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Abstract

In this dissertation, we study the operational planning problem of a retailer under

single- and dual-channel settings with product returns and donations considerations.

It is composed of 6 chapters. Having provided the overview and motivation of this

work in Chapter 1, we present a structured literature review of the bricks-and-clicks

dual-channels in Chapter 2. Next, we propose a quality-dependent newsvendor prob-

lem, which models a socially responsible food-retailer’s operational planning problem

for a continuously deteriorating inventory over two periods with the consideration

of donation and quality-sensitive customers in Chapter 3. The retailer’s operational

planning comprises of inventory and pricing decisions, where she plans not only for

the purchase of the goods but also for donating them. We assume each unit of dona-

tion generates a constant reward derived from a blend of government incentives and

the improved public image of the company due to its corporate social responsibility

effort. Our results reveal that charitable donations can enhance the profit while at the

same time mitigate the waste and the retailer’s optimal donation volume is increasing

(decreasing) in the donation reward (quality of the goods). We extend this model

in Chapter 4 to incorporate a tax deduction policy into the retailer’s problem and

examine the impacts of quality and tax subsidy parameters on the retailer’s optimal

decisions. Although the retailer is still better off engaging in donations, we observe

iv



that a larger tax subsidy (higher quality) does not always bring in more (less) do-

nations. In Chapter 5, we develop an analytical model to help a bricks-and-clicks

dual channel retailer determine the optimal price in each channel and whether to

welcome the cross-channel returns to her physical facility. We find that the cross-

channel returns are likely to cannibalize the physical channel sales and may hurt the

retailer’s profit when customer returns are highly sensitive to refund. Finally, Chapter

6 summarizes our main contributions and proposes future research directions.

v



Acknowledgements

First and foremost, I would like to express my deepest gratitude to my co-supervisors

Drs. Elkafi Hassini and Mahmut Parlar for their invaluable mentorship. They both

have inspired me not only by their expertise in the field, but also by their work ethics

and kindness.

I would like extend my appreciation to my committee members, Drs. Prakash

Abad, Yun Zhou, and Xuan Zhao for their constructive comments and suggestions.

I am also thankful to other professors in the Operations Management area, Drs. Kai

Huang and Manish Verma as well as my defense chair, Dr. Vishwanath Baba. Special

thanks to the DeGroote family who has been extremely friendly and supportive since

my arrival to McMaster University.

Last but not least, I am extremely grateful to my parents and my grandma for

their continual support and unconditional love. Of course, most special thanks are

due to my wife, Nevcihan, who has been the most encouraging and has made me

enjoy my Ph.D. journey.

vi



Contents

Abstract iv

Acknowledgements vi

1 Introduction 1

1.1 Overview and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Summary of Contributions and Organization of the Thesis . . . . . . 4

2 A Review of Bricks-and-Clicks Dual-Channels Literature: Trends

and Opportunities 8

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Concepts of Multiple-Channel Retailing . . . . . . . . . . . . . . . . . 10

2.3 Research Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 Formulating Research Questions . . . . . . . . . . . . . . . . . 13

2.3.2 Locating Studies . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.3 Study Selection and Evaluation . . . . . . . . . . . . . . . . . 15

2.3.4 Analysis and Synthesis . . . . . . . . . . . . . . . . . . . . . . 16

2.3.5 Reporting Findings . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Channel Competition in Dual-Channel Supply Chains . . . . . . . . . 18

vii



2.4.1 Extensions of a Simple Linear Demand Function . . . . . . . . 20

2.4.2 Consumer Valuation Models . . . . . . . . . . . . . . . . . . . 22

2.4.2.1 Vertical Differentiation . . . . . . . . . . . . . . . . . 24

2.4.2.2 Horizontal Differentiation . . . . . . . . . . . . . . . 25

2.4.2.3 A Quadratic Utility Formulation . . . . . . . . . . . 27

2.4.3 Uncertain Demand and Miscellaneous Formulations . . . . . . 29

2.5 Inventory Management and Demand Fulfillment Decisions in Dual-

Channel Supply Chains . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.6 Research Agenda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.6.1 Future Research Directions Inspired from the Literature . . . 36

2.6.1.1 Channel Competition . . . . . . . . . . . . . . . . . 36

2.6.1.2 Inventory Management and Demand Fulfillment . . . 38

2.6.2 Future Research Inspired by Current Industry Trends and Chal-

lenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.6.3 Paradigm Shift and an Illustrative Model . . . . . . . . . . . . 40

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3 Donate More to Earn More 47

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2 Literature Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2.1 Deteriorating Inventory Management . . . . . . . . . . . . . . 50

3.2.2 Quality Loss Functions . . . . . . . . . . . . . . . . . . . . . . 51

3.2.3 Food Donation Models . . . . . . . . . . . . . . . . . . . . . . 53

3.3 Quality-dependent Newsvendor Problem

(QDNP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

viii



3.3.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3.2 Demand Function . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3.3 Quality Loss Function . . . . . . . . . . . . . . . . . . . . . . 60

3.3.3.1 Linear Quality Loss Function . . . . . . . . . . . . . 62

3.3.3.2 Exponential Quality Loss Function . . . . . . . . . . 63

3.3.4 Model Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.3.4.1 Second Period . . . . . . . . . . . . . . . . . . . . . . 64

3.3.4.2 First Period . . . . . . . . . . . . . . . . . . . . . . . 69

3.4 Managerial Insights . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.4.1 Donation Behavior of the Retailer . . . . . . . . . . . . . . . . 71

3.4.2 Impact of Donation on the First Period Decisions . . . . . . . 74

3.4.3 Expected Waste . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.5 Numerical Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.5.1 A case study from Wang and Li (2012) . . . . . . . . . . . . . 76

3.5.2 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . 79

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4 Can Tax Incentives Induce Donation of Fresh Goods? 84

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.3 Model Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.3.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.3.2 Quality Loss Function . . . . . . . . . . . . . . . . . . . . . . 92

4.3.2.1 Linear Quality Loss Function . . . . . . . . . . . . . 93

4.3.2.2 Exponential Quality Loss Function . . . . . . . . . . 94

ix



4.3.3 Inverse Demand Functions . . . . . . . . . . . . . . . . . . . . 95

4.4 Model Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.4.1 Second Period (No Uncertainty) . . . . . . . . . . . . . . . . . 96

4.4.2 First Period (with Uncertainty) . . . . . . . . . . . . . . . . . 102

4.5 Managerial Insights . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.5.1 Impact of the Tax Subsidy Parameters on Donations . . . . . 106

4.5.2 Effective Quality of the Leftover Inventory . . . . . . . . . . . 109

4.6 Numerical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5 Perils and Merits of Cross-Channel Returns 118

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.2 Relevant Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.3 Model Frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.3.1 Multi-channel vs Cross-channel with Exogenous Returns . . . 124

5.3.1.1 Multi-channel Setting . . . . . . . . . . . . . . . . . 124

5.3.1.2 Cross-channel Setting . . . . . . . . . . . . . . . . . 127

5.3.1.3 Impact of Cross-Channel Returns on the Optimal Prices

and Channel Profits . . . . . . . . . . . . . . . . . . 129

5.3.2 Multi-channel vs Cross-channel with Refund-dependent Returns 132

5.3.2.1 Multi-channel Setting . . . . . . . . . . . . . . . . . 133

5.3.2.2 Cross-channel Setting . . . . . . . . . . . . . . . . . 136

5.3.2.3 Numerical Analysis . . . . . . . . . . . . . . . . . . . 139

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

x



6 Conclusion and Future Research 145

A Appendices of Chapter 2 149

A.1 Derivation of Vertical Differentiation Model . . . . . . . . . . . . . . 149

A.2 Derivation of Horizontal Differentiation Model . . . . . . . . . . . . . 150

A.3 Derivation of Demand Functions in (2.7)-(2.8) . . . . . . . . . . . . . 150

B Appendices of Chapter 3 152

B.1 Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

B.2 Proof of Theorem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

B.3 Proof of Theorem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

B.4 Proof of Proposition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 158

B.5 Proof of Proposition 3 . . . . . . . . . . . . . . . . . . . . . . . . . . 159

B.6 Proof of Theorem 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

B.7 Proof of Theorem 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

C Appendices of Chapter 4 162

C.1 Proof of Theorem 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

C.2 Proof of Lemma 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

C.3 Proof of Theorem 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

C.4 The Proof of Theorem 10 . . . . . . . . . . . . . . . . . . . . . . . . . 165

C.5 The Proof of Theorem 11 . . . . . . . . . . . . . . . . . . . . . . . . . 166

xi



List of Figures

2.1 Time distribution of reviewed papers. . . . . . . . . . . . . . . . . . . 16

2.2 Top four most suggested future research themes: 1) asymmetric infor-

mation, 2) demand uncertainty, 3) multiple retailer, 4) multi-period. . 37

3.1 Sequence of events for QDNP. . . . . . . . . . . . . . . . . . . . . . . 58

3.2 Linear quality deterioration of fresh products. . . . . . . . . . . . . . 61

3.3 Plot of the optimal second period price and donation policy for Exam-

ple 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.4 A contour map of donation thresholds in terms of inventory for various

donation reward and shelf-life values when ε follows an exponential

distribution with mean 1. . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.5 Plot of the expected waste (in units) under QDNP and the no-donation

policy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.1 Sequence of events. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.2 The optimal sales amount and clearance price with respect to different

leftover inventory volumes. . . . . . . . . . . . . . . . . . . . . . . . . 100

4.3 The profits with respect to different leftover inventory volumes with

and without the government’s tax subsidy. . . . . . . . . . . . . . . . 101

xii



4.4 The optimal sales amount and clearance price with respect to different

leftover inventory volumes. . . . . . . . . . . . . . . . . . . . . . . . . 102

4.5 The optimal clearance period sales, s∗2, and profits, J∗2 , for different tax

incentive parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.6 The optimal clearance period sales with and without tax incentives, s∗2
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Chapter 1

Introduction

1.1 Overview and Motivation

The beginning of e-commerce can be traced back to the late nineties. Despite the dot-

com collapse in 2000, brick-and-mortar retailers realized the benefits of online sales

and started adopting it. Since then there has been a gradual and continuous increase

in e-commerce adoption. The number of online shoppers has increased in 2020 by

9.5% to reach 3.4 billion. E-commerce revenue has increased by 25% to reach US

$2.43 trillion in 2020. Revenues and users of e-commerce are expected to continue to

increase in 2021 to reach US $2.7 trillion and 3.8 billion users, respectively (Skeldon,

2021). In the United States, the online retail market showed 14.9% growth while

total retail sales increased only by 3.4% during the fourth quarter of 2019 compared

to the same period in 2018 (U.S. Department of Commerce, 2020b). The growth

in 2020 has almost tripled to reach 44% (Ali, 2021), the largest increase in the last

two decades, which is largely due to the COVID-19 pandemic lockdown conditions.

Moreover, e-commerce business constituted 14.3% of total sales in 2020 which was
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only 6.4% in 2015 (U.S. Department of Commerce, 2016, 2020a)

The proliferation of e-commerce has reshaped the retail market in most industries.

As a result of intensified competition, many traditional bricks-and-mortar retailers

expanded their operations to the online market and have become bricks-and-clicks.

On the other hand, some e-tailers responded by establishing a conventional channel

or forming a partnership with traditional retailers. For example, in August 2017,

Amazon bought Whole Foods to extend its operations through physical stores to

strengthen its position in the market. The increasing prevalence of corner pick-up and

mobile stores are making the competition even tougher among retailers (Brynjolfsson

et al., 2013). These developments have meant that operating in both e-commerce and

conventional retail markets in tandem has its unique challenges.

With this new era of commerce, dual-channel businesses not only have faced new

challenges but also have discovered new synergies in operating both online and offline

channels in tandem. For example, many dual-channel firms nowadays utilize their

physical facilities to enhance delivery/return operations in their web store. However,

such cross-channel activities necessitate a partial integration of the channels, which

is likely to disturb one or both of the channels.

The mainstream dual-channels literature can be divided into two categories: (1)

a novel competition between a manufacturer (or a supplier) and a traditional retailer

where either of the players (mostly the manufacturer) considers establishing an online

channel (see, for example, Chiang et al., 2003; Tsay and Agrawal, 2004; Huang et al.,

2018b), and (2) inventory management and/or demand fulfillment policies (see, for

example, Mahar et al., 2009; Liang et al., 2014; Ishfaq and Bajwa, 2019). In fact, the

operational planning problem of a dual-channel retailer has received little attention

2
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from the field until recently (see, for example, Yan et al., 2018a; Radhi and Zhang,

2019; Nageswaran et al., 2020). Interestingly, despite the two decades of accumulated

research, there are no recent comprehensive literature reviews. The extant reviews

offer only a fragmented view of the literature as they merely focus on the distribution

logistics (Melacini et al., 2018; Kembro et al., 2018). Hence, in this thesis, we address

these research gaps by offering an analytical model that analyzes a dual-channel

retailer’s optimal pricing and return policies, and a structured literature review of

the bricks-and-clicks dual-channels.

On the other hand, global demand for food, which has been gradually growing at

an average rate of 3.6% per year since 2012, generated a total revenue of US $7 trillion

in 2019 (Frimpong, 2020). Nielsen (2013) reported that fresh food accounts for about

30–60% of all food, grocery and personal care sales in the world. Unfortunately,

a significant portion of the food supply chain goods are wasted. The Food and

Agriculture Organization of the United Nations (FAO) indicated that, approximately

1.3 billion tons of food (one-third of the total produced) is wasted globally every year

(Gustavsson et al., 2011). According to the U.S. Department of Agriculture (2017),

30-40% of the total food supply is thrown away each year. In Canada, retailers were

responsible for 10% of the total annual food loss of $3.1 billion Canadian dollars in

2014 (Gooch and Felfel, 2014).

Sadly, at the same time there are millions of people who are struggling to maintain

a healthy diet and rely on food-banks. For example, United Nations estimated that

690 million suffered from hunger in 2018 (FAO, 2020). To make matters worse, any

excess food that ends up in a landfill, rather than a food-bank, leaves a carbon

footprint and wastes valuable natural resources, such as freshwater and energy, that

3
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are used in production (Hall et al., 2009). The environmental impact of landfills is

so vast that, if food waste was a country it would be the third-largest greenhouse

gases (GHGs) emissions generating country, coming after China and the U.S. (FAO,

2015). Thus, beside its potential for an economic advantage, better management of

perishable goods can also contribute to social and environmental welfare. While there

are multiple causes of food waste, 64% of store waste is due to operational practices

(Food Marketing Institute and Retail Control Group, 2012).

To address these challenges, some governments offer tax relief to retailers who

donate food. However, the retailers often tend to see donation as an opportunity

to salvage low-quality inventory, whereas, the food-banks prefer goods that will stay

fresh during the distribution, since they do not have the resources and capabilities

to manage inventories. Besides, there is a lack of research on charitable donations

(Alexander and Smaje, 2008; Giuseppe et al., 2014; Chu et al., 2018). Thus, this

thesis proposes two analytical models to contribute to this body of the literature.

1.2 Summary of Contributions and Organization

of the Thesis

This thesis studies operational planning optimization under single- and dual-channel

frameworks with a special emphasis on returns and inventory. With the issue of

inventory waste, we consider the opportunity of donating the products to charities as

a mitigation strategy.

Given the growth in the literature and the absence of a comprehensive literature

4
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review on bricks-and-clicks dual channels, we devoted Chapter 2 to present a struc-

tured literature review of the topic. When necessary additional relevant literature will

be reviewed in other chapters. Our review covers more than 260 published contribu-

tions, develops a comprehensive outlook of the field, provides a systematic discussion

of common demand modeling functions, and analyzes the reviewed literature, iden-

tifies recent research trends and opportunities, and illustrates how existing research

can be used to address up-to-date challenges in the industry.

In Chapter 3, we study a socially responsible food-retailer’s operational planning

problem for a continuously deteriorating inventory over two periods with the con-

sideration of donation and quality-sensitive customers. We develop an optimization

model that incorporates a retailer’s corporate social responsibility effort, in the form

of charitable donations, and makes use of the internet of things (IoT)-enabled con-

dition tracking technologies, such as time-temperature indicators data, to accurately

estimate the effective (true) quality of the goods and its impacts on consumer de-

mand. We formulate a quality-dependent newsvendor problem (QDNP) to determine

the stocking quantity and the first period price of the goods at the beginning of the

selling season, and the second period price and donation policy at the end of the first

period. The optimal donation policy at the end of the first period depends on the

quality (time to expiration), on-hand inventory, and the per unit reward of donation.

Specifically, the retailer is more willing to donate when the due date is near, on-hand

inventory is high, and/or per unit reward is large. Moreover, for a given inventory

level, expected food waste is always greater in the absence of donations. QDNP out-

performs the no-donation model, particularly when the uncertainty is high and/or the

length of the second period is short. Interestingly, the two models react to an increase

5
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in uncertainty oppositely: QDNP orders more to avoid possible shortage expenses in

the future as a part of the inventory can be donated if the first period demand turns

out to be low, whereas, the no-donation policy orders less to avoid possible disposal

costs at the end of the selling season.

In Chapter 4, we analyze a similar problem to the one in Chapter 3. However,

this time, we incorporate the actual U.S. government tax deduction policy for food

donations into the retailer’s after-tax profit function and analyze the impact of the

tax subsidy parameters on the retailer’s optimal decisions. Our analysis revealed

that as opposed to the conventional wisdom, the retailer’s optimal donation volume

may decline with respect to the amount of leftovers at the end of period 1, their

effective quality and the tax incentive coefficients. Such unorthodox findings arise as

a result of the government’s tax deduction being tied to the retailer’s second period

price. Moreover, we observe that the enhanced tax deduction benefits the retailer

most when the degree of uncertainty is high. Finally, donations trigger only a slight

increase in price while significantly increasing the stocking quantity.

In Chapter 5, we develop a stylized model where a dual-channel retailer, who sells

a single product through an online channel as well as a bricks-and-mortar store, wants

to determine the optimal price in each channel and whether to welcome the cross-

channel returns to her physical facility. We explicitly model the demand and returns

as a function of channel prices and investigate the effects of cross-channel returns on

individual channel-prices, -demand, and -profits as well as the firm’s overall profit.

In particular, unexpectedly, the retailer may still mark up the bricks-and-mortar

(B&M) price, despite a drop in the in-store demand due to the cannibalization effect.

Although the cross-channel returns may increase the overall demand, it is not assured

6
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the firm is better off offering this service. Unless the growth in online customers

compensate the retailer for the enhanced returns and cannibalized B&M sales, she

should not accept cross-channel returns.

Finally, we highlight the major contributions of this dissertation and suggest di-

rections for future research in Chapter 6.

7



Chapter 2

A Review of Bricks-and-Clicks

Dual-Channels Literature: Trends

and Opportunities

2.1 Introduction

Not surprisingly, the ongoing developments in the industry have been reflected in the

academic literature, with increasing interest during the last two decades. However,

two recent reviews (Kembro et al., 2018; Melacini et al., 2018) are limited in scope

and depth: they focus on fulfillment and distribution issues only and they cover

a limited portion of the literature, less than 60 journal papers versus more than

260 papers in this review. There is a lack of a structured review that provides a

comprehensive overview of the bricks-and-clicks dual-channels literature. Therefore,

our goal in this chapter is to review the extant literature, classify it, consolidate its

findings, and identify a future research agenda. In doing so we incorporate studies
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that have strategic as well operational perspectives, recognize recent research trends,

and identify the gaps between theory and practice.

We have found two prominent inquiries driving the dual-channels literature: (1)

channel competition and (2) inventory management and demand fulfillment. The for-

mer accounts for more than 80% of the literature. We further classify the first stream

of research based on demand functions due to the abundance of the contributions,

but also briefly mention the salient papers extending the basic quantitative mod-

els and/or studying a unique dual-channel phenomenon, such as free-riding. As the

second stream of research includes much fewer contributions, we are able to present

an in-depth analysis, where we classify the studies based on the key characteristics,

such as the decision(s) to be made, the methodology used to model the problem, the

number of products considered, etc., as well as the demand function formulations.

Unlike in the industry, the term dual-channel has been used interchangeably with

other multiple channel concepts to define different channel structures. Thus, one of

our other objectives in this survey is to offer an ontology for the literature on dual-

channel supply chains in Section 2.2. The remainder of this chapter is organized as

follows: We discuss our survey methodology and present an overview of the literature

in Section 2.3. In Sections 2.4 and 2.5, we summarize the major research questions

and methodologies used. Finally, in Section 2.6, we identify major literature gaps

and recent research trends, suggest future research themes, and give an example on

how the existing research can be used to address those gaps/trends.
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2.2 Concepts of Multiple-Channel Retailing

There does not seem to be a consensus on the definitions of the concepts multi-, cross-

, and omni-channel. These concepts and some others (such as mixed-channel) have

been used interchangeably by OM scholars, though they, in fact, refer to different

operational structures. In line with Beck and Rygl (2015), we shall use the term

multiple-channel as the most general definition of reaching out to the end-consumers

using at least two alternate ways.

Dual-channel is one of the most popular multiple-channel concepts along with

multi-, cross-, and omni-channel. To define these concepts, we revisit the basic def-

inition of a ‘channel’. Neslin et al. (2006) define a channel as “a customer contact

point, or a medium through which the firm and the customer interact.” The term

‘interact’ implies a two-way communication and thus excludes one-way communica-

tion channels such as TV advertisement. According to this definition, physical stores,

catalogues, telephone, TV, online, and mobile shopping are examples of the most

popular channels (Beck and Rygl, 2015).

In a multi-channel setting, all channels are managed separately. This separation

is not only in the products and/or services provided and prices but also in the data

flow and management such as that of inventory and consumer relationship manage-

ment (CRM) data. For example, an online shopping coupon cannot be redeemed

in traditional stores and a product bought from one channel cannot be returned to

another (Beck and Rygl, 2015). In contrast, in a cross-channel environment either

more than one, but not all channels, are partially or fully integrated, or all channels

are partially integrated. An example of a cross-channel practice is when an in-store
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purchase provides a coupon that can only be redeemed online.

Finally, omni-channel retailing aims to create a seamless retail environment in

which consumers can shop across all channels anywhere and at any time. The creation

of this business model has been facilitated by the new retailing landscape in which

borders between channels have been blurred due to easier and faster access to infor-

mation (Brynjolfsson et al., 2013). Within this context, a channel can involve every

intermediary that retailers use to sell their products or to reach customers, e.g., on-

line catalogues, flyers, television and mobile marketing (Verhoef et al., 2015; Bertulli,

2014). With this extended meaning, customer-to-customer interaction points, such

as social media, can also be referred to as channels since they contribute to brand

management. Such integrated channels help retailers engage in nascent buying behav-

iors of consumers such as free-riding, also called research shopping, where a customer

searches for a product in one channel and buys it from another. Retailers can track

their customers more closely by consolidating CRM information coming from all chan-

nels and thereby better manage their demand and sales. For instance, a retailer can

use its mobile application to offer a discount, that is valid for 24-hours in all channels,

to the customers who are close to a specific physical store. Similarly, real-time inven-

tory and price information of nearby store locations can be shared with customers

through a mobile application. In an omni-channel setting, a customer can return her

product to any store regardless of where she bought it (Beck and Rygl, 2015). This

is not the case in classical multi-channel settings.

It is important to distinguish between omni-channel and cross-channel concepts

as they are often treated as if they were referring to the same channel setup. For

example, all O2O operations, such as in-store pickup option of online orders from the
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company website or mobile application are a part of either cross-channel or omni-

channel practices. However, although many cross-channel companies provide O2O

services, they do not price every product the same across all channels, or they offer

more customization/wider assortment options in one channel. Thus, it depends on

the degree of integration among channels to determine whether a firm adopts a cross-

channel or an omni-channel strategy. Table 2.1 briefly summarizes the multiple-

channel concepts.

Multi-Channel independent channels
Cross-Channel partial (or full) integration among up to n (or n− 1) channels
Omni-Channel fully integrated channels

Table 2.1: Multiple-channel retailing concepts.

Even though dual-channel retailing can be placed under any of the aforementioned

concepts, it is often used to refer to a multi-channel structure in the Operations Man-

agement (OM) literature as the majority of the papers in this area attempt to optimize

vertical competition between a manufacturer (or a supplier) and a traditional retailer

with the manufacturer introducing a direct Internet channel. Moreover, it is worth-

while to note that the term ‘channel’ also includes composite media. For instance,

Levi’s is selling its products through many department stores, such as Hudson’s Bay

and Sears, all of which are considered as one channel to reach the end-customers.

Meanwhile, Levi’s is also operating individually-owned outlet stores, all of which can

be considered as another channel.
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2.3 Research Methodology

We followed the structured literature review (SLR) paradigm to locate the relevant

contributions. It suggests a systematic, transparent, and reproducible approach to

conduct a review and thereby minimizes bias (Tranfield et al., 2003; Denyer and Tran-

field, 2009). SLRs have been widely published in many fields to develop/consolidate

knowledge on emerging areas and the recent literature surveys on multiple-channel

supply chain logistics are representative examples (see, e.g., Melacini et al., 2018).

The present study follows a common 5-step guideline, which is also suggested by

Denyer and Tranfield (2009): (1) formulating research questions, (2) locating studies,

(3) study selection and evaluation, (4) analysis and synthesis, (5) reporting findings.

2.3.1 Formulating Research Questions

As already mentioned, existing dual-channel reviews focus on e-fulfillment logistics

and thereby offer a fragmented overview of the literature. The present review, how-

ever, follows a more holistic approach to analyze the bricks-and-clicks dual-channel

supply chains phenomenon. Hence, we aim to address the following research questions

in this survey:

RQ1. What are the mainstream research themes in bricks-and-clicks dual-channel

supply chains literature?

Our goal is to cover both strategic (such as competition studies) and operational

studies (such as inventory and demand fulfillment).

RQ2. What is a future research agenda for bricks-and-clicks dual-channel supply

13
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chains literature?

We develop a research agenda based on studying gaps that have been identified

in the reviewed literature as well as from our own comprehensive analysis of the

same.

2.3.2 Locating Studies

An imperative part of conducting a SLR is to locate and retrieve the studies pertinent

to the research questions (Denyer and Tranfield, 2009). We selected Web of Science

(WoS) Core Collection as our research database due to its vast repository, rigorous

journal selection process, and commonality in such reviews. Moreover, WoS Core

Collection ensures a certain level of quality due to its journal selection criteria and

periodic update of the list (Web of Science, 2020).

While determining the keywords, we relied on the results of an initial research,

in which the keywords ‘dual channel supply chain’ and ‘dual channel retailing’ were

searched for years from 2000 to 2019 within Operations Research-Management Science

category. The choice of the start of study period corresponds with the time when

bricks-and-clicks dual channel started being used in practice. Such pilot reviews

are suggested for SLRs to improve the quality of the findings (Thomé et al., 2016;

Kembro et al., 2018). As reported in Section 2.2, we realized an absence of consensus

on definitions of the multiple-channel concepts. Therefore, we decided to include the

keywords: “multiple channel”, “multi channel”, “cross channel”, “omni channel” ,

and “omnichannel”. It is worth noting that we did not use too specific keywords,

such as “closed-loop dual channels”, “O2O logistics”, or “returns in omni channels”

as our methodology has proven to be sufficient in locating relevant studies.
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2.3.3 Study Selection and Evaluation

Because the initial research retrieved a large pool of contributions, we narrowed our

focus to published articles that used a quantitative approach, which are sufficient to

address the research questions. We decided on which papers to include by reading

the abstracts and conclusions. In particular, we looked for publications that fit in

the bricks-and-clicks dual-channel context, in which at least one conventional channel

and one online channel operate in tandem. Other dual-channel settings, such as

dual reverse supply chains (Feng et al., 2017) and dual sales channels without an e-

channel (Chen and Bell, 2012; Feng et al., 2018; Niu et al., 2019b), are not within the

scope of this study. Although some modeling frameworks in bricks-and-clicks dual-

channels may align with those in other dual-channel or multiple-channel contexts,

operating in both e-commerce and conventional retail market in tandem has its unique

characteristics and challenges. Table 2.2 depicts the keywords and the Boolean-logic

used to retrieve relevant studies.

Keywords and Boolean-logic

dual channel supply chain OR dual channel retailing OR dual channel competition OR dual channel demand fulfillment OR
multiple channel supply chain OR multiple channel competition OR multiple channel demand fulfillment OR
multi channel supply chain OR multi channel competition OR multi channel demand fulfillment OR
cross channel supply chain OR cross channel competition OR cross channel demand fulfillment OR
omni channel supply chain OR omni channel competition OR omni channel demand fulfillment OR
omnichannel supply chain OR omnichannel competition OR omnichannel demand fulfillment

Table 2.2: Keyword search results on WoS Core Collection from 2000 to 2019 within
the OR-MS category.

Our search resulted in 319 contributions; after eliminating the irrelevant studies,

234 papers were found from WoS and through cross-referencing we retrieved 29 more

papers. Thus, in total, we have reviewed 263 articles published between 1998 and

2019. As can be seen from Figure 2.1, the number of publications in this field has

15



Ph.D. Thesis - Armagan Ozbilge McMaster - Management Science

been increasing significantly in the last decade.
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Figure 2.1: Time distribution of reviewed papers.

2.3.4 Analysis and Synthesis

At this point, all papers included in this study were reviewed thoroughly and all rel-

evant data were entered into an Excel spreadsheet. In the spreadsheet, the articles

were grouped by their research theme, problem dynamics (number of periods, prod-

ucts, channels, etc.), demand formulation, solution methodology, and future research

suggestions as well as their basic characteristics (publication year, journal name, etc.).

The initial review had been very useful for determining the defining characteristics of

the papers as well as categorizing them on different relevant dimensions.

16



Ph.D. Thesis - Armagan Ozbilge McMaster - Management Science

2.3.5 Reporting Findings

Once all contributions were analyzed, findings were consolidated to address the re-

search questions. We present an overview of our findings here and elaborate on them

in the subsequent sections.

Overall, 81% of the papers study a single-period problem while 65% develop a

deterministic model. Moreover, 79% of all articles use game theory models of which

80% are two-player game models. These statistics indicate the presence of common

research trends. We have found two prominent inquiries in bricks-and-clicks supply

chain literature. The first stream of research investigates a novel competition between

a manufacturer (or a supplier) and a traditional retailer where either of the players

(mostly the manufacturer) considers establishing an online channel. The second line

of research investigates inventory management and/or demand fulfillment policies.

