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LAY ABSTRACT 

In order to provide a high degree of confidence in the safety of nuclear reactors, 

it is imperative to understand how each reactor design behaves under both 

normal and abnormal conditions. Understanding the outcomes of these 

conditions (in particular, the abnormal conditions) allows for the identification of 

potential vulnerabilities in the design, and to subsequently ensure that measures 

are put in place to prevent consequences that could be harmful to the public and 

environment.  

Dynamic probabilistic risk assessment (DPRA) is a field of study that aids in the 

identification of these abnormal conditions, and quantifies the probability that 

they could occur. This thesis aims to demonstrate the capability of a DPRA 

methodology called dynamic event tree (DET) analysis, whereby all possible 

sequences of events that can occur after an initial event are explored. A major 

difference between DET and traditional PRA methodologies is that DETs examine 

the effect of the timing of events whereas the traditional methods simply 

employ a pass/fail scenario and therefore cannot capture the effect of timing, 

the role of partially functioning equipment, equipment that has a delayed 

response and still may alter the consequences of the event, or human 

intervention at various points in the transient. The DET capabilities of a driver 

software called RAVEN are first demonstrated for a simple system, and for more 

complex systems through the development of a specific interface that allows 

RAVEN to drive TRACE (a simulation tool used to predict the flow and heat 

transfer that occurs in reactor systems).  
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ABSTRACT 

The identification of potential accident conditions for a nuclear power plant 

requires a systematic evaluation of postulated hazards, and accurate methods 

for predicting the behaviour of the system if these hazards were to occur. It is 

particularly important to identify scenarios which carry severe consequences 

(e.g., large radioactive releases to the environment), even if the conditions have 

a low probability of occurrence, so that preventative measures can be 

implemented. 

Dynamic probabilistic risk assessment (DPRA) is a field of analysis that aims to 

determine the failure pathways of complex systems while simultaneously 

analyzing the time-evolution of the proposed accident. By studying the dynamics 

of the system, DPRA methods are capable of analyzing the impact of impaired or 

late equipment response, human actions during the transient, and the inter 

relationship between different systems and failures. This approach promotes 

realistic predictions of the complex response of the system under accident 

conditions, and for the dynamics of the accident progression to unfold with 

timing that is not pre-determined by an analyst, thereby removing potential user 

bias from the results. 

The work that is outlined in this thesis was undertaken in order to demonstrate 

the DPRA software platform called RAVEN, and to leverage its application in the 

near-future probabilistic assessment of accident conditions applied to CANDU 

reactor simulation models. Features of the work include: 

 Demonstration of the capability of RAVEN to produce predictable results 

using the dynamic event tree (DET) approach; 

 The development of a code interface to allow RAVEN to drive DET 

simulations of TRACE simulation models; and 
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 Demonstration of the capability of the developed RAVEN-TRACE interface 

to produce predictable results for systems that are well-understood. 
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1. INTRODUCTION 

In order to license and operate a nuclear power plant (NPP), the safety of the 

facility must be comprehensively demonstrated for both normal operating 

conditions, and potential abnormal conditions (referred to as accident 

conditions) [1]. The identification of potential accident conditions requires a 

systematic evaluation of postulated hazards that might initiate an accident, and 

accurate methods for predicting the behaviour of the system under these 

conditions. It is particularly important to identify accident scenarios which carry 

severe consequences (e.g., large radioactive releases to the environment), even 

if the conditions have a low probability of occurrence, so that preventative 

measures can be implemented, either through improved system design, or 

required procedural actions.  

Probabilistic risk assessment (PRA) is a field of analysis that provides quantitative 

estimates of the risk associated with the operation of complex engineering 

systems (including but not limited to NPPs). It provides a methodological 

framework for identifying potential accident conditions, and for quantifying the 

probability of occurrence of these conditions. PRA methods have been under 

development for decades and have been applied in the safety studies for 

numerous reactor designs, providing valuable information for risk-informed 

decision-making (RIDM) [2]. Specifically, the results of PRA studies can provide 

both a qualitative understanding of risk-sensitive equipment/vulnerabilities and 

processes as well as the quantitative acceptance criteria used in the regulatory 

licensing process [3]. PRA has also been extensively used for improving the 

design and operation of a plant in order to optimize its economic benefits [4]. 

Since the Three Mile Island nuclear accident, risk assessment studies have been 

an integral part of nuclear safety assessments, providing key insights on safe 

plant operation [5]. 
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The traditional approach to PRA includes the use of so-called static analysis 

methods, whereby event trees (ETs) and fault trees (FTs) are employed to model 

the possible combinations of events (failures) that may lead to damaging the 

reactor core. For ET methods, the different events that can occur on an accident 

timeline are laid out in sequential fashion and are assigned a probability of 

action. The probability of a given consequence is then determined by integrating 

the failure probabilities of each system involved in event sequences leading to 

the consequence. Probabilities are assigned for complete component failure and 

no provisions are made to account for partial failures or delays in the timing of 

equipment actions. In the FT approach, the probability of an undesired system 

state is determined by analyzing the possible combinations of individual 

component failures that may lead to the failure of the system. Often the output 

of FT results are assigned to the probabilities used in some ET action 

probabilities. 

While the traditional methods of PRA have provided significant insight into plant 

safety over the last 40 years, these approaches are limited as the methods are 

pass/fail in nature, and hence do not directly account for physical system 

behaviour or the timing of the events. The order of events is determined by an 

analyst a priori, and the effects of variation in the timing of these events cannot 

be explicitly captured. For example, a late action by one system may provide a 

longer windows for an unrelated system or action, making it more effective in 

limiting the consequences. In Risk-Informed Decision Making (RIDM) it is 

important to have the most realistic assessment of failure probabilities in order 

to establish the optimal path forward, and hence there is increasing demand to 

provide more sophisticated methods for assessing risk [3]. The most significant 

methodological shortcomings found within the traditional PRA framework can be 

summarized as follows: 
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 In the ET/FT approach, both the order and timing of events (e.g. 

component failure or operator action) are pre-determined [6]. 

Realistically, the predicted accident dynamics (and subsequent risk) are 

sensitive to both the aleatory (representing parameter variation) and 

epistemic (due to lack of knowledge) uncertainties present within the 

system model [7] as well as the timing of any actions that may occur. 

These uncertainties can significantly affect the predicted scenario 

progression (including the order and timing of events) and the mode and 

frequency of failure events. As a direct consequence, the quality of the 

safety assessment performed using traditional methodologies is highly 

dependent on the ability of the analyst to accurately order and time 

safety-significant events and to appropriately perturb uncertain input 

parameters [3]. 

 Traditional PRA assigns an outcome to a relatively small number of 

consequence bins, when in reality may be a spectrum of possible 

consequences. While the binning of consequences greatly simplifies the 

analysis burden, it does not provide a full representation of the 

continuous probability of the spectrum of consequences.  

 The traditional methods do not provide a measure of the sensitivity of 

plant risk to safety margins. Instead, they pose a probability of failure 

without crediting the safety margins inherent in the plant. For example, a 

given system may provide a large amount of margin to fuel failure during 

a given event or may be very tolerant of late response, however the 

system is either assumed to function or fail without consideration of its 

over-capacity to perform its function. An emerging field of study is on 

Risk-Informed Safety Margin Characterization (RISMC) which endeavors 

to demonstrate the relationship between plant risk and safety margins in 
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order to support improvements in economics, reliability and sustained 

safety in long-term plant operation [4]. Thus, operators and regulators 

would be able to quantify the benefits of each safety margin and assess 

the safety and economics associated with improving these margins. 

Given the advancement of computational models and computing equipment, it 

has become possible to extend traditional PRA to include more physical 

representations of the systems and their time-dependency, and to include the 

effects of human interactions on the system response. To this end, the field of 

dynamic PRA (DPRA) integrates the time-dependence and physical modeling of 

each process into the traditional PRA framework, allowing for more realistic 

predictions of the complex response of the system under accident conditions, 

and for the dynamics of the accident progression to unfold in an un-biased 

manner. The ability to explicitly capture the influence of time and process 

dynamics on scenario progression should, in theory, increase the accuracy of the 

system model and shift the responsibility away from the safety analyst and 

toward the method itself [3]. 

DPRA methodologies aim to provide a consistent, and computationally efficient 

framework for analyzing the interactions within the system dynamically, while 

considering both the aleatory and epistemic uncertainties and integrating human 

factors into the system model [6]. This framework allows for calculations that 

include the possible spectrum of both partial equipment failure and delayed 

response for equipment functionality and an analysis of the full range of overall 

system consequences without predetermined consequences or consequence 

binning. It also provides a mechanism for assessment of common-mode failures 

that is more realistic (i.e., the coincidental probability of simultaneous common-

mode failures can be assigned a lower probability than the gradual failure of all 
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like systems). Finally, such methods can accommodate the probability of human 

intervention at various points in the transient.   

Several approaches to DPRA are now under development, however the dynamic 

event tree (DET) approach is the most widely applied in literature. The principle 

is very similar to the traditional ET methodology, which begins with an initiating 

event and models the plant response along all possible pathways the system can 

take from this event. In the DET approach however, the timing and sequencing of 

changes to the system are determined by a time-dependent system model, 

where the branching conditions are controlled via multivariate probability 

distributions (i.e. they are not pre-set by the analyst). The range of possible input 

parameter combinations can be sampled using Monte Carlo (MC) or grid-based 

sampling techniques, and the event branching occurs dynamically based on the 

operational rules and failure models defined within the simulation environment. 

This allows for both the epistemic and aleatory uncertainties to be addressed 

within the same phenomenological and probabilistic framework and leads to a 

more comprehensive and systematic coverage of the possible event sequences 

and their probabilities [6].  

While the results of DPRA methods have been assessed in the scholarly literature 

in relation to nuclear power plants (NPPs), to date, all reactor safety studies that 

are included in the licensing process of reactor designs use some form of a static 

methodology for risk assessment. In addition to this, there are no applications in 

the scholarly literature of DPRA methods to Canadian NPPs, and there are 

currently no RISMC studies available for the CANada Deuterium Uranium 

(CANDU) reactor design. 

The work that is outlined in this thesis lays the groundwork for the near-future 

application of DPRA (specifically using the DET methodology) to CANDU reactor 



Master’s Thesis – K. Boniface; McMaster University – Engineering Physics 

6 
 

accident scenarios. Idaho National Laboratory (INL) has been developing1 a 

generic DPRA software framework called RAVEN (Risk Analysis and Virtual 

control ENvironment): a highly modular platform that provides an avenue for 

parametric and probabilistic safety analysis based on the response of complex 

system codes [8]. RAVEN has been selected as an appropriate platform for the 

application of DPRA within the CANDU reactor context, and this thesis aims to 

achieve the following goals: 

 Demonstrate that RAVEN can generate predictable results using the DET 

approach. Karanki et al. [9] assessed the failure probability of a simple 

depleting tank system using the DET approach. This problem includes the 

consideration of both aleatory and epistemic uncertainties, and has an 

analytical solution for the failure probability of the system. As such, it 

provides a suitable benchmark to compare RAVEN-generated results 

against. Note that in this portion of the work, RAVEN is driving 

simulations of a simple physical system generated with a system model 

written in Python (i.e., not a complex, validated system code used for 

predictions of reactor behaviour). 

 Develop a code interface that will allow RAVEN to drive simulations using 

the TRAC/RELAP Advanced Computational Engine (TRACE) code. TRACE is 

a best-estimate reactor system code developed by the U.S. Nuclear 

Regulatory Commission (USNRC) for modeling thermalhydraulic 

phenomena in reactors, and may be used for predictions of CANDU 

reactor behaviour. Coupling any code to RAVEN requires an in-depth 

understanding of the mechanics of the code being driven, and careful 

implementation of methods to perturb, stop and restart the code. 

                                                      
1 Development on RAVEN began in 2012 [6] 



Master’s Thesis – K. Boniface; McMaster University – Engineering Physics 

7 
 

 Demonstrate that the developed RAVEN-TRACE interface can generate 

results consistent with other studies in the scholarly literature. Chraibi et 

al. [10] assessed the reliability of a simplified model of a spent fuel pool 

(SFP) using a DPRA toolkit called PyCATSHOO. Unlike the depleting tank 

problem, the SFP system includes a thermal component due to the decay 

heat of the fuel, and includes a relatively large number of component and 

system failures that may occur and lead to undesired system end-states. 

 

2. LITERATURE REVIEW 

2.1 The Mathematical Framework for PRA Methodologies 

In order to effectively compare the different analysis methods available in the 

field of PRA, it is important to understand the formulation of the mathematics 

from which the methods originate. The theory of probabilistic dynamics is built 

on the fact that the deterministic evolution of a system can change trajectory as 

a result of events that can be described by probabilistic laws [11]. With regard to 

reactor dynamics, these changes can be caused by events initiated by the control 

and safety systems, operator actions or the failure or malfunction of 

components. Specifically, probabilistic reactor dynamics aims to compute the 

probability that the state of the reactor will be in a given domain at a given time 

[11]. 

