INVESTIGATING THE EFFECT OF CLUSTER-BASED
PREPROCESSING ON SOURCE-TO-SOURCE CODE
TRANSLATION

M.Sc. Thesis — Akila Loganathan McMaster - Computer Science

INVESTIGATING THE EFFECT OF CLUSTER-BASED PREPROCESSING ON SOURCE-TO-
SOURCE CODE TRANSLATION

BY AKILA LOGANATHAN, B.Eng.

A THESIS SUBMITTED

TO THE DEPARTMENT OF COMPUTING AND SOFTWARE

AND THE SCHOOOL OF GRADUATE STUDIES

OF MCMASTER UNIVERSITY

IN PARTIAL FULFILMENT OF THE REQUIREMENTS

FOR THE DEGREE OF MASTER OF SCIENCE

McMaster University © Copyright by Akila Loganathan, August 2021

M.Sc. Thesis — Akila Loganathan McMaster - Computer Science

MASTER OF SCIENCE (2021) McMaster University
(Department of Computing and Software) Hamilton, Ontario, Canada
TITLE: Investigating the Effect of Cluster-Based Preprocessing

on Source-to-Source Code Translation

AUTHOR: Akila Loganathan

B.Eng., (Computer Science Engineering)

Anna university, Chennai, India

SUPERVISOR: Dr. Richard Paige

NUMBER OF PAGES: ix, 85

M.Sc. Thesis — Akila Loganathan McMaster - Computer Science

To my Bava, Athamma, Suresh Babai and Amma, Naana

M.Sc. Thesis — Akila Loganathan McMaster - Computer Science

Abstract

Numerous programming languages have been proposed over the last 60 years.
Programming languages, like other software systems, can become obsolete: their
compilers, virtual machines, interpreters and libraries are no longer fit for purpose. As such,
programs written using obsolete programming languages may need to be modernized,
relying instead on modern languages, libraries and tools. Modernization is both a technical
and social process; in this thesis, we focus on the technical aspects of modernization,
particularly software migration, wherein a program written in one programming language
is transformed into an equivalent or similar program written in a different language.
Migration happens because many software systems that were developed decades ago can
no longer be maintained and need to be overhauled to make it possible to implement new

processes that can take advantage of new technologies recently developed.

Migrating an existing codebase to a more efficient and modern programming language is
often expensive, and there are different types of risks involved; for example, many
functionalities may not be implemented properly after migration, i.e., the migration is
inaccurate; or concerns for code quality may not be considered until the end of the
migration; and for large code bases, the migration process may be slow, and may demand
substantial resources to implement. Recent advancements in Artificial Intelligence in
natural language translation have been widely accepted but their application to
programming language translation have been limited due to the scarcity of parallel data
(i.e., the collection of equivalent phrases in source language and their translations in a target

language). This thesis explores a preliminary investigation into the use of unsupervised

M.Sc. Thesis — Akila Loganathan McMaster - Computer Science

learning methods — specifically, a newly proposed K-Means clustering approach for
preprocessing and analyzing the source code — prior to rule-based code translation. The
thesis investigates such a process both generally and abstractly, and specifically, in the
context of a concrete migration from C++ to Java. The thesis also presents a test set for
evaluating such an approach, based on open source, which can be used as a general resource
for both validating migration approaches and assessing their performance. The test results
and our experiments show that our proposed translation approach based on unsupervised
machine learning for preprocessing has a very good translation accuracy score of 77.89%
and 81.34% when compared against an alternative approach with accuracy score of 33.24%
and 59.96%, and also when compared with rule-based translation that excludes the

preprocessing step with accuracy score 37.39% and 41.26%.

M.Sc. Thesis — Akila Loganathan McMaster - Computer Science

ACKNOWLEDGEMENTS

First and foremost, | would like to express my deepest gratitude to my supervisor Dr.
Richard Paige, whose expert advice and guidance motivated me to achieve excellence in
my work. |1 would like to thank him for his valuable inputs throughout the course of my

research.

I am most thankful and grateful to my supervisory committee Dr. Alan Wassyng, and Dr.

Spencer Smith for all the time they took to read this thesis.

| am thankful to the Department of Computing and Software, for providing me with an

opportunity to pursue my research at McMaster University.

| really feel grateful to my friends who shared their experiences with me and guided me

throughout this thesis journey.

