
A Comparison of Numerical Methods for Solving
Backward Stochastic Differential Equations

A Comparison of Numerical Methods for Solving
Backward Stochastic Differential Equations

Andrew Duquette

Acknowledgements

Thanks to Dr. Traian Pirvu for being supportive throughout my Master’s, especially
considering the difficult time we were operating during. He was always helpful when
we talked and able to point me to where I needed to go. I’d also like to thank Dr.
Shui Feng both for his mentorship during my undergraduate career and serving on
the committee. He always managed to show me that there was more that I knew that
I didn’t even realize. In addition thanks to Dr. Bartek Proyas who was willing to step
up to be on my supervisory committee on short notice and help me see this through
to the finish.

I would also like to thank my family for the support over the course of writing this
thesis. They always gave me support and cheer when they could. I couldn’t have
done this without you all.

1

Abstract

We study several different numerical methods for solving Backwards Stochastic Differential
Equations and Partial Differential Equations. The main methods reviewed are a least-
squares Monte-Carlo method, and a method utilizing Artificial Neural Networks: the Deep
BSDE method. We implement both algorithms and compare their performance solving a
BSDE to find the fair price of a financial option in an incomplete market. We find that
the Deep BSDE method can provide similar approximation efficiency to the Monte-Carlo
algorithm with a limited number of partition points, but outperforms it as the number of
partition points increases.

In addition, we examine another technique that utilizes artificial neural networks to solve
Partial Differential Equations directly, the Deep PDE Method. This method provides so-
lution dynamics across the entire domain of the problem, as opposed to the Deep BSDE
method which provides solution dynamics only for a small subset of points in the domain.
This method is computationally intensive to train, and also requires bounded domains and
boundary conditions and bounded domains, unlike the Deep BSDE algorithm where the
domain is unbounded. It remains a future research question to see whether the Deep BSDE
method could be modified to work with bounded domains or if the Deep PDE Method could
somehow be expanded to work on unbounded domains.

Contents

1 Backward Stochastic Differential Equations 9

1.1 Overview . 9

1.1.1 BSDEs with Lipschitz Drivers 11

1.2 Other Types of BSDEs . 12

1.2.1 Fully-Coupled Forward-Backward SDEs 12

1.2.2 Analytical Solutions to BSDEs 12

1.2.3 2BSDEs . 15

1.2.4 BSDEs with Quadratic Drivers 15

1.3 Feynman-Kac Connection for BSDEs 16

2 Monte-Carlo Numerical approximations to FBSDEs 18

2.1 Assumptions . 19

2.2 Euler Scheme for SDE approximation 19

2.3 Numerical Solutions to BSDEs with Quadratic Growth 23

2.4 Other Methods for Approximating Solutions for BSDEs 24

2.4.1 Branching Diffusion processes 24

2.4.2 Polynomial Chaos Expansion 25

3

Master’s Thesis - A. Duquette - McMaster University - Mathematics & Statistics

2.4.3 Approximation using Neural Networks 26

3 Neural Networks, the Deep BSDE Method, and Deep PDE Methods 27

3.1 Overview of Artificial Neural Networks 28

3.1.1 History . 28

3.1.2 Structure . 29

3.1.3 Activation functions . 31

3.2 Training of Neural Networks . 32

3.2.1 Universal Approximation . 32

3.2.2 Structures . 32

3.3 Deep BSDE Algorithm . 33

3.3.1 Deep BSDE Extension . 37

3.4 Neural Networks for Solving PDEs 39

4 Comparison of Methods 44

4.1 Monte-Carlo numerical solutions when compared with Deep BSDE . 45

4.2 Deep BSDE Compared with Other Numerical Methods 51

4.3 Deep BSDE and Deep PDE method Comparison 54

4.3.1 Example: Allen-Cahn PDE 54

5 Suggested Future Research 59

6 Conclusions 61

Appendices 63

A 64

4

Master’s Thesis - A. Duquette - McMaster University - Mathematics & Statistics

A.0.1 Probabilistic Background . 64

B 67

C 72

C.1 The relationship between BSDEs and PDEs 72

5

Master’s Thesis - A. Duquette - McMaster University - Mathematics & Statistics

Introduction

In the area of mathematical finance and stochastic control, it is desirable to understand
the movement of a particular process which has both deterministic elements as well
as stochastic noise. An example of this is how to model the value of a stock. Given
there are no large shocks to the market, we may consider the price to be increasing
in a deterministic fashion, but also containing random noise. In a general form, we
can use the following equation to model this sort of process:

dXt = b(t,Xt)dt+ σ(t,Xt)dBt

where Bt is taken to be a standard Brownian motion over the given probability space.
The solution {Xt}t∈[0,T] to this equation is a stochastic process which takes values
in Rd. Stochastic equations are used to model many different phenomena where
the underlying process is inherently uncertain. A backward stochastic differential
equation (BSDE) is defined using an underlying stochastic process Xt as above. A
simple BSDE may be of the form

dYt = g(t, Yt)dt+ ZtdBt

YT = h(XT),

for given functions g and h. The solution to the above BSDE for given functions
is given by a unique tuple (Y, Z) of processes adapted to filtration generated by the
Brownian motion B. The process Z is required as part of the solution to force the
solution to be a process adapted to the underlying filtration generated by the Brownian
motion Bt.1

BSDEs are similarly used to model financial options and derivatives in mathemat-
ical finance, but also have an interesting application in finding solutions to certain
types of PDEs. In particular, there is a strong relationship between solutions of SDEs
and BSDEs and various classes of Partial Differential Equations (PDEs). This rela-
tionship has been exploited for many years to find numerical solutions to PDEs by

1These definitions can be found in the appendix if required.

6

Master’s Thesis - A. Duquette - McMaster University - Mathematics & Statistics

first solving an associated BSDE (given explicitly by the Feynman-Kac relationship),
and then using that solution to find a solution to the corresponding PDE. Gener-
ally, this probabilistic approach was used to solve PDEs, and the extension from the
traditional Feynman-Kac methods to a larger class of PDEs involved extending the
original link, which only utilised SDEs to represent solutions to elliptic PDEs, to
classes of parabolic PDEs of both quasi-linear and semi-linear types, the solutions of
which could be represented using solutions to BSDEs of appropriate form.

For many years, BSDEs were solved numerically using various Monte Carlo numerical
methods, such as those given in [4] [5] [11] among many others. Although these
methods were capable of finding the solution to a given BSDE they were constrained
by the amount of computation time required to find a solution, especially as the
dimensionality of a given problem increased. In particular, these methods are affected
by the “curse of dimensionality”: as the dimension of the underlying problem increases
the computation complexity to find an approximate solution to the problem increases
exponentially in time. Thus these methods become infeasible to use for approximating
solutions once a certain number of dimensions in the underlying problem is reached,
and a significant amount of study began to find methods to mitigate these issues.

Recent advances in numerically approximating BSDEs utilize artificial neural net-
works (ANNs) in order to aide in the approximation. This algorithm utilizes a merged
PDE and BSDE formulation in order to simulate the BSDE forward in time. By do-
ing so, the BSDE itself can be simulated at every step along with the SDE. A neural
network is used to simulate the Z stochastic process of the solution of a BSDE and
in the process of training this neural network, backpropagation is used to refine an
initial guess of the answer Y0 of the BSDE to the actual solution. Since this simulation
manages to simulate both the SDE and the Z process of the BSDE in the same loop, it
avoids the exponential computational costs associated with Monte-Carlo algorithms,
which required the simulation of the entire underlying SDE prior to the simulation of
the associated BSDE.

In this thesis we will provide a historical overview of BSDEs, some information on
what factors allow for there to be solutions to these equations, and explore several of
the previously mentioned techniques for utilizing numerical solutions to these equa-
tions. In addition, we will explore alternative methods for solving non-linear PDEs
utilizing numerical methods. The first chapter will introduce BSDEs proper as well as

7

Master’s Thesis - A. Duquette - McMaster University - Mathematics & Statistics

certain variations of the simpler BSDE above. The second chapter will discuss numer-
ical approximations of the solutions of these equations using traditional Monte-Carlo
methods. The third chapter will give an overview of neural networks. The fourth
chapter will discuss the use of neural networks to solve BSDEs of various forms. The
final two chapters will be dedicated to future research steps and conclusions.

Notation

The usual n-dimensional Euclidean space is denoted by Rn throughout the sequel,
with | · | and 〈·, ·〉 the usual Euclidean norm and inner product respectively. We again
consider a filtered probability space (Ω,F , P) and denote by L2

F(Ω,Rm) to be the set
of all F -measurable Rm-valued square integrable random variables.

Similarly, L2
F(0, T ;Rm) is taken to be the set of all F -progressively measurable pro-

cesses X which take values in Rn such that E
[∫ T

0
|X(t)|2dt

]
< ∞. We also denote

L2(Ft) as the space of all Ft measurable processes from [0, T]× Rm → R.

L2
FT

(Ω,W (1,∞)(Rn;Rm) is the set of all function f : Rn × Ω → Rm where ω ∈ Ω 7→
f(x, ω) is uniformly Lipschitz for every x ∈ Rn as well as FT -measurable for all x ∈ Rn.
In addition, f(0, ω) ∈ L2

F(Ω;Rm).

∇f is the gradient of the function, for some function f(x1, . . . , xn),∇f =
(

∂f
∂x1
, · · · , ∂f

∂xn

)
∆xf for some function f is the Laplace operator on that function, that is the square
of the gradient. ∆xf =

∑n
i=1

∂2f
∂x2

i

8

Chapter 1

Backward Stochastic Differential
Equations

1.1 Overview

Backwards Stochastic Differential Equations (BSDEs) are Stochastic Differential Equa-
tions where the terminal condition is given. In order to discuss BSDEs we first need
to understand some of the underlying theory. A basic knowledge of probability theory
is assumed. 1 Every BSDE is built on top of a probability space equipped with a
Filtration. Formally we define a filtration in the following way:

Definition 1.1.1 (Filtration) Given a probability space (X,F , P), a sequence of σ-
algebras given by (Ft)t∈[0,T] where Ft ⊆ F for all t ∈ [0, T] is a filtration if it satisfies
Fs ⊆ Ft for any pair s, t ∈ [0, T] such that s ≤ t.

A filtration

Definition 1.1.2 (Brownian Filtration) A Brownian Filtration is defined to be,
for some Brownian motion Wt on the measurable space (Rd,Σ),

Ft = σ
{
W−1

s (a)|0 ≤ s ≤ t, a ∈ Σ
}

1For a review, check Appendix A.

9

Master’s Thesis - A. Duquette - McMaster University - Mathematics & Statistics

where σ(A) is the smallest sigma-algebra generated by the set A.

The underlying filtration for any given BSDE is generally assumed to be a filtration
generated by a Brownian motion process denoted by Wt. A filtration is meant to
represent the information available at a given time t. For a given stochastic equation,
we want that at any time t we can find the value of a given stochastic process only from
the information that we have experience in the past. For some time t, any process
that is Ft-measurable would have this property. If a process has this property, that
process is called adapted. More formally,

Definition 1.1.3 (Adapted Process) A process Xt is adapted to the filtration F =

{Ft}t∈[0,T] when, for every time s ∈ [0, T], Xs is Fs measurable.

In general we want the solutions to our BSDEs to be adapted to the underlying
filtration. We now have what we need to properly define BSDEs and their solutions:

Definition 1.1.4 (Backward Stochastic Differential Equation) A Backward Stochas-
tic Differential Equation is a Stochastic Differential Equation defined over a probability
space (Ω, P,F) with an associated Brownian filtration. The equation takes the form

Yt = YT +

∫ T

t

g(s, Ys, Zs)ds−
∫ T

t

ZsdWs (1.1)

YT = ξ (1.2)

Where ξ is a given random variable, Ws a Brownian motion. A solution to a BSDE
is a tuple of the form (Yt, Zt) where Yt and Zt are adapted random variables over a
Brownian filtration {Ft}t∈[0,T].

Generally we call the given deterministic function g(t, y, z) the driver of the BSDE.
There are several categories of BSDE, each of which can be associated to larger classes
of PDEs.

10

Master’s Thesis - A. Duquette - McMaster University - Mathematics & Statistics

1.1.1 BSDEs with Lipschitz Drivers

Linear BSDEs are the simplest form of BSDE. Here, the driver of the BSDE g(t, y)

is uniformally Lipschitz in y. This class of BSDEs were the first studied and give rise
to solutions of linear parabolic PDEs. Here, a solution is required only to be a tuple
(Y, Z) of stochastic processes. The process Z is necessary in order to ensure that the
solution is adapted. The process Z is essentially the gradient of Y . Note that here
there is not an underlying process X and this is essentially an SDE where instead of
starting with an initial value, we start with a terminal value. Unlike PDEs, where this
is a simple change, for SDEs one need to worry about whether the process is adapted
to the filtration - that is, we need a process that does not depend on the values at a
future time to find its value at the current time. It is for this reason that the process
Z is introduced in the solution, as it allows us to create an adapted process where
this otherwise would not be possible.

Existence of Solutions

The existence of solutions to BSDEs under various constraints has been studied ex-
tensively. The first results along these lines were given in [30] by Pardoux and Peng.
It was first shown that BSDEs where the driver g is a Lipschitz function have unique
solutions. If g(t, y, z) is Lipschitz and such that h(x) is an FT -measurable random
variable with ||x||2 <∞, then (g, h(x)) are said to be standard parameters of a given
BSDE according to El Karoui et al. With standard parameters, we can assert the
following theorem from [30]:

Theorem 1.1.1 (Existence of Solutions for BSDEs with Lipschitz drivers)
Consider a BSDE of the form 1.1. If the pair (g, YT) are standard parameters, than
there exists a pair of stochastic processes (Y, Z) such that (Y, Z) is a solution of the
BSDE 1.1.

This was the initial result given for solutions to BSDEs. There is a proof available in
[30], as well as a somewhat shorter proof in [10].

11

Master’s Thesis - A. Duquette - McMaster University - Mathematics & Statistics

1.2 Other Types of BSDEs

1.2.1 Fully-Coupled Forward-Backward SDEs

Forward-Backwards SDEs, or FBSDEs are BSDEs where there is an underlying pro-
cess X. This form of BSDE has been used extensively in financial applications where
the price of some financial option is given by Y and the underlying process represents
the stock or other asset that the financial option is based on. For our purposes we are
dealing mainly with the use of FBSDEs and their relationship to quasi-linear PDEs.
For this reason, we reproduce here a proof from [22].

