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Abstract

Over the past two decades, with the rise of information technology infrastructure and

exponential growth of computational capacity, the connected vehicle technology is get-

ting closer to reality day by day. This paradigm shift allows exploiting the algorithms

to their full capabilities in performance output by leveraging the environment infor-

mation. This thesis focuses on developing an intelligent energy management strategy

for eco-driving in Connected and Autonomous Hybrid Electric Vehicles (CA-HEV’s),

which can be implemented in real-time.

The strategy is divided into two layers, i.e. the upper level controller and the

lower level controller. The upper level controller can be executed on the remote

server. It is responsible for extracting the information from the driver about the

trip and the vehicle information using the communication capabilities of the CA-

HEV. The gathered information is then utilized by the dynamic programming (DP),

which is implemented in a bi-layer fashion to reduce the computation burden on the

server. The outer layer of the DP algorithm finds the optimal velocity trajectory, and

the inner layer optimizes the power distribution in the powertrain to minimize fuel

consumption alongside maintaining charge balance conditions. These global optimal

results are evaluated for an ideal environment without any traffic information.

The lower level controller is responsible for real-time implementation on vehicles in
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the real world environment and is based on a well-accredited reinforcement learning

(RL) strategy, i.e., Q-learning. The RL-based controller optimally distributes the

power in a CA-HEV and maintains charge balance conditions. Furthermore, the RL-

based controller is also trained on the remote server based on global optimal results

obtained from the DP algorithm. The optimal parameter information is then resent

to the vehicle’s embedded controller for real-time implementation.

Simulations are performed for Toyata Prius (2010) on MATLAB and Simulink,

and road information is gathered from SUMO. Simulation results provide a compar-

ative study between the global optimal and the RL-based controller. To validate the

adaptiveness of the RL-based controller, it is also tested on two approximate real-

world drivecycles, and its performance is compared against global optimal results

evaluated using DP.
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Notation and Abbreviations

ADAS Advanced Driver Assistance System

BEV Battery Electric Vehicle

BSFC Brake Specific Fuel Consumption

CNN Chaining Neural Netwrok

CA-HEV Connected and Autonomous Hybrid Electric Vehicle

CAV Connected and Autonomous Vehicle

DSRC Dedicated Short Range Communication

DQN Deep Q Network

DRL Deep Reinforcement Learning

DP Dynamic Programming

EM Electric Motor

EMS Energy Management Strategy

ECM Equivalent Circuit Model

ECMS Equivalent Consumption Minimization Strategy

FCEV Fuel Cell Electric Vehicle

GM General Motors

GIS Geographic Imaging System
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GPS Global Positioning System

GHG Greenhouse Gases

Hil Hardware-in-the-Loop

HEV Hybrid Electric Vehicle

IT Information Technology

ITS Intelligent Transportation System

ICE Internal Combustion Engine

MDP Markov Decision Process

MARC McMaster Automotive Resource Centre

MPC Model Predictive Control

MG Motor Generator

OCV Open Circuit Voltage

OEM original Equipment Manufacturer

PGS Planetary Gear Set

PHEV Plug-in Hybrid Electric Vehicle

PMP Pontragyin Minimum Principle

RL Reinforcement Learning

RB Rule Based

SHARCNET Shared Hierarchical Academic Research Computing Network

SPaT Signal and Phase Timing

SUMO Simulation of Urban Mobility

SQP Sequential Quadratic Programming

SOC State-of-Charge

TPM Transition Probability Matrix
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V2I Vehicle-to-Infrastructure

V2R Vehicle-to-Roadside

V2S Vehicle-to-Sensors

V2V Vehicle-to-Vehicle
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Chapter 1

Introduction

Since the advent of automobiles, engineers and researchers have been continually

trying to simultaneously improve the efficiency and power output of the automotive

system. Massive developments over the ages on automobiles and their inherent ad-

vantages have engendered the automotive industry into a giant economic front. The

rising socio-economic status of the masses led to rapid and huge market demand

for automobiles. This phenomenon induced the creation and development of several

business competitors and a constant need to outperform others. Thus, resulting in a

tremendous workforce and financial investment being put into the industries, creating

a sophisticated and multi-stage development and manufacturing process.

This chapter focuses on the motivation and background for the research conducted.

Furthermore, the thesis contribution, research scope, and thesis outlines are presented

in this chapter.
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1.1 Background and Motivation

Historically, the automotive sector was dominated by conventional vehicles, where

the propelling energy came from the internal combustion engine (ICE). Due to the

wide availability of fossil fuels and performance benefits, ICE became an integral part

of automobiles. A high amount of research was carried out to improve its efficiency

on several fronts. ICE works on the principle of burning fossil fuels in an enclosed

chamber to produce energy which is then utilized to propel the vehicle. The biggest

drawback of the modern ICE is its peak operating efficiency which tends to be around

30-36%. Additionally, combustion of the fuel produces side products such as CO2,

NOx, etc., which constitutes greenhouse gases (GHG) responsible for environmental

degradation. The tremendously growing number of automobiles in the environment

started impacting the fossil fuel reserves and the carbon footprint in the atmosphere.

According to the report [6], the transportation sector alone in 2010 was responsible for

nearly 23% of total CO2 emissions related to the energy domain, which constituted

roughly 6.7GtCO2.

However, in the past three decades, raising awareness of the depleting fossil fuel

and environmental degradation has revolutionized the current automotive industries.

Leading them towards a greener and sustainable future with stringent governmental

policies being enforced over carbon emissions on next-generation vehicles. Emerging

hybrid vehicle technologies are a step closer to realizing an idle green and sustainable

transportation sector. They offer many advantages in terms of fuel economy, effi-

ciency improvements, and greenhouse emission reductions. Several technologies such

as hybrid electric vehicles (HEVs), battery electric vehicles (BEVs), fuel-cell electric

vehicles (FCEVs) are getting attention, and a lot of research investment is being put
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into them [7].

Hybrid vehicles typically consist of two or more power sources coupled together

or independently to reinforce each other during their operation to deliver optimum

performance output. Recent advancements in electric battery packs and current tech-

nological limitations for utilization of other renewable energy sources have predomi-

nantly shifted the focus on electric vehicles (xEV).

The technological advancement in electric vehicles can be broadly classified into

power electronics, battery systems, controls, and materials [8]. Electric vehicles

mainly rely on electric motors for providing propelling torque. Depending upon the

energy source, they can be classified into battery electric vehicles (BEVs), plug-in

hybrid vehicles (PHEVs), fuel-cell electric vehicles (FCEVs), or just hybrid electric

vehicles (HEVs). HEV’s typically have an ICE to provide energy to the battery,

which provides energy to electric motors to drive the vehicle. There are different

configurations in which the ICE and the electric motors can be arranged in the hy-

brid powertrain resulting in three basic types of configurations: series, parallel, and

series-parallel (power-split) [9].

Incorporating an additional energy source in HEV such as ICE supplements the

electrical power output allowing the system to operate more closely towards higher

efficiency points. However, this inclusion inherently increases systems complexity

leading to more complicated solutions. One of the challenging tasks in an HEV is

to develop a supervisory control algorithm to optimally manage and distribute the

energy output of different power sources such that they operate within their physi-

cal constraints satisfying the driver demands and increasing overall system efficiency.
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Many control strategies known as energy management strategies (EMS) are avail-

able in the literature to tackle this issue, like rule-based (RB), dynamic programming

(DP), equivalent consumption minimization strategy (ECMS), model-predictive con-

trol (MPC), etc., each with its own set of challenges and limitations [10].

The most formidable challenge in devising a control strategy comes from the

fact that the global optimization techniques like DP, pontraygin’s minimum principle

(PMP), etc., are acausal and thus require future information as a priori to evaluate re-

sults [11]. Hence, the incorporation of future information prediction algorithms plays

a massive role in the energy management of HEV’s to provide near optimum results

[12, 13]. Defining an outlook of how a car in the future should be: efficient, predictive,

and adaptive. The emergence of technologies such as autonomous and connected ve-

hicles clear a path upon which the foundations of future automobile industries will be

laid upon. Connected vehicle technologies such as vehicle-to-vehicle (V2V), vehicle-

to-infrastructure (V2I) communications, along with the inclusion of different sensors,

allows the transfer of massive data’s in real-time, necessary to facilitate the future

driving prediction [14, 15, 16]. They generate the capability in the system to monitor

the real-time traffic information, its historical data, road conditions, the behavior of

other vehicles, which are then critically analyzed to predict the required information.

Over the past two decades, with the rise of the IT infrastructure and exponential

growth of computational capacity, the connected vehicle technology is getting closer

to reality day by day. In Europe, for some parts of the local public transportation,

communication between vehicles and traffic lights is practically implemented [17]. In

the USA, a lot of academic and industrial investment is being put into experiment-

ing with the cross-communication of traffic signal status for security purposes [18].

4
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This paradigm transition allows the researcher to exploit the algorithms to their full

capabilities in terms of performance output by leveraging the communicated data to

develop more sophisticated algorithms. This motivates the incorporation of intelligent

and predictive energy management strategies into the connected vehicles utilizing its

advantages and capabilities to minimize energy consumption and reduce emissions.

1.2 Thesis Contribution and Research Scope

The main contribution of this thesis is to present a new approach to solving the

problem of supervisory energy management strategies for connected and autonomous

hybrid electric vehicles (CA-HEV’s). Connected and autonomous vehicles offer ca-

pabilities to incorporate environmental awareness, future prediction, and cloud com-

puting techniques to tackle energy management. A robust strategy can be developed

utilizing the available resources, resulting in as close as possible optimal behavior.

In this thesis, a novel bi-layer eco-driving based energy management strategy is

formulated, which can be utilized in real-time applications in CA-HEV’s. The bi-

layer structure is used to optimize the velocity profile and, ultimately, the vehicle’s

fuel consumption. The bi-layer algorithm helps reduce the computation time of the

algorithm and enables it to be real-time. In the upper layer of the algorithm, a DP

algorithm is used to provide the optimal velocity profile and optimal reference state-of-

charge (SOC) profile. A systematic approach is taken to solve the problem using DP

by decomposing it into two sub-problems, optimizing the velocity, and evaluating the

optimal SOC reference profile. This layer can be solved in the cloud-servers facilitated

by the CA-HEV’s for fast computation as DP suffers from the curse of dimensionality.

Furthermore, a learning-based algorithm based on reinforcement learning (RL) is
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applied to the lower level controller. According to the author’s knowledge, it has not

been explored yet for the CA-HEV’s. The learning-based controller, which can be

implemented on the vehicle in real-time, allows the model to be robust and react to

uncertainties in the environment.

The methodology presented in this thesis is tested in the simulation environment,

where the information gathered by the CA-HEV’s is fed onto the algorithm, and

the results are evaluated. This imitates the real-life scenario involving the CA-HEV’s

where they can gather the trip information, the surrounding environment information

and communicate with the cloud-server for enhanced safety, mobility, and efficiency.

At last, the online simulation results from the RL controller are compared against

those obtained from offline DP to evaluate the effectiveness of the RL agent in an

unknown environment.

To completely understand the algorithm’s advantages and limitations, it is im-

perative to define the scope of the research. To begin with, this thesis is only based

on simulation and modeling work; no hardware analysis or physical testing work is

performed. The simulation is conducted for Toyota Prius 2010 vehicle mode, which

is a full hybrid electric vehicle with a power-split architecture. However, the algo-

rithm can be developed irrespective of the level of electrification of the vehicle and

irrespective of the vehicle’s architecture. The developed vehicle model is quasi-static

in nature, and for some components, constant operating efficiencies are considered. It

is considered that the components are able to follow the feasible requested commands

always, and temperature, fatigue, and physical deformities are ignored.

The developed strategy is based on the eco-driving aspect of the CA-HEV’s, hence

an optimal velocity for a particular starting and final destination, is generated. The

6
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optimal velocity is generated using a DP algorithm, which suffers from the curse of

dimensionality; hence the state-space grid is designed carefully to balance compu-

tation time and performance. For the current thesis work, only certain features of

CA-HEV’s are considered, i.e., it is assumed that CA-HEV can provide the speed

limit for the entire trip. Road grade for the entire trip in this thesis is assumed to be

a constant value. Furthermore, it is assumed that the CA-HEV has the required hard-

ware technology that enables it to communicate with the cloud-server (V2V and V2I

technology enablers). Also, due to the resources and time limitations, the modeling

of vehicle-to-vehicle infrastructure and cloud communication has also been excluded

from the scope of the simulations. The interaction of the CA-HEV with other CAV’s,

traffic roadside units, and pedestrians is ignored, and a single-vehicle scenario is only

considered while generating the optimal velocity profile. At last, it is assumed that

the results generated after training the RL agent will be communicated back to the

vehicle’s embedded controller, such that it tunes and optimizes the controller pa-

rameters to behave accordingly. However, this thesis does not present the embedded

controller tuning. The simulation is only limited to results extraction from the RL

agent and its comparison against the DP offline results.

1.3 Thesis Outline

The rest of the thesis is divided into six chapters. Chapter 2 discusses the funda-

mentals of hybrid electric vehicle powertrains and provides a brief introduction to

CAV’s. Chapter 3 delves deep into the energy management strategies and explains

the standard methodologies for conventional and CA-HEV’s. Chapter 4 explain the
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mathematical formulation of the representative vehicle model and defines the opti-

mal control problem for this thesis. Chapter 5 represents the core of this thesis and

explains the developed novel intelligent EMS for eco-driving of CA-HEV in great

detail. Chapter 6 shows the results evaluated by using the algorithm and provides

an in-depth discussion on them. At last, Chapter 7 gives the conclusion for the

whole thesis and suggests some of the future work that can be done to improve the

algorithm’s performance.
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Chapter 2

Fundamentals of Hybrid Electric

Powertrains and Connected and

Autonomous Vehicles

This chapter discusses the fundamentals of hybrid electric vehicle powertrains and

their various architectures. Furthermore, an introduction to connected and autonomous

vehicles (CAV’s) in the intelligent transportation system (ITS) is presented.

2.1 Introduction

Since the advent of automobiles, people have always wondered about ways to improve

the performance and increase the efficiency of vehicles. One of the most prominent

aspects to tackle this challenge is to develop sophisticated powertrain technology. In

the current era, industries have been focusing on developing modern electric vehicles

with complex powertrains. However, the concept of electric vehicles is not new; in
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fact, it was first successfully introduced in the U.S around the 1890’s [19]. During

that period of time, the electric vehicle market was flourishing. However, later a

drastic transition occurred when the internal combustion engine (ICE) vehicle offered

higher performance and better range capabilities. Additionally, the low cost of fossil

fuel with its high availability transitioned the market towards ICE vehicles.

The automotive industry under the umbrella of ICE’s thrived for decades, and

a significant amount of research was carried out. The large-scale production of cars

such as Ford and Toyota popularized the vehicles and made it possible for ordinary

people to utilize the technology. Automotive industries began making automobiles

cheaper day by day and increasing their performance, efficiency, and desirability. The

rate at which the technology develops is far slower than its popularity. This led to

the biggest downside of the ICE-based vehicles, which came in the form of greenhouse

gases (GHG’s) and depleting fossil fuels.

Rising awareness of the drawbacks of combustion vehicles and increasing govern-

ment regulations over GHG emissions redeveloped the interest of automotive indus-

tries towards a possible solution in the form of electric vehicles. By the end of the 20th

century, industries slowly started working towards a more sustainable approach and

started developing electric vehicles. In 1997 Toyota released the hybrid electric vehi-

cle named Prius, which had both the ICE and the electric motors. More companies

began to focus on electric vehicles as government legislation began promoting electric

vehicles and stringing emission regulations. In 2010, Nissan launched a battery elec-

tric vehicle (BEV) named Leaf as a competitor to Toyota’s Prius. Furthermore, in

2012 Chevrolet launched a plug-in hybrid electric vehicle named Volt, which became

a massive hit in the U.S market. All these vehicles provided much higher efficiency
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and significantly reduced fuel consumption, which was a step towards a greener and

sustainable automotive sector.

An evident difference between the vehicles launched by different brands was in

their level of electrification. In electric vehicles, electrical energy is used to provide the

propelling energy in combination with the chemical energy from the ICE. Depending

upon the size of the electrical energy storage system, they can have various levels of

electrification in them. Different level of electrification leads to different advantages

and drawbacks depending upon their architecture. Conventional vehicles with ICE

fall on one end of the spectrum while full-electric vehicles on the other. They can

broadly be classified into five categories, i.e., micro hybrid, mild hybrid, full hybrid,

plug-in hybrid, and battery electric vehicle as shown in Fig. 2.1.

Micro Hybrid

12 V

0-5%

Mild Hybrid

48+ V
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Full Hybrid
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20-50%

Plug-in Hybrid
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Electrification 

 

C
O

2 
R

ed
uc

tio
n 

Battery Voltage

Electrification Factor

Figure 2.1: Electrification Level for various powertrains (adapted from [1][2])

In the past two decades, full hybrid electric vehicles have received a lot of research

consideration and popularity due to their many advantages. Unlike mild hybrid elec-

tric vehicles, full hybrid vehicles incorporate a generator motor to turn the engine on
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and off. The electric motors can also assist ICE power and can also be used for re-

generative braking. Furthermore, due to the current limitations on batteries, battery

electric vehicles are still in the nascent development phase and require more research

work. Plug-in-hybrid electric vehicles can also be considered a viable option; however,

it still requires the charging infrastructure built-up before they can be commercialized

effectively. Hence, much effort has been put up into increasing the efficiency of the full

hybrid electric vehicles. In a full hybrid electric vehicle, the selection of powertrain

topology plays a vital role and should be determined by size, weight, driving cycle

routine, and performance requirements [20]. The following section discusses some

fundamentals of different vehicle powertrain architectural topologies.

