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Abstract

The advancement of computer architecture and chip design has set the stage for the

deep learning revolution by supplying enormous computational power. In general,

deep learning is built upon neural networks that can be regarded as a universal

approximator of any mathematical function. In contrast to model-based machine

learning where the representative features are designed by human engineers, deep

learning enables the automatic discovery of desirable feature representations based

on a data-driven manner. In this thesis, the applications of deep learning to visual

content processing and analysis are discussed.

For visual content processing, two novel approaches, named LCVSR and RawVSR,

are proposed to address the common issues in the filed of Video Super-Resolution

(VSR). In LCVSR, a new mechanism based on local dynamic filters via Locally Con-

nected (LC) layers is proposed to implicitly estimate and compensate motions. It

avoids the errors caused by the inaccurate explicit estimation of flow maps. More-

over, a global refinement network is proposed to exploit non-local correlations and

enhance the spatial consistency of super-resolved frames. In RawVSR, the superi-

ority of camera raw data (where the primitive radiance information is recorded) is

harnessed to benefit the reconstruction of High-Resolution (HR) frames. The devel-

oped network is in line with the real imaging pipeline, where the super-resolution
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process serves as a pre-processing unit of ISP. Moreover, a Successive Deep Inference

(SDI) module is designed in accordance with the architectural principle suggested by

a canonical decomposition result for Hidden Markov Model (HMM) inference, and

a reconstruction module is built with elaborately designed Attention based Residual

Dense Blocks (ARDBs).

For visual content analysis, a new approach, named PSCC-Net, is proposed to

detect and localize image manipulations. It consists of two paths: a top-down path

that extracts the local and global features from an input image, and a bottom-up

path that first distinguishes manipulated images from pristine ones via a detection

head, and then localizes forged regions via a progressive mechanism, where manipu-

lation masks are estimated from small scales to large ones, each serving as a prior of

the next-scale estimation. Moreover, a Spatio-Channel Correlation Module (SCCM)

is proposed to capture both spatial and channel-wise correlations among extracted

features, enabling the network to cope with a wide range of manipulation attacks.

Extensive experiments validate that the proposed methods in this thesis have

achieved the SOTA results and partially addressed the existing issues in previous

works.
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Chapter 1

Introduction

1.1 Deep Learning

As a sub-field of Machine Learning (ML), Deep Learning (DL) seeks to construct a

universal approximator of any mathematical function. Different from the traditional

ML methods where the representative features are designed by human engineers, DL

is usually built on a hierarchical structure (i.e., Deep Neural Network (DNN)) that

enables the automatic discovery of needed feature representations via backpropaga-

tion. Here the term “deep” emphasizes that the corresponding network is composed

of multiple layers, each acting as a non-linear transformation that maps the input

data to a more abstract level. After stacking a plenty of such transformations (i.e.,

layers), very complex functions can be approximated, thus a universal approximator

is achieved. Note that the neural network was first proposed in 1943 [1] and designed

to imitate the activities of human brains. Therefore, this kind of algorithms can be

also termed Artificial Neural Network (ANN), and the learned knowledge is termed

Artificial Intelligence (AI).
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In comparison to traditional machine learning methods, the most significant ad-

vantage of DNN is its scalability, where the performance improves as more data and/or

deeper networks are leveraged. In contrast, other approaches (e.g., support vector

machine) quickly reach the performance plateau and cannot be scalably improved.

In summary, the rapid rise of deep learning (i.e., DNN) relies on the following three

key factors:

1. Sufficient computational power to support the enormous calculations in DNNs;

2. Collected and labelled large-scale datasets for network training;

3. The adoption of more advanced algorithms to make the DNN deeper without

gradient vanishing and/or explosion.

Note that the computational power is the main constraint that limits the de-

velopment of deep learning in the past few decades. Since deep learning leverages

a data-driven approach to generate the representative features, collecting and an-

notating a large-scale dataset is of essential importance and usually determines the

performance limit of the learned network. At last, the proposal of advanced modules

(e.g., the residual block [2]) and techniques (e.g., batch normalization [3]) is beneficial

to developing deeper DNNs with further enhanced performance.

In general, one of the common forms of deep learning is supervised learning [4],

where each input to a network has a corresponding target. By computing an objective

function, the distance (error) between the network output and the target can be

measured. Subsequently, this distance is reduced via gradient decent, in which the

relevant gradient for each network parameter is calculated to adjust this parameter

in the opposite direction of the gradient, resulting in a better output closer to the

2
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target. More specifically, to train the network, Stochastic Gradient Decent (SGD)

and its variants [5] are usually adopted. These methods first split the whole training

dataset into many small subsets and compute the average gradient over each subset,

as a rough estimate of the gradient over the whole dataset, to update the network

parameter. This procedure has been validated to be quite effective and efficient to

find a good set of parameters.

To collect a dataset for network training, the generation of target (i.e., labelling)

usually requires upfront human intervention. However, the target changes in accor-

dance with the objective of visual tasks. For example, in visual content processing

(e.g., image/video restoration), the target is in the low level (e.g., a clear version

of degraded data), thus does not involve semantic information. On the contrary, in

visual content analysis (e.g., image classification), the target is in the high level (e.g.,

one specific category) and the tailored labels are needed to describe the semantic in-

formation in data. In both cases, the acquisition of a large-scale paired data is quite

expensive and needs plenty of human effort.

To reduce the degree of human intervention, semi-supervised learning [6] and self-

supervised learning [7, 8] are proposed. In semi-supervised learning, as the name

implies, a small part of data is fully labelled but the rest majority is not. There-

fore, it can be regarded as an integration of supervised learning and unsupervised

learning, where the network with additional unlabelled data can be considerably im-

proved. Since the unlabelled data is almost free to acquire, semi-supervised learning is

widely considered when annotating a large set of data is not practical. Self-supervised

learning, which is a subset of unsupervised learning, develops quickly in recent years.

Note that the term “unsupervised” is not synonymous with “unlabelled”. It only

3
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implies that no human intervention is required. Self-supervised learning resorts to

the intrinsic connection and correlation in data to automatically generate the labels

to supervise the learning process. For example, in the task of video sequence sort-

ing [9], a shuffled video sequence is given as input, and the objective is to sort this

shuffled sequence. Here the “label” that serves as the supervisory signal is the tem-

poral coherence, which can be trivially obtained without any human intervention. By

exploiting the data correlation itself, self-supervised learning has the same cost as

unsupervised learning but acts as the supervised learning. Recent advances illustrate

that self-supervised learning can achieve the similar performance to supervised learn-

ing in several tasks [10]. However, in this thesis, since the training data in the fields

of video super-resolution and image manipulation detection and localization is easy

to synthesize, the proposed algorithms still adopt supervised learning for network

training rather than using semi-supervised learning or self-supervised learning.

In summary, there are three typical categories of neural networks in deep learning:

1. Artificial Neural Network (ANN), also known as the feed-forward neural net-

work;

2. Convolutional Neural Network (CNN);

3. Recurrent Neural network (RNN).

ANN is composed of multiple perceptrons/neurons, where each neuron performs

similarly to the logistic regression. In general, it consists of 3 layers — input, hidden,

and output layers, where the input and output layers are responsible for accepting

input data and generating network results, and the hidden layer implicitly learns the

desired mapping function based on the relation between the input and target. ANN

4
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has been capitalized on many tasks including, among others, fraud detection [11],

E-mail span filtering [12], and sales forecasting [13].

Different from ANN, CNN is composed of a variety of kernels, thus dramatically

reduces the total number of learnable parameters in network. Since this kernel-

based architecture is particularly suited to the processing of array-like data, CNN

has achieved great success in computer vision. The typical applications of CNN

include image classification [14], image segmentation [15], object detection [16], facial

recognition [17], etc.

As for RNN, it can be imagined as a variant of ANN, where the hidden layer

is recurrently connected along with continuous time stamps. This characteristic en-

ables RNN to memorize the information in sequential data, thus is widely adopted in

the areas of time series analysis, handwriting recognition [18], and natural language

processing. Since RNN aims at dealing with sequential data, in backpropagation,

the gradient from the eailier inputs may vanish, thus fails to adequately update the

pertinent network parameters, causing the short-term memory issue. To address this

issue, Gated Recurrent Units (GRU) [19] and Long Short-Term Memory (LSTM) [20]

are proposed, where the so-called gates are introduced to alleviate gradient vanishing

in RNN.

Recently, a novel network architecture is proposed, named transformer [21], which

probably becomes a new category of neural networks. Different from the aforemen-

tioned three categories, this network architecture is based on a self-attention mech-

anism and has surpassed the performance of RNN family in natural language pro-

cessing. As for how to use the transformer on vision tasks, it is an ongoing research

topic [22].

5
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Since this thesis mainly focuses on applications of deep learning to visual content

processing and analysis, CNN is still the best choice to date.

1.2 Visual Content Processing

Visual content processing aims at exploring the recorded primitives (e.g., edge, tex-

ture) in visual contents rather than inferring their semantics. This processing is com-

monly applied on low-level vision tasks such as Super-Resolution (SR) [23,24], derain-

ing/dehazing [25–27], video interpolation [28,29], etc. Recently, extensive works have

illustrated that visual content processing can benefit the downstream tasks. For in-

stance, reference [30] claims that low-resolution faces after SR reconstruction achieves

better recognition performance than the one without this process; reference [31] shows

that image dehazing can be used as a pre-processing step to improve the accuracy of

autonomous driving systems.

Among low-level vision tasks, SR has received special attentions owing to its

broad applications in practice. Without resorting to hardware upgrades, SR aims

at increasing the resolution of an image or a video sequence to provide users with

a more attractive visual experience. Since the limitation of phone size impedes the

manufacturers to adopt better but larger camera modules, this technique has been

widely applied to improve the quality of phone-taken photographs of distant scenes,

termed the digital zoom.

To train the SR methods, camera processed data produced by the Image Signal

Processor (ISP) are commonly employed. However, such methods neglect the infor-

mation loss incurred by non-invertible operations in ISP (e.g., compression), and also

fail to conform to the real imaging pipeline where SR should serve as a pre-processing
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unit of ISP. Note that the advantage of untouched camera raw data over processed

data has been recognized in several low-level vision tasks such as image relighting [32],

camera ISP mapping [33], etc. As in SR field, reference [34] is the pioneer work that

harnesses camera raw data for single image SR, and the proposed method [24] is the

first attempt that exploits this type of data for Video Super-Resolution (VSR).

1.3 Visual Content Analysis

Different from visual content processing, visual content analysis aims at deriving the

semantics in visual contents that enable machines to “think” as humans. Therefore,

it is usually used to tackle high-level vision tasks such as image classification [35],

object detection [36], semantic segmentation [16], etc.

Recently, the implementation of image manipulation dramatically reduces the

difficulty of image editing, not only modifying part of image contents but fully syn-

thesizing the image. For instance, a recent developed software1 makes it possible to

generate facial images that are too realistic to be distinguished by human. This kind

of tools, usually implemented by deep neural networks, is named Deepfake, where the

most common technique they adopt is Generative Adversarial Network (GAN). With

these tools, image manipulation has become ubiquitous in social media, thus raises

new concerns for their uses. Although a majority of image manipulations are just

for entertainment, some attackers may utilize these tools to create deceitful contents

and propagate them in social media. To alleviate this concern, a reliable “shield” is

desired to expose the images that are manipulated.

For manipulation in facial images, there are four typical manipulations [37]: 1)

1https://thispersondoesnotexist.com/
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identity swap, 2) expression swap, 3) attribute manipulation, and 4) entire face syn-

thesis. In comparison to detecting manipulations in natural images, the detection of

facial images largely benefits from the comprehensive studies in the face field (e.g.,

facial landmark detection, face recognition), thus is relatively easier. However, the

target of manipulation may not always aim at face regions. In fact, any interest-

ing content can be potentially selected for manipulation. Therefore, in this thesis,

a general method that enables the detection of manipulations in natural images is

proposed [38].

Moreover, since the output of deep-learning based manipulation detection methods

is an image-level score that indicates whether the input image is manipulated or not,

it lacks interpretability and fails to provide concrete information to show the potential

forged regions. To address this issue, the proposed method also localizes the forged

regions to help us understand the logic behind. To the best of my knowledge, this is

the first work that enables detecting and localizing manipulations in natural images.

1.4 Contributions and Thesis Organization

This thesis contributes to both visual content processing and analysis based on deep

learning, which is composed of three articles in a sandwich thesis format following

the terms and regulations of McMaster University. The independent contributions to

each article are outlined in the preface of Chapter 2, Chapter 3, and Chapter 4. The

reference information of these three articles is listed below:
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1. Xiaohong Liu, Lingshi Kong, Yang Zhou, Jiying Zhao, and Jun Chen. “End-

To-End Trainable Video Super-Resolution Based on a New Mechanism for Im-

plicit Motion Estimation and Compensation.” In Proceedings of the IEEE/CVF

Winter Conference on Applications of Computer Vision, pp. 2416-2425, 2020.

2. Xiaohong Liu, Kangdi Shi, Zhe Wang, and Jun Chen. “Exploit Camera Raw

Data for Video Super-Resolution via Hidden Markov Model Inference.” IEEE

Transactions on Image Processing, Vol. 30, pp. 2127-2140, 2021.

3. Xiaohong Liu, Yaojie Liu, Xiaoming Liu, and Jun Chen. “PSCC-Net: Pro-

gressive Spatio-Channel Correlation Network for Image Manipulation Detection

and Localization.”, arXiv preprint arXiv:2103.10596, 2021.

The first two articles belong to the topic of visual content processing, and the last

article involves visual content analysis.

More specifically, the first article is to tackle the VSR task, named Locally Con-

nected VSR (LCVSR). A new mechanism that implicitly estimates and compensates

motions among video frames is proposed based on a novel dynamic local filter network.

In contrast to the explicit approach, this new mechanism avoids the introduction of

additional errors coming from the generation of flow maps that delineate pixel dis-

placements in horizontal and vertical directions, and the generated sample-specific

and position-specific dynamic local filters reinforce the temporal consistency across

video frames. Moreover, a global refinement network based on ResBlock and autoen-

coder structures is proposed to exploit non-local correlations and enhance the spatial

consistency of super-resolved frames.

The second article is also about VSR. However, it is more practical and aims at

the applications in real scenarios. Note that the existing VSR methods (including
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the proposed method in the first article) exclusively make use of videos produced

by the Image Signal Processor (ISP) of the camera system as inputs. However, this

pipeline neglects the information loss incurred by non-invertible operations in ISP

(e.g., compression), and does not conform to the real image pipeline where VSR should

serve as a pre-processing unit of ISP. To address these issues, a Raw Video Dataset

(RawVD) is laboriously collected to train a novel method (named RawVSR) that

can accommodate camera sensor data as inputs. More specifically, a Successive Deep

Inference (SDI) module is designed in accordance with the architectural principle

suggested by a canonical decomposition result for Hidden Markov Model (HMM)

inference, and a reconstruction module is built with elaborately designed Attention-

based Residual Dense Blocks (ARDBs).

As for the last article, it focuses on addressing the recent concern of image manip-

ulation. A Progressive Spatio-Channel Correlation Network (PSCC-Net) is developed

to detect and localize image manipulations. It consists of two paths: a top-down path

that extracts local and global features and a bottom-up path that detects whether

the input image is manipulated, and estimates its manipulation masks at 4 scales,

where each mask is conditioned on the previous one. Different from the conventional

encoder-decoder and no-pooling structures, PSCC-Net leverages features at different

scales with dense cross-connections to produce manipulation masks in a coarse-to-fine

fashion. Moreover, a Spatio-Channel Correlation Module (SCCM) is proposed to cap-

ture both spatial and channel-wise correlations among extracted features, enabling

the network to cope with a wide range of manipulation attacks. The PSCC-Net is

lightweight and can process 1, 080P images at 50+ FPS.

The rest of this thesis is organized as follows:
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❼ Chapter 2: The details of the proposed LCVSR that is based on the new

mechanism for implicit motion estimation and compensation.

❼ Chapter 3: The details of the proposed RawVSR and the demonstration of

the collected RawVD.

❼ Chapter 4: The details of the proposed PSCC-Net for image manipulation

detection and localization.

❼ Chapter 5: The conclusion of this thesis and the discussion of future work.
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Chapter 2

End-To-End Trainable Video

Super-Resolution Based on a New

Mechanism for Implicit Motion

Estimation and Compensation

2.1 Abstract

Video super-resolution aims at generating a high-resolution video from its low-resolution

counterpart. With the rapid rise of deep learning, many recently proposed video

super-resolution methods use convolutional neural networks in conjunction with ex-

plicit motion compensation to capitalize on statistical dependencies within and across

low-resolution frames. Two common issues of such methods are noteworthy. Firstly,

the quality of the final reconstructed HR video is often very sensitive to the accuracy
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of motion estimation. Secondly, the warp grid needed for motion compensation, which

is specified by the two flow maps delineating pixel displacements in horizontal and

vertical directions, tends to introduce additional errors and jeopardize the temporal

consistency across video frames. To address these issues, we propose a novel dynamic

local filter network to perform implicit motion estimation and compensation by em-

ploying, via locally connected layers, sample-specific and position-specific dynamic

local filters that are tailored to the target pixels. We also propose a global refinement

network based on ResBlock and autoencoder structures to exploit non-local correla-

tions and enhance the spatial consistency of super-resolved frames. The experimental

results demonstrate that the proposed method outperforms the state-of-the-art, and

validate its strength in terms of local transformation handling, temporal consistency

as well as edge sharpness.

2.2 Introduction

Super-Resolution (SR) is considered as a promising technique to produce High-Resolution

(HR) pictorial data using Low-Resolution (LR) sensors without resorting to hardware

upgrades. Over the past few decades, it has received significant attention in a wide

range of areas, including, among others, medical imaging [1,2], satellite imaging [3–5]

and surveillance [6–8]. Recently, it has also been used as a pre-processing step to fa-

cilitate various recognition tasks by enhancing the raw data [9, 10]. Super-resolution

can be divided into two categories: Single Image Super-Resolution (SISR) and Video

Super-Resolution (VSR). SISR can be viewed as a certain sophisticated image in-

terpolation operation, which attempts to supply the missing details by strategically

exploiting the spatial patterns in LR inputs. In contrast, VSR takes advantage of
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both spatial and temporal relationships among consecutive frames to improve the

quality of reconstructed videos. The traditional approaches to the VSR problem typ-

ically consist of three sub-tasks: sub-pixel motion estimation, motion compensation

and up-sampling [11–14]. In general, motions across LR frames are estimated ex-

plicitly and the estimated LR displacements are employed to compensate sub-pixel

motions by warping relevant LR frames to the target frame; the compensated LR

frames are then fused to reconstruct the corresponding HR frame. The existing deep-

learning-based VSR methods largely follow similar approaches [15–18]. One common

limitation of such methods is that the super-resolved frames are very sensitive to the

accuracy of the motion estimation, rendering the quality of SR outputs unstable.

In this paper, we propose a new approach to VSR using local dynamic filters via

Locally Connected (LC) layers for implicit motion compensation and demonstrate its

competitive advantages over the existing ones. The effectiveness of this LCVSR ap-

proach can be attributed to three major factors: 1) The overall system is end-to-end

trainable and does not require any pre-training; the accuracy of motion estimation

improves progressively through the training process. 2) Local motion estimation

and compensation is performed implicitly by a novel Dynamic Local Filter Network

(DLFN) with LC layers. There are at least two benefits of using the DLFN. Firstly,

the implicit motion estimation, realized by sample-specific and position-specific dy-

namic local filters generated on-the-fly according to the target pixels, can deal with

complicated local transformations in video frames such as regional blurring, irregu-

lar local movement and photometric changes. Secondly, the simultaneous action of

dynamic local filters on all input LR frames via LC layers helps to maintain the tem-

poral consistency. 3) The spatial consistency of super-resolved outputs is enforced
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(a) Bicubic (b) Our Result (c) Ground Truth

Figure 2.1: The comparison of the bicubic interpolation, our result and the ground
truth with the scale ratio set to 4.

by a novel Global Refinement Network (GRN) constructed using ResBlock and au-

toencoder structures. Since the implicit motion estimation performed by the DLFN is

spatially localized, it may cause inconsistencies across neighboring areas. As such, the

GRN plays a critical role of restoring the spatial consistency. Moreover, the GRN has

the capability of exploiting non-local correlations due to its constituent autoencoder

structure, which makes up for the lack of global motion estimation in the DLFN.

