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Abstract

Latent class regression (LCR) is a statistical method used to identify qualitatively

different groups or latent classes within a heterogeneous population and commonly

used in the behavioural, health, and social sciences. Despite the vast applications, an

agreed fit index to correctly determine the number of latent classes is hotly debated.

To add, there are also conflicting views on whether covariates should or should not

be included into the class enumeration process. We conduct a simulation study to

determine the impact of covariates on the class enumeration accuracy as well as

study the performance of several commonly used fit indices under different population

models and modelling conditions. Our results indicate that of the eight fit indices

considered, the aBIC and BLRT proved to be the best performing fit indices for class

enumeration. Furthermore, we found that covariates should not be included into the

enumeration procedure. Our results illustrate that an unconditional LCA model can

enumerate equivalently as well as a conditional LCA model with its true covariate

specification. Even with the presence of large covariate effects in the population,

the unconditional model is capable of enumerating with high accuracy. As noted

by Nylund-Gibson and Masyn (2016), a misspecified covariate specification can easily

lead to an overestimation of latent classes.
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Therefore, we recommend to perform class enumeration without covariates and de-

termine a set of candidate latent class models with the aBIC. Once that is determined,

the BLRT can be utilized on the set of candidate models and confirm whether results

obtained by the BLRT match the results of the aBIC. By separating the enumeration

procedure of the BLRT, it still allows one to use the BLRT but reduce the heavy

computational burden that is associated with this fit index. Subsequent analysis can

then be pursued accordingly after the number of latent classes is determined.
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Chapter 1

Introduction

1.1 Latent Variable Models

Latent variable models (LVM) are popular statistical models commonly used in the

behavioural, health and social sciences. In such fields, hypothetical constructs such as

intelligence, social status, and happiness are regarded as “hidden” or “latent”, since

these constructs are not directly observable or measurable in the population (Everitt,

1984). Rather it is assumed that the latent variables can be indirectly measured by

a set of observable variables known as manifest variables or items.

Table 1.1 is a unified framework of LVM presented by Muthén (2008). LVM can

be classified according to the type of analysis and whether the latent variables are of

strictly categorical, strictly continuous, or of mixed type. Each entry of Table 1.1 is a

distinct LVM model, with rows separating models into cross-sectional and longitudinal

models and columns corresponding to the metric level of the latent variables. Those

interested in an in-depth overview of the models presented in Table 1.1 can refer to

Muthén (2008).
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Table 1.1: Classification of latent variable models as presented by Muthén (2008).

Latent Variables

Model Type Continuous Categorical Hybrids

Cross Sectional Factor analysis,
SEM

Regression mixture analysis,
Latent Class Analysis

Factor mixture
analysis

Longitudinal Growth analysis
Latent transition analysis,

Latent class growth analysis
Growth mixture

models

In this thesis, we study categorical latent variables of cross sectional nature, specif-

ically latent class analysis (LCA) models. The objective of LCA is to classify respon-

dents into homogeneous subgroups or latent classes based on their observed responses

to a set of items that may be categorical or continuous. Generally, latent profile

analysis is used when items are continuous and latent class analysis when items are

categorical. Applications of LCA can be found in various substantive research areas

such as health, behavioural, and social sciences. Some interesting examples include

relating eating disorders patients to mortality rates (Crow et al., 2012) and patterns

of acculturation among Asian Americans (Jang et al., 2017).

LCA was first brought to light in the social and behavioural sciences by Lazarsfeld

and Henry (1968). Though they provided a comprehensive and detailed mathematical

treatment of this topic, it remained in the shadow for almost a decade because the

parameter estimates were difficult to obtain at the time. This changed when Goodman

(1974) developed a straightforward and readily implementable method for obtaining

maximum likelihood of latent class model parameters. Presently, the expectation-

maximization (EM) algorithm (Dempster et al., 1977) is commonly used to compute

the parameter estimates and readily available in popular statistical softwares such

as Latent Gold (Vermunt and Magidson, 2016) and Mplus (Muthén and Muthén,

2



M.Sc. Thesis – S. Luo McMaster University – Mathematics & Statistics

2017).

Many extensions of LCA have been accomplished in the last few decades. The

latent class model became more flexible when it was introduced in a log-linear mod-

elling framework (Haberman, 1974; Hagenaars, 1998). This paved the way for several

new developments such as multilevel LCA (Vermunt, 2003, 2008), LCA for longitu-

dinal data (Chung et al., 2014), Bayesian LCA (White and Murphy, 2014), and most

prominently, inclusion of covariates in LCA (Dayton and Macready, 2012; Huang and

Bandeen-Roche, 2004) or Latent Class Regression (LCR). LCR is increasingly being

used as an analytic tool since it not only allows the researcher to build a robust clas-

sification model but the inclusion of covariates can improve the prediction of class

membership and aid the identification of the latent classes (Dayton and Macready,

2012; Hagenaars, 1993).

Despite the vast literature and growing applications related to LCA, determining

the correct number of classes, also known as class enumeration, remains an unresolved

issue. Even under the assumption that the population is indeed heterogeneous a

priori, hypotheses regarding the exact number or nature of the sub-populations are

rarely known (Masyn, 2013). In general, class enumeration is typically done with

combination of substantive theory and examining a set of fit indices. This is an

extremely laborious task as it requires considering a set of models with varying number

of classes then observing and comparing each individual fit index to determine the

optimal number of classes. Several simulation studies have examined the performance

of different fit index under different modelling conditions (Nylund et al., 2007; Peugh

and Fan, 2015; Morovati, 2014). However, majority of these studies have delivered

mixed results, thus, it is difficult to conclude on a preferable fit index for enumerating

3
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the correct number of latent classes.

To add more nuance, there are conflicting views on when to include covariates

during the class enumeration process (Nylund-Gibson and Masyn, 2016). In latent

variable modelling literature, there are two contrasting views. Some suggest that it’s

best to first perform enumeration without covariates. More specifically, determine

the number of latent classes using an unconditional LCA model (Collins and Lanza,

2010; Tofighi et al., 2008; Masyn, 2013). Others advocate to include covariates simul-

taneously during the enumeration process as the additional information may increase

the performance of the selected fit index (Lubke and Muthén, 2007; Li and Hser,

2011; Peugh and Fan, 2015). These conflicting views have led to inconsistent prac-

tices among researchers applying LCA (Nylund-Gibson and Masyn, 2016). Thus we

conduct a simulation study examining how the performance of fit indices are affected

with presence of covariate effects and provide more insight on whether covariates aid

or hinder in determining the number of latent classes.

The paper will be organized in the following manner: Chapter 2 is a literature

review and introduces the LCA model and class enumeration. Additionally we provide

theory behind the fit indices considered in the study. The full simulation details can

be found in Chapter 3. Results of the simulation study are explained in Chapter 4

and final remarks and conclusions in Chapter 5.

4



Chapter 2

Literature Review

2.1 The Latent Class Model

Suppose there are M categorical response items and each item um, where m =

1, 2 . . . ,M , has rum = 1, 2, . . . , Rum response categories. Let the response of sub-

ject i on item um be denoted by umi = rumi
, and the full response vector by ui =

[u1i, . . . , uMi]
ᵀ. The unconditional LCA model is represented in Figure 2.1 (Lazars-

feld and Henry, 1968; Collins and Lanza, 2010). It assumes the M items are reflec-

tive of an underlying categorical latent variable c with K latent classes such that

c = k; k = 1, 2, ..., K. The LCA model of P (ui) is expressed as

P (ui) =
K∑
k=1

[
P (ci = k)P (u1i, u2i, . . . , uMi|ci = k)

]
. (2.1.1)

Equation (2.1.1) can be simplified by local independence which is typically assumed

on the M items conditional on latent class membership. This assumption implies

that all the associations shared among the observed items is strictly explained by

5
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the latent variable or another way of putting it, the latent variable explains why the

observed items are related to each other (Nylund-Gibson and Choi, 2018). Under the

local independence assumption, we have

P (ui) =
K∑
k=1

P (ci = k)P (u1i|ci = k)P (u2i|ci = k)× . . .× P (uMi|ci = k)

=
K∑
k=1

P (ci = k)×
[ M∏
m=1

Rum∏
rum=1

P (umi = rum|ci = k)1(umi=rum )

]
, (2.1.2)

where 1(umi = rum) = 1 if umi = rum and 0 otherwise. Local independence is depicted

in Figure 2.1. As shown, the items, denoted in squares, are only connected by the

latent variable, denoted in the circle, as indicated by the one-way directional path

which signifies that the M items are only related through the latent variable.

cu2

u3

u1

uM

Figure 2.1: A classic representation of the unconditional latent class model. The
latent variable c, enclosed in the circle, is measured by a set of items u1, u2, . . . , um,
enclosed in the rectangles. One-direction arrows connect the items and latent
variable but no arrows connect the items, illustrating conditional independence on
the items.

6
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There are two main sets of parameters that describe the LCA model. First, the

relative size of each latent class is described by the class proportion probabilities

P (ci = k). Class proportion probabilities are the structural parameters of the LCA

model and defines the distribution of the latent variable. Latent classes are assumed

to be mutually exclusive and exhaustive such that individuals may belong to one and

only one of the K latent class, thus,
∑K

k=1 P (ci = k) = 1. The distribution of the class

membership probabilities is expressed as intercepts of a multinomial logistic model

P (ci = k) =
exp(γ0k)

1 +
∑K−1

h=1 exp(γ0h)
, (2.1.3)

where γ0K = 0 and K is the reference category and represents the odds of membership

in latent class k relative to reference latent class K. The choice of the reference

category is arbitrary and will not affect the results, however, it can impact the ease

of interpretation.

Now, the relationship between the observed items and latent variable is captured

by the set of item-response probabilities P (umi = rum |ci = k). They are the mea-

surement parameters of model and measure how likely an individual will endorse

a particular item um with response rum within each latent class. Much like factor

analysis, the overall distribution of the item-response probabilities help investigators

assign meaning to the latent classes during the interpretation phase of the analy-

sis. In practice, binary and ordinal items are commonly used in LCA applications

(Nylund-Gibson and Choi, 2018). Different parameterizations can be used to express

the item-response probabilities. The most widely used parameterizations that result

in equivalent models include the probability parameterization, the log-linear parame-

terization, and the logistic parameterization Masyn (2017). As we are using Mplus, a

7
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latent variable modelling program with a wide variety of analysis capabilities (Muthén

and Muthén, 2017), the item-response probabilities are parameterized under a logistic

regression framework, specifically a latent response variable formulation.

Assume that each item-response umi arises from a continuous latent response

variable umi∗, or stated differently, umi∗ is an underlying continuum of umi (Agresti,

2002; Masyn et al., 2014) and the relationship can be modelled by

u∗mi = µmi|xi
+ εi, (2.1.4)

where µmi|x ≡ E[u∗mi|xi] = xᵀ
iβum such that xi = [x1i, . . . , xpi]

ᵀ and βum = [β1, . . . , βp]

are the related regression parameters. Let εi be the error term that follows a standard

logistic distribution. Additionally suppose we have cut-off points or thresholds on the

umi∗ scale such that τ0k < τ1k < τ1k < τ2k < . . . < τRum−1k < τRumk where τ0k = −∞

and τRumk =∞. The relationship between umi∗ and umi is given by

umi =



1 if −∞ < u∗mi ≤ τ1k,

2 if τ1k < u∗mi ≤ τ2k,

...
... (2.1.5)

Rum − 1 if τRum−2k < u∗mi ≤ τRum−1k,

Rum if τRum−1k < u∗mi ≤ ∞

where each interval corresponds to a range that a response category may fall into.

Note that for the unconditional LCA model, (2.1.4) is u∗mi = εi since µmi|xi
= 0.

8
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Thus the item-response probabilities are given by

P (umi = rum|ci = k) = P (τrum−1k < u∗mi ≤ τrumk)

= P (u∗mi ≤ τrumk)− P (u∗mi ≤ τrum−1k)

= Fε(τrumk)− Fε(τrum−1k), (2.1.6)

where P (umi ≤ rum|ci = k) = Fε(τrumk), is the cumulative distribution of the standard

logistic distribution. The item-response probabilities are expressed as the difference

in cumulative probabilities. With ordinal items, we are interested in obtaining the

probability of being at or above a response category

P (umi ≥ rum|ci = k) = 1− P (umi < rum|ci = k)

= 1− P (u∗mi < τrmk)

= 1− Fε(τrumk)

=
1

1 + exp(τrumk)
. (2.1.7)

Applying a logit transformation, we obtain

logit[P (umi ≥ rurm |ci = k)] = log

[
P (umi ≥ rum|ci = k)

P (umi < rum|ci = k)

]
= −τrumk, (2.1.8)

where τrumk is equal to the negative log-odds of a response on item um that is greater

than or equal to rum versus responding to lower categories within latent class k i.e., the

odds of being at or above a specific response category is higher when the threshold is

9
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more negative. We see that the latent response formulation is equivalent to a binary

logistic regression in which response categories 1, 2, . . . , rum form a single category and

the remaining response categories (rum + 1), . . . , Rum form another category (Agresti,

2002).

10
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2.2 Latent Class Regression Model

Thus far we have discussed the unconditional LCA model where the relationships

between the observed items is solely explained by the latent variable. In practice,

however, there may be applications where we would like to relate a set of p covari-

ates, x = [x1, x2, . . . , xp]
ᵀ, to the latent variable and the observed items. This may

improve the prediction of class membership and facilitate in the identification and

interpretation of latent classes (Park and Yu, 2018). In the following we will extend

the unconditional LCA model to incorporate covariates.

2.2.1 Covariate Pathways in LCR

Covariates can influence a set of observed items indirectly via the latent variable, or

directly in which the latent variable is entirely avoided (Masyn, 2013). Figure 2.2

illustrate examples of LCR path diagrams with a single latent variable c that are

commonly seen in application. An indirect pathway is depicted in Figure 2.2a. In

this case, the class membership probabilities are conditional on a set of covariates

resulting the item-response probabilities to be indirectly influenced through the latent

variable. Extending (2.1.2), the conditional latent class model with indirect effects is

given by

P (ui|xi) =
K∑
k=1

P (ci = k|xi)×
[ M∏
m=1

Rum∏
rum=1

P (umi = rum|ci = k)1(umi=rum )

]
, (2.2.1)

where 1(umi = rum) = 1 if umi = rum and 0 otherwise. The item-response probabil-

ities remain unchanged since they are independent of the covariates conditional on

latent class membership. The class membership probabilities are parameterized using

11
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a multinomial regression such that

P (ci = k|xi) =
exp(γ0k +

∑p
j=1 γjkxij)

1 +
∑k−1

h=1 exp(γ0k +
∑p

j=1 γjkxij)
, (2.2.2)

where γ0K = γjK = 0, j = 1, 2, .., p for identification. Equivalently,

logit
[
P (ci = k|xi)

]
= log

[
P (ci = k|xi)

P (ci = K|xi

]
= γ0k +

p∑
j=1

γjkxij. (2.2.3)

Exponentiating both sides of (2.2.3) we can interpret the odd as a function of the

covariates. More precisely, exponentiating the intercept γ0k represent the odds of

membership in latent class k relative to reference latent class K when covariates

are zero. Exponentiating the regression parameters γjk can be interpreted as the

change in the odds of membership in latent class k in relation to the reference class

K associated with a one unit change in xij while fixing the other covariates constant.

Figure 2.2b models a direct pathway where covariates influence item u1 directly

and bypass the latent variable. With both indirect and direct pathways as shown in

Figure 2.2c, the latent variable depends on the covariates, and with the exception of

item u1, all other items are conditionally independent of the covariates given latent

class membership. The direct pathway on u1 implies measurement non-invariance,

that is, individuals in the same class differ in their response probability for item u1

as a function of x-values. In other words, the conditional model with an indirect and

12
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Cu2

x

u3

u1

uM

(a)

Cu2

x

u3

u1

uM

(b)

Cu2

x

u3

u1

uM

(c)

Cu2

x

u3

u1

uM

(d)

Figure 2.2: The various pathways seen in latent class regression models (also known
as the conditional LCA model) where panel (A) represents an indirect effect on the
items through latent variable,(B) direct effect between the covariates x and u1
where direct effects are an indication of measurement non-invariance, (C) x has an
indirect effect on c and a direct effect on u1 (D) effects similar to panel C, but, the
direct effect on u1 is class varying

13
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direct effect is

P (ui|xi) =
K∑
k=1

[
P (ci = k|xi)×

Ru1∏
ru1=1

P (u1i = ru1|ci = k,xi)
1(u1i=ru1 ) (2.2.4)

×
M∏
m=2

Rum∏
rum=1

P (umi = rum|ci = k)1(umi=rum )

]
.

