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Abstract

Resource management is challenging when one needs to allocate scarce or limited resources

to different entities with heterogeneous demands. In many practical situations, predictions

of relevant quantities are only possible or available. While accurate estimates can certainly

allow for better decisions to be made, a key challenge is to extract the maximum benefit when

highly accurate estimates are not available (or possible). Even in the presence of reasonable

estimates, other factors such as the need for a timely or real-time resource allocation can add

to the complexity of the resource management process. This thesis studies two problems in

resource management: scheduling with prediction errors and fair data-driven allocation with

limited data. These problems both consider scenarios where only estimates of the demand

are known and real-time resource allocation is required. In the second problem, the supply

for resources is also not known within the decision-making period and is estimated.

The first problem considers a single-server queue that needs to schedule jobs without

knowing the exact processing times. The processor, the limited resource, needs to be utilized

by each job until it completes. The goal is to minimize the mean sojourn time of the system,

which is the mean time between jobs’ arrival and their completion. In practical settings,

knowing the exact processing times of the jobs is not possible; however, estimates of the

job sizes can be calculated. We introduce a heuristic that only uses estimated processing

times for scheduling decisions and thus requires minimal calculation overhead. SEH does
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not rely on any information that might not be available in real-world situations, such as the

job processing time and estimation error distributions. We demonstrate that SEH shows

desirable performance in minimizing the mean sojourn time of the system when jobs exhibit

estimation error distribution variance that is consistent with that seen in practical settings.

In the second problem, we tackle the issue of resource allocation during epidemics when

the resources are often scarce, in high demand, and need to be allocated in a timely manner.

We discuss a model that is suitable for short-term real-time supply and demand forecasting

during emerging epidemics without having to rely on demographic information. A data-

driven resource allocation model is then proposed that minimizes a notion of fairness among

the demand entities. We study the application of our model in a COVID-19 convalescent

plasma (CCP) case study and provide numerical results that support the performance of our

model in allocating the scarce CCP in a fair manner. Our results are close to the scenario

where the exact supply and demand are known and more efficient than what was performed

in practice.
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Chapter 1

Introduction

Resources are anything that is required for executing a task, and they need to be managed

to maximize efficiency in an organization. The process of pre-planning, scheduling, and

allocating the resources to achieve maximum efficiency is called resource management.

Various challenges are associated with the proper allocation of resources. To name a few,

first, the exact information about the resource, such as its needed amount or the time that

it should be allocated to a specific task, is often not available until the task is completed.

However, partial information may be present that can assist with estimating this information

and help the allocation process. Second, resources must be assigned to different tasks or

events in a timely manner to be effective. Third, resources might be scarce or very limited

compared to the amount that they are requested. Furthermore, different entities might have

heterogeneous demands for resources that must be considered in the planning phase. Thus,

making reasonable supply and/or estimates for resources can have a significant impact on

the resource allocation process and becomes challenging when the available data is very

limited. In this work, we study two problems in resource management: scheduling with

prediction errors and fair data-driven allocation with limited data. The two problems are
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proposed in two papers, one published and one submitted, and are discussed in Chapter 2

and Chapter 3, respectively, which we now outline.

Chapter 2 includes the first problem, where we study scheduling a single-server system

when exact information about the jobs’ processing times is not available. Scheduling

policies and their performance evaluation in a preemptive single-server queue have been a

subject of interest for some time. Size-based policies are known to perform better than size-

oblivious policies (that do not use any information about the exact job sizes) with respect

to sojourn time, the time between a job’s arrival to the system and its completion. For a

single-server system, Shortest Remaining Processing Time (SRPT) is an optimal size-based

policy. However, size-based policies such as SRPT are rarely deployed in practical settings.

A key disadvantage is that when the exact processing times are not known to the system

before scheduling, which is often the case in practical settings, their performance may

significantly degrade. Most existing size-based policies in the literature rely on knowing the

job processing time and estimation error distributions before scheduling. The assumption of

knowing these distributions before scheduling may be problematic in real environments and

formulating a policy under these assumptions introduces computational overhead that may

be prohibitive. Our work assumes that the processing time is not available to the processor

until the job is fully processed, but that processing time estimations are available.

We propose a simple heuristic, Size Estimate Hedging (SEH), that combines the merits

of two size-based policies, Shortest Estimated Remaining Processing Time (SERPT) and

Shortest Estimated Processing Time (SEPT). SERPT is a version of SRPT that employs

estimated processing times and schedules jobs based on their estimated remaining times,

and SEPT is a version of the Shortest Processing Time (SPT) policy that skips updating

the estimated remaining processing times and prioritizes jobs based only on their estimated

2
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processing times.

SEH requires minimal calculation overhead and no information about the job processing

time and estimation error distributions. In other words, SEH only uses estimated processing

times for scheduling decisions. A job’s priority under SEH is increased dynamically

according to an SRPT rule until it is determined that it is underestimated, at which time

the priority is frozen. We compare the performance of our heuristic with existing policies

in the literature for scheduling jobs in the presence of inexact size estimates and provide

numerical results obtained by running a wide range of simulations for both synthetic and

real workloads. We consider two performance metrics, mean sojourn time (MST) and

mean slowdown, for reporting our results. We show that SEH has desirable performance in

minimizing both the MST and mean slowdown of the system when there is sufficiently low

variance in the estimation error distribution, a situation that is consistent with what is seen

in practice.

In Chapter 3, we study our second problem, fair data-driven allocation with limited

data. We focus on epidemics, which have impacted the world many times, and will occur

again in the future. Timely responses during epidemics have a great role in minimizing the

difficulties introduced as a result of the fast and widespread occurrence of an infectious

disease in a society. However, during emerging epidemics, which are usually unexpected

and can spread rapidly, there are often limited resources that have the ability to mitigate

the effects of the disease. The allocation of these resources in a fair manner becomes

more challenging as the total number of entities requesting them outnumbers the available

resources. Furthermore, several other key reasons are of concern for decision-makers,

including not having sufficient prior information about the disease, and dealing with a

periodically changing and location-specific disease behaviour that can arise naturally or
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as a result of government policies. These issues motivate the investigation of supply and

demand forecasting models for scenarios where there are small amounts of available data,

and the data can exhibit fundamental changes in behaviour. It is of interest to incorporate

these models into algorithms that yield fair allocations.

We discuss real-time short-term forecasting of supply and demand of scarce resources

in epidemics with very sparse and limited data, no historical data and without relying on

epidemiological models or demographic information. We discuss and choose a forecasting

model that does not require indeterminate parameters (such as location and time-specific

parameters) and thus does not require periodically updating the parameters. We then address

the challenges that may arise in an online setting due to extrapolation and sparse data by

suggesting potential solutions. Next, we propose a data-driven MIP model for real-time

multi-location allocation of scarce resources regularly and fairly to the entities requesting

them, where the demand is heterogeneous and arises from geographically dispersed locations.

This approach maximizes a notion of fairness among the resource-demanding entities.

Numerical results obtained from a COVID-19 Convalescent Plasma (CCP) case study

suggest that our approach can help minimize the unmet CCP demand ratios and lead to

balanced and fair CCP allocation decisions. We show that these fair allocations are both

close to the scenario where supply and demand are known (rather than forecast) and are

preferable to what was used in practice.

Finally, in Chapter 4, we conclude our achievements and discuss possible directions for

future work.
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Chapter 2

SEH: Size Estimate Hedging for

Single-Server Queues

This chapter is adapted from Maryam Akbari-Moghaddam and Douglas G. Down, "SEH:

Size estimate hedging for single-server queues", 18th International Conference on Quantita-

tive Evaluation of Systems (QEST 2021) (1). Complementary explanations on deriving the

formulas are included in Section 2.3.5.

Abstract

For a single server system, Shortest Remaining Processing Time (SRPT) is an optimal

size-based policy. In this chapter, we discuss scheduling a single-server system when exact

information about the jobs’ processing times is not available. When the SRPT policy uses

estimated processing times, the underestimation of large jobs can significantly degrade

performance. We propose a simple heuristic, Size Estimate Hedging (SEH), that only

uses estimated processing times for scheduling decisions. A job’s priority is increased

dynamically according to an SRPT rule until it is determined that it is underestimated,
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at which time the priority is frozen. Numerical results suggest that SEH has desirable

performance for estimation error variance that is consistent with what is seen in practice.

Keywords: Estimated Job Sizes, M/G/1, Gittins’ Index Policy, Size Estimate Hedging

2.1 Introduction

Over the past decades, there has been significant study on the scheduling of jobs in single-

server queues. When preemption is allowed and processing times are known to the scheduler,

the Shortest Remaining Processing Time (SRPT) policy is optimal in the sense that, regard-

less of the processing time distribution, it minimizes the number of jobs in the system at each

point in time and hence, minimizes the mean sojourn time (MST) (2), (3). However, schedul-

ing policies such as SRPT are rarely deployed in practical settings. A key disadvantage is

that the assumption of knowing the exact job processing times prior to scheduling is not

always practical to make. However, it is often possible to estimate the job processing times

and use this approximate information for scheduling. The Shortest Estimated Remaining

Processing Time (SERPT) policy is a version of SRPT that employs the job processing

time estimates as if they were error-free and thus, schedules jobs based on their estimated

remaining times. Motivated by the fact that estimates can often be obtained through machine

learning techniques, Mitzenmacher (4) studies the potential benefits of using such estimates

for simple scheduling policies. For this purpose, a price for misprediction, the ratio between

a job’s expected sojourn time using its estimated processing time and the job’s expected

sojourn time when the job processing time is known is introduced, and a bound on this price

is given. The results in (4) suggest that naïve policies work well, and even a weak predictor
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can yield significant improvements under policies such as SERPT. However, this insight is

only made when the job processing times have relatively low variance. As discussed below,

when job processing times have high variance, underestimating even a single very large job

can severely affect the smaller jobs’ sojourn times.

The work in (4) has the optimistic viewpoint that it is possible to obtain improved perfor-

mance by utilizing processing time estimates in a simple manner. The more pessimistic view

is that when job processing times are estimated, estimation errors naturally arise, and they

can degrade a scheduling policy’s performance, if the policy was designed to exploit exact

knowledge of job processing times (5). The SERPT policy may have poor performance when

the job processing times have high variance and large jobs are underestimated. Consider a

situation where a job with a processing time of 1000 enters the system and is underestimated

by 10%. The moment the job has been processed for 900 units (its estimated processing

time), the server assumes that this job’s estimated remaining processing time is zero, and

until it completes, the job will block the jobs already in the queue as well as any new arrivals.

This situation becomes more severe when both the actual job processing time and the level of

underestimation increase. However, when the job processing times are generated from lower

variance distributions, the underestimation of large jobs will not cause severe performance

degradation (6).

The Shortest Estimated Processing Time (SEPT) policy is a version of the Shortest

Processing Time (SPT) policy that skips updating the estimated remaining processing times

and prioritizes jobs based only on their estimated processing times. Experimental results

show that SEPT has impressive performance in the presence of estimated job processing

times, as well as being easier to implement than SERPT (7).

In this chapter, we will discuss the problem of single-server scheduling when only
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estimates of the job processing times are available. In Section 2.2, we discuss the existing

literature for scheduling policies that handle inexact job processing time information. Most

of the existing literature analyzes and introduces size-based policies when the estimation

error is relatively small, restricting applicability of the results. Furthermore, many simulation-

based examinations only consider certain workload classes and are not validated over a range

of job processing times and estimation error distributions. We propose a scheduling policy

that exhibits desirable performance over a wide range of job processing time distributions,

estimation error distributions, and workloads.

The Gittins’ Index policy (8), a dynamic priority-based policy, is optimal in minimizing

the MST in an M/G/1 queue (9). When there are job processing time estimates, the Gittins’

Index policy utilizes information about job estimated processing time, and the job processing

time and estimation error distributions to decide which job should be processed next. The

assumption of knowing these distributions before scheduling may be problematic in real

environments. Furthermore, scheduling jobs using the Gittins’ Index policy introduces

computational overhead that may be prohibitive. While there are significant barriers to

implementing the Gittins’ Index policy, our proposed policy is motivated by the form of the

Gittins’ Index policy.

We make the following contributions: While the SEPT policy performs well in the

presence of estimated job processing times (7), we first introduce a heuristic that combines

the merits of SERPT and SEPT. Secondly, we specify the Gittins’ Index policy given multi-

plicative estimation errors and restricted to knowing only the estimation error distribution.

We show that our proposed policy, which we call the Size Estimate Hedging (SEH) policy,

has performance close to the Gittins’ Index policy. Similar to SERPT and SEPT, the SEH

policy only uses the job processing time estimates to prioritize the jobs. Finally, we provide

8
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numerical results obtained by running a wide range of simulations for both synthetic and real

workloads. The key observations suggest that SEH outperforms SERPT except in scenarios

where the job processing time variance is extremely low. SEH outperforms SEPT whether

the variance of the job processing times is high or low. With the presence of better estimated

processing times in the system (low variance in the estimation errors), SEH outperforms

SEPT and has performance close to the optimal policy (SRPT) if the estimation errors are

removed. On the other hand, we observe that when the estimation errors have high variance,

there is little value in using the estimated processing times. We also notice that the system

load does not significantly affect the relative performance of the policies under evaluation.