Based on our literature review, the first stream includes more than 80% of the

reviewed papers. One reason for the prominence of this topic is that channel com-

petition has been attracting many researchers from the marketing literature as well.

In fact, research on channel distribution and coordination lies at the interface of OM

and Marketing, and one of the earliest papers was published in a marketing jour-

nal (Balasubramanian, 1998). Another reason for the commonality of this subject

is its richness and broadness, so that it is possible to examine a variety of scenarios

under different assumptions. For instance, the interaction between the channels can

be examined from diverse angles by assuming different decision variables, such as

price, ordering quantity, service effort, low carbon emission investment, or a combi-

nation thereof. In the next two sections we delve deeper into each topic and recognize

overlapping frameworks and research trends.
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2.4 Channel Competition in Dual-Channel Supply

Chains

Channel competition is one of the main research themes in the bricks-and-clicks supply

chain literature. In the most common modeling framework, a manufacturer/supplier

decides to introduce an internet-enabled direct channel while there is already an ex-

isting channel between the same manufacturer/supplier and a retailer. Because the

decision makers not only compete over the wholesale price, but also over the end cus-

tomers’ demand, an unconventional supply chain competition (both horizontal and

vertical) arises (see, e.g., Chiang et al., 2003; Tsay and Agrawal, 2004; Mukhopadhyay

et al., 2008a; Xiao et al., 2014; Huang et al., 2018b). The main goal is to develop

a better understanding of the benefits and costs to the manufacturer’s e-commerce

initiative for both parties as well as customers. However, we also include papers inves-

tigating bricks versus clicks channel competition without a game theory perspective.

Such papers are sparse in numbers and often model a dual-channel retailer (see, e.g.,

Yao and Liu, 2003; Hu and Li, 2012; Carrillo et al., 2014; Zhang and Wang, 2017; Du

et al., 2019).

Alternative supply chain structures, such as a supplier with a direct channel and

multiple retailers (Lei et al., 2014), a wholesale manufacturer with a retailer having

an online presence (Hsiao and Chen, 2014), and the competition between two dual-

channel supply chains (Jamali and Rasti-Barzoki, 2018) were studied under various

assumptions. In the basic model, supply chain members play a Stackelberg or a Nash

game to make their respective decisions which can be one or a combination of price,

order quantity, and service effort. Moreover, players are assumed to have symmetric

18



Ph.D. Thesis - Armagan Ozbilge McMaster - Management Science

information and to be risk-neutral. The main focus of these papers is to study the

impacts of the online channel on the ongoing business.

The basic model is often extended in two ways: by relaxing the assumptions

of symmetric information or risk-neutrality of players (Cao et al., 2013; Liu et al.,

2016; Huang et al., 2018a). In addition to theoretical extensions, there have also

been some application extensions in the areas of sustainability, remanufacturing and

coordination (Cao, 2014; Carrillo et al., 2014; Yan et al., 2015; David and Adida,

2015; Li et al., 2016a; Xie et al., 2017; Xu et al., 2018). One interesting marketing

application area is cross-selling, or free-riding, where a customer finds a product in

one channel, but purchases it from the other (Bernstein et al., 2009; Balakrishnan

et al., 2014; Dan et al., 2014; He et al., 2016; Pu et al., 2017; Zhou et al., 2018). In

a novel work, Salmani et al. (2018) studies the optimal investment allocations, where

channels compete over a limited funding, instead of end-customers.

We group this body of the literature by demand formulations due to the vast

number of publications. It is also worth noting that certain demand modeling ap-

proaches often lead to similar conclusions. As the conventional supply chain structure

is complemented by a new (online) channel, traditional demand functions fall short of

capturing the true nature of retail operations in a dual-channel context. To cope with

this issue, two main approaches have been adopted in the literature: extending the

existing demand functions or establishing novel ones. Due to the additional complex-

ity imposed by the introduction of an e-channel, about 74% of the studies reviewed

use deterministic demand models while the rest uses either fuzzy, probabilistic, or

stochastic approaches. The focus on deterministic demand may be explained by the

nascence of the field where pioneer studies often start with simple settings. In the

19



Ph.D. Thesis - Armagan Ozbilge McMaster - Management Science

remainder of this section we discuss the prevailing demand models that were used

to model channel competition. We focus on deterministic formulation schemes as

they significantly outnumber the stochastic ones and also as many studies consider

demand uncertainty by extending a deterministic model.

2.4.1 Extensions of a Simple Linear Demand Function

One of the most widely used and arguably the simplest form of demand (in the

traditional bricks-and-mortar context) is defined as D(p) = a − bp where a > 0 is

the potential market size, b > 0 is the price sensitivity parameter and 0 ≤ p ≤

a/b is the price (Mills, 1959; Petruzzi and Dada, 1999). For a detailed survey of

demand functions used in a conventional supply-chain settings, we refer to Huang

et al. (2013a).

To account for the addition of an e-channel, the linear demand function has been

extended to Di(pi, pj) = ai − b̂ipi + βi(pj − pi), where i, j ∈ {r, e} and i 6= j and the

subscripts r and e denote traditional retail and online channels, respectively. As in

the single-channel model, the terms ai > 0, b̂i > 0 and 0 ≤ pi ≤ (ai + βipj)/(b̂i + βi)

stand for market share, self-price sensitivity and price in channel i, respectively. The

cross-price sensitivity parameter of channel i ∈ {r, e} is denoted as βi. It is assumed

that self-price sensitivities are always prominent, i.e., 0 ≤ βi ≤ mini∈{r,e} b̂i, i ∈ {r, e}.

This assumption also plays an important role for proving the concavity of the objective

function. One can write a more compact version of the linear demand function for

dual-channels with some simple algebraic manipulations as,

Di(pi, pj) = θia− bipi + βipj, i, j ∈ {r, e}, i 6= j, (2.1)
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where a = ai+aj is the aggregate market size and 0 ≤ θi ≤ 1 denotes the market share

of channel i (which means θi = ai/a). Also, we have an updated self-price sensitivity

parameter bi = b̂i+βi. Equation (2.1) is often considered with symmetric self- and/or

cross-price sensitivity parameters. In Table 2.3 we list the papers that used demand

form (2.1) and indicate what factors are considered in demand modeling.

Note that the above formulation is also used to model demand in other sup-

ply chain frameworks employing two distribution channels. For example, Tsay and

Agrawal (2000) use it to model a situation where a manufacturer distributes its prod-

ucts through two independent retailers. On the other hand, price is often not the only

driver of demand. Depending on the product’s characteristics, other factors, such as

service level (offered either in the offline channel or in both channels) and advertise-

ment investment can be considered with their associated self- and cross-sensitivity

parameters. In our classifications, we include modifications that may deviate slightly

from demand form (2.1). For example, Tsay and Agrawal (2004) fractionate aggre-

gate demand rather than the market size while considering service effort as the only

driver of demand in both channels.

Given the commonality of this classical demand-price functional form, it is not

surprising that the majority of the studies adopted a demand function that depends

solely on price. A hybrid function where demand is influenced not only by price

but also by service received significant attention as well. In this context, the term

service includes a variety of bargains offered by companies such as in-store assistance,

warranty, and refund policy. Delivery lead time (in the internet-enabled channel) and

eco-friendliness issues have been the focus of some recent studies. In another recent

work, Zhou and Ye (2018) model price competition as in (2.1) and incorporate low
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Papers Price Service Lead Time Eco-friendliness

Park and Keh (2003); Yao and Liu (2005); Yue and Liu (2006);
Kurata et al. (2007); Cai et al. (2009); Huang and Swaminathan
(2009); Yan (2011); Chen et al. (2012); Ryan et al. (2012); Huang
et al. (2012); Niu et al. (2012); Huang et al. (2013b); Hong et al.
(2013); Cao et al. (2013); Carrillo et al. (2014); Hsieh et al.
(2014); Feng and Geunes (2014); Xu et al. (2014); Lei et al.
(2014); Panda et al. (2015); Shang and Yang (2015); Lu and Liu
(2015); Zhang et al. (2015); Soleimani et al. (2016); Soleimani
(2016); Chen et al. (2016b); Saha (2016); Saha et al. (2016); Yan
et al. (2016); Ding et al. (2016); Li et al. (2016b); Wang et al.
(2016a); Giri et al. (2017); Zhang and Wang (2017); Matsui
(2017); Zhao et al. (2017); Dennis et al. (2017); Chen et al.
(2017b); Jafari et al. (2017); Saha et al. (2018b); Lu et al. (2018);
Moon et al. (2018); Kim and Chun (2018); Zhou et al. (2019);
Raza and Govindaluri (2019); Wang et al. (2019b)

X

Tsay and Agrawal (2004); Dan et al. (2014); Li et al. (2017a);
Dan et al. (2018); Yang et al. (2018b)

X

Kumar and Ruan (2006); Mukhopadhyay et al. (2008b,a); Dan
et al. (2012); Tsao and Su (2012); Lu and Liu (2013); Chen et al.
(2013); Chen (2015); Giri and Roy (2016); Li and Li (2016); Liu
et al. (2016); Pu et al. (2017); Wang et al. (2017); Xie et al.
(2017); Jiang et al. (2017); Zhou et al. (2018); Li et al. (2019c,b);
Noori-daryan et al. (2020); Pathak et al. (2020); Li et al. (2019e)

X X

Hua et al. (2010); Saha et al. (2018a); Modak and Kelle (2019) X X

Li et al. (2016a); Jamali and Rasti-Barzoki (2018); Heydari et al.
(2019); Wang et al. (2020)

X X

Ji et al. (2017b) X X X

Table 2.3: Papers using an extension to the simple linear demand model.

carbon emission efforts in a multiplicative manner.

2.4.2 Consumer Valuation Models

In this section we review utility-based demand functions. The overlapping formula-

tions can be categorized into three groups: 1) Vertical differentiation models, 2) Hori-

zontal differentiation models, 3) A quadratic utility function based models. However,

hybrid (both horizontal and vertical) or some sophisticated utility structures are also

used, albeit less commonly. In Table 2.4, we present the list of papers reviewed for

each category.
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Model Papers

Vertical
differentiation

Chiang et al. (2003); Fruchter and Tapiero (2005); Yan (2008);
Dumrongsiri et al. (2008); Yan and Pei (2009); Bernstein et al.
(2009); Moon et al. (2010); Jiang et al. (2010); Yan and Ghose
(2010); Yan and Pei (2011); Ma et al. (2013); Moon and Yao
(2013); Ren et al. (2014); Hsiao and Chen (2014); Yan et al.
(2015); Wang et al. (2016b); Luo et al. (2016); Ha et al. (2016);
Niu et al. (2017); Zhang et al. (2017b); Ji et al. (2017a); Chen and
Chen (2017); Gan et al. (2017); Zhang et al. (2017c); Li et al.
(2018c,a); Wang et al. (2018a); Ji et al. (2018); Yang et al.
(2018c); Li et al. (2018b); Wang et al. (2018b); He et al. (2019); Li
et al. (2019a); Yang and Tang (2019); Xu et al. (2021); Yan et al.
(2020a); Liu et al. (2019b); Wang et al. (2019a); Shao (2020); Liu
et al. (2019a)

Horizontal
differentiation

Balasubramanian (1998); Chun and Kim (2005); Cattani et al.
(2006); Liu et al. (2006); Liu and Zhang (2006); Yoo and Lee
(2011); Ofek et al. (2011); Chun et al. (2011); Jeffers and Nault
(2011); Xiao et al. (2014); Li et al. (2015a); Cao et al. (2016);
Xiao and Shi (2016); He et al. (2016); Xia et al. (2017); Zhang
et al. (2019a); Li et al. (2019d); Nault and Rahman (2019); Fan
et al. (2021)

Hybrid models
(both vertical

and horizontal)

Shi et al. (2013); Cao et al. (2016)

Quadratic
utility or inverse

demand
formulation

Arya et al. (2007); Cai (2010); Zhang et al. (2012); Xiong et al.
(2012); Hsiao and Chen (2013); Pei and Yan (2013); Arya and
Mittendorf (2013); Cao (2014); Li et al. (2014b, 2015d); David
and Adida (2015); Yang et al. (2015); Li et al. (2015c); Amrouche
and Yan (2016); Matsui (2016); Li et al. (2016c); Yoon (2016);
Abhishek et al. (2016); Chen et al. (2017a); Zheng et al. (2017);
Qing et al. (2017); Liu et al. (2017); Yan et al. (2018b); Tang
et al. (2018); Huang et al. (2018a); Xu et al. (2018); Lai et al.
(2018); Yang et al. (2018a); Huang et al. (2018b); Yang et al.
(2018d); Zhang et al. (2019b); Feng et al. (2019); Guan et al.
(2020); Chen et al. (2019); Nie et al. (2019)

Other valuation
models

Chen et al. (2008); Bernstein et al. (2008); Khouja et al. (2010);
Khouja and Wang (2010); Balakrishnan et al. (2014); Luo and
Sun (2016); Huang et al. (2017); Cai and Chen (2017); Du et al.
(2019); Niu et al. (2019a)

Table 2.4: Papers using a consumer valuation model.
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2.4.2.1 Vertical Differentiation

Various variants of vertically differentiated utility functions have been extensively

used to model channel competition in the literature. In the most common framework,

Chiang et al. (2003) introduced a simple valuation model where reservation price, V , is

uniformly distributed over [0, 1]. A representative consumer gets the net utility Ur =

V − pr by shopping from a traditional retailer and Ue = θV − pe by shopping from an

e-channel, where θ ∈ (0, 1) is defined as the channel acceptance level or web-fit of the

product, and, pr and pe are the traditional retailer and e-channel prices, respectively.

This structure gives rise to the following demand functions (see Appendix A.1).

Dr =


1− pr − pe

1− θ
if
pe
θ
≤ pr,

1− pr otherwise,

(2.2)

De =


θpr − pe
θ(1− θ)

if
pe
θ
≤ pr,

0 otherwise,

(2.3)

As can be seen from (2.2)-(2.3), dual-channel structure arises only for pe/θ ≤ pr

as the online channel would not be active otherwise. This model is the so-called

vertical differentiation model with market size normalized to 1. When V is uniformly

distributed over
[
0, V̄

]
, where V̄ > 0 is a constant upper-bound, a similar structure

arises with mild adjustments.

Many researchers adopt such a demand formulation as it is (e.g., see Arya et al.,

2007 and Chen and Bell, 2012), while others implement some modifications. Besides

the adjustments mentioned in the linear demand case (in Section 2.4.1), such as

service assistance level in the physical store (e.g., Yan and Pei, 2009) and delivery
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lead time (e.g., Xu et al., 2012), return considerations have been a popular theme

lately (Ma et al., 2013; Chen and Chen, 2017; Li et al., 2018a,c) due to the flexibility

that consumer utility models offer.

One can also derive the inverse demand functions as pr = θ(1 − Dr − De) and

pe = 1 − Dr − θDe with the condition pe/θ ≤ pr. This system of inverse demand

functions is, in fact, also used to differentiate the quality of the products in the OM

literature (Ferguson and Toktay, 2006; Ferguson and Koenigsberg, 2007; Yan et al.,

2018b). Even in the dual-channel context, some papers assume that there are two

types of products (each sold in either of the channels) and differentiate consumer

valuations based on quality instead of channel preference (e.g., see Yan et al., 2015;

Ha et al., 2016).

2.4.2.2 Horizontal Differentiation

Horizontally differentiated utility structures have not received as much attention as

vertical differentiation models have. This is partially because the basic valuation

model, i.e., the Hotelling (1929) line, aims to imitate a market with two competing

bricks-and-mortars retailers and has a limited capacity in explaining the competi-

tion between online- and offline-channel. Moreover, the traditional channel had been

considered to be superior during the first decade of e-commerce and vertical differ-

entiation models are appropriate tools to model such situations. However, with an

increasing popularity of cross- and omni-channel practices, the number of papers us-

ing horizontally differentiated utility functions has recently grown as it can be seen

from Table 2.4.

In the basic bricks-and-clicks model, a retail store is assumed to be located at
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the left-end of a Hotelling (1929) line of length one. The consumers are assumed

to be uniformly distributed over this line and a representative consumer derives the

net utility Ur = v − pr − tX, where v is called the reservation price, t is the unit

transportation cost and X is a uniform random variable with support [0, 1]. In other

words, the utility consumers gain diminishes through the right-end of the city. On the

other hand, when a consumer shops from the online channel, she derives the utility

Ue = v − pe − s, where s < t is a constant inconvenience/delivery cost of purchasing

online.

Assuming Ue ≥ 0 (online channel is always active), pr ≤ pe + s (neither of the

channels dominates the other), and v > 2t (making sure that market can be fully

covered) one can develop demand function of each channel as (see Appendix A.2),

Dr =
pe − pr + s

t
, (2.4)

De = 1− pe − pr + s

t
. (2.5)

This basic model is proposed by Liu et al. (2006) and many papers under this

category adopt a mildly modified version of this framework (see, e.g., Chun and

Kim, 2005; Xiao and Shi, 2016). In a salient work, Cattani et al. (2006) follow a

slightly different formulation by assuming uniformly distributed inconvenience costs

in both channels. The simplicity of horizontally differentiated consumer valuation

formulations enables the researchers to model novel dual-channel phenomena. For

example, He et al. (2016) consider free-riding behavior (browsing the product in a

physical store, but shopping it from the online channel) of the consumers while Zhang

et al. (2019a) study a buy online, pickup-in-store situation.

Moreover, as an extension of the Hotelling line, Salop (1979) proposes a spatial
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circular market model. Other studies have followed a similar approach to model a

bricks-and-clicks market (Balasubramanian, 1998; Jeffers and Nault, 2011; Xiao et al.,

2014; Nault and Rahman, 2019).

2.4.2.3 A Quadratic Utility Formulation

The third consumer valuation model we discuss stemmed from the economics litera-

ture where it has been used to model a duopoly market condition (Singh and Vives,

1984). Later, the marketing literature advocated a slightly modified version to model

channel competition (Ingene and Parry, 2004, 2007). Accordingly, the net utility of

a representative consumer can be described as

U =
∑
i∈{r,e}

(AiDi −BiD
2
i /2)− γDiDj −

∑
i∈{r,e}

piDi, (2.6)

where the last expression represents the cost of purchasing from both channels while

the rest represents a concave utility function with Ai, Bi, i ∈ {r, e} and γ being

positive constants such that BrBe − γ2 > 0 and AiBj − Ajγ > 0, i, j ∈ {r, e}, i 6= j.

A representative consumer maximizes her net utility given in (2.6) with respect

to quantities Dr and De. In the sequel, we use the following linear demand structure

(see Appendix A.3):

Di =
Bj(Ai − pi)− γ(Aj − pj)

BrBe − γ2
or, (2.7)

pi = Ai −BiDi − γDj, i, j ∈ {r, e}, i 6= j. (2.8)

Following the relevant literature, by letting δ = BrBe − γ2, ai = (AiBj −Ajγ)/δ,
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bi = Bj/δ i, j ∈ {r, e}, i 6= j and β = γ/δ, one can rewrite direct demands in (2.7) as,

Di = ai − bipi + βpj, i, j ∈ {r, e}, i 6= j,

which is, in fact, analogous to the linear demand form given in (2.1) for βr = βe = β.

The studies modeling demand as in (2.1) are already outlined in Section 2.4.1.

Therefore, in Table 2.4, we only present the papers deriving demand from the utility

function (2.6) or adopting an inverse demand scheme similar to (2.8). Such demand

formulations have been adopted by many scholars from different fields, including eco-

nomics, marketing, and operations management, to model a dual-channel framework.

A popular approach is to model demand as in (2.7) for Br = Be = 1 (see, e.g., Cai,

2010; Zhang et al., 2012; Lai et al., 2018; Tang et al., 2018). The same simplification is

assumed by many papers adopting an inverse demand formulation as in (2.8) as well.

Among those, for example, Yang et al. (2015) consider channel-specific γ values while

Arya and Mittendorf (2013); Yoon (2016) and Yang et al. (2018a) assume identical

market conditions for both channels, i.e., Ar = Ae = A. Moreover, Huang et al.

(2018a) allow A to be random over a two-point distribution (high or low) whereas,

Huang et al. (2018b) consider an additive, uniformly distributed random component

in their formulation. In a similar vein, some papers establish a Cournot competition-

like framework by further letting Br = Be = γ = B, where B is mostly taken as 1

(see, e.g., Arya et al., 2007; Xiong et al., 2012; Li et al., 2016c, 2017b).

Finally, some studies formulate the utility function in (2.6) with some modifica-

tions. For example, Matsui (2016) uses a slightly different notation while Chen et al.

(2017a) and Xu et al. (2018) add new terms to consider quality and carbon emission

abatement, respectively.
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2.4.3 Uncertain Demand and Miscellaneous Formulations

In this section, we outline demand modeling approaches besides linear formulations

and consumer valuation models.

Most papers under this category incorporate uncertainty into demand by extend-

ing the formulations presented in Sections 2.4.1 and 2.4.2 (Fruchter and Tapiero,

2005; Yue and Liu, 2006; Hendershott and Zhang, 2006; Geng and Mallik, 2007;

Chen et al., 2008; Dumrongsiri et al., 2008; Bernstein et al., 2008; Jiang et al., 2010;

Yan and Ghose, 2010; Khouja and Wang, 2010; Yan and Pei, 2011; Hu and Li, 2012;

Ryan et al., 2012; Chen et al., 2013; Feng and Geunes, 2014; Carrillo et al., 2014; Li

et al., 2014a; Liu et al., 2014; Xu et al., 2014; Lei et al., 2014; Chen, 2015; Li et al.,

2015b, 2016b; Liu et al., 2016; Ha et al., 2016; Huang et al., 2017; Yang et al., 2017;

Li et al., 2017b; Liu et al., 2017; Modak and Kelle, 2019; Zhang et al., 2019b; Zhou

et al., 2019; Raza and Govindaluri, 2019; Wang et al., 2019b; Hsieh et al., 2014; Guan

et al., 2020). Several papers consider demand as a random variable. The common

approach is to assume that demand in different channels are uncorrelated and follow

a general or known probability distribution (Yao et al., 2005; Netessine and Rudi,

2006; Seifert et al., 2006; Yao et al., 2009; Liu et al., 2010a; Shao, 2012; He et al.,

2014; Xie et al., 2014; Yang et al., 2016; Zhao et al., 2016; Liu et al., 2018; Zhang

et al., 2019c; Liao et al., 2019; Yu et al., 2019). Some papers also consider spillovers

from the competing channel in the case of stock-outs (Boyaci, 2005; Geng and Mallik,

2007; Yang et al., 2017).

We gather differential demand models and unique frameworks under miscellaneous

formulations. We have found four papers studying channel competition by using

a differential demand formulation scheme (Yao and Liu, 2003; Berger et al., 2006;
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Hendershott and Zhang, 2006; Sayadi and Makui, 2014). Moreover, Chiang (2010)

model demand as a Poisson process while Liu et al. (2014) and Rodŕıguez and Aydın

(2015) adopt a multiplicative and a nested-logit formulation, respectively.

2.5 Inventory Management and Demand Fulfill-

ment Decisions in Dual-Channel Supply Chains

For more detailed surveys of e-fulfillment logistics in the era of multiple-channel re-

tailing, we refer the reader to Kembro et al. (2018) and Melacini et al. (2018). As

the present study aims to provide a literature review of a broader topic, our paper-

selection criteria and analysis are different than those of past surveys.

This stream of research constitutes around 18% of the whole bricks-and-clicks

dual-channel literature. In Table 2.5, we portray this body of the literature by listing

some key features of the published works. Unlike the competition-based models, this

line of research has incorporated lead time and demand uncertainty (we abbreviate

‘random variable’ as ‘RV’ in the Demand column) leading to complex problems. Seek-

ing analytical tractability, researchers have opted for imposing strict assumptions on

demand probability distributions and used heuristic procedures to tackle large-sized

problems. Moreover, multi-period frameworks outnumber single-period ones. Deci-

sion column shows the main tool(s) used to tackle/analyze the problem: inventory

refers to any sort of stock acquisition decisions such as order-up-to levels while fulfill-

ment refers to the assignment of inventories to satisfy incoming demand from either

channel. The situation where the retailer offers O2O services, such as an in-store

pickup option, as well as last-mile delivery, is denoted as hybrid delivery in the table.
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Papers No. of
periods

No. of
products

Demand Methodology Decision Lead
Time

Hybrid
Delivery

Heuristic Return

Bendoly (2004) Multi 1 RV-Normal Simulation Inventory,
Fulfillment

X

Chiang and
Monahan (2005);
Takahashi et al.
(2011)

Infinite 1 Poisson
process

Markov Chains Inventory X

Alptekinoğlu and
Tang (2005)

Multi 1 RV-Normal NLP Fulfillment X X

Huang et al. (2007) Infinite 1 RV DP Inventory X
Bendoly et al. (2007) Multi 1 RV-Normal NLP Inventory,

Fulfillment
X

Hovelaque et al. (2007) 1 1 RV-Normal Newsvendor Inventory X
Mahar et al.
(2009); Mahar and
Wright (2009)

Multi 1 RV-Normal MIP Inventory,
Fulfillment

X X

Bretthauer et al. (2010) Multi 1 RV-Normal MIP Inventory,
Fulfillment

X

Liu et al. (2010b) 1 1 RV-Normal MIP Fulfillment X X
Wu and Chiang (2011) 2 1 RV Stochastic

Programming
Inventory,
Transship.

X

Mahar et al. (2012) Multi 1 RV-Normal IP, Simulation Inventory,
Delivery

X X

Schneider and
Klabjan (2013)

Multi 1 Poisson
process

Markov Chains Inventory

Liang et al. (2014) 1 1 RV-3 Point
Dist.

Analytic Inventory,
Transship.

Continued on next page
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Table 2.5 – continued from previous page

Papers No. of
periods

No. of
products

Demand Methodology Decision Lead
Time

Hybrid
Delivery

Heuristic Return

Tetteh et al. (2014) Infinite 1 Poisson
process

Markov Chains Inventory

Li et al. (2015b) Multi 1 Linear Stochastic DP Inventory

Zhang (2015) Multi Multi Linear MIP, DP Inventory X
Zhao et al. (2015) Multi 1 AR(1) Analytic Inventory X
Widodo (2015) 2 1 Linear EOQ Inventory,

Price

Batarfi et al. (2016) Multi 2 Linear EPQ Inventory X
Zhang et al. (2016) 1 1 Scalar Multi-obj Inventory X
Batarfi et al. (2017) Infinite 2 Linear Analytic Inventory X
Liao et al. (2017) 1 1 RV-Normal Multi-obj NLP Inventory,

Fulfillment
X

Mahar and Wright
(2017)

Infinite 1 RV-Normal Nonlinear IP Fulfillment,
Return

X X X

Yu and Deng (2017) 1 1 RV Robust Opt. Inventory

Zhang et al. (2017a) 1 1 RV Simulation Channel
Timing

X

Gao et al. (2017) Multi 1 AR(1) Analytic Inventory

Gao and Su (2017a) 1 1 RV Analytic Inventory X
Gao and Su (2017b) 1 1 RV Analytic Inventory

Alawneh and
Zhang (2018)

Multi Multi RV NLP Inventory X

Jiang et al. (2018) Multi 1 Linear MIP Price,
Promotion

X
Continued on next page
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Table 2.5 – continued from previous page

Papers No. of
periods

No. of
products

Demand Methodology Decision Lead
Time

Hybrid
Delivery

Heuristic Return

Wei et al. (2020) 1 1 Linear Analytic Price

Arikan and
Silbermayr (2018)

1 1 RV Game Theory Inventory

Geunes and Su (2020) 1 Multi RV Stochastic
Programming

Price,
Inventory

X

Nekoiemehr et al. (2019) Multi 1 RV Algorithmic Scheduling X X X
Radhi and Zhang (2019) 1 1 RV Newsvendor Inventory,

Return
X

Fan et al. (2019) Infinite 1 Poisson
process

Markov Chains Inventory

Ovezmyradov and
Kurata (2019)

1 2 RV Analytic Inventory

Gupta et al. (2019) Multi 1 Logit Multi-obj Price,
Inventory

X

Ma et al. (2019) Multi 1 AR(1) Game Theory Price

Mutlu and Bish (2019) Multi 1 Utility Analytic Service,
Marketing

MacCarthy et al. (2019) 1 1 Scalar Analytic Fulfillment X
Ishfaq and Bajwa (2019) Multi Multi Deterministic NLP Fulfillment,

Price
X

Dijkstra et al. (2019) Multi 1 RV MDP Transship. X X
He et al. (2020) 1 2 RV Game Theory Inventory X

Table 2.5: Papers studying inventory management and/or demand fulfillment problem.
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A common problem is to optimize inventory management practices in a multiple-

channel environment, where fulfillment policies are assumed to be given. Some papers

use Markov chains models in search of order-up-to levels for warehouses of a manufac-

turer and a traditional retailer in a two-echelon supply chain (Chiang and Monahan,

2005; Takahashi et al., 2011; Schneider and Klabjan, 2013; Fan et al., 2019). De-

spite their elegance and usefulness in decomposing the problem, Markov chains often

lead to complex formulations where it is not possible to obtain closed-form or well-

structured results. It is also popular to consider demand coming from each channel

as a random variable (see, e.g., Huang et al., 2007; Yu and Deng, 2017; Arikan and

Silbermayr, 2018; Geunes and Su, 2020) or develop a multi-period version of linear

demand function given in equation (2.1) to study this problem (see, e.g., Li et al.,

2015b; Zhang, 2015; Widodo, 2015; Jiang et al., 2018). However, the number of pa-

pers examining transshipment decisions is surprisingly sparse (Wu and Chiang, 2011;

Liang et al., 2014).

Another widely studied problem is the assignment of distribution centers to online

and offline demand sites (see, e.g., Bendoly, 2004; Mahar et al., 2009; Mahar and

Wright, 2009; Bretthauer et al., 2010; Liu et al., 2010b). For example, the retailer can

establish a separate distribution center, along with the existing ones, to meet online

orders exclusively from that facility. This would be a more responsive yet costly

supply chain design as otherwise the retailer could have pooled the inventory and

reduced its safety stock. Such trade-offs have been analyzed extensively to develop

the optimal order fulfillment policy which can be static (always use the same facility to

meet the demand coming from certain sites) or dynamic (make a real-time assignment

by assessing the standing position of the inventory and predicted future demand).
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Although most papers only consider last-mile delivery, hybrid delivery offerings

are also discussed by few studies (Hovelaque et al., 2007; Mahar et al., 2012; Mahar

and Wright, 2017; Nekoiemehr et al., 2019). Incorporating a return policy appears

to be another theme that has not received much attention. The lack of attention to

these topics is largely due to the overwhelming complexity imposed by consideration

of such practices. For example, there is only one paper studying returns with lead

time consideration (Mahar and Wright, 2017) while others simply ignore it (Batarfi

et al., 2017; Radhi and Zhang, 2019).

