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Chapter 1

Introduction and Preliminaries

1.1 Introduction

Applied model theory concerns itself with algebraic structures through the
lens of a model theorist, by using model theoretic tools to obtain algebraic
results. Abraham Robinson was one of the first mathematician to work in this
area, as his work focused on using methods in logic, especially model theory,
to tackle problems in algebra and analysis. In 1956 Robinson proved a model
completeness result in the theory of algebraically closed valued fields (ACVF)
in his book Complete theories. His result can be used to derive that the
theory of ACVF admits quantifier elimination. During the 1970’s quantifier
elimination results were proved for different theories of valued fields, different
languages such as multi sorted languages. Much of this work was due to
Macintyre, and Weispfenning.

The work of Françoise Delon [2] in the 1970s gives a classification of types
in algebraically closed valued fields. Delon advanced the model-theoretic un-
derstanding of valued fields by giving precise descriptions of the one-types in
an algebraically closed valued field of characteristic zero. In particular, she
used stability-theorietic methods to describe which one-types are definable.
However, this proof is non-constructive in a sense it does not provide a way to
find the defining schema for those types which are definable. One of the goals
in this thesis to describe how to find a defining scheme for the definable types.

We first talk about the structure of valued fields and the underlying topol-
ogy we can define using the valuation. Given an element of our value group
and from our valued field, we define open and closed K-definable balls, which
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are the simplest definable sets and form a basis of the valuation topology. Be-
cause our field is alegbraically closed and we have quantifier elimination we
can conclude that the definable sets in one variable are finite Boolean com-
binations of balls. The work of Jan Holly [5], is used heavily to describe the
definable sets, and that they are the finite union of Swiss cheeses—a ball with
finitely many balls removed. It should be noted that Holly takes this a step
further further to provide a schema of how to find the finite union of Swiss
cheeses, even though we will not depend on it. To ensure that we can rely
on defining formulas for the Swiss cheeses we prove a uniformity in parame-
ters result which tells us that the formula will not change as the parameters
vary. Understanding the definable sets of ACVF will lead to understanding the
definable types of the theory, and help us supply the desired defining schema.

In the case where the type is definable, we show how to construct a defining
schema. As motivation, we start off by looking at the theory of algebraically
closed fields (ACF). The proof that the theory is stable, and hence all types
are definable, is standard but we discuss explicitly how to go from the proof
to describing a schema. We produce a similar result for definable types of
ACVF. Lastly, from [8] we know that definable types are also invariant, but
the converse does not necessarily hold. We know that not all the types are
definable. We use Delon’s classification of the 1-types to see which ones are
definable, and prove the rest are invariant.
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1.2 Preliminaries

In this section we go over some algebraic properties of valued fields and end
with some discussion of the valuation topology.

1.2.1 Valued Fields

Definition 1.2.1. An ordered abelian group is an abelian group (Γ,+) with a
total ordering, < such that

a < b =⇒ a+ c < b+ c

for all a, b, c ∈ Γ.

Definition 1.2.2. Let K be a field and Γ an ordered abelian group written
multiplicatively. An absolute value is a function from K to Γ that satisfies

1. |x| ≥ 0 (Non-negativity)

2. |x| = 0 if and only if x = 0 (Positive-definiteness)

3. |xy| = |x||y| (Multiplicatively)

4. |x+ y| ≤ |x|+ |y| (Triangle Inequality)

for all x, y ∈ K. If we replace the triangle inequality with a slightly stronger
property

4.′ |x+ y| ≤ max{|x|, |y|}

then we obtain a non-Archimedean absolute value.

Definition 1.2.3. Let K be a field and Γ an ordered abelian group. A valua-
tion v on K is a surjection v : K → Γ∪{∞} such that for a, b ∈ K and γ ∈ Γ
the following hold:

1. v(a) =∞ if and only if a = 0

2. v(a+ b) ≥ min{v(a), v(b)}

3. v(ab) = v(a) + v(b)
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4. γ <∞ and γ +∞ =∞

where Γ is the collection of values we obtain from v (which forms an ordered
abelian group). We call Γ the value group. The second condition of the
valuation is called subadditivity, which we will see later affects the topology.

Note. Some properties of valued fields that will be used implicitly throughout
this paper include:

a. v(1) = v(−1) = 0 and v(a/b) = v(a)− v(b).

b. If v(a1 + · · · + ak) > min{v(ai) : 1 ≤ i ≤ k} then there exists a j 6= i
such that v(ai) = v(aj).

p-adic example:

Definition 1.2.4. Fix a prime p. The p-valuation is the function vp : Z\{0} →
R such that for each nonzero n ∈ Z, vp(n) is the unique positive integer such
that

n = pvp(n)m

where p - m. We extend vp to the field of rational numbers by setting

v
(a
b

)
= v(a)− v(b)

for a/b ∈ Q×. It is convention vp(0) =∞.
Let x ∈ Q \ {0}. Then for integers a, b not divisible by p and a unique

integer r we can represent x as

x =
apr

b
.

Qp example: The p-adic valuation is an example of a nontrivial valuation.
Qp example: The value group corresponding to vp is Z.1

Definition 1.2.5. We define the p-adic norm to be

|x|p = p−r.

Furthermore, we define the p-adic field Qp to be the completion of the rational
numbers with respect to the p-adic norm.

1This valuation is discrete.
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Definition 1.2.6. A p-adic expansion is a sum of the form

c0 + c1p+ c2p
2 + c3p

3 + . . .

where 0 ≤ ci < p for each i.

Any element of Qp is a limit of a p-adic expansion of the form

c−kp
−k + c−k+1p

−k+1 + . . . c0 + c1p+ c2p
2 + c3p

3 . . .

The beginning k + 1 terms

c−kp
−k + c−k+1p

−k+1 + · · ·+ c0

are the fractional part of the rational number.

Definition 1.2.7. Let Ov = {a ∈ K : v(a) ≥ 0} ⊂ K. This is a ring since

• since v(0) =∞, 0 ∈ Ov and thus we have an additive identity,

• if a ∈ Ov then −a ∈ Ov because v(−a) = v(a) + v(1) = v(a) + 0 = v(a),

• if a, b ∈ Ov then a + b ∈ Ov since v(a + b) ≥ min{v(a), v(b)} and thus
v(a+ b) ≥ 0,

• if a, b. ∈ Ov then a · b ∈ Ov since v(a · b) = v(a) + v(b) ≥ 0.

We denote the maximal ideal of Ov
2 as Mv = {a ∈ K : v(a) > 0}

Definition 1.2.8. We define Ov/Mv to be the residue field of K with respect
with the valuation v and denote the field as K.

Definition 1.2.9. The residual function, res, is the function from Ov → K.
We can extend it to K as a whole by taking res(K \Ov) =∞.

Note. If we have v(a) ≤ v(b) then b/a ∈ Ov. Thus, if I is an ideal of Ov and
a ∈ I then for all b such that v(b) ≥ v(a), b is also an element of I

Qp example: The ring Ov contains Z and Mv ∩ Z is a prime ideal of the
form pZ.

2There is only one.
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Henselian Fields

The following lemma we take from Engler and Prestel, is due to Hensel and
will be very important.

Theorem 1.1. (Hensel’s Lemma) Let K be a field complete with respect to
an absolute value v. Let f ∈ Ov[X] be a polynomial , and let a0 ∈ Ov be such
that v(f(a0)) > 2v(f ′(a0)). Then there exists some a ∈ Ov with f(a) = 0 and
v(a0 − a) > v(f ′(a0))

Qp example: Let p = 3 and consider the polynomial f(X) = X2 − 4.
Then f(4) = 42 − 4 = 12, but f ′(X) = 2X and thus f ′(4) = 8. Furthermore,
v(f(4)) = v(12) = 1 and 2v(f ′(4)) = 0 and satisfies the condition v(f(4)) >
2v(f ′(4)). Thus Hensel’s Lemma guarantees us that there is a unique 3-adic
intger b such that f(b) = 0 and v(4 − b) > v(f ′(4)). To find such a b notice
4 ≡ (1 + 3)2mod9. If we keep going we have that

4 ≡ (1 + 2 · 3 + 2 · 32)2 mod 33

4 ≡ (1 + 2 · 3 + 2 · 32 + 2 · 33)2 mod 34

4 ≡ (1 + 2 · 3 + 2 · 32 + 2 · 33 + 2 · 34)2 mod 35

...

