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Abstract
We consider the asymptotic minimum rate under the logarithmic loss distortion

constraint. More specifically, we find the asymptotic minimum rate expression

when given distortions get close to 0. The problem under consideration is separate

encoding and joint decoding of correlated two information sources, subject to a

logarithmic loss distortion constraint. We introduce a test channel, whose tran-

sition probability (conditional probability mass function) captures the encoding

and decoding process. Firstly, we find the expression for the special case of doubly

symmetric binary sources with binary-output test channels. Then the result is

extended to the case where the test channels are arbitrary. When given distor-

tions get close to 0, the asymptotic rate coincides with that for the aforementioned

special case. Finally, we consider the general case and show that the key findings

for the special case continue to hold.

Key words: Multiterminal source coding, rate-distortion theory, logarithmic

loss.
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Chapter 1

Introduction

1.1 Data Compression

Data compression is a method that reduces the amount of data without losing

useful information. Its main purpose is to improve the efficiency of transmission,

storage, and processing. In computer science and information theory, data com-

pression or source coding is the process of representing information in fewer bits

than the original representation. It could be broadly classified into two classes

called lossless compression and lossy compression.

Lossless compression preserves all the information in the data being compressed,

and the reconstruction is identical to the original data[1]. It is necessary for text,

where every character is important.

By contrast, lossy data compression allows losing detail or introducing small

errors upon the reversal in exchange for better compression rates. It may be

1
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acceptable for images or voice, where we can sacrifice the quality of images or

voice to decrease the file size.

Furthermore, rate–distortion theory offers the theoretical basis for lossy data

compression. We shall give a brief review of this theory.

1.2 Rate-Distortion Theory

Rate-distortion theory, also known as rate-distortion source coding theory, is a

theory that studies data compression by using the basic viewpoints and methods

of information theory.

The basic problem in rate-distortion theory can be stated as follows: Given

a source distribution and a distortion measure, what is the minimum expected

distortion achievable at a particular rate? Or, equivalently, what is the minimum

rate description required to achieve a particular distortion[2]?

Apparently, there are two important elements in this theory. First is the source

distribution, and the second is the distortion measure. Distortion measure is a

measure of distance between a random variable and its representation. Mathe-

matically, any norm or distance is a measure of distortion. But in choosing a

specific distortion measure one should take into account the physical meaning and

calculation convenience.

In rate-distortion theory, the encoding and decoding process is succinctly repre-

sented by a test channel with a suitably chosen transition probability (conditional

probability mass function).

2
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1.3 Multiterminal Source Coding

Multiterminal (MT) source coding refers to separate encoding and joint decoding

of multiple correlated sources. The fundamental problem here is to characterize the

optimal tradeoff between the compression rates and the reconstruction distortions.

Slepian and Wolf first formulated the lossless case of the multiterminal source

coding problem and solved it in [3]. Then this result was extended to the lossy

case. Ahlswede-Körner[4] and Wyner[5] solved the problem of source coding with

side information; Wyner-Ziv[6] first characterized rate-distortion function of source

coding with side information at the decoder; Berger-Tung [7], [8] provided the best

known region of achievable rates for the multiterminal source coding problem. And

Berger-Yeung[9], [10], extended the Wyner-Ziv problem to a more general form.

In 1996, Berger et al. defined a particular formulation of multiterminal source

coding, known as the Chief Executive Officer (CEO) problem[11]. In this problem,

there are ` separate encoders, which observe independently corrupted versions of

a source; these encoders compress their respective observations and forward the

compressed data separately to a central decoder, which then produces a (lossy)

reconstruction of the target source. The fundamental question is to obtain a

computable characterization of the tradeoff between the encoder rates and the

reconstruction distortions[12].

Later, more researches were conducted on this problem by choosing specific

source distribution or specific distortion measure. In particular, there are a large

number of papers devoted to the quadratic Gaussian version of the CEO problem.

3
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Recently, logarithmic loss distortion measure has become more and more pop-

ular in multiterminal source coding. It has nice mathematical properties and is

often referred to as self-information loss in the literature on prediction. Logarith-

mic loss plays a central role in settings in which reconstructions are allowed to

be ‘soft’, rather than ‘hard’ or deterministic. That is, rather than just assigning

a deterministic value to each sample of the source, the decoder also gives an as-

sessment of the degree of confidence or reliability on each estimate, in the form of

weights or probabilities[13].

Besides, logarithmic loss also has an important place in information theory,

where many of the fundamental quantities (e.g., entropy, relative entropy, etc.) can

be interpreted as the optimal prediction risk or regret under logarithmic loss[14].

There are also many research papers conducted on lossy source coding problems

with logarithmic loss distortion[12, 15–18].

1.4 Distributed Source Coding

Distributed source coding (DSC) is an important problem in information theory

and communication. DSC problems regard the compression of multiple correlated

information sources that do not communicate with each other by exploiting that

the receiver can perform joint decoding of the encoded signals[19]. There are

two main properties in DSC, first is that the computational burden in encoders

is shifted to the joint decoder, making the encoding calculation very simple and

the decoding calculation relatively complex. Secondly, DSC theory proves that

independent encoding can in fact be designed as efficiently as joint encoding, as

long as joint decoding is allowed.

4
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The main application fields of distributed source coding include sensor network

and image, video and multimedia compression. Traditional image source coding

algorithms, such as video encoding standards MPEG-X and H.26X or still image

encoding standards JPEG2000, extract the statistical correlation of the source at

the encoder for compression, and the operation complexity of the encoder is higher

than that of the decoder. With the development of electronic technology, some

emerging applications such as wireless video sensor networks and camera arrays

have developed rapidly. Due to the limited resources and power consumption of

the encoder, these new applications are not suitable for adopting traditional image

source encoding algorithms, and pose new challenges to traditional image encoding

algorithms and system architectures.

Different from traditional image coding algorithms, distributed source coding

transfers the correlation extraction work from the encoder to the decoder, and the

computational complexity of the encoder is greatly reduced. Because of its unique

advantages, DSC has become a research hot-spot in recent years.

1.5 Thesis Structure

This thesis is organized as follows: Chapter 1 introduces the background and

related works. Chapter 2 defines the problem. Chapter 3 gives the three main

results of the problem. Theorem 1 is obtained in a special case and proved in

Chapter 4. Chapter 5 gives the proof of Theorem 2, which is an extension of

Theorem 1. Chapter 6 shows the proof of the general result in Theorem 3. Chapter

7 offers the numerical verification test for the conclusion. Finally is the conclusion

of the work. A list of references is provided at the end of the thesis.

5
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Chapter 2

Problem Definitions

Consider a communication system consisting of two distributed information sources.

Let Xn
1 , Xn

2 denote the sequences of the sources. Suppose the distribution of X1

is known, and the joint pmf of X1 and X2 is given as p(x1, x2) = p(x1) · p(x2|x1).