There are also some sophisticated topics analyzed in this part of the literature. The

impact of the demand distribution shape on the optimal transshipment and service

level decisions are studied by Liang et al. (2014) and Mutlu and Bish (2019), respec-

tively. Nekoiemehr et al. (2019) propose an algorithm to develop an order fulfillment

schedule while Zhao et al. (2015), Gao et al. (2017) and Ma et al. (2019) analyze the

bullwhip effect under a dual-channel framework by using time-series demand formula-

tions. Zhang et al. (2017a) study a fast-fashion retailer’s channel switching behavior.

Finally, in their qualitative research paper, Peinkofer et al. (2019) study the impact

of drop-shipping fulfillment operations.

2.6 Research Agenda

A research agenda is proposed by carefully gathering the common future research

suggestions of the extant literature as well as using current practice and industry

challenges to propose areas that have scarcely or never been addressed. Moreover,

in Section 2.6.1, we point out that two research inquiries mentioned in this review

have started to intertwine, which signals a paradigm shift in the literature. Finally,
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in Section 2.6.3, we propose a basic model to illustrate how the existing research can

be expanded to address this new direction.

2.6.1 Future Research Directions Inspired from the Litera-

ture

In this part, we thoroughly gather the overlapping future research themes suggested

by the reviewed studies. Because the publications under channel competition vastly

outnumber the ones listed under inventory management and demand fulfillment, we

analyze each stream of research separately.

2.6.1.1 Channel Competition

Despite the vast number of studies on channel competition, there are still some re-

search gaps and areas that may benefit from further inquiry. Figure 2.2 presents the

most frequently indicated future research directions in this part of bricks-and-clicks

dual-channel literature. Accordingly, information asymmetry and demand uncer-

tainty appear to be the prevailing themes. They are followed by multiple retailer and

multi-period considerations.

The literature assumes information asymmetry either in demand (Li et al., 2014b,

2015d, 2017b; Zhou et al., 2019) or in cost (Mukhopadhyay et al., 2008a; Cao et al.,

2013) parameters. However, the extant works are limited to two-player games in the

context of manufacturer-retailer competition. We believe this topic can be extended

in two directions: 1) studying more sophisticated supply chain scenarios, such as a

manufacturer selling her products through an e-tailer and a retailer, or 2) considering

information asymmetry in an attribute of the product, such as quality or delivery
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Figure 2.2: Top four most suggested future research themes: 1) asymmetric informa-
tion, 2) demand uncertainty, 3) multiple retailer, 4) multi-period.

lead time.

Not surprisingly, demand uncertainty is another venue for future inquiry as non-

deterministic (includes random and fuzzy models) formulations constitute only about

27% of the papers in this research stream. The consideration of returns, hybrid de-

livery methods (e.g., in-store or corner pick up points for online orders), and product

customization are barely studied under a stochastic demand assumption. Moreover,

except Yao et al. (2005) and Hu and Li (2012), the existing studies ignore the corre-

lation of demand in different channels.

Next, we have the extension of the supply chain structure to include more than

one retailer. As described in Section 2.4, the most common dual-channel supply

chain framework consists of a manufacturer/supplier and a retailer. Nevertheless, the

competition between independent dual-channel retailers (Ofek et al., 2011; Nault and

Rahman, 2019), a manufacturer and independent retailers (Lei et al., 2014; David
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and Adida, 2015), and two dual-channel supply chains (Yang et al., 2015; Jamali and

Rasti-Barzoki, 2018) have not received much attention. Such channel structures seem

to be worthy of probing further.

Relaxation of the single-period assumption is the final research direction repeat-

edly suggested in the literature. As it follows from the demand formulations discussed

in Section 2.4, the vast majority of the papers, around 90%, have a one-period horizon.

Most single-period models focus on a supply chain member’s e-commerce initiative

on the whole system. In a multi-period context, however, it would be more practical

to consider a more specific problem, such as returns management in the apparel or

high-tech industry.

2.6.1.2 Inventory Management and Demand Fulfillment

We find no topic that prevails in future research suggestions of the reviewed papers.

However, we can make use of Table 2.5 to identify the gaps in this part of the litera-

ture.

The assignment of the warehouses/distribution centers to demand sites is already

a persistent problem in the context of e-commerce, and yet it does become even a

more challenging one in a dual-channel environment. Thus, we believe, there is still

room for further research in this area. Specifically, trending practices in the industry,

including but not limited to hybrid delivery methods (in-store and corner pick-up

points), return and refund policies, have been barely studied.

Moreover, the literature appears to be solely focusing on stocking decisions while

designing a demand fulfillment policy. In practice, however, companies may imple-

ment varying assortment and pricing decisions in different channels. Hence, another
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line of future research is the consideration of product assortment and/or pricing while

designing the optimal fulfillment policy.

2.6.2 Future Research Inspired by Current Industry Trends

and Challenges

We offer two research avenues based on our readings of the current trends and chal-

lenges of dual channels in the presence of online shopping. One can argue that demand

modeling approaches of channel competition are not so different from those of product

competition. Therefore, an empirical analysis shall be useful to verify the respective

formulations that explain the channel- and product-competition better.

With the COVID-19 outbreak, the degree of digitalization in many industries has

leaped up. For instance, the growth of e-grocery market has paced-up while the maxi-

mum number of shoppers physical stores can accommodate has declined (Mecatus and

INCIVIS, 2020). Therefore, the operational planning of online grocery sales has be-

come even more challenging. Similarly, with the lockdown conditions, many shopping

malls and physical stores have been forced to shut down their doors which stimulated

companies to offer extended return policies and, if possible, digital showrooms for

fashion products (Abdulla, 2020). Given the new strains of the Corona virus and

its widespread across the globe, it is expected that some of the current conditions,

including online shopping, will become part of the “new normal” (Yang, 2020). To

date, very few papers have addressed the disruptions in a bricks-and-clicks environ-

ment (Huang et al., 2012, 2013b; Cao, 2014; Zhang et al., 2015; Soleimani et al., 2016;

Tang et al., 2018), all of which studied the problem under a manufacturer/supplier-

retailer competition context. We believe research that addresses industry-specific
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issues will bring in new modeling challenges and aid firms in operating efficiently

while accommodating the drastic changes in their customers shopping behaviors.

2.6.3 Paradigm Shift and an Illustrative Model

We see a paradigm shift in the literature as online shopping become more and more

ubiquitous. With the drastic changes brought in by the COVID-19 pandemic, e-

commerce has received a boost that was predicted to take at least 3 years. Companies

that have been considering the addition of an online channel have now found it the

only way to stay relevant in the “new normal.” The firms now opt to determine the

optimal dual-channel operating policy. This has opened new research venues for the

OM academics and we see that the line between the research inquiries reported in

this review has been blurred.

The competition between online and offline channels is still a perpetual issue, how-

ever, it is yet to be analyzed under a different context than manufacturer/supplier-

retailer competition. Following the developments in practice, the OM field has turned

its attention to the challenges faced by bricks-and-clicks companies. We see the pro-

jection of this new trend in recent publications (e.g., Dijkstra et al., 2019; MacCarthy

et al., 2019; Nie et al., 2019; Chai et al., 2020). Indeed there are several questions

that provide good starting points in this direction: To what extent, and how, the

retailer should integrate the channels? Which multiple-channel setting should she

adopt (multi-, cross-, or omni-channel)? When she should price a product the same

across all channels? How should she manage the impact of free riding (reviewing

the product in one channel, but making purchase from the other)? Should she offer

in-store/curbside pick-up option for online orders? Should she welcome the return
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of online purchases to her physical facilities? If so, how does this affects its pricing

and shipping fees policies and how the inventory management practices should be

altered to comply with the new policies? Does the dual-channel setup provide more

flexibility and resilience under supply-chain disruptions, if so, how? What are the

idiosyncrasies of each industry (grocery, high-tech, fashion, etc.) in this new era of

commerce? We believe these are important practical research questions that require

the attention of the OM community.

To illustrate how the existing research can be extended to address this growing

trend, we introduce a basic model, where a dual-channel firm considers offering hybrid

delivery and return options with pricing.

Following the previous discussions and equation (2.1), we assume a dual-channel

retailer, who is operating a physical store as well as an online shop, has the following

demand function,

DK
i (pKi , p

K
j ) = θKi a

K − bKpKi + βKpKj , i, j ∈ {r, e}, i 6= j, (2.9)

where the superscript K ∈ {M,C1, C2, O} denotes the channel strategy which is

either a multi-, cross-, or omni-channel strategy. A cross-channel strategy can be

implemented by either consistent pricing (C1) or hybrid delivery and return policy

(C2). For now, we assume that demand is deterministic. The company incurs a

marginal selling cost, ci > 0 in channel i ∈ {r, e}, and she wants to find out which

dual-channel structure is optimal by changing price. Let 0 < ξi < 1 and 0 < αi < ci,

denote return rate and its associated cost in channel i ∈ {r, e}, respectively. The

retailer offers O2O services in both directions: delivery and return. For cross-returns

from online channel to physical store (under C2 and O), parameters ξer and αer > 0
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are defined. We also set ξe + ξer < 1 for obvious reasons (less returns than sales).

We assume that returned products can be successfully recycled and sold as new.

For online-to-store pick-up option, we define 0 < δ < 1 and 0 < γ < mini∈{r,e}{ci}

to denote the rate of online shoppers that prefer in-store/curbside pick-up and its

associated expense, respectively.

Because this model is proposed for illustrative purposes, we depict the profit

functions (πK) only for the multi- and omni-channel structures, where the channels

are managed separately in the former and are fully integrated in the latter.

πM(pMr , p
M
e ) =

∑
i,j∈{r,e},
i 6=j

(pMi − ci − αiξi)DM
i (pMi , p

M
j ),

πO(pO) =
∑
i∈{r,e}

(pO − ci − αiξi)DO
i (pO)− (ξreαre + δγ)De(p

O).

In the multi-channel system, the retailer differentiates the selling price across

the channels and her overall profit is simply the sum of individual channel profits

as the channels are managed independently. In each channel, the retailer incurs a

unit purchasing cost, ci, plus self-channel return expenses, αiξiD
M
i , i ∈ {r, e}. On

the other hand, the retailer adopts a consistent pricing strategy in the omni-channel

system and as well as self-channel return costs she considers expenses associated with

the cross-channel deliveries, δγDe(p
O), and returns, ξerαerDe(p

O).

A couple of observations are in order. First, the relative performance of a policy

with respect to the other depends on parameters θKi , a
K , bK , βK . For example, consis-

tent pricing may alleviate the price searching behavior of the customers and thereby

result in a weaker price sensitivity to compensate the retailer’s reduced control over

channels. On the other hand, offering hybrid delivery and return options may expand

42



Ph.D. Thesis - Armagan Ozbilge McMaster - Management Science

the market size and/or alter the market share of both channels while, at the same

time, introducing new expenses. Depending on the product type, one may determine

the varying parameters and carry out a comparative statics analysis to find out the

optimal channel setup for different combinations of them. It is also possible to modify

the model to account for randomness either in demand or in return rates.

Next, the model can easily be extended to analyze different aspects of the problem.

For instance, based on similar assumptions, we can analyze the performance of each

channel structure under demand disruptions in the bricks-and-mortar store, as it

happened during the COVID-19 outbreak. Let 0 ≤ ηK + ζ ≤ 1, where ηK , ζ ∈ [0, 1],

be the fraction of in-store demand that can be transferred to the internet channel

at cost C(ζ). We assume that ηK , K ∈ {M,C1, C2, O} represents the part of cross-

channel demand flow which depends on the channel structure and that ζ (to be

determined) represents the part which depends on the retailer’s efforts to boost online

sales, such as, introducing an online showroom and/or a same-day-delivery option. It

is plausible to expect ηM < ηO for two reasons: 1) the firm may offer the customers

the opportunity of returning the product to a physical store when the quarantine

ends, and 2) as the product is priced the same across both channels, the customers

would be less concerned about switching channels. Such a model gives rise to the

following profit functions (assuming a constant pr):

πM(pMe , ζ) = (pMe − ce − αeξe)[DM
e (pMe , p

M
r ) + (ηM + ζ)DM

r (pMr , p
M
e )]− C(ζ),

πO(pO, ζ) = (pO − ce − αeξe)[DO
e (pO) + (ηO + ζ)DO

r (pO)]− δγDO
e (pO)− C(ζ).

Here, the online demand increases by (ηK + ζ)DK
r and the retailer incurs C(ζ)

to transfer ζDK
r units of demand from the offline channel to the online channel in
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setting K ∈ {M,O}. Similar to the previous model, the omni-channel setting follows

a consistent pricing policy and the retailer incurs an additional O2O delivery cost,

δγDO
e .

As mentioned earlier, this problem is introduced for illustrative purposes and it

could have been framed by a completely different approach. The model can also

be extended in two important ways. Firstly, to consider the cannibalization impact

of online channels, especially in states of emergency and lockdown during a pan-

demic, and incorporate the decision of possibly shutting down the bricks-and-mortar

channel where stores are used only as mini-warehouses or may be shut completely.

Secondly, to consider competition between different retailers, where intuitively first

online movers and those that offer loyalty programs, or subscription models, may lock

their customers.

2.7 Conclusion

The steady growth of e-commerce sales has reshaped the retail industry. Nowadays,

most retailers operate in a bricks-and-clicks mode, where they reach the end cus-

tomers through an online channel as well as traditional bricks-and-mortar stores. In

this chapter, we presented a literature review of this dual-channel phenomenon. An

ontology for multiple-channel retailing concepts was also presented.

Although we mainly focus on the OM literature, we reviewed 263 articles pub-

lished between 1998 – 2019 that also included articles in the interface of OM and

Marketing or Economics fields. We find two prominent themes driving the literature:

1) channel competition between a manufacturer/supplier and a traditional retailer

where either of the players establishes an e-channel, 2) inventory management and
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demand fulfillment policies in a dual-channel environment. We carry out an in-depth

analysis of both research themes, reveal the gaps yet to be addressed and areas that

seek further inquiry.

The first stream of research, which constitutes around 82% of the whole literature,

studies a novel competition between a manufacturer/supplier and a retailer, where

either of the players expands their operations to the online market. We identify and

discuss the overlapping demand formulations used to quantify the channel competition

and show the links between them and multi-product demand formulations used in

traditional bricks-and-mortar models. The research agenda of this theme includes the

considerations of demand uncertainty, multi-periodicity, and information asymmetry.

The other theme includes fewer articles, but it is concerned with a more structured

problem of determining the optimal inventory management policy for a firm receiving

demand from both online and offline channels. A detailed illustration of this research

area is presented in Table 2.5, where the papers are categorized according to their key

features. Our analysis reveals that there is a limited number of studies addressing

the hybrid delivery methods, return and refund policy making. Moreover, price and

assortment decisions in each channel are often ignored while determining the optimal

fulfillment policy.

Finally, we see a paradigm shift in the literature, which blurs the line between

these two research themes and opens up new research venues for the field. Follow-

ing the industry, the OM literature has changed the lens from which the channel

competition is analyzed: the issue of whether or not to open an online channel un-

der manufacturer/supplier-retailer competition has been replaced by the challenges

faced by dual-channel firms. In particular, we believe that industry-specific channel
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management issues (high-tech, grocery, fashion) and the disruptions caused by the

COVID-19 pandemic present promising research opportunities. We also illustrate

how existing research can be used to address this new trend.

We note that as the bricks-and-clicks dual-channel topic lies at the interface of

the OM, Marketing, and Economics literature, our research methodology may have

omitted relevant works. However, we believe that this review adequately serves the

purpose of portraying the dual-channel literature and identifying the research trends

and gaps.
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Chapter 3

Donate More to Earn More

3.1 Introduction

Temperature-controlled food supply chain management practices have been play-

ing an increasingly important role in improving the economic performance of food-

retailers (Smith and Sparks, 2004). This is not only because customers have become

more sensitive to freshness (Soysal et al., 2012), but also because supermarkets can

increase their profit margins by reducing food waste. This trend has been aided by

the wide availability of the internet of things (IoT)-enabled condition tracking tech-

nologies, such as time-temperature indicators (TTIs) due to their miniaturization and

price decline (Dada and Thiesse, 2008). However, despite the economic significance

of grocery retail business and the global food-waste problem, there is a lack of studies

on the integration of such technologies into quantitative models that aim to improve

operational efficiency.

Although organic waste is detrimental to food-retailers as well, particularly when

they are charged according to a pay as you throw (PAYT) system which is a common
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policy implemented by many municipalities in North America and Europe, a retailer

may be willing to bear any expense associated with waste as long as it is offset by a

revenue. Food-retailers are profit-driven organizations nonetheless. They often desire

to maintain fresher offerings with full shelves to escalate customer traffic and enhance

the earnings. As an attempt to mitigate waste and challenge food insecurity, some

governments motivate corporate social responsibility (CSR) activities by offering tax

deductions to donors and/or provide funding to food-rescue organizations (Alexander

and Smaje, 2008; Giuseppe et al., 2014; Arya and Mittendorf, 2015; Chu et al., 2018).

Such incentive policies may indeed benefit retailers as well as the society. However,

donors and charities often have conflicting interests: food-banks seek items that will

stay fresh during the transfer and distribution process, whereas supermarkets are

more willing to donate food items that are closer to their expiry date and thus of

low-quality that would largely be disposed of otherwise. In fact our research has

been motivated by one of the author’s experience with a local food bank. While

the food bank is in desperate need of fresh food, they indicated that they do not

wish to accept food that supermarkets donate close to its expiry date as they do

not have the resources to store and ship it to their customers before it is expired.

Unlike consumer packaged goods, fresh/frozen food items very often have tentative

due dates. Fortunately, TTIs can be used to accurately estimate the true (effective)

quality, which may be different than the visible quality, and thereby may impact the

due date estimation. This improves firms’ ability to plan for the future and alleviates

charities’ food-safety concerns.
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In this part, we study a food-retailer’s operational planning problem for a con-

tinuously deteriorating inventory. We propose a quality-dependent newsvendor prob-

lem (QDNP) which takes the effective quality of the products into account to help

food-retail chains reduce food spoilage while retaining the earnings. We consider a

two-period model, where the retailer jointly determines purchasing quantity and first

period price at the beginning of the planning horizon, and reevaluates the price and

decides on her donation policy at the end of the first period. We develop the necessary

and sufficient conditions, and analyze the impact of quality on the decision variables

as well as the expected profit. Moreover, we provide insights about the donation

decision. Our findings reveal that in contrast to a common belief, food-retailers can

improve their profits while alleviating waste by donating more of their inventory un-

der certain conditions. To the best of our knowledge this study presents the first

stochastic donation model that considers freshness.

The rest of this chapter is organized as follows. In the next section we present

the literature review. In Section 3 we outline the assumptions, define the demand

functions and formulate our models. We present managerial insights derived from

the model in Section 4. Numerical experiments are conducted to evaluate the perfor-

mance of the proposed models and to examine their behavior with respect to several

parameters in Section 5. Finally, the last section summarizes the chapter and points

out possible future directions.

3.2 Literature Survey

This study is linked to three main research streams: deteriorating inventory manage-

ment, quality loss models, and food donation models. In this section we survey the
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relevant literature for each stream.

3.2.1 Deteriorating Inventory Management

We focus on joint ordering and pricing and/or repricing decisions of perishables,

particularly when quality of the products is under consideration. Karaesmen et al.

(2011) and Pahl and Voß (2014) provide more detailed surveys of perishable inventory

management practices. Pahl and Voß (2014) point out the scarcity of studies in

lifetime modeling of deteriorating goods to mitigate waste. In this research, one of

our goals is to address this gap in the literature by focusing on the retailer’s operations.

The newsvendor-pricing type settings have been used extensively to study the

joint ordering and pricing problem. Petruzzi and Dada (1999) published one of the

milestone papers in this area by proposing a reformulation of the newsvendor problem

under joint ordering and pricing. In this study, we follow their reformulation approach

with a quality-sensitive demand function. For further articles studying newsvendor-

pricing problems, see, for example, Kocabıyıkoğlu and Popescu (2011); Yang et al.

(2011); Baron et al. (2015). There are also some game-theoretical models of the

newsvendor problem that consider quality as an influencer of the demand (Cai et al.,

2010; Xu et al., 2011). However, the aging process of the on-shelf perishables is

ignored by these studies.

Freshness-dependent demand schemes have recently been popular in deterministic

settings. The demand formulation in these papers is an extension of the work of Wang

and Li (2012), who perform price markdowns with a deterministic time-dependent

demand function. The majority of the papers use an EOQ model (see, for example,

Wu et al., 2016; Chen et al., 2016a; Dobson et al., 2017; Hua et al., 2016) to analyze
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the impacts of freshness on the order cycle. We extend this stream of research by

considering a stochastic demand and find optimal joint pricing and ordering in a

newsvendor setting.

There is also a substantial number of papers which study the competition be-

tween new and old inventory by considering the old units as substitutes of the new

units. In this context, the quality level of the old items is often assumed to be lower

than the quality of the new ones and thereby operational decisions are taken accord-

ingly (Li et al., 2012; Ferguson and Koenigsberg, 2007; Sainathan, 2013; Chen et al.,

2014). These studies do not consider donation and often regard the disposal of edi-

ble/usable items as a viable decision alternative. For example, according to Ferguson

and Koenigsberg (2007) and Sainathan (2013), the depletion of the old inventory,

which is assumed to generate no cost to the newsvendor, can be the optimal decision

under certain circumstances. In contrast to such studies, in this chapter, we suggest

adjusting the price and donating surplus inventory to food-banks in order to reduce

the number of outdated products at the end of the selling period.

3.2.2 Quality Loss Functions

Quality loss functions originated from the food chemistry literature, but have lately

become popular in the operations management (OM) literature as well. In fact, con-

dition monitoring has always been an issue for researchers studying the distribution of

perishable products. Akkerman et al. (2010) and Soysal et al. (2012) provide reviews

of quantitative quality models in food logistics.

In line with the previous works, timely temperature data is assumed to be provided

by TTIs placed into batches of the products, transportation trucks and warehouses.
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We rely on that data to make a judgment on products’ immediate condition. There

are several studies testing the reliability of TTI labels and indicating the potential

improvements they offer in temperature-controlled supply chains by examining vari-

ous inventory rationing policies (Sahin et al., 2007; Bowman et al., 2009; Dada and

Thiesse, 2008; Giannakourou and Taoukis, 2002, 2003). However, these studies use

simulation-based approaches and their main goal is to draw attention to the func-

tionality of TTIs.

Osvald and Stirn (2008) and Rong et al. (2011) exhibit more complex models

that focus on the transportation issues of the perishables; and tackle the problems

by using mixed integer programming. We extend the approach of Osvald and Stirn

(2008) to model the linear quality deterioration process of vegetables. We provide a

general modelling framework that incorporates different quality deterioration schemes

depending on the product type (linear or exponential) as well as the possibility of

donations.

Wang and Li (2012) introduced a time-dependent deterministic demand model

that incorporates the output of TTIs in order to identify the optimal markdown

policy that increases the profit and reduces food waste. One shortcoming of the

Wang and Li (2012) model is that it ignores demand uncertainty. Furthermore, their

work is limited to markdown pricing situations when the product has an exponentially

decaying quality. In our models, we propose continuous quality deterioration and a

stochastic demand function. We investigate the optimal ordering and pricing, and

optimal repricing and donation decisions.
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3.2.3 Food Donation Models

There is a limited number of papers that study food donation in the retail industry

context. Alexander and Smaje (2008) point out social and economical reasons for

food recovery and qualitatively analyze a case study. Giuseppe et al. (2014) develop

a deterministic mathematical model to optimize retailers’ food recovery policy when

government supports the industry with several incentives. They apply their model to

Italian food chains and demonstrate the economic benefits of food donation. Their

model is more suited for customer packaged goods than fresh foods and meat products

as they consider the shelf-life as a constant parameter. In another deterministic

work, Arya and Mittendorf (2015) studied the subtle effects of government incentives

on a supplier-retailer supply chain and total welfare. We also presume that the

government offers subsidies to accelerate CSR activities, but develop a stochastic

demand framework with a continuous quality monitoring scheme to address the issue

of organic waste as well.

In a recent study, Chu et al. (2018) develop a two-period newsvendor-pricing

model with tax planning and charitable donations when the second period demand is

assumed to be deterministic. They consider donation as a means of salvaging left-over

inventory at the end of the selling season and use dynamic programming to model

the problem and solve it numerically. There are significant structural differences

between their work and the present study. We assume random demand in both

periods and consider donation at the end of the first period, before the realization of

the randomness in the second period. Also, we incorporate the condition of the items

into the demand function and solve the problem analytically.
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3.3 Quality-dependent Newsvendor Problem

(QDNP)

Problem definition, model assumptions and development of QDNP are described in

this section. We also mention how the underlying quality loss model is integrated

into the demand function.

3.3.1 Assumptions

We study a food-retailer’s pricing and inventory management problem for a contin-

uously deteriorating product. The selling season is divided into two periods where

the firm decides on stocking quantity and regular selling price at the beginning of

period 1, and donation amount and adjusted price at the beginning of period 2. The

retailer faces demand uncertainty during both periods. Table 3.1 summarizes the

main notation used in this chapter.

We use a two-period single-product newsvendor model to study our problem dy-

namics. Unlike Ferguson and Koenigsberg (2007); Chu et al. (2018), which assume

demand certainty in the second period, we consider demand uncertainty in both

periods. The random component of demand, εi, in any period i = 1, 2 follows a dis-

tribution with non-decreasing hazard rate, finite mean, µi, and standard deviation,

σi > 0, and has a twice differentiable and invertible c.d.f., Fi(.), defined on the in-

terval [Ai, Bi]. We also note that we do not restrict Bi to be a finite number so that

we can use common distributions, such as the exponential distribution. Without loss

of generality, we assume that the random components are i.i.d. so that we can drop

the subscripts (i.e., µ1 = µ2 = µ). The newsvendor model is appropriate since fresh
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Notation Definition

Parameters a Demand parameter depending on market size

b Price sensitivity

C0 Purchasing cost per unit

Cd Disposal cost per unit

Cs Shortage cost per unit

φ Quality sensitivity

q Initial quality at supplier warehouse

R Benefit of donation per unit

d Estimated quality drop during transportation

I Inventory on hand at the end of period 1

λ Quality deterioration rate at retailer’s site

T Product shelf-life

T1 The length of period 1

T2 The length of period 2

ν Maximum discernible quality

η Minimum acceptable quality

δ(t) Perceived quality at time t

ε ∈ [A,B] Random component of demand

f(.), F (.) p.d.f. and c.d.f. of ε, respectively

et Effective quality of the product at time t

µ, σ Mean and standard deviation of ε

Decision Variables p1 Price in period 1

z1 Stocking factor in period 1

p2 Price in period 2

z2 Stocking factor in period 2

Consequence variables Q Stocking quantity

γ Portion of I kept for selling in the second period

Table 3.1: Main notation.
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foods are mostly seasonal and the quality varies from one harvest to another. Thus,

it is plausible to perceive each batch of items being unique due to its quality. There-

fore, another purchase in the next period means another batch of items of different

quality as either the supplier’s inventory ages or is replaced by a new one. However,

we also acknowledge there are limitations to this model as it does not account for the

substitution effect or repurchasing during the selling season.

It is assumed that consumers are sensitive not only to price, but also to quality. As

expected, fresher goods attract more customer demand for the same price level. To

reflect this, demand is represented as a function of price and quality. We provide more

detailed discussions regarding demand in the next section. It is also assumed that

the quality level and deterioration rate are known at all times. This can be achieved

by using IoT-enabled sensors such as time-temperature indicators (TTIs). We input

time-temperature data to characterize quality deterioration following the prevalent

models in the food science literature. In addition, the length of the selling season is

taken as the product shelf-life which the retailer is able to determine internally by

using TTI data. The reliability of TTI technology and current quality loss models

have been tested in several studies (see, for example, Giannakourou and Taoukis,

2002, 2003; Labuza, 1982, 1984).

Most supermarkets update the price (often in the form of a markdown) of perish-

able food products during their life-cycle to enhance earnings. The time and depth

of the price adjustment may vary depending on inventory on-hand and remaining

shelf-life of the foods. Price discounts are useful particularly when the retailers have

higher than necessary inventory to satisfy the forecasted demand and/or when goods

are about to spoil/expire (moderate or low quality). On the other hand, when the
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inventory is exhausted too early, the price may be adjusted upwards; although it is

not a common practice. In this price-adjustment scenario, goods are either stored un-

til they are unfit for consumption and disposed of afterwards (Alexander and Smaje,

2008), or they are disposed of while they are still edible to make room for fresher

items and attract more customers. There are several operations management studies

suggesting that disposal of usable inventory may increase profits (see, for example,

Ferguson and Koenigsberg, 2007; Li et al., 2012; Sainathan, 2013).

This does not mean that supermarkets do not suffer from waste. On the contrary,

many municipalities in North America and Europe implement a pay-as-you-throw

(PAYT) policy. However, food-retailers are profit-driven organizations and they may

be willing to bear any expense associated with waste as long as it is offset by a rev-

enue. Therefore, some governments, including those of the U.S. and some European

countries, offer tax deductions for charitable donations to incentivize CSR activities

and reduce waste (Alexander and Smaje, 2008; Giuseppe et al., 2014; Chu et al.,

2018). The retailer may also derive some intangible benefits, such as improved public

image and consumer recognition, due to her CSR acts, referred as “warm glow”(Arya

and Mittendorf, 2015). Thus, in this study, we assume that the retailer incurs a dis-

posal cost, Cd > 0, for the leftover inventory, if there is any, at the end of the selling

season, and that she collects a revenue, R > 0, for donated goods.