4 ≡ (1 + 2 · 3 + 2 · 32 + · · ·+ 2 · 3n−1)2 mod 3n

...

And thus 4 is a perfect square. Admittedly this is not surprising, but what
might be surprising is that it is the square of

1 +
∞∑
n=1

2 · 3n.

Definition 1.2.10. We say a valued field is Henselian if Hensel’s Lemma is
satisfied. In other words, if for all polynomials f(T ) ∈ Ov[T ] and a ∈ Ov such
that resf(a) = 0 and res f ′(a) 6= 0 there is a b ∈ Ov such that f(b) = 0 and
res a = res b.
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Qp example: The p-adics are Henselian.

We will often be presented with two fields, K ⊂ L. Let v be a valuation on
K. It is not necessarily the case that the valuation of K extends uniquely to
the valuation of L. This happens to be true if and only if (K, v) is Henselian.

Theorem 1.2. Let (K, v) be a valued field. Then K is Henselian if and only
if there is a unique extension of the valuation to an algebraic extension of K.

Since the algebraic closure of an algebraically closed field is itself, and
therefore doesn’t have any nontrivial algebraic extensions, we have the follow-
ing corollary.

Corollary. Algebraically closed valued fields are Henselian.

1.2.2 Topology of Valued Fields

We can discuss what an open ball looks like in valued fields, which will lead
to how definable sets are classified.

Definition 1.2.11. An open ball is defined as

Bop(b1, b2) = {x : v(x− b1) > v(b2)}

for b1, b2 ∈ K. Similarly a closed ball is defined as

Bcl(b1, b2) = {x : v(x− b1) ≥ v(b2)}

for b1, b2 ∈ K.
In this case we will refer to b1 as the center of the ball, and v(b2) as the

radius of the ball. If we choose not to specify whether the ball is open or
closed we will simply write B(b1, b2).

The topology of valued fields is generated by the open balls. The follow-
ing results from [5] are important consequences of the subadditivity of the
valuation.

Proposition 1.3. (Note 3.4, [5])

(i) Every point in a ball is a center of the ball.
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(ii) Given any two balls B and C, if their intersection is nontrivial then
either B ⊆ C or C ⊆ B

Proof. (i) Let B = Bop(b1, b2) and b′ ∈ B, then v(b′ − b1) > v(b2). Assume
towards a contradiction that there is x ∈ B such that x /∈ B′ = Bop(b′, b2)
then

v(x− b′) ≤ v(b2). Thus we have

v(b1 − b′) = v(b1 − x+ x− b′) =

min{v(b1 − x), v(x− b′)} = v(x− b′).

Hence, we have B ⊆ B′. The proof of the converse to show B′ ⊆ B is
analogous, and thus B′ = B and therefore every point in B serves as the
center of the ball.

(ii) Let B = Bop(b1, b2) and C = Bop(c1, c2) be open balls and d ∈ B ∩ C.
Let b′ ∈ B \ C. By (i) we can take d to be the center of both balls, and
thus

v(b2) < v(d− b′) < v(c2)

and hence v(b2) < v(c2).

Since C has the same center as B and v(b2) < v(c2) then if v(c2) <
v(c− y) we immediately have v(b2) < v(c− y), and thus C ⊆ B.

This brings us to a topological consequence of this proposition.

Corollary. The ball B = Bop(b1, b2) is closed, and the ball B = Bcl(b1, b2) is
open.

Despite the corollary, we will still refer to the open balls as open (and
similarly for the closed balls) for notational convenience.

All except (4) are in [5] but without proof, but since we will use the propo-
sitions heavily, we provide the arguments. Since the propositions only deal
with the radius of the balls, we will use Greek letters to represent the radius
as shorthand to make the argument a little cleaner.

Proposition 1.4. (Note 3.4, [5]) Let B and C be balls with radii β and γ
respectively, and c ∈ C. If
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1. B and C are open balls, or

2. B and C are closed balls, or

3. B is closed and C is open

and if β ≤ γ then either C ⊆ B or C ∩B = ∅. Furthermore,

4. B is open and C is closed,

and if β < γ then either C ⊂ B or C ∩B = ∅.

Proof. Let B and C be balls as described above. If B ∩ C = ∅ then we are
done, so assume c ∈ B ∩ C.

1. Suppose both B and C are open balls such that β ≤ γ Thus if y ∈ C
then γ < v(c−y), but since β ≤ γ we have β < v(c−y) and thus y ∈ B.
Since y was an arbitrary element of C, this holds for every element of C
and therefore C ⊆ B.

2. Now suppose both B and C are closed balls with β ≤ γ. Then if y ∈ C
we have by definition γ ≤ v(c−y), but since β ≤ γ it follows β ≤ v(c−y),
and thus y ∈ B. We therefore conclude C ⊆ B.

3. Let B be a closed ball and C be an open ball. Again let y ∈ C, then
γ < v(c − y), but since β ≤ γ we immediately have β < v(c − y) and
thus y ∈ B. Thus, C ⊆ B.

4. Let B be an open ball and C a closed ball. Then for any y ∈ C we have
γ ≤ v(c − y), but since β < γ, we have β < v(c − y) and thus y ∈ B.
Therefore C ⊆ B.
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Chapter 2

Algebraically Closed Valued
Fields

First we establish the language we are working in, along with some model
theoretic results of it. We will then continue the chapter with some discussion
on the definable sets of algebraically closed valued fields, and then end with a
uniformity in parameters result.

2.1 Model Theory of Valued Fields

Now that we have an understanding of valued fields, we turn our attention to
the algebraically closed valued fields. There are many choices of language for
the theory of valued fields, and particularly the theory of algebraically closed
valued fields, such as one sorted or multisorted languages.

2.1.1 Language

When discussing the model theory of valued fields we work in the three sorted
language.

Definition 2.1.1. The Denef-Pas Language of valued fields LPas is the three
sorted language with the following sorts and map:

1. The valued field K which has the language of rings Lring = 0, 1,+,−, ·

2. The value group ΓK has the language of ordered abelian groups LOAG =
{0,+,−, <,∞}.
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3. The residue field K which also has the language of rings

4. The valuation v : K → ΓK .

Furthermore the theory includes axioms for a (non-trivial) valuation, the
axioms specifying the characteristics of the field and residual field, and the
axioms stating the field is algebraically closed.

Theorem 2.1. The theory of algebraically closed valued fields eliminates quan-
tifiers in LPas.

2.1.2 Definable Sets

Definition 2.1.2. Let K be a valued field. A Swiss cheese is a nonempty set
of the form

B \ (C1 ∪ · · · ∪ Cn)

where B is a K-definable ball, and C1, . . . , Cn are K-definable subballs of B.
We will often refer to B in the definition above as the outer ball and Ci as the
inner ball.

Proposition 2.2. (Proposition 3.6, [5]) Let S1 and S2 be two Swiss cheeses.
Then S1 ∩ S2 and S1 ∪ S2 are both Swiss cheeses.

