

INVESTIGATING THE EFFECT OF CLUSTER-BASED

PREPROCESSING ON SOURCE-TO-SOURCE CODE

TRANSLATION

M.Sc. Thesis – Akila Loganathan McMaster - Computer Science

 i

INVESTIGATING THE EFFECT OF CLUSTER-BASED PREPROCESSING ON SOURCE-TO-

SOURCE CODE TRANSLATION

BY AKILA LOGANATHAN, B.Eng.

A THESIS SUBMITTED

TO THE DEPARTMENT OF COMPUTING AND SOFTWARE

AND THE SCHOOOL OF GRADUATE STUDIES

OF MCMASTER UNIVERSITY

IN PARTIAL FULFILMENT OF THE REQUIREMENTS

FOR THE DEGREE OF MASTER OF SCIENCE

McMaster University © Copyright by Akila Loganathan, August 2021

M.Sc. Thesis – Akila Loganathan McMaster - Computer Science

 ii

MASTER OF SCIENCE (2021) McMaster University

(Department of Computing and Software) Hamilton, Ontario, Canada

TITLE: Investigating the Effect of Cluster-Based Preprocessing

 on Source-to-Source Code Translation

AUTHOR: Akila Loganathan

 B.Eng., (Computer Science Engineering)

 Anna university, Chennai, India

SUPERVISOR: Dr. Richard Paige

NUMBER OF PAGES: ix, 85

M.Sc. Thesis – Akila Loganathan McMaster - Computer Science

 iii

To my Bava, Athamma, Suresh Babai and Amma, Naana

M.Sc. Thesis – Akila Loganathan McMaster - Computer Science

 iv

Abstract

Numerous programming languages have been proposed over the last 60 years.

Programming languages, like other software systems, can become obsolete: their

compilers, virtual machines, interpreters and libraries are no longer fit for purpose. As such,

programs written using obsolete programming languages may need to be modernized,

relying instead on modern languages, libraries and tools. Modernization is both a technical

and social process; in this thesis, we focus on the technical aspects of modernization,

particularly software migration, wherein a program written in one programming language

is transformed into an equivalent or similar program written in a different language.

Migration happens because many software systems that were developed decades ago can

no longer be maintained and need to be overhauled to make it possible to implement new

processes that can take advantage of new technologies recently developed.

Migrating an existing codebase to a more efficient and modern programming language is

often expensive, and there are different types of risks involved; for example, many

functionalities may not be implemented properly after migration, i.e., the migration is

inaccurate; or concerns for code quality may not be considered until the end of the

migration; and for large code bases, the migration process may be slow, and may demand

substantial resources to implement. Recent advancements in Artificial Intelligence in

natural language translation have been widely accepted but their application to

programming language translation have been limited due to the scarcity of parallel data

(i.e., the collection of equivalent phrases in source language and their translations in a target

language). This thesis explores a preliminary investigation into the use of unsupervised

M.Sc. Thesis – Akila Loganathan McMaster - Computer Science

 v

learning methods – specifically, a newly proposed K-Means clustering approach for

preprocessing and analyzing the source code – prior to rule-based code translation. The

thesis investigates such a process both generally and abstractly, and specifically, in the

context of a concrete migration from C++ to Java. The thesis also presents a test set for

evaluating such an approach, based on open source, which can be used as a general resource

for both validating migration approaches and assessing their performance. The test results

and our experiments show that our proposed translation approach based on unsupervised

machine learning for preprocessing has a very good translation accuracy score of 77.89%

and 81.34% when compared against an alternative approach with accuracy score of 33.24%

and 59.96%, and also when compared with rule-based translation that excludes the

preprocessing step with accuracy score 37.39% and 41.26%.

M.Sc. Thesis – Akila Loganathan McMaster - Computer Science

 vi

ACKNOWLEDGEMENTS

First and foremost, I would like to express my deepest gratitude to my supervisor Dr.

Richard Paige, whose expert advice and guidance motivated me to achieve excellence in

my work. I would like to thank him for his valuable inputs throughout the course of my

research.

I am most thankful and grateful to my supervisory committee Dr. Alan Wassyng, and Dr.

Spencer Smith for all the time they took to read this thesis.

I am thankful to the Department of Computing and Software, for providing me with an

opportunity to pursue my research at McMaster University.

I really feel grateful to my friends who shared their experiences with me and guided me

throughout this thesis journey.

Last, but by no means least, I would like to thank my husband Raagul for his support and

encouragement, as well as Chandramouli, my mother-in-law for her unequivocal support

throughout this research, and my uncle Suresh for supporting me throughout my

educational journey. You people have always been my motivation to go further in life. I

really wanted to thank my parents for showering me with their blessings.

M.Sc. Thesis – Akila Loganathan McMaster - Computer Science

 vii

CONTENTS

Abstract iv

Acknowledgements vi

1. INTRODUCTION 1

1.1. Motivation 4

1.2. Translation of Programming Languages . 7

1.3. Research Objectives 8

1.4. Organization of Thesis 9

1.5. Summary 10

2. LITERATURE REVIEW 12

2.1. Related Work 12

2.1.1. Syntax Directed Translation 12

2.1.2. Source to Source Translation . 13

2.1.3. Machine Translation Approaches 16

2.1.4. Unsupervised Machine Translation . 18

2.2. Comparative Study 20

2.3. Summary 25

3. TECHNICAL APPROACH 27

3.1. Proposed Model 28

3.2. Preprocessing 29

3.2.1. Choosing Clustering Algorithm . 30

3.2.2. The K-Means Algorithm . 34

M.Sc. Thesis – Akila Loganathan McMaster - Computer Science

 viii

3.2.3. Proposed K-Means Clustering Approach . 37

3.3. Code Analyzer 41

3.4. Rule-based Translation using Preprocessed Source Code 43

3.5. Summary 47

4. RESULTS AND DISCUSSION 48

4.1. Setup. 48

4.2. Gathering Data. 50

4.3. Evaluation. 51

4.4. Comparison to Existing Approach. 56

4.5. Threats to Validity. 59

4.6. Summary 60

5. CONCLUSION AND FUTURE SCOPE 61

5.1. Conclusion 61

5.2. Future Work 62

6. REFERENCES 64

Appendix A Original and Preprocessed source code 70

Appendix B C++ and Java Code Analyzer Results 71

Appendix C Preprocessed and Translated Source code 81

Appendix D Test Result details 84

M.Sc. Thesis – Akila Loganathan McMaster - Computer Science

 ix

Table of Figures

Figure 1: Transcompiler and Traditional Compiler...14

Figure 2: Traditional Compiler ...14

Figure 3: Proposed Model ...28

Figure 4: K-Means Algorithm Illustration ..36

Figure 5: Original and Preprocessed Source code...40

Figure 6: Cluster Analysis: Original Source code ...41

Figure 7: Translation Approach...44

Figure 8: Preprocessed and Translated Source code..57

Figure 9: Parallel Implementation of Programs in Test Set...51

Table of Tables

Table 1: Comparative Study... 21

Table 2: Processing time for clustering the source code with 1480 lines................................32

Table 3: Processing time for clustering the source code with 148 lines................................. 33

Table 4: Processing time for clustering the source code with 25 lines................................... 34

Table 5: C++ and Java Code Analyzer...43

Table 6: Accuracy Scores of proposed translation approach...55

Table 7: Accuracy Scores of existing approach.. 57

Table 8: Accuracy Scores of our translation approach excluding Preprocessing 58

Table 9: Comparison of Proposed and existing approach accuracy scores..…....................... 58

M.Sc. Thesis – Akila Loganathan McMaster - Computer Science

 1

CHAPTER 1: Introduction

Software can become obsolete: it may be written in a programming language that is no

longer supported by a vendor; it may make use of inefficient or outdated libraries; it may

run on outdated hardware that can no longer be repaired. But there may still be

requirements for obsolete software to execute and be used by diverse stakeholders. As such,

there are requirements for supporting software modernization, the process of transforming

obsolete software into software that is behaviorally equivalent yet executes in a modern

environment. Software modernization is both a social and technical process: the new

version of the software must satisfy relevant stakeholders and be useful and usable within

existing processes. But it also involves deep technical challenges, particular at scale, when

large code bases, programs and documentation must be updated.

Software migration is the technical process of transferring software data, accounts and

functionality between operating environments; it may also involve the porting of a legacy

software system to a modern computer programming language [Smartsheet, 2017].

Software migration happens increasingly often [Derras et al, 2021] because many software

systems that were developed decades ago need to be overhauled to make it possible to

implement new processes that can take advantage of technologies recently developed. With

rapid technological enhancement, companies may need to move their software from one

platform to another platform [Mustafa et al, 2017] as the software systems-built decades

ago face technology stasis and can no longer be easily updated or improved. Moreover, in

some organizations, processing needs may vary between departments, and software may

have been developed without considering the challenges of use in different contexts. For

instance, a certain department may need more storage space in the system, while another

M.Sc. Thesis – Akila Loganathan McMaster - Computer Science

 2

department may need more processing speed. We may need to be able to modernize

existing systems so that it works under both sets of conditions while producing optimum

output for each [Satani et al, 2020].

The fast-changing market trends and the constantly growing business and customer needs

increase the pressure for technology innovations in hardware and software-based

industries. Developers make substantial efforts to adapt their software and hardware

products to the latest processes, technologies and materials to take advantage of new

features that may improve security, operational efficiency, performance etc. However,

even minor design or implementation changes often require rerunning all necessary

verification, validation, and assurance processes to establish that the updated system still

meets its functional and non-functional requirements while complying with national and

international regulations and standards. This can be a long and costly process that can cause

these systems to fall into “technology stagnation”. Due to the challenges associated with

technology stagnation, complex systems within critical application domains are likely to

face the problem of obsolescence [Paige et al, 2018].

Source code translation is an important approach used in software migration, and hence

modernization. It is a technical process that is used to migrate legacy code in one

programming language to a different language [Chen et al, 2018]. This may include

migrating code from a legacy language such as PL/I to a more modern language such as

C#, to migration between versions of programming languages (e.g., C++98 to C++17).

Migrating code from a legacy programming language such as COBOL or APL, to a modern

M.Sc. Thesis – Akila Loganathan McMaster - Computer Science

 3

alternative like Java or C++, is a complex, time-consuming process that necessitates

expertise in both the source and target languages, as well as the libraries and execution

environments (including virtual machines) for each. Code translation processes and tools

are costly to both build and use because the ultimate translation process is time-consuming,

and time-consuming processes can be very expensive [Lachaux et al, 2020]. For example,

the Commonwealth Bank of Australia paid $750 million and took five years to convert its

platforms from COBOL to Java using program translation.

As development techniques, paradigms and platforms typically evolve far more quickly

than domain applications, software modernization and migration is a constant challenge to

software engineers [Fleurey et al, 2007]. There are different types of risks involved during

migration. One example is that after migration, functionalities or features are not

implemented identically [Mustafa et al, 2017]; another is that the performance of the

migrated code differs from the original (note that code that executes faster is not necessarily

desirable, especially when timing constraints must be satisfied). Typically, in program

translation any concerns for code quality are also not considered until the end of the

translation, to simplify an already complex process. It has been argued that prioritizing

quality in software migration above many other issues has many benefits [Fabry et al,

2019]. By performing migration activities correctly some of these risks might be reduced

or mitigated. Due to the absence of resources to support migration - such as workforce,

time, and budget - software migration is often not performed in an optimized way.

M.Sc. Thesis – Akila Loganathan McMaster - Computer Science

 4

1.1 Motivation

As mentioned earlier, migrating source code from one platform or programming language

to another is generally very expensive, and usually requires substantial programmer

expertise and knowledge of existing systems. Traditionally, software migration is

supported and implemented in a rule-based manner: rules are specified indicating how

concepts and properties in a source language are to be translated into concepts and

properties in a target. The rules may act as the specification of actions to be carried out by

a programmer or software engineer; or may be executable and used by an automated

program translator. The rules are used to document and support either a wholesale rewrite

of the code base in a new language or for a new hardware platform, or support the execution

of a program translator, the results of which may be manually adjusted. Rule-based

translation relies on millions of bilingual dictionaries for each language pair; these

dictionaries specify the concepts in each programming language, very much like a bilingual

dictionary does for natural languages such as English and German. The software uses these

complex rule sets and dictionaries and transfers the grammatical structure and semantics

of the source language into the target language [Systran, 2021].

A compiler's purpose is translation, i.e., converting a high-level language into an

intermediate or low-level language, such as an abstract computer language or an assembly-

like language [Thain et al, 2020]. The compiler's correctness is ensured by the correctness

of many such translations. Translations are used to compare the expressiveness of various

languages or programming models (and to obtain corresponding expressiveness results).

Unfortunately, creating a translator is difficult in practice because different languages have

M.Sc. Thesis – Akila Loganathan McMaster - Computer Science

 5

different syntax and semantics, and use different platform APIs and standard library

features. The majority of programming language translator tools are currently rule-based,

and typically come with restrictions meant to cope with semantic variation points (e.g.,

different interpretations of short-circuiting Boolean operators in different versions of the C

language), or to make the ultimate program translation fully automatable (e.g., by

restricting features of the source language that can be translated).

Machine translation (MT) is the process of translating a text from a source language to its

counterpart in a target language [John et al, 2014]. The predominant approach to MT is

corpus-based. These approaches use large aggregations of parallel data (i.e., the collection

of phrases in source language and their translations in target language) as the origin of

knowledge. Statistical machine translation, which is also referred as SMT, is a type of

machine translation that uses predictive algorithms to train a model how to translate text.

