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Abstract
As the revolutionary improvement being made on the performance of smartphones

over the last decade, mobile photography becomes one of the most common prac-

tices among the majority of smartphone users. However, due to the limited size

of camera sensors on phone, the photographed image is still visually distinct from

the one taken by the digital single-lens reflex (DSLR) camera. To narrow this

performance gap, one way is to redesign the camera image signal processor (ISP)

to improve the image quality. Owing to the rapid rise of deep learning, recent

works resort to the deep convolutional neural network (CNN) to develop a so-

phisticated data-driven ISP that directly maps the phone-captured image to the

DSLR-captured one. In this paper, we introduce a novel network that utilizes the

attention mechanism and wavelet transform, dubbed AWNet, to tackle this learn-

able image ISP problem. By adding the wavelet transform, our proposed method

enables us to restore favorable image details from RAW information and achieve a

larger receptive field without compromising computational efficiency. The global

context block is adopted in our method to learn the non-local color mapping for

the generation of appealing RGB images. More importantly, this block alleviates

the influence of image misalignment occurred on the provided dataset. Experi-

mental results demonstrate the superiorities of our design in both qualitative and

quantitative measurements.
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Chapter 1

Introduction and Problem

Statement

1.1 Introduction

Traditional image ISP is a critical processing unit that maps RAW images from

the camera sensor to RGB images in order to accommodate the human visual

system (HVS). For this purpose, a series of sub-processing units are leveraged in

order to tackle different types of artifacts from photo-capturing devices, including,

among others, colour shifts, signal noises, and moire effects. However, tuning each

sub-processing unit requires legions of efforts from imagery experts.

Nowadays, mobile devices are equipped with high-resolution cameras to serve

the ever-growing need for mobile photography. However, due to the compact space,

the hardware is limited with respect to the quality of the optics and the pixel

numbers. Moreover, the time of exposure is relatively short due to the instability

of hand-holding. Therefore, a mobile-specific ISP has to compensate for these
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limitations as well. In fact, current consumer ISP systems cannot completely

handle those aforementioned problems; therefore, they render the image in some

lossy ways, for example, by adding noise or applying cartoonish blurring, in order

to remove defects from ISP unit (See Fig. 1.1).

Figure 1.1: Artifacts on mobile photos. From left to right: car-
toonish blurring (Xiaomi Mi 9, Samsung Galaxy Note10+), noise
(iPhone 11 Pro, Google Pixel 4 XL), and image flattening (OnePlus
7 Pro, Huawei Mate 30 Pro). Note that the image is originally used
in Ignatov et al. 2020

Recently, deep learning (DL) based methods have achieved considerable success

on various image enhancement tasks, including image denoising (Abdelhamed et

al. 2020; Zhang et al. 2017), image demosaicing (Gharbi et al. 2016), and super-

resolution (Kim et al. 2016; Ledig et al. 2017; Lugmayr et al. 2020; Wang et

al. 2019). Different from traditional image processing algorithms that commonly

require prior knowledge of natural image statistics, data-driven methods can im-

plicitly learn such information. Due to this fact, the DL-based method becomes

a good fit for mapping problems (Chen et al. 2018a; Xu et al. 2019; Zhu et al.

2017). Here, learning image ISP can be regarded as an image-to-image translation

problem, which can be well-addressed by the DL-based method. In ZRR dataset

from (Ignatov et al. 2020), the RAW images can be decomposed into 4 channels,

which are red (R), green (G1), blue (B) and green (G2) from the Bayer pattern,

as shown in Fig. 1.2. Remark that 2 of 4 channels record the radiance informa-

tion from green sensors. Therefore, additional operations such as demosaicing and

2
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colour correction are needed to tackle the RAW images as compared to RGB im-

ages. Moreover, due to the nature of the Bayer filter, the size of these 4 channels

is down-sampled by a factor of two. In order to make the size of prediction and

ground truth images consistent, an up-sampling operation is required. This can

be regarded as a restoration problem, where the recovery of high-frequency infor-

mation should be taken into consideration. In our observation, the misalignment

between the DSLR and mobile photographed image pairs is severe even though the

authors have adopted the SIFT (Lowe 2004) and RANSAC (Vedaldi and Fulker-

son 2010) algorithms to mitigate this effect. It is worth mentioning that the minor

misalignment between the input RAW image and ground-truth RGB image would

cause a significant performance drop.

1.2 Contributions

To tackle the aforementioned problems, we introduce a novel trainable pipeline

that utilizes the attention mechanism and wavelet transform. More specifically,

the input of our proposed methods is a combination of a RAW image and its de-

mosaiced counterpart as a complement, where the two-branch design is aimed at

emphasizing the different training tasks, namely, noise removal and detail restora-

tion on RAW model and the colour mapping on the demosaiced model; the discrete

wavelet transform (DWT) is adopted to restore fine context details from RAW im-

ages while reserving the information in features during training; as for the colour

correction and tone mapping, the res-dense connection and attention mechanism

are utilized to encourage the network putting effort on the focused areas.

In summary, our main contributions are:

3
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Canon 5D Mark IV ISP result.

R channel G1 channel

B channel G2 channel

Figure 1.2: Visualization of each channel in the RAW image and
the corresponding RGB image reconstructed by AWNet. Zoom-in
for better views.
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1) Exploring the effectiveness of wavelet transform and non-local attention

mechanism in image ISP pipeline.

2) A two-branch design to take a raw image and its demosaiced counterpart

that endows our proposed method the ability to translate the RAW image

to the RGB image.