The mathematical formulation begins with the definition of the state vector �̅�, 

which stores the system process variables. �̅� ∈ ℝ𝑁 where 𝑁 is the number of 

variables. For simplicity, the software models used for system control (including 

the human operators) are considered to be multi-state components [3]. These 

components can then be considered in the same manner as the physical system 

hardware components, yielding 𝛼 combinations of possible configurations of the 
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global system (each with an index 𝑖 where 𝑖 = 1,2, ⋯ , 𝛼) [3]. Within each system 

configuration 𝑖, �̅� obeys a set of differential equations describing its dynamics 

[3]: 

 𝜕�̅�

𝜕𝑡
= 𝑓�̅�(�̅�, 𝑡) (1) 

The probability that the system can be found in state �̅� and in configuration 𝑖 at 

time 𝑡 is described by the probability density function 𝜋(�̅�, 𝑖, 𝑡). The distribution 

is normalized as [3]: 

 
∑ ∫ 𝜋(�̅�, 𝑖, 𝑡)

ℝ𝑁

𝛼

𝑖=1

𝑑�̅� = 1 (2) 

The total transition rate out of configuration 𝑖 given that the process variables 

are described by �̅� is 𝜆𝑖(�̅�) and the total transition rate from configuration 𝑗 to 𝑖 

given �̅� is 𝑝(𝑗 → 𝑖|�̅�) such that [3]: 

 𝜆𝑖(�̅�) = ∑ 𝑝(𝑗 → 𝑖|�̅�)

𝑗≠𝑖

 (3) 

In the basic formulation, it is assumed that the systems under investigation are 

Markovian in nature, however in reality, the physical systems are semi-

Markovian [3]. In some cases it is possible to use supplementary variables to 

convert a problem to a Markovian form if necessary [11], but for now the 

Markovian assumption will be followed. One of the main properties of a 

Markovian system is described by the Chapman-Kolmogorov equation [11]:  

 𝑝(�̅�3, 𝑡3|�̅�1, 𝑡1) = ∑ 𝑝(�̅�3, 𝑡3|�̅�, 𝑡2)𝑝(�̅�, 𝑡2|�̅�1, 𝑡1)

�̅�

,

𝑡1 < 𝑡2 < 𝑡3 

(4) 



Master’s Thesis – K. Boniface; McMaster University – Engineering Physics 

9 
 

This states that the transition probability from a state vector �̅�1 at time 𝑡1, to �̅�3 

at time 𝑡3 is given by the sum of the probabilities of all possible paths through 

the state space �̅� that connect �̅�1 to �̅�3. This property allows for a generic 

mathematical description of the probability of moving from any system 

configuration to another. Within the framework of Eq. (4), the probability 

distribution of the entire system can be described by [3]: 

 𝜕𝜋(�̅�, 𝑖, 𝑡)

𝜕𝑡
+ 𝑑𝑖𝑣 (𝑓�̅�(�̅�, 𝑡)𝜋(�̅�, 𝑖, 𝑡)) + 𝜆𝑖(�̅�)𝜋(�̅�, 𝑖, 𝑡)

= ∑ 𝑝(𝑗 → 𝑖|�̅�)𝜋(�̅�, 𝑗, 𝑡)

𝑗≠𝑖

 
(5) 

An integral formulation of the problem can also be written which illustrates that 

the probability density at point (�̅�, 𝑖, 𝑡) is the sum of two contributions [3]: 

 The scenario in which the system has been in configuration 𝑖 for the entire 

transient (up to time 𝑡) without any transition (its entire trajectory is 

deterministically governed by the dynamics of Eq. (1) for system 

configuration 𝑖); and 

 The summation of all the transitions from other system configurations to 𝑖 

taking place before time 𝑡. 

The goal of the probabilistic approach to risk assessment is to use the 

information in Eq. (5) to determine the probability that the system process 

variables will exit a bounded safety region. Consequently, in addition to 

calculating the probability that the system will be in a given state at a given time, 

a systematic way to define and characterize the safety region (denoted by 𝐷) is 

required. The borders of 𝐷 are determined by the union of a set of hyperplanes 

in the system state space and can, in some cases, require specific analysis 

methods to discover their coordinates [3]. 
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2.2 Available PRA Methodologies 

All PRA methodologies attempt to provide estimates to the solution to Eq. (5) 

and account for both the aleatory and epistemic uncertainties in the prediction 

of the distribution of risk associated with the system response. Attempts have 

been made to provide an analytical solution, however these can be extremely 

complex even for systems with a small number of possible component states [3]. 

It is easy to see that for complex systems such as NPPs (i.e. with a large values of 

𝛼 and 𝑁), a complete determination of 𝜋(�̅�, 𝑖, 𝑡) can be impractical. Moreover, 

the safety characteristics of particular interest in these large systems are usually 

contained in a small portion of 𝜋(�̅�, 𝑖, 𝑡) [3]. All existing solution schemes provide 

practical methods for estimating the distribution of 𝜋(�̅�, 𝑖, 𝑡) by discretizing 

either the time or process variables2 (or both) [3]. The following sections provide 

descriptions of the most prominent PRA methodologies. It is not an exhaustive 

list of the existing techniques, but addresses the most commonly cited (and by 

extension, most commonly used) methods in recent literature. 

 

2.2.1 Traditional PRA – Event and Fault Trees 

The ET/FT approach has been used in the past for nearly all PRA studies in the 

nuclear industry. Both techniques provide a logical avenue for identifying 

undesired failure events and modeling the possible combinations of failures that 

may lead to core damage states. They allow for a qualitative representation of 

the system and its possible scenarios, and a quantitative characterization of the 

risk associated with these scenarios [3]. 

                                                      
2 It is of note that this discretization refers to the numerical solution method in 
the PRA framework and not the necessary discretization of variables that occurs 
when using computer codes to solve for process dynamics [2]. 
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The FT analysis method is an approach used to describe the paths that can 

possibly lead to specific outcomes. The basic components of the system are 

arranged using Boolean logic gates which encompass the probability, priority and 

criteria for the occurrence of basic events (BEs) with the intent of determining all 

possible combinations that could lead to some final event (or top event – TE) [5]. 

The probability distributions associated with each BE are propagated upward 

through the tree logic to obtain probability distributions of the TEs. Figure 1 

shows a basic FT to illustrate the concept. Some of the important results 

obtained from FT analysis include cutset and minimal cutset (the smallest 

combination of component failures which, if they all occur, will cause the TE to 

occur) probabilities and quantitative rankings of component failure sequences to 

that lead to system failure. 

 

 

Figure 1: Illustration of the Basic Boolean Logic Concepts used in the Fault Tree 
Analysis Method [5] 
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The ET approach begins with initiating events (IEs) and models the possible 

pathways the system can take from this event. It requires the temporal ordering 

of potential events within the system and the system response corresponding to 

each possible sequence can then be simulated. Figure 2 shows the typical 

structure of an ET describing a system with three safety systems that can 

potentially fail and affect the event progression [12]. The applied timing of 

events is often based on timing obtained from typical transients [11]. The overall 

probability of occurrence for each system path can then be calculated and the 

final state of the system (either safe or failed) is used to characterize the risk. 

 

 

Figure 2: A Typical Event Tree with Three Safety Systems [12] 

 

When using ET analysis, the quantification of risk requires grouping sequences 

together based on the definition of bounding success criteria [13]. A direct 

consequence of this is the possibility for introducing false conservatism in the 

PRA analysis or the potential for underestimating risk [14]. 
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The uncertainty in ET/FT analysis is typically determined using either MC or grid-

based sampling techniques applied to the input parameters. Sensitivity analysis 

is performed by either changing the probabilities associated with components 

and BEs, or by changing the qualitative configurations (changing event ordering, 

removing components, etc…) [3].  

It is important to note that the ET/FT analysis framework is static – there is no 

explicit modeling of the time-dependence of significant events except that which 

is pre-determined and set by the analyst. It has also been shown that the 

traditional PRA methodology has difficulty accounting for the sensitivity of the 

system response to uncertainties in the process physics (e.g., lack of knowledge 

in how well we can predict the response of the system or action) [6]. The burden 

of proof of quality of the analysis then rests heavily on the ability of the analyst 

to accurately understand the time-dependence of the system and structure the 

PRA in an appropriate manner, and to appropriately perturb uncertain 

parameters [3] to understand the uncertainty in the PRA outcome. 

 

2.2.2 Dynamic PRA 

The main objective of risk assessment within the DPRA framework is to account 

for the effects of both aleatory and epistemic uncertainties simultaneously by 

including time-dependence in the model of the system [6]. Depending on the 

choices made by the analyst in setting up the static PRA, it may produce the 

same results as the dynamic ones, or they may differ (i.e., there may be some 

user effect). However, if a high-fidelity transient plant computational model is 

available, then the DPRA results should be analyst independent. This means that 

there is potential for improvement in scenario modeling (and the subsequent 

risk estimate) with the incorporation of dynamics in the solution method [3]. 
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Several approaches to solving the probabilistic dynamics equations have been 

developed and are described briefly below. However the following requirements 

are common to all of the dynamic techniques [6]: 

 A time-dependent system model; 

 A definition of the possible system configurations (both normal and 

abnormal); 

 The probabilities associated with transitions between system 

configurations; and 

 Criteria for both system success and system failure. 

 

2.2.2.1 Continuous Time Methods 

The solution methods described in this section are continuous in time. They can 

be useful and accurate for the analysis of simple systems, however they become 

extremely computationally intensive as the systems become more complex [6]. 

Both methods are also limited due to their assumption that the transitions 

between states are instantaneous and that the corresponding system dynamics 

react immediately to the transitions. In reality, there may be delays that are 

significant to the evolution of the physical behaviour of the system and cannot 

be ignored. Mitigating techniques exist in which an additional index is included in 

the system to represent stimuli, allowing each configuration of component states 

to be represented by both the physical configuration and the stimulus index. This 

allows for the time delays to be explicitly accounted for in the model, however 

the complexity (and corresponding computational effort) is only increased [6]. In 

addition to these limitations, the continuous-time methods require system-
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specific algorithms and so their application to large-scale practical problems is 

difficult [12]. 

Continuous Event Trees (CET) 

In the CET method, all possible dependencies of transition events are modeled 

by a set of integral equations under the Markovian assumption [12]. This method 

is the realization of the solution to Eq. (5) which is generally found using MC 

techniques. Once the probability density function has been solved for, the 

statistical properties (PDFs, CDFs, and expected transition times) of all branches 

of the system are known and can be used for risk assessment purposes [6]. 

An illustration of the difference between an ET and CET is shown in Figure 3. A 

typical, time-ordered ET is shown on the left with transitions appearing at 

predetermined times. A CET is shown on the right for a simple system with one 

process variable (𝑁 = 1) and three possible system configurations (𝛼 = 3). The 

horizontal trajectories along 𝑥 are deterministic and the vertical jumps between 

configurations are stochastic. The transitions can occur at any time, and the 

initial condition of each trajectory is the final condition of the one corresponding 

to the previous state [11]. It is also of note that both the static and dynamic ET 

methodologies can be shown to be special cases of the CET model [6]. 

 

 

Figure 3: Illustration of the Difference Between an Event Tree (left) and a 
Continuous Event Tree (right) [11] 

 



Master’s Thesis – K. Boniface; McMaster University – Engineering Physics 

16 
 

A significant incapability of this method is its inability to account for system 

configuration changes due to control and safety system setpoint crossings (e.g. 

the opening of a valve due to an overpressure setpoint) [6]. 

Continuous Cell-to-Cell Mapping Technique (CCMT) 

Continuous CCMT is a version of the CET methodology that allows for the 

transitions that should occur during setpoint crossings [6]. Similar to the CET 

approach, a continuous Markov process provides the fundamental mathematics, 

however the physical process variables are partitioned by the user into “cells” 

[3]. Within a cell, the evolution of the system is modeled just as in CET. The 

transition probabilities between states are then obtained from a user-defined 

system model, allowing more variability in the possible system states [6].  

 

2.2.2.2 Discrete Time Methods 

The solution methods described in this section are discrete in time. 

Monte Carlo (MC) Simulation 

The MC simulation methodology is conceptually the most simple of the DPRA 

techniques. The time at which each of the components or safety systems of 

interest fails is randomly chosen, and a deterministic model is then used to 

simulate the system behaviour for that sequence, resulting in an end state that 

can be compared against success/failure criteria [6]. This process is repeated 

until sufficient statistics have been achieved, and the probability of 

consequences of interest can be calculated.  

One of the main advantages to this technique is that it is insensitive to the size, 

complexity and modeling assumptions [12]. However, this method requires a 

large number of simulations in order to identify low probability, high 
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consequence events, and can consequently be impractical for certain 

applications [14]. Hence, computational improvements or reduced-order 

modelling approaches are often required. 

Markov/Cell-to-Cell Mapping Technique 

The Markov/CCMT method is similar to the continuous CCMT approach except 

for the discretization of time [6]. It regards the dynamic evolution of the system 

in discrete time as the probability of transitions between state space intervals or 

cells. The technique yields a Markov model that can be used for both inductive 

tracing of fault propagation (IE to TE) and deductive tracing of fault evolution (TE 

to IE) and for calculating top event probabilities [6].  

Genetic Algorithms 

Genetic algorithms are a much more recent addition to the DPRA techniques. 

The goal is to facilitate intelligent and adaptive resolution in exploring the system 

scenario space [6] and identifying the safety vulnerabilities of the system [14]. As 

with other DPRA techniques, the genetic algorithm engine is used in conjunction 

with a system simulation code. Pre-determined safety critical parameters (safety 

limits) are then used by the genetic algorithm to guide the selection of input 

parameters to be used by the system code [14]. The algorithm is designed to 

take advantage of clues within the results of initial simulations to narrow down 

the search for potentially vulnerable states. It is not intended to provide more 

comprehensive or accurate values in the risk assessment process, but rather to 

provide a computationally efficient method for identifying potential system 

vulnerabilities that require more detailed exploration [14]. 
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Dynamic Event Trees (DET) 

DETs are by far the most widely used dynamic approach to the risk assessment of 

NPPs in literature [12]. The principle is very similar to the classical ET 

methodology, however the timing and sequence of changes to the system are 

determined by a time-dependent system model. The analyst now controls the 

branching conditions via multivariate probability distributions, and the timing at 

which the branching occurs is not static (unlike in the ET approach). Branching is 

then able to occur dynamically and both epistemic and aleatory uncertainties 

can be addressed within the same phenomenological and probabilistic 

framework. This leads to a more comprehensive and systematic coverage of the 

possible event sequences that can arise due to the perturbation of uncertain 

parameters in the input space [6]. While there is now additional potential for 

user-effects in the analysis (for example by selecting branch times or conditions), 

there is an opportunity for each user to explore the results with respect to these 

inputs and demonstrate a converged solution. 

 

2.3 Dynamic PRA – Application to NPPs in Literature 

Several approaches to DPRA are now in a mature stage of development, 

however relatively few studies have been performed that comprehensively 

assess what these techniques can offer in comparison to the results of classical 

PSA. It is stated in Labeau et al. [3] (a highly cited paper providing a 

comprehensive review of dynamic reliability methods and their benefits) and 

then again in both Aldemir [6] (a survey of DPRA methodologies) and Karanki et 

al. [13] that literature studies on the quantification of risk using dynamic analysis 

and its comparison to traditional PRA methodologies are limited in both number 

and scope. 
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To date, several studies have been published that demonstrate the potential of 

DPRA concepts by identifying events in an accident sequence that are of high 

significance to the final quantification of risk. Several of the most frequently 

cited works presenting DET analysis of NPP transients leading to core damage 

are: 

 Acosta et al. [15]: an early study that addresses the treatment of 

stochastic variations in the operating staff capabilities and concludes that 

the DET framework can reasonably represent important operator 

behaviour patterns. 

 Izquierdo-Rocha et al. [16]: uses the DET approach on a steam generator 

tube rupture (SGTR) scenario of a Pressurized Water Reactor (PWR) to 

identify emergency operating procedure (EOP) improvements and 

demonstrate the feasibility of the DPRA methodologies. 

 Kloos et al. [17]: uses DET analysis to simulate the progression of a PWR 

station blackout (SBO), demonstrating the possible spectrum of event 

sequencing that is otherwise overlooked by the traditional methods. 

 Hakobyan et al. [18]: presents the results of a PWR SBO simulation using 

the DET approach and shows that the D-PRA results in a wider variety of 

accident scenarios by providing a more phenomenologically consistent 

framework. 