These models are created from parallel text corpora and used to create the most probable

output, based on different bilingual examples. A parallel text is a text specified with its

translation, where the pair are used to create a statistical model of translation. Using this

already translated text, a statistical model predicts how to translate text. One drawback is

that this SMT system needs parallel data, and this can be challenging to find (especially for

large programs). Creating these parallel texts is very time-consuming and labor-intensive

[Shofner et al, 2021] and can be an error-prone process.

Neural machine translation is not a dramatic conceptual step beyond what has been

traditionally done in statistical machine translation. Neural machine translation is

M.Sc. Thesis – Akila Loganathan McMaster - Computer Science

 6

considered a modern approach for corpus-based machine translation. Neural machine

translation (NMT) is typically used to translate words from one language to another. NMTs

encompass all types of machine translation where an artificial neural network is used to

predict a sequence of numbers when provided with a sequence of numbers. In the case of

translation, each word in the input sentence is encoded as a number to be translated by the

neural network into a resulting sequence of numbers representing the translated target

sentence. Each number in the input and output represents a word in the parallel corpus [i.e.,

the collection of phrases in source language and their translations in target language] and

is always encoded and decoded accordingly [Sam et al, 2021]. Again, the drawback is that

this needs parallel data, and it can be hard to find such parallel content. Creating these

parallel texts can be time-consuming and labor-intensive and error-prone, as noted earlier.

Professional translators who rely on automatic computer translation mechanisms have

largely embraced recent advances in Artificial Intelligence in the context of natural

language translation, particularly unsupervised learning. Unsupervised learning is a

machine learning method that learns patterns and recognize trends from unlabeled data,

making it ideally suited for this application: source code (without intervention) by default

comes in an unlabelled format and thus any inherent classifications are implicit.

Recent developments in neural machine translation have gained widespread acceptance

when applied to natural language, even among experienced translators, who are

increasingly relying on automatic machine translation systems [Lachaux et al, 2020].

However, due to the shortage of parallel data in this domain (programming language

https://pathmind.com/wiki/neural-network

M.Sc. Thesis – Akila Loganathan McMaster - Computer Science

 7

translation), the application of neural machine translation to code translation has been

limited. We discuss this further in Chapter 2.

The use of unsupervised machine learning methods for the translation of programming

languages has been limited so far, owing to a scarcity of parallel data in this domain. By

exploiting C++, C, Java, Python, we extended recent techniques in unsupervised machine

learning specifically clustering in this research work to preprocess and analyze source code

before starting with the translation process (rule-based translation). Our hypothesis was

that preprocessing will help us to improve the accuracy of translation (and give a better

accuracy score) using the already available methods used by other researchers in this field.

As such, our focus in software migration is addressing the challenge of validating the

results of the translation.

1.2 Translation of Programming Languages

Programs are the main tool for building computer applications. Various programming

languages have been invented to facilitate programmers to develop programs for different

applications. At the same time, the variety of different programming languages also

introduces a burden when programmers want to combine programs written in different

languages together. Therefore, there is a tremendous need to enable program translation

between different programming languages. Nowadays, to translate programs between

different programming languages, typically programmers manually investigate the

correspondence between the grammars of the two languages, then develop a rule-based

translator. However, this process can be time consuming and inefficient [Song et al, 2018].

M.Sc. Thesis – Akila Loganathan McMaster - Computer Science

 8

In this thesis, we propose to use unsupervised machine learning methods on the source

code within the software translation process. Specifically, we aim to investigate the use of

unsupervised machine learning in the preprocessing phase of software translation. Our

rationale for this is that preprocessing – particularly in terms of clustering related software

components, modules and methods – may be used to better manage the translation of

complex code bases, reduce the time associated with translation, and improve the ultimate

readability and understandability of the migrated source code. This last point in turn may

make it easier to validate the results, and this is important especially when working with

large code bases: a program translator is effectively a code generator, and generated code

can be very unreadable and difficult to manage and understand. A preprocessing approach

may be used to help manage these challenges – and thus, we believe, make it easier to

validate the results of migration.

1.3 Research Objectives

Professional translators who rely on automatic translation mechanisms have largely

embraced recent advances in Neural Machine Translations, which are normally applied to

natural languages. Their application to programming language translation is currently very

limited, owing to a scarcity of parallel data in this domain. We propose to extend techniques

in unsupervised machine learning methods in parts of the translation process in this thesis.

Our specific objectives are:

M.Sc. Thesis – Akila Loganathan McMaster - Computer Science

 9

 Support preprocessing, and code analysis in software migration, using

unsupervised learning methods, to provide means to validate code translation and

enhance migrated code quality.

 To build a component based on unsupervised learning methods to support

preprocessing. We chose the K-Means unsupervised clustering approach; a

particular novelty with this clustering approach is that it does not require us to

change the number of clusters every time for different datasets. We explain the

importance of this in later chapters, but informally this means that there are greater

opportunities for automating the preprocessing step.

 To demonstrate that the preprocessing step before translation provides better

performance (good accuracy score of translations) and requires less human effort

to validate the translated code.

 Generate a test set composed of corpus of programs (i.e., Human translated, and

Machine translated code) with the help of open-source data to evaluate and check

the accuracy of translations done using our proposed framework.

1.4 Organization of Thesis

In the following sections, the proposed translation approach and implementation details is

discussed. Chapter 2 presents the literature review and related work where we discuss about

syntax directed translations, source to source translations, machine translations etc. In

Chapter 3 we present an approach to software migration, based on use of a preprocessing

step using unsupervised learning method before rule-based translation in the translation of

programming languages. The proposed method involves three phases, preprocessing,

M.Sc. Thesis – Akila Loganathan McMaster - Computer Science

 10

analyzing and translation. We present the method generically, and then describe a concrete

instance of the method for C++ to Java transformation. In Chapter 4 we describe how we

have gathered data for creation of a corpus of test data for evaluating translations and

present our experiments (and experimental method/setup), which include performance and

accuracy studies on a number of end-to-end translations. This chapter also presents a

comparison between the approach proposed in this thesis with an existing translator, as

well as a rule-based approach that excludes preprocessing. We analyze the results and make

several observations. Chapter 5 gives a summary of the dissertation and discusses future

research directions.

1.5 Summary

Programming language translators are primarily used for interoperability and to port

codebases written in a deprecated or obsolete language to a modern one. The overall

translation process is time-consuming and necessitates knowledge of both the source and

target languages, making code-translation projects costly. Although neural models

outperform rule-based counterparts in natural language translation, their applications to

transcompilation have been very less and limited due to a lack of parallel data in this

domain.

We propose an approach where unsupervised learning methods are used to preprocess,

analyze the source code before rule-based translation in the translation of programming

languages. Specifically, we use clustering approaches from the unsupervised learning

methods. We use this clustering approach on the source code prior to translation in such a

way that each cluster share a similar semantic meaning.

M.Sc. Thesis – Akila Loganathan McMaster - Computer Science

 11

The context of this work is preprocessing the source code and analyzing the code before

translation. Our work is divided into three phases. First, we use the K-Means algorithm to

create global clustering of the entire source data where each cluster share a similar semantic

meaning, and this helps in preprocessing. Second, we analyze the code based on clusters

formed earlier and at third phase we perform program translation. We generalized the first

two phases of this approach to various programming languages like C, C++, Java, Python

and at the third phase we built a rule-based translator for demonstrating the program

translation from C++ to Java where datatypes, functions, operators, selection statements,

iteration statements, classes, input and output statements, main function are translated to

equivalent in Java. We also built a test set composed of corpus of programs (i.e., Human

translated, and Machine translated code) with the help of open-source data, to be used to

evaluate and check the efficiency of translations done using our proposed approach.

M.Sc. Thesis – Akila Loganathan McMaster - Computer Science

 12

CHAPTER 2: Literature Review

This chapter discusses the concepts, problems, and methodologies used in programming

language translation in the literature, and presents a comparative analysis that categorizes

the different technical and conceptual approaches to program translation. The overview of

the literature also attempts to identify some of the properties that need to be checked when

translation is carried out, such as correctness, timing, and the overall performance of the

translator.

2.1 Related Work

This section summarizes and analyzes the key literature related to software migration and

program translation.

2.1.1 Syntax directed Translation

Several studies have investigated different approaches to translating programming

languages based on definitions and manipulation of the syntax of the source (and

sometimes target) language. A syntax directed translation is typically based on a context

free grammar [Jose et al, 2012]. A context-free grammar is a set of rules used to generate

all possible patterns of strings in each (programming) language [Gerald et al, 2012].

Parsing is a method of analyzing a sentence (i.e., set of strings) to determine its structure

based on the grammar, and to generate a parse tree showing their syntactic relation to each

other. If w is a word in language L generated by context free grammar G, one obtains a

particular syntax directed translation of w by constructing a parse tree for w in G [Ullman

et al, 2007]. A syntax-directed translator typically consists of two components, a source

language parser and a recursive converter which is usually modeled as a top-down tree-to-

https://en.wikipedia.org/wiki/Parse_tree

M.Sc. Thesis – Akila Loganathan McMaster - Computer Science

 13

string translator [Gecseg et al, 1984]. For instance, [Irons et al, 1961] developed a syntax-

directed translation model, where the source-language input is first parsed into a parse-tree,

which is then recursively converted into a string in the target-language. [Pyster et al, 1978]

used semantic-syntax-directed translator that maps parse trees of source sentences to parse

trees of sentences in the target language as a function of both the syntactic structure of the

source parse tree and the values of attributes of its nodes. [Chiang et al, 2010] presents a

syntax-directed translation approach that uses an implicit definition of formal syntax, that

is syntactic structures for the source and target that are discovered on the basis of a bilingual

corpus, but without resort to an externally motivated parser. There are also approaches such

as [Yamada et al, 2006] that use an external parser on the target only, or other approaches

such as [Quirk et al, 2005] on the source only, [Hasan et al, 2005] that only uses a parser

on the target and attempts to improve the accuracy of the translation produced. Finally,

there are approaches such as [Cowan et al, 2006] that use external parsers both on the

source and on the target. But syntax-directed translations are expensive [Marc et al, 2004]

as we must build parsers and grammars in turn which are easily prone to errors and difficult

to maintain etc.

2.1.2 Source-to-Source Translation

A transcompiler is a source-to-source translator that transforms between programming

languages at equivalent (or very similar) abstraction levels [Ackerman et al, 2016] i.e.,

from high level programming language (e.g., C++ or Java) to another high-level

programming language (e.g., Python). A transcompiler is different from traditional

compilers that build executables by translating source code from a high-level programming

M.Sc. Thesis – Akila Loganathan McMaster - Computer Science

 14

language (e.g., C, C++) to a lower-level programming language (e.g., assembly language)

[Taylor et al, 2019].

Figure 1: Transcompiler and Traditional Compiler

Figure 2: Traditional Compiler

M.Sc. Thesis – Akila Loganathan McMaster - Computer Science

 15

Originally, transcompilers were created to translate source code from one platform to

another (for example, converting source code intended for the Intel 8080 CPU to make it

compatible with the Intel 8086 CPU). Another example was earlier implementations of

the C++ language, which transcompiled C++ source code into C source code (removing

object-oriented features such as inheritance – relying on the delegator pattern – and

dynamic binding – relying on virtual function tables). More recently, new languages have

been developed (e.g., CoffeeScript, TypeScript, Dart, Haxe) along with dedicated

transcompilers that convert them into a popular or omnipresent languages (e.g.,

JavaScript). Using a transcompiler and manually tweaking the output source code instead

of rewriting the entire codebase for an application from scratch might be a faster and less

expensive approach [Lachaux et al, 2020].

In theory, it is always feasible to translate source code from one Turing-complete language

to another, but it can be challenging in practice since different languages have distinct

syntaxes and use distinct platform APIs and standard library methods. The majority of

transcompilation tools are now rule-based; they tokenize the input source code and

transform it to an Abstract Syntax Tree (AST) on which custom rewriting rules are applied.

They can take a long time to make and need considerable knowledge of both the source

and target languages [Lample et al, 2017], including both their syntax and their semantics.

A more recent development in source-to-source translation relies on neural network-based

techniques; these are generally called neural machine translation and have garnered uptake

in natural language processing applications. Their application to programming language

translations have been limited due to the scarcity of parallel data in this domain [Roziere

et al, 2020]. Parallel data, recall, is a corpus of data with equivalent programs written in

M.Sc. Thesis – Akila Loganathan McMaster - Computer Science

 16

two (or more) programming languages, so that this corpus can act as the basis for testing a

transcompiler. We discuss these approaches in more detail in the next section.

There are a number of existing open source translator tools that translates programs from

C++ to Java; one is the C2J translator [Laffra, 2000], while another is the commercial C++

to Java rule-based converter [Tangible, 2018] etc. Later, in Chapter 4, we will be comparing

our translation approach specifically with Tangible Solutions converter as it is a rule-based

translator which works similarly to our approach, i.e., based on the rules written by human

experts. It also has a free edition that we can use to test and gather results.

