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Abstract

Brain-computer interfaces (BCIs) have incredible potential to allow people with lim-

ited communication or no ability for speech to be able to communicate. A BCI can

acquire brain signals, analyze them, and interpret them into commands or words.

A binary set of mental tasks can be mapped into two words, such as Yes and No,

to enable a user to answer a binary tree of questions and sufficiently create a com-

munication system. Although motor imagery tasks are the most established control

signals used in the context of asynchronous BCI, they are not suitable for a non-

negligible percentage of the users. This issue, known as BCI illiteracy, has been

shown to improve when individuals are given greater latitude in the choice of mental

tasks employed in operating a BCI. However, differentiating the activation pattern

of non-conventional mental imageries (MI) is more challenging than motor imagery.

Therefore, finding a good feature space in which machine learning and classification

methods can be applied to the data is crucial. While the standard in EEG-based

BCIs is to directly analyze the electrode space signals, the measurements are greatly

contaminated by the volume conduction effect. To address this issue, a novel ap-

proach is to map the EEG signals from electrode space into spatial coordinates of

the brain to achieve more distinctive features. Hence, this research is intended to
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investigate (1) the performance difference of a sensor vs. a source space-based motor-

imagery BCI and (2) the effectiveness of source localization using beamforming in

non-conventional mental imagery decoding for communication BCI. Firstly, the effi-

cacy of feature extraction in sensor and source space was experimentally compared

via using the Linearly Constrained Minimum Variance (LCMV) beamformer and

common spatial patterns (CSP) in a two-class motor-imagery paradigm. The analy-

sis suggests that the LCMV beamformer is informing the classifier with meaningful

features and state-of-the-art classification accuracies are achieved by the proposed

method. Secondly, to make individual optimization of BCI control strategies possi-

ble, on a participant by participant basis, the most separable control signals among

six MI tasks were identified using spectral and connectivity measures extracted from

beamformed sources without prior knowledge on the relevant brain regions/networks.

It is demonstrated that beamforming can reveal at least one pair of highly classifiable

mental commands specific to the participant which can further be employed in the

online setup. Therefore, it is concluded that source space EEG analysis using beam-

forming, applied to a wide range of mental imagery tasks to select the most separable

pair, constitutes a promising framework for further development of BCI systems for

communication.
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Chapter 1

Introduction

Brain-computer interfaces (BCI) are designed to decode and classify the user’s brain

activity, usually from scalp-recorded EEG, into a set of mental “actions” to drive an

external device. BCIs have immense potential for allowing brain-damaged individuals

to gain better control over their environment or even to communicate. Specifically,

patients diagnosed with the locked-in syndrome (LIS) who are unable to move or speak

while having intact cognition can benefit from BCI-enabled communication solutions

(Vansteensel and Jarosiewicz [2020]). However, most of the advancement in this field

of speech-less communication has been in the form of invasive BCIs (Pandarinath et al.

[2017]). While invasive neuroimaging provides better signal quality owing to direct

contact of the electrodes with brain tissue, in most cases, due to reasons such as risk

and expense of surgery, invasive techniques are impossible to apply. Consequently, it

is of great significance to achieve competitive performance in a non-invasive BCI by

investing more on computational techniques and stronger data processing pipelines.

Usable control in the context of BCIs has been defined as having a two-way clas-

sification accuracy above 70%. BCI decoding works reasonably well for most healthy
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individuals when performing a well-defined, prescribed set of mental actions such as

imagining moving the left hand versus the right hand. However, the well-known BCI

illiteracy rate is estimated at 15 to 30%, indicating that up to 30% of individuals

are never able to achieve a reasonable degree of BCI control (Vidaurre and Blankertz

[2010]). The illiteracy rate may be even worse for brain-damaged individuals. A

promising solution is to use an open-ended BCI that gives the individual the flexi-

bility to adopt whatever mental commands the BCI is best able to classify (Dhindsa

[2017]), even if parts of the brain are impaired. Additionally, it has been suggested

in several studies that when participants are presented with an array of mental tasks,

it is very likely to detect at least one pair of commands which are highly classifiable

and best suited for the user (Friedrich et al. [2012], Chai et al. [2012]).

Classification of non-conventional mental tasks is typically more challenging than

motor imagery. One limitation to realizing the full potential of this approach may

be related to working in the original signal space at the recorded electrode sites on

the scalp surface, making it difficult to classify patterns of activity across a specific

network of brain regions. The raw EEG signal suffers from the volume conduction

effect, which distorts neurophysiological signals (Baillet et al. [2001]). The term

volume conduction refers to the complex effects of measuring electrical potentials at

a distance from their source generators which impact the shape of a recorded neuronal

potential. Also recorded activity at each site is contaminated by the activity of nearby

regions and is a mixture of various sources of activity, resulting in the electrode space

signal being a poor indicator of activity in specific brain areas. Here, an alternative

is investigated, which is to first project the signal into the brain volume. EEG source

imaging (ESI) can counteract the volume conduction effect, and unmix and project
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the sensor data into the spatial coordinates of the brain.

EEG source localization aims to reconstruct the current source distribution in the

brain from one or more maps of potential differences measured non-invasively from

electrodes on the scalp surface (Grech et al. [2008]). Since the 1980s, source localiza-

tion methods based on advanced signal processing techniques have been proposed to

identify the intracerebral generators underlying surface EEG signals. However, due

to their high level of sophistication and computational complexity, these advanced

techniques have rarely been employed in signal processing pipelines of BCI systems.

Thus, this research focuses on assessing the possibility to improve BCI performance

utilizing features in source space rather than those in sensor space.

EEG Source localization can potentially provide more informative features to feed

into different machine learning algorithms in BCIs as it is expected to increase the

signal to noise ratio. Additionally, mapping the activity from 64-channal space to

fewer sources reduces data dimensionality immensely, helps avoid overfitting and re-

dundancy, leads to better human interpretations and less computational cost with the

simplification of models. Therefore, coming up with sparse features which are able

to introduce more separability into the data is of great importance. Moreover, EEG

is known for its high temporal resolution while having low spatial precision. Source

localization makes use of computational modelling to improve spatial resolution for

EEG, overcoming EEG’s main limitation.

Due to their superior performance among the wide array of existing ESI methods,

The Linearly Constrained Minimum Variance (LCMV) beamformer and standard-

ized low-resolution brain electromagnetic tomography (sLORETA) were applied to

reconstruct volume sources (Michel et al. [2004], Grech et al. [2008]). Additionally, to
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compare the sensor- and source-based BCIs, common spatial patterns (CSP) as one of

the most successful methods in brain activation pattern decoding was utilized (Saha

et al. [2021]). Therefore, this research investigated the impact of mapping electrode-

space signals to source space as a potential way of improving the performance of a

BCI system for communication. The objective of the current project is to explore the

following research questions:

1. Does adding the beamforming step before extracting CSP features boost the

BCI pipeline performance? In other words, are CSP features extracted from

source space more informative than those extracted from sensor space?

2. How do the LCMV beamformer and common spatial patterns compare with

each other as two types of spatial filters?

3. Is the LCMV beamformer as a spatial filter more successful in reconstruction

of motor imagery activity than sLORETA as a minimum norm-based solution?

4. Is there an optimal pair of tasks for every individual that are very well separable

using the LCMV beamformer?

This thesis is organized into 6 Chapters - Chapters 2 present a review of the current

literature on Brain Computer Interfaces, BCIs for communication, open challenges

in BCI, source localization methods and source space BCIs respectively. Chapter 3

discusses the detailed methods used in chapters 4 and 5. Since two datasets have been

analyzed with different pipelines, the results and discussions have be organized in two

chapters: chapters 4 and 5. Finally, chapter 6 concludes the thesis by discussing the

future possibility of applying the created framework for communication purposes.
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Chapter 2

Background

2.1 Brain-Computer Interfacing (BCI)

Brain-computer interfacing is a communication and control technology that aims to

provide a reliable translation mechanism of brain signals into comprehensible com-

mands for a machine. The ultimate goal for many BCI researchers is to develop a sys-

tem that can be used by paralyzed beneficiaries, helping them control wheelchairs or

robotic arms. Additionally, applications of this magnificent technology span a broad

spectrum, ranging from clinical and rehabilitation to remote controlling of unmanned

arieal vehicles, gaming and entertainment applications (Wolpaw et al. [2020]). BCI

as an interdisciplinary field of science is a challenging application of signal processing,

neuroscience and artificial intelligence (AI).

Similar to any concept or notion in science, the way BCI is defined is of great

importance. Not only a definition can limit one’s imagination of possibilities, more

importantly it reflects one’s perceptual perspective on the concept. The perceptual

perspective of the core ideas subsequently determines the way one would interpret and
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tackle the challenges in the field. As an example, if a BCI is merely seen as a neural

signal translator, the system might be expected to be fully operational for a certain

class of previously-approved inputs for all range of users In case of malfunction, this

solution would be to improve or alter BCI’s operating algorithms and the role of the

user is insignificant. However, if a BCI system is viewed as an additional instrument

serving the user’s central nervous system (CNS), just like any other muscle, the user’s

ability to control the interface would be considered as a factor and the same problem

would be viewed as BCI-illiteracy. As a result, possible solutions would be to identify

whether a potential user is capable of controlling the interface in the first place and

if user training would resolve the issue.

Therefore, as a more precise, yet comprehensive definition, “BCIs quantify CNS

activity and translate it into new artificial outputs that replace, restore, enhance,

supplement, or improve the natural CNS outputs” (Wolpaw et al. [2020]). BCIs

thereby modify the interactions between the CNS and the environment. Throughout

this thesis, BCIs are discussed and investigated from this standpoint. In the following

sections, a brief overview of BCI common categories and applications is provided.

Being extensive in scope, BCIs can be categorized based on various criteria such as

dependability, mode of operation, control signal and application (Lotte et al. [2015]).

In terms of dependability, the subgroup of BCIs which requires the user to actively

control the interface by generating a form of command such as motor imagery-based

BCIs are considered to be dependable. On the other hand, independent BCIs such as

steady-state visual evoked potential (SSVEP)-based BCIs (explained later) are more

suitable for severely impaired individuals. With respect to the mode of operation,

BCIs can be recognized as synchronous or asynchronous. In a synchronous BCI the
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user and the interface interaction is limited to specific time intervals imposed by a cue.

Alternatively, asynchronous BCIs can capture the generated mental command time-

independently which makes them more user-friendly but more difficult to implement.

Control signals are signature patterns in a neurophysiological recording that can

be decoded and used as commands. There are two major classes of neurophysio-

logical recordings that are used in BCIs and categorize these systems into invasive

and non-invasive systems (Rashid et al. [2020]). While Invasive methods such as

electrocorticography (ECoG) provide more effective control over the interface due to

better signal quality, they require signal acquisition from inside the skull that is not

feasible in most cases and applications. Conversely, non-invasive methods available

in various modalities including electroencephalography (EEG), magnetoencephalog-

raphy (MEG), positron emission tomography (PET), functional magnetic resonance

imaging (fMRI) and functional near-infrared spectroscopy (fNIRS) can record neural

activity from outside the skull avoiding the risks of neurosurgical operations. Each of

these modalities allows defining multiple types of control signals which further classify

BCI into more specific subtypes.

Due to its ease of use, high temporal resolution and relatively low cost, EEG is

the most preferred and prominently used signal in non-invasive BCIs (Hwang et al.

[2013]). EEG-based control signals can be either event-related potentials (ERP)

such as P300, time-locked visual evoked responses (VEP) and error-related potential

(ErrP) or spontaneous activity including slow cortical potential (SCP), sensorimotor

rhythms (SMR) and motor/mental imagery (MI). A combination of these can form

hybrid control signals.

ERPs are electrophysiological responses to (visual, tactile, auditory, olfactory,
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gustatory, etc.) stimuli. In particular VEP signals including steady-state (auditory

or visual) evoked potentials (SSAEPs and SSVEPs) are responses to flickering visual

simulation at certain frequencies or amplitude-modulated sound which appear in the

EEG signal with the same frequency as the stimuli. Both these responses are very

brief in time (< 500ms) which makes them hard to detect from single trials and

requires numerous recordings of the repeated response to be recognized. For instance,

the P300 response appears almost 300ms after the presentation of a visual stimulus

which can be an image or a letter. In an SSVEP-based BCI, the number of visual

stimuli indicates the number of commands and each of those is repeating at a certain

frequency. While controlling a P300- or SSVEP-based BCI do not require any form

of training, operating a SSAEP-based BCI is difficult and requires a high level of

auditory attention (Rashid et al. [2020]).

The driving idea behind error-related potential (ErrP) signals is very interesting.

As an ERP component, ErrPs arise when the BCI decodes the user’s intended signal

falsely; thereby these can be exploited to correct for BCI errors in the context of

reinforcement learning (Chavarriaga et al. [2014]). ErrPs can be detected from single

trials and no longer require averaging over a number of trials which is beneficial in

real-time settings. The core idea is that in a closed-loop BCI system the brain can be

viewed as the controller (Abiri et al. [2019]). When the controller detects a mismatch

between the desired output and resulting output, it generates an ErrP which can be

used as a feedback to the intelligent agent to improve the behaviour.

Spontaneous control signals are voluntarily generated by the user in the absence

of external stimulation. The most commonly used control signal of this category

are sensorimotor rhythms (SMR). It is well established across the literature that
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movement or movement intention and preparation give rise to oscillations in the motor

cortex referred to as SMR. Since the corresponding cortical regions for right and left

hand, tongue and foot movements are sufficiently large and far apart, these signals are

detectable and classifiable. Alternatively, non-motor cognitive tasks including mental

mathematical computation, mental rotation of figures , visual counting, mental word

generation and music imagery are among utilized signals in BCI paradigms (Rashid

et al. [2020]).

The essence of a BCI is therefore to detect and decode certain mental conditions;

once achieved, it can be used to convert to any operating command for any device.

Among popular applications of BCI, cursor control, spelling systems, wheelchair con-

trol, mind-wandering, fatigue monitoring and emotion recognition have been explored

with varying degrees of success. A novel application of BCI is brain activity-based

identification as a biometric system that allows the recognition of an individual based

on their brain activity. A study on 15 healthy human participants showed a person’s

brain activity remains stable over a long period of time (Ruiz-Blondet et al. [2015] ).

The same research team proposed an ERP-based BCI which achieved 100% identifi-

cation accuracy on 50 individuals (Ruiz-Blondet et al. [2016]). Moreover, BCIs have

been used to control video games. Using MI control signals acquired by NeuroSky

EEG headsets an average accuracy of 70% was obtained in controlling an arcade game

among 10 subjects (Djamal et al. [2017]). This thesis focuses on the application of

BCI for communication which is elaborated later.
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2.2 General Structure of a BCI

A generic BCI system consists of several entities including an acquisition device that

collects electrophysiological activity patterns from a human subject, an interfaced

computer that performs signal processing for feature extraction and subsequent fea-

ture translation, and a computer that generates output in the form of operative device

commands for specific BCI applications (Hassanien and Azar [2015]). Figure 2.1 sum-

marizes the six-block architecture of a typical BCI. Each of these blocks is discussed

briefly in the following sections, particularly in the case of EEG-based BCIs.

Figure 2.1: General architecture of a brain-computer interface.

The signal acquisition block involves recording of electrophysiological or hemody-

namic responses corresponding to the subject’s brain activity. As mentioned in the

previous section, the neural signals are recorded using surgical (invasive) or nonsurgi-

cal (noninvasive) modalities. In this thesis, the EEG signal is the selected neuroimag-

ing modality. EEG measurements are often obtained using a number of electrodes

ranging from one to 256 which can be either recorded via wireless or wired EEG signal

acquisition. In order to reduce the impedance at the contact point between the elec-

trodes and the scalp, a conductive gel can be used, which is avoided in alternative dry

electrode systems. It is worth mentioning that the information transfer rate (ITR) in
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such systems is normally 30% lower than that of EEG systems using conductive gel.

The acquired brain responses are preamplified to enhance the signal level followed by

their conversion to digital format using analog-to-digital converters. Once acquired,

the brain signals are amplified, digitized, and transmitted to the interfaced computer

for further signal processing.

It should be emphasized that the performance of the BCI depends significantly

on the quality of the recorded data. Hence, the experimenter must carefully ensure

all the electrodes are recording a clean signal and the participant is following the

minimum movement instructions by monitoring the recordings at all time throughout

the experiment and adjusting the setup if necessary. Although certain types of noise

are inevitable (e.g. eye blinks) and can partly be removed in the preprocessing step,

every noise reduction procedure removes a part of the signal as well. Additionally,

very noisy channels should be completely removed and replaced by interpolating which

leads to a rank deficient signal. This loss of data is expensive in terms of equipment,

time and energy and should be avoided as much as possible in the signal acquisition

step as no signal processing technique can replace a high-quality, clean signal.

Despite the best effort one can devote in recording a clean EEG signal, unwanted

components always contaminate the data which are referred as noise or artifacts.

The second step in a BCI system aims to enhance the information content (signal-

to-noise ratio (SNR)) by removing the noise in the acquired raw brain data. Good

preprocessing contributes to more efficient characterization of input brain patterns

in the subsequent steps. External or environmental and physiological sources are the

two types of EEG artifacts. AC power lines, lighting and other electrical equipment

using the same power source or present in the EEG recording room (e.g. mobile
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phones or smart watches) are typical sources of environmental artifacts. Furthermore,

any body part movements producing muscle artifacts including electrooculographic

activity (EOG), electrocardiographic activity (ECG) and electromyographic activity

(EMG) as well as skin resistance are physiological artifacts (Rashid et al. [2020]).

Although a number of these artifacts can be removed, determining the best pre-

processing procedure is non-trivial. It is often highly specific to the type of exper-

iment (off-line/online), research question, equipment and the standard procedures

avaiable in the laboratory conducting the experiment. Possible preprocessing steps

involve baseline removal, high-pass filtering to remove DC-offset or slow drifts, as

slow changes in potential are often artifacts, and low-pass filtering, as brain activity

oscillates within a certain frequency range. A notch filter can be applied to remove

the line noise.

Next, the signals should be re-referenced. This refers to changing the reference

after the data acquisition in order to modify the recorded traces and minimize the

impact of the reference electrode activity on the original EEG recordings. The new

reference is conventionally defined to be the average of the mastoids or average of all

scalp channels (common average reference) (Rashid et al. [2020]). A raw data inspec-

tion should be performed to reject parts with large muscle artifacts which are spread

out in time and/or space. Transient artifacts restricted in time and space (only seen

on a few channels) can be neglected. Bad channels should be removed and interpo-

lated. Then, the data is ready for further pre-processing. One of the most widely used

pre-processing algorithms is independent components analysis (ICA) which is used to

identify and remove muscle-related artifacts. This method essentially decomposes the
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multivariate EEG signal into statistically independent components. Thereby elimi-

nating those ICs that have characteristic features of artifacts will allow for a cleaner

signal. The potential artifact components can be identified by their waveform and

their topography. Any form of re-referencing, especially common averaged reference

(CAR) should be performed after these noise removal steps as any residual noise on

the reference would be spread out on all electrodes (Cohen [2014]).

The next phase in a BCI signal processing pipeline involves extraction of the

most discriminative and non-redundant information bits from the signal. Thus, every

segment of the signal (trial) can be described/quantified by a few relevant values

termed as “features”. Time-, frequency-, time-frequency, and spatial analysis are

the popular types of feature extraction methods in EEG-based BCIs that capture

and characterize the major types of variations. Among various time-domain features

including the signal’s statistics (such as mean, standard deviation, skewness and

kurtosis), energy and log energy entropy (quantifying the amount of randomness

and information carried by the signal), autoregressive (AR) coefficients have gained

special attention due to their resolution, smooth spectra and applicability to short

segments of data. AR models are time-series modeling methods that use observations

from previous time steps as input to a regression equation to predict the value at the

next time step. However, determining the proper AR modelling order (the number of

immediately preceding values in the series that are used to predict the value at the

present time) is an open challenge (Rashid et al. [2020]).

Frequency-domain features that have been widely employed across the literature

are power spectral density (PSD), band power and spectral centroid. PSD describes
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the power present in the signal as a function of frequency and band power is the aver-

age power in a specified frequency band. The other measure that can characterize the

spectrum of a signal is the spectral centroid which is the median of the spectrum. Pe-

riodogram and Welch’s methods are commonly used to estimate the signal spectrum

in order to obtain these features. Periodogram is simply the squared magnitude of

the Fourier transform (FT) of the signal, scaled by a constant. Periodogram is known

to be highly variable and to address this issue, Welch’s method is usually used. By

computing the FT of the overlapping windowed segments of the signal and calculat-

ing the average periodogram of all the segments, Welch’s method achieves a smoother

estimate of the spectrum and is more commonly used in EEG spectrum estimation

(Hu and Zhang [2019]). Although temporal and spectral features have shown to be

very successful in capturing signature patterns, each neglects some aspects of the

signal. Time-frequency analysis, on the other hand, is able to leverage both domains.

The most widespread approaches are short-time Fourier transform (STFT), continu-

ous and discrete wavelet transform (CWT/DWT) and wavelet packet decomposition

(WPD). The time-frequency maps can be processed as images (e.g. directly fed into

neural networks as inputs) or can be used to inspect the data before frequency analysis

to focus on interesting time-frequency tiles (Rashid et al. [2020]).

Time, frequency and time-frequency analysis all are based on the principle of tem-

poral filtering in which the output is a weighted summation of surrounding data points

such that it highlights features of the data. The forth category of feature extraction

methods is spatial filters which follows a similar concept. Spatial filters are a set of

wights applied on all electrodes to isolate spatial features of the data. Common spa-

tial patterns (CSP) and its variants such as common spatio-spectral patterns (CSSP)
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and filter back CSP (FBSCP) are extensively utilized methods in EEG-based BCIs

with high success which is explained in the method section in detail (Rashid et al.