These applications of the DET methodology provide useful information 

pertaining to the dynamics of possible accident scenarios, however they do not 

report on the final quantification of risk and still lack a thorough and systematic 

comparison of the accuracy of the dynamic approaches to the traditional ones. It 

is also significant to note that all of these studies use a binary approach to 

represent the possible event sequencing in an accident scenario: while the 
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events are allowed to occur dynamically, they are represented as either the 

success or failure of a system or operator action, and the potential for partial 

failure is not considered. This can be significant in the scenario progression 

where the partial operation of some systems may significantly impact the event 

trajectory.  

More recently, Lee et al. [19] published the results of a case study examining the 

feasibility of DPRA using the DET approach on an SGTR accident in an OPR-1000 

NPP. Conditional core damage probabilities (CCDPs) are calculated and a 

comparison is made between the risk quantified using both the dynamic and 

conventional static PRA strategies (the results of which are cited from a previous 

study). However, meaningful discussion comparing the two results is difficult due 

to the fact that there were a significant number of differences employed in both 

the system simulation model and the assumptions regarding the progression of 

the accident. 

Karanki et al. [13] presented a case study on a DET examination of the effects of 

a medium break loss of coolant accident (LOCA) on the Zion NPP (now 

decommissioned). A comparison was made between the results obtained using 

the DET method and those estimated with a traditional ET model for the scenario 

progression. This comparison provides some illustration of the potential 

improvements in the estimate of risk that are possible with dynamic 

methodologies. The paper particularly highlights the benefits to bypassing the 

consequence binning rationale used in traditional PRA methods and reports a 

significant difference in the importance of operator action on the progression of 

the accident relative to traditional methods (the DET results show in some cases 

a decrease from traditional PRA in the importance of operator action). 

Figure 4 shows a comparison of both the CCDP and the core damage frequency 

for the LOCA scenario for three ranges of break size. The CCDP results for the 
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smallest and largest break sizes are significantly higher using traditional 

methods. This has been attributed to conservatism introduced by the imposition 

of bounding pass-fail success criteria. For example, using traditional methods it 

was found that the bounding success criteria for the time window for switching 

from high-pressure injection to recirculation when the coolant reserve is low 

under the smallest break size condition is 1050s and is associated with the case 

that 1 of the total 4 available high pressure trains are available. When this 

criterion is determined, it is no longer deemed necessary to address the cases 

where more than one of the high-pressure trains are available. Since it is known 

that the number of high-pressure trains (and other system variables) can greatly 

affect the dynamics of the system and therefore affect the progression of events, 

the DET method includes simulations that consider all cases. It is then shown 

that when all 4 high-pressure trains are active, the time window for switching to 

recirculation is 1900s. The traditional PRA results for the CCDP under this break 

size range do not allow for the possible avoidance of core damage due to 

additional trains being available, and result in a conservative estimate of the risk 

[13]. 
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Figure 4: Quantification of Traditional and DET Methods for Several LOCA 
Scenarios [13] 

 

The current literature suggests that dynamic reliability methods have the 

potential to yield more accurate descriptions of complex system responses in 

accidence scenarios, however their use in industrial applications heavily depends 

on a more comprehensive examination and validation of the methods.  

A DPRA study was performed on an SBO scenario using RAVEN applied to a 

simplified PWR system as shown in Figure 5 [20]. It is of note that RAVEN is a key 

tool and feature of this thesis, and its architecture is described in detail in 

Section 3.1.1. 

The sequence of events starting from a steady-state operational condition are: 

1. Loss of grid power and immediate reactor shutdown (decay heat power, 

and unavailability of diesel generators and residual heat removal system). 
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2. Subsequent pump coast-down. 

3. Possible recovery of diesel generators. 

The transient ends when either the clad temperature reaches its failure 

threshold or the simulation reaches a prescribed end time (system success). 

 

 

Figure 5: Simplified PWR Schematic Examined using the DET Approach in 
RAVEN [20] 

 

Two branching triggers were examined in this study: 

 The recovery time of the diesel generators (normal distribution, 

𝜇 = 1100 s, 𝜎 = 700 s, min = 3 s, max = ∞); and 

 The clad failure temperature (triangular distribution, peak = 1477.59 K, 

min = 1255.37 K, max = 1699.82 K). 

Two different sampling strategies (each with its own corresponding DET) were 

used. These strategies are shown in Figure 6 and described below: 

 ESBP: Branching probability thresholds that are equally spaced on the 

CDF of each variable; and 
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 ESVV: Branching probability thresholds corresponding to equally spaced 

variable values. 

 

 

Figure 6: Branching Probability Thresholds for the SBO DET Analysis using 
RAVEN [20] 

 

Figure 7 shows the temporal evolution of the clad temperature for DETs 

corresponding to the two different sampling approaches. It is significant to note 

that a different number of branching thresholds were used in each case, which is 

the reason that a different number of scenario progressions (or branches) are 

observed. The evolution of the clad temperature behaves as expected: the 

temperature rises after the transient begins, until either the diesel generator 

power is restored, or the clad failure temperature is reached. Both the generator 

restoration time and the clad failure temperature are sampled parameters, and 

as such, the success or failure of the system overall depends on the current 

branch of the DET (or the combined effect of the two parameters). 
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Figure 7: Temporal Evolution of Clad Temperature using the DET Method in 
RAVEN and Two Different Sampling Strategies [20] 

 

The results reported in [20] demonstrate the capability of RAVEN to perform the 

mechanics required to drive DET simulations for perturbing the input space of a 

system described by a complex thermalhydraulics system code. 

In 2013, Sandia National Laboratories (SNL) and INL published a report outlining 

the potential for using both RAVEN and DAKOTA within the same DPRA 

framework [21]. DAKOTA is a generic software platform that provides a 

systematic and rapid means of improving or optimizing designs and for 

understanding the sensitivity and uncertainty associated with simulation-based 

models. The code is not specific to the nuclear industry and features a high 

degree of ease and flexibility for interfacing to simulation codes for the purpose 

of performing the following types of analyses [22]: 

1. Parameter studies – exploring the effects of parametric changes within a 

simulation model. 

2. Design of experiments – similar to parameter studies, but with the 

primary goal of generating thorough input space coverage to ensure good 

experimental techniques. 
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3. Uncertainty quantification – uses specified input parameter probability 

distributions to compute the respective system output response 

functions. 

4. Optimization – uses constraints on input variables or secondary 

simulation responses to either minimize cost or maximize system 

performance. 

5. Calibration – finds the best agreement between simulated data and a 

desired output (experimental data). 

Each of the methods and algorithms employed by DAKOTA requires an interface 

to a user-supplied simulation code. Figure 8 shows a simplified, black-box 

schematic of the code interface and processing scheme used in DAKOTA 

analyses. Similar to RAVEN, DAKOTA acts as the control logic driver for the 

simulation code, with user-defined inputs, simulation architecture and 

monitoring of outputs. One of the most prominent features of this code is the 

simplicity of its interface structure and its native ability for managing concurrent 

executions of a computational model in parallel [22]. 

 

 

Figure 8: DAKOTA Control Logic Schematic [22] 
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The SNL/INL study was motivated by the desire to use some of the reliability 

methods native to DAKOTA in conjunction with the highly developed DPRA 

simulation architecture native to RAVEN. In order to show the capabilities of this 

framework, a DPRA study was performed on the same SBO scenario described 

previously (see Figure 5).  

The feature of this study is the software interface developed between DAKOTA, 

RAVEN and the system code (in this case, RELAP-7), and the inclusion of 

calculated probabilities of the event sequences. Figure 9 shows a schematic of 

the framework in which RAVEN was configured to receive data from DAKOTA, 

spawn RELAP-7 simulations, then feed the results back to DAKOTA for 

subsequent parameter perturbation in the next iteration [21]. 

 

 

Figure 9: DAKOTA Interface to RAVEN/RELAP-7 [21] 

 

The results of this study include a comparison of the system failure probability 

using four approaches: 
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1. (RAVEN) 500 Latin Hypercube samples used to determine the reference 

failure probability 

2. (DAKOTA) Local Mean Value Method in which a function evaluation is 

taken at the mean of the input variables, then two more function 

evaluations (one in each direction of the uncertain variables) to calculate 

the derivatives. 

3. (DAKOTA) Local Advanced Mean Value Method in which the same 

function evaluations are performed, followed by a Taylor series 

expansion that is used in an optimization scheme to generate an 

additional point for presumed higher accuracy. 

4. (DAKOTA) Global Reliability in which six function evaluations are 

performed, followed by the addition of consecutive points to refine the 

prediction until a convergence criterion is met. 

Table 1 summarizes the results of the four applied methodologies. It can be seen 

that the methods perform well with a small number of function evaluations. It is 

significant to note the linearity of the limit state function under analysis and that 

divergence from this linearity will affect the accuracy of the failure probability 

estimate [21]. However, this study demonstrates the potential for computational 

savings if DAKOTA reliability methods are employed within the DPRA framework. 

 

Table 1: Estimated Failure Probability Using Different Reliability Methods 

Method 
Number of Function 
Evaluations 

Failure Probability 
Estimate 

Latin Hypercube Sampling 500 0.13 
Local Mean Value Method 3 0.13006 
Local Advanced Mean Value 
Method 

4 0.14023 

Global Reliability 27 0.13211 
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In 2016, Électricité de France (EDF) presented work at the 13th International 

Conference on Probabilistic Safety Assessment and Management conference on 

DPRA applied to a SFP scenario using a PRA toolkit called PyCATSHOO (PythoniC 

Object Oriented Hybrid Stochastic AuTomata) [10]. The goal of this toolkit is to 

provide a generic platform for modeling and assessing the performance of 

dynamic systems that include both deterministic and stochastic behaviour and 

features the integration of these two behaviours at a more central level than 

both DAKOTA and RAVEN [10]. Its framework is based on a representation of the 

Piecewise Deterministic Markov Process (PDMP) which is a well-known 

mathematical formulation capable of modeling the evolution of deterministic 

systems that experience discrete, stochastic events [23]. PDMP modeling of a 

dynamic system is defined by 1) the ODEs that describe the deterministic system 

behaviour, 2) the event rates that govern the frequency of occurrence of state 

transitions, 3) the probability distributions that govern the likelihood of changes 

of state, and 4) the initial and boundary conditions of the system [23]. It follows 

that the PDMP modeling of large and complex systems currently faces difficulty 

due to the potentially vast and multifaceted nature of the governing system of 

equations, however preliminary studies have shown the capabilities of 

PyCATSHOO in assessing the reliability of several thermalhydraulic systems [24]. 

PyCATSHOO can be used in either a Python or C++ environment and is, at its 

most fundamental level, a dynamic library with three categories of tools [24]: 

1. Generic modeling tools for building libraries of classes for the 

components of a system. 

2. Instantiation tools for building specific systems from the generic classes 

and for the customization and initiation of parallel simulations. 

3. Post-processing tools for the analysis of simulation results. 



Master’s Thesis – K. Boniface; McMaster University – Engineering Physics 

30 
 

The individual components of a system are linked in a user-defined manner 

based on the architecture of the physical system. MC simulations are then 

performed, and for each simulation, the equations of the physical phenomena 

are solved and the undesired states of the system can then be analyzed [24]. 

Figure 10 shows a schematic of the generic PyCATSHOO system implementation 

process. The first step involves the creation of a model for every individual 

system component. This model defines the purpose of the component (i.e. its 

governing equations), the explicit rules that tell the code which variables should 

be inputs and outputs to the rest of the system, and should include the 

behaviour of the component under both functional and dysfunctional conditions. 

The second step uses the generic classes built in Step 1 and instantiates them 

based on the specific composition and architecture of the physical system. The 

third step creates a specific simulation model based on scenario-specific input 

data and a user-defined set of indicators that are important to the final safety 

assessment. 

 

 

Figure 10: Schematic of General Implementation Process for PyCATSHOO [24] 

 

The 2016 EDF study aims to demonstrate the capabilities of PyCATSHOO by 

comparing its results to a traditional PRA approach and highlighting the 
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importance of taking into account the inertia of physical phenomena within the 

same computational framework as the PRA analysis. A high-level description of 

the method and results are presented in this section; however it is significant to 

note that further details are presented in Section 3.2.2 for the purpose of 

benchmarking against this work. 

The physical system is comprised of a SFP and three cooling trains with a large 

number of components and safety systems that are subject to failure (valves, 

pumps, heat exchangers, components of the overall cooling water system etc.). 

Each of these components or safety systems are given a specified failure rate, 

and in some cases, a specified repair rate. 

Three initiating event scenarios were examined: a 100-hour non-repairable loss 

of ultimate heat sink (LUHS), a 192-hour loss of off-site power (LOOP), and a 

7846-hour mission where the system is subject to only the component and 

system failures, without a specific initiating event.   

The transients are monitored for the following unwanted events (UEs): 

 UE0: Simultaneous loss of all three trains (classical approach) 

 UE1: Water temperature rising above 80°C (safety margin for boiling) 

 UE2: Water temperature rising above 100°C 

 UE3: Water level dropping below 16 m (fuel uncovery) 

Table 2 shows the probability of occurrence of each of the unwanted events 

calculated within the PyCATSHOO framework for each of the three initiating 

scenarios. The most notable findings of this study are: 

 The hierarchy of the magnitude of failure probability in the three 

scenarios is consistent with what is expected. C3 has the lowest failure 
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probability (even though its observation time is the longest) because in 

this context, LUHS and LOOP events are repairable.  

 The general order of magnitude difference between the criteria 

calculated by classical methods (UE0, or the loss of all three cooling 

trains) and the other three unwanted system events is also notable. In 

particular, the probability of occurrence of the loss of three trains is, in 

two cases, two orders of magnitude higher than the occurrence 

probability of fuel uncovery. This finding is consistent in current literature 

and highlights the potential for the introduction of unnecessary 

conservatism when using classical PRA methodologies. 

 

Table 2: Estimated Failure Probabilities [10] 

Scenario: C1 C2 C3 

Unwanted Event 

UE0 1.16e-2 1.41e-2 5.09e-3 
UE1 6.27e-3 7.78e-3 2.00e-3 
UE2 4.31e-3 5.26e-3 8.90e-4 
UE3 1.01e-3 7.30e-4 2.00e-5 

 

3. METHODOLOGY, CODES & MODEL DESCRIPTIONS 

This section contains all of the relevant information pertaining to the 

methodology employed in this research.  

The high-level goal in this research has been to demonstrate the capability of the 

DPRA software called RAVEN for near-future application to DPRA studies of 

CANDU systems, by using it to drive simulations using an industry-standard 

thermalhydraulics code called TRACE. In this section, RAVEN and TRACE are first 
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described, followed by a description of a code interface that was developed as 

part of this research for the purpose of passing RAVEN and TRACE inputs and 

outputs between the two codes. Finally, each of the systems that are assessed 

using RAVEN and the DET approach in this research are described, along with the 

corresponding implemented simulation models and overall methodological 

approach taken for each. 