2.1.3 Machine Translation approaches

Machine translation (MT) is the task of translating a text from a source language to its

counterpart in a target language; MT is normally applied to natural language texts [John et

al, 2014], e.g., to support translation from English to German. The predominant approach

to MT is corpus-based (i.e., parallel data). These approaches use large aggregations of

parallel data (i.e., the collection of phrases in source language and their translations in

target language) as the origin of knowledge. MT approach in usually applied to natural

language processing. Several researchers have explored the possibilities of using machine

translation to translate programming languages, for example, [Nguyen et al, 2013] used a

Java-C# parallel corpus (i.e., the collection of phrases in source language and their

translations in target language) to train a Phrase-Based Statistical Machine Translation

(PBSMT) model. They built their dataset by combining the Java and C# implementations

of two open-source projects, Lucene and db4o. [Chen et al, 2019] used the Java-C# dataset

M.Sc. Thesis – Akila Loganathan McMaster - Computer Science

 17

of [Nguyen et al, 2013], to use tree-to-tree neural networks to decode JavaScript. They use

a transcompiler to build a CoffeeScript-JavaScript parallel corpus. [Karaivanov et al, 2014]

created a program to mine parallel corpus from ported open-source applications in a similar

way. [Aggarwal et al, 2015] trained Moses on a Python 2 to Python 3 parallel corpus

created with 2to3, a Python library developed to port Python 2 code to Python 3. [Chen et

al, 2019] utilised the Nguyen et al. Java-C# dataset to translate code using tree-to-tree

neural networks. They also employ a transcompiler to construct a CoffeeScript-JavaScript

parallel corpus. [Oda et al, 2015] trained a PBSMT model to generate pseudo-code. To

create a training set, they hired programmers to write the pseudo-code of existing Python

functions. Barone and Sennrich built a corpus of Python functions with their docstrings

from open-source GitHub repositories. They showed that a neural machine translation

model could be used to map functions to their associated docstrings, and vice versa.

Similarly, [Hu et al, 2018] proposed a neural approach, DeepCom, to automatically

generate code comments for Java methods.

 All of these methods rely on the presence of parallel data; finding such a large parallel

corpus for training or building is challenging and expensive, requiring substantial human

intervention. Furthermore, several studies predominantly use the BLEU score to assess the

quality of their translations. The BLEU score is the most commonly used metric to evaluate

machine translations [Hindel et al, Barone et al, Vechev et al, Pharaoh et al]. Prior to the

development and acceptance of the BLEU score, researchers relied on human evaluation

by experts in both source and target languages. These experts would place the original

sentence with its machine translation side-by-side and they would rate the accuracy of

translation. This process is, of course, labor intensive, expensive and error prone. BLEU,

M.Sc. Thesis – Akila Loganathan McMaster - Computer Science

 18

by comparison, helps in automatically evaluating the performance of a machine translation

by comparing the text in translated code to reference translations (human generated

translations) line by line. But the BLEU score might be flawed because the generated code

might be a readable or good translation despite differing from the reference: in general, the

text in translated code and the reference code might differ by extra spaces and even an

empty line. Since the comparison takes place line by line (i.e., line 1 in translated code is

compared to the line 1 in reference code and so on) if line 1 is empty in either of the

translated code or reference code the BLEU score for that line will be very low and this

will in turn affect the score of all other lines. Issues pertaining to the automatic evaluation

of translated code are addressed in the validation section of our work.

2.1.4. Unsupervised Machine Translation

The methods described in Section 2.1.3 are supervised, and as such they rely on the

existence of parallel data (i.e., a corpus of equivalent program examples in source and

target programming languages). Unsupervised learning, by contrast, is a machine learning

method that learns patterns and recognize trends from unlabeled data [Sanatan, 2017],

hence it is ideally suited for application to program translation, though there are issues.

In natural language processing, recent advances in neural machine translation have been

widely accepted [Lachaux et al, 2020]; it may be that we can learn lessons from successes

in neural machine translation and unsupervised learning as applied to natural languages

and apply them to programming languages. Machine translation systems can in principle

attain near-human performance in certain languages, but their success is heavily reliant on

M.Sc. Thesis – Akila Loganathan McMaster - Computer Science

 19

the availability of enormous numbers of parallel phrases, limiting its application to the vast

majority of language pairings [Conneau et al, 2018]. Through recent breakthroughs in deep

learning, machine translation has lately reached amazing results. Many attempts have been

made to extend these accomplishments to low-resource language pairings, but this would

need tens of thousands of parallel phrases. The existing learning algorithms' reliance on

vast parallel corpora is a key difficulty. Unfortunately, the great majority of language

pairings have very little, if any, parallel data: to make MT more generally applicable,

learning methods must better exploit monolingual data. There is a huge body of literature

on using monolingual data to improve translation performance when minimal supervision

is available [Lample et al, 2016] and [Denoyer et al, 2018]. [Karaivanov et al, 2014],

[Nguyen et al, 2013] and Aggarwal et al, 2015] built few a parallel corpuses to train their

models by hiring a few programmers which was really very expensive and time consuming.

Creating a parallel corpus for testing is much less expensive and it can be done using the

open-source data available on web. Data scarcity is one among the many challenges for

training a Neural Machine Translation (NMT) model, and this challenge is exacerbated for

programming languages, as there are only a few corpuses of equivalent programs available

for training and testing.

Despite the progress made for a high-resource language, where parallel data is readily

available (for instance: English-German pair), most languages are characterized by the

absence of parallel data to train an NMT system. For most languages, parallel resources

are rare or nonexistent. Since creating parallel corpora (i.e., the collection of phrases in

source language and their translations in target language) for training is not realistic where

creating a small parallel corpus for evaluation is already challenging and time consuming

https://arxiv.org/abs/1706.03872

M.Sc. Thesis – Akila Loganathan McMaster - Computer Science

 20

[Koehn et al, 2007]. In this thesis we are interested in investigating the use of unsupervised

learning techniques - specifically clustering, which is generally used for the analysis of the

data set, to find insightful data among huge data sets and draw inferences from it. They are

many types of clustering algorithms. For instance, hierarchical clustering follows top-

down, and bottom-up approaches were in bottom-up approach, each data point acts as a

cluster initially, and then it groups the clusters one by one, whereas in top-down approach

we start off with all the points into one cluster and divides them to create more clusters

[Rohit et al, 2019]. Expectation maximization is an iterative process with two steps,

expectation and maximization. Expectation assigns each data point to a cluster

probabilistically. Maximization updates the parameters for each cluster. It estimates the

mean and standard deviations for each cluster to maximize the likelihood of observed data,

DBSCAN is a density-based clustering algorithm, it groups datapoints that are close to

each other i.e., with many nearby neighbors and the data points with low nearby neighbors

are considered outliers [Ram et al, 2010]. K-Means clustering partitions the data points into

k clusters based on the distance metric. The value of k is to be defined by the user. The data

point which is closest to the centroid of the cluster gets assigned to that cluster [Kasthuri

et al, 2020] etc.; there are many more clustering algorithms too. In this thesis will be

carrying out experiments on our source code datasets using these algorithms as the basis

of our preprocessing and analysis phases in the next chapter.

2.2. Comparative Analysis

There have been a number of approaches presented in the literature for supporting source

code translation between high-level programming languages. These approaches have a

https://en.wikipedia.org/wiki/Cluster_analysis#Density-based_clustering
https://en.wikipedia.org/wiki/Fixed-radius_near_neighbors

M.Sc. Thesis – Akila Loganathan McMaster - Computer Science

 21

variety of motivations – e.g., to more adequately reuse existing code, to enhance developer

productivity when migrating software applications, to reduce the number of bugs in

migrated code. All researchers note the difficulties in building automated translation tools,

even between languages that conceptually share semantic commonalities (e.g., C++ and

Java, which both include concepts of classes, inheritance and overriding), in part because

of subtle semantic differences between the languages. Table 1 attempts to summarize the

research objectives and outcomes of a substantial part of the past work on programming

translation. We present this in order to attempt to give an overview of the state of the art

and to highlight gaps that exist in the process of automating parts of the translation process.

Authors Research Objectives Outcomes

Qiu, L. (1999). Discuss the subtleties of

automating the majority of the

translation from C to C++, as well

as the challenges experienced.

Also, discussed talks about the

experience of manually porting

Java programs to C++, and

identifies some of the issues and

difficulties in automating this

translation process.

Designing devices to permit

high level specification of

translation rules and

adequately incorporate human

interaction is a generic

approach to any language

translation issue, which is an

intriguing exploration issue to

investigate.

M.Sc. Thesis – Akila Loganathan McMaster - Computer Science

 22

Papineni et al. (2002) Proposed a method (BLEU) of

automatic machine translation

assessment that is speedy, cheap,

and language-independent, that

corresponds exceptionally with

human assessment, and that has

minimal negligible expense per

run.

BLEU’s strength is that it

associates exceptionally with

human decisions by averaging

out individual sentence

judgment errors over a test

corpus than endeavouring to

divine the specific human

judgment for each sentence:

amount prompts quality.

Fleurey et al. (2007) Introduces an original model-

driven process created at

Sodifrance for migration of

software.

They showed that regardless

of whether the process is not

completely automated and

needs manual adaptation from

one project to the other as well

as manual execution of certain

parts of the final application.

Fuhr et al. (2013) Designed and execute a Service-

oriented Architecture (SOA) and

assesses abilities to expand the

method by model-driven software

migration methods.

The assessment of the

extensions has shown that

these can possibly support

SOMA in future SOA design

by utilizing legacy

M.Sc. Thesis – Akila Loganathan McMaster - Computer Science

 23

frameworks dealing with in

model-driven manner.

Regardless of whether parts of

the methods were not feasible

in practice, they have proved

to be very useful in designing

and realizing a SOA.

Oda et al. (2015) Proposed a method to

automatically generate pseudo-

code from source code, explicitly

employing the statistical machine

translation framework.

These methods produce

grammatically correct pseudo-

code for the python to English

and English to Japanese

programming language pair

and recognized that proposing

pseudo code with source code

enhances the code

comprehension of

programmers for unfamiliar

programming languages.

Grieger et al. (2016) Introduce a situational method

engineering framework to direct

the development of model-driven

They assessed the framework

by an industrial project in

which the legacy system was

M.Sc. Thesis – Akila Loganathan McMaster - Computer Science

 24

migration techniques by collecting

predefined buildings blocks.

migrated from the domain of

real estate to a new

environment.

Vavrova et al. (2017) Developed the primary level 4

grammar of Python, which is

equipped for parsing both Python

2.x and Python 3.x code. It is a

consequence of a significant

grammar programming effort,

merging previously existing

grammars (made for various

dialects and written in various

notations) and language

documentation.

The detected design defect

density in Python was

compared to results that

DECOR yielded for Java.

Generally, the density

measured in Python (average

6.07 design defects per 10,000

lines of code) was slightly less

than the density measured in

Java (average 8.37 design

defects per 10,000 lines of

code).

Shoaib et al. (2017) Investigated the process, activities,

challenges and their solutions for

the software migration are

framework.

A typical system for software

migration was helpful for

effective understanding of the

structure and size of the data,

which will decrease the

migration, also it will improve

the appropriateness and effect

in real business environment.

M.Sc. Thesis – Akila Loganathan McMaster - Computer Science

 25

Chen et al. (2018) A tree-to-tree neural network to

translate a source tree into a target

one, in which a sub-tree of the

source tree is translated into the

corresponding target sub-tree at

each step

This proposed method will

improve the past state-of-the-

art program translation

approaches by a margin of 20

points on the translation of

real-world objects.

Candel et al. (2019) A software process to execute a

model-driven re-engineering. This

process incorporates a TDD-like

approach to incrementally develop

model transformations with three

sorts of validations for the

produced code.

Designed and implemented a

re-engineering methodology

for a migration of Oracle

Forms code to MVC

architecture dependent on Java

structures.

Wlodarski et al.

(2019)

Discussed a modernisation project

of mBank, a big Polish bank, were

bad smell detection, elimination,

automated testing and refactoring

to ensure and maintain end results.

They concluded enhancing the

quality of the code prior to

migrating it to another

language was therefore pivotal

to a successful migration

effort.

Table 1: Comparative study

M.Sc. Thesis – Akila Loganathan McMaster - Computer Science

 26

2.3 Summary

In this chapter, we have presented a literature review related to syntax-directed translation

approaches, source-to-source translation approaches and machine translation approaches

in the domain of source code translation. Through recent breakthroughs in deep learning,

machine translation has lately achieved many significant results in natural language

translation, but they rely on the existence of vast parallel data. Many attempts have been

made to extend these accomplishments to low-resource language pairings, but this would

need at least tens of thousands of parallel phrases. The existing learning algorithms reliance

on vast parallel corpora is a key difficulty. Unfortunately, the great majority of language

pairings have very little, if any, parallel data: to make machine translations more generally

applicable, learning methods must better exploit monolingual data. In this thesis, we

propose to extend recent techniques in unsupervised machine learning methods to

preprocess and analyze the source code using clustering approaches before the code

translation process, believing it will help us to improve the accuracy of translation and

gives a better accuracy score using the already available metrics used.

In the next chapter, we present an approach that follows three distinct stages in source-to-

source translation: a preprocessing phase, a code analysis phase, and finally a code

translation phase. After presenting the approach we evaluate it on a number of test cases

and analyze the results.

M.Sc. Thesis – Akila Loganathan McMaster - Computer Science

 27

CHAPTER 3: Technical Approach

This chapter presents a novel approach to program translation that relies on both rule-based

source-to-source translation and unsupervised machine learning. The novel architecture of the

approach distinguishes a preprocessing phase from an analysis phase and a rule-based

translation phase. This separation of concerns has a number of consequences.

• It allows solutions for each phase to be varied with a degree of independence. For

example, it allows us to experiment with different preprocessing approaches without

having to modify (significantly) the source-to-source translation phase.

• It allows us to independently assess the effect of preprocessing on program translation.

Previous work on software migration has largely focused on end-to-end performance

of the program translator/transcompiler, making it challenging to fully assess where

any potential performance bottlenecks may reside. By separating the process into

distinct phases, we can more easily evaluate performance and obtain fine-grained

performance and effectiveness information.

• Validation of the end results is potentially easier as we can take information from

earlier phases (such as preprocessing, analyzing) and use it in constraining what needs

to be evaluated in successive phases.

In general, we are interested in understanding the effect that preprocessing in program

translation can have on the accuracy, efficacy and performance of program translation. Our

hypothesis is that preprocessing of information – particularly clustering of program concepts

– can make the translation and migration process faster, and more accurate, which has

important implications for automating migration for large programs.