[2020]). Another famous method is surface Laplacian which is a spatial bandpass fil-

ter that aims to bypass spatially broad features. Hence, Laplacian-transformed data

is an estimation of the potential distribution under the skull (at dura) characterized

by improved topographical selectivity (Cohen [2014]). The commonality between all

these types of extracted features is their contribution toward the minimization of

the intra-class feature variances while maximizing the variances among different class

features.

The final step of BCI signal proceeding is decoding the type of cognitive process

based on the feature vector characterizing the EEG signal. Since in the context

of BCI the array of possible commands typically has countable discrete elements,

this is formulated as a classification problem. This stage translates the extracted

feature set into operative device control signals. Numerous classification algorithms

have been presented in the published EEG-based BCI literature, for instance, the

support vector machine (SVM), neural networks (NN), linear discriminant analysis

(LDA), Bayesian classifier, k-nearest neighbour (kNN), as well as deep learning and

its iterations (Hwang et al. [2013]). Two important points should be considered

when selecting a classifier for the BCI. First, the dimensionality of the features set

used for estimating the model parameters should be chosen for optimal performance

based on the nature of the classifier. Second, the trade-off between bias and variance

has to be considered and may involve regularizing the parameter estimation (Saha

et al. [2019]). Once the user’s intentions are identified through applying the trained

classifier on extracted features from a new EEG segment, appropriate control signals
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are generated and converted to output device commands.

2.3 BCI for Communication

Locked-in syndrome (LIS) is characterized by a complete or near-complete lack of

ability to produce a motor response, including lack of speech, while other aspects of

cognition are intact (Vansteensel and Jarosiewicz [2020]). However, it is possible that

the person has some remaining motor movement abilities, frequently eye movements.

Based on prevalence assessment studies, it is estimated that around 60,000 people

around the world are challenged with LIS. Traditional assistive technologies which are

employed to restore partial communication and control ability to these patient are

known as augmentative and alternative communication (AAC) approaches including

three subgroups of no-tech, low-tech and high-tech solutions. No-tech solutions are

essentially a protocol between the patient and the caregiver, where the patient’s

motor responses (e.g. eye blinks) are used to select items on a low-tech AAC (e.g. a

letter board); these motor responses are often decoded by an assistive mediator who

decides on the direction of the patient’s gaze and helps to interpret what they are

trying to say. The most advanced AACs also require some residual eye movement to

be decodable by eye-tracking devices.

Since AAC solutions essentially depend on some muscle movement, they are not

beneficial to LIS patients who have complete loss of motor control. Additionally,

due to low autonomy and control difficulty the abandonment rate of these assistive

technologies is very high among the users. In such cases where traditional approaches

fall short, BCI can theoretically offer a solution. Invasive and non-invasive brain
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signals has been exploited for this purpose. In an fMRI study conducted on 16 able-

bodied subjects and one minimally-conscious patient, Monti et al. [2010] showed that

participants were able to answer Yes/No questions by motor and spatial imagery

tasks with high accuracies: 100% and 83% respectively. Hence, not only can fMRI

be applied to examine residual awareness and diagnostic purposes, it also can be a

communication tool in clinical settings.

In addition to fMRI, other non-invasive brain recording modalities such as fNIRS,

MEG and EEG have been explored in the context of communication BCI. A recent

study demonstrated the possibility of continuous noisy overt speech recognition from

EEG signals (Krishna et al. [2019]). The authors employed an end-to-end automatic

speech recognition (ASR) system which directly maps the EEG features to text. Three

datasets composed of the recordings from participants while reading or listening to

English sentences in presence of noise were analysed. In spite of the fact that such

studies have shown the feasibility of produced speech recognition from EEG signals,

decoding intended or imagined imagined speech is of interest for BCI communication.

Although in most applications of BCI for communication, conversation-irrelevant

mental tasks were utilized, speech-related protocols involving speech imagery of En-

glish vowels, syllables, short and long words have been investigated as well (DaSalla

et al. [2009], Brigham and Kumar [2010], Panachakel et al. [2020] ). For example,

one study used EEG signals to directly discriminate between covert speech tasks in

12 healthy individuals who were asked to perform mental repetitions of the words

“Yes” and “No” (Sereshkeh et al. [2017] ). Unconstrained resting state EEG was also

recorded. A multilayer perceptron (MLP) was used to classify all three pairwise com-

binations of “Yes”, “No” and rest trials based on discrete wavelet transform (DWT)
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features. An average accuracy of 75.7% was reached in the classification of covert

speech trials versus rest and the classification of “Yes” versus “No” yielded an aver-

age accuracy of 63.2%. The above study demonstrates that although classification of

imagined words vs. rest can be achieved with a reasonable performance, separation

of the words “Yes” and “No” cannot be obtained above the BCI illiteracy rate.

Several open EEG datasets of covert and overt speech are available to interested re-

searchers, such as the Arizona State University (ASU) dataset (Nguyen et al. [2017]).

This dataset is comprised of 64-channel EEG recordings of 15 healthy subjects per-

forming 4 types of imagined speech: 1) vowels (/a/, /i/ and /u/), 2) short words

(“in” and “out”), 3) long words(“cooperate” and “independent” and 4) a mixture of

short and long words (“in” and “cooperate”). The original study published on this

dataset used covariance matrix descriptors which lie on a Riemannian manifold as

features for a relevance vector machine (RVM). This is the first study to investigate

the effect of various conditions including meaning and length of the word in speech

imagery-BCI. According to their results, vowels and short words have similar levels

of discriminability, suggesting the classification is mostly based on sound rather than

meaning. Additionally, classification of long words yielded better results, suggesting

that complex words are more easily discriminable from EEG. Finally, the highest

classification performance was achieved on short vs. long imagined words.

Similarly, another study applied deep neural networks on DWT features extracted

from the ASU dataset, achieving an average accuracy of 71.6± 8.6% in classification

of “in” vs. “cooperate” (Panachakel et al. [2020]). A recent comprehensive review

has reported advancement in decoding covert speech from EEG (Panachakel and

Ramakrishnan [2021]). In conclusion, recent attempts for decoding imagined speech
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have proven the feasibility of using EEG as a non-invasive modality in communication

BCIs.

2.4 BCI Challenges

In order to identify possible challenges in BCI systems, first an evaluation system

must be defined. However, considering the primary targeted users for BCIs are dis-

abled patients, defining such a system is a challenge itself as the majority of research

in the field is conducted on healthy populations in controlled conditions. In vali-

dating proof of concepts in laboratories as well as real-world settings, performance

assessment can be performed through various metrics including success rate, classifi-

cation accuracy, information transfer rate (ITR), path length, time required, number

of operational commands and more (Rashid et al. [2020]). Although the classifier per-

formance reported in accuracy, Kappa value, confusion matrix, sensitivity-specificity

pairs etc. seems to determine the performance of the interface, it depends on all

previous steps from data acquisition to feature vector calculation as classifier input.

Moreover, metrics such as ITR and required time depend on all blocks of the system.

In addition to performance, usability is another important aspect of a BCI which

should be assessed based on intuitiveness of the commands, training time, means of

the interface (EEG cap etc.) and other quantitative and qualitative criteria. For

instance, due to lengthy preparation time, and frequently, the requirement of con-

ductive gel, EEG headsets are often not easy to use. To address this in practical

applications, dry EEG headbands with fewer channels have been developed though

the signal quality is severely affected resulting in other concerns. Thus, there are a

number of crucial issues in every BCI component causing various challenges. The
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focus of this study is to ameliorate BCI accuracy through employing source imaging

methods and addressing one of the fundamental sources of low accuracy known as

BCI illiteracy.

2.4.1 BCI Accuracy

The majority of BCI studies have investigated new approaches in order to build

an interface with higher classification accuracy. In fact, the single most important

criterion in BCI assessment is the classification accuracy which indicates whether a

BCI is useful at all and how accurately it can decode the signal commands; all other

criteria come after this factor. Exploration of various brain signal modalities, control

signals, signal preprocessing and processing have been explored with the purpose of

designing a BCI with the highest accuracy possible.

Despite all the advancements, one of the big open problems in EEG-based BCI is

finding a good feature space in which we can apply machine learning and classifica-

tion methods to the data. As stated in a recent comprehensive review the standard

in the field is to start with the electrode space and then extract features such as

amplitudes or latencies in the time-domain analyses, power spectral density (PSD)

in frequency-domain analysis and common spatial patterns (CSP) in spatial-domain

analysis (Rashid et al. [2020]). A much less explored approach is to first map EEG

signals from electrode space into spatial coordinates of the brain to achieve more use-

ful features. Electrode space is characterized by a mixture of signals contaminated by

volume conduction. Considering various cognitive tasks are characterized by patterns

of activity across networks of brain regions, it is plausible that feature extraction from

the active regions in the brain volume would improve the BCI performance. Therefore,
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this thesis focuses on one of the less explored signal processing approaches for feature

extraction: source localization. The details and potential benefits of employing such

techniques in BCIs are explained in the following sections.

2.4.2 BCI Illiteracy

Although any interface is ideally expected to work for all users, it is not always possi-

ble to obtain a reasonable BCI performance for certain individuals. A non-negligible

estimate of 15 to 30% of potential BCI users cannot attain control of a BCI inter-

face (Blankertz et al. [2009]). Substantial effort has been put towards addressing this

issue, which is referred to as the BCI illiteracy problem. As a possible approach,

the substitution of a subject-optimized classifier using feedback in place of subject-

independent classifiers in a BCI has been proposed (Vidaurre and Blankertz [2010]).

Other ideas such as instruction alternation, improved signal preprocessing and pro-

cessing pipelines as well as extensively training the subject and/or the classifier have

been proved effective for some subjects. However, some users remain unable to oper-

ate any BCI, thus leading to the conclusion of “nonexistence of the universal BCI”

(Allison and Neuper [2010]).

Brain structure differences across users are a possible reason for the BCI illiteracy

problem. While the human brain, at a coarse level, has a similar structure across

people (i.e., the same functional subdivisions), at a finer scale there is tremendous

individual variation in localization of functions, which might lead to certain activities

not being decodable from EEG or other neuroimaging methods for certain subjects

(Allison and Neuper [2010]). These structural differences can be in the form of the key

neural populations being located in deeper parts of the brain volume or too close to
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other larger and more active groups of neurons in these users which prevent them from

generating the brain activity necessary to control a particular BCI. As an example of

the structural differences among normal subjects, one can consider the fact that about

10% do not produce a robust P300 response (Polich [1986]). Other plausible reasons

underlying BCI illiteracy are producing excessive muscle artifacts by some users or

lack of attention in performing the tasks; these challenges are typically surmountable

in comparison to individual brain structure variations.

A solution that considers these structural variations across individual brains in-

volves broadening the range of mental commands for controlling a BCI. Rather than

asking each user to perform the same pre-specified mental commands, such as imag-

ining moving the left versus the right hand, an alternative approach is to allow the

user the flexibility to adopt a range of different mental comments to solve the task

(Dhindsa [2017]). Under this approach, not only does the machine adaptively learn

to decode the user’s commands, but the user has the freedom to fine-tune their com-

mands so that they are more readily decodable by the machine. Therefore, taking

individual differences variations into account and following the ideas proposed by

Dhindsa [2017], this thesis investigates a range of mental imagery commands in gen-

erating brain signals that are easier to categorize to find the best pairs of commands

for an individual.
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2.5 Unmixing Oscillatory Brain Activity by EEG

Source Imaging

Neuroscience can be abstractly regarded as solving the problem of source separation.

Conceptually, a source is a process or an operation of interest that is measured via

some equipment. In a complex system such as the brain, multiple sources are active

simultaneously which are mixed together in combination with multiple sources of noise

contaminating the signal. The majority of the fundamental questions in neuroscience

are built upon the idea of source separation in order to study cognitive processes’ true

constitutive sources or latent constructs which are not directly measurable. There are

various approaches to segregate the sources including anatomical, cognitive, temporal

(spectral), spatial and statistical source separation.

In anatomical source separation, a certain brain area is focused on based on the

anatomy while in cognitive source separation, experiments are designed to isolate a

single cognitive process, such as attention, without involving memory, language com-

prehension or other mental processes. Temporal and spatial approaches are essentially

signal decompositions. Statistical source separation uses descriptive statistics to char-

acterize the data, and is based on applying temporal and spatial filters to the data,

resulting in every data point in the filtered signal being expressed as a weighted com-

bination of many data points in the original signal (in time or channels domain). EEG

brain imaging methods aim to spatially unmix the neural dynamics from regions of

interest which is discussed in detail in the following section (Hansen et al. [2019]).
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2.6 Source Localization Methods

An EEG recording is a multivariate signal containing information in various dimen-

sions: time, space, frequency, power and phase (Cohen [2014]). Different analysis

methods, investigating one or a few of these dimensions simultaneously, capture some

but not all of the meaningful variability in the EEG signal. For instance, considering

the total amount of information present in the data, time-frequency, spectral and

connectivity analysis allow the quantification of much more information compared to

what the event-related potential (ERP) method can capture by isolating phase-locked

dynamics across numerous trials. While focusing on a subset of the information in the

data is advantageous in some applications, such as studying phase-locked responses,

having a wider view of the brain processes is preferred in others.

Essentially, most of the conventional EEG analysis methods neglect the informa-

tion concerning the location of the active sources in the brain (Michel et al. [2004]).

Electromagnetic source imaging (ESI) simultaneously details the temporal and spatial

dimensions of brain activity which makes it a unique, powerful tool among functional

imaging methods that allows one to look inside the human brain (Sekihara and Na-

garajan [2008]).

The distribution of source activities can be obtained by solving the so-called in-

verse problem, which tries to find the one or more sources most likely to have gener-

ated the observed pattern of data. However, the problem is ill-posed, because a large

number of intracranial source configurations can generate the exact same activity

pattern recorded in the EEG. Thus, solving the inverse problem requires introducing

a number of a priori assumptions on the generation of the scalp signal and the vol-

ume conductor (Michel et al. [2004]) in order to better condition the problem. The
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accuracy and reliability of the solution is determined by the appropriateness of these

assumptions. As the reality underlying the EEG signal generation is unknown, the

researcher must decide whether the assumptions are physiologically reasonable for a

given dataset. A wide range of mathematical, statistical, anatomical and functional

constraints have been explored to formulate the inverse solution. It cannot be empha-

sized enough that these assumptions and constraints are pivotal as they determine if

the inverse solution is only a possible fit to the data or it actually provides neurophys-

iological information about the underlying sources. The following sections explain the

main categories of source localization methods and their assumptions, preceded by

the general formulation of the inverse problem.

Inverse algorithms can be divided into three broad categories: parameter-estimation,

imaging and data-driven techniques(Sekihara and Nagarajan [2008]). Parameter es-

timation approaches presume a few point sources can effectively explain the measure-

ments. Thus, the number of source points is assumed to be known and the location,

orientation and strength of these point sources are to be estimated using a linear

least-square fit to the data. When Q sources are assumed to exist, a 3Q−dimensional

nonlinear search is required to obtain the unknown values. Not only is this nonlin-

ear optimization very computationally demanding, but it also has the risk of getting

trapped in local minima; thus, it cannot be effectively solved in high-dimensional

cases.

The number of sources present in these overdetermined dipolar models can be

determined by increasing the number of sources sequentially and investigating the

amount of variance every new added source can explain (Scherg et al. [1999]). An

alternative approach is to decide the number of current dipoles according to other
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functional imaging data including fMRI and PET scans. However, given the fact

that the association between hemodynamic and electrophysiological alternations is

not yet well understood, this derivation and comparison is risky (Devor et al. [2003]).

Furthermore, spatiotemporal decomposition (STD) procedures based on independent

and principal component analysis can be used to specify the minimum number of

current sources (Koles and Soong [1998]). One of the automatic mathematical ap-

proaches that has been developed for this purpose is multiple signal classification

(MUSIC), which aims to determine the main signal elements by means of eigenvalue

decomposition (Mosher et al. [1992]).

Imaging methods, on the other hand, do not require a priori information on the

number of sources and non-linear search in high-dimensional parameter space. To-

mographic reconstruction methods and spatial filters are the two major subgroups

of imaging techniques (Sekihara and Nagarajan [2008]). Tomographic reconstruction

methods are based on amplitude estimation for a grid of fixed sources via least-square

fit to the EEG signal, and necessitate voxel discretization over the reconstruction area.

As the number of voxels is typically larger than the number of electrodes, the prob-

lem is underdetermined and additional constraints are needed to acquire a unique

solution to the least-square problem. The minimum norm estimate (MNE) and its

variations such as weighted minimum-norm (wMNE) and standardized low resolution

brain tomography (sLORETA) are among well-known representatives of this group.

Spatial filters, also known as beamformers in the signal processing domain, are

linear operators applied to the surface data in order to estimate the strength of activity

of certain locations (the filter’s pass band). Being able to discriminate between the

signal originating from a point source and all other sources, they can be computed
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for all spatial locations in an area of interest to form a 2D or 3D reconstruction of

the source distribution. According to the ingredients used to obtain such filters, they

can be considered as adaptive or non-adaptive spatial filters. Non-adaptive spatial

filters only depend on the geometry of the measurements while adaptive spatial filters

also require the measurements covariance matrix (Sekihara and Nagarajan [2008]).

It is worth mentioning that most of the topographic reconstruction methods can be

reformulated as non-adaptive spatial filters which makes the comparison of methods

more convenient. Several common imaging methods are described in the following

sections.

The minimum norm estimate solution provides the general primary 3D current

distribution by only assuming the activity has the minimum overall intensity, i.e., min-

imum L2-norm (Hämäläinen and Ilmoniemi [1994]). Although this allows a smooth

and unique solution, the lowest intensity restriction is not necessarily physiologically

valid. By penalizing solutions with strong activity at a large number of sources, this

assumption leads to convergence toward weak, localized activation patterns. There-

fore, MNE tends to favour superficially located sources in terms of accuracy (as less

activity is required by sources closer to the surface to create the measured scalp

voltage) and the current density estimation error increases with depth.

So as to amend the increasing source reconstruction error by depth, weighting

strategies were adopted leading to weighted minimum norm estimate (wMNE) pro-

cedures. This is achieved by defining a weight matrix W as an a priori constraint.

The simplest W is a depth normalization factor: W = diag{||L||2} where L is the

gain or leadfield matrix. A weight-normalized minimum-norm filter has been pro-

posed, in which the weights are normalized by the filter norm at each location in
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order to ensure a uniform distribution of noise (Dale et al. [2000]). The Focal Un-

derdetermined System Solution (FOCUSS) algorithm employs a recursive weighting

procedure providing some focal resolution to a linear estimator of the source distribu-

tion (Gorodnitsky et al. [1995]). Although employing these weighting ideas resolves

the problem of surface-restricted MNE, it is crucial to realize that the majority of

these ideas are entirely mathematical in nature, with no physiological foundation to

support the selection of the weights. Additionally, the weight factors can be defined

using other source localization methods, as similarly done by Iwaki and Ueno [1998],

using a simplified MUSIC prescreening for this purpose. Since conventional wMNE

algorithms reconstruct the sources using instantaneous measurements, the sources

tend to be distorted if the data are noisy. Using MUSIC to obtain the weights allows

integrating more temporal information, and thus, reducing the unwanted distortion.

Laplacian weighted minimum norm solutions including low resolution electromag-

netic tomography (LORETA) are among wMNE methods. LORETA minimizes the

Laplacian of the wighted sources as a measure of spatial smoothness and selects the

smoothest solution. Hence, the solution corresponds to the 3D distribution of neu-

ronal activity that has maximum similarity (i.e., maximum synchronization), in terms

of orientation and strength, between neighbouring neuronal populations (represented

by adjacent voxels) (Pascual-Marqui et al. [1994]). The physiological basis of this

constraint, which assumes a high correlation between neighbouring sources, is basi-

cally correct. However, due to the low spatial resolution of EEG, and the distance

between source points in the source model, it is argued that this correlation might

not be expected and it should be taken with caution. LORETA’s assumption of cor-

relation between the activities of large brain areas leads to selection of over-smoothed
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and blurred solutions. Several years after the first introduction of LORETA, a re-

view of studies that had successfully used the method and studies that had identified

some criticisms was published (Pascual-Marqui et al. [2002a]). The criticisms includ-

ing the electrophysiological and neuroanatomical constraints being arbitrary and not

having physiological meaning and LORETA being incapable of localizing sources on

the boundary of the solution space were discussed and clarified.

In contrast to all the linear inverse solutions reported in the mentioned review,

which at best can produce images with non-zero localization error, standardized

low resolution electromagnetic tomography (sLORETA) yields zero localization error

(Pascual-Marqui et al. [2002b]). While sLORETA is a modification of LORETA, it is

fundamentally different and does not use the Laplacian operator. The solutions ob-

tained by sLORETA correspond to the standardized values of the estimated current

density distribution obtained from MNE. The power of current sources is standard-

ized by their variance which is assumed to be a combination of the source variation

and variation due to noisy measurements (assumed to be uncorrelated). This method

achieves zero localization error in simulation studies with single sources, and has

been shown to provide the lowest error in comparison to MNE and dynamic statisti-

cal parametric mapping (dSPM) methods in noisy simulations. In a similar fashion

to sLORETA, dSPM standardizes the current sources by their variance; however, the

variance of the current density estimate solely depends on the measurement noise, as

opposed to sLORETA, which also takes into consideration the actual source variance

(Dale et al. [2000]).

In general, spatiotemporal localization accuracy is improved by integrating mul-

tiple imaging modalities and incorporating neuroanatomical priors such as cortical
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location and orientation restrictions into the MNE solution (Dale and Halgren [2001],

Dale and Sereno [1993]). Local autoregressive average (LAURA) (Peralta Menendez

et al. [2004]) follows biophysical constraints based upon electromagnetic laws regard-

ing the strength of a source measured at a certain distance. Since the strength of

a source decreases with distance from it, this physically derived regularization im-

poses a spatial structure on the solution which is independent of both the EEG data

and the head model. This law is incorporated as the local autoregressive average

with coefficients depending upon a power of the distance from every source point.