Note that Xn
1 and Xn

2 are encoded as U1 and U2, and U1 ↔ Xn
1 ↔ Xn

2 ↔ U2

form a Markov Chain in that order. That is, the joint pmf p(x1, x2, u1, u2) =

p(x1) · p(x2|x1) · p(u1|x1) · p(u2|x2). U1 and U2 are sent to the decoder, where

X̂n
1 and X̂n

2 are reconstructed by using (U1, U2). This coding system is shown in

Fig.2.1.

Figure 2.1: Coding system model

6
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Each encoder consists of a function fi, (i = 1, 2),

fi(Xn
i ) = Ui, (2.1)

where Xn
i ∈ Xi and Ui ∈ Ui, for i =1, 2. And decoding functions are gi, (i = 1, 2),

mapping U1 and U2 to the reconstructions X̂n
1 and X̂n

2 ,

gi(U1, U2) = X̂n
i , (2.2)

where (U1, U2) ∈ U1 × U2, for i =1, 2.

Definition 1. The Logarithmic loss distortion measure

The logarithmic loss distortion between a source symbol xj and a probability

distribution x̂j on X is defined as follows:

d(xj, x̂j) = log( 1
x̂j(xj)

), j = 1, 2, . . . n, (2.3)

where x̂(·) designates a probability distribution on X and x̂(x) is the value of

this distribution evaluated for the outcome x ∈ X . And x̂j(xj) generally depends

on (u1, u2). Throughout this thesis, the logarithm is the natural logarithm, with

the base of the mathematical constant e. With this definition for symbol-wise

distortion, we can easily define the total value of log-loss distortion between a

sequence of symbols xn
i and a sequence of distributions x̂n

i as:

d(xn
i , x̂

n
i ) = 1

n

n∑
j=1

log( 1
x̂j(xj)

), i = 1, 2. (2.4)

7
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Definition 2.

A rate distortion vector (R1, R2, D1, D2) is called strict-sense achievable for a

distortion measure d(·, ·), if there exist encoding functions f1, f2 and decoding

functions g1, g2 according to Eq.2.1 and Eq.2.2 such that for length n,

Ri ≥
1
n
log|Ui|, for i = 1, 2,

Di ≥ Ed(Xn
i , X̂

n
i ), for i = 1, 2, (2.5)

where E(·) denotes expectation function, X̂n
i = gi(f1(Xn

1 ), f2(Xn
2 )).

Definition 3.

The achievable rate-distortion region for a source is the closure of the set of all

strict-sense achievable vectors (R1, R2, D1, D2), denoted by RD∗. Furthermore, we

denote RDi as the inner bound and RDo as the outer bound of the rate-distortion

region.

According to [15, Definition 3 and Theorem 1], (R1, R2, D1, D2) ∈ RDi if and

only if there exists a joint distribution of the form

p(x1)p(x2|x1)p(u1|x1)p(u2|x2), (2.6)

8
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where |U1| ≥ |X1|, |U2| ≥ |X2|, which satisfies

R1 ≥ I(X1;U1|U2),

R2 ≥ I(X2;U2|U1),

R , R1 +R2 ≥ I(X1, X2;U1, U2),

D1 ≥ H(X1|U1, U2),

D2 ≥ H(X2|U1, U2). (2.7)

According to [15, Theorem 3], we have the following proposition.

Proposition 1.

RD∗ = RDi = RDo. (2.8)

Our problem is to find the minimum rate R with given distortion D1 and D2,

according to proposition 1, now we can convert the problem into the following

optimization problem:

min I(X1, X2;U1, U2),

s.t. D1 ≥ H(X1|U1, U2),

D2 ≥ H(X2|U1, U2). (2.9)

9
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Chapter 3

Main Results

3.1 Theorem 1

Theorem 1 (The minimum rate of binary case under logarithmic loss).

Given D1 and D2, let p(x2|x1) be a binary symmetric channel with crossover

probability q, and let p(u1|x1) , p(u2|x2) be binary-input binary-output channels,

then the asymptotic minimum rate as D1, D2 → 0 is:

I(X1, X2;U1, U2) = H(X1, X2)−D1−D2 +Imin(X1;X2|U1, U2)+o( D1D2

logD1 · logD2
),

(3.1)

where Imin(X1;X2|U1, U2) is

Imin(X1;X2|U1, U2) = min


[

1
2 ·

2q−1
1−q

+ 1
2(1− q)log (1−q)2

q2

]
· 4D1D2

logD1·logD2
,[

1
2 ·

1−2q
q

+ 1
2 · qlog

q2

(1−q)2

]
· 4D1D2

logD1·logD2

 .
(3.2)

10
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3.2 Theorem 2

Theorem 2.

GivenD1 andD2→ 0, there is no change in the asymptotic rate when |Ui| > |Xi|

compared with the result when |Ui| = |Xi|. That means |Ui| could be arbitrarily

large, but the asymptotic rate is always equal to the value calculated when |Ui| =

|Xi|.

3.3 Theorem 3

Theorem 3.

Given D1 and D2 → 0, suppose the distribution of X1 is known, and p(x1, x2) =

p(x1) · p(x2|x1). The source alphabet of X1 is X1 = {0, 1, . . . n− 1}, |X1| = n, and

the source alphabet of X2 is X2 = {0, 1, . . .m − 1}, |X2| = m, (m ≥ n). Given

p(u1|x1) with the probability εi1i2 , p(u2|x2) with the probability αj1j2 , suppose

the alphabet of U1 is U1 = {0, 1, . . . , u}, |U1| = u + 1, and the alphabet of U2 is

U2 = {0, 1, . . . , v}, |U2| = v+1. Moreover, u+1 ≥ n, v+1 ≥ m, that is |U1| ≥ |X1|,

|U2| ≥ |X2|.

Then the asymptotic minimum rate as D1, D2 → 0 is:

I(X1, X2;U1, U2) = H(X1, X2)−D1−D2 +Imin(X1;X2|U1, U2)+o( D1D2

logD1 · logD2
),

(3.3)

11
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where Imin(X1;X2|U1, U2) is

Imin(X1;X2|U1, U2) = min

{
D1D2

logD1 · logD2
· rt

p(x1 = i1 − 1)p(x2 = j1 − 1)

}
.

(3.4)

rt is the coefficient of the cross-term, and the expression of rt should be provided

in the statement of Theorem 3. i1 is the first subscript of εi1i2 , while j1 is the first

subscript of αj1j2 .

12
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Chapter 4

Proof of Theorem 1

4.1 Basic Part

Suppose that the source alphabets of X1 and X2 are just {0, 1}, X1 is uniformly

distributed over {0, 1} . Let p(x2|x1) be a binary symmetric channel with crossover

probability q, and let p(u1|x1), p(u2|x2) be binary-input binary-output channels

with crossover probabilities ε1 and ε2, α1 and α2 respectively. The alphabet of Ui

is equal to the sources alphabet Xi, that is Ui = Xi = {0, 1}. The model is shown

in Fig. 7.1.

Figure 4.1: Binary case

13
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Because X1 is uniformly distributed, the probability of X1 is

p(x1) =


1
2 (x=0),

1
2 (x=1).