There are several subclasses of FBSDEs which depend on the relationship between
the BSDE Y and the underlying SDE X. In the case that the value of X depends
upon the value of Y , in addition to Y relying on the value of X then the FBSDE is
known as a Fully-Coupled FBSDE. In the case where this is not true, then the FBSDE
can also be described as partially coupled. For instance, the Black-Scholes Model with
price impact can be simulated through the use of a Fully-Coupled FBSDE, where the
price of the put or call option is simulated by Y and the price of the underlying asset
is simulated by X.

1.2.2 Analytical Solutions to BSDEs

The most obvious way to find a solution for a given BSDE is to assume that Y is some
kind of function of X and t. This makes sense in the case where Y is a derivative of
some underlying asset X

An analytic method for solving BSDEs is the four step scheme described in [23]. Again
we consider a general BSDE of the form (1.1).

Assumptions for the Four-Step Method

The following assumptions are made in order to guarantee a solution to the following
fully-coupled BSDE:

12

Master’s Thesis - A. Duquette - McMaster University - Mathematics & Statistics

(A1) The fuctions b, b̂, σ, σ̂ and Y are smooth functions taking values in their re-
spective domains with first order derivatives in x, y, and z. These derivatives
are bounded by a constant L > 0.

(A2) We have that

σ(t,Xt, Yt)σ(t,Xt, Yt)
T ≥ ν(|Yt|)I∀(t,Xt, Yt) ∈ [0, T]× Rn × Rm

for some positive continuous function ν(·).

(A3) For any tuple (t, x, y, z) ∈ [0, T]×Rn×Rm×Rm×n the linear map σ̂z(t, x, y, z) ∈
L(Rm×n) is invertible with inverse σ̂z(t, x, y, z)−1 satisfying

||σ̂(t, x, y, z)−1||L(Rm×n) ≤ λ(|y|)

and for any (t, x, y) ∈ [0, T]× Rn × Rm the set

{σ̂(t, x, y, z)|z ∈ Rm×n} = Rm×n

and there exists a positive continuous function K(·) such that

sup{|z||σ̂(t, x, y, z)|σ̂(t, x, y, z) = 0} ≤ K(|y|)

(A4) There is a positive function µ and constants C > 0 and α ∈ (0, 1) such that g is
bounded in C2+α(Rm) and for all (t, x, y, z ∈ [0, T]×Rn ×Rm ×Rm×n we have
that

|σ(t, x, y)| ≤ µ(|y|), |b(t, x, y, 0)| ≤ µ(|y|), |b̂(t, x, 0, z)| ≤ C

Four Step Scheme

Given we have a BSDE that satisfies the above assumptions, we have the following
way to attain a solution to the BSDE:

Step 1: Find a function of the form z : [0, T]× Rn × Rm × Rm×n, where

z(t, x, y, p) = pσ(t, x, y, z(t, x, y, p))

13

Master’s Thesis - A. Duquette - McMaster University - Mathematics & Statistics

for any 4-tuple (t, x, y, p) ∈ [0, T]× Rn × Rm × Rm×n.

Step 2: The above function should be used to solve the parabolic system for the
function φ : [0, T]× Rn

∂φk

∂t
+ 1

2
tr
[
∂2φk

∂x2 (σσ
T)(t, x, φ, z(t, x, φ, ∂φ

∂x
))
]
+ 〈b(t, x, φ, z(t, x, φ, ∂φ

∂x
)), ∂φ

k

∂x
〉

−hk(t, x, φ, z(t, x, φ, ∂φ
∂x
)) = 0, (t, x) ∈ [0, T)× Rn, 1 ≤ k ≤ m,

φ(T, x) = g(x), x ∈ Rn.

(1.3)

Step 3: Use the above two functions to find a solution to the SDE

dXt = b̂(t,Xt)dt+ σ̂(t,Xt)dWt, t ∈ [0, T],

X0 = x,
(1.4)

where the functions b̂ = b(t, x, φ, z(t, x, φ, ∂φ
∂x
)) and σ̂ = σ(t, x, φ, z(t, x, φ, ∂φ

∂x
))

Step 4: We can now set

Yt = φ(t,Xt), Zt = z(t, x, φ,
∂φ

∂x
).

The four-step method makes some assumptions on the generator of the BSDE. In
particular it requires that the functions in the BSDE are Lipschitz continuous. Fur-
thermore it is not always the case that we can find analytic solutions to these problems.
Other analytical solutions to BSDEs require similar assumptions on the generator of
the BSDE, and therefore become impractical for BSDEs outside of the scope of these
assumptions. Therefore for such BSDEs, numerical methods and significant efforts
have been made to design and improve methods for solving these equations numeri-
cally, given how often such exceptions occur in fields such as mathematical finance.

14

Master’s Thesis - A. Duquette - McMaster University - Mathematics & Statistics

1.2.3 2BSDEs

A 2BSDE is a specific BSDE which has a driver of the form g(t,Xt, Yt, Zt,Γt) where
here the term Γt refers to the second order derivatives of the BSDE Y . This is
equivalent to the gradient of the process Z, and so for a 2BSDE, we have the following
structure for the stochastic processes:

dYt = g(t,Xt, Yt, Zt,Γt)dt+ ZtdXt

dZt = Atdt+ ΓtdXt

YT = h(XT)

BSDEs have many applications, especially in mathematical finance where they can
be used to price certain financial instruments (see e.g. [19]). They also find use
in theoretical economics, optimal stochastic control among other areas. One of the
main attractions to them for mathematicians is their connection to PDEs through the
Feynman-Kac formula.

1.2.4 BSDEs with Quadratic Drivers

For quite a while the existence of solutions to BSDEs with only these standard param-
eters were proven. However, in 2000 the paper [20] proved the existence of solutions
for BSDEs such that the solution has quadratic growth in the process Z. This has
interesting implications for the resultant solutions of the BSDEs, and in particular
the domains that they are defined on compared to “standard” BSDEs of the form
discussed above.

In addition Kobylanski showed that there exists unique solutions for BSDEs of the
form 1.1 where the driver g(t, Yt, Zt) satisfies the inequality

|g(t, Yt, Zt)| ≤ b+ c|Zt|2 a.s. (1.5)

15

Master’s Thesis - A. Duquette - McMaster University - Mathematics & Statistics

1.3 Feynman-Kac Connection for BSDEs

Consider the FBSDE given by

dXs = b(s,Xs)ds+ σ(s,Xs)dWs, t ≤ s ≤ T,

Xt = x,

−dYs = f(s,Xs, Ys, Zs)ds− ZsdWs, t ≤ s ≤ T,

YT = g(XT),

and the following PDE

0 = −∂u
∂t

− 1

2

n∑
i,j=1

(σσT)ij(t, x)
∂2u

∂xi∂xj
−

n∑
i,j=1

bi(t, x)
∂u

∂xi
+ f(t, x, u,∇ux),

u(T, x) = g(x)

Where u(t, x) : [0, T] × Rd → R is the solution to the PDE where we assume u is at
least C2 and the following assumptions hold for b and σ,

1. b(t, x) and σ(t, x) are Lipschitz in x. That is, |b(t, x1) − b(t, x2)| + |σ(t, x1) −
σ(t, x2)| ≤ K|xi − x2||.

2. We have |b(t, x)|2 + |σ(t, x)|2 ≤ K2(1 + |x|2).

3. σσT is a positive definite d× d matrix.

It follows from Itô’s formula applied to u(s,Xs) that

Ys = u(s,Xs)

Zs = (σT∇u)(s,Xs)

16

Master’s Thesis - A. Duquette - McMaster University - Mathematics & Statistics

which gives us the solution processes of the FBSDE system in terms of a solution u
of a PDE so long as u ∈ C2(R× Rn).

Furthermore, it is shown in for example [20] that a viscosity solution to the PDE is
given by

u(t, x) := Y t,x(t).

It is however not possible to use a BSDE to find a classical solution to a given PDE.
For more on the relationship between non-linear PDEs and solutions to BSDEs, see
[40][20] or Appendix C for more information on this relationship.

17

Chapter 2

Monte-Carlo Numerical
approximations to FBSDEs

We consider the FBSDE given in the following form:

Xt = X0 +

∫ t

0

f(s,Xs)ds+

∫ t

0

σ(s,Xs)dWs,

Yt = h(XT) +

∫ T

t

g(s,Xs, Ys, Zs)ds−
∫ T

t

ZsdWs.

Here X = (Xt : 0 ≤ t ≤ T) is a d-dimensional stochastic process, represented in the
form of a forward stochastic differential equation (SDE) and Y = (Yt : 0 ≤ t ≤ T) is
a stochastic process represented as a BSDE. As usual, Wt denotes an n-dimensional
Weiner Process, and h is a deterministic functional which determines the terminal
conditions of the BSDE. In the sequel, Φ(X) is approximated by ΦN(PN

tN
) where

(PN
tk
)0≤k≤N is a Markov chain where the first components are given by the components

of (XN
tk
)0≤k≤N . Here, the Ptk are in fact projections onto subspaces of L2(Rd).

18

Master’s Thesis - A. Duquette - McMaster University - Mathematics & Statistics

2.1 Assumptions

In general, the following assumptions are made to ensure the existence and uniqueness
of a solution (Y, Z) to the above BSDE,

(A1) The functions (t, x) 7→ f(t, x) and (t, x) 7→ σ(t, x) are uniformly Lipschitz con-
tinuous with respect to (t, x) ∈ [0, T]× Rd.

(A2) |g(t2, x2, y2, z2)− g(t1, x1, y1, z1)| ≤ C(|t2− t1|
1
2 + |x2−x1|+ |y2− y1|+ |z2− z1|)

for any such pair (ti, xi, yi, zi) ∈ [0, T]× Rd × R× Rn, i = 1, 2.

(A3) for any continuous function s1 and s2,

|Φ(s1)− Φ(s2)| ≤ C sup
t∈[0,T]

|s1 − s2|.

An additional assumption is needed on the function Φ in [11].

(A4) ΦN(·) is Lipschitz continuous, such that supN |ΦN(0)| < ∞. Furthermore,
E[|PN,k0,x

tN
−PN,k0,x′

tN
|2]+E[PN,k0,x

tk0+1 −PN,k0,x′

tk0+1 |2] ≤ C|x−x′|2 uniformly continuous
in k0 and N .

2.2 Euler Scheme for SDE approximation

In order to solve any given BSDE, there is an always an expectation to solve for
the underlying SDE. Thus it is first necessary to estimate that SDE, although this is
generally easier to do when the BSDE is decoupled. The underlying SDE for a BSDE
is discretized using a traditional log-Euler scheme. Here the interval [0, T] is parti-
tioned by the sequence of times {ti}Ni=0. Thus there are N + 1 different timesteps to
approximate the SDE on. The initial condition gives t0, and the remaining timesteps
are found using the following discretized SDE:

dX̂ti = Xti−1
+ b(t,Xt−1)(ti − ti−1) + σ(t,Xt−1)(Wti −Wti−1

)

19

Master’s Thesis - A. Duquette - McMaster University - Mathematics & Statistics

where as usual dW represents the expected Brownian motion associated with the
SDE. It is well known that this scheme gives an accurate approximation of the SDE
as N tends to infinity.

Monte-Carlo Method for BSDE Estimation

With a simple method of the approximation of an SDE now available to us, it is
possible to use several methods to attempt to find a solution for the BSDE. The
discretization of [0, T] is kept when approximating the BSDE Y . The following gives
an adequate representation of the BSDE under this discretization.

Y N
tk+1

≈ Y N
tk

+ g(tk, X
N
tk
, Y N

tk
, ZN

tk
)∆tk + ZN

tk
∆Wtk

and therefore

Y N
tk

≈ Y N
tk+1

− g(tk, X
N
tk
, Y N

tk
, ZN

tk
)∆tk − ZN

tk
∆Wtk (2.1)

Here ∆tk = tk+1 − tk and ∆Wtk = Wi,tk+1
−Wi,tk for 1 ≤ i ≤ q the i’th component of

the process.

Using the following:

0 = E[∆Wi,tk(Ytk + g(tk, Xtk , Ytk , Ztk)∆tk|Ftk] ≈ E[∆Wi,tkYtk+1
|Ftk]− Zi,tk∆tk

We can then define a discretization for Z using the above equation:

ZN
i,tk

=
1

∆t
E[Y N

tk+1
∆Wi,k|Ftk]

20

Master’s Thesis - A. Duquette - McMaster University - Mathematics & Statistics

and by applying expected values to 2.1 we get the following approximation for Y N
tk
:

Y N
tk

= E[Y N
tk+1

|Ftk] + g(tk, S
N
tk
, Y N

tk
, ZN

tk
)∆t

The following theorem gives a bound on the squared error of the resulting approxi-
mation based on the number of partitions N .

Theorem 2.2.1 Under the above assumptions, there is a constant C such that for
any N and |π| sufficiently small, the following inequality holds.

sup
0≤t≤T

E[|Yt − Y N
t |2] +

∫ T

0

E[|Zt − ZN
t |2] ≤ C

(
|π|+ E[|ξ − ξπ|2] +

(
1

2
+ C|π|

)N
)

This theorem is from [3], we reproduce a proof of this theorem is reproduced in the
Appendix B.

The main step for finding a numerical approximation using the least-squares Monte-
Carlo method utilizes an approximation of the above conditional expectations, by
taking their projection onto a set of bases functions for L2(Ω,F , P). The function
bases, denoted p`,k for ` ∈ {ti}ni=1, 1 ≤ k ≤ d can vary, potential functions suggested
in [11] include:

i) Hypercubes: Each p`,k is chosen to be the indicator function of some hypercube
in a domain D ⊆ Rd centered on the point PN

0 . Therefore, D =
∏d′

i=1(P
N
0,i −

R,PN
0,i + R] is partitioned into hypercubes with edge length of size δ > 0 for

some given δ, where the indicator functions are given for each of the resulting
hypercubes. (i.e. each p`,k is associated to the indicator function of a hypercube
D′ ⊆ D whereD′ = (PN

0,1+m1δ, P
N
0,1+(m1+1)δ×· · ·×(PN

0,d+mdδ, P
N
0,d+(1+md)δ]

where m1, . . . ,md are chosen scalars).

ii) Voronoi Partition

The basis functions p`,k are taken to be indicator functions of a Voronoi partition
of the domain, the centers of each partition are simulations of the Markov

21

Master’s Thesis - A. Duquette - McMaster University - Mathematics & Statistics

Chain PN . Specifically, each partition is given by Ck,i = {x : |x − PN,M+i
tk

| <
infj 6=i|x− PN,M+j

tk
|}.

iii) Global Polynomials

The basis vectors are given as polynomials of d′ variables of degree less than dy
and p`,k is taken as the polynomial basis of degree less than dz.

Where in the above, d′ denotes the dimension of the state space of (PN
tk
)k.

