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Lay Abstract

Aerial robots can offer an effective solution to many existing transportation challenges

as they do not rely on infrastructures or labour work. Battery-powered drones can

autonomously transport objects with absolutely zero emissions. However, a single

drone has limited lifting capacity and is highly susceptible to failures. One solution is

to employ a team of quad-copters to cooperatively carry a cable-suspended payload.

For such a scalable system, the number of quad-copters can be simply found based on

the size and weight of the package. In this thesis, simple and robust motion controllers

are proposed to safely transport a cable-suspended payload. The controllers are

further extended to guarantee inter-drone collision avoidance. They are also capable

of suppressing effects of disturbances such as wind. Furthermore, the design allows

for arbitrary attachment points on both drones and the payload. All the control

strategies have been successfully implemented and evaluated in an indoor laboratory

setting.

iii



Abstract

This thesis proposes several motion controllers to allow multiple quad-copters coop-

eratively carry a cable-suspended payload. The problem is motivated by a desire for

developing a resilient scalable delivery vehicle that can be easily customized to its

payload. The control problem poses a number of challenges that complicate its de-

sign. These include the quad-copter under-actuation, non-rigidity of the cables that

connect the payload to the copters, external disturbances, potential for inter-drone

collisions, and communication time-delay among the quad-copters. Simple robust

controllers with guaranteed stability are highly desirable in such safety critical appli-

cations.

In this thesis, the energetic passivity property of the multi-body system combining

the quad-copters, cables and payload is employed to design novel motion controllers

for the system. These controllers make no assumption about the tension status of

the cables since this property holds whether the cables are in tension or not. The

design and stability analysis of the controllers rely on storage functions inspired by

the physical energy of the system. Quad-copters are able to produce thrust force

only along their propellers’ axis. This under-actuation prevents direct application of

passivity-based controllers to the system under study. A cascade control structure

with an outer-loop position control and an inner-loop attitude control is employed to
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deal with the under-actuation.

The first proposed controller assumes that the cables are attached to the quad-

copters center of masses (COMs). This helps decouple the angular dynamics of the

quad-copters from the rest of the dynamics. As a result, the inner-loop attitude con-

trollers can be designed independently. First, angular controllers with exponentially

stable tracking errors are considered. While this produces nice theoretical results,

it requires measurements of linear acceleration and jerk, limiting its practical use.

Then, a modified cascade control structure is proposed that takes into account the

under-actuation and only needs measurements that are typically available in such

systems. Semi-global stability of the closed-loop system is shown, where the region

of attraction can be made arbitrary large by proper choice of control gains. An en-

ergy observer/compensator is proposed to estimate perturbation-induced energy and

dissipate it through time-varying dampers. This helps suppress disturbance-induced

oscillations in the system response.

The proposed controller is further revised to allow the cables be attached to the

quad-copters and the payload at arbitrary points. This controller is augmented with

an inter-drone collision avoidance term to prevent potential collisions among the

drones. Another variation of the controller is developed by introducing inter-drone

coupling terms meant to improve the controller ability to preserve the formation shape

of the quad-copters. These coupling terms could potentially introduce time delay into

some of the feedback signal paths. An analysis is carried out to establish conditions

that the controller gains must satisfy in order to ensure closed-loop stability in the

presence of these time delays.

v



The final contribution of this thesis focuses on the design of the reference posi-

tions for the quad-copters for the use in the controllers introduced earlier. In the

proposed approach, the user specifies the desired position and orientation for the

payload. Given this desired pose, an optimization problem is formulated to find a

set of reference positions for the quad-copters that would minimize the total power

consumed under quasi-static conditions.

The proposed controllers have been successfully evaluated in an indoor labora-

tory setting using measurements from a motion capture system and on-board IMUs.

Results of the experiments are provided throughout the thesis.
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Chapter 1

Introduction

Transportation is a vital component of every economy as its role is beyond shipment

of goods and moving people from one place to another. An efficient transportation

system would lead to significant economic growth and productivity. Hence, policy-

makers are always looking into better transportation solutions that not only boost

economic developments, but also meet the future needs [16, 18]. So far transporta-

tion systems have seen disruptive revolutions. From the invention of the wheel to the

airplane, each technology has remarkably changed human lifestyles. Nowadays, many

shipping and courier services deliver commercial, medical and food products to local

stores or residential addresses and our lives rely heavily on their performance.

Although conventional means of transportation seem functional in many cases,

they suffer from severe shortcomings to meet certain demands and standards. First

of all, they are highly dependent on infrastructures such as roads, highways, airports

and railways. This would make it difficult to access some remote and rural areas if

the logistics are not available. Secondly, they are highly susceptible to congestion

and traffic jams which can severely impact delivery time. Cities and metropolitan
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areas are expanding exponentially and 68% of the world population will live in urban

communities by 2050 [64]. This will further exacerbate the ongoing problem of traffic

congestion and air pollution [26]. Thirdly, they are highly reliant on manual labour

force for all phases of operation and support. During the COVID-19 pandemic, em-

ployees of shipping and delivery services had to often work in unsafe conditions to

keep the supply chain open [14]. New advances and innovations in the transportation

sector are required to help address these short and long-term concerns.

Unmanned Aerial Vehicles (UAVs) are flying robots that can operate either au-

tonomously or by a teleoperator [7]. They are divided into two main categories, i.e,

fixed-wing and rotary-wing UAVs. The latter has the capability to take off and land

vertically whereas a fixed-wing drone requires a runway. Rotary-wing UAVs can hover

and perform complex maneuvers which make them ideal for civil and robotics appli-

cations [67]. Among them, multi-rotor UAVs such as quad-copters and hexa-copters

have been popular due to their low development and operation cost, simplicity and

agility. There are a number of reasons that make multi-rotor UAVs particularly at-

tractive for use in transportation, including:

• Compared with conventional ground-based goods delivery systems, multi-rotor

UAVs are much less reliant on civilian infrastructure such as roads and bridges.

Their vertical take-off and landing capability gives them advantage over their

fixed-wing counterparts [28].

• They can significantly reduce delivery times by avoiding traffic congestion. This

would ultimately decrease the energy cost.

• Battery-powered drones can reduce pollutant emissions [9].

2
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• The operation of UAV transportation systems can be automated to a high

degree in order to reduce human labour costs.

Aside from postal services and e-commerce retailers, several other sectors are also

exploring the use of drones for delivery of emergency and medical supplies [92, 90, 88].

In emergency and disaster recovery scenarios, UAVs can quickly deliver vital medical

and food supplies since ground access to the site is usually very limited [88].

Aerial transport vehicles use built-in containers, grippers or cables to carry their

payload. A built-in container or a gripper increases the vehicle inertia and reduces its

attitude agility [90] whereas carrying the payload through cable suspension preserves

the vehicle agility. This thesis focuses on the motion control problem of an aerial

transport system in which multiple conventional quad-copters cooperatively carry a

cable-suspended payload.

1.1 Motivation

Despite its clear advantages, transporting a cable-suspended payload with a single

quad-copter has two major shortcomings. First, the flight time is usually short due to

the limited energy capacity of the battery, although this might not be a serious concern

for short-range deliveries [42, 62]. The second issue concerns small payload capacity.

While the payload capacity can be increased by using larger motors, propellers, and

batteries, such an approach would inevitably lead to design compromises. A quad-

copter with capacity to carry the heaviest payload would be very inefficient when

used to deliver smaller items. Large drones are also less agile and harder to control

in confined environments [62].
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Figure 1.1: Three quad-copters with a cable-suspended payload in a laboratory
setting.

The limited capacity problem can be solved by employing a number of quad-

copters to cooperatively transport the payload. Figure 1.1 shows an experimental

setup with three quad-copters lifting a cable-suspended payload. This approach po-

tentially yields a number of benefits, including:

• Scalability: The payload capacity can be easily scaled up or down by adding

or removing drones to and from the system [62, 33].

• Fault Tolerance: The system using multiple drones has some inherent fault

tolerance as it may still be able to operate if one or more of the drones fail [57].

Obviously, this would depend on the number of functioning drones and may

require some adjustments in the controller.

• Improved Payload Control: Having multiple attachment points on the pay-

load allows for better control of the payload pose and its swing movements

compared to the case where the payload is suspended by a single cable [59].
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• Cost Efficiency: In general, it is more cost effective to develop and maintain

multiple smaller UAVs than a larger UAV for a given desired payload capac-

ity [4].

• Safety: Accidents are sometimes inevitable and smaller drones tend to pose to

lower safety risk than larger ones in the event of a crash.

Cooperative systems have received much attention in the robotics community

well beyond the transportation application. The system considered in this thesis

can also serve more broadly as a platform for experimenting with advanced control

algorithms [90]. It also has utility for research in the areas of sensing, estimation [84],

path finding and trajectory planning [83].

1.2 Problem Statement

This thesis is concerned with the motion control problem of a cable-based multi-drone

load transport system. This is an under-actuated mechanical system with non-rigid

links connecting rigid bodies. There are significant gaps in the existing literature that

need to be addressed before such transport systems can be used in practice.

The first challenge relates to the under-actuation of quad-copters. This type of

UAV is typically equipped by four propellers with parallel axes. This arrangement

generates torques around all three axes but a net thrust force only along the propellers

main axis [34]. Cascade structures are commonly used for the position control of quad-

copters. In this structure, an outer position control loop generates the desired thrust

magnitude as well as angular reference commands. The attitude reference commands

are passed to an inner-loop controller which would generate the required torques.
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The net thrust and torques are then converted to the required thrust forces for the

individual motors.

In a standard command following control problem, the reference command and its

derivatives are exogenous inputs to the system. However, in a cascade control struc-

ture the references of the inner loop controller are generated from the measurements

in the outer loop. So if derivatives of the references are used in the inner-loop con-

troller, that could usually require derivatives of measurements which are not directly

available. Numerical differentiation of the measurements could lead to excessive noise

or lag and stability issues so it is not a preferable solution for this problem. There-

fore, inner-loop attitude controllers that avoid derivatives of the angular reference

commands are highly desirable [63]. The difficulty is to guarantee the stability of the

closed-loop system in the absence of those derivatives. When the cable attachment

points are shifted from the centre of mass (COM) of the quad-copters, the angular and

translational dynamics of the vehicles become coupled, significantly complicating the

controller design and stability analysis. Consequently, new or substantially-modified

controllers must be devised for quad-copters with shifted attachment points.

Cable flexibility introduces another challenge in the motion control problem of

the cable-based aerial transportation system. Most of the prior work on the subject

inaccurately treats the cables as rigid links, assuming they are always in tension [48].

Although this assumption greatly simplifies the design and analysis of the controller, it

is one that is hard to guarantee under all operating conditions. Cables may easily lose

their tension due to external disturbances and aggressive maneuvering, or throughout

transitory phases of the flight such as take-off and landing [62]. Thus, it is critical to

eliminate this limiting assumption in the design of the controller.

6
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External disturbances such as wind are prevalent in outdoor environments. These

unwanted inputs disrupt the formation shape, and induce oscillations and payload

swings [63]. Large payload swings are generally undesirable in transportation appli-

cations and must be avoided. Hence, the third challenge is to ensure robustness of the

controller with respect to external perturbations. Additionally, disturbance-induced

oscillations have to be sufficiently suppressed.

Given the close proximity of the drones while carrying the payload, inter-drone

collisions are of concern. This issue is particularly relevant in the presence of large

perturbations and during transitory phases of operation. The controller must incor-

porate an effective collision avoidance strategy such that a safe distance is always

maintained among the quad-copters.

Inter-drone communication can help improve the performance of the controller

in maintaining drones formation. In general communication among agents can lead

to better stability margins and enhanced robustness to external disturbances [69].

Inter-drone communication may be subject to time delays which may compromise

closed-loop control stability, if not properly addressed.

The last challenge concerns the formation shape design. Battery-powered quad-

copters have notoriously short flight time. The formation shape directly impacts the

amount of the thrust each quad-copter contributes to the lifting of the payload and

hence its power consumption. With an ill-designed formation shape one or more

quad-copters may disproportionately contribute to the lift force leading to premature

depletion of their battery energy. Therefore, the formation shape must be designed

in such a way to ensure that the load is equitably shared among the drones.

7
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1.3 Thesis Contributions

The goal of this thesis is to develop stable motion controllers for a system of multi-

ple quad-copters cooperatively carrying a cable-suspended payload. These controllers

must avoid unrealistic assumptions about system model and available feedback mea-

surements, and also be simple and robust for use in such safety-critical real-time

control application. The controllers proposed here exploit the energetic passivity

property of the combination of the drones, cables, and payload. Energetic passiv-

ity holds regardless of tension status of the cables, as this fundamental property is

founded on the principle of energy conservation. The proposed controllers require no

measurement from the payload.

The proposed controllers have a cascaded structure. Nominal outer-loop proportional-

derivative (PD) controllers are considered for each drone. PD controllers establish a

passive mapping from velocity to force, which is compatible with a passivity-based

design philosophy. However, PD controllers cannot be fully implemented due to the

quad-copters’ under-actuation. In simple terms, the control force generated by the

PD controller cannot be instantaneously realized since it would not be necessarily

aligned with the direction of the propeller axis. Therefore, adjustments are needed

to ensure the closed-loop stability.

First, assuming the cables are attached to the COM of quad-copters, an attitude

controller is designed such that it aligns the direction of thrust with the desired out-

put force of the outer-loop PD position controller with an exponentially fast conver-

gence. The combination of the outer-loop PD and inner-loop attitude controller yields

bounded tracking errors with time-varying reference positions for the quad-copters.

The proposed controller is decentralized in the sense that it requires no inter-drone
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communication of feedback measurements. Its closed-loop stability is shown using a

Lyapunov analysis.

Although the idea of perfect attitude tracking seems a viable solution in theory, it

is not realizable in practice. Exponential stability of attitude tracking errors require

reference angular velocity and acceleration. These signals contain linear acceleration

and jerk feedback terms making them unsuitable for practical use. Hence, a modified

attitude controller is proposed to eliminate the reference angular velocity and acceler-

ation commands. A detailed stability analysis is provided to demonstrate semi-global

exponential stability of the tracking errors. The stability is shown to be robust with

respect to bounded disturbance forces acting on the quad-copters and the payload.