(4.1)

Then we can easily get

p(x1, x2) = p(x1) · p(x2|x1) =

x1 = 0, x2 = 0 x1 = 0, x2 = 1

x1 = 1, x2 = 0 x1 = 1, x2 = 1



=

1
2(1− q) 1

2q

1
2q

1
2(1− q)

 , (4.2)

p(u1|x1) =

u1 = 0|x1 = 0 u1 = 1|x1 = 0

u1 = 0|x1 = 1 u1 = 1|x1 = 1

 =

1− ε1 ε1

ε2 1− ε2

 , (4.3)

p(u2|x2) =

u2 = 0|x2 = 0 u2 = 1|x2 = 0

u2 = 0|x2 = 1 u2 = 1|x2 = 1

 =

1− α1 α1

α2 1− α2

 . (4.4)

Note that p(x1, x2, u1, u2) = p(x1) · p(x2|x1) · p(u1|x1) · p(u2|x2), we can derive

p(x1, u1, u2) = ∑
x2
p(x1, x2, u1, u2), p(x2, u1, u2) = ∑

x1
p(x1, x2, u1, u2) and p(u1, u2) =∑

x1,x2
p(x1, x2, u1, u2).

14
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For the objective function in Eq.2.9, we have

I(X1, X2;U1, U2) = H(X1, X2)−H(X1, X2|U1, U2)

= H(X1, X2)− [H(X1|U1, U2) +H(X2|U1, U2)− I(X1;X2|U1, U2)]

= H(X1, X2)−H(X1|U1, U2)−H(X2|U1, U2) + I(X1;X2|U1, U2).

(4.5)

Given p(x1, x2), the H(X1, X2) is a constant, now let’s calculate the rest part in

Eq. 4.5. According to the definition of conditional entropy,

H(X1|U1, U2) =
∑

u1,u2

p(u1, u2)
∑
x1

p(x1|u1, u2)log
1

p(x1|u1, u2)

=
∑

x1,u1,u2

p(x1, u1, u2)log
p(u1, u2)

p(x1, u1, u2)

=
∑

x1,u1,u2

p(x1, u1, u2) [logp(u1, u2)− logp(x1, u1, u2)] . (4.6)

The Taylor series expansion of ln(1 + x) is given by

ln(1 + x) = x− 1
2x

2 + o(x2), (4.7)

so we can take out a common factor in logp(u1, u2) and in logp(x1, u1, u2) to con-

struct ln[factor · (1 + x)] and then apply the Taylor series expansion. In this way,

15
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the asymptotic expression of H(X1|U1, U2) is

H(X1|U1, U2) =− 1
2ε1logε1 −

1
2ε2logε2

+ 1
2

[
1 + (1− 2q)log q

1− q

]
ε1 + 1

2

[
1 + (1− 2q)log q

1− q

]
ε2.

(4.8)

Similarly, we can also get the asymptotic expression of H(X2|U1, U2)

H(X2|U1, U2) =− 1
2α1logα1 −

1
2α2logα2

+ 1
2

[
1 + (1− 2q)log q

1− q

]
α1 + 1

2

[
1 + (1− 2q)log q

1− q

]
α2,

(4.9)

where we only keep up to the linear terms. According to the definition of condi-

tional mutual information

I(X1;X2|U1, U2) =
∑

u1,u2

p(u1, u2)
∑

x1,x2

p(x1, x2|u1, u2)log
p(x1, x2|u1, u2)

p(x1|u1, u2)p(x2|u1, u2)

=
∑

x1,x2,u1,u2

p(x1, x2, u1, u2)log
p(x1, x2, u1, u2)p(u1, u2)
p(x1, u1, u2)p(x2, u1, u2)

=
∑

x1,x2,u1,u2

p(x1, x2, u1, u2)[logp(x1, x2, u1, u2)p(u1, u2)− logp(x1, u1, u2)p(x2, u1, u2)].

(4.10)

With the same method in calculating conditional entropy, take out a common

factor in logp(x1, x2, u1, u2)p(u1, u2) and in logp(x1, u1, u2)p(x2, u1, u2) to construct

ln[factor · (1 + x)] and then apply the Taylor series expansion. Through applying

16
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the Taylor expansion, we have

I(X1;X2|U1, U2) =
[

1
2

2q − 1
1− q + 1

2(1− q)log (1− q)2

q2

]
(ε1α1 + ε2α2)

+
[

1
2

1− 2q
q

+ 1
2qlog

q2

(1− q)2

]
(ε1α2 + ε2α1), (4.11)

where we retain up to the quadratic terms and drop the higher-order terms.

4.2 Optimization Part

Given D1 and D2, the optimization problem is

min I(X1, X2;U1, U2),

s.t. D1 ≥ H(X1|U1, U2),

D2 ≥ H(X2|U1, U2). (4.12)

Substituting Eq.4.5 into Eq.4.12, we have

min H(X1, X2)−H(X1|U1, U2)−H(X2|U1, U2) + I(X1;X2|U1, U2),

s.t. D1 ≥ H(X1|U1, U2),

D2 ≥ H(X2|U1, U2). (4.13)

As D1, D2 → 0, H(X1|U1, U2) and H(X2|U1, U2) are also close to 0. Then we can

simplify the expressions of H(X1|U1, U2) and H(X2|U1, U2) in Eq.4.8, Eq.4.9 to

H(X1|U1, U2) =− 1
2ε1logε1 −

1
2ε2logε2, (4.14)
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H(X2|U1, U2) =− 1
2α1logα1 −

1
2α2logα2. (4.15)

Since H(X1, X2) is a constant, we do not consider it in the optimization function.

Substituting Eq.4.11, Eq.4.14, Eq.5.11 into the optimization function 4.13, we find

that the objective is a function of ε1, ε2, α1, and α2.

Furthermore, comparing the order ofH(X1|U1, U2),H(X2|U1, U2) and I(X1;X2|U1, U2),

it turns out thatH(X1|U1, U2),H(X2|U1, U2) are much greater than I(X1;X2|U1, U2).

That is, the conditional entropy of X1 and X2 are the dominant terms of the ob-

jective function. Therefore, to minimize the objective function, our main target is

to minimize −H(X1|U1, U2) and −H(X2|U1, U2). Note that −H(X1|U1, U2) and

−H(X2|U1, U2) achieve their minimum values −D1 and −D2 respectively when

constraints are active.