Fig. 2.1 shows the comparison of the bicubic interpolation (the LR input), our result

(the HR output) and the ground truth for a sample video frame.

2.3 Related Work

Many SISR and VSR methods have been proposed over the past few decades. The tra-

ditional methods typically solve the SR problem, which is inherently under-determined,

by formulating it as a certain regularized optimization problem [11,12,14,19–22]. The
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recent years, however, have witnessed the increasing dominance of deep-learning-

based SR methods. The work by Dong et al. [23] is among the earliest ones that

brought Convolutional Neural Networks (CNNs) to bear upon SISR. In their pro-

posed SRCNN, a very shallow network is used to extract LR features, which are

subsequently leveraged to generate HR images via non-linear mapping. To avoid

time-consuming operations in the HR space, Shi et al. [24] proposed an Efficient Sub-

Pixel Convolution Network (ESPCN) to extract and map features from the LR space

to the HR space using convolutional layers instead of naive pre-defined interpolations

such as bilinear or bicubic. Zhang et al. [25] designed a residual dense block with

direct connections for the purpose of a more thorough extraction of local features

from LR images.

Compared with SISR, VSR is inherently more complex due to the additional chal-

lenge of harnessing the relevant information in the temporal domain. To cope with

this challenge, Kappeler et al. [15] proposed to employ the handcrafted optical flow

method by Drulea and Nedevschi [26] to compensate motions across input frames

and then feed the compensated frames into a pre-trained CNN to perform the SR

operation. Huang et al. [27] developed a new VSR method based on the so-called

Bidirectional Recurrent Convolutional Network (BRCN). The BRCN is a variant

of Recurrent Neural Network (RNN) with commonly-used recurrent connections re-

placed by weight-sharing convolutional connections; as a consequence, it inherits the

strength of RNN in terms of capturing long-term temporal dependencies and at the

same time admits a more efficient implementation. Liao et al. [28] introduced a SR

draft-ensemble approach in which multiple SR drafts are generated using an optical

flow method with different estimation settings and then synthesized by a carefully
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constructed CNN to produce the final HR output.

To avoid inaccurate motion estimation caused by fixed temporal radius, Liu et

al. [17] proposed a temporal adaptive neural network. This network has several SR

inference branches, each with a different temporal radius; the final HR output is

obtained by adaptively aggregating all SR inferences. They also introduced a spa-

tial alignment network that can efficiently estimate motions between neighboring

frames. The VESPCN developed by Caballero et al. [16] combines spatio-temporal

networks with an end-to-end trainable spatial transformer module to generate the

super-resolved video. Based on the motion compensation module in the VESPCN [16],

Tao et al. [13] designed a Sub-Pixel Motion Compensation (SPMC) layer to com-

pensate motion and up-sample video frames simultaneously. Moreover, they advo-

cated the use of an encoder-decoder style structure with ConvLSTM [29] and skip-

connections [30] for effectively processing sequential videos and reducing the training

time.

To improve the temporal consistency of super-resolved videos, Sajjadi et al. [18]

proposed a frame recurrent VSR method, which enables the processing of the current

frame to benefit from the inferred SR results for the previous frames. This method

is more efficient than those treating the VSR problem as a sequence of multi-frame

SR problems due to the recurrent nature of its operations.

Jo et al. [31] developed a novel VSR method, known as VSRDUF, which works as

follows: A deep neural network is employed to generate dynamic upsampling filters

and frame residuals; certain provisional HR frames are constructed from their LR

counterparts through dynamic upsampling filters, and the inferred residuals are then

added to such frames to produce the final output. This work is most related to ours
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in the sense that motion compensation is only performed implicitly. However, it will

be seen that the underlying mechanisms are fundamentally different.

2.4 Method

In this section we give a detailed description of the proposed VSR method with an

emphasis on its most prominent feature, namely, the use of local dynamic filters via LC

layers to implicitly compensate motions across video frames. The process starts with

converting the input LR frames from RGB to YCbCr color space. Only the Y channels

are fed into the proposed VSR system, which helps to reduce the computational

complexity. The Cb and the Cr channels are upsampled via bicubic interpolation

and merged with the super-resolved Y channels to generate HR frames in YCbCr,

from which the final result in RGB is obtained. Let Yt ∈ R
H×W denote the t-th LR

frame in the Y channel degraded by blurring and down-sampling operations from the

corresponding HR frame Xt ∈ R
rH×rW , where r is the scale ratio. The given LR video

sequence of C consecutive frames centered at Yt is denoted as {Yt−T :t+T}, where T

is the temporal radius and C = 2T + 1. The corresponding HR video sequence is

{Xt−T :t+T}. We use FLCV SR as the functional representation of the proposed LCVSR

system with the end-to-end relation

X̂t = FLCV SR({Yt−T :t+T}; θLCV SR), (2.4.1)

where X̂t is the reconstructed HR frame and θLCV SR denotes the ensemble of the

system parameters. Regardless of the batch size, the shape of the input tensor is

set to be C × H × W while that of the output is set to be 1 × rH × rW . The
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Figure 2.2: The upper part shows the overall architecture of the proposed LCVSR
system. The bottom part provides a detailed illustration of the LFGN.
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proposed LCVSR system, as shown in Fig. 2.2, consists of three modules, which are

respectively the Dynamic Local Filter Network (DLFN), the pixel-shuffle network [24]

and the Global Refinement Network (GRN). The input LR frames {Yt−T :t+T} are first

fed into the DLFN, which has two sub-modules: Local Filter-Generating Network

(LFGN) and LC layers. The LFGN produces sample-specific and position-specific

dynamic local filters filters on-the-fly according to the spatio-temporal relationship

among the inputs. These dynamic local filters, each of size s×s×C (with s = 2d+1,

where d is the spatial radius), then act on the LR frames via LC layers to generate

the feature maps {Ŷ1:L} (we set L = r2 in this work). These feature maps are

forwarded to the pixel-shuffle network to construct a provisional HR frame X̂ ′
t, which

is subsequently fed into the GRN to enhance the spatial consistency and cope with

global transformations. The output of the GRN is the reconstructed HR frame X̂t.

2.4.1 Dynamic Local Filter Network

The existing VSR methods typically compensate motions across video frames by ex-

plicitly estimating pixel displacements in horizontal and vertical directions. This

error-prone estimation step may potentially jeopardize the quality of SR results.

Therefore, it is of considerable interest to develop deep-learning-based techniques

for implicit motion estimation and compensation. One possible approach is to use

the conventional CNNs with weight-sharing filters, which have been shown to achieve

outstanding performance in image classification and segmentation tasks [32,33]. How-

ever, motion, blur and photometric changes encountered in the VSR problem are usu-

ally sample-specific and position-specific, in other words, each pixel in a video frame

may exhibit a unique degradation pattern, which cannot be effectively exploited by
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the weight-sharing filters. For this reason, we propose a DLFN with LC layers that

can perform local operations tailored to the spatio-temporal characteristics of the

target pixels. Specifically, a sample-specific and position-specific dynamic local fil-

ter is generated for each pixel in the input LR frames; these dynamic local filters

then collectively act on the input frames via LC layers to generate feature maps by

compensating motions and other transforms in an implicit manner.

Let Θl ∈ R
sH×sW×C denote the lth set of (unbiased) local filters. Each local filter

in Θl (say, Θi,j,l := {Θ
(m,n,k)
i,j,l : m,n = 1, 2, 3; k = 1, · · · , C}) is associated with a

specific pixel (say, the (i, j)-pixel) in the tth LR frame. The lth feature map Ŷl is

obtained by applying Θl on the input LR frames {Yt−T :t+T}. More precisely, we have

Ŷ
(i,j)
l =

i+d
∑

m=i−d

j+d
∑

n=j−d

t+T
∑

k=t−T

Θ
(m−i+d+1,n−j+d+1,k−t+T+1)
i,j,l · Y

(m,n)
k , (2.4.2)

where Ŷ
(i,j)
l represents the value of the (i, j)-pixel in the lth feature map, and Y

(m,n)
k

denotes the (m,n)-pixel in the kth LR frame. It is worth pointing out that both Θl

and Ŷl depend on t and should actually be written as Θt,l and Ŷt,l respectively; here

we suppress the subscript t for notational simplicity.

To generate dynamic local filters, we build a novel LFGN based on ResBlocks [34].

Its input-output relationship can be expressed as

Θ = FLFGN({Yt−T :t+T}; θLFGN), (2.4.3)

where FLFGN is the functional representation of the LFGN and θLFGN denotes the

ensemble of its parameters. Note that the output Θ := {Θ1:L} ∈ R
C×sH×sW×L is

a 4-D tensor (which consists of all dynamic local filters) whereas the input of the
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LFGN is a 3-D tensor of shape C × H × W . To generate Θ based on {Yt−T :t+T},

we employ modified ResBlocks in concatenation to progressively increase the depth

of the input tensor from C to C ′, where C ′ = C × s2 × L, then resize the resulting

3-D tensor of shape C ′ × H ×W to a 4-D tensor of shape C × sH × sW × L. The

LFGN consists of one Resize module and four sub-blocks, each of which is built us-

ing ResBlocks. We find that using more ResBlocks in each sub-block leads to better

performance. However, to strike a balance between system performance and compu-

tational complexity, in each sub-block we deploy one ResBlock for depth enlargement

and three ResBlocks with no shape change. Besides, grouped convolutions [35] are

also utilized. The four sub-blocks are densely connected by shortcuts to facilitate

information exchange among them. If the tensors at the two sides of a shortcut have

different shapes, a 1 × 1 convolution is performed to make the shape compatible;

otherwise, we directly connect the two sides without modification. Each ResBlock

consists of two 3 × 3 convolutional layers, two LeakyReLU layers [36] and an inner

shortcut. The output of the DLFN consists of L feature maps, each of which is gen-

erated by exploiting, via implicit motion compensation, the relevant spatio-temporal

information in all LR frames. These feature maps are then fed into the pixel-shuffle

network to construct a provisional HR frame X̂ ′
t.

It is worth emphasizing that dynamic local filters are intermediate computational

results produced within the proposed system and should not be viewed as the pa-

rameters of the system itself. They are generated by the LFGN based on the input

LR frames, then act back on the input frames, via LC layers, to perform pixel-level

fine-grained motion estimation and compensation. More generally, this is an effective

mechanism for leveraging the learning capability of a deep neural network (say, the
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LFGN in the current setting) to realize dynamic localized functionalities. See Sections

2.5.1 and 2.5.4 for some supporting experimental results.

2.4.2 Global Refinement Network

Since the proposed DLFN performs localized motion estimation and compensation

across LR frames, it can potentially cause inconsistencies among neighboring areas.

To address this issue, we propose a GRN (see Fig. 2.2) employing ResBlock and au-

toencoder structures to improve the spatial consistency of super-resolved frames. The

autoencoder structure enlarges the receptive field so that the GRN also has the abil-

ity to deal with global transformations, which makes up for the lack of global motion

estimation in the DLFN. The GRN mainly consists of five sub-blocks connected by

shortcuts. Each sub-block contains a convolutional layer or a transposed convolu-

tional layer with LeakyReLu as the activation function, followed by three ResBlocks

that are structurally the same as those in the DLFN. The encoder, formed by the

second and third sub-blocks, reduces the spatial dimension but increases the depth di-

mension to enlarge the receptive field progressively. In contrast, the decoder, formed

by the last two sub-blocks, reduces the depth dimension but increases the spatial

dimension to perform global refinement. Finally, a 5×5 convolutional layer activated

by LeakyRelu produces the reconstructed HR frame. The input-output relationship

of the proposed GRN is given by

X̂t = FGRN(X̂ ′
t; θGRN), (2.4.4)

where FGRN is the functional representation of the GRN and θGRN denotes the en-

semble of its parameters.
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2.4.3 Data Preparation

Deep-learning-based VSR methods rely heavily on the quality and the quantity of

the training datasets. Unfortunately, so far there is no standard training dataset for

VSR. To build our own, we totally collect 100k ground-truth sequences, each with 7

consecutive frames of size 252×444, where 70k sequences are selected from the Vimeo-

90k dataset recently built by Xue et al. [37] and the rest 30k sequences are extracted

from several videos provided by Harmonic1; as a comparison, the current state-of-

the-art VSRDUF uses 160k sequences for training. We adopt the Vid4 dataset [21]

and the SPMCS dataset [13] for testing. Our input LR frames are generated from

the ground-truth sequences via Gaussian blur and downsampling. For the Gaussian

blur, we set the standard deviation to be 1 and the kernel size to be 3 × 3. As to

the downsampling operation, we choose the scale ratio r = 3, 4 (considered to be the

most challenging cases in the VSR task).

2.4.4 Implementation

The proposed LCVSR system is end-to-end trainable and no pre-training is needed for

sub-networks. Our training is carried out on a PC with two NVIDIA GeForce GTX

1080 Ti, but only one GPU is used for testing. We adopt Xavier initialization [38]

and set the mini-batch size to be 12. The L2 loss function is used to calculate the

reconstruction error as follows:

L2(Xt, X̂t) =
∥

∥

∥
Xt − X̂t

∥

∥

∥

2

2
. (2.4.5)

1https://www.harmonicinc.com/free-4k-demo-footage/
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We train the proposed system for about 0.8 million iterations using the Adam opti-

mizer [39] with β1 = 0.9, β2 = 0.999. The learning rate is set to 10−4 at the beginning

and decays to 10−5 after 0.7 million iterations. Our source code will be made publicly

available.

2.5 Experimental Results

In our experiments, we set C = 7, T = 3, s = 3 and d = 1. As such, one super-

resolved frame is generated based on 7 consecutive LR frames with the middle one

as the reference, and the size of generated dynamic local filters is 3 × 3 × 7. We use

PSNR and SSIM for quantitative assessment of the SR results. All PSNR values are

calculated based on the Y channel using the ITU-R BT.601 standard to make fair com-

parisons [16]. In addition to the aforementioned quantitative performance metrics, we

also consider qualitative measures such as edge sharpness and temporal consistency.

The following existing VSR methods are chosen as benchmarks: Bayesian [21], VSR-

Net [15], VESPCN [16], B1,2,3 + T [17], SPMC [13], FRVSR [18] and VSRDUF [31].

For the VSRDUF, both its basic version with 16 layers (DUF-16L) and the enhanced

version with 52 layers (DUF-52L) are used for comparisons. The quantitative exper-

imental results of these benchmarks are obtained using the provided source codes (if

available) or cited from the original papers.

2.5.1 Visualization of Dynamical Local Filters

Although the performance of the proposed LCVSR system benefit from many con-

tributing factors, arguably the most crucial one is the use of dynamic local filters, via
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Figure 2.3: Dynamic local filters applied on smooth, edge and texture areas respec-
tively.

LC layers, for implicit motion estimation and compensation. To gain a better un-

derstanding, it is instructive to distinguish generated filters from learned filters [40].

The learned filters such as those in the LFGN update themselves only during the

training process and become static afterwards. On the contrary, the generated filters

are adaptive in the sense that they are not fully specified until the input is given.

The dynamic local filters in the proposed system belong to this category. They are

computed based on the input LR frames and used as the kernel weights in LC layers;

moreover, to reduce the computational complexity, they are applied to the LR space

rather than the HR space.

Fig. 2.3 illustrates the dynamic local filters that are used to generate the first fea-

ture map Ŷ1, shown as the yellow cube in Fig. 2.2. It also shows some sample patches

of size 5 × 5 extracted from smooth, edge and texture areas in the first and the last
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LR frames together with their corresponding dynamic local filters, which are of size

15 × 15 (since s = 3). It can be seen from Fig. 2.3 that the dynamic local filters are

spatially content-adaptive within each frame and temporally distinct (even when the

associated pixels are of similar nature) across different frames. This provides support-

ing evidence for their ability to adapt according to the spatio-temporal characteristics

of the target pixels and perform implicit motion estimation and compensation. It can

also been seen from Fig. 2.3 that, in a given frame, the dynamic local filters for pixels

with a homogeneous neighborhood tend to have similar patterns, which helps to re-

tain intra-frame spatial consistency. For example, the local filters associated with the

pixels in the smooth area and those in the edge area (except the exact edge pixels)

are quite alike. In contrast, each pixel in the texture area has a distinct dynamic

local filter, which is essential since this area is very sensitive to motions.

2.5.2 Analysis of Temporal Consistency

The Lack of temporal consistency may cause flickering artifacts that manifest visu-

ally, for instance, in the form of jagged edges. To validate that our proposed method

maintains temporal consistency, we extract spatially co-located rows from consecu-

tive super-resolved frames of Calendar in the Vid4 dataset with the scale ratio r = 4,

and arrange them vertically to compose a temporal profile [18]; we also compose a

temporal profile for the City frames in the same dataset. Fig. 2.4 shows the compar-

ison of our temporal profiles and the corresponding ones generated by five existing

VSR methods. Overall, the proposed method presents the most consistent temporal

profiles. In fact, its maintenance of temporal consistency remains good even in some

cases where the ground-truth frames have certain artifacts in this respect (see, e.g.,
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Figure 2.4: Visual comparison of the temporal profiles generated by the proposed
VSR method and some existing ones for super-resolved Calendar and City frames in
Vid4.

City). Moreover, it can be seen from the temporal profiles that our method produces

the sharpest edges, as compared to the other ones, in all Calendar and City frames.

2.5.3 Qualitative and Quantitative Comparisons

The proposed method is compared to several existing VSR methods qualitatively

and quantitatively with a particular focus on the VSRDUF, which is the current

state-of-the-art.

In the VSRDUF, the generated Dynamic Upsampling Filters (DUF) are only ap-

plied on the central LR frame to reconstruct the SR one without joint consideration

of all input frames. This mechanism would cause fuzzy edges and temporal incon-

sistencies (see Fig. 2.4 (e)). In contrast, the generated Dynamic Local Filters (DLF)

are applied on all input LR frames to reconstruct the SR one, yielding better visual
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(a) VSRNet [15] (b) VESPCN [16] (c) SPMC [13] (d) FRVSR [18]

(e) DUF-52L [31] (f) Proposed (g) GT

(a) VSRNet [15] (b) VESPCN [16] (c) SPMC [13] (d) FRVSR [18]

(e) DUF-52L [31] (f) Proposed (g) GT
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(a) VSRNet [15] (b) VESPCN [16] (c) SPMC [13] (d) FRVSR [18]

(e) DUF-52L [31] (f) Proposed (g) GT

(a) VSRNet [15] (b) VESPCN [16] (c) SPMC [13] (d) FRVSR [18]

(e) DUF-52L [31] (f) Proposed (g) GT

Figure 2.5: Visual comparisons on the Vid4 dataset with r = 4.
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(a) SPMC [13] (b) DUF52 [31] (c) Proposed (d) GT

Figure 2.6: Visual comparisons for NewYork and Venice from the SPMCS dataset
with r = 4.

quality in terms of edge sharpness and temporal consistency (see Fig. 2.4 (f)), and

achieving higher PSNR and SSIM values. Moreover, the essence of the DUF is still a

weight-sharing filter that has been widely used in conventional CNNs. However, the

proposed DLF is spatially content adaptive (position-specific) within each frame and

temporally distinct (sample-specific) among different frames. This is a new mecha-

nism and is not like conventional CNNs. The reason we employ the DLF in VSR is

based on the observation that each pixel in a video frame may exhibit a unique degra-

dation pattern, which cannot be effectively exploited by the weight-sharing filters.