The set of covariates x, is related u1 via the latent response formulation in (2.1.4)

where µ1i|xi
= xᵀβu1 . Thus, the item-response probability of u1i conditional on latent

class k is given by

P (u1i ≥ ru1 |ci = k,xi) =
1

1 + exp(τru1k − x
ᵀ
iβu1)

(2.2.5)

or, equivalently,

log

(
P (u1i ≥ ru1|ci = k,xi

P (u1i < ru1|ci = k,xi)

)
= −τru1k + xᵀ

iβu1 . (2.2.6)

From (2.2.6), each response category has its own threshold parameter τru1k but the

effect of βu1 = [β1, . . . , βp] is identical and fixed for across each category and not class-

specific for c = 1, 2, . . . , K. That is, the same proportionality constant is applied for

different response categories such that the direct effect of xj will be the same for

every latent class k. It is not class-varying. This is known as the proportional odds

assumption (McCullagh, 2005) because for a fixed x = x1 and x = x2, it satisfies

logit
[
P (u1i ≥ r1|ci = k,x2)

]
− logit

[
(P (u1i ≥ r1|ci = k,x1)

]
= βu1(x2 − x1)ᵀ ∀ c=1,2,...,K, (2.2.7)
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where βu1 is the proportionality constant. Thus the odds of responding at or above

category, ru1 , at x = x1 is exp
[
β1(x2 − x1)ᵀ

]
times the odds at x = x2 given

membership in latent class k for all k = 1, 2, . . . K.

In contrast Figure 2.2d incorporates an indirect and class-varying direct effect

which is indicated by the zig-zag arrow between the latent variable and direct effect

path from x to u1. With class-varying, a k subscript is added to the proportionality

constant in (2.2.6) such that

log

(
P (u1i ≥ r1|ci = k,xi)

P (u1i < r1|ci = k,xi)

)
= −τru1k + xᵀ

iβu1k for c=1,2,...,K. (2.2.8)

Each logit has a different threshold τru1k but the direct effect of xi on u1 is class-

specific where βu1k = [β1k, . . . , βpk].

2.2.2 Consequences of ignoring direct effects

When comparing two or more classes it is important to determine whether each item

measures the latent variable in the same manner for different classes. This assumption

is called measurement invariance. A violation of this assumption implies that a spe-

cific item is not measuring the same characteristic across each class. In LCA models, a

covariate x is a source of measurement non-invariance on an item um if a direct effect is

present between x and um (Masyn, 2017). More specifically, the probability of endors-

ing item um for all individuals belonging in latent class k would differ based on their

individual x value. But the probabilities of endorsing u1, u2, . . . um−1, um+1, . . . , uM

would be equal for all individuals belonging in latent class k since these items are

conditionally independent of x. A long standing approach of identifying direct ef-

fects is to regress each item on the covariates and conduct separate LCR analysis.
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Each conditional model is compared to the unconditional model (baseline model with

no covariates) using a significance test. In other words, DEs are determined to be

present when the direct pathway between covariates and item in question is statisti-

cally significant. Other approaches for larger, complex LCA models are summarized

in Janssen et al. (2019). If direct effects are ignored between um and x, the resul-

tant estimates of the measurement model may be biased because of the unmodelled

residual association between the item and covariate (Janssen et al., 2019). As a re-

sult, this will lead to misspecfication of the latent classes. To illustrate this point,

Masyn (2017) examined well-separated and highly homogeneous population models

with direct effect sizes. The simulation study concluded that even minimal direct

effects could lead to substantial bias in the model parameters. Janssen et al. (2019)

examined the stability and bias in parameter estimates when direct effects were ex-

cluded from the analysis. The study concluded that direct effects were necessary when

the relationship between the covariates and items were strongly associated or when

the measurement model was overall weak. When direct effects were not modelled in

these situations, the bias of the estimates increased and coverage decreased severely.

Therefore, covariates that contribute to direct effects or indirect effects cannot be

ignored from the modelling procedure and must always be incorporated to ensure

model estimates are unbiased. Thus, it is important to determine whether covariates

are incorporated with the enumeration process or after the number of classes has been

decided. In the next section details of the most commonly used fit indices in latent

variable modelling are discussed.
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2.3 Selecting the best model

Selecting the correct number of latent classes, also known as class enumeration, is

one of the major challenges in latent variable modelling. Generally, the enumeration

phase is a time-consuming process as it requires estimation of several competing

models with varying number of classes, and difficult since the final model is selected

based on the examination of several fit criteria (Masyn, 2013). Several simulations

studies have examined this issue under various types of latent variable models and

modelling conditions. Additionally it is further complicated by the number of possible

fit indices, which vary in sensitivity to sample size, model complexity and the presence

of covariates (Hu et al., 2017). Despite the numerous suggestions offered in literature,

a unanimous and preferable fit index for deciding the number of latent classes remains

an unresolved issue. Generally these model selection techniques can be grouped into

three categories: likelihood ratio based tests, information criteria, and classification

based criterion.

2.3.1 Likelihood Ratio Test

The likelihood ratio test (LRT) determines whether an additional latent class signif-

icantly improves model fit. More specifically we test the null hypothesis

H0: Number of classes = k − 1 (2.3.1)

versus the alterantive hypothesis

H1: Number of classes = k. (2.3.2)
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The LRT statistic is defined as the difference in the log likelihoods:

LRT = −2(LLk−1 − LLk), (2.3.3)

where LLk−1 and LLk are the maximum likelihood estimates of the null and alter-

native models, respectively. Most often with nested models, under certain regularity

conditions, the LRT statistic assumes a chi-square distribution with degrees of free-

dom equal to the difference in the number of parameters of the two models. Unfortu-

nately the LRT cannot be used in the same manner in LCA models because the usual

regularity conditions associated with the chi-square LRT do not apply for comparing

LCA models with different number of classes (Tekle et al., 2016). A (k − 1)-class

model can be obtained by restricting one of the class membership probabilities of a

k-class model to zero. As a consequence, we are fixing parameters at the boundary

of its permissible parameter space rather than in its impermissible parameter space.

Everitt (1988) and Nylund et al. (2007) conducted simulations examining the perfor-

mance of the chi-square LRT and both concluded inflated Type I error rates in their

studies.

To overcome this issue, various modified LRTs have been proposed for latent

variable models. One such example is the parametric bootstrapped likelihood ratio

test (BLRT; McLachlan and Peel (2000)). The BLRT uses the same test statistic

as chi-square LRT, however, BLRT obtains a p-value by using bootstrap samples to

estimate the sampling distribution of the LRT. The BLRT is calculated as follows

(Asparouhov and Muthén, 2012):

1. In the k-class run, compute LRT (2.3.3) by estimating the parameters of the

k-class model and (k − 1)-class model.
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2. Generate a bootstrap sample using the paramters under null hypothesis model

as the true population values. Analyze the bootstrap asmple under the k-class

model and estimate the new LRT.

3. Repeat step 2 several times to construct the sampling distribution of the LRT.

4. Estimate the p-value by comparing the distribution obtained in step 3 with the

LRT obtained in step 1.

The p-value is the proportion of bootstrap LRT values that is larger or equal to the

LRT value from step 1. It is used to decide whether the (k-1)-class model should be

rejected in favour of the k-class model. It is apparent that the BLRT is computation-

ally intensive as it requires fitting an LCA model multiple times to each bootstrap

sample, which can take a few seconds to hours to compute for more complex mod-

els (Dziak et al., 2014). Despite this, BLRT is worth studying since it is widely used

class enumeration tool for latent variable models and shown promising results in some

studies.

As an alternative to BLRT, Lo (2001) proposed the Lo-Mendel-Rubin LRT (LMR).

The LMR-LRT extends the work of Vuong (1989) and provides an approximation of

the LRT distribution to allow comparisons between Gaussian mixture models that

differ in the number of classes. Let f(u; θ) and g(u;λ) represent the density of a

k-class model and (k − 1)-class model respectively, where ui is a vector of observed

items and θ and λ are the model parameters. The LMR is

LMR = LLf (θ̂)− LLg(λ̂) =
n∑
i=1

log
f(ui; θ̂)

g(ui; λ̂)
. (2.3.4)

The distribution is discussed in Lo (2001). However, the LMR exhibited high Type
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1 errors during their simulation study and proposed an adjusted LMR to account for

the high Type I error rates. The adjusted LMR is

aVLMR =
LMR

1 + [(p− q)log(n)]−1
, (2.3.5)

where p and q are equal to the number of estimated parameters for the models with

degrees of freedom equal to (p− q).

Jeffries (2003) pointed a mathematical flaw in Lo (2001) paper suggesting that

one of the conditions proposed for aVLMR is incorrect. Regardless, the aVLMR has

still been widely used and shown to be effective in recovering the number of latent

classes. Both the BLRT and aVLMR test whether the (k−1)-class should be rejected

in favour of the k-class model. More specifically, a significant aVLMR and BLRT (e.g.

p ≤ 0.05) implies that the (k−1)-class model is rejected in favour of the k-class model.

In contrast a non-significant aVLMR and BLRT (e.g. p > 0.05) implies that (k− 1)-

class model fits the data as well as k-class model, thus supporting the (k − 1)-class

model.

2.3.2 Information Criteria

Perhaps the most popular fit indices are information criteria (IC). Unlike LRT, they

allow for comparison of multiple models that may or may not be nested. Information

criteria were originally proposed by Akaike (1973) who utilized the Kullback-Leibler

(KL) Divergence measure to form the Akaike IC (AIC) which tries to select the model

that minimizes the KL Divergence. Later on Schwarz (1978) incorporated Bayesian

statistics to form the Bayesian IC (BIC) that attempts to select the model with

the highest posterior probability. Since then, many information criteria have been
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proposed based on different or similar theoretical frameworks as the AIC and BIC.

An information criterion can be summarized in terms of its log-likelihood function

and an added penalty term which discourages over fitting of the data. It is expressed

as

IC = −2LL + penalty, (2.3.6)

where LL is the maximized log likelihood value for the model in consideration. The

penalty term measures the complexity of the model by taking account sample size

and the number of parameters being estimated in the model.

Although IC are motivated by different frameworks and goals, algebraically, the

difference in penalty terms distinguish each criterion and places different emphasis

on parsimony, that is, the number of free parameters selected in model (Dziak et al.,

2014). Generally these criteria favour models that produce a high log likelihood value

while using the fewest number of parameters where lower IC values represent better

fit. This study will examine the most commonly used IC in LCA, namely the AIC,

BIC, the Consistent AIC, (CAIC; (Bozdogan, 1987)) and the adjusted BIC, (aBIC;

(Sclove, 1987)).

The AIC is

AIC = −2LL+ 2q, (2.3.7)

where q represents the number of parameters estimated in the model. Woodroofe

(1982) showed that AIC is not consistent and as a result may not select the correct

model when sample size is large. Bozdogan (1987) derived a consistent version of AIC
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to correct for consistency and is

CAIC = −2LL+ qlog(n) + q, (2.3.8)

where n is the sample size. The BIC is

BIC = −2LL+ qlog(n). (2.3.9)

BIC has been shown to have a consistent property (Haughton, 1988) which implies

that theoretically the true model is more likely to be selected as sample size approaches

infinity. Because of this consistent feature of BIC, it may perform poorly when sample

sizes are small. Thus, Sclove (1987) proposed an adjustment to the BIC to correct

for sample size. The adjusted BIC is

aBIC = −2LL+ qlog

(
n+ 2

24

)
. (2.3.10)

Because of this term difference, BIC penalizes more harshly compared to aBIC for

additional parameters included in the model. Model selection is performed by eval-

uating each IC on each model in consideration. Then the model with the minimum

value for that calculated IC is determined as best among the set of candidate models.

2.3.3 Classification Based Information Criteria

Popularized in Gaussian mixture models, classification based information criteria de-

termines the number of latent classes by utilizing the precision of the overall clas-

sification assignment. This can be measured by each subject’s estimated posterior
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class probabilities ρ̂ik, which specifies subject i’s probability of being in each latent

class based on the maximum likelihood parameter estimates Ψ̂, and observed response

pattern ui. Specifically the posterior probability of subject i being in latent class k

is

ρ̂ik = P (ci = k|ui, Φ̂) =
P (ui|ci = k, Ψ̂)P (ci = k)

P (ui))
. (2.3.11)

A common classification index that utilizes the posterior probabilities is relative en-

tropy (Ek) which measures the overall precision of classification of the whole sample

across latent classes (Ramaswamy et al., 1993). Ek is bounded between 0 and 1 where

higher values indicate a higher degree of class separation and calculated as

Ek = 1− Ekraw
nlog(k)

, (2.3.12)

where Ekraw denotes the raw, unscaled entropy and is defined as

Ekraw = −
n∑
i=1

K∑
k=1

ρiklog(ρik) ≥ 0. (2.3.13)

As noted by Masyn (2013), Ek was never intended for class enumeration because it

is possible to have Ek ≈ 1 yet still have a high degree of error when assigning class

membership of certain individuals. Additionally, relative entropy may increase by

chance as the number of latent classes increase.

Despite this, classification based information criteria have been proposed that

incorporate entropy into the penalty term. Specifically the classification likelihood

criterion (CLC) and the integrated classification likelihood criterion (ICL) incorporate
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the raw, unscaled entropy Ekraw into the penalty term. Both CLC and ICL determine

the number of clusters in a mixture model rather than the number of components. As

argued by Biernacki et al. (2000) and Baudry et al. (2010), BIC is ideal for determining

the number of components in mixture models, but not ideal for determining the

number of clusters in the data, as it is possible for a cluster to be composed of several

mixture components, i.e., the number of components is not taken to be equal as the

number of clusters. Therefore, classification based information criterion penalize for

both model complexity and how well clusters are separated.

Biernacki and Govaert (1997) established a link between the completed log-likelihood

LLc and the maximized log-likelihood LL, that is,

LLc = LL− Ekraw , (2.3.14)

where Ekraw ≈ 0 if mixture components are well-separated but if the mixture are

poorly separated then Ekraw will be a large value. The CLC is defined as

CLC = −2LL+ 2Ekraw . (2.3.15)

CLC performs well when the class proportions are constrained to be equal, otherwise,

this criterion has a tendency to overestimate the number of classes. This shortcoming

was resolved by the ICL which incorporates a heavier penalty term compared to CLC.

Similar to BIC, ICL (Biernacki et al. (2000) uses a BIC-like approximation to

approximate the integrated log-likelihood value. It essentially derives the ordinary
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BIC penalized by entropy

ICL = BIC + 2Ekraw . (2.3.16)

We will study these criteria in the context of LCA models and like information crite-

rion, smaller values of CLC and ICL indicate better model fit.

2.4 Overview of Existing Simulation Studies

Many simulations studies have explored the performance of different fit indices under

various types of latent variable models and model complexity. There have been a

few recommendations in literature but majority point towards the BIC or aBIC as

the best information criterion for class enumeration across most modelling conditions

(Nylund et al., 2007; Henson et al., 2007; Morovati, 2014; Chen et al., 2017; Tofighi

et al., 2008; Whittaker and Miller, 2021). In these studies, aBIC performed better for

smaller sample sizes compared to BIC as BIC tended to underestimate the number of

latent classes. In studies by Chen et al. (2017); Morgan et al. (2016); Lukočienė et al.

(2010), they reported that the CAIC performed as similarly or better than BIC and

aBIC. Despite being a frequently reported criterion, AIC performed the worst as it

had the tendency to over extract the number of classes (Nylund et al., 2007; Henson

et al., 2007).

Studies that compared the BLRT and aVLMR together, concluded that the BLRT

showed slightly better performance compared to the aVLMR, but generally the dif-

ference was subtle (Morovati, 2014; Nylund et al., 2007). The BLRT was the most

reliable fit index across all modelling conditions in Nylund et al. (2007) simulation
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study. But due to its long computational time they advise to only use the BLRT after

a set of potential models have been identified. More specifically, Nylund et al. (2007)

advised to first to assess for potential models with the BIC and then apply the BLRT

on these models and compare these results to the BIC. Morgan et al. (2016) and

Tofighi et al. (2008) analyzed the aVLMR, but not the BLRT, and concluded that

aVLMR is effective in recovering the number of classes but unperformed compared

to the BIC and aBIC.

Morgan et al. (2016) and Morgan (2015) considered the ICL on mixed mode

LCA models and latent profile analysis models, respectively. Recommendations from

these studies indicated mixed results for the ICL. As well, Henson et al. (2007)

studied ICL and CLC on structural equation models and noted that ICL and CLC

performed very well compared to other fit indices in certain conditions but overall

showed limited utility. Alternatively, McLachlan and Ng (2000) reported the results

of three simulation studies and found that of all the criteria considered, ICL and CLC

were the only criteria to correctly select the true number of classes in all three studies.

In another study, Fonseca and Cardoso (2007) examined ICL and CLC along with

multiple information criterion on mixture models of categorical, continuous and of

mixed data type. The ICL was best for mixed data type as it achieved accuracy rates

of 80% followed by CAIC and BIC, both with 70%. The aBIC, CAIC, BIC and ICL

proved to be highly reliable for identifying the correct number of latent classes in

Diallo et al. (2017b) but recommended against the the AIC and CLC.

Within the enumerating process with covariates, there is debate on whether the

inclusion of covariates could improve class enumeration accuracy. This is a concern

because the number of classes and thus how they differ from one another may change
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drastically when covariates are included in the enumeration process. Nylund-Gibson

and Masyn (2016) analyzed the impact of misspecifying covariate effects during the

class enumeration procedure by analyzing the enumeration accuracy on five different

LCA models with distinguishing covariate pathways. They found that class enu-

meration is best with an unconditional model and advised for no covariates. They

showed that an incorrect and misspecfied covariate effect would be more detrimental

on the performance of the model compared to using an unconditional model for class

enumeration.