Now the original optimization problem Eq.4.13 is converted to the following

optimization problem:

min I(X1;X2|U1, U2),

s.t. D1 = H(X1|U1, U2),

D2 = H(X2|U1, U2). (4.16)
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Substitute Eq.4.11 into Eq.4.16:

min

[
1
2

2q − 1
1− q + 1

2(1− q)log (1− q)2

q2

]
(ε1α1 + ε2α2)

+
[

1
2

1− 2q
q

+ 1
2qlog

q2

(1− q)2

]
(ε1α2 + ε2α1),

s.t. D1 = −1
2ε1logε1 −

1
2ε2logε2,

D2 = −1
2α1logα1 −

1
2α2logα2. (4.17)

Let’s introduce a coefficient k, which represents the ratio of −1
2ε1logε1 to D1, k ∈

[0, 1]. Similarly, introduce a coefficient b, which represents the ratio of −1
2α1logα1

to D2, b ∈ [0, 1]. Then we have the following equations:


−1

2ε1logε1 = kD1,

−1
2ε2logε2 = (1− k)D1,

(4.18)


−1

2α1logα1 = bD2,

−1
2α2logα2 = (1− b)D2.

(4.19)

By solving the system of equations 4.18,4.19, we can get the solutions of ε1 and

ε2, α1 and α2 
ε1 = − 2kD1

log(2kD1) = − 2kD1
log(2k)+logD1

,

ε2 = − 2(1−k)D1
log[2(1−k)D1] = − 2(1−k)D1

log[2(1−k)]+logD1
,

(4.20)
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α1 = − 2bD2

log(2bD2) = − 2bD2
log(2b)+logD2

,

α2 = − 2(1−b)D2
log[2(1−b)D2] = − 2(1−b)D2

log[2(1−b)]+logD2
.

(4.21)

If k 6= 0 and k 6= 1, when D1 → 0, logD1 → −∞, so we can ignore log(2k) and

log[2(1− k)], 
ε1 ≈ − 2kD1

logD1
,

ε2 ≈ −2(1−k)D1
logD1

.

(4.22)

Similarly, if b 6= 0 and b 6= 1, when D2 → 0, logD2 → −∞, we can also get the

approximate solutions of α1 and α2:


α1 ≈ − 2bD2

logD2
,

α2 ≈ −2(1−b)D2
logD2

.

(4.23)

The optimization problem can be written as:

min

[
1
2

2q − 1
1− q + 1

2(1− q)log (1− q)2

q2

]
· 4D1D2

logD1 · logD2
· kb

+
[

1
2

1− 2q
q

+ 1
2qlog

q2

(1− q)2

]
· 4D1D2

logD1 · logD2
· k(1− b)

+
[

1
2

1− 2q
q

+ 1
2qlog

q2

(1− q)2

]
· 4D1D2

logD1 · logD2
· (1− k)b

+
[

1
2

2q − 1
1− q + 1

2(1− q)log (1− q)2

q2

]
· 4D1D2

logD1 · logD2
· (1− k)(1− b),

s.t. 0 < k < 1,

0 < b < 1. (4.24)
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Because the products kb, k(1 − b), (1 − k)b, (1 − k)(1 − b) are all in the interval

(0, 1) and the sum of them equals 1, these products can be regarded as the weight

of each term in the total conditional mutual information. In this way, we just need

to compare the values of the coefficients, find the minimum coefficient, adjust its

corresponding weight w∗ to the maximum value of 1, and set other terms’ weights

to be 0. If

[
1
2

2q − 1
1− q + 1

2(1− q)log (1− q)2

q2

]
· 4D1D2

logD1 · logD2

<

[
1
2

1− 2q
q

+ 1
2qlog

q2

(1− q)2

]
· 4D1D2

logD1 · logD2
, (4.25)

then let kb = 1 or (1− k)(1− b) = 1, that is k = 1 and b = 1 or k = 0 and b = 0,

and the minimum of the objective function is

I(X1;X2|U1, U2)min =
[

1
2

2q − 1
1− q + 1

2(1− q)log (1− q)2

q2

]
· 4D1D2

logD1 · logD2
. (4.26)

If

[
1
2

1− 2q
q

+ 1
2qlog

q2

(1− q)2

]
· 4D1D2

logD1 · logD2

<

[
1
2

2q − 1
1− q + 1

2(1− q)log (1− q)2

q2

]
· 4D1D2

logD1 · logD2
, (4.27)

let k(1− b) = 1 or (1− k)b = 1, that is k = 1 and b = 0 or k = 0 and b = 1, then

the minimum of the objective function is

I(X1;X2|U1, U2)min =
[

1
2

1− 2q
q

+ 1
2qlog

q2

(1− q)2

]
· 4D1D2

logD1 · logD2
. (4.28)
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However, note that we assume k 6= 0 and k 6= 1, b 6= 0 and b 6= 1 when simplify-

ing the solutions in Eq.4.22, Eq.4.23, so the minimum value of the I(X1;X2|U1, U2)

is obtained when the weight w∗ corresponding to the term with the smallest coef-

ficient is close to 1.

To sum up, the asymptotic minimum rate as D1, D2 → 0 is:

I(X1, X2;U1, U2) = H(X1, X2)−D1−D2 +Imin(X1;X2|U1, U2)+o( D1D2

logD1 · logD2
),

(4.29)

where Imin(X1;X2|U1, U2) is

Imin(X1;X2|U1, U2) = min


[

1
2 ·

2q−1
1−q

+ 1
2(1− q)log (1−q)2

q2

]
· 4D1D2

logD1·logD2
,[

1
2 ·

1−2q
q

+ 1
2 · qlog

q2

(1−q)2

]
· 4D1D2

logD1·logD2

 .

This completes the proof of Theorem 1.
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Chapter 5

Proof of Theorem 2

Here we still consider binary sources X1, and X2. Suppose the source alphabets of

X1 and X2 are Xi = {0, 1}, X1 is uniformly distributed over {0, 1}. Let p(x2|x1) be

a binary symmetric channel with crossover probability q. Given p(u1|x1), p(u2|x2),

suppose the alphabet of U1 is U1 = {0, 1, . . . , u}, and the alphabet of U2 is U2 =

{0, 1, . . . , v}. Moreover, |U1| > |X1|, |U2| > |X2|. The model is shown in Fig.5.1

Figure 5.1: Binary sources with arbitrarily large U1 and U2
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Classify the elements in the alphabets U1 and U2 into 3 categories respectively.

With the pair of (u1, u2), those that have a great probability to be reconstructed

to 0 are assigned into one category, renamed as group {0}. Those that have a

great probability to be reconstructed to 1 are assigned into one category, renamed

as group {1}. And the remaining elements that can not be reconstructed certainly

are assigned into one category, renamed as group {2 . . . u} and group{2 . . . v},

respectively.