M.Sc. Thesis – Akila Loganathan McMaster - Computer Science

 28

More specifically, this chapter presents an approach that follows three distinct phases in code

translation: (i) an unsupervised learning method for preprocessing the source code; (ii) source

code analysis using a code analyzer (i.e., to ensure that the syntactic program structure is

retained in the translated code when compared with the actual input source code); and (iii) rule-

based code translation. The following sections present these phases in detail, with some

emphasis on the first phase.

3.1 Proposed Approach

Figure 3 diagrammatically presents the proposed approach.

Figure 3: Proposed approach separating preprocessing from rule-based translation phase

In this thesis, we are focusing on preprocessing the source code and analyzing the source

code by using unsupervised machine learning techniques (clustering) before code

M.Sc. Thesis – Akila Loganathan McMaster - Computer Science

 29

translation and then using rule-based machine translation (the translation technique based

on rules and structural transfer) for translating code. Later in this chapter we will explicitly

demonstrate the approach on a concrete translation from C++ to Java.

3.2 Preprocessing

Once again, our general problem is source code translation, and our solution involves

decoupling preprocessing from code analysis from code translation. We first discuss the

preprocessing phase, which makes use of unsupervised machine learning techniques. Our

initial observation – which partly motivated our interest in exploring preprocessing – is

that in data analytics, it is commonplace to preprocess data prior to statistical analysis. This

helps to remove unwanted or erroneous data (in a process typically called “data cleaning”),

which consequently allows the user to have a dataset to contain more valuable information.

We hypothesize that this approach may prove to be valuable – in terms of improving quality

– for machine translation of source code, too. In software modernization projects

prioritizing code quality above many other issues has many benefits; arguably, removal of

unwanted or unnecessary code before migration can help in improving code quality [Fabry

et al, 2019]. With this thought, we decided to experiment with a preprocessing step on the

source code before sending it for code translation. In particular, our preprocessor focuses

on removal of unwanted lines of code for the purposes of migration, while also clustering

the language features used in the source program. For example, in the concrete translation

instance presented later in this chapter, and evaluated in detail in Chapter 4, we are

translating the source code from C++ to Java. In such a translation, the header files,

M.Sc. Thesis – Akila Loganathan McMaster - Computer Science

 30

comment lines, and empty lines are not useful in the translation process, and the

preprocessor removes these lines of code before translation.

3.2.1 Choosing Clustering Algorithms

Clustering is a division of data into groups of similar objects. In data analytics and machine

learning, clustering is a task of dividing the data sets into a certain number of clusters in

such a manner that the data points belonging to a cluster have similar characteristics.

Clusters are nothing but the grouping of data points such that the distance between the data

points within the clusters is minimal [Rohit et al, 2017].

An extensive investigation was done to evaluate different clustering algorithms on the

source code written in programming languages like C, C++, Java, Python. For the purposes

of this thesis, we finally chose an open-source software framework, WEKA, the Waikato

Environment for Knowledge Analysis [Frank et al, 2016]. WEKA is public domain open-

source software that provides tools for implementation of several machine learning

algorithms to enable data analytics.

The reasons behind choosing WEKA are as follows.

 It is the most widely used software system for implementing different data clustering

algorithms.

 It is an expressive and full-featured system that makes it straightforward to implement

a wide variety of data clustering algorithm.

 It implements the algorithms that we have chosen to conduct our experiments, and these

algorithms in turn are commonly used in the machine learning community, thus

M.Sc. Thesis – Akila Loganathan McMaster - Computer Science

 31

potentially making it easier to conduct experiments and compare the results against

existing baselines.

In this thesis we have chosen to use the K-Means algorithm to preprocess the source code.

But before arriving at a decision to use K-Means we did some experimental work analyzing

other clustering algorithms to determine which was most likely to provide useful results

for source-to-source translation. Four Clustering algorithms were considered for

experimentation: namely, K-Means clustering, Hierarchical clustering, DBSCAN

clustering, and EM clustering. In the literature review chapter of this thesis, we have briefly

explained these algorithms. The general reason for considering these algorithms is their

widespread use. The chosen clustering algorithms usually work with numerical datasets

and mixed datasets (text and numbers) but doesn’t work well without numerical data

[Manoj et al, 2016]. Therefore, we can’t cluster the source code directly without numbers.

For the purposes of clustering in this thesis we exploit the linguistic information found in

the input source code, namely the use of syntactic language features such as classes,

conditions, loops etc.; for each linguistic feature we assign numerical index values to build

the dataset for each input source code to make it suitable for clustering and we refer to

them as data points. We investigated and did several experiments using those chosen

clustering algorithms on the source code dataset and they are described below.

The processing time for four different algorithms to cluster different source code datasets

is presented below in table 2-4: We experimented with each of these clustering algorithms

(namely Hierarchical, DBSCAN, K-Means and EM) firstly on a source code with 1480

lines. As shown in the experimental results summarized in Table 2, we observed that all

these algorithms effectively clustering the source code, but each was taking different

M.Sc. Thesis – Akila Loganathan McMaster - Computer Science

 32

processing times to return the clustered results. Specifically, DBSCAN returned the

clusters in 305ms, Hierarchical in 534ms, K-Means in 20ms, and EM 3570ms. From these

results we also observe that K-Means clustering takes less processing time compared to

other algorithms. We repeated the experiment and applied the clustering algorithms on a

smaller source code with 158 lines to check the processing time of these algorithm again

and these results are presented in Table 3.

Clustering

Algorithm

Hierarchical

EM DBSCAN K-Means

Number of

Lines

1480 1480 1480 1480

Processing

Time

(Milliseconds)

534 3570 305 20

Number of

lines (After

Preprocessing)

1395 1395 1395 1395

Table 2: Processing time for clustering the source code with 1480 lines.

As we can observe in Table 3, the ranking of the algorithms does not change: we observe

that DBSCAN returned the clusters in 72ms, Hierarchical in 88ms, K-Means in 2ms and

EM in 211ms. We repeated the experiment a final time on an even smaller source code

with 25 lines to check the processing time of these algorithm and the results are presented

in Table 4.

M.Sc. Thesis – Akila Loganathan McMaster - Computer Science

 33

Clustering

Algorithm

Hierarchical

EM DBSCAN K-Means

Number of

Lines

158 158 158 158

Processing

Time

(Milliseconds)

88 211 72 2

Number of

lines (After

Preprocessing)

117 117 117 117

Table 3: Processing time for clustering the source code with 148 lines.

As we can see in Table 4, the ordering does not change once again: the processing times

are: DBSCAN returned the clusters in 74ms, Hierarchical in 53ms, K-Means in 1ms and

EM in 165ms.

Clustering

Algorithm

Hierarchical

EM DBSCAN K-Means

Number of

Lines

25 25 25 25

Processing

Time

(Milliseconds)

53 165 74 1

Number of

lines (After

Preprocessing)

18 18 18 18

Table 4 Processing time for clustering the source code with 25 lines.

M.Sc. Thesis – Akila Loganathan McMaster - Computer Science

 34

By taking processing time factors into account and comparing these algorithms, we

determine that the K-Means algorithm is best suited for the purposes of preprocessing

source code as it has a better processing time when compared to other clustering

algorithms. Thus, we are proposing to use the K-Means clustering algorithm as the basis

for our preprocessing and code analysis phases. But we faced few challenges while using

the general K-Means clustering algorithm hence we modified the K-Means algorithm and

proposed the modified K-means clustering algorithm, which are all explained below in

section 3.2.3. Before we demonstrate how this is done, we first briefly explain the general

K-Means algorithm.

3.2.2 The K-Means Algorithm:

We briefly describe the general working of the K-Means algorithm. K-Means is based on

clustering; clustering is a technique for discovering cluster structure in a data set that is

portrayed by the best similarity within the same cluster and the greatest dissimilarity

between different clusters [Kasthuri et al, 2020]. It is known that the K-Means algorithm

is the oldest and most widely used partitional technique which partitions the dataset into K

clusters based on the similarities of the data where K represents the number of groups.

The K-Means algorithm classifies the data into K different cluster through an iterative

process. The generated clusters of K-Means are independent. The K-Means clustering

algorithm works in two different parts. Firstly, it selects a K-value, where K is the number

of clusters, and we also choose K centroids. Another part is to consider each data point to

the nearest center. After completing the first step then calculate the Euclidean distance

between the data point to K centroids (i.e., the center for each cluster) [Kasthuri et al, 2020].

M.Sc. Thesis – Akila Loganathan McMaster - Computer Science

 35

Then all the data points are used to create some group. This process will continue until the

center of clusters remain unchanged.

The K-Means algorithm is presented below, where in the algorithm

 K - number of clusters.

 D is the data set which contains n data objects.

Step-1: Select K data objects from D and decide the number of clusters and initial cluster

centroids.

Step-2: Calculate the distance between each data object d and all K cluster centers. Assign

data object d to the nearest cluster.

Step-3: For each cluster, recalculate the cluster center.

Step-4: Repeat Step 2 and Step 3 until the center of clusters remains unchanged.

Step-5: Stop when all the data objects have been assigned to clusters and the center of

clusters remains unchanged.

Clustering algorithms in general are used to group similar data points together. Data points

that are similar are assigned a value that represents the average value of all points in that

cluster. If additional data points are collected, they can be compared to the average values

of other clusters and assigned to the closest one [Kasthuri et al, 2020].

M.Sc. Thesis – Akila Loganathan McMaster - Computer Science

 36

Figure 4: K-Means algorithm illustration [Piech et al, 2012]

In Figure 4, the dots represent data points and the x represents centroids; the above example

identifies two clusters. (a) is the original dataset and (b) shows the randomly assigned

centroids. (c - f) shows the process of adjusting the centroids until error is minimized.

3.2.3 Proposed K-Means Clustering Approach

K-Means Clustering is an Unsupervised Learning algorithm, which groups an unlabeled

dataset into different clusters. Here K defines the number of pre-defined clusters that need

to be created in the process; so if K=2, there will be two clusters, and for K=3, there will

be three clusters, and so on. It allows us to cluster the data into different groups and

provides a convenient way to discover the categories of groups in the unlabeled dataset on

https://www.javatpoint.com/unsupervised-machine-learning

M.Sc. Thesis – Akila Loganathan McMaster - Computer Science

 37

its own without the need for any training. The algorithm takes the unlabeled dataset as

input, divides the dataset into K-number of clusters, and repeats the process until it does

not find the best clusters. Generally, the value of K should be predetermined.

The proposed K-Means algorithm in this thesis is built entirely in Java and it works like

the general K-Means algorithm already available but differs in the way of choosing the

centroids. When clustering, the source code has to be grouped, where classes, loops,

functions, conditions, meaningless lines, header files etc., are classified into separate

similar groups. From the source language specifications (i.e., the definitions of C++ and

Java), we will know the maximum divisions the source code will have based on source

language specifications i.e., we know that the source code in a particular language will

have classes, functions, loops, conditions, comment lines, header files etc., and this count

will be the maximum number of clusters a source code will have. But the problem over

here is not all the input source codes we give will have all these divisions mentioned above,

so the number of resulting clusters might differ for different source code input, and we

might have to keep changing the predetermined number of clusters for different inputs

which involves more time and human effort every time. Here the centroid values are chosen

based on the distinct elements in the dataset and if they are less than the maximum divisions

then the remaining centroid values are set to zero hence there is no need to change the

number of clusters every time for different datasets.

Step-1: Take distinct elements in the dataset and choose the cluster centroids.

Step-2: Calculate the distance between each data object d and all K cluster centers.

Step-3: Assign data object d to the nearest cluster.

M.Sc. Thesis – Akila Loganathan McMaster - Computer Science

 38

Step-4: For each cluster j, recalculate the cluster center.

Step-5: Repeat Step 2, 3 and 4 until all the data objects have been assigned to clusters.

With the help of proposed K-Means clustering approach we clustered the source code into

various similar groups and then started preprocessing the source code. The source code

formed into various clusters using proposed K-Means algorithm is now further processed

using the python library Pandas. Pandas is an open-source python library used for data

manipulation and analysis which has its own set of commands for data analysis. Using

Pandas, we process the clustered source code where we can remove any particular cluster

which is not useful for the purposes of migration. While the notion of what clusters are

useful or useless for a specific migration usually strongly depends on the target language,

one can make some general inferences. In particular, for the purposes of translating e.g.,

C++ into Java, the header files, comment lines, empty lines etc., in the source language are

not going to be translated to the target language and therefore we remove these particular

clusters. The clustering table where source code is grouped into clusters is presented in

Figure 6.

The preprocessing step was initially done for two programming languages under the same

family, i.e., object-oriented programming languages, namely C++ and Java; we also chose

these as the source and target languages in the rule-based translation process in order to

demonstrate an end-to-end example. We briefly investigated if the preprocessing phase can

be generalized to other programming languages: the preprocessed code can be taken as

input to any source-to-source translator (not just rule-based translators), and the code

analyzer can be helpful in validation (i.e., to ensure that the syntactic program structure is

M.Sc. Thesis – Akila Loganathan McMaster - Computer Science

 39

retained in the translated code when compared with the actual input source code). As part

of this we built preprocessors for two more languages namely C and Python but did not

investigate their effectiveness or performance any further, as this would have required

building further rule-based translators as well. Nevertheless, constructing such new

preprocessors was not difficult. We discuss further extensions to this in Chapter 5.

As an illustration, considering the following example. The original source code and the

preprocessed source code to find fibonacci numbers is presented in Figure 5. Appendix A

presents the original and preprocessed source code for additional programs respectively.