The choice of function basis allows for more or less specificity of the projection error
in the approximation of the conditional expectations related to the BSDE. In partic-
ular, the following theorem in [11] specifies the potential projection error when taking
repeated Picard iterations to estimate (Y N

tk
, ZN

`,tk
) via the projection estimates Y N,I,I

tk

and ZN,I,I
tk

. Here N stands for the current Picard iteration, I is the number of par-
tition points, and the notation Y N,I,I refers to the backwards estimation of Y using
a projection onto a subspace of L2(R) using a basis of one of the above forms that
is dense in L2(R), from the terminal time index N , where I is the number of Picard
iterations.

Theorem 2.2.2 Assume (A1)− (A3). For small ∆t,

max
0≤k≤N

E|Y N,I,I
tk

− Y N
tk
|2 +∆t

N−1∑
k=0

E|ZN,I,I
tk

− ZN
tk
|2

≤ C(∆t)2(t−1)[1 + |S0|2 + E|ΦN(PN
tN
)|2]

+ C

N−1∑
k=0

E|Rp0,k(Y
N
tk
)|2 + C∆t

N−1∑
k=0

q∑
i=1

E|Rp`,k(Z
N
`,tk

)|2

Where Rp`,k(·) specifies the projection error. The choice of basis affects the above
error, as well as the speed of computations.

In [5] it is suggested to take a basis that acts as a martingale. They give some
examples similar to above, for instance showing that indicator functions of hypercubes
and monomials can be used to give this effect, since the expectations can be explicitly

22

Master’s Thesis - A. Duquette - McMaster University - Mathematics & Statistics

computed. For instance, for hypercubes it can be calculated, where ηa,b = 1[a,b] =

1[a1, b1]× · · · × [aD, bD]:

E[ηa,b(XT)|Xtk = x] =
D∏

d=1

E[1[ad,bd(Xd, T)|Xd,tk = xd] =
D∏

d=1

N (b̄d)−N (ād).

where N is the CDF for a standard normal, ād, b̄d are given by

ȳd =
log(yd/xd)− (µ− σ2

2
)(T − tk)

σ
√
T − tk

.

This allows them to assume the following conditional expectation can also be show in
closed form:

E[∆Wi,tkY
N
tk+1

|Ftk]

and thus only a single conditional expectation needs to be numerically calculated to
approximate solutions to the given BSDE.

2.3 Numerical Solutions to BSDEs with Quadratic
Growth

Gobet et al. and Bender et al. provided an example of a least-squares Monte-Carlo
method for approximating BSDEs with Lipschitz continuous drivers, however methods
for approximating the solution to BSDEs with drivers with quadratic growth were not
created for several years, despite knowledge of the existence to the solutions of these
formulas thanks to Kobylanski (2000).

Methods were eventually developed, for instance [18] approximates solutions by using
Cole-Hopf exponential transformation, however this only applies for a restricted set
of generators with quadratic growth. Other methods utilized distorted time horizons,
as in for instance [12], where approximations of quadratic BSDEs are studied in the
context of Dynamic Programming equations. In general, when working with quadratic

23

Master’s Thesis - A. Duquette - McMaster University - Mathematics & Statistics

BSDEs unless specific assumptions are made on the form of the generator, it is the
case that exponential terms creep into the error terms of the algorithms used to solve
them. Thus approximating quadratic BSDEs come with its own challenges.

2.4 Other Methods for Approximating Solutions
for BSDEs

While the above solution to the problem of finding a solution does work with a rea-
sonable error rate, convergence can be slow. More recently, alternatives to using the
Monte Carlo method for finding solutions to BSDEs have begun to be developed,
foremost among these the Deep BSDE method. These methods take advantage of a
class of functions, well known as neural networks, or artificial neural networks (ANN
for short).

2.4.1 Branching Diffusion processes

Recent work exemplified by [7] uses branching diffusion processes to solve BSDEs.
Non-linearities are dealt with by approximating a non-linear driver g(X) with a func-
tion

c(X)1[g(X)+ε≥erY]

and letting epsilon vanish to 0. Here c(x) is assumed to be a continuous function
with polynomial growth. Monte Carlo estimations are then done by simulating the
underlying SDE of a weakly coupled SDE. An additional method was also used using
traditional local polynomial approximation of q and associated Monte-Carlo estima-
tion utilizing a Picard iteration scheme similar to Gobet et al. and Bender et al.

The approximation method utilizing local polynomial approximation was reported as
particularly unstable, however the approximation utilizing noise to smooth the driver
g(t, x, x′) was significantly interesting and thus avoided the use of a Picard iteration
scheme as in the previous approximation technique. However, this algorithm utilized
a grid space-time layout and was similarly susceptible to the curse of dimensionality
that the Deep BSDE and Deep PDE Method seek to avoid in their approximation

24

Master’s Thesis - A. Duquette - McMaster University - Mathematics & Statistics

methods.

2.4.2 Polynomial Chaos Expansion

BSDEs can be approximated through the use of a technique known as Wiener Chaos
Expansion (for more details, see [8]). In this method, given the following Picard
scheme for approximating a solution, such as

Y N
tk

= E

[
YT +

∫ T

0

g(s, Y N−1
s , ZN−1

s)ds|Ftk

]
−
∫ T

0

g(s, Y N−1
s , ZN−1

s)ds (2.2)

It is required that we find an estimation for the random variable

FN = YT +

∫ T

tk

g(s, Y N−1
s , ZN−1

s).

Wiener Chaos Expansion proposes to use is used to approximate FN in the following
manner.

First, note that FN can be decomposed into the following

FN = E[FN] +
∑
k≥1

∑
|n|=k

dnk
∏
i≥1

Kni

(∫ T

0

hi(s)dWs

)
. (2.3)

HereKni
is the n′

ithHermite polynomial (given byHn(x) = (−1)n exp{x2

2
} dn

dxn exp{−x2

2
}.),

which are used as they form a dense orthogonal basis for L2(R).

By taking a finite sequence n1, . . . , nq of integers and a finite sum of terms p for the
sum on the LHS, we can approximate the above random variable by

FN ≈ E[FN] +
∑

1≤k≤p

∑
|n|=k

dnk
∏

1≤i≤q

Kni

(∫ T

0

hi(s)dWs

)
.

25

Master’s Thesis - A. Duquette - McMaster University - Mathematics & Statistics

Which can thus be used to approximate the solution Y N by taking the conditional
expectation above. In addition, one needs to find ZN from taking the Malliavan
derivative of that expected value, details of which are beyond the scope of this work,
for details see [8].

2.4.3 Approximation using Neural Networks

While Monte-Carlo methods have been well researched, they suffer from the so-called
“curse of dimensionality” - that is, BSDEs become more difficult to compute as the
dimension of the given BSDE increases. Several proofs have been published showing
that certain neural network architectures successfully avoid this problem (see e.g.
[1][14]). Neural networks have been investigated as potential solutions to partial
differential equations since at least 1999 (see [34] for some additional details on these
methods) and for ODEs even earlier [21][24], however their use for finding solutions to
BSDEs is relatively new. In the next chapter, we begin with a brief overview of neural
network structures so as to better understand their use when solving these equations.

26

Chapter 3

Neural Networks, the Deep BSDE
Method, and Deep PDE Methods

A multi-layer neural network is a set of equations that have multiple layers k =

1, . . . ,m where m is the total number of layers of the neural network. Let v0 be the
input vector. Each subsequent layer is of the form

σ(bk +W kvk−1)

where here bk is a vector offset, known as the bias of the given layer, and W k is a
matrix of weights for the layer. The function σ is known as the activation function,
which is a continuous function that takes values in [0, 1]. The choice of σ can greatly
affect the performance of the neural network. These weights and biases are in general
random at the initialization of the neural network, and are updating through train-
ing methods. These training methods allow for the neural network to approximate
functions with varying degrees of success, based upon the complexity of the functions
and the training sample used.

There are several different architectures that can be used when creating deep learning
neural networks, along with mixed networks. One type of network that has been
applied to find solutions to BSDEs is the affine network model. The details for their
solutions are found in [2]. Below we detail the network architecture, and cover its
application to the problem in Chapter 4.

27

Master’s Thesis - A. Duquette - McMaster University - Mathematics & Statistics

3.1 Overview of Artificial Neural Networks

3.1.1 History

Neural networks are relatively simple functions that can manage to approximate a
very large class of functions, in many different domains of applications. Artificial
Neural Networks are seeing applications in many areas, such as artificial intelligence,
computer vision and many other fields. How did we figure out what we could do with
these particular setups and how did it come to be used to find solutions to BSDEs?

Artificial Neural Networks are mathematically constructed to attempt to process input
data in a similar way to how it is thought that the brain processes data. In 1943, a
model on the brain on the basis of neurons was proposed by Warren McCulloch and
Walkter Pitts, where neurons were connected and considered to be in a binary state,
either on or off [27]. It was quickly seen however that neurons were not binary as
described in this early model, but in fact had many characteristics that suggested non-
linearity. In 1949, Donald Hebb published the book “The Organization of Behaviour“
which theorized that neuron connections are formed when particular neurons tend to
fire together. If no connection is established between the two neurons, then such a
connection betweens to be established or is made stronger when they fire at the same
time [16]. This idea came to be known as Hebbian Learning.

The perceptron was an idea introduced in the 1958 by Frank Rosenblatt, which was
the predecessor of the modern neural network, in the sense that although percep-
trons had binary activations (unlike today’s neural networks where activation of units
takes on a continuum of values), but the weights could be learned from successive
inputs. Although the perceptron and other methods using linear functions began to
find success, by 1969 it was known that there were many downsides to the use of
perceptrons.

Work in the field largely stagnated until the introduction of the backpropagation
method for neural network learning, which was not introduced until 1986, in a work
by Rumelhart, Hinton and Williams [36]. By the 90s, it had become well established
as a useful technique for training artificial neural networks, and their was significant
progress developing ANNs trained using backpropagation techniques and variants of

28

Master’s Thesis - A. Duquette - McMaster University - Mathematics & Statistics

it.

The structure of a neural network greatly affects how easily it can approximate func-
tions of significant computational complexity. Prior to 2006, the main form of neural
networks used was a 2-layer model (i.e. one with a single hidden input layer), as
prior to this point any higher depth neural network was difficult to train [6]. It was
eventually discovered that applying unsupervised learning techniques to each layer in-
dividually results in significantly lower after supervised learning to properly optimize
these networks, and thus deeper neural networks became viable for tasks.

3.1.2 Structure

Central to the idea of a neural network is that of an activation function, which is
a non-linear function that allows for the universal approximation powers of a neural
network. We begin by defining some useful concepts for which functions allow for the
univeral approximation.

Definition 3.1.1 (Activation Function) An activation function is a continuous
function σ : Rm → Rm for some m.

Definition 3.1.2 (Artificial Neural Network) Let d,m, `1, . . . , `n ∈ N. An arti-
ficial neural network is a function f : Rd → Rm such that it can be decomposed into
a composite sequence of functions of the form

an = σn(gn−1(an−1))

where n is the number of layers, gi : R`
i−1 → R`i are each linear functions, and each

σi is an activation function.

An artificial neural network is generally used as a function approximator - data is fed
in and the network is “trained” through various methods. However, the activation
function plays an important role in which functions an ANN is capable of approx-
imating. In particular, with certain activation functions, ANNs act as universal
approximators in the following sense

29

Master’s Thesis - A. Duquette - McMaster University - Mathematics & Statistics

Definition 3.1.3 A neural network is a universal approximator over a space Ω if,
for a given activation function f , the set Σ(f) = span {f(y · x+ θ)|y ∈ Rn, θ ∈ R} is
dense in C(Ω).

Which activation functions allowed for these universal approximation capabilities was
intensely studied during the 1980’s. In works such as [9], for instance, it is discussed
how a certain subset of functions allow for universal approximation.

Definition 3.1.4 (Sigmoidal) A function is a sigmoidal function if it is continuous
and

f(x) →

1 as x→ +∞

0 as x→ −∞

In particular as the study of activation functions progressed, new concepts such as
the following were introduced:

Definition 3.1.5 (n-Discriminatory Function) A function f : R → R is discrim-
inatory for some n ∈ N if the constraint∫

f(y · x+ θ)dµ(x) = 0 for all y ∈ Rn, and θ ∈ R

where µ is a signed Borel measure, holds only for µ = 0.

Any function which is n-discriminatory for every n is considered to be discriminatory.
It turns out that it is precisely the discriminatory property that gives the universal
approximation capability to a neural network, at least when the activation function
is consistently used for all nodes in the network, as given by the following result from
[9]

In the Deep BSDE method, the ReLU function is given as an appropriate activation
function. The details of the ReLU function are discussed below.

There are many different types of neural networks. For our purposes, we need only
look at feedforward neural networks which are the basic kind. Here each gi above
would take the form gi(x) = Wix+ bi where Wi ∈ R`i×`i−1 and bi ∈ R`i .

30

Master’s Thesis - A. Duquette - McMaster University - Mathematics & Statistics

3.1.3 Activation functions

For neural networks, there has been a great deal of research into what forms activation
functions should take. Examples include the more modern rectifier function,

σ(x) = max{0, x},

which is used for instance in [2] and has achieved significantly popularity. Another
activation function is the sigmoid,

σ(x) =
1

1 + e−x
,

which provides a softer increase from 0 to 1 than the rectifier.

ReLU

The ReLU activation function is the function given by

f(x) =

0 if x < 0

x if x ≥ 0

The ReLU function is used in the Deep BSDE algorithm that we will be discussing
later. It’s advantage is that it makes a clear distinction between activated and unac-
tivated nodes and thus can make training easier. However, it is not differentiable at
all points, which can introduce inaccuracies.

Tanh

The hyperbolic tan function is a sigmoidal function which is differentiable at all points.
A neural network that uses exclusively tanh will thus produce a containuous approx-
imation. This function is used as the activation function for the layers in the Deep
PDE algorithm that we will review later.

31

Master’s Thesis - A. Duquette - McMaster University - Mathematics & Statistics

3.2 Training of Neural Networks

Let aL denote the output of layer L. Let W k denote the weight matrix of the k’th
layer, and bk denote the bias vector for the layer k. In order to train a neural network,
we must find W k and bk for each layer, such that the input x produces an output
ȳ which is a reasonable approximation to the function that we wish to approximate.
One way to do this is through the method of backpropagation.

Let C(W k, bk) be a cost function. We wish to use backpropagation in order to min-
imize this cost function with respect to the parameters of the neural network, by
choosing the weights and biases for each node to do so. We let (x, y) denote a train-
ing sample and denote by S the set of all such training samples. Then we can think
of the cost function in terms of C(W k, bk) =

∑
(x,y)∈S L(y, ȳ) = L(y, ȳ), which gives

that this cost function is the sum of the losses gained over a batch of the training
samples.