The SEH policy treats underestimated and overestimated jobs fairly, in contrast with other

policies that tend to favor only one class of jobs. Even though the policy does not directly

consider fairness between the underestimated and the overestimated jobs, it results in a more

equal treatment of the underestimated and the overestimated jobs by reducing the priority of

the underestimated jobs when the underestimation is certain. When the job processing time

variance is high, the SEH and SEPT policies obtain a near-optimal mean slowdown value

of 1, indicating that underestimated large jobs do not delay small jobs. In terms of mean

slowdown, SEH outperforms SEPT across all levels of job processing time variance.

The rest of the chapter is organized as follows. Section 2.2 presents the existing literature

in scheduling single-server queues with estimated job processing times. Section 2.3 defines

our SEH policy and discusses its relationship to a Gittins’ Index approach. Our simulation

experiments are described in detail in Section 2.4. We provide the results of our simulations

in Section 2.5 and conclude and discuss future directions in Section 2.6.

9
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2.2 Related Work

Scheduling policies and their performance evaluation in a preemptive M/G/1 queue have

been a subject of interest for some time. Size-based policies are known to perform better

than size-oblivious policies with respect to sojourn times. In fact, the SRPT policy is optimal

in minimizing the MST (2). However, size-based policies have a considerable disadvan-

tage: When the exact processing times are not known to the system before scheduling,

which is often the case in practical settings, their performance may significantly degrade.

Dell’Amico et al. (10) study the performance of SRPT with estimated job processing times

and demonstrate the consequences of job processing time underestimations under different

settings. Studies in Harchol-Balter et al. (11) and Chang et al. (12) discuss the effect of

inexact processing time information in size-based policies for web servers and MapReduce

systems, respectively. Our chapter assumes that the processing time is not available to the

scheduler until the job is fully processed, but that processing time estimations are available.

The related literature for this setting is reviewed in the following paragraph.

Lu et al. (5) were the first to study this setting. They show that size-based policies only

benefit the performance when the correlation between a job’s real and estimated processing

time is high. The results in Wierman and Nuyens (13), Bender et al. (14), and Becchetti et

al. (15) are obtained by making assumptions that may be problematic in practice. A strict

upper bound on the estimation error is assumed in (13). On the other hand, (15) and (14)

define specific job processing time classes and schedule the jobs based on their processing

time class, which can be problematic for very small or very large jobs. This setting is also

known as semi-clairvoyant scheduling. In this work, we do not assume any bounds on the

estimation error or assign jobs to particular processing time classes. Consistent with this

body of work, we do find that SEH is not recommended for systems with large estimation

10
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error variance. However, we do find that it performs well for levels of estimation error

variance that are typically found in practice.

When the job processing time distribution is available, the Gittins’ Index policy (8)

assigns a score to each job based on the processing time it has received so far, and the

scheduler chooses the job with the highest score to process at each point in time. This policy

is proven to be optimal for minimizing the MST in a single-server queue when the job

processing time distribution is known (9). This policy is specified in the next section.

2.3 Size Estimate Hedging: A Simple Dynamic Priority

Scheduling Policy

2.3.1 Model

Consider an M/G/1 queue where preemption is allowed and we are interested in minimizing

the MST. We assume that a job’s processing time is not known upon arrival; however, an

estimated processing time is provided to the scheduler. We concentrate on a multiplicative

error model where the error distribution is independent of the job processing time distribution.

The estimated processing time Ŝ of a job is defined as Ŝ = SX where S is the job processing

time and X is the job processing time estimation error. We assume that the value of Ŝ is

known upon each job’s arrival and is denoted by ŝ. The choice of a multiplicative error

model results in having an absolute error proportional to the job processing time S, thus

avoiding situations where the estimation errors tend to be worse for small jobs than for

large jobs. Furthermore, Dell’Amico et al. (10) and Pastorelli et al. (16) suggest that a

multiplicative error model is a better reflection of reality. To define our scheduling policies,

we also require the notion of a quantum of service. The job with the highest priority is

11
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processed for a quantum of service ∆ until either it completes or a new job arrives. At that

point, priorities are recomputed.

2.3.2 Gittins’ Index Approach

The Gittins’ Index Policy is an appropriate technique for determining scheduling policies

when the job processing time and estimation error distributions are known. For a waiting

job i, an index G(ai) is calculated, where ai is the elapsed processing time. At each time

epoch, the Gittins’ Index policy processes the job with the highest index G(a) among all of

the present waiting jobs (8). The Gittins’ rule takes the job’s elapsed processing time into

account and calculates the optimal quantum of service ∆∗(a) that it should receive.

The associated efficiency function J(a,∆),a,∆ ≥ 0 of a job with processing time S,

elapsed processing time a and quantum of service ∆ is defined as

J(a,∆) =
P(S−a≤ ∆|S > a)

E[min{S−a,∆}|S > a]
. (2.3.1)

The numerator is the probability that the job will be completed within a quantum of

service ∆, and the denominator is the expected remaining processing time a job with elapsed

processing time a and quantum of service ∆ will require to be completed.

The server (preemptively) processes the job with the highest index at each decision

epoch. Decisions are made when (i) a new job arrives to the queue, (ii) the current job under

processing completes, or (iii) the current job receives its optimal quantum of service and

does not complete. If there are multiple jobs that have the same highest index and all have

zero optimal quanta of service, the processor will be shared among them as long as this

situation does not change. If there is only one job with the highest index and zero optimal

quantum of service, its index should be updated throughout its processing (9).

12
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Although the Gittins’ Index policy is optimal in terms of minimizing the mean sojourn

time in an M/G/1 queue (9), the assumption of knowing the job size and estimation error

distributions might not always be practical to make. Furthermore, forming the Gittins’ Index

policy’s efficiency function has significant computational overhead. As a result, this policy

may be a problematic choice for real environments where the scheduling speed is important.

However, examining the form of optimal policies has helped us in the construction of a

simple heuristic. In particular, the notion of defining a policy in terms of an index allows us

to make precise our notion of combining the relative merits of SRPT and SEPT.

2.3.3 Motivation

When a job enters the system under SERPT, there is no basis on which to assume that

the estimated processing time, ŝ, is incorrect. However, when the elapsed processing time

reaches ŝ, we are certain that the job processing time has been underestimated. In addition,

Dell’Amico et al. (7) show that SEPT performs well when dealing with estimated processing

times and in the presence of estimation errors, in particular severe underestimates. So, we

would like to combine these two policies. A convenient way to do this is to introduce a

Gittins’-like score function, where a higher score indicates a higher priority. We will be

aggressive and use the score function for SERPT until the point that we know a job is

underestimated and then freeze the score, which is similar to what SEPT’s constant score

function does (see (2.3.4) below). In this way, instead of switching to SEPT’s score function,

we would like to give credit for the jobs’ cumulative elapsed processing times.

The score functions for SRPT, SERPT, and SEPT are provided in (2.3.2), (2.3.3), and
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(2.3.4), respectively.

G(a,s) =
1

s−a
, (2.3.2)

G(a, ŝ) =


1

ŝ−a , ŝ > a,

∞, ŝ≤ a,
(2.3.3)

G(a, ŝ) =
1
ŝ
. (2.3.4)

We note that (2.3.2) and (2.3.3) have an increasing score function, and (2.3.4) always

assigns a constant score for a particular job.

2.3.4 The SEH Policy

Combining the score functions for SERPT and SEPT, we now define our policy. As

discussed in the previous section, we would like to transition between SERPT when we

cannot determine if a job processing time is underestimated to a fixed priority like SEPT

when it is determined that underestimation has occurred. One consequence of using this

policy is that any underestimated small job can still receive a “high” score and be processed,

while underestimated large jobs will have a much lower score and do not interfere, even

with underestimated small jobs. Furthermore, not needing to know the job processing time

and estimation error distribution, the SEH Policy does not have much overhead. Thus, it can

schedule the jobs at a speed comparable to the SEPT policy.
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We introduce the score function of our SEH policy as

G(a, ŝ) =


1

ŝ−a(1− a
2ŝ )

, 0≤ a < ŝ,

2
ŝ , a≥ ŝ,

(2.3.5)

where the scheduling decisions are only made at arrivals and departures.

With the score function in (2.3.5), a job’s score will increase up to the point that it

receives processing equal to its estimated processing time and then receives a constant score

of 2
ŝ until it completes. The choice of 2 was made after some experimentation, it would be

worthwhile to explore the sensitivity of the performance to this choice.

2.3.5 Gittins’ Index vs. SEH

In this section, we show that the form of our policy is consistent with the Gittins’ index in

the setting that we only know the error estimate distribution. In particular, we have no a

priori or learned knowledge of the processing time distribution.

With our estimation model in mind and with the additional knowledge of the estimate ŝ,

(2.3.1) can be rewritten as

J(a,∆, ŝ) =
P( ŝ

X −a≤ ∆| ŝ
X > a)

E[min{ ŝ
X −a,∆}| ŝ

X > a]
(2.3.6)

where the numerator can be evaluated using the definition of conditional probability:

P(
ŝ
X
≤ a+∆| ŝ

X
> a) =

P( ŝ
a+∆
≤ X < ŝ

a)

P(X < ŝ
a)

(2.3.7)

The density and distribution of the estimation error are denoted by fX and FX , respec-

tively. Suppose that the lower and upper limits on the estimation error distribution are l and
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u, respectively (l may be zero and u may be ∞). Then, by considering cases, the RHS of

(2.3.7) (and hence the numerator of (2.3.6)) evaluates to:

P(
ŝ
X
−a≤ ∆| ŝ

X
> a) =



1, ŝ
a+∆
≤ l < ŝ

a < u,

1− FX (
ŝ

a+∆
)

FX (
ŝ
a )

, l < ŝ
a+∆

< ŝ
a < u,

1, ŝ
a+∆
≤ l < u < ŝ

a ,

1−FX(
ŝ

a+∆
), l < ŝ

a+∆
< u≤ ŝ

a .

To calculate the denominator in (2.3.6), we first compute the required conditional

probability density function as

fX |X< ŝ
a
(x) =

fX(x)∫ ŝ
a

l fX(y)dy
=


fX (x)∫ ŝ

a
l fX (y)dy

, ŝ
a < u,

fX(x), otherwise.

The denominator in (2.3.6) can then be written as

E[min{ ŝ
X
−a,∆}| ŝ

X
> a] =



∫ ŝ
a

l (ŝ−ax) fX (x)∫ ŝ
a

l fX (y)dy
dx, ŝ

a+∆
≤ l < ŝ

a < u,

∫ ŝ
a+∆

l ax fX (x)∫ ŝ
a

l fX (y)dy
dx+

∫ ŝ
a
ŝ

a+∆

(ŝ−ax) fX (x)∫ ŝ
a

l fX (y)dy
dx, l < ŝ

a+∆
< ŝ

a < u,

∫ u
l (ŝ−ax) fX(x)dx, ŝ

a+∆
≤ l < u < ŝ

a ,∫ ŝ
a+∆

l x∆ fX(x)dx+
∫ u

ŝ
a+∆

(ŝ−ax) fX(x)dx, l < ŝ
a+∆

< u≤ ŝ
a .

Considering
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E[X |X <
ŝ
a
] =

∫ ŝ
a

l x fX(x)dx

P(X < ŝ
a)

,

and

E[X ] =
∫ u

l
x fX(x)dx,

(2.3.6) can be rewritten as

J(a,∆, ŝ) =



1
ŝ−aE[X |X≤ ŝ

a ]
, ŝ

a+∆
≤ l < ŝ

a < u,

P( ŝ
a+∆
≤X≤ ŝ

a )

∆E[X |X≤ ŝ
a+∆

]P(X≤ ŝ
a+∆

)+P( ŝ
a+∆
≤X≤ ŝ

a )(ŝ−aE[X | ŝ
a+∆
≤X≤ ŝ

a ])
, l < ŝ

a+∆
< ŝ

a < u,

1
ŝ−aE[X ] ,

ŝ
a+∆
≤ l < u < ŝ

a ,

1−P(X≤ ŝ
a+∆

)

∆E[X |X≤ ŝ
a+∆

]P(X≤ ŝ
a+∆

)+P(X≥ ŝ
a+∆

)(ŝ−aE[X |X≥ ŝ
a+∆

])
, l < ŝ

a+∆
< u≤ ŝ

a .

(2.3.8)

The Gittins’ index G(a, ŝ),a≥ 0, is defined by

G(a, ŝ) = sup
∆≥0

J(a,∆, ŝ).

The optimal quantum of service is denoted as

∆
∗(a, ŝ) = sup{∆≥ 0|G(a, ŝ) = J(a,∆, ŝ)}.

At ∆ = ŝ
l −a, the first and third case in (2.3.8) are equal to the second and fourth case,

respectively, and J(a,∆, ŝ) is maximized.
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The Gittins’ index can then be written as

G(a, ŝ) =


1

ŝ−aE[X |X≤ ŝ
a ]
, ŝ

a < u,

1
ŝ−aE[X ] , otherwise,

(2.3.9)

where ∆∗ = ŝ
l −a. For instance, the Gittins’ index for a Log−N(µ,σ2) error distribution is

G(a, ŝ) =
1

ŝ−aeµ+g(a,ŝ)
, (2.3.10)

where

g(a, ŝ) =
σ2φ [

ln( ŝ
a )−µ−σ2

σ
]

2φ [
ln( ŝ

a )−µ

σ
]

,

and φ is the cumulative distribution function of the Log−N(0,σ2) distribution. Note that

for the Log-Normal distribution as the job processing time error distribution, the second

case in (2.3.9) cannot happen. For the remainder of the chapter, we will refer to this policy

as the Gittins’ Index policy. We recognize that this is a slight abuse of terminology, as we

are ignoring the job processing time distribution.