 Original Source code Preprocessed Source code

//Fibonacci Series using

Recursion

#include<bits/stdc++.h>

using namespace std;

int fib(int n)

{

 if (n <= 1)

 return n;

 return fib(n-1) + fib(n-

2);

}

int main ()

{

 int n = 9;

 cout << fib(n);

 getchar();

 return 0;

}

// This code is contributed

// by Akanksha Rai

int fib(int n)

{

if (n <= 1)

return n;

return fib(n-1) + fib(n-

2);

}

int main ()

{

int n = 9;

cout << fib(n);

getchar();

return 0;

}

Figure 5: C++ Original and Preprocessed source code

M.Sc. Thesis – Akila Loganathan McMaster - Computer Science

 40

As an illustration in Figure 6, we presented the source code to find fibonacci numbers

clustered into various similar groups where header files, functions, conditions etc.,

grouped into a number of similar clusters.

Figure 6: C++ Cluster Analysis: Original source code

 3.3 Code Analyzer

The code analyzer we present in this thesis is built to help us to analyze the source code

based on cluster analysis using the proposed K-Means clustering approach. Specifically, it

takes the clusters provided by the preprocessing and automatically generates lists of

Classes, Functions, Conditions, Loops. In the previous phase, the entire source code is

grouped into clusters and from those clusters we determine the list of Classes, Functions,

Conditions, Loops. The translated code - the output from a translation model - can also be

M.Sc. Thesis – Akila Loganathan McMaster - Computer Science

 41

analyzed in the same way based on cluster analysis. Hence the code analyzer will be useful

in validating the translated code after the code translation (i.e., to ensure that the syntactic

program structure is retained in the translated code when compared with the actual input

source code). Code analysis was initially done for two programming languages namely

C++ and Java and we also chose this as the source and target languages in the translation

process in this thesis. While investigating if the code analyzer phase can be generalized to

other programming languages, as the code analyzer can be helpful in validation (i.e., to

ensure that the syntactic program structure is retained in the translated code when compared

with the actual input source code) we later experimented and built the code analyzer for

two more languages namely C and python but did not investigate their effectiveness or

performance any further. We discuss further extensions to this in Chapter 5.

For example, the source code in C++ and Java are analyzed based on the clusters and the

results are presented in the table 5 – 6. From table 5 we observe that the fibonacci program

in C++ has zero classes, loops, and has one condition and two functions. Similarly in table

6, we observe that the fibonacci program in Java has one class, zero loops, one condition

and two functions.

From table 5, we observe that number of functions, conditions, loops are same in both the

source and translated code and we can see there is a difference in number of classes in C++

and Java code analyzer. We know that in Java, programs are written within a class, hence

if the source language (C++) program doesn’t contain a class, then a new wrapper class is

created in the translation process. While analyzing the translated Java code the class count

will increase to one. Thus, we can conclude that the syntactic program structure is (likely)

retained in translated code (target language) from the code in the source language. In the

M.Sc. Thesis – Akila Loganathan McMaster - Computer Science

 42

same way we can easily understand the code analyzer of all programs. The tables in

appendix B presents the preprocessed and translated code for a few more programs.

File name Number of

classes

Number of

functions

Number of

conditions

Number of

loops

fibonacci.cpp 0 2 1 0

fibonacci.java 1 2 1 0

Table 5: C++ and Java Code Analyzer

3.4 Rule-based Translation using Preprocessed source code

We have come through the preprocessing and code analysis phases. The original source

code has gone through these two phases and now we have a preprocessed and analyzed

source code as input to our rule-based translator. Preprocessing and Code Analysis was

initially done for two programming languages under the same family i.e., C++ and Java.

We also chose this as the source and target languages for the rule-based code translation

phase. Given an input in some source language, a Rule based machine translation (RBMT)

system generates the output in some target language based on morphological syntactic

information and set of rules. In a rule-based machine translation system the input is first

analyzed morphologically and syntactically to obtain the structural information governing

the ordered use of appropriate use words and symbols for writing code in a particular

programming language. This information is then refined to a more abstract level

emphasizing the parts relevant for translation and ignoring other types of information.

M.Sc. Thesis – Akila Loganathan McMaster - Computer Science

 43

In this thesis with respect to the code translator phase we built a rule-based translator to

translate programs from C++ to Java where datatypes, functions, operators, selection

statements, iteration statements, classes, input and output statements, main function are

translated to equivalent in Java, as we were running out of the limited time, we didn’t look

into building more on the translator to handle arrays, vectors, pointers, inheritance in detail

and much more. The overall translation process in this thesis is presented in figure 7.

 Figure 7: Translation Process

The code translator in this thesis follows the transfer-based approach of rule-based

machine translation which works based on the linguistic rules (i.e., the language rules)

M.Sc. Thesis – Akila Loganathan McMaster - Computer Science

 44

defined by human experts. The translator takes input in a source language and transfers it

to the target language based on linguistic rules.

To begin with the translation, we have the preprocessed and analyzed source code as input

to the translator. We analyze the source language input into a transfer structure which

abstract away many of the grammatical details of the source language. After analysis, the

source language structure is transferred into a corresponding target language structure

using the rules defined by humans through extensive string matching with some

rearrangement of the target string for conformance with the target language structure. A

few rules to translate parts of the program from C++ to Java is presented shortly.

The rule-based translator also handles C++ programs without class structure and wraps

them in a nominal class using the filename when translated to Java. More specifically, we

calculate the class count of source program from code analyzer and if the class count is

zero then we take the filename (Fibonacci.cpp) and spilt it using “.”, store it in string array

and take the first index of that string array (Fibonacci) and store it under that classname to

create a class. The result is that even C++ programs without class and object structures can

be translated using this approach.

For instance, the rule to create a class while converting C++ programs without class

structure to Java is below:

if(classcnt<=0)

{

 out.println("class "+classname);

 out.println("{");

}

M.Sc. Thesis – Akila Loganathan McMaster - Computer Science

 45

The standard input and output statements in C++ are converted to Java through string

matching, where we rearrange the target string. As another example, the rule to convert an

output statement in C++ to Java is as below:

if(ac.contains("cout<<"))

{

ac=ac.replaceAll("cout<<","System.out.println(").replac

eAll("<<", "+");

ac=ac.substring(0,ac.length()-1)+");";

System.out.println("Print Here="+ac);

}

The main function in C++ is converted to Java through string matching where we rearrange

the target string. As a third example, the rule to convert the main function in C++ to Java:

if(ac.contains("main")&&ac.contains("(")&&ac.endsWith(")")||ac

.contains("main")&&ac.contains("(")&&ac.endsWith("{"))

 {

 ac="public static void main(String args[])";

 }

Through extensive string-matching other parts of the source code is also translated from

C++ to Java. Thus, based on the rules the preprocessed source code (C++) given as input

to the code translator is then translated to the target language (Java). The translated code is

stored separately as machine translated code and it is also analyzed using the code analyzer

to ensure that the syntactic program structure is retained in the translated code when

compared with the actual input source code.

As an illustration, the actual preprocessed input in the source language and the translated

code in the target language using the code translator in this thesis is presented in Fig 8. The

figures in appendix C presents the preprocessed and translated code for a few more

programs.

M.Sc. Thesis – Akila Loganathan McMaster - Computer Science

 46

 Preprocessed input code Translated code

int fib(int n)

{

if (n <= 1)

return n;

return fib(n-1) +

fib(n-2);

}

int main ()

{

int n = 9;

cout << fib(n);

getchar();

return 0;

}

class fibonacci

{

int fib(int n)

{

if (n <= 1)

return n;

return fib(n-1) + fib(n-2);

}

public static void

main(String args[])

{

int n = 9;

System.out.println(fib(n));

getchar();

}

}

Figure 8: Original and Translated Code

3.5 Summary

The technical implementation of the proposed translation approach for translating from

C++ to Java was discussed in this chapter. The setup, gathering data to create test set,

evaluating translations produced by the proposed approach, and comparison of the

proposed approach with alternative approaches, is to be discussed in the next chapter.

M.Sc. Thesis – Akila Loganathan McMaster - Computer Science

 47

CHAPTER 4: Results

In the previous chapters, we have presented an approach to source-to-source code translation

comprising a preprocessing phase (supported by a K-Means clustering approach), a code

analysis engine that supports different aspects of validation, and a rule-based machine

translator for mapping elements of the source program to elements of the target program. This

was described first generically, and then with a specific example of rule-based translation from

C++ to Java presented in the last chapter.

In this chapter, we evaluate the approach we presented in Chapter 3. We execute it against

number of examples and measure the results based on a selection of metrics – metrics that are

standard in the machine learning community. As part of this evaluation, we produce a set of

parallel test data suitable for assessing such translations.

We carry out the evaluation as follows. Firstly, we describe the data used, the set-up for the

experiments, and the process of gathering of data. Then we describe the generation and analysis

of the results. As part of the analysis of results, we compare the approach presented in Chapter

3 against an alternative (commercial and proprietary) translation solution. We also evaluate the

effectiveness of the translator both with and without the preprocessing step, in order to more

precisely understand the effect of the preprocessor on the translation.

4.1. Setup

The proposed translation approach has been implemented as a web application (as it can be

accessed from anywhere without any system requirement issues) in the form of a set of Java

server pages which runs on Tomcat server; these were developed using the Eclipse Integrated

M.Sc. Thesis – Akila Loganathan McMaster - Computer Science

 48

Development Environment and exploited a number of existing Java and Apache libraries,

specifically Java string similarity and Apache text similarity, for computing translation

accuracy scores. The approach makes use of a number of clustering algorithms to support

preprocessing. Each clustering algorithm described in this thesis was implemented in eclipse

on using the Waikato Environment for Knowledge Analysis (WEKA) library. WEKA is an

open-source framework that implements a collection of machine learning algorithms for data

analysis tasks. It is available free-for-use under GPL (General Public License). However, the

proposed K-Means algorithm, on which our thesis relies, is implemented directly in Java by

the author.

As our evaluation relies on high-quality data (in our case – programs with source code), we

require support for data cleaning and transformation. To facilitate this from an architectural

point of view, we make use of two frameworks. The first of these is Jupyter Notebooks, an

open-source web application that is used for data cleaning and transformation, numerical

simulation, statistical modeling, machine learning and much more. In addition to Jupyter

notebooks, we use an open-source Python library called Pandas. Pandas is one of the tools in

Machine Learning which is used for data analysis. It has features which are used for exploring,

cleaning, and transforming the data. Hence Jupyter notebook and Pandas library was used to

preprocess (clean) the source code dataset. We export the clustered source code into an Excel

file from our web application that runs on Tomcat server, and then further process it using a

set of commands provided by Pandas library in the Jupyter notebook. We then export and use

this preprocessed file for code translation.

The following subsections explain the results, comparison and evaluation of our approach and

the future work.

M.Sc. Thesis – Akila Loganathan McMaster - Computer Science

 49

4.2. Gathering Data

In this section we explain the data collection process for our experiments. We intended to

evaluate our source-to-source translation approach on a concrete translation from C++ to Java.

As such, we needed a corpus of equivalent C++ and Java programs that could be used.

GeeksforGeeks is a platform for searching useful articles related to computer science and

programming languages. It includes many coding problems and presents solutions in several

programming languages in a well-explained and well-written manner. From the

GeeksforGeeks repository, we extracted a set of programs in C++ and Java, to create test sets.

We particularly wanted programs that would (a) exercise the full extent of our preprocessor,

code analyzer and the rule-based translator in terms of coverage of language features; and (b)

offered complexity in program logic to challenge the preprocessor and translator.

We have built a concrete rule-based translator to translate programs from C++ to Java where

datatypes, functions, operators, selection statements, iteration statements, classes, input and

output statements, main function are translated to their equivalents in Java. Due to limited time,

we excluded further features from the translator, particularly arrays, vectors, pointers,

inheritance. Nevertheless, in Chapter 5 we comment on extension of the translator to these

further features. Hence, we extracted programs from GeeksforGeeks which made use of the

supported language features listed above, and created the test sets to evaluate our translation

approach.

In Figure 9, we show an example of C++ and Java source code to find fibonacci numbers,

extracted from GeeksforGeeks.

M.Sc. Thesis – Akila Loganathan McMaster - Computer Science

 50

 C++ Java

//Fibonacci Series using

Recursion

#include<bits/stdc++.h>

using namespace std;

int fib(int n)

{

 if (n <= 1)

 return n;

 return fib(n-1)

+fib(n-2);

}

int main ()

{

 int n = 9;

 cout << fib(n);

 getchar();

 return 0;

}

// This code is contributed

// by Akanksha Rai

Figure 9: Example of parallel implementation of programs from our test set. We extracted a

corpus of programs from GeeksforGeeks to create test sets. Here, we have the implementations

of the same program in both C++, Java which determines whether a given number is Fibonacci.

4.3 Evaluation

As presented in Chapter 3, we firstly preprocess and analyze the input source code and then

send it for rule-based translation. The translated code from our approach will be referred to as

Machine Translated (MT) code; it is stored separately for every program in the test set. We

will be referring to the Java code stored from GeeksforGeeks as Human Translated (HT) code.

//Fibonacci Series using

Recursion

class fibonacci

{

 static int fib(int n)

 {

 if (n <= 1)

 return n;

 return fib(n-1)

+ fib(n-2);

 }

 public static void

main (String args[])

 {

 int n = 9;

 System.out.println(fi

b(n));

 }

}

/* This code is

contributed by Rajat

Mishra */

M.Sc. Thesis – Akila Loganathan McMaster - Computer Science

 51

We will be evaluating the translation approach by computing the accuracy scores of

translations. In the past, to evaluate the performance of Machine translation researchers made

use of human evaluation, by placing the original sentence with its machine translation side-by-

side and human experts in both source and target languages rate the accuracy of translations;

of course, this is expensive and time-consuming. More recently, approaches have been

introduced to automatically evaluate the machine translations using human generated

translations, and we make use of one of these.