 

3.1 Codes 

3.1.1 RAVEN 

The RAVEN software platform is a probabilistic-based scenario simulation code 

that has been developed within the Nuclear Energy Advanced Modeling and 

Simulation (NEAMS) program [8]. The initial development was focused on 

allowing for DPRA capabilities for RELAP-7 within the MOOSE framework. 

Currently however, RAVEN stands as a multipurpose DPRA software platform 

that can act as the control logic driver for any system code and can be used 

within the MOOSE framework or as a stand-alone toolkit. It is designed to 

examine uncertain input parameters and the corresponding system code 

response using either MC-type sampling, dynamic branching strategies, or a 

combination of both. 

Figure 11 shows a schematic representation of the RAVEN computational 

framework and the communication among the different, user-definable 

modules. The main software components are the database manager, the 

graphical user interface, and the probabilistic and parametric framework (the 

core of the RAVEN analysis capabilities). The code is characterized by a high 

degree of modularity and flexibility, allowing custom analysis flow at run-time 
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through a set of basic components and algorithms available to the user [8]. The 

user can control: 

 The nature and complexity of the RAVEN/system-code interface; 

 The probability distributions applied to uncertain system parameters; 

 The sampling technique used to perturb the input space; 

 The generation of reduced order models (ROMs), allowing for lower 

computational cost by prioritizing areas of the input space that need to 

be explored; and 

 The post-processing and analysis of the results (including uncertainty 

quantification and propagation capabilities, sensitivity analyses, and 

customizable plotting tools). 

 

 

Figure 11: Schematic of the RAVEN Code Architecture [25] 
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RAVEN has two features embedded in its architecture that are worthy of 

highlighting. The first is its sophisticated logic for DET execution. In order to 

avoid unnecessary simulation time, it is highly prudent for a DPRA software 

platform to take advantage of the restart capabilities of a system code and save 

the history of the system evolution up to the point where branching conditions 

occur during a DET simulation. In line with this, the RAVEN framework also 

includes a logical and systematic methodology for returning to branching points 

in order to simulate the system evolution along a different trajectory [25]. This, 

in turn, yields system trajectories and final system states that are logically stored 

based on the branching strategy and results in a higher ease of subsequent 

system analysis. The second notable feature of RAVEN is its highly developed 

ROM options. These ROMs (also known as surrogate models) facilitate the 

creation of mathematical models that predict the figures of merit of a system in 

a more efficient manner than by direct simulation. These surrogate models are 

created via a “training” process by which the internal parameters of the ROM are 

generated and refined based on carefully chosen system code simulation 

scenarios. Some obvious implications of this training process include an increase 

in model accuracy with an increase in the number of training sets and a 

reduction in the size of the uncertain input domain [25]. However the use of 

ROMs may greatly reduce computation time, particularly in the analysis of full-

scale NPP accident scenarios, and are subsequently worthy of consideration. 

RAVEN has also been developed in direct support of the RISMC Pathway 

Technical Program Plan, which has the overall goal of developing a risk 

assessment method that is coupled to calculations that quantify plant safety 

margins in order to allow decision-makers to develop informed margin 

management strategies [26]. A potential example within the CANDU framework 

could be the determination of changes in risk that are associated with plant 
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ageing (a physical process that directly affects safety margins). After CANDU 

refurbishment there will be a large margin in many safety parameters and/or 

their timing window. As aging continues after refurbishment some of these may 

decrease as a result of physical aging of equipment and hence the changes in risk 

can help operators to better identify future maintenance or actions. A static PRA 

approach would not provide information on the evolution of risk with age of the 

station but DPRA can show how the risk changes with life of the reactors. 

In practice, both the load and capacity values used to determine safety margins 

are uncertain in nature. Therefore RAVEN requires a realistic (best estimate) 

computer simulation tool which can predict the time evolution of the event, the 

impacts of system redundancies, late or impaired reaction of systems, and 

human intervention effectiveness. The physics-based results generated by the 

systems simulation code will allow for more accurate characterization of the 

time-dependent load that the system will experience during both normal and 

abnormal transient scenarios, and allow for the creation of distributions that 

more accurately capture the nature of the system response. RAVEN generates 

stochastic inputs based on parental uncertainties for important plant system 

performance parameters, as well as model uncertainties, and provides the 

transient outcome from these results. Probabilistic safety margins can then be 

generated once many potential scenarios are generated, giving the probability 

that load exceeds capacity. The margins resulting from this process can then be 

used to quantify the impacts on economics, reliability and safety, thereby 

allowing decision-makers to address margin evaluation, management and 

recovery strategies on a holistic level. 

RAVEN has been selected as the most appropriate PRA driving software to 

develop and pursue the use of for the eventual goal of performing DPRA studies 

within the CANDU reactor context. RAVEN’s code architecture is conveniently in 
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line with the DET analyses that will be required, it has the ability to employ 

flexible surrogate models, its development has been in line with the RISMC 

technical pathway since its inception, and the open-source nature of the project 

will allow for customizable changes to be made to the code if new problems 

arise. 

In addition to this, its modular design allows for coupling with any system code 

(i.e. it is not a nuclear industry specific framework), and a high degree of 

flexibility in the probabilistic and parametric analysis methods that may be 

required for its intended application. This high degree of flexibility makes RAVEN 

an ideal platform for the research outlined in this thesis. 

 

3.1.2 TRACE 

TRACE is a best-estimate reactor system code developed by the USNRC for 

modeling thermalhydraulic phenomena in reactors. It uses a component-based 

approach to modeling the physical system of interest, whereby each portion of 

the system is represented by one of a selection of component types (e.g., a pipe, 

pump, valve, or heat structure). Each component is further subdivided into 

volumes called cells (the number of subdivisions is usually chosen to balance 

simulation accuracy and computational effort). Every cell is assigned information 

such as flow area, length, hydraulic diameter and change in elevation [27].  

These components are given connections that instruct TRACE on either the path 

through which the working fluid can flow, or additional paths through which heat 

can be transferred (e.g., from a heat structure to the fluid, or through a pipe 

wall). Where appropriate, boundary conditions such as flow rates/temperatures, 

or specifying the heat transfer conditions between a component generating heat 
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and the working fluid are also specified. In this way, the user has flexibility to 

model a wide range of thermalhydraulic systems related to reactors.  

Partial differential equations (PDEs) describing fluid dynamics and heat transfer 

behaviour for each cell in each component are solved using finite volume 

numerical methods over a user-specified time range [27]. In order to achieve 

this, the time range of interest is divided into smaller increments called time 

steps. At each time step, the PDEs for the entire system are numerically solved, 

and advancement to the next time step is only achieved if a user-specified 

convergence criterion is met [27]. 

TRACE employs a largely one-dimensional (1D) approach to the realization of 

physical systems: the majority of the hydraulic components (e.g., pipes, valves, 

pumps) are approximated as 1D. In this way, computational effort is improved 

significantly with minimal cost in the way of solution accuracy (if any, depending 

on the application). 

In recent years, TRACE has been on-boarded as part of the Canadian nuclear 

Industry Standard Toolset (IST) [28]. It is being modified for the purpose of 

analysis of CANDU systems, and it is for this reason that it has been chosen as an 

appropriate simulation platform for this research. 

 

3.1.3 RAVEN-TRACE Interface 

A significant portion of this work has been the development of a specific code 

interface that allows RAVEN to be coupled with and drive TRACE simulations. 

This interface is written in Python, and is designed to facilitate DET simulations in 

as generic a way as possible in order to be useful for future projects.  

It is of note that while several code interfaces are available in the RAVEN 

framework (e.g., RELAP-7, MAAP5), the design of each interface is almost 
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entirely unique since it is heavily dependent on the architecture of the code it is 

driving. The developed RAVEN-TRACE interface outlined below was designed 

based on a thorough understanding of the mechanics of TRACE simulations, in 

particular methods by which their input parameters can be perturbed, and 

simulations can be terminated based on specific criteria and restarted again from 

the termination point with either perturbed, or unperturbed parameters. 

 

3.1.3.1 General Requirements and Considerations for Coupling Codes 
with RAVEN 

In general, an interface between RAVEN and any external application serves the 

overarching purpose of allowing the application to be run with perturbed inputs. 

There are several ways in which this can be achieved in the RAVEN framework, 

and Figure 12 shows a flow chart that can be used to determine the steps 

required to couple an application to RAVEN. The path highlighted in orange and 

red shows the TRACE-specific constraints, and indicates that there are two 

necessary steps for generating a RAVEN-TRACE interface:  

1. Create a new code interface with the primary goal of interpreting and 

perturbing a TRACE input file; and 

2. Create a parser that extracts the desired output variables from a TRACE 

output file and converts them to a CSV which RAVEN is capable of 

interpreting. 
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Figure 12: Decision Logic for Coupling a New Application to RAVEN 

 

RAVEN has a built-in capability for perturbing input files of all types through the 

use of a specific wild-card syntax. The strategy has two requirements for 

implementation: 

1. In the system code input file, the numerical parameters to be perturbed 

must be replaced with the following syntax: ‘$RAVEN-variableName$’; 

and 

2. In the RAVEN input file, the variable names defined in the <Samplers> 

block must identically match the ‘variableName’s in the system code 

input file. 

Additionally, sampling of parameters in a system code simulation requires a code 

interface class that: 

 Generates a new input file for each simulation, replacing the wild-cards in 

the original input file with sampled numerical values; 

 Executes the system code using each unique input file; and 

 Converts the relevant outputs of each simulation to a CSV file so that the 

data can be interpreted by RAVEN. 
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3.1.3.2 TRACE-Specific Considerations for Development of DET 
Interface 

In addition to the general code interface requirements mentioned above, several 

specific methods needed to be written and implemented to enable DET 

capabilities. The code coupling and sampling strategy is highly dependent on the 

architecture and requirements of the external code that is being driven. The 

following is a list of the TRACE-specific considerations that drove the design of 

the RAVEN-TRACE code interface. It is of note that some of the considerations 

listed below are generally applicable to all simulations using TRACE, and that 

others are specific bugs that were discovered during the development of the 

interface. Future users should be cautious that the list of bugs may not be 

exhaustive, and that some additional functionality may need to be added to the 

interface to address newly discovered issues. 

General 

 TRACE input files do not employ a numerical labeling scheme for the data 

cards in the input file. Instead, data cards must be placed in a mandatory 

order in the input file, with required cards being triggered by flags in the 

preceding cards. Specific labeling of data cards may be done by the user 

in the form of a comment, but is not mandatory for execution of the 

code. This is of particular importance to the design of a method by which 

RAVEN can make changes to the input file that dictate the branches in a 

DET. Specific text markers have been defined for each type of change that 

will be made to the input file, and the user is required to insert these text 

markers as comments in the appropriate places in the input file. During 

execution of the methods within the RAVEN-TRACE interface, these text 

markers are used as flags to tell the interface where to make specific 

changes. 
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 TRACE generates a binary graphics file that stores the time-dependent 

parameters of the simulation. The file is in a special format called XTV (X-

TRAC-View) that organizes and compresses the data for compatibility 

with visualisation tools such as AptPlot [27]. RAVEN requires that the data 

of interest generated during the simulation of a branch be in the format 

of a CSV file, so a method for converting the binary data to a directly 

readable format is required.  

Trips 

 In TRACE, trips provide a powerful framework for initiating changes in 

conditions or hardware states when specific criteria have been met. In 

this way, they can be used to drive the transient scenarios that are of 

interest in DPRA. The entire basis of the RAVEN-TRACE interface for DET 

simulations is built around the use of trips. 

 When a trip criterion has been met, the trip can be specified to dump the 

time-dependent data up to the point where the trip has been set to a file, 

and to either 1) continue the calculations with the new, trip-induced 

conditions, or 2) terminate the calculation. This distinction is made 

through the sign of the user-defined trip ID number in the input file (a 

parameter called IDMP) [27]. A positive trip ID number allows 

continuation of the calculation and a negative trip ID number forces the 

calculation to stop. In this way, trips can be used to drive the logic 

required to generate the branches of a DET. 

Restarting TRACE Simulations 

 A calculation can be instructed to begin from a specific point in time 

through the DSTEP parameter in the input file. If DSTEP has a value of 0, 

this indicates an initial calculation (or the first branch of the DET), where 
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all the input data is defined by the input file. If DSTEP has a value less 

than 0, this indicates that the input data should be retrieved from the last 

data dump found in the restart file [27]. For this work, these are the only 

two values for DSTEP currently being utilized (0 for the initial branch, and 

-1 for all other branches), however it is of note that DSTEP can also take 

on an integer value of a specific time step from a restart file from which 

to begin the simulation.  

 A restart calculation requires two input files [27]: 

1. A restart file. In order for the current calculation to retrieve data 

from a restart file, that file has to be present in the current 

simulation working directory. In other words, you cannot point to 

the location of a restart file; it must be copied from its original 

directory to the current one3.  

2. A normal, but modified input file. This is a stripped-down version 

of the original input file, generally containing only information 

that is new or that has changed from the original. 

Other 

 TRACE cannot process input parameters that have more than 13 

characters. The default in RAVEN is to insert sampled numbers with a 

high degree of precision, and so these numbers must be truncated to 

allow TRACE to proceed. The wild cards that are inserted into the TRACE 

input file can be given format preferences, including a specification of the 

number of characters to use.  

                                                      
3 This has been verified by the TRACE development team. 
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 TRACE cannot process the RAVEN value for infinity (1.8e+308). If this 

value is inserted into a TRACE input file, it needs to be replaced with a 

value that TRACE can process (e.g., 1.0e+100). 

 The final datapoint in a TRACE calculation is not always found in the XTV 

file. As such, while the XTV file contains essential information about the 

overall behavior of the system over the time of interest, information 

about why the code stopped (i.e., which trip caused the termination) may 

be missed, and the ASCII output file must be relied on and parsed to 

retrieve this information. 

 In rare cases, TRACE will write duplicate time steps to the XTV file. RAVEN 

will fail to complete its simulation if this scenario occurs, and a method 

for searching for and removing duplicate time steps within the interface 

is required. 

 In rare cases, TRACE will insert a numerical value with too many 

characters in the ASCII output file, resulting in a line of text in the output 

file that should have spaces between certain words and values, and does 

not. As mentioned previously, certain parameters need to be retrieved 

from the ASCII output file. A logical way to do this is to search for a line 

containing specific words, then split that line into individual elements 

(based on the ‘space’ character), and retrieve the element at the 

appropriate index. If spaces are not present in the expected places, this 

method fails, and a different approach needs to be taken (i.e., splitting 

the line based on different criteria). 

Several additional implementation lessons that have been learned are 

summarized in Appendix A.  
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3.1.3.3 RAVEN-TRACE Interface: High-Level Description 

The developed RAVEN-TRACE interface makes use of the following features of 

TRACE: its ability to initiate transients through the use of trips, and its ability to 

restart terminated calculations. In this way the branches of a DET can be 

generated. 