2.2 Hybrid Electric Vehicle Powertrain Architec-

tures

HEV powertrain architectures are classified based on the arrangement of the electric

motors and the ICE. Different architectures offer different advantages and disadvan-

tages and are usually selected based on their application. They are divided into series,

parallel, and series-parallel (more commonly known as power-split) architectures. The

following sub-sections provide a brief introduction to different configurations. More-

over, for the application of this thesis, power-split architecture was selected due to

its multiple advantages that shall be explained below.
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2.2.1 Series Architecture

In a series HEV, the primary role of the ICE is to act as a supplemental energy-

providing source when the battery needs it. In a series configuration, an electric

motor (EM2) is the propelling device, which gets the power from the battery. The

ICE is connected to the generator motor (EM1), which converts the mechanical power

from the ICE to electrical power. There can be multiple ways of positioning the ICE,

EM1 and EM2 as shown in Fig. 2.2. In a series architecture, the power flows in a

single path, i.e. from chemical to mechanical in ICE, from mechanical to electrical

through EM1, and then at last from electrical to mechanical from the battery to the

vehicle by EM2.

Figure 2.2: Series Configurations (adapted from [1])(Copyright permission granted

for thesis/ dissertations from Elsevier, subjected to re-submission of permission if

work is published.)

One of the main advantages of the series architecture is that the ICE is decoupled

from the vehicle. Hence it can be operated at an optimal point at all, thereby reducing

fuel consumption [21]. This type of configuration can be helpful in city drivings,

although there are some significant drawbacks in this architecture. One of them is

that the EM2 is the only propelling device and requires a large battery, requiring a

large engine and generator pair. This adds a lot of weight and inefficiencies to the
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system.

2.2.2 Parallel Architecture

In a parallel HEV, the engine and the electric motor are connected so that at a given

instant, any one of them or both can provide the propelling power. Both the ICE and

EM2 are mechanically connected to the wheel, which enables them this capability.

Here, there can be a variety of ways in which the ICE and the EM can be attached,

giving rise to multiple configurations as shown in Fig. 2.3. In a parallel HEV, one

of the critical tasks is to determine the power distribution of the ICE, and the EM,

which determines the overall efficiency of the system [22].

Figure 2.3: Parallel Configurations (adapted from [1])(Copyright permission granted

for thesis/ dissertations from Elsevier, subjected to re-submission of permission if

work is published.)

These architectures are very suitable for highway driving. As both the EM and

the ICE contribute to supplying power to the vehicles, it is possible to downsize both
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of them and reduce the system’s weight. Also, as the mechanical energy from ICE

and electric energy from EM can directly be used to propel the vehicle, it increases

the efficiency of the system [21]. However, the battery charging is done through the

engine, and therefore might be limited, depending upon the exact arrangement of the

device.

2.2.3 Series-Parallel Architecture

The series-parallel architecture, more commonly known as the power-split architec-

ture, is one of the most widely used architecture in an HEV. It usually involves a

planetary gear set to combine the benefits of the series and the parallel architecture.

In this configuration, the arrangement of the ICE and the electric motors is such that

its power can be divided into two-part: one through the generator to recharge the

battery (series path) and the other one to propel the vehicle (parallel path) along with

the motor. The power-split is achieved by attaching different components to the sun,

ring and carrier of the planetary gears. The power is always flowing through both

parts and can be managed to optimize the transfer. In literature, there are many

ways in which a power-split architecture can be composed, and they can be classi-

fied as input-split, output-split, and compound split [23]. An example of input-split,

output-split and compound split architectures is shown in Fig. 2.4(a), Fig. 2.4(b),

and Fig. 2.4(c) respectively.
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Figure 2.4: Different Series-Parallel Configurations (adapted from [1])(Copyright per-

mission granted for thesis/ dissertations from Elsevier, subjected to re-submission of

permission if work is published.)

The main advantage of the power-split architecture is that the engine, generator

and motor speeds are decoupled, thus allowing an extra degree of freedom in the

system. This extra freedom allows efficient transmission of power during all events

by managing the amount of power flow with its direction. However, the power-split

is more complicated and expensive than the rest two architectures, and the optimal

power distribution problem is a challenging task. The most common arrangement of

power-split comes from the Toyota Prius’s Hybrid Synergy Drive, which incorporates

an ICE, one generator, one motor and one planetary gear set. For the application

of this thesis, the power-split architecture has been selected, whose modelling is de-

scribed in detail in a later chapter.

2.3 Connected and Autonomous Vehicles

Connected and autonomous vehicles (CAV) are vehicles that are equipped with tech-

nologies that enable them to show autonomous capabilities along with connectivity

to communicate with other vehicles, traffic, road, and the cloud servers [24]. The
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future of vehicles can be thought of in two classes: one where connected vehicles are

fully autonomous and drive themselves, and the second one where they still possess

manual control while having advanced communication capability to enhance mobility,

safety, and efficiency [25]. CAV’s are equipped with various communication devices,

which enable them to communicate with the external environment. These commu-

nications can be divided into two categories, namely vehicle-to-vehicle (V2V) and

vehicle-to-infrastructure (V2I) communications [25]. V2V communications are made

up of wireless data transmissions where vehicles communicate with each other, regard-

ing their speed, position, travel direction etc., within an ad-hoc network [26]. This

helps the driver be aware of the surrounding vehicles and enhances the overall safety

and mobility of the traffic. V2V communications will be better than the current em-

bedded system developed by the OEM’s for vehicle safety and are dependent on the

onboard sensors [27]. Unlike the V2V communications, V2I communications allow

the vehicles to exchange information with the roadside units, traffic lights, parking

meters, construction sites etc., [28]. They are similar to V2V communications and are

implemented using the Dedicated Short-Range Communication (DSRC) frequencies

to exchange information [29]. One of the applications of V2I information can be seen

in the Signal Phase and Timing (SPaT) control to achieve fuel saving and manage

traffic congestion by communication of traffic lights and vehicles [30]. A pictorial

representation of CAV’s is presented in Fig. 2.5, where the vehicle is communicating

to other vehicles(V2V), to the roadside infrastructure (V2R), to the onboard sensors

(V2S), and the internet (V2I) [3].

17



M.A.Sc. Thesis - Aashit Rathore McMaster - Mechanical Engineering

Figure 2.5: Connected Vehicles (adapted from [3] c© 2014 IEEE)

CAV’s are on the brink of bringing an imminent change that will revolutionize the

intelligent transportation sector (ITS), leading them toward a greener, safer, and more

autonomous capable environment. ITS has now become a massively international

phenomenon, with support from around the world. ITS refers to the application

of advanced communication, information and electronics technology to tackle the

imminent problems of traffic congestion, mobility, emissions and safety [4]. It is a

system where users, roads and vehicles all exchange information with each other to

form a collective intelligent environment as shown in Fig. 2.6.
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Figure 2.6: Intelligent Transportation System Overview (adapted from [4])

With the massive development of the intelligent transportation sector (ITS) and

the underlying technology enablers, vehicle to vehicle (V2V) and vehicle to infrastruc-

ture (V2I) communication are getting progressively possible and feasible. Companies

like Google, GM, Uber are continually carrying out research to test the CAV tech-

nologies to fast-track their implementation in the real-life environment [31]. CAV’s

enables the vehicle to communicate for gaining real-time and historical road and traf-

fic data, providing an opportunity to improve robustness, efficiency and safety of the

vehicle [32]. Another significant advantage of CAV’s results from the fact that it

allows the actual randomness of the road condition to be modelled into a simulation

environment to reflect actual vehicle performance for better exploitation of energy

management strategies [33].

Over the past years, the powertrain components have reached their nearing peak
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efficiencies. Moreover, the focus has been shifted towards the effect of external fac-

tors, which significantly affect the performance and efficiency of the hybrid electric

powertrains [34]. These actual road conditions significantly affect the performance of

the vehicles in terms of fuel economy. Studies have shown that in the US, Canada

and Europe, fuel economy can deviate from 15-25% from lab testing results when

compared to actual on-road economy [35]. Hence, it is essential to encompass the

environmental effects to correctly estimate the powertrain’s performance for its fuel

consumption and GHG emissions. The environmental effects can be classified into

external factors, driver behaviour or traffic conditions. The external factors involve

road slope, speed limits, ambient conditions, etc., where traffic conditions involve

other vehicles, traffic lights, and route selection. The driver’s behaviour also signifi-

cantly affects the performance of the vehicle. CAV’s technology provides a platform

to incorporate these factors into the supervisory energy management algorithms to

optimally determine the vehicle’s response and estimate a close to real-world fuel

consumption with enhanced safety and mobility.
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Chapter 3

Energy Management Strategies

(EMS)

This chapter provides a detailed introduction to the problem of energy management

in hybrid electric vehicles. The first section provides an introduction to the energy

management strategies (EMS’s). The second section contains information on energy

management strategies (EMS) for conventional vehicles, while the last section deals

with the application of EMS’s in CA-HEV’s under the Intelligent Transportation

System (ITS).

3.1 Introduction

Energy management strategies (EMS’s) play a vital role in determining the fuel econ-

omy and carbon emission in hybrid electric vehicles (HEV’s). EMS refers to algo-

rithms developed to decide the power distribution from various energy sources and

gear ratios in an HEV at each instant such that optimal desired behaviour can be
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achieved. In an HEV, the primary purpose of the EMS is to decide the power distri-

bution between the ICE and the EM’s, such that vehicle power demands and SOC

constraints are satisfied, and an optimal fuel economy can be achieved. Various EMS’s

are available in the literature, with different advantages and limitations. To under-

stand the role of the EMS controller in an HEV, Fig. 3.1 shows a representative

pictorial description.

Driver EMS Controller

Low-Level Controller

ICE EM1 EM2 Gear Battery

Feedback

Fe
ed

ba
ck

Feedback

Demand

Route
Information

Vehicle
Parameters

Control
Outputs

Figure 3.1: EMS operation overview

Fig. 3.1 shows a vehicle model controller, an EMS controller and a low-level

controller which controls the individual components in an HEV. The driver model

is responsible for modelling the driving characteristic of the driver considering the

trip route and vehicle information. This decides the total vehicle power demand,

which is then sent to the EMS controller. The EMS controller depending upon the

driver request, the component feedback, and the utilized strategy, makes the reference

control outputs decisions. These control outputs are sent to the low-level controller,

responsible for operating the components, which determines the next state of the

vehicle. These next states’ outputs are feedback to the controllers as an input from
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the previous state, and the loop continues.

Now, as mentioned, several available strategies can be modelled in the EMS con-

troller. The EMS selection depends on the vehicle configuration, available future

information, computing capabilities of the embedded controller, and the algorithm’s

limitations. In the next section, the fundamentals of a few strategies are presented

for the full HEV.

3.2 EMS for Conventional Vehicles

This section contains a brief introduction to some of the typical EMS’s available in

the literature. Each EMS has different applications, and based on the requirements,

the appropriate one can be selected. EMS’s can be broadly classified into three cate-

gories: rule-based strategies, optimization-based strategies and data-driven intelligent

strategies [36][37]. The optimization-based strategies can again be classified into real-

time strategies and global-optimal strategies, while rule-based can be of deterministic

nature or fuzzy nature [38]. Fig. 3.2 shows the classification of strategies and some

of the standard algorithms under each category.
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Figure 3.2: EMS for conventional vehicle

3.2.1 Rule-Based Strategies

Rule-based strategies are the most common strategy used by the automobile industries

due to their simple implementation, and their real-time capability [39]. They are

designed based on heuristic rules, intuition and human experience, without any a

priori knowledge of the drive cycle [38]. Therefore, they are highly time-consuming,

tedious and their performance is based on how well its designed [40]. As shown in Fig.

3.2, they are generally divided into two categories: deterministic and fuzzy rule-based.

The central concept behind the rule-based strategies is based on the ”load-levelling”

technique, where the actual operating point of the ICE is shifted towards the points

that can provide the most optimal efficiency along with minimum emissions [41].

However, the rules in the rule-based strategies can be based on many factors. For

example, in an HEV, the rules can be based on the power demand from the driver,

the SOC of the battery, and the vehicle’s velocity. All of them influence how the

algorithm will determine the most optimal operating points for different components.
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In deterministic rule-based strategies, the rules are implemented using a look-up table

or if-else conditions. They are hardcoded, meaning they do not change with change

in situation or time. Although in fuzzy rule-based strategies, the rules can be ad-

justed according to the situation so that they can lead to more optimal solutions

[42]. Therefore, it is evident that it is not easy to develop the rules in a rule-based

strategy, and it often leads to sub-optimal results, which is one of the most significant

drawbacks of these algorithms. Therefore, optimization-based strategies are getting

more and more focus due to their near-optimal results and robustness to system state

change.

3.2.2 Optimization-based Strategies

Optimization-based strategies have been a hot topic in supervisory EMS in HEV for

the last two decades. These strategies provide an optimal solution to the problem that

has been formulated and decides the control action based on it. These optimization-

based strategies can be of two types depending upon their optimality: global optimal

strategies and local optimal strategies [43]. The global optimal strategies are acuausal

in nature, i.e. they require the complete driving cycle information beforehand to

provide the global optimal results. Therefore, they are offline in implementation and

cannot be used in real-time. One of the most prominent global optimal strategies is

DP, which gives the global optimal results [44]. On the other hand, the local optimal

strategies work on the principle of optimizing an objective function instantaneously

and are therefore causal in nature. They can be implemented in real-time; however,

they do not guarantee global optimal results and provides sub-optimal results. The

most recognized real-time instantaneous optimization-based strategies are Equivalent
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Consumption Minimization Strategy (ECMS), PMP and MPC [2]. In the following

briefs, these algorithms are explained with some of their advantages and drawbacks.

Dynamic Programming

One of the most famous algorithms used for finding the global optimal solution in

the case of EMS’s is DP [45]. DP is a numerical method that can solve a problem

for its optimal solution by making multistage decisions for its sub-problems [46].

However, DP is a computationally expensive offline algorithm that can only provide

the optimum results if the complete drive cycle is known beforehand. Richard Bellman

first established DP in 1957, where he introduced the concept of Bellman’s principle

of optimality [47]. The principle is stated as ” An optimal policy has the property

that whatever the initial state and initial decisions are, the remaining decisions must

constitute an optimal policy with regard to the state resulting from the first decision”

[46][47].

As this thesis utilizes dynamic programming to develop an intelligent eco-driving

strategy, a detailed mathematical explanation of DP is provided here. First of all,

to apply the DP to any problem, it needs to be formulated in a particular manner.

In the case of EMS for HEV’s, the problem needs to be discretized. Consider the

equation to describe the next state of the system as shown in Eq.3.1.

xk+1 = f(xk, uk) (3.1)

here, xk+1 is the system’s next state at the time k + 1, and uk is the action

taken at the time k. Let’s take a control policy over the problem horizon as u =
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{u0, u1, u2, ....uN−1} for the cost function J . The cost function J is defined as:

Jπ = gN(xN) + φN(xN) +
N−1∑
k=0

Lk(xk, uk) + φk(xk) (3.2)

Jπ is the total cost of the function over the horizon of N steps. Here gN(xN) +

φN(xN) is the terminal cost of the function, i.e. it represents how good it is to be at

that state at the end of the horizon. Lk(xk, uk) is the instantaneous transition cost

(also called as arc cost), which tells the cost of transitioning from state xk by taking

control action uk. φk(xk) is a penalty term generally included in the cost function to

enforce state constraints over the system, so it does not take infeasible states. The

optimal policy that results from optimizing the cost function can be written as shown

in Eq. 3.3 for the minimization problem.

u∗ = arg min Jπ
π∈Π

(3.3)

Here, u∗ is the optimal control action sequence that minimizes the cost function

over the given horizon, and Π is all admissible control policies. The DP finds an

optimal policy by working backwards on the time horizon, and finding the optimal

cost-to-go at each time step and selecting and storing those control sequences in a

matrix u∗, representing the optimal actions at each time instant and the state xk.

The cost-to-go Y , from time k and state xk for the problem is defined as shown in

Eq. 3.4.

Yk(xk, k) = gN(xN) + φN(xN) +
N−1∑
k=k

Lk(xk, uk) + φk(xk) (3.4)

Therefore, as the DP starts from the last step in the backward simulation, the
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terminal cost of each state is the optimal cost-to-go at the N time. The optimal

cost-to-go at a given time and given state are represented as Y (xk, k). Now, for the

N−1 time step, the optimal control sequence can be evaluated by finding the optimal

cost-to-go, which can be written as shown in Eq. 3.5.

Y (xk, N − 1) = arg mingN(xN) + φN(xN) +
N−1∑

k=N−1

Lk(xk, uk) + φk(xk)

u∈Uk

(3.5)

Similarly, for the N − 2, the optimal cost-to-go can be written as:

Y (xk, N − 2) = arg mingN(xN) + φN(xN) +
N−1∑

k=N−2

Lk(xk, uk) + φk(xk)

u∈Uk

=⇒ Y (xk, N − 2) = arg min(Lk(sk, uk) + YN−1(fk(xk, uk), uk))
u∈Uk

(3.6)

Hence, by understanding the above equation, it can be seen that optimal cost-to-

go at a particular time-step can be written as a summation of the arc-cost and the

optimal cos-to-go at one plus step. Thereby, by preceding back in the time horizon,

the DP can calculate the optimal policy over the horizon. The optimal cost-to-go at

the last iteration, i.e. Y (x1, 1), gives the optimal cost of the problem and its argument

the optimal control policy. These evaluated and stored optimal cost-to-go matrix can

be used in forward simulations by mapping the optimal cost with its optimal control

sequence and utilizing interpolation wherever necessary.