We know that givenD1,D2→ 0, becauseD1 ≥ H(X1|U1, U2),D2 ≥ H(X2|U1, U2),

H(X1|U1, U2), H(X2|U1, U2) also→ 0. Recall the definition of conditional entropy,

H(X1|U1, U2) =
∑

u1,u2

p(u1, u2)
∑
x1

p(x1|u1, u2)log
1

p(x1|u1, u2)
. (5.1)

For group {0}, given the pair of (u1, u2), it has a great probability of being recon-

structed to 0, So p(x1 = 0|u1, u2) ≈ 1, p(x1 = 1|u1, u2) ≈ 0. Hence,

∑
x1

p(x1|u1, u2)log
1

p(x1|u1, u2)

= p(x1 = 0|u1, u2)log
1

p(x1 = 0|u1, u2)
+ p(x1 = 1|u1, u2)log

1
p(x1 = 1|u1, u2)

≈ 0. (5.2)

This means the value of the p(u1, u2) could be arbitrary, and the value ofH(X1|U1, U2)

always→ 0. Similarly, H(X2|U1, U2) also always→ 0. For group {1}, the analysis

process is the same, so we can get the conclusion that if u1 and u2 both belong to

group {0} or group {1}, it can be guaranteed thatH(X1|U1, U2)→ 0, H(X1|U1, U2)

→ 0. For group {2 . . . u} and group{2 . . . v} we have the following Lemma.
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Lemma 1. As long as one of u1 and u2 belongs to group {2 . . . u} or group{2 . . . v},

then the corresponding p(u1, u2) must be close to 0.

Let’s prove it by reductio ad absurdum.

We should make a hypothesis: p(u1, u2) is not close to 0.

Then suppose u1 belongs to group {2 . . . u}, because we are not sure that the

elements in group {2 . . . u} could be reconstructed to 0 or 1. p(x1 = 0|u1, u2),

p(x1 = 1|u1, u2) are also uncertain. We have

∑
x1

p(x1|u1, u2)log
1

p(x1|u1, u2)
6= 0. (5.3)

According to the hypothesis: p(u1, u2) is not close to 0. Then the product of

p(u1, u2) and ∑x1 p(x1|u1, u2)log 1
p(x1|u1,u2) is also not close to 0. Thus, for group

{2 . . . u}, what it contributes to H(X1|U1, U2) is a large value, which makes the to-

tal H(X1|U1, U2) bounded away from 0. Similarly, if u2 belongs to group {2 . . . v},

we can get the same result that H(X2|U1, U2) is not close to 0.

Evidently, the results contradict with the fact that whenD1,D2→ 0,H(X1|U1, U2),

H(X2|U1, U2) also → 0. Therefore, the hypothesis is not true. We get the conclu-

sion p(u1, u2) must be close to 0.

Now let’s compare the orders of the values that contribute to H(X|U1, U2):

when u1 and u2 are both in group {0} or group {1} and when one of u1 and u2

belongs to group {2 . . . u} or group{2 . . . v} or both u1 and u2 are in the group

{2 . . . u} and group{2 . . . v}.
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Because X1 is uniformly distributed, the probability of X1 is

p(x1) =


1
2 (x=0),

1
2 (x=1).

(5.4)

Then we can easily get

p(x1, x2) = p(x1) · p(x2|x1) =

x1 = 0, x2 = 0 x1 = 0, x2 = 1

x1 = 1, x2 = 0 x1 = 1, x2 = 1



=

1
2(1− q) 1

2q

1
2q

1
2(1− q)

 . (5.5)

In this model, we have

p(u1|x1) =

u1 = 0|x1 = 0 u1 = 1|x1 = 0 u1 = 2|x1 = 0 . . . u1 = u|x1 = 0

u1 = 0|x1 = 1 u1 = 1|x1 = 1 u1 = 2|x1 = 1 . . . u1 = u|x1 = 1



=

1− ε11 − · · · − ε1u ε11 ε12 . . . ε1u

ε21 1− ε21 − · · · − ε2u ε22 . . . ε2u

 , (5.6)

p(u2|x2) =

u2 = 0|x2 = 0 u2 = 1|x2 = 0 u2 = 2|x2 = 0 . . . u2 = v|x2 = 0

u2 = 0|x2 = 1 u2 = 1|x2 = 1 u2 = 2|x2 = 1 . . . u2 = v|x2 = 1



=

1− α11 − · · · − α1v α11 α12 . . . α1v

α21 1− α21 − · · · − α2v α22 . . . α2v

 . (5.7)
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Since p(x1, x2, u1, u2) = p(x1)·p(x2|x1)·p(u1|x1)·p(u2|x2), we can derive p(x1, u1, u2) =∑
x1
p(x1, x2, u1, u2), p(x2, u1, u2) = ∑

x2
p(x1, x2, u1, u2) and p(u1, u2) = ∑

x1,x2
p(x1, x2, u1, u2).

GivenD1, D2→ 0, let’s calculateH(X1|U1, U2), H(X2|U1, U2), I(X1;X2|U1, U2)

in this case. The asymptotic expression of H(X1|U1, U2) is

H(X1|U1, U2) =− 1
2ε11logε11 −

1
2ε21logε21

+ 1
2

[
1 + (1− 2q)log q

1− q

]
ε11 + 1

2

[
1 + (1− 2q)log q

1− q

]
ε21

+ 1
2(ε12 + · · ·+ ε1u + ε21 + · · ·+ ε2u), (5.8)

where terms−1
2ε11logε11−1

2ε21logε21+1
2

[
1 + (1− 2q)log q

1−q

]
ε11+1

2

[
1 + (1− 2q)log q

1−q

]
ε21

is induced by (u1, u2) which are in group {0} and group {1}. This part is totally

the same with the binary case. And the term 1
2(ε12 + · · · + ε1u + ε21 + · · · + ε2u)

is induced by (u1, u2) that one of u1 and u2 belongs to group {2 . . . u} or group

{2 . . . v}, and both u1, u2 are in group {2 . . . u} and group {2 . . . v}.

As D1, D2 → 0, we only keep the dominant terms of the H(X1|U1, U2)

H(X1|U1, U2) =− 1
2ε11logε11 −

1
2ε21logε21. (5.9)

Thus, when D1, D2 → 0, the asymptotic expression of H(X1|U1, U2) is eventually

the same as the expression in the binary case.
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Similarly, we also calculate the asymptotic H(X2|U1, U2), and it is also equal

to the expression in the binary case when D1, D2 → 0.

H(X2|U1, U2) =− 1
2α11logα11 −

1
2α21logα21

+ 1
2

[
1 + (1− 2q)log q

1− q

]
α11 + 1

2

[
1 + (1− 2q)log q

1− q

]
α21

+ 1
2(α12 + · · ·+ α1v + α21 + · · ·+ α2v). (5.10)

And when D1, D2 → 0, we only keep the dominant terms of H(X2|U1, U2)

H(X2|U1, U2) =− 1
2α11logα11 −

1
2α21logα21, (5.11)

which is the same as the expression of the binary case.

Recall the definition of I(X1;X2|U1, U2)

I(X1;X2|U1, U2) =
∑

u1,u2

p(u1, u2)
∑

x1,x2

p(x1, x2|u1, u2)log
p(x1, x2|u1, u2)

p(x1|u1, u2)p(x2|u1, u2)
.

(5.12)

According to Lemma 1, as long as one of u1 and u2 belongs to group {2 . . . u} or

group{2 . . . v}, the corresponding p(u1, u2) ≈ 0. Thus, for (u1, u2), one or two of

them in group {2 . . . u} or group{2 . . . v}, its corresponding I(X1;X2|U1, U2) ≈ 0.