Collins and Lanza (2010) and Diallo et al. (2017a) also advocate that covariates

should only be added to the modelling process only after the enumeration process

is done with an unconditional model. When covariates were included results were

uniformly poor and hampered the class enumeration accuracy in Tofighi et al. (2008)

class enumeration study on growth mixture models. Enumerating without covariates

is also the recommended way to begin the three step method which currently viewed

as the best way to include covariates into the modelling process (Nylund-Gibson and

Choi, 2018).

Those that argue for the inclusion of covariates observe that including covariates

simultaneously during the enumeration process increase model accuracy. Li and Hser

(2011) study indicated that incorporating covariates during the enumeration process

would help more replications converge to the correct number of classes. Lubke and

Muthén (2007) examined this problem in the context of factor mixture models and

suggested that including covariates during the class enumeration process provides

additional knowledge which may increase the performance of the fit indices in certain

cases such as when class separation and homogeneity is low. Peugh and Fan (2015)
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concluded that the decision to incorporate covariates vary depending on the modelling

situation. They showed that the inclusion of covariates had negligible effect for small

sample sizes but was beneficial for larger sample sizes with underlying conditions such

as poor class separation or proportion conditions.

Multiple simulation studies have been produced through recent years but taken

as a whole, it is difficult to conclude which fit index is more preferred for class enu-

meration. Similarly determining whether the addition of covariates has detrimental

or beneficial impact on enumeration accuracy is also unclear. Thus this simulation

study provides more insight into these issues.
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Chapter 3

Simulation Study

This simulation study focuses on latent class regression models with the aim to:

1. quantify the accuracy of commonly used fit indexes in the context of class enumer-

ation. 2. determine whether the inclusion of covariates can improve class enumeration.

3. highlight factors that may lead to better or worse performance of latent class re-

gression models. We use the Mplus Automation package Hallquist and Wiley (2018)

to assist with organization and creation of input files of this study. It is an R package

R Core Team (2020) that leverages Mplus (Muthén and Muthén, 2017) to facilitate

with large, complex simulation studies and run large-scale latent variable models.

3.1 Population Models

All data were simulated from two population models with known covariate effects

and analyzed under alternative models that vary in the number of classes and co-

variate relationships. The level of model complexity is also studied as it may play in

the decision to include covariates in the extraction process. Therefore in this study
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we analyze two population models of varying level model complexity. Specifically,

population A is a latent class model with an indirect effect as shown in Figure 3.2a.

Population B extends population A by incorporating direct effects as shown in Figure

3.2b. We refer to population A as the ‘simple model’ because it only has one indirect

pathway and the local independence assumption is not violated. Population B is the

‘complex model’ and illustrates a more complex interrelationship between covariates,

items and the latent variable. Furthermore, the impact on latent class membership

is indirectly impacted by x as well as a secondary covariate w. In this case, the local

independence assumption is relaxed by incorporating a direct effect between u1 and

u2. Population B is based on a similar model used in the medical diagnostic literature

as described in Qu et al. (1996).

Population parameters were chosen to be reasonably representative of LCA models

in applied research. We based our population design on Morgan (2015) empirical

condition review on applications of LCA. It was observed that 3-class solutions and

the use of binary items were the most frequent in applied studies. In this simulation

study, we consider three-class LCR models with ten binary items which were analyzed

at four sample sizes n = 200, 500, 1000 and 2000. Previous studies indicate that

this range of sample sizes were the most commonly used and expected to function

adequately for detection of latent classes (Nylund-Gibson and Choi, 2018). Other

factors that we manipulate to vary the the distinctness of the latent classes, include

the class proportions, item-response probabilities, and the magnitude of the covariate

effect.

We consider two different splits for the class membership probabilities. Split 1 cor-

responds to a poorer class split where there is one large or normative class, a moderate
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class and smaller or rarer class: π1 = 0.60, π2 = 0.35, π3 = 0.05. Split 2 examines

two classes of similar size and a relatively smaller class: π1 = .40, π2 = .45, π3 = .15.

The level of class separation is an obvious factor and thus will be thoroughly studied.

Several studies have shown an equal classes case, however, (Morgan, 2015) review

indicated that equal class proportions are rarely observed in empirical LCA appli-

cations. Based on (2.2.3), the class proportions are represented by the multinomial

regression intercept parameters γ0k. In particular we specified γ0k = 2.70, 2.16, 0 for

split 1 and γ0k = 1.09, 0.90, 0 for split 2, for k = 1, 2, 3.

The distinctness of latent classes is also impacted by the overall quality of latent

class items. Generally if the model contains several “good” items then we would

expect high class enumeration accuracy. A “good” item is one that can measure

the latent variable reasonably well allowing for better interpretation of the latent

classes. This strong item-class relationship is characterized by having both a high

degree of class homogeneity and class separation (Masyn, 2013). Class homogeneity

specifies whether there is a specific response category on that item that strongly

characterizes that latent class. A specific threshold for high class homogeneity varies

but generally item-response probabilities greater than 0.7 or less than 0.3 is accepted

(Masyn, 2013). Class separation defines how distinguishable the latent classes are.

Particularly, when there is high degree of class separation, the overall response pattern

is uniquely characteristic to that particular latent class only and not for any other

classes (Collins and Lanza, 2010). In our study we examine how the quality of items

impact class enumeration accuracy of each fit index.

The degree of homogeneity and separation were varied by manipulating the item-

response probabilities to create three different design conditions: high, moderate
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and low quality conditions, as shown in Table 3.1. These conditions were similar

to the ones used in (Yang and Yang, 2007) simulation study on LCA models. Note

that in Mplus, the item-response probabilities are translated as thresholds τmk and

calculated according to (2.2.6). The calculated threshold values used to simulate

each design condition can be found in Appendix A. The design of each condition is

similar in structure but the bolded values dictate the degree of class homogeneity

and separation. The items related to the bolded values characterizes each latent class

of endorsing a particular item. For example, latent class one would be interpreted

according to items 1,2,3, whereas latent class two would be interpreted according to

items 4,5,6. Therefore, we say items 1,2,3 characterize latent class one and items

4,5,6 characterize latent class two. This interpretation is equivalent to the concept

of factor loadings used in factor analysis where high factor loadings on a set of items

define a clear factor.

The first design captures an example of high class homogeneity and separation

in which associated with each class there is a definite response pattern that is much

more likely expressed compared to other response patterns. For instance, individ-

uals in latent class one are likely to endorse items 1,2,3 with a high probability of

0.90, i.e., an estimated 90% of individuals will endorse these items and 10% will not.

Likewise individuals in latent class two and three endorse items 4,5,6 and items 7,8,9

with high probability, respectively. Therefore in each latent class there is a highly

distinguishable response pattern that characterizes that class.

The second design is an example of moderate class homogeneity and class sep-

aration. Classes are still relatively distinguishable and the same items characterize

each class, however, the probability of endorsement decreased, ranging between 75%
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Table 3.1: Item-response probabilities used for data simulation. The interpretation
of the latent classes is determined by the overall pattern of item-response
probabilities. The bolded values indicate which items characterizes each latent class
in the high and moderate case. However in the low case, these same items are no
longer characteristic of each latent class because there are no items that clearly
distinguishes each latent class.

High Moderate Low
Items Class 1 Class 2 Class 3 Class 1 Class 2 Class 3 Class 1 Class 2 Class 3

1 0.9 0.1 0.15 0.75 0.3 0.15 0.5 0.45 0.15
2 0.9 0.2 0.15 0.75 0.15 0.15 0.5 0.4 0.15
3 0.9 0.25 0.3 0.75 0.35 0.3 0.5 0.3 0.3
4 0.5 0.9 0.3 0.5 0.8 0.3 0.5 0.45 0.3
5 0.1 0.9 0.2 0.1 0.8 0.2 0.4 0.45 0.35
6 0.5 0.9 0.25 0.5 0.8 0.25 0.5 0.45 0.25
7 0.1 0.25 0.9 0.1 0.3 0.75 0.35 0.3 0.5
8 0.1 0.2 0.9 0.1 0.4 0.75 0.45 0.4 0.5
9 0.35 0.2 0.9 0.35 0.2 0.75 0.2 0.45 0.5
10 0.35 0.25 0.2 0.35 0.4 0.45 0.3 0.4 0.45

- 80%. Therefore, we can still equate items 1,2,3 as characteristic of latent class one,

4,5,6 as characteristic of latent class two and 7,8,9 characteristic of latent class three

but compared to the first design, we are less confident in our interpretation. By de-

creasing the item response probabilities we are effectively decreasing the quality of

the items and increases the difficulty in identifying a characteristic response pattern

for each class.

The last design depicts an example of low class homogeneity and separation. The

same bolded items are no longer characteristic of each latent class. For example,

probabilities of items 1,2,3 and items 4,5,6 are almost indistinguishable in latent class

one and two, so there is a high level of uncertainty between these classes. In other

words, the difference between these two classes are not as pronounced compared to the

previous two cases because the probability of expressing a certain response pattern in

class one is also likely to be expressed in class two. Generally latent classes are more
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distinguishable when there are particularly high (or low) probabilities for a given

class. In the low quality condition, there are no substantial differences in the overall

item-response probabilities.

The relationship between class homogeneity and class separation is more trans-

parent when the item-response probabilities from Table 3.1 are plotted, as shown in

Figure 3.1. It is much easier to visualize the qualitative differences of each latent

class and evaluate the degree of class homogeneity and separation. In the first and

second panel, interpreting the latent classes would be straightforward because the

item response probabilities across the measured items clearly differentiate the latent

classes. In contrast to the last panel, interpreting the latent classes is no longer

as straightforward but more difficult because of the of low class homogeneity and

separation.

As a whole, we can see that a high degree of class separation guarantees a high

degree of class homogeneity. However, it is important to note that the converse is

not true, namely a high degree of class homogeneity does not guarantee high class

separation. For example, consider a 2-class model, one class endorses a particular item

with probability of 0.95 and the other class endorses the exact item with a probability

of 0.90. In this case, class homogeneity is high but classes are indistinguishable

because that item is highly characteristic in both classes. Alternatively consider a

2-class model where the probability of endorsing a particular item is 0.85 in class

one and 0.10 in class two. In this case, we have a high degree of class separation as

well as class homogeneity such that the first class may be interpreted as being more

characteristic endorsing that item whereas the second class will not.
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Figure 3.2 summarizes the covariate relationships considered in the study. We

manipulate the strength of the covariate effect to determine whether or not it influ-

ences the class enumeration accuracy. For population A, a continuous covariate x

was generated from a standard normal distribution in which x has an indirect effect

on the items via the latent variable. The effect of x on c is measured by the regres-

sion parameter γ1k in (2.2.3). In particular, γ1k ∈ 0.40, 0.90, 1.50 to represent small,

moderate and large effect sizes which correspond to Cohen’s d of 0.20, 0.50 and 0.80,

respectively (Cohen, 1988).

In population B, w is a binary categorical covariate and has a direct effect on

u1 and u2. In this case, the local independence assumption is violated because w

is a common cause beyond the latent variable. x is a covariate that follows a stan-

dard normal distribution and has a moderate effect on the items through c, i.e., the

regression parameter γ1k is fixed at 0.90. Using (2.2.4), population B is defined as

P (ui|wi, xi) =
3∑

k=1

[
P (ci = k|xi)P (u1i, u2i|ci = k, wi)

10∏
m=3

P (umi|ci = k)

]
. (3.1.1)

The latent variable c and w account for the shared association among u1 and u2, thus,

u1 and u2 are conditionally independent with respect to c and w

P (u1i, u2i|ci = k, wi) = P (u1i|ci = k, wi)P (u2i|ci = k, wi), (3.1.2)

where the probability of endorsing item u1 or u2 is given by

P (uji = 1|ci = k, wi) =
1

1 + exp(τujk − βujwi)
j=1,2. (3.1.3)

35



M.Sc. Thesis – S. Luo McMaster University – Mathematics & Statistics

The direct effects of w on u1 and u2 are equal such that βu1 = βu2 . The impact of

direct effects on class enumeration are studied for small, moderate and large effect

sizes which correspond to βuj = 0.40, 0.90 and 1.50, respectively, for j = 1, 2.
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Figure 3.1: Interpretation of latent classes is based on the overall distribution of the
item-response probabilities. Each panel represent a different degree of class
homogeneity and separation. In general as class separation decreases so does class
homogeneity but the converse is not true.
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Figure 3.2: For population A, the covariate x has an indirect effect on items via the
latent class variable. For population B, two covariates are simulated. The covariate
x has an indirect effect on items which is fixed at γ1k = 0.90. w has a direct effect
on u1 and u2.
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3.2 The Analysis Procedure

The simulation design consist of two population models, four sample sizes, three

sets of conditional probabilities with two class splits and three covariate effect sizes.

The factors manipulated resulted in a total of 2× 4× 3× 2× 3 = 144 unique design

conditions. 500 replicated data sets were simulated according to each design condition

and analyzed with different LCA models that ranged from two through five latent

classes using Mplus (Muthén and Muthén, 2017). Results of each fit index from every

run were collected from output files, and saved for analysis with R (R Core Team,

2020) and Mplus Automation (Hallquist and Wiley, 2018).

Additionally to determine whether the inclusion of covariates improved the ability

to detect the correct number of latent classes, each replication was analyzed twice:

once with covariates, and once without covariates. When covariates were included,

the specification for these runs matched the population models according to where the

replication was simulated from. Our outcome of interest is to determine how frequent

the correct number of latent classes could be identified by each information criterion

and likelihood ratio test. To capture this, we recorded the proportion of replications

(rounded to the whole number) that each fit index selected the two, three, four, and

five-class model as the best solution under each condition.

Results obtained in this study were not based on local solutions. Before initializing

the study, multiple sets of random starting values were assessed on both population

models to ensure a reasonable number of starting values would consistently converge

to the same global solution. We opted for 150 sets of random starting values for

the initial stage of the optimization and 50 starting values for the final stage of the
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optimization process. However, there were a number of replications that were prob-

lematic, specifically the 5-class runs. A common way to deal with non-convergence is

to discard these replications and based the results on replications where all the class

runs fully converged (i.e., all 2,3,4 and 5-class run properly converged).

Rather than retaining replications with only full class solutions, we proceed with

another option that is more realistic when a large number of non-convergence class

runs are encountered in latent variable applications. This was also the procedure

Tofighi et al. (2008) applied in their study. Rather than removing the replication, we

remove the run that failed to converge and assume the previous run that converged

as the class solution. In other words, if the k-class model failed to converge for a

replication, it is reasonable to take the previous (k-1)-class run as the class solution.

Therefore when the 5-class models failed to converge, we selected the 4-class model as

the correct solution, provided the fit index supports the 4-class model. Of course if a

given fit index unequivocally selects 2-class or 3-class model then the non-convergence

of the 5-class model is unimportant.

The aVLMR and BLRT can be requested in Mplus with Tech11 and Tech14,

respectively. Recall the BLRT and aVLMR are nested test where the (k-1)-class

model is obtained by restricting the parameters of the first latent class of the k-class

model. Multiple starting values were used to estimate the best (k-1)-class model

in which 150 sets of random starting values were selected for the first step of the

optimization and 50 sets of starting values were selected for the second step of the

optimization. To ensure we were achieving reliable p-values for the BLRT, we used

100 bootstrap samples as suggested by study McLachlan (1987), which noted that

at least 99 bootstrap samples were necessary to obtain optimal power. (Dziak et al.,
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2014) also used 100 bootstrap sample in their BLRT power analysis. To ensure no

local maximum occurred during the analysis of the bootstrap samples, we specify

random starting values for (k-1) and k-class model with LRTSTARTS=0 0 150 50.

Class enumeration results relating to aVLMR and BLRT can be found in Ap-

pendix B with reference to Tables B.1, B.2, B.3 and B.4. The tables summarize the

proportion of replications that each latent class model was selected based on aVLMR

and BLRT. In this case, two- through five- latent class models were considered for

each replication and provided a p-value that compare the fit of a latent class model

with (k-1)-classes to one with k-classes. Note that when a two-class model is spec-

ified, a one-class model is also considered thus we have a total of five possible class

solutions in our study. The number of classes is determined based on how well each

LRT can differentiate neighbouring class models that differ by one class from the

true population model (Nylund et al., 2007). More specifically to earn support for

a k-class model we require a significant p-value for the (k-1)-class model during the

k-class run and a non-significant p-value for the k-class model during (k+1)-class run.

If this is not satisfied during the (k+1)-class run, we continue to add classes until the

first non-significant p-value is observed.

Information criteria were studied in a similar fashion such that a sequence of latent

class models ranging from two- through five- classes were fit on each replication. These

models were then compared and scored based on each IC, then selected based on where

the minimum value occurred across each criterion and model. Table B.9 through Table

B.16 summarized the proportion of replications each latent class model was identified

as correct according to each IC. Classification based IC followed an identical process

as the IC, in which model selection was based on the where the lowest value occurred

41



M.Sc. Thesis – S. Luo McMaster University – Mathematics & Statistics

across the models considered. Table B.5, B.6, B.7 and B.8 showcase the proportion of

replications a particular latent class model was selected based on the ICL and CLC.