Taking the score in (2.3.10) into account, for any job with an estimated processing time

ŝ, the score calculated with the Gittins’ Index policy continuously increases until the job

completes. Fig. 2.1a shows this score for a job with an estimated processing time of 20 and

an estimation error generated from a Log−N(0,σ2) distribution as a function of its elapsed

processing time. We observe that for larger values of elapsed processing time, the slope of

the score is decreasing. Fig. 2.1b shows the score calculated with the SEH policy for a job

with an estimated processing time of 20 as a function of its elapsed processing time. The

score shown in Fig. 2.1a is consistent with the score function having decreasing slope at
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(a) calculated with the Gittins’ Index policy (b) calculated with SEH

Figure 2.1: Job score as a function of the elapsed processing time

some point beyond the point at which the elapsed processing time reaches the estimated

processing time, as in Fig. 2.1b. Of course, the change in slope for SEH is more severe,

but we will see in our numerical experiments that the performance of the two policies is

quite close. SEH has less computational overhead and more importantly, does not require

knowledge of the estimation error distribution.

2.4 Evaluation Methodology

2.4.1 Policies Under Evaluation

In this section, we introduce the size-based scheduling policies considered for evaluation.

As our baseline policy, we consider the SRPT policy when the exact job processing times,

given by s, are known before scheduling. The SRPT policy is an “ideal” policy since it

assumes that there are no errors in estimating the processing time.

• SERPT policy — The SERPT policy is a version of SRPT that uses the estimates of

job processing times as if they were the true processing times.
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• SEPT policy — The SPT policy skips the SRPT policy’s updating of remaining

processing times and only schedules jobs based on their estimated processing time.

• SEH and Gittins’ Index policy — Our proposed SEH policy and the Gittins’ Index

policy are explained in detail in Section 2.3.4 and Section 2.3.5, respectively.

All these policies fit into the “scoring” framework, and they assign scores to each job and

process the jobs in the queue in the descending order of their scores. Moreover, preemption

is allowed, and a newly-arrived job can preempt the current job if it has a higher score. The

score functions in (2.3.2), (2.3.3), (2.3.4), (2.3.5), and (2.3.9) show how we calculate the

scores for the SRPT, SERPT, SEPT, SEH, and Gittins’ Index policy, respectively.

2.4.2 Performance Metrics

We evaluate the policies defined in Section 2.4.1 with respect to two performance metrics:

MST and Mean Slowdown. When the job processing times have large variance, the sojourn

times for small jobs and large jobs differ significantly. Thus, we use the per job slowdown,

the ratio between a job’s sojourn time and its processing time (17).

2.4.3 Simulation Parameters

We would like to evaluate the policies over a wide range of job processing time and error

distributions. To generate this range of distributions, we fix the form of the distribution

and vary the parameters. We use the same settings that Dell’Amico et al. (10) use in their

work. Table 2.1 provides the default parameter values that we use in our simulation study.

We now provide details of our simulation model. Note that our policy fits into the SOAP

framework of Scully et al. (18), however as we are also evaluating mean slowdown, we
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Table 2.1: Parameter Settings

Parameter Definition Default
# jobs the number of departed jobs 10,000
k shape for Weibull job processing time distribution 0.25
σ σ in the Log-Normal error distribution 0.5
ρ system load 0.9

chose simulation for evaluation.

Job Processing Time Distribution — We consider an M/G/1 queue where the pro-

cessing time is generated according to a Weibull distribution. This allows us to model high

variance processing time distributions, which better reflect the reality of computer systems

(see (19), (20) for example). In general, the choice of a Weibull distribution gives us the

flexibility to model a range of scenarios. The shape parameter k in the Weibull distribution

allows us to evaluate both high variance (smaller k) and low variance (larger k) processing

time distributions.

Considering that the job processing time distribution plays a significant role in the

scheduling policies’ performance and size-based policies show different behaviors with high

variance job processing time distributions, we choose k = 0.25 as our default shape for the

Weibull job processing time distribution. With this choice for k, the scheduling policies’

performance is highly influenced by a few very large jobs that constitute a substantial

percentage of the system’s overall workload. We vary k between 0.25 and 2, considering

specific values of 0.25, 0.375, 0.5, 0.75, 1, and 2. We show that the SEH policy performs

best in the presence of high variance job processing time distributions.
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Job Processing Time Error Distribution — We have chosen the Log-Normal distribu-

tion as our error distribution so that a job has an equal probability of being overestimated or

underestimated. The Gittins’ index for this estimation error distribution is shown in (2.3.10).

The σ parameter controls the correlation between the actual and estimated processing time,

as well as the estimation error variance. By increasing the σ value, the correlation coefficient

becomes smaller, and the estimation error variance increases, resulting in the occurrence of

more large underestimations/overestimations (more imprecise processing times). We choose

σ = 0.5 as the default value that corresponds to a median relative error factor of 1.40. We

vary σ between 0.25 and 1 with specific values of 0.25, 0.375, 0.5, 0.75, and 1 to better

illustrate the effect of σ on the evaluated performance.

System Load — Following Lu et al. (5), we consider ρ = 0.9 as the default load value

and vary ρ between 0.5 (lightly loaded) and 0.95 (heavily loaded) with increments of 0.05

and an additional system load of 0.99.

Number of Jobs — The number of jobs in each simulation run is 10,000 and a simula-

tion run ends when the first 10,000 jobs that arrived to the system are completed. We fix the

confidence level at 95%, and for each simulation setting, we continue to perform simulation

runs until the width of the confidence interval is within 5% of the estimated value. For low

variance processing time distributions (larger k), 30 simulation runs suffice; however, more

simulation runs are required for high variance processing time distributions (smaller k).

22



M.Sc. Thesis – M. Akbari-Moghaddam McMaster University – Computer Science

2.5 Simulation Results

In this section, we evaluate the performance of the policies in Section 2.4.1 by running ex-

periments on both synthetic and real workloads. We run different simulations by generating

synthetic workloads based on different job processing time and error parameters and we

analyze these parameters’ effect on the performance of each of the policies.

For evaluating our results in practical environments, we consider a real trace from a

Facebook Hadoop cluster in 2010 (21) and show that the policies’ performance is consistent

with the results we obtained with synthetic workloads. The key observations, validated both

on synthetic and real workloads, are highlighted as follows:

• The Gittins’ Index policy outperforms SERPT for all the evaluated values of k and σ .

We show the same observation with our proposed SEH policy except for values of k

that correspond to very low job processing time variance.

• The Gittins’ Index and SEH policies outperform SEPT with lower values of σ (better

estimated processing times) and have an MST near the optimal MST obtained without

any estimation errors.

• SEH performs well in reducing both the MST of overestimated jobs and underesti-

mated jobs.

• The load parameter does not have a significant effect on the relative values of the

MST obtained with the evaluated policies.

• The Gittins’ Index, SEH and SEPT policies have a near-optimal mean slowdown of 1

when the estimated processing times have high variance.
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• The SEH performs best across all values of k in terms of minimizing the mean

slowdown.

In what follows, we discuss the numerical results and how they support these key obser-

vations.

Synthetic Workloads — We first note that the job processing time k parameter and the

estimation error σ parameter have the greatest impact on the policies’ performance. Thus,

we focus on varying these parameters. We show that the Gittins’ Index policy outperforms

SERPT across all evaluated values of k and σ and our SEH policy outperforms SERPT

except for the values of k and σ that correspond to distributions with extremely low variance.

For the scenarios where we do not state the parameter values explicitly, the parameters in

Table 2.1 (see Section 2.4.3) are considered.

Fig. 2.2 captures the impact of job processing time variance and displays the MST of

the Gittins’ Index, SEH, SERPT, and SEPT policies normalized against the MST obtained

with SRPT with σ having the default value of 0.5. We observe that for a high variance job

processing time distribution (k = 0.25), SERPT performs very poorly compared to the other

policies due to the presence of large, underestimated jobs. We note that the SERPT policy

performs well if the variance of the processing times is sufficiently low. Based on Fig. 2.2,

we notice that the gap between SEPT and the Gittins’ Index policy grows slightly when

the job processing time variance is lower. The gap between SEH and the Gittins’ Index

policy also grows but not to the same degree as SEPT. For k > 0.75, the performance of the

Gittins’ Index policy, SEH, and SERPT are quite close. In fact, we observe that our SEH

policy performs very close to the Gittins’ Index policy across all values of k. Furthermore,

we notice that as the variance in processing times gets smaller, the gap between what is
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achievable by the policy under evaluation and what is achievable if there were no errors is

larger than for the high variance scenarios.

Figure 2.2: Impact of k on the MST

The shape parameter k affects the job processing time variance and the scheduling

policies’ performance the most, especially when the job processing time distribution has

high variance. We can be optimistic about using estimates if the variance is low, but we

have to be careful in choosing the scheduling policy if the job processing time variance is

high. The literature focuses on high variance workloads, and we will continue evaluating

the policies on such workloads. In Fig. 2.3, we display the normalized MST of the policies

against the MST of the SRPT policy under varying σ , ρ = 0.9, and the default k = 0.25.

We notice that the Gittins’ Index, SEH, and SEPT policies are relatively insensitive to the
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σ value, while the gap between these three policies and SERPT increases with increasing

σ . In fact, the Gittins’ Index and SEH policies outperform SEPT with σ ≤ 0.5 and have an

MST near the optimal MST obtained without any estimation errors. We conclude that the

impact of the Gittins’ Index policy and SEH becomes more prominent when the estimates

improve.

In Fig. 2.3, we observe that while choosing a more aggressive policy like the Gittins’

Index and SEH policies is a good choice under lower values of σ , SEPT is preferred when

σ = 1. The reason is that lower values of k (here, k = 0.25), cause more large jobs in the

system. Furthermore, for values of σ ≥ 1, the estimation errors have high variance and thus

the estimated processing times can be very imprecise. We notice that both SEH and the

Gittins’ Index policy suffer from a slight promotion of severely underestimated jobs that

leads to temporary blockage for the other jobs. What has happened in this case is that the

estimates of the processing times have degraded to the point that they are not useful. In

particular, one should instead base scheduling decisions on the processing time distribution,

so for example in scenarios with high variance in both processing times and estimation

errors, a policy which ignores the estimates, such as Least Attained Service (LAS) would be

warranted. The LAS scheduling policy (22), also known as Shortest Elapsed Time (23) and

Foreground-Background (24), preemptively prioritizes the job(s) that have been processed

the least. If more than one job has received the least amount of processing time, the jobs

will share the processor in a processor-sharing mode. Analytic results in (25), (26) show

that LAS minimizes MST when the job processing time distribution has a decreasing hazard

rate and there are no processing time estimates available.

These observations are consistent with the results in Table 2.2 which considers the same

settings as in Fig. 2.3 when σ = 1 and σ = 2. SERPT has poor performance compared
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Figure 2.3: Impact of σ on the MST

Table 2.2: Policies evaluation under σ = 1 and σ = 2

σσσ === 111 σσσ === 222

Policy MST/ MST(SRPT) Mean Slowdown MST/ MST(SRPT) Mean Slowdown
Gittins’ Index 1.45 1.26 2.68 6.78
SEH 1.44 1.22 2.71 6.87
SEPT 1.41 1.16 2.54 4.71
LAS 1.81 1.27 1.81 1.27
SRPT 1 1.06 1 1.06

the other policies under σ ≥ 1 and thus is not included. Pastorelli et al. (16) show that

lower values of σ (σ < 1) are what one sees in practice. It would be interesting to look at

the optimal Gittins’ Index policy that includes both the job processing time and estimation

error distributions, as it would capture this effect. Although doing so can help develop

policies that are effective even at high values of σ , deriving the Gittins’ index would be

quite complicated with this extra condition, but it could give insight into designing simpler

policies.

Fig. 2.4a, Fig. 2.4b, and Fig. 2.4c show the result of simulations with the default

values in Table 2.1 and varying the system load between 0.5 and 0.99 for all jobs, only the

overestimated jobs, and only the underestimated jobs, respectively. If we concentrate only
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on one class of jobs (overestimated or underestimated), the policy that minimizes the MST

the most can be different. We observe that the Gittins’ Index and SEH policies perform

best in minimizing the overall MST given different system loads. The Gittins’ Index policy

performs best in reducing the MST of underestimated jobs and the SEH policy has desirable

performance in reducing the MST of all jobs, the overestimated jobs, and the underestimated

jobs. Fig. 2.4a shows that the load parameter does not have a significant effect on the MST

since the ratio between the MST of each policy and the MST of SRPT remains almost

unchanged.

The mean slowdown is the other metric we consider to evaluate the performance of the

policies. High values of mean slowdown indicate that some jobs spend a disproportionate

amount of time waiting. In Fig. 2.5, we show the mean slowdown for different values of k

with ρ = 0.9 and a σ value of 0.5. The mean slowdown of SERPT is not included since it is

several orders of magnitude higher for k ≤ 0.5. We see that the Gittins’ Index, SEH, and

SEPT policies have similar performance. All policies have a near-optimal mean slowdown

of 1 for high variance job processing time distributions (smaller k). The reason is that the

very small jobs (that make up the majority of the jobs) are processed the moment they enter

the system, and no large job blocks them. We also observe that SEH performs best across

all values of k in terms of minimizing the mean slowdown.