3) A lightweight and fully convolutional encoder-decoder design that is time-

efficient and flexible on different input sizes.

1.3 Thesis Structure

In chapter 2, we review both traditional and learnable image processing pipelines

and compare those with our work to highlight our contributions. In the same

chapter, we also discuss some applications in low-level image restoration fields that

utilize the raw data. Then, in chapter 3, we elaborate our model design in detail,

including the featured two-branch design, usage of the discrete wavelet transform,

attentive residual module, and the design of loss functions. In chapter 4, we give

the detailed implementation of our algorithm and the setup of our experiments.

Meanwhile, we demonstrate the performance of our algorithm through compre-

hensive experiments. In the end, in chapter 5, we make a conclusion of our work

and provide some suggestions of potential improvements for our work.

5



Chapter 2

Related Works

In this section, we provide a brief review of the traditional image ISP methods,

some representative RAW to RGB mapping algorithms, the existing learnable

imaging pipelines, some attention algorithms, and usages of wavelet transform in

deep learning.

2.1 Traditional Image ISP Pipeline

Traditional ISP pipeline encompasses multiple image signal operations, including,

among others, denoising, demosaicing, white balancing, colour correction, gamma

correction, and tone mapping. Due to the nature of the image sensor, the existence

of noise in RAW images is inevitable. Therefore, some operations are (Abdelhamed

et al. 2020; Dabov et al. 2007; Zhang et al. 2017) proposed to remove the noise

and improve the signal-to-noise ratio. The demosaicing operation interpolates

the single-channel raw image with repeated mosaic patterns into multi-channel

colour images (Gharbi et al. 2016). White balancing corrects the colour by shifting

illuminations of RGB channels to make the image more perceptually acceptable

6
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(Cheng et al. 2015). Color correction adjusts the image value by a correction

matrix (Kwok et al. 2013; Rizzi et al. 2003). Tone mapping shrinks the histogram

of image values to enhance image details (Rana et al. 2019; Yuan and Sun 2012).

Note that all sub-processing units in the traditional image ISP pipeline require

human effort to manually adjust the final result.

2.2 RAW Data Usage in Low-level Image Restora-

tion

The advantages of applying RAW data on low-level vision tasks have been explored

by different works in the field of image restoration. For instance, (Chen et al.

2018a) uses dark RAW image and bright colour image pairs to restore dark images

from images with long exposure. In this case, the radiance information retained

by raw data contributes to the restoration of image illumination. (Xu et al. 2019)

takes advantage of rich radiance information from unprocessed camera data to

restore high-frequency details and improve their network performance on super-

resolution tasks. Their experiment reveals that using raw data as a substitute

for camera processed data is beneficial on single image super-resolution tasks.

Lately, (Ignatov et al. 2020; Schwartz et al. 2018) adopt unprocessed image data

to enhance mobile camera imaging. Since RAW data avoids the information loss

introduced by quantization in ISP, it is favourable for a neural network to restore

the delicate image details. Inspired by (Ignatov et al. 2020), our work makes use

of the RAW data to train our network for a learnable ISP pipeline. Instead of

only taking RAW images as the input, we adopt the combination of the input

data formats from (Ignatov et al. 2020) and (Schwartz et al. 2018) to encourage

7
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our network to learn different sub-tasks of image ISP, for example, noise removal,

colour mapping, and detail restoration.

2.3 Deep Learning Based Image ISP Pipeline

Since CNN has achieved promising performance on plenty of low-level vision tasks

(He et al. 2019; Kim et al. 2016; Ledig et al. 2017; Tao et al. 2018; Wang et al.

2019), it is natural to leverage it for the learning of camera ISP.

(Ratnasingam 2019) generates synthetic RAW images from JPEG ones and

applies RAW-to-RGB mapping to restore the original RGB images. However, since

this network handles a series of imaging tasks (defect pixel correction, denoising,

white balancing, exposure correction, demosaicing, colour transform, and gamma

encoding), we consider it is in a certain sense overloaded. See Fig. 2.1a for the

illustration of the model structure.

(Schwartz et al. 2018) collects RAW low-lit images from Samsung S7 phone, and

uses a neural network to improve image brightness and remove noise on demosaiced

RGB images from a simple ISP pipeline. In this work, authors define a two-

staged network that takes demosaiced images as inputs and lets the low-level stage

produce an intermediate output, which would be further refined in the high-level

stage. In this way, the network can learn a colour transformation between the

raw input and refined output, which is similar to our work. Yet, our work not

only learns the colour transformation but also gains the ability to recover high-

level details by using a two-branch design. See Fig. 2.1b for the illustration of the

model structure.
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(a) Model structure of Deep Cam-
era. Image is originally used in Rat-
nasingam 2019.

(b) Model structure of DeepISP. Im-
age is originally used in Schwartz et al.
2018.

Figure 2.1: Networks that use RAW data.

Moreover, some previous works in AIM 2019 RAW to RGB Mapping Challenge

have achieved appealing results. For example, (Uhm et al. 2019) considers using

the stacked U-Nets to produce a pipeline in a coarse-to-fine manner. (Mei et al.

2019) adopts a multi-scale training strategy that recovers the image details while

maintaining the global perceptual quality.
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The most recent work (Ignatov et al. 2020) tries to narrow the visual quality

gap between the mobile and DSLR colour images by directly translating mobile

RAW images to DSLR colour ones, where RAW images are captured by Huawei

P20 phone and colour ones are from Canon 5D Mark IV. In this work, authors

present a multi-scale network that is trained layer-by-layer (see Fig. 2.2).