Another interest was to study how certain design factors contribute to the class

enumeration accuracy. The performance was analyzed graphically by averaging the

proportions of times each fit index selected the true three-class solution. Specifically,

each graph is created to display the two factors simultaneously with the other factors

averaged out. For example, Figure 4.1 shows the impact of sample sizes and quality of

the item-response probabilities on each fit criterion, which is calculated by averaging

the proportion of replications that selected the three-class model over all the covariate

effect sizes and class splits. Likewise, Figure 4.2 displays the impact of different

covariate effect sizes and class splits by averaging over the all the sample sizes and

quality of item-response probabilities.
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Chapter 4

Results

In this section, we present the results of the simulation study, in particular the propor-

tion of replications that selected the correct number of classes for each fit index. This

includes comparing the performance of each one under different modelling conditions

and determine whether the inclusion of covariates is reflected in the class enumeration

accuracy. The full simulation results are given in Appendix B. Additionally coverage

values of 95% confidence intervals are discussed.

4.1 Average Coverage Values

The average coverage values across all parameter estimates were calculated. For a

simulation study to be meaningful, the parameter estimates obtained from analysis

must resemble the population parameters. The precision of interval estimates can be

measured by coverage values. Coverage values state the proportion of replications for

which the 95% confidence intervals contain the true population parameter Muthén

and Muthén (2002). The coverage of the estimates obtained from our study were
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good and fell in 91% to 97% range. However, coverage values of the smaller latent

classes were low, particularly when sample size is n=200. This is unsurprising given

that 5% of 200 only produces a class size of 10. Likewise 15% of 200 corresponds

to a class size of 30. Recall we considered two sets of class proportions in which the

smallest latent class was 5% and 15% in split 1 and 2, respectively.

The average coverage estimates of the smallest latent class of each spit is shown

in Table 4.1. It illustrates the impact of sample size and quality of items on coverage.

Coverage values improve as the quality of items improve and sample size increases.

For instance in population A with low quality item-response probabilities, coverage

is 68% at n=200, 81% at n=500, 85% at n=1000, and 91% at n=2000. In contrast,

coverage is improved drastically with high quality item-response probabilities such

that coverage increased to 92% at n=500.

Table 4.1: Coverage estimates were very good for the larger latent classes, but poor
for the smaller latent classes. Coverage estimates increased as sample size and
quality of item-response probabilities improved.

Population A Population B

Quality Sample Size
Class Size of 5%

Coverage
Values

Class Size of 15%
Coverage

Values

Class Size of 5%
Coverage

Values

Class Size of 15%
Coverage

Values

Low Quality 200 68 84 71 77
500 81 89 82 85
1000 85 90 88 88
2000 91 93 92 91

Moderate Quality 200 71 87 76 90
500 93 94 91 90
1000 96 95 93 95
2000 95 96 94 96

High Quality 200 76 93 78 91
500 92 95 93 92
1000 94 95 94 97
2000 96 97 93 97
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4.2 Sample Size

Figure 4.1 gives the average proportion of replications in which a three-class model

was correctly selected when sample size varied. Overall, we see that majority of the

fit index experience increase accuracy rates as sample size increase. For example,

consider population A, row moderate quality, we see that as sample size increases

from left to right, the accuracy rates of the fit indices shift upwards. Additionally as

sample size reach n=1000, with the exception of AIC, CLC and ICL, all the fit indices

achieved enumeration accuracy rates greater than 90% and near perfect when sample

size approach n=2000. This increasing trend in the accuracy rates is also portrayed

in population B.

The aBIC, BIC and BLRT performed similarly well and enumerated the most

accurately across different sample sizes and population models. For n=200, results

were mixed and varied depending on the quality of item-response probabilities. AIC

performed the worst of the information criterion and the enumeration accuracy did

not reflect any improvement with increase sample size, in fact it appears that accuracy

rate decreased as sample size was increasing. Similar trends were exhibited for the ICL

but the change in accuracy rate decreased much more drastically such that accuracy

is less than 10% when sample size reach n=1000 and close to 0% for n=2000. The

CLC was the worst performing fit index where enumeration rate was near 0% across

all sample sizes.
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4.3 Quality of Item-Response Probabilities

Three different structure of item-response probabilities were examined in this simu-

lation study. Figure 4.1 summarizes the average enumeration accuracy of selecting

the three class model under high, moderate and low quality conditions. It was ap-

parent that the overall quality of the item-response probabilities had a bearing on

class enumeration. The proportion of replications that correctly identified the three

class model decreased as the quality of the item-response probabilities decreased.

Specifically moving downwards from high to low quality conditions in Figure 4.1, the

average proportions of correct enumeration drops substantially across both popula-

tion models. For example with high quality items, the aBIC, BIC, CAIC achieved

90% accuracy rates with a sample size of n=500, however, given moderate quality

conditions it required at a sample size of at least n=1000.

With high quality conditions, majority of the fit indices, with the exception of

AIC, ICL and CLC, gave comparable performance and achieved high enumeration

accuracy rates ranging between 80% to 100%. With moderate conditions the dif-

ference in performance of each fit indices can be seen more clearly. The aBIC and

BLRT performed comparably and identified the highest number of three class so-

lutions. Given low quality conditions, the accuracy rates were very poor and class

solutions were barely identifiable by most of the fit indices. However, the AIC and

ICL had some enumeration capability though accuracy rates were generally less than

40%. As a whole, Figure 4.1 showcase the relationship between quality of items and

sample size and emphasizes not only the importance of obtaining or deriving “good”

items during the data collection process but utilizing a reasonable sample size as well.
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4.4 Class Proportions

Two different sets of class proportions were considered in the simulation study where

split 1 represent a large, moderate and rare class split (60-35-5) and split 2 simulated

two classes of similar size and one smaller class (45-40-15). It is evident that the

overall class split had an impact on class enumeration as indicated by the spread

across each split in Figure 4.2. The accuracy rates of each fit index is much more

spread in split 1 compared to split 2, which implies that enumeration accuracy is

higher when latent classes are more equal in size. This is anticipated because even

with a relatively large sample size such as n=2000, 5% of 2000 produce a class size

of 100 may be too small of a class to be detected by certain fit indices. In the case

of dissimilar class sizes such as in split 1, it appears that the aBIC and BLRT would

be more successful at detecting smaller/rarer classes in the population.

4.5 Model Complexity and Effect Size

Figure 4.2 captures the average number of replications that selected the three-class

model given different levels of effect sizes. In general the effect size contributed

from a covariate does impact the class enumeration accuracy. To illustrate, consider

population A, split 1 with a small effect, the accuracy of the fit indices, with exception

of the ICL and CLC, range between 37% and 60%. As we move down the plot to a

larger covariate effect size, majority of these fit indices experience an increase in the

number of identifiable class solutions. The AIC, ICL and CLC have no changes in

accuracy as the effect size increases. This is the general pattern expressed across all

the modelling conditions considered in Figure 4.2.
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Model complexity also had an influence on the class enumeration accuracy. Popu-

lation A and B were very similar in construction with three latent classes, ten binary

items and an indirect effect specification onto the latent variable. The difference was

population B which incorporated an additional direct effect specification between

item u1 and item u2. By specifying the direct effect between items, we relaxed the

local independence assumption and increased the number of free parameters to be

estimated, thus making population B slightly more complex.

Generally fit indices that performed well in population A also performed well in

population B with minor differences depending on the quality of the item response

probabilities. With high quality conditions, the difference in accuracy rate between

population A and population B were minimal as seen in Figure 4.1. The difference is

more prominent when the quality of the item-response probabilities decrease. With

moderate quality conditions, accuracy rates of population B are slightly worse com-

pared to population A. This trend is also exhibited in Figure 4.2. The difference in

accuracy rate between the two population models can be more clearly seen in Table

4.2 which summarizes the average proportion of replications that correctly selected

the three class model according to each of the fit indexes, categorized by sample size.
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4.6 Including Covariates

Determining whether the inclusion of covariates could improve the performance of

an fit index required each replication to be conducted twice: with and without co-

variates. When covariates were included, the specification matched the population

models based on where the replication was simulated from. Referring back to Figures

4.1 and 4.2, these figures showcase the average proportions of replications that se-

lected the three class model according to each fit index, with and without covariates.

An upward slope signified that including covariates improved the accuracy rate of

a particular fit index. Overall the inclusion of covariates proved beneficial for class

enumeration across both populations models.

Incorporating covariates improved the enumeration accuracy under certain trou-

blesome conditions such as poor item-response probabilities or sample size issues. To

illustrate, consider the case of population A, moderate quality conditions, and sample

size of n=500 in Figure 4.1, accuracy rates of the aBIC and BLRT saw an improve-

ment of roughly 8% when covariates were included. Similar pattern of results were

observed for aVLMR, BIC and CAIC. Including covariates when the effect size was

small or when the class proportions were imbalanced, dissimilar in size such as the

case of split 1 also demonstrated improvement in enumeration accuracy. As shown

in Figure 4.2, the aBIC, BIC, CAIC, aVLMR and ICL all experienced improvements

with covariates.

This improvement is not surprising since the conditional model was specified to

match the population model according to where the replication was simulated from.

But in most applications of LCA with covariates, the true covariate specification is un-

known. One could hypothesize what the covariate relationships may be but knowing
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the exact and correct specification is unlikely. In a simulation study by Nylund-Gibson

and Masyn (2016), they showed that incorporating misspecified covariate effects into

LCA models early on in the enumeration process would commonly lead to an over

extraction of latent classes.

Additionally we note that the magnitude of improvement between the conditional

and unconditional model was minimal and usually unsubstantial. In other words, the

model without covariates does just as well as the the conditional model with true co-

variate specification. This is noteworthy because conducting the enumeration process

without covariates saves a great amount of computational time. For instance with

population B, estimating a 3-class run with covariates took approximately 76 seconds

to compute in comparison to approximately 8 seconds without covariates. In our case

the populations models were relatively simple and start values considered were much

smaller compared to values used in real settings. With larger, more complex models

and larger range of starting values the difference in computation time can range from

a few minutes to hours (Dziak et al., 2014; Asparouhov and Muthén, 2012), assuming

the same fit indices are used as in this study.

Therefore, we recommend that it is reasonable and best to first conduct class

enumeration with an unconditional LCA model to determine the number of classes.

Once the number of classes is finalized and there is evidence of indirect/direct effects

in the model, covariates should then be included into the analysis.
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4.7 Extraction Errors

The results collected so far provide the proportion of times each fit index correctly

selected the number of latent classes across different modelling conditions. We would

also like to understand the type of errors committed when an incorrect model is

selected (i.e., extracting too many or too few classes). Table 4.2 summarizes the

average proportions of replications that were incorrectly and correctly selected by

each fit index, categorized by sample size.

The AIC had a tendency to overestimate the the number of latent classes and the

error became more prominent as sample size increased. These results are unsurprising

given that the penalty term of the AIC generally favoured models of more complexity

and its inconsistency property (Woodroofe, 1982). The BIC, CAIC and aBIC had

a tendency to underestimate the number of latent classes and because these IC are

consistent (Dziak et al., 2018), they enumerate the correct the number of latent classes

more frequently as sample size increased.

BIC, CAIC and aBIC penalizes more harshly compared to the AIC and as a result

they favour smaller and simpler models. Likewise, the aVLMR and BLRT typically

underestimated the number of latent classes. The ICL and CLC had the largest

extraction errors and frequently overestimated the number of latent classes. The

error reached over 40% as sample size increased to n=2000. In our simulation study,

when a fit index went wrong it would typically underestimate the number of latent

classes.
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Table 4.2: Average proportion of replications correctly selected as well as the
average proportion of replications that resulted in either under or over extracting
the number of latent classes according to each fit index by sample size.

Population A Population B

Sample Size Criterion
Under

extraction
Correct

Identification a

Over
extraction

Under
extraction

Correct
Identification a

Over
extraction

200 AIC 10.1 37.6 20.8 10.3 38.5 20.8
BIC 28.5 42.8 0.0 28.7 41.5 0.0
aBIC 12.8 42.5 14.3 13.0 41.6 14.1
CAIC 31.7 36.4 0.0 32.4 35.3 0.0
aVLMR 26.2 42.4 2.6 29.3 36.7 2.4
BLRT 26.4 40.1 3.2 20.2 45.8 3.9
ICL 17.3 51.7 6.9 17.6 46.3 7.7
CLC 0.1 1.8 48.9 0.2 2.2 48.7

500 AIC 7.9 36.7 23.5 7.8 36.7 23.3
BIC 21.5 57.1 0.0 21.8 56.0 0.0
aBIC 17.1 61.5 0.5 16.7 60.8 0.5
CAIC 22.5 55.1 0.0 23.5 52.7 0.0
aVLMR 20.0 54.9 2.4 20.1 54.3 3.3
BLRT 17.8 57.4 2.8 17.4 57.2 2.8
ICL 4.1 28.0 31.9 4.7 30.2 30.2
CLC 0.3 3.3 48.0 0.5 3.4 47.8

1000 AIC 6.2 37.3 24.4 6.2 35.4 25.4
BIC 17.9 63.3 0.0 17.1 61.6 0.0
aBIC 16.7 65.2 0.0 16.6 64.0 0.0
CAIC 18.7 61.6 0.0 17.9 58.6 0.0
aVLMR 17.5 59.3 2.7 18.3 58.8 3.8
BLRT 15.9 63.0 2.2 15.6 61.8 2.4
ICL 1.7 14.9 40.9 1.9 15.2 40.5
CLC 0.5 3.1 47.9 0.5 3.3 47.9

2000 AIC 5.1 35.9 26.1 4.4 35.2 27.9
BIC 16.7 66.6 0.0 16.7 64.5 0.0
aBIC 16.6 66.4 0.0 16.7 66.7 0.0
CAIC 16.7 64.5 0.0 16.7 64.2 0.0
aVLMR 16.0 61.8 3.1 16.1 61.7 3.0
BLRT 15.5 65.4 2.2 15.0 66.1 2.0
ICL 0.9 7.7 45.3 0.8 8.5 45.0
CLC 0.4 3.2 48.0 0.3 3.4 48.0

a Bolded values indicate the top 3 best performing index in each condition. Averages were
calculated across different class splits, quality conditions and effect size of each population model.
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Figure 4.1: Average proportion of replications that selected the 3-class model based
on Quality of Indicators and Sample Size.
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Figure 4.2: Average proportion of replications that selected the 3-class model by
Covariate Effect Size and Class Proportion Split.
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Chapter 5

Discussion

We conducted a simulation study that examined the performance of several commonly

used fit indices in LCA applications. The main objective was to better understand

which of these fit indices were more preferable as a model selection tool for LCR

models, as well as provide more insight as to whether class enumeration should be

conducted with or without covariates. Lastly, we studied how certain design factors

would contribute to the class enumeration accuracy and highlighted which would lead

to better or worse performance.

The shaded column of Table 4.2 summarizes the average proportions of replica-

tions that correctly identified the three-class solution for each fit index, grouped by

sample size. These averages were calculated across different class splits, quality con-

ditions, and effect size of each population model. The bolded values of this column

indicate the top 3 best performing fit indices. Overall, the aBIC and BLRT selected

the correct number of latent classes most frequently across all modelling conditions.

Generally as sample size increased, the performance of the BIC, CAIC and aVLMR

were comparable to the aBIC and BLRT. The CLC was the worst performing fit index
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across all modelling conditions. The ICL should not be dismissed entirely because the

ICL performed with the highest accuracy for n=200, at 51% and 46% for population

A and B respectively. More analysis is needed to determine whether this was due to

chance or the ICL can be used as a class enumeration tool for small sample sizes.

Between the two likelihood ratio tests, the BLRT showed better performance than

aVLMR but accuracy rates between the two were quite close for majority of the mod-

elling conditions considered in this study. Nylund et al. (2007) study found similar

results but noted that the p-value for aVLMR tended to bounce between significant

and non-significant as the number of latent classes increased. In comparison to the

BLRT, once the BLRT p-value was non-significant it remained so for subsequent in-

creased class models (Nylund et al., 2007). Thus, they recommend that when the

first non-significant aVLMR p-value occurs it is a good indication to stop increasing

the number of classes. We did not encounter this problem in our study. Though the

BLRT performed well it is limited due to its computation time. Therefore, similar

to the recommendation of Nylund et al. (2007), class enumeration should first be

conducted with the aBIC or BIC to determine a set of potential candidate models.

Once that is determined, the BLRT can enumerate on the set of candidate models

and confirm whether results obtained by the BLRT match results from the aBIC and

BIC.

In terms of the information criteria, findings in this study suggest that the AIC

should not be used a model selection tool as it tended to overestimate the number

of latent classes. The CAIC and BIC performed very similarly to each other in most

conditions. But given their penalty terms this is not a huge surprise since CAIC is

the BIC with an added term for the number of parameters, thus is penalizes slightly
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more harshly compared to the CAIC and favour simpler models more than the BIC.

Between the BIC and aBIC, the aBIC performed slightly better across our modelling

settings.