Figure 13 illustrates the high-level flow of information as DET simulations are 

executed. Each time a branch is requested, the sequence shown in Figure 13 is 

initiated. Each of the methods seen in this figure will be described in detail in 

subsequent sections. It is of particular importance to note that when the 

sequence is terminated with a call to writeXmlForDET, this instructs RAVEN to 

save the information at this point to be used for initiating more branches. Careful 

implementation of the call to this method is central to the success of the DET 

approach in RAVEN. 
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Figure 13: Flow Diagram for RAVEN-TRACE Interface for DET Sampling 

 
 
 



Master’s Thesis – K. Boniface; McMaster University – Engineering Physics 

47 
 

3.1.3.4 RAVEN-TRACE Interface Methods 

_readMoreXML 

This method is designed for the purpose of allowing the user to specify custom 

XML nodes (and associated information or numerical data) that are not part of 

the default architecture of RAVEN in order for them to be used in the RAVEN-

TRACE interface. Since the DET simulations rely almost entirely on the effective 

use of trips within the TRACE environment, the following two custom XML nodes 

have been defined, and are required to identify and categorize the trip IDs used 

in the simulation: 

 branchTripIDs: a list of the numerical value assigned to each trip in the 

TRACE input file that is intended to cause the simulation to stop, and for 

new branches to be spawned from that point. 

 extraSystFailTripIDs: a list of the numerical value assigned to any 

additional trips that are intended to cause the simulation to stop due to a 

failure criterion being met.  

Two other custom XML nodes have been defined: 

 branchVarNames: a list of the names associated with each of the 

branching variables. The order of this list must match the order of the 

previously mentioned branchTripIDs list. In this way, the interface has a 

mapping of each trip ID to its associated variable name (e.g., trip ID 9001 

is associated with the variable named ‘pumpFailTime’, and trip ID 9002 is 

associated with the variable name ‘operatorActionTime’). 

 traceVars: a list of the alphanumeric codes associated with all TRACE 

output variable that the user wants to track (e.g., the status of trip ID 

9001 has a code of ‘tp9001’, and the liquid temperature in cell 1 of pipe 

ID 10 has a code of ‘tln-10A01’). 
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oriInput 

The high-level goal of this method is to search the original external code input 

file for the placement of the variables that dictate specific instructions required 

for driving the generation of branches and replace them with additional wild 

cards. When this method is called, RAVEN has already looped through the 

original input file once and has stored the names of the variables to be sampled 

from probability distributions. As such, these new wild cards have to be added 

after the RAVEN simulation has started (i.e., they cannot be added manually to 

the input file by way of a text editor). 

In order to achieve this goal, specific text markers have been defined and placed 

as comments in the TRACE input file. The method searches the input file for 

these markers and replaces them with the appropriate wild card format. 

The following text markers are currently utilized: 

 %%%: This marker is placed in the same line as the DSTEP variable (there 

is only one). The interface then looks for this marker, and replaces the 

value for DSTEP with $RAVEN-restartCond$. In this way, the variable 

called ‘restartCond’ can be changed to either -1 or 0, depending on 

whether the branch is a restarted calculation or the initial branch 

(respectively). 

 $$$: This marker is placed in the same line as the IDMP variable. Lines in 

the TRACE input file that contain the variable IDMP indicated that a 

particular trip ID is classified as a ‘dump trip’. The interface looks for this 

text marker and replaces the value for IDMP with $RAVEN-tripIDx$ 

(where x is replaced with the appropriate trip ID). In this way, the 

variable called ‘tripIDx’ can be changed to either a negative or positive 

value, indicated that the code should either terminate or not 

(respectively) when the trip condition is met. 
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createNewInput 

This method searches the text in the input file for the current branch for RAVEN 

wild cards and replaces the wild cards with the corresponding values from the 

sampling strategy defined in the RAVEN input file. In the case of a DET 

simulation, this means that it replaces the sampled branching variables (e.g., 

pumpFailTime and operatorActionTime) with the numerical values appropriate 

to the current branch. 

Several additional parameters (the restart condition and the trip instructions) 

need to be altered in order to drive TRACE to correctly model the behavior on a 

branch. These parameters are not sampled from probability distributions, nor 

can they be given a constant value and as such, it is not possible to change them 

from the RAVEN input file. Instructions must be written for this purpose in the 

code interface. Inside the createNewInput method, several conditional 

statements are implemented to this effect.  

For the restart condition, the conditional statement is simple:  

 If the current branch is the initial branch, set the condition to 0, indicating 

to start the new calculation from time = 0 s. 

 Otherwise, set the condition to -1, indicating to start the new calculation 

from the last data dump in the restart file. 

In order to properly set the trip instruction, a keyworded argument (Kwarg) 

native to RAVEN called ‘happenedEventVarHistory’ is used. This Kwarg stores a 

list of the ‘events’ that have already occurred on the current branch, and can 

therefore be used to determine which trips need to be set to terminate the code. 

If an event has not yet occurred, the trip ID for that event should be set to 

negative in order to be sure that when the event does occur, the code will stop 
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and new branches will be generated. If an event has already occurred, the trip ID 

for that event should be set to positive. 

generateCommand 

Once the parameters have been properly inserted into the input file, there is an 

additional step that needs to occur prior to execution of TRACE: values of infinity 

need to be replaced with a value low enough for TRACE to handle, and the lines 

of the file that are not needed for the restarted calculation need to be deleted. 

The generateCommand method first loops through the file looking for ‘e+308’ 

and replaces it with ‘1.0e+100’. It then loops through the file looking for the 

following two text markers: &&&start and &&&end. These two markers are 

placed strategically in the input file as indicators of lines within the file that can 

be deleted when the branch is a restarted calculation. As mentioned previously, 

only new or changed information should be present in the input file for a 

restarted calculation, and these markers allow the user to control where 

information can be deleted to this effect. 

After this is complete, the input file is ready for execution. The restart file from 

the parent branch is copied into the current folder, and the TRACE syntax for 

execution of the code is called upon. 

finalizeCodeOutput 

As mentioned previously, RAVEN requires output data to be in the form of a CSV 

file in order to be useful. The first purpose of this method is to convert the data 

of interest from the TRACE output XTV binary file to readable form, and output it 

to CSV.  

After this conversion is performed, the interface needs to determine the 

following: 
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 What caused the simulation to stop? There are three options: a branch 

trigger criterion was met, a system failure criterion was met, or the 

simulation reached its mission end time. 

 If the simulation stopped because a branching criterion was met, what 

was the variable that triggered this response? 

To determine the answers to these questions, the ASCII output file is searched 

for TRACE-specific groupings of words: ‘end of problem’ indicates that the 

mission end time was reached and ‘is reset to’ indicates that a trip threshold was 

crossed. If the simulation stopped due to mission end time or system failure, no 

further action is taken. If the simulation stopped due to a branch criterion, a 

specific XML file is generated in the current directory. This file is written by 

calling the method writeXmlForDET, and its presence in a directory automatically 

tells RAVEN that new branches should be generated based on the end conditions 

of that branch.  

One final step is taken: the majority of the files that are automatically output 

from a TRACE simulation are deleted. All TRACE files (including the XTV and ASCII 

output) except the input file and restart dump file are deleted. This can save 

significant space, especially when simulating scenarios with very large numbers 

of branches. 

writeXmlForDET 

A call to this method stores the stopping conditions for a branch, only if new 

branches should be spawned from its end-point. RAVEN has been developed 

such that the existence of the resulting XML file in a directory is the way in which 

the code knows to return to this point and generate more simulations. The XML 

file stores the following stopping conditions: end time, variable that triggered 

the event, and the current branch probability. 
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3.1.3.5 Test Case 

A simple TRACE model was built for the purpose of developing and testing the 

interface described in previously. This model is illustrated in Figure 14, and 

consists of a single pipe component with a constant pressure condition at its 

outlet, and three individual inlet paths, each with a constant mass flow rate 

initially, and the capability to change these flow rates when trips are initiated.  

 

 

Figure 14: Simple TRACE Model for Developing and Testing RAVEN-TRACE 
Interface 

 

Each of the three mass flow conditions are described by: 

1. Constant rate of 1.5 kg/s before trip. After trip, rate is ramped up to 

3.5 kg/s over 5 s. 

2. Constant rate of 1.5 kg/s before trip. After trip, rate is ramped down to 

0.5 kg/s over 5 s. 

3. Constant rate of 0 kg/s before trip. After trip, rate is ramped up to 

0.55 kg/s over 5 s. 

The failure criteria for the system is a flow rate that exceeds 5.5 kg/s. 

Figure 15 shows the results of one example of a DET generated using this model 

and the developed RAVEN-TRACE interface. At 10 s, the first flow condition trip is 

initiated, representing the first branching condition. The second and third flow 
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condition trips are initiated at 30 s and 60 s, respectively, representing additional 

branching conditions. The probability distribution for each branching variable is 

uniform over the range of 0 to 100 s. The conditional probabilities for each final 

branch of the system are calculated in Figure 15. Note that the first conditional 

probability shown in the figure corresponds to a sequence in which the system 

failed before the mission end time. 

 

 

 

Figure 15: Example of a Simple DET Generated Using the RAVEN-TRACE 
Interface 

 

Various combinations of branching events were studied in a similar way, 

demonstrating that the RAVEN-TRACE interface perturbs TRACE files in a 

predictable manner, resulting in expected branch conditional probabilities. 
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3.2 Models & Methodology 

3.2.1 The Depleting Tank Scenario 

The depleting tank scenario is a problem used in literature to investigate control 

system failures and analysis methods for determining system reliability [29]. The 

traditional system consists of a tank containing water, where the level is 

controlled via three active components: two inlet pumps and an outlet valve. 

Each component has associated failure and repair rates, and the system 

reliability can be investigated over given mission times. Karanki et al. modified 

this problem for investigation by way of the DET methodology by removing the 

automated control system aspects, including instead an operator action where 

the time of action is determined by a defined probability distribution (described 

in more detail below) [9]. The failure probability of this modified system has an 

analytical solution, making it an appropriate first step to model using RAVEN in 

order to assess the capability of RAVEN to generate predictable results. 

 

3.2.1.1 Summary of Karanki et al. [9] 

The system consists of a cylindrical tank with a valve located at the bottom that 

opens spuriously, permitting the water to drain from it. An operator can take 

action to close the valve and stop the depletion of water; however, the valve 

must function properly on demand in order for this to occur. The problem 

considers the following uncertainties, each of which are described by specific 

probability distributions (summarized in Table 3): 

 Aleatory uncertainties (initial water level, time of operator action, and 

valve response – success or failure – on demand); and 

 Epistemic uncertainties (valve discharge coefficient, error factor defining 

the operator action time PDF, probability of valve failure). 
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The purpose of the analysis in [9] is twofold: to determine the probability that 

the water level reaches a critical low level (the system failure criteria) given the 

uncertainties listed above using the DET approach, and to assess the tradeoff 

between the accuracy of the calculated failure probability and the required 

computational resources (which is dependent on the employed discretization 

scheme, discussed below). The high-level strategy for the simulations is 

illustrated in Figure 16 and described below: 

 Epistemic variables are sampled based on the given probability 

distributions using a Monte Carlo technique in an outer loop of the 

simulation. 

 For each iteration of the outer loop, the sampled epistemic variables are 

held constant, and the system response is explored using a DET approach.  

 Within each DET, continuous aleatory variables are discretized across the 

variable range of their given probability distributions using a grid 

sampling approach. 

 The system failure probability of each DET is calculated, resulting in a 

distribution of the failure probability over the full range of epistemic 

uncertainties. 
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Figure 16: Schematic of DET Methodology for Treating Epistemic and Aleatory 
Uncertainties [9] 

 

Table 3 summarizes the input data reported in [9], including fixed parameters 

describing the physical system, parameters that are varied in the reliability 

assessment, and the probability distribution for each varied parameter. 

 

Table 3: Input Parameters used in Karanki et al. [9] 

Parameter Fixed/Varied Value or Distribution 

Radius of Tank, 𝑅2 Fixed 1.0 m 

Radius of valve, 𝑟2 Fixed 0.025 m 

Critical Level, 𝐻𝑐 Fixed 2.0 m 

Initial Level, 𝐻𝑖 Varied 
(Aleatory) 

Normal (𝜇 = 10.0 m, 𝜎 = 0.3 m) 

Valve Discharge Coeff, 𝐶 Varied 
(Epistemic) 

Uniform (min = 0.72, max = 0.98) 

Error Factor for Operator 
Action, 𝐸𝐹 

Varied 
(Epistemic) 

Uniform (min = 1.8, max = 2.2) 

Operator Action Time, 𝑡𝑂𝐴 Varied 
(Aleatory) 

Lognormal (mean = 394 s, sigma 
determined from sampled 𝐸𝐹) 
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Parameter Fixed/Varied Value or Distribution 

Probability of Valve Failure 
on Demand, 𝑃𝐹𝑣𝑎𝑙𝑣𝑒 

Varied 
(Epistemic) 

Lognormal (mean = 2e-4, error 
factor = 5) 

 

The initial water level in the tank and the operator response time are continuous 

aleatory variables, and therefore must be discretized in order to generate 

branches in a DET simulation. The initial tank level is discretized linearly over the 

entire distribution4. Branches representing the response of the valve on demand 

are binary (i.e., the valve either functions, or fails). 

Several discretization schemes are assessed for generating branches for the 

operator action timing. The range of possible values is described by a lognormal 

distribution, and this distribution is discretized into either 4, 5, 7, 10 or 20 grid 

samples (each of which includes a branch that considers the system response if 

the operator does not act). Table 4 summarizes three of the five schemes, and 

Figure 17 shows the specific operator action times using the 7-branch scheme 

(with the error factor of the lognormal distribution held at its mean value of 2.0) 

[9]. 