Notice that since ACVF has quantifer elimination in the language of our
choosing every formula can be written as a Boolean combination of formulas
of the form v(f(x)) = v(g(x)) and v(f(x)) < v(g(x)), where f(x), g(x) ∈
K[x]. Since our field is algebraically closed, all polynomials can be written
as a product of linear factors. In [5], we see that this will lead to a theorem
that every K-definable set of ACVF is a finite Boolean combination of balls,
which we will take as a fact. Furthermore, we will can actually say that every
definable set of ACVF is a finite union of Swiss cheeses.

We introduce the following notation to write a general formula defining a
Swiss cheese. Let B be the outer ball to the Swiss cheese with center a0 and
radius v(a′0) and let C1, . . . , Cn be the inner balls with centers a1, . . . , an and
radii v(a′1), . . . , v(a′n) respectively.

We define βop(b, b′) to be the formula v(x − b) > v(b′), which defines an
open ball. Likewise, we let βcl(b, b′) be the formula v(x−b) ≥ v(b′) for a closed
ball.
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Then to describe a Swiss cheese we need to know how many inner balls
are removed, and whether or not the outer ball and inner balls are open or
closed. Let Σ = {op, cl} be an alphabet and Σ∗ be the set of all finite strings
generated from Σ.

Let σ = α0α1 . . . αn ∈ Σ∗ be a finite string of length n + 1 indicating
whether or not each ball is open or closed. To express a Swiss cheese with n
many inner balls removed:

Bα0(a0, a
′
0) \ (Bα1(a1, a

′
1) ∪Bα2(a2, a

′
2) ∪ · · · ∪Bαn(an, a

′
n))

we write
Sσn(x; a0, a

′
0, a1, a

′
1, . . . , an, a

′
n)

which is the formula

βα0(x; a0, a
′
0) ∧ ¬(βα1(x; a1, a

′
1) ∨ · · · ∨ βαn(x; an, a

′
n)).

Example 2.1.1. For example,

Sop,cl,op2 (x; a0, a
′
0, a1, a

′
1, a2, a

′
2)

is the formula

βop(x; a0, a
′
0) ∧ ¬(βcl(x; a1, a

′
1) ∨ βop(x; a2, a

′
2))

which is defining the Swiss cheese

Bop(a0, a
′
0) \ (Bcl(a1, a

′
1) ∪Bop(a2, a

′
2))

For convenience, we let a be a tuple of length 2(n + 1) and denote the
formula describing a Swiss cheese as Sσn(x; a). Furthermore, we let

S(x; a, σ, n,m) =
m∨
i=1

Sσini
(x; ai)

be a formula defining the union of m many Swiss cheeses, where σi is the
information telling us which balls are open and closed in each of the m many
Swiss cheeses, ni denotes how many inner balls are removed in defining an ith
Swiss cheese, and for each i, ai is a tuple of length 2(ni + 1) However, σ, n and
m are not parameters of the formula.

The following is an important result we will heavily use from [5], which we
state without proof.
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Theorem 2.3. Every K-definable set of ACVF is a finite union of Swiss
cheeses. In other words, for every definable set X there exists σ, n,m, a such
that X is defined by S(x; a, σ, n,m).

We now end this chapter with a uniformity in parameters result.

Theorem 2.4. Let ϕ(x, y) be a formula in ACVF describing a definable set.
Then there are a σ, n,m such that for all b there are parameters a such that

ϕ(x; b)↔ S(x; a, σ, n,m).

Proof. Let ϕ(x; y) be a formula in ACVF and S(x; z, σ, n,m) be formulas
describing a finite union of Swiss cheeses. Assume towards a contradiction
uniformity in parameters is not true, i.e. for all σ, n,m there is a y such that
for all z

ϕ(x; y) 6≡ S(x, z, σ, n,m).

Now consider the theory T which consists of all formulas of the form

∃y ∀z [ϕ(x; y) ∧ ¬S(x, z, σ, n,m)] ∨ [¬ϕ(x; y) ∧ S(x, z, σ, n,m)]

for all σ, n,m along with the theory of ACVF. We claim U has a model for
every finite subset U ⊂ T . LetM � ACVF and let ϕi be formulas of the form
above. By assumption, each ϕi is realized in a model Mi of ACVF. Thus,
there is a corresponding yi ∈ Mi that realizes the formula. Because ACVF is
model complete, yi ∈ M where M is the underlying set of M. However, this
is true of all i ∈ N and thus, any finite collection of the formulas ϕi is realized,
since they are individually realized inM. Therefore, there is a model for each
finite subset U ⊂ T .

However, since we have a model for every finite U ⊂ T then by the Com-
pactness Theorem, there is a model A that satisfies the whole theory. Therefore
in A there is a choice of parameter for which the set defined by ϕ(x; b) is not
a finite union of Swiss cheeses, a contradiction to the fact that the set defined
by ϕ(x; b) is definable and therefore by Theorem 2.3 is a finite union of Swiss
cheeses.
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Chapter 3

Definable Types in ACVF

In this chapter we will explicitly describe a defining schema, that will later be
used for the definable types. We will first obtain some model theoretic results
about types and then move on to discuss the definable types and defining
schema in ACF, and then end with definability in ACVF.

3.1 Types

In this section we first look at the necessary background to familiarize ourselves
with the model theoretic notion of a type.

3.1.1 Preliminaries

Definition 3.1.1. 1. LetM be an L structure. A partial type, p over a set
A ⊂ M , in a variable x is a set of L(A)- formulas in x with parameters
from M .

2. If x is an n-tuple then we call p a partial n-type.

3. We say a partial type is consistent if for every finite subset U of p there
is an m ∈M such that

M � ϕ(m) for all ϕ(x) ∈ U.

4. A complete type over M is a maximal consistent partial type over M .
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5. Let A ⊆ M . We write Sn(A) to denote the space of complete n-types
over A.

Unless otherwise specified, we will be working with complete types.

The single turnstile symbol ` is a binary relation used to represent syntactic
consequence in the study of formal languages. Having one proposition on the
left and one on the right we read P ` Q to mean that Q is derivable or
provable from P in the given axiomatic system. In the context of types we
use the definition of ` from [8]: a type p concentrates on a definable set S if
p contains a formula defining S. In fact, when we write p ` ϕ we mean that
the type p contains the formula ϕ.

The double turnstile symbol � , on the other hand, is a binary relation
often used to show semantic consequence with a collection of sentences on the
left and a singular sentence on the right. Hence Σ � ϕ is understood to mean
if every sentence in the set Σ holds, then the sentence ϕ also holds.

In model theory the double turnstile has a slightly different use, and is
meant to show satisfaction in a model on the lefthand side and a collection
of sentences on the right. For example when we write M � Σ to mean that
M is a model for Σ. To bring back the idea of how this denotes the semantic
consequence, we can interpret the model theoretic notion of Σ � ϕ as “if
M � Σ then M � ϕ”.

Definition 3.1.2. LetM and L be as above, A ⊆M and b ∈Mn. We define

tp(b/A) := {ϕ(x) : ϕ ∈ L(A),M � ϕ(b)}

to be the type of b over A.

Definition 3.1.3. Let p be a partial n-type over A. We say b ∈ Mn realizes
p if p ⊂ tp(b/A). We say p is finitely realized in M if every finite subset of p
is realized in M. We say a type p is finitely satisfiable in a set A if for every
formula ϕ(x; b) ∈ p there is an a ∈ A such that ϕ(a; b) holds.

Note. Admittedly, it is a bit bizarre that a type is finitely satisfiable just
because we can find a witness for every one formula. An equivalent way
to say p is finitely satisfiable in A is if any finite subset of p is realized in
A. Since the type is assumed to be complete, it is maximally consistent.
Thus if there are ϕ1(x; b), . . . , ϕk(x; b) such that there are a1, . . . , ak that make
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ϕ1(a1; b), . . . , ϕk(ak; b) hold, then since p is maximally consistent, the type
contains the formula

k∧
i=1

ϕi(x; b)

and thus there is an a∗ ∈ A such that

k∧
i=1

ϕi(a
∗; b)

holds. And thus we have that any finite subset of p is realized in A, since the
conjunction of any collection of formulas in p is also in p.