Additionally, a time-domain observer estimates the energy that perturbations may

inject to the system and dissipates it through variable damping. This helps suppress

disturbance-induced oscillations.

The next contribution relaxes the assumption on attaching the cables to the COM

of quad-copters. In this case, it is not possible to independently analyze the stability of

the attitude tracking errors as the translational and angular dynamics would become

coupled. The outer-loop PD controllers are augmented with time-varying dissipative

terms to account for the drones under-actuation. A storage function is defined that

includes terms inspired by the kinetic and potential energies of the system components

as well as virtual energy of the controller. A time-domain passivity observer is used in

conjunction with an adaptive dissipative term to ensure that the value of the storage

function is continuously decreased and hence, guarantees closed-loop stability. In this

framework, a passivity-based controller is considered for the angular motion as well.

This eliminates the need for system parameters such as the moment of inertia in the
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controller.

A collision avoidance strategy is integrated in the proposed passivity-based control

scheme to establish a minimum safe distance among the quad-copters. The stability

of the closed-loop system with this safety constraint has been proven using a modified

storage function that includes a Barrier Lyapunov candidate. The collision avoidance

controller generates repulsive forces that would help maintain the safe inter-drone

distances.

Simplicity and robustness are highly desirable features of passivity-based con-

trollers. However, a fully decentralized passivity-based controller may not be very ef-

fective in preserving the formation shape in response to external perturbations. This

is because each drone controller would only react to local position tracking errors and

is unaware of the neighboring drones positions. A revised controller is introduced that

incorporates coupling terms among the drones in order to help better preserve the for-

mation shape. However, this requires exchange of position measurements among the

drones, which could be subject to communication time delay. Lyapunov-Krasovskii

functionals have been employed to derive sufficient conditions for closed-loop stabil-

ity in the presence of these time delays. These conditions establish guidelines for

selecting the controller gains.

The proposed controllers assume that the desired formation shape of quad-copters

are provided indirectly through the reference position commands to the individual

drones. Given the flexibility available in choosing these references, the question natu-

rally arises as to how they should be selected. In this thesis, the reference positions for

the quad-copters are obtained by formulating and solving an optimization problem.

The objective is to minimize the total power consumption for holding the payload
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under quasi-static conditions in order to maximize the flight time. This is the power

that the quad-copters spend to simply balance the payload against gravity. The con-

straints in the optimization problem arise from the equations of static equilibrium,

kinematic constraints imposed by the cables, and the inter-drone minimum safe dis-

tance requirement.

The formation optimization requires information from the payload. The load size,

geometry, and the position of the attachment points directly impact the optimal for-

mation shape. If not available, these parameters have to be estimated experimentally.

A calibration process is proposed for this purpose. During the calibration, the quad-

copters fly with the payload in an arbitrary formation. The position data collected

from the flight is then used in a least-squares estimation of the payload parameters.

The unique features and capabilities of the proposed controllers in this thesis are

summarized below:

• The controllers make no assumption about the cables being in tension as they

rely on the energetic passivity property of the multi-body mechanical system.

This fundamental property holds regardless of the status of the cables tension.

• Unlike most prior work, the controllers consider a rigid body payload model as

opposed to a point mass model.

• The controllers require no feedback measurement from the payload.

• Both decentralized and distributed control architectures have been proposed

and analyzed.

• A modified inner-loop attitude controller is proposed which eliminates reference

angular velocity and acceleration commands. This helps eliminate the need for
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linear acceleration and jerk measurements.

• Disturbance-induced oscillations are attenuated using an energy observer and

damping injection.

• A variation of the controller is developed where the cable attachment points are

not limited to the drones COMs. This provides greater flexibility in configuring

the drones for carrying the payload.

• The controller is augmented with a term to avoid inter-drone collisions. This is

achieved using a Barrier Lyapunov function.

• Formal proofs of stability are given for all the proposed control strategies, where

the quad-copter under-actuation is taken into account.

• A method is proposed for minimizing the total power consumption by optimizing

the formation shape for a given desired payload position and orientation.

• The effectiveness of the control strategies is demonstrated in several indoor

experiments using a three-drone payload transport system.

1.4 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 surveys the state-of-the-

art in motion control of aerial transportation systems. Chapter 3 is concerned with

system modeling including kinematics, dynamics and energetic passivity property.

It also outlines the assumptions made throughout the thesis. Chapter 4 presents a

decentralized motion controller for the case when cables are attached to the COM of

12
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drones. A cascade structure is considered in which the angular error dynamics of the

inner-loop controller are exponentially stable. Chapter 5 improves on this decentral-

ized controller by eliminating the need for the first and second-order derivatives of the

attitude commands in the inner-loop attitude controller. The controller stability and

its robustness to disturbances are analyzed. A novel centralized disturbance atten-

uation scheme is introduced to suppress oscillations and payload swing. In Chapter

6, the controller is revised to allow for shifted cable attachment points. The con-

cepts of passivity observer and controller are used to deal with this problem. Safety

constraints are introduced to avoid inter-drone collisions. A Lyapunov-based barrier

function is added to the nominal storage function to integrate these safety constraints

into the design. Chapter 7 introduces a distributed variant of the controller with pos-

sible time delays in the inter-drone communications. A detailed proof of stability is

provided using a Lyapunov-Krasovskii functional. Chapter 8 introduces formation

shape optimization and an experimental method to estimate the payload parameters.

The thesis is concluded in Chapter 9 where some avenues for future work are also

considered.

1.5 Related Publications

1.5.1 Journal Papers

• K. Mohammadi, S. Sirouspour, and A. Grivani, “Formation Shape and Con-

trol in Cable-Based Aerial Transportation Systems”, to be submitted to IEEE

Transactions on Control Systems Technology.
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• K. Mohammadi, S. Sirouspour, and A. Grivani,“Passivity-Based Control of Mul-

tiple Quad-Rotors Carrying a Cable-Suspended Payload”, Accepted, IEEE/ASME

Transactions on Mechatronics.

• K. Mohammadi, S. Sirouspour, and A. Grivani. “Control of Multiple Quad-

Copters With a Cable-Suspended Payload Subject to Disturbances.” IEEE/ASME

Transactions on Mechatronics 25.4 (2020): 1709-1718.

1.5.2 Conference Paper

• K. Mohammadi, M. Jafarinasab, S. Sirouspour, and E. Dyer. “Decentralized

motion control in a cabled-based multi-drone load transport system.” 2018

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

IEEE, 2018.
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Chapter 2

Literature Review

Real world autonomous delivery is not achievable unless a robust position control

scheme is developed for the unmanned vehicles. The position controller must receive

the desired trajectory of the system and safely transport the payload to its destination

along this trajectory.

This chapter reviews the literature pertinent to the topic of thesis research. It

begins by looking at the advantages of using the energetic passivity property of me-

chanical systems for their control. This is followed by a review of passivity-based

controllers and their application. The rest of this chapter focuses on the state of the

art in control of quad-copters with or without a payload. The third section explores

the position control of a single quad-copter with no payload. Next, motion control

of a single quad-copter with a cable-suspended payload is surveyed. This part of

the review is divided into two parts as some papers have considered closed-loop con-

trol over the payload while others addressed the problem with only UAV feedback

measurements. Finally, papers on motion control of multiple quad-copters with a

cable-suspended payload are reviewed, where some of the deficiencies of the existing
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methods have been highlighted.

2.1 Energetic Passivity

The use of inverse dynamics along with a stabilizing controller has been popular

for control of fully-actuated dynamical systems. The first part of such controller

cancels out the inherent dynamics of the system while the latter shapes the closed-loop

characteristic to satisfy certain stability and performance requirements [36]. From a

Lyapunov-based control design perspective, the inverse dynamics transforms the time-

derivative of a Lyapunov function into inner product of two vectors: state variables

and complementary control inputs. Although this technique has been exploited in

many control systems [10, 78, 65], its practical use is limited as it requires perfect

knowledge of the system dynamics.

The energetic passivity of mechanical systems opens up a path for designing simple

robustly stable controllers. For the so-called passive systems, the maximum energy

that can be extracted from the system is not more than the supplied energy [29]. In

other words, the rate of change in the system total energy is less (or at most equal to)

than the supplied power to it. Picking the physical storage function of the system as

the Lyapunov candidate, the energy rate would be upper bounded by inner product

of generalized velocity and the control inputs. This is a similar result to what was

achieved after applying inverse dynamics. However, it is achieved through a natural

property of the system instead of exerting any control actions. This passivity property

holds irrespective of the values of the system parameters. Therefore, it provides a

means for designing controllers that are robust with respect to estimation errors or

changes in these parameters [47].
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The energetic passivity has been an indispensable tool for the design of robot

control systems [47]. These include controllers for rigid manipulators [70], teleopera-

tion systems [68], parallel robots with elastic cables [40], spacecrafts [19] and wheeled

mobile robots [46]. The design of passivity-based controllers is relatively straightfor-

ward, often utilizing energy shaping methods to achieve a desired performance while

ensuring closed-loop stability [35].

2.2 Passivity-Based Control

There is a connection between the passivity concept, which is fundamentally an in-

put/output property and Lyapunov stability, which is an internal stability concept.

For a closed-loop system, the Lyapunov stability approach requires that a positive

definite function of the states to decrease monotonically along the system trajectories.

In passivity-based control, the system to be controlled is passive with respect to its

input and output port variables. This means that the rate of change in the phys-

ical storage function of the plant is upper bounded by the power supplied through

input-output ports.

Now, if the passive plant is connected in feedback form to an energetically passive

controller, then the resulting feedback connection preserves passivity as well. To show

this analytically, consider the feedback interconnection of two systems in Figure 2.1.

A passive plant with input e1 and output y1 can be described mathematically as [39],

Plant:


ẋ1 = f1(x1, e1)

y1 = h1(x1, e1)

(2.1)
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where there exists a positive semidefinite storage function V1 such that [29],

V̇1 ≤ yT
1 e1 (2.2)

Similarly, a passivity-based controller can be represented as follows,

Controller:


ẋ2 = f2(x2, e2)

y2 = h2(x2, e2)

(2.3)

Consider V2 as the storage function of the control action. Then, the following storage

function can be defined for the whole feedback interconnection,

VT , V1 + V2 (2.4)

It follows from taking the time derivative of (2.4) along the system trajectories that,

V̇T ≤ eT
1 y1 + eT

2 y2 = (u1 − y2)Ty1 + (u2 + y1)Ty2 = uT
1 y1 + uT

2 y2 , uTy (2.5)

where the passivity property of each system was exploited and u ,

u1

u2

, y ,

y1

y2

.

If the exogenous inputs of the system are zero, i.e. u = 0, then it follows from

inequality (2.5) that,

V̇T ≤ 0 (2.6)

This implies internal stability of the feedback interconnection in Lyapunov sense.
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Figure 2.1: Feedback interconnection of two systems.

Hence, Lyapunov stability and passivity concept are highly correlated.

The simplest passivity-based controller that satisfies all the above conditions is

the ubiquitous PD compensator. The proportional term acts as a virtual spring force

to bring the system close to the desired reference command. The derivative term

injects dissipation as it behaves like a damper. The first part is the negative of the

gradient of a quadratic spring-type potential field. The damping term is to force the

energy to reach its minimum as time tends to infinity.

Passivity-based controllers have been applied to both manipulators and mobile

robots. Ortega and Spong designed an adaptive passivity-based motion controller

for rigid manipulators [70]. Nuno et al. proved PD controllers can globally stabilize

time-delayed bilateral teleoperation systems under certain gain conditions. Brogliato

et al. applied passivity-based controllers to flexible joint manipulators to achieve

global tracking performance [6]. A similar strategy has been used for underwater

mobile robots considering a multiplicative input uncertainty [23]. See [29] for more

applications of passivity-based controllers. Prior work on passivity-based control of

UAVs will be discussed later in this chapter.
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2.3 Position Control of Quad-Copters

Cascade control structures are popular whenever two feedback loops have significantly

different response time. This structure allows for initial independent design of con-

trollers for each loop without considering their interaction. Then, certain conditions

can be imposed on the coupling terms to ensure closed-loop stability of the inter-

connected system [77]. This idea goes back to the theory of singular perturbation,

mostly known as time-scale separation principle [56, 66].

The outer loop in position control of quad-copters requires translational position

measurements. Motion capture system in indoor lab settings or Global Positioning

System (GPS) in outdoor environments can provide this information. The inner loop

is an attitude controller which typically has a higher control update rate because of the

availability of high-rate IMU-based attitude measurements. This is in contrast with

the lower update rates of motion capture and GPS systems. Figure 2.2 demonstrates

a cascade position controller for a single quad-copter. The reference position and

yaw angle trajectories are the inputs of this control system. The outer loop receives

the position measurements and generates desired angles and thrust commands for

the inner-loop controller. This is to generate a desired net force for the quad-copter

based on the position tracking errors. The attitude measurements are fed back to the

inner loop where the angular controller is implemented.

The first position control strategy accompanied with a formal proof of stability

was proposed in [37] where a linear growth condition for the interconnection term

was given. This term is basically the force error due to under-actuation. In this

work, PD controllers with feedforward terms are designed separately for both loops.
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Figure 2.2: Cascade structure for position control of a single quad-copter

In [93], the performance of PD controllers was improved by augmenting online es-

timation of parametric uncertainty and the external disturbance upper-bound. In

particular, aerodynamic coefficients were considered constant or slow-varying and

were estimated by adaptation laws. In [75], a continuous sliding-mode control with

finite-time convergence was proposed for position control of quad-copters. Although

sliding-mode control is generally robust with respect to uncertainties and perturba-

tions, it suffers from high frequency chattering [39]. The problem still exists even with

high-order sliding mode controllers since finite-time convergence controllers include

non-Lipschitzian switching functions with discontinuity in the origin [89]. In [52] an-

other robust hierarchical strategy for position control of quad-copters was proposed.

The control law consists of a nominal PD and a disturbance observer scheme. The

observer employs a low-pass filter to avoid acceleration measurements. Although the

proposed method is theoretically interesting, it is not generally straightforward to

tune the cut-off frequency of its low-pass filter.

Aside from nonlinear control techniques, optimization-based control laws have

been also considered for position control of quad-copters. In particular, researchers
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have been looking into approaches such as Model Predictive Control (MPC) to mini-

mize a certain cost function while enforcing state and input constraints. The control

inputs of a quad-copter can easily hit the saturation levels due to limited throttle

range. This highlights the need to impose input constraints in the control design

process [41]. See [1, 5] for applications of MPC in quad-copters.