3.2.1 Universal Approximation

It is well documented that neural networks using discriminatory functions are capable
of approximating any continuous and bounded function with enough training data.
This is shown through the Universal Approximation Theorem. Details of this theorem
can be found in for instance [33]. It is proved there that so long as a given activation
is non-polynomial when used with a feedforward neural network architecture, the
resulting functions that can be produced by the neural network is dense in C(Rn).
This feature of neural networks is exploited in the Deep BSDE method as well as the
Deep PDE method which we will review in a later chapter to find approximations to
solutions of BSDEs and PDEs respectively.

3.2.2 Structures

In general, the most basic neural network is a feedforward neural network - one in
which the layers of the network are laid out in a linear fashion. Each layer takes the
output from the previous layer and provides that output to the next layer.

32

Master’s Thesis - A. Duquette - McMaster University - Mathematics & Statistics

This is a rather simple layout but it has some problems. In particular, as the number
of layers grows it becomes more difficult to train them effectively via backpropaga-
tion. This is due to a process known as gradient explosion whereby the gradients
being tracked during backpropagation either increase substantially or become negligi-
ble after a few layers. For this reason and others, other ANN architectures have been
developed that help to avoid this problem, generally by keeping a persistent memory
throughout the layers that can be referenced. We will discuss two of the most relevant
ones below, as they will be useful in understanding one of the algorithms we will be
examining in a later chapter.

Recurrent Neural Networks

A recurrent neural network is a specific kind of neural network, often with a “loop”
of some sort in its structure. That is, data from the previous time step is fed back in
to the neural network at the current time step. In this way the neural network is able
to remember what has previously happened and change it’s behaviour accordingly.

For instance, consider the following layer design,

Long Short-Term Memory Networks

Long Short-Term Memory Networks (LSTM) are a specific form of RNN such that
there is a persistent form of memory that can be accessed and potentially modified
during each timestep. This is separate from the output of the layers itself, as is given
at each timestep. There are a wide variety of LSTM, but they all share in common a
persistent memory, that can be accessed through gates. There are several “gates” in
an LSTM Neural Network, for modifying the memory. Virtually every form of LSTM
will feature a forget gate which does unit

3.3 Deep BSDE Algorithm

Neural networks can be applied to find approximate solutions to BSDEs, (see for
instance [39][13][14]). This allows solutions to systems of semi-linear and quasi-linear

33

Master’s Thesis - A. Duquette - McMaster University - Mathematics & Statistics

and fully non-linear parabolic PDEs to be approximated using neural networks, due
to a generalization of the Feynman-Kac duality between solutions of BSDEs and
solutions of BSDEs.

As an example of these techniques consider the following FBSDE,

dXs = b(s,Xs)ds+ σ(s,Xs)dWs, t ≤ s ≤ T,

Xt = x,

−dYs = f(s,Xs, Ys, Zs)dds− ZsdWs, t ≤ s ≤ T,

YT = g(XT),

1 Recall the relationship between BSDEs and PDEs. The elements are defined ac-
cording to the solution to a PDE of the form

0 = −∂u
∂t

− 1

2

n∑
i,j=1

(σσT)ij(t, x)
∂2u

∂xi∂xj
−

n∑
i,j=1

bi(t, x)
∂u

∂xi
+ f(t, x, u,∇ux),

u(T, x) = g(x)

where b and σ are assumed to be continuous functions in terms of both t and x, and
f is assumed to be Lipschitz.

In particular, each of these are related to the PDE in the following way.

Yt = u(t,Xt)

Zt = (σ∇xu)(t,Xt)

where Yt ∈ R, Zt, where u is the solution to the above PDE.
1In actuality the algorithm is defined more generally for 2BSDEs where Z is of the form Zt =

Z0 +
∫ t

0
Asds +

∫ t

0
ΓsdWs and ANNs are used to approximate both A and Γ, however one can also

just approximate Z for BSDEs that do not deal with second derivatives.

34

Master’s Thesis - A. Duquette - McMaster University - Mathematics & Statistics

In order to approximate a solution to the PDE, we use a forward time discretization of
the BSDE by the following, for a partition π of [0, T] with mesh size sup0≤k≤N(tk+1−tk)
sufficiently small. Then

X0 = ξ, (3.1)

Xtn+1 ≈ Xtn + b(tn, Xtn)(tn+1 − tn) + σ(tn, Xtn)(Wtn+1 −Wtn) = XN
t , (3.2)

Ytn+1 ≈ Ytn + f(tn, Xtn , Ytn , Ztn)(tn+1 − tn) + Ztn(Wtn+1 −Wtn) = Y N
t , (3.3)

(3.4)

We approximate Zt in the following manner

Ztn+1 ≈ Ztn + A(Xtn)(tn+1 − tn) = ZN
t

Here A(x) is an artificial neural network with 2 hidden layers, input dimension d, d
nodes per hidden layer and output dimension d.

This neural networks has a set of parameters than can be labelled θ which are trained
using backpropagation until it minimizes the loss function given by |Y N

T − g(XN
T)|2

(recalling that in the definition of the BSDE, YT = g(XT)) . The Deep BSDE method
works then by thinking of the first of these parameters, θ1 as the initial value Y0 of the
BSDE given above. Therefore, by training these neural networks we end up finding a
solution to the initial condition of the BSDE Y0 by simply using backpropagation to
optimize the initial estimate given by a randomly selected value.

35

Master’s Thesis - A. Duquette - McMaster University - Mathematics & Statistics

The Deep BSDE method uses the following algorithm for computing Y0:

Initialize number of partition points N, dimensions d, time T, maxsteps,
batch size, learning rate

Initialize X0 = ξ

Initialize dW a random normal variable with standard deviation
√
T/N

Initialize Y0 a uniform random variable from [−1, 1]d as an initial weight θ∗
Initialize Z0, A0 as uniform random variables from [−0.1, 0.1]d

Initialize i = 0 while step < max_step do
for i < N - 1 do

Set Y = Y + f(i*T/N,X,Y,Zi−1)*(T/N) + Zi−1*dW
Parameterize the neural network Zi with weights (Wi, bi) = θi

Update X = X + b(t,X)(T/N)+σ(X)*dW
Pick a new value from standard normal for dW
Set i = i+ 1

end
Set Y = Y + f(i*T/N,X,Y,Zi−1)*(T/N) + Zi−1*dW
Update X = X + b(t,X)*(T/N)+σ(X)*dW
Calculate loss |Y − g(X)|2 Update weights using Adam optimization.

end
Return θ∗

This algorithm manages to avoid the curse of dimensionality that the traditional
Monte Carlo fall into, by avoiding the need to compute an expected value for Z using
the results of previous values of Y as in the Monte Carlo algorithm. Instead by taking
an estimate of Z using a neural network the SDE X can be simulated along with the
BSDE Y , with the results from the simulation of X being used to immediately update
Y . The Monte Carlo algorithm required the complete simulation of SDEs before even
beginning to simulate the BSDE portion, and it is this restriction that causes the
exponential computation time as the dimensionality of the problem increases.

36

Master’s Thesis - A. Duquette - McMaster University - Mathematics & Statistics

3.3.1 Deep BSDE Extension

Naito and Yamada - A priori estimate using Weak- Approximation

In their paper [26], Naito and Yamada improve the speed of convergence and reduce
the error rate of the Deep BSDE algorithm. This is achieved through the use of a
priori knowledge.

Naita and Yamada consider a BSDE of the form

Xs = x0 +

∫ s

0

V0(Xr)dr +
d∑

i=1

∫ s

0

Vi(Xr)dW
i
r (3.5)

Ys = g(XT) +

∫ T

s

f(Xr, Yr, Zr)dr −
d∑

i=1

∫ T

s

Zi
rdW

i
r . (3.6)

Naito and Yamada suggest using a “weak approximation” of the BSDE Y by applying
Malliavan calculus and Stochastic Taylor expansion to find an a priori approximation
of the BSDE. This approximation does not take into account any non-linearity of the
BSDE, and the Deep BSDE method is then used to complete the non-linearity once
the initial guess of the value Y0 has been done. These improvements are relatively
incremental, but nonetheless useful. By reducing the amount of information that the
neural network needs to approximate by using approximations of Malliavan calculus,
the neural network takes less time to train and produces more accurate results than
otherwise would be the case. More details on weak-approximations of BSDEs and
their derivation can be found in [25].

Recall that in the Deep BSDE solver, a forward discretization is used for the BSDE.
In particular, a guess was made about the initial value Y0. In Naito and Yamada’s
scheme, Y0 is approximated using a priori knowledge, by taking the estimation

Y
(0)
0 ≈ E[g(X̂x0

T)πx0
T].

37

Master’s Thesis - A. Duquette - McMaster University - Mathematics & Statistics

Here, X̂x
T is a Gaussian approximation,

X̂x
T = x+ V0(x)t+

d∑
i=1

+
d∑

i=1

Vi(x)W
i
t .

and πx0
T is a relatively complex Malliavan weight that provides a weak-approximation

of the BSDE, and is given by

πx
t =1 +

N∑
`,j=1

d∑
i1,i2=0

d∑
i3=1

1

2t
Li1V

`
i2
(x)(A−1)`j(x)V j

i3
(x)

×
(
W i1

t W
i2
t W

i3
t − tW i3

t 1{i1=i2 6=0} − tW i1
t 1{i2=i3 6=0} − tW i2

t 1{i1=i3 6=0}
)

+
N∑

`1,`2,u1,u2=1

d∑
i1,i2=1

d∑
k1,k2=1

1

4
Li1V

`1
i2
(x)Li1V

`2
i2
(x)

× (A−1)`1u1(x)V u1
k1

(x)(A−1)`2u2(x)V u2
k2

(x)
(
W k1

t W k2
t − t1{k1=k2 6=0}

)
,

In the above weight, the matrix components forA are given byAij(x) =
∑d

k=1 V
i
k (x)V

j
k (x),

and the Li’s given by

Lif(x) =
N∑
k=1

V k
i (x)

∂f

∂xk
(x) (3.7)

L0f(x) =
N∑
k=1

V k
0 (x)

∂f

∂xk
(x) +

1

2

N∑
k,l=1

d∑
j=1

V k
j (x)V

l
j (x)

∂2f

∂xk∂xl
(x), (3.8)

Under the assumption that the functions Vi are smooth, and each Vi is a function
from RN → RN .

A further improvement in the algorithm is found by an a priori approximation of the
component Zs = Ψ(s,Xs). We then decompose Ψ(s,Xs) into two parts,

Ψ(s,Xs) = ΨAS(s,Xs) + Ψ̂(s,Xs)

where here ΨAS is an approximation of Ψ that is found asymptotically using results

38

Master’s Thesis - A. Duquette - McMaster University - Mathematics & Statistics

from Malliavan calculus, and Ψ̂ is found by means of a neural network. Here,

ΨAS
i (t, x) = E

[
g(X̄x

T−t)
W i

T −W i
t

T − t

]
Once again, the cost function minimized here is identical to the one used by Jentzen
et al. [39].

In contrast, [17] provides two separate algorithms for using neural networks to solve
an FBSDE system more traditionally, starting from the terminal time t = T and
finding an approximate solution for the BSDE at t = 0.

3.4 Neural Networks for Solving PDEs

In recent years, work has been done to find numerical solutions to PDEs through the
use of Artificial Neural Networks (ANNs) in a similar manner to how BSDEs can be
solved using the Deep BSDE method. Several methods have been developed to solve
PDEs using artificial neural networks. This section reviews the Deep PDE Method
and provides an example comparing the use of Deep PDE for solving a PDE to the
Deep BSDE algorithm. In general, the Deep BSDE algorithm is significantly less
computationally intensive but is limited in being able to solve for only one time value,
where as the Deep PDE method trains a single ANN in order to approximate the
solution for a given PDE

Consider a parabolic PDE of the form

∂tu(t, x) + Lu(t, x) = 0 (3.9)

u(0, x) = u0(x) for some x ∈ Ω, (3.10)

u(t, x) = g(t, x) for some x ∈ [0, T]× ∂Ω. (3.11)

Here L is a second-order parabolic operator that is not necessaily linear.

The Deep PDE Method is a method for solving PDEs that limits the problem of the

39

Master’s Thesis - A. Duquette - McMaster University - Mathematics & Statistics

curse of dimensionality by using a mesh free method along with an artificial neural
network in order to approximate the solution to a given PDE or systems of PDEs.
We summarize the algorithm for the method and briefly discuss its effectiveness.

Algorithm

The Deep PDE Method uses a neural network in order to approximate a solution u to
the given PDE. While several other methods using deep learning techniques to solve
PDEs exists, the Deep PDE method attempts to reduce the effect of an increase on
the dimension of the underlying space, by avoiding the use of a mesh setup. Instead,
points are chosen from Ω based on a probability distribution, which are then fed into
the forward propagated into a given neural network. The neural network is updated
using stochastic gradient descent in an attempt to minimize the following objective
function:

J(f) = ||∂tf + Lf ||2L2([0,T]×Ω) + ||f − g||2L2([0,T]×∂Ω) + ||f(0, ·)− u0||L2(Ω) (3.12)

By minimizing the above function, the difference between the time derivative and the
quasi-linear portion of the PDE is reduced, and in addition the boundary conditions
and starting conditions are approximated well by the neural network. There are
two questions to deal with: does the use of stochastic gradient descent converge to
an approximate solution given this objective function, and to what extent can this
process be improved if so? We discuss convergence in Theorem 3.4.1. Improvements
to the optimization method could take the use of the Adam optimizer, as suggested
by Jentzen et al. for training the Deep BSDE method, or the use of other optimizers.
However, we review the structure suggested in [38] here.

The general structure of the neural network used by Sirignano et al. is given by
the following set of tensors. At each la yer, ` = 1, . . . , ` the following tensors are
calculated.

40

Master’s Thesis - A. Duquette - McMaster University - Mathematics & Statistics

S1 = σ(W 1x + b) (3.13)

Z` = σ(U z,`x +W z,`S` + bz,`) (3.14)

G` = σ(U g,`x +W g,`S1 + bg,`) (3.15)

R` = σ(U r,`x +W r,`S` + br,`) (3.16)

H` = σ(Uh,`x +W h,`(S` �R`) + bh,`) (3.17)

(3.18)

These tensors then allow the calculation of the following tensor, which begins the next
layer.

S`+1 = (1−G`)�H` + Z` � S`

Note that U ·,` and W ·,` are weight matrices, which differ per tensor. x is the input
vector and b·,` is a bias vector.