This study varied several design factors including the sample size, quality of item-

response probabilities, model complexity, class proportion split and size of the co-

variate effect. Unsurprisingly items with high class separation and class homogeneity

contributed to how well fit indices were able to distinguish the latent classes, as il-

lustrated in Figure 4.1. When class separation and class homogeneity decreases so

does the accuracy rate of the fit indices. In some cases, increasing sample size or im-

proving the quality of items could compensate for less ideal conditions. For example,

moderate quality conditions can be compensated by increasing the sample size and

high quality conditions compensating for small sample sizes.

The overall class proportion split and size of each of the latent class also had

bearing on how well the fit indices identified the latent classes. It is more difficult for

fit indices to detect class proportions splits with rarer or smaller class sizes. However,

the aBIC performed relatively well in these situations across all modelling settings.

Model complexity may also factor into the accuracy rate. It was not overly prominent

in our study because population B was only slightly more complex than population A.

Even so, Figure 4.2 and Table 4.2 reflect slight improvements in the accuracy rates of

population A over B. It is difficult to generalize this for more complex models without

further investigation.

Based on our findings, covariates generally increased the overall enumeration ac-

curacy (hindered in few cases) and proved to be beneficial for certain modelling sit-

uations such as poor quality conditions or class split. However, these improvements
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can only be guaranteed given that the true covariate specification is used for class

enumeration. Realistically, the true specification of the population model is usually

unknown and randomly guessing a specification will generally lead to a misspecfied

and overestimated LCA model (Nylund-Gibson and Masyn, 2016). Our study indi-

cates that the unconditional model performed equivalently as well as the conditional

model with the correct covariate specification. Even with the presence of large covari-

ate effect sizes in the population model, the unconditional model performed as well as

the conditional model as illustrated in Figures 4.2 and 4.1. Therefore, it is reasonable

and our recommendation to use the unconditional model for class enumeration.

Findings in this study were limited to binary, categorical latent class models and

only a limited number of population models with three classes. Future studies could

expand these parameters and to other mixture models to understand how model

complexity impacts class enumeration and the overall performance of the fit indices.

Additionally we only examined a limited number of covariates to one continuous

variable and one binary categorical variable. It would be interesting to see how

multiple covariates would interplay with class enumeration. Other model section

criteria could also be examined such as the AIC3, which in some studies has shown to

outperform other information criteria (Fonseca and Cardoso, 2007; Yang and Yang,

2007; Dias, 2006) or alternative cross validation approaches to approximate the LRT

distribution given that BLRT performed well. We could also examine under what

conditions could low quality items or small samples still be used while ensuring results

obtained are still justifiable and unbiased. As another example, a power analysis and

Type I error analysis could be conducted on BLRT and aVLMR to compare and

better understand their performance over a wider range of conditions.
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Appendix A

Mplus Code

These are sample template files used to simulate data for population model B. In

Mplus, the item-response probabilities are represented by thresholds, τrmk
, and cal-

culated by (2.2.6). The class proportion probabilities are expressed as intercepts of a

multinomial logistic model given by (2.2.3).
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[init]]

iterators = sample covEffects;

sample = 200 500 1000 2000;

covEffects = 0.40 0.90 1.50;

filename= "MC_Data_Pop2_Split1_HQ.inp";

outputDirectory= ~/PopTwo/Split1/HighQuality/

[[covEffects]]/[[sample]]/Data;

[[/init]]

TITLE: Simulated data -- Population B -- High Quality conditions

MONTECARLO:

names are u1-u10 x w;

generate= u1-u10(1);

categorical= u1-u10;

genclasses= c(3);

cutpoints=w(0); !binary covariate

classes= c(3);

nobs=[[sample]];

nrep=500;

repsave=all;

save= ~/PopTwo/Split1/HighQuality/

[[covEffects]]/[[sample]]/Data/[[sample]]*.dat;

MODEL POPULATION:

%OVERALL%

[x@0]; x@1;

[w@0]; w@1;

[c#1@2.70]; [c#2@2.16];

c#1 ON x*0.90; c#2 ON x*0.90;

u1 ON w*[[covEffects]]; u2 ON w*[[covEffects]];
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%c#1%

[u1$1*-2.2 u2$1*-2.2 u3$1*-2.2 u4$1*0 u5$1*2.2

u6$1*0 u7$1*2.2 u8$1*2.2 u9$1*0.62 u10$1*0.62];

%c#2%

[u1$1*2.2 u2$1*1.39 u3$1*1.1 u4$1*-2.2 u5$1*-2.2

u6$1*-2.2 u7$1*1.1 u8$1*1.39 u9$1*1.39 u10$1*1.1];

%c#3%

[u1$1*1.73 u2$1*1.73 u3$1*0.85 u4$1*0.85 u5$1*1.39

u6$1*1.1 u7$1*-2.2 u8$1*-2.2 u9$1*-2.2 u10$1*1.39];

MODEL:

%OVERALL%

[c#1@2.70]; [c#2@2.16];

c#1 ON x*0.90; c#2 ON x*0.90;

u1 ON w*[[covEffects]]; u2 ON w*[[covEffects]];

%c#1%

[u1$1*-2.2 u2$1*-2.2 u3$1*-2.2 u4$1*0 u5$1*2.2

u6$1*0 u7$1*2.2 u8$1*2.2 u9$1*0.62 u10$1*0.62];

%c#2%

[u1$1*2.2 u2$1*1.39 u3$1*1.1 u4$1*-2.2 u5$1*-2.2

u6$1*-2.2 u7$1*1.1 u8$1*1.39 u9$1*1.39 u10$1*1.1];

%c#3%

[u1$1*1.73 u2$1*1.73 u3$1*0.85 u4$1*0.85 u5$1*1.39

u6$1*1.1 u7$1*-2.2 u8$1*-2.2 u9$1*-2.2 u10$1*1.39];

ANALYSIS:

type=mixture;
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[[init]]

iterators = sample covEffects;

sample = 200 500 1000 2000;

covEffects = 0.40 0.90 1.50;

filename= "MC_Data_Pop2_Split1_MQ.inp";

outputDirectory= ~/PopTwo/Split1/ModerateQuality/

[[covEffects]]/[[sample]]/Data;

[[/init]]

TITLE: Simulated data -- Population B -- Moderate Quality conditions

MONTECARLO:

names are u1-u10 w x;

generate= u1-u10(1);

categorical= u1-u10;

genclasses= c(3);

cutpoints=w(0); !binary covariate

classes= c(3);

nobs=[[sample]];

nrep=500;

repsave=all;

save= ~/PopTwo/Split2/ModerateQuality/[[covEffects]]/

[[sample]]/Data/[[sample]]*.dat;

MODEL POPULATION:

%OVERALL%

[x@0]; x@1; [w@0]; w@1;

[c#1@2.70]; [c#2@2.16];

c#1 ON x*0.90; c#2 ON x*0.90; u1 ON w*[[covEffects]]; u2 ON w*[[covEffects]];
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%c#1%

[u1$1*-1.1 u2$1*-1.1 u3$1*-1.1 u4$1*0 u5$1*2.2

u6$1*0 u7$1*2.2 u8$1*2.2 u9$1*0.62 u10$1*0.62];

%c#2%

[u1$1*0.85 u2$1*1.73 u3$1*0.62 u4$1*-1.39 u5$1*-1.39

u6$1*-1.39 u7$1*0.85 u8$1*0.41 u9$1*1.39 u10$1*0.41];

%c#3%

[ u1$1*1.73 u2$1*1.73 u3$1*0.85 u4$1*0.85 u5$1*1.39

u6$1*1.1 u7$1*-1.1 u8$1*-1.1 u9$1*-1.1 u10$1*0.2];

MODEL

%OVERALL%

[c#1@2.70]; [c#2@2.16];

c#1 ON x*0.90; c#2 ON x*0.90;

u1 ON w*[[covEffects]]; u2 ON w*[[covEffects]];

%c#1%

[u1$1*-1.1 u2$1*-1.1 u3$1*-1.1 u4$1*0 u5$1*2.2

u6$1*0 u7$1*2.2 u8$1*2.2 u9$1*0.62 u10$1*0.62];

%c#2%

[u1$1*0.85 u2$1*1.73 u3$1*0.62 u4$1*-1.39 u5$1*-1.39

u6$1*-1.39 u7$1*0.85 u8$1*0.41 u9$1*1.39 u10$1*0.41];

%c#3%

[ u1$1*1.73 u2$1*1.73 u3$1*0.85 u4$1*0.85 u5$1*1.39

u6$1*1.1 u7$1*-1.1 u8$1*-1.1 u9$1*-1.1 u10$1*0.2];

ANALYSIS:

type=mixture;
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[[init]]

iterators = sample covEffects;

sample = 200 500 1000 2000;

covEffects = 0.40 0.90 1.50;

filename= "MC_Data_Pop1_Split1_LQ.inp";

outputDirectory= ~/PopOne/Split1/LowQuality/

[[covEffects]]/[[sample]]/Data;

[[/init]]

TITLE: Simulated data -- Population B -- Low Quality Conditions

MONTECARLO:

names are u1-u10 w x;

generate= u1-u10(1);

categorical= u1-u10;

genclasses= c(3);

cutpoints=w(0); !binary covariate

classes= c(3);

nobs=[[sample]];

nrep=500;

repsave=all;

save= ~/PopOne/Split1/LowQuality/

[[covEffects]]/[[sample]]/Data/[[sample]]*.dat;

MODEL POPULATION:

%OVERALL%

[x@0]; x@1;

[w@0]; w@1;

[c#1@2.70]; [c#2@2.16];

c#1 ON x*0.90; c#2 ON x*0.90;

u1 ON w*[[covEffects]]; u2 ON w*[[covEffects]];
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%c#1%

[u1$1*0 u2$1*0 u3$1*0 u4$1*0.85 u5$1*0.41

u6$1*0 u7$1*0.62 u8$1*0.2 u9$1*1.39 u10$1*0.85];

%c#2%

[u1$1*0.41 u2$1*0.41 u3$1*0.85 u4$1*0.2 u5$1*0.2

u6$1*0.2 u7$1*0.85 u8$1*0.41 u9$1*0.85 u10$1*0.41];

%c#3%

[u1$1*1.73 u2$1*1.73 u3$1*0.85 u4$1*0.85 u5$1*0.62

u6$1*1.1 u7$1*0 u8$1*0 u9$1*0 u10$1*0.85];

MODEL:

%OVERALL%

[c#1@2.70]; [c#2@2.16];

c#1 ON x*0.90; c#2 ON x*0.90;

u1 ON w*[[covEffects]]; u2 ON w*[[covEffects]];

%c#1%

[u1$1*0 u2$1*0 u3$1*0 u4$1*0.85 u5$1*0.41

u6$1*0 u7$1*0.62 u8$1*0.2 u9$1*1.39 u10$1*0.85];

%c#2%

[u1$1*0.41 u2$1*0.41 u3$1*0.85 u4$1*0.2 u5$1*0.2

u6$1*0.2 u7$1*0.85 u8$1*0.41 u9$1*0.85 u10$1*0.41];

%c#3%

[u1$1*1.73 u2$1*1.73 u3$1*0.85 u4$1*0.85 u5$1*0.62

u6$1*1.1 u7$1*0 u8$1*0 u9$1*0 u10$1*0.85];

ANALYSIS:

type=mixture;
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Appendix B

Simulation Results

66



M.Sc. Thesis – S. Luo McMaster University – Mathematics & Statistics

Table B.1: Proportion of times a non-significant p-value selected a given class model
for the aVLMR & BLRT for Population A Split 1. The shaded columns represent
the true number of latent classes in the population.

aVLMR BLRT

No Covariates Covariates No Covariates Covariates

Quality Effect Sample 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

HQ 0.4 200 1 36 56 8 0 1 40 55 5 1 0 23 53 24 0 0 19 54 25 1
500 0 7 87 7 0 0 8 87 5 1 0 16 82 2 0 0 14 82 3 1
1000 0 1 90 9 1 0 1 93 7 0 0 1 98 1 0 0 2 95 2 1
2000 0 0 92 9 0 0 0 93 7 0 0 4 95 1 0 0 0 96 2 1

0.9 200 0 21 71 7 2 1 23 70 6 1 0 30 65 5 0 0 26 67 6 1
500 0 2 87 10 2 0 2 91 8 0 0 17 83 0 0 0 10 86 3 1
1000 0 0 91 9 1 0 0 93 8 0 0 5 94 1 0 0 1 95 2 1
2000 0 0 89 10 1 0 0 92 8 1 1 6 93 0 0 0 3 94 2 1

1.5 200 1 8 81 11 0 1 6 85 8 1 0 25 66 9 0 0 30 69 0 1
500 0 0 88 11 1 0 0 94 7 0 1 0 81 0 18 0 1 82 1 16
1000 0 0 91 9 1 0 0 92 7 1 0 6 94 0 0 0 2 95 1 1
2000 0 0 92 8 1 0 0 94 6 1 1 0 94 5 0 0 1 96 1 2

MQ 0.4 200 0 2 83 15 0 1 89 9 2 0 5 42 53 0 0 0 43 55 1 1
500 0 58 30 2 1 0 60 39 1 1 0 2 91 8 0 0 3 92 4 1
1000 0 19 75 6 0 0 20 76 4 0 0 0 93 7 0 0 1 95 3 1
2000 0 0 95 5 0 0 0 93 7 1 0 0 93 7 0 0 1 95 3 1

0.9 200 2 78 20 1 0 3 80 17 1 1 0 38 62 0 0 0 34 63 1 1
500 0 43 55 3 0 0 45 54 2 0 0 2 91 8 0 0 3 86 9 1
1000 0 3 91 7 0 0 45 54 2 0 0 2 93 5 0 0 0 92 6 2
2000 0 1 89 11 0 0 0 92 8 1 0 2 95 3 0 0 1 96 2 1

1.5 200 5 66 29 2 0 3 52 43 2 0 0 36 64 0 0 0 37 60 1 1
500 1 16 77 7 0 0 4 92 4 0 0 2 88 9 1 0 3 89 6 2
1000 0 0 93 8 0 0 0 91 9 1 0 1 89 10 0 0 2 90 6 1
2000 0 0 90 10 1 0 0 91 9 0 0 1 90 9 0 0 2 91 5 1

LQ 0.4 200 0 90 9 2 0 92 8 0 0 0 89 8 0 3 0 84 9 1 4 1
500 95 6 0 0 0 92 9 0 0 0 81 17 1 1 0 76 18 2 2 1
1000 94 6 1 0 0 92 8 1 0 0 79 13 8 0 0 67 20 9 3 1
2000 89 11 1 0 0 93 7 1 0 0 73 20 7 0 0 67 21 9 2 1

0.9 200 91 8 2 0 0 91 10 0 0 0 88 10 2 0 0 77 17 3 1 1
500 95 6 0 0 0 92 8 0 0 0 76 19 5 0 0 72 20 6 2 0
1000 95 5 0 0 0 91 8 2 0 0 49 42 9 0 0 51 39 8 1 1
2000 86 14 1 0 0 87 13 1 0 0 48 43 9 0 0 46 40 11 2 1

1.5 200 90 10 1 0 0 91 8 1 1 0 79 19 2 0 0 69 23 3 4 1
500 94 7 0 0 0 88 11 1 0 0 70 30 0 0 0 64 34 1 1 0
1000 89 11 1 0 0 64 35 1 0 0 31 65 4 0 0 23 68 7 1 1
2000 79 20 2 0 0 20 76 3 1 0 30 62 7 1 0 27 61 8 2 1
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Table B.2: Proportion of times a non-significant p-value selected a given class model
for the aVLMR & BLRT for Population A Split 2. The shaded columns represent
the true number of latent classes in the population.

aVLMR BLRT

No Covariates Covariates No Covariates Covariates

Quality Effect Sample 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

HQ 0.4 200 0 0 80 16 2 1 1 84 13 1 0 23 53 24 0 0 19 54 25 1
500 0 0 88 11 0 0 0 89 11 0 0 16 82 2 0 0 14 82 3 1
1000 0 0 91 8 1 0 0 94 6 0 0 1 98 1 0 0 2 95 2 1
2000 0 0 86 13 0 0 0 93 7 0 0 4 95 1 0 0 0 96 2 1

0.9 200 0 1 83 15 1 0 0 84 15 1 0 30 65 5 0 0 26 67 6 1
500 0 0 88 10 2 0 0 94 6 0 0 17 83 0 0 0 10 86 3 1
1000 0 0 90 10 0 0 0 93 7 0 0 5 94 1 0 0 1 95 2 1
2000 0 0 89 11 0 0 0 90 10 0 1 6 93 0 0 0 3 94 2 1

1.5 200 0 0 78 21 1 1 0 81 16 2 0 25 66 9 0 0 30 69 0 1
500 0 0 85 13 2 0 0 90 10 0 1 0 81 0 18 0 1 82 1 16
1000 0 0 84 14 2 0 0 89 11 0 0 6 94 0 0 0 2 95 1 1
2000 0 0 88 9 3 0 0 91 9 0 1 0 94 5 0 0 1 96 1 2

MQ 0.4 200 3 29 63 5 0 3 37 56 4 0 5 42 53 0 0 0 43 55 1 1
500 0 0 92 8 0 0 0 95 4 1 0 2 91 8 0 0 3 92 4 1
1000 0 0 90 10 0 0 0 94 6 0 0 0 93 7 0 0 1 95 3 1
2000 0 0 92 6 2 0 0 92 7 1 0 0 93 7 0 0 1 95 3 1