Figure 2.2: Structure of PyNet. Image is originally used in Igna-
tov et al. 2020.

10
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Nonetheless, all previous learnable ISP methods only focus on the general map-

ping problem without mentioning other artifacts from the training dataset. For

example, without additional operation, the misalignment between the DSLR and

mobile image pairs can cause severe degradation on estimated outputs. In our

work, we apply the global context block combined with the res-dense block that

learns the global colour mapping to tackle misaligned image features. The added

blocks enable our network to outperform the current state-of-the-art method pro-

posed by (Ignatov et al. 2020).

2.4 Attention Mechanisms

Attention mechanisms have been employed in various deep learning models for

performance enhancement in different tasks. Vaswani et al. (Vaswani et al. 2017)

apply the self-attention model to machine translation. Hu et al. (Hu et al. 2018)

propose a channel-wise attention mechanism called squeeze and excitation (SE)

block, which yields promising results on different computer vision tasks. Specifi-

cally, the authors apply a "squeeze" operation to compress the number of channels

and produce some channel descriptors. In this way, channel descriptors can aggre-

gate feature maps across their spatial dimensions, and indicate important channels

that have more informative features. The structure of the SE block can be viewed

from Fig. 2.3.

Wang et al. (Wang et al. 2018) introduce a non-local module to measure the

spatial information using a correlation matrix, which is then used as a form of

attention to guide the contextual information aggregation. Following this work, a

series of papers (Fu et al. 2019; Huang et al. 2019; Cao et al. 2019) leverage the

11
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Figure 2.3: Structure of SE block. Image is originally used in Hu
et al. 2018.

non-local module to guide spatial or channel-wise learning. Some examples of the

non-local block can be seen in Fig. 2.4.

Figure 2.4: Example structure of non-local attention. Note that
in the example work, author apply non-local operation on both
channel and spatial domains. Image is originally used in Fu et al.
2019.

12
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In low-level image restoration tasks, Zhang et al. (Zhang et al. 2018a) use

channel and spatial attention blocks in single-image super-resolution tasks to make

the network focus on more informative features from channel-wise and spatial-wise

aspects, respectively. Similar to this setting, Liu et al. (Liu et al. 2019b) use an

attention mechanism to boost their network performance in image dehazing tasks.

In image denoising, Anwar et al. (Anwar and Barnes 2019) extend the idea of

(Hu et al. 2018) and propose feature attention that is able to capture the channel

dependencies from the global average pooling features. In our work, we adopt both

the ideas of (Hu et al. 2018) and (Cao et al. 2019) to ensure that our network has

the ability to distinguish the importance of different features from both spatial

and channel perspectives. More details of our implementation can be seen from

chapter 3.

2.5 Wavelet Transform in Deep Learning

Wavelet-based methods have been widely deployed in different low-level computer

vision tasks. Many of them focus on image super-resolution problems (Ji and Fer-

müller 2008; Nguyen and Milanfar 2000), which utilize a sequence of low-resolution

images to inference a high-resolution image. For traditional single image super-

resolution task, wavelet transform is used for interpolation-based and static-based

algorithms. Naik et al. (Naik and Patel 2013) introduce a modified version of

classical wavelet-based interpolation method. Mallat (Mallat 1996) applies wavelet

transform to extract information from data at different scales.

In the deep learning field, wavelet transform is often used to preserve the feature

information for better feature map reconstruction. Gao et al. (Gao and Xiong

13
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2016) propose a hybrid end-to-end wavelet convolution network. This network

is able to generate a set of sparse code candidates and weigh these candidates

to reconstruct the high-dimensional signal. In addition, Huang et al. (Huang et

al. 2017) propose a wavelet-based CNN approach that can resolve a face image

from a very low-resolution setting. Guo et al. (Guo et al. 2017) design a deep

CNN to predict the information loss of wavelet coefficients of the low-resolution

images, and use them, in conjunction with original wavelet subbands, to generate

high-resolution results. Note that this network is trained in the wavelet domain,

which means that both input and output of this network are wavelet subbands for

low-resolution and high-resolution images, respectively.

Different from most wavelet-based CNNs, which manually extract the wavelet

subbands and use those for feature reconstruction, Huang et al. (Huang et al. 2017)

predict the wavelet components for high-resolution images and then reconstruct

them to obtain the final result. The structure of this network is shown in Fig. 2.5.

Figure 2.5: Structure of Wavelet-SRNet. Image is originally used
in Huang et al. 2017.

Liu et al. (Liu et al. 2019a) introduce a multi-level wavelet CNN (MWCNN)

14
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model which uses wavelet transform in between the encoder and decoder layers to

reconstruct the feature map. By doing this, the network gains a larger receptive

field while preserving information. In addition, the computational cost is much re-

duced. A detailed explanation is provided in chapter 3. The structure of MWCNN

can be viewed in Fig. 2.6.

Figure 2.6: Structure of MWCNN. Note that image is originally
used in Liu et al. 2019a.

By following the idea of (Liu et al. 2019a), Luo et al. (Luo et al. 2020) propose

a deep wavelet network (AWDUN) that treats discrete wavelet transform (DWT)

and inverse discrete wavelet transform (IDWT) as a sampling technique. This

approach achieves stunning results on the image demoiring task. The structure of

AWDUN can be viewed in Fig. 2.7.