The orientation of a rigid-body can be expressed based on a variety of representa-

tions including Euler angles, quaternions and rotation matrices. Among them, Euler

angles are intuitive and simple. However, they exhibit singularities in certain con-

figurations [13]. Although Euler-angle-based attitude controllers works perfectly well

for conditions near hovering or smooth trajectories, they are unsuitable for aggressive

maneuvers of quad-copters. Hence, an innovative geometric tracking controller was

proposed in [49] where it not only avoids singularity, but also guarantees the closed-

loop system stability. Additionally, satisfactory experimental results were reported

for highly aggressive trajectories [58]. Aggressive maneuvers, however, are uncommon

in aerial transportation. These systems have to follow smooth reference trajectories

to ensure the package is transported safely. Therefore, Euler angles representation

should suffice for this particular application.

All the aforementioned cascade position controllers work based on attitude con-

trollers with exponentially converging angular tracking errors. To achieve this, these

controllers require the desired angular velocity and acceleration, which in turn include

the linear acceleration and jerk of quad-copters. In practice, these signals are noisy

and in the case of jerk not directly measured [63]. A controller with no use of desired

angular acceleration was introduced and implemented in [58]. However, the paper

provided no mathematical proof of the system stability.
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2.4 Payload Transportation

Each payload has to be carried with special considerations and requirements. For

instance, commercial goods are predominately in solid form and packaged in a way

that can be safely transported without precise load control. For such payloads, it

would be sufficient to close the feedback loop over the UAV. Since the parcel is

constrained to the drone via cable attachments, its position is restricted to a close

proximity of the vehicles. Once the drones arrive at their final destination, they can

safely deploy their payload without the need for precise control of its position or

orientation. On the other hand, the full pose of some payloads have to be constantly

controlled while being transported. For instance, carrying payloads containing liquids

requires direct control of position and specially orientation. While having precise

control over the payload may be a nice feature, it could unnecessarily complicate the

hardware and control algorithm requirements. In particular,

• It would require measuring the position and orientation of the payload. While

this might be straightforward in indoor lab settings with a motion capture

system, it would be far more challenging in outdoor environments. A possible

solution is to use vision systems such as stereo cameras [38]. However, it would

increase the processing time and computational cost.

• It would require knowledge of the payload’s geometry and dynamics. While

many researchers assumed a point mass model for the payload, e.g., see [50,

33], a rigid-body representation is needed for orientation control. To carefully

address the load control problem for a rigid-body object, it is integral to know

its parameters including mass, the moment of inertia and the centre of mass.
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Moreover, the length of cables has to be known.

• It would require the cables to be always in tension in order to maintain control

over the load. Slack cables cannot exert the desired forces and moments for

a precise load control. Although this constraint can be considered in online

trajectory planning, it is difficult to guarantee it in real world applications

where the payload could be subject to wind and other disturbances.

• It would significantly complicate the control design problem. The payload po-

sition control problem would add another layer to the aforementioned cascade

architecture [84, 82]. The first layer requires the payload velocity and passes the

commanded payload orientation to the second stage which involves the third

derivative of the payload position. The second layer generates the desired at-

titude for quad-copter which includes the fifth derivative of payload position.

These high-order measurements are not directly available and would be exces-

sively noisy if computed numerically.

It is therefore prudent to consider full pose control only in applications that def-

initely benefit from it. For delivery of commercial parcels, precise control of the

payload trajectory is mostly unnecessary and is forgone in the interest of controller

simplicity and robustness.

2.4.1 Indirect Payload Control - Single Quad-Copter

In this part, papers on motion control of aerial transportation systems are reviewed

where the control loop is closed over the UAVs. The survey starts with the control

of a single quad-copter carrying a cable-suspended payload and then expands to of
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multiple quad-copter delivery systems. The goal here is mostly to guarantee safety

and robustness rather than accurate trajectory following for the payload.

The authors in [12] proposed a hybrid model of a single quad-copter with a cable-

suspended payload. The control design has been restricted to the planar case. An

extension of this work to three dimensional space was presented later where a hy-

brid nonlinear controller was designed for the outer loop [11]. Although the hybrid

modeling of this study is comprehensive, the control design lacks a proof of stability.

In [50], the authors obtained system dynamics using the Lagrange method. They

modeled the cables as rigid links. This assumption can be easily violated particularly

during the take-off and landing phases of the flight or in the presence of external

disturbances [63]. Furthermore, only a constant reference position is considered in

this work. The method was later extended to include adaptive compensation for

aerodynamic damping coefficients [51]. Moreover, the overshoot of the vehicle was

ensured to remain within a certain prescribed range.

A damping assignment passivity-based controller was proposed in [25] to suppress

payload swing. The swing can be particularly problematic for a payload with a

single attachment point as it may introduce oscillations and even instability in the

system. While consistent with the under-actuation of the payload, the method has

some notable shortcomings. It models the cables as rigid links and considers only the

motion in the longitudinal plane. With similar assumptions, a feedback linearization

with PD control was proposed in [24] where a small angle approximation is used near

hovering condition. The controller was augmented with a state observer to estimate

the swing angle and its derivative.

External disturbances and perturbations complicate stabilization of a UAV with
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a cabled-based suspended load. An adaptive compensator for unknown constant was

introduced in [43] where a PID-like controller was combined with a swing suppression

strategy. Although the paper provides a formal proof of stability, it neglects the

under-actuation force error of the vehicle. Moreover, it assumes the cables remain

taut throughout the whole flight.

Increasing the number of attachment points can generally improve controllability

over the payload [59]. A novel suspension mechanism was proposed in [8] where a

payload is attached to a single quad-copter via four cables. The coupling forces and

moments between the payload and the UAV were treated as bounded disturbances.

Then, a robust sliding-mode controller was developed for both loops to overcome

the adverse effects of these perturbations. The angular controller includes a signum

function with arguments of angular velocity error. Such discontinuity in the control

signal is generally undesirable.

Another interesting direction of research was pursued in [73] where guidance and

control laws were proposed for soft landing of a point mass payload. That is to

achieve zero payload velocity when a fragile cable-suspended payload touches the

ground. Although shifted attachment point was initially included in the model, it

was ultimately ignored in the design of the controller. A state-feedback controller

based on a linearized model was developed for the outer loop. The guidance strategy

was tested in both simulation and experiment.

2.4.2 Indirect Payload Control - Multiple Quad-Copters

Some of the advantages of cooperative aerial transportation were mentioned in the

first chapter of this thesis. Prior work on such systems without feedback from payload
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is review in this section.

A decentralized velocity synchronization scheme was proposed in [87] where the

cables are modeled as rigid links. An adaptive term was added to equally distribute

the payload weight among the UAVs. The stability analysis was carried out assuming

fully-actuated agents. Simulation results were provided where the payload forces were

modeled as spring forces.

In [44], a cooperative passivity-based control strategy was proposed to achieve a

desired formation shape while carrying a suspended payload. The cables were mod-

eled as rigid links. The formation controller is augmented with adaptation laws to

compensate for point-mass payload forces. The controller was validated in outdoor

experiments. A detailed stability proof was provided where the agents were con-

sidered as fully-actuated. Moreover, the cable forces were assumed to be constant

throughout the whole mission. This assumption ignores the fact that the cable forces

are generated through a feedback mechanism involving the drones and payload.

A full mathematical model of kinematics and dynamics of collaborative aerial

transportation was obtained in [91] for a system involving multiple UAVs carrying a

rigid-body payload attached with rigid rods. The system dynamics were linearized

around non-equilibrium state-input pairs so that they can be exploited in a decen-

tralized MPC framework. Unlike centralized algorithms, this controller works based

on sharing predicted control inputs instead of state measurements. The proposed

framework thoroughly considers physical constraints of the system including actuator

and safety constraints. The objective is to minimize the quad-copters position as well

as the payload attitude tracking errors.
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2.4.3 Direct Payload Control - Single Quad-Copter

In the papers reviewed in the previous subsections, the desired trajectories were de-

signed for the quad-copters. There are a number of other papers that have defined

the performance requirements on the payload side. Feedback measurements from the

payload are essential to achieve this objective. It is noted that some swing suppression

strategies utilize load measurements to enhance internal stability while still closing

the control loop over the UAV. See [22] for an example.

In [82], load position control problem was addressed for the first time where the

authors considered a planar quad-rotor with a cable-suspended object. The payload

was modeled as a point mass and the controller requires the payload mass and cable

length. The authors showed semi-global exponential stability of the tracking errors.

An extension of this work to three dimensional case was proposed later in [81]. Sim-

ulation results were reported where almost global exponential stability of the load

position tracking error was demonstrated.

The load position controller in [81] requires measurement of the payload position

and velocity, which can be difficult to obtain in an outdoor environment. Tang et al.

addressed this issue using a downward-facing camera and estimated payload states

using an extended Kalman filter [84]. The load position controller is structurally sim-

ilar to [81]. The only difference is the addition of an integral control to the outer loop.

Although the integral action generally improves steady-state performance, it requires

the stability analysis to be revisited. Furthermore, both of these papers assumed the

attachments point to be at the COM of the UAV. Robustness of these model-based

controllers to uncertainties and attachment offset errors were not investigated.
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2.4.4 Direct Payload Control - Multiple Quad-Copters

Concurrent position and attitude control for a cable-suspended payload was first con-

sidered in [48]. It was shown that at least three quad-copters are required to control

both translational and rotational motion of the payload. A geometric nonlinear PID

controller was developed that fully considers the nonlinear system dynamics. A rig-

orous stability analysis demonstrated the convergence of the tracking errors. This

method has a few notable limitations. It treats the cables as rigid links and assumes

they are attached to the COM of the quad-copters. Moreover, the angular controllers

employ sliding mode terms to achieve finite-time stability. This introduces undesir-

able chattering in the control signals. Finally, high-order numerical differentiation of

state measurements are required to implement the controller. In particular, the fifth

derivative of the load position is needed.

The authors in [33] considered multiple quad-copters with a cable-suspended pay-

load. They formulated the control design problem as an MPC with several con-

straints: control saturation, obstacle avoidance and inter-drone collision avoidance

were included in the formulation. The resulting non-convex optimization was solved

by a novel solver called ALTRO [31]. Similar to most existing work on the subject,

the approach models the cables as rigid links. The payload is only a point mass and

the cables are considered to be attached to the COM of UAVs.

Full pose manipulation of a cable-suspended payload was proposed in [76] where

the cooperative aerial transportation was treated as a cable robot. Using Jacobian

matrix as a mapping from payload pose to quad-copter positions, a kinematic con-

troller was developed to satisfy a H∞ robust stability index. The biggest advantage

of the proposed controller is in its ability to achieve full pose control over the payload
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without high-derivative measurements. However, kinematic controllers usually have

limited bandwidth. In addition, under-actuation property of the vehicles was ignored.

2.5 Summary

In this chapter, first, the concept of energetic passivity and passivity-based control

were briefly reviewed. Then, the position control of a single quad-copter with no

load was studied where different existing cascade control structures were discussed.

Finally, the state of the art control approaches for aerial transportation systems were

surveyed.

Based on this review, the biggest gaps in the literature can be summarized as fol-

lows: i) cables have been treated as rigid links; ii) under-actuation force errors have

not been considered in modeling and stability analysis; iii) Some of the proposed con-

trollers work based on unrealistic measurements such as high-derivative of payload’s

velocity; iv) the payload has been considered as a point mass rather than a rigid-body

with motion along six degrees of freedom; and finally v) the cable attachment points

are restricted to the COM of quad-copters.
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Chapter 3

System Modeling

In this chapter, a model of the multi-drone cable-based payload transport system

is presented. First, the thesis assumptions on system modeling and dynamics are

given. Second, the kinematic constraints of the system are derived based on geometric

relations imposed by the length of the cables. Third, equations of motion are obtained

using Newton-Euler methodology. Finally, the energetic passivity of drones-cables-

payload system is shown. The derivations in this chapter are for a general case where

the cables are attached at arbitrary points on both the UAVs and the payload.

3.1 Modeling Assumptions

The following modeling assumptions have been made throughout this thesis:

• The cables are massless and do not stretch or become disconnected during the

flight.
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• The payload is a rigid-body with six degrees of freedom with arbitrary attach-

ment points.

• Drag forces are negligible unless otherwise stated.
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Figure 3.1: Schematic of the aerial transportation system with the motion variables
defined. There are no restrictions on the cable attachment points, i.e., they are not

limited to the COMs.

3.2 Kinematics

Referring to Figure 3.1, it is noted that the distance between two attachment points

on a drone and the payload cannot exceed the length of the corresponding cable, i.e.,

‖(qi+Ridi)−(qL+RLri)‖≤ li , i = 1, ..., n (3.1)

where qi = [Xi, Yi, Zi]
T ∈ R3 is the position of the ith quad-rotor body-attached

frame with respect to the world frame; qL ∈ R3 denotes the position of the payload
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in the world frame. The matrices Ri and RL ∈ SO(3) are the corresponding rotation

matrices for the ith quad-rotor and the payload, respectively. Moreover, ri ∈ R3 is

the vector connecting the COM of the payload to the attachment point of the cables,

and is expressed in the body-fixed frame of the payload. The vector di ∈ R3 connects

the COM of the ith quad-rotor to the attachment point of the cable and is expressed

in the body-fixed frame of the ith drone. The lengths of the cables are denoted by

li ∈ R+ and n is the number of quad-rotors.

3.3 Equations of Motion

In this section, the dynamics of a cooperative aerial transportation system with a

cable-suspended payload is presented. Consider the following equations,

miq̈i = fiRiz −migz + TiRLei (3.2)

Jiω̇i + ω×i Jiωi = τi+d
×
i

(
TiR

T
i RLei

)
(3.3)

mLq̈L = −
n∑
i=1

TiRLei −mLgz (3.4)

JLω̇L + ω×LJLωL =
n∑
i=1

r×i (−Tiei) (3.5)

Here, mi ∈ R+ is the mass of the ith quad-rotor, Ji ∈ R3×3 is its moment of inertia

with respect to the body-fixed frame, and g ∈ R+ is the gravitational acceleration.