0.9 200 8 16 73 3 0 9 15 70 6 0 0 38 62 0 0 0 34 63 1 1
500 0 1 91 8 0 1 89 0 8 1 0 2 91 8 0 0 3 86 9 1
1000 0 0 86 13 1 0 0 91 8 1 0 2 93 5 0 0 0 92 6 2
2000 0 0 89 10 1 0 0 95 5 0 0 2 95 3 0 0 1 96 2 1

1.5 200 8 15 67 8 2 10 3 80 7 0 0 36 64 0 0 0 37 60 1 1
500 0 0 94 6 0 4 93 3 0 0 0 2 88 9 1 0 3 89 6 2
1000 0 0 94 4 2 0 0 92 7 1 0 1 89 10 0 0 2 90 6 1
2000 0 0 94 6 0 1 0 94 4 1 0 1 90 9 0 0 2 91 5 1

LQ 0.4 200 93 6 1 0 0 91 9 0 0 0 89 8 0 3 0 84 9 1 4 1
500 88 10 2 0 0 92 8 0 0 0 81 17 1 1 0 76 18 2 2 1
1000 77 21 1 1 0 80 20 0 0 0 79 13 8 0 0 67 20 9 3 1
2000 40 57 3 0 0 35 60 4 1 0 73 20 7 0 0 67 21 9 2 1

0.9 200 92 8 0 0 0 91 9 0 0 0 88 10 2 0 0 77 17 3 1 1
500 92 8 0 0 0 77 21 2 0 0 76 19 5 0 0 72 20 6 2 0
1000 61 38 1 0 0 35 61 4 0 0 49 42 9 0 0 51 39 8 1 1
2000 27 66 7 0 0 2 87 11 0 0 48 43 9 0 0 46 40 11 2 1

1.5 200 91 9 0 0 0 83 15 2 0 0 79 19 2 0 0 69 23 3 4 1
500 87 13 0 0 0 31 65 4 0 0 70 30 0 0 0 64 34 1 1 0
1000 56 42 1 0 1 3 88 9 0 0 31 65 4 0 0 23 68 7 1 1
2000 8 83 8 1 0 0 0 94 5 1 30 62 7 1 0 27 61 8 2 1
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Table B.3: Proportion of times a non-significant p-value selected a given class model
for the aVLMR & BLRT for Population B Split 1. The shaded columns represent
the true number of latent classes in the population.

aVLMR BLRT

No Covariates Covariates No Covariates Covariates

Quality Effect Sample 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

HQ 0.4 200 1 21 66 11 1 1 22 67 10 0 0 38 58 0 4 1 40 59 0 0
500 0 2 88 10 0 0 2 29 0 69 0 22 68 0 10 0 22 68 0 10
1000 0 0 88 11 0 0 0 95 5 0 0 0 93 0 7 0 0 95 0 5
2000 0 0 91 10 1 0 0 94 6 0 0 1 93 0 6 0 1 96 0 3

0.9 200 1 23 66 10 1 1 22 70 7 0 0 10 60 30 0 0 17 53 30 0
500 0 1 87 12 1 0 2 89 8 1 0 23 77 0 0 0 20 80 0 0
1000 0 0 90 9 1 0 0 84 16 0 0 8 92 0 0 3 3 94 0 0
2000 0 0 89 10 1 0 0 84 5 1 0 9 91 0 0 0 9 91 0 0

1.5 200 1 24 67 7 1 3 27 66 4 0 0 11 89 0 0 0 11 89 0 0
500 0 2 86 11 1 0 3 89 8 0 0 0 93 7 0 0 0 95 5 0
1000 0 11 88 1 0 0 0 88 11 1 0 0 96 4 0 0 0 100 0 0
2000 0 0 86 13 1 0 0 97 3 0 0 0 97 3 0 0 0 100 0 0

MQ 0.4 200 2 80 19 1 0 0 76 20 4 0 0 34 60 6 0 0 34 61 5 0
500 0 44 52 4 0 0 32 68 0 0 0 0 91 6 3 0 0 92 5 3
1000 0 4 91 5 1 0 0 93 7 0 0 0 89 11 0 0 0 90 10 0
2000 0 0 91 8 1 0 0 92 8 0 0 0 89 11 0 0 0 90 10 0

0.9 200 2 78 20 1 0 0 84 16 0 0 0 34 66 0 0 0 32 67 1 0
500 0 45 53 2 0 0 40 56 4 0 0 0 91 9 0 0 0 91 9 0
1000 0 4 91 4 1 0 8 88 4 0 0 0 86 14 0 0 0 90 10 0
2000 0 0 92 8 0 0 0 100 0 0 0 0 86 14 0 0 0 87 13 0

1.5 200 2 81 17 1 0 0 88 8 4 0 0 0 34 66 0 0 0 70 30 0
500 0 48 49 4 0 0 32 68 0 0 0 0 94 6 0 0 0 95 5 0
1000 0 5 89 6 0 0 4 92 4 0 0 0 90 10 0 0 0 92 6 2
2000 0 0 85 15 1 0 0 96 4 0 0 1 91 8 0 0 0 93 7 0

LQ 0.4 200 92 8 1 0 0 94 6 0 0 0 91 8 0 1 0 95 5 0 1 0
500 91 8 0 1 0 92 7 1 0 0 80 19 1 0 0 82 16 2 0 0
1000 94 6 0 0 0 92 8 0 0 0 79 14 7 0 0 75 25 0 0 0
2000 83 16 1 0 0 81 17 2 0 0 71 21 8 0 0 71 20 9 0 0

0.9 200 91 8 1 0 0 90 9 1 0 0 89 11 0 0 0 90 9 1 0 0
500 93 7 0 0 0 88 12 0 0 0 77 20 3 0 0 77 20 3 0 0
1000 89 11 0 0 0 89 11 0 0 0 51 43 6 0 0 60 34 6 0 0
2000 78 27 1 0 0 79 21 0 0 0 49 44 7 0 0 49 44 7 0 0

1.5 200 88 12 1 0 0 90 8 2 0 0 80 20 0 0 0 79 20 0 1 0
500 82 18 0 0 0 90 10 0 0 0 58 34 8 0 0 51 44 5 0 0
1000 92 36 2 0 0 86 10 4 0 0 25 66 10 0 0 29 59 12 0 0
2000 23 73 4 0 0 78 22 0 0 0 28 62 10 0 0 30 57 13 0 0
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Table B.4: Proportion of times a non-significant p-value selected a given class model
for the aVLMR & BLRT for Population B Split 2. The shaded columns represent
the true number of latent classes in the population.

aVLMR BLRT

No Covariates Covariates No Covariates Covariates

Quality Effect Sample 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

HQ 0.4 200 1 0 82 14 3 0 89 9 0 1 0 0 89 11 0 0 0 86 14 0
500 0 0 87 12 1 0 0 93 6 1 0 0 91 6 3 0 0 93 7 0
1000 0 0 87 12 1 0 0 92 8 1 0 0 95 5 0 0 0 95 5 0
2000 0 0 89 10 1 0 0 89 10 1 0 0 97 3 0 0 0 100 5 0

0.9 200 0 0 80 16 3 1 0 88 10 1 0 0 89 11 0 0 0 95 5 0
500 0 0 88 12 1 0 0 93 6 1 0 0 89 9 3 0 0 93 7 0
1000 0 0 88 12 1 0 0 91 8 1 0 0 91 9 0 0 0 86 14 0
2000 0 0 87 12 0 0 0 91 8 1 0 0 93 7 0 0 0 100 0 0

1.5 200 1 0 82 15 1 1 0 87 12 1 0 0 89 11 0 0 0 93 7 0
500 0 0 94 14 2 0 0 92 7 0 0 0 86 14 0 0 0 86 14 0
1000 0 0 86 12 2 0 0 92 7 1 0 0 91 9 0 0 0 100 0 0
2000 0 0 82 17 1 0 0 92 7 1 0 0 92 8 0 0 0 100 0 0

MQ 0.4 200 6 22 65 7 0 8 21 67 4 0 0 0 80 20 0 0 0 97 3 0
500 0 0 93 7 0 0 0 95 5 0 0 0 86 14 0 0 0 94 6 0
1000 0 0 93 7 0 0 0 93 6 1 0 0 94 6 0 0 0 97 3 0
2000 0 0 92 8 0 0 0 94 5 1 0 0 90 10 0 0 0 97 3 0

0.9 200 6 23 65 6 0 9 22 66 3 0 0 0 78 12 0 0 0 97 3 0
500 0 0 92 8 1 0 0 95 5 0 0 0 86 14 0 0 0 94 6 0
1000 0 0 92 8 0 0 0 94 5 0 0 0 89 6 6 0 0 94 6 0
2000 0 0 88 12 0 0 0 94 6 0 0 0 88 12 0 0 0 100 0 0

1.5 200 10 25 59 5 0 10 22 64 4 0 0 0 100 0 0 0 0 94 6 0
500 0 0 91 8 1 1 0 92 6 0 0 0 83 17 0 0 0 94 6 0
1000 0 0 92 8 0 0 0 95 5 0 0 0 86 14 0 0 0 94 6 0
2000 0 0 84 16 1 0 0 96 4 0 0 0 87 13 0 0 0 94 6 0

LQ 0.4 200 90 10 0 0 0 90 10 1 0 0 83 17 0 0 0 73 23 3 0 0
500 89 10 0 0 0 80 19 1 0 0 60 40 0 0 0 27 70 3 0 0
1000 67 31 1 0 0 32 62 5 0 0 20 77 3 0 0 3 93 3 0 0
2000 19 76 5 0 0 1 91 8 0 0 0 64 36 0 0 0 95 5 0 0

0.9 200 88 11 1 0 0 89 10 1 0 0 66 34 0 0 0 63 37 0 0 0
500 82 17 1 0 0 79 20 2 0 0 43 54 3 0 0 13 83 3 0 0
1000 54 44 2 0 0 27 68 4 1 0 3 91 6 0 0 0 83 13 3 0
2000 8 88 3 0 0 1 90 8 0 0 1 92 7 0 0 0 86 14 0 0

1.5 200 87 12 1 0 0 91 9 0 0 0 57 40 3 0 0 64 36 0 0 0
500 71 29 0 0 0 80 19 1 0 0 14 80 6 0 0 14 86 0 0 0
1000 26 72 3 0 0 26 70 5 0 0 3 91 6 0 0 0 83 17 0 0
2000 4 90 6 0 0 1 91 8 1 0 0 94 6 0 0 0 84 16 0 0
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Table B.5: Proportion of times a given model is selected based on the lowest ICL
and CLC value for Population A Split 1. The shaded columns represent the true
number of latent classes in the population.

ICL CLC

No Covariates Covariates No Covariates Covariates

Quality Effect Sample 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5

HQ 0.4 200 41 32 21 7 49 28 18 6 0 1 11 89 0 1 9 91
500 1 16 37 48 0 21 32 48 0 0 13 88 0 0 9 92
1000 0 10 37 54 0 10 30 61 0 0 14 87 0 0 6 95
2000 0 3 37 61 0 4 24 73 0 0 19 81 0 0 9 92

0.9 200 23 46 26 6 25 48 21 7 0 1 6 94 0 0 5 95
500 0 14 38 49 0 18 37 46 0 0 11 89 0 0 8 92
1000 0 9 34 58 0 13 30 58 0 0 13 87 0 0 9 92
2000 0 5 32 64 0 6 30 64 0 0 12 88 0 0 13 88

1.5 200 3 71 22 5 1 74 20 5 0 0 7 93 0 0 3 98
500 0 24 33 43 0 22 30 49 0 0 8 92 0 0 8 93
1000 0 12 30 59 0 17 23 61 0 0 9 92 0 0 7 93
2000 0 5 18 78 0 6 22 73 0 0 11 89 0 0 10 91

MQ 0.4 200 83 11 6 1 89 9 2 0 0 1 17 82 0 1 12 88
500 19 18 33 31 23 13 29 36 0 2 16 83 0 1 16 84
1000 1 12 37 51 1 13 34 53 0 1 18 82 0 0 17 84
2000 0 3 27 71 0 5 24 72 0 0 15 86 0 0 12 88

0.9 200 82 12 7 0 85 11 5 0 0 0 15 86 0 0 8 92
500 11 21 37 33 9 22 30 39 0 0 13 87 0 1 10 90
1000 0 12 31 58 0 19 28 54 0 1 17 82 0 0 10 90
2000 0 4 26 70 0 8 28 64 0 0 15 86 0 0 14 87

1.5 200 67 26 7 1 54 38 7 1 0 1 14 86 0 0 7 93
500 1 37 34 28 0 27 40 34 0 1 15 85 0 0 16 85
1000 0 17 30 54 0 19 30 51 0 1 15 85 0 0 11 89
2000 0 2 24 75 0 4 21 76 0 0 10 90 0 0 8 92

LQ 0.4 200 42 37 18 3 60 27 12 2 1 5 25 70 3 4 20 74
500 12 25 30 34 27 24 24 27 2 8 22 69 6 9 20 67
1000 7 13 27 53 12 20 31 38 1 7 21 72 3 13 27 58
2000 7 14 25 55 9 20 28 43 3 11 22 65 5 17 27 52

0.9 200 41 36 19 6 57 26 15 2 0 4 20 76 0 4 18 79
500 15 24 31 31 22 25 28 26 2 7 24 68 3 9 24 65
1000 6 22 29 45 11 22 27 41 3 12 24 63 4 13 24 60
2000 6 7 32 56 11 19 28 43 4 6 30 61 6 15 26 54

1.5 200 45 33 20 3 59 26 13 4 1 4 23 73 2 5 25 69
500 12 25 30 34 21 26 22 32 1 10 20 70 3 8 19 71
1000 6 13 33 49 8 15 34 44 3 5 27 66 3 6 29 63
2000 3 14 29 55 4 15 24 59 2 9 26 64 2 8 20 71
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Table B.6: Proportion of times a given model is selected based on the lowest ICL
and CLC value for Population A Split 2. The shaded columns represent the true
number of latent classes in the population.

ICL CLC

No Covariates Covariates No Covariates Covariates

Quality Effect Sample 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5

HQ 0.4 200 0 86 11 3 0 89 8 3 0 0 2 98 0 0 0 100
500 0 33 25 42 0 32 25 43 0 0 7 93 0 0 2 98
1000 0 11 26 63 0 12 23 65 0 0 10 90 0 0 4 96
2000 0 5 23 72 0 4 26 70 0 0 11 89 0 0 9 91

0.9 200 0 88 12 0 0 92 7 1 0 0 2 98 0 0 1 99
500 0 33 34 33 0 44 28 28 0 0 8 92 0 0 5 95
1000 0 8 27 65 0 10 31 59 0 0 5 95 0 0 5 95
2000 0 1 25 74 0 5 17 78 0 0 11 89 0 0 5 95

1.5 200 0 96 4 0 0 94 6 0 0 0 0 100 0 0 1 99
500 0 33 31 36 0 39 28 33 0 0 6 94 0 0 6 94
1000 0 10 29 61 0 21 26 53 0 0 7 93 0 0 2 98
2000 0 4 20 76 0 7 23 70 0 0 6 94 0 0 7 93

MQ 0.4 200 12 76 11 1 10 87 3 0 0 1 15 84 0 0 7 93
500 0 30 39 31 0 37 28 35 0 0 18 82 0 0 10 90
1000 0 11 35 54 0 18 34 48 0 0 14 86 0 0 8 92
2000 0 2 25 73 0 9 21 70 0 0 11 89 0 0 10 90

0.9 200 1 94 4 1 0 96 4 0 0 1 16 83 0 1 12 87
500 0 44 31 25 0 47 29 24 0 1 9 90 0 0 5 95
1000 0 15 31 54 0 18 29 53 0 0 12 88 0 0 8 92
2000 0 3 21 76 0 8 23 69 0 1 8 91 0 0 9 91

1.5 200 0 96 4 0 1 97 2 0 0 0 15 85 0 0 4 96
500 0 42 31 27 0 47 24 29 0 0 14 86 0 1 7 92
1000 0 12 36 52 0 13 28 59 0 1 13 86 0 0 5 95
2000 0 3 28 69 0 7 20 73 0 0 15 85 0 0 6 94

LQ 0.4 200 48 30 22 0 59 22 14 5 2 7 24 67 0 4 22 74
500 19 20 29 32 22 29 24 25 1 6 23 70 2 15 20 63
1000 13 18 19 50 14 21 29 36 3 10 16 71 5 13 31 51
2000 3 12 20 65 9 15 29 47 1 7 17 75 5 13 24 58

0.9 200 41 38 18 3 54 32 11 3 1 2 15 82 2 11 18 69
500 15 22 33 30 24 24 30 22 0 13 21 66 1 9 32 58
1000 13 14 28 45 14 28 31 27 4 5 29 62 6 11 29 54
2000 6 10 26 58 2 13 32 53 1 7 26 66 1 8 27 64

1.5 200 42 41 12 5 73 19 6 2 0 4 23 73 0 7 21 72
500 17 26 25 32 27 30 24 19 3 9 27 61 0 12 26 62
1000 9 18 34 39 9 15 35 41 3 9 31 57 2 6 22 70
2000 2 13 23 62 1 15 24 60 0 5 20 75 0 8 24 6
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Table B.7: Proportion of times a given model is selected based on the lowest ICL
and CLC value for Population B Split 1. The shaded columns represent the true
number of latent classes in the population.