In a visuo-motor ERP task, it was shown the activity maps resulted from LAURA

were in concordance with fMRI and other available neurophysiological evidence (Per-

alta Menendez et al. [2004]).

As mentioned earlier, tomographic reconstruction methods can be formulated as

non-adaptive spatial filtering. Thus, the second subset of imaging techniques mostly

focuses on adaptive spatial filters including minimum-variance beamformer with vari-

ous constraints. Depending on the way the weights are chosen, different beamformers

can be designed with certain spatial specificity and sensitivity to noise. The goal of

beamforming is to estimate the activity originating from one brain site while mini-

mizing the interference of all other simultaneously active sites. The objective can be

expressed in terms of optimizing a cost function representing the ratio of activity to

noise at a given point. The stop band response of the filter is optimally allocated

by minimization of variance to attenuate unwanted activity resulting in minimum-

variance beamformers, the best-known spatial filters (Grech et al. [2008]). Addition-

ally, building on the definition of the leadfield matrix (specifying how unit sources

project on the scalp), the output of the filter times the leadfield at every location
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should be 1, which is the unit-gain constraint.

The unit-gain-constrained minimum variance beamformer suffers from a false in-

tensity increase around the center of the head model. This phenomenon, known as the

“leadfield-norm artifact”, is caused by non-uniformity of ||l(r)|| where l is the lead-

field vector (3 directions) at location r, with ||l(r)|| being zero at the center (Sekihara

and Nagarajan [2008]). Where ||l(r)|| has a spatial dependency, it is more reasonable

to constrain the output of the filter for unit sources to ||l(r)|| instead of 1, leading to

the minimum-variance beamformer with an array-gain constraint.

Although the adaptive spatial filters described so far are formulated with a single

constraint, an adaptive spatial filter can also be formulated with multiple linear con-

straints. An adaptive spatial filter obtained with such multiple constraints is called a

linearly-constrained minimum-variance (LCMV) spatial filter (Van Veen et al. [1997]).

Prerequisites for this type of filter are the assumption of uncorrelated source time

courses and the signal being low-rank (for the weight vector to exist, it is necessary

that the dimension of the noise subspace is greater than one). Despite the fact that

most cognitive processes involve activation across multiple different brain regions,

leading to correlation between their activity, and thus the idea of brain functional

networks, the absence of correlation between sources is an essential assumption of

the LCMV method, allowing the formulation of the generalized eigenvalue problem

in terms of the observed EEG covariance matrix (Sekihara and Nagarajan [2008]).

However, simulations have shown the LCMV beamformer is robust to violation of

this assumption and can tolerate partial correlation between the activity of differ-

ent sources. A comparative study between three types of beamformer, including

quiescent beamformer, LCMV beamformer and eigenspace-based beamformer, using
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simulated EEG data demonstrated that the eigenspace-based beamformer performs

best in extracting the sources and suppressing the noise (Van Hoey et al. [1999]).

The third category of newly-emerged solutions to the inverse problem follows

a data-driven approach, in particular, using deep learning methods. Data-driven

modelling is based on the analysis of the data characterizing the system under study

and focuses on using machine learning and computational intelligence methods to

build models that would complement or replace knowledge-driven models(Solomatine

and Ostfeld [2008]). Artificial neural networks (ANN) have been employed to find the

coordination and orientation of one or two dipole source models without any priors

(Awan et al. [2019]). A large training dataset is required to successfully train an

ANN as well as a long training time to achieve generalizability beyond the training

sample. Once trained, the AAN can localize single dipoles with < 5% error (Robert

et al. [2002]).

A novel shallow convolutional neural network (CNN) architecture named Con-

vDip has been proposed which can be used to estimate the inverse solution for a

distributed dipole model (Hecker et al. [2021]). ConvDip is able to operate on single

time instances of EEG data and reconstruct the sources in under 40 ms which makes

it a good candidate for real-time BCIs. Using 100,000 simulated sample trials with up

to 5 source clusters, ConvDip outperforms coherent maximum entropy on the mean

(cMEM), eLORETA and LCMV beamformer in almost all cases and it produces fewer

ghost sources. An example of this comparison is presented in figure 2.2. Evaluation

was performed using mean localization error (MLE) and area under the curve (AUC)

metrics to assess the ability to estimate the correct center location and extent of the

sources.

32



M.Sc. Thesis – L. Mousapour McMaster University – Computational Sci. & Eng.

Figure 2.2: Inverse solution of a simulation containing four source clusters. (A) The ERP at each
of the 31 channels containing both signal (central peak) and realistic noise from real recordings.

(B) The scalp map at the central ERP peak (vertical red line in A). (C) The dipole moments plotted
on the white matter surface of the template brain in lateral view of the left hemisphere. On the left,

the ground truth source pattern is depicted with a source cluster in the motor cortex,
supplementary motor area, insula and the middle temporal lobe of the left hemisphere. Various
inverse solutions that aim to recover this pattern are depicted next to it. Voxels below 25% of the
respective maximum are omitted for a clearer representation of the current distribution. (Figure

adapted from Hecker et al. [2021])

Successful and reliable source localization involves critical analysis considerations

and steps which should be attentively selected based on the information of interest to

be obtained from the measurements. These critical considerations include the number

and positioning of electrodes (including the reference electrode), utilization of MRI

for head modelling and determination of relevant time points or periods for source

localization; one should judge the validity of the results based on all these factors

(Michel et al. [2004]).
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2.7 Source Space BCI

As discussed in the previous section, source reconstruction and localization methods

mainly aim to invert the effect of volume conduction using physiological knowledge

and electromagnetic modelling. Several studies have shown that EEG analysis in

source space can potentially manifest a clearer picture of the cortical activity, and

thereby facilitate EEG classification. In these studies, the signal is first mapped

to the source space and then submitted to frequency, connectivity and other types

of analysis. Studies that have taken the source approach differ in their choice of

parameters for head modelling as well as the type of inverse solution they apply. A

review of these studies, where source localization has been successfully applied to a

range of different BCI tasks, is given in the next few paragraphs. It should be noted

that additional analysis steps are required to extract useful information from the

reconstructed source activity. These include using dimensionality reduction methods,

ROI analysis and focusing on certain frequency bands. Thus, this review aims to

showcase different processing procedures for employing source analysis techniques and

report the effectiveness of source reconstruction methods in mental imagery decoding.

In one study the hypothesis of more accurate motor imagery classification by

means of source analysis was tested using a synchronized MI experiment dataset in-

volving 3 subjects (180 trial each) (Qin et al. [2004]). Data were preprocessed using

Laplacian spatial filtering in addition to bandpass temporal filtering in the range of

[11-12]Hz (this frequency band was selected based on time-frequency analysis). More-

over, using ICA, the data were projected into statistically independent components,

and channels on the frontal and occipital areas were omitted due to the interest in
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motor areas. Both equivalent dipole model and cortical current density (CCD) imag-

ing approaches were used on only the time point with the largest amplitude from the

first ICA components from electrodes placed on the motor cortex (15 time points).

The classification was considered correct if the dipole was located on the ipsilateral

side with the imaginary hand which was 78.9% and 80.6% for the two methods re-

spectively. Hence, the presented results suggest that the source analysis provides an

alternative means of aiding the classification of motor imagery tasks by converting

scalp EEG into source signals.

In a subsequent study, using almost the same approach on the same dataset, the

results described above were replicated and also improved upon by incorporating some

alterations to the algorithm (Kamousi et al. [2007]). Scalp measurements were prepro-

cessed using surface Laplacian filtering, time-frequency filtering, noise normalization

and ICA and then, the CCD method was used to reconstruct 1497 source points

distributed across a 2D surface grid of the cortex. For dimensionality reduction pur-

poses, the activity was averaged over 128 cortical locations as regions of interests

(ROI), and 84 ROIs with noticeable activity were used. A [8-12] Hz bandpass filter

was applied on the ROI time courses again in order to isolate the mu rhythm. Fi-

nally, the ROIs’ covariance matrix was computed to obtain the signal power at each

cortical region (diagonal elements of the covariance matrix). Covariance matrices

were classified based on their distance from the averaged covariance of each condition

using Von Neumann relative entropy measure and an average classification accuracy

of 88% was achieved in three subjects. By comparing this classification rate with the

classification rate of the scalp recordings (instead of sources) by the same classifier,

an average decrease of 16% was observed. This result suggests the effectiveness of
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source analysis and indicates that by compensating the smearing effect of the skull,

the performance of motor imagery classification can be substantially enhanced.

A recent study explored a more advanced source localization method for fist and

foot MI-based BCIs and compared it with four other SL methods (Li et al. [2019]).

By applying overlapping averaging (OA) in the temporal domain and wMNE, this

novel method (OA-wMNE) overcomes the shortcomings of ROI-based MNE decod-

ing methods. OA-wMNE preserves the entire effective information of MI in the time

domain by overlapping and averaging all trials of the same task, and the ROI se-

lection procedure is replaced by a novel selection of the time of interest (TOI). The

SVM classification performance on the dipole features selected using a univariate

feature selection (UFS) method was reported. The proposed method was compared

against sLORETA, MNE, wMNE, OA-MNE and ICA-wMNE and reached the highest

average decoding accuracy of 81.32% across five subjects. Therefore, the proposed

method, which integrates OA, has been shown to improve the performance of baseline

minimum-norm based solutions and can potentially be useful in future studies.

In addition to classification of coarse imagined movements, EEG source imaging

methods have been applied to decode fine intended hand movements as well to expand

the control span of real and virtual devices into more dimensions. For example, a

system integrating wMNE with ICA was evaluated to decode four MI tasks of the

right hand: flexion, extension, supination and pronation (Edelman et al. [2016]). Data

were bandpass filtered between 2 and 30Hz and after bad trial rejection through a

visual inspection, a surface Laplacian was applied to the data to enhance focal MI-

related activity. Using ICA, ROIs were determined by purely data-driven procedures

instead of defining certain gyral landmarks. The reported results demonstrate an
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improvement of 18.6% for individual task classification over traditional sensor-based

methods. Therefore, not only are SL methods useful in classifying coarse intended

movements, but also applying the appropriate SL technique has been shown to resolve

spatially close sources of activity with high resolution and improve decoding of fine

intended movements.

Besides minimum-norm based solutions and the CCD method, beamforming or

spatial filtering methods for source reconstruction have been briefly exploited in non-

invasive BCIs. For example, a linear spatial filter was designed to effectively surpass

the variance of all sources originating from outside the ROI formed on the basis of

a priori neurophysiological knowledge (Grosse-Wentrup et al. [2009]). The designed

beamformer maximizes the ratio of variance of EEG inside and outside a ROI. This

study, which utilized a similar beamforming approach to the MaxSNR beamformer

(Van Veen and Buckley [1988]), was the first to employ beamformers in non-invasive

BCIs. The spatially filtered EEG trials were converted into feature vectors composed

of log-bandpower of 20 frequency bands of 2Hz width covering [1-41] Hz and logistic

regression with l1 regularization was used for classification. Comparing against CSP

and Laplacian spatial filtering (LP), this study showed that beamforming outper-

forms CSP and LP on noisy datasets with few artifactual trials in two-class motor

imagery experiments while they perform equally well on datasets with moderate noise

contamination.

Moreover, the eigenbased minimum variance beamformer has been utilized in

search of better features (Ahn et al. [2010]). Typically, the estimated source activity

by minimum-variance beamformers is prone to distortion or noise while performing an

eigenspace projection can ameliorate the noise effect. Being incredibly robust to noise
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and fast in computation, this type of beamformer is well-suited to BCI applications.

After band-pass filtering [10-15] Hz, a beamformer was applied to simultaneously

recorded MEG/EEG data in a left and right hand MI paradigm. CSP features were

extracted from beamformed signals of the voxels located on motor cortex (area un-

der C3 and C4) distributed at various resolutions and classified with Fisher’s linear

discriminant analysis (FLDA). Voxel-based CSP was compared to sensor-based CSP

and it was reported that in the 37 voxel case, the source space-BCI was significantly

more successful than sensor space-BCI across five human subjects. Therefore, by fil-

tering the noise and improving the SNR, the beamformer led to better classification

of motor imagery in source space relative to sensor space.

In addition to studying source reconstruction of single and multiple sources of

activity, source reconstruction has been used in the study of functional networks of the

brain. For example, in a BCI-relevant source-level connectivity analysis of concurrent

EEG and MEG recording during voluntary movements, using a DICS beamformer,

cortical and sub-cortical networks of coherent sources underlying a finger tapping

task were analyzed in 15 participants (Muthuraman et al. [2014]). The network

of cortical sources estimated using each of the modalities separately or combined

indicated a similar network. However, single sub-cortical sources were only identified

for the MEG and the combined approach (MEG+EEG) and the beamformer failed

to detect single sub-cortical sources due to the fact that the SNR level in MEG data

is significantly higher than that in EEG. Additionally, these same networks of sources

underlying voluntary movement have been previously detected from other imaging

modalities including fMRI (Nedelko et al. [2010], Ball et al. [1999]). Therefore, EEG

source imaging has been shown to be very effective in detection of functional networks,
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even more accurately than detection of single sources. These findings indicate that

functional networks of the brain and connectivity between regions can be very well

quantified by means of ESI methods and can potentially be used as discriminative

features between mental states.

Although the bulk of previous studies in EEG source reconstruction are focused

on motor imagery (other than SL for ERPs), a recent article reported encouraging

results for emotion recognition from reconstructed EEG sources (Chen et al. [2020]).

sLORETA was employed for source estimation and 26 Brodmann areas were selected

for further analysis. Six types of time- and frequency-domain features, including

skewness, kurtosis, power, Hjorth parameters, Fractal dimensions, band differential

entropy, Wavelet entropy and functional connectivity in four bands were extracted

from significantly active ROIs and frequency bands, and classified using SVM. A

comparison of classification performance based on source and sensor space features

indicated an average improvement of about 5% when using reconstructed sources.

Thus, this study demonstrates the usefulness of SL methods in decoding emotions

from EEG data which can potentially be used as mental commands in BCI systems.

The comprehensive literature review provided in this section demonstrated that

source localization methods are highly promising in EEG signal analysis, even though

they are the least explored category of methods in signal processing pipelines in BCIs.

While the majority of previously employed source reconstruction methods have been

applied to the problem of decoding motor imagery, other forms of mental imageries

that can be used as BCI commands are under-explored. However, as discussed earlier,

not everyone is able to attain control of a BCI using these common mental commands

which can be due to the differences in their brain structure. It has been shown
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that people who have different specialized abilities such as in music, dance/sport

or visual arts seem to have correspondingly better ability to use the corresponding

type of mental imagery – auditory, motor or visual – (Dhindsa et al. [2015]). This

introduces the possibility that exploring a much larger range of different types of

imagery can lead to finding individualized mental commands where the user can

generate more distinctive brain activity patterns. As complimentary evidence, this

study demonstrated taking these individual differences into account can result in

better performance of a BCI.

Utilization of a broader range of mental commands in addition to enhancing the

signal processing pipeline by integrating state-of-the-art ESI methods leads to an

advanced, subject-optimized BCI which can construct a promising solution to the BCI

illiteracy problem. The combination of these approaches not only takes into account

the individual variations in brain structure, but also benefits from the improved signal

quality and projection of the signal into a new space, resulting in potentially better

decoding of the mental state. Therefore, this thesis investigates the application of two

of the most solid source reconstruction methods, LCMV beamformer and sLORETA

in identifying various types of mental commands and conducts a comparison between

the source approach in contrast to the surface approach in classification of EEG

signals.
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Chapter 3

Methods

3.1 Electroencephalography (EEG)

Electroencephalography (EEG) as a standard method of measuring brain activity is a

method of choice for investigating numerous neuroscience research questions and real-

time applications such as noninvasive BCIs. EEG signals are recorded with an array

of a few up to 256 electrodes fixed on one’s head embedded in a headband, an elastic

cap or similar. The surface electric potential representing underlying neural activity

is thereby measured continuously relative to the potential of a reference electrode

placed elsewhere on the head and sampled to generate a signal measured at discrete

regular time points. The amplitude of the EEG signal is typically under 75µV and

it can increase to 100µV .

Understanding the neurophysiological basis of EEG is of importance, especially

when locating and reconstructing the underlying sources of activity is of interest.

It is demonstrated through modelling that the majority of the EEG signal reflects

the summation of activity in neurons with their axons aligned in a perpendicular
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orientation toward the scalp and which are primarily located in outer cortical lay-

ers (Murakami and Okada [2006]). Synchronized polarization and depolarization of

apical dendrites of vertically oriented pyramidal cells in layers three, four and five

of the cerebral cortex generate the bulk of the voltage sensed on the scalp. As a

result of brain tissue having limited conductivity, the electrical fields generated in the

extracellular environment have a region of influence of approximately 10 cm2 (Nunez

et al. [2006]). Thus, the recorded signal is not only a mixture of millions of individual

neural activities across the brain, but also is spatially blurred.

These measured surface potentials are the result of the spatial averaging of the

dendritic field potential resulting in an unintended data reduction process. Although

information loss is an inevitable outcome, compared to intracranial recording which

has high spatial precision per electrode but only allows very sparse spatial coverage,

EEG has the advantage of offering a “big picture” of brain function (Nunez et al.

[2006]).

In contrast to the low spatial resolution, the EEG signal’s high temporal reso-

lution allows it to capture the neural dynamics in the time-frame of mental process

occurrence. This attribute of EEG makes it an excellent tool for real-time applica-

tions in comparison to other neuroimaging methods. Additionally, EEG is a rela-

tively direct (subject to spatial summation and blurring) measure of neural activity

which is an advantage over techniques using blood oxygenation level (BOLD) as an

indicator of activity in a brain region such as functional magnetic resonance imag-

ing (fMRI). Moreover, the EEG signal is multidimensional, comprising at least four

dimensions: time, space, frequency, and power and phase. Voltage changes over

time and space, where space is measured through different electrodes, power is the
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strength of frequency-band-specific activity and phase is the relative timing of the ac-

tivity. This multidimensionality provides many possibilities for specifying and testing

hypotheses raised from neuroscience and psychology (Cohen [2014]).

3.2 EEG Signal Processing for BCI

Different steps are needed to convert the neural activity recorded as EEG signals to

meaningful information that can be translated as commands. BCIs can be operated

through utilization of various types of EEG control signals including the P300, error-

related potential (ErrP), steady-state evoked potential (SSEVP) and mental imagery

(MI) recordings (Rashid et al. [2020]). Processing pipelines vary considerably, as the

experimental paradigm and protocols to be followed by the participant depend on

the type of control signal. Processing of MI EEG signals, which is of interest in this

thesis, is introduced here.

The process begins with collection of raw EEG data, which is typically contami-

nated with multiple noise sources and suffers a low signal-to-noise ratio (SNR). The

signal should be preprocessed to remove artifacts such as eye and muscle movements

and filtered to eliminate high and low frequency noise as well as power line noise. The

cleaned data is then separated into epochs based on the event markers and becomes

ready for data processing. Data processing is commonly comprised of three steps:

firstly informative features are computed from the neural activity, secondly the most

relevant features are selected and lastly the trials are categorized based on the fea-

tures extracted from these signals (Hassanien and Azar [2015]), resulting in the final

output of the BCI that indicates which class the neural signal belongs to.
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3.3 Feature Engineering for a Successful BCI

Different mental processes influence the scalp potentials differently and induce distinct

patterns in the brain waves. BCI can be seen as a pattern recognition system that aims

at detecting the distinguishable patterns and categorizing these signals (Hassanien

and Azar [2015]). These patterns are represented by features which are information

computed from the signal to express the data in a new way. A wide array of methods in

the time, frequency and spatial domains have been employed by researchers to extract

the discriminable aspects of a signal. The classification accuracy and performance of

a BCI is greatly dependent on the attributes extracted from the signal. Common

spatial patterns, power spectral density, magnitude of coherence and phase lag index

have been used to characterize brain signals in this thesis which are introduced in the

following section.

3.4 EEG Spectral Feature Extraction

3.4.1 Power Spectral Density

EEG signals are usually characterized by oscillatory patterns at certain frequency

bands. Thus, EEG data can be transformed and studied in the frequency domain

using spectral analysis. One of the common ways of describing a signal is by quanti-

fying the strength of each of its oscillatory components. The Power Spectral Density

(PSD) refers to the distribution of power across the frequency spectrum (Hu and

Zhang [2019]), which is a measure of the power content of each oscillatory component
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of the signal, and is defined as follows:

Pxx(ω) = lim
T→∞

f(x)
1

T
E|FTx (ω)|2 (3.4.1)

where E{.} is the expected value operator and FTx (ω) is the Fourier transform of

the signal x. PSD is remarkably useful in describing the frequency distribution of the

EEG signals and is extensively used to study the amount of signal power present in

each frequency band. Since various cognitive processes are known to cause modulation

in specific frequency bands in EEG signals, PSD values can be used as discriminative

features for decoding of different brain states (Hu and Zhang [2019]).

3.5 EEG Connectivity Feature Extraction

Brian connectivity describes the networks of anatomical, functional or effective con-

nections across the brain (Sakkalis [2011]). It is generally believed in neuroscience that

when two different brain regions or neural populations are working in coordination,

their oscillatory activities can become synchronized and time-locked to each other.

This inter-regional synchronization can be interpreted as communication and forms

functional connections/networks. Connectivity analysis is performed in order to map

out these communication networks in the brain. Specifically, functional connectivity

measures, such as coherence and phase lag index, are very useful in characterizing

EEG data corresponding to tasks where multiple brain regions work together.
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3.5.1 Coherence

Coherence, as a measure of the brain’s functional connectivity, reveals similar neural

oscillations or in other words, similarity in frequency content (Sakkalis [2011]). It

quantifies frequency correlations of brain activity between two neural signals and

mathematically, it is the frequency equivalent of cross-correlation in the time domain.