Similarly, mL ∈ R+ and JL ∈ R3×3 denote the mass and the moment of inertia of

the payload. The thrust and torques in the body-fixed frames are represented by

fi ∈ R and τi ∈ R3. The tension magnitude of each cable is Ti ∈ R+ ∪ {0} with

ei being a unit vector along the cable direction expressed in the body-fixed frame
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of the payload. The angular velocity of the ith quad-rotor w.r.t the world frame

is represented by ωi which is expressed in the body-fixed frame of the ith drone.

The vectors ωL ∈ R3 denotes the angular velocity of the payload in its body-fixed

frame. Finally, the superscript × is the cross-product operator which maps a vector

a = [a1, a2, a3]T ∈ R3 to a skew-symmetric matrix

a× =


0 −a3 a2

a3 0 −a1

−a2 a1 0

 (3.6)

The roll-pitch-yaw Euler angles are used to represent the orientation of the rigid

bodies in this thesis. The angle vector ηi = [φi, θi, ψi]
T ∈ R3 represents the orientation

of the ith quad-rotor body-attached frame with respect to the world frame. The time

derivative of the Euler angles are related to the angular velocity of the body through

the matrix Ψ(ηi) ∈ R3×3 as follows

ωi = Ψ(ηi)η̇i (3.7)

where

Ψ(ηi) =


1 0 − sin(θi)

0 cos(φi) cos(θi) sin(φi)

0 − sin(φi) cos(θi) cos(φi)

 (3.8)

As a result, the angular motion dynamics of the quad-rotors in (3.3) can be rewritten
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as,

Ji

(
Ψ(ηi)η̈i + Ψ̇(ηi)η̇i

)
+
(
Ψ(ηi)η̇i

)×
JiΨ(ηi)η̇i = τi + d×i (TiR

T
i RLei) (3.9)

After multplying both sides by ΨT (ηi) and some algebraic manipulations, it follows

that,

M(ηi)η̈i + C(ηi, η̇i)η̇i = Ψ(ηi)
Tτi + ΨT (ηi)d

×
i (TiR

T
i RLei) (3.10)

where,

M(ηi) , Ψ(ηi)
TJiΨ(ηi)

C(ηi, η̇i) , Ψ(ηi)
TJiΨ̇(ηi)+Ψ(ηi)

T
(
Ψ(ηi)η̇i

)×
JiΨ(ηi)

This is the Euler angle representation of the attitude dynamics. Here, it is assumed

that the roll and pitch angles stay in the permissible range, | φi |< π
2

and | θi |< π
2

which guarantees the inverse of Ψ(ηi) to exist.

3.4 Energetic Passivity

In this section, the energetic passivity property of cable-based cooperative aerial

transportation system is demonstrated. In the first subsection, the transition of

the cables from slack to taut or vice versa has been considered ideal. In the second

section, this transition has been modeled as an inelastic collision. Energetic passivity

of the system has been shown in both cases.
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3.4.1 Ideal Transition

Consider equations of motion (3.2), (3.10), (3.4) and (3.5). The total energy of the

combined drones, cables, and payload system can be written as,

E =
1

2

n∑
i=1

miq̇
T
i q̇i +

n∑
i=1

migz
Tqi +

1

2

n∑
i=1

η̇T
i M(ηi)η̇i +

1

2
mLq̇

T
L q̇L (3.11)

+mgzTqL +
1

2
ωT
LJLωL + β

where β is a positive constant. By taking the derivative of the total energy in (3.11)

with respect to time and using (3.2), (3.10), (3.4), and (3.5), it follows that

Ė =
n∑
i=1

q̇T
i

(
Rizfi −migz + TiRLei

)
+

n∑
i=1

migz
Tq̇i +

n∑
i=1

η̇T
i

(
Ṁ(ηi)− 2C(ηi, η̇i)

)
η̇i

(3.12)

+
n∑
i=1

η̇T
i

(
ΨT(ηi)

(
τi + d×i (TiR

T
i RLei)

)
− q̇T

L

( n∑
i=1

TiRLei +mLgz
)

+mLgz
Tq̇L

− ωT
L

(
ω×LJLωL +

n∑
i=1

r×i (Tiei)
)

After some algebraic manipulations and using the fact that the matrix Ṁ(ηi) −

2C(ηi, η̇i) is skew-symmetric [79], it can be shown that,

Ė =
n∑
i=1

q̇T
i (Rizfi)+

n∑
i=1

ωT
i τi+

n∑
i=1

Ti(RLei)
T(q̇i − q̇L)

+
n∑
i=1

Ti(R
T
i RLei)

T(ω×i di)−
n∑
i=1

Tie
T
i (RT

LRL)(ω×L ri)
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where the so-called scalar triple product property has been employed. Furthermore,

the rotation matrix is orthogonal which implies R−1
L = RT

L. Therefore,

Ė =
n∑
i=1

q̇T
i (Rizfi) +

n∑
i=1

ωT
i τi (3.13)

+
n∑
i=1

Ti(RLei)
T
(
q̇i − q̇L+Ri(ω

×
i di)−RL(ω×L ri)

)

The second line is always zero regardless of cables status. If a cable is not in tension,

then Ti = 0. If it is in tension, then the projections of relative velocities along the

cables are zero, which implies that

(RLei)
T
(
q̇i − q̇L +Ri(ω

×
i di)−RL(ω×L ri)

)
= 0 (3.14)

Thus, it can be concluded that

Ė =
n∑
i=1

q̇T
i (Rizfi) +

n∑
i=1

ωT
i τi (3.15)

which demonstrates the energetic passivity of the system.

3.4.2 Nonideal Transition

The cable goes from taut to slack when the tension becomes zero. Once the tension

is re-established, there is a discrete change in the velocity. This can be modeled as a

perfectly inelastic collision [11], [80]. In particular, the condition for the ith cable to
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go from slack to taut can be mathematically formulated as [80], [83],

S={‖(qi +Ridi)− (qL +RLri)‖ = li ,
d

dt
(‖(qi +Ridi)− (qL +RLri)‖) > 0} (3.16)

Therefore, the cooperative aerial transportation system with a cable-suspended pay-

load can be modeled as a hybrid system that has several discrete states based on the

status of the cables. However, the most important feature of the proposed passivity-

based approach is that it works regardless of the cables status. In fact, the passivity

property always holds for all these discrete states. To show that, consider Equa-

tion (3.13),

Ė=
n∑
i=1

q̇T
i (Rizfi) +

n∑
i=1

ωT
i τi +

n∑
i=1

Ti(RLei)
T
(
q̇i − q̇L+Ri(ω

×di)−RL(ω×L ri)
)

(3.17)

It has been shown that the last term remains zero if the cable is either in a slack or

taut status. Here, we demonstrate that the transition from slack to taut preserves

passivity.

The unit vector along the ith cable, ei, is expressed in the body-fixed frame of the

payload. As a result, liRLei = (qL + RLri) − (qi + Ridi) and d
dt

(‖(qi + Ridi) − (qL +

RLri)‖) = d
dt

(‖liRLei‖). It can be shown that

d

dt
(‖liRLei‖) = li

d

dt

√
(RLei)T(RLei) = 2li

(RLei)
T d(RLei)

dt√
(RLei)T(RLei)

(3.18)

It follows from (3.16) that d
dt

(‖liRLei‖) > 0 which implies that

(RLei)
Td(RLei)

dt
=

(RLei)
T

li

(
q̇L +RL(ω×L ri)− (q̇i +Ri(ω

×di))
)
> 0 (3.19)
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Now going back to (3.17), it is clear that the third term exhibits a dissipative behavior

once we are in a transition from slack to taut,

n∑
i=1

Ti(RLei)
T
(
q̇i − q̇L+Ri(ω

×di)−RL(ω×L ri)
)
< 0 (3.20)

Therefore, regardless of any status in cables or a transition between them, the pas-

sivity property holds.

Ė ≤
n∑
i=1

q̇T
i (Rizfi) +

n∑
i=1

ωT
i τi (3.21)

3.5 Summary

In this chapter, kinematics and dynamics of cable-based cooperative aerial transporta-

tion system were obtained. In addition, energetic passivity property was mathemati-

cally demonstrated. This property holds regardless of cables status. Interestingly, the

nonideal transition of cables from slack to taut has some intrinsic dissipation since it

can be modeled as an inelastic collision. As a result, the energetic passivity property

remains valid for all cases.
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Chapter 4

Decentralized Passivity-Based

Control

This chapter presents a provably stable method for decentralized motion control

of multiple quad-copters carrying a cable-suspended payload. The intuition behind

the approach is that the transportation application does not require very accurate

motion control of the payload itself. What is important is robust stability of the

control system. PD controllers are known to provide robust stable motion control

for conventional robotic manipulators, when accurate tracking is not critical. This is

thanks to the energetic passivity of the controller and robotic manipulator subsystems.

The proposed motion control method relies on the principle that the interconnected

drones-payload system is energetically passive, irrespective of the status of the cables.

The control laws are derived from a Lyapunov function inspired by the passivity of

The result in this chapter was presented in the 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). See reference [62].
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the system, and take into account the drones under-actuation. They can be imple-

mented in a decentralized way on the individual drones using local position/velocity

measurements, and do not require any measurement from the payload. They also

make no assumption about the status of the cables tension.

Throughout this chapter, it is assumed that the cables are attached to the COM

of the aerial vehicles. This assumption would decouple angular motion of the drones

from the rest of the system and allow for independent control design.

To realize the proposed passivity-based idea, an exponentially stable trajectory

tracking controller is designed for the angular motion of quad-rotors. This ensures

fast alignment of the thrust with the desired PD force. Although this approach cannot

be exactly implemented in the given format, it provides good insight into a rather

simple approach to the control of this multi-body mechanical system.

The rest of this chapter is organized as follows. First, the control design pro-

cess is presented. Next, the stability of the closed-loop system is investigated. Fi-

nally, experimental results are given to demonstrate the effectiveness of the proposed

passivity-based controller.

4.1 The Proposed Controller

Consider the attitude dynamic of a quad-copter in (3.10) with no offset in the attach-

ment point, i.e. di = 0. Then, the attitude motion can be described as,

Mi(ηi)η̈i + Ci(ηi, η̇i)η̇i = Ψ(ηi)
Tτi (4.1)

The development of the control laws takes advantage of the decoupling of the
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translational and angular dynamics and begins with the attitude control of the indi-

vidual drones. Assuming det(Ψ(ηi)) 6= 0, the following feedback linearizing control

law is employed,

τi = (Ψ(ηi)
T)−1(Mi(ηi)vi + Ci(ηi, η̇i)η̇i) (4.2)

where vi ∈ R3 is defined as,

vi = η̈di −Kvėηi −Kceηi (4.3)

Here eηi = ηi − ηdi and ηdi is the desired attitude to be defined later. Moreover,

Kv, Kc ∈ R3×3 are positive definite design parameters. The proposed control law

results in the following attitude error dynamics,

ëηi +Kvėηi +Kceηi = 0, t ≥ 0 (4.4)

which in turn yields,

‖eηi(t)‖ ≤ k1 exp(−αt), t ≥ 0 (4.5)

where k1, α ∈ R+.

The goal of the aerial transportation system is to carry the payload from point

A to point B. To achieve this objective, a reference virtual point is assigned to each

drone. Control laws are going to be derived such that the drones would follow the

trajectory of the virtual points from the origin to destination. If the drones were fully

actuated, simple PD controllers acting as virtual spring-damper couplings between
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the drones and the reference virtual points would have accomplished the control

objective. The control laws presented here are built on this simple concept by taking

into consideration the drones under-actuation.

The trajectory of the reference virtual points are denoted by qvi(t) ∈ C2[0,∞),

where C2 is the space of continuous real-valued functions with first and second con-

tinuous derivatives [45]. The following assumptions are made for the reference virtual

points,

q̇vi , q̇v ∈ L∞, i ∈ {1, ..., n}

q̈vi , q̈v ∈ L∞, i ∈ {1, ..., n}

The above assumptions simply imply that the reference virtual points retain their

spatial configuration during the flight. This would help reduce the possibility of

collisions among the drones. Also, the acceleration of reference virtual points are

selected such that q̈v ∈ L1 and limt→∞ q̈v = 0. See [15] for more details about Lp

spaces. The drones desired thrust force is chosen as

µi , [µx µy µz]
T
i = miq̈v −Kd

˙̃qi −Kpq̃i (4.6)

where q̃i , qi − qvi and Kp, Kd ∈ R3×3 are positive definite matrices representing

the stiffness and damping coefficients of the virtual springs-dampers. However, given

the under-actuation of the drones, the actual thrust force may not exactly follow the
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desired one, i.e.,

fiR(ηi)z = fiR(ηdi + eηi)z , fiR(ηdi)z + fiH(ηdi , eηi) (4.7)

= µi + fiH(ηdi , eηi)

Here H(ηdi , eηi) ∈ R3 and H(ηdi , 0) = 0. The left side of the above equation represents

the actual thrust force. The first term on the right-hand side is the desired thrust

from (4.6) and the second term is the thrust force error. It can be shown that

‖H(ηdi , eηi)‖ ≤ k2‖eηi‖, k2 ∈ R+ [37]. The set of three nonlinear equations

fiR(ηdi)z = µi = [µxi µyi µzi ]
T (4.8)

involve four unknowns, i.e., the magnitude of the thrust force fi, and the three desired

Euler angles in the vector ηdi = [φdi , θdi , ψdi ]
T. These equations can be solved for fi

and two of the desired Euler angles φdi and θdi . The remaining desired Euler angle

ψdi can be chosen independently of the linear motion. Note that it follows from (4.6)

that the thrust magnitude satisfies the inequality,

‖µi‖ = ‖fi‖ ≤ M‖q̈v‖+Kd‖ ˙̃qi‖+Kp‖q̃i‖ (4.9)

where M , max
i∈{1,...,n}

mi is the maximum drone mass.
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4.2 Stability Analysis

The following storage function is defined for the aerial transportation system,

E , E1 + E2 (4.10)

E1 =
1

2

n∑
i=1

mi
˙̃qTi ˙̃qi +

1

2

n∑
i=1

ėTηi ėηi +
1

2

n∑
i=1

eT
ηi
Kceηi +

1

2
ωT
LJLωL (4.11)

+
1

2
mL(q̇L−q̇v)T(q̇L−q̇v)

E2 =
n∑
i=1

migz
Tq̃i +mLgz

T(qL −

n∑
i=1

qvi

n
) +

n∑
i=1

q̃T
i Kpq̃i + κ (4.12)

where κ ∈ R+ adjusts the reference point for the gravitational energy. It is obvious

that E1 ≥ 0. Given the boundedness of qvi , it can also be shown that E2 is lower

bounded and can be made non-negative by a proper selection of κ.