We conclude our experiments with synthetic workloads by indicating that the Gittins’

Index and SEH policies perform better than SERPT under different parameter settings. The

only exception is extreme situations like the low variance job processing time distributions

(larger k) where SERPT outperforms SEH and works analogously to the Gittins’ Index

policy.
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(a) All jobs

(b) Overestimated jobs (c) Underestimated jobs

Figure 2.4: Impact of ρ on the MST
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Figure 2.5: Impact of k on the mean slowdown

Real Workloads — We consider a Facebook Hadoop cluster trace from 2010 (21) and

show that the results with this workload look very similar to those with synthetic workloads

generated with k = 0.25. The trace consists of 24,443 jobs. We assume each job’s processing

time is the sum of its input, intermediate output, and final output bytes. The job processing

times of this workload have high variance, and thus, we run hundreds of simulations to

reach the desired confidence interval (as described in Section 2.4.3). We vary the error

estimation distribution’s σ parameter to evaluate different scenarios of estimated processing

time precision. To maintain the default settings in Table 2.1, we define the processing speed

in bytes per second. The arrival rate λ is chosen to yield the desired ρ = 0.9. A simulation

run ends when the last job in the workload arrives at the system and we calculate the MST

of the jobs that are fully processed among the first 10,000 jobs that entered the system. Fig.

2.6 shows the MST normalized against the optimal MST obtained with SRPT with varying

σ between 0.25 and 1. We observe that the Gittins’ Index and SEH policies perform best

across all values of σ .

In Fig. 2.7, we display the mean slowdown obtained with the policies under evaluation.

Similar to Fig. 2.5, we have not included the mean slowdown of SERPT since it is several
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Figure 2.6: MST of the Facebook Hadoop workload

orders of magnitude higher. We observe that for σ ≤ 0.5, where the estimates are better, the

SEH policy has lower mean slowdown than the Gittins’ Index and SEPT policies, however,

SEPT starts to outperform the Gittins’ Index and SEH policies when σ increases, consistent

with our observations for synthetic workloads.

Figure 2.7: Mean slowdown of the Facebook Hadoop workload
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2.6 Conclusion and Future Work

The SRPT policy, which is optimal for scheduling in single-server systems, may have prob-

lematic performance when job processing times are estimated. This work has considered the

problem of scheduling with the presence of job processing time estimates. A multiplicative

error model is used to produce estimation errors proportional to the job processing times.

We have introduced a novel heuristic that combines the merits of SERPT and SEPT and

requires minimal calculation overhead and no information about the job processing time

and estimation error distributions. We have shown that this policy is consistent with a

Gittins’-like view of the problem. Our numerical results demonstrate that the SEH policy

has desirable performance in minimizing both the MST and mean slowdown of the system

when there is low variance in the estimation error distribution. It outperforms SERPT except

in scenarios where the job processing time variance is extremely low. Examining the SEH

policy under other error models as well as analytic bounds as to how far it is from optimal

could be investigated in future work. It would also be useful to examine how well policies

designed for worst case performance would perform with respect to the performance metrics

considered in this chapter. The work of Purohit et al. (27) is an intriguing candidate, as it

runs two policies in parallel to provide worst case performance guarantees, even when there

are large estimation errors.

Not much work has been done in the area of multi-server scheduling in the presence of

estimation errors. One major reason is that determining optimal policies for multi-server

queues is much more challenging compared to the single-server case. Mailach and Down

(28) suggest that when SRPT is used in a multi-server system, the estimation error affects

the system’s performance to a lesser degree than in a single-server system. Grosof et al. (29)

prove that multi-server SRPT is asymptotically optimal when an M/G/k system is heavily
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loaded. Our work only evaluates the performance of SEH in a single-server framework

so we leave the extension and evaluation of this policy in multi-server queues for future

investigation.
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Chapter 3

Data-driven Fair Resource Allocation

For Novel Emerging Epidemics: A

COVID-19 Convalescent Plasma Case

Study

This chapter is adapted from Maryam Akbari-Moghaddam1, Na Li, Douglas G. Down,

Donald M. Arnold, Jeannie Callum, Philippe Bégin, and Nancy M. Heddle, “Data-driven

Fair Resource Allocation For Novel Emerging Epidemics: A COVID-19 Convalescent

Plasma Case Study”, submitted to Health Care Management Science, and available on

arXiv, arXiv:2106.14667v1. Additional discussions on resource forecasting are included

throughout the chapter.

Abstract

Epidemics are a serious public health threat, and the resources for mitigating their effects
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are typically limited. Decision-makers face challenges in forecasting the demand for these

resources as prior information about the disease is often not available, the behaviour of the

disease can periodically change (either naturally or as a result of public health policies) and

can differ by geographical region. In this work, we discuss a model that is suitable for short-

term real-time supply and demand forecasting during emerging outbreaks without having to

rely on demographic information. We propose a data-driven mixed-integer programming

(MIP) resource allocation model that assigns available resources to maximize a notion of

fairness among the resource-demanding entities. Numerical results from applying our MIP

model to a COVID-19 Convalescent Plasma (CCP) case study suggest that our approach

can help balance the supply and demand of limited products such as CCP and minimize the

unmet demand ratios of the demand entities.

Keywords: Resource Allocation, Epidemics, COVID-19 Convalescent Plasma, Data-driven

Optimization, Demand Forecasting.

3.1 Introduction

Epidemics have impacted the world many times, and will occur again in the future. Emer-

gency responses to these epidemics can either be pre-event or post-event. Forecasting the

potential dangers and planning the necessary steps to deal with an epidemic are considered

as pre-event tasks. Post-event responses occur after the disease starts spreading and is still

in progress. The corresponding actions at these points are associated with treatment and

allocating the corresponding available resources. Our focus in this chapter is on post-event

response situations.
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Resource allocation decisions during emerging epidemics are challenging due to several

key reasons. First, limited knowledge and historical data about disease demographics make it

difficult to predict the demand for particular resources. Second, since epidemics are usually

unexpected and can spread rapidly, there are often limited health care resources (vaccines,

blood products, medical equipment, etc.) compared to the total number of entities requesting

them. Determining how to fairly allocate the limited resources becomes a challenge. Third,

the demand can vary significantly between geographically dispersed entities. Finally, the

decisions must be made in a timely manner. These issues motivate the investigation of

supply and demand forecasting models for scenarios where there are small amounts of

available data and the data can exhibit fundamental changes in behaviour. It is of interest to

incorporate these models into algorithms that yield fair allocations.

In this work, we tackle the real-time allocation of scarce resources during epidemics to

entities located in widespread geographical locations and with different resource require-

ments. We are interested in demand forecasting models that can predict short-term demand

in real-time. The demand forecasts directly impact the resource allocation decisions as

inaccurate forecasts may lead to inefficient and unfair use of limited (and valuable) resources.

We note that there are different notions of fairness (balance) in terms of resource allocation

in the literature (1). In our case, we define fairness as minimization of the entities’ unmet

demand ratios, but one could also generalize fairness to other notions. For instance, Karsu

et al. (2) propose an approach where imbalance is defined as the deviation from a reference

distribution determined by the decision-maker. They show that in resource allocation prob-

lems, it is possible to maintain a mixed-integer programming (MIP) structure even after

generalizing the notion of fairness. In general, there are wide-ranging views of fairness and

how fairness metrics can be incorporated into optimization problems, see (3; 4; 5; 6; 7) for
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example.

Convalescent plasma has been used as a potential treatment for a number of diseases

such as Ebola (8; 9), influenza (10; 11), and COVID-19 (12). COVID-19 Convalescent

Plasma (CCP), also known as “survivor’s plasma,” contains antibodies, or special proteins,

generated by the body’s immune system in response to the novel coronavirus. It has been

considered as an experimental treatment for hospitalized COVID-19 patients in a number

of randomized control trials worldwide. We evaluate our proposed model on a case study

of CCP distribution within a clinical trial when there were limited historical supply and

demand data, the supply was limited and restricted by manufacturing policies, the demand

arising from the demand entities was heterogeneous, and specific clinical requirements were

needed for administrating CCP transfusion.

We make the following contributions: First, we discuss real-time short-term forecasting

of supply and demand of scarce resources in epidemics with sparse data, no historical data

and without relying on epidemiological models or demographic information. We propose the

use of a forecasting model that does not require indeterminate parameters (such as location

and time-specific parameters) and thus does not require periodically updating the parameters.

Secondly, we address challenges that may arise in an online setting due to extrapolation

and sparse data. Next, we propose a data-driven MIP model for real-time multi-location

allocation of scarce resources regularly and fairly to entities, which have heterogeneous

demand. This approach maximizes a notion of fairness among the resource-demanding

entities. Finally, numerical results of applying our model in a CCP case study show that our

approach yields fair allocations that are both close to the scenario where supply and demand

are known (rather than forecast) and are preferable to what was used in practice.

The rest of the chapter is organized as follows. Section 3.2 presents the existing
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literature on demand forecasting and resource allocation approaches during infectious

disease outbreaks and our motivation for this work. We describe our data-driven resource

allocation problem in Section 3.3.1. Section 3.3.2 discusses in depth the supply and demand

forecasting methods that we use and we define our proposed MIP resource allocation model

in Section 3.3.3. The CCP case study and the numerical results of applying our MIP model

to the case study are discussed in Section 3.4. We conclude this work and discuss how it

may inform responses to future pandemics in Section 3.5.

3.2 Motivation and Related Work

Epidemiological compartmental models, consisting of a set of nonlinear ordinary differential

equations, can help model the dynamics of different epidemiological variables during a

pandemic (13). These models can give insight into disease-related information such as

spread rate, the duration of an epidemic, and the total number of infected and recovered

patients. Decision-makers can employ compartmental models to derive demand for medical

resources to guide resource allocation decisions. Focusing on the COVID-19 outbreak (14),

there have been many applications and tools developed by different organizations worldwide

to forecast infections, hospitalizations, and deaths using compartmental models (15; 16; 17).

For instance, CHIME (18) is a tool based on a Susceptible-Infectious-Recovered (SIR)

model that can be used for forecasting the number of daily hospitalized COVID-19 patients

in the short-term (e.g., up to 30 days). When an epidemic is first emerging, the epidemic

state is only partially observable, and the parameters that the epidemiological models require

are often indeterminate, as the disease information can only be obtained over a period

of time and after sufficient cases are reported and required data is collected. Moreover,

different geographical locations can show various characteristics in terms of the disease
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spread pattern. The estimates that compartmental models make are sensitive to the model’s

structure (19). Even in the presence of reasonable parameter estimates and simple model

structures, real-time resource allocation requires the parameters to be periodically updated

based on the disease spread rate and the number of people involved, whether susceptible

or infected. Therefore, CHIME-like models may lead to poor approximation of the actual

demand when used in a real-time setting where obtaining the most recent updated parameters

may not always be possible.

Another approach that researchers have studied for forecasting healthcare resources is

using time series models or machine learning methods. The references for this approach

are extensive, thus we only discuss a few studies as examples. Ferstad et al. (20) introduce

a time series model to forecast the availability and utilization of intensive and acute care

beds. Nikolopoulos et al. (21) use epidemiological and deep learning models to forecast

the excess demand for products and services considering auxiliary data and simulating

governmental decisions, while Li et al. (22) combine ideas from statistical time series

modelling and machine learning to develop a hybrid demand forecasting model for red

blood cell components using clinical predictors. All of these methods work best when

large datasets are available and the models can capture the trend and seasonality, which

is not possible during emerging epidemics. Furthermore, real-time demand forecasting

can be challenging with any forecasting model if the demand is affected by many external

factors, such as population characteristics, geographical locations, operational procedures,

guidelines, and governmental policies.

As far as we are aware, none of the mentioned approaches are consistent with the

challenges we introduced in Section 3.1. It is quite difficult to directly apply these approaches

to a real-time setting where short-term supply and demand forecasting is desired, there is a
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limited supply for resources, and the available data is sparse and shows fundamental changes

in behaviour during different periods. This motivates us to avoid models that are reliant

on a large number of parameters (as for CHIME-like models), as they require continual

updates and they may not always yield accurate forecasts for resource supply and demand.

Nonetheless, we seek a model that makes reasonable predictions even when facing such

challenges. We will revisit these challenges in the case study in Section 3.4.

We find piecewise linear regression (PLR), also known as segmented linear regression,

a reasonable forecasting model for our settings. PLR forecasting models are a special

case of a larger set of models known as spline functions (23). Modelling the regression

function in "pieces" can be helpful when dealing with sparse data since we can still use

linear regression models for data that does not fit a single line. To be more specific, PLR is a

simple model that makes understanding the data easier by solving several linear regressions.

Points at which the behaviour changes are called breakpoints, which act as boundaries

between each piece. There have been a few studies on finding the number of breakpoints

and their locations. Rosen and Pardalos (24) propose a method for finding the minimum

number of equally spaced breakpoints within a given error tolerance, a sequential method

is proposed in Strikholm (25) for finding the number of breakpoints, and Yang et al. (26)

propose a discontinuous piecewise linear approximation and how to determine the optimal

breakpoint locations.

Piecewise linear models have been used in different applications when modelling the

structural shifts in data and forecasting based on the most recent behaviour in data is desired.