Last, but by no means least, | would like to thank my husband Raagul for his support and
encouragement, as well as Chandramouli, my mother-in-law for her unequivocal support
throughout this research, and my uncle Suresh for supporting me throughout my
educational journey. You people have always been my motivation to go further in life. |

really wanted to thank my parents for showering me with their blessings.

Vi

M.Sc. Thesis — Akila Loganathan McMaster - Computer Science

CONTENTS
Abstract v
Acknowledgements vi
1. INTRODUCTION 1
1.1 Motivation 4
1.2. Translation of Programming Languages o i 7
1.3. Research Objectives 8
1.4. Organization of Thesis 9
1.5, Summary 10
2. LITERATURE REVIEW 12
2.1. Related Work 12
2.1.1. Syntax Directed Translation. 12
2.1.2. Sourceto Source Translation., 13
2.1.3. Machine Translation Approaches 16
2.1.4. Unsupervised Machine Translation. 18
2.2. Comparative Study 20
2.3.SUMMANY . . . o o e e 25
3. TECHNICAL APPROACH 27
3.1. Proposed Model 28
3.2 Preprocessing 29
3.2.1. Choosing Clustering Algorithm 30
3.2.2. The K-Means Algorithm 34

vii

M.Sc. Thesis — Akila Loganathan McMaster - Computer Science

3.2.3. Proposed K-Means Clustering Approach. 37
3.3.Code Analyzer. 41
3.4. Rule-based Translation using Preprocessed Source Code 43
3.5.8ummary 47

4. RESULTS AND DISCUSSION 48
A1, Setup. . .o 48
4.2. Gathering Data., 50
4.3.Evaluation. 51
4.4. Comparison to Existing Approach. 56
45. Threatsto Validity. 59
4.6. SUMMAIY o o 60

5. CONCLUSION AND FUTURE SCOPE 61
5.1.Conclusion. 61
52. Future Work L e 62

6. REFERENCES 64

Appendix A Original and Preprocessed source code 70

Appendix B C++ and Java Code Analyzer Results 71

Appendix C Preprocessed and Translated Source code 81

Appendix D Test Result details 84

viii

M.Sc. Thesis — Akila Loganathan McMaster - Computer Science

Table of Figures

Figure 1: Transcompiler and Traditional Compiler...........ccooiiiiiiiiiiiiic 14
Figure 2: Traditional COMPIIETooiiiieiie e 14
Figure 3: PropoSed MOEIccveiiiiiiiciece e 28
Figure 4: K-Means Algorithm HIUSTFrAtioNncocooiiiiiiiiiicee e 36
Figure 5: Original and Preprocessed SOUICE COUE.........ccovriiiiiieiieiiie e 40
Figure 6: Cluster Analysis: Original SOUICe COUEcceviiiiiieiiie e 41
Figure 7: Translation APPrOaCH..........coiiiiiii i 44
Figure 8: Preprocessed and Translated SOUICE COUE.........covvvviiiiiiiiieiiie e 57
Figure 9: Parallel Implementation of Programs in TeSt Set.........cccccvviveriviieiivenenie e 51
Table of Tables

Table 1: ComparatiVe StUAY........c.coiiiiiieiie et 21

Table 2: Processing time for clustering the source code with 1480 lines............ccccccevevveenene. 32

Table 3: Processing time for clustering the source code with 148 lines..........cccccceecvevieiiennnn 33

Table 4: Processing time for clustering the source code with 25 lines..........cccccecvvevieiieennen. 34

Table 5: C++ and Java Code ANAIYZEN..........ccoveiiiieece et 43
Table 6: Accuracy Scores of proposed translation approach............cceceveveniencenveie e, 55

Table 7: Accuracy Scores of existing apProach...........ccccveiieiieeiiie i 57

Table 8: Accuracy Scores of our translation approach excluding Preprocessing 58
Table 9: Comparison of Proposed and existing approach accuracy SCOIeS..........cccecueeeeeneenn. 58

M.Sc. Thesis — Akila Loganathan McMaster - Computer Science

CHAPTER 1: Introduction

Software can become obsolete: it may be written in a programming language that is no
longer supported by a vendor; it may make use of inefficient or outdated libraries; it may
run on outdated hardware that can no longer be repaired. But there may still be
requirements for obsolete software to execute and be used by diverse stakeholders. As such,
there are requirements for supporting software modernization, the process of transforming
obsolete software into software that is behaviorally equivalent yet executes in a modern
environment. Software modernization is both a social and technical process: the new
version of the software must satisfy relevant stakeholders and be useful and usable within
existing processes. But it also involves deep technical challenges, particular at scale, when
large code bases, programs and documentation must be updated.