Example 3.1.1. Let Q denote the algebraic closure of Q then the collection

{f(T ) 6= 0 : f(T ) ∈ Q[T ], f(T ) 6≡ 0}

is a partial type and is finitely satisfiable. It is important to note that this type
is not realized in Q. Furthermore we take all consistent Boolean combinations
of these formulas we will have an example of a complete type.

The next few definitions will be important in our discussion of invariant
types.

Definition 3.1.4. LetM be a model and p a type. Let p ∈ S(M). We say p
is definable over a set B if for all ϕ(x; y) there exists dϕ(y) ∈ L(B) such that
for all b ∈M, p ` ϕ(x; b) if and only if b � dϕ(y).

Definition 3.1.5. If all types over all models of a theory T are definable, we
say the theory is stable.

Example 3.1.2. The theory of algebraically closed fields is stable. The theory
of valued fields, however, is not.

Definition 3.1.6. Let M be a model and p a type. Let p ∈ Sx(M). We say
p is A-invariant if σp = p for all σ ∈ Aut(M/A). In other words, if σ applied
to every formula of p is still a formula in p. And thus, p is A-invariant if for
every formula ϕ(x; y) and tuples b, b′ from the model, if b ≡A b′ then

p ` ϕ(x; b) ⇐⇒ p ` ϕ(x; b′).

Additionally, p is invariant if it’s A-invariant for some A ⊂M.
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Proposition 3.1. Definable types are invariant.

Proof. If p is definable it is definable over some A such that |A| ≤ |T |, where T
is the theory. If b ≡A b′ then there is some σ ∈ Aut(M/A) such that σ(b) = b′.
Then we have

ϕ(x; b) ∈ p ⇐⇒ b � dϕ(y)

⇐⇒ σ(b) � σ(dϕ(y))

⇐⇒ b′ � dϕ(y) (since σ fixes A and the parameters are from A)

⇐⇒ ϕ(x, b′) ∈ p

and thus, p is invariant.

Proposition 3.2. If a type is finitely satisfiable in A it is A-invariant.

Proof. Let p be finitely satisfiable in A and let p ` ϕ(x; b). Then if b ≡A b′

there is a σ ∈ Aut(M/A) such that σ(b) = b′. Thus there is an a ∈ A such
that

p ` ϕ(x; b) =⇒ a � ϕ(x; b) (since) p is finitely satisfiable.)

⇐⇒ σ(a) � σ(ϕ(x; b))

⇐⇒ a � ϕ(x; b′) (since σ fixes A and σ(b) = b′)

thus a � ϕ(x; b) ∧ ϕ(x; b′). Since p is a complete type it must contain either
ϕ(x; b′) or ¬ϕ(x; b′). However, since a � ϕ(x; b) ∧ ϕ(x; b′) and p is consistent,
ϕ(x; b) ∧ ϕ(x; b′) ∈ p and thus ϕ(x; b′) ∈ p.

3.1.2 Definable Types in ACF

In this section we illustrate one of the goals of this thesis by high lighting those
goals in the example of algebraically closed fields in the pure field language.
Algebraically closed fields were looked at by Alfred Tarski who proved that
the theory admitted quantifier elimination

The following well known theorem will be necessary to talk about the
definable sets of algebraically closed fields.
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Theorem 3.3. The theory of algebraically closed fields admits quantifier elim-
ination.

Let K ⊂ F where K is an algebraically closed field and let Spec(K[x])
be the set of all prime ideals of K[x]. We prove that every type in ACF is
definable by proving there is a bijection between the types p ∈ Sn(K) and the
prime ideals

Ip := {f ∈ K[x] : “f(x) = 0” ∈ p}

for x and n-tuple.
First we verify that Ip is a prime ideal. First to show Ip is an ideal take f

and g in Ip, then “f(x) = 0′′ ∈ p and “g(x) = 0′′ ∈ p. Because p is complete
(and therefore consistent) there is a model that realizes the formulas, so there
is an a such that f(a) = 0 and g(a) = 0. And thus f(a) + g(a) = 0. And
therefore “f(x) + g(x) = 0” is in p which implies f + g ∈ Ip. If f ∈ Ip
and g ∈ K[x] then their product is in Ip. Indeed because f ∈ Ip we have
“f(x) = 0” ∈ p and thus since p is complete, there is a model that realizes
the formula and thus, there is an a from the model such that f(a) = 0. But
then f(a) · g(a) = 0 for any g ∈ K[x] and thus for similar reasons as above
“f(x) · g(x) = 0” ∈ p and therefore f · g ∈ Ip. Lastly, if f · g ∈ Ip then
“f(x) · g(x) = 0” ∈ p and since p is complete there is a model that realizes
that formula. Thus there is a witness a such that f(a) · g(a) = 0, so at least
one of f(a) = 0 or g(a) = 0 and so at least one of “f(x) = 0” or “g(x) = 0”
is in p. Without loss of generality, let’s say “f(x) = 0′′ ∈ p. Then there is a
model and a realization such that, f(a) = 0. Therefore, f ∈ Ip, making Ip a
prime ideal.

Theorem 3.4. The map α : Sn(K) → Spec(K[x]) where α(p) = Ip is a
bijection.

Proof. Let p, q be two distinct types. To prove it is injective notice that by
quantifier elimination, there is is a quantifier free formula ϕ such that ϕ ∈ p
and ϕ /∈ q, in other words ¬ϕ ∈ q.

Claim. We can assume without loss of generality that ϕ is an atomic formula.

Proof. (of Claim) This is a consequence of the fact that the theory admits
quantifier elimination and all quantifier free formulas can be written as a finite
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Boolean combination of atomic formulas. To see why the claim is true let’s
take two atoms “f(x) = 0” and “g(x) = 0” and consider the formula

ϕ := f(x) = 0 ∧ g(x) = 0

and assume ϕ ∈ p and ¬ϕ ∈ q. Then since p is maximally consistent, in order
ϕ ∈ p we must have “f(x) = 0” ∈ p and “g(x) = 0” ∈ p. However,the negation
of ϕ is

f(x) 6= 0 ∨ g(x) 6= 0

which is assumed to be in q. Since q is maximally consistent then one of the
following three cases must happen:

1. “f(x) 6= 0” ∈ q and “g(x) 6= 0” ∈ q

2. “f(x) 6= 0” ∈ q and “g(x) = 0” ∈ q

3. “f(x) = 0” ∈ q and “g(x) 6= 0” ∈ q

However, none of these cases have q contain “f(x) = 0” and “g(x) = 0”, which
are both in p. Thus in all cases, p 6= q is witnessed by an atomic formula.

A very similar argument will show that if the formula

ψ := f(x) = 0 ∨ g(x) = 0

disrupts the injectivity of α then in fact there is an atomic formula that dis-
rupts the injectivity as well.

This makes ϕ the formula “f(x) = 0′′ for f ∈ K[x] 1 But since ¬ϕ ∈ q we
have f /∈ Iq and thus Ip 6= Iq.

To show α is surjective, let I ∈ Spec(K[x]) and let ai = xi/I ∈ K[x]/I for
i = 1, . . . , n and a = (a1, . . . , an). Then for all f ∈ K[x] we have that f(a) = 0
if and only if f ∈ I. Indeed assume f(a) = 0. Then

f((a1, . . . , an)) = f(x1/I, . . . , xn/I)) = 0

and therefore f ∈ I. If f ∈ I then f(a) = 0 because ai ∈ K[x]/I. Thus
Itp(a/K) = I, making the map surjective.