Hong et al. (27) use a piecewise linear function for modelling the hourly demand for electric

load and investigating the causality of the consumption of electric energy. In the domain

of strategic product planning, Huang and Tzeng (28) propose a two-stage fuzzy piecewise
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regression method to predict product life time and annual shipments of products during the

product life cycle of multigeneration products. PLR has also been used in stock forecasting

studies. For instance, Chang et al. (29) apply PLR to historical stock data to decompose them

into different segments and detect the temporary (trough or peak) turning points. They give

these points as inputs to a backpropagation neural network model to train a pattern matching

model for the stock market. We will discuss two PLR models, MARS and PLR-NB in more

detail in Section 3.3.2 and Section 3.3.2, respectively, where we discuss supply and demand

forecasting models used in this work. The MARS model has been used in healthcare for

medical diagnosis using classification problems (see (30; 31; 32; 33; 34; 35)). In the area of

time series forecasting, López-Lozano et al. (36) evaluate the generalizability of MARS for

identifying thresholds for antibiotic consumption and Katris (37) studies MARS and other

time series approaches for predicting the evolution of reported COVID-19 cases to track the

outbreak in Greece. In this work, we demonstrate that using PLR models to determine inputs

(supply and demand forecasts) to a resource allocation problem is an effective combination

in an emerging epidemic setting.

Many studies have focused on developing allocation models for medical resources

during infectious disease outbreaks. A dynamic linear programming model based on an

epidemic diffusion model is introduced in Liu et al. (38) to allocate medical resources.

Preciado et al. (39) analyze a networked version of a susceptible-infected-susceptible (SIS)

epidemic model when different susceptibility levels are present. They propose a convex

optimization approach for distributing vaccination resources in a cost-optimal manner and

test their approach in a real social network. Yarmand et al. (40) consider two-phase vaccine

allocation to different geographical locations. They capture each region’s epidemic dynamics

for different vaccination phases by a two-stage stochastic linear program (2-SLP) model
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and show that their model helps to reduce vaccine production and administration costs.

Furthermore, two resource allocation problems during outbreaks are discussed in Preciado

et al. (41), where they use geometric programming to solve the problems. Following the

work in (41), Han et al. (42) propose a data-driven robust optimization framework based on

conic geometric programming. Their model is used to determine an optimal allocation of

medical resources such as vaccines and antidotes and can help control an SIS viral spreading

process in a directed contact network with unknown contact rates.

A number of works have investigated resource allocation frameworks using outbreak

case studies. The problem of scheduling limited available resources between multiple

infected areas is discussed in Rachaniotis et al. (43), and their proposed deterministic

scheduling model is studied in a case study of mass vaccination against A(H1N1)v influenza.

A real-time synchronous heuristic algorithm is proposed in (44) and is tested on the same

case study as in (43). Sun et al. (45) focus on allocating patients and resources between

hospitals located in a healthcare network and propose a multi-objective optimization model.

They discuss the application of their model in an influenza outbreak case study. Finally, a

large integer programming problem framework for optimally allocating a resource donation

is introduced in Anparasan et al. (46), and results of applying the framework to a 2010

cholera outbreak case study are reported. Closely related to our work is Du et al. (47) where

they study a multi-period location-specific resource allocation problem for cholera outbreak

intervention. They consider a rolling time horizon and periodically determine an optimal

intervention resource allocation strategy with their data-driven optimization approach. Also

similar in spirit to our approach is Bekker et al. (48), who propose a model for making daily

short-term predictions of the number of occupied ICU and clinical beds in the Netherlands

due to COVID-19. Their prediction model consists of a linear programming model inspired
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by smoothing splines for predicting the arrivals and methods stemming from queueing

theory to convert arrivals into occupancy. The motivation for choosing their model is similar

to ours in the sense that it works with little historical data, which is a consequence of an

emerging epidemic setting. To the best of our knowledge, no other study has tackled the

problem of real-time multi-location allocation of scarce resources with sparse historical data

and without relying on epidemiological models.

3.3 Data-driven Resource Allocation Model

3.3.1 Problem Description

We are interested in a setting where limited resources must be allocated on a regular basis

(e.g. every week) to the entities requesting them, the demand for the resources can be

heterogeneous and arises from geographically dispersed locations. We consider a hub-and-

spoke structure where we have a centralized supplier (hub) that interacts with H customers

(spokes) and is responsible for satisfying their demand for R types of resources. Figure 3.1

shows a flowchart of our data-driven resource allocation process.

Hub Supply
Data

Spokes Demand
Data

Forecasting
Model

Error Analysis

Solve
Optimization

Model

Resource
Allocation Spokes

Inventory and
Unmet Demand 

Data Collection Supply and Demand
Forecasting

Resource Allocation
Optimization Hub Inventory

Update Data

Last week?
No Report Final

Results
Yes

Figure 3.1: Data-driven Resource Allocation Process

We choose to work with the cumulative supply or demand to deal with the data sparsity
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effect. Working with a cumulative sum of data samples over time is helpful in situations

where one needs to smooth heterogeneous and sparse data and still make quantitative

predictions for future supply and demand without altering the original data. Ellaway (49)

investigates the application of the cumulative sum technique in a neurophysiology study.

The cumulative sum is shown to be a powerful technique for finding periods of change in

data, as well as reducing real-time decision-making uncertainty. In our case, we forecast

weekly supply and demand based on historical cumulative supply and demand data for

a particular resource prior to resource allocations. In particular, we would like to fit a

forecasting model weekly to our data where for each week, only the last week’s observation

is added to the dataset, and we cannot modify the predictions the model previously made (as

real-time allocations are made based on the forecasts). We then perform error analysis of the

forecasts, and allocate the available resources to the customers in a fair manner by solving

an appropriate optimization problem. We assume that both the supplier and customers can

hold inventories of the resources and can use them to satisfy future demand. Once the

supplier allocates resources to customers, the decision is final, and the resources cannot be

reassigned. Thus, we need to update the inventories at the end of each week, and consider

them when solving the optimization model in the next week.

We discuss two PLR supply and demand forecasting models and our resource allocation

optimization model in more detail in Section 3.3.2 and Section 3.3.3, respectively.

3.3.2 Supply and Demand Forecasting

We would like to forecast the supply and demand for a particular week t +1 where we only

have data available up to week t. Consider a dataset consisting of t observations where

X is an array of elements xi (i = 1,2, . . ., t) representing the input variables (in our case,
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X = 1,2,3, . . ., t). Consider y to be a vector of observed (supply or demand) data samples yi

(i = 1, . . ., t). We use two PLR models, Multivariate Adaptive Regression Splines (MARS)

and a simplified PLR (PLR-NB) to forecast the supply and demand.

Multivariate Adaptive Regression Splines (MARS)

Multivariate Adaptive Regression Spline (MARS) is a nonparametric regression approach

that was introduced by Friedman (50). The MARS model consists of a collection of simple

linear models that can capture patterns and trends related to interactions and nonlinearities.

MARS uses a series of piecewise linear pieces (splines) of different gradients. These pieces,

also known as basis functions (BFs), are connected at positions called knots which allow

thresholds, bends, and other departures from linear functions. A MARS model is specified

as follows:

ŷ′ = β0 +
P

∑
p=1

βpλp(x),

where P is the number of BFs and each λp(x) is a BF, which can be a spline function or

the product of two or more spline functions. The parameters β0 and βp, p = 1, . . . ,P are

estimated using the least-squares method. The basis functions are described as:

BF(x) = {max(0,x− cp),max(0,cp− x)},

in which, cp is the knot of the spline (threshold value).

A forward stage and a backward stage are considered in the MARS algorithm. In the

forward stage, BF functions and their potential knots are chosen, which may result in a

complicated and over parameterized model. In the backward stage, to prevent overfitting,

48



M.Sc. Thesis – M. Akbari-Moghaddam McMaster University – Computer Science

the model considers deleting the BFs in increasing order of the amount that they reduce the

training error (50).

MARS determines the optimal number and locations of the knots (here, knots are

considered as breakpoints), which can introduce computational overhead. One simplification

to a PLR model is to provide the number of breakpoints to the model. We use the method

proposed in Golovchenko (51) to find the breakpoint locations given that we know the

number of breakpoints. We refer to this approach as PLR-NB and discuss it in the following.

PLR-NB

PLR-NB is a simplified PLR model as the number of breakpoints is an input for the model.

PLR-NB can be a suitable choice for situations where sufficient information about the

time series characteristics (such as trend and seasonality) is available. Since the number of

breakpoints can be determined by observing changes in the behaviour of the time-series data,

PLR-NB only searches for the best location of the breakpoints, skipping the computational

overhead that MARS has for determining this number. We now discuss this method in more

detail.

In the PLR-NB approach, α breakpoints are enforced on X . Every possible combination

should be checked in order to find the best breakpoint locations. Denote by B a choice of

breakpoints {b1, . . . ,bα}. We also define b0 = 0 and bα+1 = t (independent of B).

A simple linear regression is performed for each piece, and the total error is calculated

as:

δB =
α+1

∑
k=1

bk

∑
j=bk−1+1

( fk(x j)− y j)
2

where fk(x j) is the predicted value for x j with respect to the linear regression fitted to its
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corresponding piece k.

We note again that this procedure is done for all possible sets of breakpoints, B. The

combination that produces the minimum δB will specify the breakpoint locations. Finally,

the breakpoint indexes associated with the minimum δB are used to calculate the supply or

demand forecasts ŷ′i = fk(xi) for each xi in X based on its corresponding piece k.

One drawback of PLR-NB is that the model needs to know α beforehand. However, it

can be a useful tool for evaluating the data based on a specific number of different pieces

while maintaining the model’s interpretability, for example, when the implementation dates

of new procedures or policies are known.

Error Analysis and Model Enhancement

Based on the slope of the last piece, the forecast supply and demand for week t +1 under

both MARS and PLR-NB is simply:

ŷ′t+1 = ŷ′t +
ŷ′t− ŷ′t−1

xt− xt−1
.

We can improve the forecast value for week t +1 (ŷ′t+1) by calculating its forecast error

(52; 53). We first fit an autoregressive (AR) model of order l using Conditional Maximum

Likelihood to the residual error (εi = yi− ŷ′i) data up to week t and use it to forecast the

error for week t +1:

ε̂t+1 = a0 +a1εt +a2εt−1 + · · ·+alεt−l, (3.3.1)

where a0,a1, . . .,al are the coefficients obtained from the AR model and ε̂t+1 is the forecast

error for week t +1. We finally calculate ŷt+1 = ŷ′t+1 + ε̂t+1, i.e., the improved supply or
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demand forecast value for week t +1, and use it as our final forecast value for that week.

Challenges

We now discuss general challenges that may be faced when MARS and PLR-NB are

employed in an online manner:

• Choosing between MARS and PLR-NB mostly depends on the setting of interest.

In particular, PLR-NB may be a better choice when seasonality in the data can be

captured, examining the data under a specific number of breakpoints is desired, for

example as a result of underlying knowledge about the data. However, MARS is more

suitable for real-time settings and uncertain situations where insufficient information

is available to identify the number of breakpoints.

• Predictions made using MARS and PLR-NB may degrade if there is a sudden tran-

sitory change in data. For instance, we found that holidays may affect the amount

of data collected in a particular week but the data follows its previous pattern after

the holidays have passed. We discuss this issue in greater detail in the case study

discussed in Section 3.4.

• Both MARS and PLR-NB are fitting piecewise linear models, and thus the slope of

the segment that ends with the most recent observation has a significant effect on the

forecast for the next week (as it may lead to a large underestimation/overestimation).

Although working with the cumulative sums for forecasting future supply and demand

can help address the issue of data sparsity, a particular challenge arises when cumulative

sums are employed in an online setting. Consider a situation where the demand before

week t has a steep slope resulting in a (relatively) high forecast for week t. However, upon
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observing the demand for week t, one finds out that the actual demand was considerably

lower. Thus, the slope that affects week t + 1’s forecast demand will be less steep than

what it was when only data up to week t−1 was available. This may result in the forecast

cumulative demand for week t + 1 being lower than the previously forecast cumulative

demand for week t, which is not possible. For instance, Figure 3.2a and Figure 3.2b

demonstrate the forecast value obtained by MARS and PLR-NB (with one breakpoint) for

week 7 and week 8, respectively. The cumulative forecast value for week 7 and week 8

are 99 and 93, respectively, under PLR-NB (this issue can also arise under MARS), which

cannot happen in practice. This is one consequence of considering an online setting where

modifying the predictions is not possible as real-time decisions are made. The sparser the

data, the more this issue can affect the models’ predictions. A possible solution for dealing

with such situations is to assume that the cumulative forecast value for week t +1 is equal

to the cumulative forecast value for week t. We will observe this issue in our case study

discussed in Section 3.4 and deal with it in the suggested manner.

(a) Forecast value for week 7 (b) Forecast value for week 8

Figure 3.2: Forecasting a negative non-cumulative value
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3.3.3 Resource Allocation Optimization

We allow for demand for resource r to be satisfied by resource r′. This can be represented

with a matrix C of size R×R, where an element (r,r′) of C is 1 if demand for resource r

can be satisfied by resource r′ and is 0 otherwise. Furthermore, the supply used in our MIP

model for resource r for week t is constrained as follows:

cr,t =

ŝr,t , if ŝr,t ≤ sr,t

sr,t , otherwise,
(3.3.2)

where sr,t and ŝr,t are the actual and forecast supply for resource r on week t, respectively.