Regardless of the status of the cables, that passivity of the combined drones-

cables-payload can be exploited to show (see Chapter 3)

Ė = −
n∑
i=1

˙̃qT
i Kd

˙̃qi −
n∑
i=1

ėT
ηi
Kvėηi +

n∑
i=1

˙̃qT
i fiH(ηdi , eηi)−mL

(
q̇L − q̇v

)T
q̈v (4.13)

Note that the third term is due to the system under-actuation. Next the bound-

edness of the storage function E is demonstrated. In view of (4.9) and given that
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‖H(ηdi , eηi)‖ ≤ k2‖eηi‖,

Ė ≤
n∑
i=1

‖ ˙̃qi‖(M‖q̈v‖+Kd‖ ˙̃qi‖+Kp‖q̃i‖)k2‖eη‖+mL‖q̇L‖‖q̈v‖+mL‖q̇v‖‖q̈v‖ (4.14)

For any ‖q̇L‖ ≥ 1, it follows from (4.5) and Young’s inequality [61],

Ė ≤
n∑
i=0

k1k2 exp(−αt)×
(

˙̃qT
i (MI3 +Kd +Kp) ˙̃qi + q̃T

i Kpq̃i +Mq̈T
v q̈v

)
(4.15)

+mLq̇
T
L q̇L‖q̈v‖+mL‖q̇v‖‖q̈v‖

where I3 denotes the identity matrix. It can be shown that constants K1, K2 ∈ R+

exist such that the quadratic terms on the right hand side of (4.15) are upper bounded

by the storage function E. Consequently,

Ė ≤ K1 exp(−αt)E +K2 exp(−αt)q̈T
v q̈v +K3‖q̈v‖E +mL‖q̇v‖‖q̈v‖ (4.16)

It follows from the Gronwall-Bellman Lemma [3],

E(t) ≤ exp(

∫ t

0

f(τ)dτ) +

∫ t

0

exp(

∫ t

r

f(τ)dτ)g(r)dr, t ≥ 0

where f(t) , K1 exp(−αt)+K3‖q̈v‖ and g(t) , K2 exp(−αt)q̈T
v q̈v+mL‖q̇v‖‖q̈v‖. Since

q̈v ∈ L1,
∫ t

0
f(τ)dτ converges and the first term on the righthand side is bounded. For

the second term,

∫ t

0

exp(

∫ t

r

f(τ)dτ)g(r)dr ≤M1M2(K2 +mL)

∫ t

0

‖q̈v(r)‖dr
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whereM1 , sup[0,∞) exp(
∫ t
r
f(τ)dτ) andM2 = sup[0,∞)

(
exp(−αt)‖q̈v‖+‖q̇v‖

)
. This

proves the boundedness of the storage function in (4.10). As a result, the signals

˙̃qi, (q̇L − q̇v), ΩL, q̃i are all bounded and belong to L∞. Now, it is clear that Ė ≤

W1 +W2 with

W1 , −
n∑
i=1

˙̃qT
i Kd

˙̃qi −
n∑
i=1

ėT
ηi
Kvėηi

W2 , (K1 exp(−αt) +K3‖q̈v‖)E +mL‖q̇v‖‖q̈v‖+K2 exp(−αt)q̈T
v q̈v

Using the Modified Invariance Principle for nonautonomous systems [3, Th. 2.11],

[74], it can be shown that

lim
t→∞

˙̃qi, ¨̃qi, (q̈L − q̈v), (q̇L − q̇v), Ω̇L,ΩL = 0, ∀i ∈ {1, ..., n}

In summary, the drones and the payload arrive at a resting steady-state configuration

at the end of the trip. This configuration can be determined as a function of the final

positions of the reference virtual points, the masses of the drones, and the control

gain Kp,

n∑
i=1

Kpq̃i = −(
n∑
i=1

mi +mL)gz (4.17)

where shows static balance of the control actions with the gravity forces.
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4.3 Experimental Validation

Experiments with a three-drone payload transport system are conducted to inves-

tigate the effectiveness of the proposed controller. A video demonstrating the ex-

periments is available at https://youtu.be/nBM3OmAN9gI. The payload with mass

mL = 0.23 kg is connected to the drones via cables. The weight of each drone with

battery is mi = 0.75 kg. The goal is to transport the payload between two points.

Figure 4.1 shows the experimental setup. The operator selects the trajectories of

the reference virtual points and the desired yaw angles of the drones. The drones

positions are measured with the Optitrack motion capture system using eight Flex 13

cameras at a rate of 120 Hz. The data is streamed to a ground computer through USB

cables, where parts of the control computations are performed. The thrust force and

desired attitude angles of each quad-copter are computed and transmitted wirelessly

to on-board flight controllers via Lairdtech embedded wireless transceivers at a rate

of 100 Hz. The attitude controller is implemented on the on-board STM32 F3 micro-

controller. The flight control boards are also equipped with Inertial Measurments

Units (IMU). The IMU measures the angular velocities as well as the roll and pitch

angles of the quad-copters. The flight control board also issues resulting low-level

PWM commands to the Electronic Speed Controllers (ESC)s of the motors. As

Figure 4.1 demonstrates, the system operates in a decentralized manner since there

is no inter-drone communication.

The desired trajectories of the three reference virtual points are designed as ver-

tices of a fixed triangle moving parallel to the ground at fixed orientation. The

trajectory involves three distinct phases. First, the triangle moves up vertically so

the drones can lift up the payload. Next it travels laterally parallel to the x-y plane
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OptiTrack Flex 13

Motion Capture System

qi, q̇i

120 Hz

qvi ψvi
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Lairdtech Transceiver

Lairdtech Transceiver

Three-Drones system +
on-board STM32 F3 micro-controllers+

IMUs

ηdi

fi, ηdi

100
H
z

2

Figure 4.1: Experimental setup with a three-drone payload transport system.

(ground) to move the payload directly above its destination. In the final phase, the

triangle of the reference virtual points descends vertically to land the payload at its

destination. The desired yaw angles are set to zero for all the drones. The high-level

control design parameters of all the quad-copters are as follows:

Kp = diag
{

8, 5, 8
}
, Kd = diag

{
5, 7, 2.5

}
,

The low-level design parameters for all the drones are set as,

Kc=diag
{

44, 58, 45
}
, Kv=diag

{
30, 35, 70

}

Figure 4.2 depicts snapshots of the system during different phases of the experiment.

Interestingly, there are times at which not all three cables are in tension but system

still behaves stably, as the controller is expected to perform normally irrespective
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(a) Initial position (b) Take-off (c) Elevating

(d) Moving laterally (e) Descending (f) Landing

Figure 4.2: Snapshots of different phases of the experiment.

of the cable tensions. The drones and payload position trajectories are given in

Figure 4.3, which show that the system preserves its spatial configuration during the

flight. Moreover, the cargo’s weight is distributed among the three quad-copters,

allowing for the transport of heavier payloads by scaling the number of the drones.

Figure 4.4 shows the attitude of the payload during flight. While some payload

swings are apparent during the initial take-off phase of the trajectory, these are well

within an accepted range for reliable transportation. The attitude angles of the

payload remain fairly stable during most of the flight, demonstrating the controller

ability to safely transport the payload.

4.4 Summary

In this chapter, a method was proposed for the motion control of a cable-based multi-

drone load transport system. The approach makes no assumption about the cables
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Figure 4.3: The aerial transportation system moves the payload from
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Figure 4.4: Payload attitude angles during the flight. Some initial swings are
observed during take-off but the payload remains fairly stable throughout the entire

trajectory.
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tension status in the the development of the control laws and stability analysis. The

control algorithm exploits the fundamental property of energetic passivity of the

combined drone-cable-payload system to stably move the payload from its origin to

destination. No measurement from the payload is required in the control algorithm,

which can be implemented in a decentralized way among the drones. The stability

of the motion control system was demonstrated analytically. Results of experiments

with a three-drone system using the new controller were provided to support the

conclusions of the theoretical analysis.

In the current format, the proposed angular controller contains linear acceleration

and jerk. This can be seen by twice differentiation of (4.8) as reference angular velocity

and acceleration commands include first and second derivatives of the translational

velocity. In practice, this can be avoided by removing the desired angular acceleration

and velocity from the attitude controller. However, the effect of this change on the

system performance should be analyzed further. In the next chapter, stability analysis

of the system with the modified angular controller will be revisited.
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Chapter 5

Modified Cascade Structure and

Disturbance Attenuation

In the previous chapter, a cascade control strategy was introduced and its stability

was shown. The inner-loop of this controller requires the desired angular velocity and

acceleration. The desired angular position is the output of the outer-loop controller

and contains the linear velocity of the quad-copters. Therefore, linear acceleration

and jerk appear in the inner-loop controller. Acceleration is measured by the on-

board IMU but it is a highly noisy signal; the jerk is not measured. In this chapter, a

modified inner-loop angular controller is proposed which works without the derivatives

of the desired attitude and hence avoids this issue. Although a controller with no use

of desired angular acceleration was previously introduced and implemented in [58],

the paper provided no mathematical proof of system stability.

The result in this chapter was published in the IEEE/ASME Transactions on Mechatronics 25.4
(2020). See reference [63]
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In this chapter, a storage function inspired by the mechanical energy of the system

is introduced and used to derive the control laws that achieve semi-global exponential

stability. The stability is shown to be robust with respect to bounded disturbance

forces acting on the quad-copters and the payload. Additionally, a time-domain ob-

server estimates the energy that perturbations may inject to the system and dissipates

it through variable damping. This helps suppress disturbance-induced oscillations.

The effectiveness of the control strategy is demonstrated in several experiments.

5.1 Mathematical Preliminaries

Definition 1 ([72]) Consider the nonlinear parametrized system,

ẋ = f(x, κ) (5.1)

where x ∈ Rn and κ ∈ K ⊂ Rm is a constant vector of user-defined controller gains

and f(0, κ) = 0. The system is Semi-global Exponential Stable if for any r > 0, there

exists a controller gain vector κ∗(r) ∈ K and some positive constants kr, λr, such that

∀x0 ∈ Br = {x ∈ Rn | ‖x‖ ≤ r},

‖x(t)‖ ≤ kr‖x0‖ exp(−λrt) , t ≥ 0 (5.2)

Hence, for a given compact set Br, κ∗(r) is a stabilizing gain of the controller such

that the region of attraction contains the compact set Br.
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Theorem 1 ([77]) Assume that for the system

ẋ = f(x) + g(x)u

a continuous control law u = α(x) achieves Global Asymptotic Stability (GAS) and

also Local Exponential Stability (LES) of x = 0 and consider the augmented system,

ẋ = f(x) + g(x)ζ

ζ̈ = v

Let p(s) = s2 + ka1s+ k2a0 be an arbitrary Hurwitz polynomial. Then the feedback,

v = −ka1ζ̇ − k2a0(ζ − α(x)) (5.3)

achieves semi-global exponential stabilization of (x, ζ) = (0, 0), that is, for any com-

pact neighborhood Ω̄∗ of (x, ζ) = (0, 0), there exists k∗ such that for all k ≥ k∗, the

region of attraction contains Ω̄∗.

Proof: It follows from the proof in [77] that any compact set Ω̄∗ = {(x, ζ) |

‖(x, ζ)‖ < R}, R > 0, can be included in the region of attraction as long as the gain

condition R ≤
√
ck is satisfied, where c > 0 is the local exponential convergence rate

of ẋ = f(x) + g(x)α(x). See [77] for the details and [72] for equivalent theorems.

Corollary 1 Consider the perturbed system defined over [0,∞) × D, where D =
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{(x, ζ) | ‖(x, ζ)‖ <
√
ck},

ẋ = f(x) + g(x)ζ +W1(t)

ζ̈ = v +W2(t)

and ‖[WT
1 (t) WT

2 (t)]T‖ < ∆ ∈ R+. Assume the conditions of Theorem (1) holds.

Then, the origin is robust to some perturbations if the parameters c and k are suffi-

ciently large.

Proof: The result is the direct consequence of [39, Lemma 9.2]. Since the nominal

system is exponentially stable with respect to the compact region ‖(x, ζ)‖ <
√
ck,

then the solution of the system remains uniformly ultimately bounded with a bound

proportional to the perturbation size ∆. Increasing c and k can accommodate larger

perturbations

5.2 Modified Cascade Structure

In this section, first, a nominal passivity-inspired controller is designed for the cable-

based aerial transportation system. The controller is simple and inherently robust,

uses very little knowledge of the system model, and makes no assumption about the

rigidity of the cables. It improves on the previous results by eliminating the need

for the derivative of the desired angular position in the inner-loop attitude controller,

hence linear acceleration feedback. The proposed controller guarantees semi-global

exponential stability of the closed-loop system. Moreover, uniform ultimate bound-

edness [39] of the tracking errors are shown in the presence of external disturbances.

Consider the equations of motion in (3.2), (3.3), (3.4) and (3.5). They turn into
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the following dynamical equations if: I) it is assumed that cables are attached to the

COM of the quad-copters (i.e. di = 0) and II) the system experiences exogenous

perturbations:

miq̈i = fiR(ηi)z −migz + TiRLei +Di1(t) (5.4)

M(ηi)η̈i + C(ηi, η̇i)η̇i = Ψ(ηi)
Tτi +Di2(t) (5.5)

mLq̈L = −
n∑
i=1

TiRLei −mLgz +D3(t) (5.6)

JLω̇L + ω×LJLωL =
n∑
i=1

r×i (−Tiei) +D4(t) (5.7)

The vectors Di1(t),Di2(t) ∈ R3 denote disturbances acting on the translational and

angular motion of ith quad-copter. Similarly, D3(t), D4(t) ∈ R3 represent disturbance

forces and torques on the payload, respectively. It is assumed that Di1(t), Di2(t),

D3(t), and D4(t) ∈ L∞, i.e., the disturbances have bounded magnitude.