Inspired by (Liu et al. 2019a) and (Luo et al. 2020), our method also makes use

of DWT and IDWT to conduct upsampling and downsampling, respectively. The

benefit is mani-fold. First, by the feature of the wavelet transform, the frequency

components of the input data can reconstructed the original input in a lossless

way (See chapter 3 for more explanation), thus, it is beneficial to have DWT and

IDWT in the sampling module to prevent information loss. Moreover, due to the

nature of wavelet transform, the process of DWT and IDWT can be treated as

15



M.A.Sc. Thesis– Linhui Dai; McMaster University– Department of Electrical and
Computer Engineering

Figure 2.7: Structure of AWDUN. Image is originally used in Luo
et al. 2020.

a good substitution of other sampling methods such as interpolation or pooling.

In addition, the computational cost of DWT (IDWT) is low on GPU as it does

not involve element-wise operation (other than subsampling). Different from the

previous work, we design a novel sampling block that not only uses the wavelet

transform but also convolutions to sample the feature. In this way, we give the

ability to the network to learn the importance of the feature based on its spatial

representation. Therefore, our work is operated on both spatial and frequency

domains.

16



Chapter 3

Proposed Method

We describe the proposed method and training strategy in this section. First,

the overall network architecture (shown in Fig. 3.1) and details of each network

module are demonstrated, and then the rationale behind this design is illustrated.

In the end, the loss functions adopted in training are introduced.

3.1 Network Structure

The proposed AWNet employs a U-Net resembled structure and consolidates the

architecture by three main modules, namely global context res-dense module, resid-

ual wavelet up-sampling module, and residual wavelet down-sampling module (see

Fig. 3.2 and Fig. 3.4).

The global context res-dense module consists of a residual dense block (RDB)

and a global context block (GCB) (Cao et al. 2019). The effectiveness of RDB

has been comprehensively examined (Liu et al. 2019b; Zhang et al. 2018b). Here,

learning the residual information is beneficial to the colour-mapping performance.
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Figure 3.1: The main architecture of the proposed AWNet. The
top and bottom ones are the demosaiced and RAW models, respec-
tively. We take the average of both outputs from these two models
to obtain the final prediction.

A total of seven convolutional layers are used in RDB, where the first six layers

aim at increasing the number of feature maps and the last layer concatenates all

feature maps generated from these layers. At the end of RDB, a global context

18
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Figure 3.2: Our global context res-dense module contains a resid-
ual dense block (RDB) and a global context block (GCB). We ob-
serve that the RDB can benefit the color restoration from RAW im-
ages and the GCB encourages the network putting effort on learning
the global color mapping. See details in chapter 4.4.

block is presented to encourage the network to learn the global colour mapping,

since local colour mapping might cause the deterioration of the results due to the

pixel misalignment between RAW and RGB image pairs. The reason is evident

as the existence of misalignment misleads the neural network to map colour into

incorrect pixel locations.

In view of the fact that the convolutional kernel only covers the local information

of an image, (Wang et al. 2018) propose a non-local attention mechanism. This

work can realize the dependency between long-distance pixels so that the value at

a query point can be calculated by the weighted sum of the features of all positions

on the input feature. However, heavy computation is required, especially when the

feature map has a large size (e.g., the full resolution input image from the ZRR

dataset).
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To be specific, the non-local operation can be modelled as

yi =
Np∑
j=1

f(xi, xj)
C(X) g(xj). (3.1)

Note that yi and xi are the respective values of input and output features at query

position i; j is the index that enumerates all possible positions; Np denotes the

total number of positions (H×W for image); g(·) denotes the linear transformation

function, e.g., 1 × 1 convolution; C(X) is the normalization function; f(xi, xj)

denotes the function that measures the similarity between xi and xj. There are

multiple ways to implement f(xi, xj). The most common way is using Embedded

Gaussian which is formulated as

f(xi, xj) = eγ(xi)T β(xj). (3.2)

Here, γ(xi) and β(xj) are two embeddings. C(X) in this case is set to be∑∀j f(xi, xj).

Even though the original non-local attention operation can catch the long-range

dependency of each pixel, (Cao et al. 2019) claims that the attention map ob-

tained from different query points has minor differences based on their experiments.

Therefore, they propose a lightweight global context block (GCB) that simplifies

the non-local module and can be combined with the global context framework and

the SE block (Hu et al. 2018). To do that, they define their simplified non-local

block as

yi = xi +Wz

Np∑
j=1

eWkxj∑Np
m=1 e

Wkxm
xj. (3.3)

Here Wk and Wv are linear transformation matrices. It is obvious that Eq. 3.3

only depends on the pixel location j, which means that this attention algorithm
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calculates a global attentive weight for all pixels across the feature. Therefore,

it is beneficial to apply this mechanism for facilitating global colour mapping.

To further improve the non-local attention mechanism, GCB also applies squeeze

and excitation operation to enable the network to identify which channel is more

important. One can find the simplified non-local block and GCB in Fig. 3.4. The

GCB encourages the network to learn key information spatial-wise and channel-

wise while effectively reduce the computation complexity. These characteristics

are exactly what we look for in this RAW-to-RGB mapping problem.

(a) Simplified Non-local Block
(b) Global Context Block

Figure 3.3: Illustration of the structure of simplified non-local
block and Global Context Block. Note that the Global Context
Block add squeeze-and-excitation operation after the non-local op-
eration, which gives the network ability to do channel attention.
Image is originally from Cao et al. 2019.