Software migration is the technical process of transferring software data, accounts and
functionality between operating environments; it may also involve the porting of a legacy
software systemto a modern computer programming language [Smartsheet, 2017].
Software migration happens increasingly often [Derras et al, 2021] because many software
systems that were developed decades ago need to be overhauled to make it possible to
implement new processes that can take advantage of technologies recently developed. With
rapid technological enhancement, companies may need to move their software from one
platform to another platform [Mustafa et al, 2017] as the software systems-built decades
ago face technology stasis and can no longer be easily updated or improved. Moreover, in
some organizations, processing needs may vary between departments, and software may
have been developed without considering the challenges of use in different contexts. For

instance, a certain department may need more storage space in the system, while another

M.Sc. Thesis — Akila Loganathan McMaster - Computer Science

department may need more processing speed. We may need to be able to modernize
existing systems so that it works under both sets of conditions while producing optimum

output for each [Satani et al, 2020].

The fast-changing market trends and the constantly growing business and customer needs
increase the pressure for technology innovations in hardware and software-based
industries. Developers make substantial efforts to adapt their software and hardware
products to the latest processes, technologies and materials to take advantage of new
features that may improve security, operational efficiency, performance etc. However,
even minor design or implementation changes often require rerunning all necessary
verification, validation, and assurance processes to establish that the updated system still
meets its functional and non-functional requirements while complying with national and
international regulations and standards. This can be a long and costly process that can cause
these systems to fall into “technology stagnation”. Due to the challenges associated with
technology stagnation, complex systems within critical application domains are likely to

face the problem of obsolescence [Paige et al, 2018].

Source code translation is an important approach used in software migration, and hence
modernization. It is a technical process that is used to migrate legacy code in one
programming language to a different language [Chen et al, 2018]. This may include
migrating code from a legacy language such as PL/I to a more modern language such as
C#, to migration between versions of programming languages (e.g., C++98 to C++17).

Migrating code from a legacy programming language such as COBOL or APL, to a modern

M.Sc. Thesis — Akila Loganathan McMaster - Computer Science

alternative like Java or C++, is a complex, time-consuming process that necessitates
expertise in both the source and target languages, as well as the libraries and execution
environments (including virtual machines) for each. Code translation processes and tools
are costly to both build and use because the ultimate translation process is time-consuming,
and time-consuming processes can be very expensive [Lachaux et al, 2020]. For example,
the Commonwealth Bank of Australia paid $750 million and took five years to convert its

platforms from COBOL to Java using program translation.

As development techniques, paradigms and platforms typically evolve far more quickly
than domain applications, software modernization and migration is a constant challenge to
software engineers [Fleurey et al, 2007]. There are different types of risks involved during
migration. One example is that after migration, functionalities or features are not
implemented identically [Mustafa et al, 2017]; another is that the performance of the
migrated code differs from the original (note that code that executes faster is not necessarily
desirable, especially when timing constraints must be satisfied). Typically, in program
translation any concerns for code quality are also not considered until the end of the
translation, to simplify an already complex process. It has been argued that prioritizing
quality in software migration above many other issues has many benefits [Fabry et al,
2019]. By performing migration activities correctly some of these risks might be reduced
or mitigated. Due to the absence of resources to support migration - such as workforce,

time, and budget - software migration is often not performed in an optimized way.

M.Sc. Thesis — Akila Loganathan McMaster - Computer Science

11

Motivation

As mentioned earlier, migrating source code from one platform or programming language
to another is generally very expensive, and usually requires substantial programmer
expertise and knowledge of existing systems. Traditionally, software migration is
supported and implemented in a rule-based manner: rules are specified indicating how
concepts and properties in a source language are to be translated into concepts and
properties in a target. The rules may act as the specification of actions to be carried out by
a programmer or software engineer; or may be executable and used by an automated
program translator. The rules are used to document and support either a wholesale rewrite
of the code base in a new language or for a new hardware platform, or support the execution
of a program translator, the results of which may be manually adjusted. Rule-based
translation relies on millions of bilingual dictionaries for each language pair; these
dictionaries specify the concepts in each programming language, very much like a bilingual
dictionary does for natural languages such as English and German. The software uses these
complex rule sets and dictionaries and transfers the grammatical structure and semantics

of the source language into the target language [Systran, 2021].