It is assumed that the terminal or initial condition g(x) of the PDE is continues and
that its first derivative is bounded in the domain, the domain Ω is a bounded open
subset of Rd with the boundary ∂Ω ∈ C2 and that the neural network fn for each
learning step n is continuous, and (fn)n∈N ∈ L2(ΩT). The theorem below shows that
for appropriate conditions on the PDE, there are appropriate parameters for the above
neural network which minimizes the objective function J .

Theorem 3.4.1 Define

Cn(ψ) =

{
ζ(t, x) : R1+d 7→ R : ζ(t, x) =

n∑
i=1

βiψ

(
α1,it+

d∑
j=1

αj,ixj + cj

)}
.

where θ = (β1, . . . , βn, α1,1, . . . , αd,n, c1, . . . , cn) ∈ R2n+n(1+d) are the possible parame-
ters. Assume ψ ∈ C2(Rd) is a bounded, non-constant function. Furthermore define
C(ψ) =

⋃
n≥1 Cn(ψ). Assume the underlying space ΩT is compact and the probability

measures ν1, ν2, ν3 have supports contained in ΩT , Ω and ∂ΩT respectively.

41

Master’s Thesis - A. Duquette - McMaster University - Mathematics & Statistics

Assume that f(t, x, u,∇xu) is locally Lipschitz and that the PDE (3.5)-(3.7) has a
unique classical solution u(t, x) such that

u(t, x) ∈ C(Ωt)
⋃

C1+η/2,2+η(ΩT)

where η ∈ (0, 1) and sup(t,x)∈ΩT

∑2
k=1 |∇

(k)
x u(t, x)| <∞.

Then there exists for every ε > 0 a positive K > 0 (which can depend on u) such that
there is an h ∈ C(ψ) which satisfies J(f) ≤ Kε.

This theorem that we can satisfy the loss function for the method. In section 4.3 we
implement a modified objective function which uses only part of this given objective
function. This theorem extends to our chosen objective function, as any function f
that satisifies this theorem will also satisfy our objective function.

Theorem 3.4.2 Assume the previous assumption on the PDE holds, then the PDE
(3.5)-(3.7) has a unique bounded solution. In addition, hn converges to u, the unique
solution to (3.5)-(3.7) strong in Lp(ΩT) for every p < 2. If the sequence {hn(t, x)}n∈N
is uniformly bounded in n and equicontinuous, then the convergence to the solution u

is uniform in the domain ΩT .

The above theorem allows us to know that with enough training steps the Deep PDE
method converges to a solution of the (3.5)-(3.7). The proofs of these theorems are
relatively long, and are available in Appendix A of [38].

There are several other ways of applying neural networks to solve PDEs, but also to
learn the PDE itself. Work in this area of machine learning to approximate PDEs
is relatively new. An example of recent work in this area is in [37]. This paper
discusses the implementation of a Deep Learning PDE Method (DPM), This method
splits PDEs into known a priori components and unknown components, specifically
the class represented by the following equation:

∂u

∂t
(t, x) = fν(u(t, x), ux(t, x), uxx(t, x))+hθ(u(t, x), ux(t, x))+hθ(u(t, x), ux(t, x), uxx(t, x)),

42

Master’s Thesis - A. Duquette - McMaster University - Mathematics & Statistics

where here we are using the general notation for partial derivatives in space under
the study of PDEs. Specifically, u(t, x) : Ω → Rd is the solution to the PDE, where
Ω is some arbitrary subset of Rq, and ux, uxx represent its first and second spatial
derivatives. In addition, the terms ν and θ here are considered to be parameters that
vary based on the restrictions required for the PDE.

Now, this representation splits the PDE into two separate function: One represents
the known equations for which we have a priori representations, denoted by fν and
the second, hθ represents the unknown component of the background physics that
needs to be found. A deep learning algorithm is used to find an approximation for hθ
which allows an overall approximation of the solution. Thus, hθ takes the form

hθ : R(2q+1) → Rd

and θ will describe the neural network parameters such as number of hidden layers,
number of nodes, and weight matrices for each layer.

The example used throughout the paper is the Navier-Stokes equations that are used
to simulate the physics of water flows. The training of the neural network is again done
by using stochastic gradient descent to find a minimum to a cost function (referred
to in [37] as an objective function). Letting V (t, x; ν) represent trusted data that can
be used to model the underlying physics, the objective function here is given by

L(θ) =
M∑

m=1

Nt∑
n=1

∫
Ω

||u(tn, x; νm)− V (tn, x; νm)||dx,

recalling that the solution of the PDE is dependent upon the known parameters
ν. This method therefore is an attempt to learn PDEs based on known trusted
observations as opposed to simulated data.

43

Chapter 4

Comparison of Methods

Given that we now have several methods of numerically solving PDEs, either directly
or via finding numerical solutions to their corresponding BSDEs, it would be interest-
ing to see what methods are more effective than others. This comparison is somewhat
difficult however. For instance, although the nonlinear Feynman-Kac formula gives
us the ability to approximate solutions to PDEs using the Deep BSDE method, it is
important to note that this method only gives a result for a single value in [0, T]×Rd,
where as the Deep PDE method uses a neural network to approximate a complete
function which solves a given PDE. That is, the neural network in the case of the
Deep PDE Method takes as input points in [0, T] × Rd and provides as output the
value of the solution function at that point, whereas the Deep BSDE method trains
a neural network to find a solution to a BSDE, which happens to provide the value
of the solution of the corresponding PDE at a certain point. Therefore, while the
Deep BSDE method is significantly less computationally expensive, it also provides
significantly less information. To what extent does this matter in applications where
we want to find various values of the corresponding solution function for a given PDE?
This chapter attempts to look into this question and provide an answer. For this, we
need to first look at implementations of both methods and compare their accuracy for
a single point, and also see at what point, if any, the use of one method over the other
is more practical. In the first subsection we compare finding nunmerical solutions to
BSDEs between using Monte-Carlo algorithms and using the Deep BSDE algorithm.
In the second section we give a brief overview of differences between using the Deep

44

Master’s Thesis - A. Duquette - McMaster University - Mathematics & Statistics

BSDE algorithm to find solutions to their corresponding PDEs and using a neural
network to find a numerical solution directly using the Deep PDE method.1

4.1 Monte-Carlo numerical solutions when com-
pared with Deep BSDE

Earlier we reviewed much of the literature of techniques to solve BSDEs. The earlier
techniques, characterized by works such as [11] [3] [5] utilized Monte-Carlo simulations
which simply simulated multiple SDEs and then used a projection onto a particular
basis in order to estimate the resulting initial value of the BSDE. In [11] one example
provided was the following:

Consider an investor interested in the price of an option on a stock or other financial
instrument in an incomplete market. We consider an underlying stock Xt defined by

dXt = µdt+ σdWt

where Wt is a standard Brownian motion, and µ and σ are constants. In this market,
there are different rates for lending and borrowing, denoted by r and R respectively.
It is of interest to figure out what the fair price of a straddle option denoted by Y
may be at time t = 0. Let πL denote the investment that is loaned out with rate r, πB

denote the amount borrowed according to rate R and πx denote the amount invested
in the stock Xt. The option then will be given by Yt = πL

t + πx
t + πB

t and the change
in the investment Yt can be modelled by the following equation:

dYt = rπL
t dt+ πx

t dXt +RπB
t dt

= rπL
t dt+ πx

t µdt+ πx
t σdWt + πB

t Rdt

= (πL
t + πx

t + πB
t)rdt+ πx

t (µ− r) + πB
t (R− r)dt+ πx

t σdWt

1All simulations were computed on CanadaCompute Cedar nodes.

45

Master’s Thesis - A. Duquette - McMaster University - Mathematics & Statistics

Set Zt = πx
t σ, and notice that

πB
t = ((πL

t + πx
t + πB

t)− (πL
t + πx

t)) = (Yt − (πL
t + πx

t))

Now, there are strategies where loaning and borrowing at the same time are possible,
however if the borrowing rate R is greater than r, then this is never optimal, since
any investment being loaned out will decrease the value of the investment faster than
using that money to reduce πB

t . Therefore, whenever πB
t > 0, it must be the case that

πL
t = 0 optimally. Thus,

πB
t = (Yt − πx

t) = (Yt −
Zt

σ
)

and since πB
t = 0 whenever (Yt + Zt

σ
) >= 0 we must have the following equation

dYt = rYt +
µ− r

σ
Zt − (R− r)(Yt −

Zt

σ
)−dt+ ZtdWt (4.1)

Where

(Yt −
Zt

σ
)− :=

−(Yt − Zt

σ
) if (Yt − Zt

σ
<= 0

0 otherwise

If we assign the terminal condition YT = |XT −K| then Yt represents the fair price of
a straddle option in an incomplete market. Recall that a saddle option is both a put
and call option purchased on the same financial asset with the same terminal time
T. Saddle options are useful because they can be used when an investor believes that
the price of an asset is going to increase or decrease significantly in the future, but
is not sure in which direction the price of the asset will go. Lenders can offer these
options at a fee to ensure that they do not lose money on the trade regardless of the
later price of the asset. This leads to the question of what is a fair price of this saddle
option in an incomplete market.

This is an adaptation of the traditional Black-Scholes model for the fair pricing of a
straddle option. We adopt this example and compare the performance between the
Monte Carlo methods given by [11] and the newer techniques utilizing deep learning

46

Master’s Thesis - A. Duquette - McMaster University - Mathematics & Statistics

and neural networks found in [2]

For the experiments, the constants σ = 0.2, R = 0.06, r = 0.01, T = 2, K = 100,
µ = 0.05 and X0 = 100 where used. We discretize the BSDE for t he Monte-Carlo
method and Deep BSDE method as described in their sections, where we take a
partition of [0, T] with time grid given by {ti}Ni=0 such that t0 = 0 and tN = T .

For the Monte-Carlo algorithm, the following basis is used for the subspace of L2(R):

e1 = |x−K|

ek = (x−X0)
k−2, 2 ≤ k ≤ κ

We also implemented these same equations using the Deep BSDE algorithm. Here
instead of a choice of basis, the loss function was chosen to be f(x) = |x−K|, and the
value at the end of the simulation was taken to be the mean of the dimensions of the
resulting vector. The one main question is to what extent does the Deep BSDE al-
gorithm provide optimization benefits over traditional Monte-Carlo simulations when
given many dimensions to work with.

When looking at these algorithms it is important to note that they are not directly
comparable. That being said, it is a simple argument to make that at the very least
in this case, the Deep BSDE method is superior.

In the case of the Deep BSDE algorithm, the forward discretization 3.1. For the
Monte-Carlo algorithm, the discretization detailed in Chapter 2 is used. The primary
tunable parameters for the Monte-Carlo algorithm is the number of simulations, L
and the number of parition points N . For the Deep BSDE algorithm, in addition
to the same number of partition points N , changes can be made to the exponential
decay rate, the number of decay steps (how often the exponential decay is applied
to the learning rate), the batch size per learning step, and the number of learning
steps. We detail some of our tuning choices for the Deep BSDE algorithm below,
and compare the Deep BSDE algorithm with batch size 100 against the Monte-Carlo
algorithm using 1000, 10000, and 100000 simulations, with a batch size of 100.

Tuning the Deep BSDE algorithm required some patience. The initial learning rate
α was started at 0.06. We found that values as high as 0.08 would work, however

47

Master’s Thesis - A. Duquette - McMaster University - Mathematics & Statistics

Figure 4.1: performance of the Monte-Carlo simulation algorithm over different num-
bers of partition points. an average of 10 runs per point. the algorithm complexity is
linear in regard to the number of partition points.

a learning rate of 0.09 or higher resulted in the chosen Y0 value quickly becoming
infinite. In addition, an exponential decay was applied to the learning rate. This
was a necessity as otherwise the variance of solutions given by the algorithm greatly
increased. In addition, 20000 learning steps was rather arbitrarily chosen. This was
to make sure the algorithm had enough time to converge properly given the initial
learning rate.

For the implemented exponential decay on the learning rate, a decay step occurred
every 4000 steps. Learning decay rate was chosen to be 0.8, although there are several
decay rates that can be chosen here to minimize variance (see Figure 4.2). The
Deep BSDE algorithm provided similar estimates to the Monte-Carlo algorithm, at a
fraction of the computational time required. In addition, the Deep BSDE algorithm
is significantly faster as you increase the number of partition points to be calculated.

The Monte-Carlo algorithm suffers from the curse of dimensionality, in the sense that
increasing the number of dimensions substantially increases the numbers of compu-
tations required and thus it becomes infeasible to compute the solutions for larger

48

Master’s Thesis - A. Duquette - McMaster University - Mathematics & Statistics

Figure 4.2: Boxplot of solutions given at various exponential decay rates for the
learning rate of the Deep BSDE algorithm. Variance of solutions decreases as the
learning rate increases, suggesting that the Deep BSDE algorithm is converging and
that learning rates 0.06-0.09 give reasonable solutions.

49

Master’s Thesis - A. Duquette - McMaster University - Mathematics & Statistics

problems (see Figure 4.1). This is because the algorithm has exponential complexity
in time with respect to the dimension of the problem. Thus computing higher dimen-
sional examples with the Deep BSDE algorithm should be particularly more efficient
than the use of traditional Monte-Carlo algorithms, without sacrificing accuracy. The
trade off is of course that tuning needs to be done to the meta parameters of the model
which can take time that is not needed for the Monte-Carlo implementation. To im-
prove accuracy of the Monte-Carlo simulation, one need only increase the number of
simulated paths.

We assess to what extent the number of simulated paths can be reduced in the Monte-
Carlo algorithm relative to a decrease in accuracy and how that accuracy difference
compares to the Deep BSDE algorithm. At approximately 1000 paths simulated, we
observe a similar amount of computational time for solving N = 4 partition points
as with our tuned Deep BSDE algorithm utilizing a batch size of 100. However,
this greatly increases the relative standard error to be on par with the Deep BSDE
algorithm, and also once again has a linear growth in computational time as the
partition size is decreased using the same T . Thus the Monte Carlo algorithm can be
tuned to perform similarly to the Deep BSDE method at a low number of partition
points, however this does not eliminate its weakness of performing poorly as the
number of partition points increases compared to the Deep BSDE algorithm. However,
it does provide more information in so far as the requisite simulations for the Monte-
Carlo algorithm allows for approximating the stochastic process Ytk at each time tk
as opposed to simply the expected value. For this reason, we suggest that the least-
squares Monte Carlo algorithm is best suited to solving low-dimensional problems
where high computational time is available and significant accuracy is required, as
the algorithm provides significantly more accurate approximations compared to the
Deep BSDE as the number of simulated paths increases to 100000 or more.

