 23360 12502 6602 3373 2373 778
1989 37663 51771 40998 29496 12669 11204 5785 4220 1910 748
1990 40630 56318 56182 32473 15828 8409 7120 1125 1413 861
1991 40475 49697 39313 24044 13156 12595 2908 2800 1556 806
1992 37127 50983 34154 25455 19421 5728 4957 2345 1176 709
1993 41125 53302 40289 39912 6650 9618 4713 2336 1380 916
1994 57515 67881 86734 18109 18935 10555 5486 3077 2027 1487
1995 61553 132208 20923 31723 16441 10001 5514 3384 2429 1956
1996 112103 33250 49826 29756 16106 10687 6054 3334 2400 2088
1997 37554 48221 29349 16305 9271 5735 3044 1954 1712 1663

shown in Table 5.17 and Table 5.18.

Table 5.19: Estimation of the reserve

number of Reserves (average)
predictions LoB 1 LoB 2 Total

1 6 366 487 393 767 6 760 254
10 6 327 648 386 313 6 713 960
20 6 373 726 392 250 6 765 976
30 6 293 546 384 009 6 677 555
40 6 321 082 385 024 6 706 106
50 6 375 960 385 992 6 761 951
100 6 359 162 386 854 6 746 016

The estimated reserve for the personal line and commercial line are 6 359 162

and 386 854, respectively. Thus, the estimated total reserve is 6 746 016. It is

close to the estimated reserve from the Gaussian copula regression result, which

is 6 919 171. The difference is 2.5%. We run the prediction for different number of

times and use the average as the predicted reserves for the two lines of business.

These predictions from various number of runs are displayed in Table 5.19.
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Chapter 6

Conclusions and Future Work

The thesis first presents the loss models used in claim reserving, which is a crucial

task in non-life insurance. The exponential family of distributions are introduced

before moving to the stochastic models. The probability distributions from this

family are used to specify the distributions of data in loss triangles. We describe the

assumptions for the models and the estimation techniques. The model parameters

are estimated with maximum likelihood method. Mean squared error of prediction

is used to measure the variability of predicted reserve. We also present the copula

regression model for the reserve in the third chapter. The dependence structure

between two lines of business is modeled with Gaussian, Frank and Student’s t

copula. The various copula regression models in this thesis are compared using

likelihood-based criteria. Besides, we also compared the risk capitals calculated

with different copula models. Compared with the silo method, the Gaussian copula

model generates the largest risk capital gain among all the copula models.

The fourth chapter gives an introduction to the feed-forward neural networks.

The Universal approximation theorem states that neural networks allow us to ap-

proximate any continuous functions arbitrarily well. A loss function is used to

measure the error between the predicted output and the target. Gradient de-

scent methods can find the minimum of the cost function. For large networks, the
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number of parameters are on the order of millions. Stochastic gradient descent

methods estimate the overall gradient by calculating gradient for randomly cho-

sen mini-batch. It replaces the actual gradient by an estimate and reduces the

computational burden.

Finally, the last chapter focuses on the DeepTriangle model, which is a deep

learning model for predicting paid losses. We present the training data and testing

data setup for the deep triangle model. The input for the training and testing

sample is the observed history as of the accident year - development year pair.

When we use the incremental paid loss from two different business lines as input

to the deep triangle model, the dependence structure between the two lines can

be captured. We apply Kuo’s DeepTriangle model to a dataset from a major US

property-casualty insurer, which contains personal auto line and commercial auto

line. The incremental paid loss from the two business lines correspond to the two

components of the training and testing samples. The prediction is run 100 times

and the average is used as the predicted reserve. We compared the predicted

reserve from the deep triangle model to the reserve generated by Product copula

model, Gaussian copula model, Frank copula model and Student’s t copula model

in Table 6.1. The deep triangle model generates the reserve within 3 percent

difference from the Gaussian copula model and Frank copula model.

Table 6.1: Reserve comparison of various models. DeepTriangle is abbreviated to
DT.

DT vs Product DT vs Gaussian DT vs Frank DT vs Student’s t
Percentage difference 3.09% 2.57% 3.75% 9.03%

The deep triangle model predicts similar reserves to the reserves from Gaussian

copula and Frank copula models. They all use the same loss triangles from two

lines of business. However we do not fully understand why the deep triangle yields

comparable results with the other models. We think that is the case because of the

way the upper triangle data is organized as training (input and output) data and

64



M.Sc. Thesis - Pengfei Cai McMaster - Mathematics and Statistics

testing data. The original upper triangle data is rearranged as 45 training samples

and 9 testing samples. Each sample consists of 9 time steps and 2 components.