A compiler's purpose is translation, i.e., converting a high-level language into an
intermediate or low-level language, such as an abstract computer language or an assembly-
like language [Thain et al, 2020]. The compiler's correctness is ensured by the correctness
of many such translations. Translations are used to compare the expressiveness of various
languages or programming models (and to obtain corresponding expressiveness results).

Unfortunately, creating a translator is difficult in practice because different languages have

M.Sc. Thesis — Akila Loganathan McMaster - Computer Science

different syntax and semantics, and use different platform APIs and standard library
features. The majority of programming language translator tools are currently rule-based,
and typically come with restrictions meant to cope with semantic variation points (e.g.,
different interpretations of short-circuiting Boolean operators in different versions of the C
language), or to make the ultimate program translation fully automatable (e.g., by

restricting features of the source language that can be translated).

Machine translation (MT) is the process of translating a text from a source language to its
counterpart in a target language [John et al, 2014]. The predominant approach to MT is
corpus-based. These approaches use large aggregations of parallel data (i.e., the collection
of phrases in source language and their translations in target language) as the origin of
knowledge. Statistical machine translation, which is also referred as SMT, is a type of
machine translation that uses predictive algorithms to train a model how to translate text.
These models are created from parallel text corpora and used to create the most probable
output, based on different bilingual examples. A parallel text is a text specified with its
translation, where the pair are used to create a statistical model of translation. Using this
already translated text, a statistical model predicts how to translate text. One drawback is
that this SMT system needs parallel data, and this can be challenging to find (especially for
large programs). Creating these parallel texts is very time-consuming and labor-intensive

[Shofner et al, 2021] and can be an error-prone process.

Neural machine translation is not a dramatic conceptual step beyond what has been

traditionally done in statistical machine translation. Neural machine translation is

M.Sc. Thesis — Akila Loganathan McMaster - Computer Science

considered a modern approach for corpus-based machine translation. Neural machine
translation (NMT) is typically used to translate words from one language to another. NMTs
encompass all types of machine translation where an artificial neural network is used to
predict a sequence of numbers when provided with a sequence of numbers. In the case of
translation, each word in the input sentence is encoded as a number to be translated by the
neural network into a resulting sequence of numbers representing the translated target
sentence. Each number in the input and output represents a word in the parallel corpus [i.e.,
the collection of phrases in source language and their translations in target language] and
is always encoded and decoded accordingly [Sam et al, 2021]. Again, the drawback is that
this needs parallel data, and it can be hard to find such parallel content. Creating these

parallel texts can be time-consuming and labor-intensive and error-prone, as noted earlier.

Professional translators who rely on automatic computer translation mechanisms have
largely embraced recent advances in Artificial Intelligence in the context of natural
language translation, particularly unsupervised learning. Unsupervised learning is a
machine learning method that learns patterns and recognize trends from unlabeled data,
making it ideally suited for this application: source code (without intervention) by default

comes in an unlabelled format and thus any inherent classifications are implicit.

Recent developments in neural machine translation have gained widespread acceptance
when applied to natural language, even among experienced translators, who are
increasingly relying on automatic machine translation systems [Lachaux et al, 2020].

However, due to the shortage of parallel data in this domain (programming language

https://pathmind.com/wiki/neural-network

M.Sc. Thesis — Akila Loganathan McMaster - Computer Science

1.2

translation), the application of neural machine translation to code translation has been

limited. We discuss this further in Chapter 2.

The use of unsupervised machine learning methods for the translation of programming
languages has been limited so far, owing to a scarcity of parallel data in this domain. By
exploiting C++, C, Java, Python, we extended recent techniques in unsupervised machine
learning specifically clustering in this research work to preprocess and analyze source code
before starting with the translation process (rule-based translation). Our hypothesis was
that preprocessing will help us to improve the accuracy of translation (and give a better
accuracy score) using the already available methods used by other researchers in this field.
As such, our focus in software migration is addressing the challenge of validating the

results of the translation.

Translation of Programming Languages

Programs are the main tool for building computer applications. Various programming
languages have been invented to facilitate programmers to develop programs for different
applications. At the same time, the variety of different programming languages also
introduces a burden when programmers want to combine programs written in different
languages together. Therefore, there is a tremendous need to enable program translation
between different programming languages. Nowadays, to translate programs between
different programming languages, typically programmers manually investigate the
correspondence between the grammars of the two languages, then develop a rule-based

translator. However, this process can be time consuming and inefficient [Song et al, 2018].