The goal is to carry the payload to a predetermined destination. As the pay-

load and quad-copters are mechanically constrained through the cables, it would be

sufficient to design reference trajectories for the drones. Let the continuously differen-

tiable signal qdi(t) ∈ R3, i = 1, ..., n be the reference trajectory of the ith quad-copter.

Throughout this chapter, it is assumed that q̇di(t) = q̇d(t) and q̈di(t) = q̈d(t). This

should preserve the spatial formation of the drones and reduce the possibility of inter-

drone collision. It is also assumed that limt→∞ q̈d(t) = 0, which is quite reasonable as

the drones are expected to come to rest at the end of their flight.
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If the quad-copters were fully-actuated, then a control force µi ∈ R3 of the follow-

ing form could be employed for their position control,

µi , −kpi(qi − qdi)− kdi(q̇i − q̇d) +miq̈d (5.8)

where kpi , kdi ∈ R3×3 are positive definite matrix gains. However, under-actuation

prevents generating control forces with an arbitrary direction, unless they are aligned

with the drones thrust directions. Figure 5.1 shows the resulting force error δi(ηi, ηdi , fi) ∈

R3 due to the under-actuation, where

δi(ηi, ηdi , fi) = fiR(ηi)z − µi , fi
(
R(ηi)−R(ηdi)

)
z (5.9)

and ηdi = [φdi θdi ψdi ]
T ∈ R3 are the reference attitude commands. An attitude

controller is now required to align the thrust with the desired force direction in (5.8),

fiR(ηdi)z , µi (5.10)

The thrust magnitude fi, as well as the roll and pitch reference commands φdi , θdi

are obtained from (5.10). Moreover, since Equation (5.10) is underdetermined, the

yaw motion would be free and can be controlled independently. Now consider the

attitude dynamics of quad-copters in (5.5). A feedback linearizing inverse-dynamic

control law can be applied,

τi =
(
Ψ(ηi)

T
)−1
(
M(ηi)vi + C(ηi, η̇i)η̇i

)
(5.11)

where vi ∈ R3 is a stabilization controller yet to be designed. By substituting (5.11)
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in (5.5), it follows that

η̈i = vi +Wi2 (5.12)

where Wi2 , M−1(ηi)Di2. Since the inertia matrix is positive definite, Wi2 inherits

the L∞ property of Di2. Similarly, substituting (5.8) and (5.9) in the translational

dynamics (5.4) yields,

mi
¨̃qi + kdi ˙̃qi + kpi q̃i = δi(ηi, ηdi , fi)−migz+TiRLei+Di1 (5.13)

In addition, the translational dynamics of the payload (5.6) can be rewritten as,

mL
¨̃qL = −

n∑
i=1

TiRLei −mLgz +W3 (5.14)

where ˙̃qL , q̇L − q̇d and W3 , −mLq̈d +D3.

µi
fi

δi

3

Figure 5.1: Force error due to under-actuation: µi is the desired force and fi is the
actual force along the thrust direction; δi is the error.
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5.3 Stability Analysis

In the absence of external disturbances, Di1,D4 andWi2,W3 are all set to zero. In such

cases, the unforced dynamics (5.12) have the structure of ζ-subsystem in Theorem (1).

The variable ηi can be considered as a virtual control in (5.13). If ηi , ηdi is picked,

then δi(ηdi , ηdi ,fi) = 0 is obtained. It is an immediate consequence of Theorem 1

that, if the dynamical system represented by (5.13) with δi(ηdi , ηdi ,fi) = 0, (5.14) and

(5.7) are GAS and LES, then the following attitude controller achieves semi-global

exponential stability of the closed-loop system,

vi = −KKvi η̇i −K2Kci(ηi − ηdi) (5.15)

where K,Kci , Kvi ∈ R3×3 are positive definite gains. It is remarkable that the feed-

forward reference commands η̇di and η̈di are absent in (5.15).

Theorem 2 The unforced dynamical system represented by equations (5.13) with

δi(ηdi , ηdi ,fi) = 0, (5.14) and (5.7) is GAS and LES.

Proof: Consider the following storage function,

E =
1

2

n∑
i=1

mi
˙̃qT
i

˙̃qi +
1

2

n∑
i=1

q̃i
Tkpi q̃i +

n∑
i=1

migz
Tq̃i (5.16)

+
1

2
mL

˙̃qT
L

˙̃qL+
1

2
ΩT
LJLΩL+mLgz

T(qL−
∑n

i=1 qdi
n

)+β

where β ∈ R+ adjusts the reference for potential gravity. Aside from quadratic terms

related to kinetic energies, the storage function (5.16) involves quadratic terms w.r.t

q̃i. The latter along with the kinematic constraint (3.1) implies that E is lower-

bounded. The time derivative of (5.16) along the unforced system trajectories (5.13),
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(5.14) and (5.7) is given as [62],

Ė =−
n∑
i=1

˙̃qT
i kdi ˙̃qi ≤ 0 (5.17)

This shows that all the states forming the storage function are bounded (q̃i, ˙̃qi, ˙̃qL,

ΩL ∈ L∞). To prove GAS, it follows from the modified invariance principle of non-

autonomous systems [3, 74] that limt→∞ ˙̃qi = 0 and limt→∞ ¨̃qi = 0. Now it can be

deduced from the translational dynamics of the vehicles (5.13),

kpi q̃i = −migz + TiRLei , i = 1, ..., n (5.18)

Summation over i and substituting the recent result in (5.14) yield,

mL
¨̃qL = −

n∑
i=1

kpi q̃i − (
n∑
i=1

mi +mL)gz (5.19)

It follows from (5.19) that ¨̃qL ∈ L∞. Then, it can either converge as t → ∞ or

oscillate forever. If it oscillates, then at least one of the q̃i’s must exhibit periodic

behavior. As a result, ˙̃qi has to oscillate as well. This contradicts the previous result

of limt→∞ ˙̃qi = 0. Thus, limt→∞ ¨̃qL = c̄, c̄ ∈ R. Since ˙̃qL ∈ L∞, it has no choice rather

than converging to zero, i.e. c̄ = 0. Moreoever, it immediately follows from the

kinematic constraint (3.1) that ˙̃qL has to reach zero at steady state. Consequently,

the system rests at the expected equilibrium,

n∑
i=1

kpi q̃i = −(
n∑
i=1

mi +mL)gz (5.20)
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Similar arguments can be made for (5.7) to prove limt→∞ ω̇L, ωL = 0. This demon-

strates the GAS property of the equilibrium. Next, local exponential convergence of

the errors is proven. To this end, the following two scenarios are considered:

I) Ti = 0 (cables not in tension): Consider the dynamical system (5.13) and let

V (X ) = XTPX where P ∈ R6×6 is a positive definite matrix that satisfies the

Lyapunov equation of ATP + PA = −Q and X , [k−1
pi

(q̃i − migz) k−1
pi

˙̃qi]
T.

The time derivative of the proposed Lyapunov function along the trajectory of

Ẋ = AX , A =

 0 I

−kpi −kdi

 is given as,

V̇ = −XTQX (5.21)

where Q ∈ R6×6 is a positive definite matrix. This proves exponential stability.

II) Ti 6= 0 (cables in tension): a state vector can be defined as X̄ , [k−1
pi

(
q̃i −

(migz+ ξi)
)
k−1
pi

˙̃qi]
T where the constant vector ξi ∈ R3 is the share of ith drone

in transportation of the payload. It follows from the GAS property of the system

that TiRLei = −ξi+Ti, where Ti ∈ R3 is upper bounded by ‖Ti‖ < α‖X̄ ‖, α > 0,

inside a compact set containing the equilibrium point. This is characterized as a

vanishing term. Now pick V (X̄ ) = X̄TP X̄ where P ∈ R6×6 is a positive definite

matrix that satisfies the Lyapunov equation of ATP + PA = −γI, γ > 0. The

time derivative of the proposed Lyapunov function along the system trajectory

is given as V̇ = −X̄T
(
γ − α

)
X̄ . Proper choice of kpi , kdi would guarantee the

condition γ − α > 0 that implies exponential decaying rate.

It can be then concluded that the states in (5.13) are exponentially convergent. As a
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result,

n∑
i=1

TiRLei = mLgz +
m∑
i=1

Ti (5.22)

where m ≤ n is the number of vehicles contributing to cooperation and ‖Ti‖ ≤

υ exp(−λt), t ≥ 0 and υ, λ ∈ R+. Now it follows from (5.14) and (5.22) that ¨̃qL has

to decay exponentially. The gains kpi , kdi determine the rate of convergence. Similar

arguments can be made for the angular motion of the payload. This completes the

proof. �

According to Theorem (1), the outer-loop control (5.8) and attitude controller

(5.11) and (5.15) achieve semi-global exponential stability. The gain kpi , kdi , K can be

used to expand the region of attraction. Furthermore, it follows from [39, Lemma 9.2]

that this exponential stability is robust to bounded-amplitude disturbances. Corol-

lary (1) states that if gains kpi , kdi , K are sufficiently large, then larger perturba-

tions can be tolerated. Moreover, if the perturbations vanish at steady state, i.e.

limt→∞Wi2,W3 = 0 and limt→∞Di1,D4 = 0, i = 1, ..., n, then the states also con-

verge to zero [39].

5.4 Disturbance Attenuation

The nominal controller maintains closed-loop stability in the presence of external

disturbances, but its performance may still be impacted by these undesired forces.

In this section, additional compensation is introduced to suppress any disturbance-

induced oscillations.
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Disturbance observers usually rely on the system dynamics to estimate and com-

pensate for disturbances acting on it [60]. Such an approach would be difficult to

apply here due to the non-rigidity of the cables connecting the payload to the drones.

Instead, the method proposed in this chapter attempts to estimate and compensate

for any energy added by the disturbances. First, a time-domain energy observer is

introduced to estimate any energy injected by the external disturbances. Then, a

time-varying damping will be employed to dissipate the extra energy.

Consider a mechanical system described by the following equation of motion in

the generalized coordinates x ∈ Rn,

H(x)ẍ+ V (x, ẋ)ẋ+G(x) = U(t) +D(t) (5.23)

where H(x) ∈ Rn×n, V (x, ẋ) ∈ Rn×n denote the inertia and Coriolis matrices, re-

spectively. The vector g(x) ∈ Rn stands for gravity forces and is related to the

gravitational energy U ∈ R through the following equation,

∫ T2

T1

g(x)Tẋdt = U(x(T2))− U(x(T1)) (5.24)

The control input and disturbance are shown by U(t) ∈ Rn and D(t) ∈ Rn, respec-

tively. Multiplying both sides of (5.23) by ẋT and adding the term 1
2
ẋT
(
Ḣ(x) −

2V (x, ẋ)
)
ẋ = 0 [79], lead to the following expression,

ẋT
(
H(x)ẍ+

1

2
Ḣ(x)ẋ+G(x)

)
= ẋT

(
U(t) +D(t)

)
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Integrating both sides from t = T1 to t = T2 results in,

K
(
x(T2), ẋ(T2)

)
+U
(
x(T2)

)
−Econt +α = Edis

where K
(
x, ẋ
)
, 1

2
ẋTH(x)ẋ is the kinetic energy and α ∈ R can be found based on

the initial conditions. The energy added by the disturbance is Edis ,
∫ T2
T1
ẋ(t)TD(t)dt

which must be dissipated instantaneously to overcome the undesired effect of distur-

bance. The control input has both conservative and dissipative actions governed by

the relation Econt ,
∫ T2
T1
ẋ(t)TU(t)dt.

The kinetic and gravitational energy can be computed from the measurements at

each sample time. One can easily determine Edis as Econt is always available. There

might be intervals in which the disturbances do not increase the energy level of the

system and hence, no extra dissipation is needed. The control input is modified as,

U = Unom + U∗ (5.25)

where Unom is the nominal controller and U∗ = −kdis(t)ẋ is extra compensation for

disturbances. The time-varying damping kdis[j] ∈ R+ is chosen as,

kdis[j] =


Edis[j]−Edis[j−1]

‖ẋ[j]‖2 if Edis[j]>Edis[j − 1]

0 otherwise

(5.26)

where j is the sample number.

Remark 1 The formula in (5.26) may generate a large value whenever the velocities
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are small. A possible alternative is to use kdis[j] = Edis[j]−Edis[j−1]
‖ẋ[j]‖2+ε

, ε > 0 to avoid di-

vision by small numbers. As it was shown in the previous section, the system remains

stable in the presence of bounded disturbances. Hence, even if all the extra energy is

not dissipated instantaneously, stability will always be guaranteed. The objective here

is to attenuate rather than to cancel the disturbances.

Remark 2 Continuity in the control inputs can be preserved if instead of switching

to zero dissipation in (5.26) a monotonically decreasing sequence such as kdis[j] =

a kdis[j − 1], 0 < a < 1 is used.

The energy injected through the control actions of quad-copters over a specific

interval can be expressed as,

Econt =
n∑
i=1

(∫ T2

T1

(q̇T
i fiR(ηi)z + ωT

i Γτi)dt
)

(5.27)

where Γ , diag
{

1, 1, 0
}

and the energy associated with the yaw motion is excluded.

This is because the yaw motions are decoupled from the rest of the system and are

controlled independently. The mechanical energy of the load transport system can

be given as,

Emech =
1

2

n∑
i=1

miq̇i
Tq̇i+

n∑
i=1

migz
Tqi+

1

2

n∑
i=1

ωT
i JiΓωi (5.28)

+
1

2
mLq̇

T
L q̇L +

1

2
ΩT
LJLΩL +mLgz

TqL + β

and the energy introduced by disturbances is Edist = Emech + Econt + α, where α is

determined based on the initial conditions.
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qi, q̇i, ηi, η̇i (120Hz)

4

Figure 5.2: The experimental setup with three quad-copters carrying a
cable-suspended payload.

The dissipative element for the system motions except yaw is given by,

kdisi [j] =


Edis[j]−Edis[j−1]
‖q̇i[j]‖2+ε

if Edis[j] > Edis[j − 1]

a kdisi [j − 1] otherwise

The control law in (5.8) is modified to,

µi ,−kpi(qi − qdi)−
(
kdi +kdisi(t)

)
(q̇i − q̇d)+miq̈d (5.29)

A dissipative gain for the yaw motion can be defined similarly.