As already mentioned, the DP is one of the most widely regarded algorithms

for finding the optimal benchmark solutions in EM for HEV’s. However, as the
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DP algorithm formulation indicates, the algorithm’s complexity depends on state-

space and control-space. Therefore it makes it computationally very expensive, and

the DP suffers from the curse of dimensionality. Furthermore, due to its backward

propagation in the horizon, it is acausal in nature and requires a priori knowledge of

the drive cycle. Hence, the DP is used as a benchmark for testing and validation of

the real-time implementable computationally cheap and sub-optimal algorithms.

Equivalent Consumption Minimization Strategy

ECMS is one of the most widely investigated real-time strategies due to its straight-

forward implementation being computationally inexpensive. ECMS is a generic algo-

rithm that works on the principle of instantaneous optimization of power distribution

while respecting global and local boundary conditions on state and action vector

space [48]. It is based on the concept of converting electrical energy consumption

into equivalent fuel consumption and then minimizing their sum [49]. It is an instan-

taneous optimization approach that gives a sub-optimal solution. For the case of EM

in HEV’s, the optimal solution is decided based on minimization of equivalent fuel

consumption of the powertrain to achieve maximum fuel economy [50]. Equivalent

fuel consumption is the summation of fuel used by the engine, and the equivalent fuel

that will be consumed by the electrical path to bring back the battery to its original

SOC value (as it needs to in charge sustaining mode) in the future by the current

engine running conditions [51]. As the comparison of fuel energy and electrical energy

cannot be made directly, an equivalence factor was introduced. To physically under-

stand the EF, it can be regarded as a sequence of efficiencies by which combustion
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energy is converted into electrical energy [46]. And therefore, it changes with chang-

ing operating points of EM and ICE. Hence accordingly, it can be considered that

the overall fuel consumption is a function of EF and using systematic operations, the

value of EF can be determined for the minimization of objective function constrained

to sustainable SOC [52].

As mentioned, the ECMS is an instantaneous optimization of the equivalent fuel

consumption, its cost function can be formulated as shown in Eq. 3.7.

Jt = ṁfuel(u) + SPelec(u) (3.7)

Here, ṁfuel(u) is the fuel consumption of the ICE in a HEV, at given instant t,

with the control policy being u. The S is the equivalence factor, and the Pelec is the

electric power consumed at the given instant which is also a function of the control

action. Instant minimization of the cost function Jt, at the given instant, yield the

optimal control outputs for the given step and can be written as shown below:

u∗ = argmin Jt
u∈U

(3.8)

ECMS algorithm is susceptible to the equivalence factor and determines the be-

haviour and performance of the algorithm. Hence, much research has been carried

out, and the emphasis has been on formulating a robust and accurate way to predict

the value of S. To tackle this, the concept of adaptive ECMS came, where different

techniques to evaluate the value of the equivalence factor were suggested [53] [54].

Although its implementation is straightforward, due to its sensitivity towards the

equivalence factor and its sub-optimal results, research is now shifting towards more
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intelligent and robust algorithms.

Pontryagin’s Minimum Principle

PMP is an optimal control method that can be applied in the case of energy man-

agement for HEV’s [55]. It provides a set of necessary conditions for the trajectory

to be an optimal one; however, it is not a sufficient condition. Therefore, the opti-

mal policy will always satisfy the PMP criterion, but the converse is not true. The

PMP works on the principle of instantaneous optimization of the cost function that

is formulated in terms of Hamiltonian of the function [53]. For the system, with the

two-point boundary conditions as x(t0) = x0 and x(tN) = xN , and the cost function

(J) as shown in Eq. 3.9, the Hamiltonian (H) can be defined as:

J = φ(x(tN)) +

∫ tN

t0

L(x(t), u(t), t), dt

=⇒ H(x(t), u(t), λ(t), t) = L(x(t), u(t), t) + λ(t)T .f(x(t), u(t), t)

(3.9)

where, f(x(t), u(t), t) is the system’s governing dynamic equation, L(x(t), u(t), t)

is the instantaneous cost, λ(t) is the co-state of the system represented by a vector

of variables. According to the PMP criterion for the EM of the HEV, if u∗ is the
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optimal control policy, then the following needs to hold true [55]:

ẋ∗(t) =
∂H

∂λ
= f(x∗(t), u∗(t), t)

λ̇∗(t) = −∂H
∂x

x∗(t0) = x0

x∗(tN) = xN

H(x∗(t), u(t), λ∗(t), t) ≥ H(x∗(t),∗ u(t), λ∗(t), t)∀u(t) ∈ U(t),∀ ∈ [t0, tN ]

(3.10)

Now, in the case of EM for full HEV, due to the same initial and final boundary

condition for the SOC, the −∂H
∂x

term becomes 0. Hence, the co-state for the optimal

solution will be constant during the whole trip. Unfortunately, as the PMP only

provides the necessary conditions, the optimal λ cannot be found out beforehand and

needs to be tuned or found out by using the shooting method. Hence, in real-time

applications, the PMP provides sub-optimal results; however, if optimal λ is pre-

calculated, the PMP provides the global optimal solutions, which is not possible in

real-time applications.

Model Predictive Control

In recent years, MPC has drawn the attention of researchers due to its robustness

to environmental changes and increasing computational capabilities. They can be

used in systems with higher-order dynamics and non-linearity. MPC-based strategies

combine the advantages of global and instantaneous-based optimization techniques,

and they can be implemented in real-time [56]. They are capable of handling multiple

state constraints, and multivariable optimization [57]. They work on the principle of
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iteratively evaluating the optimal control for a receding horizon and then utilizing

only first, or some initial control actions [58]. For the application of EM for HEV, the

MPC techniques have been used in combination with other techniques like DP, RL,

ECMS in the literature to exploit the advantages of the MPC [59][60][61]. The MPC

provides the capability to predict the optimal future control inputs and be real-time

implementable; however, this leads to its biggest drawback. The MPC technique is

highly dependent on the accuracy of the prediction models, actual data, and horizon

length, which significantly affect the performance. Furthermore, as it provides the

optimal solution for the receding horizon, the overall solution is sub-optimal.

3.2.3 Learning-based Strategies

Apart from the rule-based and optimization-based strategies, where rules and opti-

mization techniques govern the EM of HEV, the learning-based strategies are based

on machine learning techniques [62]. These strategies are not a-priori, i.e. they do not

require future information, can be model-free, and provide robustness to environmen-

tal changes [63]. Learning-based strategies can learn from the data pool collected from

the real world or can learn from the historical data of the vehicle, which allows them

to be real-time applicable [64]. The learning-based strategies provide sub-optimal

results compared to global optimal strategies; however, with appropriate formulation

and enough training, they can achieve results very close to optimal results [65]. The

learning-based EMS for HEV’s is an up-and-coming field due to its capability to learn,

adapt and improvise according to the outside disturbances [66]. A detailed explana-

tion of the most common learning-based strategy, Reinforcement Learning (RL), is

given in the subsequent section.

33



M.A.Sc. Thesis - Aashit Rathore McMaster - Mechanical Engineering

Reinforcement Learning

Reinforcement Learning (RL) is a type of machine learning algorithm that can be used

for the application of energy management and has gained much attention in recent

years due to its similarity with DP [67][68]. It can mimic the human decision-making

capability, which improves over time as it gets more experience [69][70]. In the RL,

there is a decision-maker controller that is known as the agent, and it interacts with

the system (outside environment), which is known as the environment. The agent and

the environment continually communicate with each other in terms of states, action

and reward [71]. The interaction between the agent and the environment, which

constitutes a sequential decision-making problem, is generally modelled as Markov

Decision Problem (MDP) as shown in Fig. 3.3 [72].

Environment

RL Agent

Environment

RL Agent

Environment

RL Agent

(Time-step)t-1

St-1

At-1

rt-2

t-1

(Time-step)t (Time-step)t+1

St
rt-1

At

t

St+1
rt

At+1

t+1

St+2

rt+1

Figure 3.3: Interaction of Agent and Environment

At a given time-step in either a finite or an infinite horizon episode, the agent ob-

serves only those states of the environment (St), which are indispensable for deciding

actions (At). The agent will observe two events at the next time-step (t + 1) due to

the actions At imparted on the environment at the current time-step (t).

• The agent will receive a reward rt from the environment.
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• The agent will see the environment (E ) making the transition to a new state

St+1.

For a finite horizon episode problem, as shown in Fig.3.3, the process mentioned

above continues until the agent reaches the terminal state ST and receives a cumula-

tive return (Rt) at the end of an episode. The return (Rt =
∑T

k=1 γ
krt+k) is denoted

as the return caused by the action At. The Return Rt can be re-written as following

equation:

Rt = rt + Rt+1 = rt + γrt+1 + Rt+2

= rt + γrt+1 + γ2rt+2 + Rt+3

= rt + γrt+1 + γ2rt+2 + · · ·+ γT−2rT−2 + RT−1

(3.11)

, where γ is the discount factor (γ ∈ (0, 1]) regulating future rewards’ contribution

to the computation of return from the current time-step.

Due to application of an action At ∈ A by the agent at a state St ∈ S, the envi-

ronment makes a transition from St to a new state St+1 ∈ S., based on a probability

distribution over the set of possible transitions. The transition probability matrix

is referred as TPF : S ′ × At × St → [0, 1], i.e. the probability of landing on state

S ′ after making control action At in state St is denoted by TPM(St, At, S
′). TPM

satisfies the following mathematical equation for the entire feasible action-state and
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state-space.

0 ≤ TPM(St, At, S
′) ≤ 1∑

S′∈S

TPM(St, At, S
′) = 1

(3.12)

The transition probability matrix is conceptualized as the conditional probability

of landing in state S ′ at time t + 1 if action At was selected at state St at time

t as TPM(St, At, S
′
t+1) = P(S ′t+1|St, At). The transition probability matrix and

the reward function are the two indispensable components of the Markov decision

problem.

The rule which governs the agent’s choice of action (A) for the observed state (S)

is known as the control policy (π). Policy is a mapping from n-dimensional state space

S : S1, S2, · · · , Sn 7→ Rn to m-dimensional action space A : A1, A2, · · · , Am 7→ Rm.

The policy (π) of an RL agent is optimized continuously until it converges to the

optimal policy π∗.

Obtaining Optimal Policy in MDP

The agent takes the assistance of two decision-making parameters for optimizing

its control policy.

State-value function

First, the state-value function assists the agent in estimating the goodness of a cer-

tain state quantitatively. Second, the action-value function quantitatively estimates

how good it to take certain action in a certain state. A value function of a state S

under the policy π, denoted as Vπ(S), is the expected cumulative return at the end
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of the episode from state S onward and following the policy π thereafter.

Vπ(S) = Eπ

{
∞∑
k=0

γkrt+k|St = S

}
(3.13)

Action-value function

Similarly, an action value function, denoted as Qπ(S,A) : S × A → Q, is the

expected return at the end of an episodic MDP when taking action A at the state S

and following policy π thereafter.

Qπ(A,A) = Eπ

{
∞∑
k=0

γkrt+k|St = S, At = A

}
(3.14)

The state-value function satisfy the following recursive property:

Vπ(S) = Eπ
{
rt + γrt+1 + γ2rt+2 + ...|St = S

}
= Eπ

{ ∞∑
k=0

γkrt+k|St = S
} (3.15)

Q-learning Algorithm

The above description of RL provides the conceptualization and formulation of

the algorithm and explains the details of the theory. The next task that remains

is to find the optimal control policy using the RL algorithm. There are certain

methods by which the RL algorithm can be implemented to find the optimal control

policy like Temporal Difference learning, Deep Q-Network (DQN), SARSA, actor-

critic, Q-learning etc. [71][66][73][74]. This thesis utilizes the Q-learning algorithm

to implement the RL for the EMS.
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In the real-time implementation of the RL algorithm, the instantaneous action

is chosen by selecting the argument for the minimum action-value function at ev-

ery state in the episode. It is based on the local optimization of the action-value

function; however, it should be understood that the action-value function is the long-

time cumulative return instead of the instant reward. Hence, it considers the future

states while minimizing instantaneously and can provide global-optimal results if each

action-value function for every state-action pair was known accurately beforehand.

With a full model of the MDP, the accurate evaluation of the action-value func-

tion can be achieved. However, without the TPM, it becomes cumbersome to do

so. Therefore, there is a need for a systematic update of the action-value function

(Q(s, a)) that can lead to accurate estimation. This is where the Q-learning algo-

rithm comes into the picture based on Bellman’s principle of optimality and provides

an equation to update the Q(s, a) as shown in Eq. 3.16.

Qk+1(st, at) = Qk(st, at) + α

{
rt + γmax

a
Qk(st+1, a)−Qk(st, at)

}
(3.16)

In Q-learning algorithm, the Q(s, a) is a key parameter for all state-action pair,

and is stored as a Q-matrix, updated by the above-mention rule.
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3.3 EMS for Connected and Autonomous Hybrid

Electric Vehicles

This section contains detailed information about the EMS for CA-HEV’s under the

ITS. As mentioned, the CA-HEV’s provides the capabilities to incorporate external

factors into the EMS with the help of communication between the host and the sur-

rounding, resulting in the different formulation of the energy management objective in

the CA-HEV’s. The above-listed techniques for energy management of conventional

HEV’s can still be used in the EMS for CA-HEV’s, although in a different manner.

Generally, EMSs under the ITS can be divided into two categories: Single-vehicle

scenarios and multi-vehicle scenarios [75]. The figure shown in Fig. 3.4, provides an

outlook for the energy management for CA-HEV’s under the ITS.

In single-vehicle scenarios, only the ego vehicle (vehicle into consideration) is taken

into account, and inter-vehicle interactions are not considered. In multi-vehicle sce-

narios, the EMS can be formulated for the whole platoon of vehicles or vehicle fol-

lowing scenarios are considered by accounting for inter-vehicle communications. This

thesis focuses on the EMS for the ego vehicle, without its interaction with other

vehicles. Therefore, in the subsequent subsections, the EMS of CA-HEV under sin-

gle vehicle scenarios is explained in detail, and the multi-vehicle scenarios are not

discussed.

3.3.1 Single Vehicle Scenarios

In single-vehicle scenarios, the primary objective is to minimize the fuel consumption

and/or carbon emissions of the ego HEV by optimizing the power split considering
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Figure 3.4: EMS for Connected vehicles

overall traffic or road condition information’s [76][77]. They can be achieved by devel-

oping a single integrated upper, and lower level or as two separate layers exchanging

information [78]. Availability of future information or its prediction in the defined

horizon allows the acausal EMSs to exploit the data to enhance their performance

in real-time, providing some robustness into the system. Many factors like selection

of optimization algorithm, control objectives, the timescale of prediction, the fidelity

of models play crucial roles in determining the performance of the EMSs [77]. One
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way of exploiting the full potential EMS is by collecting real-time data from the traf-

fic to analyze and process them on the cloud servers and then feeding the optimal

behaviour for the vehicle to the drivers as guidelines [79]. Depending upon the type

of information gathered by the vehicle, the EMS for single-vehicle scenarios can fur-

ther be classified into three types: Route-based, predictive based, and Eco-driving

(velocity-based) [76]. The following section provides a brief introduction to all the

three types of energy management in CA-HEV’s.

Route-Based EMS

Route-based EMSs are devised for a longer time horizon considering road data, speed

limits, average traffic data, etc., for a target trip to minimize fuel consumption or

travel time. By obtaining the upcoming trip information, the performance level of

the EMS can be significantly improved [80]. It is understandable that the route

consisting of more traffic congestion, stop signs, and higher road grade will require

more energy and hence more fuel consumption. In literature [81], the authors utilize

the stochastic optimal control problem of HEV for energy management formulation of

multiple routes incorporating uncertainties in traffic information with varying levels

of available future data. A path planning strategy is proposed in [82] to provide the

shortest path and the minimum travel time path by utilizing real-time communication

through V2V, V2I and the cloud server. In short, the route-based EMSs examine the

effects of available information for a longer horizon to optimize the performance in

target trips [76]. Furthermore, they can be beneficial for increasing the response

time of emergency vehicles and also help increase efficiency in collaborative parking

trajectory planning for autonomous vehicles [33].
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Predictive EMS

Predictive EMS, as the name suggests, can predict future information with some

certainty to take full advantage of CA-HEV’s in the vehicle’s energy management.

The predictive behaviour of the algorithm incorporates robustness in the system to

the external disturbances and allows for more efficient control concerning changes in

the driving and road conditions [76]. Authors in [83] developed a predictive energy

management controller utilizing the real-time road information available in the city to

predict the velocity profile for the vehicle. Furthermore, a reference SOC estimation

technique is developed with the help of the Monte Carlo strategy over the prediction

horizon to enhance the vehicle’s fuel economy. Similarly, the authors in [84] focus

on predicting the velocity profile of the ego vehicle by utilizing a chaining neural

network (CNN) and ECMS with the help of information extracted from V2V and

V2I communications. In brief, the predictive EMS tries to take full advantage of

information gathered to forecast the critical data required in the energy management

to yield optimal results by adapting to the changing environment in real-time [76].

However, prediction accuracy is still one of the major concerns in these algorithms as

they can significantly affect the results.