The second case in (3.3.2) indicates that we cannot allocate resources beyond the actual

available supply. We will formulate our resource allocation as a Mixed Integer Program

(MIP). To do so, we require the following notation:

Indices

t index of time periods, t = 1, . . .,T

h index of customers, h = 1, . . .,H

r,r′ index of resource, r,r′ = 1, . . .,R

Data

cr,t the amount of resource r available at the supplier for assignment at time t (see (3.3.2) above)

ir,h,t−1 the inventory of resource r stored at customer h at time t−1

d̂r,h,t the estimated demand for resource r by customer h at time t

Decision variables

vr,r′,h,t the number of units of resource r′ assigned to customer h to satisfy demand for resource r

at time t. We only consider the set of vr,r′,h,t that correspond to C(r,r′) = 1.
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We formulate our objective function as follows:

Objective function

min max
h:∑R

r=1 d̂r,h,t>0

∑
R
r=1(d̂r,h,t−∑

R
r′=1 vr,r′,h,t− ir,h,t−1)

∑
R
r=1 d̂r,h,t

. (3.3.3)

The objective function (3.3.3) captures our notion of fairness: minimizing the largest

ratio of unmet demand over all customers. It could be modified to capture other notions of

fairness.

Constraints

H

∑
h=1

R

∑
r=1

vr,r′,h,t ≤ cr′,t , ∀r′, (3.3.4)

vr,r′,h,t ≥ 0 and integer valued, (3.3.5)

R

∑
r′=1

vr,r′,h,t ≤ d̂r,h,t , ∀r , ∀h. (3.3.6)

Constraint (3.3.4) prevents the over-allocation of available resources. Constraint (3.3.5)

ensures the integrality and non-negativity of the resource allocations and constraint (3.3.6)

keeps the resource allocated to each customer below the corresponding estimated demand.

If all of the estimated demand at time t can be met, any excess supply is held in inventory at

the hub.
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3.4 The CONCOR-1 trial: A case study for a proposed

application of the resource allocation model

COVID-19 Convalescent Plasma (CCP) has been assessed as an experimental treatment in a

number of randomized control trials worldwide (54).

The Randomized, Open-Label Trial of CONvalescent Plasma for Hospitalized Adults

With Acute COVID-19 Respiratory Illness (CONCOR-1) was a randomized clinical trial

(RCT) involving 72 academic and community sites across Canada, the USA, and Brazil (55).

The randomization in this RCT was performed at a ratio of 2:1 allocation to receive CCP or

standard of care for a planned study population of 1200 patients, stratified by age (< 60 and

≥ 60 years). The first CCP unit for the trial was collected on April 24, 2020, and the first

patient was randomized on May 14, 2020. The trial ceased on January 29, 2021 with a total

of 940 randomized patients. The objective of the trial was to assess whether transfusing

CCP reduces the proportion of patients requiring intubation or deaths at day 30 compared to

standard of care for hospitalized COVID-19 infected adult patients (55). The CONCOR-1

team at the McMaster Centre for Transfusion Research and Canadian Blood Services were

responsible for Canada’s (excluding Québec) supply and demand management of the CCP

products for patients enrolled in the trial. In what follows, as we are evaluating our approach,

we will take the viewpoint that the trial is in progress.

Canadian Blood Services (CBS) is responsible for collecting the CCP units and is the

national blood supplier across all provinces in Canada except Québec. Canada’s blood

supply chain network is currently centralized and comprises two levels: regional CBS

distribution sites and hospital blood banks. Nine CBS blood distribution sites are currently

located across Canada, and each centre attempts to meet the CCP demand from the hospital
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blood banks in its network. We use all available data from the trial which comes from 18

hospital hubs, 30 hospital sites, and 8 CBS distribution sites.

CCP is stored frozen and ideally must be transfused as soon as possible after being

thawed, but at most within five days (56). A patient who is randomized to the CCP arm

in the trial requires a single dose of approximately 500 ml or two doses of 250 ml (from a

single or two different donors) and the CCP unit is transfused to the patient within the first

24 hours after randomization (55).

It is challenging for CBS to make decisions on CCP allocation, since (i) the CCP supply

is limited and restricted by manufacturing policies and may not meet the total CCP demand,

(ii) the trial involves hospitals from geographically dispersed locations and multiple blood

distribution centres, (iii) the demand for CCP exhibits heterogeneity between different

geographic regions, (iv) there is limited knowledge or historical data about the disease

demographics making it difficult to forecast the supply and demand of CCP products,

(v) there are specific clinical requirements for administrating CCP transfusions, such as

specific product dose, ABO blood group compatibility, and medical condition requirements,

and (vi) the decisions must be made in real-time and once the CCP units are shipped to a

hospital hub, redistribution to other hospital hubs is undesirable. Hence, the decision for

every unit matters. The key observations of our work suggest that our proposed data-driven

MIP model can help balance the supply and demand of CCP products and lead to a fair

allocation of limited CCP products among hospital hubs.

The underlying network of our case study is shown in Figure 3.3. The corresponding

definitions and notations are listed as follows:

• l: represents a cluster and is defined as a geographic region with only one CBS distri-

bution site but one or more CBS donor collection sites, hospital hubs and individual
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hospital sites.

• g: represents an individual CBS donor collection site in cluster l.

• b: represents the CBS distribution site in cluster l.

• h: represents an individual hospital hub under CBS distribution site b in cluster l.

• p: represents an individual hospital site for hospital hub h in cluster l.
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CBS Donor Collection 
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CBS Distribution 
Site b 

CBS Donor Collection 
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Hospital Hub h 
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Hospital 2 Hospital p-1 

 

Hospital Hub h+1 

Figure 3.3: CCP allocation network

The structure in Figure 3.3 is a hub and spoke structure (a CBS distribution site is a

hub and its underlying hospital hubs are the spokes) and is consistent with our resource
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allocation MIP model proposed in Section 3.3.3. CBS distribution sites can centrally decide

to reallocate the blood products if there is excess supply in a particular CBS region. Thus,

we only consider a single CBS distribution site in our optimization problem. Based on the

agreements between CBS and Héma-Québec, the blood supplier in Québec, less common

blood groups (blood group AB and B) can be shared (55).

The CBS distribution site provides CCP to hospital hubs that in turn allocate units to

other hospital sites in the area. We only focus on the allocations from the CBS distribution

site to the hospital hubs.

As of May 2021, the distribution of ABO blood groups in Canada is O:46%, A:42%,

B:9%, and AB:3% (57). In general, plasma for AB and O blood groups are universal donor

and recipient, respectively. In practice, transfusing blood-specific units is prioritized. In

the CONCOR-1 trial, due to the limited resources for B and AB plasma, patients with O

and B blood groups can receive A and AB plasma, respectively, when an exact match is not

available.

The dataset that we work with includes the CBS distribution site’s available CCP units

after shipment at aggregate level for each blood group on specific dates starting from

September 1, 2020, up to January 25, 2021. It also contains data for the received CCP units

from the CBS distribution site for each hospital hub, whether randomized to a patient or

stored in inventory, from May 11, 2020, up to January 25, 2021. Furthermore, CCP-related

information such as product dose, ABO group, and whether a unit was broken or leaking

after being thawed for transfusion at a hospital hub are recorded. Table 3.1 provides a

summary of the dataset’s attributes, their description, and their format.

We first create a cumulative weekly dataset of the number of new 500 ml units assigned

to randomized patients at each hospital hub (considered as their CCP demand) and the total
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Dataset Attribute Description Format
C

B
S

su
pp

ly
da

ta date CBS distribution site’s aggregate available units after ship-
ment on a date

Date

A Total number of blood group A CCP (250 ml) units Integer
AB Total number of blood group AB CCP (250 ml) units Integer
B Total number of blood group B CCP (250 ml) units Integer
O Total number of blood group O CCP (250 ml) units Integer
Total Total number of CCP (250 ml) units Integer

H
os

pi
ta

lH
ub

da
ta

hospitalhub_ID Unidentifiable unique ID of a hospital hub String
receiveddate Hospital hubs received CCP units from the CBS distribu-

tion site on a date
Date

DNL The CCP unit’s de-identified ID String
productABOgroup The ABO blood group of the CCP unit String
productdose The CCP unit dose with 1 indicating 250 ml units and 2

indicating 500 ml units
Integer

matched Boolean variable with 1 indicating the CCP unit was
matched with a randomized patient (indicating a demand),
0 if the unit was stored in the hospital hub’s inventory

Boolean

thawed Boolean variable with 1 indicating that the unit broke
when thawing, 0 otherwise

Boolean

Table 3.1: Dataset description

received units from CBS for each resource. We cumulatively sum hospital hubs’ weekly

received CCP units and CBS weekly inventory difference to calculate CBS cumulative new

weekly supply. The dataset is sparse in terms of the available information on CCP supply

and demand. To maintain and promote efficient CCP allocation, prior estimation of the

hospital hub’s demand and CBS supply is necessary. One could either translate the CHIME

model outputs to CCP supply or demand, or build a CHIME-like model that incorporates

our variables. However, we found it more effective to work with the supply and demand

directly and use PLR forecasting models. One reason is that the proportion of patients

consenting to the trial also affects the total CCP demand. The consent rate is not random and

can be affected by many factors such as a patient’s religion and other competing treatment

strategies. So, the patient population may not be the same as the population considered in the
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CHIME or CHIME-like models. Furthermore, given the limited, sparse and highly-varied

pattern of CCP supply and demand in our dataset, PLR models appear to be an effective

tool for forecasting CCP units.

3.4.1 Model Assumptions

We have created an environment for weekly allocation of CCP units from the CBS distri-

bution site to the hospital hubs participating in the CONCOR-1 trial. Our dataset contains

CBS supply data from a later date than when the first patient was randomized to receive

a CCP unit. So, we consider the week that CCP supply was first reported as the starting

week in our model (week of August 31, 2020). The last week in the dataset is the week of

January 25, 2021, so the duration T of our model is 22 weeks. We combined hospital hubs

that are very close in distance, under the same distribution network and with few COVID-19

patients. Small hospitals in distant areas with a very low number of hospitalized COVID-19

patients were removed from the study dataset.

Table 3.2 shows the actual supply and demand (500 ml units) reported for each resource

and in total in this period. There are a total of 15 A, 14 O, 9.5 B, and 14 AB 500 ml CCP

units received from Héma-Québec recorded in the dataset. The numbers in Table 3.2 are

only associated with CBS supply (excluding any units received from Héma-Québec). We

observe in the data that 4.5 A, 3 O, 2 B, and 0.5 AB 500 ml CCP units are unused at the

hospital hubs because they were leaking or broken after being thawed for transfusion. These

units are not included in our model as the wastage due to the thawed CCP units is negligible.

CCP Units (500 ml) A O B AB Total
Supply 157 84.5 29 26 296.5
Demand 131.5 94.5 34.5 33.5 294

Table 3.2: CBS CCP supply and CCP demand (August 31, 2020 - January 25, 2021)
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We assume that we have no information on the actual CCP supply and demand when

deciding on how to allocate the CCP units. Thus, we perform weekly forecasts considering

only the available data up to that week. The open source scikit-learn-contrib library py-earth

(58) is used for applying the MARS model, where the maximum degree of interaction terms

generated by the forward stage (the max_degree parameter) is set to 2 to better deal with the

nonlinearities in the data, and the remaining parameters follow the default values. We are

not performing any validations since our dataset is sparse and the performance of the models

cannot be significantly enhanced as using the cumulative sums has already smoothed the

dataset. In general, a k-fold cross validation can be used with both MARS and PLR-NB to

obtain a less biased estimate. The PLR-NB forecasting model, which requires specifying α ,

needs at least α +2 data samples, so for ease of comparison with MARS, we start making

predictions (α +2)+1 weeks from the start of available data under both models. Based on

the number of COVID-19 waves that occurred in the dataset period, we choose α = 1 as the

specified number of breakpoints in PLR-NB. Finally, a lag l = 1 is used in the autoregressive

model of residual errors in (3.3.1). This choice is due to a week’s supply and demand

tending to be closer to the amounts for the most recent week, as well as trying to avoid

sudden changes that we might face when considering a larger lag.

We deal with the challenges that might occur in our forecasting process, as discussed

in Section 3.3.2; if a negative non-cumulative forecast value on week t + 1 arises, we

instead set the cumulative forecast value equal to the cumulative forecast value for week

t. Furthermore, we account for expected sudden transitory changes in data, such as weeks

containing holidays. We observe that the hospital hubs’ requested CCP units are relatively

lower on weeks containing the Christmas, Boxing Day, and New Year’s Day statutory

holidays. This issue is due to fewer working days or reduced staffing for these weeks. Thus,
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it is important to account for these weeks as they can be falsely detected as breakpoints. We

have chosen the value of 0.7 as a reasonable adjustment factor and multiply the slope of the

forecast line going through the weeks containing Christmas, Boxing Day, and New Year’s

Day holidays by this factor. One might need different adjustment factors depending on the

extent the supply and demand are affected on a particular holiday.

From this point on, wherever we refer to MARS and PLR-NB, we are considering

the model’s forecasts after accounting for the mentioned challenges and performing error

analysis. Since CCP is stored in 250 ml units, we allocate 250 ml units from CBS to the

hospital hubs in our model. The forecast values are decimal values; therefore, we round the

supply and demand forecast values to the nearest integer so that all values correspond to

250 ml units. All the results reported in the figures and tables correspond to 500 ml units.

We are interested in making a fair allocation of different ABO blood group CCP units

among the hospital hubs while minimizing their unmet CCP demand proportions. We

consider four resources (R = 4) of A, O, B, and AB and examine two compatibility matrices

C for assigning the CCP units in our MIP problem , as described in Section 3.3.3: (i) the

identity compatibility matrix, and (ii) the ABO compatibility matrix used in the CONCOR-1

trial which allows the transfusion of A and AB plasma to patients with O and B blood groups,

respectively, when the same blood group is not available (CONCOR-1 compatibility matrix).