Figure 3.1 illustrates the sequence of events. To incorporate continuous quality

deterioration, the lifetime of the product is characterized by equal time units (e.g.,

hours) with T denoting the shelf-life. The selling season is composed of two periods,

where period 1 refers to time-span [0, T1) and period 2 refers to the rest, [T1, T ]. We

assume that T1 is exogenous and can be any time-point within the interval (0, T ), as
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long as the effective quality of the goods at T1 is high enough to alleviate the food-

bank’s safety concerns. In practice the value of T1 would be signaled by the food

bank with which the retailer has partnered to donate the food. At the beginning of

the selling season (at time 0), the retailer acquires an inventory of size Q and sets

a selling price, p1. At the end of the first period (at time T1), the retailer observes

the remaining inventory, I, determines how many units to donate, (1 − γ)I, where

0 ≤ γ ≤ 1, and sets selling price p2 for the goods carried forward, γI. Finally, any

leftover inventory is disposed of at the end of the selling season (at time T ).

0 T1 T

γI

I

Q

Time

In
ve

n
to

ry
le

ve
l

First period(Q, p1)

(γ, p2)

Second period

Donate

(1− γ)I

Dispose of

any leftovers

Figure 3.1: Sequence of events for QDNP.

3.3.2 Demand Function

Because demand is sensitive not only to price but also to quality, we characterize

demand as a function of price and time.

Di(pi, t) = yi(pi, t) + ε, i = 1, 2, (3.1)
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where yi(pi, t) is a linear function that is decreasing in price and increasing in quality:

yi(pi, t) = â(t)− bpi. Here we abuse the conventional notation by setting Di(pi, t) ≡

Di(pi, t, ε) for convenience. In our model, the deterministic part of demand is not only

price-dependent, but also time-dependent to represent quality deterioration. Note

that D1(p1, t) and D2(p2, t) are defined for t ∈ [0, T1) and t ∈ [T1, T ], respectively.

The market size â is comprised of a constant, a, and a time-variant component,

δ(t), which is called the perceived quality at time t. Studies using utility functions

to derive demand often use a constant quality value normalized between 0 and 1

(Ferguson and Koenigsberg, 2007; Huang et al., 2013b). To account for continuous

quality deterioration, we present δ(t) ≥ 0 as a decreasing function of time and define

the market size as â = a+ φ δ(t), where φ > 0 is the quality sensitivity parameter of

demand. We note that, without a loss of generality, all our results can be extended

to a multiplicative form by defining â = a φ δ(t). The form of δ(t) is specified based

on the chemical characteristics of the goods being studied and more details about it

shall be provided in the upcoming sections. Let T1 and T2 be the length of period

1 and period 2, respectively. Denoting the shelf-life of the goods as T = T1 + T2,

which is determined internally according to perceived quality, we define the random

demand over the selling period as,

∫ T1

0

D1(p1, t) dt+

∫ T

T1

D2(p2, t) dt = [ȳ1(p1, T1) + ε]T1 + [ȳ2(p2, T2) + ε]T2,

where ȳ1(p1, T1) = (1/T1)
∫ T1

0
y1(p1, t) dt = a− bp1 + φ δ̄1(T1) and ȳ2(p2, T2) = (1/T2)∫ T

T1
y2(p2, t) dt = a− bp2 + φ δ̄2(T2). One can consider ȳi(pi, Ti) and δ̄i(Ti) as average

(deterministic part of) demand and average (perceived) quality of the goods per unit

time, respectively. We define the upper bound of price in period i = 1, 2 as p̄i,
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where ȳi(p̄i, Ti) + A = 0. Here, the integration of a random variable may appear

unconventional, but it is, in fact, equivalent to considering a random variable with

mean µT1 and variance σ2T 2
1 in the first period, and a random variable with mean

µT2 and variance σ2T 2
2 in the second period.

3.3.3 Quality Loss Function

The derivation of perceived quality function δ(t) is articulated in this section. To

model the quality deterioration of fresh groceries, we extend the quality loss models

of Bowman et al. (2009) and Osvald and Stirn (2008). Food starts losing its nutritional

value just after harvesting/production, but changes become apparent to customers

when ripeness of the food exceeds a threshold of discernibility level, ν, which is

determined based on chemical characteristics of the food item. However, unlike the

earlier published characterizations of quality degradation, we account for changing

environmental conditions, such as temperature, throughout the supply chain as they

affect the deterioration rate and thereby remaining lifetime of the products. For

instance, improved storage facilities at a producer’s warehouse is able to keep the

units under optimal conditions, whereas trucks that are equipped for cold storage

may still increase the ripening rate during transportation. Retailers can provide

better storage conditions than shippers, but may not maintain an environment as

favorable as that of the producers since the products must be moved and displayed.

We assume that the retailer observes the product’s initial quality as q at the

supplier’s site. Effective quality, et, may not be apparent to the naked eye, but can

be estimated from TTI data. During the transportation, depending on the travel time

and conditioning technology, the quality of the product decays d units. This leads
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to two possible product types: (1) a fresh product that is at or above the maximum

discernible quality level ν or (2) an aged product that is below that threshold by time

t0 when it arrives to the shelves. Figure 3.2 illustrates the quality changes during a

period for fresh products.

Figure 3.2: Linear quality deterioration of fresh products.

The retailer can monitor the quality drop during transportation and act accord-

ingly. Items that are below the minimum acceptable quality level η are assumed to

be unsellable either due to their appearance or inedibility. Impact of the quality is

calibrated by demand sensitivity parameter, φ, and the maximum quality is taken as

100%. For the sake of simplicity, the clock is reset to zero at the beginning of the

selling season t0 and we use the shelf-life, T , in our calculations. The product quality

changes begin to be visible to customers at time t1. When t1 ≥ t0 we denote the

time during which the quality is perceived to be stable by k = t1 − t0. The products

become unacceptable to the customers at time t2 ≥ t1, so we have T = t2 − t0. The

products’ shelf-life depends on the quality upon arrival, q − d, minimum acceptable

quality, η, and deterioration rate at the retailer’s site, λ > 0.
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For meat products we follow Wang and Li (2012) to model quality loss. Unlike

vegetables, the quality of meat products drops in an exponential manner. The shelf-

life and deterioration rate are both identified based on the environmental conditions

during transportation and storage by using the reaction kinetics of the items (Labuza,

1982). Once again we assume a maximum quality of 100%. The concepts maximum

discernibility and minimum acceptability do not apply in the degradation process of

meat products.

3.3.3.1 Linear Quality Loss Function

For the linear quality decay pattern, we let δ(t) = min{ν, et}, where et = q − d− λt

when t ≤ T and et = 0 otherwise. This framework relies on the fact that customers

have a limited capacity to judge the quality and always perceive it as ν for fresh

products (when q−d ≥ ν). The value of the perceived quality changes only when the

effective quality, et, drops below the maximum discernible quality level ν. Therefore,

the demand function is contingent on the product type. For fresh products, δ(t) can

be decomposed as follows.

δ(t) =


ν, t ≤ (q − d− ν)/λ,

(q − d− λt), t > (q − d− ν)/λ.

(3.2)
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By setting k ≡ (q − d − ν)/λ, average perceived quality for the fresh products over

the first selling period can be calculated as

δ̄1(T1) = (1/T1)

∫ T1

0

δ(t) dt = (1/T1)

[∫ k

0

ν dt+

∫ T1

k

(q − d− λt) dt
]
,

= (1/T1){kν + [q − d− λ(T1 + k)/2](T1 − k)},

where, without loss of generality, it is assumed that quality decay becomes visible

during the first period. The rationale behind this assumption is that the retailer

would consider repricing typically after the quality becomes visibly low. Average

perceived quality for aged products over period two (when t > (q − d − ν)/λ) takes

a relatively straightforward form:

δ̄2(T2) = (1/T2)

∫ T

T1

(q − d− λt) dt = q − d− λ(2T − T2)/2.

As a result, the product shelf life is estimated by T = (q − d− η)/λ.

3.3.3.2 Exponential Quality Loss Function

Some perishable products’ quality degrades exponentially over time. To represent this

case we use δ(t) = qe−λt. This gives rise to the following average quality formulations

δ̄1(T1) = (1/T1)

∫ T1

0

qe−λt dt = (q/λ)(1− e−λT1)/T1,

δ̄2(T2) = (1/T2)

∫ T

T1

qe−λt dt = (q/λ)e−λT (eλT2 − 1)/T2.
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3.3.4 Model Analysis

We solve the retailer’s two-period perishable inventory management problem by using

backward induction starting with the second period.

3.3.4.1 Second Period

In this period, we propose that a food retailer considers both price adjustment and

inventory donation as a means to increase the expected profit at the end of the selling

season as shown in Figure 3.1.

First, the retailer observes the remaining inventory I whose effective quality is

known. Next, she adjusts the price from p1 to p2 and donates 1 − γ (0 ≤ γ ≤ 1)

fraction of I at a reward R per unit. One can argue that R is quite often less than

the unit purchase cost, C0, meaning that it can cover only a part of the retailer’s ex-

penses. The reward can be considered as a per unit return derived from a blend of (1)

government incentives, such as tax deductions (e.g., see Alexander and Smaje, 2008;

Giuseppe et al., 2014), and (2) intangible fringe benefits, such as improved public im-

age due to corporate social responsibility acts, also referred as “warm-glow”(Arya and

Mittendorf, 2015).The random profit function of the newsvendor is given as below.

Π2(γ, p2) =


p2

∫ T
T1
D2(p2, t) dt− Cd

[
γI −

∫ T
T1
D2(p2, t) dt

]
+R(1− γ)I,

∫ T
T1
D2(p2, t) dt ≤ γI,

p2γI − Cs[
∫ T
T1
D2(p2, t) dt− γI] +R(1− γ)I,

∫ T
T1
D2(p2, t) dt > γI,

where, D2(p2, t) = a+φ(q− d−λt)− bp2 + ε. In this setting, we define z2 = γI/T2−

ȳ2(p2, T2) so that max{A,−ȳ2(p2, T2)} ≤ z ≤ I/T2 − ȳ2(p2, T2)} since 0 ≤ γ ≤ 1.
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Recall that ȳ2(p2, T2) is defined as a + φ δ̄2(T2) − bp2. The model can be extended

to include all types of quality loss models by defining the appropriate function δ(t).

Rewriting the profit as a function of z2 and p2 we have,

Π2(z2, p2) =


{
p2[ȳ2(p2, T2) + ε]− Cd(z2 − ε)−R[ȳ(p2, T ) + z2]

}
T2 +RI, ε ≤ z2,{

p2[ȳ2(p2, T2) + z2]− Cs(ε− z2)−R[ȳ2(p2, T2) + z2]
}
T2 +RI, ε > z2.

(3.3)

In fact, (3.3) is essentially a newsvendor formulation with shortage and surplus

costs, where R takes the place of the unit purchasing cost. The retailer’s expected

profit in the second period can be given as,

E[Π(z2, p2)] =
{

(p2 −R)[ȳ2(p2, T2) + µ]− (R + Cd)Λ(z2)− (p2 + Cs −R)Θ(z2)
}
T2

+RI,

= Γ2(z2, p2) +RI, (3.4)

where Λ(z) =
∫ z
A

(z − u) dF (u) and Θ(z) =
∫ B
z

(u − z) dF (u) are the expected sur-

plus and shortage, respectively. Before solving the retailer’s second period problem,

we analyze the expected profit function. Let us lay out the first and second order
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conditions of Γ2(z2, p2):

∂Γ2(z2, p2)

∂z2

= −(R + Cd) + (p2 + Cs + Cd)[1− F (z2)], (3.5)

∂2Γ2(z2, p2)

∂z2
2

= −(p2 + Cs + Cd)f(z2), (3.6)

∂Γ2(z2, p2)

∂p2

= a+ φ δ̄2(T2)− b(2p2 −R) + µ−Θ(z2), (3.7)

∂2Γ2(z2, p2)

∂p2
2

= −2b, (3.8)

where we omitted T2, as it is a scalar coefficient and RI is a constant by Equation

(3.4). Note that the second period profit function of the retailer is concave in p2 for

a given z2 and vice versa by conditions (3.6) and (3.8). This means that one can

maximize Γ2(z2, p2) over a single variable by using either of the first order conditions.

Similar to Petruzzi and Dada (1999), we determine the unique price in terms of

stocking factor z2 as,

p2(z2) =
a+ φ δ̄2(T2) + bR + µ

2b
− Θ(z2)

2b
, (3.9)

which is increasing in z2. Let us denote the deterministic part of the price as p̃2 =

p2(B). To assure the positivity of demand for any z2 ∈ [A,B], we assume p̃2 ≤ p̄2.

The next theorem directly follows from the above conditions.

Theorem 1. The second period expected profit function of the retailer, Γ2(z2, p2(z2)),

is concave for z2 ∈ [A,B], if F (.) has a non-decreasing hazard rate and f(A)[ȳ2(−R−

2(Cs + Cd), T2) + A] > 1.

Proof. All appendices are in the Appendices. See Appendix B.1.
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Petruzzi and Dada (1999) showed that Γ2(z2, p2(z2)) is unimodal for similar condi-

tions on F (.), whereas, Theorem 1 specifies the conditions under which Γ2(z2, p2(z2))

is concave and we assume these conditions hold throughout this chapter. Now, we

can present the retailer’s profit maximization problem in the second period as,

max Γ2(z2, p2) +RI (3.10)

s.t. z ≤ z2 ≤ z̄, (3.11)

p2 ≤ p̄2, (3.12)

where z = max{A,−ȳ2(p2, T2)} and z̄ = I/T2 − ȳ2(p2, T2). The lower-bound, z,

characterizes the optimal solution for a trivial case, where γ = 0 meaning that the

optimal policy is to donate the whole inventory I. Therefore, we drop it and focus

on the upper-bound constraint, which may be binding when B > z̄ as we assume

repurchase is not available. The following proposition characterizes the solution for

the retailer’s second period problem.

Proposition 1. The KKT conditions are necessary and sufficient for the constrained

problem (3.10) when the condition in Theorem 1 is satisfied. Let L denote the La-

grangian function, and let ωz and ωp denote the Lagrangian multipliers, respectively,

corresponding to constraints (3.11) and (3.12). Then, the Lagrangian and the KKT
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conditions can be listed as below:

L = Γ2(z2, p2) +RI − ωz(z2 − z̄)− ωp(p2 − p̄2),

∂L
∂z2

=
∂Γ2

∂z2

− ωz = 0,

∂L
∂p2

=
∂Γ2

∂p2

+ ωz
dz̄

dp2

− ωp = 0,

ωz(z2 − z̄) = 0, ωp(p2 − p̄2) = 0,

z2 ≤ z̄, p2 ≤ p̄2, ωz, ωp ≥ 0.

Proof. Because Γ2(z2, p2) is concave by Theorem 1 and both upper-bound constraints

are linear, the KKT conditions are necessary and sufficient.

Using the KKT conditions, the following theorem builds up and analyzes the

final-period value function.

Theorem 2. The second period value function is a concave function of on-hand

inventory, I, and defined as such,

Φ(I) =


Γ2(z0

2 , p2(z0
2)) +RI, I > I0,

H(I,min{pH(I), p̄2}), I ≤ I0,

(3.13)

where I0 ≡ [ȳ2(p2(z0
2), T ) + z0

2 ]T2 with (z0
2 , p2(z0

2)) being the unique maximizer of

Γ2(z2, p2) without the inventory constraint (3.11), H(I, p2) = Γ2(z̄(I, p2), p2) + RI is

the expected profit function when γ∗ = 1, and pH(I) is derived from the first order

condition (FOC) of H(I, p2) with respect to price. As a result, we obtain the following
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optimal inventory carrying and pricing policies:

γ∗ =


I0/I, I > I0,

1, I ≤ I0.

, p∗2 =


p2(z0

2), I > I0,

min{pH(I), p̄2}, I ≤ I0,

(3.14)

Proof. See Appendix B.2.

A simple example derived from a case study by Wang and Li (2012) is provided

to illustrate the optimal policy in period 2:

Example 1. Let a = 7.92, b = φ = 4.86, Cd = Cs = 0.05, R = 0.5, T = 2T2 with

linear quality deterioration parameters, q = 0.75, λ = 0.009, ν = 0.80, η = 0.20,

leading to a shelf-life of T2 = 61 hours. The random component of demand follows

an exponential distribution with mean, µ = 1.

Figure 3.3 depicts the solution of the above example for different on-hand inventory

values. Following the optimal policy given in Theorem 2, when I ≤ I0 = 278.71

units, γ∗ = 1 and p∗2 = pH(I) (as p̄2 = 2.11 > 1.61); whereas, when I > I0, we obtain

γ∗ = I0/I and p∗2 = p2(z0
2) = 1.37. The shaded area shows the donated part of the

on-hand inventory, which reaches up to 30% for I = 400 units.

3.3.4.2 First Period

At the beginning of the first period, the retailer jointly determines the purchasing

quantity, Q, to which she will commit until the end of the selling season, and first

period selling price, p1. Assuming that the purchasing expenses are incurred during
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Figure 3.3: Plot of the optimal second period price and donation policy for Example
1.

the first period, the firm’s random profit function can be given as ,

Π1(Q, p1) =


p1

∫ T1
0
D1(p1, t) dt− C0Q,

∫ T1
0
D1(p1, t) dt ≤ Q,

(p1 − C0)Q− Cs[
∫ T1

0
D1(p1, t) dt−Q],

∫ T1
0
D1(p1, t) dt > Q.

Once again, we apply the stocking factor substitution by defining z1 = Q/T1 −

ȳ1(p1, T1) and obtain first period expected profit as,

Γ1(z1, p1) = (p1−C0)[ȳ1(p1, T1) + µ]T1−C0Λ(z1)T1− (p1 +Cs−C0)Θ(z1)T1, (3.15)

which is a newsvendor problem without disposal cost. Therefore, it exhibits the good

properties of Γ2(z2, p2), in other words, the conditions given in equations (3.5)–(3.8),

and thereby Theorem 1 apply to Γ1(z1, p1) with mild adjustments.
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The retailer aims to maximize her expected profit over two periods which can be

formulated as,

V = Γ1(z1, p1) + αE[Φ(max(0, (z1 − ε)T1))], (3.16)

where α is the discount rate. Note that both terms on the right are concave, and

so is V . The following theorem characterizes the optimal solution to the retailer’s

operational planning problem over two periods:

Theorem 3. The optimal stocking quantity and first period pricing policies can be

determined according to the range and possible realizations of the first period demand.

Proof. See Appendix B.3

3.4 Managerial Insights

In this section, we examine the decisions advised by QDNP, their relation with some of

the key input parameters, and discuss possible managerial implications of the model.

3.4.1 Donation Behavior of the Retailer

Here, we analyze the donation behavior of the retailer and identify the factors that

influence it.

Proposition 2 (Impact of quality/remaining shelf-life). When z∗2 < z̄, optimal deci-

sions, z∗2, p∗2, and γ∗ are all monotone increasing in T2.

Proof. See Appendix B.4.

Proposition 2 shows that the higher the quality (or equivalently the further the

due date) of on-hand inventory, the more units the retailer is willing to carry forward
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and the fewer units she is willing to donate. Moreover, longer shelf-life drives the

second period price up.

Proposition 3 (Impact of donation reward). When z∗2 < z̄, optimal decisions, z∗2

and γ∗ are both decreasing in R.

Proof. See Appendix B.5

There is a monotonic relationship between the retailer’s donation behavior and

its associated reward. Expectedly, a higher reward motives more donations. The

following theorem directly follows from Propositions 1–3.

Theorem 4 (Donation threshold). A donation threshold can be found in the linear

demand case by fixing any two of the factors T2, R, and I and solving the following

equations for z2 and the unfixed factor:

z̄(p2(z2))− z2 = 0, (3.17)

dΓ2(z2, p2(z2))

dz2

= 0. (3.18)

Proof. Because γ∗ is monotone in quality, donation reward, and on-hand inventory

at the end of the first period, such a threshold exists.

Theorem 4 extends the optimal policy given by (3.14) to consider shelf-life and

donation reward as active actors, instead of constant parameters. Practically speak-

ing, having a threshold in terms of R or I could be more useful. Thus, the retailer

can either find the minimum reward that incentivizes her to donate some of her stock

for a given shelf-life and inventory on hand, or find the minimum inventory level that

allows the retailer to benefit from donation for a given shelf-life and donation reward.
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Figure 3.4 illustrates the threshold for Example 1 in terms of I for various R and

T2 values. The threshold decreases as the benefit of donation increases and as the

expiration date approaches. Therefore, the structure is somewhat similar to that of

an optimal stopping problem. It is also worth recalling that T2 represents the quality

as the shelf-life of the items are determined internally based on the environmental

conditions. Thus, the benefit of donation offsets opportunity cost of depleting the

inventory early as the items deteriorate. For example, let us consider a case where

the food bank with which the retailer has partnered requires the donated foods to

arrive at least 2 days before the due date (assume T2 is given in hours). Recall that

the retailer estimates per unit donation would bring in R = $0.5. Hence, she would

donate only if she has more than 210 units of inventory.

10 20 30 40 50 60
0

0.5

1

1.5

T2

R

0

100

200

300

I

Figure 3.4: A contour map of donation thresholds in terms of inventory for various
donation reward and shelf-life values when ε follows an exponential distribution with
mean 1.
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3.4.2 Impact of Donation on the First Period Decisions

Having donation as a viable option at the end of the first period impacts the firm’s

operational planning over two periods. Let ξ1 be the realization of randomness in

the first period. The following theorem outlines the impact of the retailer’s donation

behavior on her first period decisions.

Theorem 5. The purchasing quantity and the first period selling price under QDNP

are both greater than or equal to those under the no-donation policy. Also, the optimal

donation amount is decreasing in ξ1, when ξ1 < z∗1 − I0/T1, and it is independent of

ξ1 otherwise.

Proof. See Appendix B.6.

Donations provide the retailer with another tool to deal with uncertainty and

Theorem 5 shows that this, in return, leads to a larger purchasing quantity and a

higher first period price. However, the retailer does not need that extra tool unless

the realized demand at the end of the first period is low. In other words, if the

ending inventory of period 1 is less than the threshold value, that is I ≤ I0 (or

ξ1 ≥ z∗1 − I0/T1), we obtain γ∗ = 1 (no donation) by the optimal policy in (3.14). On

the other hand, if I > I0 (or ξ1 > z∗1− I0/T1), the optimal inventory carrying amount

becomes γ∗ = I0/I, which is increasing in ξ1 as the larger the first period demand,

the fewer the donated inventory.

3.4.3 Expected Waste

As a final note, we analyze the changes in expected waste with respect to the do-

nation behavior of the retailer. Let p̂2 be the optimal price under the no-donation
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policy. Theorem 6 shows that donations not only can be profitable but also can be

environmentally conscious.

Theorem 6. The expected waste in the absence of donation is at least as large as

the expected waste under the optimal donation policy. Also, the gap is increasing in

on-hand inventory, I, when I > I0. The reduction in expected waste can be quantified

as

Λ(z̄(I, p̂2))− Λ(z∗2) =


Λ(z̄(I, p̂2))− Λ(z0

2), I > I0,

0, I ≤ I0,

where the first expression can be further simplified as Λ(z̄(I, p̂2))− Λ(z0
2) = z̄(I, p̂2)

F (z̄(I, p̂2)) + z0
2F (z0

2)−
∫ z̄(I,p̂2)

z02
u dF (u).

Proof. See Appendix B.7.

Donating inventory does not necessarily imply zero waste as the future demand

is still assumed to be uncertain. However, it does bring down expected waste and

thereby promises both social and economic improvements. Figure 3.5 depicts the

expected waste at the end of the selling season under both models for Example 1.

Accordingly, expected waste ascends rapidly as I increases under the no-donation

policy, whereas, it is fixed to Λ(z0
2) = 22.71 for all I > I0 = 278.71 under QDNP,

as specified by Theorem 6. An interesting observation is that the expected waste

under the no-donation policy grows not only in magnitude, but also in proportion as

inventory on hand rises. For instance, the expected waste proportion is only around

7.8% at I = I0 = 271.78, whereas, it is more than 19% at I = 400. This implies that

the larger the I, the greater the improvement offered by the donation-enabled policy.
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Figure 3.5: Plot of the expected waste (in units) under QDNP and the no-donation
policy.

3.5 Numerical Study

In this section, we test the proposed model with the empirical data provided by Wang

and Li (2012) and offer insights on the role of donations. We perform a numerical

sensitivity analysis to explore the impact of uncertainty and the length of the first

selling period on the optimal decisions and expected profit.

3.5.1 A case study from Wang and Li (2012)

Wang and Li (2012) provide data on four branches of a supermarket with the assump-

tion of exponential quality degradation. We use the data as it is for meat products

where it makes sense for quality to decay exponentially (Labuza, 1982). We note that

the term ‘fresh’ is used to refer to the condition (quality) of the items. Therefore, we
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consider the product group called ‘fresh vegetables’ by Wang and Li (2012) as ‘veg-

etables’ in our study. To model for vegetables, however, we modify the deterioration

rate λ to use the data for a linear quality loss model. In all examples, Cs = 0.05,

ν = 0.80, η = 0.20, and α = 1. The random component of demand is assumed to

follow a uniform distribution with zero mean. We set [A,B] = [−2, 2] for vegetables

and [A,B] = [−1, 1] for meat products. The per unit reward of donated inventory is

R = 0.8 for vegetables and R = 3 for meat products.

As shown in Table 3.2, all stores have fresh (i.e., q − d ≥ ν) vegetables at the

beginning of the selling season. Because there is no maximum discernibility level in

exponential quality loss models, we do not make such distinction for meat products,

the data for which is included in Table 3.3. It is worth noting that there are some

structural differences between the present work and the work of Wang and Li (2012).

In particular, they seek offering a markdown policy by using a deterministic demand

model which takes the quality of the perishable items into account. On the other

hand, this chapter develops a two-period pricing-newsvendor model with donation.

However, comparing the supermarket’s price and inventory positions given in the last

two columns with the outputs of the proposed model may help us find out if she has

excess inventory and/or bad pricing policy.

Vegetables a b φ q − d λ/hr
T1

(hrs)
T

(hrs) C0 Cd
Initial
Price Inventory

Store 1 7.92 4.86 4.86 0.90 0.009 48 78 1 0.05 1.49 280
Store 2 6.73 4.13 4.13 0.92 ′′ ′′ 80 ′′ ′′ ′′ 240
Store 3 10.30 6.32 6.32 0.83 ′′ ′′ 70 ′′ ′′ ′′ 360
Store 4 6.34 3.89 3.89 0.85 ′′ ′′ 72 ′′ ′′ ′′ 220

Table 3.2: Parameters with pricing and stocking quantity policies of the supermarket
for vegetables as provided by Wang and Li (2012). We modified the parameters λ
and T , which were originally 0.0216 and 72, respectively for all stores.
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Meat
products a b φ q − d λ/hr

T1

(hrs)
T

(hrs) C0 Cd
Initial
Price Inventory

Store 1 9.79 1.83 1.83 0.95 0.0067 168 240 3.5 0.05 4.5 740
Store 2 8.32 1.56 1.56 0.97 ′′ ′′ ′′ ′′ ′′ ′′ 630
Store 3 12.73 2.38 2.38 0.88 ′′ ′′ ′′ ′′ ′′ ′′ 950
Store 4 7.83 1.46 1.46 0.90 ′′ ′′ ′′ ′′ ′′ ′′ 590

Table 3.3: Parameters with pricing and stocking quantity policies of the supermarket
for meat products as provided by Wang and Li (2012). Quality is assumed to decay
exponentially.

To gain more insights, we also represent the optimal decisions and corresponding

expected profits suggested by the two-period model without donation, denoted by Q̂,

p̂1, V̂ , and the single-period model with the period length of T , denoted by Q̌, p̌1, V̌ .

Tables 3.4 and 3.5 list the results for vegetables and meat products, respectively, as

well as the the performance of QDNP with respect to the alternative approaches.

First of all, we note that incorporating quality into the decision making process

may alter the retailer’s operational decisions significantly. For all stores and both

product types, both QDNP and the no-donation model set higher prices and lower

quantities than those set by the supermarket. These observations indicate a faster

inventory turnover which is likely to reduce waste.

QDNP No-donation Single-period Performance

V ∗ Q∗ p∗1 V̂ Q̂ p̂1 V̌ Q̌ p̌ V ∗−V̂
V̂

(%) V ∗−V̌
V̌

(%)

Store 1 103.82 236.79 1.65 99.73 214.44 1.64 70.97 206.61 1.50 4.10 46.28
Store 2 87.17 210.06 1.66 82.80 187.12 1.65 54.59 177.83 1.48 5.28 59.68
Store 3 123.09 273.88 1.62 117.84 246.64 1.61 91.94 239.78 1.50 4.45 33.89
Store 4 69.29 186.75 1.62 62.18 154.58 1.60 39.97 144.41 1.46 11.45 73.37

Table 3.4: Comparison of the optimal ordering-pricing policies and expected profits
for vegetables.

Secondly, for both product groups, a monotone relation emerges, where QDNP

offers the largest decisions and expected profit, whereas, the single-period model offers

the lowest ones. It is already shown in Theorem 5 that Q̂ ≤ Q∗ and p̂1 ≤ p∗1, and it is
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QDNP No-donation Single-period Performance

V ∗ Q∗ p∗1 V̂ Q̂ p̂1 V̌ Q̌ p̌ V ∗−V̂
V̂

(%) V ∗−V̌
V̌

(%)

Store 1 498.05 533.67 4.71 480.79 485.81 4.70 386.23 450.90 4.50 3.59 28.95
Store 2 406.72 459.48 4.71 386.19 406.88 4.69 298.58 372.75 4.46 5.32 36.22
Store 3 656.19 670.23 4.69 644.34 633.55 4.69 540.51 594.97 4.52 1.84 21.40
Store 4 371.40 431.86 4.70 349.54 377.20 4.68 265.67 343.19 4.45 6.25 39.80

Table 3.5: Comparison of the optimal ordering-pricing policies and expected profits
for meat products.

expected to have V̂ ≤ V ∗ due to the option of donation at the end of the first period.

The contribution of donation compared to the no-donation setting can be as large as

11.45%.

Finally, the results reveal that introducing another decision making opportunity

changes the decisions drastically, in particular price, and boosts the expected profit

up to 73%. Besides the value of additional decisions, the two-period models enjoy

the reduced variation: V ar(T1ε1 + T2ε2) = (T 2
1 + T 2

2 )σ2 < (T1 + T2)2σ2 = V ar(Tε).

Therefore, the enhancements in expected profits, in part, can be attributed to dimin-

ishing uncertainty. We should note here that our comparison is biased by the fact

that the single period model does not have the opportunity to update prices. Another

alternative benchmark model could be to use a donate-all policy at the end of the

first period.