A mask value is used if there is no data at that time step. The model is fit on

the training data with a maximum of 1000 epochs. We run the model on the

testing data and outputs predictions for the loss amounts in the lower part of

the triangles. The data with development lag less or equal than 10 years are

kept as the predicted output. Whereas deep triangle uses the aggregate claims

triangles, another emerging research field is on the modeling of loss reserves using

micro-level approaches. With the time series of reserves and payments on each

individual claim, future research may involve studying the use of each individual

claim fed into the machine learning models.
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Appendix A

R codes

Here we present the source code for the numerical experiments.

library(GJRM)

library(reshape)

library(ChainLadder)

library(MASS)

data1 <- read.csv("personal_auto.csv")

#replace NAs with 0

data1[is.na(data1)] <- 0

data1$year <- as.factor(data1$year)

triangle1 <- data1

triangle1 [ ,3:12] <- data1 [ ,3:12]/data1 [,2]

#loss ratios

ratios1 <- melt(triangle1 , id=c("year","premium"))

ratios1$variable <- as.numeric(ratios1$variable)

## log normal regression for personal
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data1.prp=ratios1[which(ratios1$value >0) ,]

names(data1.prp) <- c("year","premium","dev","loss")

data1.prp$dev <- as.factor(data1.prp$dev)

data1.prp$premium <- as.numeric(data1.prp$premium)

#log transform

data1.prp$logloss <- log(data1.prp$loss)

data2 <- read.csv("commercial_auto.csv")

data2[is.na(data2)] <- 0

data2$year <- as.factor(data2$year)

triangle2 <- data2

triangle2 [ ,3:12] <- data2 [ ,3:12]/data2 [,2]

#loss ratios

ratios2 <- melt(triangle2 , id=c("year","premium"))

ratios2$variable <- as.numeric(ratios2$variable)

data2.prp=ratios2[which(ratios2$value >0) ,]

names(data2.prp) <- c("year","premium","dev","loss")

data2.prp$dev <- as.factor(data2.prp$dev)

data2.prp$premium <- as.numeric(data2.prp$premium)

#copular regression model and loglikelihood and AIC

copular_data_in <- data.frame(x1=data1.prp$year , x2=

data1.prp$dev ,

y1=data1.prp$logloss , y2=data2.prp$loss)

copular_md_n <- gjrm(list(y1 ~ x1+x2,
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y2~ x1+x2),

data=copular_data_in,

# BivD = "N",

BivD = "F",

margins = c("LN","GA"),

Model="B")

conv.check(copular_md_n)

copular_md_n_summ <- summary(copular_md_n)

# AIC

AIC(copular_md_n)

# loglikelihood

logLik(copular_md_n)

# scale and shape parameter

cbind(copular_md_n_summ$sigma1 , (1/copular_md_n_summ$

sigma2)^2)

data1.lm <- lm(logloss~year+dev , data=data1.prp)

data1_out.prp=ratios1[which(ratios1$value ==0),c(1,2,3)]

names(data1_out.prp) <- c("x1","premium","x2")

data1_out.prp$x2 <- as.factor(data1_out.prp$x2)

data2_out.prp=ratios2[which(ratios2$value ==0),c(1,2,3)]

names(data2_out.prp) <- c("x1","premium","x2")

data2_out.prp$x2 <- as.factor(data2_out.prp$x2)

#prediction
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data1_prd_ratio <- data.frame(ratio=exp(predict(copular_

md_n,

eq=1, newdata=data1_out.prp[,c(1,3)], type="link"))) *

exp (0.5*copular_md_n_summ$sigma1 ^2)

data1_reser <- sum(data1_prd_ratio * data1_out.prp$

premium)

data2_prd_ratio <- data.frame(ratio=exp(predict(copular_

md_n,

eq=2, newdata=data2_out.prp[,c(1,3)], type="link")))

data2_reser <- sum(data2_prd_ratio * data2_out.prp$

premium)

#bootstrap

n_boot <- 5000

reser_boot <- matrix(0, nrow = n_boot , ncol = 1)

# personal auto line

for (i in 1:n_boot) {

u <- runif (55)

data1_prd_ratio <- qlnorm(u, meanlog = data1.lm$fitted

.values , sdlog = data1.lm.summ$sigma*sqrt (36/55))

data1_in_boot <- data.frame(year=data1.prp$year , dev=

data1.prp$dev , y1=log(data1_prd_ratio))

data1_lm_boot <- lm(y1~year+dev , data=data1_in_boot)

data1_lm_boot_summ <- summary(data1_lm_boot)

u <- runif (45)

69



M.Sc. Thesis - Pengfei Cai McMaster - Mathematics and Statistics

data1_prd_ratio <- qlnorm(u, meanlog = predict(data1_

lm_boot , newdata=data1_out.prp[,c(1,3)]), sdlog =

data1_lm_boot_summ$sigma*sqrt (36/55))

data1_reser_b <- sum(data1_prd_ratio * data1_out.prp$

premium)

reser_boot[i] <- data1_reser_b

}

reser_boot_data1 <- data.frame(reserve=reser_boot)

print(c(mean(reser_boot_data1$reserve))