The Monte-Carlo algorithm did converge to similar solution values as the Deep BSDE
algorithm. Notice that in 4.1 for various different number of partition points, the
simulated values slowly converge to some value. Running the Monte-Carlo algorithm
100 times at 100000 simulations for 16 partitions and taking the average of the solution
gives an approximate expected value of Y0 to be 24.6399. The absolute value of the
difference in value of the Monte-Carlo algorithm vs this estimated solution is available
in 4.1. Overall, both algorithms have their own advantages, with the Monte-Carlo

50

Master’s Thesis - A. Duquette - McMaster University - Mathematics & Statistics

Algorithm Simulations/Batch Size Average Running Time (Seconds)
Monte-Carlo 1000 53.302
Monte-Carlo 10000 539.66
Monte-Carlo 100000 51569.6
Deep BSDE 100 87.9
Deep BSDE 1000 189.52

Figure 4.3: System running times via the time unix command for each method, calcu-
lated on Canada Computer Cedar nodes. Each method was evaluated at 16 partition
points. The Deep BSDE gives an approximation of the expected value of Y0 in orders
of magnitude less time than the Monte-Carlo algorithm. The Monte-Carlo algorithm
takes a comparable amount of computational speed at 1000 simulations, but provides
less accuracy on average (see Figure 4.5)

algorithm offering slower performance in exchange for a lack of initial tuning and more
total information, while the Deep BSDE algorithm offers substantial performance
boosts but does not provide information for recovering probability densities.

4.2 Deep BSDE Compared with Other Numerical
Methods

One comparison to be done is to compare the speed and accuracy of older, Monte-
Carlo methods with that of the Deep BSDE methods. It is clear that, as the dimension
of the space the BSDE is operating over increases in dimension, the Deep BSDE
method appears to remain a much better approximator, in the sense that the growth
of the Monte-Carlo solver in terms of calculation time is exponential. This is the
“curse of dimensionality” that the Deep BSDE solver manages to avoid, and its main
advantage to use. However, even in lower dimensions it appears that it can be quite
reasonably accurate and significantly faster than the Monte Carlo methods. This
is largely because accuracy in the Monte-Carlo methods used by Gobet or Bender
requires a significant number of simulations to achieve comparable accuracy to the
Deep BSDE method.

51

Master’s Thesis - A. Duquette - McMaster University - Mathematics & Statistics

Figure 4.4: Average solution values for 10 runs of each algorithm per number of
partitions: Deep BSDE vs Monte Carlo methods. Deep BSDE algorithm here using
a batch size of 1000.

Figure 4.5: Relative Standard Error comparison between Deep BSDE algorithm and
Least-Squares Monte-Carlo for various numbers of partition points. 10 samples per
partition point per algorithm.

52

Master’s Thesis - A. Duquette - McMaster University - Mathematics & Statistics

Figure 4.6: Solutions of Monte-Carlo algorithm as the number of simulations increases.

Figure 4.7: Percentage error of the solution from the previous figure from the esti-
mated solution 24.6399 calculated from the average of 100 runs of the Monte-Carlo
simulation with 16 partition points at 100000 sims.

53

Master’s Thesis - A. Duquette - McMaster University - Mathematics & Statistics

Figure 4.8: Standard deviation of simulated values of Y0 as a function of the number
of decay steps. Less is better. This supports taking between 2-6 decay steps for the
algorithm.

4.3 Deep BSDE and Deep PDE method Compari-
son

In this section we give an example of the use of the Deep PDE method discussed
in the previous chapter. For the Deep BSDE method, a Monte-Carlo simulation
of the underlying SDE is done multiple times, and in parallel the coupled SDE is
simulated based on an initial estimate of the starting value. The main difference is
that the Deep PDE Method learns the dynamics of a given PDE at any given point
(t, x) ∈ [0, T] × Rd, whereas the Deep BSDE method is designed to find the initial
condition of a point in Rd from a terminal condition (or vice-versa). While they both
use neural networks to find solutions to PDEs, they do so in very different ways

4.3.1 Example: Allen-Cahn PDE

Consider the parabolic PDE of the form

54

Master’s Thesis - A. Duquette - McMaster University - Mathematics & Statistics

Figure 4.9: Relative average growth in computationinal time as a function of N. Each
algorithm is normalized to the average computational time for N = 1. Note that the
Deep BSDE algorithm grows substantially slower than the traditional Monte Carlo
algorithm.

55

Master’s Thesis - A. Duquette - McMaster University - Mathematics & Statistics

∂tu+∆xu+ u− u3 = 0

t ∈ [0, T], x ∈ [−1, 1]d

where d is the number of dimensions and with terminal condition given by

g(x) =
1

2(1 + 2
5
x2)

.

We initialize the Deep PDE method using the layer structure given in 3.13, it is
suggested in [38] to use 4 hidden layers of said structure, with each layer having
approximately 5 sublayers consisting of 50 nodes.

Initialization of the weights of each layer was originally done with standard normal
variables with mean 0, standard deviation of 1. However, this resulted in what is
known as gradient explosion - that is, during the calculation of terms such as ∂tu or
∆xu the gradient would quickly grow towards infinity, and would thus be useless. It
is for this reason that initialization of weights eventually took values from a uniform
random distribution for each weight, with the interval on which values were taken
given by

[−
√
6√

ni + ni+1

,

√
6√

ni + ni+1

]

where the values ni and ni+1 are simply the dimension of the input to the sublayer,
and the size of the output of the sublayer.

The differences between these algorithms here are rather stark. The Deep BSDE
algorithm has a significantly simpler ANN than does the Deep PDE method. For
this reason, training of the Deep PDE method takes significantly more computational
resources. In addition, the Deep PDE method is attempting to be able to simulate the
dynamics for all points in [0, T]× Rd once trained, whereas the Deep BSDE method
is simply finding the Y value of the given BSDE at time 0, which gives the solution
to the BSDE at the given x value. Given the need to remember complex dynamics,
the Deep PDE method method requires significantly longer training than the Deep

56

Master’s Thesis - A. Duquette - McMaster University - Mathematics & Statistics

Dimensions Y0 Deep BSDE u(0,0) Deep PDE
1 0.5835275 0.4669369
10 0.4118325 0.31361356
20 0.3057440 0.25555387
30 0.2408965 0.11842176
40 0.1936964 0.23099062

Figure 4.10: Solution Results from the Deep BSDE method proposed by Jentzen et
al. from [2] and the Deep PDE Method from Sigiriano et al. in [38] after some 80
epochs of 10 samples per, with x = 0, t = 0 added to each epoch for training for the
Deep PDE method.

BSDE method for providing a similar answer. On the other hand, the Deep PDE
method method once trained provides solutions to more than a single time and space
value, which the Deep BSDE method forgoes.

Note that in the Deep BSDE method, the space value solved for is the initial value
X0 of the SDE

Xt = X0 +

∫ t

0

f(s,Xs, Ys)ds+

∫ t

0

σ(s,Xs, Ys)dWs.

For the Allen-Cahn PDE, this value is taken to be zero and thus the Deep BSDE
method is equivalent to querying the ANN trained via the Deep PDE method on
the value of the 0 vector. However, one could query many other space-time points
utilizing the Deep PDE Method and thus, while it takes significantly longer to train,
there are substantial benefits to doing so for other applications.

Finally, it is hard to make a direct comparison between the Deep BSDE method and
the Deep PDE Method due to their structure. The Deep BSDE method trains a
neural network to find an initial value to a BSDE by utilizing a merged PDE/BSDE
formulation but importantly, the PDE does not have any boundary conditions: the
PDE is essentially evaluated on all of Rd. Unfortunately, the Deep PDE method
requires a boundary condition. This boundary condition is utilized in the objective
function above. Specifically, there is no g(x) function that we can associate with a
particular boundary that would allow the Deep PDE method to replicate the results
from the Deep BSDE method. Work should be done in this direction, to see if the
Deep BSDE method can be updated to work with specific boundary conditions on a

57

Master’s Thesis - A. Duquette - McMaster University - Mathematics & Statistics

Figure 4.11: Loss results on a per epoch basis for the Deep PDE method with L =
20 nodes, 1-dimension

bounded domain.

58

Chapter 5

Suggested Future Research

Our comparison between Jentzen et al.’s Deep BSDE algorithm and Bender et al.’s
least-squares Monte Carlo algorithm was suggestive that both algorithms still have a
use in the modern day. However, the Deep BSDE algorithms has seen several potential
improvements suggested that were not incorporated into our implementation. For
instance, Naito and Yamada’s a priori improvement on the initial estimate of Y0 has
been shown in their paper to significantly decrease learning time required for a good
approximation as well as error in the final result. Furthermore, there are several other
algorithms that could be implemented and tested against an improved Deep BSDE
method. Other BSDEs could also potentially be used in comparisons, and different
optimizers could be used for the Deep BSDE algorithm.

In addition, our attempt to compare the Deep PDE Method to the use of the Deep
BSDE and Monte-Carlo methods for solving PDEs revealed an interesting problem -
namely, that the Deep PDE Method only properly functions with well defined border
conditions and bounded domains. Meanwhile, the Deep BSDE method solves PDEs
over the entire space Rd and thus there is no border to define. Future attempts
should be made to reconcile these methods. Due to how the Deep PDE Method uses
generated samples of random points, it does not seem possible to change this method
to extend to the entire domain of the solution of the PDE. However, it is likely that the
Deep BSDE algorithm could be updated to do so by limiting the domain it operates
on and training the network to find the appropriate Y0 value.

59

Master’s Thesis - A. Duquette - McMaster University - Mathematics & Statistics

In order to do so, one could consider an algorithm that implements the Deep BSDE
method at various randomly selected points in space similar to how points are ran-
domly selected in the Deep PDE method. This would allow simulating the dynamics
of a PDE over a space grid, but not a time-grid. Once again however the dynam-
ics of the PDE on the boundary will need to be determined and it is not clear how
to implement that in the current Deep BSDE algorithm. Other avenues of research
could be to combine the Primal Dual Deep BSDE algorithm with the a priori knowl-
edge improvements from [26] which should in theory greatly improve the algorithms
efficiency if properly implemented.

60

Chapter 6

Conclusions

In this thesis we reviewed some of the theory related to BSDEs before comparing
several algorithms that either find solutions for given BSDEs, or solve PDEs associated
with those BSDEs. We had a few novel contributions: we gave an explicit derivation
for the BSDE associated with the fair price of an option in an incomplete market
with differing lending and borrowing rates. We directly compared the Least-Squares
Monte-Carlo method for solving BSDEs to the Deep BSDE method. We evaluated
the solutions of the Deep PDE method with those of the Deep BSDE method for an
associated PDE-BSDE pair, and modified the Deep PDE algorithm in an attempt
to allow it to work on the same domain as the Deep BSDE algorithm for the given
problem.

We provided the proof that the BSDE in Section 4.1 yields the price of the given
financial options, in an incomplete market with differing lending and borrowing rates.
Our comparison of the two algorithms in this section is also novel to the best of
our knowledge, in particular the comparison of running times to accuracy. While
some numerical estimates have been provided in [4] for the Monte-Carlo algorithm
for this example for 100000 simulations, we add additional numerical results for the
Monte-Carlo algorithm and test its performance compared to the newer Deep BSDE
method. By comparing the results of the two algorithms on this example, we found
that the Monte Carlo algorithm was able to provide extremely accurate approxima-
tions when given enough computational time, while the Deep BSDE algorithm was
able to find solutions as accurately with a smaller amount of computational time.

61

Master’s Thesis - A. Duquette - McMaster University - Mathematics & Statistics

In exchange, the Deep BSDE algorithm requires hyper-parameter tuning wherein a
priori knowledge of the solution is useful for ensuring proper tuning. Finally, unlike
the Deep BSDE algorithm, the Monte-Carlo algorithm is able to fully reproduce the
probability distribution of the BSDE at any point of calculated time.

We also reviewed a modern technique for solving PDEs, the Deep PDE method which
also utilizes a neural network to solve non-linear PDEs. To our knowledge, no direct
comparisons of these algorithms have been made, although the Deep BSDE method
has been evaluated against the Allen-Cahn example in [15], results are provided only
for 20 dimensions in the underlying space. We provide solution values for the Deep
BSDE method on this example for 1, 10, 20, 30, and 40 dimensions. The Deep PDE
method differs significantly from the BSDE methods wherein the given approximate
solution is itself a Neural Network trained to approximate the solution u(t, x) to any
given PDE. This allowed the fully trained ANN to approximate any point (t, x) ∈
[0, T]×Rd, however it comes with the drawback that the method is significantly more
computationally intensive to train, due to how it must account for and remember
over the various training steps the different dynamics at various points in space-time.
For this reason, the Deep PDE neural network is a good method should one need to
simulate the dynamics of a PDE over a variety of different points in the domain of
the PDE, but the Deep BSDE method and other methods are more efficient should a
solution only at one particular space-time point be required, such as estimating the
initial wealth required to reach a particular portfolio value or other such problems.

62

Appendices

63

Appendix A

A.0.1 Probabilistic Background

Definition A.0.1 (σ-algebra) Let Ω be a set. A σ-algebra over Ω is a set F ⊆ P(Ω)

(where P(Ω) stands for the powerset of Ω) that has the following properties:

i) X ∈ F ,

ii) If A ∈ F then Ac ∈ F ,

iii) Let N ∈ N ∪ {∞}. Then for any sequence {Ai}Ni=1 such that Ai ∈ F for every
i, then ∪N

i=1Ai ∈ F .

We also define a sub-σ-algebra to be a subset of a σ-algebra that is itself a σ-algebra.

As an example, we can consider all intervals of R of the form (a, b), [a, b), (a, b] or [a, b]
where −∞ ≤ a < b ≤ ∞. Taking the smallest σ-algebra that contains all of these
subsets, we end up with the Borel σ-algebra, denoted B.

If X is a topological space, and F is a σ-algebra, then the pair (X,F) is called a
measurable space. This allows us to introduce the concept of a measurable function.
In this case, we say that f : X → Y is a measurable function if, for all open sets
U ⊆ Y , the pre-image of U under f , denoted f−1(U) is a member of F . A probability
measure is simply a measurable function

Finally, a probability space is a tumple (X,F , P) where X is a topological space, F is
a filtration and P is a probability measure (that is, P takes values only in the interval

64

Master’s Thesis - A. Duquette - McMaster University - Mathematics & Statistics

[0, 1] which also satisfies that P (∪i∈IEi =
∑

i∈I P (Ei) where I is a countable set and
Ei ⊆ X for every i ∈ I).