1Or possibly we picked the negation “f(x) 6= 0”.
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Now that we have a bijection between the types and the ideals we can con-
clude that the types are definable (and invariant by Proposition 3.1) because
the ideals are finitely generated. That is, in order to determine whether or
not a formula ϕ(x; b) is in the type, we check whether or not the polynomials
which occur in the atoms of the formula (“f(x) = 0” or “f(x) 6= 0”) are in
the ideal determined by the type. Since the ideals are finitely generated, for
each ideal Ip we let {g1, . . . , gkp} be the generators for each ideal. Then to
know whether or not the polynomial f (with coefficients determined by the
parameters b) is in the ideal, is to know if it is a polynomial combination of
{g1, . . . , gkp}

3.2 Construction of Parameter Dependent For-

mulas

Now we work towards how to construct a defining formula for definable types
in ACVF. Since we know every definable set in ACVF can be written as a finite
union of Swiss cheeses, we go about figuring out how to write out the defining
formula for each Swiss cheese, that is only dependent on the parameters.

3.2.1 Defining Formulas for Containment

Let B and C be K-definable balls. We find a formula that only depends on
parameters that will hold if and only if C ⊆ B. Notice that since B and C
could either be open or closed, we have four cases to consider.

Lemma 3.5. 1. Suppose B = Bop(b1, b2) and C = Bop(c1, c2) are open.
We show the formula

v(b2) < v(b1 − c1) ∧ v(b2) ≤ v(c2) (Φ.1(b1, b2, c1, c2))

holds if and only if C ⊆ B.

2. Let B = Bop(b1, b2) be an open ball and C = Bcl(c1, c2) be a closed ball.
Then

v(b2) < v(b1 − c1) ∧ v(b2) < v(c2) (Φ.2(b1, b2, c1, c2))

holds if and only if C ⊆ B.
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3. If B = Bcl(b1, b2) is a closed ball and C = Bop(c1, c2) is open.

v(b2) ≤ v(b1 − c1) ∧ v(b2) ≤ v(c2) (Φ.3(b1, b2, c1, c2))

holds if and only if C ⊆ B.

4. Finally, suppose both B = {x : v(x − b1) ≥ v(b2)} and C = {x : v(x −
c1) ≥ v(c2)} are closed balls. Then C ⊆ B if and only if the same
formula as above

v(b2) ≤ v(b1 − c1) ∧ v(b2) ≤ v(c2) (Φ.3(b1, b2, c1, c2))

holds.

Proof. 1. Suppose v(b2) < v(b1 − c1). That is to say c1 ∈ B. Thus, we
know that B ∩ C 6= ∅ and so we either have C ⊆ B or B ⊆ C.

Now assume v(b2) ≤ v(c2), then by Proposition 1.4 we have that C ⊆ B.

To show that C ⊆ B implies the formula above, notice that if C ⊆ B,
then in particular c1 ∈ B. Thus v(b2) < v(c1 − b1) by definition of B.
To show that C ⊆ B implies v(b2) ≤ v(c2) prove the contrapositive:

v(c2) < v(b2) =⇒ C 6⊆ B.

But, C 6⊆ B is equivalent to C∩B = ∅ or B ⊆ C. If C∩B is empty then
there we are done. Otherwise, let d ∈ C ∩ B serve as the center of each
of the K-definable balls. Let y ∈ B, then v(b2) < v(y − d), but since
v(c2) < v(b2), this implies v(c2) < v(y − d) and so y ∈ C. Thus B ⊆ C.
Therefore, we have proved the contrapositive of our original claim, and
conclude if C ⊆ B then v(b2) < v(b1 − c1) and v(b2) ≤ v(c2).

2. Similar to the argument above, assume Φ.2(b1, b2, c1, c2) holds, then if
v(b2) < v(b1 − c1) then in particular, c1 ∈ B. Thus one of B or C
contains the other.

Now assume v(b2) < v(c2), then by Proposition 1.4 we have C ⊆ B.

For the converse, assume C ⊆ B. Again, since C ⊆ B we have c1 ∈ B,
so v(b2) < v(b1 − c1) holds. Now to show C ⊆ B implies v(b2) < v(c2)
we again prove the contrapositive

v(c2) ≤ v(b2) =⇒ C ∩B = ∅ ∨ B ⊆ C.
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Again, if C ∩ B is empty we are done. So assume d ∈ C ∩ B. Then we
use d as the center of both balls and conclude B ⊆ C, as in the above
argument, and thus showing C ⊆ B implies Φ.2 holds.

3. Again, if v(b2) ≤ v(b1− c1) then c1 ∈ B by definition. Thus, since B and
C have nontrivial intersection, one ball contains the other. Now assume
v(b2) ≤ v(c2), then by Proposition 6 we have C ⊆ B.

To show that C ⊆ B implies the formula above, we run the argument in
the same fashion of the previous two cases. First, notice that if C ⊆ B,
then in particular c1 ∈ B. Thus v(b2) ≤ v(c1 − b1) by definition of B.
To show that C ⊆ B implies v(b2) ≤ v(c2) we prove the contrapositive
again:

v(c2) < v(b2) =⇒ C 6⊆ B.

There is a subtle change in inequalities, so we repeat the proof to address
this. Recall if C 6⊆ B then either C∩B = ∅ or B ⊆ C. If B∩C = ∅ then
we are done, so let d ∈ B∩C. Let y ∈ B, then we have v(b2) ≤ v(y−d).
But if v(c2) < v(b2), then v(c2) < v(y − d) and so y ∈ C. Thus if
v(c2) < v(b2) then B ⊆ C. Therefore, we have proved the contrapositive
of our original claim, and conclude if C ⊆ B then v(b2) ≤ v(b1− c1) and
v(b2) ≤ v(c2).

4. Since v(b2) ≤ v(b1−c1) we have B and C have nontrivial intersection and
thus either B ⊆ C or C ⊆ B. Then we let c1 serve as the center of both
C and B and observe that if v(c2) ≤ v(c1−y) then v(b2) ≤ v(c1−y) since
v(b2) ≤ v(c2). The converse of this argument is exactly the argument of
the converse in the above case.

3.2.2 Defining Formulas for Empty Intersection

Now we work towards finding a formula that will hold if and only if B∩C = ∅.

Lemma 3.6. 1. Let B = Bop(b1, b2) and C = Bop(c1, c2) be open. We show
the formula

[v(c1 − b1) ≤ v(b2)] ∧ [v(c1 − b1) ≤ v(c2)] (Ψ.1(b1, b2, c1, c2))

holds if and only if B ∩ C = ∅.
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2. If B = Bop(b1, b2) is open and C = Bop(c1, c2) is close then

[v(c1 − b1) ≤ v(b2)] ∧ [v(c1 − b1) < v(c2)] (Ψ.2(b1, b2, c1, c2))

holds if and only if B ∩ C = ∅.

3. Let B = Bcl(b1, b2) and C = Bcl(c1, c2) be closed, then

[v(c1 − b1) < v(b2)] ∧ [v(c1 − b1) < v(c2)] (Ψ.3(b1, b2, c1, c2))

holds if and only if B ∩ C = ∅.

Proof. 1. Notice that if v(c1 − b1) ≤ v(b2) then c1 /∈ B, so since c1 ∈ C \B
we have B 6⊆ C. Similarly, if v(c1− b1) ≤ v(c2) then that tells us b1 /∈ C.
And so b1 ∈ B \ C and thus B 6⊆ C. Thus since we have C 6⊆ B and
B 6⊆ C we conclude that B ∩ C = ∅.
To see why B ∩ C = ∅ implies formula Ψ.1(b1, b2, c1, c2) notice that
B ∩ C = ∅ implies C 6⊆ B and B 6⊆ C. Let c ∈ C \ B, then v(c− b1) ≤
v(b2).

Claim.
v(c1 − b1) ≤ v(b2).

Proof. (of claim) Suppose v(b2) < v(c2). From above we have v(c−b1) ≤
v(b2). This holds if and only if

v(c− c1 + c1 − b1) ≤ v(b2).