Fig. 2.5 shows the qualitative comparisons of different methods on the Vid4 dataset

with r = 4, and Table 2.1 demonstrates the quantitative comparisons in terms of

average PSNR and SSIM values on the same dataset with r = 3, 4. Note that our

SR results contain more fine details and restore sharper edges. Moreover, the PSNR
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value achieved by the proposed method is 0.61 dB higher than that by the DUF-16L

when r = 3 and 0.66 dB higher when r = 4. Even compared with the DUF-52L, our

result is still 0.13 dB higher when r = 4. We have also performed the test on the

SPMCS dataset, which contains 31 video clips, for further qualitative and quantitative

comparisons. It can be seen from Fig. 2.6 and Table 2.2 that the proposed method

performs competitively on this dataset as well.

2.5.4 Ablation Study

To gain a better understanding of the effectiveness of the new mechanism for implicit

motion estimation and compensation, we conduct an ablation study by directly feed-

ing the output of the LFGN (via a convolutional layer) to the pixel-shuffle network;

the resulting system is trained in the same way as before. Compared to the original

system, this new system has (essentially) the same number of parameters but bypasses

the action of dynamic local filters, via LC layers, on the input LR frames. As shown

in Table 2.3, this modification leads to significant performance degradation on the

Vid4 dataset, suggesting that the mechanism adopted by the original system is more

effective in terms of exploiting the learning capability of the LFGN to realize dynamic

localized functionalities. We also conducted the analysis on the role of the GFN by

1) removing it from the proposed system and 2) replacing it with the U-Net [41]. It

can be seen from Table 2.3 that these two variants incur significant performance loss

compared with our full model.

We further investigate the performance-complexity trade-off for the proposed sys-

tem by varying the input length and the network size. Specifically, by employing 1, 2
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Table 2.1: Quantitative comparisons on the Vid4 dataset with r = 3, 4. The best one is highlighted in Bold.

Vid4 Metric Bicubic Bayesian VSRNet VESPCN B1,2,3 + T SPMC FRVSR DUF-16L DUF-52L Proposed

x3
PSNR 25.28 25.82 26.79 27.25 - 27.49 - 28.90 - 29.51

SSIM 0.7329 0.8323 0.8098 0.8447 - 0.8400 - 0.8898 - 0.8964

x4
PSNR 23.79 25.06 24.84 25.35 25.39 25.52 26.69 26.81 27.34 27.47

SSIM 0.6332 0.7466 0.7049 0.7557 0.7490 0.7600 0.8220 0.8145 0.8327 0.8394
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Table 2.2: Quantitative comparisons on the SPMCS dataset with r = 3, 4. The best
one is highlighted in Bold.

SPMCS Metric SPMC DUF-16L DUF-52L Proposed

x3
PSNR 32.10 - - 33.91

SSIM 0.9000 - - 0.9358

x4
PSNR 29.89 30.01 30.39 30.66

SSIM 0.8400 0.8355 0.8646 0.8711

Table 2.3: Quantitative comparisons on the Vid4 dataset for different variants of the
proposed method with r = 3, 4. The best one is highlighted in Bold.

Vid4 Metric w/o LC Layers w/o GRN w/ U-Net [41] Our full model

x3
PSNR 27.27 28.13 29.20 29.51

SSIM 0.8471 0.8752 0.8896 0.8964

x4
PSNR 25.45 26.20 27.29 27.47

SSIM 0.7530 0.8134 0.8352 0.8394

and 3 ResBlocks (the ones without shape change) in both DLFN and GRN, we con-

struct three different configurations of the proposed system, denoted by LCVSR-Res1,

LCVSR-Res2 and LCVSR-Res3, respectively.

Fig. 2.7 plots the PSNR against the average runtime for each configuration on the

Vid4 dataset with the number of input LR frames set to be 1, 3, 5 and 7. It can

be seen that increasing the input length leads to higher PSNRs at the cost of longer

runtimes. When the input length is 1, the VSR task degenerates to the SISR task,

which only exploits intra-frame dependencies. Increasing the input length from 1 to

3 significantly improves the PSNR values due to the additional freedom of exploring

inter-frame dependencies via motion estimation and compensation. Further increas-

ing the input length provides more spatial and temporal information that can be

capitalized on, which helps to generate better SR results. However the improvement
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Figure 2.7: PSNR vs. runtime for different configurations of the LCVSR system on
the Vid4 dataset with the input length set to be 1, 3, 5 and 7.

becomes negligible when the input length goes beyond 7. Employing more ResBlocks

in DLFN and GRN has a similar effect. Indeed, it can be seen from Fig. 2.7 that

the PSNR value increases progressively from LCVSR-Res1 to LCVSR-Res3 for the

same input length, and the runtime follows the same trend. Note that the proposed

LCVSR system corresponds to LCVSR-Res3 with input length 7. The above experi-

mental results provide certain justifications for the design of the proposed system in

consideration of the performance-complexity trade-off.
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2.5.5 Network Parameters and Runtime Analysis

In table 2.4, the number of parameters and the runtime of different methods are

demonstrated. Our method has slightly less parameters and faster runtime than the

current state-of-the-art DUF-52L. Although the VSRNet has the least number of

parameters and is close to real-time, it has the worst VSR performance.

Table 2.4: The number of parameters and average runtime of different methods for
1080p frames. The best one is highlighted in Bold.

Method VSRNet VESPCN SPMC DUF-52L Proposed

Params.(M) 0.39 0.89 2.17 5.82 5.81

Time (s) 0.23 0.29 2.80 2.68 2.32

2.6 Conclusion

In this paper, we have proposed an end-to-end trainable VSR method based on a

new mechanism for implicit motion estimation and compensation (realized through

dynamic local filters and LC layers). Our experimental results demonstrate that the

proposed method outperforms the current state-of-the-art in terms of local transfor-

mation handling, edge sharpness and temporal consistency. As part of our future

work, we intend to explore the application of LC layers in deep neural network archi-

tectures for image/video restoration tasks.
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Chapter 3

Exploit Camera Raw Data for

Video Super-Resolution via

Hidden Markov Model Inference

3.1 Abstract

To the best of our knowledge, the existing deep-learning-based Video Super-Resolution

(VSR) methods exclusively make use of videos produced by the Image Signal Proces-

sor (ISP) of the camera system as inputs. Such methods are 1) inherently suboptimal

due to information loss incurred by non-invertible operations in ISP, and 2) incon-

sistent with the real imaging pipeline where VSR in fact serves as a pre-processing

unit of ISP. To address this issue, we propose a new VSR method that can directly

exploit camera sensor data, accompanied by a carefully built Raw Video Dataset

(RawVD) for training, validation, and testing. This method consists of a Successive

Deep Inference (SDI) module and a reconstruction module, among others. The SDI
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module is designed according to the architectural principle suggested by a canoni-

cal decomposition result for Hidden Markov Model (HMM) inference; it estimates

the target high-resolution frame by repeatedly performing pairwise feature fusion

using deformable convolutions. The reconstruction module, built with elaborately

designed Attention-based Residual Dense Blocks (ARDBs), serves the purpose of 1)

refining the fused feature and 2) learning the color information needed to generate a

spatial-specific transformation for accurate color correction. Extensive experiments

demonstrate that owing to the informativeness of the camera raw data, the effec-

tiveness of the network architecture, and the separation of super-resolution and color

correction processes, the proposed method achieves superior VSR results compared to

the state-of-the-art and can be adapted to any specific camera-ISP. Code and dataset

are available at https://github.com/proteus1991/RawVSR.

Index Terms — Video super-resolution, camera raw data, hidden Markov model

inference

3.2 Introduction

Super-Resolution (SR) is a promising technique that can restore High-Resolution

(HR) pictorial data from their Low-Resolution (LR) counterpart without requiring

hardware upgrades. Over the past few decades, it has found applications in a wide

range of areas such as medical imaging [1, 2], satellite imaging [3, 4] and surveil-

lance [5, 6]. SR is also useful for improving the quality of data dedicated to high-

level vision tasks [7–9]. There are two major categories of SR: Single Image Super-

Resolution (SISR) and Video Super-Resolution (VSR). Although early studies [10–12]

largely treat VSR as a simple extension of SISR by focusing on intra-frame spatial
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correlation, more attention has been paid in recent works [13–16] to strategically ex-

ploiting inter-frame temporal correlation (typically in the form of motion estimation

and compensation) to further improve the VSR results. The availability of an extra

dimension in VSR creates both opportunities and challenges. Indeed, there is consid-

erable freedom in the ways that multiple LR frames can be leveraged to reconstruct

one target HR frame, especially with the advent of deep learning techniques. Even

though many effective heuristics have been proposed, a theoretical guideline for the

fusion process is still lacking.

The data-driven approach has become increasingly popular in VSR research. To

the best of our knowledge, the existing data-driven VSR methods [13–16] exclusively

make use of camera processed data as inputs, despite the fact that modern cameras

are capable of providing raw data which are potentially more informative. Note that

camera processed data are produced by the Image Signal Processor (ISP) from raw

data through several operations, including image demosaicing, denoising, sharpening,

color converting, tone adjustment, compression, among others [17–19]. Overall, the

operations in ISP are non-invertible and tend to degrade the information content of

the original data. For example, the bit-depth is reduced from 12-14 bits to 8 bits [20]

due to quantization, and various artifacts are introduced by compression (JPEG is

the default image format for many cameras). Therefore, using camera processed data

as inputs is inherently suboptimal. Moreover, such methods are inconsistent with the

real imaging pipeline where VSR in fact serves as a pre-processing unit rather than

a post-processing unit of ISP.

The main contributions of this paper are summarized as follows:

1. To avoid information loss and better fit the imaging pipeline, we propose a new
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Raw VSR method, named RawVSR, that can directly exploit camera sensor

data. Furthermore, we carefully build the first Raw Video Dataset (RawVD)

for training, validation, and testing.

2. Assuming a Hidden Markov Model (HMM), we show that the minimal sufficient

statistic of LR frames with respect to the target HR frame can be computed

via an iterative pairwise fusion process; this result provides the architectural

principle for the design of RawVSR, especially its Successive Deep Inference

(SDI) module.

3. We design an Attention-based Residual Dense Block (ARDB) and leverage it to

build the reconstruction module of RawVSR; this module is capable of simul-

taneously refining the fused feature and learning the color information needed

to generate a spatial-specific transformation for accurate color correction.

Our extensive experimental results demonstrate that owing to the informativeness

of the camera raw data, the effectiveness of the neural network architecture, and the

separation of super-resolution and color correction processes, the proposed RawVSR

achieves superior performance compared to the state-of-the-art and can be adapted

to any specific camera-ISP.

(a) Train (b) w/ processed data (c) w/ raw data (d) ground truth

Figure 3.1: Illustrations of the proposed RawVSR based on camera processed data
and raw data, respectively, for 4× VSR using the testing video “Train” in RawVD.

Fig. 3.1 illustrates the proposed RawVSR based on camera processed data and
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raw data, respectively, for 4× VSR using the testing video “Train” in RawVD. It can

be seen that the latter yields clearer texture and sharper edges.

3.3 Related Work

To place our work in a proper context, we give a review of the existing VSR methods

and discuss some relevant issues.

VSR can be viewed as an underdetermined problem. Many traditional methods

tackle this problem via regularized optimization, aided by certain image priors [21–26].

The advent of deep learning has led to a paradigm shift in VSR and more gen-

erally low-level vision research [27–30]. Indeed, following the pioneering work by

Dong et al. [31] on SISR, the recently proposed VSR methods are predominantly

deep-learning-based [10,11,13–16,32–35], achieving performances out of reach of the

traditional prior-based approach. Here we just describe a few representative ones.

Kappeler et al. [11] resort to the hand-crafted optical flow [36] for motion compensa-

tion across input frames, and adopt a pre-trained CNN for SR operation. Caballero

et al. [33] improve the quality of estimated optical flow using a spatial transformer

module to facilitate the subsequent spatial-temporal network [37] for VSR. Tao et

al. [34] design a Sub-Pixel Motion Compensation (SPMC) layer to perform motion

compensation and resolution upsampling simultaneously. A novel ConvLSTM is put

forward in [32], which can be integrated into the autoencoder structure to effectively

exploit temporal correlations among input frames. The 3D convolution finds its first

application to motion estimation and compensation in [14], where the spatial and

temporal correlations are explored coherently via 3D convolving operations. Inspired

by back-projection [38], Haris et al. [15] develop a fusion strategy that treats each
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input frame as a stand-alone source carrying distinct information and progressively

embeds extracted correlation from each source-target pair into the back-projection

network for motion compensation. In consideration of the fact that inter-frame dis-

placements could spread over a wide range, Tian et al. [39] substitute the conventional

convolution with a deformable one that is capable of exploring spatial correlation via

learnable sampling points tailored to each pixel, not constrained by any prescribed

kernel shape. Wang et al. [16] propose a refined version of deformable convolution and

construct a Pyramid, Cascading and Deformable (PCD) module for motion alignment;

the resulting method is the winner of the NTIRE 2019 challenge on video deblurring

and super-resolution [40], and achieves the best VSR performance to date.

Below we identify several issues with the existing VSR methods that will be ad-

dressed in the present work.

3.3.1 Raw Data Processing

The advantage of untouched camera raw data over processed data has been recognized

in several areas of low-level vision. For instance, Chen et al. [27] make use of raw data

to perform fast imaging in low-light and achieved favorable results in terms of texture

detail. This success can be attributed to the primitive radiance information retained

by raw data. Indeed, using camera processed data as a substitute of raw data fails

to deliver comparable results due to the information loss caused by quantization in

ISP, which obscures subtle differences in pixel values that are essential for exhibiting

delicate textures. Ignatov et al. [41] demonstrate that color images suitably converted

from smartphone’s raw data are visually comparable to those produced by a profes-

sional camera. A comprehensive study of raw-data-based SISR is conducted by Xu
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et al. [19], showing that the benefits of raw data are intrinsic, i.e., not specific to a

particular SISR method [42]. However, to the best of our knowledge, the existing

VSR methods are still exclusively based on camera processed data, and there is a

lack of understanding of the potential gain offered by raw data (beyond that seen in

the SISR setting).

3.3.2 Motion Estimation

Due to the temporal dependencies among video frames, VSR can benefit substantially

from precise motion estimation, which can be performed either explicitly or implicitly.

Explicit motion estimation usually relies on optical flows [11,13,33,34]. However, for

video frames with large pixel displacement and object occlusion, it could be extremely

challenging and arguably impossible to obtain precise optical flows. Moreover, as in-

dicated by [43], even completely accurate optical flows might not be adequate for

motion estimation since they do not fully capture all possible motion effects. There-

fore, many recent VSR methods such as DUF [14], TDAN [39], and EDVR [16] choose

to estimate motion implicitly, resulting in better final reconstructions compared to

the flow-based ones. In a certain sense, implicit motion estimation provides a new

mechanism for multi-frame fusion. Nevertheless, many aspects of the fusion process

remain unspecified, and a theoretical guideline is much needed.

3.3.3 Color Correction

Different from camera processed images, raw images only record the primitive ra-

diance information, which has not been projected to any color space. In [27], an

end-to-end mapping is learned that transforms raw images to colored images directly.
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However, this mapping does not have the desired flexibilities due to its camera-specific

nature. [18] addresses this issue by generating a global color transformation that can

cope with a variety of cameras. But it has been observed that such a transformation

may cause significant local color distortions. This problem is solved by [19] through

the introduction of a spatial-specific color transformation. Note that [19] makes use

of a stand-alone deep convolutional network for this purpose, which increases the

overall model size and computational load. In contrast, we show that spatial-specific

color transformation can actually be accomplished together with HR image recon-

struction by a single network. Our new design leads to more efficient implementation

and facilitates joint learning for both tasks.

3.4 Raw Video Dataset

The widely-used VSR training datasets such as Vimeo-90K [43] and REDS [40] are

constructed with post-ISP videos (e.g., H.264 videos) and, as a consequence, are

inherently unsuitable for raw-data-based VSR. We are not aware of the existence of

publicly available raw video datasets for VSR. An important contribution of this work

is a new Raw Video Dataset (RawVD) for training and benchmarking. In fact, it will

be seen that RawVD consists of both HR/LR raw video pairs and their processed

counterparts, thus is suitable for essentially all VSR methods, regardless whether

they are raw-data-based or not. To build this dataset, we use a Canon 5D3 camera

with the third-party upgrade1 to film videos in Magic Lantern Video (MLV) format

(which is a raw video format), and utilize the MLV App2 to obtain corresponding raw

1https://magiclantern.fm/
2https://mlv.app/
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frames in DNG format (which is a raw image format). Note that different cameras

might have different Bayer patterns. For Canon 5D3, the Bayer pattern is RGGB,

which means 50% sensors for green color, 25% for red color, and 25% for blue color.

A degraded LR raw frame Yraw ∈ R
H/S×W/S×1 is generated for each filmed HR raw

frame Xraw ∈ R
H×W×1, where H and W stand respectively for frame height and

width, and S represents the VSR scale ratio. Specifically, inspired by [19,27], we first

use AHD [44] to produce a demosaiced frame Xlin ∈ R
H×W×3 based on Xraw without

any post-processing such as white balance and gamma correction (where the subscript

of Xlin reflects the fact that each of its pixel value is a linear measurement of some

radiance information contained in Xraw), then generate Yraw from Xlin through a

sequence of degradation operations involving, among others, blurring, downsampling,

and noising. More precisely, we have

Yraw = fBayer(fDown(Xlin ∗KBlur)) + n. (3.4.1)

Here KBlur is a uniformly distributed defocus blur kernel, which simulates the out-of-

focus effect in camera; ∗ denotes the convolutional operation; n is a heteroscedastic

Gaussian noise [19,45] with its variance specified by two parameters σ2
1 and σ2

2; fDown

and fBayer stand respectively for downsampling and mosaicing operations (in particu-

lar, fBayer converts a three-channel frame back to a one-channel frame that obeys the

RGGB pattern). Finally, given Xraw and Yraw, we use Rawpy, a Python version of

LibRaw (with parameters adjusted to closely approximate Canon-ISP), to generate

their corresponding color frames Xrgb ∈ R
H×W×3 and Yrgb ∈ R

H/S×W/S×3. An illus-

tration of Yraw, Yrgb, Xraw, Xlin, and Xrgb can be found in Fig. 3.2; note that the color

of Xlin is biased towards green because the dominant measurement recorded in raw
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(a) Yraw (b) Yrgb (c) Xraw (d) Xlin (e) Xrgb

Figure 3.2: Examples of videos in RawVD with the brightness and contrast of raw
frames adjusted for better visualization.

data is from green sensors. In total, 110 videos (with a resolution of 1920× 1080 and

at least 100 frames each) are filmed. These videos capture a wide variety of scenes.

We divide these 110 videos into three groups: 100 videos for training, 5 for validation,

and the rest 5 for testing. The 5 test videos are named “Store”, “Painting”, “Train”,

“City”, and “Walk” according to their respective content.

As mentioned above, each video has four different versions (in addition to the

linear measurement version (Xlin)): the original HR raw version (Xraw), the LR

raw version (Yraw), the HR color version (Xrgb), and the LR color version (Yrgb).

The LR raw version and the LR color version serve as the inputs of raw-data-based

VSR methods and processed-data-based VSR methods, respectively. We adopt the

HR color version as the ground truth for both types of methods to facilitate direct

comparisons of their outputs. The linear measure version is not directly used for

supervised training in the present work; nevertheless, we choose to include it in our

RawVD as it visually reveals the intimate connections among the other four versions
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and potentially provides valuable insights that can be fruitfully exploited in future

research.

Remark: We have also considered collecting real-world raw LR-HR pairs through

optical zooming [46]. However, this approach has several limitations. First, each LR-

HR pair should have exactly the same motion (otherwise the pixel-level alignment

is difficult to accomplish), which severely limits the varieties of suitable videos that

can be collected in practice. Second, since raw data only record primitive radiance

information, some back-and-forth conversions between raw data and processed data

(e.g., sRGB) are typically needed for raw LR-HR pair alignment, causing information

loss. As such, this approach is tailored to SISR (without inter-frame motion) with

sRGB data. In contrast, our approach does not suffer from these problems and is

better suited to raw VSR. It is also worth noting that even though AHD is not the

state-of-the-art for demosaicing, it performs very stable and is widely adopted in

practice [19]. Indeed, upon close scrutiny, no ground-truth video in the constructed

RawVD suffers evident demosaicing artifacts.