Coherence is computed as follows:

Cxy(ω) =
Pxy√
PxxPyy

(3.5.1)

where Pxx and Pyy are the PSD of the two neuronal signals of interest and Pxy

is the cross-spectral density of the signals (Fourier transform of cross-correlation of

signals). The coherence is a complex value where its magnitude represents the amount

of variance in one signal that can be explained by the other.

3.5.2 Phase Lag Index

Phase lag index (PLI) is a measure of the asymmetry of the distribution of phase

differences between two signals (Stam et al. [2007]). The fundamental idea here is

to disregard phase locking that is centered around 0 phase difference as a means

of excluding volume conduction effects (at the risk of ignoring true instantaneous

interactions). This also applies to phase locking at π and its multiplications. PLI is

a volume conduction-robust synchronization measure and is calculated is follows:

PLI = |sign[∆Φ(tk)]| (3.5.2)

where Φ is the instantaneous phase of the signal at time tk, ∆ represents the
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difference of phase between the two signals which should be computed in radian and

sign is the signum function that discards phase difference of any multiplication of π.

The PLI ranges between 0 and 1, with 0 indicating no coupling of instantaneous phase

and 1 indicating true, lagged interaction. The Hilbert transform is used to obtain the

analytic signal which then is used to extract the instantaneous magnitude and phase

information from EEG data.

3.6 EEG Spatial Feature Extraction

Certain mental processes can be best characterized by their alternation across elec-

trodes/space, creating spatial activation patterns on the scalp or in the brain volume,

which might not be as recognizable in the time or frequency domains (Blankertz et al.

[2007b]). For instance, right and left hand movement result in localized changes in

activity for which the most effective decoding approach has shown to be using spa-

tial features (Ang et al. [2012]). The change in the spatial patterns can be further

investigated in specific frequency bands or time windows for a more focused analysis

(Sun et al. [2010]).

Additionally, simulations have demonstrated that only half of the signal content

recorded at each electrode is due to the activity within the 3cm radius (Nunez et al.

[1997]) and volume conduction blurs the spatial precision of EEG. Spatial filtering

methods such as spatial Laplacian or common spatial patterns have proven to mitigate

this problem and have a feature-enhancing effect (Rashid et al. [2020]). Source local-

ization techniques can increase the spatial resolution such that complex hand move-

ments including flexion and extension can be decoded from closely-spaced sources on

the motor cortex (Edelman et al. [2015]). As explained in the background section,
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the focus of this thesis is researching the impact of spatial feature extraction methods

on BCI improvement with an emphasis on source localization algorithms which are

explained in detail in the following sections.

3.6.1 Common Spatial Patterns

The common spatial patterns method has been widely used in BCIs, especially for

distinguishing between motor imagery tasks from EEG signals. This method sep-

arates two sets of multivariate signals into their additive subcomponents that have

maximum difference in variance and has been very successful in finding spatially lo-

calized abnormalities (Koles [1991]). Being a supervised statistical learning approach,

CSP forms a spatial filter that maximizes the variance of the signal for one class while

minimizing the variance for the other class. This can be mathematically formulated

as an optimization problem:

W = max
W

||WX1||2

||WX2||2
(3.6.1)

Where X1 of size n × t1 and X2 of size n × t2 are matrices of all trials of EEG

data in class 1 and class 2 recorded with n electrodes. Hence, W which is the spatial

filter or the projection matrix is the set of wights that maximizes the variance ratio

of the spatially-transformed signals. The solution to the objective function (3.6.1) is

acquired by calculating the generalized eigenvector of the ratio of covariance matrices

corresponding to the maximal eigenvalue where the normalized spatial covariance
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matrix Rl for class l is given as:

Rl =
XlX

T
l

trace(XlXT
l )
, l = 1, 2 (3.6.2)

where XT is the transpose of the matrix X and trace(A) is the sum of the diag-

onal elements. In order to have a meaningful comparison between CSP components,

the variance of the signal across all EEG channels of each class of signal should be

normalized using a whitening matrix. Eigendecomposition of the composite spatial

covariance matrix is used to create the whitening transform:

Rc = R1 +R2 = V λV T (3.6.3)

where V is the matrix of eigenvectors and λ consists of the eigenvalues. The

whitening transform matrix would be:

Q = λ−1/2V T (3.6.4)

Driving the whitening transform from the composite covariance matrix results in

the individual whitened covariance matrices of the two classes to have the same set

of eigenvectors V ∗:

R∗l = QRlQ
T = V ∗λlV

∗T, l = 1, 2 (3.6.5)

The CSP spatial filter is therefore obtained by:

W = (V ∗TQ)T (3.6.6)
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The CSP components of an EEG trial X are computed by filtering the signal

using the W filter:

C = WX (3.6.7)

The columns of the matrix W−1 are the common spatial patterns. The first and

the last columns are the most distinct patterns between the two classes demonstrat-

ing the two components which have the highest difference. The CSP features are

calculated from the projected EEG signal with W . As the generalized eigenvectors

in V ∗ are sorted according to their eigenvalues λ, the top M and bottom M rows of

the projection matrix W would result in the features representing the highest ratio

of variance between the two classes. Therefore, the 2M most discriminative features

between the two classes can be calculated by using the 2M components of C in

Z. = {1, ...M, n−M + 1, ...n}:

fj = log

[
var(Cm)∑
i∈Z var(Ci)

]
, j ∈ {1, ..., 2M},m ∈ Z (3.6.8)

It is worth mentioning that other feature extraction methods which are applicable

to the channel-space signal X are also applicable on the signal in the CSP space C.

3.7 EEG Source Imaging

Although the EEG neuroimaging modality is well known for its high temporal reso-

lution, its lack of sufficient spatial resolution stemming from low signal-to-noise ratio

(SNR) and the smearing effect due to the volume conduction has restricted the ap-

plications of EEG. As an attempt to address this shortcoming, electrophysiological
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source imaging (ESI) techniques have been introduced (Jatoi and Kamel [2017]). Es-

sentially, source imaging methods aim to model brain electrical activity as a series

of equivalent current source distributions. The source localization techniques are

mainly used for locating abnormal or intense activity from single trial recordings

such as epileptic region diagnosis (Sohrabpour et al. [2020]) or ERP signals where the

activity of interest is obtained by averaging over more than 100 trials (Michel and He

[2019]).

3.7.1 Forward Problem

In order to map the electrode signals into the source space, first a forward model of the

system should be obtained by solving a so-called forward problem (Jatoi and Kamel

[2017]). The forward model predicts the final electrode potentials recorded at the scalp

from known sources in the brain and depends on the geometry of the anatomical model

of the head and the electromagnetic properties of different tissues. This is achieved

by creating a volume conduction model that approximates the conduction of neural

signals through the different tissues of the head. These properties, i.e., the tissue

conductivity, are assumed to be uniform and linear thus the surface recording at

each site is the superposition of the electric potential of all the active neurons inside

the brain. The transfer or gain matrix H(qi) represents the solution to the forward

model, which is also known as the lead field matrix,

x =
L∑
i=1

H(qi)m(qi) + n (3.7.1)

where every neuron is modelled as a current dipole with moment m(qi) at location
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qi . This matrix is a function of head anatomy and how the anatomy is modeled, the

source model parameters including the number of sources, their orientation (degrees

of freedom per source) and distribution and finally, electrodes and their position.

There are various approaches to numerical head modelling for the forward prob-

lem such as the boundary element method (BEM) and finite element method (FEM)

(Akalin-Acar and Gençer [2004], Wolters et al. [2007]). The boundary element method

(BEM) can be used to generate a realistic head model based on the the subject’s Mag-

netic Resonance Imaging (MRI) or a generic MRI such as MNI ICBM152, comprised

of three separate boundaries: the scalp, outer skull and inner skull. BEM forms a

mesh of triangular elements that separate the different components of the head model.

These separate compartments have their own conductance values, which are assumed

to be constant throughout each region in BEM. Each of these segmentations are also

taken to be source current dipoles, which are then used to determine the lead field

matrix, predicting the resulting electrode potential based on the contribution of a

given source to the scalp potentials.

3.7.2 Inverse Problem

The inverse problem in source imaging methods is the determination of the source

activity and locations based on the electrode potentials measured at the scalp which

is in fact the problem of interest (Jatoi and Kamel [2017]). This is also deemed an

ill-posed problem in nature as the number of solutions that could fit the data equally

well is infinite, since the number of known values is limited by the number of electrode

recordings, which is smaller than the number of unknown parameters. Additionally,

the lead field matrix is not a square matrix and as a result, a standard matrix inversion
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cannot be used in solving the inverse problem. Therefore, regularization is needed to

limit the set of possible solutions and mitigate the above mentioned difficulties. There

are many different approaches to solve the inverse problem such as minimum norm

estimate (MNE), sLORETA, MUSIC, DICS and LCMV (Jatoi and Kamel [2017]).

In this thesis, the application of two of these approaches in BCIs is investigated.

3.7.3 Linearly Constraint Minimum Variance Beamformer

(LCMV)

As a general definition, spatial filtering or “beamforming” is a signal processing

method utilized in sensor arrays for directional signal transmission or reception (Van Veen

and Buckley [1988]).The Linearly Constrained Minimum Variance (LCMV) beam-

former is developed based on the principles of spatial filtering, which refers to the

discrimination of signals based on their spatial location. The filters are in the form of

a weighted sum of signals recorded on the scalp in order to estimate the power of the

sources as a function of location (Van Veen et al. [1997]). LCMV spatial filters are

designed subject to a linear constraint to minimize the activity of all other sources

except for the source at the location of interest. The final output of the method is a

map of “neural activity index (NAI)” values, which represent the estimated output

power of every source normalized by the estimated noise power of the sources over all

locations.

To explain the derivation of the LCMV spatial filters, vectors and matrices are

denoted by lower- and upper-case boldface symbols, respectively. Each neural source

is modeled as a current dipole. The relationship between source dipoles and the

distribution of electric potentials measured on the surface is obtained from (3.7.1),
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which was previously introduced as the forward solution.

The electrical activity of a current dipole is described as a random process which

can be mathematically modeled with a mean mqi = E{m(qi)} and covariance matrix

C(qi) = E{[m(qi) − mqi][m(qi) − mqi]
T}. In this step of the modelling a key

assumption is made: It is assumed that the moments associated with different dipoles

at different locations are uncorrelated as well as having noise with a mean equal to

zero. Considering this assumption, the relationship between the statistics of every

current dipole and the statistical features of the electrode signals can be represented

as:

mx = E{x} =
L∑
i=1

H(qi)m(qi) (3.7.2)

C(x) = E{[x−mx][m(x)−mx]T} =
L∑
i=1

H(qi)C(qi)H(qi)
T + Qn, (3.7.3)

where Qn is the covariance matrix of the noise. Designing the LCMV filter, the

spatial samples are the elements of EEG data (i.e, the signal at each channel location)

and the spatial pass band of each filter is essentially the location of interest i.e. the

source. The goal is to design a set of beamformers or spatial filters where each

passes the signals originating from a specified location, while attenuating activities of

other locations. Also, as the signal at each source location has three dipole moment

components, three separate beamformers are constructed for each location. Thus, if

a spatial filter centred at location q0 is denoted by an N×3 matrix W(q0), the three
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component filter output y is the inner product of W(q0) and x:

y = W(q0)x. (3.7.4)

Thus, an ideal narrowband spatial filter should satisfy the following, which is to

pass the activity of interest and to surpass the activity of other locations:

WT(q0)H(q) =


I q = q0

0 q 6= q0.

(3.7.5)

If the unit response in the pass band (linear response constraint) and zero response

in the stop band holds, the output of the filter would be exactly the dipole moment

m(q0) at each location in the brain in the absence of noise. However, it is practically

impossible to have full attenuation in the stop band of a filter, temporal or spatial.

The LCMV approach offers a solution for this problem: designing an optimal filter.

The core idea is that instead of aiming for zero response in the stop band, the LCMV

finds the filter that minimizes the variance at the filter output while still passing the

full signal in the pass band (linear response constraint). This strategy forces the stop

band response at any location m(qs) other than m(q0) to be as small as possible.

The LCMV problem can be formulated as:

min
W(q0)

tr(C(y)) subject to WT(q0)H(q) = I. (3.7.6)

Solving (3.7.6) by using the method of Lagrange multipliers yields the solution to
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the LCMV filter:

W(q0) = [HT(q0)C−1(x)H(q0)]−1HT(q0)C−1(x). (3.7.7)

Thus, the beamformer for each location can be obtained by the transfer function

(lead field) and the covariance of the sensor level data. Using (3.7.7) in (3.7.4) provides

an estimate of the dipole moment at location q0. As mentioned before, the variance

of a dipole moment can indicate its strength of activity. The estimated variance of

the filter output is the value of the cost function in (3.7.7) at the minimum, which

after several algebraic steps is:

V̂ar(q0) = [HT(q0)C−1(x)H(q0)]−1. (3.7.8)

By evaluating (3.7.8), which is the estimate of the activity at each location, the

source reconstruction is performed. This can be interpreted by considering a group

of dipoles with high variance as a highly active region and vice versa. Thus, (3.7.8)

is referred to as the estimated “spatial spectrum” of the neural activity.

The detail resolution of the activity’s spatial spectrum is limited by the filter’s pass

bandwidth which is basically the resolution of the source grid (the minimum distance

between two adjacent dipoles) encoded in the transfer matrix H(q). This resolution

also depends on the number of electrodes, their distribution as well as the signal-to-

noise ratio (SNR) associated with the feature of interest which is the source (not the

EEG data). It is important to note that SNR in this covariance-based analysis has a

different definition compared to the conventional amplitude of the signal to amplitude

of the noise ratio. SNR in this context is defined as the ratio of the variance of the
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source and variance of the noise. Thus, the more the variance of the source is in

proportion to the variance of the noise, the more accurate the activity is going to be

estimated. Thus, higher SNR leads to higher resolution. This is a direct outcome of

the variance minimization step which determines the spatial filters.

In practice, the SNR of the scalp recorded data is generally small and therefore

the noise is a significant component of the estimated neural activity acquired from

(3.7.8). The spatial distribution of the noise specifically plays an important role. If

the noise is not uniformly distributed in the spatial spectrum or if it is concentrated

at a location, it will interfere with localization of the actual neural sources. It can

be shown that the noise spatial spectrum relies on the lead field matrix H(q) by

assuming the C(x) is completely due to uncorrelated noise. It also depends on the

covariance matrix of the noise Q. By substitution of (3.7.3) into (3.7.8), it can be

shown that the V̂ar(q0) always has an additive noise component in this form:

tr{[HT(q0)Q−1H(q0)]−1}. (3.7.9)

Thus, (3.7.9) is the noise spatial spectrum. As experimental data usually have

a low SNR, this noise component of the source activity can interfere and cover the

spatial spectrum of actual active sources. The LCMV beamformer resolves this prob-

lem by normalizing the estimated spatial spectrum of the data by the estimated noise

spatial spectrum, to obtain the “neural activity index (NAI)”:

V̂arN(q0) =
tr{[HT(q0)C−1(x)H(q0)]−1}

tr{[HT(q0)Q−1H(q0)]−1}
. (3.7.10)

In other words, the NAI is an estimate of the source to noise variance as a function
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of location. In order to obtain the NAI, the noise covariance matrix Q is required

which can be estimated from a source-free data, such as pre-stimulus data, also known

as baseline activity. Alternatively, if the noise is assumed to be uncorrelated between

channels, then Q = I.

It is worth recalling that x is the vector of electric potentials recorded at all the

electrode sites at one instant in time. Therefore, the NAI can be estimated at all

time points of the data to finally obtain the estimated activity of the sources in time,

which is referred to as source time courses or source time series.

3.7.4 Standardized Low-Resolution Brain Electromagnetic To-

mography (sLORETA)

The second source localization method employed in this thesis, standardized Low-

Resolution Brain Electromagnetic Tomography (sLORETA), estimates source loca-

tions based on standardized values of the current density estimates (Pascual-Marqui

et al. [2002b]). The equation that relates the scalp electrode potentials to the current

density is:

Φ = KJ + c1. (3.7.11)

Note that for all equations, terms that are bolded represent matrices and those

not bolded are scalar values. Φ represents the electrode potentials, J is the current

density matrix and K is the lead field matrix that relates the two values (Pascual-

Marqui et al. [2002b]). As mentioned earlier, the lead field matrix is determined based

on the solution of the forward problem and takes into consideration the conductivity

as well as the distance between the source and a given electrode (Mosher et al. [1999]).
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Each entry of the lead field matrix computes the resulting electrode potential due to

a unit strength dipole at a given voxel, hence, the matrix has dimensions NE × 3NV

where NE represents the number of electrodes and NV represents the number of voxels

or current dipoles in the the x, y, z orientations . Thus, the inverse problem aims

to find the value of the J matrix based on known electrode potentials and the lead

field matrix determined by the solution of the forward problem. The equation below

indicates the minimization problem that is solved to find the value of J, the current

densities:

F = ||Φ−KJ + c1||2 + α||J||2 (3.7.12)

The purpose of solving the above equation is to determine the value of J such that

the term ||Φ−KJ + c1||2 = 0 with a given Φ, K and α value. α is a regularization

parameter that limits the bounds of the minimization solution in order to prevent

overfitting (Jatoi, 2019). The solution, J, can be represented as the projection matrix:

Ĵ = TΦ (3.7.13)

where Φ is equal to the electrode potentials and T is a matrix that signifies the

relation between the electrode potentials and current sources calculated by:

T = KTH[HKKTH + αH] (3.7.14)

and H is the average reference operator.

sLORETA determines the activity sources based on the standardization of the

current density values, for which their variances are required. sLORETA calculates

each of these variances by incorporating the electric potential variance from the EEG,
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which is composed of both the variance of the actual sources as well as the variance

of the noise. To standardize the current density estimates, the matrix JTl at the lth

voxel, is multiplied by the inverse of the estimated current source variations at the

lth voxel. Then to regain the amplitude of the sources and yield the standardized

current density power, the product is multiplied yet again by the estimated current

density at the lth voxel Ĵt. This relation is presented by Pascual- Marqui (2002) in

the following equation:

Ĵt{[Sj]ll}−1Ĵt (3.7.15)

sLORETA essentially converts the recorded electrode potentials at the scalp into

standardized current densities in the source space, revealing much more valuable

information in determining the actual sources of activity portrayed by the recordings.

3.8 Source Features

Both LCMV and sLORETA reconstruct the activity of all source points in the source

model which is the discretized brain volume. Source localization is accomplished

by obtaining the locations of local maxima in the neural activity index or current

density map. One of the challenges in using LCMV occurs when multiple sources are

active simultaneously during the time interval of the mental task. As a result, the

neural activity index map will likely indicate a broad region of activity and individual

sources will not be evident (Van Veen et al. [1997]). Therefore, localization of sources

for mental tasks that activate several regions is suboptimal and inspecting the activity

of regions of interest (ROI) seems more promising.

The setting of ROIs is generally nontrivial (Lindgren [2017]) as the shape, the
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extent and the location of the ROI should be based upon empirical evidence, while

this information is not established for all EEG paradigms. Additionally, despite

the large number of source points in the source model, the effective resolution of

source reconstruction is typically low due to reconstructed sources blending together

(Baillet et al. [2001]). This is known as the source leakage effect and consequently

forcing a strict ROI risks some information being reconstructed outside the ROI.

Moreover, the spatial region of the ROI is not the only concern. Not only can an

ROI change temporally and spectrally for a specific mental process, but also they are

user-dependent.

Hence, restricting ROIs to pre-specified regions can be risky and may miss the

actual active area. Therefore, in this study the ROIs are not limited to certain

regions of the brain; instead, all the sources on the cortical surface are reconstructed

and divided into regions based on Brodmann’s atlas to obtain the average activity of

all Brodmann areas (Brett et al. [2001]). Lastly, data-driven statistical approaches

are used to specify the most relevant ROIs for each task.

3.9 Machine Learning for BCI

In general, BCI systems rely on signal processing and machine learning algorithms to

decode brain activity. Machine learning is used to learn the assignment of samples

to their corresponding classes and predict the class for a new sample based on the

learned patterns. This can be mathematically formulated as:

ŷ = f(X, θ). (3.9.1)
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Function f takes a measured brain activity X and produces an output based on

a set of model parameters θ which were learned from the training set (Iturrate et al.

[2020]). The recorded signals contain a mixture of components, some of which have

and some have not directly originated from the brain such as muscular or movement

artifacts, as well as electromagnetic noise. Therefore, the signal is typically processed

to extract signal components that are correlated to the mental processes of interest.

These components are referred to as features.

Depending on the application, the decoded output can be either a continuous

value, e.g., hand velocity (Carmena et al. [2003]) or a discrete command, e.g., decoding

motor imagery of the left vs right hand. As the target or the dependent variable in

this thesis takes values from a discrete set, the research problems of interest are

classification problems in which the input space can be divided into subregions. The

decision boundary between the classes can have a smooth linear form or non-linear

shape requiring investigation of different modelling methods.

In this thesis several linear and non-linear machine learning and statistical meth-

ods have been used which are discussed in more detail in the following sections. It

is worth mentioning that there are various criteria to measure and report the perfor-

mance of an ML algorithm such as the precision (number of true positives divided

by the number of false positives plus true positives), recall (number of true positives

divided by the number of true positives plus false negatives ), the F1 score (2*((preci-

sion*recall)/(precision+recall))), the accuracy and the confusion matrix. Throughout

this thesis the performance is reported in terms of accuracy as misclassification error.
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This is known as the empirical error rate:

L̂n =
1

n

n∑
i=1

I(ŷ(xi) 6= yi) (3.9.2)

where I(x) is the identity function, xi is a data sample in the test set, ŷ(xi) is the

predicted class label for the test sample and yi is the true class label of the sample.