We use sigma-algebras to give a sense of the information available to a given process
at a given time. This is formalized using two important concepts. The first of these
concepts, known as a filtration, gives the known values that a given process has taken
over a set period of time.

Definition A.0.2 Filtration Given a probability space (X,F , P), a sequence of σ-
algebras given by (Ft)t∈[0,T] where Ft ⊆ F for all t ∈ [0, T] is a filtration if it satisfies
Fs ⊆ Ft for any pair s, t ∈ [0, T] such that s ≤ t.

Brownian Motion

Brownian motion is an important stochastic process for understanding SDEs and the
eventual BSDEs that will be the topic of this thesis. Historically, the idea of Brownian
motion came about in 182, when the botanist Robert Brown noticed the motion of
pollen grains suspended in liquid. He noticed that there motion was irregular, but
may be explained by random collisions of the pollen grain with the molecules of the
water. This idea eventually led to several mathematical models which taken to the
limit describe the following stochastic process.

Brownian motion can be adequately described with the following definition:

Definition A.0.3 Brownian Motion Brownian motion is a stochastic process Wt

which satisfies the following properties:

i) Wt = 0 for t = 0.

ii) The process Wt is almost surely continuous.

iii) Any two increments of Wt are independent.

iv) Wt −Ws is normally distributed with mean 0 and variance t− s.

65

Master’s Thesis - A. Duquette - McMaster University - Mathematics & Statistics

Importantly, Brownian motion has been used to build a theory of stochastic inte-
gration, on which we build the stochastic differential equations. In general, we will
assume the use of the Itô integral. It is defined in the following way

Definition A.0.4

The Itô integral is an extension of the Riemann-Stieljes integral. Given an interval
[0, t] we define a sequence of partitions {πn} of [0, t] such that limn→∞ |πn| = 0. Then

∫ t

0

fdW =
N∑
i=1

f(ti−1)(Wti −Wti−1
)

Using this integral, we can define an Itô process. Specifically, an Itô process is a
process of the form

Xt = X0 +

∫ t

0

fsds+

∫ t

0

σsdWs,

where B is a Brownian motion. In general we consider σs to be a predictable process
and fs to be a predictable and Lebesgue integrable process.

66

Appendix B

Proof of error convergence for Monte-Carlo

Proof : The proof utilizes pieces from [41] as well as [4].

We need to show that

sup
0≤t≤T

E[|Yt − Y N
t |2] +

∫ T

0

E[|Zt − ZN
t |2] ≤ C

(
|π|+ E[|ξ − ξπ|2] +

(
1

2
+ C|π|

)N
)

Define an approximation of Z, Z̄ using the Martingale Representation Theorem ap-
plied to Y (∞,π)

ti+1
as in the following equation:

Y
(∞,π)
ti+1

= E
[
Y

(∞,π)
ti+1

|Fti

]
+

∫ ti+1

ti

Z̄sdWs.

We now look at the difference between Yti and the approximation of Yti given by
Y

(∞,π)
ti based on this representation, and compared with our original definitions:

Y
(∞,π)
ti − Yti +

∫ ti+1

t1

(Z̄s − Zs)ds

=Y
(∞,π)
ti − Yti −

∫ ti+1

ti

(
f(ti, X

π
ti
, Y ∞,π

ti , Z∞,π
ti)− f(s,Xs, Ys, Zs)

)
ds

Now, we can use a trick to allow us to utilize Itô’s inequality. First, square both sides

67

Master’s Thesis - A. Duquette - McMaster University - Mathematics & Statistics

of the equation and then take expectations. This gives us the following equation

E
[∣∣Y ∞,π

ti − Yti
∣∣2]+ E

∫ ti+1

ti

∣∣∣Ẑs − Zs

∣∣∣2 ds
= E

[(
−
∫ ti+1

ti

(
f
(
ti, X

π
ti
, Y ∞,π

ti , Z∞,π
ti

)
− f (s,Xs, Ys, Zs)

)
ds+ Y ∞,π

ti+1
− Yti+1

)2
]

≤ E

[(
|Y ∞,π

ti+1
− Yti+1

|+ |π|3/2 + C|π|(|Xtt −Xπ
ti
|+ sup

ti≤t≤ti+1

|Xt −Xti|)

+ C|π|(|Yti − Y ∞,π
ti |+ sup

ti≤t≤ti+1

|Yt − Yti |) + C

∫ ti+1

ti

|Zs − Z∞,π
ti |ds

)2]
≤ (1 +

||π|
ε
E[|Yt∞,π

i+1
− Yti+1

|2] + C(1 +
ε

|π|
)|π|3

+ C(1 +
ε

|π|
(|π|2E[|Y ∞π

ti
− Yti |2] + |π|E[

∫ ti+1

ti

|Zs − Z∞,π
ti |2)

Where the assumption 2.1 is used for the second line, and Young’s Inequality combined
with the assumption in the theorem is used. It remains to estimate the term Ẑπ

ti
=

1
|π|E

[∫ ti+1

ti
Zsds

∣∣∣∣Fti

]
.

In addition, the upper bound

N−1∑
i=0

E

[∫ ti+1

ti

∣∣∣Zs − Ẑπ
ti

∣∣∣ ds] ≤ C|π|

from [41] is required.

Also note that by our introduction of Ẑt(π) and using Itô’s isometry we get

Z
(∞,π)
ti =

1

∆ti

E

[∫ ti+1

ti

Ẑ(π)ds
∣∣Fti

]
(B.1)

Therefore we can obtain the following inequality

68

Master’s Thesis - A. Duquette - McMaster University - Mathematics & Statistics

E

[∫ ti+1

ti

|Zs − Z
(∞,π)
ti |2ds

]
≤ 2

(
E

[∫ ti+1

ti

|Zs − Ẑ
(π)
ti |2

]
+ E

[∫ ti+1

ti

|Zs − Z̃(π)
s |2ds

])
(B.2)

Now we take

(1− ∆ti

4
)E
[
|Y (∞,π)

ti − Yti |2
]
+

1

2
E

[∫ ti+1

ti

|Z̃(π)
s − Zs|2ds

]
≤ (1 +

∆ti

ε
)E
[
Y

(∞,π)
ti+1

− Yti+1
|2
]
+ C∆ti +

1

2
E

[∫ ti+1

ti

|Ẑ(π)
s − Zs|2ds

]

Now with |π| sufficiently small we have the identity

(1 +
∆ti

ε
)

1

1− ∆ti

4

≤ (1 +
∆ti

ε
+

∆ti

2
).

With said small |π|, B.2 and the inequality from the earlier trick, we find

E
[
|Y (∞,π)

ti − Yti |2
]
+

1

2
E

[∫ ti+1

ti

|Z̃(π)
s − Zs|2ds

]
≤ (1 + C∆ti)E

[
|Y (∞,π)

ti+1
− Yti+1

|2
]
+ C∆2

ti
+ CE

[∫ ti+1

ti

|Ẑ(π)
s − Zs|2ds

]

Recalling the upper bound on
∑N−1

i=0 E
[∫ ti+1

ti

∣∣∣Zs − Ẑπ
ti

∣∣∣ ds] from earlier, along with

the bound on E
[∫ ti+1

ti
|Zs − Z

(∞,π)
ti |2ds

]
, we see

max
0≤i≤N

E
[
|Y (∞,π)

ti − Yti |2
]

≤ C

(
E[|YT − Y

(π)
T |2] +

N−1∑
i=0

∆ti + E

[∫ ti+1

ti

|Zs − Ẑ
(π)
ti |2ds

])
≤ C

(
E[|YT − Y

(π)
T |2] + |π|

)

69

Master’s Thesis - A. Duquette - McMaster University - Mathematics & Statistics

where the Gronwall lemma is used to eliminate the integral term on the second line.
Convergence of Z(∞,π) is now derived

N−1∑
i=0

E

[∫ ti+1

ti

|Z̃(π)
s − Zs|2ds

]

≤ C
N−1∑
i=1

E
[
|Y (∞,π)

ti − Yti |2∆ti

]
+ CE

[
|YT − Y

(π)
T |2

]
+ C|π|+ C

N−1∑
i=0

E

[∫ ti+1

ti

|Ẑ(π)
s − Zs|2ds

]
≤ C(E[|YT − Y

(π)
T |2] + |π|).

From which the convergence of the estimate to Z(∞,π) can be derived. We still need
to derive the bounds on the error between Y ∞,π

ti and Y n,π
ti (and similarly for Z∞,π

ti and
Zn,π

ti) to complete the proof, which is done by the theorem below.

Theorem B.0.1 Finally, now that we have some the upper bound on the error be-
tween Yt, Y ∞,π

t , Zt, and Z∞,π
t we now show there exists constants C1, C2 such that

max
0≤i≤N

E
[∣∣Y ∞,π

ti − Y n,π
ti

∣∣2]+ N−1∑
i=0

E
[∣∣Z∞,π

ti − Zn,π
ti

∣∣2]∆ti ≤ C1

(
1

2
+ C2|π|

)n

so long as |π| is sufficiently small. This is based on the proof from Theorem 5 in [3].

Proof:

It follows from Lemma 7 in [3] that

max
0≤i≤N

λiE
[
|y(n+1,π)

ti |2
]
+

N−1∑
i=0

λiE
[
|z(n+1,π)

ti |2
]
∆ti

≤ K2(T + 1)

((
|π|+ Γ−1

)
(γDT + 1) +

D

γ

)
×

(
max
0≤i≤N

λiE
[
|y(n,π)ti |2

]
+

N−1∑
i=0

λiE
[
|z(n,π)ti |2

]
∆ti

)
.

70

Master’s Thesis - A. Duquette - McMaster University - Mathematics & Statistics

Where λ0 = 1 and λi = (1 + Γ∆ti−1
)λi−1, y(n+1,π)

ti = Y
(n+1,π)
ti − Y

(n,π)
ti and z(n+1,π)

ti =

Z
(n+1,π)
ti − Z

(n,π)
ti .

Choosing γ = 4DK2(T+1) and Γ = 4K2(T+1)(γDT+1) and iterating the inequality
from Lemma 7, the following is obtained

max
0≤i≤N

λiE
[
|y(n+1,π)

ti |2
]
+

N−1∑
i=0

E
[
|z(n+1,π)

ti |2
]
∆ti

≤
(
Γ|π|
4

+
1

2

)n
(
max
0≤i≤n

λiE
[
|Y (1,π)

ti |2
]
+

N−1∑
i=0

λiE
[
|z(1,π)ti |2

]
∆ti

)

By the definition of λi we obtain

max
0≤i≤N

E
[
|y(n+1,π)

ti |2
]
+

N−1∑
i=0

E
[
|z(n+1,π)

ti |2
]
∆ti

≤ eΓT
(
Γ|π|
4

+
1

2

)n
(

max
0≤i≤N

E
[
|Y (1,π)

ti |2
]
+

N−1∑
i=0

E
[
|Z(1,π)

ti |2
]
∆ti

)
.

If we can take the the square root of the left hand side of the above equation and
denote it A(n,π) then we see that

∑
nA

(n,π) converges so long as |π| is sufficiently small.
Therefore, (Y n,π), Z(n,π)) is a Cauchy sequence and so converges to (Y (∞,π), Z(∞,π)) as
required when |π| is sufficiently small. �

An application of both of these Theorems provides the convergence bounds given by
2.2.1 (see [3] and [4]).

71

Appendix C

C.1 The relationship between BSDEs and PDEs

One of the main interest in developing a theory of BSDEs is a duality between solutions
of BSDEs and the solution of a corresponding PDE. Traditionally, it has been known
that SDEs and PDEs have a link due to the Feynman-Kac formula, which provides
the solution a given linear PDE by the expected value of a solution to an SDE.

Theorem C.1.1 (Feynman-Kac Formula) [28] Let f ∈ C2(Rn) and g ∈ C(Rn),
where this is some lower bound L ∈ Rn such that g(x) ≥ L for all x ∈ Rn.

Define

v(t, x) = E
[
exp

(
−
∫ t

0

g(Xs)ds

)
f(Xt)

]
and consider the differential equation

∂v

∂t
= Av − gv t > 0, x ∈ Rn

with initial condition given by v(0, x) = f(x). If u(t, x) ∈ C1,2(R×Rn) is bounded on
K × Rn for each compact K ⊆ R, where u solves the above differential equation then
u(t, x) = v(t, x). Here A is a linear operator (see [28]).

Likewise, the solutions to certain PDEs give rise to the solutions to associated BS-
DEs, and solutions to BSDEs can be used to find weaker solutions to PDEs in the
form of viscosity solutions [32]. For this reason, BSDEs are also of interest outside

72

Master’s Thesis - A. Duquette - McMaster University - Mathematics & Statistics

of Mathematical finance, as their solutions give rise to solutions of many different
complex PDEs.

Although this initial formula created a direct link between linear PDEs and SDEs,
more was needed to allow stochastic formulas to approximate the solutions to larger
classes of PDEs, especially those that had at least some non-linearity. Research from
Peng et al. eventually allowed for this relationship to be expanded by a non-linear
Feynman-Kac formulation. In particular, given a PDE of the following form:

∂tu+
1

2
∆u+ f(t, u,∇u) = 0 (C.1)

The solution of the PDE, u(t, x) is given by the BSDE of the form

Yt = g(BT) +

∫ T

t

f(t,X, Z)dt+

∫ T

t

ZdWt (C.2)

This was eventually extended by Peng et al. [31] to an association between systems of
quasilinear parabolic PDEs of the below form, with their solution not corresponding
to the expected value of a simple SDE, but requiring a BSDE associated with it since
these equations were more complex.

∂tuk +
1

2
∆u+ 〈f(t, x, u,∇uσ(t, x, u)),∇uk〉+ gk(t, x, u,∇uσ(t, x, u)) = 0 (C.3)

for k = 1, . . . ,m, t ∈ (0, T), x ∈ Rn, (C.4)

uk(T, x) = hk(x), for k = 1, . . . ,m, x ∈ Rn (C.5)

Where here the corresponding BSDE takes the form of a Fully Coupled Forward-
Backward Stochastic Differential Equation (FBSDE) pair:

73

Master’s Thesis - A. Duquette - McMaster University - Mathematics & Statistics

Xt = x+

∫ t

0

f(s,Xs, Ys, Zs)ds+

∫ t

0

σ(s,Xs, Ys, Zs)dWs (C.6)

Yt = h(XT) +

∫ T

t

g(s,Xs, Ys, Zs)ds−
∫ T

t

ZsdWs for t ∈ [0, T] (C.7)

For the associated PDE, we will shortly show that the viscosity solution u of this PDE
takes the form

u(t, x) := Y t,x(t)

where here we have Y t,x is the solution of the FBSDE pair

X t,x
s = x+

∫ s

t

f(r,X t,x
r , Y t,x

r , Zt,x
r)dr +

∫ s

t

σ(r,X t,x
r , Y t,x

r , Zt,x
r)dWr

Y t,x = h(X t,x
T) +

∫ T

s

g(r,X t,x
r , Y t,x

r , Zt,x
r)dr −

∫ T

s

Zt,x
r dWr

This holds, so long as the functions f, σ, g, h are continuous and satisfy the assump-
tions (A1)− (A4) from Section 1.2.2.