M.Sc. Thesis — Akila Loganathan McMaster - Computer Science

13

In this thesis, we propose to use unsupervised machine learning methods on the source
code within the software translation process. Specifically, we aim to investigate the use of
unsupervised machine learning in the preprocessing phase of software translation. Our
rationale for this is that preprocessing — particularly in terms of clustering related software
components, modules and methods — may be used to better manage the translation of
complex code bases, reduce the time associated with translation, and improve the ultimate
readability and understandability of the migrated source code. This last point in turn may
make it easier to validate the results, and this is important especially when working with
large code bases: a program translator is effectively a code generator, and generated code
can be very unreadable and difficult to manage and understand. A preprocessing approach
may be used to help manage these challenges — and thus, we believe, make it easier to

validate the results of migration.

Research Objectives

Professional translators who rely on automatic translation mechanisms have largely
embraced recent advances in Neural Machine Translations, which are normally applied to
natural languages. Their application to programming language translation is currently very
limited, owing to a scarcity of parallel data in this domain. We propose to extend techniques
in unsupervised machine learning methods in parts of the translation process in this thesis.

Our specific objectives are:

M.Sc. Thesis — Akila Loganathan McMaster - Computer Science

1.4

> Support preprocessing, and code analysis in software migration, using
unsupervised learning methods, to provide means to validate code translation and
enhance migrated code quality.

» To build a component based on unsupervised learning methods to support
preprocessing. We chose the K-Means unsupervised clustering approach; a
particular novelty with this clustering approach is that it does not require us to
change the number of clusters every time for different datasets. We explain the
importance of this in later chapters, but informally this means that there are greater
opportunities for automating the preprocessing step.

» To demonstrate that the preprocessing step before translation provides better
performance (good accuracy score of translations) and requires less human effort
to validate the translated code.

» Generate a test set composed of corpus of programs (i.e., Human translated, and
Machine translated code) with the help of open-source data to evaluate and check

the accuracy of translations done using our proposed framework.

Organization of Thesis

In the following sections, the proposed translation approach and implementation details is
discussed. Chapter 2 presents the literature review and related work where we discuss about
syntax directed translations, source to source translations, machine translations etc. In
Chapter 3 we present an approach to software migration, based on use of a preprocessing
step using unsupervised learning method before rule-based translation in the translation of

programming languages. The proposed method involves three phases, preprocessing,

M.Sc. Thesis — Akila Loganathan McMaster - Computer Science

1.5

analyzing and translation. We present the method generically, and then describe a concrete
instance of the method for C++ to Java transformation. In Chapter 4 we describe how we
have gathered data for creation of a corpus of test data for evaluating translations and
present our experiments (and experimental method/setup), which include performance and
accuracy studies on a number of end-to-end translations. This chapter also presents a
comparison between the approach proposed in this thesis with an existing translator, as
well as a rule-based approach that excludes preprocessing. We analyze the results and make
several observations. Chapter 5 gives a summary of the dissertation and discusses future

research directions.

Summary

Programming language translators are primarily used for interoperability and to port
codebases written in a deprecated or obsolete language to a modern one. The overall
translation process is time-consuming and necessitates knowledge of both the source and
target languages, making code-translation projects costly. Although neural models
outperform rule-based counterparts in natural language translation, their applications to
transcompilation have been very less and limited due to a lack of parallel data in this
domain.

We propose an approach where unsupervised learning methods are used to preprocess,
analyze the source code before rule-based translation in the translation of programming
languages. Specifically, we use clustering approaches from the unsupervised learning
methods. We use this clustering approach on the source code prior to translation in such a

way that each cluster share a similar semantic meaning.

10

M.Sc. Thesis — Akila Loganathan McMaster - Computer Science

The context of this work is preprocessing the source code and analyzing the code before
translation. Our work is divided into three phases. First, we use the K-Means algorithm to
create global clustering of the entire source data where each cluster share a similar semantic
meaning, and this helps in preprocessing. Second, we analyze the code based on clusters
formed earlier and at third phase we perform program translation. We generalized the first
two phases of this approach to various programming languages like C, C++, Java, Python
and at the third phase we built a rule-based translator for demonstrating the program
translation from C++ to Java where datatypes, functions, operators, selection statements,
iteration statements, classes, input and output statements, main function are translated to
equivalent in Java. We also built a test set composed of corpus of programs (i.e., Human
translated, and Machine translated code) with the help of open-source data, to be used to

evaluate and check the efficiency of translations done using our proposed approach.