For our primary study, we use the forecast supply and demand for each of the resources in

our model for each week. Furthermore, to evaluate different allocation scenarios, we also

forecast the aggregate supply and demand for each week and consider the distribution of

ABO blood groups in Canada as the probabilities for calculating the forecast CCP for each

resource (59). For this sensitivity analysis, we use the following probabilities based on the

distribution of Canadian blood groups on each run of our model for generating the supply and
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demand for each blood group: wcA = whA = 0.42, wcO = whO = 0.46, wcB = whB = 0.09, and

wcAB = whAB = 0.03, where wcr and whr are the supply and demand probabilities for blood

group r, respectively. The goal of the sensitivity analysis is to determine the performance

of the model in situations where it is only possible to forecast the aggregate amount of

resources in terms of supply and demand. This analysis also helps gain insights as to the

generalizability of the results of our primary study.

We assume that both CBS and hospital hubs can store the excess units at the end of

each week to use them in later weeks. We solve our MIP model based on forecast supply

and demand for each resource, and the actual inventories held at CBS and hospital hubs

on the week under study. We assume that the hospital hubs can use a compatible CCP

unit according to the CONCOR-1 compatibility matrix (if available) for a patient when

the same blood group CCP is not available. We examine both identity and CONCOR-1

compatibility matrices for solving our MIP model; however, at the inventory level of the

hospital hubs, only the CONCOR-1 compatibility matrix is used. We shall see later that

this is a good combination for the situations where forecast supply and demand are used,

and the forecasting errors are not too large. The identity compatibility matrix at the MIP

level prevents issues in terms of greedy allocation of scarce resources, and the CONCOR-1

compatibility matrix at the inventory level of the hospital hubs allows for the efficient

compensation of forecasting errors.

Since we know the actual demand for a particular week only after that week has passed

and since the supply is limited, we might not fully meet all demands. In these cases, the

unmet demand is carried over to the next week. We note that the optimization model ensures

that the CCP units of a resource allocated to a hospital hub are never more than its forecast

demand. Excess units stored in hospital hubs’ inventories are due to the possible difference
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between the actual and forecast values.

A total of m runs are used to calculate the mean final unmet demand (uT ) and the mean

ratio of final unmet demand to total demand (zT ) for each hospital hub:

uT =
∑

R
r=1 uTr

m

where the duration of our model is T = 22 weeks, and uTr is the hospital hub’s final unmet

demand for resource r and,

zT =
∑

R
r=1 uTr

m∑
T
t=1 ∑

R
r=1 dtr

where dtr is the hospital hub’s actual newly-added demand on week t for resource r.

3.4.2 Results

In Figure 3.4 and Figure 3.5, we show the (real-time) cumulative weekly supply and demand

forecasts over time, respectively, in terms of total, A, O, B, and AB CCP units after using

MARS and PLR-NB models for the dataset considering only the available data up to that

week. The real-time demand forecasting for each week in Figure 3.5 uses the cumulative

aggregate demand data over all hospital hubs up to that week. We observe that both models

perform well even with our limited dataset. Table 3.3 and Table 3.4 show RMSE and MAPE

of our supply and demand forecasts, respectively, under MARS and PLR-NB forecasting

models for total, A, O, B, and AB CCP units; lower values are better. We observe that MARS

fits the data well after performing error analysis and accounting for the mentioned challenges

discussed in Section 3.3.2 and Section 3.3.2. We note that we are making forecasts from

week 4, which explains the severe overestimation for week 4 in Figure 3.4e where the data

is sparse. In such situations, the cumulative value remains the same until a subsequent
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cumulative forecast is higher.

The models have similar performance in terms of their overall prediction errors. We

observe that if there is only one sudden change in the behaviour of the data, enforcing only

one breakpoint (as in PLR-NB) yields better results than MARS in some forecasts, but

the difference is not significant. However, if more breakpoints are needed for the model

to best fit the data, enforcing a specified number of breakpoints can result in significant

errors. In such cases, MARS makes better forecasts by determining the optimal number

of breakpoints. Therefore, we believe MARS is a better choice for this case study where

the allocations are done in a real-time manner and the number of breakpoints can only be

reasonably determined in hindsight.

Hub MARS PLR-NB

Total A O B AB Total A O B AB
Hospital Hub 1 1.06 0.43 0.84 0.43 0.41 1.51 0.53 0.95 0.52 0.60
Hospital Hub 2 1.74 1.21 0.91 0.84 0.58 1.36 0.87 0.65 0.72 0.81
Hospital Hub 3 2.97 1.88 1.56 0.81 0.87 2.98 1.47 1.77 0.69 0.83
Hospital Hub 4 2.33 1.59 0.95 0.61 0.49 2.12 1.06 1.43 0.72 0.85
Hospital Hub 5 1.76 1.10 0.80 1.02 0.46 1.72 1.48 0.82 1.21 0.43
Hospital Hub 6 3.00 1.38 1.73 1.06 0.66 3.26 1.45 1.48 1.12 0.83
Hospital Hub 7 2.64 2.01 1.04 - - 1.95 2.37 0.79 - -
All Hospital Hubs 7.01 4.27 1.99 1.57 1.57 7.33 4.06 1.76 1.30 1.71
CBS Distribution Site 10.68 5.25 5.41 1.78 3.35 9.99 5.15 6.43 2.36 3.33

Table 3.3: RMSE of supply and demand forecasts

Table 3.6 and Table 3.7 report our CCP allocation model’s performance under MARS

and PLR-NB, respectively, in terms of uT , zT for our primary study, i.e., allocating the

resources based on the forecast supply and demand for each blood group. In Table 3.8, we

compare the results to both when no forecasting is required, i.e., the actual values of supply

and demand for each resource are known for each week and the actual allocations in the

CONCOR-1 trial. In all of these three tables, two different compatibility matrices (identity

and CONCOR-1) are chosen for the MIP allocation model. Finally, in Table 3.9 and Table
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(a) Total units

(b) A units (c) O units

(d) B units (e) AB units

Figure 3.4: Model performance in forecasting CCP supply
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(a) Total units

(b) A units (c) O units

(d) B units (e) AB units

Figure 3.5: Model performance in forecasting CCP demand
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Hub
MARS

Total (%) A (%) O (%) B (%) AB (%)
Hospital Hub 1 16.07 17.05 19.73 20.45 22.73
Hospital Hub 2 12.87 18.79 15.50 17.82 17.86
Hospital Hub 3 11.32 19.41 12.59 19.89 18.67
Hospital Hub 4 21.70 25.45 53.45 16.75 16.67
Hospital Hub 5 7.31 15.26 11.52 22.35 17.36
Hospital Hub 6 15.12 13.86 14.60 22.66 14.94
Hospital Hub 7 27.91 25.58 27.12 - -
All Hospital Hubs 3.67 6.45 3.78 18.36 14.46
CBS Distribution Site 6.12 6.01 9.90 7.59 18.00

Table 3.4: MAPE of supply and demand forecasts under MARS

Hub
PLR-NB

Total (%) A (%) O (%) B (%) AB (%)
Hospital Hub 1 25.41 25.00 25.36 27.27 36.36
Hospital Hub 2 9.68 12.94 10.77 15.50 32.58
Hospital Hub 3 12.32 14.42 14.51 18.18 20.88
Hospital Hub 4 25.02 23.85 61.74 27.53 31.82
Hospital Hub 5 7.18 16.66 10.54 26.89 17.06
Hospital Hub 6 13.55 9.31 12.24 25.77 21.29
Hospital Hub 7 30.52 56.28 31.82 - -
All Hospital Hubs 4.83 6.27 3.46 15.55 18.51
CBS Distribution Site 5.42 5.21 11.33 11.40 17.73

Table 3.5: MAPE of supply and demand forecasts under PLR-NB

68



M.Sc. Thesis – M. Akbari-Moghaddam McMaster University – Computer Science

3.10, we analyze the sensitivity of our model to different allocation settings by forecasting

the aggregate supply and demand under MARS and PLR-NB, respectively, and using the

distribution of Canadian blood groups for calculating supply and demand for each resource.

A total of m = 300 runs are considered for calculating uT and zT and the standard error (SE)

of their corresponding 95% confidence intervals is reported.

Identity CONCOR-1

Hub Total Demand Total Forecast Demand uT zT (%) uT zT (%)
Hospital Hub 1 12.5 12 1.00 8.00 1.00 8.00
Hospital Hub 2 29 30.5 0.50 1.72 1.00 3.45
Hospital Hub 3 74 79 4.50 6.08 10.00 13.51
Hospital Hub 4 26 30.5 1.00 3.85 1.50 5.77
Hospital Hub 5 30 30 1.50 5.00 1.00 3.33
Hospital Hub 6 105 110.5 8.50 8.10 10.00 9.52
Hospital Hub 7 17.5 20.5 0 0 0 0

Table 3.6: Resource allocation results under forecast supply and demand for each resource
(MARS)

The key observations obtained from using our data-driven resource allocation model in

the CONCOR-1 case study are as follows:

1. The role of hospital hubs’ proportion of CCP demand — A hospital hub’s proportion

of CCP demand for a resource can lead to its demand not being fully met if the available

supply for the resource on a particular week is limited compared to its total demand for the

same week. Our approach can help minimize the unmet CCP demand ratios and lead to

balanced and fair CCP allocation decisions.

We note that there is a shortage of 10 O, 5.5 B, and 7.5 AB CCP units due to the

limitation in supply for these blood groups, as reported in Table 3.2. Thus, the CCP demand

proportion of a hospital hub for a particular resource and the variance in the total demand

between the hospital hubs in each week can affect uT and zT . For instance, if the available
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Identity CONCOR-1

Hub Total Demand Total Forecast Demand uT zT (%) uT zT (%)
Hospital Hub 1 12.5 11.5 1.00 8.00 1.00 8.00
Hospital Hub 2 29 30.5 1.50 5.17 1.50 5.17
Hospital Hub 3 74 79 5.00 6.76 3.00 4.05
Hospital Hub 4 26 30.5 0.50 1.92 1.00 3.85
Hospital Hub 5 30 30.5 1.00 3.33 1.00 3.33
Hospital Hub 6 105 109.5 9.00 8.57 11.00 10.48
Hospital Hub 7 17.5 20.5 0 0 0.50 2.86

Table 3.7: Resource allocation results under forecast supply and demand for each resource
(PLR-NB)

MIP Allocations

Hub Total Demand Identity CONCOR-1 Allocations in CONCOR-1

uT zT (%) uT zT (%) uT zT (%)
Hospital Hub 1 12.5 1.50 12.00 1.00 8.00 3.00 24.00
Hospital Hub 2 29 1.00 3.45 0.50 1.72 1.50 5.17
Hospital Hub 3 74 7.00 9.46 4.00 5.41 20.00 27.02
Hospital Hub 4 26 2.00 7.69 0.50 1.92 4.50 17.31
Hospital Hub 5 30 1.50 5.00 0.50 1.67 5.00 16.67
Hospital Hub 6 105 10.00 9.52 7.00 6.67 27.00 25.71
Hospital Hub 7 17.5 0 0 0 0 1.00 5.71

Table 3.8: MIP model allocations under actual supply and demand versus actual allocations
in CONCOR-1

supply on week t can meet all the demand on week t, a hospital hub’s proportion of CCP

demand for a resource is not an issue. On the other hand, if the available supply on week t

is limited compared to the total demand for the same week, a hospital hub’s high demand

proportion for a limited resource CCP can lead to its demand not being fully met. This issue

is unavoidable in our setting where we make predictions and allocations on a weekly basis

and the optimization model finds a solution based only on the current situation.

We observe in Table 3.6 and Table 3.7 that Hospital Hub 1, Hospital Hub 3, and Hospital

Hub 6 have larger zT under both compatibility matrices. Hospital Hub 1’s zT is high because

of its unmet CCP demand proportions. However, its uT is not high and is due to the demand
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Identity CONCOR-1

Hub Total
Demand

Total Forecast
Demand

uT ±SE zT ±SE (%) uT ±SE zT ±SE (%)

Hospital
Hub 1

12.5 10.5 1.00±0.03 8.04±0.26 0.93±0.03 7.47±0.27

Hospital
Hub 2

29 30 1.62±0.10 5.57±0.36 1.65±0.10 5.70±0.34

Hospital
Hub 3

74 77 3.66±0.15 4.94±0.20 5.97±0.20 8.07±0.27

Hospital
Hub 4

26 28.5 1.29±0.08 4.97±0.31 1.52±0.08 5.85±0.30

Hospital
Hub 5

30 29.5 1.26±0.06 4.20±0.19 1.21±0.05 4.03±0.16

Hospital
Hub 6

105 110 8.57±0.17 8.16±0.16 7.63±0.19 7.27±0.18

Hospital
Hub 7

17.5 20.5 0.02±0.01 0.14±0.07 0.42±0.03 2.38±0.15

Table 3.9: Resource allocation results under aggregate forecast supply and demand (MARS)

Identity CONCOR-1

Hub Total
Demand

Total Forecast
Demand

uT ±SE zT ±SE (%) uT ±SE zT ±SE (%)

Hospital
Hub 1

12.5 10.5 0.94±0.04 7.49±0.30 0.97±0.04 7.73±0.30

Hospital
Hub 2

29 30 1.28±0.07 4.41±0.26 1.42pm0.08 4.89±0.28

Hospital
Hub 3

74 77 3.95±0.19 5.34±0.25 6.28±0.20 8.48±0.28

Hospital
Hub 4

26 28.5 0.58±0.06 2.24±0.24 1.04±0.07 4.02±0.28

Hospital
Hub 5

30 29.5 0.98±0.03 3.28±0.11 1.17±0.05 3.89±0.16

Hospital
Hub 6

105 110 9.3±0.14 8.86±0.14 9.15±0.29 8.71±0.28

Hospital
Hub 7

17.5 20.5 0.06±0.02 0.31±0.10 0.56±0.04 3.17±0.25

Table 3.10: Resource allocation results under aggregate forecast supply and demand
(PLR-NB)
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that was not met on the last week in our model (and may have been satisfied if we continued

for additional weeks). In fact, the supply and demand for the last week can highly affect

the final unmet demands of all hospital hubs. Hospital Hub 3 and Hospital Hub 6 require a

higher proportion of B and AB CCP units compared to the other hospital hubs on weeks

when the supply for these units is limited. A hospital hub’s unmet demand on a particular

week is moved to the next week and will have an effect on its future allocations. We observe

that the rest of the hospital hubs have similar uT and zT values. This suggests that our

proposed data-driven MIP model leads to a reasonable and fair balance of limited CCP

products between the hospital hubs under both the MARS and PLR-NB forecasting models.