5.5 Experimental Validation

Experiments with three quad-copters carrying a cable-suspended payload were con-

ducted to evaluate the effectiveness of the proposed controller. Each drone weighs

mi = 0.67 kg including the battery. The payload mass is mL = 0.39 kg. Figure 5.2

illustrates the experimental setup. The user provides the reference trajectory and

desired formation for the drones as a group, and the individual trajectories for the

drones are derived accordingly. The desired yaw angles are also specified by the user.
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Third-order polynomials are fitted between waypoints to ensure the smoothness of

these trajectories. OptiTrack Flex 13 motion capture system measures the quad-

copter positions and streams to a ground station at a rate of 120 Hz. The drones

velocities are computed by numerical differentiation of their positions. The outer-loop

position controller runs on the ground station and computes the desired thrusts and

attitude commands. These are then transmitted to the onboard flight controllers via

a LairdTech wireless module at a rate of 100 Hz. The onboard flight controller of

each drone is an STM32 F3 microcomputer and runs the angular control loop at a

rate of 340 Hz. It generates PWM commands for the Electronics Speed Controllers

(ESCs) of the propellers. The outer-loop control gains for all the quad-copters are as

follows,

kpi = diag
{

9, 6, 9
}
, kdi = diag

{
3, 2.25, 1.25

}
The inner-loop control gains for all the quad-copters are selected as,

Kci = diag
{

10, 15, 18
}
, Kvi = diag

{
7.5, 8.5, 10

}
and K = 2I3 where I3 ∈ R3×3 is the identity matrix.

The following scenarios were considered in the experiments. A video demonstrat-

ing the experiments is available at https://youtu.be/aQ9rBlenekU .

5.5.1 Trajectory Tracking

In this experiment, an M-shaped reference trajectory was considered. Figure 5.3

depicts the trajectory of three quad-copters with the payload. First, the quad-copters
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Figure 5.3: Trajectories of three quad-copters and payload for an M-shaped desired
reference in the first experiment. The beginning and end points of UAV1 are

marked by purple and orange arrows, respectively. The reference trajectory for
UAV1 is depicted by a dashed gray line.

ascend to an altitude of about z = 1.4 m. Then, the system descends for a half meter

while moving along the y-axis for roughly 0.8 m. In the next phase of the trajectory,

the drones return to the previous altitude of z = 1.4 m while moving forward along

y-axis for another 0.8 m. Finally, the drones descend vertically for landing. Tracking

errors were observed in the altitude due to the lack of full gravity compensation in

the control scheme, but this is not an issue in an aerial transportation system. The

desired yaw angles were set to zero for this experiment.

Figure 5.4 illustrates position tracking errors of the three quad-copters when fol-

lowing the M-shape trajectory. The largest errors are in altitude due to the effect of

gravity.

Large payload swings are generally undesirable in transportation applications and

must be avoided. Figure 5.5 shows the payload attitude during the flight which, with

the exception of some jumps in the take-off stage, exhibits an acceptable behaviour.

Figure 5.6 illustrates the time history of thrust forces of the quad-copters. With

the exception of the ramp-up and ramp-down stages of the propellers, all the thrust
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Figure 5.4: Position tracking errors when following the M-shaped trajectory. Blue,
black and green plots correspond to UAV1, UAV2 and UAV3, respectively.
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Figure 5.5: Payload orientation during the M-shaped trajectory in the first
experiment.

70



Ph.D. Thesis – K. Mohammadi McMaster – Electrical & Computer Engineering

0 10 20 30 40

6

8

Time (sec)

f 1
 (

N
)

0 10 20 30 40

6

8

Time (sec)

f 2
 (

N
)

0 10 20 30 40

6

8

Time (sec)

f 3
 (

N
)

Figure 5.6: Thrust forces versus time. The first and last two-second segments
correspond to the ramp-up and ramp-down phases of the propellers.
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Figure 5.7: The drones and payload positions in the second experiment.

forces mostly remained close to f1 ≈ f2 ≈ f3 ≈ (mi + mL

n
)g ≈ 8 N. This implies

that the load is uniformly distributed among the vehicles. The result is indebted to

homogeneous agents, identical rope length, and symmetric formation shape.

5.5.2 Disturbance Attenuation

In this experiment, the performance of the proposed disturbance attenuation approach

was evaluated. Five perturbations were applied to the payload while the drones

were hovering. The positions of the drones and payload are shown in Figure 5.7.
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Figure 5.8: The output of the time-domain disturbance energy observer. The energy
remains nearly constant in the absence of disturbances but increases after the

application of each disturbance. Five disturbances were applied to the payload in
this experiment.

Figure 5.8 depicts the output of the disturbance energy observer. In the beginning,

there is no disturbance on the system and hence, its associated energy level is constant.

At t = 2.7 sec, the first disturbance is applied to the system. As a result, the

dissipative element kdis is activated, as can be seen in Figure 5.9. The value of kdis

is saturated to avoid the actuation limit. The parameter ε = 0.1 has been selected

to circumvent zero divisions. After attenuation of the disturbance, the value of kdis

is gradually decreased in a sequence with a = 0.99. The next four disturbances are

applied at t = 10, 18, 27, 36 sec approximately, and the dissipative element is triggered

accordingly.

5.5.3 Comparison to a Baseline Controller

The new controller is compared to the one in Chapter 4 to investigate the effectiveness

of the disturbance attenuation strategy. In the first scenario, the drones move to

hovering configuration and then the payload is perturbed by a stick eight (8) times.
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Figure 5.9: The value of disturbance attenuation damping for each quad-copter
during the second experiment.

In the second scenario, the drones carry the payload for 2 m along the y−axis at

a constant altitude while a fan blows air against them. This simulates the effect of

wind on the system in outdoor settings.

• Perturbations: For the purpose of comparison, a metric named dissipation time

is defined and denoted by Tdis ∈ R+. Suppose the system is hovering at a

nominal position qnomi
∈ R3. Tdis denotes the time that it would take for the

UAVs to return to and stay inside a ball of radius 5 cm i.e. ‖qi − qnomi
‖ ≤

0.05 centred around their nominal position after the onset of the disturbance.

This is roughly the time needed by the controller to dissipate the disturbance

energy and settle the system back into around its nominal position. Figure 5.10

illustrates this measure graphically.

Table 5.1 compares the average value of dissipation time over the eight applica-

tions of perturbation. It is evident that the proposed controller (5.29) dampens

the oscillations more quickly than the baseline controller. The maximum values

of the dissipation times of the two controllers are also compared in Table 5.2.
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Figure 5.10: Graphical illustration of dissipation time Tdis. The red star is the
nominal position qnomi

and the sphere represents ‖qi − qnomi
‖ ≤ 0.05. The UAV is

initially at a hovering position shown by the black square. It leaves the sphere due
to the application of the perturbation and eventually returns to and stays inside it

because of energy dissipation by the controller.

Table 5.1: Average value of the dissipation time over eight applications of
perturbation.

mean(Tdis) (sec) Proposed Controller Controller in Chapter 4
UAV1 3.75 4.57
UAV2 4.78 7.51
UAV3 3.27 3.34

Again, the proposed controller clearly outperforms the baseline controller.

• Attenuation of Wind Disturbance: In this scenario, the drones first elevate to

an altitude of z = 1.5 m. Then, they move along the y− axis for 2 meters

while a fan blows air against them in the x direction. They finally land after

completing this horizontal motion.

The results in Figures 5.11, 5.12 and 5.13 show that the proposed controller

is more effective than the baseline controller in attenuating this disturbance as

there are fewer oscillations along the x− axis with this controller.
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Table 5.2: Maximum value of dissipation time over eight applications of
perturbation.

max(Tdis) (sec) Proposed Controller Controller in Chapter 4
UAV1 4.81 7.06
UAV2 6.42 10.64
UAV3 4.52 7.85
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Figure 5.11: Position of the first UAV in the presence of wind disturbance. The blue
plot is the controller in Chapter 4 and the red plot is the proposed controller.
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Figure 5.12: Position of the second UAV in the presence of wind disturbance. The
blue plot is the controller in Chapter 4 and the red plot is the proposed controller.
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Figure 5.13: Position of the third UAV in the presence of wind disturbance. The
blue plot is the controller in Chapter 4 and the red plot is the proposed controller.

5.6 Summary

In this chapter, a passivity-based cascaded controller was proposed to stably transport

a cable-suspended payload with a number of quad-copters. The proposed controller

made no assumption about the cables tensions as it relied on energetic passivity

property of the combined drones, cables, and payload system. The attitude sub-

controller only required the angular position reference command but not its first and

second derivatives. This helped avoid linear acceleration or jerk measurements in the

control system. Semi-global exponential stability of the system was demonstrated,

where the region of attraction could be expanded arbitrarily by the choice of the

controller gains. Uniform ultimate boundedness of the tracking errors in the presence

of disturbances was also shown.

A disturbance attenuating term was further introduced to reduce adverse effects

of external disturbances on the controller performance. A time-domain disturbance

energy observer estimated any excess energy introduced into the system. This was
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then removed with additional controller damping. Results of the experiments per-

formed with a three-drone payload transport system in an indoor setting showed

that the controller can perform effectively even in the presence of significant external

disturbances.

Although the proposed cascaded controller has a number of practical advantages,

it assumes that the cables are attached to the COM of the UAVs. In the next

chapter, a passivity-based approach is introduced to allow for shifted attachment

points, eliminating this limitation. In addition, a safety constraint will be added to

the controller to avoid any possible inter-drone collisions.
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Chapter 6

Shifted Attachment Points

In this chapter, a new passivity-based controller is proposed for stable cooperative

transportation of a cable-suspended payload by a number of quad-rotors. Nomi-

nal proportional-derivative position controllers with desired acceleration feedforward

are augmented with time-varying dissipative terms to account for the drones under-

actuation. A storage function is defined that includes terms inspired by the kinetic

and potential energies of the system components as well as virtual energy of the

controller. A time-domain passivity observer is used in conjunction with an adap-

tive dissipative term to ensure that the value of the storage function is continuously

decreased and hence, guarantees closed-loop stability. Moreover, barrier Lyapunov

functions are employed to avoid inter-drone collisions. The proposed controller makes

no assumption about and requires no knowledge of the cables tension status. Addi-

tionally, it requires no measurement from the payload. The cables can be attached

to the quad-rotors and the payload at arbitrary points. Experiments with a system

of three quad-rotors and a cable-suspended payload demonstrate the effectiveness of

the proposed approach.
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Similar to the previous chapters, here the focus remains on delivery of cable-

suspended commercial parcels using multiple unmanned aerial vehicles. Commercial

goods are predominately in solid form and are packaged in a way that can be safely

transported without precise load control. In our approach, the payload package is

constrained to the drones via cable attachments so its position is restricted to a

close proximity of the drones. Once the drones arrive at their final destination, they

can safely deploy their payload without the need for precise control of its position

and orientation. Precise control of the payload trajectory is unnecessary for this

application and is forgone in favour of controller simplicity and robustness.

6.1 Control Design

In this section, a passivity-based controller is proposed for the cable-based multi-drone

payload transportation system with shifted attachment points. The combination of

drones, cables, and payload is an energetically passive system regardless of whether

the cables are in tension or not. This property was exploited in previous chapters to

develop controllers that guaranteed the system stability without making any assump-

tions about the cables tensions. However, in those schemes, it was assumed that the

cables are attached to the Center Of Mass (COM) of the drones in order to decou-

ple the attitude dynamics of the quad-rotors from the rest of the system dynamics.

The assumption allowed for the development of a separate controller for the angular

motion, which simplified the design process. The current controller generalizes pre-

vious strategies by allowing for arbitrary cable attachment points, hence eliminating

a limitation of these earlier approaches. In this case, the control development has to

account for the coupling of translational and angular dynamics of the quad-rotors.
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First, PD position controllers with time-varying derivative gains and desired ac-

celeration feedforward are introduced. These controllers produce the desired drone

forces that are converted to drones thrust magnitudes and desired angles. A storage

function is defined and a control correction term is computed in a way to ensure

that the storage value decreases over time. A passivity observer detects any potential

active behaviour and would trigger time-varying dissipative elements accordingly to

dampen the extra energy introduced in the system. This will be shown to guarantee

the control system stability.

Given the close proximity of the drones, a collision avoidance strategy is needed to

prevent inter-drone collisions due to disturbances or during the transient phase of the

response. Barrier Lyapunov functions have been used to implement state constraints

in nonlinear control systems [86]. Inspired by [71], a collision avoidance strategy is

integrated in the proposed control scheme. The stability of the closed-loop system

with this safety constraint has been proven using a modified storage function that

includes a Barrier Lyapunov function.

The features of the new controller that distinguish it from the existing literature

can be summarized as follows:

• Cable attachment points are not limited to the drones COMs. This provides

greater flexibility in configuring the drones for carrying the payload. However,

this extra flexibility comes at the expense of coupling of the translational and

angular dynamics. These dynamics have been considered decoupled in prior

related work, which simplifies the control design.

• The proposed controller makes no assumptions about the tension status of the

cables since it relies on the energetic passivity of the system, a property that
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holds regardless of whether the cables are in tension or not.

• The controller requires no measurement from the payload.

• Unlike model-based control schemes for attitude dynamics, the passivity-based

angular controller does not need system parameters such as the moment of

inertia.

• Under-actuation of UAVs has been fully taken into account in the control design

and stability analysis. Closed-loop stability is guaranteed using an energy-

domain passivity observer and a complementary passivity-based controller.

• The controller is augmented with a term to avoid inter-drone collisions, where

this capability is demonstrated through analysis.

6.1.1 Nominal Control Design

Consider the following translational controller for each drone, consisting of a PD

controller, an acceleration feedforward term, and a collision avoidance control term,

µi , miq̈di −
(
Kdi +αi(t)I3

)
(q̇i −q̇di)−Kpi(qi−qdi) + fbi (6.1)

where the gains Kdi , Kpi ∈ R3×3 are positive definite matrices and qdi(t) : [0,∞)→ R3

is the reference position for the ith drone trajectory. The time-varying gain αi(t) :

[0,∞) → R+ is an additional damper and I3 ∈ R3×3 is the identity matrix. The

collision avoidance term fbi ∈ R3 is assumed to be zero for now and will be designed

later. Here µi ∈ R3 is the control force that would have been applied if the drones

were fully-actuated. Due to under-actuation, an attitude controller will be required
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to align the thrust direction with the direction of the desired force in (6.1). It follows

from substituting the control thrust in the translational dynamics of the ith drone

in (3.2),

miq̈i = fiR(ηdi)z + δ(ηi, ηdi , fi)−migz + TiRLei (6.2)

where δ(ηi, ηdi , fi) , fi

(
R(ηi)−R(ηdi)

)
z is the force error due to the under-actuation

and ηdi is the reference attitude.