Notice that v(c−c1+c1−b1) = min{v(c−c1), v(c1−b1)} since v(c−c1) 6=
v(c1 − b1) or else b1 ∈ C. However, if v(c − c1) ≤ v(c1 − b1) then
since c and c1 are both in C we have v(c2) < v(c − c1) but this implies
that v(c2) < v(c1 − b1) making b1 ∈ C. This is a contradiction of the
fact that B and C are disjoint, so v(c1 − b1) < v(c − c1) and therefore
v(c1 − b1) ≤ v(b2).

A similar argument will hold if v(c2) < v(b2).
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Similarly, for B 6⊆ C to hold there must be a b ∈ B such that b ∈ B but
b /∈ C, i.e. v(b− c1) ≤ v(c2). And thus we get Ψ.1(b1, b2, c1, c2) to hold.

2. If v(c1 − b1) ≤ v(b2) then c1 will not be in B and thus B 6⊆ C. Likewise
if v(c1− b1) < v(c2) then b1 /∈ C and thus, C 6⊆ B and we again conclude
B ∩ C = ∅.
Now to show that B ∩ C = ∅ implies formula Ψ.2, again notice that
B ∩ C = ∅ implies C 6⊆ B and B 6⊆ C. Thus, there is a c ∈ C such that
c ∈ C \ B, thus v(c − b1) ≤ v(b2) by definition of B. Likewise, there is
also a b ∈ B \ C and thus v(c1 − b) < v(c2). Therefore, with the help of
the claim, we have B ∩ C = ∅ implies formula Ψ.2(b1, b2, c1, c2).

Note. If we let B = Bcl(b1, b2) be a closed ball and C = Bop(b1, b2) open.
If you reverse the roles of B and C play in the above case, then we’re in
the situation of one open ball and one closed ball. Thus Ψ.2(b1, b2, c1, c2)
will hold if and only if B ∩ C = ∅ for the same reasons as above.

3. Again, if v(c1 − b1) < v(b2) then by how we defined of B, c1 /∈ B so
B 6⊆ C. Likewise, if v(c1 − b1) < v(c2) then b1 /∈ C by definition, so
B 6⊆ C and thus B ∩ C = ∅.
And as we did in the previous two cases, to show B ∩ C = ∅ implies
formula Ψ.3(b1, b2, c1, c2), we have B∩C = ∅ implies C 6⊆ B and B 6⊆ C.
Thus we can find a c ∈ C \ B which implies v(c − b1) < v(b2) or a
b ∈ B \ C which implies v(b− c1) < v(c2).

3.2.3 Defining Formula for Containment in a Definable
Set

Let ϕ(x; b) be a formula defining a finite union of Swiss cheese.We develop an
explicit way to see whether or not a ball D is contained in the Swiss cheeses:

k⋃
i=1

(Bi \ Ci
1 ∪ Ci

2 ∪ · · · ∪ Ci
ni

)

and then we utilize the above lemmas for the construction.
In order for D to be a subset of the Swiss cheeses it must be the case that

D ⊆ Bi for a fixed i and D ∩ Ci
m = ∅ for all m. We have the following cases

to consider.
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1. The ball D = Bop(d1, d2) is open. First we look at the formula needed
to ensure D ⊆ Bi for some i. Let Φ.1(d1, d2, b1,l, b2,l) be the formula
Φ.1 applied to K-definable balls D and open balls Bl where 1 ≤ l ≤ j
2. Likewise, let Φ.3(d1, d2, b1,l, b2,l) be the formula Φ.3 applied to K-
definable balls D and closed balls Bl for j + 1 ≤ l ≤ k. Thus, if there j
many open balls and k − j many closed balls then

D ⊆

(
j⋃
l=1

Bl ∪
n⋃

l=j+1

Bl

)

if and only if

j∨
l=1

Φ.1(d1, d2, b1,l, b2,l) ∨
k∨

l=j+1

Φ.3(d1, d2, b1,l, b2,l)

holds.

Now to make sure D does not intersect with any Ci
j we make use of

Ψ.1 and Ψ.3. Let Ψ.1(d1, d2, c1,l′ , c2,l′) be the formula applied to the
K-definable balls D and open balls Ci

l′ , for 1 ≤ l′ ≤ n′ where n′ is
the number of open balls removed in the finite union of Swiss cheeses.
Likewise let Ψ.3(d1, d2, c1,l′ , c2,l′) be the formula applied to D and closed
balls Ci

l′ for n′ + 1 ≤ l′ ≤ n′′ where n′′ is the number of closed balls
removed in the finite union of Swiss cheeses. Thus, if there are n′+n′′ = n
many inner balls removed then

D ∩

(
n′⋃
l′=1

Ci
l′ ∪

n′′⋃
l′=n′+1

Ci
l′

)
= ∅

holds if and only if

n′∧
l′=1

Ψ.1(d1, d2, c1,l′ , c2,l′) ∧
n′′∧

l′=n′+1

Ψ.3(d1, d2, c1,l′ , c2,l′)

holds.

2Since we do not know which outer ball D will be contained in, we must range over all
possible outer balls.
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Therefore, D is a subset of the union of Swiss cheeses if and only if

( j∨
l=1

Φ.1(d1, d2, b1,l, b2,l)

∧
k∨

l=j+1

Φ.3(d1, d2, b1,l, b2,l)

)

∧
( n′∧
l′=1

Ψ.1(d1, d2, c1,l′ , c2,l′)

∧
n′′∧

l′=n′+1

Ψ.3(d1, d2, c1,l′ , c2,l′)

)
(3.1)

2. The ball D = Bcl(d1, d2) is closed.

Similar to the case above, we can construct a formula that holds if and
only if D is a subset of the Swiss cheeses, if we make use of formulas
Φ.2,Φ.3,Ψ.2 and Ψ.3 and obtain

( j∨
l=1

Φ.2(d1, d2, b1,l, b2,l)

∧
k∨

l=j+1

Φ.3(d1, d2, b1,l, b2,l)

)

∧
( n′∧
l′=1

Ψ.2(d1, d2, c1,l′ , c2,l′)

∧
n′′∧
l′=1

Ψ.3(d1, d2, c1,l′ , c2,l′)

)
(3.2)

3.3 Defining Schema

Now we have established the necessary background to come up with an explicit
schema for the definable types. Recall that all definable sets in ACVF can be
written as a finite union of Swiss cheeses. To see if the formula is in the type
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we ask whether or not the smallest ball is contained in the union of outer balls
of the Swiss cheeses, and if it is not contained in the inner balls removed.

Lemma 3.7. Suppose K � ACV F , m ∈ M � K. If tp(m/K) is definable
then the intersection of all K-definable balls (open or closed) containing m is
a non-empty definable subset of K.

Proof. Let tp(m/K) be definable and let φ(x; y, z) = v(x − y) > v(z) and
ψ(x; y, z) = v(x− y) ≥ v(z). Let dφ and dψ be the defining formulas of φ and
ψ. Then the intersection of all K-definable balls containing m is defined by

Φ(x) = ∀y∀z((dφ(y, z)→ φ(x, y, z))) ∧ (dψ(y, z)→ ψ(x, y, z)).

Since m ∈ M,M � ∃xΦ(x). And since M � K,K � ∃xΦ(x) making Φ(K)
nonempty.

It follows from the lemma that if tp(m/K) is definable then there is a
smallest K-definable ball containing it.

We end this chapter with the following theorem to develop a schema.

Theorem 3.8. 1. Let p be a definable type and ϕ(x; y) a formula defining
finite union of Swiss cheeses that describes Xϕ(x;b). Also let D be the

smallest ball containing the type. Then p ` ϕ(x; b) if and only if D ⊂⋃
Bj and (Cj

i ⊂ D ∨ Cj
i ∩D = ∅) where the Bjs are the outer balls Cj

i s
are the inner balls with respect to the outer ball Bj.