2. The role of compatibility matrix

2.1. When the actual supply and demand is unbalanced, not known before allocation, and

hence error due to forecasting is present, using the identity compatibility matrix in the

MIP level is preferred as it prevents the allocation of limited resources to demand for

a more abundant resource.

We notice in Table 3.6 and Table 3.7 that the total uT for the identity compatibility matrix

is lower than for the CONCOR-1 compatibility matrix. While the CONCOR-1 compatibility

matrix satisfies as much demand as possible in the current week, its use in this real-time

setting can cause issues for future demand, in particular by allocating resources with lower

long term supply to demands that can (eventually) be satisfied by more abundant resources.

The identity compatibility matrix is hence preferred for situations with unbalanced demand

and supply. We found that under both models and under the CONCOR-1 compatibility

matrix, the shortage for O units was compensated by excess A units, and excess B demands

were met by AB units. Since the supply for A units was the highest during the trial, and
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the supply for AB units was the lowest, using AB units to meet demand from other blood

groups led to shortages of AB units in future weeks. Furthermore, since the supply and

demand forecasts are used instead of the actual values, we might overestimate the demand

for a rare resource, such as the AB blood group CCP that is also compatible with another

resource, so its allocation increases the uT of some hospital hubs at the end. However, under

both models and under the identity compatibility matrix, greedy allocations at the MIP

level are prevented. If the forecasting error is not too large, the combination of the identity

compatibility matrix at the MIP level and the CONCOR-1 compatibility matrix at the

inventory level of hospital hubs is preferred under forecast supply and demand as the identity

compatibility matrix at the MIP level prevents greedy allocations that cause issues for future

demand, but the forecasting error results in the allocation of some compatible resources

that combined with the CONCOR-1 compatibility matrix at the hospital hubs’ inventory

level can help meet more demand. Therefore, for our primary study, we recommend this

combination of compatibility matrices that prevents future misallocation and absorbs the

forecasting errors in an effective manner.

2.2. The CONCOR-1 compatibility matrix results in lower unmet demand when the actual

supply and demand for each week is known. The total unmet demand under this

compatibility matrix is close to the lowest achievable value, the actual shortage in

supply.

While using the identity compatibility matrix in Table 3.6 and Table 3.7 where supply and

demand forecasts are used exhibits better results, the opposite is true when solving the MIP

model based on the assumption of knowing the actual supply and demand for each week.

This can be observed by comparing the total uT in Table 3.8 under "MIP Allocations" for

both compatibility matrices (23 versus 13.5). When the actual supply and demand are used,
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over allocation of limited resources will not happen and the final unmet demand is close to

the actual supply shortage. We note again that 5.5 B, and 7.5 AB CCP units cannot be met

due to supply shortage which is almost exactly the total uT result of our MIP model under the

CONCOR-1 compatibility matrix (13.5). This observation also reinforces the notion in the

previous observation that forecasting errors (combined with unbalanced supply and demand)

are what drive the recommendation of the identity compatibility matrix under forecast supply

and demand. The identity compatibility matrix does not allow cross-transfusion, so 10 O

units cannot be satisfied by the excess A units due to supply shortage. The total unmet

demand under the identity compatibility matrix (23) further validates the performance of

our model in efficiently allocating the available resources as it is equal to the actual shortage

in supply, as shown in Table 3.2.

2.3. The identity compatibility matrix results in lower unmet demand under forecast

supply and demand compared to when it is used under actual supply and demand, as

reasonable forecast error can better help in meeting the demand.

Comparing the zT values in Table 3.6 and Table 3.7 with Table 3.8 under the CONCOR-1

compatibility matrix for each hospital hub, we observe that zT for all hospital hubs is

improved (or is the same) in Table 3.8, significantly so for Hospital Hub 3 and Hospital Hub

6. Furthermore, the zT values in Table 3.8 are closer to each other under the CONCOR-1

compatibility matrix than those reported in Table 3.6 and Table 3.7, where the results are

affected by the forecasting errors. However, we notice that all zT values in Table 3.6 and

Table 3.7 under the identity compatibility matrix are lower than (or the same as) those in

Table 3.8. The reason is that using the identity compatibility matrix at the MIP level under

actual supply and demand is not a good choice considering that the MIP model never assigns

CCP units more than the actual demand. This choice leads to the CONCOR-1 compatibility
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matrix at the inventory level of the hospital hubs not helping at all in meeting the demand.

However, under forecast supply and demand, although the identity compatibility matrix

prevents the allocation of a resource to a demand for another resource, the forecasts induce

some compatible assignments. Hence, when the identity compatibility matrix at the MIP

level is combined with the CONCOR-1 compatibility matrix at the inventory level of the

hospital hubs, and the supply and demand forecasts do not have large errors, there is more

chance to meet the demand, as what is observed for Hospital Hub 3 and Hospital Hub 6.

2.4. The MIP model’s results after using the aggregate forecast supply and demand

(sensitivity analysis) are close to the primary study when the identity compatibility

matrix is used, and improved under the CONCOR-1 compatibility matrix. However,

the identity compatibility matrix is a better choice than the CONCOR-1 compatibility

matrix when using the aggregate forecast supply and demand and in the presence of

forecast errors, consistent with what is observed in the primary study.

We notice that although the results under the identity compatibility matrix remain almost

unchanged under both models, the total uT and zT values under the CONCOR-1 compatibility

matrix in Table 3.9 and Table 3.10 are lower than those in Table 3.6 and Table 3.7. This

appears to arise due to the fact that including randomness for generating the supply and

demand for each blood group based on the aggregate supply and demand may slightly lower

the forecasting error. Furthermore, performing sufficient runs helps to smooth the effect

of scenarios where resources with limited supply, such as the AB blood group CCP, are

allocated in a greedy manner and cause issues for future demand. We note that the results

under the identity matrix are better than those under the CONCOR-1 compatibility matrix in

Table 3.9 and Table 3.10 as the identity compatibility matrix prevents any cross-allocation of

units and lowers the effect of forecast errors, consistent with what we observed in Table 3.6
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and Table 3.7. Comparing the uT and zT values in Table 3.9, Table 3.10, and Table 3.8 under

"MIP Allocations", it is important to note that while having exact knowledge of supply and

demand leads to a fairer allocation, the degradation in performance is not unreasonable if we

use the forecast values instead, further supporting the efficacy of our approach. However, as

previously discussed, using the identity compatibility matrix in the MIP model under actual

supply and demand leads to more unmet demand (as compared to using the CONCOR-1

compatibility matrix) due to not allocating excess units of compatible resources, which

prevents the CONCOR-1 compatibility matrix at the inventory level of the hospital hubs to

help meet the demand. Similar to our primary study, if the forecast errors are not too large,

using the identity compatibility matrix at the MIP level under forecast supply and demand

results in making some compatible assignments that can better help meet the demand when

combined with the CONCOR-1 compatibility matrix at the hospital hubs’ inventory level.

For this case study and based on all the above observations, we conclude that under both

forecasting models, our primary study when the identity compatibility matrix is used at the

MIP level is the most promising choice for our real-time setting. The reason is that as long as

the forecast errors for the individual blood groups are not too large, using the combination of

the identity compatibility matrix at the MIP level and the CONCOR-1 compatibility matrix

at the inventory level helps in both preventing greedy allocations and compensating for

forecasting errors. Furthermore, no randomness due to supply and demand probabilities is

included in this choice for calculating the supply and demand for each blood group (as what

is assumed in our sensitivity analysis), and the assignments of the model are not affected by

any ABO blood distributions.

3. The role of the MIP model — The results obtained from our MIP model both under

actual and forecast supply are preferable to what was used in practice.
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We compare uT and zT for both compatibility matrices using the MIP model allocations

under actual supply and demand, and the actual allocations in the CONCOR-1 trial. We

observe that the results under "MIP Allocations" are more fair than those under "Allocations

in CONCOR-1" (the zT values are closer to each other). Furthermore, the total uT under

"MIP Allocations" is notably lower (23 and 13.5 versus 62) which further supports the use of

our optimization model, as it accounts for the hospital hubs’ unmet demand and inventories.

3.5 Conclusion and Future Work

Decision-makers often face challenges in terms of (i) allocating limited resources, such as

vaccines, blood products, and medical equipment, and (ii) forecasting the supply and demand

for these resources during epidemics as there is limited knowledge and historical data about

disease demographics. This work has considered the problem of real-time short-term supply

and demand forecasting and fair allocation of limited resources during epidemics by using

PLR forecasting models and introducing a data-driven MIP resource allocation model. We

have studied the application of our proposed MIP model in a CCP clinical trial case study

with the objective of minimizing each hospital hub’s unmet ratio of CCP demand. We

showed that as long as a hospital hub does not have a high demand proportion for a limited

blood group CCP on a particular week (in which case a fair allocation is not possible),

our MIP model leads to a balanced and fair final unmet ratio of CCP demand between the

hospital hubs under both forecasting models. We also showed that allocating a compatible

resource to satisfy the demand for a resource helps in situations where the actual supply

and demand is known, but might be problematic when we are forecasting the supply and

demand and the actual supply of the compatible resource is limited. It would be interesting

to investigate the range of the forecasting errors within which a particular compatibility
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matrix is preferred.

Examining PLR forecasting models on larger datasets and comparing their performance

with more advanced machine learning and time-series forecasting models could be in-

vestigated in future work. We have addressed several challenges that arise when dealing

with sparse data in a real-time setting. We are interested in evaluating other forecasting

models that can adapt to these challenges while yielding reasonable forecasts. It would be

worthwhile to investigate our MIP model’s performance when other supply and demand

forecasting models are used.

Finally, multiple objective functions and different notions of fairness can be considered in

a single resource allocation problem. Using more than one objective function and focusing

on other notions of fairness such as minimizing the aggregate unmet demand over all

hospital hubs or minimizing the transportation costs of shipping CCP units with respect

to the location of the hospital hubs are examples of problems of interest. It would also be

interesting to see our MIP model’s performance when applied to other allocation settings

with limited supply. Our MIP model only considers a centralized supplier, thus we leave the

model’s evaluation with the presence of multiple suppliers to future investigation.
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Chapter 4

Conclusion

Resource management is challenging when exact information about the supply and/or de-

mand for resources is not known before making resource allocation decisions. Many other

factors can affect this process such as limited historical information about the resources, lim-

ited supply and heterogeneous demand, and the necessity of real-time or timely allocations.

Thus, decision makers often use supply and/or demand estimates to allocate the available

resources more efficiently. This thesis studied two problems in resource management that

are similar in the sense that they consider scenarios where there are high and heterogeneous

demand for a limited resource, exact information about the supply and/or demand is not

available within the decision making period, and a timely resource allocation is preferred.

Both problems considered scenarios where only estimates of the demand is known and the

second problem also considered estimating the supply for the resources.

In the first problem, we studied scheduling a single-server system with job processing

time estimates. We have introduced SEH, a novel heuristic that combines the merits of two

size-based scheduling policies and requires minimal calculation overhead and no information

about the jobs, rather than their size estimates. Our numerical results demonstrated that our
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heuristic has desirable performance in minimizing both the MST and mean slowdown of

the system when jobs exhibit estimation error distribution variance that is seen in practical

settings. In future, we are interested in performing more investigations on how far SEH is

from optimal and examining this policy under various estimation error models. It would also

be worthwhile to examine the performance of policies that provide worst case performance

guarantees and compare them to the performance of SEH. Finally, studying the extension

and evaluation of SEH in multi-server systems in the presense of inexact job sizes is another

candidate for future work.

The second problem tackles the issue of real-time short-term supply and demand fore-

casting and fair allocation of limited resources during emerging epidemics. We assumed

that we have no historical data and the available data is very sparse and limited, which

is observed during emerging epidemics. Furthermore, we did not rely on demographic

information and epidemiological models, which require indeterminate parameters (such

as location and time-specific parameters) and a periodic update of the parameters. The

challenges that may arise in an online setting due to extrapolation and sparse data were

addressed by suggesting potential solutions. We studied the application of our data-driven

model in a CCP clinical case study and provided numerical results of the performance of our

model in fairly allocating the CCP units and minimizing the unmet demand ratio for each

of the participating hospital hubs. In future, we are interested in examining our model on

larger datasets and compare our model forecasts with those from more advanced machine-

learning and time-series models that can adapt to the mentioned challenges. Furthermore,

investigating the use of multiple objective functions, focusing on other notions of fairness,

considering multiple suppliers, and deploying our model to other allocation settings with

limited supply is of interest.
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