Eco-driving Based EMS

Eco-driving is a cost-effective, relatively low-cost and time-efficient method to improve

the fuel economy of the vehicle up to 45% [85]. A variety of factors such as accel-

eration/deceleration of the vehicle, idling time of the engine, road grade and speed

limits, route choice, vehicle parameters play crucial roles in devising the eco-driving

based EMS [86]. Eco-driving constitutes formulation of optimal control problem such
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that it results in optimal velocity profile for the specific driving route considering the

energy consumption. The devised velocity profile is then tracked, and generally, the

inner controller decides the power split between the electrical and mechanical sources

[78]. A more common approach is to develop two separate layers: an upper layer

and a lower layer to find the optimal velocity profile and perform energy manage-

ment, respectively [78]. A typical case is shown in [87], where the authors develop

a two-level control strategy to control the velocity and power distribution of the ve-

hicle. The higher level utilizes a nonlinear time-varying Krylov subspace method to

find the optimal vehicle velocity trajectory. The lower level decides the torque split

with gear shift by using PMP in addition to the numerical framework of MPC. The

literature aimed to improve computational efficiency by decoupling a bigger problem

and achieve fuel economy improvements. A similar two decoupled layer algorithm can

be found in [88], where the authors use signal phase timings information to generate

optimal cruising velocity profiles for a group of connected vehicles. They utilize an

MPC-based framework in the upper level to generate the velocity profiles that com-

prise fuel economy and safety and use a DP algorithm in the lower level for energy

management. The figure in Fig. 3.5 shows a usual representation of the bi-layer

structure of the Eco-driving implementation in an HEV.
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Figure 3.5: Overview of Eco-driving based EMS
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Authors in [89] also developed a two-layer algorithm based on stochastic MPC

in the upper layer and ECMS in the lower layer utilizing the signal phase timing.

They additionally introduced some random error modelled in the form of a Markov

process to add more realistic behaviour in the algorithm with improved robustness.

In a two-layer structure, the velocity generated by the upper layer decides the power

demand of the vehicle and is tracked by the lower layer through energy distribution.

The authors in [90] introduce a flexible power demand architecture, where they pro-

pose some flexibility in tracking the power demand generated by the upper layer so

that the fuel economy can be improved. PMP solves the optimization problem in

the lower level in this brief. Apart from the decoupled separate layer, researchers

have also developed integrated layers devising the optimal velocity profile based on

energy consumption for eco-driving scenarios [91]. In literature [79], the authors solve

the optimal control problem using the DP algorithm that shows an improvement of

5%-15% in fuel economy. In the mentioned paper, the driver is first required to send

the trip information to the cloud server, which then collects the road and traffic con-

ditions to generate an optimal velocity profile by minimizing the fuel consumption

using the DP. Literature [92] is based on integrated two-layers for optimization of

the velocity profile and fuel consumption in the rolling terrain scenario. The algo-

rithm takes input road information such as speed limits and gradients to optimize

the vehicle’s acceleration at the vehicle level. It optimizes the power-split ratio at the

powertrain level. An improvement of 5%-8.9% on major arterials is shown compared

to conventional HEV and 15.7%- to 16.9% on collector roads.

In summary, eco-driving based EMS is to devise a control algorithm that can find

the optimal velocity profile by collecting necessary input data for a given trip and
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incorporating it into the EMS controller to minimize fuel consumption. As mentioned,

eco-driving can significantly reduce the fuel consumption of the vehicle and increase

the safety and mobility of traffic [85][91]. Although, it also depends upon the data

obtained via V2V and V2I communications and driver’s driving characteristics which

influence the level of fuel economy that can be enhanced. Due to easy-implementable

and low-cost advantages, the eco-driving method has received critical attention from

researchers over the past two decades, leading to extensive research in the field. This

thesis also focuses on developing an intelligent eco-driving based EMS for the CA-

HEV’s, and its in-depth formulation is explained in the later chapter.
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Chapter 4

Vehicle Modeling and Control

Problem

A representative vehicle model is an essential component for the development of EMS

as it governs the accuracy of the vehicle’s behaviour. In this chapter, the formulation

for the vehicle model is explained in detail. Furthermore, as the topic of this thesis is

the EMS of CA-HEV’s, the optimal control problem formulation for the EMS is also

discussed in this chapter.

The main components in the HEV powertrain are the propelling devices, energy

sources and power transmitting devices. For this thesis, the Toyota Prius 2010 vehicle

is selected as it one most know power-split architecture. It contains an ICE, two

electric machines (MGA and MGB), one high voltage battery, two planetary gear sets,

and the final differential. The vehicle model is built as backward-facing and developed

on MATLAB R2019b. The vehicle model is in a quasi-static manner, transmission

transients are neglected, as it is necessary to solve dynamic programming.
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4.1 Vehicle Components

This section describes the various components incorporated in the vehicle and explains

their dynamics. The data for multiple components are collected from research papers,

technical reports and colleagues.

4.1.1 Vehicle Model

The vehicle is modelled by considering its longitudinal dynamics. The lateral dynam-

ics of the vehicle are ignored. Fig. 4.1 shows the free body diagram of the vehicle,

where v is the vehicle velocity, and a is the acceleration of the vehicle.

F a

F t

F r
mg

v,a

Figure 4.1: Free body diagram of longitudinal dynamics of vehicle

Here, Fa is the aerodynamic resistance on the vehicle, Ft is the traction force

on the vehicle, Fr is the rolling resistance, and m is the mass of the vehicle. g is
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the gravitational constant, and θ is the road slope. Now, according to Newtons, the

second law of motion, the acceleration of the vehicle can be written as:

ma = Ft − Fa − Fr −mg sin θ (4.1)

where mgsinθ is the force acting on the vehicle due to gravity in the longitudinal

direction. The rolling resistance on the vehicle and the aerodynamic resistance is

written as shown in Eq. 4.2::

Fr = mg cos θ(µ1 + µ2v)

Fa =
1

2
ρairAfCdv

2
(4.2)

Here, µ1 and µ2 are the rolling resistance coefficients, ρair is the density of the

air, Af is the frontal area of the vehicle, and Cd is the drag coefficient for the vehicle.

Therefore, substituting the Eq. 4.2 in Eq. 4.1, the acceleration of the vehicle can be

calculated, given that the traction force is available. As the vehicle’s formulation is

backward-facing, the traction force can be calculated based on Eq. 4.3 for a known

drive cycle.

Ft = ma+
1

2
ρairAfCdv

2 +mg cos θ(µ1 + µ2v) +mg sin θ (4.3)

Once, the traction force is calculated the traction torque required on the wheels

(Tt), and the angular velocity of the wheels can be calculated as:

Tt = Ftrwheel

wwheel =
v

rwheel

(4.4)
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The table shown in Tab. 4.1, shows the vehicle parameters used for modeling the

vehicle.

Table 4.1: Toyota Prius 2010 Parameters
Symbol Parameter Value

m vehicle mass 1541.7 kg
r0, r1 rolling resistances 0.002, 0.0002 (m/s)−1

ρair density of air 1.225 kg/m3

Af vehicle frontal area 2.142 m3

Cd aerodynamic drag 0.28
rwheel wheel radius 0.287 m
g acceleration due to gravity 9.81 m/s2

4.1.2 Internal Combustion Engine

As per the scope of the thesis, a quasi-static model of the ICE is used for the sim-

ulations. The Toyota Prius 2010 is a 1.8 L petrol engine with a maximum power of

73 kW and a peak torque of 142 Nm. The brake specific fuel consumption (BSFC)

of the engine is shown in Fig. 4.2. It also shows the maximum torque line for the

engine.
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Figure 4.2: Engine BSFC Map (g/kWh) (adapted from [5])

At a given instant the BSFC of the engine is the function of its angular speed and

its torque, and the mass flow rate of the fuel (ṁf ) of the engine can be calculated as

shown below:

BSFC = f(ωeng,Teng)

ṁf =
ωengTengBSFC

3.6× 106

(4.5)

Here the ωeng is the instantaneous angular speed of the engine in rad/s, and Teng

is the instantaneous output torque in Nm. The maximum torque line represents the

maximum amount of torque the ICE can provide at a given instant. ICE’s maximum

torque output at a given instant is the function of its angular velocity. These are the
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physical limitation on the operation of the ICE and are shown in Eq. 4.6.

0 ≤ ωeng ≤ ωeng,max

0 ≤ Teng ≤ Teng,max(ωeng)

(4.6)

4.1.3 Electric Machines

The Toyota Prius 2010 has two electric motors in its powertrain, one act as a generator

motor (MGA), and the second act as an electric motor (MGB). However, it should

be noted here that both electric machines can be used as generator motor or electric

motor depending upon the power supplied by the ICE. Here also similar to ICE, a

quasi-static model of the electric motors is used.

A generator motor (MGA) is generally used to crank start the engine, convert

the power from the ICE to electrical energy, and store it in the battery. Its primary

function is not to support the propelling of the vehicle, and therefore it is usually

smaller in size. The MGA provides a peak power of 36 kW with a maximum torque

of 46 Nm. The combined efficiency of the inverter plus MGA can be seen in Fig.

4.3. Furthermore, it also shows the maximum operating torque line for the generator

motor.
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Figure 4.3: MGA Characteristic Curves (adapted from [5])

As it can be seen from Fig. 4.3, the generator efficiency is a function of output

angular velocity and its output torque. Moreover, the maximum output torque is the

function of its angular velocity. The motor output power (PMGA) can be written as

shown in Eq. 4.7.

ηMGA = f(ωMGA, TMGA)

PMGA = ωMGATMGAη
−sgn(ωMGATMGA)
MGA

(4.7)

where ωMGA is the instantaneous angular speed of the MGA, TMGA is the instan-

taneous output torque of the MGA. The sgn is a function that outputs +1 if the

sign of ωMGATMGA is positive and outputs -1 if the sign of ωMGATMGA is negative.
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Furthermore, due to physical limitations on MGA construction, boundary conditions

are applied to its angular speed and torque, as shown in Eq. 4.8.

−ωMGA,min ≤ ωMGA ≤ ωMGA,max

TMGA,min(ωMGA) ≤ TMGA ≤ TMGA,max(ωMGA)

(4.8)

Now, the primary purpose of the electric motor (MGB) is to assist the ICE in

driving the vehicle. It also acts as a generator during regenerative braking and can

further recharge the battery if the power provided by the ICE is greater than that of

driver demand. Hence, it is necessary to keep the size of the MGB big to account for

its requirements. The MGB provides a peak power of 60 kW and a maximum torque

of 200 Nm. The combined efficiency map for the MGB and its inverter is shown in

Fig. 4.4 along with its maximum torque line.
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Figure 4.4: MGB Characteristic Curves (adapted from [5])

Similar to the MGA, the efficiency of the MGB is a function of its angular speed

and output torque, and the maximum output torque capacity is the function of its

angular velocity. The output power of the MGB (PMGB) can be written as shown in

Eq. 4.9.

ηMGB = f(ωMGB, TMGB)

PMGB = ωMGBTMGBη
−sgn(ωMGBTMGB)
MGB

(4.9)

where, ωMGB is the instantaneous angular speed of the MGA, TMGB is the in-

stantaneous output torque of the MGB, and the sgn is a sign function. Furthermore,

similarly due to physical limitations on the construction of MGB, boundary conditions
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are applied to its angular speed and torque as shown in Eq. 4.10.

−ωMGB,min ≤ ωMGB ≤ ωMGB,max

TMGB,min(ωMGB) ≤ TMGB ≤ TMGB,max(ωMGB)

(4.10)

4.1.4 High Voltage Battery

A high voltage battery is one of the most critical components in an HEV. A battery

can decide the performance of the HEV as the fuel consumption in an HEV depends

on the size of the battery, the peak acceleration can be governed by its specific power,

and the weight of the vehicle is affected by its specific energy. Many factors govern the

dynamics of the battery, like its construction, electrochemical composition, ambient

operating temperature, cell arrangement, battery management system etc. Therefore,

it is challenging and crucial to appropriately model the battery’s fidelity appropriately

such that its ability to show the desired behaviour. The battery contained in the

Toyota Prius is a Lithium-ion battery. There are three techniques in which a Lithium-

ion battery can be modelled i.e. physics-based models [93], data-driven methods [94],

and equivalent-circuit (ECM) based models [95][96] .

Physics-based models are very complicated and computationally expensive modes,

whereas data-driven models require much training. ECM-based models use electrical

circuits active and passive components such as resistor, capacitor and impedance to

emulate the battery actual behaviour [95]. They are straightforward to implement

and offer good enough accuracy, hence selected for this thesis. In this thesis, a single

resistance-based ECM model is used to evaluate the battery’s behaviour. In this

model, the temperature effect on the battery is ignored, and the battery’s ageing

is also ignored. The figure in Fig. 4.5 shows the equivalent circuit model for the
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lithium-ion battery used in this thesis.

Voc

Ro

Ib

Vt

Figure 4.5: Equivalent Circuit Model for the Lithium-Ion battery

In Fig. 4.5, the Voc is the open-circuit voltage (OCV) of the battery, the Vt is

the terminal voltage of the battery, Ib is the amount of current flowing through the

battery, and Ro is the internal resistance of the battery. The Voc and the SOC of

the battery are related to each other, such that the OCV decreases when the SOC

decreases. Their relation is shown in Fig. 4.6. For the points lying outside the SOC

window, the last nearest boundary OCV value is considered the OCV of that outside

point.
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Figure 4.6: Battery open circuit voltage vs battery SOC

Furthermore, in a lithium-ion battery, the battery’s internal resistance is a function

of the battery SOC. The internal resistance of the battery can also differ depending

upon whether the battery is charging or discharging. Therefore, Fig. 4.7 shows the

battery internal resistance variation with SOC in case of charging and discharging.

Moreover, the internal resistance value is taken as the nearest boundary value for the

points lying outside the SOC window.

58



M.A.Sc. Thesis - Aashit Rathore McMaster - Mechanical Engineering

0.3 0.35 0.4 0.45

SOC

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R
es

is
ta

n
ce

 (
)

Charge
Discharge

Figure 4.7: Battery internal resistance vs battery SOC

Now, to evaluate the SOC, the battery dynamics need to be understood. In a

lithium-ion battery the rate of change of SOC ( ˙SOC) can be written as:

d(SOC)

dt
=

1

Cb

dQ

dt
= − Ib

Cb
(4.11)

where Cb is the battery capacity, Q is the amount of charge flowing through the

battery. Hence, as it can be seen from the Eq. 4.11 to evaluate the battery current

Ib needs to be calculated. According to Kirchoff’s voltage law, the Voc can be written

as shown in Eq. 4.12.

Vt = Voc − IbRo (4.12)

Now, as the power output of the battery can be written as product of voltage and
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current, i.e. Pb = VtIb, multiplying the Eq. 4.12 by Ib, and solving it we get:

VtIb = VocIb− I2
bRo

=⇒ Ib = ηb
Voc −

√
V 2
oc − 4RoPb

2Ro

(4.13)

where, ηb is the battery’s coulombic efficiency, which is taken as 1 if the battery

power is positive and 0.9 if the battery power is negative. The battery power can

be calculated by summing the power required by the MGA, MGB and the auxiliary

power (Paux). The auxiliary power is considered to be of constant 300W.

Pb = PMGA + PMGB + Paux (4.14)

At last, the lithium-ion battery has physical constraints applied due to its maxi-

mum discharge and charge capability. Also, in an HEV, a upper and lower bound is

applied on the SOC so that battery aging can be minimized and unwanted situations

can be avoided. These constraints are shown in Eq. 4.15:

Pb,chr ≤ Pb ≤ Pb,disch

SOCmin ≤ SOC ≤ SOCmax

(4.15)

Here, Pb,disch is the maximum discharge capacity of the battery, which is taken as

27kW, Pb,chr is the maximum charge capacity of the battery, which is -22kW. The

battery’s capacity is 6.5Ah, and the maximum and minimum constraints set on the

SOC in this thesis are 0.45 and 0.31, respectively.
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4.1.5 Transmission

This subsection contains detailed information about the transmission of the Toyota

Prius 2010. The Prius contains a pair of planetary gear couple to ICE, MGA, MGA

and the vehicle through the differential. The incorporation of the planetary gear

set makes the Prius 2010 power-split architecture. Here, the planetary gear set 1

(PGS1) ring is connected to the planetary gear set 2 (PGS2). The carrier of PGS1

is connected to the ICE and the sun of PGS1 to the MGA. The carrier of PGS2 is

grounded, and its sun is connected to MGB. The ring of the PGS2 is further connected

to the final differential, which is connected to the vehicle. A schematic representation

of the vehicle transmission is shown in Fig. 4.8.

ICE

R

C

S

R

C

SMGA MGB

F.D

Figure 4.8: Toyota Prius 2010 transmission

The table in Tab. 4.2, shows the number of teeth in both planetary gear sets and

their gear ratios, along with the final drive ratio.

The two planetary gear sets function to distribute the power keeping the ICE and

the MGB working independently. For a planetary gear set, the relation between its
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Table 4.2: Transmission Parameters
Teeth in Sun 1 30
Teeth in Ring 1 78
PGS Gear Ratio 2.60
Teeth in Sun 2 22
Teeth in Ring 2 58
PGS Gear Ratio 2.63
Final Drive Ratio 3.20

numbers of teeth, angular velocity and torques are shown in eq. 4.16.