2. Furthermore, the defining schema is the right hand side of the bicondi-
tional.

Proof. 1. Assume p ` ϕ(x; b) and let Bj an outer ball of the finite union of
Swiss cheeses. Then since Bj contains realizations of the type, D and Bj

are not disjoint, and therefore are nested. Then Since D is the smallest
ball containing the type, we cannot have Bj ⊂ D, so the only alternative
is D ⊂ Bj. Furthermore, since D contains a realization of the type,
D * Cj

i , so either Cj
i ⊂ D or Cj

i ∩D = ∅.
For the converse, assume D ⊂ Bj and Cj

i ∩D = ∅. Then a realization a
of the type is in D \ Cj

i and thus ϕ(x; b) ∈ p. Now assume D ⊂ Bj and
Cj
i ⊂ D, and assume towards a contradiction a ∈ Cj

i . If a ∈ Cj
i then the

formula x ∈ Cj
i is in the type, and thus Cj

i would be a smaller ball that
realizes the type, a contradiction to our selection of D. Thus, if Cj

i ⊂ D
then a ∈ D \ Cj

i and we are done.
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2. Now for the defining schema. Given a formula ϕ(x; b) for a definable
set, we write it as S(x; a, σ, n,m), which is uniform in parameters, which
we know exists by 2.4. Thus, by part (1.) we know whether or not
the formula is in the type just by checking the right hand side of the
biconditional, which is only dependent on the parameters.

(a) D is a subset of the union of the outer balls of the Swiss cheeses
that are describing Xϕ(x;b), and

(b) D is disjoint from all the inner balls removed from the Swiss cheeses.

Since the definable sets are a finite union of Swiss cheeses, we have
schema.
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Chapter 4

Classification of Types in ACVF

Suppose K is a valued field. We give the classification of 1-types over K where
the valued field and the residue field are of any characteristic. In other words,
if L is an elementary extension of K and a, b are elements of the extension, we
give the necessary and sufficient conditions for tp(a/K) = tp(b/K).

4.1 Residual, Valuational, and Immediate Types

In the case of algebraically closed fields, we had a way of classifying types
with ideals. Despite the fact that we won’t be working with ideals, we define
a new object to serve a similar purpose as the ideals served when classifying
the definable types of algebraically closed fields.

Definition 4.1.1. Let K ⊆ M be two valued fields m ∈ M then we define
the set

JK(m) := {v(m− k) : k ∈ K}

Definition 4.1.2. Let K ⊆ M be two valued fields, m ∈ M . To discuss the
type of m over K we introduce the set

IK(m) = {g ∈ ΓK : ∃k ∈ K such that M � v(m− k) ≥ g}

Proposition 4.1. IK(m) = JK(m) ∩ ΓK.

Proof. First we show IK(m) ⊆ JK(m) ∩ ΓK . Notice that IK(m) is an initial
segment of ΓK because if g ∈ IK(m) then there is a k such that v(m− k) ≥ g,
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but for any element g′ ∈ ΓK such that g′ ≤ g we have v(m − k) ≥ g′ and
thus g′ ∈ IK(m). To see why IK(m) ⊂ JK(m) assume towards a contradiction
there was a g ∈ IK(m) such that g /∈ JK(m), i.e. v(m− k) > g for all k ∈ K.
Let b ∈ K be such that g = v(b). Then for all k ∈ K

v(b) < v(m− k) =⇒ v(b−m+m) < v(m− k)

=⇒ min{v(b−m), v(m)} < v(m− k).

However, min{v(b − m), v(m)} 6= v(m) because then v(m) < v(m − k)
wouldn’t hold for k = 0. On the other hand, min{v(b−m), v(m)} 6= v(m− b)
because since b ∈ K, we can take k = b and thus v(m) < v(m− k) still would
not hold. Thus, there is no g ∈ IK(m) such that g /∈ JK(m).

To see why the converse containment holds, let g = v(m−k) ∈ JK(m)∩ΓK .
Then v(m− k) ≥ g, and thus we have that g ∈ IK(m).

4.1.1 Major Results from Delon

The following definitions and results are credited to [5] and will serve as fruitful
later on.

Definition 4.1.3. Let K ⊆M be two valued fields, a ∈M ; we have the three
following algebraic definitions:

1. We say m is residual over K if JK(m) ⊂ ΓK and JK(m) has a largest
element.

2. We say m is valuational over K if JK(m) * ΓK and equal to IK(m)∪
{v(m− k0)} where k0 ∈ K such that v(m− k0) > IK(m)

3. We say m is immediate over K if JK(m) ⊂ ΓK and JK(m) does not
have a greatest element.

Lemma 4.2. The cases in the above definition are in fact all the possible
cases.

Proof. It is clear to see that the residual case and the immediate case define
two different instances. Now, to see why the valuational case is necessary and
sufficient to complete the classification of the types, suppose for a contradiction
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that there is another case where there is a k1 such that v(m − k1) /∈ IK(m)
and v(m− k1) < v(m− k0). Notice then that

v(m− k1) = v(m− k0 + k0 − k1) = v((m− k0) + (k0 − k1))

= min{v(m− k0), v(k0 − k1)}

since v(m − k0) 6= v(k0 − k1) by assumption of v(m − k0). However, since
v(m− k1) < v(m− k0) we must have v(m− k1) = v(k0 − k1), a contradiction
since v(k0 − k1) ∈ ΓK . Therefore, there are not other cases to consider.

One of Delon’s major results is the following theorem that characterizes
the necessary information needed to classify the three types, which we will use
in the next section. Here when we say characterized we mean that tp(a/K) is
characterized by A if there is σ ∈ Aut(M/A) such that σ(a) = a′, then there
exists τ ∈ Aut(M/K) such that τ(a) = a′.

Theorem 4.3. 1. The residual type is characterized by the tuple (a, b) ∈
K∗×K such that the residue of am+ b is not in K and by tp(res(am+
b)/K) .

2. The valuational type is characterized by a field element a ∈ K such that
v(m− a) /∈ ΓK and by tp(v(m− a)/ΓK).

3. And the immediate type is characterized by a sequence (gα; bα)α<α0 that
satisfies v(m− bα) = gα and is cofinal in IK(m).

4.2 Definable Types

We are now ready to classify the definable types of ACVF.

Definition 4.2.1. Let G be a divisible ordered abelian group. Then a 1-type
p over G is a cut if there exists H1, H2 ⊂ G such that

1. H1 does not have a least element, and H2 does not have a greatest
element.

2. H1 ∩H2 = ∅ and G = H1 ∪H2

3. For all h ∈ H1 and g ∈ H2, g < h.
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4. For all h ∈ H1 and g ∈ H2, x < h1 ∈ p and h2 < x ∈ p.

Theorem 4.4. Let M be a field extension of K and m ∈ M . Suppose the
type tp(m/K) is definable. Then the there is a smallest ball containing it by
Lemma 3.7 and we have two cases to consider:

1. If the smallest ball is closed, then tp(m/K) is a residual type.

2. If the the smallest ball is open, then tp(m/K) is a valuational type.

In other words, the definable types in ACVF are residual types and valuational
types.

Proof. 1. The K-definable ball is closed.

The smallest ball containing tp(m/K) is a closed ball D = Bcl(d1, d2).
So for any v(b2) > v(d2) and for any b1 ∈ D we have m /∈ Bcl(b1, b2), i.e.
v(m− b1) < b2. Thus we have

v(d1) ≤ v(m− b1) < v(b2)

which means {v(m−k) : k ∈M} has a largest element, which according
to Definition 4.1.3, is the property to determine the type is residual.