11

M.Sc. Thesis — Akila Loganathan McMaster - Computer Science

2.1

211

CHAPTER 2: Literature Review

This chapter discusses the concepts, problems, and methodologies used in programming
language translation in the literature, and presents a comparative analysis that categorizes
the different technical and conceptual approaches to program translation. The overview of
the literature also attempts to identify some of the properties that need to be checked when
translation is carried out, such as correctness, timing, and the overall performance of the

translator.

Related Work

This section summarizes and analyzes the key literature related to software migration and

program translation.
Syntax directed Translation

Several studies have investigated different approaches to translating programming
languages based on definitions and manipulation of the syntax of the source (and
sometimes target) language. A syntax directed translation is typically based on a context
free grammar [Jose et al, 2012]. A context-free grammar is a set of rules used to generate
all possible patterns of strings in each (programming) language [Gerald et al, 2012].
Parsing is a method of analyzing a sentence (i.e., set of strings) to determine its structure
based on the grammar, and to generate a parse tree showing their syntactic relation to each
other. If w is a word in language L generated by context free grammar G, one obtains a
particular syntax directed translation of w by constructing a parse tree for w in G [Ullman
et al, 2007]. A syntax-directed translator typically consists of two components, a source

language parser and a recursive converter which is usually modeled as a top-down tree-to-

12

https://en.wikipedia.org/wiki/Parse_tree

M.Sc. Thesis — Akila Loganathan McMaster - Computer Science

string translator [Gecseg et al, 1984]. For instance, [Irons et al, 1961] developed a syntax-
directed translation model, where the source-language input is first parsed into a parse-tree,
which is then recursively converted into a string in the target-language. [Pyster et al, 1978]
used semantic-syntax-directed translator that maps parse trees of source sentences to parse
trees of sentences in the target language as a function of both the syntactic structure of the
source parse tree and the values of attributes of its nodes. [Chiang et al, 2010] presents a
syntax-directed translation approach that uses an implicit definition of formal syntax, that
is syntactic structures for the source and target that are discovered on the basis of a bilingual
corpus, but without resort to an externally motivated parser. There are also approaches such
as [Yamada et al, 2006] that use an external parser on the target only, or other approaches
such as [Quirk et al, 2005] on the source only, [Hasan et al, 2005] that only uses a parser
on the target and attempts to improve the accuracy of the translation produced. Finally,
there are approaches such as [Cowan et al, 2006] that use external parsers both on the
source and on the target. But syntax-directed translations are expensive [Marc et al, 2004]
as we must build parsers and grammars in turn which are easily prone to errors and difficult

to maintain etc.

2.1.2 Source-to-Source Translation

A transcompiler is a source-to-source translator that transforms between programming
languages at equivalent (or very similar) abstraction levels [Ackerman et al, 2016] i.e.,
from high level programming language (e.g., C++ or Java) to another high-level
programming language (e.g., Python). A transcompiler is different from traditional

compilers that build executables by translating source code from a high-level programming

13

M.Sc. Thesis — Akila Loganathan McMaster - Computer Science

language (e.g., C, C++) to a lower-level programming language (e.g., assembly language)

[Taylor et al, 2019].

int doThing(const char* desc) {

}

Compilation Transpilation

Machine Code JavaScript Source

MOV AL, lh

MOV CL, 2h

MOV DL, 3h

MOV EAX, [EBX]
MOV [ESI+EAX], CL

function doThing(desc) {

}

Figure 1: Transcompiler and Traditional Compiler

Machine code
Source code

Translation “Sfiuc‘flfmf
— nhellon; insTructionlt

a : L
b = "o, - | instruction?
= a + L instruction3

Figure 2: Traditional Compiler

14

M.Sc. Thesis — Akila Loganathan McMaster - Computer Science

Originally, transcompilers were created to translate source code from one platform to
another (for example, converting source code intended for the Intel 8080 CPU to make it
compatible with the Intel 8086 CPU). Another example was earlier implementations of
the C++ language, which transcompiled C++ source code into C source code (removing
object-oriented features such as inheritance — relying on the delegator pattern — and
dynamic binding — relying on virtual function tables). More