For up-sampling and down-sampling, we borrow the idea from the discrete

wavelet transform (DWT), since the nature of DWT decomposes the input feature
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maps into the high-frequency and low-frequency components, in which the low-

frequency one can serve as the result from average pooling (further discussion can

be found in chapter 3.3). As shown in Fig. 3.4, we use the low-frequency component

as part of our down-sampling feature maps and connect the high-frequency part to

the up-sampling block for image recovery (i.e., inverse DWT). However, the feature

maps produced by frequency-domain operation might be lack of spatial correlation.

Therefore, an additional spatial convolutional layer is adopted to downsample the

feature map with learned kernels. Similarly, a pixel-shuffle operation along with

a spatial convolutional layer is employed for up-sampling as the complement to

the IDWT. The combination of frequency-domain and spatial-domain operations

facilitates the learning of abundant features in up-sampling and down-sampling

blocks. At the end of the proposed method, we use a Pyramid Pooling block

(Chen et al. 2018b) to further enlarge the receptive field.

3.2 Two-Branch Network

By consolidating the encoder-decoder structure with previously mentioned mod-

ules, our network is able to surpass the state-of-the-art when trained on the RAW

images. However, using multiple neural networks to train on different low-level

vision tasks is a more effective way to learn image ISP. One of the reasons is that

feeding distinct data to different network branches can provide abundant infor-

mation during training. Recently, the two-stream design has been successfully

applied in various computer vision tasks, especially in the video field. Note that

fusing the information from different formats of input (e.g., optical flow and image

frames) can significantly improve the network performance. Inspired by (Carreira
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and Zisserman 2017; Feichtenhofer et al. 2016), we build AWNet based on the

idea of two-branch architecture to facilitate network performance on different low-

level imaging tasks by utilizing different inputs. Our two-branch design contains

two encoder-decoder models, namely the RAW model and the demosaiced model.

Here, the RAW model is trained on 224×224×4 RAW images, and the demosaiced

branch takes 448×448×3 demosaiced images as input. For the RAW model, there

is a need to make the prediction size and ground truth size consistent. Therefore,

this branch pays more attention to the recovery of high-frequency details. For its

counterpart, the demosaiced branch has no need to upscale the output size for

consistency. Instead, this branch focuses more on the colour mapping between the

demosaiced image and the RGB colour image. We train the two networks sepa-

rately and average their predictions at testing. As expected, a great performance

boost is observed by applying this architecture (see details in chatper 4.3).

(a) Residual Wavelet Down-sampling Block (b) Residual Wavelet Up-sampling Block

Figure 3.4: Illustration of our up-sampling and down-sampling
modules in Fig. 3.1. The residual design enables our model to
operate in frequency-domain and spatial-domain that facilitates the
learning of abundant features in up-sampling and down-sampling
blocks.
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3.3 Discrete Wavelet Transform

To elaborate on the reason for choosing DWT in our design opinion, we introduce

the connection between DWT and traditional pooling operation. In 2D discrete

wavelet transform, there are four filters, i.e., fLL, fLH , fHL, and fHH , that can be

used to decomposed an image (Mallat 1989).

To be more specific, in Haar DWT, these four filters are defined as

fLL =
(

1 1
1 1

)
, fLH =

(
−1 −1
1 1

)
, fHL =

(
−1 1
−1 1

)
, fHH =

(
1 −1
−1 1

)
. (3.4)

We see that fLL, fLH , fHL, and fHH are orthogonal to each other. By convolving

the image with each filter, a full-size image x is split into 4 sub-bands, i.e., xLL,

xLH , xHL, and xHH . Due to the nature of DWT, this process can be expressed as

xLL = (fLL ~ x) ↓2,

xLH = (fLH ~ x) ↓2,

xHL = (fHL ~ x) ↓2,

xHH = (fHH ~ x) ↓2,

(3.5)

where ~ represents a convolutional operation and ↓2 indicates down-sampling

by a scale factor of 2. It is evident that the DWT operation can be treated as a

convolutional downsampling operator with stride equal to 2.

24



M.A.Sc. Thesis– Linhui Dai; McMaster University– Department of Electrical and
Computer Engineering

According to Eqn. 3.5, the (m,n)-th value of xLL after 2D Haar wavelet trans-

form can be defined as

xLL(m,n) = x(2m− 1, 2n− 1) + x(2m− 1, 2n) + x(2m, 2n− 1) + x(2m, 2n),

xLH(m,n) = −x(2m− 1, 2n− 1)− x(2m− 1, 2n) + x(2m, 2n− 1) + x(2m, 2n),

xHL(m,n) = −x(2m− 1, 2n− 1) + x(2m− 1, 2n)− x(2m, 2n− 1) + x(2m, 2n),

xHH(m,n) = x(2m− 1, 2n− 1)− x(2m− 1, 2n)− x(2m, 2n− 1) + x(2m, 2n).
(3.6)

Even though DWT is a subsampling operation, the original feature x can be

restored by IDWT, i.e., x = IDWT (xLL, xLH , xHL, xHH). Here IDWT can be

defined as

x(2m− 1, 2n− 1) = (xLL(m,n)− xLH(m,n)− xHL(m,n) + xHH(m,n))/4,

x(2m− 1, 2n) = (xLL(m,n)− xLH(m,n)− xHL(m,n) + xHH(m,n))/4,

x(2m, 2n− 1) = (xLL(m,n)− xLH(m,n)− xHL(m,n) + xHH(m,n))/4,

x(2m, 2n) = (xLL(m,n)− xLH(m,n)− xHL(m,n) + xHH(m,n))/4.
(3.7)