3.5 Method

Now we are in a position to present the proposed raw-data-based VSR method, i.e.,

RawVSR. A general overview is provided in Section 3.5.1. Sections 3.5.2 and 3.5.3

are devoted to describing two key components of RawVSR: the SDI module and

the reconstruction module. We address some potential practical concerns regarding

raw-data-based VSR in Section 3.5.4.
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3.5.1 Overview

To effectively exploit LR raw videos, one might be inclined to build a deep neural

network to learn an end-to-end mapping that can generate HR color videos directly.

However, in reality, raw videos only record the radiance information read from camera

sensors and the associated color videos are in fact ISP-dependent. That is to say,

different ISPs may produce different color videos based on the same raw video. As

such, an end-to-end mapping can only be tailored to a specific type of camera ISP

and lacks the flexibilities needed for accommodating diverse VSR requirements. To

tackle this problem, we use one certain color reference generated by an ISP-adaptive

operation to guide the transformation from the raw space to the color space.

The proposed RawVSR consists of several components: the demosaicing mod-

ule, the feature extraction module, the SDI module, the reconstruction module, the

upsampling module, and the color-transformation generating module. It takes 7 con-

secutive LR raw frames Y t−3
raw , · · · , Y

t+3
raw and outputs a SR color frame X t

sr ∈ R
H×W×3.

The goal is to make X t
sr as close to the HR color frame X t

rgb as possible. We use Y t
rgb

as the color reference frame to ensure that the provided color information is consis-

tent with that of X t
rgb. Note that the color reference frame is derived from the middle

frame in the raw video sequence through an ISP-adaptive operation, and thus should

not be viewed as an additional input. Indeed, except some ISP-specific parameters

needed for color transformation and correction, this middle frame already contains

all necessary information to produce the color reference frame.

As shown in Fig. 3.3, RawVSR has two branches: the texture restoration branch

(upper branch) produces a provisional SR frame X̂ t
sr ∈ R

H×W×3 while the color

correction branch (lower branch) generates a spatial-specific color transformation T .
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Figure 3.3: The architecture of the proposed RawVSR.

The final SR frame X t
sr is obtained from X̂ t

sr through pixel-wise color correction

specified by T . The orange arrow shows the image/feature flow direction, and the

black arrow points to the illustration of input/color reference, provisional SR, and

final SR frame respectively using the “Painting” video in RawVD.

In the texture restoration branch, the input LR raw frames are first processed by

the demosaicing module, where each LR raw frame is converted to a 64-channel frame

(with the spatial size unchanged) via packing, convolution, and pixel shuffling. We

utilize the U-net [47] for frame-by-frame multi-scale feature extraction. The outputs

of the feature extraction module induced by the given seven LR raw frames are jointly

fed into the SDI module to perform feature alignment and fusion. The fused feature is

then refined by the reconstruction module. The upsampling module consists of three

convolutional layers and one pixel-shuffle operator. It enlarges the spatial size of the

refined feature to generate a provisional SR frame. It can be seen that although the

provisional SR frame suffers severe color distortion, the texture details are faithfully

restored.
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In the color correction branch, both the feature extraction module and the recon-

struction module are shared from the texture restoration branch. To ensure dimension

compatibility, the color reference frame is pre-processed by a single convolutional layer

before fed into the feature extraction module. Different from its main role in the tex-

ture restoration branch (which is feature refinement), the reconstruction module is

used in the color correction branch to learn the ISP information needed for generat-

ing a spatial-specific color transformation. The structure of the color-transformation

generating module is the same as that of the upsampling module except for the last

convolutional layer, which outputs a 9-channel feature map rather than a 3-channel

one. The output feature map is reshaped from H ×W × 9 to H ×W × 3× 3, and the

reshaped map is denoted by T . Note that T can be viewed as a collection of 3 × 3

matrices {T (i, j)} with each (i, j) pair specifying a pixel position. These matrices

are leveraged to perform a spatial-specific color transformation on the provisional SR

frame X̂ t
sr to produce the final SR frame X t

sr as follows:

X t
sr(i, j) = T (i, j) ⊗ X̂ t

sr(i, j), (3.5.1)

where X t
sr(i, j) ∈ R

3×1 (X̂ t
sr(i, j) ∈ R

3×1) is the RGB vector of the (i, j) pixel of X t
sr

(X̂ t
sr), and ⊗ denotes matrix multiplication.

It is worth noting that due to the sharing of the feature extraction module and the

reconstruction module as well as the lightweight design of the color-transformation

generating module, the number of independent parameters that come from the color

correction branch is negligible (accounting for about 5% of the model size of RawVSR).

On the other hand, from the perspective of building an interpretable device-independent

network, it is preferable to have a dual-branch architecture that disentangles the
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super-resolution process from the color correction process, and one may argue that

weight sharing does not suit this purpose. However, since the generated transforma-

tion matrix needs to be properly aligned with the provisional SR frame to perform

pixel-wise color correction, it is essential to have a mechanism to facilitate the coor-

dination of two processes. In this regard, weight sharing contributes to this coordi-

nation by helping maintain the latent consistency of intermediate features in these

two branches. Moreover, it will be seen from the experimental results in Section

3.6 that weight sharing actually does not jeopardize the interpretability and device

independence of the resulting design.

3.5.2 Successive Deep Inference Module

Although many existing VSR methods exploit temporal redundancy, the underlying

alignment and fusion rules are often heuristic in nature. In contrast, we shall propose

a systematic approach based on a canonical decomposition result for HMM inference.

First note that the VSR problem can be mathematically formulated as

X̃ t , min
f

E[d(X t − f(Y t−3, · · · , Y t+3))], (3.5.2)

where (Y t−3, · · · , Y t+3) , (Y t−3
raw , · · · , Y

t+3
raw ), X t , X t

rgb, X̃ t , X t
sr, and d(·, ·) is

the loss function. However, X̃ t in general depends on the choice of d(·, ·). To gain

insight into the fundamental architectural principle that is applicable under any loss

function, it is instructive to consider the following alternative formulation with hard

66



Ph.D. Thesis – X. Liu McMaster University – Electrical & Computer Engineering

reconstruction X̃ t replaced by soft reconstruction

Θ̃t , p(X t|Y t−3, · · · , Y t+3), (3.5.3)

where p(X t|Y t−3, · · · , Y t+3) denotes the conditional distribution of X t given (Y t−3,

· · · , Y t+3). The SDI module is designed to solve (3.5.3), i.e., to compute Θ̃t based on

(Y t−3, · · · , Y t+3). Note that Θ̃t is a minimal sufficient statistic of (Y t−3, · · · , Y t+3)

with respect to X t in the sense that (Y t−3, · · · , Y t+3) and X t are conditionally inde-

pendent given Θ̃t and Θ̃t is a function of any statistic of (Y t−3, · · · , Y t+3) with this

conditional independence property. As a consequence, it is possible to deduce X̃ t

from Θ̃t once the loss function is specified; for example, X̃ t is simply the mean of Θ̃t

(i.e., X̃ t = E[X t|Y t−3, · · · , Y t+3]) if the loss function is chosen to be Mean Squared

Error (MSE). This deduction is basically accomplished by the reconstruction module

to be described in Section 3.5.3. It is also worth noting that (3.5.3) is invariant under

isomorphic representations of (Y t−3, · · · , Y t+3). This is the reason why the features

extracted from the LR raw frames can be used in lieu of the LR frames themselves

as the input of the SDI module. Similarly, the output of the SDI module can be any

equivalent representation of Θ̃t.

However, solving (3.5.3) through a data-driven approach is very difficult. For

one thing, it requires learning joint patterns existent in the (features of) LR raw

frames. Presumably the number of such patterns is already very large even for 2

frames and the number is likely to increase by several orders of magnitude with every

additional frame. Therefore, it is unrealistic to expect that one can learn enough

joint patterns needed to solve (3.5.3) reliably based on limited training data. For-

tunately, it turns out that the learning complexity can be greatly reduced under a

67



Ph.D. Thesis – X. Liu McMaster University – Electrical & Computer Engineering

proper fusion strategy. For ease of exposition, we assume that the HR raw frames

X t−3 ↔ · · · ↔ X t+3 form a Markov chain in this order. Since each LR raw frame (or

its feature) is generated from the corresponding HR raw frame through an indepen-

dent degradation process, (X t−3, · · · , X t+3) and (Y t−3, · · · , Y t+3) jointly constitute

an HMM. This HMM enables us to decompose (3.5.3) into a sequence of simpler

problems. Note that Θt−2 , p(X t−2|Y t−3, Y t−2) is a minimal sufficient statistic of

(Y t−3, Y t−2) with respect to X t−2. Therefore,

Θ̃t = p(X t|Θt−2, Y t−1, · · · , Y t+3). (3.5.4)

Moreover, removing X t−3 and replacing (Y t−3, Y t−2) with Θt−2 resulting in a new

HMM. One can iterate the above argument to show that

Θ̃t = p(X t|Θt,Θt+1), (3.5.5)

where Θt+ℓ , p(X t+ℓ|Θt+ℓ−1, Y t+ℓ) for ℓ = −2,−1, 0, and Θt+ℓ , p(X t+ℓ|Y t+ℓ,Θt+ℓ+1)

for ℓ = 1, 2, with Θt−3 , Y t−3 and Θt+3 , Y t+3. Fig. 3.4 provides an intuitive il-

lustration of this iterative argument using probabilistic graphical models. It is worth

mentioning that this is similar to the reasoning underlying the well-known forward-

backward algorithm for HMM inference. The main difference is that here we are

mostly concerned with the fundamental architectural principle rather than the com-

putational complexity aspect.

Our fusion strategy has several advantages over the existing ones [16, 48]. First,

an important implication of (3.5.5) is that (3.5.3) can be solved by repeatedly per-

forming pairwise fusion, which is much less demanding in terms of the amount of
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Figure 3.4: A graphical illustration of HMM infer-
ence via iterative pairwise fusion.
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Figure 3.5: The architecture of
the SDI module.

training data needed for reliable learning. Second, the two inputs are of comparable

importance with respect to the target object and consequently are more likely to be

thoroughly exploited. In contrast, for other fusion strategies where the inputs under

consideration have a clear difference in importance (for example, Y t is clearly more

relevant than Y t−3 for the purpose of estimating X t), the subtle details contained in

the less important ones may easily get overlooked.

As shown in Fig. 3.5, the SDI module is designed according to the architectural

principle suggested by (3.5.5) (note that the slight asymmetry in (3.5.5) also mani-

fests in the structure of this module). It takes the features F t−3, · · · , F t+3 extracted

respectively from the LR raw frames Y t−3
raw , · · · , Y

t+3
raw and outputs a fused feature F̂ t.

Each pairwise fusion (PF) step is realized by a PF block (see Fig. 3.6 for its struc-

ture). Specifically, the PF block first concatenates its two input features F and F ;

it then uses two structurally-identical offset generators (without weight-sharing) to

learn positional offsets ∆P , (∆P 1, · · · ,∆PK) and ∆P , (∆P 1, · · · ,∆PK), which

are leveraged to align F and F using the modulated deformable convolution [49];
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Figure 3.6: The structure of the PF block.

finally, the aligned features F
′
and F ′ are concatenated and passed through two con-

volutional layers to produce the fusion result F̂ . Note that the alignment procedure

can be interpreted as implicit motion estimation and compensation in the feature

space, and the relationship between pre- and post-alignment features at position P

can be expressed as

F
′
(P ) =

K
∑

i=1

wi · F (P + ∆P i) · ∆Si, (3.5.6)

F ′(P ) =
K
∑

i=1

wi · F (P + ∆P i) · ∆Si, (3.5.7)

where wi (wi) and ∆Si (∆Si) denote the weight and the modulation scalar of the de-

formable convolution for F (P ) (F (P )) with respect to offset ∆P i (∆P i), i = 1, · · · , K

(we set K = 9 in this work). It is worth noting that different from the flow-based

method, the proposed SDI module does not require any pre-training and can be em-

bedded into another network for end-to-end training. We would also like to point

out that the first-order Markov assumption for HR raw frames is not required for the

derivation of the architecture in Fig. 3.5. Indeed, a higher-order Markov chain (which
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is more suitable to model scenarios with occlusion and disocclusion) can be reduced

to a first-order one by grouping several consecutive states in a sliding-window fash-

ion, after which our previous argument can be invoked with no essential change. In

fact, the only constraining factor for the SDI module is the dimension of the output

of each PF block in the sense that higher dimensional outputs are likely needed to

accommodate more sophisticated Markov structures.

3.5.3 Reconstruction Module

The reconstruction module is elaborately designed with two tasks in mind: 1) refining

the fused feature associated with the input LR raw frames and 2) learning the ISP-

specific information needed for color transformation and correction from the color

reference frame. It is built using ARDBs as shown in Fig. 3.7. Each ARDB consists

of one convolutional layer and two residual dense blocks. We follow the default RDB

settings in [42] except that the growth rate is set to 64. The generated intermediate

feature maps are fused under the guidance of the channel-wise attention. To this

end, we adopt the SENet in [50] to produce attention weights to enhance/suppress

the contributions of the associated feature maps in accordance with their relevance.

In addition to the local fusion in each ARDB, we also employ a global fusion with

channel-wise attention to further strengthen the learning ability of the reconstruc-

tion module. To strike a balance between system performance and computational

complexity, totally four ARDBs are used in our design.
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Figure 3.7: The architecture of the reconstruction module.

3.5.4 On the Practicability of Raw VSR

Although the present work mainly focuses on the technical feasibility of raw VSR,

here we would like to briefly comment on its practical prospect. In particular, we shall

address the following two questions: 1) the availability of camera raw data, and 2) the

application scenarios of raw VSR. As raw data record untouched radiance information

that can be fruitfully exploited for many different purposes, they receive considerable

attention from professional photographers. To facilitate their use, the major camera

manufacturers (e.g., Canon and Nikon) have provided the official interface to access

raw data. This removes a major hurdle for the wide adoption of raw VSR. Moreover,

in most scenarios where conventional VSR is currently being considered, raw VSR can

potentially be a more favorable choice to its superior performance and consistency

with the real imaging pipeline. It is worth mentioning that some recent works [51,52]

attempt to generate raw-like data based on processed data. However, such raw-like

data inevitably suffer from the information loss issue due to the non-invertibility of

ISP operations, and great caution should be exercised when using them in lieu of

authentic raw data such as those in our RawVD. More discussions can be found in

72



Ph.D. Thesis – X. Liu McMaster University – Electrical & Computer Engineering

Section 3.6.4.

3.6 Experimental Results

Extensive experiments are conducted to demonstrate the competitive performance of

the proposed RawVSR. They also provide solid justifications for our design (especially,

the SDI module and the reconstruction module) and convincing evidence regarding

the value of raw data.

3.6.1 Implementation

The proposed RawVSR is end-to-end trainable without any additional supervision or

pre-training for sub-modules. We adopt RawVD for training and testing as it is the

only available video dataset for raw-data-based VSR methods. The scale ratio S is

set to 4; the size of the defocus blur is randomly chosen from {3, 5, 7, 9, 11}; the two

parameters σ2
1 and σ2

2 of heteroscedastic Gaussian noise are randomly sampled from

[0, 0.1] and [0, 0.02], respectively. We use patches of size 64×64 cropped from LR raw

videos as the training inputs, and augment the training data through inverting the

frame order, horizontal flips and rotations [53]. Following [54], batch normalization

is not used in RawVSR. Without bells and whistles, we adopt a weighted version of

Mean Square Error (MSE) and Structural SIMilarity index (SSIM) [55] as our loss

function to measure the difference between the final reconstructed SR frame and the

ground truth. Furthermore, we provide an additional supervision to the provisional

SR frame to enforce the learning of texture detail using an extra SSIM loss. The total
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loss function L can be formulated as:

L = LMSE
F + λFL

SSIM
F + λPL

SSIM
P , (3.6.1)

where LMSE
F , LSSIM

F , and LSSIM
P are respectively the MSE loss, the SSIM loss from

the final SR frame, and the SSIM loss from the provisional SR frame. The trade-off

parameters λF and λP are both set to 0.005 to balance the value ranges of these

sub-level losses. Since the SSIM loss is designed to measure the structural similarity

between two images and is relatively insensitive to color distortions, two images pho-

tographed in the same scene under different light conditions might have a high SSIM

value but a low PSNR value. This fact inspires us to employ SSIM for assessing the

quality of the provisional SR frame. The textural consistency between the provisional

SR frame and the ground truth then enables the spatial-specific transformation to

focus on color correction. In this way, the texture restoration branch and the color

correction branch are effectively functionally disentangled. It will be seen in Section

3.6.3 that the additional supervision on the provisional SR frame improves the in-

terpretability of our network and makes it more compatible with the real imaging

pipeline, where the super-resolution process is carried out before color correction.

We would point out that the linear measurement Xlin provided in RawVD is not

employed as the supervision reference of the provisional SR frame. This is because

the proposed RawVSR is intended to be device-independent, whereas the use of Xlin

might jeopardize its generalization ability due to the fact that Xlin is produced by a

specific ISP (which is Rawpy in the current setting).

To accelerate network training, the Adam optimizer [56] is used with a batch size

of 30 and the default parameter values β1 = 0.9 and β2 = 0.999. We set the initial

74



Ph.D. Thesis – X. Liu McMaster University – Electrical & Computer Engineering

learning rate to 2e-4, which is reduced by half every 20 epochs until a total of 100

epochs is reached. The training process is carried out on a PC with two NVIDIA

GTX 1080Ti. All PSNR/SSIM values are evaluated using the test data in RawVD.

3.6.2 Quantitative and Qualitative Comparisons

We compare the proposed RawVSR with several existing processed-data-based VSR

methods, including VSRNet [11], VESPCN [33], SPMC [34], DUF [14], RBPN [15],

TDAN [39], and EDVR [16]. In particular, EDVR is the champion of the NTIRE

2019 challenge on video deblurring and super-resolution [40] and can be considered

as the current state-of-the-art. For fair comparisons, we laboriously retrain all the

aforementioned methods using the same strategy as described in Section 3.6.1 until

convergence. These methods are trained with (Yrgb, Xrgb) pairs instead of (Yraw, Xrgb)

pairs (see Fig. 3.2) since they are incapable of handling raw data. In contrast, the

proposed RawVSR can leverage both raw data and processed data for training. To

distinguish it from the original version of RawVSR for which the training is based on

(Yraw, Xrgb) pairs, the version trained with (Yrgb, Xrgb) pairs is denoted as RawVSR†,

where the color correction branch is removed since the color reference is not needed

in this case.

Quantitative comparisons on the RawVD test data for 2× and 4× VSR are shown

in Table 3.1 (with the only exception of RBPN for which we are unable to implement

the same training strategy on our PC for 2× VSR due to its large model size). For

qualitative comparisons, we only demonstrate in Fig. 3.8 4× VSR since it is more

visually distinguishable than 2× VSR. It can be seen that RawVSR† outperforms

the other processed-data-based methods in terms of PSNR and SSIM metrics, and
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Table 3.1: Quantitative comparisons on the RawVD test data for 2× and 4× VSR. Red and Blue indicate the
best and the second best performance, respectively.