ωsS + ωrR = ωc(S +R)

Tc = −S +R

R
Tr = −S +R

S
Ts

(4.16)

S is the number of teeth in the sun, R is the number of teeth in the ring. Tc, Tr,

Ts are the torques in carrier, ring and the sun respectively. ωs, ωr, and ωc are the

angular velocities of the sun, ring and the carrier, respectively. In a PGS, the ratio

of R and S is defined as its gear ratio. After solving the quasi-static equation for

both the planetary gear sets, the angular velocity relations for the transmission can

be written as shown in Eq. 4.17.

ωfd = ωwheelβfd

ωMGB = ωfdβ2

ωMGA = ωeng(1 + β1)− β1ωfd

(4.17)

β1,β2 and βfd are the gear ratios for the PGS1, PGS2 and the final differential

respectively. ωwheel is the wheel’s angular velocity, and ωfd is the differential’s input

angular velocity. Furthermore, the Eq. 4.18 shows the quasi-static torque relations
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in the transmission of the Toyota Prius 2010.

Tfd =


Tt−Tbrk
βfdηfd

if Tt < 0

Tt
βfdηfd

if Tt ≥ 0

TMGA = − Teng
(1 + β1)

TMGB =
Tfd − (1 + β1)Teng

β2

(4.18)

Here, Tfd is the torque at the differential input, ηfd is the final differential effi-

ciency, Tbrk is the mechanical brake torque applied at the wheels. For this thesis, the

final differential efficiency is considered to be a constant value of 0.95.

In a power-split configuration, the vehicle can operate in different modes. These

modes are dependent upon the ICE operation and the direction of power flow from

various components. In Toyota Prius 2010, the vehicle can operate in two modes, i.e.

HEV mode and the EV mode. In HEV mode, the engine is running and supplying

power to the vehicle and to the battery. Furthermore, depending upon the driver’s

power request, the battery can either be recharged or deplete in the HEV mode. The

battery depletes if the MGB is also supplying power in assistance to the ICE, and it

is greater than that of recharged by the ICE. If the ICE supplies power greater than

the driver’s power demand, the battery recharges in the HEV mode. In this case, the

ICE is responsible for running the vehicle and also recharging the battery.

In the EV mode, the engine is not running and not supplying any power in the

system. The electric machines meet the driver’s power demand entirely. In this

mode, the battery depletes if the driver power demand is positive, and the battery

is recharged if the power demand is negative, i.e. regenerative braking is happening.
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During the whole trip, the vehicle is sometimes operating in the HEV mode and

sometimes in the EV mode, depending upon the engine’s operation that decides the

final SOC of the battery and the fuel consumption of the vehicle. Therefore, here

in the energy management of the HEV, the control problem is the minimize the fuel

consumption with various constraints on the system, and the control decision is the

operating points of the engine.

4.1.6 Validation

Now, before using the vehicle model, it must be made sure that it is modelled correctly.

As the vehicle model is built on MATLAB R2019b environment in a backward-facing

approach, the need only exists to check for the governing equations and the data

utilized to define the vehicle. Now the vehicle parameters, along with the battery

data used in this thesis, were obtained from the author’s colleague at McMaster

Automotive Resource Center [97]. The parameters obtained were validated with the

ANL experimental data in that previous study by building a Simulink-based forward-

facing vehicle model. That previous study showed that the vehicle could give response

very close to the experimental results. Furthermore, the efficiency and the BSFC maps

used in this thesis, as mentioned, were obtained from a research paper [5].

An energy balance approach was taken to check that the governing equations and

the vehicle model are accurately developed. A DP-based EMS was utilized on a par-

ticular drivecycle to evaluate operating points and efficiencies of all the components.

Table. 4.3 shows the energy balance results, where the losses for every component

are mentioned, along with the total energy supplied by the ICE and battery.

The above table shows that the actual energy supplied by the ICE and the battery
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Table 4.3: Energy Balance for Toyota Prius 2010
Energy (kJ)

MGA Losses -354
MGB Losses -929

Auxillory Losses -324
Brake Losses 0

Road Load Losses -7101
Transmission Losses -373

Battery Losses -434
ICE Energy 9497

Battery Energy 28
Energy Difference 10

is very close to the total amount of losses in the system. The energy difference of 10

kJ comes due to the integration of precision error at every instant. Noticing that the

energy does balance for the system, it can be said that the governing equation for the

system’s dynamics is correctly modelled.

4.2 Optimal Control Problem

This section contains a detailed explanation of the optimal control problem and its

formulation for the eco-driving based EMS in CA-HEV’s. In eco-driving based EMS,

the ultimate objective of the EMS is to minimize the fuel consumption of the ve-

hicle for a given trip. In a conventional hybrid electric vehicle, this is achieved by

optimizing the power distribution between energy sources to utilize minimum fuel.

However, as mentioned, CA-HEV’s offers the capability to incorporate external envi-

ronment information, which offers an extra degree of freedom in the system to look

for optimization techniques.
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Eco-driving, in general, means driving in a manner to minimize energy consump-

tion. Therefore, naturally, eco-driving based EMS also incorporates optimizing the

vehicle’s velocity profile along with its power distribution. Hence, the optimal control

problem of the eco-driving based EMS has been divided into two problems: veloc-

ity optimization and power distribution optimization (Powertrain Optimization). The

following two subsections provide the optimal control formulation for both objectives.

4.2.1 Optimal Velocity Problem

In an optimal velocity problem, the objective is to find an optimal velocity trajectory

of the trip such that it can exploit the maximum potential of the HEV and result in

an overall fuel-efficient path. It should not sacrifice the driver’s comfort, mobility and

safety. Determining a velocity trajectory is critical as it influences the HEV’s engine

operating points and determines how much fuel consumption can be improved [84].

To solve the problem, the control problem needs to be defined. The optimal solu-

tion depends upon the formulation of the cost function. In this thesis, the objective is

to minimize the amount of total power required to finish the given trip. Considering,

from an energy point of perspective, it can understand that the amount of energy

required to drive the vehicle from starting to the endpoint will come from the system

itself. The only external source of energy in the system is fuel’s chemical energy, as

the battery needs to remain in charge sustenance at the end of the trip. Therefore,

minimizing the amount of total power required to complete the trip will essentially

result in a fuel-efficient trajectory. Now, as the solution to minimum power consump-

tion would result in a trivial solution (zero power consumption), there needs to be a

penalty term introduce into the cost function. The trivial solution leads the vehicle
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to be stationary or accelerate and brake at the same frequency and amplitude, re-

sulting in an infinite or large total trip time, respectively. Hence, to eliminate this

undesired effect, a penalty term corresponding to the total time required to complete

the trip is added in the cost function. The optimal control problem for velocity in

the discretized domain is shown in Eq. 4.19.

J =
αFtv

β
+ (1− α)

Ttravel
γ

vopt = arg min
a

J

(4.19)

Here, Ttravel is the total travel time of the trip, J is the cost function that needs

to be minimized, and the control action is a, i.e. acceleration of the vehicle. v, the

vehicle velocity is the state variable that is the outcome of the optimization.α is a

weighting factor that ranges between zero and one. beta is the normalizing factor

for the traction force that makes it between zero and one, i.e. beta = max(Ft).

Furthermore, here γ is also a normalizing factor, i.e. γ = max(Ttravel). To completely

define the control problem, the governing equation for the problem needs to be defined

along with the state and control variable constraints. The governing equation of the

system is shown in Eq. 4.20, where the relation between the state and control variable

is shown. Furthermore, the global constraints on the state variable v enforce it to be

as zero at the start and end of the problem horizon as the vehicle starts from the rest
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position and ends at rest.

v̇ = f(v, a, t)

v(0) = v(DN) = 0

0 ≤ v ≤ Vmax

amin(v) ≤ a ≤ amax(v)

(4.20)

Vmax is the maximum velocity of the vehicle at any given instant, amin and amax are

the minimum and maximum acceleration of the vehicle at a given state, respectively.

N is the endpoint of the horizon, and f(v, a, t) is the function determining the state

dynamics. The method to solve this optimal control problem is discussed in the next

chapter in detail.

4.2.2 Optimal Power-distribution Problem

The power distribution (powertrain) optimal problem is to find the optimal distribu-

tion of energy at every instant from the different energy sources. Here, it takes the

input as optimal velocity and provides the optimal power for ICE, MGA and MGB at

each instant such that the constraints on the system are met. This optimal problem

is basically the EM problem in a conventional HEV vehicle.

Here, this optimal control problem aims to minimize the fuel consumption of the

trip and maintain the end SOC value under a limit. Therefore, the cost function

can be directly written as the fuel consumption of the trip. Due to the quasi-static

modelling of the ICE and the transmission, the fuel required to crank up the engine

is neglected. This leads to a frequent start-stop of the engine, which is undesirable

considering the driver’s perception. Hence, a penalty term related to engine cranking
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is also added in the cost function to minimize the mode changes. The cost function

in the discretized domain is shown in Eq. 4.21.

J = ṁf (ωeng, Teng) + ψEstart

SOCopt,Modeopt = arg min
ωeng ,Teng ,Mode

J
(4.21)

Here, J is the cost function, Estart is the engine start penalty term which is 1

during engine cranking and 0 otherwise. ψ is the constant weighing factor, SOCopti

and Modeopti are the output optimal state variables representing the optimal SOC

and optimal mode profile for the vehicle for the particular trip. As it can be seen

from the Eq. 4.21 the ICE’s angular speed and its torque are the control variables

for the optimal problem.

To completely define the system, it is imperative to realize the system’s constraints

and its dynamics. As the Toyota Prius is a full HEV, the battery’s initial and end

SOC must remain at the same value. This provides the two-point boundary constraint

in the system’s state, as shown in Eq. 4.22. Furthermore, it can only vary in a certain

range to avoid battery aging and undesirable effects. Due to the presence of physical

limitation on the actuator components, there are bounds to the control variables in

the system, also shown in Eq. 4.22.

SOC(0) = SOC(N) = SOCinit

SOC lim
min ≤ SOC ≤ SOC lim

max

0 ≤ ωeng ≤ ωeng,max

0 ≤ Teng ≤ Teng,max(ωeng)

(4.22)

SOCinit is the initial SOC, N is the end point in the optimization horizon, SOC lim
min
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and SOC lim
max are the SOC’s lower and upper bounds respectively, which needs to be

satisfied at every instant. The system’s governing equation can be written as:

˙SOC = f(SOC, ωeng, Teng, t) (4.23)

where, f(SOC, ωeng, Teng, t) is a function dependent on SOC, ωeng, Teng and t.

This function can be evaluated using the Eq. 4.11. The detailed method to solve this

optimal control problem is explained in detail in next chapter.
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Chapter 5

Intelligent Eco-driving Based EMS

for Connected and Autonomous

Hybrid Electric Vehicles

This chapter contains detailed information on the developed novel intelligent eco-

driving based energy management strategy for connected and autonomous hybrid

electric vehicles. The complete formulation of the algorithm is provided in the up-

coming sections.

5.1 Introduction

Eco-driving based EMS for the CA-HEV’s have become a hot topic in recent years due

to development in communication and electronics technology which makes CA-HEV’s

to be practicable in the first place. As mentioned, the CAV’s offers the capability to

incorporate external information into the algorithms, therefore making them adaptive
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to changes. The V2V and V2I communications and the cloud server technology play

an essential role in enabling the CA-HEV’s to perform.

In the case of eco-driving, the V2I paves the data path, providing information on

traffic lights, speed limits, road impedance through roadside units. The cloud server

utilizes GPS and GIS technology to communicate with vehicle embedded controllers

about the road slope, trip route, traffic congestion and vehicle state information.

Combining the data from various sources, an intelligent eco-driving based EMS is

formulated for the CA-HEV’s.

As discussed in chapter 3, under the eco-driving based EMS section, the eco-

driving-based EMS formulation common approach is to develop a bi-layer structure.

The bi-layer structure offers multiple advantages by decoupling the problem into sub-

problems and effectively optimizing them. A similar approach is taken in this thesis,

where a bi-layer optimization technique is developed to solve optimal velocity and

the optimal power distribution trajectories. The purpose of choosing the bi-layer

structure is to reduce the algorithm’s computation complexity as both the optimal

control problems are solved using the DP algorithm. These optimal solutions are

evaluated in the upper level controller. Due to the computation cost of the DP, the

upper level controller can be solved on the cloud server. Now, as it is known that

the DP provides the global optimal results and its acausal in nature, its real-time

implementation is not possible. Hence, in this thesis, the DP results are only used as

the benchmark for the lower level controller embedded in the vehicle responsible for

energy management in real-time. This is very different from existing literature, which

either uses sub-optimal strategies in bi-layer fashion for real-time implementation

or utilizes the DP in combination with predictive strategies to make it real-time
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implementable and hence both providing far-from global optimal results [78][79][87]

[88][90][91][92].

The lower level controller is responsible for the energy management of the vehicle

in real-time. This lower level controller is based on the RL-based EMS, and hence

it provides real-time ability. The RL controller utilizes the Q-Learning algorithm,

which is a computationally cheap algorithm. As RL is based on data, it requires

training based on the results evaluated from the upper level controller using DP.

Therefore, the RL is trained on the global optimal results for the optimal velocity

problem and provides near-optimal solutions for the EMS of the vehicle. The upper

level controller’s DP provides the global optimal power distribution solution for the

evaluated global optimal velocity profile. However, due to external environmental

disturbances or the driver’s driving behaviour, the real-world velocity of the vehicle

might differ from the optimal one. This is where the RL-based EMS advantage comes

into the picture as it can adjust to the real-world drivecycle and still provide near-

optimal results for power distribution. Thereby making the lower level controller

robust and intelligent in the sense that it can respond well to deviations from the

optimal profile.

An overview of the implementation of the complete algorithm, including the upper

and the lower level controller, can be seen in Fig. 5.1. As shown, the DP algorithm

takes input parameters for the CA-HEV along with the road data, trip data and

vehicle data. It provides an optimal reference velocity and SOC trajectory that tunes

the Q-learning controller parameters based on the training. The Q-learning based

EMS controller then manages the power distribution on the vehicle in real-time. This

accounts for the novelty of the algorithm, where the RL-based EMS is trained from
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the ideal optimal DP results and is then utilized for the online eco-driving based EMS

of the CA-HEV in real-world scenarios. The next sections discuss the implementation

of the DP algorithms in the upper level controller and the RL algorithm in the lower

level controller.
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Figure 5.1: Overview of novel Eco-driving based EMS
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5.2 Upper Level Controller

This section provides a detailed description of the algorithm’s upper level controller,

which is responsible for optimizing the velocity profile for a given trip and generating

a reference SOC trajectory by optimizing power distribution for the lower level con-

troller. As mentioned, the upper level controller can be solved on the cloud server and

the RL controller’s training. The upper level controller consists of the formulation of

the DP algorithm for optimizing the velocity and the power distribution of the vehi-

cle. The upper level controller takes the trip starting and ending point information

from the driver and generates the velocity upper limit for the entire trip depending

upon the speed limits for the route. For the current simulation work in this paper, the

speed limit information is extracted using the Simulation in Urban Mobility (SUMO)

software combined with OpenStreetMap. The road grade information is also provided

as an input to the controller, which is taken as a constant value of zero due to the

current scope of the research. All this information is fed into the velocity optimization

algorithm and the powertrain optimization algorithm to be used as input parameters

for the algorithm. The sub-sections below explain the detailed formulation of both

the velocity and power distribution optimization techniques.

5.2.1 Velocity Optimization

The very first step in the eco-driving based EMS formulation is to determine the op-

timal velocity trajectory for the trip. Several techniques are available in the literature

to solve the problem of velocity optimization, like the use of PMP with the use of

V2V and V2I information [92]. In [98], authors formulate a cost function based on the

dynamic power losses of the powertrain and minimize it using Sequential Quadratic
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Programming (SQP) to find an optimal velocity trajectory. Authors in [99] utilized a

DP approach in addition to multiple predictive algorithms in sub-problems to tackle

the problem of velocity optimization and powertrain optimization using information

V2V, V2I and vehicle advanced driver assistance system (ADAS). In this thesis also

as mentioned, a DP approach is taken to estimate the optimal velocity profile for the

given trip.

The control problem for the velocity optimization is shown in chapter 4 under

the control problem section. Where the cost function for the velocity optimization is

shown in Eq. 4.19 and the constraints to the problem in Eq. 4.20. Generally, the road

grade data collected along with speed limits for the trip are evaluated with respect

to distance, as time-domain does not affect them. Therefore, the DP is solved in the

spatial domain here instead of the common time-domain approach.