3.9.1 Feature Selection

Feature selection methods are techniques for downsizing the feature space of high-

dimensional data by identifying a subset of the original features according to certain

evaluation criteria, which is a common problem in machine learning (Cai et al. [2018]).

They reduce the number of features and remove irrelevant, noisy and redundant fea-

tures. These methods, including best subset selection, forward and backward stepwise

selection, recursive feature elimination (RFE) etc. differ from dimension reduction

techniques. Dimension reduction refers to the process of reducing the number of fea-

tures to a set of key features while preserving the information as much as possible by

transforming the input feature space onto a lower-dimensional subspace or a different

space, and selecting the most important axes. Some well-known examples of feature

reduction methods are principal component analysis (PCA) and partial least squares

(PLS).

Datasets with a higher number of features than observations (p > n) usually have

many redundant or irrelevant features which are better to be removed before being

analyzed by a classification or regression method. Generally speaking, the number of

features determines the number of parameters considered while modelling the data
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and the model complexity increases with the number of features. Typically, the more

complex the model, the better it fits the data in the training set, however, as more

parameters are added to the model, there is a higher chance that the noise is also

modeled. This leads to a lack of balance in the classic problem of bias-variance tradeoff

and overfitting (Friedman et al. [2001]). Therefore, as a rule of thumb in machine

learning, the lower the number of features, the more generalizable the model. Needless

to say, feature reduction increases model interpretability by reducing the complexity

of the final model. Additionally, the fewer number of features saves computational

cost by accelerating the training phase of modelling.

The motivation for feature reduction can be summarized as follows:

• Where the number of features p is considerably larger than the number of ob-

servations n, there is a potential for the feature set to provide an extremely

sparse representation of the data, with any given feature only capturing a small

region of the data distribution. Consequently, models trained on such high-

dimensional data are more likely to overfit due to the curse of dimensionality,

and hence to have reduced predictive performance on test data.

• For many algorithms, the computational cost and training time both increase

as the number of features increases.

• Obtaining a dimensionality-reduced feature space which is predictive of the out-

comes can be very important in terms of knowledge discovery, interpretability

perspective and model visualization.

Therefore, a good feature selection method can improve model prediction accuracy,

reduce computational time and cost, and simplify model results (Cai et al. [2018]).
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The Maximum Relevance Minimum Redundancy (mRMR) method, which has proven

to be effective in BCI applications, has been utilized in this thesis.

Maximum Relevance Minimum Redundancy (mRMR)

Minimum redundancy maximum relevance (mRMR) is one of the most popular fea-

ture selection methods with widespread application. This method is essentially a

filter with a forward selection (Peng et al. [2005]). In every step, the set of selected

features will be expanded by adding the next one to maximize relevance in relation

to the target variable and simultaneously to minimize the redundancy among the al-

ready selected features. Assuming the data is represented with a total of m features.

For a given feature xi, i ∈ {1, ..,m}, its importance based on the mRMR criterion can

be expressed as:

fmRMR(xi) = I(Y, xi)−
1

|S|
∑
Xs∈S

I(xs, xi) (3.9.3)

where Y is the class label, S is the set of selected features, |S| is the size of the

feature set (number of features), xs ∈ S is one feature out of the feature set S, xi

denotes a feature currently not selected: xi /∈ S The function I(∆,∆) is the mutual

information calculated as:

I(X, Y ) =

∫
ΩY

∫
ΩX

p(x, y)log
p(x, y)

p(x)p(y)
dxdy (3.9.4)

where ΩY and ΩX are the sample spaces corresponding to Y and X, p(x, y) is the

joint probability density, and p(.) is the marginal density function. In the mRMR

feature selection process, at each step, the feature with the highest feature importance

score will be added to the selected feature set S.
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3.9.2 Classification

In this thesis two different classifiers were explored for binary classification of various

mental tasks. Linear discriminant analysis offers a simple yet effective linear approach

toward discriminating between different classes of a dataset. The support vector

machine, on the other hand, is one of the most widely used classification methods

in machine learning that still has a simple implementation. Both of these classifiers

are fast and widely used in mental process decoding in the BCI literature and their

efficacy has been examined in offline and online setups (Rashid et al. [2020]).

Linear Discriminant Analysis (LDA)

Derived from Bayes theorem, linear discriminant analysis (LDA) attempts to find a

decision boundary between every pair of classes in a multi-class classification problem

(Friedman et al. [2001]). According to the decision theory for classification, it suffices

to calculate the P (Y |X) where X consists of all the samples in the dataset and Y

includes the labels of the samples. Given the prior probability πk of being in class

k and the class-conditional distribution fk(x), P (Y |X) can be calculated by Bayes’

theorem as:

P (Y = k|X = x) =
fk(x)πk∑k
l=1 fk(x)πk

. (3.9.5)

Although it can be proven that for any given dataset the Bayes rule models the

optimal classifier in terms of minimizing the true error rate, the calculation of the

class-conditional density and prior is not always feasible. General density estimation

and parametric techniques can be used to estimate these unknowns from the data.

As a common approach, the class-conditional density fk(x) can be assumed to have
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a multivariate Gaussian distribution:

fk(x) =
1

(2π)p/2|Σk|1/2
e−

1
2

(x−µk)T Σ−1
k (x−µk). (3.9.6)

A decision boundary between class l and k can therefore be calculated:

Decision Boundary = (x|P (Y = l|X = x) = P (Y = k|X = x). (3.9.7)

Solving (3.9.7) for x, assuming the covariance of all the classes are equal (Σk =

Σ∀k) for simplification, the decision boundary would be:

log
Pr(G = k|X = x)

Pr(G = l|X = x)
= log

fk(x)

fl(x)
+ log

πk
πl

= log
πk
πl
− 1

2
(µk + µl)

TΣ−1(µk − µl) + xTΣ−1(µk − µl).
(3.9.8)

This above equation is linear in terms of x which implies the decision bound-

ary between the classes k and l is a hyperplane in p dimensions. Thus, the linear

discriminant function is denoted as:

δk(x) = xTΣ−1µk −
1

2
µTkΣ−1µk + log πk. (3.9.9)

For an unseen input vector, LDA computes the discriminant function for all classes

and the largest value would be the predicted class label. Hence, the decision rule for

any new sample is:

Y (x) = arg max
k
δk(x). (3.9.10)

In practice, the parameters of the Gaussian density function are unknown and
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should be estimated from the training data as below:

• π̂k = Nk/N , Nk is the number of class k observations

• µ̂k =
∑

gi=k
(xi/Nk)

• Σ̂ =
∑K

k=1

∑
gi=k

(xi − µ̂k)(xi − µ̂k)T/(N −K)

Support Vector Machine(SVM)

While LDA is essentially a statistical method, the support vector machine (SVM) is

considered to be a machine learning algorithm. The fundamental difference between

these two approaches is that ML approaches explore and learn the data without any

prior assumptions regarding the density and distribution of the data while statistical

methods are built on assumptions about the data distribution. As mentioned in

section (3.9.2), the fundamental assumption of the LDA method is normality of the

independent variables.

The SVM was initially introduced for binary classification problems and can be

expanded to multi-way classification schemes by solving multiple binary problems.

The SVM aims to find a linear decision boundary in feature space by forming a

hyperplane which linearly separates the data points belonging to the two classes in

the multi-dimentional feature space (Boser et al. [1992]). The working principle of

this technique is maximizing the distance between the data samples and the decision

boundary. The subset of the training set which constitute the closest data points

to the discriminating boundary are known as “support vectors” and the solution is

formulated as a linear combination of these supporting patterns.

A hyperplane can be formulated with its normal vector W and its offset from the

origin along the normal vector b
||W || as a set of points x satisfying W Tx− b = 0. The
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goal is to find W and b such that the hyperplane is optimally placed the furthest

possible from the samples of both classes. A margin is defined to ensure no data

point is closer to the hyperplane than the specified margin: |W Txi − b| < 1 where

xi is the ith member of an n point dataset pairing with its label yi. However, most

datasets are not linearly separable and to accommodate this, the problem is to be

reformulated as an optimization problem to minimize a loss function. Consider the

distance between a data point and the hyperplane max(0, 1− yi× (W Txi− b)) based

on the “hinge loss function”. If a data point is on the correct side of the hyperplane

and its distance is greater than 1, then the loss would be 0; otherwise, the loss would

be proportional to the distance of the data point from the soft margin. Therefore the

goal is to minimize the total loss:

min
W,b

[
1

n

n∑
i=1

max(0, 1− yi × (W Txi − b))] + λ||W ||2 (3.9.11)

where λ controls the trade-off between the size of the margin (soft margin) and

the number of data points it is letting in the margin and not penalizing. In the

case that the data is not linearly separable, a kernel method (Friedman et al. [2001])

can be used to transfer the data into a new space in which data might be linearly

classifiable. Common kernel functions used are Gaussian and polynomial. While

performing model selection for a dataset, the soft margin, the type of the kernel and its

parameters should be tuned in a cross-validation scheme. This step is known as hyper-

parameter tuning. It is worth mentioning that a good generalization performance of

a classification algorithm lies in the learning capacity of the classifier matching the

size of the training set. As a result, if a very complex model containing plenty of

parameters is used to model a small amount of data, the generalization will be poor

69



M.Sc. Thesis – L. Mousapour McMaster University – Computational Sci. & Eng.

due to overfitting. However, the SVM uses the size of the margin to automatically

adjust the learning capacity of the model and optimizes generalization (Boser et al.

[1992]).
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Chapter 4

Motor Imagery-Based BCI in

Source Space

4.1 Chapter Introduction

As discussed in previous chapters, the aim of this thesis is to assess utilization of two

source localization methods, the LCMV beamformer and sLORETA, in BCI pipelines.

The bulk of spontaneous BCI research has been built on “motor imagery” commands

and numerous algorithms have been tested using this paradigm. According to the

large number of review papers in the field, this problem has a favourable solution

and the best identified methods for decoding motor imagery from EEG signal are the

family of CSP-based methods (Rashid et al. [2020], Saha et al. [2021], Abiri et al.

[2019]). This is the very reason which makes this paradigm beneficial to test new

algorithms that are hypothesized to perform well or better than existing methods.

Analysis of motor imagery data has several benefits:
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• Replicating comparable results can be a way of testing the correctness of the

new analysis pipeline’s implementation since the expected results are known.

• The availability of benchmark datasets on which plenty of methods have already

been applied provides a reliable comparison ground for our proposed pipeline

against existing methods and facilitates answering novel research questions.

Therefore in this chapter motor imagery decoding using SL methods has been

investigated as a preliminary analysis and a proof-of-concept scheme to build on more

sophisticated pipelines and decoding other mental imagery forms. As the benchmark

data, the BCI IV competition dataset 1 (Blankertz et al. [2007a]) was analyzed using

five BCI pipeline designs to probe three research questions propounded in the next

section.

4.2 Objectives

The main research questions (RQ) investigated in this chapter are:

RQ1: Does adding the beamforming step before extracting CSP features boost the

BCI pipeline performance? In other words, are CSP features extracted from

source space more informative than those extracted from sensor space?

RQ2: How do the LCMV beamformer and CSP compare with each other as two types

of spatial filters?

RQ3: Is the LCMV beamformer as a spatial filter more successful in reconstruction

of motor imagery activity relative to sLORETA as a minimum norm-based

solution?
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4.3 Dataset

4.3.1 EEG Paradigm

The BCI IV competition, dataset 1 named “motor imagery, uncued classifier appli-

cation” provided by the Berlin BCI group was analyzed in this chapter and can be

freely accessed (Blankertz et al. [2007a]). The BCI competition IV held in 2008 aimed

to validate signal processing and classification methods for brain-computer interfaces

posing 4 main challenges on 4 datasets, 2 of which were EEG data. Although the

main research question of dataset 1 was classification of continuous EEG without trial

structure (uncued) to support the idea of “self-paced BCI”, this dataset was the only

one with a reasonable number of channels (59) for source localization purposes and

thereby, chosen for analysis here.

The dataset consists of single trials of spontaneous brain activity, one part labeled

(calibration or training data) and another part unlabeled (evaluation or test data).

4 healthy individuals were recorded with 59 Ag/AgCl electrode EASYCAP GmbH

using BrainAmp MR plus amplifiers. The electrodes were most densely distributed

over motor areas and channel labels and location were provided in the 10-05 standard

(figure 4.2). Signals were band-pass filtered (Chebyshev Type II filter of order 10

with stop band ripple 50dB down and stop band edge frequency 49 Hz) between 0.05

and 200 Hz and then digitized at 100 Hz with 16 bit (0.1 µV ) accuracy.

Participants were assigned to perform two classes of motor imagery selected from

the three classes left hand, right hand, and foot (side chosen by the subject; optionally

also both feet). In calibration data, each trial of motor imagery was performed

without feedback for 4s periods during which the visual cues were presented on the
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screen as arrows pointing right, left, or down. These periods were interleaved with 2s

of blank screen and 2s with a fixation cross shown in the center of the screen. The

fixation cross was superimposed on the cues, i.e., it was shown for 6s and a break

of 15s was given after every 15 trials. The participant was instructed to perform

the motor imagery right after the offset of the cue until presented with the black

screen. A total of 100 trials per condition was recorded for each subject. Figure 4.1

demonstrates the organization of the experimental paradigm.

Figure 4.1: BCI IV dataset 1 paradigm.

The evaluation data consist of imagery tasks where the start was cued by soft

acoustic stimuli (words left, right, and foot) and the end was cued by the word

stop. The imagery and intermediate periods had varying duration between 1.5 and

8 seconds and the number of trials from each condition were not equal. Since the

evaluation data were imbalanced and recorded with a different protocol (different

cue type and length of the imagery trials) only the calibration data were analyzed

here. Also, some of the datasets were artificially generated which were omitted in

this analysis (subjects c, d and e).

4.3.2 EEG Cleaning and Preprocessing

An initial data inspection via scrolling through the time-domain EEG signals revealed

that the provided data were not cleaned and required preprocessing. The data are
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(a) (b)

Figure 4.2: Electrode positions in the layouts are represented as points in 2D Cartesian space
together with the outline of the head or other anatomical features, that allows plotting of

topographies.The 2D channel layout is not an exact representation of the actual 3D channel
positions and is a projection for the purpose of visualization. (a) A standard 10-10 electrode

distribution on the head. (b) BCI IV dataset 1 electrode distribution on the head.

mostly affected by eye blinks and large jumps/drifts which were addressed by using

ICA and visual bad trial rejection respectively. The detailed preprocessing procedure

is as follows:

1. Data segmentation into trials of 3s (from 1s after the cue untill the end of

imagery trial).

2. ICA decomposition applied separately on trials belonging to each class and eye

blink artifact rejection based on component waveform and topography. Only

one component was rejected in each condition.

3. Bad trial rejection through visual data inspection. An average of 5% of the

trials containing large artifacts or drifts were rejected in every condition.

4. Band-pass filtering to isolate the 7-18 Hz band, which is most relevant to motor

processing.
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4.4 Processing Pipelines

In order to answer the above mentioned research questions, five variations of a BCI

pipeline are proposed and compared here with the main difference being the feature

extraction block. Essentially, the pipelines can be divided in two categories: sensor

and source space based pipelines. In sensor space based pipelines, common spatial

patterns were used as they have been found to generate highly distinctive features

in motor imagery classification problems. In terms of source space based pipelines,

the sLORETA and the LCMV beamformer were utilized and two types of features,

namely CSP and source time-averaged power were extracted and performances were

compared. It is worth mentioning that although the CSP spatial filter maps the data

from sensor space onto a different space where the patterns are more separable, it is

referred to as a “sensor space pipeline” due to the fact that it is applied on sensor

data rather than source data.

Regarding the source localization specifics, the Montreal Neurological Institute

(MNI) Colin27 template MRI (a stereotaxic average of 27 T1-weighted MRI scans

of the same individual named Colin)) (Holmes et al. [1998]) was used as the default

subject anatomy to compute a three-compartment (scalp, skull, and cortex) head

model with the symmetric boundary element method (BEM) using the dipoli method

in FieldTrip (Mosher et al. [1999]). FieldTrip default settings were used for the LCMV

beamformer and the lambda regularization parameter was set to 10% of the average

eigenvalue of the covariance matrix for sLORETA source reconstruction. The source

reconstruction was performed for a 3D grid of dipoles with 1cm resolution covering

the whole brain volume with more than 1800 source points.

Since the motor imagery activity is known to originate from the motor cortex, the
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cortical surface (a total of 369 source points) was of interest in this study in order

to reduce the dimensionality of the problem and increase power. WFU PickAtlas

(developed based on the Talairach brain atlas and adapted to the MNI coordinate

system) provided by Wake Forest University, school of medicine (Maldjian et al.

[2003]) was used to select the source points comprising the cortical surface which was

further parcelled into Brodmann areas (BA) as the regions of interest (ROI). Due to

the resolution of 1cm, 37 BAs were detectable in the generated head model, forming

a total of 74 half-Brodmann areas on both brain hemispheres. In terms of extracting

CSP features, it should be noted that a total of N features can be computed where N

is the number of time series (electrodes or sources) in every trial. Thus, 59 and 396

CSP features can be computed from sensor and source data respectively. However,

pairs of top and bottom features, which are ranked based on common enginevalues,

comprise the most distinctive feature sets. This introduces a hyperparameter (the

number of CSP features to select) into the problem which should be identified in a

cross validation loop. Here, after testing using different numbers of CSP features,

four features were used (top 2 and bottom 2) in order to achieve high performance

while having a sparse feature space.

Finally, two different classifiers, a linear Support Vector Machine (SVM) and

Linear Discriminant Analysis (LDA) were trained and tested in 5-fold cross validation

schemes for binary classification of motor imageries. Figure 4.3 illustrates the general

pipeline and various features employed in each version of the pipeline. The feature

extraction block specifics of pipelines (PL) are listed in table 4.1. In all tests the

random number generator seed was set to 0 for reproducibility of the results.
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Table 4.1: Feature extraction block of all BCI pipelines explored in this chapter.

Pipeline Features Feature No.

PL1 Four most discriminating CSPs of sensor space 4

PL2 Four most discriminating CSPs of reconstructed cortical
sources by LCMV beamformer (CSP are extracted from 396
source points)

4

PL3 Four most discriminating CSPs of reconstructed cortical
sources by sLORETA (CSP are extracted from 396 source
points)

4

PL4 ROI spatial average power of sources reconstructed by LCMV
beamformer (mRMR feature selection method was applied)

74

PL5 Power of cortical sources reconstructed by sLORETA (396
source points)

396

4.5 Results

The performance of the five proposed BCI pipelines are reported in 2 pairs of tables

and plots, organized in a way to best answer the research questions. The results of

the analyses addressing RS1 are presented in table4.2 and plot4.4 while the results of

the analyses regarding RS2 and 3 are presented in table4.3 and plot4.6. The baseline

of the comparisons is the performance of PL1 where CSP features were extracted

from sensor EEG data and classified with a linear SVM.

Table4.2 and plot4.4 (for convenient visual comparison) show the difference in

performance when extracting CSP from sensor and source space. Since the perfor-

mance of the SVM was better than that of the LDA in most cases, the results for

the LDA classifier are only reported for the first pipeline (PL1). The results indi-

cate that for all subjects the performance of the SVM classifier on common spatial

patterns extracted from source and sensor data are very close and do not differ signifi-

cantly. In the case of CSP extracted from source space, using the LCMV beamformer
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Figure 4.3: Illustration of two of the processing pipelines. (a) PL 2 Classification of motor imagery
trials based on Common Spatial Patterns (CSP) of cortical sources. (b) PL 4 : Classification of
motor imagery trials based on average power or Neural Activity Index (NAI) of half-Brodmann

areas. The LCMV and CSP spatial filters and mRMR feature selection were applied to the training
segment of the data and the computed filters were then applied on test data. The same goes for

mRMR selected feature indexes.

yields slightly better performance, with a mean accuracy of 81.23%, in comparison to

sLORETA with a mean performance of 75.62% while also having lower variation in

CV folds’ performance (lower standard deviation). In all these 3 pipelines, the four

most discriminative CSPs (top two and bottom two) were used for classification.

Regarding PL4 where the features are the average power of half-Brodmann areas,

the mRMR feature selection method was applied to find the best subset of features
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Table 4.2: 5-fold cross validation accuracy [%] of binary classification of motor imageries in source
and sensor space pipelines for 4 subjects in BCI IV dataset 1.

CSP at Sensor Space CSP at Source Space

Method LDA CV Test
Accuracy (PL1)

SVM CV Test
Accuracy (PL1)

LCMV, SVM CV
Test Accuracy

(PL2)

SVM-sLORETA
CV Test

Accuracy (PL3)

Sbj a 70.85± 3.01 69.80± 2.90 70.15± 1.16 65.00± 15.75
Sbj b 79.85± 2.46 80.40± 0.97 80.15± 6.22 67.50± 12.0
Sbj f 85.15± 1.68 84.80± 2.16 85.25± 8.59 83.50± 4.54
Sbj g 88.70± 2.18 91.50± 1.68 89.40± 8.48 87.23± 8.18

AVG ± STD 81.13± 2.33 81.62 ± 1.93 81.23± 8.74 75.62± 10.12

Figure 4.4: 5-fold cross validation accuracy [%] of binary classification of motor imageries in
source and sensor space pipelines for 4 subjects in the BCI IV dataset 1.

and lower the dimensionality of the feature space. The computed features were ranked

using the mRMR principle. The number of top features to be used for classification,

K, was tuned using a cross-validation. Figure 4.5 shows using 50 half-BAs achieves

high accuracy, whereas moving toward 60 features decreases the test accuracy.

According to the results presented in table 4.3 and plot 4.6, the average activity of

selected ROIs during the course of motor imagery is as discriminative a feature as the
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Figure 4.5: BCI IV dataset 1 paradigm.