RawVD 2×

Name Bicubic VSRNet [11] VESPCN [33] SPMC [34] DUF [14] RBPN [15] TDAN [39] EDVR [16] RawVSR† RawVSR

Store 27.84/0.8299 28.99/0.8457 29.02/0.8494 29.41/0.8503 30.75/0.8710 - 31.27/0.8863 31.98/0.9060 33.04/0.9129 34.30/0.9263

Painting 28.80/0.8086 29.38/0.8225 29.45/0.8218 28.82/0.7998 31.22/0.8512 - 31.17/0.8556 32.55/0.8816 32.80/0.8773 33.79/0.8943

Train 28.11/0.7738 29.18/0.8081 29.32/0.8121 30.01/0.8298 31.25/0.8464 - 30.94/0.8396 31.42/0.8617 31.66/0.8522 32.79/0.8729

City 27.76/0.7527 28.99/0.8012 29.22/0.8047 29.44/0.8210 30.47/0.8190 - 30.26/0.8227 31.11/0.8517 31.41/0.8588 32.11/0.8637

Walk 26.43/0.7553 28.92/0.7871 28.78/0.7820 30.25/0.8439 30.13/0.8117 - 29.26/0.8207 30.58/0.8415 29.63/0.8282 31.20/0.8516

Average 27.79/0.7841 29.09/0.8129 29.16/0.8140 29.59/0.8290 30.76/0.8399 - 30.58/0.8450 31.53/0.8685 31.71/0.8659 32.84/0.8818

RawVD 4×

Name Bicubic VSRNet [11] VESPCN [33] SPMC [34] DUF [14] RBPN [15] TDAN [39] EDVR [16] RawVSR† RawVSR

Store 22.59/0.6507 25.24/0.7135 25.46/0.7250 26.34/0.7351 27.84/0.8105 27.53/0.7647 26.67/0.7802 28.23/0.8202 28.29/0.8191 29.04/0.8400

Painting 24.78/0.6712 26.17/0.7119 26.02/0.7120 26.13/0.7199 27.71/0.7833 26.40/0.7209 26.75/0.7539 27.74/0.7908 28.51/0.7940 29.02/0.8104

Train 24.12/0.6166 25.80/0.6671 25.96/0.6724 26.70/0.6984 27.53/0.7377 27.64/0.7358 26.94/0.7205 27.81/0.7470 28.02/0.7443 28.59/0.7625

City 24.94/0.6330 26.59/0.6907 26.63/0.6927 27.03/0.6684 27.93/0.7508 28.39/0.7332 27.55/0.7336 28.24/0.7558 28.43/0.7640 29.08/0.7843

Walk 22.46/0.6229 25.52/0.6766 25.62/0.6726 25.30/0.6797 27.30/0.7512 26.46/0.7337 26.36/0.7229 27.02/0.7533 27.90/0.7607 28.06/0.7724

Average 23.78/0.6389 25.87/0.6919 25.94/0.6950 26.30/0.7002 27.66/0.7667 27.29/0.7377 26.85/0.7422 27.81/0.7734 28.23/0.7765 28.76/0.7939

76



Ph.D. Thesis – X. Liu McMaster University – Electrical & Computer Engineering

Table 3.2: Quantitative comparisons on the iPhone data for 4× VSR. Red and
Blue indicate the best and the second best performance, respectively.

iPhone 4×

Name DUF [14] EDVR [16] RawVSR† RawVSR

Tree 27.15/0.6630 27.26/0.6504 28.66/0.7073 29.54/0.7381

Door 26.11/0.6334 26.05/0.6231 26.28/0.6694 28.62/0.6957

Flower 25.90/0.6225 25.74/0.6062 27.07/0.6771 28.17/0.7307

Average 26.38/0.6396 26.35/0.6266 27.34/0.6846 28.78/0.7215

visually restores sharper edges and finer details in most cases (see, e.g., the word

Country in video “Painting”, and the balcony part of the building in video “City”),

which provides solid justifications for our overall network design.

As compared to RawVSR†, the results of RawVSR are even more appealing, both

quantitatively and qualitatively. This improvement provides convincing evidence re-

garding the benefits of raw data since it is clearly attributed to their richer information

content. In addition, to validate that the proposed method is device-independent,

three raw 4K videos (named “Tree”, “Door”, and “Flower”) filmed by Adobe Light-

room software3 on an iPhone 8p are used to complement our RawVD test data for 4×

VSR. The quantitative and qualitative comparisons are illustrated in Table 3.2 and

Fig. 3.9, respectively. The superior VSR results indicate that the proposed RawVSR,

trained only on RawVD, continues to perform well on the data collected by other

devices without fine-tuning, and thus possesses good generalization abilities. More

evidence can be found in Section 3.6.5.

3https://www.adobe.com/ca/products/photoshop-lightroom.html
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(a) Store (b) Bicubic (c) VSRNet [11] (d) VESPCN [33] (e) SPMC [34] (f) DUF [14]

(g) RBPN [15] (h) TDAN (i) EDVR [16] (j) RawVSR† (k) RawVSR (l) ground truth

(a) Painting (b) Bicubic (c) VSRNet [11] (d) VESPCN [33] (e) SPMC [34] (f) DUF [14]

(g) RBPN [15] (h) TDAN (i) EDVR [16] (j) RawVSR† (k) RawVSR (l) ground truth

(a) Train (b) Bicubic (c) VSRNet [11] (d) VESPCN [33] (e) SPMC [34] (f) DUF [14]

(g) RBPN [15] (h) TDAN (i) EDVR [16] (j) RawVSR† (k) RawVSR (l) ground truth

(a) City (b) Bicubic (c) VSRNet [11] (d) VESPCN [33] (e) SPMC [34] (f) DUF [14]

(g) RBPN [15] (h) TDAN (i) EDVR [16] (j) RawVSR† (k) RawVSR (l) ground truth

(a) Walk (b) Bicubic (c) VSRNet [11] (d) VESPCN [33] (e) SPMC [34] (f) DUF [14]

(g) RBPN [15] (h) TDAN (i) EDVR [16] (j) RawVSR† (k) RawVSR (l) ground truth

Figure 3.8: Qualitative comparisons on the RawVD test data for 4× VSR. Zoom in
for better visualization.
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(a) ground truth (b) DUF [14] (c) EDVR [16] (d) RawVSR† (e) RawVSR

Figure 3.9: Qualitative comparisons on the iPhone data for 4× VSR. The names of
video sequences from the first row to the last row are “Tree”, “Door”, and “Flower”,
respectively. Zoom in for better visualization.

Final SR frame

Spatial-specific color matrixBefore color correction After color correction

Provisional SR frame

Figure 3.10: Visualization of the color correction process (zoom-in for details).
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3.6.3 Visualization of the Color Correction Process

To show that the texture restoration branch and the color correction branch indeed

fulfill their designated roles, Fig. 3.10 visualizes how a provisional SR frame X̂ t
sr un-

dergoes the color correction process to produce the corresponding final SR frame

X t
sr. In particular, we highlight three representative pixels (i.e., X̂ t

sr(800, 1650),

X̂ t
sr(200, 1350), and X̂ t

sr(450, 350)) extracted from a provisional SR frame in video

“Painting” and their color-corrected counterparts (i.e., X t
sr(800, 1650), X t

sr(200, 1350),

and X t
sr(450, 350)) together with the associated spatial-specific color transformation

matrices. Clearly, although the provisional SR frame X̂ t
sr suffers severe color distor-

tion, it exhibits correct details and is texturally consistent with the final SR frame

X t
sr. This validates the effectiveness of additional SSIM-based supervision in guiding

the texture restoration branch to accomplish its desired purpose. The color-corrected

pixels are produced by applying the spatial-specific transformation matrices on their

respective provisional pixels according to Equ. (3.5.1). It is worth noting that even

though the pixels extracted from X̂ t
sr are color-wise quite similar, their associated

color transformation matrices are distinctively different, resulting in visually more

distinguishable color-corrected pixels. This provides strong supporting evidence for

the usefulness of the color correction branch.

3.6.4 Authentic Raw Data v.s. ISP-Inverted Data

Several recent works [51, 52] have attempted to invert the camera ISP to produce

raw-like data (which will be referred to as ISP-inverted data) from processed data

and use them in lieu of authentic raw data for training. However, the resemblance

between ISP-inverted data and raw data should not be overestimated. Indeed, such
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(a) w/ ISP-inverted data (b) w/ authentic raw data (c) ground truth

Figure 3.11: The proposed RawVSR with ISP-inverted data and authentic raw data
respectively on the RawVD test dataset for 4× VSR.

inversion can never be perfect due to the presence of non-invertible ISP components

(e.g., quantization); actually it may even cause additional information loss. To gain a

concrete understanding, we follow the same procedure carried out in [51] to produce

ISP-inverted data from processed data Yrgb in RawVD, and input them to our network

for testing. The results are then compared with those based on authentic raw data

as shown in Fig. 3.11. It can be seen that ISP-inverted data incur two evident

degradations: 1) significant color distortion (which is likely caused by the distribution

mismatch between ISP-inverted data and raw data), 2) blurred texture detail (which

is a consequence of information loss). Therefore, authentic raw data as those collected

in RawVD remain indispensable for raw VSR.
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3.6.5 Validation of Device Independence

Due to the separation of the super-resolution process and the color correction pro-

cess, the proposed RawVSR can adapt easily to different camera-ISPs. We have

demonstrated this desirable characteristic in Table 3.1 and Fig. 3.9 by blindly test-

ing RawVSR, trained with data from simulated Canon-ISP (i.e., Rawpy), on a new

iPhone dataset. Here we shall provide more evidence. Due to the lack of Digital

Single-Lens Reflex (DSLR) cameras (other than Canon 5D3) at our disposal, we

choose to generate LR color references by simulating ISPs of three major camera

manufacturers (Nikon, Sony, and Fujifilm) based on the analysis of their color styles

and preferences. According to our observation, the video frames produced by Nikon-

ISP exhibit the lowest color temperature as compared to the other two, which leads

to an overall cold tone; in contrast, those by Fujifilm-ISP show the highest color

temperature, yielding a warm tone; Sony-ISP is somewhere in between in terms of

color temperature, yet produces the highest luminance. Based on these insights, we

can closely approximate the effects of these ISPs by suitably adjusting the exposure

degree, contrast, and color temperature of LR color references in RawVD.

Specifically, we increase the color temperature from 6000K to 8000K to approx-

imate the warm tone of Fujifilm-ISP, and decrease it to 5200K to approximate the

cold tone of Nikon-ISP. Since the Sony-ISP has a unique preference, simply adjusting

one color setting does not yield good approximation. Instead, we increase the expo-

sure degree from the default value 0 to 0.7, decrease the contrast from 0 to −8, and

change the color temperature to 6500K in order to achieve the effect similar to that

of Sony-ISP.

Fig. 3.12 shows the final SR frames with simulated Nikon, Sony, and Fujifilm-ISPs,
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(a) w/ Nikon-ISP (b) w/ Sony-ISP (c) w/ Fujifilm-ISP

Figure 3.12: Visualization of the provisional frames (in the 2nd row), the final SR
frames (in the 3rd row), and their associated color histograms (in the 1st and 4th rows)
with simulated Nikon, Sony and Fujifilm-ISPs, to validate the device-independence
characteristic of RawVSR.
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respectively, and the corresponding provisional SR frames as well as their associated

color histograms for a representative frame in video “Painting”. Here, the input to the

texture restoration branch is fixed, and different color references (based on simulated

ISPs) are fed into the color correction branch without additional training. Note that

the choice of simulated ISP has no impact on the provisional frame (see the 2nd

row in Fig. 3.12) and its associated color histogram (see the 1st row in Fig. 3.12).

As such, the texture restoration branch and the color correction branch are indeed

functionally disentangled, which is beneficial to the interpretability of overall network

design. On the other hand, the color of the final SR frame changes in accordance

with the provided color reference (see the 3rd row in Fig. 3.12), which is also reflected

in the color histograms (see the 4th row in Fig. 3.12). This shows convincingly that

the proposed RawVSR can automatically adapt to the selected ISP, thus is device-

independent.

3.6.6 Validation of Temporal Consistency

A lack of temporal consistency may lead to flickering artifacts (e.g., in the form

of jagged edges) that can degrade the quality of reconstructed SR frames [35]. To

compare the proposed RawVSR with the existing methods from this perspective, we

extract some co-located columns from the reconstructed “City” sequence, rotate and

then stack them vertically to produce a temporal profile [13]; we also generate another

temporal profile based on co-located rows from the reconstructed “Walk” sequence. It

can be seen from Fig. 3.13 that RawVSR yields the most consistent temporal profiles

in terms of texture clarity, edge sharpness, and detail accuracy. For example, in the

temporal profile of the “Walk” sequence, the proposed RawVSR successfully recovers
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most line patterns whereas the other methods fail to distinguish dashed lines from

solid ones.

VSRNet

VESPCN

SPMC

DUF

RBPN

TDAN

EDVR

RawVSR

GT

City Walk

Figure 3.13: Visualization of temporal profiles produced by the proposed RawVSR
and some existing methods.

3.6.7 Ablation Studies

To gain a better understanding of key constituents of the proposed network as well as

the influence of the input sequence length, we conduct elaborately designed ablation

studies by examining various alternative implementations. All such implementations

are trained from scratch with the same training strategy described in Section 3.6.1.

The proposed RawVSR (trained on raw data) will be referred to as the baseline.
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3.6.7.1 Justification of the SDI Module

Most existing VSR methods adopt early fusion, slow fusion, or 3D convolutional

fusion to merge input frames [33]. For early fusion, all input frames are concatenated

at the very beginning and fed jointly into the network. As an example, VSRNet [11]

follows this fusion strategy. In contrast, the slow fusion strategy merges input frames

progressively according to a prescribed rule. The scheme of the proposed SDI module

falls into this general category; one of our main contributions is, in a certain sense,

an optimal fusion rule deduced via HMM analysis. 3D convolutional fusion performs

convolution on input frames in both temporal and spatial domains, and tends to be

computationally expensive. To justify the design of the SDI module, three variants

are considered, each associated with a different fusion scheme. The first variant,

named w/ EF, simply follows the early fusion strategy. The second variant, named

w/ improved EF, is similar to the first one except that all other frames are first

aligned to the middle frame. The last one, named w/ SF, adopts a slow fusion

scheme, where all other frames are first aligned and fused with the middle frame

in a pairwise manner before joint fusion is performed. For fair comparisons, these

alternative fusion modules are designed to have roughly the same size as that of the

SDI module (no structural change is made to the rest of the network). Note that 3D

convolutional fusion can not be implemented under this size constraint as it requires

significantly more parameters. The comparison results are shown in Table 3.3. It can

be seen that the baseline performs favorably in terms of PSNR and SSIM metrics,

which provides strong evidence in support of our design of the SDI module.
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3.6.7.2 Justification of the Reconstruction Module

To justify the design of the reconstruction module, two variants are considered for

comparison. The first one (w/o attention) has all channel-wise feature fusion removed

in order to show the effectiveness of the attention mechanism, and the second one (w/

RDB) replaces the reconstruction module with a module of similar size — a cascade

of 8 RDBs to verify the strength of the reconstruction module in terms of dual-task

performance. Quantitative comparisons in Table 3.3 provide strong evidence in favor

of our original design.

3.6.7.3 Influence of the Input Sequence Length

Here we investigate how the overall VSR performance depends on the number of input

frames. To this end, we consider the cases with 3 consecutive frames as inputs (w/ 3

frames), 5 consecutive frames as inputs (w/ 5 frames), and 7 consecutive frames as

inputs (baseline). The corresponding quantitative results are shown in Table 3.3. It

is clear that the VSR performance improves as the number of input frames increases,

which is expected since one can more likely find the missing information when there

are more frames available for exploitation. It is also worth mentioning that due to

the effective design of the SDI module, the proposed RawVSR can flexibly handle

any input length without adjusting the network size (although increasing the number

of input frames typically leads to longer processing time).

3.6.8 Runtime and Model Size Comparisons

Fig. 3.14 compares different VSR methods in terms of runtime and model size as well

as PSNR values. Here runtime refers to the average time needed for producing one
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Table 3.3: ablation studies for different variants for 4× VSR. Bold indicates the best performance.

ablation SDI Reconstruction module Input frame number Baseline

Variant w/ EF w/ improved EF w/ SF w/o attention w/ RDB [42] w/ 3 frames w/ 5 frames RawVSR

Store 28.00/0.8226 28.61/0.8304 28.82/0.8351 28.52/0.8303 28.48/0.8277 28.30/0.8176 28.75/0.8324 29.04/0.8400

Painting 28.05/0.7910 28.71/0.8007 28.91/0.8034 28.16/0.8006 28.00/0.7981 28.36/0.7927 28.59/0.8057 29.02/0.8104

Train 27.44/0.7481 28.08/0.7565 28.29/0.7556 28.07/0.7568 28.08/0.7555 28.01/0.7481 28.27/0.7554 28.59/0.7625

City 28.44/0.7699 28.84/0.7769 28.94/0.7775 28.73/0.7750 28.74/0.7743 28.64/0.7684 28.96/0.7776 29.08/0.7843

Walk 26.26/0.7525 27.78/0.7649 27.87/0.7628 26.69/0.7559 27.10/0.7567 27.95/0.7558 28.04/0.7695 28.06/0.7724

Average 27.64/0.7768 28.40/0.7859 28.57/0.7869 28.03/0.7837 28.08/0.7825 28.25/0.7765 28.52/0.7881 28.76/0.7939
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1080p frame (without taking into account the data loading phase) for 4× VSR. It can

be seen that the proposed RawVSR is able to achieve the highest PSNR value with

moderate model size and near-real-time processing.
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Figure 3.14: Runtime and model size comparisons of different VSR methods for 4×
VSR.

3.7 Conclusion

We have proposed a new deep-learning-based method that can effectively exploit

raw data for VSR. The associated neural network has a dual-branch structure that

disentangles the super-resolution process from the color correction process; as a con-

sequence, it better fits the real imaging pipeline and has the desirable property of

being device-independent. Its SDI module is designed according to the architectural

principle obtained via the analysis of a suitable probabilistic graphical model; this

design philosophy is likely applicable to a wide range of problems, especially those
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involving data fusion. Its reconstruction module employs an attention mechanism to

enhance the learning ability. Moreover, weight sharing is adopted to reduce the model

size and to ensure the latent consistency of intermediate features in the two branches.

Finally, it is also expected that the new raw video dataset collected in this paper can

potentially benefit other video tasks including, among others, video interpolation and

visual enhancement via exploiting raw data.
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Chapter 4

PSCC-Net: Progressive

Spatio-Channel Correlation

Network for Image Manipulation

Detection and Localization

4.1 Abstract

To defend against manipulation of image content, such as splicing, copy-move, and

removal, we develop a Progressive Spatio-Channel Correlation Network (PSCC-Net)

to detect and localize image manipulations. PSCC-Net processes the image in a

two-path procedure: a top-down path that extracts local and global features and a

bottom-up path that detects whether the input image is manipulated, and estimates
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its manipulation masks at 4 scales, where each mask is conditioned on the previ-

ous one. Different from the conventional encoder-decoder and no-pooling structures,

PSCC-Net leverages features at different scales with dense cross-connections to pro-

duce manipulation masks in a coarse-to-fine fashion. Moreover, a Spatio-Channel

Correlation Module (SCCM) captures both spatial and channel-wise correlations in

the bottom-up path, which endows features with holistic cues, enabling the network

to cope with a wide range of manipulation attacks. Thanks to the light-weight back-

bone and progressive mechanism, PSCC-Net can process 1, 080P images at 50+ FPS.

Extensive experiments demonstrate the superiority of PSCC-Net over the state-of-

the-art methods on both detection and localization.

4.2 Introduction

Seeing is believing?

Not anymore. Recent advances on image manipulation techniques [1–4] enable

easy editing of raw images, such as removing unwanted objects [5–8], face swap-

ping [2], attribute changing [9], etc. Although such techniques are neutral, malicious

attackers may utilize them to create deceitful content to propagate false information,

e.g., fake news [10], insurance fraud [11], and Deepfake [12,13]. Thus, concerns of the

adverse impact on social media and even real-world systems have been raised [14,15].

To alleviate the concerns, it is crucial to develop reliable models to expose the manip-

ulated images. While being used in machine and systems, the model is required to,

at a minimal, distinguish manipulated images from pristine ones, where the objective

is to detect. While being used for human’s viewing, the model is further required to
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(a) Manipulated (b) SPAN [16] (c) PSCC-Net (d) GT

Figure 4.1: Examples of image manipulation localization. Three examples are splic-
ing, copy-move, and removal manipulations respectively. With novel designs of pro-
gressive mechanism and correlation module, our method demonstrates robust and
accurate estimation at different scales and types.

estimate tampered areas in forged images, where the objective is to localize.