That means I(X1;X2|U1, U2) is mainly induced by (u1, u2) which are in group

{0} and group {1}. This is the same with the binary case. And we can get the
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following result directly,

I(X1;X2|U1, U2) =
[

1
2

2q − 1
1− q + 1

2(1− q)log (1− q)2

q2

]
(ε11α11 + ε21α21)

+
[

1
2

1− 2q
q

+ 1
2qlog

q2

(1− q)2

]
(ε11α21 + ε21α11). (5.13)

Now consider the optimization problem

min H(X1, X2)−H(X1|U1, U2)−H(X2|U1, U2) + I(X1;X2|U1, U2),

s.t. D1 ≥ H(X1|U1, U2),

D2 ≥ H(X2|U1, U2). (5.14)

With the sameH(X1|U1, U2), H(X2|U1, U2), I(X1;X2|U1, U2) as in the binary case,

we can get the same optimization solution. The asymptotic rate when Xi = {0, 1},

U1 = {0, 1, . . . , u}, U2 = {0, 1, . . . , v} is same as the rate when Xi = Ui = {0, 1}.

Therefore, we can ignore the effects of group {2 . . . u} and group {2 . . . v}.

In conclusion, given D1 and D2 → 0, there is no change in the asymptotic rate

when |Ui| > |Xi| compared with the result when |Ui| = |Xi|. This completes the

proof of Theorem 2.
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Chapter 6

Proof of Theorem 3

6.1 Basic Part

Given D1 and D2 → 0, suppose the distribution of X1 is known, p(x1, x2) =

p(x1) · p(x2|x1). The source alphabet of X1 is X1 = {0, 1, . . . n− 1}, |X1| = n, and

the source alphabet of X2 is X2 = {0, 1, . . .m − 1}, |X2| = m, (m ≥ n). Given

p(u1|x1) with the probability εi1i2 , p(u2|x2) with the probability αj1j2 , suppose

the alphabet of U1 is U1 = {0, 1, . . . , u}, |U1| = u + 1, and the alphabet of U2 is

U2 = {0, 1, . . . , v}, |U2| = v+1. Moreover, u+1 ≥ n, v+1 ≥ m, that is |U1| ≥ |X1|,

|U2| ≥ |X2|.

Classify the elements in the alphabets U1 into n+1 categories. With the pair

of (u1, u2), those that have a great probability to be reconstructed to the corre-

sponding X1 are assigned into n categories, renamed as group {0} – group {n−1}

respectively. And the remaining elements that can not be reconstructed to X1

certainly are assigned into one category, renamed as group {n . . . u}. Similarly, we
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also regroup the alphabets U2 into m+1 categories. Those that have a great prob-

ability to be reconstructed to the corresponding x2 are assigned into m categories,

renamed as group {0} – group {m− 1} respectively. And the remaining elements

that can not be reconstructed to x2 certainly are assigned into one category, re-

named as group {m. . . v}.

This model is shown in Fig.6.1

Figure 6.1: n dimensional X1 and m dimensional X2 with arbi-
trarily large U1 and U2
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Because the distribution of X1 is known, p(x1, x2) = p(x1) · p(x2|x1), we can

easily get

p(x1, x2) =



(0, 0) (0, 1) (0, 2) . . . (0,m− 1)

(1, 0) (1, 1) (1, 2) . . . (1,m− 1)
... ... ... ... ...

(n− 1, 0) (n− 1, 1) (n− 1, 2) . . . (n− 1,m− 1)


,

p(x1, x2) =


p(x1=0)(1−q11−...q1(m−1) p(x1=0)q11 ... p(x1=0)q1(m−1)

p(x1=1)q21 p(x1=1)(1−q21−...q2(m−1) ... p(x1=1)q2(m−1)

... ... ... ...
p(x1=n−1)qn1 p(x1=n−1)qn2 ... p(x1=n−1)(1−qn1−...qn(m−1)


n×m

.

(6.1)

In this model, we have p(u1|x1)

=



u1 = 0|x1 = 0 u1 = 1|x1 = 0 . . . u1 = n− 1|x1 = 0 . . . u1 = u|x1 = 0

u1 = 0|x1 = 1 u1 = 1|x1 = 1 . . . u1 = n− 1|x1 = 1 . . . u1 = u|x1 = 1
...

...
. . .

...
...

...

u1 = 0|x1 = n− 1 u1 = 1|x1 = n− 1 . . . u1 = n− 1|x1 = n− 1 . . . u1 = u|x1 = n− 1


n×(u+1)

=



1− ε11 − · · · − ε1u ε11 . . . ε1(n−1) . . . ε1u

ε21 1− ε21 − · · · − ε2u . . . ε2(n−1) . . . ε2u

...
... . . . ...

...
...

εn1 εn2 . . . 1− εn1 − · · · − εnu . . . εnu


n×(u+1)

,

(6.2)
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and p(u2|x2)

=



u2 = 0|x2 = 0 u2 = 1|x2 = 0 . . . u2 = m− 1|x2 = 0 . . . u2 = v|x2 = 0

u2 = 0|x2 = 1 u2 = 1|x2 = 1 . . . u2 = m− 1|x2 = 1 . . . u2 = v|x2 = 1
...

...
. . .

...
...

...

u2 = 0|x2 = m− 1 u2 = 1|x2 = m− 1 . . . u2 = m− 1|x2 = m− 1 . . . u2 = v|x2 = m− 1


m×(v+1)

=



1− α11 − · · · − α1v α11 . . . α1(m−1) . . . α1v

α21 1− α21 − · · · − α2v . . . α2(m−1) . . . α2v

...
... . . . ...

...
...

αm1 αm2 . . . 1− αm1 − · · · − αmv . . . αmv


m×(v+1)

.

(6.3)

Since p(x1, x2, u1, u2) = p(x1)·p(x2|x1)·p(u1|x1)·p(u2|x2), we can derive p(x1, u1, u2) =∑
x1
p(x1, x2, u1, u2), p(x2, u1, u2) = ∑

x2
p(x1, x2, u1, u2) and p(u1, u2) = ∑

x1,x2
p(x1, x2, u1, u2).

According to Theorem 2, we know that given D1, D2 → 0, the effect of the

group {n . . . u} and group {n . . . v} could be ignored, then we have the asymptotic

H(X1|U1, U2),

H(X1|U1, U2) = p(x1 = 0)
(
−ε11logε11 − ε12logε12 − · · · − ε1(n−1)logε1(n−1)

)
+ p(x1 = 1)

(
−ε21logε21 − ε22logε22 − · · · − ε2(n−1)logε2(n−1)

)
... ... ... ...

+ p(x1 = n− 1)
(
−εn1logεn1 − εn2logεn2 − · · · − εn(n−1)logεn(n−1)

)
,

(6.4)
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which consists of n× (n− 1) terms. The asymptotic H(X2|U1, U2) is,

H(X2|U1, U2) = p(x2 = 0)
(
−α11logα11 − α12logα12 − · · · − α1(m−1)logα1(m−1)

)
+ p(x2 = 1)

(
−α21logα21 − α22logα22 − · · · − α2(m−1)logα2(m−1)

)
... ... ... ...