We now give a proof of this result, reproduced from [31].

Proof: We consider a function ϕ ∈ C1,2([0, T]×Rn). And consider a local minimum
(t, x) ∈ [0, T]×Rn of the function u− ϕ. This proof shows that u is a superviscosity
solution of the PDE C.3. A similar argument can be used to prove it is a subviscosity
solution.

We assume without loss of generality that ∂ϕ
∂t
(t, x)+(Lϕ)(t, x, u(t, x),∇ϕ(t, x)σ(t, x, u(t, x)))+

g(t, x, u(t, x),∇ϕ(t, x)σ(t, x, u(t, x))) < 0. Then, we attempt to derive a contradic-
tion.

Given the above assumption, there exists an α ∈ R such that 0 < α < T − t and such
that for all (s, y) ∈ [t, T]× Rn satisfying

t ≤ s ≤ t+ α, |x− y| ≤ α

74

Master’s Thesis - A. Duquette - McMaster University - Mathematics & Statistics

we have u(s, y) ≤ ϕ(s, y) and

∂ϕ
∂t
(s, y)+(Lϕ)(s, y, u(s, y),∇ϕ(s, y)σ(s, y, u(s, y)))+g(s, y, u(s, y),∇ϕ(s, y)σ(s, y, u(s, y))) <

0

If we let τ denote the stopping time, that is

τ := inf{s > t : |X t,s
s − x| ≥ α} ∧ (t+ α) and consider the pair of processes

(Ȳs, Z̄s) := (Y t,x
s∧t,1s∈[t,T]Z

t,x
s), t ≤ s ≤ t+ α

solves the BSDE given by

Ȳs = u(τ,X t,x
τ) +

∫ t

s∧τ
g(r,X t,x

r , u(r,X t,x
r), Z̄r)dr −

∫ t+α

s

ZrdWr (C.8)

(C.9)

And it follows from an application of Itô’s formula that the pair of processes (Ŷs, Ẑs)

defined by

(Ŷs, Ẑs)L = (ϕ(s ∧ τ,X t,x
s∧τ),1s∈[t,T]∇ϕ(s,X t,x

s)σ(s,X t,x
s , u(s,X t,x

s)) t ≤ s ≤ t+ α

is the solution to the BSDE of the form

Ŷs = ϕ(τ,X t,x
τ)−

∫ τ

s∧τ

(
∂ϕ

∂t
(r,X t,x

r) + Lϕ(r,X t,x
r , u(r,X t,x

r), Z̄r)

)
dr −

∫ t+α

s

ẐrdWr,

t ≤ s ≤ t+ α

Defining the following functions

75

Master’s Thesis - A. Duquette - McMaster University - Mathematics & Statistics

β̂r = −
(
∂ϕ

∂t
(r,X t,x

r) + Lϕ(r,X t,x
r , u(r,X t,x

r), Ẑr)g(r,X
t,x
r , u(r,X t,x

r), Ẑr)

)
β̄r = −

(
∂ϕ

∂t
(r,X t,x

r) + Lϕ(r,X t,x
r , u(r,X t,x

r), Z̄r)g(r,X
t,x
r , u(r,X t,x

r), Z̄r)

)
Then for some c > 0 it must be the case from our prior assumptions that

|β̂r − β̄r| ≤ c||Ẑr − Z̄r||

from which it follows that there is a bounded, Ft-adapted process {γr} such that
γr ∈ Rd for all r such that

β̂r − β̄r = 〈γr, Ẑr − Z̄r〉

Defining (Ỹs, Z̃s) = (Ŷs − Ȳs, Ẑs − Z̄s) then we can write Ỹs in the form

Ỹs = ϕ(τ,X t,x
τ)− u(τ,X t,x

τ) +

∫ τ

s∧τ
[β̂r + 〈γr, Z̃r〉]dr −

∫ τ

s∧τ
Z̃rdWr

To continue, we need to borrow a theorem from [29] which gives us that

Ỹt = E

[
Γt,τ Ỹτ +

∫ τ

t

Γt,sβ̂sds

]
where the function Γt,τ is given by

Γt,s = exp

{∫ s

t

〈γr, dWr〉 −
1

2

∫ s

t

|γr|2dr
}

It follows that u(τ,X t,x
τ) ≤ ϕ(τ,X t,x

τ), with 0 < β̂r on the interval [t, τ], where τ >
t. This implies that Ỹt > 0 which necessarily means u(t, x) < ϕ(t, x) which is a
contradiction. Hence u(t, x) is a viscosity subsolution of the given PDE. �

76

Bibliography

[1] Francis Bach. “Breaking the curse of dimensionality with convex neural net-
works”. In: The Journal of Machine Learning Research 18.1 (2017), pp. 629–
681.

[2] Christian Beck, E Weinan, and Arnulf Jentzen. “Machine learning approxima-
tion algorithms for high-dimensional fully nonlinear partial differential equa-
tions and second-order backward stochastic differential equations”. In: Journal
of Nonlinear Science 29.4 (2019), pp. 1563–1619.

[3] Christian Bender and Robert Denk. “A forward scheme for backward SDEs”.
In: Stochastic processes and their applications 117.12 (2007), pp. 1793–1812.

[4] Christian Bender and Robert Denk. Forward simulation of backward SDEs.
WIAS, 2005.

[5] Christian Bender and Jessica Steiner. “Least-squares monte carlo for backward
sdes”. In: Numerical methods in finance. Springer, 2012, pp. 257–289.

[6] Yoshua Bengio et al. “Learning deep architectures for AI”. In: Foundations and
trends® in Machine Learning 2.1 (2009), pp. 1–127.

[7] Bruno Bouchard et al. “Numerical approximation of BSDEs using local poly-
nomial drivers and branching processes”. In: Monte Carlo Methods and Appli-
cations 23.4 (2017), pp. 241–263.

[8] Philippe Briand and Céline Labart. “Simulation of BSDEs by Wiener chaos
expansion”. In: The Annals of Applied Probability 24.3 (2014), pp. 1129–1171.

[9] George Cybenko. “Approximation by superpositions of a sigmoidal function”.
In: Mathematics of control, signals and systems 2.4 (1989), pp. 303–314.

77

Master’s Thesis - A. Duquette - McMaster University - Mathematics & Statistics

[10] Nicole El Karoui, Shige Peng, and Marie Claire Quenez. “Backward stochastic
differential equations in finance”. In: Mathematical finance 7.1 (1997), pp. 1–71.

[11] Emmanuel Gobet, Jean-Philippe Lemor, Xavier Warin, et al. “A regression-
based Monte Carlo method to solve backward stochastic differential equations”.
In: The Annals of Applied Probability 15.3 (2005), pp. 2172–2202.

[12] Emmanuel Gobet and Plamen Turkedjiev. “Linear regression MDP scheme for
discrete backward stochastic differential equations under general conditions”.
In: Mathematics of Computation 85.299 (2016), pp. 1359–1391.

[13] Jiequn Han et al. “Deep learning approximation for stochastic control problems”.
In: arXiv preprint arXiv:1611.07422 (2016).

[14] Jiequn Han, Arnulf Jentzen, and E Weinan. “Overcoming the curse of di-
mensionality: Solving high-dimensional partial differential equations using deep
learning”. In: arXiv preprint arXiv:1707.02568 (2017), pp. 1–13.

[15] Jiequn Han and Jihao Long. “Convergence of the deep BSDEmethod for coupled
FBSDEs”. In: arXiv preprint arXiv:1811.01165 (2018).

[16] Donald Olding Hebb. The organization of behavior: a neuropsychological theory.
J. Wiley; Chapman & Hall, 1949.

[17] Côme Huré, Huyên Pham, and Xavier Warin. “Some machine learning schemes
for high-dimensional nonlinear PDEs”. In: arXiv preprint arXiv:1902.01599 (2019).

[18] Peter Imkeller, Gonçalo Dos Reis, and Jianing Zhang. “Results on numerics
for FBSDE with drivers of quadratic growth”. In: Contemporary Quantitative
Finance. Springer, 2010, pp. 159–182.

[19] Petar Jevtic, Minsuk Kwak, and Traian A Pirvu. “Longevity bond pricing in
equilibrium”. In: Available at SSRN 3206195 (2019).

[20] Magdalena Kobylanski. “Backward stochastic differential equations and partial
differential equations with quadratic growth”. In: Ann. Probab. 28.2 (Apr. 2000),
pp. 558–602. doi: 10.1214/aop/1019160253. url: https://doi.org/10.
1214/aop/1019160253.

[21] Hyuk Lee and In Seok Kang. “Neural algorithm for solving differential equa-
tions”. In: Journal of Computational Physics 91.1 (1990), pp. 110–131.

78

https://doi.org/10.1214/aop/1019160253
https://doi.org/10.1214/aop/1019160253
https://doi.org/10.1214/aop/1019160253

Master’s Thesis - A. Duquette - McMaster University - Mathematics & Statistics

[22] Jin Ma, J-M Morel, and Jiongmin Yong. Forward-backward stochastic differen-
tial equations and their applications. 1702. Springer Science & Business Media,
1999.

[23] Jin Ma, Philip Protter, and Jiongmin Yong. “Solving forward-backward stochas-
tic differential equations explicitly—a four step scheme”. In: Probability theory
and related fields 98.3 (1994), pp. 339–359.

[24] Andrew J Meade Jr and Alvaro A Fernandez. “The numerical solution of linear
ordinary differential equations by feedforward neural networks”. In: Mathemat-
ical and Computer Modelling 19.12 (1994), pp. 1–25.

[25] Riu Naito and Toshihiro Yamada. “A third-order weak approximation of multi-
dimensional Itô stochastic differential equations”. In: Monte Carlo Methods and
Applications 25.2 (2019), pp. 97–120.

[26] Riu Naito and Toshihiro Yamada. “An acceleration scheme for deep learning-
based BSDE solver using weak expansions”. In: International Journal of Finan-
cial Engineering (2020), p. 2050012.

[27] M Negnevitsky. “The History Of Artificial Intelligence Or From The “Dark
Ages” To the Knowledge-based Systems”. In: WIT Transactions on Information
and Communication Technologies 19 (1997).

[28] Bernt Oksendal. Stochastic differential equations: an introduction with applica-
tions. Springer Science & Business Media, 2013.

[29] Étienne Pardoux. “Backward stochastic differential equations and viscosity so-
lutions of systems of semilinear parabolic and elliptic PDEs of second order”.
In: Stochastic Analysis and Related Topics VI. Springer, 1998, pp. 79–127.

[30] Etienne Pardoux and Shige Peng. “Adapted solution of a backward stochastic
differential equation”. In: Systems & Control Letters 14.1 (1990), pp. 55–61.

[31] Etienne Pardoux and Shanjian Tang. “Forward-backward stochastic differential
equations and quasilinear parabolic PDEs”. In: Probability Theory and Related
Fields 114.2 (1999), pp. 123–150.

[32] Shige Peng and Falei Wang. BSDE, Path-dependent PDE and Nonlinear Feynman-
Kac Formula. 2011. arXiv: 1108.4317 [math.PR].

[33] Allan Pinkus. “Approximation theory of the MLP model in neural networks”.
In: Acta numerica 8 (1999), pp. 143–195.

79

https://arxiv.org/abs/1108.4317

Master’s Thesis - A. Duquette - McMaster University - Mathematics & Statistics

[34] Pradeep Ramuhalli, Lalita Udpa, and Satish S Udpa. “Finite-element neural
networks for solving differential equations”. In: IEEE transactions on neural
networks 16.6 (2005), pp. 1381–1392.

[35] SITU Rong. Theory of stochastic differential equations with jumps and applica-
tions: mathematical and analytical techniques with applications to engineering.
Springer Science & Business Media, 2006.

[36] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. “Learning rep-
resentations by back-propagating errors”. In: nature 323.6088 (1986), pp. 533–
536.

[37] Justin Sirignano, Jonathan F MacArt, and Jonathan B Freund. “DPM: A deep
learning PDE augmentation method with application to large-eddy simulation”.
In: Journal of Computational Physics 423 (2020), p. 109811.

[38] Justin Sirignano and Konstantinos Spiliopoulos. “DGM: A deep learning algo-
rithm for solving partial differential equations”. In: Journal of computational
physics 375 (2018), pp. 1339–1364.

[39] E Weinan, Jiequn Han, and Arnulf Jentzen. “Deep learning-based numerical
methods for high-dimensional parabolic partial differential equations and back-
ward stochastic differential equations”. In: Communications in Mathematics and
Statistics 5.4 (2017), pp. 349–380.

[40] Jiongmin Yong and Xun Yu Zhou. Stochastic controls: Hamiltonian systems and
HJB equations. Vol. 43. Springer Science & Business Media, 1999.

[41] Jianfeng Zhang. “Some fine properties of backward stochastic differential equa-
tions”. PhD thesis. PhD thesis, Purdue University, 2001.

80

	Backward Stochastic Differential Equations
	Overview
	BSDEs with Lipschitz Drivers

	Other Types of BSDEs
	Fully-Coupled Forward-Backward SDEs
	Analytical Solutions to BSDEs
	2BSDEs
	BSDEs with Quadratic Drivers

	Feynman-Kac Connection for BSDEs

	Monte-Carlo Numerical approximations to FBSDEs
	Assumptions
	Euler Scheme for SDE approximation
	Numerical Solutions to BSDEs with Quadratic Growth
	Other Methods for Approximating Solutions for BSDEs
	Branching Diffusion processes
	Polynomial Chaos Expansion
	Approximation using Neural Networks

	Neural Networks, the Deep BSDE Method, and Deep PDE Methods
	Overview of Artificial Neural Networks
	History
	Structure
	Activation functions

	Training of Neural Networks
	Universal Approximation
	Structures

	Deep BSDE Algorithm
	Deep BSDE Extension

	Neural Networks for Solving PDEs

	Comparison of Methods
	Monte-Carlo numerical solutions when compared with Deep BSDE
	Deep BSDE Compared with Other Numerical Methods
	Deep BSDE and Deep PDE method Comparison
	Example: Allen-Cahn PDE

	Suggested Future Research
	Conclusions
	Appendices
	
	Probabilistic Background

	
	
	The relationship between BSDEs and PDEs