CSPs obtained from electrode signals. While the average performance of all these four

pipelines are very similar, using source activity in place of sensor CSP features, there

is an improvement from 69.8% to 84.0% in the motor imagery decoding of subject a.

Also, for the other three subjects (b, f and g), applying the CSP algorithm on top of

the LCMV beamformer slightly improves the classification results in comparison to

only using the sources’ power obtained from the LCMV beamformer. However, in the

case of subject a, for whom CSP feature extraction does not perform as well as for

other subjects, using only the average activity of specific Brodmann areas achieved

higher performance.

This observation might be due to the original underlying neural activity and can

be an indicator that subject a is performing the motor imagery task differently than

other participants. It can be hypothesized that instead of involving one or two large

brain areas, this participant was engaging a greater number of smaller brain areas or

a larger separable network. Learning a stable differentiable pattern on this kind of

brain activity is harder for the CSP method. However, the LCMV beamformer might
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Table 4.3: 5-fold cross validation accuracy [%] of binary classification of motor imageries in source
and sensor space pipelines for 4 subjects in BCI IV dataset 1 comparing CSP and source power

features.

CSP at Sensor and Source Space Power of Cortical Sources

Method SVM CV Test
Accuracy (PL1)

LCMV, SVM CV
Test Accuracy

(PL2)

Avg half-BA
Power LCMV,

SVM Test
Accuracy (PL4)

Source Power
sLORETA SVM

CV Test
Accuracy (PL5)

Sbj a 69.80± 2.90 70.15± 1.16 84.00± 7.00 74.00± 5.18
Sbj b 80.40± 0.97 80.15± 6.22 76.30± 6.94 76.50± 5.18
Sbj f 84.80± 2.16 85.25± 8.59 82.70± 8.18 82.50± 4.68
Sbj g 91.50± 1.68 89.40± 8.48 79.80± 8.40 87.50± 5.18

AVG ± STD 81.62 ± 1.93 81.23± 8.74 80.70 ± 7.63 80.12 ±5.05

have an advantage in these cases as it can reconstruct the activity of each region

of the brain separately from other parts. This hypothesis is further investigated by

analyzing the selected features for each subject.

Figure 4.6: 5-fold cross validation accuracy [%] of binary classification of motor imageries in
source and sensor space pipelines for 4 subjects in the BCI IV dataset 1 comparing CSP and

source power features.

In a 100-fold cross validation loop, the top 50 features selected by the mRMR
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algorithm were recorded in order to analyze the distribution of the selected features.

The indexes of the selected features were investigated to identify the proportion of

the features which were consistently selected in all folds. Figure 4.7 demonstrates the

number of the features repeated in more than 70% and 90% of the folds as well as the

total number of unique features selected in all 100 folds. For subject a, 49 out of 50

selected features were the same in more than 70% of the folds and 44 out of 50 were

the same in more than 90% of the folds. Although the number of unique features

selected for subject a is lower than all other subjects, these measures are close for

subject b and g which doesn’t lead to a conclusion regarding the difference between

the actual distribution of sources in subject a versus others. However, based on the

results presented in figure 4.7, on average 92.5% of the selected features were the

same in more than 70% of the folds and 75.5% of selected features were the same in

more than 90% of the folds which is a strong indication of robustness of the method

as well as reasonable variation among trials of each motor imagery task.

Figure 4.7: Distribution of selected features by mRMR algorithm across folds in a 100-fold CV
scheme (80% train-20% test split) for pipeline PL 4 where features are the average activity of

half-BAs and 50 top features are selected.
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4.6 Discussion

According to the presented results, CSP features extracted from source space are as

informative as CSP features extracted from sensor space, whereas adding the beam-

forming step before extracting CSP features does not significantly change the BCI

pipeline performance (RQ 1). This result is in agreement with previous findings in

the literature. A very similar study compared classification of FBCSP features ex-

tracted from sensor space and reconstructed sources with the wMNE method (Zaitcev

et al. [2019]); their 4-class classification results on the BCI competition IV dataset

2a show an average accuracy of 74.4±8.9% when applying FBCSP to sensor data

while 76.8±9.5% when applying FBCSP on source data which shows a close level of

performance.

Another similar study extracted CSP features from 24 selected cortical ROIs cov-

ering only the motor areas (Xygonakis et al. [2018]). The CSP features were computed

on each ROI separately to form the ROI’s feature vector. Classification was performed

using an ensemble model comprising 24 LDA classifiers, each of which was defined

on an individual ROI. The evaluation was performed on the BCI Competition IV

dataset 2a, containing EEG recordings of 9 participants performing 4 motor imagery

tasks. A mean accuracy increase of 5.6% was observed using the features extracted

from source space with respect to the conventional computation of CSP on sensors

(from 54.1% accuracy to 59.7%). The increase in performance could be due to the

fact that ROIs were specifically defined on motor areas which can increase the power.

However, since the final goal of this thesis is to develop a BCI operating with various

type of mental imageries, restricting ROIs to a certain region was avoided. Overall,

in both similar studies, the performance of CSP applied at sensor and source space

84



M.Sc. Thesis – L. Mousapour McMaster University – Computational Sci. & Eng.

are very close and consistent with this chapter’s results.

As discussed elaborately in the background section, the reason behind the hypoth-

esis that “applying a beamformer before CSP will improve the performance of CSP”

was that a beamformer compensates for the head volume conduction and improves

the SNR, and thus, increases the ability of CSP to generate more separable filters. A

simple reason for achieving similar performance here could be the distribution of elec-

trodes on the scalp. Source localization methods are very sensitive to the number and

distribution of electrodes (Michel and Brunet [2019]) and while the number of sensors

was high enough in the BCI IV dataset 1, the electrodes were more densely located on

motor areas (figure 4.2). This can interfere with the accuracy and quality of the re-

constructed sources and thus, not improve the SNR as expected. Additionally, when

mapping from sensor to source space, 64 EEG signals will form 369 source signals.

Thus, CSP filters have to be computed on a matrix with 6X higher dimensionality

than before and this additional complexity might adversely affect the performance of

CSP.

Regarding RQ 2, when comparing the LCMV beamformer and common spatial

patterns as two types of spatial filters, no significant difference in performance was

detected. This result matched previous findings in the literature comparing beam-

forming with CSP and Laplacian spatial filtering (LP) in a two-class motor imagery

paradigm (Grosse-Wentrup et al. [2009]). It was demonstrated that beamforming

outperforms CSP and LP on noisy datasets, while CSP and beamforming perform

almost equally well on datasets with few artifactual trials. In summary, it is not

intended to argue that either CSP or beamforming perform superior to one or the

other in general. While CSP probably provides theoretically optimal spatial filters
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(Grosse-Wentrup and Buss [2008]), beamforming can be particularly useful if CSP

fails to compute sensible spatial filters—whether this is due to subjects not being

able to induce strong modulations of their µ-rhythm, a strong contamination of the

recorded EEG by artifactual components, or too few training trials being available.

Furthermore, there is evidence that CSP and beamforming favour different spec-

tral bands which might indicate that these approaches extract (at least partially)

independent information on the subject’s intention (Grosse-Wentrup et al. [2009]).

This observation, in addition to better performance by the LCMV beamformer on

subject a in the results reported here, suggests other ways of combining CSP and

beamforming, such as forming a feature set comprising of obtained features from

both methods, might prove to be useful.

Regarding the last research question, RQ 3, since the bulk of EEG studies in

source space have utilized a variation of MNE, such as wMNE or sLORETA, here

the LCMV beamformer was compared with sLORETA. The results showed that the

LCMV beamformer as a spatial filter is more successful in reconstruction of motor

imagery activity than sLORETA as a minimum norm-based solution. However, it

does not answer this question in general as both methods can be further enhanced by

using subject-specific MRI and fine tuning the regularization parameter which might

be more compatible with the actual neurophysiological activity of motor imagery

mental tasks.

It should be mentioned that since the results of the original competition were

reported on the evaluation data and it is a 3-way classification (2 motor imagery and

no imagery or rest), the results provided here are not comparable with the original

competition results. However, CSP in a narrow frequency band as a simpler form of
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the winning algorithm, FBCSP (Zhang et al. [2012]), was applied and compared here

with the source localization pipeline.

In conclusion, this study shows source reconstruction using the LCMV beamformer

and the application of CSP filters at the source space constitute a robust, promising

solution to decoding mental commands in non-invasive BCIs. While the proposed

pipelines are still not significantly superior to the state of the art of BCI algorithms for

decoding instructed motor imageries, feature extraction in source space can improve

performance in cases where CSP might not perform well. Further investigations

are required to find out the fundamental differences between the brain activity of

subjects for which CSP features are more classifiable and subjects for which the

power of Brodmann areas are more separable. Moreover, linear inverse operators,

such as the LCMV beamformer, and sparse regions-of-interest are computationally

simple enough to be applied in real-time settings. Based on the presented results,

the LCMV beamformer was selected to move forward with. Additionally, in place of

utilizing CSPs or average power of ROI sources as features, more advanced spectral

and connectivity measures of sources’ activity were used to decode a variety of mental

imageries in the next chapter.
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Chapter 5

Mental Imagery BCI in

Source-Space

5.1 Chapter Introduction

In the previous chapter, several pipelines were compared in the motor imagery EEG

paradigm and the effectiveness of the LCMV beamformer was confirmed. Although

motor imagery can successfully be decoded in most individuals, it might not form

the optimal set of commands for everyone due to differences in the pattern of brain

regions activation while performing motor imagery tasks. On the other hand, if each

person could use an individually chosen pair of mental imagery tasks that they are

most adept at, or that are optimally separable, it is possible that everyone could

achieve equally high BCI control. Therefore, in this chapter we explored peoples’

ability to generate a wide range of different types of mental imagery, by mentally per-

forming various mental commands. We then classified these commands using spectral

power and connectivity measures extracted from source time-series reconstructed by
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a beamformer. The main research question investigated in this chapter is: Is there an

optimal pair of tasks for every individual that are very well separable using LCMV

beamformer?

5.2 Dataset

5.2.1 EEG Paradigm

The dataset analyzed here was collected by Dr. Amabilis Harrison (Harrison et al.

[2017]). This dataset, containing concurrent EEG-fMRI recordings, was initially col-

lected from 17 healthy volunteers 5 of whom were excluded due to excessive artifacts.

The remaining 13 subjects (10 female) had a mean age of 27.4 (range 21–48) years.

Data were acquired in three runs, and each run consisted of six 16s trials where par-

ticipants were asked to perform one of the following 7 mental imagery tasks after a

single-word auditory cue (Harrison et al. [2017]):

1. Finger tapping imagery. Subjects were asked to imagine pushing a button with

each of the fingers of the right hand in succession, repeatedly, focusing on the

somatosensory and kinesthetic rather than visual aspects of the imagery.

2. Navigation imagery. Participants were asked to imagine navigating around

their home from room to room, paying attention to all aspects of the room

(e.g., placement of furniture, decor, objects in the room).

3. Music imagery. Participants were asked to choose a song that was very familiar

to them, and were asked to imagine listening to that song through headphones,
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concentrating on all aspects of the song, including the melody, the instrumen-

tation, the rhythm, the lyrics, and the vocals (if present).

4. Sport-related motor imagery. Participants were asked to choose the sport or

full-body activity (e.g., dancing, jumpingjacks) that is most familiar to them,

and to imagine performing that activity intensely, focusing on the kinesthetic

and somatosensory aspects of that activity rather than on visual aspects.

5. Running imagery. Similar to the sport imagery condition only in this case

subjects were asked to imagine running. This task was chosen as a standard

imagery condition of an activity with which all subjects would have some level

of familiarity.

6. Mental arithmetic. Participants were asked to choose a different 3-digit number

at random for each trial and count backwards by threes.

7. Rest. Participants were asked to clear their mind and think of nothing in

particular.

Participants were asked to keep their eyes open and fixate on a central target,

in order to avoid excessive eye movements, alpha EEG associated eye closing, and

drowsiness. Conditions were presented in pseudo-random order, with no condition

occurring more than twice in a row. These conditions were explained in detail before

subjects entered the scanner (Harrison et al. [2017]).

5.2.2 EEG Cleaning and Preprocessing

Since the preprocessing steps required for preparation of EEG in order to be used

in source localization methods are complex and must be chosen carefully, we closely
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followed the steps recommended by Michel and Brunet [2019]. Christoph M. Michel

was not only one of the proposers of the LORETA and LAURA methods (Pascual-

Marqui et al. [1994], Peralta Menendez et al. [2004]), but also one of the developers

of the free EEG analysis software: Cartool Brunet et al. [2011] which provides var-

ious source analysis methods. Additional artifact removal steps were required, be-

yond those typical for pure EEG data, because the recorded EEG signals during the

concurrent EEG-fMRI are compromised by several scanner-related artifacts, which

can overwhelm the actual brain signal (Huster et al. [2012]). The artifact from the

time-varying magnetic field gradients used for the MR imaging is the most signifi-

cant artifact: large gradient artifacts (GA). Also, ballistocardiogram (BCG) artifacts,

caused by cardiac-related activities, highly distort the EEG signals in the presence

of a magnetic field. These two artifacts should be removed before any other EEG

preprocessing take place.

Considering recent endeavours to establish best practice guidelines of reporting

EEG/MEG studies (Pernet et al. [2018]), reporting the information regarding various

steps taken in different software packages in publications is essential to guarantee

reproducibility and replicability. Thus, this report has included all detail incorporated

in the signal processing steps and chosen parameters. Blindly applying automatic

artifact detection and removal algorithms to the data is problematic and therefore,

the data was visually inspected in every cleaning step. The preprocessing steps applied

to the EEG data were as follow:

1. MRI scanner gradient artifact correction based on “Scan Start volume” mark-

ers (not slice markers) using the average artifact subtraction procedure (Allen

et al. [2000]) as implemented in BrainVision Analyzer (BVA) 2.1 software (Brain
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Products, GmbH, Germany)

2. Signal downsampling from 5kHz to 500Hz

3. Temporal filtering: a. [1-100] Hz bandpass filtering using a Butterworth zero-

phase IIR filter of 4th order (24 dB/octave roll-off); b. 60 Hz notch filter to

remove line noise

4. Cardiac event detection based on the concurrent ECG recorded signal using the

BVA software detection algorithm and exported as R-peak markers

5. Ballistocardiogram artifact correction based on detected R-peak markers using

the optimal basis set (OBS) procedure with an optimal basis set of 3 principal

components (Niazy et al. [2005]) implemented in FMRIB plug-in EEGLAB

6. Raw data inspection and marking any obvious large cable movement or motion

artifacts in order not to be included in the ICA procedure

7. Bach channel removal and topographic spline interpolation of order 4

8. Ocular artifact removal using Infomax extended ICA based on Fp1 and Fp2

channels as vertical electrooculogram (VEOG) and horizontal electrooculogram

(HEOG) activity respectively. (The independent component waveforms and

corresponding topography were carefully inspected before selecting and remov-

ing the component. One or two components were rejected in each experiment

block.)

9. Temporal filtering: a. 1-70 Hz bandpass filtering using a Butterworth zero-

phase IIR filter of 4th order (24 dB/octave roll-off); b. 60 Hz notch filter to

remove line noise
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10. Re-referencing to common average (CAR)

11. Data segmentation into 14 second non-overlapping imagery epochs based on

event markers (removing the first 2 seconds after the cue to avoid any responses

related to auditory instructions) and segmentation of each imagery trial into

four 3.5-second final epochs

12. Bad trial rejection using the semi-automatic setting in BVA combining auto-

matic bad trial detection based on predefined criteria ( a. two adjoining data

points differed by more than 50µV , b. a difference of more than 200µV was

observed in a 200mV interval, or c. the absolute amplitude exceeded 100µV )

and visual inspection of individual trials

It is worth mentioning that temporal filtering can impact the phase, local extreme

positions and time-course of the data (Widmann and Schröger [2012]). Since this can

affect time-frequency and connectivity measures, the specific IIR Butterworth filter

used here is computed linearly which eliminates any phase shifts and preserves the

position of local maxima. The cleaned data were then inspected to ensure the correct

pre-processing.

Since EEG source imaging methods are built on the precursor of scalp potential

maps, investigation of the field topography is as important as waveform inspection

(Michel and Brunet [2019]). One should look for irregular transient activity corrupt-

ing certain electrodes appearing in the shape of local “islands”. Causing local maxima

underneath them, these outlier electrodes have a dramatic impact on the source lo-

calization results and should be smoothed out before feeding the data to SL methods.

This can be done by spatial smoothing filters.
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Figure 5.1: Power spectra of subject A, interval 1, mental arithmetic imagery

5.3 Processing Pipeline

Although source localization was used in the previous chapter (motor imagery decod-

ing), the specifications of the processing pipeline are different in this chapter, espe-

cially the source localization configurations. Thus, a detailed explanation of solving

the inverse problem is given here.

5.3.1 Source Localization Specifications

Forward Solution Specification

As explained previously, the forward problem determines the potential at each scalp

electrode generated by a known source in the brain which is represented by a current

dipole with unit amplitude at each of (x, y, z) directions (Baillet et al. [2001]). The

model for which the forward solution is calculated is referred to as the head model

or volume conduction model of the head. The signal attenuation cause by the skull
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(variable thickness across the head) and other tissues should be modeled properly

when solving the forward problem. Precise information of the head anatomy including

the shape of the head and the skull thickness, which determines the local conductivity

properties, are of importance and can be obtained from individual structural MRI.

Choice of Structural MRI:

The forward solution: “the leadfield” or gain matrix, which relates the activity of the

brain sources to the electric activity at electrodes, is computed using three ingredients:

1- head model (obtained from MRI) describing the head geometry 2- brain tissue

conductivity parameters and 3- the exact 3D location of the electrodes. It goes

without saying that the preciseness of the inverse solution depends on the preciseness

and anatomical correctness of the lead field. Although in most texts on the theory

of source localization using an individual MRI has been emphasized, which is of

utmost importance in clinical and presurgical applications, most research utilizing

various SL methods on real or simulated data have used multiple-shell spherical head

models (Grosse-Wentrup et al. [2009], Seeland et al. [2018], Edelman et al. [2015] )

as obtaining individual MRI is expensive and not always accessible.

Additionally, a recent study comparing the three SL methods (wMNE, eLORETA

and LCMV) using different head models claimed their results were relatively unaf-

fected by the choice of the electrical head model (Mahjoory et al. [2017]). Therefore,

to yield an anatomically correct head model, the ICBM152 standard brain template

from the Montreal Neurological Institute (MNI), which is a non-linear average of the

MR images of 152 individual heads (Mazziotta et al. [2001]), was used in this anal-

ysis. Figure 5.2 (a) and (b) demonstrate this MRI in comparison with Colin27 MRI

(average of 27 MRIs recorded from one person named Colin) which was used in the
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previous chapter. It should be noted that the source model (the solution space) is

a separate entity than the head model. While one can use a rather simplistic head

model such as the 3-shell spherical model, one can use a more realistic source model in

the next step of the inverse solution such as segmented gray matter surface obtained

from an averaged brain MRI (Seeland et al. [2018]). While this approach simplifies

the calculation of the lead field matrix, it is not very accurate.

(a) (b) (c)

Figure 5.2: Illustration of 2 commonly used averaged MRIs to obtain a realistic head model in
source localization studies. (a) Colin27 averaged (b) MRI ICBM152 averaged MRI (c) MRI

segmentation and gray matter extraction from ICBM152. Since the ICBM152 image is an average
MRI across 152 people, it is a smoother image in comparison to Colin27.

The MRI requires several linear steps of pre-processing in order to obtain proper

delineation of various head compartments including the gray matter within which the

solution space is usually defined. This includes re-sampling and re-orientation, skull

stripping, Bias Field correction, separation of gray and white matter and adjusting

the central sagittal plane to ensure the symmetry between the hemispheres. All these

steps are performed in SPM12 using a 4 × 4 affine transform matrix which stacks

all these successive steps. The structural MRI is initially segmented into 3 surface

layers: Brain, skull and scalp. This can also be performed into 5 layers (white matter,

gray matter, cerebral spinal fluid, skull, and scalp (Edelman et al. [2015]) figure 5.2
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(c) ) which is mostly used for FEM head modeling. Afterwards, three surfaces were

created at the borders of each tissue type, represented by points (vertices) connected

in a triangular way. 3000, 2000 and 1000 vertices were used to construct brain, skull

and scalp surface tissues respectively.

Choice of Head Model and Tissue Conductivity Values:

Regarding the choice of head modeling procedure, two of the often-used realistic elec-

trical models to generate a head model are the boundary element method (BEM)

and finite element method (FEM) (Mosher et al. [1999]). The BEM models are

composed of overlapping, two-dimensional, triangulated mesh layers (or boundaries),

each layer having been computer generated from segmented MRI surfaces. Differ-

ent compartments are given certain conductivity values and conductivity within each

compartment is assumed to be isotropic and homogenous. On the other hand, the

FEM models are composed of multiple, three-dimensional, solid tetrahedra, a prop-

erty that allows conductivity values to vary within each compartment. This means

that tissue anisotropy can be factored into algorithms that solve the forward prob-

lem. Thus, BEM models can represent major tissue compartments but cannot encode

detailed anatomical information within them. In contrast, FEM models can capture

more tissue types and the shape of the brain with greater precision than BEM.

While the two types of head models discussed so far are superior to 3-shell spher-

ical models, they are more computationally demanding, and more sensitive to any

misshape happening while separating various head compartments. A new standard

head model named “ICBM-NY” or “New York Head” has been proposed (Huang

et al. [2016]), which is a high presission FEM head model based on ICBM 152 MRI.