It is obvious that the restoration is lossless if you have all 4 frequency com-

ponents. Moreover, by defining xp to be the feature map after p-level of average
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pooling, the (m,n)-th value of xp can be expressed as

xp(m,n) = 0.25× (xp−1(2m− 1, 2n− 1) + xp−1(2m− 1, 2n)

+ xp−1(2m, 2n− 1) + xp−1(2m, 2n)).
(3.8)

As we can see, Eq. (3.8) is highly correlated with the equation of low frequency

component in Eq. (3.7). In comparison, by taking four subbands into account, the

pooling operation discards all the high-frequency components and only makes use

of the low-frequency part. Therefore, the information loss in traditional pooling

operations is severe. To alleviate this problem, we design our up-sampling and

down-sampling modules in a way that uses both wavelet transform and convo-

lutional operation to manage to scale (See Fig. 3.4). To be more specific, our

downsampling block takes the input data and decomposes it into four subbands,

where the low-frequency component will not only be circulated as a downsampled

feature but will also be used as high-level features with other frequency compo-

nents and skip-connected to the upsampling block. Within the upsampling block,

the low-level feature will be used to reconstruct the high-level features, by using

both IDWT and pixel shuffling (Shi et al. 2016).

By doing that, our network can learn from both spatial and frequency informa-

tion. Our experiments reveal the superior performance of this design (see details

in chapter 4.4).
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3.4 Loss Function

In this section, we introduce our three loss functions and the multi-scale loss strat-

egy. We denote I as the target RGB image and Ĩ as the predicted result from our

method.

Pixel loss We adopt the Charbonnier (Bruhn et al. 2005; Zhang et al. 2018a)

loss as an approximate L1 term for our loss function to better handle outliers

and improve the performance. From previous experiments, we realize that Char-

bonnier loss can efficiently improve the performance of the signal-to-noise ratio of

reconstructed images. In addition, Charbonnier loss has been applied in multiple

image reconstruction tasks and outperforms the traditional L2 penalty (Zhang et

al. 2018a). The Charbonnier penalty function is defined as:

Lchar =
√

(Ĩ − I)2 + ε2, (3.9)

where we set ε to 1e − 3. Note that using only the pixel loss on RAW-to-RGB

mapping results in blurry images as reported in (Uhm et al. 2019). Thus, we

redeem this problem by adding other feature loss functions.

Perceptual loss. To deal with the pixel misalignment problem from ZRR

dataset (See Fig. 3.5), we also employ perceptual loss. The loss function is defined

as

LP = LMSE(F (Ĩ)− F (I)), (3.10)

where F denotes the pretrained VGG-19 network, Ĩ and I represent the predicted

image and ground truth, respectively. As misaligned images are processed by the
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pre-trained VGG network, the resulting downsampled feature maps have fewer

variants in terms of the misalignment. Therefore, adding a L2 term on such feature

maps is beneficial for the network to recognize the global information and minimize

the perceptual difference between the reconstructed image and the ground truth

image.

Figure 3.5: Some examples for the misalignment problem from
ZRR dataset. Misaligned areas are highlighted by red boxes.

SSIM loss. We also employ the structural similarity (SSIM) loss LSSIM (Wang

et al. 2003) that is aiming to reconstruct the RGB images by enhancing on struc-

tural similarity index. The resulting images are more perceptually acceptable

than the predictions without applying SSIM loss. Note that the SSIM loss can be
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defined as:

LSSIM = 1− FSSIM(Ĩ − I), (3.11)

where F denotes the function of calculating the structural similarity index.

Multi-scale loss function. Inspired by (Qian et al. 2018), we apply supervision

on outputs from different decoder layers to refine reconstructed images of different

sizes. For each scale level, we focus on different restoration aspects, thus different

loss combinations are applied. In our RAW model, there are 5 up-sampling opera-

tions, which form feature maps in 6 different scales, named as scale 1-6 from small

to large. Similarly, there are 5 different scales presented in the demosaiced model

and we name those as scales 1-5.

1). Scale 1-2 process feature maps that are down-scaled by a factor of 16 and

32. The feature maps at this scale contain less context information compared with

ground truth. Thus, we mainly focus on global colour and tone mapping. These

layers are supervised only by Charbonnier loss, which can be written as:

L1,2 = Lchar. (3.12)

2). Scale 3-4 are computed on feature maps with down-scaled factors of 4 and

8; since these features are smaller as compared to the size of ground truth yet

contain richer information than the scale 1-2, we apply a loss combination that

incorporates perceptual and Charbonnier losses to perform global mapping while

maintaining the perceptual quality. The loss function of these layers is defined as:

L3,4 = Lchar + 0.25× LP . (3.13)
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3) In scale 5-6, the size of feature maps is close or equal to the original one,

thus we are able to pay more attention to the recovery of image context in addition

to the color mapping. We choose a more comprehensive loss combination at this

level, which can be expressed as:

L5,6 = Lchar + 0.25× LP + 0.05× LSSIM . (3.14)

Note that we manually choose the coefficients of different loss terms. The total

loss function can be expressed as:

Ltotal =
k∑

n=1
Ln, (3.15)

where k is equal to 5 and 6 for demosaiced model and RAW model, respectively.
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Chapter 4

Implementation and Experiment

Results

We conduct comprehensive experiments to demonstrate that the proposed method

performs favourably against the baseline model (Ignatov et al. 2020) in terms of

quantitative and qualitative comparisons on the ZRR dataset.