Overall, for all instances, QDNP offers significant improvements in terms of ex-

pected profit. In the next section we analyze the impact of two drivers of the retailer’s

problem: variation of the randomness in demand and the length of the first period.

3.5.2 Sensitivity Analysis

We investigate the impact of the variation in demand uncertainty (by varying the

support of ε) and the length of the first period, on operational decisions as well as
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the expected profit of the firm.

Vegetables data in Store 1 is taken as the base case. The optimal decisions and

expected profit are determined under B = −A ∈ {1, 2, 3} and T1 ∈ {40, 50, 60} for

QDNP, No-Donation model, and Single-Period model. Varying T1 has two conse-

quences: it impacts (1) the overall variation in demand, (T 2
1 + T 2

2 )σ2, and (2) the

operational planning of the firm as the length of the second period is also tied to T1,

that is T2 = T − T1, where T = 78. We also note that the results of the single-period

model are not sensitive to the changes in T1. The findings are shown in Table 3.6.

QDNP No-Donation Single-Period Performance

[A,B] T1 V ∗ Q∗ p∗1 V̂ Q̂ p̂1 V̌ Q̌ p̌ V ∗−V̂
V̂

(%) V ∗−V̌
V̌

(%)

[−1, 1] 40 117.22 219.93 1.67 117.12 217.75 1.67 99.81 216.31 1.54 0.09 17.44
[−2, 2] 40 100.82 224.36 1.67 99.49 212.40 1.67 70.97 206.61 1.50 1.33 42.04
[−3, 3] 40 85.60 226.90 1.66 82.24 206.54 1.66 43.84 191.73 1.44 4.09 95.28

[−1, 1] 50 119.12 227.31 1.65 118.17 219.08 1.65 0.80 19.34
[−2, 2] 50 104.04 241.59 1.65 99.17 214.98 1.64 ′′ ′′ ′′ 5.27 47.09
[−3, 3] 50 90.13 260.36 1.64 79.10 211.11 1.61 13.95 105.60

[−1, 1] 60 119.82 238.49 1.63 115.81 218.85 1.62 3.46 20.05
[−2, 2] 60 106.23 265.49 1.62 92.73 213.13 1.59 ′′ ′′ ′′ 14.55 49.67
[−3, 3] 60 92.82 292.92 1.61 69.51 206.08 1.55 33.53 111.73

Table 3.6: Comparison of the optimal stocking quantity, first period price, and ex-
pected profit.

We observe that the performance of QDNP compared to the no-donation model

increases in T1. For instance, when [A,B] = [−3, 3], QDNP outperforms the no-

donation framework by around 4% for T1 = 40 and by around 34% for T1 = 60.

This implies that the postponement of the donation decision has a positive impact

on profits. In other words, as suggested by Theorem 4, the shorter the second period,

the more willing the retailer is to donate. As a result, the firm stocks more inventory

and changes the price only slightly. Therefore, the discrepancy between the optimal

quantities and prices grow along with the discrepancy in expected profits as the first

period stretches longer. We also note that an increase in T1 drives up the variation

80



Ph.D. Thesis - Armagan Ozbilge McMaster - Management Science

when T1 > T2. However, V ∗ is monotone increasing in T1 for all values of B = −A,

meaning that the negative impact of larger variation is offset by the value derived

from the postponement of the donation decision.

We also note that as the degree of uncertainty in demand grows, the relative

performance of QDNP to the no-donation model increases. For example, the rela-

tive difference in expected profits hits 0.80% for B = −A = 1 and around 14% for

B = −A = 3 when T1 = 50. Considering changes in both parameters, T1 and B,

the difference can be as large as 34%. More interestingly, the two models react to

this change oppositely: QDNP enlarges the order size while the no-donation policy

shrinks it. Thus, the flexibility imposed by donation prevails under a high degree

of uncertainty. This finding also aligns with that of Chu et al. (2018), despite the

structural differences between their study and the present one.

Lastly, using a two-period model, with the opportunity to update decisions in the

second period, dampens the impact of uncertainty. As B = −A increases from 1 to

3, the expected profit of the single-period model is about halved, whereas neither of

the two-period models shows such a sharp change in the expected profit.

3.6 Conclusion

This chapter introduces the quality-dependent newsvendor problem (QDNP), which

is a combined inventory and price adjustment model with a special focus on quality.

In particular, we consider a two-period problem, where a socially responsible food-

retailer jointly determines the stocking quantity and first period price at the start of

the selling season, and modifies the price and decides on her donation policy at the

end of the first period. The problem utilizes the data provided by TTI technologies
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to make accurate judgments about the condition of the perishable items and thereby

aims to help food retail chains mitigate food waste and raise the profit at the same

time. We find that incorporating donations in the model can improve a firm’s profit

while at the same time increase its social responsibility impact.

It is assumed that consumers are both price- and quality-sensitive and therefore,

we propose a demand framework that takes into account the quality deterioration

process of perishables. We consider two different quality loss models, linear and ex-

ponential, for two product types, vegetables and meat, respectively. We extend the

work of Osvald and Stirn (2008) to design a linear quality loss model and use the ap-

proach suggested by Wang and Li (2012) for exponential quality loss. In both periods,

demand is assumed to be a linear function of price with an additive randomness.

Our findings revealed that the donation behavior of the retailer at the end of

the first period depends on the quality (time to expiration), on-hand inventory, and

the per unit reward of donation derived from the tax deductions and/or the firm’s

corporate social responsibility act. Furthermore, for a given inventory level, expected

waste under a donation enabled-policy is always less than or equal to the expected

waste in the absence of donation.

In our numerical study, we compared QDNP with a two-period model without

donation and a single-period model. In all instances, the proposed framework outper-

formed both of the benchmark models. We also found that the relative performance

of QDNP is particularly higher when the uncertainty is high and/or the length of the

second period is short.

The present study has a few limitations. Firstly, we assume that the realized

demand in the first period has no effect on the second period uncertainty. This
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assumption can be relaxed by considering demand update models, though it would

impose additional technical difficulty to the problem. Next, we only consider a linear

demand function, which may fall short of explaining demand for some products.

Therefore, integrating the continuous quality deterioration concept into other demand

function schemes could be a promising extension. Finally, we consider a single-product

scenario. It would be interesting to see how the donation behavior of the retailer is

affected by a competition between two products of different quality. We leave these

issues as future research directions.
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Chapter 4

Can Tax Incentives Induce

Donation of Fresh Goods?

4.1 Introduction

Demand for food items has shown a steady growth at 3.6% per year on average

since 2012, generating US $7 trillion in revenues globally in 2019 (Frimpong, 2020).

Due to the COVID-19 pandemic environment, an extra 11% growth is estimated in

2020, increasing the worldwide food revenues up to US $8 trillion (Frimpong, 2021).

According to Nielsen (2013), fresh food constitutes approximately 30–60% of total

grocery sales.

Despite this constantly growing trillions of dollars worth economy, many people

still rely on food-banks. According to the United Nations, 690 million, 8.9 percent

of the global population, were undernourished (FAO, 2020) while over 135 million

have suffered from acute food insecurity (FAO, 2021; WFP, 2020a). Moreover, it is

estimated that this number has been doubled during the COVID-19 pandemic (WFP,
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2020b). To address these challenges, some governments offer tax relief to retailers who

donate food (Alexander and Smaje, 2008; Giuseppe et al., 2014; Chu et al., 2018).

However, the retailers often tend to see donation as an opportunity to salvage

low-quality inventory, whereas, the food-banks prefer goods that will stay fresh dur-

ing the distribution, since they do not have the resources and capabilities to manage

inventories. Fresh groceries usually have tentative due dates and visual inspection

alone might be insufficient to estimate the true (effective) quality. Fortunately, the

internet of things (IoT)-enabled condition tracking technologies, such as time tem-

perature indicators (TTIs), have been miniaturized and become cost-effective (Dada

and Thiesse, 2008). Such technology can ease the food-safety concerns of charities

and help firms better plan for the selling season.

This chapter studies a food retailer’s operational planning problem for a contin-

uously deteriorating inventory over two periods, where the retailer faces uncertainty

only in the first period. The length of the selling season is determined dynamically

by the shelf-life of the products. We assume a price- and quality-sensitive demand.

Before the start of the selling season, the retailer jointly determines the stocking

quantity and regular price. At the end of the first period, the uncertainty in demand

resolves and the retailer decides on the amount of inventory to be donated with the

second period price. We model the enhanced tax deduction of the firm by incorporat-

ing the U.S. government’s tax subsidy for food donations into the retailer’s after-tax

profit function and analyze the impact of the tax subsidy parameters on the retailer’s

optimal decisions and profit.

Our analysis revealed that as opposed to the conventional wisdom, the retailer’s

optimal donation volume may decline with respect to the amount of leftovers at
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the end of period 1, their effective quality and the tax incentive coefficients. Such

unorthodox findings arise as a result of the government’s tax deduction being tied

to the retailer’s second period price. Moreover, we observe that the enhanced tax

deduction benefits the retailer most when the degree of uncertainty is high. Finally,

donations trigger only a slight increase in price while significantly increasing the

stocking quantity.

In the next section, we review the literature. In Section 3, we lay out the assump-

tions, introduce the demand functions, and develop the retailer’s problem. We present

the managerial insights about the firm’s donation behavior in Section 4. In Section 5,

we conduct numerical experiments to find out the impact of several problem factors,

such as, degree of uncertainty and the length of period 1 on the performance of the

retailer’s optimal decisions with and without tax deductions. Finally, we outline our

findings and point out venues for future research in the last section.

4.2 Literature Review

Our study is related to three research streams in the literature: freshness-dependent

demand models of perishable goods in the era of IoT, two-period Newsvendor-pricing

models, and government subsidies for charitable donations.

Fresh grocery products most often have tentative best before dates as opposed to

consumer packaged goods which show definite due dates. The rationale behind this

practice is that the aging process of fresh goods after harvest/production primarily

depends on the environmental conditions during transportation and storage. Labuza

(1984) developed chemical reaction kinetics of fresh foods with respect to changing en-

vironmental temperatures to quantify their deterioration process trough time. With
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the advent and miniaturization of the IoT-enabled condition tracking technologies,

e.g., TTIs, it is now more cost-effective and convenient for firms to access timely tem-

perature data to estimate accurate (effective) quality of the fresh goods they sell. The

reliability of TTI data was examined by the extant literature (see, for example, Dada

and Thiesse, 2008; Bowman et al., 2009). Osvald and Stirn (2008); Rong et al. (2011)

use a linear quality loss scheme in their problem while optimizing the routing problem

of perishable foods. Wang and Li (2012) incorporate an exponentially decaying qual-

ity loss model into a deterministic demand function to find the optimal markdown

policy for a supermarket. Following Chapter 3, we develop a quality deterioration

function, which can be either linear or exponential depending on the product type.

However, unlike their paper, this study derives demand from a quadratic consumer

valuation model that depends on price and quality.

This chapter develops a two-period newsvendor-pricing model for a continuously

deteriorating product, where the uncertainty in demand is revealed at the end of the

first period. Ferguson and Koenigsberg (2007) used a similar methodology to study a

situation where a firm faces the competition between new and old products during the

second period. However, they do not take donation as a viable option and consider

the quality in a binary-fashion (new and old). Cachon and Kök (2007) presented a

work on salvage value estimation of a newsvendor and, recently, Chu et al. (2018)

developed a model built on their theoretical framework. However, neither of these

studies the quality as a factor in their models.

The issue of charitable donations in the presence of government subsidies have been

only scarcely studied. Giuseppe et al. (2014) presented a deterministic model where

a food retailer can salvage some of her inventory by donating to a food-bank and/or
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sending to a livestock market. Arya and Mittendorf (2015) developed a deterministic

framework and analyzed the subtle effects of government subsidies on a supply chain

that consists of a retailer and a supplier. In a similar vein, Wang et al. (2019c) fol-

lowed a deterministic approach to model a manufacturer-retailer supply-chain, where

either of the parties may donate some inventory depending on the government’s tax

deduction. We have found only two stochastic frameworks that incorporate dona-

tion into a firm’s operational planning. Among them, Chu et al. (2018) developed a

two-period newsvendor model with a general demand function without quality con-

siderations, and solved the problem numerically. On the other hand, in Chapter 3 we

developed a two-period newsvendor problem with random demand in both periods

and considered overage and shortage costs. However, we assumed a constant reward

for donated inventory and used a different demand function than the one used in this

chapter.

In line with Chu et al. (2018), we incorporate the tax subsidy offered by the U.S.

government into the retailer’s after-tax profit function. However, using a quality-

dependent demand function, we solve our problem analytically, and present some

insights on the tax deduction parameters. Our numerical analysis indeed yields some

contrasting results. For example, we observe the enhanced tax deduction raises the

first period price while Chu et al. (2018) reported the otherwise. Moreover, assuming

the actual tax deduction policy offered by the U.S. government, the reward derived

from donation is tied to the retailer’s second period price, which results in a substan-

tially different optimal policy than the one suggested in Chapter 3.
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4.3 Model Framework

In this section, we lay out the problem assumptions, introduce quality deterioration

schemes and develop demand functions.

4.3.1 Assumptions

We study the operational planning problem of a food-retailer for a continuously de-

teriorating inventory. The retailer stocks up her inventory at the beginning of the

selling season and depletes it over two periods.

The market demand is assumed to be both price- and quality-dependent, and to

have an uncertain component that is to be revealed at the end of the first period.

The length of the selling season is characterized by the shelf-life of the items at

the beginning of period 1, T . Note that fresh produce and frozen meat products

often have tentative due dates, but we assume that the retailer can estimate the

true (effective) quality of the goods by inputting the timely temperature data into

the appropriate reaction kinetics model as proposed by Labuza (1984). Such data

can be easily provided via IoT-enabled sensors, such as time temperature indicators

(TTIs), or via smart packages that are equipped with freshness sensors. Thus, she

can internally determine the shelf-life of the products and plan for the selling season

accordingly. The accuracy of TTI technology and quality degradation models using

TTI data have been validated by the past literature (see, for example, Giannakourou

and Taoukis, 2002, 2003).

The retailer’s operational planning comprises of inventory and pricing decisions,

where she plans not only for the purchase of the goods but also for donating them.
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She considers donation as a part of her corporate social responsibility (CSR) act and

as a means to maximize her after-tax profit. The sequence of events is depicted by

Figure 4.1 and can be summarized as follows:

1) Prior to the selling season, the retailer observes the effective quality of the goods

at the supplier’s site and jointly determines the ordering quantity Q, that she

will commit to until the end of the selling season, and regular price, P1.

2) At time t = 0, the retailer receives the goods and the selling season kicks off.

3) At time t = T1, the uncertain component of demand becomes known and the

retailer observes the remaining inventory, I. Then, she carries s2 units forward

to be sold in the second period and donates I − s2 units. Because the demand

is deterministic in period 2, the clearance price, P2(s2), is defined as a function

of s2.

We also assume that the length of the first period, T1(< T ), is exogenous and can

be determined based on experience when the due date is known. This assumption

is reasonable for most perishables as supermarkets sell similar goods for consecutive

selling seasons and, therefore, are able to develop know-how on estimating when the

uncertainty in the demand of a particular product resolves. Besides, such assumptions

are common in the literature (see, for example, Ferguson and Koenigsberg, 2007;

Cachon and Kök, 2007).

In the first period, the retailer incurs a cost c per unit of inventory, where c is

composed of purchasing expenses and inventory carrying cost over [0, T1). On the

other hand, the company incurs an additional holding cost, h, per unit of inventory

sold in the second period. To quantify the tax deduction, we consult the guidelines
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Figure 4.1: Sequence of events.

provided by the U.S. Department of the Treasury, Internal Revenue Service (IRS).

Accordingly, there are two dynamics involved while calculating charitable contribution

deductions for food: fair market value and cost basis. As Publication 526 (Charitable

Contributions for use in preparing 2020 returns) states “When determining the fair

market value [...]take into account the price at which the same or substantially the

same food items (as to both type and quality) were sold by you at the time of the

contribution.” Thus, we assume the second period price, P2(s2), as the fair market

value of the product. Publication 526 defines the basis as “The basis of contributed

inventory is any cost incurred for the inventory in an earlier year that you would

otherwise include in your opening inventory for the year of the contribution.” Hence,

we take c as the basis cost of the donated goods.

Such assumptions lead to a scheme where per unit donation of an inventory of cost

c reduces the taxable income by min{2c, c+(P2(s2)−c)/2} = c+min{c, (P2(s2)−c)/2}.

In line with Chu et al. (2018), for a given federal tax rate τ , a general formula can
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be adopted by defining per unit tax subsidy as c + min{αc, β(P2(s2) − c)}. We also

follow their assumptions on the tax deduction parameters, α, β ∈ [0, 1−τ
τ

). Under

the current tax law, we have α = 1, β = 0.5, and τ < 40%. Therefore, we assume

that the retailer receives an extra deduction (besides the unit inventory cost) of

r(P2(s2)) := min{αc, β(P2(s2)− c)} in her taxable per unit donated.

4.3.2 Quality Loss Function

The customers are quality-sensitive and the retailer’s inventory degrades continuously

during the selling season. However, the retailer can estimate the quality deterioration

pattern of the goods over their lifetime by leveraging TTI data. As first described

by Labuza (1984), the reaction kinetics of food can be estimated by using historical

temperature data. With the advances of the technology, TTI labels are now miniatur-

ized, affordable, and able to collect and communicate timely temperature data. We

adopted the framework suggested in Chapter 3, where we consider two quality loss

models, linear and exponential, corresponding to fresh groceries and frozen meat/fish

products, respectively.

The goods are at their best condition just after harvesting/production and have

the maximum quality of %100. The retailer observes the quality of the items at the

supplier’s site, 0 < q ≤ 1, and can predict their effective quality upon their arrival

to the shelves, q − d, where 0 < d < q is considered as the quality drop during the

transportation of goods. At the retailer’s store, the condition of the goods deteriorate

at a constant rate of λ > 0.

We note that the effective quality of the goods may not be the same as their

perceived quality as the customers have a limited ability to determine the condition
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of the products, whereas, the retailer can make use of the TTI output to estimate it

accurately. Thus, we need to know the perceived quality of the goods, denoted by

δ(t) for t ∈ [0, T ], to understand the impact of quality on customer demand. Because

the selling season is divided into two periods, we also define the average quality over

period 1 as δ̄1(T1) = (1/T1)
∫ T1

0
δ(t) dt and over period 2 as δ̄2(T2) = (1/T2)

∫ T
T1
δ(t) dt,

where T = T1 + T2.

4.3.2.1 Linear Quality Loss Function

We use a linear quality decay scheme to model deterioration kinetics of fresh grocery

items (Labuza, 1982). Following Chapter 3, which extends the works of Bowman et al.

(2009) and Osvald and Stirn (2008), changes in quality is not apparent to customers

until the ripeness of the goods hit a threshold called maximum discernibility level,

denoted by ν > 0. Therefore, when the effective quality is greater than or equal to

the maximum discernibility threshold, customers perceive it as ν. We also specify the

minimum acceptable quality level, η > 0, below which the goods are unfit for human

consumption.

Now, we define the perceived quality as δ(t) = min{ν, q − d − λt} for t ∈ [0, T ],

where q−d−λt is the effective quality. At t = (q−d−ν)/λ, we realize ν = q−d−λt

and, therefore, we can rewrite the perceived quality as,

δ(t) =


ν, t ≤ (q − d− ν)/λ,

q − d− λt, t > (q − d− ν)/λ.

(4.1)

We see that q − d may or may not be greater than ν, resulting in two possible

scenarios while calculating the average perceived quality. For q − d > ν, let k ≡
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(q − d− ν)/λ, this gives rise to the following average perceived quality over the first

period:

δ̄1(T1) = (1/T1)

∫ T1

0

δ(t) dt = (1/T1)

[∫ k

0

ν dt+

∫ T1

k

(q − d− λt) dt
]
,

= (1/T1){kν + [q − d− λ(T1 + k)/2](T1 − k)},

where, without loss of generality, we assume that physical changes become visible

during period 1. This assumption is reasonable as the retailer would consider repricing

the goods after their quality becomes apparently low. The average perceived quality

over period 2 (when t > (q − d− ν)/λ) takes the form:

δ̄2(T2) = (1/T2)

∫ T

T1

(q − d− λt) dt = q − d− λ(2T − T2)/2.

As a result, the product shelf-life can be described as T = (q − d− η)/λ.

4.3.2.2 Exponential Quality Loss Function

Some perishables experience an exponential quality deterioration over time. To model

this behavior, we adopt a quality deterioration scheme used by Wang and Li (2012),

δ(t) = qe−λt. Thus, the average perceived quality can be given as,

δ̄1(T1) = (1/T1)

∫ T1

0

qe−λt dt = (q/λ)(1− e−λT1)/T1,

δ̄2(T2) = (1/T2)

∫ T

T1

qe−λt dt = (q/λ)e−λT (eλT2 − 1)/T2.
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4.3.3 Inverse Demand Functions

We adopt an inverse demand function framework that reflects the customers’ sensitiv-

ity to price and quality. Accordingly, the price in period i = 1, 2, Pi, can be described

as,

P2(s2) = δ̄2(T2)(a+ x− s2), (4.2)

P1(s1) = δ̄1(T1)(a+X − s1), (4.3)

where si denotes the sales amount in period i = 1, 2, a is the market potential

parameter, and X is the stochastic part of the market potential with realization x.

This framework can be derived from a quadratic utility. Let Ui denote the utility of

a representative customer at period i ∈ {1, 2} and qi = δ̄i(Ti) is defined for the sake

of brevity, then we obtain:

Ui = qi(Asi −Bs2
i /2)− Pisi,

where maximizing the above equation with respect to si for B = 1 gives rise to

Pi(si) = qi(A − si), i ∈ {1, 2}. The market potential, A, has a deterministic part,

a, and a stochastic part, X, which is to be revealed at the end of the first period.

We assume X has a finite mean, µ, standard deviation, σ > 0, and it is drawn from

cumulative distribution F (.), which is defined over [0, X̄], twice-differentiable in its

domain and has a non-decreasing hazard rate. We also assume aqi > c + h, i = 1, 2,

to assure that the sale of goods generates a positive profit margin to the firm.
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4.4 Model Analysis

We develop and solve the retailer’s operational planning problem over two periods by

using backward induction starting with the second period.

4.4.1 Second Period (No Uncertainty)

We first define the before-tax profit function of the firm without donations as,

π2(s2) = (P2(s2)− h)s2 = [q2(a+ x− s2)− h]s2, (4.4)

where h is the additional holding cost per unit of inventory carried forward to period

2. Note that the firm’s optimal sales amount under the no-donation policy is given

as,

ŝ2 = min
{
I, s0

2

}
, s0

2 =
q2A− h

2q2

.

Next, we incorporate the government subsidy for donated items into the firm’s profit

function:

J2 = (1− τ)π2(s2) + τr(P2(s2))(I − s2),

where r(P2(s2)) = min{αc, β(P2(s2) − c)} denotes the per unit donation subsidy

offered by the government and (I − s2) is the amount of inventory to be donated.

Obviously, s2 ≤ I as the retailer cannot carry forward more units than she has.

Let us define s̃2 = A− (1 + α/β)(c/q2) to facilitate the discussions. To maximize

her after-tax profit, the firm needs to consider two optimization problems depending

on the realization of r(P2(s2)): 1) (P1) when s2 ≤ s̃2 leading to r(P2(s2)) = αc

and 2) (P2) when s2 ≥ s̃2 leading to r(P2(s2)) = β(P2(s2) − c). Thus, we obtain
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J∗2 = max{J1∗
2 , J2∗

2 }, where J1∗
2 and J2∗

2 are the optimal objective values of (P1) and

(P2), respectively.

(P1) : max
s2

J1
2

s.t. 0 ≤ s2 ≤ min{I, s̃2}
,

(P2) : max
s2

J2
2

s.t. max{0, s̃2} ≤ s2 ≤ min{A, I}

The first-order-conditions (FOCs) of J1
2 and J2

2 are as follows:

J1′

2 = (1− τ)(q2A− 2q2s2 − h)− ταc, (4.5)

J2′

2 = (1− τ)(q2A− 2q2s2 − h)− τβ[q2(A+ I)− 2q2s2 − c]. (4.6)

Henceforth, we denote the sales amount derived from the FOCs as si2, i = 1, 2:

s1
2 =

1

2q2

(
q2A− h−

τ

1− τ
αc

)
, (4.7)

s2
2 = s2

2(I) =
1

2q2

[
1− τ

1−τ β
] (q2A− h−

τ

1− τ
β[q2(A+ I)− c]

)
. (4.8)

Theorem 7. Both J1
2 and J2

2 are concave functions.

The proof follows from the FOCs given in equations (4.5) and (4.6). The following

theorem characterizes the optimal second period decisions of the firm.

Theorem 8. Three main scenarios summarize the firm’s second period optimal so-

lution.

(1) q2 ≤ (1 + α/β)(c/A) (Low quality):

s∗2 = max{0,min{s2
2(I), I}}.
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(2) (1 + α/β)(c/A) < q2 ≤ (1/A) [2(1 + α/β)c− h− αcτ/(1− τ)] (Medium qual-

ity):

s∗2 = min{I,max{s2
2(I), s̃2}}.

(3) q2 > (1/A) [2(1 + α/β)c− h− αcτ/(1− τ)] (High quality):

s∗2 = min{I, s1
2}.

Proof. See Appendix C.1.

The second-period problem has a closed-form solution, but we also need the second

period value function before moving forward to the first period analysis. Let us define

Hi(s2, I) = J i2(s2), i = 1, 2. Following Theorem 8 we can introduce the second period

value function as,

(1) Low quality:

Φ(I) =


H2(I, I), 0 < I ≤ Ī ,

H2(s2
2(I), I), Ī < I ≤ Ǐ ,

H2(0, I), I > Ǐ,

(4.9)

(2) Medium quality:

Φ(I) =


H1(I, I), 0 < I ≤ Ī ,

H2(s2
2(I), I), Ī < I ≤ Ĩ ,

H1(s̃2, I), I > Ĩ,

(4.10)
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(3) High quality:

Φ(I) =


H1(I, I), 0 < I ≤ s1

2,

H1(s1
2, I), I > s1

2,

(4.11)

where Ǐ, Ĩ, and Ī are defined such that s2
2(Ǐ) = 0, s2

2(Ĩ) = s̃2, and s2
2(Ī) = I.

Because s2
2(I) is monotone (decreasing) in I, such threshold values can be established.

Moreover, we note that H1(I, I) = H2(I, I) = (1− τ)π2(I), H1(s̃2, I) = H2(s̃2, I).

When I is below an inventory-threshold, which is determined according to the

quality of the items (Ī for low and medium quality, s1
2 for high quality), the firm carries

forward all leftover inventory from the first period to the clearance period, and thereby

realizes profit H1(I, I) = H2(I, I). However, when I is greater than the threshold

value, the optimal donation amount gradually grows as it increases. A counter-

intuitive finding is that s2
2(I) is decreasing in I, meaning that the company sells fewer

units (and charges a higher price) as the amount of leftover inventory increases, when

the products’ quality is low or medium. For instance, when the firm has more than

Ǐ units of low quality products, she donates her whole inventory and sells nothing

during the second period. The motive behind this unorthodox behavior of the firm is

that when I ≤ Ī, the sales generate more after-tax profit than the government’s tax

subsidy does, whereas, when I > Ī, instead of dropping the price to sell all leftovers,

the firm is better of by increasing the volume of donations and clearance period price.

On the other hand, when the leftover inventory is of high quality, the firm’s optimal

decision is to sell up to s1
2 units and donate any spillovers. This result contrasts

with the findings of Chapter 3, where we have reported a monotone relation between

ending inventory of period 1 and the optimal donation policy. The following example

illustrates the optimal inventory carrying/donation policy of the firm for medium
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quality.

Example 2 (Medium quality). Let A = 12.9, c = 1, h = 0.05, q2 = 0.3515 with tax

rate τ = 0.35 and government subsidy parameters α = 1 and β = 0.5. This set-up

leads to s̃2 = 4.37, s1
2 = 5.61, Ĩ = 13.63, and Ī = 5.81.

Figure 4.2 shows the optimal sales amount and clearance price with respect to

different leftover inventory volumes.

As described by policy (4.10), the optimal sales amount increases in on-hand

inventory until I = Ī and then decreases when I ∈ [Ī , Ĩ], and settles at s∗2 = s̃2

afterwards. As we assume one-to-one correspondence between demand and price, the

clearance price follows a similar pattern, but in the reverse direction until it settles

at P2(s̃2). We also compare our findings with the optimal policy under no-donation

0 Ī Î 20
1

5.8

I

s∗ 2

2.5

4.2

P
∗ 2

s∗2
P ∗2

Figure 4.2: The optimal sales amount and clearance price with respect to different
leftover inventory volumes.

subsidy. Figures 4.3 and 4.4 depict the comparisons of after-tax profits, and the
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optimal clearance period sales and price, respectively. A couple of observations are

in order. First of all, the donation enabled policy of the firm outperforms the no-

donation policy when I > Ī. The profit gap reaches up to 50%. Also, as we assume

the products have no salvage value in the absence of the tax subsidy, the marginal

contribution of additional leftover inventory hits zero when I > Ī. However, the

firm’s after-tax profit under the tax subsidy grows linearly with I as H1(s̃2, I) is a

linearly increasing function of I. Finally, as can be seen from Figure 4.4, the firm

achieves a higher after-tax profit by selling fewer units and charging a higher price.
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Ĵ2

Figure 4.3: The profits with respect to different leftover inventory volumes with and
without the government’s tax subsidy.

The following proposition analyzes the value function.

Proposition 4. The second period value function, Φ(I), is strictly increasing, but

may not be concave.

Proof. We know that H1(I, I) = H2(I, I) = (1 − τ)π2(I) is concave as π2(s2) is a
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Figure 4.4: The optimal sales amount and clearance price with respect to different
leftover inventory volumes.

concave function. However, one can show that H2(s2
2(I), I) is convex and H(s̃2, I) is

a linear function of I. Because the purchasing costs are charged in the first period,

any additional inventory generates a positive profit margin to the firm.

Now that we have developed the second period value function and set forth its

properties, we can analyze the firm’s operational planning problem in period 1.