To solve the problem using the DP, the state-space needs to be discretized, and the

system’s feasibility also needs to be defined. In this thesis, the velocity is discretized

from 0 to 35 m/s by 73 equally spaced points. The acceleration is divided from -3

m/s2 to 2 m/s2 by 51 equally spaced points. The governing equation in the case of
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velocity optimization in the spatial domain can be expanded as shown in Eq.5.1.

v̇ =
dv

dt

=⇒ v̇ =
dv

dD

dD

dt

v̇ = v
dv

dD

on Integrating v̇

∫ Dn+1

Dn

dD =

∫ vn+1

vn

vdv

assuming v̇ constant from Dn to Dn+1

=⇒ 2a(Dn+1 −Dn) = v2
n+1 − v2

n

(5.1)

where D is the distance covered by the vehicle and Dn represents the distance

at the nth step. Now, from the cost function shown in Eq. 4.19, Ft and Ttravel still

needs to evaluated. For finding the traction force required to drive the vehicle, its

longitudinal dynamics are considered, and lateral dynamics are ignored. The Eq. 4.2

can be referred along with the vehicle components section to find the traction force in

the vehicle. The Ttravel can be evaluated by integrating the time required to transition

from Dn ti Dn+1 for all n. It can be evaluated based on the equation shown below

for one particular transition:

v̇ =
dv

dt∫ tn

0

v̇dt =

∫ vn

v0

dv =⇒ tn =
(vn − v0)

a0

(5.2)

where tn is the time required to travel from D0 to Dn meters and a0 is the constant

acceleration during that time. Furthermore, all the physical feasibility of the system

must also be defined to find a valid solution. The physical limitation on the vehicle

comes due to the maximum torque that the individual components can provide. Lets
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suppose, the vehicle is running at vDn speed at Dn distance from trip start. At the

particular speed, the maximum traction torque on the wheels is Ttmax(vDn). This

maximum torque can be achieved when the vehicle operates in mode 0 (i.e. engine

on mode). For all engine operating speed points to be feasible, the maximum torque

that the engine can supply will be the minimum value on the WOT line of the engine

( Teng,min). Therefore,

ωMGB(Dn) = vDnrwheelβfdβ2

TMG2(Dn) =
Tt,max(vDn)− (1 + β1)Teng,min

β2

ωfd = Wwheelsβfd

(5.3)

Now, if the motor 2 torque calculated in Eq. 5.3, is more than the maximum

possible torque capacity of the the motor at that given velocity, the point becomes

infeasible. Hence, there is an upper constraint on the traction torque provided at a

given instant which is a function of engine operating point and the vehicle velocity,

as shown in Eq. 5.4.

Tt,max = f(v, ωeng, Teng) (5.4)

The DP algorithm is built on the MATLAB R2019b platform, using the structure

developed by authors in [100]. The results of the velocity optimization algorithm is

then further utilized by the powertrain optimization algorithm, which is explained in

the following subsection.
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5.2.2 Powertrain Optimization

The objective of the powertrain optimization layer is to take the optimal velocity as

the input and provide optimal power distribution and SOC trajectory as an output.

The DP is also used here as an optimization-based EMS for finding the global optimal

solution. The cost function for the powertrain optimization is shown in Eq. 4.21 along

with the constraints on the system shown in Eq. 4.22. As the optimal velocity was

found in the spatial domain, the optimal power distribution is also solved in the

spatial domain. The control variables and the state variables for the DP are shown

in Eq. 5.5.

x =

∣∣∣∣∣∣∣
SOC

Mode

∣∣∣∣∣∣∣ u =

∣∣∣∣∣∣∣∣∣∣
WICE

TICE

Mode

∣∣∣∣∣∣∣∣∣∣
(5.5)

To keep the computational cost less, the SOC is discretized into 50 equal parts

ranging between 0.31 to 0.45. Mode is discretized into 1 or 0 depending upon the

engine status. ωeng and Teng are both discretized into 9 parts from 0 to 5000 rps and

0 to 142 Nm, respectively. To define the system, the governing state equations shown

in Eq. 4.23, must be solved, which can be done by using the equation shown in Eq.

4.11.The vehicle’s mode depends upon the status of the engine and can be calculated

as shown in Eq. 5.6.

Mode(D) =


1 if ωeng = 0

0 otherwise

(5.6)

Furthermore, the only term remaining to find the cost at a given step completely
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is the fuel consumption of the vehicle (ṁf ), which can be evaluated based on ICE’s

operation points as shown in Eq. 4.5. The next set of constraints apart from that

shown in Eq. 4.22 on the system comes from the physical limitation of the actuators

present. There are three actuators present, each with its maximum power capacities

depending on the maximum torque transfer at a given instant by the component.

This can be written as shown in Eq. 5.7.

0 ≤ TMGA ≤ TMGA,max(ωMGA)

0 ≤ TMGB ≤ TMGB,max(ωMGB)

(5.7)

Here, TMGA,max(ωMGA) and TMGB,max(ωMGB) are the maximum torque that can be

supplied by electric motor A and B respectively at their respective angular velocities.

The next limiting factor that has physical constraints is the high voltage battery of

the system. Toyota Prius 2010 uses a 6.5 Ah Li-ion battery with maximum power

discharge and charge capability of 27 kW and 22kW, respectively. Therefore, battery

power constraint can be written shown in Eq. 4.15.

The powertrain optimization layer in the upper-level controller is also built on

MATLAB R2019b using the DPM function structure developed by [100]. This sub-

problem finds the optimal power distribution between the engine and the electric

motors and provides the optimal SOC reference trajectory for the trip in the ideal

environment. These optimal results are then used in the cloud server to train the RL

agent and act as the RL algorithm’s benchmark solution. The following subsection

describes the training of the RL agent, which is used in the lower level controller.
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5.2.3 Reinforcement Learning (RL) Based Controller Train-

ing

This section describes the process of training the RL controller, which can be con-

ducted on the cloud server due to its processing power. The tuned controller parame-

ters can then be communicated with the vehicle embedded controller for its real-time

application. As it was mentioned, the RL controller is based on the Q-Learning

algorithm, whose fundamentals were shown under the learning-based strategies sub-

section. In the Q-learning algorithm, the controller decides based on the action-value

function of the state (Q(s, a)). Therefore, it is imperative to find a correct estimate

of the action-value function for all the combinations of state-action pairs. Hence,

the objective of training the RL algorithm comes down to find as close as a possible

accurate estimate of the action-value functions for all state-space.

To begin the formulation of the Q-learning algorithm, it is necessary to define

the state and action space for the optimal control problem of energy management

in CA-HEV. The state of the system must be defined such that it should be able

to completely define the whole system irrespective of the previous state and action

required to get there, meaning it should have the Markov property. In this thesis,

the battery state-of-charge (SOC), vehicle velocity (v), vehicle power demand at the

final drive (Pdrive) and the engine state (Estate) are selected as the state variables.

These four parameters combine to form a four-dimensional state space, i.e., s =

(SOC, v, Pdrive, Estate)
T , where each of them is the function of optimization domain,

which in this case is the distance covered by the vehicle.

Now, as the problem of energy management in CA-HEV’s revolve around the

power distribution between the ICE and the electric machines, it is logical to choose
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the action space that can define this distribution. Therefore, here as similar to the

DP, the engine speed (ωeng) and the engine output torque (Teng) are chosen as the

instantaneous action variables. Hence, the action space can be written as: a =

(ωeng, Teng), and depending upon the input action variables, the angular speed and

torques of the electric machines can be calculated for a given state.

The next step in the formulation of the Q-learning controller is to define the

immediate reward for the system (rD). The immediate reward is a crucial factor as

it significantly influences the algorithm’s convergence and output performance. The

immediate reward (ras,s+) represents the cost of transitioning from the current state

s to the next state s+ with the control actions a. Therefore, the immediate reward

should be such that it can encompass the objective of the optimization. Hence, in this

thesis, the immediate reward is chosen, as shown in the Eq. 5.8. The SOC penalty

term is introduced to keep the battery in charge sustenance in addition to the fuel

consumption of the vehicle. Furthermore, during the regenerative braking, the engine

ensures to be in off state.

ras,s+ =



ṁf + Cp + α∆Estate if Pb ≥ 0 ∩ SOC ≤ 0.31 or SOC ≥ 0.45

ṁf + |SOC − SOCinit|+ α∆Estate if Pb ≥ 0 ∩ 0.31 ≤ SOC ≤ 0.45

ṁf if Pb ≤ 0 ∩ ωeng = 0 ∩ Teng = 0

Cinf otherwise

(5.8)

Here, ṁf is the instantaneous fuel consumption of the ICE, Cp is a constant

penalty term, α is a constant weighing factor. incorporation of the Cp ensures that
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the battery always operates within the feasible operating zone. ∆Estate is the term

defined to penalize the cranking of the engine, where ∆Estate = 1 only when the

engine is cranked; otherwise, it is zero. SOCinit is the starting value of the SOC

of the battery when the trip begins, and |SOC − SOCinit| is the absolute difference

between the current SOC and the initial SOC. Cinf is a big constant value used to

define the reward for the infeasible points. The infeasibility in the system comes

from either violating the constraints defined in Eq. 4.22 and in the Eq. 5.7. The

objective of the Q-learning implemented in this thesis is to minimize the cumulative

reward of the episode. Moreover, with this formulation of the reward function, the

fuel consumption can be minimized and meet certain constraints on the SOC value.

As for the finding the optimal control policy (π∗), mapping the state S and the

control action A, the action-value function Q∗(S,A) : S × A → Q, needs to be

evaluated. The optimal control policy can be written as shown in Eq. 5.9.

π∗(s) = arg min
a
Q∗(s, a) (5.9)

To evaluate the Q∗(s, a) for all state-action pairs, the equation shown in Eq. 3.14

needs to be solved, which can be done on the basis of Bellman’s equation as shown

in Eq. 5.10.

Q∗(s, a) = E[r + γmin
a
Q∗(s+, a+)|s, a] (5.10)

where s+ represents the next state of the system reached after taking action a at

the state s. a+ is the optimal action taken by the state s+, and γ is the discount

factor such that γ ∈ (0, 1) is used for assuring the convergence of the cost. Now, the
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Q∗(s, a) would give the optimal value of the action-value given that optimal action-

value at the next state, i.e. Q∗(s+, a+) is known accurately beforehand, which is not

the case. Therefore, the Q(s, a) value needs to be evaluated by training the Q-learning

algorithm to reach its correct estimate. The equation to update the estimated value

of the action-value function in the spatial domain is shown in Eq. 5.11.

QD(sD, aD) = QD(sD, aD) + α

{
rt + γmin

a
QD(sD+1, a)−QD(sD, aD)

}
(5.11)

where ζ is the learning rate such that α ∈ (0, 1]. The update mechanism of

Q(sD, aD) is explained in Fig. 5.2. The environment includes all the driving scenarios,

the powertrain dynamics, and vehicle dynamics. The RL agent or decision-maker

is just the EMS controller that decides the action to be taken at a particular state.

Suppose the environment is at state sD−1 at the current step (D−1). Now, depending

upon the current state, the Q-learning algorithm will choose an action aD−1 from all

possible action space following an ε-greedy policy. In ε=greedy policy, the controller

chose the action with minimum Q-value with a probability of 1 − ε, and chose a

random feasible action with a probability of ε.

Once, the action aD−1 is chosen, the environment react to the action and goes to

the next state sD while getting a reward rD−1 for transitioning from sD−1 to sD. Now,

at the new state sD, the controller again chose an action, but this time selecting the

action aD, which gives the minimum Q-value. Now, the Q-value of the current state

Q(sD, aD) multiplied by γ is added to the reward rD−1. This sum is then compared

to the Q-value of the previous state, i.e., Q(sD−1, aD−1) to see if their difference is

smaller than a constant small real number ε and if the maximum number of iterations
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has reached or not. If both conditions are satisfied, the Q-value of the state-action

pair Q(sD−1, aD−1) is updated by the equation shown in Eq. 5.11. This completes a

one-step for kth iteration, and the loop is repeated for all complete episodes for the

maximum number of iterations or convergence, whichever is reached first. Therefore,

at the end of the complete training, an accurate estimate of the Q-table has been

formulated, providing an action-value function for every state-action pairs.
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Figure 5.2: Schematic of Q-value function update

If the Q(s, a) for all state-action pairs is correctly estimated, the following relation

between Q(sD−1, aD−1) and Q(sD, aD) given in Eq. 5.12 holds true implying that the
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convergence was reached.

Qπ(sD−1, aD−1) = rD−1+

Eπ

{
∞∑
k=1

γkrD−1+k|sD−1 = s, aD−1 = a

}

= rD−1 + γQπ(sD, aD)

(5.12)

5.3 Lower Level Controller

The lower level controller is responsible for the energy management of the CA-HEV in

real-time. The lower level controller optimal control problem formulation is precisely

the same as the optimal power distribution problem. However, unlike DP in the upper

level controller, here it is solved by the RL agent based on Q-learning. The training

of the RL controller can be done on the cloud server from the results obtained by the

DP algorithm. Once the training is complete, an accurate estimate of the Q-table is

generated, which then can be sent to the vehicle’s embedded controller. These training

results are dependent upon the vehicle type, road speed limits, road topography, trip

route, and independent of the traffic. It can also be stored in the repository to be

used for future references.

Once the vehicle embedded controller receives the estimated Q-table for the given

trip, the Q-learning algorithm built on the controller is then responsible for optimal

power distribution. As described in the RL controller training subsection, the state

variables for the algorithm are the battery state-of-charge (SOC), vehicle velocity

(v), vehicle power demand at the final drive (Pdrive) and the engine state (Estate).

The control actions are the engine speed (ωeng) and the engine output torque (Teng).
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As for the Q-leaning algorithm, discretization of the problem is a must condition.

The state and the action variables are discretized in the same manner as done during

training because of the size of the Q-table.

Now, during the vehicle’s operation in real-time, the controller takes the current

state variables of the system as the input and then decides the action based on the

minimum Q-value for that particular state. This decides the action at the current

step, which drives the system into the next step. Choosing infeasible points does not

arise as the infeasible points were rewarded at a very high cost during the training.

Here, with the same reward function as shown in Eq. 5.8, and the with the correct

Q-values, the fuel consumption of the vehicle is minimized, meeting the constraints.

The pseudo-code for the Q-learning algorithm implemented in the embedded vehicle
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powertrain controller is shown below.

Algorithm 1: Q-Learning Algorithm

Load the trained Q-table;

Define state variables discritization;

Define action variables discritization;

Load component data;

Build system dymanics model;

Set initial conditions;

for D = 1,DN do

Find index of current state sD;

Choose aD, depending on the minimum Q(sD, a) for all feasible actions;

Use system dynamics to evaluate next state sD+1;

Set sD+1 = sD;

if terminal sD+1 then

end;

end

end

The Q-learning was trained on the cloud server based on the results from DP,

which were evaluated in the environment without external disturbance like traffic,

other cars, driver behaviour, weather, etc. Although, in the real world, when im-

plemented in the embedded controller, it will come across a variety of disturbances.

Therefore, the actual performance of the Q-learning is sure to deviate from the train-

ing results. Hence, training the Q-learning on multiple possible drivecycles increase

their adaptability and make it more robust to deviations from ideal.
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5.4 Summary

This chapter explains the detailed development of the intelligent eco-driving based

energy management strategy for connected and autonomous hybrid electric vehicles.

The strategy is carefully developed to exploit the advantages of the CA-HEV’s and

provide high robustness to the algorithm and near-optimal performance. The algo-

rithm is divided into two levels, i.e. the upper level controller and the lower level

controller. The upper level controller is responsible for finding the ideal optimal

velocity profile for the trip and finding the optimal power distribution trajectories

for the found velocity profile, both using the DP. The ideal case refers to factors

like driver behaviour, traffic, weather, and other vehicles not considered for simplic-

ity. This task is carried out on the cloud server. Furthermore, the lower level is

responsible for the real-time energy management of the vehicle and is embedded in

the vehicle. This controller incorporates a Q-learning based algorithm for the EMS.

As Q-learning is an RL-based algorithm, it needs to be trained before its real-time

application, which is done on the cloud server. In the cloud server, based on the

DP results, the Q-learning algorithm is trained for multiple ideal case results for the

given trip. Training on multiple ideal scenarios ensures that the Q-learning algorithm

implemented in the vehicle embedded controller can perform well in real-world sce-

narios where various external factors influence the driver’s response. Furthermore

thus, it can tackle the biggest challenge of incorporating external disturbances while

developing the EMS for CA-HEV’s.
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Chapter 6

Results and Discussions

This chapter contains the results and discussions obtained after utilizing the developed

intelligent eco-driving based EMS for CA-HEV’s. The results are entirely based on

simulation, with experimental verification being out of scope for the current thesis.

The chapter is divided into three sections: test scenario, upper level controller and

the lower level controller.

6.1 Test Scenario

In this section, the test scenario for evaluating the performance of the algorithm

is discussed. As the algorithm is executed for the real-world energy management

of the CA-HEV’s it is imperative to choose a scenario that can best replicate the

situation. For this purpose, the first task is to decide on a trip with both urban and

highway driving. Hence, a course beginning from the author’s house in Hamilton,

Ontario, Canada, was chosen, which finishes at the Ron Joyce Centre, DeGroote

School of Bussiness in Burlington, Ontario. In the route, McMaster Automotive
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Resource Centre (MARC) was also added as a way-point in between the trip. This

trip constitutes a total length of 22.2 km, in which there are 9 vehicle stops including

stop signs and red light signals. A Google map view of the selected route is shown in

Fig. 6.1.

Figure 6.1: Google map view of the route

As already mentioned, the vehicle chosen for the validation of the algorithm is

the Toyota Prius 2010 model, which has a power-split architecture. This information,

once decided, constitutes the information that the upper level controller requires in

the cloud server from the driver. The cloud server then can take this information to

process the road data further, i.e. route speed limits and road grade for the current
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thesis, required by the DP algorithms. To imitate the process of the cloud server,

taking the information from the driver and giving output as road data, an external

open-source software named SUMO is used here. SUMO (Simulation of Urban Mobil-

ity) is a kind of traffic simulator that can be used for multi-modal microscopic traffic

simulation [101]. SUMO has various tools that can be utilized to import road net-

works, algorithms, traffic, vehicle routing options, etc. It can also model real-world

traffic according to requirements for real-world routes. It further has capabilities

to be linked to MATLAB and extract various parameters from SUMO in real-time

communication.