+ p(x2 = m− 1)
(
−αm1logαm1 − αm2logαm2 − · · · − αm(m−1)logαm(m−1)

)
,

(6.5)

which consists of m× (m− 1) terms. And the asymptotic I(X1;X2|U1, U2) is

I(X1;X2|U1, U2) =
n∑

i1=1

n−1∑
i2=1

m∑
j1=1

m−1∑
j2=1

rt · εi1i2αj1j2 , (6.6)

where i1 = 1, 2, . . . , n, i2 = 1, 2, . . . , n− 1, j1 = 1, 2, . . . ,m, j2 = 1, 2, . . . ,m− 1. rt

is the coefficient of the cross-term, t = 1, 2, . . . , n× (n− 1)×m× (m− 1).

For εi1i2 , its coordinate in p(u1|x1) matrix is

(a, b) =


(i1, i2) when i1 < i2,

(i1, i2 + 1) when i1 ≥ i2.

(6.7)

For αj1j2 , its coordinate in p(u2|x2) matrix is

(c, d) =


(j1, j2) when j1 < j2,

(j1, j2 + 1) when j1 ≥ j2.

(6.8)
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Selecting a and b rows, c and d columns from p(x1, x2) matrix, we can get a 2× 2

submatrix: pac pad

pbc pbd

 . (6.9)

Now we have the coefficient rt :

rt = pac · log(
pac · pbd

pad · pbc

)− pac · pbd − pad · pbc

pbd

, (6.10)

where t = 1, 2, . . . , n× (n− 1)×m× (m− 1).

6.2 Optimization Part

Consider the optimization problem in Eq.4.16:

min I(X1;X2|U1, U2),

s.t. D1 = H(X1|U1, U2),

D2 = H(X2|U1, U2). (6.11)

Let’s introduce a coefficient ki, (i = 1, . . . , n2 − n− 1), and 1− k1 − · · · − kn2−n−1

to represent the ratio of −p(x1 = i1 − 1) · εi1i2logεi1i2 to D1, ki ∈ [0, 1]. Similarly,

introduce a coefficient bj,(j = 1, . . . ,m2 − m − 1) and 1 − b1 − · · · − bm2−m−1

to represent the ratio of −p(x2 = j1 − 1) · αj1j2logαj1j2 to D2, bj ∈ [0, 1]. For

35

http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/
http://www.biology.mcmaster.ca/


Master of Applied Science– Yanning Li; McMaster University– Department of
Electrical and Computer Engineering

i1 = 1, 2, . . . , n, i2 = 1, 2, . . . , n− 1, we have following equations :

A total of n(n-1)



−p(x1 = 0) · ε11logε11 = k1D1,

−p(x1 = 0) · ε12logε12 = k2D1,

...

−p(x1 = n− 1) · εn(n−2)logεn(n−2) = kn2−n−1D1,

−p(x1 = n− 1) · εn(n−1)logεn(n−1) = (1− k1 − · · · − kn2−n−1)D1.

(6.12)

For j1 = 1, 2, . . . ,m, j2 = 1, 2, . . . ,m− 1

A total of m(m-1)



−p(x2 = 0) · α11logα11 = b1D2,

−p(x2 = 0) · α12logα12 = b2D2,

...

−p(x2 = m− 1) · αm(m−2)logαm(m−2) = bm2−m−1D2,

−p(x2 = m− 1) · αm(m−1)logαm(m−1) = (1− b1 − · · · − bm2−m−1)D2.

(6.13)

By solving the system of equations 6.12, 6.13, we can get the solutions of εi1i2 and

αj1j2 . Moreover, given D1, D2 → 0, logD1, logD2 → −∞, if ki 6= 0 and ki 6= 1,
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bj 6= 0 and bj 6= 1, we can get the approximate solutions,



ε11 = − k1D1
p(x1=0)logD1

,

ε12 = − k2D1
p(x1=0)logD1

,

...

εn(n−2) = − kn2−n−1D1
p(x1=n−1)logD1

,

εn(n−1) = − (1−k1−···−kn2−n−1)D1
p(x1=n−1)logD1

,

(6.14)



α11 = − b1D2
p(x2=0)logD2

,

α12 = − b2D2
p(x2=0)logD2

,

...

αm(m−2) = − bm2−m−1D2
p(x2=m−1)logD2

,

αm(m−1) = − (1−b1−···−bm2−m−1)D2
p(x2=m−1)logD2

.

(6.15)

Substitute εi1i2 and αj1j2 in Eq.6.14, Eq.6.15 into Eq.6.6, now the optimiza-

tion problem in Eq.4.16 can be converted to an optimization problem related to

variables ki and bj. Each cross-term can be rewritten as
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r1ε11α11 = D1D2

logD1logD2
· r1

p(x1 = 0)p(x2 = 0) · b1k1,

r2ε11α12 = D1D2

logD1logD2
· r2

p(x1 = 0)p(x2 = 0) · b2k1,

...

rm(m−1)ε11αm(m−1) = D1D2

logD1logD2
·

rm(m−1)

p(x1 = 0)p(x2 = m− 1) · (1− b1 − · · · − bm2−m−1)k1,

rm2−m+1ε12α11 = D1D2

logD1logD2
· rm2−m+1

p(x1 = 0)p(x2 = 0) · b1k2,

...

r2m(m−1)ε12αm(m−1) = D1D2

logD1logD2
·

r2m(m−1)

p(x1 = 0)p(x2 = m− 1) · (1− b1 − · · · − bm2−m−1)k2,

...

...

r(n2−n−1)m(m−1)+1εn(n−1)α11 = D1D2

logD1logD2
·

r(n2−n−1)m(m−1)+1

p(x1 = n− 1)p(x2 = 0) · b1(1− k1 − · · · − kn2−n−1),

...

rn(n−1)m(m−1)εn(n−1)αm(m−1) = D1D2

logD1logD2
·

rn(n−1)m(m−1)

p(x1 = n− 1)p(x2 = m− 1)

· (1− b1 − · · · − bm2−m−1) · (1− k1 − · · · − kn2−n−1).

Totally there are n × (n − 1) ×m × (m − 1) terms. And I(X1;X2|U1, U2) is the

sum of them.
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Consider the optimization problem

min I(X1;X2|U1, U2),

s.t. 0 < ki < 1,

0 < bj < 1. (6.16)

The products kibj, (1 − k1 − · · · − kn2−n−1)bj, ki(1 − b1 − · · · − bm2−m−1) and

(1− k1 − · · · − kn2−n−1)(1− b1 − · · · − bm2−m−1) are all in the interval (0, 1). And

note that the sum of them equals 1. Therefore, these products can be regarded as

the weight of each term in the total I(X1;X2|U1, U2). In this way, we just need

to compare the values of the coefficients, find the minimum coefficient, adjust its

corresponding weight w∗ to the maximum value of 1, and set other terms’ weights

to be 0.