#commercial auto line

for (i in 1:n_boot) {

u <- runif (55)

data2_prd_ratio <- qgamma(u, shape=data2.gm.shape ,

scale = data2.gm$fitted.

values/data2.gm.shape)

data2_in_boot <- data.frame(year=data2.prp$year , dev=

data2.prp$dev , loss=data2_prd_ratio)

data2.gm.boot <- glm(loss~year+dev , family = Gamma(

link="log"),data=data2_in_boot)

data2.gm.boot.shape <- gamma.shape(data2.gm.boot)$

alpha

u <- runif (45)
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data2_prd_ratio <- qgamma(u, shape=data2.gm.boot.shape

,

scale = exp(predict(data2.gm

.boot , newdata=data2_out.

prp[,c(1,3)], type="link"

))/data2.gm.boot.shape)

data2_reser_b <- sum(data2_prd_ratio * data2_out.prp$

premium)

reser_boot[i] <- data2_reser_b

}

reser_boot_data <- reser_boot_data1 + reser_boot_data2

print(c(mean(reser_boot_data$reserve),sd(reser_boot_data

$reserve))

n_boot <- 5000

reser_boot <- matrix(0, nrow = n_boot , ncol = 2)

for (i in 1:n_boot) {

u <- rCopula (55, normalCopula(copular_md_n_summ$theta ,

dim =2))

data1_prd_ratio <- qlnorm(u[,1], meanlog = copular_md_

n$eta1 , sdlog = copular_md_n_summ$sigma1)

data2.gm.shape <- (1/copular_md_n_summ$sigma2)^2

data2_prd_ratio <- qgamma(u[,2], shape=data2.gm.shape ,
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scale = exp(copular_md_n$

eta2)/data2.gm.shape)

copular_data_in_boot <- data.frame(x1=data1.prp$year ,

x2=data1.prp$dev , y1=data1_prd_ratio , y2=data2_prd_

ratio)

copular_md_boot <- gjrm(list(y1 ~ x1+x2,

y2~ x1+x2),

data=copular_data_in_boot ,

#BivD = "N",

BivD = "F",

margins = c("LN","GA"),

Model="B")

copular_md_boot_summ <- summary(copular_md_boot)

u <- rCopula (45, normalCopula(copular_md_n_summ$theta ,

dim =2))

data1_prd_ratio <- qlnorm(u[,1], meanlog = predict(

copular_md_boot , eq=1,

newdata=data1_out.prp[,c(1,3)], type="link"), sdlog =

copular_md_boot_summ$sigma1)

data1_reser <- sum(data1_prd_ratio * data1_out.prp$

premium)

data2.gm.shape <- (1/copular_md_boot_summ$sigma2)^2

data2_prd_ratio <- qgamma(u[,2], shape=data2.gm.shape ,

scale = exp(predict(copular_

md_boot , eq=2, newdata=
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data2_out.prp[,c(1,3)],

type="link"))/data2.gm.

shape)

data2_reser <- sum(data2_prd_ratio * data2_out.prp$

premium)

reser_boot[i,1] <- data1_reser

reser_boot[i,2] <- data2_reser

}

reser_boot_total <- data.frame(reserve=reser_boot [,1]+

reser_boot [,2])

# Kuo’s deep triangle model use gated recurrent units (

GRU) to handle time series of incremental paid loss

and claims outstanding. Code for the model is

available online https://github.com/kasaai/

deeptriangle

#GRU layer is appropriate for sequential data. The

function can be found in Keras library. The layer_gru

function applies a gated recurrent unit calculation

to the input object.

layer_gru(

object ,

units ,

activation = "tanh",

recurrent_activation = "hard_sigmoid",
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use_bias = TRUE ,

return_sequences = FALSE ,

return_state = FALSE ,

go_backwards = FALSE ,

stateful = FALSE ,

unroll = FALSE ,

reset_after = FALSE ,

kernel_initializer = "glorot_uniform",

recurrent_initializer = "orthogonal",

bias_initializer = "zeros",

kernel_regularizer = NULL ,

recurrent_regularizer = NULL ,

bias_regularizer = NULL ,

activity_regularizer = NULL ,

kernel_constraint = NULL ,

recurrent_constraint = NULL ,

bias_constraint = NULL ,

dropout = 0,

recurrent_dropout = 0,

input_shape = NULL ,

batch_input_shape = NULL ,

batch_size = NULL ,

dtype = NULL ,

name = NULL ,

trainable = NULL ,

weights = NULL

)
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Arguments

units: dimensionality of the output space , use 128 in

the model

activation: activation function to use. Default:

hyperbolic tangent ("tanh")

use_bias: whether the layer uses a bias vector

dropout: fraction of the units to drop for the linear

transformation of the inputs , use 0.2 in the model

recurrent_dropout: Fraction of the units to drop for the

linear transformation of the recurrent state , use

0.2 in the model

Input shapes

3D tensor with shape (batch_size , timesteps , input_dim)