4.1 Datasets

To enhance smartphone images, the Zurich dataset from AIM 2020 Learned Smart-

phone ISP Challenge (Ignatov et al. 2020) provides 48043 RAW-RGB image pairs

(of size 448×448×1 and 448×448×3, respectively). The training data is divided

into 46,839 image pairs for training and 1,204 ones for testing. In addition, 168

full resolution image pairs are used for perceptual validation. For data prepro-

cessing and augmentation, we normalize the input data and perform vertical and

horizontal flipping.
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Table 4.1: Validation scores by different model ensembles. We use
red text to indicate the best performance and blue text to indicate
the second best performance. We adopt weights from the last row
for the testing stage during the AIM2020 Learned Smartphone ISP
Challenge.

RAW model
PSNR (dB) / SSIM

Demosaiced model
PSNR (dB) / SSIM

Ensemble Score
PSNR (dB) / SSIM

21.36 / 0.7429 21.30 / 0.7455 21.60 / 0.7818
21.36 / 0.7429 21.38 / 0.7522 21.92 / 0.7761
21.36 / 0.7429 21.52 / 0.7484 21.95 / 0.7788
21.36 / 0.7429 21.58 / 0.7488 21.79 / 0.7818

21.38 / 0.7451 21.58 / 0.7488 21.97 / 0.7784

Table 4.2: The result of AIM2020 Learned Smartphone ISP Chal-
lenge for the two tracks. Our method can achieve high MOS while
remaining competetive in PSNR and SSIM metrics.

Track 1 Track 2
Rank Method PSNR SSIM Method PSNR SSIM MOS

1 Airia_CG 22.2574 0.7913 MW-ISPNet 21.574 0.777 4.7
2 skyb 21.9263 0.7865 AWNet 21.861 0.7807 4.5
3 MW-ISPNet 21.9149 0.7842 Baidu 21.9089 0.7829 4.0
4 Baidu 21.9089 0.7829 skyb 21.734 0.7891 3.8
5 AWNet 21.8610 0.7807 STAIR 21.569 0.7846 3.5

4.2 Training Details

Our model is trained on PyTorch framework with Intel i7, 32GB of RAM, and two

NVIDIA RTX2080 Ti GPUs. The batch size is set to 6 and 2 for the RAW model

and the demosaiced model, respectively. Except for that, our two models share

the same training strategy. We employ Adam optimizer (Kingma and Ba 2014)

with β1 = 0.9, β2 = 0.999 and set the initial learning rate as 1×10−4. We decrease

the learning rate by half every 10 epochs and train for 50 epochs in total.

32



M.A.Sc. Thesis– Linhui Dai; McMaster University– Department of Electrical and
Computer Engineering

4.3 Ensemble Strategy

Inspired by (Timofte et al. 2016), we apply a self-ensemble mechanism during the

validation and testing stage of the AIM2020 Learned Smartphone ISP Challenge.

Specifically, we use ensembles comprised of 8 variants (original, rotated 90◦, ro-

tated 180◦, rotated 270◦, rotated 90◦ & flipped, rotated 180◦ & flipped, and rotated

270◦ & flipped ones). After that, we average out the ensemble outputs and obtain

our final result. To evaluate the benefit of ensembles, we apply our method to

the validation dataset (without ground truth) during the development stage to

validate our methods by calculating the PSNR values. In our experiments, the

non-ensembles version of the RAW model and the demosaiced model in Track 1

achieves 21.55 dB and 21.68 dB on the validation dataset (without ground truth),

respectively. Subsequently, by averaging out the results from both models, the

PSNR can be boosted to 21.97 dB. To achieve optimal ensemble result, for each

model, we prepare weights with different PSNR scores and then carry out exper-

iments to test different combinations of weights across two models (see Table 4.1

for details). At the final testing stage, we choose the 21.36 dB (RAW model) and

21.52 dB (demosaiced model) weights to generate predictions. Fig. 4.1 shows the

qualitative and quantitative results from these models and their ensemble out-

comes (tested on offline validation data from provided ZRR dataset). Table 4.2

shows the result of AIM2020 Learned Smartphone ISP Challenge (Ignatov, Tim-

ofte, et al. 2020) for the two tracks. We are ranked in the 5th and 2nd place in

tracks 1 and 2, respectively.
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PSNR / SSIM

PSNR / SSIM

PSNR / SSIM

PSNR / SSIM

Ground Truth

21.9890 / 0.7534

20.0099 / 0.6912

16.8522 / 0.7124

13.6305 / 0.8503

Ours-1 Output

23.0414 / 0.7743

21.8351 / 0.7082

17.7539 / 0.7195

16.4578 / 0.8939

Ours-4 Output

23.2214 / 0.7981

21.9083 / 0.7138

20.1982 / 0.7381

24.4593 / 0.9016

Ensemble Output

Figure 4.1: PSNR/SSIM and visual comparisons of reconstructed
images from different network models. Ours-4 and Ours-1 denote
our demosaiced and RAW models, respectively.
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Ground Truth U-Net RCAN PyNet Ours-1 Ours-4

Figure 4.2: Qualitative comparisons of reconstructed images from
different networks. Ours-4 and Ours-1 denote our demosaiced and
RAW models, respectively.
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4.4 Performance Comparisons and Ablation Stud-

ies

We conduct an experiment by first comparing it with other state-of-the-arts to

demonstrate the superior performance of our method. After that, we provide solid

justification for the effectiveness of wavelet transform and global context blocks.