 

                                                      
4 The number of discrete initial water levels and their specific values are not 
reported. 
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Table 4: Description of the 4, 5, and 7 Branch Schemes for Depleting Tank Study 

4-Branch 5-Branch 7-Branch 

CDFOA 
Value 

Branch 
Probability 

CDFOA 
Value 

Branch 
Probability 

CDFOA 
Value 

Branch 
Probability 

0.05 
0.5 
0.95 
No Action 

5% 
45% 
50% 
5% 

0.05 
0.5 
0.95 
0.999 
No Action 

5% 
45% 
45% 
4.9e-2% 
1e-3% 

0.05 
0.5 
0.9 
0.99 
0.999 
0.9999 
No Action 

5% 
45% 
40% 
9e-2% 
9e-3% 
9e-4% 
1e-4% 

 

 

Figure 17: 7-Branch Discretization Scheme for Operator Action Timing for 
Depleting Tank Study 

 

Two other discretization schemes – a 10 and 20-branch scheme – are assessed in 

[9]; however, the information present on these schemes is less detailed in the 

paper. It is known that system failure probability is sensitive to late operator 

action times, in particular in the region between 0.9 and 1.0 on the operator 

action CDF [9]. The 10 and 20-branch schemes mimic the 7-branch scheme, and 

divide this region more finely; however the specific CDF values are not reported. 
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The time required for the water level in the tank to reach the critical level is 

based on Bernoulli’s equation and is given by: 

 
𝑇𝑊 =

𝑅2

𝐶𝑟2
√

2

𝑔
(√𝐻𝑖 − √𝐻𝑐) (6) 

The system failure probability is a function of the valve failure and human error 

probabilities (i.e., the probability that the operator action time exceeds the 

window of time available to take action before the system fails). The probability 

of operator response times is defined in this problem by a lognormal distribution 

and so its PDF is known. The PDF of the time window must be derived from the 

given PDF of the initial water level through a transformation of random variables. 

The human error probability can then be calculated as the probability of the time 

window being less than the response time. Figure 18 shows the PDFs for both 

the time window and the operator action timing, with all uncertain epistemic 

parameters held at their average values. Figure 19 shows the same distributions 

with the epistemic parameters held at the minimum, average, and maximum 

values, highlighting that there would be resultant variation in the human error 

probability, and consequently the system failure probability. 
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Figure 18: PDF for the Operator Response Time and Time Window 

 

 

Figure 19: Epistemic Variation in PDFs 

 

With all epistemic parameters held at their mean values, the analytical solution 

for the system failure probability reported in Karanki et al. is 5.98e-4 [9]. Table 5 

summarizes the system failure probabilities reported in Karanki et al. for each of 

the operator action discretization schemes, and the ratio of the failure 

probability for that scheme to the analytical result. It is of note that three 
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different approaches were assessed for the 5-branch scheme, whereby the first 

three operator action time branches are associated with CDF values of 0.05, 0.5 

and 0.95, and the fourth branch is associated with a CDF value of either 0.99, 

0.999 or 0.9999 (recall that the fifth and final branch corresponds to the scenario 

where the operator does not act). This illustrates the sensitivity of the system 

failure probability to the discretization of the tail of the operator action CDF.  

It can be seen that a larger number of discretization levels results in better 

accuracy; however it is also noted that satisfactory results may be achieved with 

a modest level of discretization (e.g., with either 7 or 10 branches). 

 

Table 5: System Failure Probability without Epistemic Uncertainty 

# OA Branches Failure Probability 
Failure Probability 
Overestimation 

4 5.02e-2 83.9 
5 – 0.99 1.02e-2 17 
5 – 0.999 1.19e-3 1.98 
5 – 0.9999 5.02e-2 83.9 
7 1.19e-3 1.98 
10 7.83e-4 1.31 
20 6.43e-4 1.07 

 

Figure 20 shows the digitized final results presented in Karanki et al. [9] for each 

of the operator action discretization schemes, illustrating that the resulting CDF 

approaches the analytical solution as the number of discretization levels is 

increased. 
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Figure 20: Digitized DET Results Reported in Karanki et al. [9] for Different 
Operator Action Discretization Schemes 

 

3.2.1.2 RAVEN Methodology 

A fundamental requirement for DET simulations is that the system code being 

driven by the PRA framework needs to be capable of stopping when a specific 

criterion is met, and restarting again from the same place, with altered inputs 

that explore different potential paths (or branches) for the system response. To 

this end, a simple python system code was developed to simulate the time-

dependent change in water level in the depleting tank scenario. This code was 

then driven by RAVEN using the DET methodology. The python code was 

designed to be analogous to TRACE (i.e., it is a stand-alone executable code that 

takes in an input file, and writes the time-dependent simulated data to an output 

file). 

Figure 21 illustrates the potential DET branches for the depleting tank system, 

and the python code either allows the tank to deplete, or holds the water level 
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constant, depending on the parameters defined in the input file. The required 

inputs include the following: 

 Grid sampled value of the initial water level in the tank at the start of the 

scenario; 

 Initial time and initial water level for the branch; 

 Epistemically sampled values of the discharge coefficient and valve failure 

probability; and 

 Grid sampled value of the operator action time. 

 

 

Figure 21: Illustration of DET Branches for the Depleting Tank Scenario [9] 

 

RAVEN drives a single depleting tank DET simulation (without consideration for 

epistemic uncertainties – this will be described later) in the following way: 

 There are three aleatory variables which are sampled in the DET (refer to 

Figure 21): initial water level, operator action time, and valve response. 

 Within RAVEN, these three variables are defined using built-in probability 

distributions, and sampled using a grid sampling technique whereby 

thresholds on the corresponding probability distributions are specified. 

These thresholds represent the locations on the distribution where the 

code should stop and generate new branches. 
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 An initial input file for the python code is written with a specifically 

formatted wild card for each of the sampled variables mentioned above. 

In this way, RAVEN can replace these wild cards with the appropriate 

sampled value depending on the branch of the DET. 

 RAVEN generates the initial branch of the DET, and the system code 

begins simulating the initial depletion of the tank. When the time in the 

system code reaches the first threshold on the operator action time 

distribution, the following occurs: 

o The simulation is terminated and the temporal evolution of the 

water level up to that point is written to a CSV file; 

o A flag is passed to RAVEN to indicate that new branches need to 

be generated; and 

o Two new branches are generated: one where the operator acted 

at the first threshold, and another where the operator did not act, 

and the threshold is advanced to the next grid value. Note that on 

a branch where the operator does act, there are two possible sub-

branches: the valve responds successfully, or the valve fails. 

 This strategy is iterated for all thresholds defined for each variable, 

promoting the simulation of all possible system pathways.  

 In addition to terminating the branch simulation due to meeting a new 

branching criterion, the system code is also instructed to terminate if the 

water level reaches the critical level (i.e., system failure), or if the 

simulation time reaches a user defined mission end time (i.e., system 

success). 

There are several potential options for introducing epistemic uncertainties into 

DET simulations within RAVEN. The simplest of these options is to utilize the 
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‘Hybrid DET’ functionality, whereby additional variables can be sampled via MC 

technique within the same RAVEN input file generating the DET. This option is 

suitable for scenarios where the epistemic variable is passed to the system code 

for direct use in the prediction of the system response. In the case of the 

depleting tank scenario, this strategy is used for sampling the valve discharge 

coefficient.  

The two other parameters with epistemic uncertainty in the depleting tank 

scenario are parameters which define a probability distribution: the error factor 

defining the lognormal distribution for the operator action time, and the value of 

the valve failure probability. In order to simulate these uncertainties, an 

approach called ‘RAVEN-running-RAVEN’ is used. Two RAVEN input files are 

required: an inner one which runs the python code in a DET framework (and 

samples the discharge coefficient using the Hybrid DET method described 

above), and an outer one which samples the error factor and valve failure 

probability and passes these values to the section of the inner file which defines 

the probability distributions used in the inner DET simulation. 

 

3.2.2 Spent Fuel Pool 

3.2.2.1 Summary of Chraibi et al. [10] 

A reliability study performed by Chraibi et al. [10] on a simplified SFP scenario 

was selected as an appropriate case against which to benchmark DET results 

using the RAVEN-TRACE interface described in Section 3.1.3. The high-level 

method and results reported in this paper were previously outlined in Section 2.3 

in order to highlight the meaningful findings that it provides in the context of 

advancing DPRA methodologies. Further details from this study are provided 
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below, as these details have driven specific modeling choices for the TRACE 

nodalization of the SFP, and the branching strategy employed using RAVEN. 

The physical system includes the SFP and three cooling trains which are activated 

depending on the failure status of the components of the system. These trains 

have been simplified and shown in Figure 22. The scenario under consideration 

in the study requires only a single train to be operational for the pool to be 

sufficiently cooled. 

 

 

Figure 22: Simplified Schematic of the Spent Fuel Pool [10] 

 

The overall system is comprised of a large number of components and safety 

systems that are subject to failure (valve, pumps, heat exchangers, components 

of the overall cooling water system etc.). Each of these components or safety 

systems are given a specified failure rate, and in some cases, a specified repair 

rate. 

The following scenarios are considered: 
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 C1: Non-repairable Loss of Ultimate Heat Sink (LUHS) over a mission time 

of 100 hours 

 C2: Non-repairable Loss of Offsite Power (LOOP) over a mission time of 

192 hours 

 C3: Extended simulations subject only to potential and repairable 

component system failures (including LUHS and LOOP) over a mission 

time of 7846 hours 

The transient is monitored for the following unwanted events (UEs): 

 UE0: Simultaneous loss of all three trains (classical approach) 

 UE1: Water temperature rising above 80°C (safety margin for boiling) 

 UE2: Water temperature rising above 100°C 

 UE3: Water level dropping below 16 m (fuel uncovery) 

Explicit formulas are used for the dynamics of the heat exchangers and ODEs are 

used to describe both the water level and temperature within the SFP [10]. 

The following is a list of useful information about the system found in [10]: 

 The surface area of the pool is 77 m2. 

 The initial water level in the pool is 19 m. 

 The residual power from the spent fuel present in the pool is 5.85 MW 

and it is stated explicitly that only one coolant train is required to 

sufficiently cool the fuel. 

 The initial temperature of the pool water is 50℃, or 323 K (this is 

assumed to be the average steady state temperature within the pool). 
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 The PyCATSHOO model assumes that there is no pressure loss in the 

coolant trains, and that the properties of the coolant remain constant 

(e.g., the coolant density is held constant at 990 kg/m3). 

 There are two identical ‘main trains’, and a third, fully independent 

‘standby train’ which is activated as a backup after certain failures have 

occurred. 

 Each train rejects heat from the pool to the river in two stages through 

countercurrent flow heat exchangers (HEs): first, from a primary coolant 

loop to a secondary loop, then from the secondary loop to a tertiary 

system connected to the river. 

 Each train contains valves (VA), check valves (CV), and pumps (PU) 

 The coolant flow rate through each of the pumps in a single train is: 

o Primary: 550 m3/h (153 kg/s) 

o Secondary: 520 m3/h (144 kg/s) 

o Tertiary: 650 m3/h (181 kg/s) 

 The main trains are cooled by the Component Cooling Water System 

(CCWS) and the standby train is cooled by the Ultimate Cooling Water 

System (UCWS). 

 In the case of a LUHS, the main trains are lost, and the UCWS (which cools 

the standby train) can be supplied with water from the outfall structure. 

 The electrical supply for each train is provided by a train-specific Switch 

Board Division (SBD). 

 In the case of a LOOP, each SBD can be supplied by a train-specific 

Emergency Diesel Generator (EDG). 
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 Each component can be in only one of two states: operational or failed. 

 The failure and repair rates for each component or system follow 

exponential probability laws described by the transition rates shown in 

Table 6. 

 Transitions between states occur immediately, with no time delay. 

 There is no loss of heat to the environment. 

 Water makeup strategies are not considered. 

 

Table 6: Components and Systems Subject to Failure in the SPF Scenario 

Component or System Failure Rate (h-1) Repair Rate (h-1) MTTR 

Switchboard Division (SBD) 1.0e-6 - 24 
Emergency Diesel Generator 
(EDG) 

2.3e-3 1.8e-3 39 

Valve (VA) 8.7e-8 1.1e-4 10 
Control Valve (CV) 7.0e-9 5.2e-7 12 
Pump (PU) 1.1e-5 2.7e-5 18 
Heat Exchanger (HE) 2.9e-6 - 120 
Component Cooling Water 
System (CCWS) 

8.4e-6 - 72 

Ultimate Cooling Water 
System (UCWS) 

2.6e-5 - 48 

Outfall Structure 5.0e-6 2.0e-4 23 
Loss of Off-site Power 
(LOOP) 

4.0e-6 - 24 

Loss of Ultimate Heat Sink 
(LUHS) 

1.2e-9 - 30 

 

Given the information provided above, it was decided that the LUHS scenario in 

which the water temperature reaches 80℃ was the best candidate to begin 

examining using RAVEN and TRACE. In the event of a LUHS, both of the main 



Master’s Thesis – K. Boniface; McMaster University – Engineering Physics 

70 
 

trains are immediately lost and the standby train is fully relied on for heat 

removal. Due to this, the TRACE model requires only a single train (rather than all 

three), simplifying both the thermalhydraulic aspects of the model, and the 

control system aspects (since implementation of logic to switch between trains is 

not required). Figure 23 shows the evolution of the failure probability for each of 

the unwanted events in the LUHS scenario as reported in Chraibi et al. [10]. 

 

 

Figure 23: Evolution of Failure Probability in the LUHS Scenario [10] 

 

3.2.2.2 TRACE Model 

Figure 24 shows the thermalhydraulic components of the SFP model in TRACE. At 

a high level, the model consists of: 

 A large vertical pipe representing the volume of the pool (connected to 

an atmospheric pressure boundary condition at the top); 

 An active heat structure within this pipe generating the specified 

5.85 MW of decay heat from the spent fuel; 
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 A primary heat transfer loop connected directly to the pool; 

 A secondary heat transfer loop connected passively to the primary loop 

via a heat structure (with no active heat generation); and 

 A tertiary heat transfer pathway that represents the connection to the 

ultimate heat sink (i.e., the river), connected passively to the secondary 

loop via a heat structure. 

 

 

Figure 24: TRACE Model of Spent Fuel Pool 
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The following modeling choices and strategies have been made in order to 

model the steady-state and transient behaviour of the SFP: 

 As mentioned previously, pressure losses are not modeled in the coolant 

trains in the PyCATSHOO simulation, leading to the decision to not 

include any major or minor loss coefficients in the TRACE model (i.e., no 

wall roughness, and no form loss factors). 

 The primary and secondary pumps (labeled PU1 and PU2 in Figure 24) are 

not modeled as realistic pumps, but rather as something called a ‘single 

junction component’, simply representing a flow boundary condition in 

each loop. The mass flow rate of these components is controlled directly 

by the control system logic in the TRACE model, and the pumps can be 

toggled between an operational and failed state, depending on the 

failures that are active in the current branch of the DET. 

 While the primary and secondary loops have closed flow paths, the 

tertiary loop is realized using an open system, where time-dependent 

control volumes (called ‘fills’ in TRACE) represent the boundary 

conditions (i.e., the inlet and outlet connections to the river). The tertiary 

pump is not explicitly modeled, because the mass flow rate in the fills can 

be controlled in the same way as the single junction components 

representing PU1 and PU2. 