Generally, image manipulation consists of the content-dependent process and

content-independent process. The former includes splicing, copy-move, and removal,

as shown in Fig. 4.1. Both splicing and copy-move are content-copying forgeries,

where the splicing content is from a different donor image while the copy-move con-

tent is from the target image per se. Removal takes out certain objects from the

target image and performs refilling via inpainting. Often, the content-dependent pro-

cess follows the semantic arrangement in the target image, e.g., placing a car on

the road and replacing one face with another, which makes the resulting image vi-

sually “authentic” and indistinguishable from the pristine one. However, based on

image/camera trace analysis [17,18], subtle patterns can still be revealed to indicate
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the manipulation. On the other hand, the content-independent process includes uni-

versal modifications such as brightness/contrast change, blurring, noising and image

compression. They barely create any disinformation, but their resultant noise may

undermine the analysis of image/camera traces and potentially hide the discrepancy

between the manipulated and pristine areas.

To defend against manipulations, many Image Manipulation Detection and Lo-

calization (IMDL) methods have been proposed in the past. In the early stages,

methods are designed to handle a single type of manipulation. In recent years,

works [11, 13, 16,19–22] are proposed to build generic IMDL models for multiple ma-

nipulation types. However, there are still 3 major unsolved problems for IMDL:

1. Scale variation: The forged area varies in sizes. Most prior works neglect the

importance of scale variations and encounter difficulty when detecting forged

areas of different sizes. Both the conventional encoder-decoder [21, 22] and no-

pooling [11,16] structures have difficulties in leveraging local and global features

jointly, thus can only handle a limited scale variation.

2. Image correlation: Manipulated regions can best be determined while com-

paring to pristine regions, especially for splicing attacks. A naive learning of

mapping from the manipulated image to manipulation mask may lead to an

overfitting to the specific attack type in training. In contrast, considering the

image spatial correlation can lead to a more generalized localization solution.

Yet, such correlation is mostly neglected in prior works.

3. Detection: In principle, manipulation detection and localization are highly rel-

evant tasks, where the detection score can be simply derived from the response

of the predicted manipulation mask, i.e., at least one part of the forged image
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has high response while no part of the pristine one does. However, most prior

works assume the existence of manipulation in all input images. As a result,

this could cause many false alarms on pristine images and make the detection

unreliable.

To address the above issues, we propose a novel Progressive Spatio-Channel Cor-

relation Network (PSCC-Net), as in Fig. 4.2. PSCC-Net consists of a top-down path

and a bottom-up path. In the top-down path, a backbone encoder first extracts the

local and global features from an input image. We adopt the network structure of [23]

as our encoder, whose dense connections among different scales facilitate information

exchange. In the bottom-up path, we leverage the learned features to estimate 4 ma-

nipulation masks from small scales to large ones, where each mask serves as a prior

in the next-scale estimation. Thanks to such a design, the final mask is estimated in

a coarse-to-fine fashion, harvesting both the local and global information. Moreover,

this design enables a potential speed-up by terminating the bottom-up mask esti-

mation, if the intermediate mask is satisfactory. Moreover, rather than investigating

the response of predicted manipulation masks, we feed the learned features into a

detection head to produce the score for binary classification.

To cope with the image correlation, we propose a Spatio-Channel Correlation

Module (SCCM) that grasps both spatial and channel-wise correlations at each bottom-

up step. The spatial correlation aggregates the global context among local features.

The channel-wise correlation computes the similarity among feature maps to enhance

the representation in interest areas. Given the light-weight design of the encoder,

PSCC-Net can process 1, 080P at 50+ FPS. Our proposed approach demonstrates a

superior manipulation localization on several benchmarks. In addition, we show that
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Manipulation Label:
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Figure 4.2: The architecture of the proposed PSCC-Net. The detection score pre-
dicted by the detection head indicates if the input is manipulated or not. The accuracy
of manipulation localization from Mask 4 to Mask 1 is gradually improved, e.g., the
prediction of Mask 4 confuses the pasted (forged) region with the pristine (copied)
one, while Mask 1 effectively fixes it.

the recent IMDL methods encounter difficulty in distinguishing manipulated images

from pristine ones. By explicitly introducing a detection head, our method achieves

the State Of The Art (SOTA) on manipulation detection.

We summarize the contributions of this work as follows:

1. We propose a new PSCC-Net that performs favorably on manipulation detection

and enables progressive improvement of manipulation localization in a coarse-

to-fine fashion;

2. We design a novel SCCM module to capture the spatial and channel-wise cor-

relations for better generalization. SCCM avoids the use of massive annotated

data to pre-train our feature extractor;

3. We achieve the SOTA results for both image manipulation detection and local-

ization.
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4.3 Related Work

4.3.1 Image Manipulation Detection

Image manipulation detection aims to distinguish manipulated images from pristine

ones via image-level binary classification. There are two major approach for this de-

tection: the implicit manner [10,24] and the explicit manner [25]. The former obtains

the detection score by the statistics (e.g., average [10] or maximum [24] value) of

the predicted manipulation mask, and the latter explicitly outputs the score from a

dedicated classification module. Recent works [11, 16] focus on pixel-level manipula-

tion localization but neglect the importance of image-level detection. Instead, this

work leverages both manipulated and pristine images in training and jointly considers

detection and localization of image manipulation.

4.3.2 Image Manipulation Localization

Early works propose to localize the manipulation of one specific type, e.g., splic-

ing [10, 17, 26–31], copy-move [24, 25, 32–34], removal [35], and the content-preserved

process [22, 36]. Although most methods perform well on detecting that specific

forgery type, they fall short in handling real-world cases, where usually the forgery

type is unknown in advance and various types of forgery might be utilized in manip-

ulation. In the related problem of face anti-spoofing, researchers also study how to

localize the facial pixels covered with various spoof mediums [37].

Recent works attempt to tackle multiple forgeries in one model. J-LSTM [19] and

H-LSTM [22] integrate the LSTM and CNN to capture the boundary-discriminative

features. However, due to the patch-based design, both methods are time-consuming,
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and the size of detectable regions is limited by the preset patch size. RGB-N [21]

adopts the steganalysis rich model [38] and Faster R-CNN [39], but it can only pro-

vide bounding boxes instead of segmentation masks. Later, ManTra-Net [11] learns

features to distinguish 385 known manipulation types and treats the problem as

anomaly detection. To learn the distinguishable features, auxiliary labeled data, such

as camera sensors, are used. SPAN [16] extends ManTra-Net to further model the

spatial correlation via local self-attention blocks and pyramid propagation. However,

as the correlation is only considered in the local region, ManTra-Net and SPAN fail

to take full advantage of the spatial correlation and consequently have limited gener-

alizability. In this work, our PSCC-Net utilizes a progressive mechanism to improve

the multi-scale feature representation and SSCM modules to better explore spatial

and channel-wise correlations.

4.3.3 Progressive Mechanism

Progressive mechanism tackles a challenging task in a coarse-to-fine fashion. It

has been widely adopted in many low-level and high-level vision tasks, such as de-

hazing/deraining [40, 41], inpainting [5], super-resolution [42, 43], and object detec-

tion [44–47]. The pyramid structure is commonly utilized to build multi-scale features.

In this work, we propose a densely connected pyramid structure that progressively

refines the manipulation mask from small scales to large ones, where each predicted

mask serves as a prior for the next-scale estimation.
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4.3.4 Attention Mechanism

The pioneer work [48] proposes an attention mechanism to improve the feature repre-

sentation with relatively low cost, which has been widely employed in various vision

tasks [13, 25, 49–53]. According to the applied domain, the attention mechanism can

be divided into two types: spatial attention [50] and channel-wise attention [49]. Re-

cent works [54–56] take the benefit of both types to further improve the representation

capability of DNN. These methods adopt separate schemes to explore the spatial and

channel-wise attentions and thus require additional efforts to fuse them. In this work,

a uniform SCCM jointly explores the image correlation and discrepancy in both spa-

tial domain and feature channels, leading to better information sharing and faster

inference.

4.4 PSCC-Net

Our PSCC-Net enables the detection and localization of various types of manipula-

tions. As compared to the image-level detection, the pixel-level localization is more

difficult. Therefore, PSCC-Net pays special attention to tackling the localization

problem. Indeed, since the features for detection and localization are jointly learned,

improving the localization performance will naturally benefit detection.
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4.4.1 Network Architecture

4.4.1.1 Top-Down Path

Most prior works use the conventional encoder-decoder [21,22] and no-pooling struc-

tures [11, 16] to extract features. Since forged areas have various sizes, it is impor-

tant to fuse local and global features to handle the scale variation. However, both

structures extract features in a sequential pipeline and neglect feature fusion among

different scales, and thus can only handle a limited scale variation. To address this

issue, we adopt a light-weight backbone in [23], named HRNetV2p-W18. Following

its default setting, the stage down-scaling ratio s is set to 2, and there are totally 4

stages.

Compared to encoder-decoder and no-pooling structures, the benefits of our back-

bone are two-fold. First, features from different scales are computed in parallel.

Hence, dense connections among different scales enable effective information ex-

change, which is beneficial for handling scale variations. Second, since the local

and global feature fusion is performed for every scale, each feature contains sufficient

information to predict a manipulation mask at the corresponding scale. Therefore,

this backbone is in line with our progressive mechanism, where the prediction of each

mask should rely on all local and global features to improve its accuracy. Indeed, ex-

cept the predicted mask on the last scale, the others serve as a prior for the next-scale

mask prediction. After the top-down path, the manipulated features on 4 scales are

extracted. Then, we use the bottom-up path to perform manipulation detection and

localization.
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4.4.1.2 Bottom-Up Path

The bottom-up path in PSCC-Net estimates the detection score and the manipu-

lation mask. Specifically, the detection score is predicted based on the extracted

features from the top-down-path via a detection head [23], then the manipulation

mask is generated through a progressive mechanism with full supervision. In particu-

lar, the coarse-to-fine progressive mechanism mimics how human tackles complicated

problems in daily life.

We denote the input image as I ∈ R
H×W×3. The extracted features at 4 scales are

F1 ∈ R
H×W×C , F2 ∈ R

H/s×W/s×sC , F3 ∈ R
H/s2×W/s2×s2C and F4 ∈ R

H/s3×W/s3×s3C ,

and their corresponding masks are denoted as M1 ∈ R
H×W , M2 ∈ R

H/s×W/s, M3 ∈

R
H/s2×W/s2 and M4 ∈ R

H/s3×W/s3 . Here H, W , and C are the height, width, and

channel number of the image/feature respectively. Formally, we have

Mn−1 = fn−1(τ(Mn) · Fn−1), n = 2, 3, 4, (4.4.1)

where fn denotes the SCCM on the nth scale, and τ is the upsampling operation

(e.g., the bilinear interpolation). Since M4 is the mask on the last scale, it can be

directly expressed as M4 = f4(F4). For Scales 1-3, the feature on the current scale is

associated with the upsampled mask from the previous scale for feature modulation.

Then, the modulated feature is fed into SCCM to produce a manipulation mask.

To reduce the prediction difficulty, the proposed progressive mechanism avoids

generating the mask at the finest scale directly. Instead, the mask on the coarsest

scale is first predicted to locate the regions that are potentially forged based on current

available information. The subsequent prediction on the finer scale can leverage
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the previous mask and pay more attention to those selected regions. This process

continues until the generation of the manipulation mask at the finest scale, which

serves as the final prediction. However, without explicit supervision on each scale,

the intermediate masks might not follow the coarse-to-fine order. Therefore, full

supervisions are applied on all scales to guide the mask estimation.

4.4.2 Spatio-Channel Correlation Module

Attention mechanisms are commonly used to modulate learned features according to

their relative significance. As the final manipulation mask is binary, the localization

can be considered as a pixel-level binary classification. Ideally, we expect the learned

features on forged regions are similar to each other but distinct from those in pristine

regions. In this case, a simple clustering method may suffice to produce an effective

mask. Therefore, to better tackle manipulation localization, we propose a SCCM

that employs the spatial attention to aggregate the pixel-level features based on their

contextual correlations, and the channel-wise attention to consolidate the feature

maps based on their channel correlations.

We illustrate the detailed structure of SCCM in Fig. 4.3, where the input feature

X is of size H ×W × C. Note that even though X is small (256×256), the size of its

spatial correlation can be enormous (65, 536 × 65, 536), easily exceeding the memory

limit. Therefore, inspired by [42], we use function h to reshape the input X ∈ R
H×W×C

to X′ ∈ R
HW/r2×Cr2 , where each feature map is flattened to form a vector based on

SCCM down-scaling ratio r. This operation preserves all feature information and

avoids modeling the spatial correlation of potentially large size HW ×HW .

To build the spatial and channel-wise correlations, one may directly leverage X′.
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Softmax

Mask Generation

Softmax

Figure 4.3: The structure of SCCM. Here ⊗ represents the matrix multiplication and
⊕ the element-wise addition; the red arrow shows the common feature flows; the
pink and green arrows show the feature flows of spatial and channel-wise attentions
respectively.
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However, additional flexibility could be achieved by introducing the embedded Gaus-

sian function [50]. Therefore, we use the 1×1 convolution to build different functions

g, θ, and φ to transform X′ into new linear embeddings as X′
g = g(X′), X′

θ = θ(X′),

and X′
φ = φ(X′), all with the same size as X′. Subsequently, the spatial and channel-

wise correlations (denoted as As ∈ R
HW/r2×HW/r2 and Ac ∈ R

Cr2×Cr2) of embedded

features X′
θ and X′

φ are computed, and the Gaussian operation is implemented by

Softmax function. In the end, the spatial and channel-wise attentions are realized by

performing matrix multiplications AsX
′
g and X′

gAc, respectively. Unlike prior meth-

ods [54–56] that employ two attentions on different features, we apply both on the

same linear embedding for better information sharing and faster inference. Indeed,

applying attentions in this way reduces the difficulty of subsequent fusion process,

and also saves computational operations in SCCM. Specifically, the spatial attention

can be formulated as:

Y′
s = AsX

′
g = softmax(X′

θX
′T
φ )X′

g, (4.4.2)

where Y′
s ∈ R

HW/r2×Cr2 is the feature resulting from the application of spatial atten-

tion, and softmax(·) denotes the Softmax function. The element (i, j) in As indicates

the similarity between the feature vectors in the ith row of X′
θ and jth row of X′

φ.

The more similar they are, the higher correlation they have. This helps the network

to learn feature representations for distinguishing forged regions from pristine ones

and avoid overfitting to a specific attack type in training. Similarly, the channel-wise

attention is expressed as:

Y′
c = X′

gAc = X′
gsoftmax(X′T

θ X′
φ), (4.4.3)
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where Y′
c ∈ R

HW/r2×Cr2 is the feature resulting from the application of channel-wise

attention. The element (i, j) in Ac measures the similarity between the channel maps

in the ith column of X′
θ and jth column of X′

φ. Since the response from differ-

ent channels might be associated with the same class, e.g., manipulated or pristine,

the channel-wise correlation aggregates feature maps based on their similarities to

enhance the representation in forged regions.

We use h−1 to reshape Y′
s and Y′

c respectively back to Ys and Yc of size H×W×C.

Further, two functions ωs and ωc are built by 1×1 convolution to improve their feature

representations. The output features from ωs and ωc are complement to each other.

As it is non-trivial to determine their relative significance, two learnable parameters

αs and αc, both initialized as 1, are used for trade-off. We also adopt the residual

learning [57] to express the feature Z as:

Z = X + αs · ωs(Ys) + αc · ωc(Yc). (4.4.4)

The final output of SCCM is a predicted mask with only one channel. To reduce

the channel number in Z, we employ a mask generation block with the sequential

order of Conv-ReLU-Conv-Sigmoid, where Conv is a 3 × 3 convolution.

4.4.3 Loss Function

To train the PSCC-Net, we adopt the binary cross-entropy loss (Lbce) for both detec-

tion and localization tasks. The predicted detection score (sd) is supervised by the

Ground-Truth (GT) label (ld) with 0 standing for pristine image and 1 for forged im-

age. Moreover, full supervisions are applied on each predicted mask by downsampling

the GT mask G1 to G2, G3, and G4 according to their corresponding sizes, with 0
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standing for pristine pixel and 1 for forged pixel. The masks predicted through the

progressive mechanism at different scales are considered to be of equal importance.

Therefore, our final loss function L̂ can be expressed as:

L̂ = Lbce(sd, ld) +
1

4

∑4

m=1
Lbce(Mm,Gm). (4.4.5)

4.4.4 Training Data Synthesis

Since there is no standard IMDL dataset for training, a synthetic dataset is built to

train and validate our PSCC-Net. This dataset includes four categories 1) splicing,

2) copy-move, 3) removal, and 4) pristine classes. For splicing, inspired by [30, 58],

we use the MS COCO [59] to generate spliced images, where one annotated region

is randomly selected per image, and pasted into a different image after several trans-

formations. We adopt the same transformation as [30] including the scale, rotation,

shift and luminance changes. Since the spliced region is not necessarily an object,

we use the Bezier curve [60] to generate random contours, then fill them to produce

splicing masks. We follow the same processes above but randomly select donor and

target images in KCMI [61], VISION [62], and Dresden [63] that are commonly used

to identify camera source [18], to generate additional spliced images as supplemen-

tary. For copy-move, the dataset from [24] is adopted. For removal, we adopt the

SOTA inpainting method [6] to fill one annotated region that is randomly removed

from each chosen MS COCO image. As to the pristine class, we simply select images

from the original datasets mentioned above.

In summary, we have ∼100k images per class, thus 400k in total. As it is inefficient

to train all manipulated images in one epoch, we uniformly sample 25k images per

116



Ph.D. Thesis – X. Liu McMaster University – Electrical & Computer Engineering

class to form a 100k dataset on-the-fly for training in each epoch. In addition, we

also build a validation set that contains 4× 100 images. The size of synthetic images

are all set to 256 × 256.

4.5 Experiments

4.5.1 Experimental Setup

4.5.1.1 Test Data

We evaluate the manipulation localization on 4 standard test datasets: Columbia [64],

Coverage [33], CASIA [65] and NIST16 [66], and 1 real-world dataset: IMD20 [67]. To

finetune PSCC-Net, we follow the same training/testing split on Coverage, CASIA,

and NIST16 as in [16,21] for fair comparisons. Specifically, Columbia [64] is a splicing

dataset of 180 images. Coverage [33] is a copy-move dataset of 100 images; for fine-

tuning, it is split into 75/25 for training and testing. CASIA [65] (v1.0 + v2.0)

includes both splicing and copy-move; for fine-tuning, 5, 123 images from v2.0 is

adopted for training, and 921 images from v1.0 is for testing. NIST16 [66] has 564

images, involving all three manipulations; for fine-tuning, 404 images are used for

training and 160 for testing. IMD20 [67] consists of 2, 010 real-life manipulated images

collected from Internet.

As the manipulation detection is not considered by prior works, there is no stan-

dard dataset for benchmarking. To address this issue, we include both forged and

pristine images in CASIA dataset and define a evaluation protocol for detection. This

dataset is named CASIA-D and consists of 1, 842 images with 50% forged and 50%

pristine.
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4.5.1.2 Metrics

To quantify the localization performance, following previous works [11, 16], we use

pixel-level Area Under Curve (AUC) and F1 score on manipulation masks. To eval-

uate the detection performance, we use image-level AUC and F1 score, Equal Error

Rate (EER), and True Positive Rate at 1% false positive rate (TPR1%). Since binary

masks and detection scores are required to compute F1 scores, we adopt the EER

threshold to binarize them.

4.5.1.3 Implementation Details

PSCC-Net is end-to-end trainable and light-weighted. Its top-down path and bottom-

up path have 2.0 and 1.6 Million (M) parameters. In the bottom-up path, the detec-

tion head has 0.9 M and the rest part (for localization) has only 0.7 M parameters.