A key question is how to actually compare the human translated and machine translated code.

One approach would be to take differences of the two (e.g., using Git’s diff tool) and if the

difference is in some syntactic way minimal (e.g., using tree and string matching), claim that

the two programs are syntactically identical. This approach, while feasible, does require some

expensive calculations of syntax trees and tree differences, which can take a great deal of time

for larger programs. The typical approach taken in the source code translation literature uses

the Bilingual Evaluation Understudy Score (BLEU) to evaluate the quality of generated source

code [Hindel et al 2015, Barone et al 2017, Vechev et al 2014, Pharaoh et al 2004]. The BLEU

score compares the machine translation and human translation and gives an accuracy score.

For example, below is the machine translation and human translations of a sentence.

Machine translated 1: It is a guide to action which ensures that the military always obeys the

commands of the party.

Machine translated 2: It is to ensure the troops forever hearing the activity guidebook that

party direct.

M.Sc. Thesis – Akila Loganathan McMaster - Computer Science

 52

Human translated: It is a guide to action that ensures that the military will forever heed Party

commands.

Now, we compare the Machine translated 1 and Machine translated 2 separately with Human

translated sentence. An automatic evaluation will rank Machine translated 1 higher than

Machine translated 2 by comparing matches of words between each machine translation and

the human translation. When the matches are high the scores will be high.

The BLEU score compares the text in translated code to one or more reference translations line

by line. This score might be misleading because the generated code might be a readable or

good translation despite syntactic or layout differences from the reference: the text in translated

code and the reference code might differ by extra spaces and even empty lines. Since the

comparison takes place line by line (i.e., line 1 in translated code is compared to the line 1 in

reference code and so on) if line 1 is empty in either of the translated code or reference code

the BLEU score for that line will be very low and this will in turn affect the score of all other

lines. To overcome this, using clustering within the preprocessing step, we cluster the source

code into similar groups and then remove any particular cluster which contains unnecessary

lines: comment lines, empty lines, header files from the Human Translated code and Machine

translated code.

Once preprocessed, the two programs can be compared on a purely syntactic basis. We do this

using two metrics. The first is the BLEU score, which we described earlier. The second metric

we use is the Jaccard similarity score, which is a similarity metric that helps to assess the

performance of machine translations [Baghel et al, 2019], by computing similarity between the

translated code and the reference code [Mageed et al, 2020]. The Jaccard similarity measures

the similarity between two text documents (for instance: A and B) by taking the intersection

M.Sc. Thesis – Akila Loganathan McMaster - Computer Science

 53

of both and dividing it by their union i.e., dividing the number of words in common in the two

documents (their intersection) by the union of words in the two documents. For instance:

A: She likes mango lassi and mango juice.

B: She likes mango.

Now, we will calculate the intersection and union of these two sets of words and measure

the Jaccard similarity between A and B as below:

J (A, B) = |A ∩ B|

 |A ∪ B|

Using the above formula, the Jaccard score of the two sentences A and B is calculated as

follows:

 J (A, B) = {she, likes, mango, lassi, and, mango, juice} ∩ {she, likes, mango}

 {she, likes, mango, lassi, and, mango, juice} ∪ {she, likes, mango}

 J (A, B) = {she, likes, mango}

 {she, likes, mango, lassi, and, mango, juice}

 J (A, B) = 3 / 7 = 0.428 = 42.8%

The Jaccard score for the above example with two sentences A and B is 42.8%. Similarly,

the Jaccard score is calculated for the programs in our test.

Table 7 summarizes the BLEU and Jaccard similarity baseline score of our translation

approach on our test set with preprocessed input source code. We noted the BLEU and Jaccard

M.Sc. Thesis – Akila Loganathan McMaster - Computer Science

 54

scores of our translation approach for all the programs in our test with preprocessed input

source code and derived the baseline score for our translation approach. Baseline score acts

like a reference score i.e., we calculate the baseline score of our proposed approach and if any

of the other approaches chosen for comparison achieves a score higher than the baseline of our

proposed approach, then that approach is better than ours. We calculate the baseline score by

taking the mean and standard deviation of all the scores, calculate the standard error by dividing

the standard deviation with the square root of the number of datapoints, multiply the standard

error by two and add it to the mean and this value is the baseline score. The individual BLEU

and Jaccard scores of our translation approach for programs in our test set is presented in Table

1 in appendix D.

Baseline C++ → Java

BLEU score 77.89%

Jaccard similarity score 81.34%

Table 6: Scores with Preprocessed input

The BLEU and Jaccard similarity scores range from 0-100. From our interpretation after an

extensive investigation, we observed that the BLEU scores greater than 50 describes the

translations as good high-quality translations and less than 20 as hard to understand and

requires high level editing to finalize the translations, which is also supported by the literature

[Lavie et al, 2019]. Whereas the higher the Jaccard similarity score means the machine

M.Sc. Thesis – Akila Loganathan McMaster - Computer Science

 55

translated code is more similar to the human translated code. Our score values are not 100

because they are not same as the human translated code, and they are only similar to the human

translated code to an extent which is good and understandable. Thus, from table 6 we conclude

that our translation approach produces good translations that is readable and understandable

for all the programs in our test set. We will compare the baseline score of our translation

approach with the baseline scores of the existing approach and our translation approach

excluding preprocessing in the next sections to evaluate the efficiency of our translation

approach.

Apart from the above-mentioned metrics used to evaluate the translation, in this thesis we have

a code analyzer built earlier based on the cluster analysis to analyze the source code for number

of functions, loops, conditions, classes. Using the code analyzer, we can analyze the translated

code and actual input source code and compare these both to validate i.e., to ensure the

syntactic program structure is retained in the translated code from the actual input code. Tables

in appendix A presents the analysis of input source code and translated code for programs in

our test set in both source language (C++) and target language (Java), respectively.

4.4 Comparison with alternative approaches

In this section, we compare our translation approach with alternative approaches. We will do

the evaluation in two ways: by comparison against a commercial translation; and by evaluating

performance with and without the preprocessor. The comparison is done in the next section.

We attempt to show that we can obtain the better accuracy results by placing a preprocessing

step before translation and by excluding the preprocessing step we attempt to present the results

M.Sc. Thesis – Akila Loganathan McMaster - Computer Science

 56

which show lower accuracy scores. We also compare our translation approach with results

produced by the commercial Tangible Software Solutions converter (for C++ to Java); as

discussed in Chapter 2, the Tangible approach is also rule-based, where the rules are written

by human experts. Comparison with the output of Tangible’s software allows us to both assess

accuracy as well as performance in contrast to commercial offerings. We chose Tangible’s

software for comparison because it is a rule-based translator and it also has a free edition which

can be executed as black-box.

We created a test set earlier to evaluate our translation approach with preprocessing step.

Again, we use the same test set to compute the BLEU and Jaccard scores by testing the

programs using the Tangible software solutions C++ to Java converter. We compare the code

translated by Tangible with Human Translated code compute the BLEU score and Jaccard

similarity score accordingly. The table with BLEU and Jaccard similarity baseline scores for

Tangible software solutions converter is presented in table 7.

Baseline C++ → Java

BLEU score 33.24%

Jaccard similarity score 59.96%

Table 7: Baseline Scores of existing approach

From the above table, we note that the baseline BLEU score is 33.24% and the Jaccard score

is 59.96% for the Tangible solutions C++ to Java converter.

M.Sc. Thesis – Akila Loganathan McMaster - Computer Science

 57

In table 8 the baseline BLEU and Jaccard scores of our translation approach but excluding

preprocessing is presented.

Baseline C++ → Java

BLEU score 37.39%

Jaccard similarity score 41.26%

Table 8: Baseline Scores of our translation approach excluding preprocessing

From the above table, we note that the baseline BLEU score is 37.39% and the Jaccard score

is 41.26% for the Tangible solutions C++ to Java converter.

Now, we compare the scores of our translation approach with preprocessing, our translation

approach excluding preprocessing, and Tangible’s C++ to Java converter. The table with the

comparison of BLEU and Jaccard similarity scores of these approaches is presented in Table

9. The individual BLEU and Jaccard scores for programs in our test set is presented in Table

2 in appendix D.

Translation Approach BLEU Score Jaccard Score

 With Preprocessing 77.89% 81.34%

Tangible 33.24% 59.96%

Without Preprocessing 37.39% 41.26%

Table 9: Comparison of proposed and existing approach accuracy scores

M.Sc. Thesis – Akila Loganathan McMaster - Computer Science

 58

From Table 9, we observe that our proposed translation approach with preprocessed input

outperforms the baselines of existing approach and our translation approach excluding

preprocessing in terms of accuracy with 77.89% and 81.34% compared to the scores 33.24%

and 59.96% of the existing approach and 37.39% and 41.26% of our translation approach

excluding preprocessing. The proposed translation approach outperforms the baselines of the

existing approach by a BLEU score value of 44.65%, Jaccard score value of 21.38% and our

translation approach excluding preprocessing by a BLEU score value of 40.5%, Jaccard score

value of 40.08%. Thus, we conclude that the performance of our translation approach with

preprocessing is high compared to the alternative approaches.

4.5 Threats to validity

There are several threats to validity that apply to the experiments that we have carried out. We

summarize these briefly.

 Only one full translation from C++ to Java was studied empirically. More studies on

other programming language translations using the proposed approach would provide

more data, but we decided to focus on one concrete source-to-source translation in

depth rather than several in breadth. It is also expensive to build rule-based translators.

As a result, we have thorough empirical data for that one translation. We leave it to

future work to look at other programming langue translations using the proposed

approach. We should point out that the architecture of our technical solution allows

modular decomposition, and as such replacing our C++ to Java rule-based translator

with another can be done following a systematic process.

M.Sc. Thesis – Akila Loganathan McMaster - Computer Science

 59

 A relatively limited corpus of examples was used for experiments. More examples

would obviously be better, but we were limited in terms of time (we had to build

infrastructure as well). The empirical results show our translation approach is

promising, certainly nothing in the results suggests that it is unnecessary or invalid to

use unsupervised machine learning methods for preprocessing or preprocessing itself

for source code translation.

4.6 Summary:

In this chapter we have seen the simulation setup for our experiments, how we gathered data

from open sources for experiments and tests of our translation approach. Evaluating our

translation approach using the BLEU and Jaccard metrics, comparing our translation approach

with the alternative existing approach and we also compared our translation approach by

excluding the preprocessing step (i.e., without preprocessing the input source code). By

observing the accuracy scores and comparing it against each other here we conclude that our

overall translation approach with a preprocessing step before translation has better accuracy

results.

M.Sc. Thesis – Akila Loganathan McMaster - Computer Science

 60

CHAPTER 5: Conclusions and Future Work

5.1 Summary

In this thesis, a novel approach to preprocess and analyze source code using unsupervised

machine learning method (via K-Means clustering) prior to rule-based code translation was

proposed. To contextualize our approach, we demonstrated its application as part of an end-to-

end source code translation approach with three phases: preprocessing using K-Means

clustering, code analysis, and rule-based code translation. The outputs for each phase were

presented, and the overall performance and accuracy of the translation was evaluated.

The novelty of the work was specifically in decoupling preprocessing from rule-based

translation and code analysis, and in a detailed evaluation of the use of K-Means to efficiently

cluster the input source code; the latter specifically is designed to help in preprocessing and

analyzing the source code prior to rule-based code translation. By using this preprocessing step

prior to translation, all the unnecessary lines from the source code were removed which in turn

helped in improving the accuracy of code translations, as demonstrated in the evaluation.

Our overall translation approach is fully demonstrated for translating programs from C++ to

Java, but we also tried partial experiments investigating whether the first two phases (namely

preprocessing and code analysis) can be applied to other programming languages; we

constructed proof-of-concepts for this for the Python and C languages, but didn’t investigate

this in depth (i.e., we didn’t build rule-based translators involving Python or C) as we had

limited time. Our conclusion is that preprocessing has a net positive effect on code translation,

as demonstrated in our evaluation, particularly through the accuracy and performance scores

M.Sc. Thesis – Akila Loganathan McMaster - Computer Science

 61

in Chapter 5. Our proposed translation approach very significantly outperforms alternative

existing approaches, including an entirely rule-based translation approach.

5.2 Future Work

In this thesis we focused only on translating source code from C++ to Java in an end-to-end

translations, and analyzed the results. The results suggest that it is valuable to carry out

preprocessing prior to rule-based code translation; it is evident from the results that

preprocessing improves the accuracy scores of translations. We briefly investigated if the

preprocessing phase and code analyzer can be generalized to other programming languages

and as a part of this, we built preprocessors and analyzers for two more languages namely C

and Python but did not investigate their effectiveness or performance any further, as this would

have required building further rule-based translators as well. As such, an important part of

future work is to carry out further studies on these other programming languages. Building the

preprocessors and analyzers for any programming language following our approach is not

difficult and it can be done by systematically following the source language specifications. The

preprocessor could be coupled with any translator to translate programs. We can either build

new rule-based translators or find translators that are already available to test and know the

effects of preprocessing in accuracy of translations.

As one of our contributions, we produced a set of test data, derived from GeeksforGeeks, to be

used in our experiments. This test set could be enhanced with more diverse programs. It would

be interesting to run an experiment where developers were given, e.g., C++ programs and

asked to hand-translate them to Java, or were given requirements and asked to produce C++

and Java implementations, where the Java implementations could then be compared against

the C++ versions. By carrying out the experiments under controlled conditions (where

M.Sc. Thesis – Akila Loganathan McMaster - Computer Science

 62

developer experience and familiarity with the requirements could be managed), we could

produce additional quality data for testing.