In this thesis, the SUMO, in collaboration with OpenStreetMaps, is used for

extracting the trip data that incorporates the route’s vehicle speed limits. Open-

StreetMaps provide real-world road map data and are also open-source software. The

OpenStreetMaps does not offer the topological road data, and therefore when used

with SUMO, the road grade data for the trip cannot be evaluated. Hence, the road

grade data for the route shown in Fig. 6.1 is considered as a constant value of zero

radians.

To evaluate the road speed limits, the map of the city of Hamilton along with the

nearby area is downloaded from OpenStreetMaps. Then using the SUMO, the route

is created in the SUMO. An imaginary vehicle is also created in SUMO, which traces

the selected route, as shown in Fig. 6.1. The SUMO is further interlinked with the

MATLAB using the TraCI4Matlab, and then the created vehicle in the SUMO traces

the trip. The information from the SUMO is communicated to MATLAB, which then

can be processed to extract the road speed limits for the route. Fig. 6.2 shows the

vehicle speed limit in m/s as a function of the distance covered from the initial point.
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Figure 6.2: Speed Limit for the route

As it can be seen from Fig. 6.2 the speed limit of the route varies with the

distance. This is because the route contains different sections of road in the city and

on the highway. The speed limit plots also show sections where the speed limit is

near zero, although this is not the case in the real world. The vehicle speed limits

are set to near-zero values, where there are stop signs on the road or traffic lights in

the real-world scenario. This ensures that the vehicle does stop at points where it is

necessary to stop.

Once the road information is extracted, it can then be combined with the vehicle

data to pass on the DP algorithm for formulating optimal solutions. The next task

in the upper level controller involves finding the optimal velocity profile for the given

route while not violating any constraints. The following section contains the results

obtained from the DP in the upper level controller for the problem of optimal velocity

and optimal power-distribution trajectories.
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6.2 Upper Level Controller’s Algorithm Results

This section contains the results for the optimal velocity problem and the optimal

power distribution problem using the DP. The problem formulation for both of the

cases discussed in chapter 4 under the optimal control problem section. As mentioned,

these algorithms are solved on the cloud server as they require high computation power

and then the results are used to train the RL controller. The following sub-sections

discuss the results obtained for both the optimal control problems.

6.2.1 Optimal Velocity Resutls

The DP uses a combination of two processes for finding the optimal solution. First

is the backward process, which evaluates the optimal cost-to-go for every state in the

state-space grid and stores it along with its argument. The backward process begins

from the endpoint and goes on to calculate cost till the start. The second step is

the forward process which applies the action with minimum cos-to-go at every state

beginning from the start. As the actions are executed at a given step on a state, the

system progresses to the next state until the end is reached. The table shown in Tab.

6.1 shows the parameters used for the backward simulation, while the Tab. 6.2 shows

the parameters for the forward simulation.

Table 6.1: DP Backward Simulation Parameters for Velocity Optimization
Variable Min Max Size

v 0 35 73
a -3 2 51

Here, as shown in Table 6.2, the total number of steps in the simulation is 22439

m. The step size (δD) is 1m. The initial velocity is 0 m/s and the final velocity is
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Table 6.2: DP Forward Simulation Parameters for Velocity Optimization
Parameter Min

v(0) 0
v(DN) [0,0.5]
N 22439
δD 1
α [0,1]

constrained between 0-0.5 m/s due to discretization. The α is the weighing factor as

shown in Eq. 4.19. As it can be seen from the Eq. 4.19, if the α is smaller; it favours

Ttravel more, the velocity output profile will try to have less travel time. Whereas,

if α is increased, the Ftv is favoured, and the profile will try to minimize the power

consumption required to complete the trip.

The figures shown in Fig. 6.3, Fig. 6.4 and Fig. 6.5 shows the results obtained

after running DP for optimal velocity profile using the α = 0.07.

Figure 6.3: Velocity Profile for the route
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Figure 6.4: Acceleration Profile for the route

Figure 6.5: Traction Force Profile for the route
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As it can be noticed from Fig. 6.3, because the α is a small number, the velocity

always tries to be maximum while maintaining the upper limit constraints. Fig. 6.4

shows the acceleration for the evaluated optimal velocity, and the Fig. 6.5 shows the

traction force required to drive the vehicle at the wheels. From the Fig.6.3 it can

also be noticed that the DP tries to maintain the velocity of the vehicle constant, as,

during the zero acceleration case, the traction force required to drive the vehicle is

minimum, and so is the traction power.

Now, as the previous results were obtained when α = 0.07, it is necessary to

evaluate the results at different values of α to see their effect on the results; upon

further evaluation, the optimal velocity solution was very sensitive to the value of α.

Hence, five different cases were taken to evaluate the optimal velocity results, where

α1 = 0.07 for the case 1, α2 = 0.075 for case 2, α = 0.08 for case 3, α = 0.085 for case

4 and lastly, α = 0.09 for case 5. The figure in Fig. 6.6 shows the velocity profile,

acceleration profile and the traction force profiles respectively.
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Figure 6.6: Different velocity, acceleration and traction force profiles for the route
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From Fig. 6.6 it can be seen that the optimal velocity profile is susceptible to

the value of α. Furthermore, the velocity also starts to be less and less close to the

upper limit as the value of the α increases. This difference is evident from the results

of Case 1 and Case 5. However, in every case, it can be noticed that acceleration

remains zero for a pretty significant distance, leading to less energy consumption.

A comparative analysis of all the five cases is shown in Table 6.3, where the

total travel time of the trip Ttravel, total cumulative energy consumption required to

complete the trip i.e. integration Ftv for whole trip, and the α values are shown.

Table 6.3: DP Results Summary for Velocity Optimization
α Cumulative Energy (MJ) Travel Time (s)

0.07 7.1 1079.1
0.075 7.1 1080.5
0.08 6.4 1124.5
0.085 6.2 1145.3
0.09 4.9 1297.2

As evident from Table 6.3, the cumulative energy consumption decreases with an

increase in the value of α. Moreover, the travel time keeps on increasing as the α

increases. This shows a similar behaviour which was predicted from the nature of the

cost structure of the DP for the optimal velocity problem.

6.2.2 Optimal Power Distribution Results

This subsection provides the results for the optimal power distribution of the CA-

HEV. In the power-split Toyota Prius 2010, the power is provided by the ICE and

the MGA and the MGB. Depending upon the vehicle’s driver power request, the ICE

either decides to provide power or the electric machines provide the propelling power.

Hence, depending upon the distribution between the ICE, MGA and the MGB, the
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battery SOC is can be governed. It is imperative to keep the battery end SOC within

the 1% deviation from the initial SOC due to the nature of HEV. The table shown

in Tab. 6.4 shows the parameters used for the backward simulation of the DP, and

the Tab. 6.5 shows the parameters for the forward simulation.

Table 6.4: DP Backward Simulation Parameters for Power Distribution Optimization
Variable Min Max Size

SOC 0.31 0.45 50
ωeng 0 5000 RPM 9
Teng 0 142 Nm 9
Mode 0 1 2

Table 6.5: DP Forward Simulation Parameters for Power Distribution Optimization
Parameter Min

SOC(0) 0.38
SOC(DN) [0.37,0.39]
Mode(0) 0
Mode(DN) [0.5,1.5]

N 22439
δD 1

As shown in the Tab. 6.4, the SOC of the battery is discretized into 50 points,

ωeng into 9 points, Teng into 9 points and the Mode in either 0 or 1. The initial

condition on the system, according to Tab. 6.5 state that the initial SOC is 0.38, and

the end SOC should be within (0.37,0.39), i.e. within 1% deviation. Furthermore,

the vehicle should start from the EV mode and should finish the trip in EV mode.

The power distribution results obtained for the velocity profile obtained from the

solution of optimal velocity profile as shown in Fig. 6.3, can be seen in the following

figures.
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Figure 6.7: Velocity profile, SOC profile and Mode profile
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Figure 6.8: Speed profiles for ICE, MGA, and MGB

Figure 6.9: Torque profiles for ICE, MGA, and MGB

103



M.A.Sc. Thesis - Aashit Rathore McMaster - Mechanical Engineering

Fig. 6.7 shows the velocity profile for which the power-distribution optimal prob-

lem was solved, the SOC trajectory during that trip and the mode profile. It can be

seen from it that the SOC begins from 0.38, and during the trip, it fluctuates between

0.3 to 0.45, and it ends at 0.37, i.e. within 1% deviation. The mode of the vehicle

changes between 0 and 1, showing that in most of the journey, the ICE remains on,

and it is sometimes off or is off during the regenerative braking.

In Fig. 6.8, the angular velocities of all the three components are shown. It can

be noticed that the component speed of the MGB shows a response similar to vehicle

output speed. As they both are mechanically linked to each other. As the ICE speed

was a control variable in the formulation of the DP, some fluctuating response of

the engine speed can be seen between 500 to 1000 m. For the remaining cycle, the

speed response of the ICE can be seen as a smooth step response. The MGA and

the ICE are connected to the same planetary gear; therefore, their angular velocities

are coupled to each other. Hence, the angular speed of MGA will follow the same

characteristic behaviours like that of the ICE speed.

In Fig. 6.9, the torques of all the three components are shown. The control input

for the DP formulation was ICE torque, and depending upon the torque request by

the driver, the torques of MGA and MGB are decided. Noticing from the shown

response, it can be observed that the DP controller asks for constant positive torques

demand from the ICE during the steady-state velocity and a positive demand when

the vehicle is accelerating. The engine is switched off when the vehicle is decelerating,

and the battery is recharged. Furthermore, the engine tries to operate at the peak

efficiency zone, as the objective of the DP is to minimize the fuel consumption, which

is evident from Fig. 6.10.
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Figure 6.10: Operating points for ICE

As in the velocity optimization case, the optimal velocity was found out for 5

different cases. The optimal power distribution DP is run for those five different

cases, and the results are shown below. Fig. 6.11, shows the velocity profile for all

the five different cases evaluated earlier, along with the SOC profile for all the five

different cases. Fig. 6.12 shows the cumulative fuel consumption for all the five cases.
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Figure 6.11: Velocity and SOC profiles for all cases
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Figure 6.12: Cumulative Fuel consumption profiles for all cases
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Figure 6.13: ICE operating points for all cases

From Fig. 6.11 it can be noticed that in all the five cases for the five velocity cases
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shown, the battery is in charge sustenance, and the final SOC is within 1% deviation.

Furthermore, the battery always operate within the feasible operating zone. Similar

to Case 1 results, there was some fluctuations observed in the operating speed of the

ICE and MGA for Case 3 and Case 4. This is because in the DP, the ωeng is the

control variable, therefore to minimize the fuel consumption at every point, the DP

chooses a point that can give minimum fuel consumption irrespective of the previous

operating point of the engine. Hence, fluctuations can arise in the operation of the

ICE with each passing step. The operating points of the ICE for all cases can be seen

in Fig. 6.13.

The table shown in Tab. 6.6, summarizes the results obtained for the power-

distribution optimal control problem. The table shows the cases, fuel consumption

for the particular case, the cumulative energy supplied by the engine, the end SOC

value in each case.

Table 6.6: DP Results for Optimal Power Distribution Problem
Case Cumulative ICE Energy (MJ) Fuel Consumption End SOC

Case 1 9.49 641.91 g 0.3696
Case 2 9.50 642.20 g 0.3702
Case 3 9.03 609.99 g 0.3696
Case 4 9.10 593.43 g 0.3706
Case 5 8.09 515.25 g 0.3693

As it can be noticed from the Tab. 6.6, the fuel consumption of the ICE reduces

with the increase in the case number due to velocity profiles associated with them and

the ICE energy consumption. Although for Case 2, the fuel consumption is slightly

higher due to more energy supplied by the ICE, it should also be noted that the end

SOC is slightly higher, which accounts for the higher engine energy. The end SOC

is almost within 1% deviation from 0.38, but in some cases, it is less than 0.37 due
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to a coarse discretization. Co-relating the results obtained from the Tab. 6.3 and

Tab. 6.6, it can also be noted that the fuel consumption of the vehicle is reduced at

the expense of the trip travel time. Therefore, the fuel consumption was decreased,

but the travel time was increased. Hence, the value of α in the velocity optimal

control problem can be decided on the trip’s requirements or the driver’s behaviour

associated with the vehicle.

6.3 Lower Level Controller’s Results

The lower level controller incorporates a Q-learning based RL agent, which is respon-

sible for the energy management of the CA-HEV. As mentioned, for the Q-learning

controller to perform well, the controller needs to be trained. This training can

be done on the cloud server and is considered a part of the upper level controller.

However, the Q-learning is implemented on the lower level controller; the follow-

ing subsection shows the scope of comparative analysis, training results and testing

results.

6.3.1 Comparative Analysis Scope

This subsection describes the scope and limitations of the lower level results obtained

in this thesis. In this study, to analyze the performance of the lower level controller,

first, its training results are evaluated. These results are compared to the optimal

benchmark DP solution obtained from the upper level controller. This is done to

understand how close an RL-based controller can perform compared to global optimal

solutions. The comparative analysis of the RL-based controller training can signify
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whether the RL-based controller is sufficiently trained on known drivecycles to provide

near-optimal solutions.

Subsequently, the RL-based controller is tested on two unknown near real-world

drivecycles to evaluate its capability to perform in real-time. In this scenario also the

RL-based controller results are compared with benchmark DP-based global optimal

solutions. Comparing the RL-based controller results with DP-based results can

provide a quantitative estimate of how well the algorithm performs, as the objective

is to always tend towards the global optimal solution.

To further understand why it is compared against the DP solutions and not other

real-time implementable strategies like ECMS is because it has been shown in the au-

thor’s previous work that the RL-based controllers with enough training can perform

better than ECMS strategy and provide better fuel consumption, and driveability

[102]. Studies have also even shown that the well-trained Q-learning-based controllers

can perform better than the ECMS controllers and can show up to improvement of

0.5 to 1.5 % in terms of fuel consumption [103, 104]. The Q-learning-based controller

has also been shown to have better performance by 1.93 % than stochastic dynamic

programming, which is also a real-time applicable strategy [105]. However, due to the

stochastic nature of RL-based controllers and their training, it is now always possi-

ble that the RL-based controllers perform better than other deterministic strategies.

Hence, it is essential to realize that the RL-based controllers should be considered for

only fuel economy improvements. Rather their merits of being robust to disturbance

and their potential to perform close to global optimal solutions should be emphasized.
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6.3.2 Q-Learning Controller Training Results

The Q-learning controller is trained on the results obtained from the energy manage-

ment using the DP. As the objective of the RL controller is to minimize the energy

consumption and provide optimal power distribution at each instant, the RL con-

troller does not take the reference as ICE or battery power; instead, it is trained to

provide the optimal power distribution. The optimal power distribution or the opti-

mal SOC trajectory cannot be taken here for training, as they are dependent upon

the whole trajectory of the vehicle and hence acausal in nature. So for training, it

is impossible to determine the optimal power distribution by looking at the current

state of the vehicle, which constitutes a problem in defining the reward function.

Therefore, only the optimal velocity profiles and its transmission output power

demand are used as the state variable to train the RL controller and the initial

SOC of the vehicle and the engine status. The Tab. 6.7 shows the parameters used

while training the RL controller, where the state variables, control variables and the

definition of the parameters have already been discussed. The value of γ was set

as 0.95, and the learning rate α was set as 0.2. The maximum number of iteration

(Nmax) was set as 250.

Table 6.7: Parameters used for Training RL Controller
Variable Min Max Size

SOC 0.1 0.9 81
v 0.01 m/s 29 m/s 29

Pdrive -31 kW 52.5kW 76
Mode 0 1 2
ωeng 0 5000 RPM 9
Teng 0 142 Nm 9

The RL controller uses an ε-greedy policy to do the exploration and exploitation.

112



M.A.Sc. Thesis - Aashit Rathore McMaster - Mechanical Engineering

This means a random number r is chosen, and if that random number is smaller than

a pre-selected number (j), then the agent chooses a random feasible action. If r, is

greater than j, the agent chooses the action with the minimum action-value function.

Now, to ensure that the controller does not get stuck on the local optimal solution,

the agent must do sufficient exploration. Therefore, for this purpose j is made as a

function of the maximum number of iterations (Nmax) as shown in Eq. 6.1.

j = 0.7− 0.6i

Nmax

(6.1)

Here, the i is the current iteration number. As it can be understood from the Eq.

6.1, when the current iteration number is 1, the j will be very close to 0.7. Moreover,

as the iteration number increases, the j will start to decrease, and at the end of

the maximum number of iterations, i.e. Nmax, the j will become 0.1. Therefore, as

the iteration increases with time, the RL agent will decrease the exploration and do

more exploitation. This implies that the agent will be able to learn more during the

initial stages, and with increasing iterations, it will exploit more of the policy with a

minimum action-value function. The results for the case 1 drive cycle are shown in

the figures below.
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Figure 6.14: SOC for case 1
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Figure 6.15: Cumulative fuel consumption for case 1
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As it can be seen from Fig. 6.14, that although the SOC trajectories of the

RL-based controller deviates when compared to the optimal trajectory from the DP-

based controller, the end SOC are very close to each other. This indicates that the

RL-based controller can give charge sustaining results. Furthermore, the cumulative

fuel consumption trajectories of DP-based and RL-based controllers are shown in Fig.