Output shape

if return_state: a list of tensors. The first tensor is

the output. The remaining tensors are the last states

, each with shape (batch_size , units).

if return_sequences: 3D tensor with shape (batch_size ,

timesteps , units).
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Appendix B

VaR of the silo model

VaR of the silo model

Proof. The variance of the portfolio is

σ2
p = σ2

1 + σ2
2 + 2ρ1,2σ1σ2,

where σ2
p, σ

2
1 and σ2

2 are the variances of the portfolio, subportfolio 1 and subport-

folio 2, respectively and ρ1,2 is the correlation coefficient between subportfolio 1

and 2.

The silo model assumes that the correlation coefficient is 1. Then we have

σ2
p = σ2

1 + σ2
2 + 2σ1σ2,

which can be simplified as

σp = σ1 + σ2

The percentage VaR95%,p can be stated as 1.645σp. Moreover, the 95% VaR for

subportfolio 1 (2) can be denoted as VaR95%,1 (VaR95%,2) and can be expressed as

1.645σ1 (1.645σ2). Multiplying both sides of the equation above by 1.645 yields
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the portfolio’s VaR as follows:

VaR95%,p = VaR95%,1 + VaR95%,2
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Appendix C

Result from Mack chain-ladder

model

We also apply the Mack chain-ladder model on the same data in chapter 5. The

predicted full triangle of cumulative paid loss is shown in Table C.1.

Table C.1: Full triangle of cumulative paid loss

1 2 3 4 5 6 7 8 9 10
1988 54699 108337 143899 164818 179538 185391 188023 189759 190520 193499
1989 60091 119366 151151 174665 185469 192213 196152 198013 199997 203124
1990 65860 130803 172390 197977 210230 219267 222428 224078 225664 229193
1991 61946 121108 158880 182689 195247 201854 204911 206683 208146 211401
1992 65043 128550 164433 187508 199823 208008 211339 213167 214676 218033
1993 72295 144579 185446 208388 219345 227579 231223 233223 234874 238547
1994 81988 151197 189630 212446 226458 234959 238721 240786 242490 246282
1995 83207 152470 190974 217620 231973 240681 244535 246650 248396 252280
1996 79699 143590 184420 210151 224011 232421 236142 238185 239871 243622
1997 75827 145628 187038 213134 227191 235720 239494 241566 243276 247080

The predicted full triangle of cumulative paid loss from Deep Triangle model

is shown in Table C.2.

We compared these two triangles and calculated the percentage difference as

in Table C.3.
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Table C.2: Full triangle of cumulative paid loss

1 2 3 4 5 6 7 8 9 10
1988 54699 108337 143899 164818 179538 185391 188023 189759 190520 193499
1989 60091 119366 151151 174665 185469 192213 196152 198013 199997 201853
1990 65860 130803 172390 197977 210230 219267 222428 224078 226132 227470
1991 61946 121108 158880 182689 195247 201854 204911 207160 208698 210010
1992 65043 128550 164433 187508 199823 208008 211063 213243 215125 216826
1993 72295 144579 185446 208388 219345 223848 226805 229219 231274 233079
1994 81988 151197 189630 212446 223231 229479 233183 235847 237951 239715
1995 83207 152470 190974 209251 219291 224970 228342 230745 232624 234177
1996 79699 143590 178730 200973 213420 220358 224292 226970 229091 230982
1997 75827 146895 189836 217183 231590 239608 243648 246934 250130 253317

Table C.3: percentage difference

1 2 3 4 5 6 7 8 9 10
1988 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
1989 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% -0.63%
1990 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.21% -0.75%
1991 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.23% 0.27% -0.66%
1992 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% -0.13% 0.04% 0.21% -0.55%
1993 0.00% 0.00% 0.00% 0.00% 0.00% -1.64% -1.91% -1.72% -1.53% -2.29%
1994 0.00% 0.00% 0.00% 0.00% -1.42% -2.33% -2.32% -2.05% -1.87% -2.67%
1995 0.00% 0.00% 0.00% -3.85% -5.47% -6.53% -6.62% -6.45% -6.35% -7.18%
1996 0.00% 0.00% -3.09% -4.37% -4.73% -5.19% -5.02% -4.71% -4.49% -5.19%
1997 0.00% 0.87% 1.50% 1.90% 1.94% 1.65% 1.73% 2.22% 2.82% 2.52%
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