4.4.2 First Period (with Uncertainty)

At the start of period 1, the retailer jointly determines the purchasing quantity, Q,

to be sold over two periods, and the first period price, P1. The market potential,

a + X, has an uncertain component, X, defined on the interval [0, X̄] with twice

differentiable cumulative distribution function F (x), density function f(x), mean µ,

and standard deviation σ.
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The first period demand can be written as s1(P1) = a+X − P1/q1 = y(P1) +X,

where y(P1) is defined as the deterministic part of the demand, a− P1/q1. To assure

the positivity of demand, P1 must be less than its upper-bound, p̄ = q1a. Following

Petruzzi and Dada (1999), we define the stocking factor variable, z = Q − y(P1),

and optimize the problem over (z, P1). We start by developing the firm’s random

before-tax profit function in the first period:

π1(z, P1) =


P1[y(P1) +X]− c[y(P1) + z], X ≤ z,

(P1 − c)[y(P1) + z], X > z,

which is essentially a newsvendor problem with demand having an additive random-

ness. The retailer’s expected before-tax profit can be represented as,

Γ(z, P1) = P1[y(P1) + µ]− c[y(P1) + z]− P1Θ(z), (4.12)

where Θ(z) =
∫ X̄
z

(x − z) dF (x) is the expected shortage. Now, we derive some

properties of the retailer’s first period before-tax expected profit function. Following

the past literature (Petruzzi and Dada, 1999; Zabel, 1970), in search of the maximum

value of (4.12), we first define the price for a fixed z and search over the resulting

optimal trajectory.

Lemma 1. For a given z, Γ(z, P1) is maximized by a unique price given by

P ∗1 ≡ p(z) =


p̃− q1

Θ(z)
2
, z ∈ [0, X̄],

p̃, z > X̄,
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where p̃ = (q1/2)(a+ µ+ c/q1) = p(X̄) is the riskless price that maximizes the profit

in the absence of uncertainty.

Proof. The proof follows from the FOC and SOC of Γ(z, P1) with respect to P1. See

Appendix C.2 for details.

We note that p(z) is an increasing function for z ∈ [0, X̄] and that we assume

p̃ < p̄ to assure the positivity of demand for z ≥ X̄. We consider z values outside

the range [0, X̄] because when X̄ < ∞, the retailer may realize z∗ ≥ X̄ as she will

commit to the initial stocking quantity, Q∗, for two periods. In such a case, the

retailer never faces shortages during the first period as she has sufficient inventory

to satisfy demand even if the uncertainty in demand is realized at its upper-bound,

x = X̄. Therefore, the firm’s optimal first period price becomes the riskless price,

p(z) = p̃ for z ≥ X̄. Theorem 9 demonstrates that Γ(z, p(z)) has a unique maximizer.

Theorem 9. The retailer’s first period expected before-tax profit function, Γ(z, p(z)),

is concave for z ∈ [0, X̄] if f(0)y(−c) > 1, and it is unimodal with a local maxi-

mum, otherwise. Also, Γ(z, p(z)) is a linearly decreasing function for z ≥ X̄ with

Γ′(z, p̃)|z≥X̄ = −c < 0.

Proof. See Appendix C.3.

Petruzzi and Dada (1999) already showed Γ(z, p(z)) is unimodal for z ∈ [0, X̄],

whereas, Theorem 9 extends their results by (1) introducing the conditions under

which Γ(z, p(z)) is also concave, and (2) evaluating the behavior of Γ(z, p̃) for z ≥ X̄.

The retailer aims to maximize her expected after-tax profit over two periods which
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can be formulated as,

J1 = (1− τ)Γ(z, p(z)) + ρE[Φ(max{0, z −X})], (4.13)

where ρ is the discount rate. Notice that the conditions of Lemma 1 still hold as the

second term in (4.13) is independent of the first period price and we can optimize

the problem over the stocking factor. At the start of the selling season, the retailer

can accurately predict the effective quality of the goods at the end of period 1, as we

assume a stable deterioration rate at the retailer’s site, and can determine her pur-

chasing quantity and first period price accordingly. If the deterioration rate changes

for some reason during the first period, she shall still follow the optimal policy given in

Theorem 8. The following theorem characterizes the optimal solution to the retailer’s

operational planning problem over two periods:

Theorem 10. The optimal stocking factor z∗ that maximizes J1 can be found accord-

ing to the quality of the goods at the end of the first period.

(a) Low or medium quality: J ′1 = 0 can have at most three roots. If it has only

one root, it corresponds to the optimal solution; if it has two roots, the larger

one corresponds to the optimal solution; and if it has three roots, one of them

corresponds to a local minimum and, therefore, the optimal solution can be found

by searching the maximum of J1 over the other two roots.

(b) High quality: J1 is concave and there is a unique optimal solution.

Proof. See Appendix C.4

It is worth mentioning that, in our numerical analysis, we have always found
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a unique z∗ for low and medium quality scenarios implying that a large variety of

parameter combinations lead to a unimodal objective.

4.5 Managerial Insights

In this section, we analyze the drivers of the firm’s donation decision in the second

period and reveal their impact on the optimal clearance price.

4.5.1 Impact of the Tax Subsidy Parameters on Donations

In this part, we analyze the role of the government’s tax subsidy parameters on the

firm’s optimal decisions. Let us start with the clearance period:

Lemma 2. The impact of the government’s tax subsidy on s1
2, s2

2(I), and s̃2 is sum-

marized as,

1) s1
2 is decreasing in α and the tax rate, τ .

2) s2
2(I) is decreasing in β and the tax rate, τ , if I ≥ (c− h)/q2, and increasing in

both if I < (c− h)/q2.

3) s̃2 is decreasing in α/β.

Notice that q2 is determined by using the effective quality of the items, whereas,

the boundaries set forth to categorize the quality as high, medium, low are subjective

and depend on the other problem parameters. Lemma 2 suggests that the tax param-

eters not only influence the sales amounts derived from the FOCs, given in (4.7)–(4.8),

but also influence the perceived quality of the goods via shifting s̃2. Thus, their im-

pact on the firm’s optimal decision may be subtle. Theorem 11 demonstrates the
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relation between the government’s tax incentive parameters and the firm’s donation

behavior. Note that we use increasing/decreasing in the weak sense, unless otherwise

stated.

Theorem 11. For given q2 and I values, the firm’s optimal donation amount is

increasing in α for s̃2 > max{0, s2
2(I)} and stable, otherwise, whereas it is increasing

in β for s̃2 < min{s2
2(I), s1

2}, decreasing for s2
2(I) < s̃2 < s1

2, and stable for s̃2 > s1
2.

Proof. The proof directly follows from the findings of Theorem 8 and Lemma 2. For

details, see Appendix C.5.

The above theorem suggests a peculiar relation between the firm’s optimal dona-

tion amount and the government’s tax incentive. In particular, a larger tax deduction

does not always bring in more charitable donations and, in fact, it may cause an ad-

verse effect, where the retailer prefers to carry more units forward to the clearance

period and donate less. This unexpected finding can partially be attributed to the

fact that varying tax incentive parameters can drag down s1
2 and s2

2 while, at the same

time, promoting (demoting) the goods to a higher (lower) quality category. Example

3 illustrates the results of Theorem 11.

Example 3. Consider Example 2 with I = 10 units. We vary α for β = 0.5 and β

for α = 1. Also, the retailer’s optimal solution without the government’s tax incentive

is ŝ2 = 6.38 leading to Ĵ2 = 9.30.

Figures 4.5a and 4.5b depict the optimal sales and profits for different values

of α and β. Recall that we focus on the case α, β ∈ [0, 1−τ
τ

) with τ = 0.35, as

given in Example 2. When one of the parameters is equal to zero, the resulting

scenario is equivalent to the no-donation policy, therefore, we analyze α, β ∈ [0.1, 1.8].
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(a) The optimal clearance period sales, s∗2,
and profits, J∗2 , for different α values when
β = 0.5.

(b) The optimal clearance period sales, s∗2,
and profits, J∗2 , for different β values when
α = 1.

Figure 4.5: The optimal clearance period sales, s∗2, and profits, J∗2 , for different tax
incentive parameters.

Supporting the findings of Theorem 11, as α (β) grows, the goods demote (promote)

to a lower (an upper) quality category. As can be seen from Figure 4.5a, the optimal

sales in period 2 is strictly decreasing in α until Ĩ > I and settles at s2
2(I) thereafter.

On the other hand, as shown in Figure 4.5b, the firm faces a trade-off: ascending

quality category of the goods motivates the retailer to sell more while increasing per

unit revenue of the donation motivates her to donate more. In particular, the retailer

is better off by raising the donation amount for Ĩ > I, whereas, she is better of

carrying more inventory forward for Ĩ < I. The optimal sales settles at s1
2 (high

quality) for large values of β. Interestingly, the maximum donation amount is the

same in both cases and it happens around α = 1, β = 0.5 which are the original values

of the parameters set by the government. Moreover, when β > 0.5, an increase in β

may result in the firm receiving a larger tax deduction by donating less, suggesting

that keeping β over 0.5 is inefficient for the government in this example.
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4.5.2 Effective Quality of the Leftover Inventory

Another dynamic affecting the retailer’s optimal decision in the second period is the

effective quality (or due date) of the goods. The following example aims to shed light

on the role of the quality on the retailer’s donation behavior and to compare the

performance of the optimal and no-donation policies for different quality scenarios.

Example 4. Consider Example 2 with I = 10 units, but for various q2 (T2) values.

Figure 4.6–4.8 demonstrates the findings. First of all, for given T2 values the

products fall into two categories, medium quality for T2 ∈ [24, 49) and high quality

for T2 ∈ [49, 59]. It looks like the changes in the effective quality does not trigger

a significant change in sales, but rather drives the clearance price up under the no-

donation policy. On the other hand, although the optimal clearance price is non-

decreasing in the remaining shelf-life of the goods, the optimal donation amount may

be increasing or decreasing in it. In particular, for T2 ∈ [24, 39), the retailer is better

off by reflecting the increase in demand (due to longer shelf-life) on the price, which

also boosts the per unit reward of donation, and thereby raise her profit by donating

more. For T2 ≥ 39, the firm sells more as the effective quality elevates, but the rate of

increase in sales changes (drops) at the point where the goods are of high quality. As

expected, the longer the shelf-life of the products, the more the firm’s second period

profit. However, the rate of increase appears to be larger under the optimal donation

policy.
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Figure 4.6: The optimal clearance period sales with and without tax incentives, s∗2
and ŝ2, respectively, for different remaining shelf-life, T2, values.

Figure 4.7: The optimal clearance period prices with and without tax incentives, P ∗2
and P̂2, respectively, for different remaining shelf-life, T2, values.

4.6 Numerical Analysis

In this section, we analyze the impacts of randomness, length of the first period, and

tax deduction parameters on the retailer’s expected after-tax profit over two periods
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Figure 4.8: The optimal clearance period profits with and without tax incentives, J∗2
and Ĵ2, respectively, for different remaining shelf-life, T2, values.

and on her first period decisions. We also compare our results with those found under

the no-donation policy to provide some insights on the role of the tax incentives.

We construct scenarios by combining the data presented in 4.1. We consider a

linear quality degradation pattern with q−d = 0.9, ν = 0.8, η = 0.2, and λ = 0.009/hr

leading to T = 78 hours of shelf-life, but we find the optimal solution under different

T1 values. The purchasing and holding costs are given as c = 1.25 and h = 0.05,

respectively. Given the fast deteriorating nature of the goods, ρ is set to 1. The

random component of demand follows an exponential distribution with parameter

1/µ. We normalize the expected market potential, a + µ, to 15 and vary the (a, µ)

pair to alter the prominence of the uncertainty. According to the current tax law,

the U.S. government imposes the corporate tax rate of τ = 0.21. This gives rise to a

feasibility region of α, β ∈ [0, 3.7619) for the tax incentive parameters. We consider 5

different values of α/β, where α/β = 0.5 indicates the goods will be of high quality in

the second period, whereas α/β = 3.5 indicates they will be of low quality. Thus, we
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can examine all three quality categories in our numerical tests. This setting generates

54 different scenarios. However, as shown by Theorem 11, α and β affect the firm’s

optimal decisions in the second period in different ways. Therefore, we consider two

cases: in Case 1, both parameters ascend and in Case 2, both descend as α/β moves

from 0.5 to 3.5. As a result, we solve 108 scenarios and present the highlights of our

analysis in figures 4.9–4.11.

T = 78, T1 ∈ {40, 50, 60}
X ∼ Exp(1/µ), c = 1.25, h = 0.05, ρ = 1
a+ µ = 15, (a, µ) ∈ {(5, 10), (7.5, 7.5), (10, 5)}
τ = 0.21, α/β ∈ {0.5, 1, 1.5, 2, 3, 3.5}

Case 1: (α, β) ∈ {(0.25, 0.5), (0.5, 0.5), (0.75, 0.5), (1.5, 0.75), (3, 1), (3.76, 1.075)}
Case 2: (α, β) ∈ {(1.875, 3.75), (1.5, 1.5), (1.5, 1), (1.4, 0.7), (1.2, 0.4), (1, 0.286)}

Table 4.1: Numerical analysis parameters. We consider all parameter combinations
for two cases: Case 1 and 2 for different α and β values.

We start by comparing the optimal stocking quantity and first period price under

the donation-enabled policy, (Q∗, P ∗1 ), with the those under the no donation policy,

(Q̂, P̂1), for varying α/β values. Figures 4.9a and 4.9b depict the optimal decisions

(averaged) for Case 1 and Case 2, respectively. Accordingly, predicting a superior

quality level in the second period does not always imply larger stocking quantity

and regular price. On the contrary, the retailer may be better of stocking up more

units and sell them at a higher price when the goods are of low quality in period

2 due to enhanced tax deductions. However, the tax deduction raises the quantity

drastically (up to 25%) while it raises the price only slightly (less than 3%). This result

challenges the findings of Chu et al. (2018), who (in their numerical analysis) reported

that the regular price can be diminished under the enhanced tax deduction policy. It

is worth noting that Chu et al. (2018) used a multiplicative demand formulation in
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their analysis whereas, we adopt an additive one in this study. Thus, the discrepancy

between our findings and theirs may partially be attributed to the difference in the

two demand modeling approaches.

(a) The optimal stocking quantity and reg-
ular price values with (without) tax deduc-
tions, Q∗ (Q̂) and P ∗1 (P̂1), respectively, for
Case 1.

(b) The optimal stocking quantity and reg-
ular price values with (without) tax deduc-
tions, Q∗ (Q̂) and P ∗1 (P̂1), respectively, for
Case 2.

Figure 4.9: The optimal stocking quantity and regular price values with respect to
different tax incentive parameters given in Table 4.1.

Next, we analyze changes in the expected after-tax profit, given as (J∗ − Ĵ)/Ĵ ,

with respect to various α/β and T1 scenarios. Note that T1 specifies the time at

which the uncertain part of the demand is revealed. It is expected that the shorter

the first period, the simpler the operational planning of the firm and thereby the

more the expected after-tax profits J∗ and Ĵ . Thus, we focus on the performance

of the donation-enabled policy compared to the no donation policy. Once again, we

run the problem instances for both Case 1 and Case 2, and present (averaged) results

in figures 4.10a–4.10b. Even though for a given α/β, the gap between the expected

profits grows as T1 shrinks in most instances, Figure 4.10b shows that the opposite

may happen for high quality scenarios. When T1 is small, the company sells less

inventory during the first period and donates more. Therefore, the donation-enabled
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policy often performs better for a shorter first period. On the other hand, when the

goods are of high quality and the tax subsidy α is sufficiently large, the possibility

of donation serves as an extra pillar against the uncertainty and the profit gap (in

percentage) enlarges as the length of period 1 stretches longer.

(a) The difference (in %) between the opti-
mal after-tax profits under the enhanced tax
deduction and no-donation policies for dif-
ferent first period lengths and tax incentive
parameters given in Case 1.

(b) The difference (in %) between the opti-
mal after-tax profits under the enhanced tax
deduction and no-donation policies for dif-
ferent first period lengths and tax incentive
parameters given in Case 2.

Figure 4.10: The difference (in %) between he optimal after-tax profits under for
different first period lengths and tax incentive parameters given in Table 4.1.

Finally, we examine the impact of uncertainty on the profits as illustrated by

Figure 4.11. Because both Case 1 and Case 2 display similar results, we only present

the graph for Case 2. We see that the retailer suffers from higher degree of uncertainty

with or without the tax deductions. However, the donation-enabled policy seems to

be more resilient to uncertainty than the no donation policy as the profit gap (in

percentage) ascends with the prominence of the randomness in demand.
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Figure 4.11: The optimal after-tax profits, J∗2 and Ĵ2, and the improvement (in %)
offered by the enhanced tax deduction with respect to different µ values for Case 2.

4.7 Conclusion

This chapter studies a food retailer’s integrated operational and CSR planning act

for a continuously deteriorating inventory over two periods. Before the start of the

selling season, the retailer jointly determines the stocking quantity and regular price.

With the end of period 1, uncertainty in demand resolves and the retailer decides on

how much inventory to donate and the second period price for the units (if any) that

are carried forward to the next period. Any donated item yields an enhanced tax

deduction to the firm. We incorporate the U.S. government tax subsidy policy for

donated foods into the retailer’s expected after-tax profit function, and analyze the

impact of tax incentive parameters on the optimal decisions as well as the profit.

The retailer utilizes the data from IoT-enabled condition tracking technologies to

estimate the true (effective) quality of the goods. She also categorizes the first period’s

ending inventory as high, medium, or low depending on the problem parameters. Our
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findings revealed that as opposed to the conventional wisdom, the retailer may donate

less when she has more leftover inventory at the end of the first period, and that her

donation amount is not always monotone in her categorization ranks. In particular,

the donation amount is tied to tax incentive parameters, α and β, and the retailer may

prefer to donate more inventory of higher-ranked quality. Interestingly, raising the

tax incentive parameters may result in the retailer donating less inventory, though her

earnings from donation is always non-decreasing in those parameters. This adverse

effect is caused by the fact that the government’s subsidy is linked to the retailer’s

second period price.

Our numerical analysis revealed that the donations benefit the retailer particularly

when the uncertainty is more prominent. The performance of the donation-enabled

policy compared to the no-donation policy is not monotone in the length of the first

period, though donations prove more efficient for shorter first-period scenarios in

many cases. Moreover, the retailer may be better off stocking up more units when

the quality of the leftover inventory is predicted as low than when it is predicted

as high, depending on the tax incentive coefficients. Finally, planning for donations

at the end of the first period boosts both the first period price and the ordering

quantity up. However, we observe that the enhanced tax deductions barely affect the

first period price and rather impact the retailer’s quantity decision. This implies that

only a slight portion of the economic burden of the donations is o transferred to the

customers.

We recognize that the present study has limitations. First of all, we assume that

the uncertainty in demand is revealed at the end of the first period. It would be

interesting to investigate the impact of demand uncertainty in the second period and
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analyze the influence of the enhanced tax deduction on the expected waste. However,

when demand is uncertain, the second period value function is not guaranteed to be

concave, which imposes more technical difficulty. Another venue for future research

is to incorporate a competition between two products of different quality into the

problem to see how the firm’s product assortment decision is affected by donations.

Finally, developing a game theory model between a retailer and a local government

to draw some policy insights on tax incentive parameters is a promising research

direction. In this context, it is also important to consider the government’s trade-off

between income tax returns and the donation tax incentives.
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Chapter 5

Perils and Merits of Cross-Channel

Returns

5.1 Introduction

The retail market landscape has been evolving ever since the introduction of e-

commerce. As more customers around the globe are attracted to the web-based stores

(Statista, 2020), the competition gets tougher. To stay competitive, most bricks-and-

mortar (B&M) firms had to augment their operations by an online channel and have

become bricks-and-clicks (also called, dual-channel) retailers.

The COVID-19 pandemic has only escalated the digital transformation. In the

United States, in the first quarter of 2021, the e-commerce sales hit $1,581 billion,

39.1% growth since the first quarter of 2020, while the total retail sales only grew

by 16.8% during the same period (U.S. Department of Commerce, 2021). The online

market constituted 13.6% of the first quarter sales in 2021, which was only 6.4% in

2015 U.S. Department of Commerce (2016).
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However, the proliferation of the e-commerce has also brought up new challenges

and management of returns can be enlisted among the most persistent ones. Ac-

cording to the pre-COVID data, on average, the in-store returns rates are estimated

to be 8–10%, whereas, the online return rates are estimated to be 30%, but may be

as large as 40% (for apparel merchandise), depending on the product type (Reagan,

2016). During the COVID-19 outbreak, many companies stretched their return win-

dow to attract more online shoppers while many pandemic-weary customers changed

their shopping habits which together put additional pressure on the online returns

(Reuters, 2021). For example, the rate of consumers bracketing (deliberately pur-

chasing multiple versions of a merchandise to try at home, and then, returning those

that do not work) was 40% in 2017, but climbed up to 62% in 2020 (Narvar, 2021).

The online returns may undermine the retailers’ profits significantly. Return pro-

cessing costs range between 20% and 65% of the cost of goods sold Ellis (2017). Thus,

many dual-channel retailing giants are looking for alternative ways to handle returns

while keeping the customers satisfied. One way many dual-channel retailers, such as,

Hudson’s Bay (2021) and SportChek (2021), follow is to utilize their physical facilities

to handle the return of online purchases, also referred as cross-channel returns. In

this model, they charge a shipment fee to the customers for the mailed returns and

offer in-store services for free.

The retailer’s cross-channel service offering boosts not only the demand but also

the returns, and requires a partial channel integration. Therefore, it is not guaranteed

cross-channel returns enhance the profits. In this paper, we study this cross-channel

returns phenomenon by developing an analytical model for a retailer, who sells her

products through both a B&M facility and an online store. We draw insights on if and
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when welcoming online returns to the physical facility would benefit the retailer. Our

model has two versions: (1) exogenous returns, and (2) refund-dependent returns.

To the best of our knowledge, we present the first study that incorporates refund-

dependent returns to analyze idiosyncrasies of cross-channel returns in a dual-channel

retailing environment.

The rest of the paper is organized as follows: We present the relevant literature

in Section 5.2. Then, we develop our models and draw managerial insights for the

retailer in Section 5.3. Finally, Section 5.4 summarizes the findings and suggests

avenues for future research

5.2 Relevant Literature

While e-commerce returns have been a popular topic in the literature (see, for ex-

ample, Vlachos and Dekker, 2003; Choi et al., 2004; Altug and Aydinliyim, 2016;

Fan and Chen, 2020), it was only recently that cross-channel returns have started to

receive attention.

While modeling the refund-return relationship we extend the framework first pro-

posed by Mukhopadhyay and Setaputra (2006). They studied the problem of returns

in a pure e-tailer. Liu et al. (2011); Choi (2013) adopted a similar approach under

mass customization. We use their formulation and extend it to study a dual-channel

retailer’s problem.

The impact of refund policy in dual-channels has been studied in a game-theoretical

framework, where a manufacturer sells his products through a direct online channel

as well as a traditional retailer. Among the salient works, Li et al. (2018c) investi-

gated the impact of the money-back-guarantees, and Li et al. (2019c) examined the
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full-, partial-, and no-refund policies in a dual-channel supply chain. In a similar

vein, Batarfi et al. (2017) studied a situation where the manufacturer sells the stan-

dard products in the conventional channel and the customized as well as refurbished

products in the online channel. Zhang et al. (2020) considered a green supply-chain

and examined the impact of cross-channel returns on the greening strategy of the

manufacturer. Our work has a different context as we consider a bricks-and-clicks

retailer.

There is a growing literature on the cross-channel returns in a dual-channel retail-

ing environment. Besides few exceptions (Mahar and Wright, 2017; Dijkstra et al.,

2019), most studies assume the firm has exactly one conventional store and one on-

line store. Yan et al. (2020b) and Nageswaran et al. (2020) used consumer valuation

models to derive the customer demand and online returns, but ignore the returns

of in-store customers and assume uniform pricing. Under similar assumptions, Jin

et al. (2020) studied the competition between two dual-channel retailers. There are

also two newsvendor-type models to analyze effect of cross-channel returns on the

firm’s optimal procurement decision (Radhi and Zhang, 2019; He et al., 2020). They

also ignored the returns of in-store purchases and assumed uniform pricing across

both channels to assure mathematical tractability. However, we explicitly model the

returns coming from both channels, and consider differentiated pricing across the

channels to make our work more relevant to the current practices.

Overall, the extant dual-channel literature lacks studies on the impact of cross-

channel returns on individual channel-demand, -prices, and -profits. Therefore, we

develop a stylized model where a retailer selling a single product through an online

channel as well as a physical store wants to determine the optimal price in each
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channel as well as the potential benefit and hindrance of cross-channel returns.

5.3 Model Frameworks

This paper investigates the optimal pricing and return policies of a dual-channel

retailer, who sells her products through an online channel as well as a bricks-and-

mortar (B&M) store.

The retailer chooses between (1) a dedicated returns policy corresponding to a

multi-channel setting (M), where the retailer manages two channels separately mean-

ing that only the same channel returns are allowed, and (2) a hybrid returns policy

corresponding to a cross-channel setting (C), where the retailer partially integrates the

channels by allowing the return of online purchases to her physical facility. Further-

more, the retailer implements a differentiated pricing policy, therefore, we determine

the optimal price for each channel under both settings. This assumption allows the

retailer to match the prices across both channels only when it is optimal to do so.

Multiple-channel firms match prices of clothing products more than 80% of the time

while they match the price of office supplies and perishables only less than 40% of

the time (Cavallo, 2017). That said, many dual-channel retailers often offer promo-

tions/rebates/coupons in their web-based store, therefore, an online shopper seldom

pays the same price with a B&M customer for the same product.

Throughout the paper, we use subscripts r and e to denote the traditional retail

channel and the online channel, respectively. The retailer incurs a cost of ci > 0

per unit of product sold in channel i ∈ {r, e}, where ci reflects all operational costs

associated with acquiring and selling the product in channel i. In line with the

shipping and return policies many dual-channel retailers implement, e.g., Hudson’s
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Bay, Sportchek, Sephora, etc., we assume,

• the customers incur a shipping fee, s > 0, for the last-mile delivery,

• when they return a product to the B&M store, they receive full-refund regardless

of which channel they bought the product from,

• when they return an online purchase via shipment, they receive the product

value minus return shipping fee, s,

• the returned items are salvaged at the channel they were returned to.

In particular, each returned product generates a return handling cost, ωi > 0, and

has salvage value νi in channel i ∈ {r, e}. We assume νi > ωi to avoid a situation

where refunding the unsatisfied customers without collecting the unsatisfactory items

is optimal. Despite such a policy is being implemented by some firms, such as Amazon,

for low-value items only, it may pose problems when implemented by a fashion retailer

or a department store. Some customers may exploit the retailer’s policy by claiming

refunds for their satisfactory purchases as well.

We analyze two situations: (1) exogenous returns and (2) refund-dependent re-

turns. In the former case, we assume the firm can estimate the return amounts in

both channels and they are constants, whereas, in the latter case, we assume the

return amount in a channel is tied to the refund amount, i.e., the selling price at the

same channel, as the retailer implements full-refund policy. We also draw managerial

insights throughout this section whenever necessary.

123



Ph.D. Thesis - Armagan Ozbilge McMaster - Management Science

5.3.1 Multi-channel vs Cross-channel with Exogenous Re-

turns

In this section, we develop the retailer’s optimal solution under both channel settings

and compare the optimal prices, demands, and profits for given return amounts.

5.3.1.1 Multi-channel Setting

Demand in each channel under no cross-returns is given as,

DM
r (pr, pe) = ar − bpr + βpe + βs (5.1)

DM
e (pe, pr) = ae − bpe + βpr − bs, (5.2)

where ai > 0 is the market size parameter and pi is the selling price in channel

i ∈ {r, e}. Also, b > 0 and β > 0 are the self- and cross-price sensitivity parameters,

respectively. We assume b > β, i.e., self-price sensitivity is prominent. Because

the customers incur the shipping cost, s, it is considered to influence the customer

demand in the same way the e-channel price does.

Return amounts are exogenous constants and denoted by RM
r = αr and RM

e = αe.

Here, we also define the net demand in channel i as NM
i (pi, pj) = DM

i (pi, pj) − RM
i ,

i, j ∈ {r, e} with i 6= j. To ensure that the net demand in both channels will be

positive for some range of the prices, we assume NM
i (ci, cj) > 0. Now we can write

down the retailer’s profit over the two channels as,
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ΠM =
∑

i,j∈{r,e},i 6=j

(pMi − ci)DM
i (pMi , p

M
j )− αi(pMi − vi + wi)

=
∑

i,j∈{r,e},i 6=j

(pMi − ci)NM
i (pMi , p

M
j )− αi(ci − vi + wi), (5.3)

where the first term corresponds to the firm’s profit from sales and the second term

corresponds to the expenses associated with the returns. In Theorem 12, we establish

the optimal prices.

Theorem 12. ΠM is concave and the optimal prices are as follows:

pMr =
1

2

[
cr + A−KM

]
, pMe =

1

2

[
ce − s+B − LM

]
, (5.4)

where A = (bar+βae)/(b
2−β2), B = (bae+βar)/(b

2−β2), KM = (bαr+βαe)/(b
2−β2),

and LM = (bαe + βαr)/(b
2 − β2).

Proof. Let us write down the first order conditions (FOCs) of ΠM :

∂ΠM

∂pMr
= ar − αr − 2bpMr + 2βpMe + bcr − βce + βs,

∂ΠM

∂pMe
= ae − αe − 2bpMe + 2βpMr + bce − βcr − bs.

This gives rise to the following Hessian:

HM =

−2b 2β

2β −2b

 ,
which is negative definite since b > β > 0 by assumption.
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The optimal prices have a linear relationship with almost all problem parameters.

Only the self- and cross-price sensitivity of demand have a more sophisticated rela-

tionship with the selling prices, whereas, salvage values, νi − ωi, i ∈ {r, e}, have no

effect on the firm’s pricing decision. This finding is somewhat expected as the return

rates are independent of the prices. In Section 5.3.2, we relax the constant return

rate assumption obtain a different result. In Proposition 5, we show that the optimal

price in any channel is larger than the unit operational cost in the same channel.

Proposition 5. A loss leader strategy is not optimal for the dual-channel retailer,

i.e., pMi ≥ ci, i ∈ {r, e}.