2. The K-definable ball is open.

The smallest ball containing tp(m/K) is an open ball K -definable D =
Bop(d1, d2). So for any v(b2) > v(d2) and for any b1 ∈ D we have
m /∈ Bop(b1, b2), i.e. v(m− b1) < v(b2). Thus we have

v(d2) < v(m− b1) < v(b2)

making v(m− b1) /∈ ΓK a cut in ΓK since the collection of values below
v(m− b1) and the collection of values above v(m− b1) act as H1 and H2

in Definition 4.2.1, Thus the type is valuational.

Lastly, we describe the cases where the intersection of all K-definable balls
containing tp(m/K) is not a K-definable ball.

Theorem 4.5. Let tp(m/K) be a type. If there is no smallest K-definable ball
containing tp(m/K) then by Lemma 3.7 it is not definable. There are again
two cases to consider:
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1. If the radii of the balls containing the type are bounded above, then the
type is valuational.

2. If the radii of the balls containing the type are unbounded, then the type
is immediate.

Thus the non-definable types in ACVF are valuational types and immediate
types.

Proof. The contrapositive of Lemma 3.7 tells us that these types are not de-
finable. Let bi be some realization of the type, and let Let G = {v(b) : there
is a K definable ball of radius v(b) containing m} ⊂ ΓK .

1. The set G is bounded above.

Suppose G is bounded above and let supG = v(d). Let D be a ball con-
taining the realizations of the type, with radius v(d) and containing m.
We know v(d) /∈ ΓK because there is no smallest K-definable ball con-
taining tp(m/K), making D not a K-definable ball, but an M -definable
ball. Since G is a subset of an o-minimal group, it defines a cut. Thus,
for all c ∈ D and for all v(b) ∈ G we have

v(d) < v(m− c) < v(b)

which defines our cut which is not definable in ΓK . Therefore by Defini-
tion 4.1.3, it is a valuational type.

2. The set G is unbounded.

If tp(m/K) is unbounded, then for all v(b) ∈ G there is v(b′) ∈ G such
that v(b′) > v(b) and thus by Definition 4.1.3 since there is no largest
valuation, we have that tp(m/K) is an immediate type.

4.3 Invariant Types

The definable types discussed above are all invariant by Proposition 3.1. How-
ever, we have two cases which are not definable: the valuational case when the
cut is leads to the type being bounded above but not contained in a smallest
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K-definable ball, and the immediate types which are unbounded . We show
they are invariant nevertheless.

Recall that to show a type p is invariant we must show σp = p for all
σ ∈ Aut(M/A) for some A ⊂ M. To show the the types that were not
definable are invariant, we first need to describe the set A.

Theorem 4.6. Suppose tp(m/K) is a valuational type and let A = {b} ∪
{v(m− b)} as in where v(m− b) /∈ ΓK, as in the classification in Theorem 4.3.
Then the type is invariant

Proof. Let p = tp(m/K). We show that the type is invariant by showing
p ` ϕ(x; c) if and only if p ` ϕ(x; c′) for c ≡A c′. Since all definable sets can
be written as a finite union of Swiss cheeses, we take ϕ(x; c) ∈ S(x, c, τ, n,m).
Since Swiss cheeses are a Boolean combination of balls, we first observe apply-
ing an automorphism to a ball.

Let m ∈ B(d1, d2). Then since v(m − b) is not in ΓK , we know v(m − b)
defines a cut by the proof of Theorem 4.4 . Thus v(m−b) is either greater than
v(m− d1) or less than v(m− d1). Assume first v(d2) < v(m− d1) < v(m− b).
Then and thus B(b,m− b) ⊆ B(d1, d2) by Proposition 1.4, and therefore

K � ∀x(v(x− b) > v(m− b)→ v(x− d1) > v(d2)).

Let σ ∈ Aut(K/A). Then

K � ∀x(v(x− b) ≥ v(m− b)→ v(x− σ(d1)) > σ(v(d2))

holds as well, and thus m ∈ B(σ(d1), σ(d2)).
For the converse suppose m ∈ B(σ(d1), σ(d2)).Then as before, since σ−1 ∈

Aut(K/A) we have

B(b,m− b) ⊆ B(σ−1(σ(d1)), σ
−1(σ(d2))) = B(d1, d2)

and thus m ∈ B(d1, d2).
Now suppose v(m− b) < v(a− d1), then B(d1, d2) ⊆ B(b,m− b) and thus

we have

K � ∀x[v(x− d1) > v(d2)→ v(x− b) > v(m− b)].
Taking σ ∈ Aut(K/A) we have

K � ∀x[v(x− σ(d1)) > σ(v(d2))→ v(x− b) > v(m− b)]
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but this implies B(σ(d1)σ(d2)) ⊆ B(b,m − b) and thus B(σ(d1), σ(b2)) only
shifts its position in B(b, b−m) and still contains m568.

Similar to the converse in the above case, we use the fact that σ−1 ∈
Aut(K/A) to obtain if m ∈ B(σ(d1), σ(d2)) and then m ∈ B(d1, d2).

Now we see what happens when σ acts on a Swiss cheese. Let m ∈ B(d1, d2)
and let Sτn(x, c) ∈ tp(m/K) define a Swiss cheese

S = B \ (C1 ∪ · · · ∪ Cn)

where B = B(b1, b2) and Ci = B(ci, c
′
i) for 1 ≤ i ≤ n. Then if m ∈ S then

m ∈ σ(B) and m /∈ σ(Ci). Therefore m ∈ σ(S) and since any definable
set can be written as a finite union of Swiss cheeses, we have tp(m/K) is
A-invariant.

Theorem 4.7. Suppose tp(m/K) is an immediate type. Then as in the classi-
fication in Theorem 4.3, let A = {bα}∪{v(m− bα)} where v(m− bα) is cofinal
in Jm(K) = {v(m− k) : k ∈ K}. Then the type is invariant.

Proof. As before, we prove the type is invariant by showing m ∈ S(x, c, τ, n,m)
if and only if m ∈ σ(S(x, c, τ, n,m)) where S(x, c, τ, n,m) is a finite union of
Swiss cheeses.

Let p = tp(m/K). For the forward direction, let m ∈ B(d1, d2). Since
v(m − bα) is cofinal, there is an α such that v(d2) < v(m − d1) ≤ v(m − bα).
Then v(d2) < v(m − bα) and thus B(bα,m − bα) ⊆ B(d1, d2) by an earlier
proposition. Therefore

K � ∀x(v(x− bα) ≥ v(m− bα)→ v(x− d1) > v(d2)).

Let σ ∈ Aut(K/A), then

K � ∀x(v(x− bα) ≥ v(m− bα)→ v(x− σ(d1)) > σ(v(d2))

also holds. Hence

B(bα,m− bα) ⊆ B(σ(d1), σ(d2))

and thus m ∈ B(σ(d1), σ(d2)).
Now suppose m ∈ B(σ(d2), σ(d2)). Then since the inverse of an automor-

phism is again an automorphism, σ−1 ∈ Aut(K/A), so we can repeat the above
argument to obtain
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B(bα,m− bα) ⊆ B(σ−1(σ(d1)), σ
−1(σ(d2))) = B(d1, d2)

and thus m ∈ B(d1, d2).
Now that we know how invariant types behave with a singular K-definable

ball we can consider Swiss cheeses. Let m ∈ B(d1, d2) and let Sτn(x, c) ∈
tp(m/K) that defines a Swiss cheese

S = B \ (C1 ∪ · · · ∪ Cn)

where B = B(b1, b2) and Ci = B(ci, c
′
i) for 1 ≤ i ≤ n.

Then if m ∈ S then m ∈ σ(B(b1, b2)) and m /∈ Ci for 1 ≤ i ≤ n. Thus
m ∈ σ(S) and therefore tp(m/K) is A-invariant since every definable set of
ACVF can be written as a finite union of Swiss cheeses.
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