In comparison, the ManTra-Net [11] and SPAN [16] have 3.8 and 3.7 M parame-

ters, respectively. Implemented by PyTorch, our model is trained with two NVIDIA

GeForce GTX 1080Ti, but only one is used in testing. We initialize our backbone

with ImageNet pre-trained weights, and optimize the whole model by Adam [68] with

a batch size of 10 and an initial learning rate of 2e-4. The learning rate is halved

every 5 epochs and the total training period is 25 epochs.

Our network can take arbitrary-size images as input. To avoid performance degra-

dation caused by size mismatch between training (e.g., 256 × 256) and testing data

(e.g., 4, 000 × 3, 000), at the end of top-down path, we resample the extracted fea-

tures from the first to the last scales respectively into fixed sizes 256×256, 128×128,

64 × 64, and 32 × 32, where the ratio r in SCCM is set to 4, 2, 2, and 1 respectively

to reduce the computational burden. The produced masks are resampled back to the
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Table 4.1: Localization AUC (%) of pre-trained models.

Method Columbia Coverage CASIA NIST16 IMD20

ManTra-Net [11] 82.4 81.9 81.7 79.5 74.8

SPAN [16] 93.6 92.2 79.7 84.0 75.0

PSCC-Net 98.2 84.7 82.9 85.5 80.6

same size as the input image for localization evaluation.

4.5.2 Comparisons on Localization

Our baseline IMDL methods include ELA [69], NOI1 [70], CFA1 [71], J-LSTM [19], H-

LSTM [22], RGB-N [21], ManTra-Net [11], and SPAN [16] where SPAN has reported

the SOTA performance on localization. Following the evaluation protocol defined

in SPAN [16], we compare the localization performance using two models: 1) the

pre-trained model is trained on the synthetic dataset and evaluated on the full test

datasets, and 2) the fine-tuned model is the pre-trained model further fine-tuned on

the training split of test datasets and evaluated on their test split.

4.5.2.1 Pre-Trained Model

We choose the best pre-trained model based on the performance on our validation

set. Tab. 4.1 shows the localization performance of pre-trained models for different

methods on 4 standard datasets and 1 real-world dataset under pixel-level AUC.

The pre-trained PSCC-Net achieves the best localization performance on Columbia,

CASIA, NIST16, and IMD20, and ranks the second on Coverage. The most significant

performance gain is achieved while tackling real-life manipulated images (5.6% ↑).

This validates that the PSCC-Net has the best generalization ability as compared to
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Table 4.2: Evaluation of the fine-tuned models. Localization AUC/F1s are reported
(in %). Type U denotes an unsupervised model, and type F denotes a fine-tuned
model. ManTra-Net is not shown here as it has only developed the pre-trained model.

Method Type Coverage CASIA NIST16

ELA [69] U 58.3 / 22.2 61.3 / 21.4 42.9 / 23.6

NOI1 [70] U 58.7 / 26.9 61.2 / 26.3 48.7 / 28.5

CFA1 [71] U 48.5 / 19.0 52.2 / 20.7 50.1 / 17.4

J-LSTM [19] F 61.4 / - - / - 76.4 / -

H-LSTM [22] F 71.2 / - - / - 79.4 / -

RGB-N [21] F 81.7 / 43.7 79.5 / 40.8 93.7 / 72.2

SPAN [16] F 93.7 / 55.8 83.8 / 38.2 96.1 / 58.2

PSCC-Net F 94.1 / 72.3 87.5 / 55.4 99.6 / 81.9

the others. We fail to achieve the best performance on Coverage, despite surpassing

ManTra-Net 2.8% under AUC. The reason might be the imperfection of our training

data for the case, where the copied object is intentionally moved to cover a pristine

object with similar appearance. Indeed, by fine-tuning the pre-trained model on

Coverage, PSCC-Net achieves the 0.4% gain over SPAN under AUC (Tab. 4.2).

4.5.2.2 Fine-Tuned Model

We further fine-tune the pre-trained model on specific datasets using our training

strategy. The cross validation on training data helps to select the best fine-tuned

models on each test dataset. We compare the fine-tuned models in Tab. 4.2. For

AUC, PSCC-Net surpasses baselines in all cases (over 2.5% to SPAN on average). As

for F1 score, our model outperforms them with a large margin (over 19% to SPAN

on average).
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4.5.3 Comparisons on Detection

Since ManTra-Net and SPAN are the best performing baselines in the localization

evaluation, and ManTra-Net does not develop the fine-tuned model, we choose to use

the pre-trained model for detection evaluation, in order to make comparisons to both

of them. Although these two baselines make no direct attempt to perform detection,

their estimated manipulation masks can be leveraged for this purpose. As such, we

simply regard the average of the mask as their scores. For fair comparisons, we build

a variant that adopts the same averaging strategy to calculate this score, denoted as

PSCC-Net†. In Tab. 4.3, owing to our well-predicted manipulation masks, the PSCC-

Net† achieves the best detection performance on all used metrics. It is evident that

the detection performance can be dramatically improved by introducing a tailored

head. With a favorable detection, the IMDL methods can be more efficient. That is,

detection is performed before localization, and only the detected forgery is passed for

localization. Our network design is compatible with this efficiency consideration as

the detection head is placed at the beginning of the bottom-up path.

Table 4.3: Detection evaluation on CASIA-D, all reported in %.

Method AUC ↑ F1 ↑ EER ↓ TPR1% ↑

ManTra-Net [11] 59.94 56.69 43.21 5.43

SPAN [16] 67.33 63.48 36.47 5.54

PSCC-Net† 74.40 66.88 33.21 28.37

PSCC-Net 99.65 97.12 2.83 95.65
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Figure 4.4: Qualitative localization evaluations on 5 datasets. From top to bottom,
we show manipulated images, GT manipulation masks, predictions of ManTra-Net,
SPAN, and ours. Best models are used to produce masks. Zoom in for details. See
Sec. 4.7 for more results.

(a) Pristine
image

(b) Manip.
image

(c) GT Manip.
mask

(d) Pristine
mask [16]

(e) Manip.
mask [16]

(f) Our pristine
mask

(g) Our manip.
mask

Figure 4.5: Qualitative detection evaluations on CASIA-D. Since GT pristine masks
are blank, they are not shown here.

4.5.4 Visualization, Ablation and Analysis

4.5.4.1 Qualitative Results

We provide qualitative evaluations of manipulation localization and detection in

Figs. 4.4, 4.5. PSCC-Net predicts more accurate and sharper manipulation masks

while maintaining low false alarms on pristine regions, especially for small manipula-

tions.
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(a) Manipulated (b) GT (c) P1

response
(d) P2

response
(e) P3

response
(f) 1st channel

in X

(g) 1st channel
in Yc

Figure 4.6: Visualization of spatial and channel-wise attentions in SCCM. For each
row, we show a manipulated image, its GT mask, 3 spatial response maps (one for
each selected pixel), and the 1st channel map in X and Yc. Zoom in for details.

4.5.4.2 Visualization of SCCM

To provide insights into SCCM, we visualize the spatial response map for forged and

pristine pixels in M3, by examining its spatial correlation represented in As. After

interpolation, each row of As is associated with one pixel (e.g., P1) in the manipulated

image, and its grayscale spatial response map can be obtained by reshaping this row

vector from 1 × HW to H × W (e.g., P1 response). In Fig. 4.6 (a), 2 examples

of splicing and copy-move manipulations from CASIA are shown in the 1st and 2nd

rows. We select 3 representative pixels for each image and annotate as P1, P2, and P3,

where P1 and P2 are from forged regions, and P3 is from pristine regions. We project

their grayscale spatial response maps into Jet color space and overlay them on the

manipulated image as in Figs. 4.6 (c-e). It is evident that the spatial response maps

of P1 and P2 have high values in forged regions and low values in pristine regions,

but the map of P3 retains low values in all regions including the one providing the

copied content (e.g., the P3 response in the 2nd row of Fig. 4.6 (e)). This visualization

indicates that the features in forged regions are clustered together, thus justifies the

effectiveness of spatial attention in SCCM.
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Table 4.4: Ablation study of PSCC-Net. Average AUC/F1s are reported (in %).
The run time (in proportion) is relative to that of PSCC-Net. Our full model takes
0.019s to process one 1, 080P image, whereas ManTra-Net and SPAN take 0.208s and
0.161s, respectively. Terminating the prediction earlier on Mask 4 can shorten the
run time to 0.012s, i.e., ∼ 37% additional saving.

Variants Columbia Coverage CASIA NIST16 Time

Mask 4 93.34 / 79.22 82.99 / 44.23 81.49 / 31.69 84.15 / 30.55 0.63

Mask 3 98.08 / 92.41 83.48 / 47.29 82.55 / 34.64 85.25 / 33.55 0.75

Mask 2 98.18 / 93.32 84.44 / 49.08 82.78 / 35.59 85.38 / 34.94 0.88

w/o CA+SA 85.78 / 70.32 79.95 / 43.27 79.26 / 31.06 79.58 / 31.73 0.84

w/o SA 90.70 / 75.68 80.56 / 43.50 79.51 / 31.08 83.49 / 32.34 0.92

w/o CA 94.50 / 85.34 82.16 / 45.04 82.63 / 35.97 84.65 / 33.42 0.92

PSCC-Net 98.19 / 93.45 84.65 / 49.78 82.93 / 36.27 85.47 / 35.73 1.00

For channel-wise correlation Ac, it is hard to provide a comprehensible visualiza-

tion. Instead, we choose to visualize one channel of Yc and compare it to the same

channel of X to see if any region is enhanced. We visualize the 1st channel of X and

Yc in Figs. 4.6 (f,g). Indeed, the forged region in Yc is consolidated compared to the

one in X, which proves the effectiveness of channel-wise attention in SCCM.

4.5.4.3 Ablation Study

To justify our network design, we test several variants of PSCC-Net to show the

effectiveness of progressive mechanism and SCCM in Tab. 4.4, where all variants

are pre-trained on our dataset. Mask 4, Mask 3, and Mask 2 are the variants that

truncate the original model after generating manipulation masks on the 4th, 3rd,

and 2nd scales, respectively. The comparisons of Mask 4, Mask 3, Mask 2, and the

original PSCC-Net demonstrate the gradual improvement in performance, which is a

clear manifestation of our progressive mechanism. Since Mask 4 performs well under
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Table 4.5: Robustness comparison with respect to various distortions. AUCs are
reported (in %).

Distortion
Columbia NIST16

[11] [16] Ours [11] [16] Ours

Resize (0.78×) 71.66 89.99 93.40 77.43 83.24 85.29

Resize (0.25×) 68.64 69.08 78.41 75.52 80.32 85.01

GaussianBlur (k = 3) 67.72 78.97 84.18 77.46 83.10 85.38

GaussianBlur (k = 15) 62.88 67.70 73.24 74.55 79.15 79.93

GaussianNoise (σ = 3) 68.22 75.11 82.64 67.41 75.17 78.42

GaussianNoise (σ = 15) 54.97 65.80 74.35 58.55 67.28 76.65

JPEGCompress (q = 100) 75.00 93.32 97.97 77.91 83.59 85.40

JPEGCompress (q = 50) 59.37 74.62 89.11 74.38 80.68 85.37

w/o distortion 77.95 93.60 98.19 78.05 83.95 85.47

AUC and F1 scores, the mask prediction can be terminated earlier to save time. The

comparisons among the variants without spatial and channel-wise attentions (w/o

SA+CA), without spatial attention (w/o SA), without channel-wise attention (w/o

CA), and original PSCC-Net illustrate that both SA and CA outperform the baseline

(w/o SA+CA), where the performance gain acquired from SA is more than that

from CA. Owing to SCCM, the original PSCC-Net achieves the best performance as

compared to its attention variants.

4.5.4.4 Robustness Analysis

To analyze the robustness of PSCC-Net for localization, we follow the distortion set-

tings in [16] to degrade the raw manipulated images from Columbia and NIST16.

These distortions include resizing images to a different scale, applying Gaussian blur
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with kernel size k, adding Gaussian noise with standard deviation σ, and perform-

ing compression with quality factor q. Table 4.5 shows the robustness analysis un-

der pixel-level AUC with pre-trained models. The PSCC-Net is more robust than

ManTra-Net and SPAN under all distortions. It is worth noting that resizing is com-

monly performed when uploading images to social media. Indeed, benefiting from the

operation that resamples the manipulation features into the fixed sizes, the impact

of resizing to PSCC-Net is the least as compared to the others.

4.6 Conclusion

In this work, a novel PSCC-Net is proposed to meet the challenge of advanced image

manipulation techniques. We employ a progressive mechanism to predict the manip-

ulation mask on all backbone scales, where each mask serves as a prior to help predict

the next-scale mask. Moreover, a SCCM is designed to perform spatial and channel-

wise attentions on extracted features, which provides holistic information to make our

model more generalized to manipulation attacks. Extensive experiments demonstrate

that our PSCC-Net outperforms the SOTA methods on both detection and localiza-

tion. For future work, we will develop techniques for estimating the uncertainty of

predicted manipulation masks.

126



Ph.D. Thesis – X. Liu McMaster University – Electrical & Computer Engineering

4.7 Supplementary

4.7.1 Network Details

The proposed PSCC-Net consists of a top-down path and a bottom-up path. We

illustrate how the dense cross-connections in our backbone aggregate the information

from different scales, and provide the detailed structure of our backbone in the top-

down path (based on the HRNetV2p-W18 [23] with several modifications) and the

detailed structure of our detection head in the bottom-up path. In addition, we

demonstrate the learned values of parameters αs and αc in Equ. 4.4.4 for SCCMs at

four scales of our pre-trained and fine-tuned models.

Features Element-Wise Sum

Figure 4.7: An example of dense cross-connections for the first 3 scales in backbone.
From left to right, the dense cross-connections to Scale 1, 2, and 3 are illustrated.
n@(k × k)/s denotes a k × k convolution with stride s for n filters, followed by a
batch normalization and a ReLU activation function. Bilinear stands for bilinear
interpolation. H, W , and C represent the height, width, and channel number of
features, respectively.

127



Ph.D. Thesis – X. Liu McMaster University – Electrical & Computer Engineering

Table 4.6: Size transitions among different feature scales for multi-scale fusions, where
the size of Source scale is converted according to the size of Target scale. n@(k×k)/s
denotes a k×k convolution with stride s for n filters, followed by a batch normalization
and a ReLU activation function. Bilinear stands for bilinear interpolation.

Source

Target
Scale 1 Scale 2 Scale 3 Scale 4

Scale 1 - 36@(3 × 3)/2
18@(3 × 3)/2

72@(3 × 3)/2

18@(3 × 3)/2

18@(3 × 3)/2

144@(3 × 3)/2

Scale 2
18@(1 × 1)/1

Bilinear
- 72@(3 × 3)/2

36@(3 × 3)/2

144@(3 × 3)/2

Scale 3
18@(1 × 1)/1

Bilinear

36@(1 × 1)/1

Bilinear
- 144@(3 × 3)/2

Scale 4
18@(1 × 1)/1

Bilinear

36@(1 × 1)/1

Bilinear

72@(1 × 1)/1

Bilinear
-

4.7.1.1 Dense Cross-Connections

An example of dense cross-connections at the first 3 scales in backbone is demon-

strated in Fig. 4.7. From left to right, the multi-scale fusion to Scale 1, 2, and 3 are

given respectively. A 3 × 3 convolution with stride 2 is adopted for feature dowm-

sampling, and a 1× 1 convolution with stride 1 followed by a bilinear interpolation is

adopted for feature upsampling, which unifies the feature size from different scales.

Finally, the sum operation is utilized to perform multi-scale fusions.

In addition, for the sake of completeness, we show all size transitions among

different feature scales in Tab. 4.6. Note that for the feature downsampling among

nonadjacent scales, the downsampling operation consists of several convolutions with

stride 2 to avoid the large stride factor (e.g., 8) that might potentially degrade multi-

scale fusions.
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Table 4.7: The structure of our backbone. There are 4 stages corresponding to 4 different scales. n@(k × k)/s
denotes a k × k convolution with stride s for n filters, followed by a batch normalization and a ReLU activation
function. [·] represents the residual unit, and ×2 indicates the repeat times of the corresponding residual unit. For
clarity, dense cross-connections after Transition 2, Transition 3, and Block 4 are not demonstrated in this table as
already shown in Fig. 4.7 and Tab. 4.6.

The structure of our backbone

Stage Size Stem Block 1 Transition 1 Block 2 Transition 2 Block 3 Transition 3 Block 4

Stage 1 1
64@(3 × 3)/1

64@(3 × 3)/1











64@(1 × 1)/1

64@(3 × 3)/1

256@(1 × 1)/1











× 2 18@(3 × 3)/1





18@(3 × 3)/1

18@(3 × 3)/1



× 2 -





18@(3 × 3)/1

18@(3 × 3)/1



× 2 -





18@(3 × 3)/1

18@(3 × 3)/1



× 2

Stage 2 1/2 36@(3 × 3)/2





36@(3 × 3)/1

36@(3 × 3)/1



× 2 -





36@(3 × 3)/1

36@(3 × 3)/1



× 2 -





36@(3 × 3)/1

36@(3 × 3)/1



× 2

Stage 3 1/4 72@(3 × 3)/2





72@(3 × 3)/1

72@(3 × 3)/1



× 2 -





72@(3 × 3)/1

72@(3 × 3)/1



× 2

Stage 4 1/8 144@(3 × 3)/2





144@(3 × 3)/1

144@(3 × 3)/1



× 2
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4.7.1.2 Detailed Structure of Our Backbone

The detailed structure of our backbone is shown in Tab. 4.7. In summary, this

backbone contains 1 stem, 4 blocks, 3 transitions, and 3 dense cross-connections.

Note that the last dense cross-connection after the Block 4 is not shown in Fig. 4.2

for clarity.

In comparison to the original design in [23], instead of setting the stride to 2 for

both convolutions in stem, we avoid dowmsampling input images in the beginning by

setting them to 1. For all blocks, transitions, and dense cross-connections, we follow

the same settings as in [23].

4.7.1.3 Detailed Structure of Our Detection Head

We modify the classification head in [23] as our detection head. Fig. 4.8 shows the

overall architecture of our detection head. More details can be found in Tab. 4.8. The

output of our detection head is the detection score that predicts whether the input

image is manipulated.

4.7.1.4 Values of learned αs and αc

In Tab. 4.9, we show the values of learned αs and αc for the spatio-channel trade-off

in SCCMs of our models. It can be seen that αs and αc are insensitive to training

data since the values are quite similar among different models.

4.7.2 Limitations

Our PSCC-Net enables to detect and localize various types of manipulations. As

compared to the image-level detection, the pixel-level localization is more challenging,
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Table 4.8: The structure of our detection head. n@(k× k)/s denotes a k× k convolution with stride s for n filters,
followed by a batch normalization and a ReLU activation function. [·] represents the residual unit. “FC layers”
stands for the Fully Connected (FC) layers that produce the logit for classification. “Softmax” denotes the Softmax
function.

The structure of our detection head

Stage Size Block 1 Downsampling 1 Block 2 Downsampling 2 Block 3 Downsampling 3 Block 4 Classifier

Stage 1 1











18@(1 × 1)/1

18@(3 × 3)/1

36@(1 × 1)/1











72@(3 × 3)/2 - - - - - -

Stage 2 1/2











36@(1 × 1)/1

36@(3 × 3)/1

72@(1 × 1)/1











144@(3 × 3)/2 - - - -

Stage 3 1/4











72@(1 × 1)/1

72@(3 × 3)/1

144@(1 × 1)/1











288@(3 × 3)/2 - -

Stage 4 1/8











144@(1 × 1)/1

144@(3 × 3)/1

288@(1 × 1)/1











128@(1 × 1)/1

FC layers

Softmax
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Detection Score

Features

Element-Wise Sum

Stage 1

Stage 2

Stage 3

Stage 4

/2

/2

/2

Figure 4.8: The overall architecture of our detection head.

Table 4.9: The values of learned αs and αc for SCCMs on four scales of our models.
Dataset illustrates the training data for different models, where Syn stands for our
synthetic data.