Proof. By plugging the optimal prices into the (net) demand functions, one can ob-

tain:

NM
r (pMr , p

M
e ) =

1

2
(ar − αr − bcr + βce + βs) =

1

2
NM
r (cr, ce)

NM
e (pMe , p

M
r ) =

1

2
(ae − αe − bce + βcr − bs) =

1

2
NM
e (ce, cr),

where both NM
r (cr, ce) and NM

e (ce, cr) are non-negative by assumption. Hence, we

obtain ar ≥ αr + bcr − βce− βs and ae ≥ αe + bce− βcr − bs. By substituting ar and

ae in equations (5.4) with the right-hand-side of the inequalities, we obtain,

pMr ≥
1

2

[
cr +

(b2 − β2)cr + bαr + βαe
b2 − β2

− bαr + βαe
b2 − β2

]
= cr,

pMe ≥
1

2

[
ce − s+

(b2 − β2)(ce + s) + bαe + βαr
b2 − β2

− bαe + βαr
b2 − β2

]
= ce.
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Finally, we can write the retailer’s profit in a closed-form as,

ΠM =
1

2

[
NM
r (cr, ce)(−cr + A−KM) +NM

e (ce, cr)(−ce − s+B − LM)
]

− αr(cr − νr + ωr)− αe(ce − νe + ωe).

In the next section, we carry out a similar analysis for the cross-channel setting.

5.3.1.2 Cross-channel Setting

Demand for each channel under the cross-channel setting is described as,

DC
r (pr, pe) = ar − bpr + βpe + βs− φ (5.5)

DC
e (pe, pr) = ae − bpe + βpr − bs+ h, (5.6)

where h > φ > 0. This framework captures the fact that the firm’s cross-return

service offering boosts up the demand in the online channel by h units, where φ units

of it is cannibalized from the B&M channel.

Return amounts are given as RC
r = RM

r = αr and RC
e = RM

e +αer = αe+αer, where

αer denotes the cross-channel returns. As in the multi-channel setting, we define the

net demand in channel i as NC
i (pi, pj) = DC

i (pi, pj)−RC
i , and assume NC

i (pi, pj) > 0

i, j ∈ {r, e}, i 6= j to assure that demand will be positive for some range of the prices.

The retailer’s profit under the cross-channel setting can be given as,

ΠC =
∑

i,j∈{r,e},i 6=j

[
(pCi − ci)DC

i (pCi , p
C
j )− αi(pCi − vi + wi)

]
− αer(pCe − νr + ωr)

=
∑

i,j∈{r,e},i 6=j

[
(pCi − ci)NC

i (pCi , p
C
j )− αi(ci − vi + wi)

]
− αer(ce − νr + ωr),
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where the terms inside the brackets stand for the profit from the sales and the costs

generated by the same channel returns, whereas, the last term stands for the costs

generated by the cross-channel returns. The optimal prices are as stated in following

theorem.

Theorem 13. ΠC is concave and the optimal prices are

pCr =
1

2

[
cr + A+ E −KC

]
, pCe =

1

2

[
ce − s+B + F − LC

]
, (5.7)

where E = (βh−bφ)/(b2−β2), F = (bh−βφ)/(b2−β2), KC = (bRC
r +βRC

e )/(b2−β2),

and LC = (bRC
e + βRC

r )/(b2 − β2).

Proof. We first lay out the FOCs of ΠC :

∂ΠC

∂pCr
= ar − αr − 2bpCr + 2βpCe + bcr − βce + βs− φ,

∂ΠC

∂pCe
= ae − αe − αer − 2bpCe + 2βpCr + bce − βcr − bs+ f.

Then, we develop the Hessian:

HC =

−2b 2β

2β −2b

 ,
which is negative definite since b > β > 0 by assumption.

Similar to the multi-channel case, the optimal prices under the cross-channel set-

up are independent of the net salvage value of the goods in both channels and have

a linear relationship with the rest of the problem parameters, but the price sensi-

tivity parameters. Proposition 6 shows that the optimal prices are greater than the
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respective unit cost.

Proposition 6. A loss leader strategy is not optimal for the dual-channel retailer

under the cross-channel set-up, i.e., pCi ≥ ci, i ∈ {r, e}.

Proof. The proof is very similar to the proof of Proposition 5 and follows from the

assumption NC
i (pi, pj) > 0.

We can write the retailer’s profit under cross-channel in a closed-form as,

ΠC =
1

2

[
NC
r (cr, ce)(−cr + A+ E −KC) +NC

e (ce, cr)(−ce − s+B + F − LC)
]

− αr(cr − νr + ωr)− αe(ce − νe + ωe)− αer(ce − νr + ωr).

Now that we have developed the optimal prices, demands, profits under both

channel settings, we can compare them to derive some insights.

5.3.1.3 Impact of Cross-Channel Returns on the Optimal Prices and

Channel Profits

We analyze the impact of cross-channel returns by comparing the prices, channel

profits, and total profits under M and C. We assume h − φ − αer > 0 through our

analysis. Recall that h denotes the additional demand in the online channel due to

the allowance of cross-channel returns and φ < h denotes the amount of additional

demand that is cannibalized from the B&M channel. Thus, h − φ − αer > 0 implies

that the firm’s cross-channel initiative boosts up both total demand and total returns

with the former being larger than the latter. In other words, the demand grows larger

than the returns so that the net demand increases under this assumption. We use πSi

to denote the optimal profit in channel i ∈ {r, e} under channel setting S ∈ {M,C}
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Proposition 7 summarizes the impact of cross-channel returns on the firm’s pricing

decisions and customer demand.

Proposition 7. The availability of cross-channel returns,

1. raises the optimal price in the traditional channel only if b
β
< h−αer

φ
,

2. decreases (net) demand in the B&M channel by φ/2 units, regardless of the price

change,

3. raises both (net) demand and price in the online channel. The demand increases

by (h− αer)/2 and the price increases by

1

2(b2 − β2)
[b(h− αer)− βφ] >

1

2(b2 − β2)
b(h− αer − φ) > 0.

4. raises the total (net) demand by (h− αer − φ)/2.

Proof. The proof follows from Theorems 12–13.

A couple of remarks are worth mentioning. First of all, notice that the condition

given in the first part of Proposition 7 may not be satisfied even when h−φ−αer > 0,

i.e., the traditional channel price may still decline when the cross-channel set-up

generates more demand than return. Next, recall that the cannibalization effect of

the retailer’s cross-channeling initiative is taken as φ units. However, the optimal

demand drops only by φ/2. This finding suggests that the firm is able to cushion the

undesirable impact of channel integration on the B&M demand. A more interesting

finding, that contrasts with the conventional wisdom, is that allowing cross-channel

returns may move the optimal price in the physical channel up, despite a certain drop

in the channel demand.
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Expectedly, adopting the cross-channel set-up boosts up both the optimal price

and demand in the online channel. The increase in the demand over both channels is

sufficiently large to compensate the loss in the B&M demand, therefore, the overall

demand grows by a half of the total impact, h − αer − φ. However, it is still not

clear if the retailer is better off allowing the return of the online purchases to her

physical facilities. She enjoys the enhanced customer traffic, on the one hand, but

suffers from the additional return costs, on the other. To gain more insights, we

compare the channel profits under M and C in the following proposition. Note that

all revenues and costs associated with the cross-channel returns are considered under

the e-channel’s profit function.

Proposition 8. The relationship between the retailer’s profits under M and C can

be described as follows:

1. πCr ≥ πMr if ∆πr ≥ 0,

2. πCe ≥ πMe if ∆πe ≥ 0,

3. ΠC ≥ ΠM if ∆πr + ∆πe ≥ 0,

where ∆πr = 1
2
[NM

r (cr, ce)(p
C
r −pMr )−φ(pCr −cr)] and ∆πe = 1

2
[NM

e (ce, cr)(p
C
e −pMe )+

(h− αer)(pCe − ce)]− αer(ce − νr + ωr).

Proof. The proof follows from Propositions 5–6.

A number of observations are in order. Firstly, pCr > pMr does not assure πCr ≥ πMr ,

but pCr ≤ pMr is sufficient to imply πCr < πMr , i.e., unless the B&M price is sufficiently

large to compensate the losses due to the cannibalization effect, the channel profit

declines. As such, the retailer’s effort of maximizing the systemwide profit disrupts
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the conventional channel. Another finding is that when νr ≥ ωr + ce, π
C
e ≥ πMe

always holds, that is when the salvaged cross-channel returns do not generate loss,

the internet-enabled channel’s profit always improves. However, even this condition

alone is not sufficient to determine if the retailer’s overall profit grows or not. The

results in this part are summarized in Table 5.3.1.3.

Channel Price Demand Profit

R ↑↓ ↓ ↑↓
E ↑ ↑ ↑↓

Total - ↑ ↑↓

Table 5.1: Impact of the cross-channel returns on channel prices, demands, and profits
as well as total demand and profit when h > φ+ αer. Symbols ↑ and ↓ indicate that
the respective component increases and decreases, respectively, whereas, ↑↓ indicates
that the respective component may increase or decrease.

In the next section, we examine the retailer’s problem under refund-dependent

return rates.

5.3.2 Multi-channel vs Cross-channel with Refund-dependent

Returns

As in the constant return scenario, in this section, we develop the retailer’s optimal

solution under both channel settings but derive our insights via numerical analysis as

the problem becomes analytically intractable when cross-channel returns are included.

In contrast with the previous sections, here return rates depend on the refund

amount. As such, the price becomes an active influencer of returns as the retailer

follows a full-refund policy. There is an additional trade-off that the firm has to deal

with: raising the prices not only reduces the demand but also increases the return
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amount.

5.3.2.1 Multi-channel Setting

The retailer’s demand formulation here is the same with the one established for the

exogenous returns case under no cross-returns. However, for the modeling of returns,

we extend a framework first proposed by Mukhopadhyay and Setaputra (2006), and

later studied by Liu et al. (2011); Choi (2013). The extant literature develops the

framework for an e-tailer and, in this study, we extend it to a dual-channel environ-

ment. Accordingly, the returns are given as,

RM
r (pr) = αr + ypr, (5.8)

RM
e (pe) = αe + y(pe − s), (5.9)

where αi is the intercept point of the returns in channel i ∈ {r, e} and y > 0 is the

refund sensitivity parameters of returns, i.e., a one dollar change in the refund will

change the returns by y units. One can argue that the online returns may be more

refund-sensitive for some products, but we assume the difference is negligible for the

sake of analytical tractability. Recall that the company adopts a full-refund policy

meaning that the total refund in the B&M store it is pr and in the online store is

pe, but the online shoppers also pay for the return shipping fee, s. We develop the
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retailer’s profit as,

ΠM =
∑

i,j∈{r,e},i 6=j

(pMi − ci)DM
i (pMi , p

M
j )−RM

i (pMi )(pMi − vi + wi),

=
∑

i,j∈{r,e},i 6=j

(pMi − ci)NM
i (pMi , p

M
j )−RM

i (pMi )(ci − vi + wi), (5.10)

where we assume NM
i (ci, cj) = DM

i (ci, cj) − RM
i (ωi − νi) > 0 to assure that demand

is non-negative for some region of the prices.

The following theorem characterizes the optimal prices for this case.

Theorem 14. ΠM is concave and the optimal prices are as follows:

pMr =
1

2
(AM + EM −KM), pMe =

1

2
(BM + FM − LM). (5.11)

where

AM =
(b+ y)ar + βae
(b+ y)2 − β2

, BM =
(b+ y)ae + βar
(b+ y)2 − β2

,

EM =
(b+ y)(bcr − βce + βs) + β(bce − βcr − bs)

(b+ y)2 − β2
,

FM =
(b2 − β2)(ce − s) + y(bce − βcr − bs)

(b+ y)2 − β2
,

KM =
(b+ y)RM

r (ωr − νr) + βRM
e (ωe − νe)

(b+ y)2 − β2
,

LM =
(b+ y)RM

e (ωe − νe) + βRM
r (ωr − νr)

(b+ y)2 − β2
.
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Proof. Let us write down the FOCs of ΠM :

∂ΠM

∂pMr
= ar − αr − 2(b+ y)pMr + 2βpMe + bcr − βce + βs+ y(νr − ωr),

∂ΠM

∂pMe
= ae − αe − 2(b+ y)pMe + 2βpMr + bce − βcr − bs+ y(νe − ωe).

This gives rise to the following Hessian:

HM =

−2(b+ y) 2β

2β −2b(b+ y)

 ,
which is negative definite since b > β > 0 by assumption.

Incorporating a refund-dependent return model has elevated the level of com-

plexity of the price expressions drastically. Although the objective function is still

concave, the optimal prices have taken complex forms. We can still make an impor-

tant observation nevertheless: net salvage value in a channel, νi − ωi, i ∈ {r, e}, now

have a linear relationship with both of the optimal prices, which were independent of

the salvaging parameters under the exogenous returns scenario.

Proposition 9. A loss leader strategy is not optimal for the dual-channel retailer

under the multi-channel set-up, i.e., pMi ≥ ci, i ∈ {r, e}.

Proof. The proof is very similar to the proof of Proposition 5 and follows from the

assumption NM
i (ci, cj) > 0.

The refund-dependent model under the multi-channel setting still preserves the

good properties of the exogenous refund model. However, the closed-form profit
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function becomes too complicated to analyze, therefore, we do not present it here

and leave any further analysis to Section 5.3.2.3.

5.3.2.2 Cross-channel Setting

Demand for each channel with cross-channel returns is given as,

DC
r (pr, pe) = ar − bpr + βpe + βs− µpe (5.12)

DC
e (pe, pr) = ae − bpe + βpr − bs+mpe, (5.13)

where 0 < m < β and 0 < µ < m are the self- and cross-refund sensitivity of demand

for cross-channel returns, respectively. As such, a dollar increase in the refund for

online purchases that are returned to B&M store raises the online demand by m

units, but reduces the retail demand by µ units. Since the retailer implements a

full-refund policy, the customers receive pe for their cross-channel returns. We have

similar modification in return set-up as well:

RC
r (pr) = RM

r (pr) = αr + ypr, (5.14)

RC
e (pe) = αe + y(pe − s)− ηpe = αe + (y − η)pe − ys, (5.15)

RC
er(pe) = αer + ype − η(pe − s) = αer + (y − η)pe + ηs, (5.16)

where RC
er(pe) is the amount of cross-channel returns for refund pe and 0 < η < y

is the cross-refund sensitivity of online-purchased returns. Here, η captures the fact

that allowing cross-channel returns decreases the return shipments and the degree of

change depends on the refund amount, pe. In this way, instead of assuming a constant

change in channel demands and returns, we modify the model of Mukhopadhyay and
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Setaputra (2006) to capture the entwined nature of demand-return relationship in a

dual-channel retailing environment.

The retailer’s profit under this setting can be described as,

ΠC =
∑

i,j∈{r,e},i 6=j

[
(pCi − ci)DC

i (pCi , p
C
j )−RC

i (pCi )(pCi − vi + wi)
]
−Rer(pe)(pe − νr + ωr),

=
∑

i,j∈{r,e},i 6=j

[
(pCi − ci)NC

i (pCi , p
C
j )−RC

i (pCi )(ci − vi + wi)
]
−Rer(pe)(ce − νr + ωr),

(5.17)

where NC
e (pCe , p

C
r ) = DC

e (pCe , p
C
r )−RC

e (pCe )−Rer(pe) is updated. The objective func-

tion given above may not be always concave. The following proposition frames the

condition for concavity and lays out the optimal prices.

Proposition 10. The retailer’s profit function, ΠC, is concave if 4(b + y)[b −m +

2(y − η)]− (2β − µ)2 > 0 and the resulting optimal prices are given as,

pCr = (AC + EC −KC), pCe = (BC + FC − LC), (5.18)

where

AC =
2[b−m+ 2(y − η)]ar + (2β − µ)ae

4(b+ y)[b−m+ 2(y − η)]− (2β − µ)2
,

BC =
2(b+ y)ae + (2β − µ)ar

4(b+ y)[b−m+ 2(y − η)]− (2β − µ)2
,

EC =
2[b−m+ 2(y − η)](bcr − βce + βs) + (2β − µ)[(b−m)ce − (β − µ)cr − bs]

4(b+ y)[b−m+ 2(y − η)]− (2β − µ)2
,
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FC =
2(b+ y)[(b−m)ce − (β − µ)cr − bs] + (2β − µ)(bcr − βce + βs)

4(b+ y)[b−m+ 2(y − η)]− (2β − µ)2
,

KC =
2[b−m+ 2(y − η)]RC

r (ωr − νr) + (2β − µ)[RC
e (ωe − νe) +RC

er(ωr − νr)]
4(b+ y)[b−m+ 2(y − η)]− (2β − µ)2

,

LC =
2(b+ y)[RC

e (ωe − νe) +RC
er(ωr − νr)] + (2β − µ)RC

r (ωr − νr)
4(b+ y)[b−m+ 2(y − η)]− (2β − µ)2

.

Proof. We first lay out the FOCs of ΠC :

∂ΠC

∂pCr
= ar − αr − 2(b+ y)pCr + (2β − µ)pCe + bcr − βce + βs+ y(νr − ωr),

∂ΠC

∂pCe
= ae − αe − αer − 2(b−m+ 2y − 2η)pCe + (2β − µ)pCr + (b−m)ce − (β − µ)cr

− (b+ η)s+ (y − η)(νr − ωr + νe − ωe).

Then, we develop the Hessian:

HC =

−2(b+ y) 2β − µ

2β − µ −2(b−m)− 4(y − η)

 ,
which is negative definite only when 4(b+ y)[b−m+ 2(y − η)]− (2β − µ)2 > 0.

We have run a Monte Carlo simulation by assigning a uniform random variable

with appropriate support to each parameter value to generate possible scenarios that

satisfy our assumptions. Overall, we report that more than 99% of the time, the

condition given in Theorem 10 is satisfied, i.e., the Hessian of the objective is negative-

definite. Due to the analytical difficulty, we analyze the optimal demand and profit

numerically in the next section.
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5.3.2.3 Numerical Analysis

To derive some managerial insights and compare our findings with the those of the ex-

ogenous returns case, we conduct a numerical study for the refund-dependent returns

case.

In particular, we look at the impact of salvage values and return-related parame-

ters on the optimal profit, demand, and price in each channel. We denote the optimal

profit in channel i ∈ {r, e} under setting S ∈ {M,C} as πSi , and use notations

∆πi = πCi − πMi and ∆pi = pCi − pMi to facilitate discussions. We first construct a

base case for our analysis: ar = 35.75, ae = 19.25, b = 4, β = 3, cr = 5, ce = 3, s =

1.5, νr = 4, νe = 3, ωr = 1, ωe = 0.5,m = 0.15, µ = 0.07, αr = 0.03ar = 1.0725, αe =

0.04ae = 0.77, αer = 0.01ae = 0.1925, y = 0.18, η = 0.07. Notice that the retailer’s

B&M store has 65% of the total market share and the online store has the rest,

35%. The return base point of a channel is tied to the respective market potential.

However, the return rate is smaller in the conventional channel as the customers are

able to examine the products at the B&M store. We also observe a high cross-price

sensitivity, as b − β is relatively small, meaning that the customers tend to switch

channels when the price discrepancy across the channels is large. A dollar change

in the refund amount of a channel shifts the return volume in the same channel by

y = 0.18 units, whereas a dollar change in the refund amount of cross-channel returns

shifts the online demand by m = 0.15 units and the in-store demand by µ = 0.07

units in the opposite directions. Finally, any returned item is salvaged at νr−ωr = 3

in the physical store and at νe − ωe = 2.5 in the online channel.

We first vary the salvage values. Referring to the closed-form solutions in equations

(5.11) and (5.18), both prices grow with νi−ωi, i ∈ {e, r} under both channel settings.

139



Ph.D. Thesis - Armagan Ozbilge McMaster - Management Science

As one may expect a larger salvage value brings in a larger profit and the retailer

achieves it by simply marking up the selling price. However, by doing so, she also

endures reduced demand and increased returns. On the other hand, the rate of change

in the optimal channel prices and profits may be different for M and C. Furthermore,

because the cross-channel returns are salvaged at the B&M store, varying vr and νe

may result in different outcomes. Figures 5.1a and 5.1b show that an increase in νr

enlarges the price gap in both channels while an increase in νe closes it. The rationale

behind this result is that the retailer’s e-channel price grows with νe and the online

returns become less detrimental, but the introduction of cross-channel returns shifts

some online returns to the B&M store, where the products have a smaller salvage

value. We also observe that when setting C is optimal, the retailer raises the prices in

both channels. As shown in Figures 5.2a and 5.2b, the channel profit follow a similar

pattern to the prices. An interesting finding can be cited as the retailer’s in-store

profit and sales both decline under the cross-channel setting. Recall that although

the optimal prices are independent of the salvage values in the case of the exogenous

return, we reported a similar finding for different parameter combinations.

We finally analyze the impact of refund sensitivity parameter on the firm’s optimal

channel setting, prices and profits in Figures 5.3a and 5.3b. The retailer’s optimal

channel setting is very responsive to the changes in y. Since the retailer adopts a

full-refund policy, raising the price in a channel may result in an immense increase

in the returns when they are highly sensitive to the refund, i.e., when y is large. We

know the retailer tends to mark up the online price when she accepts cross-channel

returns, but due to the additional returns induced by this policy, it only drags down

the overall profit.
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(a) The difference between optimal prices un-
der M and C with respect to different salvage
values in the B&M channel, νr.

(b) The difference between optimal prices un-
der M and C with respect to different salvage
values in the online channel, νe.

Figure 5.1: The difference between optimal prices under M and C with respect to
salvage values νr and νe.

(a) The difference between optimal profits
under M and C with respect to different sal-
vage values in the B&M channel, νr.

(b) The difference between optimal profits
under M and C with respect to different sal-
vage values in the online channel, νe.

Figure 5.2: The difference between optimal profits under M and C with respect to
salvage values νr and νe.

5.4 Conclusion

In this paper, we study the impacts of cross-channel returns on a bricks and clicks

dual-channel retailer’s operational planning. Inspired by the multiple-channel retail-

ing giants, such as Hudson’s Bay and Sportchek, the retailer differentiates the selling

price across the channels, adopts a full-refund policy, but reflects all shipping expenses
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(a) The difference between optimal prices un-
der M and C with respect to different refund
sensitivity parameter of returns, y.

(b) The difference between optimal profits
under M and C with respect to different re-
fund sensitivity parameter of returns, y.

Figure 5.3: The difference between optimal prices and the optimal profits under M
and C with respect to y.

to the customers.

We assume the retailer sells her products through a physical store as well as an

online website. By accepting the returns of online purchases to the B&M store,

the retailer engages in a partial channel integration. As such, we call the business

model without cross-channel returns multi-channel (M) an in the presence of them

cross-channel (C). We explore the conditions that favor C under two scenarios: (1)

exogenous returns, and (2) refund-dependent returns. For the former we were able

to develop analytical insights, but the latter one the problem was analytically in-

tractable, therefore, we conduct numerical experiments to derive insights.

In both scenarios, cross-channel returns raise not only the demand but also the

returns in the online channel and result in some of the in-store demand cannibal-

ized by the online channel. Interestingly, the retailer may still mark up the B&M

price, despite a drop in the in-store demand due to the cannibalization effect. In the

exogenous returns case, even though the net additional demand is larger than the

sum of the cross-channel returns and the cannibalized demand from the conventional
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channel, it is not assured that the firm is better off offering this service. Unless the

growth in online customers compensates the retailer for the enhanced returns and

abused B&M sales, she should not accept cross-channel returns. However, we still

observe an increase in both demand and price in the online channel even when the

overall profit drops. One drawback of the exogenous returns is that the optimal price

and demand in both channels are independent of the salvaging values.

In the refund-dependent returns case, we extended the work of Mukhopadhyay

and Setaputra (2006); Liu et al. (2011); Choi (2013) to a dual-channel framework.

Since the objective function may not be concave under C for some extreme cases,

we developed sufficient conditions to assure it. Our numerical analysis revealed that

most of the findings under the exogenous returns case still persist, but the salvage

values and refund-sensitivity of returns play an important role in the determination

of whether or not the retailer should allow cross-channel returns under this case. In

particular, because the retailer adopts a full-refund policy, if the returns are highly

refund-sensitive, she may suffer from a sizable jump in the online returns (both to

online and offline stores) when allowing the cross-channel returns. Also, the salvage

values in different channels may have contrasting effects: a large νr favors a cross-

channel setting, whereas, a large νe favors a multi-channel setting.

Overall, we observe the retailer’s conventional channel is disturbed and her in-

store demand is likely to drop, yet the growth in online profit may be sufficiently

large to offset any losses in the conventional channel. This work can be extended to

incorporate uncertainty in demand and/or in returns. It would be also interesting

to see what happens when the retailer has multiple physical facilities and online

returns can be delivered to any of them. A third possible extension is to incorporate
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competition from other retailers that may have single or multiple channels.
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Chapter 6

Conclusion and Future Research

In this dissertation, we examined the operational planning problem of a retailer under

single- and dual-channel systems with product returns and donations considerations.

This chapter highlights our major contributions and proposes directions for future

research.

Since we have found no comprehensive reviews of the bricks-and-clicks dual chan-

nels literature, we proposed one in Chapter 2. We reviewed 263 published contri-

butions and found two main research themes in the literature: (1) a novel channel

competition between a manufacturer/supplier and a traditional retailer where either

of the players augments their operations with an e-channel, (2) inventory manage-

ment and demand fulfillment policies in a dual-channel environment. The former

research stream, which constitutes around 82% of the whole literature, lacks studies

that consider demand uncertainty, information asymmetry and multi-period models,

whereas, the latter seeks more research on cross-channel delivery/return and refund

policy making. We also discovered a paradigm shift in the OM literature as the e-

commerce adoption of B&M retailers have thrived during the last few years. The
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challenges faced by dual-channel companies have become increasingly popular and,

therefore, industry-specific channel management issues (high-tech, grocery, fashion)

and the disruptions caused by the COVID-19 pandemic present promising research

opportunities. This chapter also illustrated how existing research can be leveraged to

address this new trend.

The issue of charitable donations has been largely ignored by the existing oper-

ational planning models under the single-channel framework. In addition, the food

safety concern of the food banks necessitates an objective metric for the quality of

donated fresh groceries. Thus, in Chapter 3, we introduced the quality-dependent

newsvendor problem (QDNP), which incorporates the philanthropic act of a food

retailer in the form of charitable donations into her operational planning problem

over two periods. In particular, the retailer jointly determines the stocking quantity

and first period price at the start of the selling season, and modifies the price and

decides on her donation policy at the end of the first period. In each period, the

customer demand is uncertain, and both price- and quality-sensitive. The company

uses the data provided by IoT-enabled labels to estimate the effective (true) quality

of the goods. Our analysis showed that the charitable donations can improve a firm’s

profit while at the same time reduce inventory waste. This work can be extended by

considering multiple (substitutable) products or using demand update models at the

end of period 1. Also, considering T1 as an endogenous variable to be determined by

the retailer may yield interesting results. In such a model, the food-bank can state

the minimum shelf-life condition for its food-safety concerns and the retailer may

evaluate if it is optimal to donate or not.

In Chapter 4 we considered a similar problem to the one in Chapter 3 with the
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addition of a tax subsidy policy. We also used a different demand model with the

assumption that the demand uncertainty is revealed at the end of the first period.

Our goal was to analyze the impact of tax subsidy parameters on the retailer’s optimal

decisions as well as on the charitable donations. Our assumptions on demand enabled

us to isolate this effect and improve the analytical tractability. The model yielded

some unexpected results: the retailer’s optimal donation volume may decline with

respect to the amount of leftover inventory at the end of period 1, their effective

quality and the tax subsidy coefficients. These results are contrasting with the findings

of the previous chapter. This work can be improved by relaxing the assumption of

having deterministic demand in the second period. It would also be interesting to

analyze the government’s tax incentive mechanism in a game theoretical framework,

where the government faces a trade-off between income tax returns and the donation

tax incentives.

Finally, in Chapter 5, we addressed one of the open questions pointed out in Chap-

ter 2 by proposing an analytical model to investigate the impacts of cross-channel

returns on the operational planning of a dual-channel retailer, who sells her products

through a web-based channel as well as a B&M store. Welcoming the returned online

purchases to her B&M store, the retailer engages in a partial channel integration.

Thus, with the decision of whether to accept cross-channel returns or not, she also

chooses between operating under a multi-channel (separately managed channels) or

a cross-channel (partially integrated channels) setting. The customer demand is sen-

sitive to the prices as well as the refund amount in both channels. The allowance

of cross-channel returns drives the online sales up, but a part of that growth is can-

nibalized from the conventional channel. We found that despite the cannibalization
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effect, the B&M price may still increase with the introduction of the cross-channel

returns. We also reported that when the online returns are highly refund sensitive,

channel integration may hurt the retailer. Possible future research directions for this

chapter are the consideration of demand uncertainty and a retailer having multiple

physical facilities. Also, one can argue that the model is having too many exogenous

variables resulting in many assumptions. Therefore, this model can be reconsidered

by deriving some parameters using a consumer valuation model and evaluate a cus-

tomer’s decision at the returning point (in-store or via shipment) by comparing her

inconvenience cost for both options.

148



Appendix A

Appendices of Chapter 2

A.1 Derivation of Vertical Differentiation Model

There are a couple of ways to develop demand functions given in equations (2.2)

and (2.3). We use a probabilistic approach. Recall that the reservation price, V ,

is a uniformly distributed random variable over [0, 1]. A marginal consumer would

have Ur = Ue or V − pr = θV − pe, which brings the indifference threshold V̂ =

(pr − pe)/(1− θ).

A consumer prefers the traditional channel over the online channel if and only if

V ≥ pr and V ≥ V̂ . This can be expressed as,

Dr = P{V ≥ max(pr, V̂ )} =


1− V̂ if V̂ ≥ pr,

1− pr otherwise,

where V̂ ≥ pr is equivalent to pe/θ ≤ pr.

On the other hand, a consumer prefers the online channel over the traditional
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channel if and only if V ≥ pe/θ and V ≤ V̂ . This can be expressed as,

De = P{pe/θ ≤ V ≤ V̂ } =


V̂ − pe/θ if V̂ ≥ pe/θ,

0 otherwise,

where, once again, V̂ ≥ pe/θ is equivalent to pe/θ ≤ pr. Note that when pe/θ ≥ pr,

the online channel is dominated by the retail channel.

A.2 Derivation of Horizontal Differentiation Model

As in the vertically differentiated valuation model, we start with finding the indif-

ference threshold from Ur = Ue or v − pr − tX = v − pe − s, where X is a uni-

form random variable with support [0, 1]. In what follows, we obtain the threshold

X̂ = (pe− pr + s)/t. Note that X̂ is nonnegative as pr ≤ pe + s holds by assumption.