The experiments focused on evaluating accuracy of the translation and the performance of the

translator. There may be other properties that could be considered for study. Accuracy of the

translation is really focused on syntactic equivalence. Another property to explore might be

timing preservation: if the C++ program demonstrates particular timing characteristics (e.g.,

worst case timing performance on critical functions), can we demonstrate that the Java program

demonstrates equivalent timing characteristics? Or timing behaviour that is at least as

performant as the original?

This thesis made an argument for the use of K-Means for clustering in the preprocessor. We

did investigate other clustering algorithms in Chapter 3, but showed that K-Means offered the

best performance in this context. It may be interesting to explore other algorithms in more

detail to dig into the relationship between preprocessing and rule-based translation further.

Finally, we would seek to extend the preprocessor to identify further clusters relevant to the

source language under investigation, so that further forms of preprocessing could be supported.

Two obvious candidates are inlined functions, which could form their own cluster; and macro

instantiation, which would be relevant to languages like C++ or C. Indeed, a preprocessing

may be the most appropriate way to translate programs in C++ or C that make use of macros,

into a language like Java that does not support them.

M.Sc. Thesis – Akila Loganathan McMaster - Computer Science

 63

References

1. Gerasimou, S., Kolovos, D., Paige, R., & Standish, M. (2018). Technical Obsolescence

Management Strategies for Safety-Related Software for Airborne Systems. Software

Technologies: Applications and Foundations, 385–393. https://doi.org/10.1007/978-3-

319-74730-9_34

2. Nguyen, A. T., Nguyen, T. T., & Nguyen, T. N. (2013). Lexical statistical machine

translation for language migration. Proceedings of the 2013 9th Joint Meeting on

Foundations of Software Engineering - ESEC/FSE.

https://doi.org/10.1145/2491411.2494584

3. Philipp Koehn, Hieu Hoang, Alexandra Constantin, and Evan Herbst. Moses (2007). Open-

source toolkit for statistical machine translation. In Annual Meeting of the Association for

Computational Linguistics (ACL).

4. Cheng Fu, Xinyun Chen, Yuandong Tian, (2019), An end-to-end neural program

decompiler. In Advances in Neural Information Processing Systems, pages 3703–3714,

2019.

5. Banbara, M., & Tamura, N. (2000). Translating a Linear Logic Programming Language

into Java. Electronic Notes in Theoretical Computer Science, 30(3), 20–45.

https://doi.org/10.1016/s1571-0661(05)80111-2

6. Software Migration Planning. Smartsheet. (n.d.). https://www.smartsheet.com/all-about-

software-migration-planning. Last retrieved June 13, 2021.

7. Xinyun Chen, Chang Liu, and Dawn Song (2018). Tree-to-tree neural networks for

program translation. In Advances in neural information processing systems, pages 2547–

2557, 2018.

M.Sc. Thesis – Akila Loganathan McMaster - Computer Science

 64

8. Lachaux, M. A., Roziere, B., Chanussot, L., & Lample, G. (2020). Unsupervised

translation of programming languages.

9. Fleurey, F., Breton, E., Baudry, B., Nicolas, A., & Jezequel, J. M. (2007). Model-driven

engineering for software migration in a large industrial context.

https://doi.org/10.1007/978-3-540-75209-7_33

10. Shoaib, M., Ishaq, A., Ahmad, M. A., Talib, S., Mustafa, G., & Ahmed, A. (2017).

Software migration frameworks for software system solutions: A systematic literature

review. https://doi.org/10.14569/IJACSA.2017.081126

11. Candel, C. J. F., Molina, J. G., Ruiz, F. J. B., Barceló, J. R. H., Ruiz, D. S., & Viera, B. J.

C. (2019). Developing a model-driven reengineering approach for migrating PL/SQL

triggers to Java: A practical experience. https://doi.org/10.1016/j.jss.2019.01.068

12. Fabry, J., & Zaytsev, V. (2019). Qualify first! a large-scale modernisation report.

https://doi.org/10.1109/SANER.2019.8668006

13. Vavrova, N., & Zaytsev, V. (2017). Does Python smell like Java? Tool support for design

defect discovery in Python. https://doi.org/10.22152/programming-journal.org/2017/1/11

14. John, T., Bijimol, T. (2014). A study of machine translation methods.

https://doi.org/10.1.1.840.3069

15. Eibe Frank, Mark A. Hall, and Ian H. Witten (2016). The WEKA Workbench. Online

Appendix for Data Mining: Practical Machine Learning Tools and Techniques.

16. Oda, Y., Fudaba, H., Neubig, G., Hata, H., Sakti, S., Toda, T., & Nakamura, S. (2015).

Learning to generate pseudo-code from source code using statistical machine translation.

https://doi.org/10.1109/ASE.2015.36

https://doi.org/10.1007/978-3-540-75209-7_33
http://dx.doi.org/10.14569/IJACSA.2017.081126
https://doi.org/10.1016/j.jss.2019.01.068
http://dx.doi.org/10.1109/SANER.2019.8668006
https://doi.org/10.22152/programming-journal.org/2017/1/11
https://doi.org/10.1.1.840.3069

M.Sc. Thesis – Akila Loganathan McMaster - Computer Science

 65

17. Daniel, R., Antonio, S., Jose, L. (2012). A Systematic Approach to the Implementation of

Attribute Grammars with Conventional Compiler Construction Tools.

https://doi/org/10.2298/CSIS111223022R

18. Qiu, L. (1999). Programming language translation. Cornell University.

http://techreports.library.cornell.edu:8081/Dienst/UI/1.0/Display/cul.cs/TR99-1746

19. Papineni, K., Roukos, S., Ward, T., & Zhu, W. J. (2002). BLEU: a method for automatic

evaluation of machine translation. https://doi/org/ 10.3115/1073083.1073135

20. Irons, E. T. (1961). A syntax directed compiler for ALGOL 60. Communications of the

ACM. https://doi.org/10.1145/366062.366083

21. Yamada, Kenji. (2006). A Syntax-based Statistical Translation Model.

https://aclanthology.org/P01-1067

22. Sanatan, M. (2017). Unsupervised Machine Learning and Data Clustering

Analysis. Medium. Last retrieved July 29, 2021.

23. Knight, K. (2006). SPMT: Statistical Machine Translation with Syntactified target

language phrases. https://aclanthology.org/W06-1606

24. Gerald, P. (2012). Computational Linguistics. https://doi/org/ 10.1016/B978-0-444-51747-

0.50005-6

25. Quirk, C. (2005). Dependency treelet translation: Syntactically informed phrasal SMT.

https://doi/org/ 10.3115/1219840.1219874

26. Cowan, B. (2006). A Discriminative Model for Tree-to-Tree Translation. https://doi/org/

10.3115/1610075.1610110

27. Shofner, K. (n.d.). Statistical Vs. Neural Machine Translation. United Language Group.

https://www.unitedlanguagegroup.com//statistical-vs-neural-machine-translation. Last

retrieved on June 5, 2021.

http://dx.doi.org/10.2298/CSIS111223022R
http://techreports.library.cornell.edu:8081/Dienst/UI/1.0/Display/cul.cs/TR99-1746
http://dx.doi.org/10.3115/1073083.1073135
https://aclanthology.org/P01-1067
https://aclanthology.org/W06-1606
https://doi.org/10.1016/B978-0-444-51747-0.50005-6
https://doi.org/10.1016/B978-0-444-51747-0.50005-6
http://dx.doi.org/10.3115/1219840.1219874
http://dx.doi.org/10.3115/1610075.1610110

M.Sc. Thesis – Akila Loganathan McMaster - Computer Science

 66

28. Gecseg and M. Steinby. (1984). Tree Automata. https://arxiv.org/abs/1509.06233

29. Ott, M., Conneau, A., & Denoyer, L. (2018). Phrase-Based & Neural Unsupervised

Machine Translation. https://arxiv.org/abs/1804.07755

30. Kasthuri, R., Indani, Y., & Rahul. (2020). Understanding K-means Clustering.

https://www.edureka.co/k-means-clustering/. Last retrieved on May 25, 2021.

31. Joshi, A., & Knight, K. (2006). Statistical Syntax-Directed Translation with Extended

Domain of Locality. https://aclanthology.org/2006.amta-papers.8

32. Barone, A. V. M., & Sennrich, R. (2017). A parallel corpus of Python functions and

documentation strings for automated code documentation and code generation.

https://arxiv.org/abs/1707.02275

33. Marc, M. (2004). Lecture 5: Compiler Theory: Syntax-directed translations.

https://www.csd.uwo.ca/~mmorenom/CS447/Lectures

34. Aho, A. V., & Ullman, J. D. (2007). Properties of syntax directed translations.

https://doi.org/10.1016/S0022-0000(69)80018-8

35. Pyster, A., William, B. (1978). Semantic syntax-directed translation. https://doi/org/

10.1016/S0019-9958(78)90344-3

36. Bragagnolo, S., & Derras, M. (2021). Software Migration: A Theoretical Framework.

https://hal.inria.fr/hal-03171124/

37. Chiang, D. (2010). Learning to translate with source and target syntax.

https://aclanthology.org/P10-1146.pdf

38. Sam, Y. Neural Machine Translation & How does it work? TranslateFX. (n.d.).

https://www.translatefx.com/neural-machine-translation-engine. Last retrieved June 6,

2021.

https://aclanthology.org/2006.amta-papers.8
https://arxiv.org/abs/1707.02275
https://doi.org/10.1016/S0022-0000(69)80018-8
https://doi.org/10.1016/S0019-9958(78)90344-3
https://hal.inria.fr/hal-03171124/

M.Sc. Thesis – Akila Loganathan McMaster - Computer Science

 67

39. Svetoslav Karaivanov, Veselin Raychev, and Martin Vechev, (2014). Phrase-based

statistical translation of programming languages. https://doi/org/ 10.1007/3-540-45751-

8_2.

40. Lavie, A. (2019). Evaluating the Output of Machine Translation Systems.

https://www.cs.cmu.edu/~alavie/Presentations/MT-Evaluation-MT-Summit-Tutorial-

19Sep11.pdf

41. Manoj, S., Avli, S. (2016). Using Categorical Attributes for Clustering. International

Journal of Scientific Engineering and Applied Science – Volume-2, Issue-2

42. Karan Aggarwal, Mohammad Salameh, and Abram Hindle, (2015). Using machine

translation for converting python 2 to python 3 code. https://doi/org/

10.7287/PEERJ.PREPRINTS.1459V1

43. Ranzato, M., Lample, G. (2017). Unsupervised machine translation using monolingual

corpora only. https://arxiv.org/pdf/1711.00043

44. SYSTRAN. (n.d.). https://www.systransoft.com/systran/translation-technology/what-is-

machine-translation/. Last retrieved May 12, 2021.

45. Thain, D. (2020). Introduction to compilers and language design.

https://www3.nd.edu/~dthain/compilerbook/compilerbook.pdf

46. Dave, S., Parikh, J., & Bhattacharyya, P. (2001). Interlingua-based English–Hindi machine

translation and language divergence. Machine Translation, 16(4), 251-304.

47. Lehman, M. M. (1979). On understanding laws, evolution, and conservation in the large-

program life cycle. https://doi.org/10.1016/0164-1212(79)90022-0

48. Chris Laffra. C2J, a C++ to Java translator.

https://sep.stanford.edu/oldstep/matt/jest/C2j/c2j.html. Last retrieved July 10, 2021.

http://dx.doi.org/10.1007/3-540-45751-8_2
http://dx.doi.org/10.1007/3-540-45751-8_2
https://www.cs.cmu.edu/~alavie/Presentations/MT-Evaluation-MT-Summit-Tutorial-19Sep11.pdf
https://www.cs.cmu.edu/~alavie/Presentations/MT-Evaluation-MT-Summit-Tutorial-19Sep11.pdf
http://dx.doi.org/10.7287/PEERJ.PREPRINTS.1459V1
https://sep.stanford.edu/oldstep/matt/jest/C2j/c2j.html

M.Sc. Thesis – Akila Loganathan McMaster - Computer Science

 68

49. Tangible. C++ to Java converter [Computer Software] free edition.

https://www.tangiblesoftwaresolutions.com/. Last retrieved April 10, 2021.