Model Dataset
SCCM 4 SCCM 3 SCCM 2 SCCM 1

αs αc αs αc αs αc αs αc

Pre-trained Syn 0.6516 0.7218 0.6690 0.7962 0.9080 0.9558 0.9020 0.9523

Coverage 0.6496 0.7355 0.6710 0.8029 0.9117 0.9587 0.9056 0.9551

Fine-tuned CASIA 0.6404 0.6913 0.6666 0.7929 0.9010 0.9579 0.8953 0.9576

NIST16 0.6654 0.7234 0.6782 0.8001 0.9091 0.9589 0.9033 0.9550
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especially while dealing with real-life manipulated images. Here we demonstrate some

failure cases on the real-world dataset IMD20 [67] to show limitations of our work.

In Fig. 4.9, it is clear that for real-life manipulated images, the forged regions

have various sizes and shapes. In the first two rows, we show a specific case where the

same pattern is copied several times but with different scales. Despite our method

fails to localize all forged regions, it is less sensitive to scale variation as compared to

ManTra-Net [11] and SPAN [16], owing to our tailored network design. In addition,

our method may fail to localize the whole forged regions or only localize part of

them in some cases (e.g., see the last two rows). One possible reason is that some

manipulation traces are elaborately removed by fabricators. Indeed, the compared

IMDL methods also have difficulty to tackle these manipulated images. Note that even

in these cases, our PSCC-Net still performs relatively better than the SOTAs [11,16]

for image manipulation localization (e.g.,, see the 3rd row).

4.7.3 Visualization of Synthetic Data

Since there is no standard IMDL dataset for training, we synthesize our own data to

train and validate the proposed PSCC-Net, which contains four categories including

1) splicing, 2) copy-move, 3) removal, and 4) pristine images. For splicing class,

in addition to synthesize the content-aware splicing manipulation, we also produce

spliced images based on randomly-generated masks from [60] since the manipulated

region is not necessarily an object.

In Fig. 4.10, we demonstrate several examples of content-aware splicing and random-

mask based splicing. It is clear that their GT masks are quite different in terms of

size and shape, thus are complement to each other. We use both splicing data to
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(a) Manipulated (b) GT mask (c) ManTra-Net [11] (d) SPAN [16] (e) Ours

Figure 4.9: Failure cases. Zoom in for details.

train the PSCC-Net to achieve better generalization ability. For copy-move class, the

data from [24] is adopted and we do not synthesize any data for this class. For re-

moval class, the SOTA inpainting method [6] is leveraged. Some synthesized removal

examples are shown in Fig. 4.11. As for pristine class, we simply select the original

images before any manipulation, some of which are shown in the 1st row of Fig. 4.11.
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Figure 4.10: Examples of synthesized splicing data. The 1st row shows content-aware
splicing, and the 3rd row shows the random-mask based splicing. We show their
corresponding GT masks in the 2nd and 4th rows respectively. Zoom in for details.

4.7.4 Visualization of Predicted Manipulation Masks on Dif-

ferent Scales

The proposed PSCC-Net utilizes a progressive mechanism to reduce the prediction

difficulty by avoiding generating the mask from the finest scale directly. Instead, the

mask on the coarsest scale is first predicted to locate the regions that are potentially

forged based on the current available information. The subsequent prediction on the

finer scale can leverage the previous mask and pay more attention to those selected

regions. This process repeatedly performs till generating the manipulation mask at

the finest scale as our final prediction.

Since we only visualize one example of the coarse-to-fine mask prediction in
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Figure 4.11: Examples of removal manipulation. The 1st row shows original images,
the 2rd row shows the corresponding images after removal, and the last row shows
the GT masks. Zoom in for details.

Fig. 4.2, we give more results to visualize the performance improvement of manip-

ulation localization from the Scale 4 to Scale 1. In Fig. 4.12, it can be seen that

benefiting to the proposed progressive mechanism, the localization performance is

gradually improved from the Mask 4 to Mask 1 in terms of lower false alarms and

clearer boundaries. Moreover, the results in Fig. 4.12 are in line with our ablation

study that demonstrates the mask prediction can be terminated earlier to save run-

time while the intermediate mask, e.g., Mask 3, already performs well enough.

4.7.5 More Manipulation Localization and Detection Results.

Here, additional qualitative comparisons are performed to further evaluate the IMDL

performance of PSCC-Net against the SOTAs [11, 16]. To qualitatively evaluate the

manipulation localization, we compare the PSCC-Net with ManTra-Net [11] and

SPAN [16] on 4 standard datasets and 1 real-world dataset. The corresponding re-

sults on Columbia, Coverage, CASIA, NIST16, and IMD20 are shown in Fig. 4.13,
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(a) Manipulated (b) Mask 4 (c) Mask 3 (d) Mask 2 (e) Mask 1 (f) GT

Figure 4.12: Visualization of predicted manipulation masks from the Scale 4 to Scale
1. We employ our pre-trained model on 4 standard test datasets and 1 real-world
dataset to generate these masks. From top to bottom, manipulated images are from
Columbia, Coverage, CASIA, NIST16, and IMD20, each with 2 images respectively.
It is evident that the performance of manipulation localization is gradually improved
from the Mask 4 to Mask 1 in terms of lower false alarms and clearer boundaries.
Zoom in for details.
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Fig. 4.14, Fig. 4.15, Fig. 4.16, and Fig. 4.17, respectively. It it clear that our PSCC-

Net outperforms the compared methods by producing more accurate manipulation

masks with less false alarms.

Our PSCC-Net can perform manipulation detection in two different strategies.

The first one produces the detection score by simply averaging the predicted manipu-

lation mask, and the second one resorts to the detection head to produce this score. In

the paper, we justify that the detection performance can be dramatically improved by

introducing a tailored head. Note that qualitatively evaluating the manipulation de-

tection is difficult. However, since manipulation detection and localization are highly

relevant tasks, we can evaluate detection by showing the corresponding predicted ma-

nipulation masks. Indeed, if the predicted mask retains blank for a pristine image

and indicates the forged regions for a manipulated image, this mask (or the features

to generate this mask) naturally helps the detection. Therefore, we compare our

predicted manipulation masks to SPAN [16] on CASIA-D to qualitatively evaluate

the detection. In Fig. 4.18, it can be seen that by leveraging both manipulated and

pristine images in training, the PSCC-Net enables to accurately predict their corre-

sponding masks, yet the SPAN [16] may cause false alarms on pristine ones since they

assume the existence of manipulation in all input images. This is one of the reasons

why we achieve the SOTA result for image manipulation detection.
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(a) Manipulated (b) ManTra-Net [11] (c) SPAN [16] (d) Ours (e) GT

Figure 4.13: Qualitative localization evaluations on Columbia.
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(a) Manipulated (b) ManTra-Net [11] (c) SPAN [16] (d) Ours (e) GT

Figure 4.14: Qualitative localization evaluations on Coverage.
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(a) Manipulated (b) ManTra-Net [11] (c) SPAN [16] (d) Ours (e) GT

Figure 4.15: Qualitative localization evaluations on CASIA.

(a) Manipulated (b) ManTra-Net [11] (c) SPAN [16] (d) Ours (e) GT

Figure 4.16: Qualitative localization evaluations on NIST16.
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(a) Manipulated (b) ManTra-Net [11] (c) SPAN [16] (d) Ours (e) GT

Figure 4.17: Qualitative localization evaluations on IMD20.
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(a) Pristine (b)
Manipulated

(c) GT Manip.
mask

(d) Pristine
mask [16]

(e) Manip.
mask [16]

(f) Our pristine
mask

(g) Our manip.
mask

Figure 4.18: Qualitative detection evaluations on CASIA-D. From left to right, we
show pristine and manipulated images, GT manipulation masks, predicted pristine
and manipulation masks from [16], our predicted pristine and manipulation masks.
Since GT pristine masks are all blank, they are not shown here for clarity. Zoom in
for details.
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[29] L. Bondi, S. Lameri, D. Güera, P. Bestagini, E. J. Delp, and S. Tubaro, “Tam-

pering detection and localization through clustering of camera-based CNN fea-

tures,” in Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition Workshops (CVPRW), 2017.

[30] Y. Wu, W. Abd-Almageed, and P. Natarajan, “Deep matching and validation

network: An end-to-end solution to constrained image splicing localization and

detection,” in ACM International Conference on Multimedia (ACMMM), 2017.

[31] V. V. Kniaz, V. Knyaz, and F. Remondino, “The point where reality meets

fantasy: Mixed adversarial generators for image splice detection,” in Advances

in Neural Information Processing Systems (NeurIPS), 2019.

[32] D. Cozzolino, G. Poggi, and L. Verdoliva, “Efficient dense-field copy–move

forgery detection,” IEEE Transactions on Information Forensics and Security,

2015.

[33] B. Wen, Y. Zhu, R. Subramanian, T.-T. Ng, X. Shen, and S. Winkler,

“COVERAGE–A novel database for copy-move forgery detection,” in IEEE In-

ternational Conference on Image Processing (ICIP), 2016.

148



Ph.D. Thesis – X. Liu McMaster University – Electrical & Computer Engineering

[34] Y. Wu, W. Abd-Almageed, and P. Natarajan, “Image copy-move forgery detec-

tion via an end-to-end deep neural network,” in Proceedings of the IEEE Winter

Conference on Applications of Computer Vision (WACV), 2018.

[35] X. Zhu, Y. Qian, X. Zhao, B. Sun, and Y. Sun, “A deep learning approach to

patch-based image inpainting forensics,” Signal Processing: Image Communica-

tion, 2018.

[36] R. M. Joseph and A. Chithra, “Literature survey on image manipulation detec-

tion,” International Research Journal of Engineering and Technology (IRJET),

2015.

[37] Y. Liu, J. Stehouwer, and X. Liu, “On disentangling spoof traces for generic face

anti-spoofing,” in European Conference on Computer Vision (ECCV), 2020.

[38] J. Fridrich and J. Kodovsky, “Rich models for steganalysis of digital images,”

IEEE Transactions on Information Forensics and Security, 2012.

[39] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-time object

detection with region proposal networks,” in Advances in Neural Information

Processing Systems (NeurIPS), 2015.

[40] W. Ren, L. Ma, J. Zhang, J. Pan, X. Cao, W. Liu, and M.-H. Yang, “Gated fusion

network for single image dehazing,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2018.

149



Ph.D. Thesis – X. Liu McMaster University – Electrical & Computer Engineering

[41] K. Jiang, Z. Wang, P. Yi, C. Chen, B. Huang, Y. Luo, J. Ma, and J. Jiang,

“Multi-scale progressive fusion network for single image deraining,” in Pro-

ceedings of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2020.

[42] P. Yi, Z. Wang, K. Jiang, J. Jiang, and J. Ma, “Progressive fusion video super-

resolution network via exploiting non-local spatio-temporal correlations,” in Pro-

ceedings of the IEEE International Conference on Computer Vision (ICCV),

2019.

[43] Y. Chen, Y. Tai, X. Liu, C. Shen, and J. Yang, “FSRNet: End-to-end learning

face super-resolution with facial priors,” in Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), 2018.

[44] X. Zhang, T. Wang, J. Qi, H. Lu, and G. Wang, “Progressive attention guided

recurrent network for salient object detection,” in Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition (CVPR), 2018.

[45] J. Zhu, D. Li, T. Han, L. Tian, and Y. Shan, “ProgressFace: Scale-aware progres-

sive learning for face detection,” in European Conference on Computer Vision

(ECCV), 2020.

[46] X. Song, K. Zhao, W.-S. C. H. Zhang, and J. Guo, “Progressive refinement net-

work for occluded pedestrian detection,” in European Conference on Computer

Vision (ECCV), 2020.

150



Ph.D. Thesis – X. Liu McMaster University – Electrical & Computer Engineering

[47] G. Brazil and X. Liu, “Pedestrian detection with autoregressive network phases,”

in Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR), 2019.

[48] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,

 L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in Neural

Information Processing Systems (NeurIPS), 2017.

[49] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

2018.

[50] X. Wang, R. Girshick, A. Gupta, and K. He, “Non-local neural networks,” in

Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), 2018.

[51] X. Liu, Y. Ma, Z. Shi, and J. Chen, “GridDehazeNet: Attention-based multi-

scale network for image dehazing,” in Proceedings of the IEEE International

Conference on Computer Vision (ICCV), 2019.

[52] T. Isobe, S. Li, X. Jia, S. Yuan, G. Slabaugh, C. Xu, Y.-L. Li, S. Wang, and

Q. Tian, “Video super-resolution with temporal group attention,” in Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

2020.

[53] S. Gong, X. Liu, and A. Jain, “Mitigating face recognition bias via group adap-

tive classifier,” in Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2021.

151



Ph.D. Thesis – X. Liu McMaster University – Electrical & Computer Engineering

[54] J. Park, S. Woo, J.-Y. Lee, and I. S. Kweon, “BAM: Bottleneck attention mod-

ule,” in British Machine Vision Conference (BMVC), 2018.

[55] S. Woo, J. Park, J.-Y. Lee, and I. So Kweon, “CBAM: Convolutional block

attention module,” in European Conference on Computer Vision (ECCV), 2018.

[56] J. Fu, J. Liu, H. Tian, Y. Li, Y. Bao, Z. Fang, and H. Lu, “Dual attention network

for scene segmentation,” in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2019.

[57] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recogni-

tion,” in Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2016.

[58] Y. Liu, X. Zhu, X. Zhao, and Y. Cao, “Adversarial learning for constrained

image splicing detection and localization based on atrous convolution,” IEEE

Transactions on Information Forensics and Security, 2019.

[59] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár,

and C. L. Zitnick, “Microsoft COCO: Common objects in context,” in European

Conference on Computer Vision (ECCV), 2014.

[60] M. E. Mortenson, Mathematics for computer graphics applications. Industrial

Press Inc., 1999.

[61] I. S. P. Society, “Camera model identification,” https://www.kaggle.com/c/

sp-society-camera-model-identification.

152



Ph.D. Thesis – X. Liu McMaster University – Electrical & Computer Engineering

[62] D. Shullani, M. Fontani, M. Iuliani, O. Al Shaya, and A. Piva, “VISION: a video

and image dataset for source identification,” EURASIP Journal on Information

Security, 2017.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

Deep learning based visual content processing and analysis has been researched in

this thesis, especially in the fields of video super-resolution and image manipulation

detection and localization. Three algorithms have been proposed in this thesis to

address some common issues in these fields.

More specifically, in the first work, a new approach to VSR using local dynamic

filters via locally connected (LC) layers for implicit motion compensation is proposed,

named LCVSR. The effectiveness of this new approach can be attributed to three ma-

jor factors: 1) The overall system is end-to-end trainable and does not require any

pre-training; the accuracy of motion estimation improves progressively through the

training process; 2) Local motion estimation and compensation is performed implic-

itly by a novel Dynamic Local Filter Network (DLFN) with LC layers. There are

at least two benefits of using DLFN. Firstly, the implicit motion estimation, realized
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by sample-specific and position-specific dynamic local filters generated on-the-fly ac-

cording to the target pixels, can deal with complicated local transformations in video

frames such as regional blurring, irregular local movement and photometric changes.

Secondly, the simultaneous action of dynamic local filters on all input LR frames

via LC layers helps to maintain the temporal consistency; 3) The spatial consistency

of super-resolved outputs is enforced by a novel Global Refinement Network (GRN)

constructed using ResBlock and autoencoder structures. Since the implicit motion

estimation performed by the DLFN is spatially localized, it may cause inconsisten-

cies across neighboring areas. As such, the GRN plays a critical role of restoring

the spatial consistency. Moreover, the GRN has the capability of exploiting non-local

correlations due to its constituent autoencoder structure, which makes up for the lack

of global motion estimation in DLFN. Extensive experiments validate the strength of

this approach in terms of local transformation handling, temporal consistency as well

as edge sharpness.

In the second work, to avoid information loss and better fit the imaging pipeline,

a new Raw VSR method, named RawVSR, is proposed that can directly exploit

camera sensor data. The RawVSR has a dual-branch structure that disentangles the

super-resolution process from the color correction process, where weight sharing is

adopted to reduce the model size and to ensure the latent consistency of intermediate

features in the two branches. As a result, it has the desirable property of being

device-independent. In RawVSR, the Successive Deep Inference (SDI) module is

designed according to the architectural principle obtained via the analysis of a suitable

probabilistic graphical model. This design philosophy is likely applicable to a wide
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range of problems, especially those involving data fusion. Moreover, an Attention-

based Residual Dense Block (ARDB) is elaborately designed to simultaneously refine

the fused feature and generate a spatial-specific color transformation for favorable

color correction. Since there is no such raw video dataset released in public, the

first Raw Video Dataset (RawVD) is laboriously built to train, validate, and test the

RawVSR. It is also expected that the collected RawVD can potentially benefit other

video tasks such as video interpolation, video enhancement, etc. The experimental

results validates the superiority of employing camera raw data for training, as well as

the effectiveness of overall network design.

In the third work, a generic Image Manipulation Detection and Localization

(IMDL) method, named Progressive Spatio-Channel Correlation Network (PSCC-

Net), is built to tackle multiple manipulations types. In summary, there are three

major issues in IMDL task. The first one is the scale variation, in which most prior

works neglect its importance, thus encounter difficulty when detecting forged areas of

different sizes. To address this issue, a backbone network with dense connections is

adopted as the feature extractor to effectively exchange information among different

scales. The second one is the neglect of image correlation. Since manipulated regions

can best be determined while comparing to pristine regions, a naive learning of map-

ping from the manipulated image to manipulation mask may lead to an overfitting to

the specific attack type in training. In contrast, considering the image spatial correla-

tion can lead to a more generalized localization solution. Based on this insight, a novel

Spatio-Channel Correlation Module (SCCM) is proposed to capture the spatial and

channel-wise correlations for better generalization, which also avoids the use of mas-

sive annotated data to pre-train the feature extractor. The third one is the neglect of
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manipulation detection. Since most prior works assume the existence of manipulation

in all input images, they might cause many false alarms on pristine images and make

the detection unreliable. Instead, a detection head is designed to distinguish the pris-

tine image from the manipulated image before localizing any potential manipulations,

which is in line with practical applications. Extensive experiments demonstrate that

the PSCC-Net outperforms the SOTA methods on both detection and localization.

More importantly, owing to the light-weighted design, it can be potentially deployed

online to defend the propagation of deceitful manipulation contents on social media.

5.2 Future Work

There are still some future works that can be conducted to further improve the

effectiveness and efficiency of the proposed three methods (i.e., LCVSR, RawVSR,

and PSCC-Net).

In LCVSR and RawVSR, to train these two methods, the LR-HR pairs are col-

lected for supervised learning, where the LR frames are produced by downsampling

the HR counterparts with several degradations (e.g., add blur effect or noises). How-

ever, this generation process is just an approximation of the relation between LR and

HR frames in real scenarios, in which blur effect and camera imaging noises might be

too complicated to be accurately modelled by a simple Gaussian or Laplacian func-

tion. In other words, domain discrepancy exists between synthesized LR frames and

real-world ones. To address this issue, one possible solution is to leverage the GAN

technique, where LR and HR frames are unpaired and directly collected from the real

world for training. As such, the domain discrepancy between network training and

testing is alleviated.
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Although the number of parameters of these two methods (i.e., 5.81M for LCVSR

and 4.46M for RawVSR) is moderate as compared to others, it is still difficult to

deploy them on edge devices (e.g., phone and surveillance system). Therefore, model

compression techniques such as pruning, quantization, and knowledge distillation can

be leveraged to further decrease their complexity.

In PSCC-Net, three typical manipulations (i.e., splicing, copy-move, and removal)

can be effectively detected and localized in image. However, there are two additional

manipulation types that are necessarily considered in the future. One is entire syn-

thesis, where the image is fully generated by image synthesis methods. The other

is image enhancement, where the image is enhanced to be more appealing in vision

without modifying any content. Different from three considered manipulations, entire

synthesis and image enhancement tamper with the image holistically, rendering the

clue of exploring image correlation invalid. Therefore, it is necessary to discover new

clues to cope with them.

Moreover, the uncertainty of predicted manipulation masks is still a concern.

There is a great need for developing a method that can evaluate the accuracy of these

masks.
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