Then, demand functions (2.4) and (2.5) can be found as,

Dr = P{v − pr − tX ≥ max(0, V − pe − s)} = P{X ≤ X̂} = X̂,

De = P{v − pe − s ≥ max(0, V − pr − tX)} = P{X ≥ X̂} = 1− X̂.

A.3 Derivation of Demand Functions in (2.7)-(2.8)

Because the net utility given in (2.6) is to be maximized over the quantities Dr and

De, we simply differentiate the function with respect to those quantities. This gives
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rise to the following first-order condition,

∂U

∂Di

= Ai −BiDi − γDj − pi = 0, i, j ∈ {r, e}, i 6= j, (A.1)

where this expression can be considered as the net marginal utility a representative

consumer receives by purchasing from channel i ∈ {r, e}. Note that the Hessian

satisfies the sufficiency conditions since it is assumed that BrBe − γ2 > 0. Thus, one

can obtain the demand functions (2.7) or (2.8) by solving the first-order conditions

given in (A.1) for Dr and De.
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Appendix B

Appendices of Chapter 3

B.1 Proof of Theorem 1

One can write the second order condition of Γ(z2, p2(z2)) as,

d2Γ2(z2, p2(z2))

dz2
2

=
[1− F (z2)]

2b
{[1− F (z2)]− 2b(p2(z2) + Cs + Cd)n(z2)} ,

where n(z) = f(z)/[1−F (z)] denotes the hazard rate function. Let us define N(z2) =

[1−F (z2)]−2b(p2(z2)+Cs+Cd)n(z2). The objective is concave if and only ifN(z2) ≤ 0.

When f(A)[ȳ2(−R − 2(Cs + Cd), T2) + A] > 1, N(z2)|z2=A ≤ 0 and N(z2) ≤ 0 holds

if dN(z2)/dz2 ≤ 0, which can be shown as,

dN(z2)

dz2

= −f(z2)− 2b(p2(z2) + Cs + Cd)(dn(z2)/dz2)− [1− F (z2)]n(z2) ≤ 0.

Finally, we note that, the optimal z∗2 is always an interior point as dΓ2(z2, p2(z2))/dz2

is positive for z2 = A and negative for z2 = B.
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B.2 Proof of Theorem 2

Using Proposition 1, we analyze two cases:

1) z2 < z̄ (γ < 1):

In this case, the inventory constraint is redundant and we realize ωz = ωp = 0

(as p2(z2) < p̄2 for z2 ∈ [A,B]) resulting in ∂L/∂z2 = ∂Γ2/∂z2 and ∂L/∂p2 =

∂Γ2/∂p2. Following Theorem 1, and the conditions given in (3.7) and (3.5), we

obtain the optimal solution (z0
2 , p2(z0

2)). This gives rise to [z0
2+ȳ(p2(z0

2), T2)]T2 =

I0 = γ∗I, which means γ∗ = I0/I and I > I0 as γ∗ < 1.

Thus, the value function becomes Φ(I) = Γ2(z0
2 , p2(z0

2)) + RI, which leads to

Φ′(I) = R and Φ′′(I) = 0.

2) z2 = z̄ (γ = 1):

In this case, the inventory constraint is binding, which makes R irrelevant. Let

H(I, p2) = Γ2(z̄(I, p2), p2) +RI. We first derive some properties of H(I, p2):

∂H(I, p2)

∂p2

=
∂Γ2

∂p2

∣∣∣∣
z2=z̄(I,p2)

+
∂Γ2

∂z2

∣∣∣∣
z2=z̄(I,p2)

· z̄′(p2),

= a+ µ+ φδ̄2(T2)− bCd − 2bp2 −Θ(z̄(I, p2))

+ b(p2 + Cs + Cd)[1− F (z̄(I, p2))], (B.2)

∂2H(I, p2)

∂p2
2

= −2b+ 2b
[
1− F

(
z̄(I, p2)

)]
− b2f

(
z̄(I, p2)

)
(p2 + Cs + Cd) < 0.

(B.3)

Note that, equation (B.3) ensures that p2 can be uniquely determined for a

given I, call it pH(I), by using equation (B.2). Now, we consider the behavior
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of H(I, pH(I)):

dH(I, pH(I))

dI
= −Cd +

[
1− F

(
z̄(I, pH(I))

)]
(pH(I) + Cd + Cs),

d2H(I, pH(I))

dI2
=
[
1− F

(
z̄(I, pH(I))

)]
· {−n

(
z̄(I, pH(I))

)
[1/T2 + bp′H(I)][pH(I) + Cs + Cd]

+ p′H(I)} < 0,

as one can show that p′H(I) < 0 and z̄′(I, pH(I)) = 1/T2 + bp′H(I) > 0.

When I = I0, we obtain z̄(I0, pH(I0)) = z0
2 (two solutions align at γ∗ = 1),

meaning that I ≤ I0 when γ∗ = 1. Now, let us analyze the boundary values

of the price. We define an inventory threshold, Ǐ, such that pH(Ǐ) = p̄2. If

there is no such threshold, let Ǐ = 0. As pH(I) is monotone decreasing in I,

we have p∗2 = pH(I) when I0 ≥ I ≥ Ǐ and p∗2 = p̄2 when 0 ≤ I ≤ Ǐ. Next,

we check the lower-bound of price, which happens at another threshold value,

call it Ī, where z̄(Ī , pH(Ī)) = B. It is plausible to assume that I0 < Ī, which

ensures that the optimal price will always be larger than its lower-bound as

p2(z0
2) = pH(I0) > pH(Ī). Therefore, the optimal pricing policy is realized as

p∗2 = min{pH(I), p̄2} for I ≤ I0.

Hence, the value function can be defined as Φ(I) = H(I,min{pH(I), p̄2}) mean-

ing that Φ′′(I) < 0, which concludes the proof.
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B.3 Proof of Theorem 3

Let ξ1 denote the realization of the random component in the first period. We outline

the value function and resulting optimal policies for each case as follows:

1) B − A ≥ I0/T1:

(a) A ≤ z∗1 < Ǐ/T1 + A (no donation):

V = Γ1(z1, p1(z1)) +

∫ z1

A

H((z1 − u)T1, p̄2) dF (u),

p∗1 = p1(z∗1), Q∗ = [ȳ1(p1(z∗1))+z∗1 ]T1, Q∗−[ȳ1(p∗1)+ξ1]T1 < I0, and p∗2 = p̄2.

(b) Ǐ/T1 + A ≤ z∗1 < I0/T1 + A (no donation):

V = Γ1(z1, p1(z1)) +

∫ z1−Ǐ/T1

A

H((z1 − u)T1, pH((z1 − u)T1)) dF (u)

+

∫ z1

z1−Ǐ/T1
H((z1 − u)T1, p̄2) dF (u),

p∗1 = p1(z∗1), Q∗ = [ȳ1(p1(z∗1)) + z∗1 ]T1, Q∗ − [ȳ1(p∗1) + ξ1]T1 < I0, and

p∗2 = min{pH(I), p̄2}.

(c) I0/T1 + A ≤ z∗1 < B:

V = Γ1(z1, p1(z1)) +

∫ z1−I0/T1

A

[Γ2(z0
2 , p2(z0

2)) +R(z1 − u)T1] dF (u)

+

∫ z1−Ǐ/T1

z1−I0/T1
H((z1 − u)T1, pH((z1 − u)T1)) dF (u)

+

∫ z1

z1−Ǐ/T1
H((z1 − u)T1, p̄2) dF (u),
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p∗1 = p1(z∗1), Q∗ = [ȳ1(p1(z∗1)) + z∗1 ]T1, and p∗2 = min{pH(I), p̄2}.

(d) B ≤ z∗1 < Ǐ/T1 +B:

V = Γ1(z1, p̃1) +

∫ z1−I0/T1

A

[Γ2(z0
2 , p2(z0

2)) +R(z1 − u)T1] dF (u)

+

∫ z1−Ǐ/T1

z1−I0/T1
H((z1 − u)T1, pH((z1 − u)T1)) dF (u)

+

∫ B

z1−Ǐ/T1
H((z1 − u)T1, p̄2) dF (u),

p∗1 = p̃1, Q∗ = [ȳ1(p̃1) + z∗1 ]T1, and p∗2 = min{pH(I), p̄2}.

(e) Ǐ/T1 +B ≤ z∗1 < I0/T1 +B:

V = Γ1(z1, p̃1) +

∫ z1−I0/T1

A

[Γ2(z0
2 , p2(z0

2)) +R(z1 − u)T1] dF (u)

+

∫ B

z1−I0/T1
H((z1 − u)T1, pH((z1 − u)T1)) dF (u),

p∗1 = p̃1, Q∗ = [ȳ1(p̃1) + z∗1 ]T1, and p∗2 = pH(I).

(f) z∗1 = I0/T1 +B:

V = Γ1(z1, p̃1) +

∫ B

A

[Γ2(z0
2 , p2(z0

2)) +R(z1 − u)T1] dF (u),

= Γ1(z1, p̃1) + Γ2(z0
2 , p2(z0

2)) +RT1(z1 − µ),

p∗1 = p̃1, Q∗ = [ȳ1(po1) + z∗1 ]T1, Q∗ − [ȳ1(p∗1) + ξ1]T1 > I0, and p∗2 = pH(I).

Note that z∗1 cannot exceed I0/T1 + B due to V ′ = −(C0 − R)T1 < 0 as

R ≤ C0 by assumption.

2) B − A ≤ I0/T1 and Ǐ/T1 +B > I0/T1 + A:
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(a) A ≤ z∗1 < Ǐ/T1 + A (no donation): same as 1)-(a).

(b) Ǐ/T1 + A ≤ z∗1 < B (no donation): same as 1)-(b).

(c) B ≤ z∗1 ≤ I0/T1 + A (no donation):

V = Γ1(z1, p̃1) +

∫ z1−Ǐ/T1

A

H((z1 − u)T1, pH((z1 − u)T1)) dF (u)

+

∫ B

z1−Ǐ/T1
H((z1 − u)T1, p̄2) dF (u),

p∗1 = p̃1, Q∗ = [ȳ1(p̃1) + z∗1 ]T1, and p∗2 = min{pH(I), p̄2}.

(d) I0/T1 + A ≤ z∗1 < Ǐ/T1 +B: same as 1)-(d).

(e) Ǐ/T1 +B ≤ z∗1 < I0/T1 +B: same as 1)-(e).

(f) z∗1 = I0/T1 +B: same as 1)-(f).

3) B − A ≤ I0/T1 and Ǐ/T1 +B < I0/T1 + A:

(a) A ≤ z∗1 < Ǐ/T1 + A (no donation): same as 1)-(a).

(b) Ǐ/T1 + A ≤ z∗1 < B (no donation): same as 1)-(b).

(c) B ≤ z∗1 < Ǐ/T1 +B (no donation): same as 2)-(c).

(d) Ǐ/T1 +B ≤ z∗1 < I0/T1 + A (no donation):

V = Γ1(z1, p̃1) +

∫ B

A

H((z1 − u)T1, pH((z1 − u)T1)) dF (u),

p∗1 = p̃1, Q∗ = [ȳ1(p̃1) + z∗1 ]T1, and p∗2 = pH(I).

(e) I0/T1 + A ≤ z∗1 < I0/T1 +B: same as 1)-(e).

(f) z∗1 = I0/T1 +B: same as 1)-(f).
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4) B −A ≤ Ǐ/T1: We skip this scenario as it is a very unlikely situation. A set of

cases could have been developed similar to 1) – 3).

B.4 Proof of Proposition 2

We first need to show some properties of the perceived quality function in the second

period, δ̄2(T2). We have the following observation:

Observation 1. δ̄2(T2) is increasing in T2 for both linear and exponential quality

degradation schemes.

Proof. For the linear deterioration scheme, we have δ̄′2(T2) = λ(1/2) > 0. For the

exponential deterioration scheme, calculations result in a more complex expression:

δ̄′2(T2) =
1

T 2
2

[
qe−λ(T−T2)(T2 − 1/λ) + (q/λ)e−λT

]
,

where the first expression inside the brackets, qe−λ(T−T2)(T2 − 1/λ), is monotone

increasing in T2, and when T2 = 0, we have δ̄′2(T2) = 0. This completes the proof.

Now, to prove the proposition, we take implicit differentiation of dΓ2(z2, p2(z2))/dz =

0 with respect to T2 as we consider the case z∗2 < z̄ (and ω = 0) in Proposition 1.

d2Γ2(z2, p2(z2))

dz2
2

· ∂z2

∂T2

+ [1− F (z2)]
φδ̄′2(T2)

2b
= 0,

where the second expression is positive. The first expression must be negative to

maintain the right hand side of the equation, therefore, ∂z2/∂T2 > 0 is realized.
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Next, we show the same property for the price:

∂p2(z2)

∂T2

=
φδ̄′2(T2)

2b
+

[1− F (z2)]

2b

∂z2

∂T2

> 0.

Finally, for γ = (T2/I)[ȳ2(p2, T2) + z2], we obtain:

∂γ

∂T2

= (T2/I)
∂z2

∂T2

[
1− [1− F (z2)]

2

]
+ (1/I)[ȳ2(p2, T2) + z2]− φ(T2/I)

1

2
δ̄′2(T2),

where one can show that (1/I)ȳ2(p2, T2) > φ(T2/I)1
2
δ̄′2(T2) for both quality degrada-

tion schemes, which completes the proof.

B.5 Proof of Proposition 3

Once again, we use implicit differentiation to prove our claim. By taking the implicit

derivative of dΓ2(z2, p2(z2))/dz2 = 0 with respect to R, we obtain,

1− 1− F (z2)

2
=
d2Γ2(z2, p2(z2))

dz2
2

∂z2

∂R
,

where ∂z2/∂R ≤ 0 as the left-hand-side is positive while the second derivative of

Γ2(z2, p2(z2)) is negative by Theorem 1. Now we can take the implicit derivative of

γ = [ȳ2(p2(z2), T2) + z2](T2/I) (we ignore T2/I as it is a positive constant):

∂γ

∂R
=
∂z2

∂R

[
1− 1− F (z2)

2

]
− b

2
≤ 0,

which completes the proof.
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B.6 Proof of Theorem 5

Let V̂ denote the firm’s value function over two periods under the no-donation policy.

Clearly, no donation cases in Theorem 3 yield V̂ = V . We show the proof for scenario

1)-(c) as it is one of the most common instances that the retailer may face. Findings

can be extended to other donation-enabled scenarios with mild adjustments.

One can write the FOC of V as,

V ′(z1) = V̂ ′(z1)+αT1

[
RF (z1−I0/T1)−

∫ z1−I0/T1

A

H ′((z1−u)T1, pH((z1−u)T1)) dF (u)
]
.

We need to analyze the sign of the expression inside the brackets. Note thatH ′(I, pH(I))

is decreasing in I. Substituting u = z1 − I0/T1 into H ′((z1 − u)T1, pH((z1 − u)T ),

we obtain H ′(I0, pH(I0)) = Φ′(I0) = R as two solutions collide at I0 by Theorem 2.

This gives rise to V ′(z1) > V̂ ′(z1) meaning that z1 > ẑ1. Also, note that V and V̂

have the same FOC for price resulting in p1(z1) > p1(ẑ1) and Q > Q̂, where Q̂ is the

stocking quantity in the absence of donation.

As for the second part of the proposition, note that I = (z∗1 − ξ1)T1. Therefore,

if ξ1 ≤ z∗1 − I0/T1, we have I ≥ I0 and γ∗ = I0/I, which increases as ξ1 approaches

to z∗1 − I0/T1. On the other hand, if ξ1 ≤ z∗1 − I0/T1, we have I < I0 and γ∗ = 1

meaning that all unsold units should be carried forward to the second period.

B.7 Proof of Theorem 6

Let p̂2 and Γ̂2(z̄(I, p̂2), p̂2) denote the pricing decision and expected profit, respec-

tively, in the absence of donation. We note that Γ̂2(z̄(I, p̂2), p̂2) = H(I, p2) for an
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extended interval of I ∈ [0,∞). We have two cases:

1) I ≤ I0:

In this case, γ∗ = 1 by the optimal policy (3.14) and the solutions align, meaning

that Λ(z̄(I, p∗2)) = Λ(z̄(I, p̂2)).

2) I > I0:

In this case, we have γ∗ = I0/I and Γ2(z∗2 , p
∗
2) = Γ2(z0

2 , p
0
2) by the optimal

policy (3.14). Therefore, the expected waste under the optimal donation policy

is constant and equals to Λ(z0
2).

On the other hand, Γ̂2(z̄(I, p̂2), p̂2) leads to Λ(z̄(I, p̂2)), where z̄(I, p̂2) > z0
2 as

z̄′(I, p̂2(I)) = 1/T2 + bp̂′2(I) > 0. Since Λ(z) is an increasing function of z, we

obtain Λ(z0
2) < Λ(z̄(I, p̂2)).
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Appendices of Chapter 4

C.1 Proof of Theorem 8

The proof relies on the fact that both J1
2 and J2

2 are strictly concave. We check the

FOCs at point s2 = 0 and s2 = A:

J1′

2 |s2=0 = (1− τ)

[
Aq2 −

τ

1− τ
αc+ h

]
> (1− τ)(Aq2 − c− h) > 0,

J1′

2 |s2=A = −(1− τ)(q2A+ h)− ταc < 0,

J2′

2 |s2=0 = (1− τ)(q2A− h)− τβ[q2(A+ I)− c] > 0, when I < Ǐ

J2′

2 |s2=A = −(1− τ)

[
1− τ

1− τ
β

]
q2A− (1− τ)h− τβ(q2I − c) < 0 when A ≤ I,

where α, β < (1− τ)/τ by the tax law, Aq2 > c + h by assumption, and Ǐ is defined

such that s2
2(Ǐ) = 0. It is straightforward that s1

2 ∈ (0, A). We also obtain s2
2(I) < A

as there will be no tax subsidy for s2
2 = A when A > I and we realize J2′

2 |s2=A =

−(1−τ)(q2A+h) < 0. However, J2′
2 is monotone decreasing in I with J2′

2 |s2=0,I=0 > 0,
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therefore, a threshold value, Ǐ, satisfying s2
2(Ǐ) = 0 exists.

There are three possible scenarios depending on the value of s̃2 = A−(1+α/β)c/q2:

(1) Suppose s̃2 ≤ 0⇔ q2 ≤ (1+α/β)(c/A), then (P1) is infeasible and the solution

is s∗2 = max{0,min{s2
2(I), I}}.

(2) Suppose 0 < s̃2 ≤ s1
2 ⇔ (1+α/β)(c/A) < q2 ≤ (1/A)[2(1+α/β)c−h−αcτ/(1−

τ)]

As J1′
2 |s2=s̃2 > 0, there are only two possible outcomes: (a) J2′

2 |s2=s̃2 < 0 and

(b) J2′
2 |s2=s̃2 > 0. Outcome (a) leads to s∗2 = min{I, s̃2}, whereas, outcome (b)

leads to s∗2 = min{I, s2
2(I)}. Notice that s̃2 > s2

2(I) under (a) and s̃2 < s2
2(I)

under (b). Thus, the conditions boil down to s∗2 = min{I,max{s2
2(I), s̃2}}.

(3) Suppose s̃2 > s1
2 ⇔ q2 > (1/A) [2(1 + α/β)c− h− αcτ/(1− τ)], then (P2) is

infeasible and the solution is s∗2 = min{I, s1
2}.

C.2 Proof of Lemma 1

Let us outline the FOCs and SOCs of Γ(z, P1):

∂Γ(z, P1)

∂z
= −c+ P1[1− F (z)], (C.4)

∂2Γ(z, P1)

∂z2
= −P1f(z), (C.5)

∂Γ(z, P1)

∂P1

= a− (2P1 − c)/q1 + µ−Θ(z), (C.6)

∂2Γ(z, P1)

∂P 2
1

= −2/q1 (C.7)
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where the expected profit is concave in P1 for a fixed z so that we can use condition

(C.6) to derive the price uniquely as a function of z, p(z) = (q1/2)(a+µ+c/q1−Θ(z)).

Notice that when X̄ < ∞ we may realize z∗ ≥ X̄ as the firm will commit her

stocking quantity for two-periods. In such a case, there will be no shortage during

the first period and the optimal first-period price will be the riskless price, p̃ =

(q1/2)(a+ µ+ c/q1).

C.3 Proof of Theorem 9

One can write the second order condition of Γ(z, p(z)) as,

d2Γ(z, p(z))

dz2
=
q1[1− F (z)]

2
[1− F (z)− (2/q1)p(z)n(z)] ,

where n(z) = f(z)/[1−F (z)] denotes the hazard rate function. Let us define N(z) =

1 − F (z) − (2/q1)p(z)n(z). The expected profit is concave if and only if N(z) ≤ 0.

When f(0)y(−c) > 1, N(z)|z=0 ≤ 0 and N(z) ≤ 0 holds if dN(z)/dz ≤ 0, which can

be shown as,

dN(z2)

dz2

= −f(z)− (2/q1)p(z)(dn(z)/dz)− [1− F (z)]n(z) ≤ 0.

We note that the maximizer of Γ(z, p(z)) is always an interior point as dΓ(z, p(z))/dz

is positive for z = 0 and negative for z = X̄. Therefore, if f(0)y(−c) ≤ 1, the expected

profit is unimodal with a unique local maximum.

When z∗ ≥ X̄, the firm never faces shortages in the first period and, therefore,

Γ(z, p̃)′|z≥X̄ = −c < 0.
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C.4 The Proof of Theorem 10

The first expression in J1, given in (4.13), is unimodal, but the second expression may

be concave for some values of z − X and convex for the others. However, we know

that Φ(I) is a strictly increasing function for I > 0, therefore, the second expression

is a non-decreasing function of z, regardless of the quality category for the leftover

products. This implies that J1 is non-decreasing for z ∈ [0, z0], where z0 is the unique

solution of Γ′(z0, p(z0)) = 0, and that z∗ > z0. Let us examine the behavior of J1

under each quality category for z > z0:

(a) Low and Medium quality : Following the optimal policies given in (4.9) and

(4.10), H2(I, I) = H1(I, I) is concave, H2(s2
2(I), I) is convex, and Hi(., I), i =

1, 2 is linear in I. Moreover, we have J ′1|z=min{∞,X̄+Ǐ} = −(1−τ)c+τβ(q2A−c) <

−(1 − τ)c[1 − ατ/(1 − τ)] < 0 for the low quality case and J ′1|z=min{∞,X̄+Ĩ} =

−(1 − τ)c[1 − ατ/(1 − τ)] < 0 for the medium quality case as α ∈ [0, 1−τ
τ

) by

assumption and q2A < (1 +α/β)c under the low quality scenario. Thus, J ′2 = 0

has at least one root.

Because the rate of increase in H2(s2
2(I), I) first declines and then climbs up,

when z0 < Ǐ (z0 < Ĩ) for the low (medium) quality case, J1 may have two critical

points with the smaller one corresponding to a stationary point and the larger

one corresponding to a local maximum, or it may follow a decrease, increase,

decrease pattern leading to three critical points, call them z1 < z2 < z3. Notice

that when there are three critical points, z2 corresponds to a local minimum

meaning that z∗ = zi such that J1(zi) > J1(zj), i, j = 1, 3 and i 6= j. On the

other hand, when z0 > Ǐ (z0 > Ĩ) for the low (medium) quality case, J1 is
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unimodal and has a unique maximizer.

(b) High quality : In this case, both expressions in equation (4.13) are concave, and

so is J1. Moreover, J ′1|z=min{∞,X̄+s12} = −(1− τ)c[1− ατ/(1− τ)] < 0 meaning

that z∗ is always an interior point of [0,min{∞, X̄ + s1
2}).

C.5 The Proof of Theorem 11

We show our claims over the firm’s optimal inventory carrying policy as there is a

one-to-one relation between the firms selling amount in the clearance period, s∗2, and

donation amount, I − s∗2.

Let us start with analyzing the firm’s optimal solution for varying α values in

[0, 1−τ
τ

). Notice that s̃2 and s1
2 are both decreasing in α with s̃2|α→0 = A − c/q2 >

(1/2)(A−h/q2) = s1
2|α→0 as qA > 2c−h by assumption. However, the rate of decrease

is larger for s̃2. Thus, for fairly small values of α, we obtain s̃2 > s1
2 leading to a

high quality scenario, where the optimal solution suggests s∗2 = min{I, s1
2}, which is

decreasing in α. For medium values of α, we realize 0 < s̃2 < s1
2 corresponding to a

medium quality case, where the optimal solution is s∗2 = min{I,max{s2
2(I), s̃2}}. We

know s2
2(I) is independent of α, therefore, s∗2 is decreasing in α. Also, notice that

s2
2(I) < s̃2 for I > Ĩ, where Ĩ is increasing in α. Thus, for large values of α, we realize

either I ≤ Ĩ or s̃2 ≤ 0, whichever comes first, and the solution becomes independent

of α.

The threshold value, s̃2, is increasing in β ∈ [0, 1−τ
τ

). For fairly small values

of β, we obtain s̃2 ≤ 0 corresponding to a low quality scenario, where the optimal

solution is s∗2 = max{0,min{s2
2(I), I}}. Note that s2

2(I) < I for I > Ī, we also have
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Ī > (c− h)/q2, as q2A > 2c− h by assumption, meaning that s2
2(I) is decreasing in β

when s∗2 = s2
2(I). One can also show that Ī and Ĩ are always decreasing in β, while

Ǐ is decreasing in β for s2
2(I) > 0 (equivalent to I < Ǐ). Therefore, as β grows, we

observe either Ǐ > I (leading to s2
2(I) ≤ 0 and s∗2 = 0), or s̃2 > 0 (leading to medium

quality scenario). If the former happens first, the firm donates all leftover units for

s̃2 ≤ 0, and we realize s∗2 = s̃2, which is increasing in β, for 0 < s̃2 < s1
2. On the other

hand, if the latter happens first, s∗2 = s2
2(I) keeps shrinking as β increases until the

firm realizes Ĩ < I, leading to s∗2 = s̃2. For large values of β, we observe s̃2 > s1
2 (high

quality), and the optimal solution settles at s∗2 = min{I, s1
2}, which is independent of

β.
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Huang, X., Sošić, G., and Kersten, G. (2017). Selling through Priceline? On the

impact of name-your-own-price in competitive market. IISE Transactions, 49(3),

304–319.

Huang, X.-Y., Yan, N.-N., and Guo, H.-F. (2007). An H∞ control method of the bull-

whip effect for a class of supply chain system. International Journal of Production

Research, 45(1), 207–226.

Hudson’s Bay (2021). Shipping & Returns. https://bit.ly/3cI0GX6. Accessed:

2021-06-15.

Ingene, C. A. and Parry, M. E. (2004). Mathematical models of distribution channels,

volume 17. Springer Science & Business Media.

Ingene, C. A. and Parry, M. E. (2007). Bilateral monopoly, identical distributors,

and game-theoretic analyses of distribution channels. Journal of the Academy of

Marketing Science, 35(4), 586–602.

Ishfaq, R. and Bajwa, N. (2019). Profitability of online order fulfillment in multi-

channel retailing. European Journal of Operational Research, 272(3), 1028–1040.

Jafari, H., Hejazi, S. R., Rasti, M., et al. (2017). Pricing decisions in dual-channel

184

https://bit.ly/3cI0GX6


Ph.D. Thesis - Armagan Ozbilge McMaster - Management Science

supply chain with one manufacturer and multiple retailers: A game-theoretic ap-

proach. RAIRO-Operations Research, 51(4), 1269–1287.

Jamali, M. B. and Rasti-Barzoki, M. (2018). A game theoretic approach for green

and non-green product pricing in chain-to-chain competitive sustainable and regular

dual-channel supply chains. Journal of Cleaner Production, 170, 1029–1043.

Jeffers, P. I. and Nault, B. R. (2011). Why competition from a multi-channel e-tailer

does not always benefit consumers. Decision Sciences, 42(1), 69–91.

Ji, G., Han, S., and Tan, K. H. (2018). False failure returns: optimal pricing and

return policies in a dual-channel supply chain. Journal of Systems Science and

Systems Engineering, 27(3), 292–321.

Ji, J., Zhang, Z., and Yang, L. (2017a). Carbon emission reduction decisions in the

retail-/dual-channel supply chain with consumers’ preference. Journal of Cleaner

Production, 141, 852–867.

Ji, J., Zhang, Z., and Yang, L. (2017b). Comparisons of initial carbon allowance

allocation rules in an O2O retail supply chain with the cap-and-trade regulation.

International Journal of Production Economics, 187, 68–84.

Jiang, C., Xu, F., and Sheng, Z. (2010). Pricing strategy in a dual-channel and

remanufacturing supply chain system. International Journal of Systems Science,

41(7), 909–921.

Jiang, Y., Li, B., and Song, D. (2017). Analysing consumer RP in a dual-channel

supply chain with a risk-averse retailer. European Journal of Industrial Engineering,

11(3), 271–302.

185



Ph.D. Thesis - Armagan Ozbilge McMaster - Management Science

Jiang, Y., Liu, Y., Shang, J., Yildirim, P., and Zhang, Q. (2018). Optimizing online

recurring promotions for dual-channel retailers: Segmented markets with multiple

objectives. European Journal of Operational Research, 267(2), 612–627.

Jin, D., Caliskan-Demirag, O., Chen, F. Y., and Huang, M. (2020). Omnichannel

retailers’ return policy strategies in the presence of competition. International

Journal of Production Economics, 225, 107595.

Karaesmen, I. Z., Scheller-Wolf, A., and Deniz, B. (2011). Managing perishable and

aging inventories: review and future research directions. In Planning Production

and Inventories in the Extended Enterprise, pages 393–436. Springer.

Kembro, J. H., Norrman, A., and Eriksson, E. (2018). Adapting warehouse op-

erations and design to omni-channel logistics: A literature review and research

agenda. International Journal of Physical Distribution & Logistics Management,

48(9), 890–912.

Khouja, M. and Wang, Y. (2010). The impact of digital channel distribution on

the experience goods industry. European Journal of Operational Research, 207(1),

481–491.

Khouja, M., Park, S., and Cai, G. G. (2010). Channel selection and pricing in the pres-

ence of retail-captive consumers. International Journal of Production Economics,

125(1), 84–95.

Kim, J.-C. and Chun, S.-H. (2018). Cannibalization and competition effects on a

manufacturer’s retail channel strategies: Implications on an omni-channel business

model. Decision Support Systems, 109, 5–14.

186



Ph.D. Thesis - Armagan Ozbilge McMaster - Management Science
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