 The heat exchangers are modeled in the following way (and illustrated in 

Figure 25): 

o The tube side consists of 197 parallel pipes; 

o The shell side consists of a single pipe; and 

o A passive heat structure is defined with its left and right boundary 

conditions tied to the tube and shell components, respectively. 
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Figure 25: Heat Exchanger Design 

 

 In order to model a failed heat exchanger, the following strategy was 

implemented (illustrated in Figure 26): 

o A separate flow path was modeled that is not connected to the 

passive heat structure required for the heat exchanger to reject 

heat from the shell side to the tube side. 

o Flow through either path is controlled by valves that are either 

open or closed, depending on the state of the heat exchanger 

(controlled directly by the control system logic in the model). 

 

 

Figure 26: Strategy for Modeling Heat Exchanger Failure in TRACE SFP 
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 Chraibi et al. [10] lacks clarity on the physical representation of failures of 

valves in the PyCATSHOO model. It was decided that a failure of a valve in 

this system would most likely manifest as a leak, and thermalhydraulic 

and control system components were modeled to achieve this. At each 

valve that may fail, an alternate flow path leading to an atmospheric 

boundary condition is present. This alternate path is either made 

available or unavailable through the use of an additional control valve. 

Table 7 provides a summary of the way in which each of the component and 

system failures have been modeled in TRACE. Each of the failures is initiated by 

way of a trip in the control logic of the TRACE model. When activated, these trips 

terminate the TRACE calculation and initiate the sequence of logical checks 

illustrated in Figure 13 through the developed RAVEN-TRACE interface. 
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Table 7: Summary of Failure Model for Each SFP Component and System 

Component or 
System 

Brief Description of Failure Model 

PU Reduction in flow to 1% nominal flow rate * 
SBD Reduction in all pumps to 1% nominal flow rate 
EDG Reduction in all pumps to 1% nominal flow rate 
VA Break/leak in pipe 
CV Break/leak in pipe 
HE Bypass flow path connecting tube and shell side 
CCWS Not modeled ** 
UCWS Reduction in flow to 1% nominal flow rate in tertiary loop 
Outfall Structure Reduction in flow to 1% nominal flow rate in tertiary loop 
LOOP Reduction in all pumps to 1% nominal flow rate *** 
LUHS Loss of availability of the two main trains **** 

* A full reduction in flow to 0 kg/s manifests scenarios in which TRACE fails to 
converge during a time step. Appendix C shows an assessment of the 
impact that several failure condition flow rate values could have on the 
final solution, and it was determined that using 1% of the nominal rate 
would have a negligible effect. 

** The CCWS cools only the two main trains and is not relied on in a LUHS 
scenario. 

*** This reduction in flow occurs only if the EDG is also in a failed state. 

**** LUHS is the initiating event in this scenario. 

 

It is important that the steady state behavior of the system be examined before 

the model is driven by RAVEN to assess the system outcomes as a result of 

initiating events and component and system failure sequences. The steady state 

behaviour of the system over the 100 hour mission time is outlined in Appendix 

B. The system pressures and temperatures behave as expected, and in line with 

the information presented in Chraibi et al. [10]. 
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3.2.2.3 DET Implementation Using RAVEN 

Each of the system and component failures modeled in Chraibi et al. [10] are 

characterized by a defined failure rate (as per Table 6). It is stated explicitly that 

the transition from operational to failed states for these components follow an 

exponential probability distribution, and the defined failure rates correspond to 

the rate parameters for the exponential distribution for each component. It is for 

this reason that the following branching strategy has been implemented for the 

SFP scenario: 

 Exponential distributions are defined within the RAVEN input file for each 

of the failure rates provided. Figure 27 shows the distribution for the 

failure of individual pumps in the system.  

 The sampling domain for each of the components or systems is 

[0 100] hours. In Figure 27, the left hand side shows the exponential 

distribution over a large range, and the right hand side shows the same 

distribution over the range of interest in this initiating event scenario. It is 

significant to note that in this range, the probability distribution is 

essentially uniform. 

 The range of interest is then discretized in order to generate points at 

which branches are spawned. These points represent the possible times 

at which each component or system may fail. 

 These sampled points are then provided to the TRACE model through the 

RAVEN-TRACE interface, and the overall system response is determined 

by exploring all possible combinations of the component and system 

failures.  
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Figure 27: Failure Probability Distribution for the Pumps in the SFP  

 

Figure 28 shows a preliminary test that was performed in order to test the 

mechanics of the TRACE model, and RAVEN’s ability to perturb it and instigate 

the failures of interest. In this example, only a single component failure is 

initiated: PU1. The simulation mission time is shortened significantly to 3000 s, 

and the system failure criteria is set to an extremely low value of 324.6 K. The 

branching variable dictating the time of failure of PU1 is provided two thresholds 

(i.e., points on the exponential probability distribution defining the time at which 

the component fails). When a threshold is reached, the simulation for the 

current branch is terminated, and new branches are spawned. Each of the 

branches shown in Figure 28 have an associated label, and are described in Table 

8. 

 



Master’s Thesis – K. Boniface; McMaster University – Engineering Physics 

78 
 

 

Figure 28: Temporal Evolution of Temperature – Testing a Single Failure 

 

Table 8: Description of DET Branches in Figure 28 

Branch Description Reason for Termination 

1 Initial branch. No failures 
have occurred 

First sampled failure threshold 
reached 

1-2 PU1 failed at the first 
sampled time 

Failure criterion met 

1-1 No failures have occurred Second sampled failure threshold 
reached 

1-1-2 PU1 failed at the second 
sampled time 

Failure criterion met 

1-1-1 No failures have occurred Mission end time reached 

 

Similarly, Figure 29 shows an example where failures of all three of the pumps 

are initiated. Each of the three failures are provided only a single sampled 

branching threshold, and the DET explores all possible combinations of these 

component failures: 
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 PU1, PU2 or PU3 only 

 PU1 and PU2 

 PU1 and PU3 

 PU2 and PU3 

 PU1, PU2 and PU3 

A key outcome that can be observed from Figure 29 is that for an early PU1 

failure, the dynamics of the system are such that some cases will have a lower 

temperature than cases with a later failure of the other pumps. This provides a 

simple illustration of the benefits of a DPRA approach wherein the timing of the 

events relative to one-another can significantly impact the accident trajectory. 

 

 

Figure 29: Temporal Evolution of Temperature - Testing Three Failures 
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A third example is shown in Figure 30 in order to illustrate the DET behaviour if a 

LOOP were to be initiated, followed by a failure of the EDG. It can be seen that 

when the LOOP is first triggered, the system temperature does not rise. This is 

due to the fact that the EDG is not in a failed state, and is supplying power to the 

pumps. If the EDG then fails while a LOOP is in progress, the pumps lose power 

and are unable to cool the fuel.  

 

 

Figure 30: Temporal Evolution of Temperature - Testing a LOOP and EDG 
Failure 
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4. RESULTS 

4.1 Depleting Tank Scenario 

4.1.1 Without Epistemic Uncertainties 

Figure 31 shows the temporal evolution of the water level for each branch in the 

tank RAVEN DET simulations employing the 5-branch and 10-branch schemes for 

discretizing the operator action time. Each of the horizontal lines represents a 

branch where the valve responded successfully when the operator took action to 

close it, and results in system success over the mission time. It is of note that 

while the right hand plot shows the 10-branch scheme, only eight probability 

thresholds can be seen. The ninth threshold results in the operator acting too 

late, regardless of the initial water level in the tank, and is consequently not 

simulated in this case. When epistemic uncertainties are considered, both the 

window of time available for the operator to act and the probability distribution 

that specifies the operator action times are affected, resulting in scenarios where 

this ninth threshold is significant. 

 

 

Figure 31: Temporal Evolution of Water Level for All Branches of the DET using 
Different Operator Action Time Discretization Schemes 
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After the completion of a DET simulation, the overall system failure probability 

can be calculated by examining all branches which either reached the mission 

end time, or resulted in system failure. The summation of the conditional 

probabilities of these branches is 1.0 (representing all possible final states of the 

system). The system failure probability is the summation of the conditional 

probabilities of all final branches which resulted in a water level at or below the 

critical level for the tank. Table 9 summarizes the system failure probabilities 

calculated in this way for RAVEN simulations employing each of the operator 

action discretization schemes (with no epistemic uncertainties considered).  

From the trend in the overestimation shown in the table, it can be seen that a 

low level of discretization in the operator action can produce highly conservative 

results for the system failure probability, and that a finer discretization scheme 

can eliminate some of this conservatism. Each of the failure probabilities as 

calculated using RAVEN show good agreement with the results reported in 

Karanki et al. [9].  
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Table 9: Comparison of RAVEN and Karanki et al. [9] Results for System Failure 
Probability without Epistemic Uncertainties 

 Karanki et al. [9] RAVEN 

# OA 
Branches 

Failure 
Probability 

Failure 
Probability 
Overestimation 

Failure 
Probability 

Failure 
Probability 
Overestimation 

4 5.02e-2 83.9 5.02e-2 83.9 
5 – 0.99 1.02e-2 17 1.02e-2 17 
5 – 0.999 1.19e-3 1.98 1.20e-3 2.01 
5 – 0.9999 5.02e-2 83.9 5.02e-2 83.9 
7 1.19e-3 1.98 1.20e-3 2.01 
10 7.83e-4 1.31 9.22e-4 1.54 
20 6.43e-4 1.07 6.58e-4 1.10 

 

4.1.2 With Epistemic Uncertainties 

Figure 32 shows the CDF for the system failure probability when using the 5-

branch scheme for discretizing the operator action timing. The plot shows the 

digitized results reported in Karanki et al. [9] along with three sets of results 

generated using RAVEN: one in which the initial water level distribution is 

discretized into 7 levels, and ones in which it is discretized into 13 or 100 levels. 

As mentioned previously, the specific discretization scheme is not reported for 

the initial water level, and the results shown in Figure 32 illustrate that the lower 

and upper bounds and the overall shape of the system failure probability CDF are 

not sensitive to the discretization scheme chosen. Each scheme results in good 

agreement with the results reported in Karanki et al. [9]. 
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Figure 32: CDF of the System Failure Probability Comparing Several 
Discretization Schemes for the Initial Water Level (5-Branch Scheme for 

Operator Action Timing) 

  

The upper and lower limits on the plot for the system failure probability can be 

verified by analyzing the results of a single DET simulation with the epistemic 

parameters held at either their lowest possible values (yielding a system with a 

lower failure probability) or at their highest values. For the case of the 5-branch 

strategy, the best-case scenario (or the safest possible system) occurs when the 

discharge coefficient is lowest (0.72), the error factor describing the operator 

action timing is lowest (1.8) and the probability of failure of the valve is 0, 

yielding a failure probability of 1.0e-3. The worst case scenario occurs when the 

discharge coefficient is 0.98, the error factor is 2.2 and the probability of valve 

failure is reasonably high at 2e-3, yielding a failure probability of 0.0518. 

Figure 33 shows the RAVEN-generated results for each operator action 

discretization scheme which show good agreement with the results reported in 

Karanki et al. [9]. This good agreement (in conjunction with the results reported 
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in Table 9) demonstrate that RAVEN is capable of generating predicable results 

using the DET approach, and provides confidence in moving forward with the 

development of a code interface to allow for DET simulations using TRACE.  

 

 

Figure 33: RAVEN-Generated Results for System Failure Probability Considering 
both Aleatory and Epistemic Uncertainties 

 

4.2 Spent Fuel Pool 

A study was first performed to assess an appropriate level of discretization of the 

probability distributions describing the failures of components in the SFP system. 

Four scenarios were investigated and are summarized in Table 10. 
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Table 10: Scenarios to Determine Discretization Scheme 

Component Failures Sampling Frequency 

PU1 Every 10 hours 
PU1 Every 20 hours 
PU1, PU2 and PU3 Every 10 hours (100 s between components) 
PU1, PU2 and PU3 Every 20 hours (100 s between components) 

 

Figure 34 shows the temporal evolution of the pool temperature for the two DET 

simulations examining failures that occur every 10 hours. It can be seen that 

when PU1 is the only failure considered, there is a single branch every 10 hours 

that results in a failure of the system (i.e., the average temperature in the pool 

reaching 353 K). In contrast, when failures of all three pumps are considered, 

there are several branches (corresponding to different possible combinations of 

component failures) that result in a failure of the system at each interval. 

 

 

Figure 34: Temporal Evolution of Full-Scale SFP DET with Only Pump Failures 
Included 

 

Figure 35 shows the evolution of the resulting failure probabilities over the 

mission time for all four scenarios. Each point on the plots represents a single 



Master’s Thesis – K. Boniface; McMaster University – Engineering Physics 

87 
 

branch that resulted in system failure. The corresponding conditional probability 

of each branch is calculated and integrated across the 100 hour mission time. It 

can be seen that in the DET simulations where only PU1 fails, the two sampling 

strategies result in identical failure probability distributions over the mission 

time. In the case of the DET simulations where all three pumps fail, while the 

probability distributions are not identical, they both exhibit the same linear trend 

toward a common value at the mission end time. This behaviour is expected due 

to the fact that the probability distributions describing the failure events are 

linear in the sampling range of interest, and that the resulting calculated system 

failure probability is an integration of the probability of failed branches as a 

function of the mission time. As discussed in Section 3.2.1, there is a desired 

balance between accuracy of the results of a DET simulation, and the 

computational time required to achieve the results. The results shown in Figure 

35 provide justification to move forward with the 20-hour discretization scheme 

in the subsequent simulations due to the fact that this scheme provides a good 

estimate of the failure probability, and utilizes significantly less computational 

resources than a finer discretization scheme.  

 

 

Figure 35: Calculated System Failure Probability for DETs of the SFP with 
Different Component Failures and Different Discretization Schemes 
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Using the 20-hour discretization scheme, a first attempt was made at simulating 

the full-scale SFP DET including all system and component failures (with 100 s 

between individual component failure times at each of the 20-hour intervals). It 

was observed that while the possible combinations of system and component 

failures were generated at the first sampling interval (i.e., failures initiated near 

time = 0 s), the branching logic did not advance to the next 20-hour interval.  

Figure 36 shows the temporal evolution of the temperature for the branches 

that were generated in this DET. A crucial part of the DET logic is to spawn two 

new branches at each branching point: one to simulate the system response 

given that the event happened, and one to continue simulating as if the event 

did not happen. It is in this way that the DET is able to explore all possible 

pathways that they system may take. In this particular case, the DET is not 

generating at least one of the branches that represents the system response if 

no failures have occurred, and is consequently not able to explore the entire 

system response5. 

 

                                                      
5 The cause of this was determined to be rooted in the way in which restart files 
are generated for failures of the valves and heat exchangers. 
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Figure 36: Temporal Evolution of Temperature – Unsuccessful Full-Scale SFP 
DET Including All System and Component Failures  

 

The issue of how to restart properly was not solved, and it was decided to move 

forward and simulate the SFP scenario without inclusion of the failures of valves 

and the heat exchangers. As seen in Table 6, the failure rates for these 

components are orders of magnitude less than other components (e.g., pumps) 

and systems (e.g., the UCWS). As such, it is not expected that the exclusion of 

these components from the DET simulations will significantly affect the 

calculated overall system failure probability. 