Due to the comparisons conducted in this study, the EEG source localization error
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for ICBM BEM and ICBM FEM head models are very close. Thus, here, the volume

conduction model was constructed using the dipoli method (an implementation of

BEM by Thom Oostendorp) in FieldTrip with conductivities of the scalp, skull and

brain set to 0.33, 0.33/30 and 0.33, respectively. It was previously assumed that the

resistivity ratio between the brain and the skull is 1:80 and thereby, the default con-

ductivity parameter for skull is 0.33/80 in FieldTrip toolbox. However, it has been

shown that the skull resistivity is much lower (around 1:10 to 1:30 depending on age)

(Michel and Brunet [2019]). Thus, as the age range of participants in this study was

between 20-30, the ratio was set to 1:30.

Electrode 3D Positions:

The 3D electrode positions should correspond to the actual positions of the sensors

on the head during the recording. As the electrodes were positioned at standard

10-20 sites, the standard 10-20 electrode locations file by Oostenveld and Praamstra

[2001] represented in mm in the MNI coordinate system was used here. The 3D

electrode array should be co-registered on the MRI head model which can be done

interactively or only by relying on fiducial positions. All geometrical descriptions of

all elements (channel positions, head model and source model) should be registered in

the same coordinate system with the same units. This might be challenging since the

head and source model are based on MRI and are initially expressed in the scanner’s

coordinate system whereas the sensor descriptions are based on another. All these

objects were mapped to MNI coordinates and co-registered. Figure 5.3 illustrates the

above mentioned steps in generating the head model.
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(a) (b) (c)

Figure 5.3: Illustration of different steps of head model construction. (a) Three surface meshes
obtained from ICBM152 average MRI segmentation. (b) head model geometry; notice that the

brain surface is smoothened. (c) 64 Electrode position alignment on the scalp.

Source Model Definition:

The source model describes a set of positions (and possibly orientations) of equiva-

lent current dipoles that are taken into consideration when doing the source recon-

struction. In FieldTrip, distributed source modeling and scanning methods require

pre-specification of a source model while other methods like dipole fitting do not. A

source model can be defined on a 3-dimensional grid which is referred to as a vol-

umetric source model (can be restricted to the gray matter) or on a 2-dimensional

surface (typically the cortical sheet). Here, a 3D grid with the resolution of 1cm was

constructed as depicted in figure 5.4. Essentially, this grid is a cubic grid (of dimen-

sions [14 × 18 × 14] including 3528 total points) where the points inside the brain

volume specified by the head model were used as source points (1819 source points).

An inward shift of 5mm was applied on the sources as BEM models can be unstable

close to the border.

Leadfield Computation:

For every source in the source model, the leadfield is obtained by computing the

electric potential measured at all electrodes given the relevant source has an activation

of 1 Am. Lead field normalization is necessary in order to rectify the depth bias. The
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Figure 5.4: Illustration of the head model overlain with the volume grid and source model. The
source model consists of the source points inside the brain volume which are specified with red

colour.

lead field matrix was normalized by the sum of squares of the elements of the matrix

to the power of the depth normalization parameter which was set to 1 here after

inspecting the leadfield. In order to inspect the lead field, a realistic source current

of 100 nAm was projected onto the scalp through the lead field and plotted on the

scalp mesh alongside the electrode. Figure 5.5 shows that the topography of the scalp

field is reasonable and smooth and the electric potentials are in the expected range

(microvolts).

Inverse Solution: LCMV Beamformer Specification

The LCMV beamformer as an adaptive spatial filter depends on the estimation of the

data covariance matrix and its inverse. An inverse may not exist if its computation

can be numerically unstable, which occurs if the covariance matrix is close to singu-

lar (has a very large condition number comparable to (machineepsilon)−1). When

dealing with such under-determined systems of equations for inversion, Tikhonov
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(a) (b)

Figure 5.5: (a) Lead fields in the XYZ directions for the ICBM152 BEM head model for a superficial
source. (b) Magnitude of the lead fields for the ICBM152 BEM head model for a superficial source.

regularization is often employed which introduces a degree of EEG noise into the

calculations and ensures smoothness in the inverted result. Tikhonov regularization

follows the idea of diagonal loading via increasing the diagonals of the covariance

matrix by a pre-specified amount. This is done by replacing C−1 with (C + λI)−1.

The higher the regularization, the smoother the outcomes and the lower the noise

sensitivity. The goal is to avoid over-smoothing to obtain the most accurate results.

The noise level is not known and it is difficult to give a quantitative estimate of

lambda, therefore a relative measure based on the maximum or average eigenvalue

of the covariance matrix can be defined. After testing different values of λ including

0.001, 0.01, 1 and 10% on the present data, the regularization parameter was set to

0.001% of the average eigenvalue of the covariance matrix. Additionally, the source

orientations are not predetermined and the optimal source orientation is estimated so

that the spatial filter output is maximized. The orientations were assumed to be fixed

throughout the course of the trial. Figure 5.6 demonstrates an example of the source

activity map for 4 time points during performance of mental subtraction imagery for

subject D.
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(a) (b)

(c) (d)

Figure 5.6: Source activity map obtained by applying a common LCMV beamformer filter for
comparing 2 conditions (navigation and subtraction). The source activity patterns for 4 time points

during performing mental subtraction imagery for subject D are illustrated.

Regions of Interest and Their Representative Waveform

As discussed in the methods chapter, due to computational and interpretation limita-

tions, the source model which covers the whole brain volume should be parcelled into

a limited number of regions of interest (ROI) before computing the features of the

underlying activity. The grouping of brain voxels into defined ROIs can be based on

anatomical atlases, the functional role of different regions or data-driven approaches.

In addition to ROI configuration, another specific need, and still open problem, is how
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to represent the time and frequency content carried by hundreds of dipoles with di-

verging orientations in each ROI with one unique representative time-series (Rubega

et al. [2019]). In the following section, we discuss these two issues in more detail and

lay out the various setups investigated in this study.

ROI Configuration:

To define ROIs, many anatomical and/or functional atlases are available. Here, to

cover both volumetric and superficial source clusters separately, two widely-used at-

lases were used to define 3 configurations of ROIs: 1) 74 Brodmann ROIs, 2) 26 coarse

cortical ROIs and 3) 16 coarse volume ROIs that included both cortical and deeper

brain structures. Firstly, Brodmann areas were used to create 74 contralateral ROI

pairs (figure 5.7). Second, these regions were further combined together to form 26

coarse ROIs (figure 5.8) covering the surface of the brain. Brodmann areas (BAs) are

essentially defined in term of the atlas of Talairach and Tournoux (Brodmann [1909]).

This can be problematic, as the brains in the Talairach atlas and MNI template differ

significantly in shape and size. As a result the MNI brains are slightly larger (in

particular higher, deeper and longer) than the Talairach brain. The differences are

larger as you get further from the middle of the brain, towards the outside, and are

at maximum in the order of 10mm ( Brett et al. [2001]). Thus, when choosing the

atlas it is very important to note this difference and use already transformed atlases

to MNI space.

BA-based ROIs were obtained by WFU PickAtlas provided by Wake Forest Uni-

versity, school of medicine (Maldjian et al. [2003]). WFU PickAtlas provides a method

for generating ROI masks based on the Talairach Daemon database in MNI space.
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Third, the Automated Anatomical Labelling (AAL) atlas (Tzourio-Mazoyer et al.

[2002]) was utilized to produce another set of 16 coarse anatomically labelled ROIs

(figure 5.9). This atlas contains 116 anatomical regions and is specified in the MNI

coordinate space. Similar to BAs, in order to reduce the dimensionality, regions of the

atlas were grouped into coarse regions for both left and right hemispheres. The gross

regions considered are: prefrontal cortex, motor cortex, basal ganglia, insula, parietal

cortex, temporal cortex, occipital cortex, limbic regions, cerebellum as well as an ad-

ditional medial cerebellum region. While the cortical ROI configuration was defined

based on our knowledge of cognitive neuroscience, the volumetric ROI configuration

is adapted from (Chrapka [2018]).

ROI Representative Time-Series:

Additionally, the activity of all the source points in an ROI should be summed up

into one representative waveform for further analysis. The main aim is to compute

a signal that explains most of the variability of the data contained in each ROI

before computing features. Various methods have been explored in previous studies,

mostly inspired from fMRI analysis methods and they depend on whether the dipoles’

orientations were assumed to be fixed during the trial interval (Rubega et al. [2019]).

Some of these methods are introduced and utilized in the following sections.

For example, averaging the activity in each ROI is a simple and popular way to

obtain a single time-series representative of the activity of a given extended brain

source (ROI) (Astolfi et al. [2007], Hassan et al. [2017]). Since the cortex is folded, in

order to avoid activity cancellation due to the opposite direction of the dipole sources,

the averaging can be performed on the absolute value of the dipole moments which

is a bit anecdotal (Hassan and Wendling [2018]).
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(a) (b) (c) (d)

Figure 5.7: A parcellation of the cortex superficial grid into 74 Brodmann areas (BA). Each color
represents an ROI on the ICBM152 BEM head model. a) Axial view b) Lateral view of the right

hemisphere c) Medial view the right hemisphere d) A view from above.

(a) (b) (c) (d)

Figure 5.8: A parcellation of the cortex superficial grid into 26 coarse BAs. Each color represents an ROI on the
ICBM152 BEM head model. The grouping of BAs is as follows: 1) BAs 7,39,40 - superior and inferior parietal association
areas, 2) BAs 2,3,5 - somatosensory areas, 3) BAs 4,6,8 - motor areas, 4) BAs 20,21,37,38 - inferior temporal areas, 5)
BAs 26,27,28,29,30,34 - medial temporal lobe (MTL memory system), 6) BAs 24,25,32,33 - anterior cingulate, 7) BAs

23,31- posterior cingulate, 8) BAs 9,10,44,45,46 - prefrontal area, 9) BAs 17, 18,19 - occipital area, 10) BA 13 - insula, 11)
BAs 11,12,47 -orbitofrontal areas, 12) BA 43 - primary gustatory, 13) BAs 22,42,42 - superior temporal gyrus. a) Axial view

b) Lateral view of the right hemisphere c) Medial view the right hemisphere d) A view from above.

(a) (b) (c) (d)

Figure 5.9: A parcellation of the brain volume into 16 coarse AAL regions (Chrapka [2018]). Each
color represents an ROI on the ICBM152 BEM head model. The gross regions considered are:
prefrontal cortex, motor cortex, basal ganglia, insula, parietal cortex, temporal cortex, occipital
cortex, limbic regions (Hippocampus, parahippocampal region, Amygdala, Cingulum anterior,

medial and posterior), cerebellum as well as an additional medial cerebellum region. a) Axial view
b) Lateral view of the right hemisphere c) Medial view the right hemisphere d) A view from above.

As a result of activity cancelation in the case of simple averaging, a drastic am-

plitude reduction will be inevitable which might affect the subsequent analysis steps.
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Nevertheless, this is the most widely used approach in regional source reconstruction.

As another approach, the solution point closest to the geometric center (centroid) of

the ROI can be used as the representation of the region’s activity (Coito et al. [2015]).

Additionally, the peak of activity within an anatomical ROI, the dipole with the high-

est power (i.e. the mean squared amplitude) can be selected. It should be noted that

selection of one single source point does not necessarily adequately represent the ROI

activity as a whole.

For example, averaging the activity in each ROI is a simple and popular way to

obtain a single time-series representative of the activity of a given extended brain

source (ROI) (Astolfi et al. [2007], Hassan et al. [2017]). Since the cortex is folded, in

order to avoid activity cancellation due to the opposite direction of the dipole sources,

the averaging can be performed on the absolute value of the dipole moments which is

a bit anecdotal (Hassan and Wendling [2018]). As a result of activity cancelation in

the case of simple averaging, a drastic amplitude reduction will be inevitable which

might affect the subsequent analysis steps. Nevertheless, this is the most widely used

approach in regional source reconstruction. As another approach, the solution point

closest to the geometric center (centroid) of the ROI can be used as the representa-

tion of the region’s activity (Coito et al. [2015]). Additionally, the peak of activity

within an anatomical ROI, the dipole with the highest power (i.e. the mean squared

amplitude) can be selected. It should be noted that selection of one single source

point does not necessarily adequately represent the ROI activity as a whole.

More advanced statistical approaches have been proposed and used in a limited

number of studies. In one study, a dimensionality reduction technique, principal

component analysis (PCA), was utilized on all the sources in a region and selected

106



M.Sc. Thesis – L. Mousapour McMaster University – Computational Sci. & Eng.

the dominant principal component as the ROI waveform (Dimitriadis et al. [2018]).

Another study proposed to use the first singular vector computed by a singular-value

decomposition (SVD) of all dipoles belonging to the same ROI to extract the dominant

signal reflecting the main pattern of variation of all solution points (Rubega et al.

[2019]).

Unfortunately, to the author’s knowledge, there is no study in the literature which

compares and reports the effect of representative ROI time series on further analysis

steps, even in functional brain networks analysis in source space in which this issue

has been attended to (Dimitriadis et al. [2018])). Thus, a number of strategies were

investigated and compared in this study which are summarized in table 5.1.

Table 5.1: Methods of representative waveform calculation for every ROI compared in this thesis.

ROI Representative Description

Average Instantaneous average of the signed magnitude of all
dipoles within an ROI during the entire imagery interval
(Astolfi et al. [2007]).

Absolute Average Instantaneous average of the absolute magnitude of all
dipoles within an ROI during the entire imagery interval
(Hassan and Wendling [2018]).

Source with Maximum Power The activity of the dipole with the highest power (i.e.
the mean squared amplitude).

First Principal Component PCA of all solution points and select the first one (Dim-
itriadis et al. [2018]).

First Singular Vector SVD of all dipoles belonging to the same ROI and select
the first singular vector (Rubega et al. [2019]).
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5.3.2 Feature Extraction

Once the regional time-series were obtained, a set of candidate features were extracted

including power spectral density (PSD) of every ROI time-course and magnitude

coherence and phase lag index (PLI) between all pairs of ROI time-courses. PSD

was calculated using cpsd and magnitude-squared coherence was estimated using

mscoher MATLAB built-in functions. The spectrum estimation in these functions is

based on the modified Welch periodogram method (Welch [1967]). These values were

computed over the frequency band of [1-30] Hz with 1 Hz increments. The length

of the Hamming window and the number of overlapping samples were set to Fs and

Fs/2 respectively (where Fs is 500 Hz) to avoid spectral over-smoothing. A total of

30×ROIn + 30×
(
ROIn

2

)
+
(
ROIn

2

)
features was computed for each trial where ROIn

is the number of ROIs.

5.3.3 Feature Selection and Classification

Features were standardized and feature selection was performed using the mRMR

method before SVM classification. A grid search procedure was exploited to find the

optimal number of features selected by mRMR ([1:50]) as well as the kernel type

(linear or RBF), margin ([1:10]) and kernel scale ([1:10]) for the SVM classifier. The

performance of the binary classification of EEG data generated during each pair of

mental imagery tasks was evaluated using a 100-fold cross-validation with 95% train

and 5% test split per subject and the best accuracy is reported in the results section.

The random number generator seed was set to 0 for reproducibility of the results.

Figure 5.10 summarizes the final BCI pipeline used for data processing.
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Cleaned EEG data Source Signal Reconstruction
LCMV Beamformer

16 coarse AAL ROI 
waveform calculation 

using SVD
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2. Phase lag index (PLI)
3. Power spectral density (PSD)
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optimized SVM 
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Figure 5.10: Final BCI Pipeline Diagram.

5.4 Results

The results are presented in three sections. Firstly, comparisons of various ROI

configurations and regional time-series computation methods were assessed on one

subject, on one pair of tasks. Additionally, all pairwise classifications between mental

imagery tasks are reported for 13 subjects. Finally, the performances of the top pairs

are reported for all subjects in a bar plot for visual comparison.

5.4.1 Various ROI Configurations Comparison

In order to identify the most effective ROI configuration and regional time-series

computation methods, all the mentioned approaches were compared in one case of

mental imagery classification in one subject. 3 ROI setups and 5 ROI waveform

extraction procedures were utilized in classification of song and subtraction imagery

tasks. The results presented in table 5.2 indicate the best performance of 84.07% is

achieved when using 16 coarse AAL areas as the ROI configuration, and using the

first singular vector as the ROI representative time-series.
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Table 5.2: Comparison of ROI configuration and regional time-series computation method on
subject J, song vs. subtraction.

ROI Configuration 73 Brodmann
Areas

26 Coarse
Cortical Areas

16 Coarse
AAL Areas

Average 68.70 79.16 69.37
Absolute Average 62.05 63.21 65.98
Source with Maximum Power 65.50 71.10 57.23
1st Principal Component 59.92 68.33 76.85
1st Singular Vector 72.23 70.25 84.07

Total Feature No. 83658 10855 4200

5.4.2 Mental Imageries Pairwise Classification

All pariwise classification performances between the 7 mental imagery tasks (including

6 active tasks and rest) for all 13 participants are reported in tables 5.3 through 5.15.

The most distinctive combination of tasks are highlighted in green for each subject.

While several subjects, including B, H and M had fewer task combinations which were

classifiable (tables 5.4, 5.10, 5.15), others had more combinations of separable tasks.

The best pair of tasks were decodable with an average of 82.86% accuracy across all

13 participants, and all 13 participants had at least one pair of tasks that could be

decoded with at least 70% accuracy.

Table 5.3: Pairwise classification of mental imageries for subject A

MI Sport Nav Song Sub Fing Run

Relax 71.50 72.33 60.00 68.25 64.00 59.62
Sport - 62.43 73.50 72.33 66.20 68.00
Nav - - 75.50 79.20 65.33 67.00
Song - - - 73.00 66.87 74.20
Sub - - - - 60.40 68.17
Fing - - - - - 65.25
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Table 5.4: Pairwise classification of mental imageries for subject B

MI Sport Nav Song Sub Fing Run

Relax 70.44 63.12 50.42 56.66 71.00 61.62
Sport - 65.66 56.85 60.11 63.35 55.87
Nav - - 61.00 61.44 61.77 52.87
Song - - - 86.12 73.14 68.03
Sub - - - - 62.27 52.75
Fing - - - - - 59.00

Table 5.5: Pairwise classification of mental imageries for subject C

MI Sport Nav Song Sub Fing Run

Relax 56.67 65.28 54.00 62.4 65.50 53.38
Sport - 60.50 56.12 64.49 80.40 61.33
Nav - - 61.03 70.33 83.34 63.00
Song - - - 60.66 74.50 56.37
Sub - - - - 79.25 74.00
Fing - - - - - 76.87

Table 5.6: Pairwise classification of mental imageries for subject D

MI Sport Nav Song Sub Fing Run

Relax 69.33 79.50 62.66 71.27 70.25 67.50
Sport - 57.83 63.71 61.50 53.33 54.33
Nav - - 79.50 85.10 63.82 61.00
Song - - - 56.00 56.34 63.83
Sub - - - - 65.28 63.60
Fing - - - - - 55.60

Table 5.7: Pairwise classification of mental imageries for subject E

MI Sport Nav Song Sub Fing Run

Relax 83.50 76.27 72.44 75.50 81.00 70.33
Sport - 85.25 91.07 87.66 85.28 87.50
Nav - - 60.87 65.71 62.55 54.83
Song - - - 69.00 48.60 49.82
Sub - - - - 66.28 51.25
Fing - - - - - 46.83

111



M.Sc. Thesis – L. Mousapour McMaster University – Computational Sci. & Eng.

Table 5.8: Pairwise classification of mental imageries for subject F

MI Sport Nav Song Sub Fing Run

Relax 82.25 79.20 75.60 87.00 79.43 72.03
Sport - 70.50 86.75 73.66 53.87 70.50
Nav - - 88.44 78.71 73.11 80.89
Song - - - 83.42 79.56 68.00
Sub - - - - 69.57 78.14
Fing - - - - - 70.00

Table 5.9: Pairwise classification of mental imageries for subject G

MI Sport Nav Song Sub Fing Run

Relax 72.28 72.00 53.56 53.74 56.85 60.25
Sport - 58.33 64.60 52.62 53.77 54.85
Nav - - 66.00 63.25 73.11 87.90
Song - - - 82.75 51.80 60.00
Sub - - - - 65.37 63.50
Fing - - - - - 63.14

Table 5.10: Pairwise classification of mental imageries for subject H

MI Sport Nav Song Sub Fing Run

Relax 65.20 58.66 63.67 65.00 66.25 62.80
Sport - 55.71 69.50 69.28 60.37 54.00
Nav - - 77.04 58.25 58.33 53.87
Song - - - 83.50 61.25 56.50
Sub - - - - 60.16 69.71
Fing - - - - - 52.12

Table 5.11: Pairwise classification of mental imageries for subject I

MI Sport Nav Song Sub Fing Run

Relax 52.33 70.50 69.83 55.20 61.83 51.20
Sport - 60.28 52.22 56.00 59.34 51.87
Nav - - 61.14 67.42 51.57 58.66
Song - - - 50.88 65.77 59.87
Sub - - - - 55.34 55.12
Fing - - - - - 56.25
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Table 5.12: Pairwise classification of mental imageries for subject J

MI Sport Nav Song Sub Fing Run

Relax 65.66 69.01 71.50 90.00 56.50 56.25
Sport - 58.34 77.52 77.40 75.54 63.50
Nav - - 68.23 78.76 69.04 70.37
Song - - - 76.51 84.07 67.43
Sub - - - - 80.76 67.00
Fing - - - - - 64.66

Table 5.13: Pairwise classification of mental imageries for subject K

MI Sport Nav Song Sub Fing Run

Relax 69.55 67.14 66.66 71.56 56.22 56.89
Sport - 55.42 56.00 77.50 59.55 53.33
Nav - - 62.42 67.59 62.42 78.14
Song - - - 64.66 60.77 62.22
Sub - - - - 66.87 56.66
Fing - - - - - 60.75

Table 5.14: Pairwise classification of mental imageries for subject L

MI Sport Nav Song Sub Fing Run

Relax 63.33 74.25 69.66 60.00 58.60 62.50
Sport - 73.25 65.87 65.66 61.53 61.47
Nav - - 54.95 56.05 80.33 70.73
Song - - - 58.25 59.66 63.25
Sub - - - - 65.75 65.40
Fing - - - - - 67.50

Table 5.15: Pairwise classification of mental imageries for subject M

MI Sport Nav Song Sub Fing Run

Relax 56.62 59.37 64.44 50.50 58.77 65.87
Sport - 62.00 50.12 73.28 53.50 57.83
Nav - - 56.62 43.80 49.08 83.95
Song - - - 63.16 58.22 57.42
Sub - - - - 57.50 58.75
Fing - - - - - 62.42
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5.4.3 Best Separable Pairs of Task for Each Subject

In order to summarize the results across participants, the three most separable pairs of

tasks for every subject are identified and the performances are ranked and illustrated

in figure 5.11. These pairs were previously highlighted in green in tables 5.3 to 5.15.