ICL CLC

No Covariates Covariates No Covariates Covariates

Quality Effect Sample 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5

HQ 0.4 200 22 45 23 11 24 59 14 3 0 0 7 94 0 0 3 97
500 0 20 32 48 0 29 33 38 0 0 10 90 0 0 13 87
1000 0 9 31 61 0 29 33 38 0 0 12 89 0 0 16 87
2000 0 2 27 71 0 7 32 61 0 0 13 87 0 0 13 87

0.9 200 24 43 22 11 27 51 15 7 0 0 5 95 0 0 7 93
500 0 23 34 43 1 29 31 39 0 0 11 89 0 0 7 93
1000 0 8 28 64 0 7 36 57 0 0 10 90 0 0 14 86
2000 0 3 30 68 0 7 26 67 0 0 14 86 0 0 13 87

1.5 200 29 42 25 6 33 51 12 4 0 0 9 92 0 0 4 96
500 0 24 37 40 0 23 37 40 0 0 11 89 0 0 7 93
1000 0 9 33 58 0 15 32 53 0 0 14 86 0 0 8 92
2000 0 2 29 69 0 4 24 72 0 0 13 87 0 0 11 89

MQ 0.4 200 80 13 8 0 80 12 8 0 0 1 11 88 0 4 8 88
500 10 24 31 36 12 40 20 28 0 0 16 84 0 0 16 84
1000 0 11 36 53 0 20 4 76 0 0 17 83 0 0 4 96
2000 0 4 24 72 0 8 28 64 0 0 14 86 0 0 20 80

0.9 200 83 11 6 0 88 0 12 0 0 1 13 86 0 0 8 92
500 11 25 29 35 20 36 4 40 0 1 15 84 0 0 4 96
1000 0 11 34 55 0 12 20 68 0 1 17 83 0 0 4 96
2000 0 5 24 72 0 4 20 76 0 0 13 87 0 0 8 92

1.5 200 84 10 7 0 88 8 4 0 0 2 13 86 0 0 8 92
500 15 24 31 30 16 20 40 24 0 1 16 83 0 0 12 88
1000 0 13 30 57 0 16 32 52 0 1 15 85 0 0 20 80
2000 0 3 24 73 0 12 8 80 0 0 13 87 0 0 8 92

LQ 0.4 200 45 34 16 6 24 20 32 24 1 6 21 72 1 4 18 77
500 15 22 32 32 24 20 32 24 2 5 24 70 5 4 28 63
1000 11 15 26 48 14 15 28 43 4 7 24 66 5 8 22 65
2000 7 16 25 53 10 16 34 40 4 13 23 61 4 14 35 46

0.9 200 42 32 19 7 52 23 20 5 1 6 25 69 2 6 16 76
500 14 22 27 38 14 21 30 35 3 7 23 68 5 18 28 49
1000 9 15 27 49 14 21 30 35 4 9 23 65 5 18 28 49
2000 7 14 25 54 7 22 31 40 4 11 23 63 1 15 32 52

1.5 200 46 35 16 3 56 22 14 8 1 6 23 70 2 4 14 80
500 16 22 29 33 28 26 24 22 2 11 23 64 2 10 24 64
1000 8 16 33 43 12 22 26 40 3 9 28 61 2 14 22 62
2000 6 13 25 56 2 24 22 52 3 10 23 64 0 14 26 60
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Table B.8: Proportion of times a given model is selected based on the lowest ICL
and CLC value for Population B Split 2. The shaded columns represent the true
number of latent classes in the population.

ICL CLC

No Covariates Covariates No Covariates Covariates

Quality Effect Sample 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5

HQ 0.4 200 0 89 10 1 0 93 7 0 0 0 4 96 0 0 3 97
500 0 33 31 36 0 38 29 33 0 0 6 94 0 0 4 96
1000 0 10 23 67 0 14 27 59 0 0 5 95 0 0 6 94
2000 0 4 20 76 0 7 19 74 0 0 8 92 0 0 6 94

0.9 200 0 90 9 1 0 93 7 0 0 0 2 98 0 0 2 98
500 0 30 31 38 0 35 32 33 0 0 6 94 0 0 5 95
1000 0 9 30 60 0 16 26 58 0 0 8 92 0 0 7 93
2000 0 3 19 78 0 6 22 72 0 0 8 92 0 0 8 92

1.5 200 0 90 10 1 0 93 7 0 0 0 3 97 0 0 2 98
500 0 33 31 36 0 37 31 32 0 0 8 92 0 0 5 95
1000 0 8 29 63 0 14 26 60 0 0 10 90 0 0 4 96
2000 0 2 18 80 0 7 24 69 0 0 7 93 0 0 9 91

MQ 0.4 200 4 87 8 0 2 93 4 0 0 1 10 90 0 0 8 92
500 0 43 31 27 0 53 27 20 0 1 14 86 0 0 11 89
1000 0 13 29 57 0 23 30 47 0 0 11 89 0 0 11 89
2000 0 3 21 76 0 7 23 70 0 0 10 90 0 0 8 92

0.9 200 4 89 7 0 3 91 6 0 0 0 12 88 0 0 6 94
500 0 40 34 26 0 48 27 25 0 0 15 84 0 0 10 90
1000 0 13 30 57 0 19 29 52 0 0 11 89 0 0 8 91
2000 0 4 20 77 0 7 21 73 0 0 10 90 0 0 7 93

1.5 200 4 88 7 0 3 92 5 0 0 1 13 87 0 0 8 92
500 0 46 33 21 0 51 27 22 0 1 15 84 0 0 10 90
1000 0 11 34 55 0 23 24 53 0 0 11 89 0 0 9 91
2000 0 2 22 76 0 8 19 73 0 0 9 91 0 0 5 95

LQ 0.4 200 43 36 17 4 61 27 9 2 1 7 25 67 2 7 18 73
500 18 21 28 34 27 28 23 22 3 7 21 69 3 12 24 60
1000 12 19 26 44 12 20 26 42 2 10 22 66 2 9 25 64
2000 4 13 28 55 3 13 27 56 1 7 24 67 1 7 24 68

0.9 200 49 32 15 5 60 25 13 2 1 5 23 71 2 7 20 72
500 19 24 28 28 29 28 22 21 1 9 26 64 4 13 22 61
1000 12 18 28 43 11 18 32 39 3 9 25 64 2 8 29 61
2000 2 15 25 58 2 13 29 56 1 9 21 69 0 7 26 67

1.5 200 50 35 12 3 60 25 13 2 0 5 21 74 2 7 20 72
500 21 23 27 29 29 28 22 21 3 8 24 65 4 13 22 61
1000 9 20 27 45 11 18 32 39 2 9 21 68 2 8 29 61
2000 3 13 28 56 2 13 29 56 1 8 24 67 0 7 26 67
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Table B.9: Proportion of times a given model is selected based on the lowest AIC
and CAIC value for Population A Split 1. The shaded columns represent the true
number of latent classes in the population.

AIC CAIC

No Covariates Covariates No Covariates Covariates

Quality Effect Sample 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5

HQ 0.4 200 1 61 31 8 1 53 35 12 72 29 0 0 77 23 0 0
500 0 59 29 13 0 53 30 17 7 94 0 0 10 91 0 0
1000 0 61 24 16 0 51 33 17 0 100 0 0 0 100 0 0
2000 0 53 28 20 0 49 31 21 0 100 0 0 0 100 0 0

0.9 200 1 62 29 9 1 52 32 16 47 54 0 0 46 55 0 0
500 0 54 34 13 0 52 34 15 1 99 0 0 0 100 0 0
1000 0 55 29 16 0 50 34 17 0 100 0 0 0 100 0 0
2000 0 53 26 22 0 48 35 18 0 100 0 0 0 100 0 0

1.5 200 0 59 31 11 0 51 34 15 12 88 0 0 6 94 0 0
500 0 55 32 14 0 49 33 18 0 100 0 0 0 100 0 0
1000 0 56 30 15 0 48 35 17 0 100 0 0 0 100 0 0
2000 0 47 37 16 0 46 37 17 0 100 0 0 0 100 0 0

MQ 0.4 200 15 50 23 14 10 38 30 22 100 0 0 0 100 0 0 0
500 2 47 34 18 1 42 28 30 96 4 0 0 96 4 0 0
1000 0 50 30 21 0 41 34 26 57 44 0 0 60 40 0 0
2000 0 47 33 21 0 35 36 30 2 98 0 0 3 98 0 0

0.9 200 7 53 28 14 5 42 32 22 100 0 0 0 100 1 0 0
500 1 49 30 21 0 41 30 30 86 15 0 0 76 24 0 0
1000 0 48 33 20 0 38 39 24 19 82 0 0 8 93 0 0
2000 0 47 31 22 0 40 30 31 0 100 0 0 0 100 0 0

1.5 200 3 50 31 17 0 37 34 30 97 4 0 0 81 20 0 0
500 0 44 35 22 0 32 37 32 37 63 0 0 9 91 0 0
1000 0 46 33 22 0 37 31 32 2 99 0 0 0 100 0 0
2000 0 48 32 21 0 37 35 29 0 100 0 0 0 100 0 0

LQ 0.4 200 76 15 5 4 51 23 14 13 100 0 0 0 100 0 0 0
500 73 20 3 5 46 20 16 20 100 0 0 0 100 0 0 0
1000 65 25 9 2 37 25 19 20 100 0 0 0 100 0 0 0
2000 54 26 15 6 28 23 24 26 100 0 0 0 100 0 0 0

0.9 200 78 13 5 4 47 24 14 16 100 0 0 0 100 0 0 0
500 70 21 6 4 43 22 16 20 100 0 0 0 100 0 0 0
1000 61 27 10 4 33 27 19 22 100 0 0 0 100 0 0 0
2000 54 25 14 8 20 22 25 34 100 0 0 0 100 0 0 0

1.5 200 76 12 6 7 44 22 16 19 100 0 0 0 100 0 0 0
500 71 20 6 4 28 30 23 21 100 0 0 0 100 0 0 0
1000 56 31 9 5 20 27 24 30 100 0 0 0 100 0 0 0
2000 43 32 16 11 15 20 31 36 100 0 0 0 100 0 0 0
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Table B.10: Proportion of times a given model is selected based on the lowest AIC
and CAIC value for Population A Split 2. The shaded columns represent the true
number of latent classes in the population.

AIC CAIC

No Covariates Covariates No Covariates Covariates

Quality Effect Sample 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5

HQ 0.4 200 0 51 36 13 0 46 37 17 0 100 0 0 0 100 0 0
500 0 45 32 23 0 40 36 24 0 100 0 0 0 100 0 0
1000 0 51 35 14 0 50 29 21 0 100 0 0 0 100 0 0
2000 0 45 32 23 0 41 30 29 0 100 0 0 0 100 0 0

0.9 200 0 54 37 9 0 42 44 14 0 100 0 0 0 100 0 0
500 0 44 37 19 0 29 44 27 0 100 0 0 0 100 0 0
1000 0 48 35 17 0 40 41 19 0 100 0 0 0 100 0 0
2000 0 42 38 20 0 43 39 18 0 100 0 0 0 100 0 0

1.5 200 0 48 43 9 0 40 38 22 0 100 0 0 0 100 0 0
500 0 45 37 18 0 44 34 22 0 100 0 0 0 100 0 0
1000 0 44 40 16 0 34 46 20 0 100 0 0 0 100 0 0
2000 0 54 32 14 0 38 41 21 0 100 0 0 0 100 0 0

MQ 0.4 200 0 49 33 18 0 42 32 26 60 40 0 0 66 34 0 0
500 0 35 43 22 0 30 44 26 0 100 0 0 0 100 0 0
1000 0 35 41 24 0 28 42 30 0 100 0 0 0 100 0 0
2000 0 47 32 21 0 30 41 29 0 100 0 0 0 100 0 0

0.9 200 0 51 32 17 0 41 36 23 47 53 0 0 36 64 0 0
500 0 43 28 29 0 29 42 29 1 99 0 0 0 100 0 0
1000 0 39 39 22 0 28 42 30 0 100 0 0 0 100 0 0
2000 0 38 34 28 0 25 39 36 0 100 0 0 0 100 0 0

1.5 200 0 42 36 22 0 32 39 29 32 68 0 0 6 94 0 0
500 0 45 36 19 0 34 34 32 0 100 0 0 0 100 0 0
1000 0 39 38 23 0 24 36 40 0 100 0 0 0 100 0 0
2000 0 40 37 23 0 26 39 35 0 100 0 0 0 100 0 0

LQ 0.4 200 72 18 6 4 32 27 22 19 100 0 0 0 100 0 0 0
500 51 28 12 9 34 22 19 25 100 0 0 0 100 0 0 0
1000 39 36 14 11 22 27 24 27 100 0 0 0 100 0 0 0
2000 32 42 15 11 17 29 23 31 100 0 0 0 100 0 0 0

0.9 200 71 17 6 6 38 23 16 23 100 0 0 0 100 0 0 0
500 49 33 13 5 27 33 23 17 100 0 0 0 100 0 0 0
1000 41 36 11 12 18 34 22 26 100 0 0 0 100 0 0 0
2000 37 31 13 19 19 31 21 29 100 0 0 0 100 0 0 0

1.5 200 70 16 9 5 32 20 23 25 100 0 0 0 100 0 0 0
500 47 34 12 7 28 23 29 20 100 0 0 0 100 0 0 0
1000 39 37 18 6 15 29 26 30 100 0 0 0 100 0 0 0
2000 38 28 21 13 12 30 24 34 100 0 0 0 100 0 0 0
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Table B.11: Proportion of times a given model is selected based on the lowest AIC
and CAIC value for Population B Split 1. The shaded columns represent the true
number of latent classes in the population.

AIC CAIC

No Covariates Covariates No Covariates Covariates

Quality Effect Sample 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5

HQ 0.4 200 1 59 30 11 0 57 33 10 49 51 0 0 47 53 0 0
500 0 57 30 14 0 52 34 14 2 98 0 0 2 98 0 0
1000 0 49 33 19 0 44 34 22 0 100 0 0 0 100 0 0
2000 0 54 29 17 0 43 37 20 0 100 0 0 0 100 0 0

0.9 200 1 58 32 10 0 51 36 13 50 50 0 0 47 53 0 0
500 0 54 31 15 0 51 29 20 2 98 0 0 2 98 0 0
1000 0 48 33 20 0 38 43 19 0 100 0 0 0 100 0 0
2000 0 48 30 22 0 39 33 28 0 100 0 0 0 100 0 0

1.5 200 1 57 32 11 0 50 36 14 52 48 0 0 48 52 0 0
500 0 50 34 16 0 43 34 2 2 98 0 0 2 98 0 0
1000 0 45 33 22 0 50 28 22 0 100 0 0 0 100 0 0
2000 0 38 31 31 0 42 35 23 0 100 0 0 0 100 0 0

MQ 0.4 200 10 48 27 15 8 40 40 12 100 0 0 0 100 0 0 0
500 0 48 34 18 0 24 40 36 84 16 0 0 76 24 0 0
1000 0 49 31 21 0 48 20 32 22 78 0 0 8 92 0 0
2000 0 47 34 20 0 40 32 28 0 100 0 0 0 100 0 0

0.9 200 10 45 30 16 12 36 24 28 100 0 0 0 100 0 0 0
500 0 46 33 20 0 44 32 24 84 16 0 0 72 28 0 0
1000 0 49 29 22 0 32 36 32 22 78 0 0 8 92 0 0
2000 0 42 36 22 0 36 44 20 0 100 0 0 0 100 0 0

1.5 200 11 45 29 15 8 32 40 20 100 0 0 0 100 0 0 0
500 1 42 34 24 0 40 20 40 86 14 0 0 76 24 0 0
1000 0 36 37 28 0 44 44 12 24 76 0 0 8 92 0 0
2000 0 21 40 39 0 32 48 20 0 100 0 0 0 100 0 0

LQ 0.4 200 77 16 5 2 46 27 16 11 100 0 0 0 99 1 0 0
500 71 19 7 3 34 31 16 19 100 0 0 0 100 0 0 0
1000 63 24 8 6 31 28 19 22 100 0 0 0 100 0 0 0
2000 47 32 16 6 17 32 30 21 100 0 0 0 100 0 0 0

0.9 200 75 18 5 3 47 24 14 15 100 0 0 0 100 0 0 0
500 67 22 7 4 34 30 16 20 100 0 0 0 100 0 0 0
1000 56 29 10 6 36 20 23 21 100 0 0 0 100 0 0 0
2000 40 33 18 10 16 34 24 26 100 0 0 0 100 0 0 0

1.5 200 71 18 9 3 50 24 12 14 100 0 0 0 100 0 0 0
500 60 24 11 5 48 28 12 12 100 0 0 0 100 0 0 0
1000 43 36 15 7 30 26 22 22 100 0 0 0 100 0 0 0
2000 32 36 22 11 22 24 32 22 100 0 0 0 100 0 0 0
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Table B.12: Proportion of times a given model is selected based on the lowest AIC
and CAIC value for Population B Split 2.The shaded columns represent the true
number of latent classes in the population.