However, note that we assume ki 6= 0 and ki 6= 1, bj 6= 0 and bj 6= 1 when simpli-

fying the solutions in Eq.6.12, Eq.6.13, so the minimum value of I(X1;X2|U1, U2)

is obtained when the weight w∗ corresponding to the term with the smallest coef-

ficient is close to 1.

Then the asymptotic minimum rate as D1, D2 → 0 is:

I(X1, X2;U1, U2) = H(X1, X2)−D1−D2 +Imin(X1;X2|U1, U2)+o( D1D2

logD1 · logD2
),

(6.17)
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where Imin(X1;X2|U1, U2) is

Imin(X1;X2|U1, U2) = min

{
D1D2

logD1 · logD2
· rt

p(x1 = i1 − 1)p(x2 = j1 − 1)

}
.

(6.18)

rt is the coefficient of the cross-term in Eq.6.10. This completes the proof of

Theorem 3.
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Chapter 7

Numerical Test

Some numerical examples will be provided in this section to verify our main results.

1. Verification for keeping up to the dominant terms of H(X|U1, U2).

For the Binary uniform case in Theorem 1, take H(X1|U1, U2) as an example.

As D1, D2 → 0, we simplify the expression of H(X1|U1, U2) in Eq.7.1, to Eq.7.2

H(X1|U1, U2) =− 1
2ε1logε1 −

1
2ε2logε2

+ 1
2

[
1 + (1− 2q)log q

1− q

]
ε1 + 1

2

[
1 + (1− 2q)log q

1− q

]
ε2,

(7.1)

H(X1|U1, U2) = −1
2ε1logε1 −

1
2ε2logε2, (7.2)

keeping up to the dominant terms instead of keeping up to linear terms. And when

solving the optimization problem, we know the minimum value of −H(X1|U1, U2)

is equal to −D1. We can conduct an experiment to verify this approximation is
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acceptable.

First, suppose q = 1
3 , ε1 = ε2 = ε, D1 = 2× 10−5, then we can solve the Eq.7.1

and Eq.7.2 by using Matlab. The solution of Eq.7.1 is

ε = 0.0000014039870734622646750582710429794, (7.3)

and the solution of Eq.7.2 is

ε = 0.0000014907301328925392993290941286112, (7.4)

where the difference of these two solutions is 8.6743 × 10−8. The difference is so

small that we think that if D1 ≤ 2× 10−5, the H(X1|U1, U2) can only keep up to

the dominant terms.

Then let’s substitute the ε in 7.4 to the original expression of H(X1|U1, U2) that

has not been applied Taylor series expansion and to the equation of Eq.7.2. The

result of original expression is denoted by eq1, and the result of dominant-terms

equation is denoted by eq2,

eq1 = 2.1146e− 05, eq2 = 2.0000e− 05. (7.5)

Therefore, we hold the opinion that the approximation is acceptable.

2. Verification for the asymptotic minimum rate obtained when the weight w∗

is close to 1.

To verify that the asymptotic minimum rate is obtained when the weight w∗ is
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close to 1. Here we design a nested loop algorithm to iterate over all variables in

the binary case of Theorem 1.

Figure 7.1: Binary case

The outer loop iterates ε1, then ε2 is obtained by solve the Eq.7.2. In the inner

loop, we iterate α1, then α2 is obtained by solve the Eq.5.11. Next we compute the

I(X1;X2|U1, U2), and find the minimum value of it and print the corresponding

ε1, ε2, α1, α2. Let I1 denotes the I(X1;X2|U1, U2) obtained by iteration, and I2

denotes the I(X1;X2|U1, U2) obtained by our theorem where we set the w∗ = 1.

Suppose q = 1
3 , We can get the table 7.1. The table shows that the difference

D1 = D2 ε1 ε2 α1 α2 I1 w∗ I2
1× 10−5 7.000e-08 1.398e-06 7.000e-08 1.398e-06 4.683e-13 0.888 4.713e-13
5× 10−6 6.700e-07 2.729e-08 6.700e-07 2.729e-08 1.052e-13 0.907 1.057e-13
1× 10−7 1.000e-10 1.078e-08 1.0000e-10 1.078e-08 2.521e-17 0.977 2.524e-17
5× 10−8 5.000e-11 5.179e-09 5.000e-11 5.179e-09 5.829e-18 0.976 5.835e-18
1× 10−8 9.600e-10 2.488e-12 9.6000e-10 2.488e-12 1.968e-19 0.993 1.968e-19

Table 7.1: numerical test in the binary case

between I(X1;X2|U1, U2) obtained by iteration and I(X1;X2|U1, U2) obtained by

our theorem where we set the w∗ = 1 is very small. Moreover, as D1 and D2 → 0,

the w∗ is getting closer to 1, which proves that our conclusion is correct.
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To further prove our conclusion, we also conduct an experiment on another

special case.

Figure 7.2: Asymmetric binary case

Suppose q1 = 0.1, q2 = 0.2, we can get the table 7.2, this test again proves

D1 = D2 ε1 ε2 α1 α2 I1 w∗ I2
1× 10−5 1.490e-06 4.199e-10 1.3400e-06 3.862e-10 2.357e-12 0.996 2.356e-12
5× 10−6 7.050e-07 6.439e-10 6.350e-07 1.802e-10 5.293e-13 0.995 5.287e-13
1× 10−7 1.090e-08 5.955e-11 9.8000e-09 5.687e-11 1.267e-16 0.993 1.264e-16
5× 10−8 5.200e-09 3.367e-11 4.700e-09 3.999e-11 2.954e-17 0.983 2.923e-17
1× 10−8 9.600e-10 2.488e-12 8.7000e-10 1.407e-12 9.904e-19 0.995 9.867e-19

Table 7.2: numerical test in the asymmetric binary case

asymptotic conditional mutual information is obtained when w∗ is close to 1.
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Chapter 8

Conclusion

We have studied the asymptotic minimum rate under given log-loss distortion D1

and D2, and D1, D2 → 0. In order to attack the general case, we first studied the

special case where two uniformly distributed sources are connected by a binary

symmetric channel, and the alphabet of Ui is equal to the sources alphabet Xi

Under this premise, we have a simple expression in terms of D1 and D2.

Then this result is extended in Theorem 2, where we consider enlarging the

alphabet of Ui, making it greater than the sources alphabet Xi. It turns out that

the impact of enlarging the alphabet of Ui on the final asymptotic result could be

ignored when D1, D2 → 0.

Finally, we derived the result of the most general case. The size of source

alphabet X1 is |X1| = n, the size of source alphabet X2 is |X2| = m, (m ≥ n),

the size of alphabet U1 is |U1| = u + 1, u + 1 ≥ n, and the size of alphabet U2 is

|U2| = v + 1, v + 1 ≥ m. And the result also confirms the findings in the binary

case. The asymptotic minimum rate is again expressed explicitly as a function of
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D1 and D2.

In future work, we plan to extend our work to the more general case that

includes noises and more sources.
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