With the exclusion of the valve and heat exchanger failures, two new DET 

simulations were run on the SFP model: one where the failures were initiated 

every 10 hours, and one where they were initiated every 20 hours. The overall 

system failure probability was calculated for both, and is shown in Figure 37 

along with the failure probability as reported in Chraibi et al. [10].  
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Figure 37: RAVEN-Generated Failure Probability for the SFP System 

 

The following observations can be made on the results shown in Figure 37: 

 The calculated failure probability using RAVEN and TRACE is on the same 

order of magnitude as the PyCATSHOO results. 

 The failure probability is zero in both RAVEN and PyCATSHOO calculations 

between the initial time of the transient and the earliest time at which 

the system may fail. The time it takes to heat the system from 50℃ to the 

failure temperature of 80℃ is observed to be approximately 9 hours in 

the PyCATSHOO model, and 6 hours in the TRACE model. During this 

time, it is not possible for the system to fail, resulting in a failure 

probability of zero.  

 At each sampling interval, all combinations of the modeled failures result 

in branches that reach the failure criteria for the system within a 

relatively small window of time (approximately 4 hours). Given the 
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modeling strategies implemented in the TRACE model, this observation is 

not unexpected: each of the modes of failure results in an inability of the 

cooling system to transfer heat from the pool to the river by way of a loss 

of flow to the heat exchangers. The heat up rate for the system is slightly 

different depending on which heat exchanger (and which side: tube or 

shell) is affected. 

 The PyCATSHOO failure probability has an initial step increase to ~0.004 

that is not observed in the RAVEN failure probability calculation. The 

reason for this step increase is not currently understood. Failures that are 

initiated at the beginning of the mission (i.e., near time = 0 s) result in 

branches carrying conditional probabilities that are close to zero. In this 

way, the cluster of RAVEN-generated branches resulting in system failure 

before 10 hours are observed to contribute very little to the calculated 

failure probability. The next sampling interval for failures results in 

branches carrying larger conditional probabilities (due to the location of 

the samples on the PDFs describing their behaviour), resulting in more 

significant contribution to the calculated failure probability. Over the 

mission time, this calculated failure probability is an integration of the 

conditional probabilities of branches that result in system failure, and the 

gradual increase observed with the RAVEN-generated results is 

reasonable. 

It is suspected that the discrepancy between the RAVEN and PyCATSHOO-

generated results is caused by differences in modeling choices for the SPF and its 

system failure mechanisms between the two studies. In an effort to verify this, 

several additional studies were performed (described in detail in Appendix D). 

These studies utilize the RAVEN-TRACE interface to perturb systems modeled in 

TRACE that are more simplistic in nature than the SFP system, and that have 
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failure mechanisms that are well-understood. The calculated system failure 

probabilities show very good agreement with results generated using other 

codes and strategies. Of particular note is the second study which examines a 

tank level control system and compares the system failure results calculated 

using RAVEN-TRACE and PyCATSHOO. In addition to the good agreement 

between the results generated using the two PRA software platforms, the overall 

strategy employed using RAVEN to generate the DET is identical to the strategy 

employed for the SFP study (i.e., the use of the defined exponential distribution 

rate parameters and the discretization of the branching thresholds over the 

mission time). It is for this reason that the following conclusion has been made: 

lack of clarity in the modeling choices implemented in Chraibi et al. [10] (in 

particular, lack of clarity surrounding the failure modes of systems and 

components) has likely led to differences in the TRACE realization of the SPF that 

affect the final system failure calculation, and is the likely cause of the 

discrepancy between the RAVEN-TRACE and PyCATSHOO-generated system 

failure results for the SFP system. 

 

5. CONCLUSIONS & FUTURE WORK 

The overall purpose of the work outlined in this thesis has been to demonstrate 

and further develop the capabilities of the RAVEN DPRA software framework in 

order to leverage its near-future application to the risk assessment of CANDU 

reactor designs. Throughout the various studies performed, RAVEN has been 

demonstrated to be capable of generating predictable results using the DET 

methodology on systems which are well-understood. The calculated system 

failure probabilities for the following scenarios were shown to have good 

agreement with either an analytical solution to the problem, or the failure 

probabilities as calculated by a different DPRA software:  
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 A depleting tank scenario which considers both epistemic and aleatory 

uncertainties including the time of operator intervention and the failure 

on demand of the valve to terminate the conditions leading to system 

failure. 

 A level control system scenario in which the active components are 

subject to random failures over the specified mission time. 

A significant portion of this work has been the development of a code interface 

that allows RAVEN to drive DET simulations using TRACE. RAVEN was designed 

with the purpose of being capable of driving any system code; however the DET 

capability requires careful coordination between the input and output 

requirements in both RAVEN and the system code. The RAVEN-TRACE interface 

described in this thesis has been demonstrated to produce predictable results for 

the two scenarios (depleting tank, and level control) mentioned above. 

A model of a simplified SFP was developed and DET simulations of this model 

were driven using the RAVEN-TRACE interface. Successes in this portion of the 

research include further demonstration of the mechanics of the interaction 

between RAVEN and TRACE (i.e., terminating the code when branching 

thresholds have been met, and restarting with modified inputs), and a 

demonstration that the resulting overall system failure probability is on the same 

order of magnitude as results produced using PyCATSHOO. A discrepancy in the 

shape of the calculated system failure probability as a function of time was 

observed between results generated by PyCATSHOO and RAVEN-TRACE. This 

discrepancy was investigated and was concluded to be caused by differences in 

modeling choices between the two studies. 

In order to build on the work outlined in this thesis, the following studies are 

suggested: 
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 The RAVEN-TRACE interface that has been developed as a part of this 

research should be used to drive a DPRA study of accident conditions 

applied to a high-fidelity CANDU simulation model. A first step in this 

study would be to drive thermalhydraulic simulations using TRACE. It may 

then be beneficial to drive simulations in which a reactor physics code 

such as the Purdue Advanced Reactor Core Simulator (PARCS), has been 

integrated. Depending on the mechanics required to run coupled TRACE-

PARCS simulations, modifications to the RAVEN-TRACE interface may be 

required, though it is not expected that the general framework of the 

interface would need to be changed. 

 In relation to this, it will be beneficial to apply a RISMC approach to the 

quantification of the relationship between safety margins and risk 

estimates for the CANDU reactor design, as this would be a first-of-its-

kind study, and could eventually be used as input in licensing and 

regulatory decision-making processes. It will also be beneficial to 

investigate the use of ROM’s in order to reduce the computational time 

required for these studies. 

 Finally, the RAVEN-TRACE interface could be further developed to include 

the capability to model partial system failures. The current framework 

employs a binary approach to failures, where systems and components 

are considered to be either in an operational or failed state. The inclusion 

of partial failures may improve the accuracy of the risk estimates 

calculated using the DET approach. This would require modifications to 

both the interface described in this thesis, and the fundamental RAVEN 

framework for DET sampling strategies.  
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APPENDIX A ADDITIONAL LESSONS LEARNED USING RAVEN TO PERTURB 
TRACE SIMULATIONS 

During the development of the RAVEN-TRACE interface, the following additional 

lessons were learned: 

 RAVEN cannot handle a situation where two failures occur at exactly the 

same time. The number of generated branches is seen to increase 

without end if this situation exists. 

 At times, running branches in parallel can cause RAVEN to crash. When 

this occurs, debugging is difficult due to a lack of useful information 

about the error. Through trial and error, the issue has been observed to 

disappear if the simulations are run without this parallel feature. 

 ‘Simple trips’ cannot be used for either branching or system failure trips. 

There is no direct indication that this could cause a problem, however 

they are not capable of terminating the code. 

 Within the original TRACE input file, the user can specify the frequency 

with which the code dumps data to the graphics, restart and output files. 

The user should set low frequencies for the restart and output files, as 

only the information at the end of the branch is useful.  
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APPENDIX B STEADY-STATE BEHAVIOUR OF TRACE SPENT FUEL POOL 

MODEL 

Figure 38 and Figure 39 show the average temperature within the SFP and 

pressures at several depths over the 100 hour mission time with no initiated 

component or system failures. It can be seen that the model rejects heat from 

the system at a rate that allows for conditions to be held at an average pool 

temperature of 50℃ (323 K), which is the initial water temperature (assumed to 

be the average steady state temperature in the pool) reported in Chraibi et al. 

[10]. 

 

Figure 38: Steady State Temperature in SFP Over 100 Hour Mission Time 

 

Figure 39: Steady State Pressures in SFP Over 100 Hour Mission Time 
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APPENDIX C COMPARISON OF PUMP FAILURE FLOW RATES FOR THE SFP 
DET SIMULATIONS 

In some cases for the SFP DET simulations, if the rate of flow in a pump is 

reduced to 0 kg/s when a failure is initiated, TRACE will fail to converge on a 

solution and eventually crash. As such, an investigation was performed to 

determine the lowest possible value that the flow rate can be reduced to while 

still allowing the TRACE calculations to run to completion.  

Since the flow rate in each of the loops within a coolant train is different, this 

study looks at a percentage of the nominal flow rate and applies these reduced 

rates to the appropriate loops. Four percentages were examined: 0.5%, 1%, 2% 

and 5%. In each case, the DET simulations were completed successfully; 

however, in the 0.5% case, longer simulation times were observed, with multiple 

warning messages of convergence issues. It is for this reason that 1% of the 

nominal flow rate has been applied in the DET simulations for the SFP. 

Figure 40 shows the range in times at which the system reaches the failure 

temperature when applying each of the different failure flow rates. It can be 

seen that the difference in time of failure between the 0.5% and 1% cases is less 

than 0.5 h.  
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Figure 40: Variation on System Failure Time Using Different Pump Flow Rates 
during Failure Conditions 
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APPENDIX D EFFORTS TO DEMONSTRATE THE VALIDITY OF THE APPROACH 
USED IN THE SFP ANALYSIS 

The following two studies were performed in order to aid in demonstrating that 

the RAVEN-TRACE interface can produce results that are consistent with either 

results in literature, or results generated using a different PRA driving software. 

D.1 Depleting Tank Problem: RAVEN Driving TRACE Simulations 

The depleting tank problem that was examined in Section 3.2.1 utilized a simple 

code written using Python to simulate the thermalhydraulic behavior within the 

tank. In this study, the tank was modeled instead using TRACE and perturbed 

using the RAVEN-TRACE interface.  

Figure 41 shows the TRACE nodalization of the system. The tank is modeled as a 

vertical pipe with an atmospheric pressure boundary condition at the top. The 

discharge path is a pipe at the bottom of the tank that is connected to another 

atmospheric pressure boundary condition, and this flow path is controlled 

through the use of a valve. All of the epistemic and aleatory parameters 

examined in the original study have been considered except for uncertainty in 

the discharge coefficient (C) of the valve.  

 

 

Figure 41: TRACE Model of Depleting Tank System 
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In order to compare the DET simulations generated for this system with results 

using the RAVEN-Python approach, the RAVEN-Python approach was modified to 

not include variation in C, and was re-run.  

Figure 42 shows the results of DET simulations using the original RAVEN-Python 

approach and the 5-branch operator action discretization scheme, without 

variation in C. Several sets of simulations were performed, each with C held at a 

different constant value within its range of uncertainty. A low value for C 

represents a situation where there is more time for the operator to act, and 

therefore the potential for a lower overall system failure probability. A high value 

for C represents the opposite. Note that while C is held constant here, there are 

two other parameters being varied. One is the probability that the valve fails on 

demand, and the other is the parameters used to define the operator action CDF 

(which is then sampled at known/constant values on the CDF, but since the 

shape of the CDF varies, the operator action times vary). It is also significant to 

note that when C is below ~0.75-0.8, the time window is large enough that the 

sampled values for the operator action time do not play much of a role: they 

almost always result in mission success. This is why there is minimal variation in 

the first three curves. 
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Figure 42: RAVEN-Python Results at Different Discharge Coefficient Values 

 

The TRACE model of the depleting tank has a depletion time that is greater than 

the time generated using the explicit time window formula provided in Karanki 

et al. [9] (a formula which includes C). As such, the time window from the TRACE 

model was used to determine the value of C that would result in the same 

window. This value was found to be 0.765, and was subsequently used in the 

RAVEN-Python simulations. 

It is of note that in order to perturb the initial water level in the tank, a new 

method needed to be written into the RAVEN-TRACE interface. Unlike all other 

failures and varied parameters discussed in this thesis so far, the initial height of 

the tank is described through a series of values specifying the void fraction in 

each cell of the thermalhydraulic component. As such, this new method takes 

the initial height as input, calculates the required void fraction for each cell, and 

modifies the input file appropriately. 

Figure 43 shows comparisons of the RAVEN-Python and RAVEN-TRACE results for 

the 5 and 7 branch operator action schemes. In both cases, the discharge 
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coefficient was held constant at 0.765 in the Python code in order to reproduce 

the same window of time available to the operator as observed in the TRACE 

model. It can be seen that the results generated using the RAVEN-TRACE 

interface show good agreement with the results generated using RAVEN-Python. 

 

 

Figure 43: Comparison of RAVEN-Python and RAVEN-TRACE Results  

 

D.2 Level-Control System Problem 

The system shown in Figure 44 was modeled in both PyCATSHOO and in TRACE. 

The system consists of a tank of water, where the level of the water is controlled 

by the activation of an inlet pump and an outlet valve. The control system is 

designed to keep the water level between 6 and 8 m under normal operating 

conditions; however, the pump and the valve are subject to random failure. Each 

of the components can fail in one of two ways: stuck open, or stuck closed. Once 
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failed, the component cannot be repaired, and the transition rate from 

operational to failed state is described by an exponential probability distribution 

with the rate parameters (per hour) shown in Figure 44. There are two possible 

overall system failure criteria that may be met: overflow (where the water level 

rises above 10 m) or dryout (where the water level depletes below 4 m). 

 

 

Figure 44: Level Control System Schematic 

 

This system was modeled in TRACE, and perturbed using the same strategy 

employed for the SFP study. The exponential probability distributions describing 

the failures of the two components were discretized across the applicable range 

(a 60 hour mission time), and these discrete values were used as the branching 

triggers for the DET simulation. Figure 45 shows the evolution of the water level 

in 1 hour of the DET simulation and Figure 46 shows both the RAVEN and 

PyCATSHOO-generated results for the failure probability of the two outcomes 

(overflow and dryout). The RAVEN results show good agreements with the 

PyCATSHOO results. 
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Figure 45: Temporal Evolution of Water Level in DET Simulations of Level 
Control System 

 

 

Figure 46: Comparison of System Failure Probability of Level Control System – 
PyCATSHOO vs. RAVEN 