50. Ram, A., Jalal, S., Jalal, A. S., & Kumar, M. (2010). A Density Based Algorithm for

Discovering Density Varied Clusters in Large Spatial Databases. International Journal of

Computer Applications, 3(6), 1–4. https://doi.org/10.5120/739-1038

51. Langford, J., & Kavka, C. (2011). Expectation Maximization Clustering. 382–383.

https://doi.org/10.1007/978-0-387-30164-8_289

52. Mageed, M., Adebara, I., Nagoudi, E.M.B. (2020). Translating Similar Languages: Role

of Mutual Intelligibility in Multilingual Transformers. https://arxiv.org/pdf/2011.05037

53. Baghel, A. S., Malik, P. (2019). Performance Enhancement of Machine Translation

Evaluation Systems for English – Hindi Language Pair. https://doi/org/

10.5815/ijmecs.2019.02.06

https://www.tangiblesoftwaresolutions.com/

M.Sc. Thesis – Akila Loganathan McMaster - Computer Science

 69

A. Original and Preprocessed source code:

 Original Source code Preprocessed Source code

// C++ Program to find the area

// of triangle

#include <bits/stdc++.h>

using namespace std;

float findArea(float a, float

b,float c)

{

 // Length of sides must be

positive

 // and sum of any two

sides

 // must be smaller than

third side.

 if (a < 0 || b < 0 || c <

0 ||(a + b <= c) || a + c <= b

||b + c <= a)

 {

cout << "Not a valid trianglen";

 exit(0);

 }

 float s = (a + b + c) / 2;

 return sqrt(s * (s - a) *

 (s - b) * (s - c));

}

// Driver Code

int main()

{

 float a = 3.0;

 float b = 4.0;

 float c = 5.0;

cout << "Area is " <<findArea(a,

b, c);

 return 0;

}

// This code is contributed

// by rathbhupendra

float findArea(float a,

float b, float c)

{

if (a < 0 || b < 0 || c < 0

||(a + b <= c) || a + c <= b

||b + c <= a)

{

"cout << ""Not a valid

trianglen"";"

exit(0);

}

float s = (a + b + c) / 2;

return sqrt(s * (s - a) *

(s - b) * (s - c));

}

int main()

{

float a = 3.0;

float b = 4.0;

float c = 5.0;

"cout << ""Area is "" <<

findArea(a, b, c);"

return 0;

}

Figure 1: Area of Triangle original and preprocessed source code

M.Sc. Thesis – Akila Loganathan McMaster - Computer Science

 70

 Original Source code Preprocessed Source code

#include <stdio.h>

// Returns the new average after

including x

float getAvg(float prev_avg, int x,

int n)

{

 return (prev_avg * n + x) /

(n + 1);

}

// Prints average of a stream of

numbers

void streamAvg(float arr[], int n)

{

 float avg = 0;

 for (int i = 0; i < n; i++) {

 avg = getAvg(avg,

arr[i], i);

 printf("Average of %d

numbers is %f \n", i + 1, avg);

 }

 return;

}

// Driver program to test above

functions

int main()

{

 float arr[] = { 10, 20, 30,

40, 50, 60 };

 int n = sizeof(arr) /

sizeof(arr[0]);

 streamAvg(arr, n);

 return 0;

}

float getAvg(float prev_avg, int x,

int n)

{

return (prev_avg * n + x) / (n + 1);

}

void streamAvg(float arr[], int n)

{

float avg = 0;

for (int i = 0; i < n; i++) {

avg = getAvg(avg, arr[i], i);

printf(""Average of %d numbers is %f

\n"", i + 1, avg);

}

return;

}

int main()

{

float arr[] = { 10, 20, 30, 40, 50,

60 };

int n = sizeof(arr) /

sizeof(arr[0]);

streamAvg(arr, n);

return 0;

}

Figure 2: Average Stream original and preprocessed source code

M.Sc. Thesis – Akila Loganathan McMaster - Computer Science

 71

 Original Source code Preprocessed Source code

// A Program to check whether a

number is divisible by 7

#include <bits/stdc++.h>

using namespace std;

int isDivisibleBy7(int num)

{

 // If number is negative,

make it positive

 if(num < 0)

 return

isDivisibleBy7(-num);

 // Base cases

 if(num == 0 || num == 7)

 return 1;

 if(num < 10)

 return 0;

 // Recur for (num / 10 - 2

* num % 10)

 return isDivisibleBy7(num

/ 10 - 2 *

 (num - num /

10 * 10));

}

// Driver code

int main()

{

 int num = 616;

 if(isDivisibleBy7(num))

 cout << "Divisible" ;

 else

 cout << "Not

Divisible" ;

 return 0;

}

// This code is contributed by

rathbhupendra

int isDivisibleBy7(int num)

{

 if(num < 0)

 return isDivisibleBy7(

-num);

 if(num == 0 || num == 7)

 return 1;

 if(num < 10)

 return 0;

 return isDivisibleBy7(num /

10 - 2 *

 (num - num / 10

* 10));

}

int main()

{

 int num = 616;

 if(isDivisibleBy7(num))

 cout << "Divisible" ;

 else

 cout << "Not

Divisible" ;

 return 0;

}

Figure 3: Divisible by seven original and preprocessed source code

M.Sc. Thesis – Akila Loganathan McMaster - Computer Science

 72

 Original Source code Preprocessed Source code

//Fibonacci Series using Recursion

#include<bits/stdc++.h>

using namespace std;

int fib(int n)

{

 if (n <= 1)

 return n;

 return fib(n-1) + fib(n-2);

}

int main ()

{

 int n = 9;

 cout << fib(n);

 getchar();

 return 0;

}

// This code is contributed

// by Akanksha Rai

int fib(int n)

{

 if (n <= 1)

 return n;

 return fib(n-1) + fib(n-2);

}

int main ()

{

 int n = 9;

 cout << fib(n);

 getchar();

 return 0;

}

Figure 4: Fibonacci original and preprocessed source code

M.Sc. Thesis – Akila Loganathan McMaster - Computer Science

 73

 Original Source code Preprocessed Source code

include<bits/stdc++.h>

using namespace std;

//c++ implementation

long multiplyBySeven(long n)

{

 /* Note the inner bracket here. This

is needed

 because precedence of '-' operator is

higher

 than '<<' */

 return ((n<<3) - n);

}

/* Driver program to test above function */

int main()

{

 long n = 4;

 cout<<multiplyBySeven(n);

 return 0;

}

long multiplyBySeven(long n)

{

 return ((n<<3) - n);

}

int main()

{

 long n = 4;

 cout<<multiplyBySeven(n)

;

 return 0;

}

Figure 5: Multiply by seven original and preprocessed source code

M.Sc. Thesis – Akila Loganathan McMaster - Computer Science

 74

B. C++ Code Analyzer for C++ programs in our test set

File name Number of

classes

Number of

functions

Number of

conditions

Number of

loops

fibonacci.cpp 0 2 1 0

Table 1: Fibonacci C++ Code Analyzer

File name Number of

classes

Number of

functions

Number of

conditions

Number of

loops

AreaofTriangle.cpp 0 2 1 0

Table 2: AreaofTriangle C++ Code Analyzer

File name Number of

classes

Number of

functions

Number of

conditions

Number of

loops

avgstream.cpp 0 3 0 1

Table 3: Average stream C++ Code Analyzer

M.Sc. Thesis – Akila Loganathan McMaster - Computer Science

 75

File name Number of

classes

Number of

functions

Number of

conditions

Number of

loops

DayofWeek.cpp 0 2 0 0

Table 4: DayofWeek C++ Code Analyzer

File name Number of

classes

Number of

functions

Number of

conditions

Number of

loops

divisiblebyseven.cpp 0 2 4 0

Table 5: divisiblebyseven C++ Code Analyzer

File name Number of

classes

Number of

functions

Number of

conditions

Number of

loops

Findfibonacci.cpp 0 3 0 1

Table 6: Findfibonacci C++ Code Analyzer

File name Number of

classes

Number of

functions

Number of

conditions

Number of

loops

Luckynumber.cpp 0 2 3 0

Table 7: Luckynumber C++ Code Analyzer

M.Sc. Thesis – Akila Loganathan McMaster - Computer Science

 76

File name Number of

classes

Number of

functions

Number of

conditions

Number of

loops

Minimumnumber.cpp 0 2 3 0

Table 8: Minimumnumber C++ Code Analyzer

File name Number of

classes

Number of

functions

Number of

conditions

Number of

loops

payroll management

system.cpp

3 23 104 43

Table 9: payroll management C++ Code Analyzer

File name Number of

classes

Number of

functions

Number of

conditions

Number of

loops

multiplybyseven.cpp 0 2 0 0

Table 10: multiplybyseven C++ Code Analyzer

M.Sc. Thesis – Akila Loganathan McMaster - Computer Science

 77

Code Analyzer for machine translated Java programs in our test set

File name Number

of classes

Number of

functions

Number of

conditions

Number

of loops

AreaofTriangleMT.java 1 2 1 0

Table 11: AreaofTriangle Java Code Analyzer

File name Number of

classes

Number of

functions

Number of

conditions

Number of

loops

avgstreamMT.java 1 3 0 1

Table 12: Average stream Java Code Analyzer

File name Number of

classes

Number of

functions

Number of

conditions

Number of

loops

fibonacciMT.java 1 2 1 0

Table 13: Fibonacci Java Code Analyzer

File name Number

of classes

Number of

functions

Number of

conditions

Number

of loops

divisiblrbysevenMT.txt 1 2 4 0

M.Sc. Thesis – Akila Loganathan McMaster - Computer Science

 78

Table 14: Fibonacci Java Code Analyzer

File name Number

of classes

Number of

functions

Number of

conditions

Number

of loops

findfibonacciMT.java 1 3 0 1

Table 15: Findfibonacci Java Code Analyzer

File name Number

of classes

Number of

functions

Number of

conditions

Number

of loops

LuckynumberMT.java 1 2 3 0

Table 16: Luckynumber Java Code Analyzer

File name Number

of classes

Number of

functions

Number of

conditions

Number

of loops

multiplybysevenMT.java 1 2 0 0

Table 17: Multiplybyseven Java Code Analyzer

M.Sc. Thesis – Akila Loganathan McMaster - Computer Science

 79

File name Number

of classes

Number of

functions

Number of

conditions

Number

of loops

MinimumnumberMT.java 1 2 3 0

Table 18: Minimumnumber Java Code Analyzer

M.Sc. Thesis – Akila Loganathan McMaster - Computer Science

 80

C. Preprocessed and Translated code:

 Preprocessed code Translated code

float findArea(float a,

float b, float c)

{

if (a < 0 || b < 0 || c < 0

||(a + b <= c) || a + c <= b

||b + c <= a)

{

"cout << ""Not a valid

trianglen"";"

exit(0);

}

float s = (a + b + c) / 2;

return sqrt(s * (s - a) *

(s - b) * (s - c));

}

int main()

{

float a = 3.0;

float b = 4.0;

float c = 5.0;

"cout << ""Area is "" <<

findArea(a, b, c);"

return 0;

}

class AreaofTriangle

{

float findArea(float a, float b,

float c)

{

if (a < 0 || b < 0 || c < 0 ||(a

+ b <= c) || a + c <= b ||b + c

<= a)

{

"System.out.println(""Not a

valid trianglen"");"

System.exit(0);

}

float s = (a + b + c) / 2;

return Math.sqrt(s * (s - a) *(s

- b) * (s - c));

}

public static void main(String

args[])

{

float a = 3.0;

float b = 4.0;

float c = 5.0;

"System.out.println(""Area is ""

+ findArea(a, b, c));"

}

}

Figure 1: Area of Triangle preprocessed and translated code

M.Sc. Thesis – Akila Loganathan McMaster - Computer Science

 81

 Preprocessed code Translated code

long multiplyBySeven(long n)

{

 return ((n<<3) - n);

}

int main()

{

 long n = 4;

 cout<<multiplyBySeven(n)

;

 return 0;

}

class multiplybyseven {

int multiplyBySeven(int n)

{

return ((n << 3) - n);

}

public static void main

(String arg[])

{

int n = 4;

System.out.println(multiplyByS

even(n));

}

}

Figure 2: Multiply by seven preprocessed and translated code

 Preprocessed code Translated code

int isDivisibleBy7(int num)

{

 if(num < 0)

 return isDivisibleBy7(

-num);

 if(num == 0 || num == 7)

 return 1;

 if(num < 10)

 return 0;

 return isDivisibleBy7(num /

10 - 2 *

 (num - num / 10

* 10));

}

int main()

{

 int num = 616;

 if(isDivisibleBy7(num))

 cout << "Divisible" ;

 else

 cout << "Not

Divisible" ;

 return 0;

}

class divisiblebyseven

{

boolean isDivisibleBy7(boolean

num)

{

if(num < 0)

return isDivisibleBy7(-num);

if(num == 0 || num == 7)

return true;

if(num < 10)

return isDivisibleBy7(num / 10

- 2 *(num - num / 10 * 10));

}

public static void main(String

args[])

{

int num = 616;

if(isDivisibleBy7(num))

System.out.println("Divisible"

);

else

System.out.println("Not

Divisible");

}

}

Figure 3: Divisible by seven preprocessed and translated code

M.Sc. Thesis – Akila Loganathan McMaster - Computer Science

 82

 Preprocessed code Translated code

int fib(int n)

{

 if (n <= 1)

 return n;

 return fib(n-1) + fib(n-2);

}

int main ()

{

 int n = 9;

 cout << fib(n);

 getchar();

 return 0;

}

class fibonacci

{

int fib(int n)

{

if (n <= 1)

return n;

return fib(n-1) + fib(n-2);

}

public static void main(String

args[])

{

int n = 9;

System.out.println(fib(n));

getchar();

}

}

Figure 4: Fibonacci preprocessed and translated code

M.Sc. Thesis – Akila Loganathan McMaster - Computer Science

 83

D. Test result details:

Programs BLEU score JACCARD score

Area of triangle 87.82 68.18

Average stream 61.08 66.09

Divisible by seven 98.08 78.72

Fibonacci Numbers 94.95 85.81

Find Fibonacci 70.22 68.67

Lexicographic 69.00 86.58

Lucky number 71.89 73.88

Minimum number 75.63 87.08

Multiply by seven 80.09 85.43

Odd number 74.56 79.87

Smallest palindrome 67.93 73.46

Armstrong number 77.23 84.92

Factorial of a number 88.61 93.04

Prime number 67.35 78.61

Reverse a number 73.77 84.55

Table 1: Our translation approach BLEU and Jaccard score

M.Sc. Thesis – Akila Loganathan McMaster - Computer Science

 84

Programs BLEU score JACCARD score

Area of triangle 50.26 49.72

Average stream 0.57 58.94

Divisible by seven 15.84 50.38

Fibonacci Numbers 5.35 30.73

Find Fibonacci 7.46 32.37

Lexicographic 0.41 45.98

Lucky number 0.76 22.3

Minimum number 11.59 38.91

Multiply by seven 2.35 25.35

Odd number 13.64 39.12

Smallest palindrome 0.47 21.34

Armstrong number 31.51 42.29

Factorial of a number 18.13 53.74

Prime number 7.57 38.15

Reverse a number 23.82 44.62

Table 2: Existing approach BLEU and Jaccard score