AIC CAIC

No Covariates Covariates No Covariates Covariates

Quality Effect Sample 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5

HQ 0.4 200 0 54 33 13 0 45 37 18 0 100 0 0 0 100 0 0
500 0 48 36 16 0 40 34 26 0 100 0 0 0 100 0 0
1000 0 43 38 19 0 34 38 28 0 100 0 0 0 100 0 0
2000 0 43 42 15 0 36 40 24 0 100 0 0 0 100 0 0

0.9 200 0 51 38 12 0 43 37 20 0 100 0 0 0 100 0 0
500 0 45 37 18 0 40 36 25 0 100 0 0 0 100 0 0
1000 0 43 36 21 0 33 40 28 0 100 0 0 0 100 0 0
2000 0 40 40 20 0 37 37 26 0 100 0 0 0 100 0 0

1.5 200 0 51 36 14 0 43 35 22 0 100 0 0 0 100 0 0
500 0 41 38 21 0 38 38 24 0 100 0 0 0 100 0 0
1000 0 37 39 24 0 34 39 27 0 100 0 0 0 100 0 0
2000 0 26 40 33 0 37 36 27 0 100 0 0 0 100 0 0

MQ 0.4 200 0 44 34 21 0 30 36 33 43 57 0 0 34 66 0 0
500 0 47 31 22 0 36 33 31 0 100 0 0 0 100 0 0
1000 0 45 34 21 0 36 32 31 0 100 0 0 0 100 0 0
2000 0 43 33 24 0 31 36 32 0 100 0 0 0 100 0 0

0.9 200 0 44 36 19 0 31 36 33 45 55 0 0 33 67 0 0
500 0 43 35 22 0 33 36 31 0 100 0 0 0 100 0 0
1000 0 45 32 23 0 36 33 31 0 100 0 0 0 100 0 0
2000 0 38 39 23 0 33 35 32 0 100 0 0 0 100 0 0

1.5 200 0 43 33 24 0 33 35 32 48 52 0 0 36 64 0 0
500 0 38 35 27 0 33 33 34 0 100 0 0 0 100 0 0
1000 0 33 36 32 0 31 36 32 0 100 0 0 0 100 0 0
2000 0 17 40 43 0 34 32 34 0 100 0 0 0 100 0 0

LQ 0.4 200 72 19 7 3 40 26 21 13 100 0 0 0 100 0 0 0
500 59 23 12 5 30 23 21 26 100 0 0 0 100 0 0 0
1000 45 35 14 7 23 27 23 26 100 0 0 0 100 0 0 0
2000 32 37 18 13 17 27 26 29 100 0 0 0 100 0 0 0

0.9 200 69 21 7 3 37 27 22 14 100 0 0 0 100 0 0 0
500 56 26 11 7 26 26 23 25 100 0 0 0 100 0 0 0
1000 42 33 18 7 21 27 25 27 100 0 0 0 100 0 0 0
2000 33 33 22 11 17 31 22 30 100 0 0 0 100 0 0 0

1.5 200 65 21 10 5 37 27 22 14 100 0 0 0 100 0 0 0
500 51 29 13 8 26 26 23 25 100 0 0 0 100 0 0 0
1000 38 33 18 11 21 27 25 27 100 0 0 0 100 0 0 0
2000 25 33 26 16 17 31 22 30 100 0 0 0 100 0 0 0
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Table B.13: Proportion of times a given model is selected based on the lowest BIC
and aBIC value for Population A Split 1. The shaded columns represent the true
number of latent classes in the population.

BIC aBIC

No Covariates Covariates No Covariates Covariates

Quality Effect Sample 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5

HQ 0.4 200 58 42 0 0 61 39 0 0 1 73 24 3 2 69 24 6
500 4 97 0 0 5 95 0 0 0 100 0 0 0 99 2 0
1000 0 100 0 0 0 100 0 0 0 100 0 0 0 100 0 0
2000 0 100 0 0 0 100 0 0 0 100 0 0 0 100 0 0

0.9 200 32 69 0 0 29 72 0 0 1 71 24 5 1 65 28 7
500 0 100 0 0 0 100 0 0 0 99 1 0 0 98 3 0
1000 0 100 0 0 0 100 0 0 0 100 0 0 0 100 0 0
2000 0 100 0 0 0 100 0 0 0 100 0 0 0 100 0 0

1.5 200 5 95 0 0 2 98 0 0 0 68 28 4 0 66 28 7
500 0 100 0 0 0 100 0 0 0 99 2 0 0 99 2 0
1000 0 100 0 0 0 100 0 0 0 100 0 0 0 100 0 0
2000 0 100 0 0 0 100 0 0 0 100 0 0 0 100 0 0

MQ 0.4 200 100 1 0 0 100 1 0 0 21 54 19 7 19 53 21 8
500 89 12 0 0 91 10 0 0 19 82 0 0 20 80 1 0
1000 37 64 0 0 44 57 0 0 2 98 0 0 2 98 0 0
2000 2 99 0 0 2 99 0 0 0 100 0 0 0 100 0 0

0.9 200 98 3 0 0 96 4 0 0 13 55 25 8 9 52 29 12
500 71 30 0 0 62 38 0 0 6 94 1 0 3 95 3 0
1000 6 95 0 0 4 96 0 0 0 100 0 0 0 100 0 0
2000 0 100 0 0 0 100 0 0 0 100 0 0 0 100 0 0

1.5 200 87 14 0 0 60 40 0 0 4 62 27 7 1 53 31 16
500 22 79 0 0 3 97 0 0 0 98 3 0 0 96 4 0
1000 0 100 0 0 0 100 0 0 0 99 1 0 0 100 1 0
2000 0 100 0 0 0 100 0 0 0 100 0 0 0 100 0 0

LQ 0.4 200 100 0 0 0 100 0 0 0 88 10 2 1 69 18 7 7
500 100 0 0 0 100 0 0 0 100 0 0 0 100 0 1 0
1000 100 0 0 0 100 0 0 0 100 0 0 0 100 0 0 0
2000 100 0 0 0 100 0 0 0 100 0 0 0 100 0 0 0

0.9 200 100 0 0 0 100 0 0 0 86 11 2 1 68 18 8 7
500 100 0 0 0 100 0 0 0 100 0 0 0 100 0 1 0
1000 100 0 0 0 100 0 0 0 100 0 0 0 100 0 0 0
2000 100 0 0 0 100 0 0 0 100 0 0 0 100 0 0 0

1.5 200 100 0 0 0 100 0 0 0 85 11 3 2 61 20 12 8
500 100 0 0 0 100 0 0 0 100 0 0 0 98 3 0 0
1000 100 0 0 0 100 0 0 0 100 0 0 0 100 0 0 0
2000 100 0 0 0 100 0 0 0 100 0 0 0 100 1 0 0
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Table B.14: Proportion of times a given model is selected based on the lowest BIC
and aBIC value for Population A Split 2. The shaded columns represent the true
number of latent classes in the population.

BIC aBIC

No Covariates Covariates No Covariates Covariates

Quality Effect Sample 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5

HQ 0.4 200 0 100 0 0 0 100 0 0 0 66 28 6 0 61 31 8
500 0 100 0 0 0 100 0 0 0 100 0 0 0 99 1 0
1000 0 100 0 0 0 100 0 0 0 100 0 0 0 100 0 0
2000 0 100 0 0 0 100 0 0 0 100 0 0 0 100 0 0

0.9 200 0 100 0 0 0 100 0 0 0 63 33 4 0 67 27 6
500 0 100 0 0 0 100 0 0 0 99 1 0 0 100 0 0
1000 0 100 0 0 0 100 0 0 0 100 0 0 0 100 0 0
2000 0 100 0 0 0 100 0 0 0 100 0 0 0 100 0 0

1.5 200 0 100 0 0 0 100 0 0 0 61 34 5 0 55 31 14
500 0 100 0 0 0 100 0 0 0 99 1 0 0 99 1 0
1000 0 100 0 0 0 100 0 0 0 100 0 0 0 100 0 0
2000 0 100 0 0 0 100 0 0 0 100 0 0 0 100 0 0

MQ 0.4 200 35 65 0 0 42 58 0 0 0 59 29 12 0 50 37 13
500 0 100 0 0 0 100 0 0 0 97 3 0 0 97 3 0
1000 0 100 0 0 0 100 0 0 0 100 0 0 0 100 0 0
2000 0 100 0 0 0 100 0 0 0 100 0 0 0 100 0 0

0.9 200 23 77 0 0 15 85 0 0 0 61 33 6 0 52 35 13
500 0 100 0 0 0 100 0 0 0 99 1 0 0 99 1 0
1000 0 100 0 0 0 100 0 0 0 100 0 0 0 100 0 0
2000 0 100 0 0 0 100 0 0 0 100 0 0 0 100 0 0

1.5 200 11 89 0 0 2 98 0 0 0 62 30 8 0 53 31 16
500 0 100 0 0 0 100 0 0 0 98 2 0 0 97 3 0
1000 0 100 0 0 0 100 0 0 0 100 0 0 0 100 0 0
2000 0 100 0 0 0 100 0 0 0 100 0 0 0 100 0 0

LQ 0.4 200 100 0 0 0 100 0 0 0 81 12 4 3 51 29 14 6
500 100 0 0 0 100 0 0 0 100 0 0 0 98 2 0 0
1000 100 0 0 0 100 0 0 0 100 0 0 0 100 0 0 0
2000 100 0 0 0 100 0 0 0 100 0 0 0 100 0 0 0

0.9 200 100 0 0 0 100 0 0 0 85 8 6 1 54 26 12 8
500 100 0 0 0 100 0 0 0 100 0 0 0 97 3 0 0
1000 100 0 0 0 100 0 0 0 100 0 0 0 100 0 0 0
2000 100 0 0 0 100 0 0 0 100 0 0 0 100 0 0 0

1.5 200 100 0 0 0 100 0 0 0 78 14 5 3 46 25 18 11
500 100 0 0 0 100 0 0 0 99 1 0 0 97 3 0 0
1000 100 0 0 0 100 0 0 0 100 0 0 0 100 0 0 0
2000 100 0 0 0 100 0 0 0 100 0 0 0 99 1 0 0
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Table B.15: Proportion of times a given model is selected based on the lowest BIC
and aBIC value for Population B Split 1.The shaded columns represent the true
number of latent classes in the population.

BIC aBIC

No Covariates Covariates No Covariates Covariates

Quality Effect Sample 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5

HQ 0.4 200 30 70 0 0 27 73 0 0 1 73 21 6 0 75 22 3
500 1 99 0 0 1 99 0 0 0 99 1 0 0 100 0 0
1000 0 100 0 0 0 100 0 0 0 100 0 0 0 100 0 0
2000 0 100 0 0 0 100 0 0 0 100 0 0 0 100 0 0

0.9 200 30 71 0 0 29 71 0 0 1 72 25 3 0 70 28 2
500 1 99 0 0 1 99 0 0 0 99 1 0 0 99 1 0
1000 0 100 0 0 0 100 0 0 0 100 0 0 0 100 0 0
2000 0 100 0 0 0 100 0 0 0 100 0 0 0 100 0 0

1.5 200 32 69 0 0 28 72 0 0 1 68 27 4 0 66 29 5
500 1 99 0 0 1 99 0 0 0 98 3 0 0 99 1 0
1000 0 100 0 0 0 100 0 0 0 100 0 0 0 100 0 0
2000 0 100 0 0 0 100 0 0 0 100 0 0 0 100 0 0

MQ 0.4 200 97 3 0 0 96 4 0 0 16 57 20 7 16 44 32 8
500 68 32 0 0 52 48 0 0 6 94 1 0 0 100 0 0
1000 11 90 0 0 0 100 0 0 0 100 0 0 0 100 0 0
2000 0 100 0 0 0 100 0 0 0 100 0 0 0 100 0 0

0.9 200 97 3 0 0 96 4 0 0 15 54 23 8 12 56 20 12
500 69 32 0 0 52 48 0 0 5 95 0 0 0 100 0 0
1000 10 90 0 0 0 100 0 0 0 100 0 0 0 100 0 0
2000 0 100 0 0 0 100 0 0 0 100 0 0 0 100 0 0

1.5 200 98 3 0 0 100 0 0 0 16 54 22 9 8 48 32 12
500 71 29 0 0 52 48 0 0 6 92 2 0 0 100 0 0
1000 12 88 0 0 0 100 0 0 0 100 0 0 0 100 0 0
2000 0 100 0 0 0 100 0 0 0 100 0 0 0 100 0 0

LQ 0.4 200 100 0 0 0 99 1 0 0 86 11 2 1 64 22 13 1
500 100 0 0 0 100 0 0 0 100 0 0 0 99 1 0 0
1000 100 0 0 0 100 0 0 0 100 0 0 0 100 0 0 0
2000 100 0 0 0 100 0 0 0 100 0 0 0 100 0 0 0

0.9 200 100 0 0 0 100 0 0 0 86 11 3 1 62 22 12 4
500 100 0 0 0 100 0 0 0 100 0 0 0 100 0 0 0
1000 100 0 0 0 100 0 0 0 100 0 0 0 99 1 0 0
2000 100 0 0 0 100 0 0 0 100 0 0 0 100 0 0 0

1.5 200 100 0 0 0 100 0 0 0 82 13 4 2 60 28 4 8
500 100 0 0 0 100 0 0 0 100 0 0 0 100 0 0 0
1000 100 0 0 0 100 0 0 0 100 0 0 0 100 0 0 0
2000 100 0 0 0 100 0 0 0 100 0 0 0 100 0 0 0
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Table B.16: Proportion of times a given model is selected based on the lowest BIC
and aBIC value for Population B Split 2. The shaded columns represent the true
number of latent classes in the population.

BIC aBIC

No Covariates Covariates No Covariates Covariates

Quality Effect Sample 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5

HQ 0.4 200 0 100 0 0 0 100 0 0 0 68 26 7 0 61 30 10
500 0 100 0 0 0 100 0 0 0 98 2 0 0 98 2 0
1000 0 100 0 0 0 100 0 0 0 100 0 0 0 100 0 0
2000 0 100 0 0 0 100 0 0 0 100 0 0 0 100 0 0

0.9 200 0 100 0 0 0 100 0 0 0 65 29 5 0 59 30 11
500 0 100 0 0 0 100 0 0 0 98 2 0 0 99 1 0
1000 0 100 0 0 0 100 0 0 0 100 0 0 0 100 0 0
2000 0 100 0 0 0 100 0 0 0 100 0 0 0 100 0 0

1.5 200 0 100 0 0 0 100 0 0 0 64 29 7 0 56 34 10
500 0 100 0 0 0 100 0 0 0 98 2 0 0 98 2 0
1000 0 100 0 0 0 100 0 0 0 100 0 0 0 100 0 0
2000 0 100 0 0 0 100 0 0 0 100 0 0 0 100 0 0

MQ 0.4 200 22 78 0 0 14 86 0 0 0 58 31 11 0 50 33 17
500 0 100 0 0 0 100 0 0 0 98 2 0 0 96 4 0
1000 0 100 0 0 0 100 0 0 0 100 0 0 0 100 0 0
2000 0 100 0 0 0 100 0 0 0 100 0 0 0 100 0 0

0.9 200 23 77 0 0 14 86 0 0 0 58 31 11 0 48 34 18
500 0 100 0 0 0 100 0 0 0 97 2 0 0 96 3 0
1000 0 100 0 0 0 100 0 0 0 100 0 0 0 100 0 0
2000 0 100 0 0 0 100 0 0 0 100 0 0 0 100 0 0

1.5 200 24 76 0 0 14 86 0 0 0 57 32 11 0 49 33 18
500 0 100 0 0 0 100 0 0 0 96 3 0 0 98 2 0
1000 0 100 0 0 0 100 0 0 0 99 1 0 0 100 0 0
2000 0 100 0 0 0 100 0 0 0 99 1 0 0 100 0 0

LQ 0.4 200 100 0 0 0 100 0 0 0 83 14 2 1 58 25 12 5
500 100 0 0 0 100 0 0 0 100 0 0 0 99 1 0 0
1000 100 0 0 0 100 0 0 0 100 0 0 0 100 0 0 0
2000 100 0 0 0 100 0 0 0 100 0 0 0 100 0 0 0

0.9 200 100 0 0 0 100 0 0 0 81 14 4 1 57 23 15 5
500 100 0 0 0 100 0 0 0 99 1 0 0 97 3 0 0
1000 100 0 0 0 100 0 0 0 100 0 0 0 100 0 0 0
2000 100 0 0 0 100 0 0 0 100 0 0 0 100 0 0 0

1.5 200 100 0 0 0 100 0 0 0 76 18 5 1 57 23 15 5
500 100 0 0 0 100 0 0 0 99 1 0 0 97 3 0 0
1000 100 0 0 0 100 0 0 0 100 0 0 0 100 0 0 0
2000 100 0 0 0 100 0 0 0 100 0 0 0 100 0 0 0
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