Our proposed method is tested on offline validation data that is provided during

the development stage. We choose some popular network architectures from dif-

ferent computer vision tasks, including UNet and RCAN, for comparisons. The

qualitative comparisons can be seen from Table 4.3, and Fig. 4.2 shows the quali-

tative comparison between our method and other state-of-the-arts. As we can see,

both U-Net and RCAN have some colour mapping artifacts, which manifests the

incapability of mapping colour into RGB space correctly in a pixel-to-pixel man-

ner. For example, in the first row of Fig. 4.2, the colour of the sky is inaccurately

predicted. Although the PyNet performs better in the colour mapping aspect, it

tends to obscure the image details. This artifact is obvious in the second, the

third, and the last row of images. Beneficial from DWT and GCB blocks, the pro-

posed method remedies these artifacts, which are present in other state-of-the-arts.

Moreover, the RAW model provides more fine image details whereas the demo-

saiced model has a better matching in colour space; this reveals the effectiveness

of our design.

To validate that the wavelet transform and GCB blocks manage to improve the

output performance, two corresponding experiments are conducted. The first one

is to remove wavelet transform and GCB blocks (see Fig. 3.4) from the residual
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Table 4.3: Quantitative results from different models. Both of
our proposed models outperform the state-of-the-arts. Ours-4 and
Ours-1 indicate our demosaiced and RAW models, respectively.

Models PSNR (dB) / SSIM
U-Net 21.01 / 0.7520
RCAN 20.85 / 0.7510
PyNet 21.17 / 0.7460
Ours-1 21.58 / 0.7488
Ours-4 21.38 / 0.7451

wavelet up-sampling module, residual wavelet down-sampling module, and global

context res-dense module; another one is to restore GCB blocks and leave wavelet

transform blocks absent. As shown in Table 4.4, by adding GCB blocks, both of

our models can be boosted by 0.1 dB in terms of PSNR metric. The performance

can be further improved by 0.2 dB with the inclusion of the DWT block. Note

that all these variants are trained in the same way as before and tested on the

offline validation dataset from AIM2020 Learned Smartphone ISP Challenge.

In order to visualize the effectiveness of our two-branch design, we compare the

validation results from our RAW and demosaic models and their ensembles using

the proposed training strategy. Fig. 4.3 reveals that the ensemble of RAW and the

demosaiced model is able to combine the advantages of each model and produce

images with accurate colour and fine details. To demonstrate the success of our loss

selection when dealing with image misalignment, we train the demosaiced model

by applying only Lchar at the original scale level. As Fig. 4.3 shown, the results

with only Lchar leads to blurry image details and inaccurate colour mapping

To better demonstrate the qualitative result of the proposed algorithm on the

real-world camera image, we test the 4-channel model, 3-channel model, and their
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Ground Truth Ours-Ensemble Ours-1 Ours-4 Ours-4-L1

Figure 4.3: Qualitative comparisons of reconstructed images from
different proposed models. Ours-Ensemble the averaging result of
the RAW model and the demosaiced model. Ours-4 and Ours-1
denote our demosaiced and RAW models, respectively. Ours-4-L1
stands for the demosaiced model with only Lchar loss.
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Table 4.4: The benefit of using DWT and GCB blocks is evident.
Both of our models can receive approximate 0.3 dB gains.

Model Operation PSNR (dB) \ SSIM

Demosaiced model
w/o DWT and w/o GCB 21.13 / 0.7398

w/o DWT 21.22 / 0.7421
proposed model 21.38 / 0.7451

RAW model
w/o DWT and w/o GCB 21.22 / 0.7325

w/o DWT 21.31 / 0.7398
proposed model 21.58 / 0.7488

ensemble results for full-resolution RAW images provided in the ZRR dataset

(Ignatov et al. 2020). As shown in Fig. 4.5, the ensemble results from our AWNet

display a more accurate image colour compared with Huawei ISP images that make

our result more perceptually acceptable.

Our qualitative and quantitative results validate the superiority of our two-

branch design as well as the effectiveness of wavelet transform block and attention

mechanism, in the application of learning RAW-to-RGB colour mapping.
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Canon 5D Mark IV ISP result.

Ours-Ensemble Huawei ISP

Ours-1 Ours-4

Figure 4.4: Visualization of full-resolution results generated by
different methods. Ours-Ensemble represents the averaging result
of the RAW model and the demosaiced model. Ours-4 and Ours-1
denote our demosaiced and RAW models, respectively.
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Canon 5D Mark IV ISP result.

Ours-Ensemble Huawei ISP

Ours-1 Ours-4

Figure 4.5: Visualization of full-resolution results generated by
different methods. Ours-Ensemble represents the averaging result
of the RAW model and the demosaiced model. Ours-4 and Ours-1
denote our demosaiced and RAW models, respectively.

41



Chapter 5

Conclusion and Future Work

In this paper, we propose a novel two-branch network structure, named AWNet,

which can effectively enhance smartphone images. We embed wavelet transform

blocks into the scaling modules associated with convolutional operations that en-

able our network to learn from both the spatial and frequency domains. As a

consequence, our model can mitigate the information loss while processing the

feature. In addition, the presence of GCB blocks improves the robustness of our

network in dealing with the misalignments existent in the ZRR dataset. Our work

can shed some light on the application of wavelet transform in the image ISP

problem.

As for future work, our network is able to tackle other low-level imaging tasks,

such as image denoising and super-resolution. The improvement of our work can

be done in 2 aspects. First, we can shrink the model size by using more efficient

convolutional operations such as depth-wise and point-wise convolution (Howard

et al. 2017). Meanwhile, as our inference pipeline is done in separated stages, it
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will be more efficient to revise the pipeline into an end-to-end design. We leave

these topics for future research.
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