6.15. In the initial 1000m, the RL-based controller’s fuel trajectory is lower than the

DP’s; however, the overall fuel consumption of the RL-based controller is slightly

higher. This increase in total fuel consumption is understandable as the DP is a

global optimization technique, while the RL is a learning-based method.
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Figure 6.16: ICE operating points for RL and DP based controllers

The ICE operating points in the case of the DP-based and RL-based controllers

can be visualized in Fig. 6.16. It is evident that the operating points of the RL-based

controller vary much more when compared to the DP-based controller’s ICE operating

115



M.A.Sc. Thesis - Aashit Rathore McMaster - Mechanical Engineering

points. As the DP is offline, and its objective is to minimize the fuel consumption,

it selects more efficient points while the RL-based controller selects points with a

minimum action-value function.

Now, as mentioned, to appropriately train the RL-based controller, it was trained

on five different optimal velocity trajectories. The results for all five cases are shown

below:
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Figure 6.17: SOC and cumulative fuel consumption trajectories for RL and DP based

controllers
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Figure 6.18: ICE operating points for RL and DP based controllers

Fig. 6.17 shows the SOC and the cumulative fuel consumption trajectories for
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both the DP and RL-based controller in all five cases. It can be analyzed from it that

the SOC in all the five cases shows different behaviour from the optimal one; however,

the RL-based controller is still charge sustaining in all the cases. Fig. 6.18 shows the

operating points for the ICE in both the controllers on all the five drive cycles. It can

be seen that the DP in all five cases selects more efficient points; however, the RL-

based controller selects the points on the whole operating zone. Therefore, its effect

can be seen in the cumulative fuel consumption trajectories in Fig. 6.17, where the DP

being global optimal always performs slightly better. Hence, a similar trend in all five

cases is observed for the SOC behaviour and the selection of the ICE operating points

for the RL-based controller. For better understanding, the performance difference,

the Tab. 6.8 shows the total fuel consumption of the RL-based controller along with

its % deviation from the global optimal results in terms of fuel consumption.

Table 6.8: RL Results for the Optimal Velocity Trajectories
Case ṁf SOC(end) % deviation

Case 1 693.93 g 0.3593 +9.70
Case 2 691.77 g 0.3588 +9.28
Case 3 667.20 g 0.3590 +11.01
Case 4 630.57 g 0.3611 +7.76
Case 5 584.65 g 0.3604 +15.26

Tab. 6.8 also shows the end SOC points achieved by the RL-based controller

in each case. It can be seen that it is always close to the starting value of 0.38,

however not exact charge sustaining due to coarse discretization of the SOC and

Pdrive. Furthermore, fuel consumption deviation between the optimal DP results

and the RL training results is less than 10% except for case 3 and case 5. This

signifies good performance from the RL-based controller in terms of fuel consumption

minimization against the benchmark solutions. The performance of the RL-based
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controller can further be enhanced by training it over more drivecycles and increasing

the number of iterations to reach convergence.

6.3.3 Q-Learning Controller Testing Results

The subsection results above show the RL-based controller’s response while training

on the ideal optimal velocity drivecycles obtained by the DP. As in the ideal environ-

ment considered while evaluating the DP results, the traffic was ignored along with

external disturbances; it is essential to check the performance of the RL-based con-

troller in real-world environment velocity trajectory. Therefore, for this purpose in

this thesis, two approximate real-world drivecycles are generated using the DP-based

velocity optimization technique.

For evaluating the two approximate real-world drivecycles, the α values were

changed with respect to distance in the upper-level controllers’ velocity optimization

algorithm. Thereby a random distribution of α ∈ [0.07, 0.10] varying with distance

was selected to obtain two drivecycles. This ensures that the obtained real-world

velocity profiles show similar behaviour to the ideal velocity profiles and have devi-

ations that make them closer to the real-world situation. Hence, the approximate

real-world drivecycles will show the characteristics of the ideal drivecycles, although

they will have disturbances that can mimic the traffic and uncertainties the vehicle

will encounter in the real world.

The velocity for the two approximate real-world drivecycles can be seen in Fig.

6.19.
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Figure 6.19: Two approximate real-world drivecycles

It can be observed from Fig. 6.19 that the velocity profiles indeed are very similar

to the ideal optimal velocity profile obtained from case 1. However, there are many

disturbances in the driveccyles due to the changing value of α, which emulates the

uncertainties in the real world. Case 1 in Fig. 6.19 is a profile with conservative

regular deviations from the ideal case, which can happen due to traffic, leading to

constant acceleration and braking to maintain the ideal optimal velocity. In Case 2,

the disturbances are far significant, and the speed deviates to a greater extent. This

signifies a heavy traffic flow, along with obstructions in the route, which explains the

large distances covered while deviating from constant velocity. In this sense, Case

2 shows more aggressive behaviour, where the driver deviates more from the ideal

optimal velocity trajectory.
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Now, to evaluate the performance of the RL-based controller, it is tested on these

two approximate real-world drivecycles and compared against the global optimal solu-

tion evaluated using the DP. It is important to note here that the RL-based controller

was not trained on these two new approximate real-world drivecycles; instead, it was

trained on five ideal optimal cases. Therefore, these velocity trajectories are unknown

to the RL-based controller, and their decisions are based on the action-value function

of the state at a given instant. Whereas the results evaluated using the DP are global

optimal, where the whole driving cycle was known as a-priori. Fig. 6.20 and Fig. 6.21

shows the comparative results between the RL and the DP based controller for both

the cases, respectively. In both the plots, the topmost plot shows the comparison of

the SOC trajectories. The second plot is for the cumulative fuel consumption trajec-

tory. The third and the fourth plot represent the ICE operating speed and torques

for both the controllers.
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Figure 6.20: Comparative results between RL and DP based controllers for Case 1
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Figure 6.21: Comparative results between RL and DP based controllers for Case 2
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For the Case 1 results in Fig. 6.20, it can be noticed that the end SOC from

both the controllers is very close to each other and the starting value of 0.38. This

means that, although the SOC profile of the RL-based controller differs from the DP-

based controller during the trip, the RL-based controller can provide charge sustaining

results. For case 1, as the velocity trajectory was less aggressive, it can be seen that

the ICE operating speeds and torques give a similar response for the RL and the DP-

based controllers. Though the exact ICE speed and torques are different, they are

close, with similar trajectories and similar engine activation duration and instants.

Therefore, a similar SOC trend was observed with a constant SOC delta during the

drivecycle, and the cumulative fuel consumption profiles are close to each other.

For the Case 2 results shown in Fig. 6.21, it can again be noticed that the end

SOC of the RL and the DP-based controllers are very close to each other and the

starting value of 0.38. Hence, the RL-based controller again shows charge sustaining

results. Now, in case 2, as the velocity profile was a little more aggressive in terms

of deviations, it can be seen in the ICE operating speeds and torque that the be-

haviour of RL and the DP-based controllers differ more in this case. This is because

while training, the RL-based controller would have had limited interaction with the

particular state, which is new in the approximate real-world drivecycle. This causes

the estimate of the action-value function of that state-action pair to be inaccurate.

However, the engine activation duration and instants display similar behaviour. As

the ICE operating points vary more, its effect can be seen in the SOC trajectory,

which shows the different responses in the case of RL and DP-based controller. The

SOC in the case of RL seems to be fluctuating around a constant value throughout

the journey; however, for the DP-based controller, it increases in the beginning and
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then slowly decreases over the trip duration. Although, in this case also a very close

response of the battery SOC is observe during the end duration of the drivecycle, and

the SOC is always within the feasible region.

The total cumulative fuel consumption of the RL-based controller is a little higher

than the DP-based controller, which was expected due to DP’s global optimal nature.

The table shown in Tab. 6.9 shows the testing results of the RL-based controller

on the approximate real-world new drivecycles. It shows the total cumulative fuel

consumption of the DP (DPṁf
) and the RL-based controller (RLṁf

). It also shows

the end SOC value obtained from both the controllers and the % deviation between

the DP and the RL-based controller after SOC correction.

Table 6.9: RL Testing Results on Approximate Real-World Drivecyles

Case DPṁf
RLṁf

DPSOC(end) RLSOC(end) % deviation

Case 1 719.72g 838.17g 0.3738 0.3701 +17.10
Case 2 723.72g 839.07g 0.3727 0.3711 +16.52

As evident from the Tab. 6.9, the RL-based controllers’ total fuel consumption is

higher than the DP-based controller. However, it performs reasonably good given it

was an unknown drivecycle for the RL-based controller. Furthermore, it can also be

noticed that the end SOC in both cases is very close to the initial SOC value of 0.38,

which implies that the controllers are charge sustaining. The % deviation between

both the controller’s total fuel consumption after SOC correction can be seen in the

last column that indicates that the deviation in both the cases is less than 20%. This

signifies good performance, considering that the fuel consumption obtained from the

DP is a global optimal value. Therefore, the testing results indicate that the RL-

based controller can give charge sustaining results and provide comparable results to
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global optimal solutions even on unknown approximate real-world drivecycles for the

given route.

6.4 Summary

This chapter presented the results obtained from the intelligent EMS developed us-

ing the RL and the DP for eco-driving in connected and autonomous vehicles. A

detailed discussion on results is done to understand the advantages and limitations

of the novel algorithm thoroughly. The chapter explained the test case scenario in

which the algorithm is tested and then moved onto the results obtained from the

velocity optimization in the upper-level controller. After the results from the velocity

optimization are discussed, its power-distribution results are evaluated and explained,

used as the benchmark for the RL-based controller’s training. Next, the RL-based

controller’s training results are described, which mentions the training process and

compares its performance with the global optimal results obtained from the DP. Ob-

serving from the training results it was evident that the RL-based controller was able

to find solution close to global optimal results from the DP. At last, the trained RL-

based controller is tested on two approximate real-world drivecycles for the same trip

to evaluate its performance capability in the real-world environment where uncertain-

ties in the form of other vehicles and traffic will be present. The testing results showed

that the RL-based controller could provide charge sustaining results and comparable

results to the global optimal solution evaluated using the DP, proving its adaptability

and robustness to uncertainties in the real world.
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Chapter 7

Conclusions and Future Work

The automotive industry is currently witnessing a paradigm shift towards a greener,

sustainable and more intelligent transportation sector. This shift emerges from ad-

vancement in two mainstreams, i.e., electrification and automation. Electrification fo-

cuses on developing technologies to convert conventional vehicles into more and more

electrified vehicles. At the same time, automation focuses on developing technology

to make existing vehicles more intelligent, user-friendly and connected to the external

environment. The culmination of these two fields results in next-generation vehicles

in the form of connected and autonomous hybrid electric vehicles (CA-HEV’s). In this

thesis, a brief introduction was provided for each of the fields, and detailed informa-

tion was provided on how their interaction results in uplifting challenges encountered

in the domain of energy management strategies (EMS). In this chapter, conclusions

drawn from the development of novel EMS for eco-driving in CA-HEV are presented.

Furthermore, potential methodologies that can be incorporated for improving the

results are presented in future work.
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7.1 Conclusions

The motive of this thesis was to develop a novel EMS for CA-HEV’s and validate its

performance. For this purpose, the first task was to do a comprehensive literature

study to understand the concept of energy management and its role in CA-HEV’s.

Therefore, a detailed study was undertaken on the EMS’s for conventional vehicles,

and it was extended onto energy management of CA-HEV’s. Based on the findings

from the literature review, it was noticed that there exists a conceptual gap where the

incorporation of learning-based EMS’s has not been explored yet for the application

of eco-driving in CA-HEV’s that can overcome its challenges. Hence, the objective

of this thesis was to develop a novel intelligent EMS for eco-driving in CA-HEV’s

utilizing learning-based EMS’s to tackle the limitations of the optimization-based

approach.

Second, to test and validate the developed algorithm, a vehicle and its type needed

to be chosen for the simulative environment. For this purpose, the Toyota Prius

2010 was selected, a full HEV with one ICE, two electric machines connected by two

planetary gear sets, resulting in a power-split configuration. A quasi-static backward-

facing vehicle model was developed on the MATLAB platform for the vehicle, and its

data was gathered using the available literature.

Next, to develop an intelligent learning-based novel EMS for eco-driving in CA-

HEV’s, a bi-layer algorithm was developed. The algorithm was divided into two

levels, i.e. the upper level controller and the lower level controller. The upper level

controller was responsible for finding the ideal optimal velocity profile for the trip

and finding the optimal power distribution trajectories for the found velocity profile,

both using the DP. Furthermore, for emulating the capabilities of the CA-HEV’s, i.e.
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to gather trip, road and vehicle information using the cloud-server, V2I and V2V

communications, SUMO in combination with OpenStreetMaps was utilized. Once

generated for a given trip for the Toyota Prius 2010, this data was then transmitted

and used by the upper level controller to generate optimal results. The lower level

controller was responsible for the real-time energy management of the vehicle. Hence,

the learning-based algorithm was used in the form of an RL algorithm based on

Q-learning for energy management of the vehicle. The training for the RL-based

controller was proposed to be done on the upper level controller while the optimal Q-

table parameters being transmitted to the vehicle’s embedded controller for the real-

time EMS of CA-HEV. In this manner, a novel bi-layer RL-based energy management

strategy for eco-driving in CA-HEV’s was developed.

To validate the performance of the RL-based controller, it was first trained on

five optimal velocity trajectories obtained from the DP in the upper level controller

and compared with the global optimal solution from DP. The training results showed

that the RL-based controller could achieve charge sustaining performance and provide

fuel consumption values comparable to the global optimal results, with a minimum

percentage deviation of 7.76% and a maximum of 15.26%. Furthermore, as the RL-

based controller was trained on the ideal optimal velocity trajectories, the controller

was also tested on two approximate real-world drivecycles on the same route for

understanding its effectiveness clearly. Results showed that the RL-based controller

could provide charge sustaining performance and fuel consumption values greater

by 17.10% and 16.52% to the global optimal results. This demonstrates that once

the RL-based controller is trained on a route for some of its ideal optimal velocity

trajectories, it could tackle the uncertainties present in the real-world environment
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that will deviate the driver from an optimal path. Moreover, it showed that the

RL-based controller is robust to these changes and can provide charge sustaining and

close to global optimal results in real-time applications.

7.2 Future Work

This section presents the potential future work that can be done on the developed

novel EMS to improve its performance and extend its advantages.

7.2.1 High-Fidelity Modeling

The vehicle modelling presented in this thesis considers quasi-static techniques to

model the behaviour of components and the vehicle. Furthermore, the vehicle dy-

namics are modelled in a backward-facing approach. Therefore, there is scope to

improve the model’s fidelity by considering the inertia effects of components and by

modelling their transients. To further enhance the fidelity, the mode change dynamics

can also be considered, along with temperature effects on the high voltage battery.

Moreover, to accurately check the real-time capability and performance of the RL-

based controller, a forward-facing Simulink-based high-fidelity vehicle dynamic model

can be developed, and software-in-the-loop testing can be done.

7.2.2 Comprehensive Training and Sensitivity Analysis

The RL algorithm is learning-based, implying that the RL-based controller needs to be

trained before it can be applied in the lower level controller. As this training is done on

the cloud server of the upper level controller, there is computational power available
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to do extensive training of the RL-based controller so that it reaches convergence.

Now, as in the current thesis, the training was done on an octa-core i7 8th Gen

processor with 32Gb ram. In the future, the training can be carried out on the

SHARCNET, i.e., the Shared Hierarchical Academic Research Computing Network,

which is a high-performance computing environment. Enabling the high processing

capability, more comprehensive training can be done, and sensitivity analysis can be

performed to improve the RL-based controller’s performance.

7.2.3 Bench marking

In the current study, to evaluate the performance of the RL-based controller, its

results were compared with the DP-based controller. The DP-based controller is not

applicable in real-time and can provide global optimal solutions; hence it will always

provide better solutions. Therefore, other strategies like ECMS, MPC or PMP can

be developed in the future, which are real-time applicable to be compared against a

well-trained RL-based controller. A comparative study between different algorithms

and RL-based controllers in the lower level controller for eco-driving in CA-HEV’s

can, in itself will be an enriching task and can form the base of a research paper.

7.2.4 Advanced RL-based algorithms

In this thesis, a Q-learning-based RL algorithm was utilized to be implemented in

the lower level controller for real-time energy management of the CA-HEV’s. The

Q-learning algorithm has the advantage of being easily implementable, computa-

tionally cheap and simple action-value function estimation. However, it can only

handle discretized states and cannot handle state-space in a continuous domain that
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can enhance the algorithm’s accuracy. Hence, in the future, different learning-based

strategies like Deep RL (DRL), actor-critic-based RL, and stochastic gradient-based

RL can be explored in the lower level controller.

7.2.5 Realistic and Detailed External Environment Informa-

tion

In this thesis, the cloud-server in the upper level controller was responsible for tak-

ing the information from the CA-HEV and processing them to be sent to the DP

algorithm. Due to the thesis’s current time and resource limitations, static road

information like speed limits was only considered along with zero road grade. Al-

though, in the real world, CA-HEV are capable of transmitting much more detailed

information. Therefore, in the future, provisions can be made to extract more detailed

information, including historical average road traffic information, road grade, signal

phase and timing (SPaT), and driver behaviour. This can then be communicated

to the upper-level controller to evaluate a more realistic optimal velocity trajectory.

Thereby, incorporating more data will results in a more realistic solution by the DP,

and the RL-based controller’s performance can be drastically increased.

7.2.6 Hardware in the loop testing

Once the performance of the RL-based controller has been improved upon, by follow-

ing the above-mentioned possible works, the final task that can be done to check the

actual real-world performance of the controller is by implementing it in a hardware-

in-the-loop simulator (Hil). The Hil simulation can guarantee the performance of the

RL-based controller and can also highlight any possible error before the final step of
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testing the algorithm in an actual vehicle.
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