All subjects, expect for subject I, had a pair of tasks that were classifiable with almost

or over 80%accuracy, while for subject I, the classification of the best pair of tasks

achieved 70.5% accuracy, as can be seen in Figure 5.11.

Figure 5.11: Three best separable pairs of tasks for all participants.

5.5 Discussion

The present study investigated an expanded set of mental imagery tasks in healthy

individuals, for the purpose of determining whether a subject-specific combination of

highly classifiable tasks are detectable using beamforming. Additionally, several ROI
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configurations as well as multiple methods for ROI representative time-series calcu-

lation were explored. It has been shown, using spectral and connectivity features at

source level, that at least two pairs of mental commands can be discerned which are

significantly more classifiable than other tasks for the subject. The best separable

mental tasks achieved accuracies comparable to the accuracies of the standard tasks,

left versus right hand motor imagery (Saha et al. [2019]), and thus can be considered

well-suited for BCI control. Furthermore, in most BCI studies, around 30% of par-

ticipants fail to achieve a binary classification accuracy above 70% (the so-called BCI

illiteracy problem) whereas here we have shown that if participants are permitted to

use their most separable pair of tasks, 12 out of 13 (7%) participants can achieve

a high separation accuracy of greater than 80%, while the remaining participant’s

highest accuracy was still above 70%. Thus, employing a wide range of imagery tasks

and choosing the two most separable for each individual participant is shown to be

a promising way of solving the BCI illiteracy problem. The high variability between

the best task combination across participants suggested that an individually tuning

BCI control signals could enhance BCI user-friendliness and performance.

The BCI performance is influenced by the choice of the algorithm for estimating

the source waveforms and the brain parcellation setup. According to the results

reported in table 5.2, using 16 coarse AAL ROIs yields the best performance among

all ROI setups, at least for this one participant. (However, it would be important to

explore whether this same choice of AAL ROIs is best for all other participants). This

could be due to the location and extent of defined regions of activity. As demonstrated

in figures 5.7, 5.8 and 5.9, subfigures (a), Brodmann areas only cover the cortex while

the AAL patches include both cortical and sub-cortical regions, thereby providing
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greater coverage of the brain volume. In the case of motor imagery, as repeatedly

shown by previous studies, the activity is expected at the primary motor cortex

(Zaitcev et al. [2019]), which is located along a strip just anterior to the central

sulcus on the cerebral cortex. Hence, using BA ROIs was reasonable and sufficient in

decoding motor imagery as shown in the last chapter. However, the origins of other

mental imagery activity could go deeper into the gray matter and deeper brain regions

beneath the cerebral cortex, and restricting the ROIs to the cortex is not adequately

enclosing the active areas. As evidence for deeper activation patterns, an fMRI study

showed the brain activation of the supplementary motor area (SMA) during tennis

imagery, and the parahippocampal gyrus (PPA), posterior parietal lobe (PPC), and

lateral premotor cortex (PMC) during imagery of spatial navigation (Sinai et al.

[2017]). An additional reason for AAL ROIs to be a more suitable configuration

could be the inevitable localization error due to the intrinsic limitation of inverse

solutions as well as using a generic head model which would require considering wider

ROIs. Therefore, coarse AAL ROIS were used in obtaining the final results for all

participants.

In terms of the method of regional waveform calculation, our results indicate that

using the first singular vector results in the best performance. Despite previous find-

ings (Hassan et al. [2017]), in our analyses the absolute average of the ROI time-series

had the worst performance followed by the source with maximum power. Instead of

choosing one single source time series (maximum power), the method based on sin-

gular value decomposition sums up the information carried by time-series in a unique

1-D signal representing most of the variability of the sources in each region of interest.
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Due to the orthogonality constraints (U and V are orthogonal matrices and S is a di-

agonal matrix), the solution of SVD is unique and can be considered a reliable method

for dimensionality reduction. The amplitude of the representative signal computed as

the first orthonormal vector of the unitary matrix U is by definition independent of

the original signal amplitudes. Thus, this solution overcomes a major drawback of the

common procedure of averaging the dipoles, namely drastically reduced amplitudes

after averaging all the dipoles in the same region of interest. Dealing with smaller

amplitudes may distort the results of the connectivity estimation because it involves

computing of the inverse of the matrix containing the data (Rubega et al. [2019]).

Additionally, both SVD and PCA methods exploit the information of the overall

population of dipoles in each ROI instead of considering only one time-series as rep-

resentative of the complex activity pattern in a given brain region. However, in the

present data, SVD appears to provide a more informative regional time-series than

PCA. This could be due to the fundamental difference between these two procedures.

Essentially, SVD untangles the data into independent components in the directions

with the highest variances respectively. Additionally, PCA is a statistical procedure

that uses an orthogonal transformation to convert a set of observations of possibly

correlated variables into a set of values of linearly uncorrelated variables called prin-

cipal components (Friedman et al. [2001]). While PCA can be performed using SVD

by truncating the less important basis vectors in the original SVD matrix, it ignores

the least significant components in reconstructing the data by only using the princi-

pal directions with the highest variances. Therefore, by taking into account all the

components, SVD yields a more promising way of obtaining regional time-series.
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Furthermore, the presented results should be compared with other studies to situ-

ate the findings in the field. In a similar study, the most separable mental states based

on functional network measures at the cortical level has been identified (Besserve

et al. [2011]). 10000 sources from single trial EEG signals were reconstructed using

MNE. The spectral power of every current dipole in 5 frequency bands in addition

to coherence features calculated between pairs of 82 Brodmann areas in the same 5

frequency bands comprised the feature vectors of size 70000. The list of mental tasks

used included three motor imagery tasks (imagination of grasping an object with

the right hand, right index finger movement imagination, tongue movement imagina-

tion) and three non-motor tasks (visuospatial navigation, auditory music imagination

and mental calculation). An average best accuracy of 86.79% was achieved across 5

healthy subjects. These results show that reconstructing the underlying cortical net-

work dynamics significantly outperforms a usual electrode level approach in terms

of information transfer and also reduces redundancy between coherence and power

features. However, the proposed BCI pipeline in this thesis follows a more sparse

feature space calculation (4,200 compared to 70,000) yet achieves a similar level of

performance, meaning significantly lower computational complexity. This indicates

that beamforming might be a better source reconstruction approach compared to

MNE in quantification of functional networks and decoding mental states.

Another study investigated EEG patterns that were induced by seven different

mental tasks (i.e. mental rotation, word association, auditory imagery, mental sub-

traction, spatial navigation, imagery of familiar faces and motor imagery) and evalu-

ated the performance of a binary LDA classifier on CSP features computed on band-

passed [8-30]Hz EEG data (Friedrich et al. [2012]). The evaluation on 1s long trials
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with 0.5s overlap indicated eight out of nine users reached classification accuracies

more than 95%. However, using overlapped trials essentially causes leakage of infor-

mation from the training set to the test set, meaning that there is information in the

test data that has already been seen by the train model. This results in overestimated

accuracies. In this thesis, trials had no overlap and lower accuracies are expected.

In conclusion, this study confirms that using beamforming provides a computa-

tionally efficient and interpretable strategy to extract distinctive information from

functional networks at the cortical and sub-cortical level in single trials supporting

a decrease of volume conduction effects. Moreover, this sets a general framework to

evaluate the performance of EEG source reconstruction methods by their decoding

abilities. The aim was to provide a broad range of reliable and user-appropriate

tasks to make individual optimization of BCI control strategies possible. The results

indicate the best separable tasks, with an average accuracy of 82.86% across all par-

ticipants, are identifiable with as low as 70 trials per condition. By collecting more

trials, a more tuned model is possible to train for each subject leading to better per-

formance. Therefore, using a combination of connectivity and spectral measures of

active sources underlying EEG data represents a promising choice for future online

BCI implementations.

5.6 Limitations of the Study

Two concerns should be discussed in relation to the presented results. The first con-

cern is that, since in this dataset each imagery trial was split into 4 segments, the

non-independence of these segments should be controlled for during cross-validation.

This way of partitioning train/test data was based on the conventional approaches in
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previous studies on mental imagery classification, including the ones which were com-

pared with the results in this chapter (Besserve et al. [2011], Friedrich et al. [2012]),

as well as the main paper published on the analyses dataset (Harrison et al. [2017],

Harrison [2014]). However, lack of independence between the trials in the test set and

train set leads to a leakage of information. Typically intra-trial correlation is quite

high compared to inter-trial correlation, so having each trial partially represented in

both the training and test sets, even though they are non-overlapping segments of a

trial, could inflate classification performance. It is not expected that correcting this

would completely change the classification performance. This correction has been im-

plemented and tested for one subject. The LOOCV results indicate that for subject

F, where the best pair of tasks (song and navigation MI) were previously separable

with 88.44% accuracy, are classifiable with 90.28%. The inflation of accuracy is due

to using only one sample for test. However, this indicates that controlling for within-

trial correlations by selecting training and segments from separate trials will likely

not substantially deteriorate the results.

The second concern is that, when using grid search for model selection prior to

classification, we should have a nested cross-validation loop with training sets, val-

idation sets, and test sets. However, in the analyses reported here, a single cross-

validation loop was used both to select hyper-parameters and assess generalization

performance. Thus, we were evaluating the model selection process (hyperparameter

turning) on the test set simultaneously with model performance (training the selected

model). This could lead to overfitting by model selection (or hyperparameter tun-

ing). This applies to feature selection as well. Basically the machine learning pipeline
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does not need to select for model hyperparameters or the feature subset that max-

imizes generalizability to unseen data. Instead, it can just choose the configuration

that maximizes test set performance, which is somewhat analogous to p-hacking in

multivariate statistics. This limitation should be addressed in future works.
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Chapter 6

Discussion, Conclusions and Future

Directions

6.1 Discussion and Conclusion

BCIs have been previously used for the control of neuroprostheses, speller systems,

and systems for motor impairments (Hwang et al. [2013], Bansal and Mahajan [2019]).

As a long-coveted application of BCI, decoding covert speech by means of EEG, MEG

and a combination of both modalities has been explored by researchers in the past

decades. Although using speech imagery is more intuitive and better matches the

intention of the device, it has been shown to be very challenging to decode various

words from EEG (Vansteensel and Jarosiewicz [2020]). Therefore, in this study, a

framework for a communication BCI based on mental imagery decoding was proposed

using 1) a beamforming source localization method in EEG signal processing, and 2)

a wide range of different imagery tasks, so that the two most separable tasks can

be selected for each individual, allowing personalization of the BCI. Conventional
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BCI studies typically prescribe the use of only two different tasks and the signal

analysis and classification is performed at the sensor level. The present study was

performed to investigate the effectiveness of beamforming as a source localization

method, in combination with multiple imagery tasks, to assess the performance of

mental imagery based-BCIs for communication. The novelty of this BCI study is in

employment of source imaging methods as well as the diversity of mental imagery

tasks. Thus, the impact of task freedom on BCI illiteracy, by selecting the two most

separable imagery tasks from a list of 6 unique tasks, has been investigated here.

The effectiveness of using a beamformer as a source localization method has been

shown on two different datasets in this thesis. As stated by Michel and Brunet

[2019], p.1, “High-density EEG systems combined with precise information of the

head anatomy and sophisticated source localization algorithms now exist that convert

the EEG to a true neuroimaging modality”. These methods improve SNR by compen-

sating for the volume conduction effect, increasing interpretability of the underlying

activity by localizing the origins of activity, and they can be a useful dimension reduc-

tion method, mapping numerous electrode signals into less than 20 source time-series.

Despite all these desirable attributes, the shortcomings of the ESI methods should be

discussed and considered. Firstly, EEG captures a mixture of activity from millions

of neurons spatially oriented in various directions and the majority of the activity is

therefore canceled while received at the scalp. Hence, the EEG measurements are

already a vague representation of the underlying activity. Secondly, as the inverse

problem is an ill-posed problem in nature, various assumptions and constraints must

be applied to obtain a unique solution and there is no systematic way to select the

most appropriate ESI method for a certain recording. “It must be made very clear
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that no matter how sophisticated these assumptions and constraints are, the provided

source solution remains an estimation that depends on how well genuine sources con-

form to these assumptions” (Michel and Brunet [2019], p.2). The judgment call is for

the researcher to make and therefore, investigating the suitability of the ESI method’s

constraints and assumption in the context of the specific experimental paradigm is

crucial.

Moreover, it cannot be emphasized enough that source imaging involves numerous

analysis steps with plenty of detail in every step, while ignoring any one of them can

immensely and adversely impact the results. Every computational mistake in any of

the steps will propagate and intensify throughout the succeeding steps. Thus, every

step should be done with caution to obtain reliable results. Additionally, it has to

be kept in mind that there are numerous simplifications in every step of this type

of modeling. For instance, in the forward problem, despite all the advancements in

generating a realistic head model, all these sophisticated methods are still a näıve

simplification of the complex brain and head organization. Therefore, these methods

should be applied with caution and the results should be interpreted with the above

mentioned facts in mind.

While the proposed BCI pipeline can improve BCI illiteracy and has promising

performance, it relies on certain ad hoc assumptions and constraints that can influence

the accuracy of the results. The first assumptions are embedded in the beamforming

source localization method used to solve the inverse problem and the second constraint

lies in the definition of the regions of interest in the parcellation of the brain and the

calculation of regional ROIs. In conclusion, the current study showed the possibility

of using a source space BCI based framework based on active mental imagery tasks
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and increased options for more diverse, personalized, mental imagery BCIs. There is

a pronounced need for non-motor imagery based BCIs for individuals suffering from

stroke, spinal cord injury, and congenital motor disorders, for whom motor imagery

can be exceptionally difficult (Scherer et al. [2015]). Thus, this study designed and

assessed a personalized source spaced non-invasive BCI pipeline which can be of great

value for patients who have limited communication.

6.2 Future Directions

Future work may firstly focus on computationally tuning the proposed personalized

BCI. In the presented pipeline, source reconstruction was performed for all source

points and ROIs were covering the whole brain surface and/or brain volume since

various examined tasks employed various brain regions and limiting the ROIs was

not appropriate. However, after identifying the best separable commands, only the

most relevant ROIs could be beamformed and feature calculation can be optimized

to be less computationally demanding and ultimately enhance the real-time pace.

Additionally, as recommended in literature, individual MRI scans can be used to

obtain a more precise subject-specific head model and lead field which might improve

the performance of the BCI as a result of more accurate source reconstruction. Also,

to confirm the efficacy of the task combinations, conducting real-time experiments is

a high priority for future research.

Furthermore, the analyzed mental tasks were recorded in experimental conditions

where not only were the volunteers instructed to focus on the tasks and avoid mind

wandering, but also the study paradigm and performing mental imagery was a new
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experience for them. These factors lead to maximal concentration while in a real-

word setting, this is not necessarily going to be the case. By repetition and getting

accustomed to the mental commands over time, the user might not engage fully

while performing the command. In addition to that, considering the changes of

brain networks over time due to neuroplasticity, it should be investigated if over

time, the selected pair of tasks sustain the same level of distinction. To maintain

the performance of the BCI, reassessing the array of commands and changing the

control signals to engage back the attention of the user might be required: a dynamic

personalized BCI.

Finally, since the actual target group of users are disabled individuals, it is of

utmost importance that the proposed framework is evaluated on a population of

patients with various impairments. Depending on the specific impairment, disabled

individuals are expected to show differences in their task classification. This could

confirm whether using mental commands incorporating the patient’s healthy brain

regions could offer a superior means of communication. However, this study was an

important step toward demonstrating that there are promising alternatives to motor

imagery identifiable in source space, which might be especially beneficial for severely

motor impaired individuals.
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Klaus-Robert Müller, Gabriel Curio, and Thorsten Dickhaus. Predicting bci per-

formance to study bci illiteracy. BMC Neurosci, 10(Suppl 1):P84, 2009.

Bernhard E Boser, Isabelle M Guyon, and Vladimir N Vapnik. A training algo-

rithm for optimal margin classifiers. In Proceedings of the fifth annual workshop on

Computational learning theory, pages 144–152, 1992.

Brain Products, GmbH, Germany. BrainVision Analyzer, (Version 2.2.0) [Software].

(2019).

Matthew Brett, Kalina Christoff, Rhodri Cusack, Jack Lancaster, et al. Using the

talairach atlas with the mni template. Neuroimage, 13(6):85–85, 2001.

Katharine Brigham and BVK Vijaya Kumar. Imagined speech classification with

eeg signals for silent communication: a preliminary investigation into synthetic

telepathy. In 2010 4th International Conference on Bioinformatics and Biomedical

Engineering, pages 1–4. IEEE, 2010.

Korbinian Brodmann. Vergleichende Lokalisationslehre der Grosshirnrinde in ihren

Prinzipien dargestellt auf Grund des Zellenbaues. Barth, 1909.

129



M.Sc. Thesis – L. Mousapour McMaster University – Computational Sci. & Eng.

Denis Brunet, Micah M Murray, and Christoph M Michel. Spatiotemporal analysis

of multichannel eeg: Cartool. Computational intelligence and neuroscience, 2011,

2011.

Jie Cai, Jiawei Luo, Shulin Wang, and Sheng Yang. Feature selection in machine

learning: A new perspective. Neurocomputing, 300:70–79, 2018.

Jose M Carmena, Mikhail A Lebedev, Roy E Crist, Joseph E O’Doherty, David M

Santucci, Dragan F Dimitrov, Parag G Patil, Craig S Henriquez, and Miguel AL

Nicolelis. Learning to control a brain–machine interface for reaching and grasping

by primates. PLoS biol, 1(2):e42, 2003.

Rifai Chai, Sai Ho Ling, Gregory P Hunter, and Hung T Nguyen. Mental non-motor

imagery tasks classifications of brain computer interface for wheelchair commands

using genetic algorithm-based neural network. In The 2012 International Joint

Conference on Neural Networks (IJCNN), pages 1–7. IEEE, 2012.

Ricardo Chavarriaga, Aleksander Sobolewski, and José del R Millán. Errare machinale
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Christoph M Michel, Micah M Murray, Göran Lantz, Sara Gonzalez, Laurent Spinelli,

and Rolando Grave de Peralta. Eeg source imaging. Clinical neurophysiology, 115

(10):2195–2222, 2004.

Martin M Monti, Audrey Vanhaudenhuyse, Martin R Coleman, Melanie Boly, John D

Pickard, Luaba Tshibanda, Adrian M Owen, and Steven Laureys. Willful mod-

ulation of brain activity in disorders of consciousness. New England journal of

medicine, 362(7):579–589, 2010.

John C Mosher, Paul S Lewis, and Richard M Leahy. Multiple dipole modeling

and localization from spatio-temporal meg data. IEEE transactions on biomedical

engineering, 39(6):541–557, 1992.

137



M.Sc. Thesis – L. Mousapour McMaster University – Computational Sci. & Eng.

John C Mosher, Richard M Leahy, and Paul S Lewis. Eeg and meg: forward solutions

for inverse methods. IEEE Transactions on Biomedical Engineering, 46(3):245–259,

1999.

Shingo Murakami and Yoshio Okada. Contributions of principal neocortical neurons

to magnetoencephalography and electroencephalography signals. The Journal of

Physiology, 575(3):925–936, 2006. doi: 10.1113/jphysiol.2006.105379.

Muthuraman Muthuraman, Helge Hellriegel, Nienke Hoogenboom, Abdul Rauf An-

war, Kidist Gebremariam Mideksa, Holger Krause, Alfons Schnitzler, Günther

Deuschl, and Jan Raethjen. Beamformer source analysis and connectivity on con-

current eeg and meg data during voluntary movements. PloS one, 9(3):e91441,

2014.

Violetta Nedelko, Thomas Hassa, Farsin Hamzei, Cornelius Weiller, Ferdinand

Binkofski, Mircea Ariel Schoenfeld, Oliver Tüscher, and Christian Dettmers. Age-
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Andrea Kübler, and Gernot R Müller-Putz. Individually adapted imagery improves

brain-computer interface performance in end-users with disability. PloS one, 10(5):

e0123727, 2015.

Michael Scherg, Thomas Bast, and Patrick Berg. Multiple source analysis of interictal

spikes: goals, requirements, and clinical value. Journal of Clinical Neurophysiology,

16(3):214–224, 1999.

Anett Seeland, Mario M Krell, Sirko Straube, and Elsa A Kirchner. Empirical com-

parison of distributed source localization methods for single-trial detection of move-

ment preparation. Frontiers in human neuroscience, 12:340, 2018.

Kensuke Sekihara and Srikatan S Nagarajan. Adaptive spatial filters for electromag-

netic brain imaging. Springer Science & Business Media, 2008.

Alborz Rezazadeh Sereshkeh, Robert Trott, Aurélien Bricout, and Tom Chau. Eeg
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Andreas Widmann and Erich Schröger. Filter effects and filter artifacts in the analysis

of electrophysiological data. Frontiers in psychology, 3:233, 2012.
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