The requirement for the thrust direction to be aligned with the desired force can

be formulated as

fiR(ηdi)z , µi (6.3)

This provides reference values for the roll and pitch angles as well as the thrust

magnitude; A constant reference for the yaw angle can be chosen freely as its value

would not impact the direction of the thrust. The attitude controller is given by

τi =
(

ΨT(ηi)
)−1

(−Kvi η̇i −Kci(ηi − ηdi)) (6.4)

where Kvi , Kci ∈ R3×3 are positive definite gains. Unlike the angular controllers

in [62], [63], the control law in (6.4) is not based on feedback linearization and hence

makes no use of model parameters such as the moment of inertia. It is noted that

the derivatives of the desired roll and pitch angles are absent in this controller. This

is critical since these desired angles contain linear velocity of the drone, i.e., see (6.1)

and (6.3); their derivatives, η̇di and η̈di , would involve linear acceleration and jerk,
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respectively. Although the linear acceleration of a drone can be measured through

onboard accelerometers, jerk measurements are not available directly and would be

highly noisy if they were to be obtained through numerical differentiation.

6.1.2 Passivity Observer and Closed-loop Stability

The desired motion trajectories for the individual quad-rotors are denoted by qdi :

[0,∞) → R3, ∀i = 1, ..., n. These reference trajectories are designed such that

q̇di = q̇d, q̈di = q̈d, i.e., all quad-rotors are required to move with the same velocity

and acceleration. This would ensure that the drones would preserve their spatial

configuration throughout the flight, hence reducing the possibility of inter-drone col-

lisions. It is also assumed that q̇d, q̈d ∈ L∞ and limt→∞ q̈d = 0. The closed-loop

dynamics of the system with the proposed controller in (6.1) and (6.4) and reference

trajectories can be written as,

mi
¨̃qi +

(
Kdi + αi(t)I3

)
˙̃qi +Kpi q̃i = δi(ηi, ηdi , fi)−migz + TiRLei (6.5)

M(ηi)η̈i + C(ηi, η̇i)η̇i = −Kvi η̇i −Kci(ηi − ηdi) + ΨT (ηi)d
×
i (TiR

T
i RLei) (6.6)

mL(q̈L − q̈d) = −
n∑
i=1

TiRLei −mLgz −mLq̈d (6.7)

JLω̇L + ω×LJLωL =
n∑
i=1

r×i (−Tiei) (6.8)
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where q̃i , qi−qdi . Consider the following storage function for the closed-loop system,

V =
1

2

n∑
i=1

mi
˙̃qi

T ˙̃qi+
1

2

n∑
i=1

q̃T
i Kpi q̃i+

1

2

n∑
i=1

η̇T
i M(ηi)η̇i (6.9)

+
1

2

n∑
i=1

(ηi − ηdi)TKci(ηi − ηdi) +
n∑
i=1

migz
Tq̃i

+
1

2
mL

˙̃qT
L

˙̃qL+
1

2
ωT
LJLωL+mgzT(qL−

∑n
i=1 qdi
n

)+β

where ˙̃qL , q̇L− q̇d and β ∈ R+ adjusts the reference for potential gravity. Using the

energetic passivity property of the system in chapter 3, it can be shown that the time

derivative of (6.9) along the system trajectories (6.5), (6.6), (6.7) and (6.8) is given

by,

V̇ = −
n∑
i=1

˙̃qi
T(
Kdi + αi(t)I3

)
˙̃qi −

n∑
i=1

η̇T
i Kvi η̇i (6.10)

+
n∑
i=1

η̇T
di
Kci(ηdi − ηi)+

n∑
i=1

˙̃qT
i δi(ηi, ηdi , fi)− ˙̃qT

L q̈d

Equation (6.10) can be rewritten as V̇ , Q + W to distinguish dissipative and sign-

indefinite terms where Q,W ∈ R are defined as,

Q , −
n∑
i=1

˙̃qi
T(
Kdi + αi(t)I3

)
˙̃qi −

n∑
i=1

η̇T
i Kvi η̇i

W ,
n∑
i=1

˙̃qT
i δi(ηi, ηdi , fi) +

n∑
i=1

η̇T
i Kci(ηdi − ηi)− ˙̃qT

L q̈d

If the UAVs were fully-actuated, the first two terms of W would not have appeared.

The last term of W is due to the under-actuation of the payload. The goal is to choose

the time-varying damping term αi(t) such that the value of the storage function V (t) is
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decreased over time. Ideas from the time-domain passivity observer/controller [27] or

energy monitoring appraches [21] can be employed to this end. The passivity observer

can be implemented in power or energy domain. However, the power-domain observer

is more conservative as it requires V̇ (t) ≤ 0 without considering the time history of

the two terms Q and W [2]. In this paper, an energy-domain observer is considered.

The tank-based energy approach also works in the energy domain [20].

It is noted that the sign indefinite term W involves the payload velocity in − ˙̃qT
L q̈d,

which is not measured. The passivity observer would have to compute the time

integral of W . The integral of the term involving the payload velocity can be written

as,

−
∫ t

0

(q̇L−q̇d)Tq̈ddξ = −qT
L q̈d +

∫ t

0

qT
L

...
q ddξ +

1

2
q̇T
d q̇d + c

where integration by parts has been used and c ∈ R is a constant obtained based

on initial conditions. Given the application of interest, it is safe to assume that the

reference positions signals are smooth and slow-varying, hence
...
q d ≈ 0. Furthermore,

using the kinematic constraint (3.1), it can be shown that

−qT
L q̈d ≤‖q̈d‖‖qL‖ ≤‖q̈d‖

(
‖qi‖+max {ri + di}+li

)
,Γ(t, qi) (6.11)

It follows from the above inequality that
∫ t

0
Wdξ ≤

∫ t
0
W̄dξ with

W̄ ,
n∑
i=1

˙̃qT
i δ(ηi, ηdi , fi) +

d

dt

(
Γ(t, qi) +

1

2
q̇T
d q̇d

)
+

n∑
i=1

η̇T
di
Kci(ηdi − ηi) (6.12)
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Therefore, using (6.12) and V̇ = Q+W ,

V (t)− V (0) ≤
∫ t

0

(Q+ W̄ )dξ (6.13)

Let ε ∈ R+, 0 < ε < 1. Then the above inequality can be re-written as,

V (t)− V (0) ≤
∫ t

0

(
(1− ε)Q+ W̄

)
dξ + ε

∫ t

0

Qdξ (6.14)

Consider the following two cases where ∆T is the sampling time of the system

and j is the sample number:

• If
∫ (j−1)∆T

0

(
(1 − ε)Q + W̄

)
dξ ≤ 0, then the system is dissipating sufficient

energy and there is no need for extra dissipation. In this case, αi(j∆T ) = 0.

• If
∫ (j−1)∆T

0

(
(1 − ε)Q + W̄

)
dξ > 0, the value of the time-varying damping is

computed as,

αi(j∆T ) =

∫ (j−1)∆T

0

(
(1− ε)Q+ W̄

)
dξ

n∆T ˙̃qT
i

˙̃qi
(6.15)

so the quad-rotors contribute equally to the dissipation.

This would ensure that

∫ (j−1)∆T

0

(
(1− ε)Q+ W̄

)
dξ ≤ 0, ∀t > 0 (6.16)

Since ε
∫ t

0
Qdξ ≤ 0, it can be concluded that,

V (t)−V (0)≤
∫ t

0

(
(1− ε)Q+ W̄

)
dξ+ε

∫ t

0

Qdξ ≤ 0 (6.17)
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It follows from (6.17) that V (t) ≤ V (0) which guarantees boundedness of the storage

function, i.e. V (t) ∈ L∞. Therefore, all the states in the storage function (6.9) are

also bounded. Note that using (6.17),

V (t)− V (0) ≤ ε

∫ t

0

Qdξ (6.18)

and hence,

V (t) + ε

∫ t

0

( n∑
i=1

˙̃qi
T
Kdi

˙̃qi +
n∑
i=1

η̇T
i Kvi η̇i

)
dξ ≤ V (0) (6.19)

which proves that ˙̃qi, η̇i ∈ L2. The closed-loop dynamics can be employed to show

¨̃qi, η̈i ∈ L∞, which guarantees the uniform continuity of the velocities. Now, it follows

from the Barbalat’s lemma [85] that limt→∞ ˙̃qi, η̇i = 0. Similar arguments can be

made to show convergence of the acceleration signals.

Remark 3 The sign-indefinite term in the passivity observer, W̄ , includes the deriva-

tive of the reference command for the angular position, i.e., η̇di. It follows from taking

the derivative of Eq. (6.3) and the position controller in (6.1) that this command con-

tains the linear acceleration. The proposed passivity observer works in energy domain

and so it actually needs the integral of W̄ . This should filter out some of the noise

typically present in the acceleration measurements.

Remark 4 In practice the actuator thrusts are limited, which restricts the values of

αi(j∆T ). In such cases, the leftover energy would be dissipated in the subsequent

sample times.
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Remark 5 The parameter ε determines how conservative the passivity observer be-

haves. It changes the portion of dissipative energy from the nominal controller coming

to the passivity observer. If ε→ 0 is picked, then the passivity observer considers all

the dissipation from the nominal controller. As a result, it may need to activate the

passivity controller less frequently. If ε → 1 is picked, then the passivity observer

considers almost no dissipation from the nominal controller. As a result, it may al-

ways try to activate the passivity controller to preserve stability. If a wider and more

conservative stability margin is needed, then ε has to be closer to unity. The price for

a conservative stability margin is a more sluggish motion control system.

6.1.3 Inter-drone Collision Avoidance

It is noted that the proposed translational controller in (6.1) with fbi = 0 may lead

to drone-to-drone collisions during the transient phase of the response or due to

disturbances such as wind depending on the reference trajectories and values of the

control gains. A constraint of the form Cij(t) = (qi − qj)T(qi − qj) − r2
ij > 0, where

rij = rji ∈ R+, j 6= i is a distance threshold, can be imposed to maintain a safe

distance between ith and jth drones. To this end, the following barrier Lyapunov

function is defined,

Vb =
1

2

n∑
i=1

n∑
j=1
j 6=i

kbij q̃
T
i q̃i(

(qi − qj)T(qi − qj)− r2
ij

)2 (6.20)

where kbij = kbji ∈ R+ is a control gain. Now, consider VT = V + Vb where V is

defined in (6.9), as the new closed-loop storage function. It follows from (6.20) and
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the closed-loop dynamics with nonzero fbi that,

V̇T = V̇ +
n∑
i=1

˙̃qT
i fbi+

n∑
i=1

n∑
j=1
j 6=i

kbij ˙̃qT
i q̃i(

(qi − qj)T(qi − qj)− r2
ij

)2 (6.21)

−
n∑
i=1

n∑
j=1
j 6=i

kbij q̃
T
i q̃i( ˙̃qi − ˙̃qj)

T(qi − qj)(
(qi − qj)T(qi − qj)− r2

ij

)3

where q̇di = q̇d has been used. By choosing the collision avoidance control term as,

fbi , −
n∑
j=1
j 6=i

kbij q̃i(
(qi − qj)T(qi − qj)− r2

ij

)2 (6.22)

+
n∑
j=1
j 6=i

(kbij q̃
T
i q̃i + kbij q̃

T
j q̃j)(qi − qj)(

(qi − qj)T(qi − qj)− r2
ij

)3 −
n∑
j=1
j 6=i

kdij( ˙̃qi − ˙̃qj)

where kdij = kdji ∈ R+. It can be shown that,

V̇T = V̇ −
n∑
j=1
j 6=i

( ˙̃qi − ˙̃qj)
Tkdij( ˙̃qi − ˙̃qj) (6.23)

It follows from (6.17) and (6.23) that VT (t) < VT (0) which demonstrates the bound-

edness of V (t), Vb(t) and the signals therein. Moreover, as ˙̃qi and q̇d are bounded, the

uniform continuity of qi is guaranteed. Hence, the constraint Cij(t) is continuous.

Suppose that the initial conditions are such that Cij(0) > 0. Note that Vb(t) =

1
2

n∑
i=1

n∑
j=1
j 6=i

kbij q̃
T
i q̃i

C2ij
→ ∞ only if Cij → 0. Therefore Cij(t) > 0 because of its continuity

and Vb(t) ∈ L∞. All these theoretical results can be summarized in the following

theorem. The block diagram of the proposed control scheme has been illustrated in

Figure 6.1 as well.
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Passivity-based Observer and Controller

(Equation 24)

UAV 1Attitude Controller 

(Equation 13)

Position Controller

(Equation 10&31)

𝑞1, ሶ𝑞1
𝜂1, ሶ𝜂1

𝜓𝑑1

𝑓1
𝜙𝑑1 , 𝜃𝑑1

𝜏1
𝑞𝑑1 , ሶ𝑞𝑑 , ሷ𝑞𝑑

UAV nAttitude Controller 

(Equation 13)

Position Controller

(Equation 10&31)

𝑞𝑛, ሶ𝑞𝑛
𝜂𝑛, ሶ𝜂𝑛

𝜓𝑑𝑛
𝑓𝑛
𝜙𝑛, 𝜃𝑑𝑛

𝜏𝑛
𝑞𝑑𝑛 , ሶ𝑞𝑑 , ሷ𝑞𝑑

𝛼𝑛

𝛼1

𝑞𝑖 , 𝑖 ∈ 𝑁1

𝑞𝑖 , 𝑖 ∈ 𝑁𝑛

Figure 6.1: Block diagram of the proposed control system for n UAVs. The thick
red and black lines represent the translational and angular measurements,

respectively. The set Ni includes the neighbors of the ith UAV.

Theorem 3 Consider the equations of motion (3.2), (3.3), (3.4), (3.5) for the cable-

based aerial transportation system with shifted attachment points. Suppose the initial

conditions are sufficiently small and the safety constraint Cij(0) > 0 is initially sat-

isfied. Then, the passivity-based control force in (6.1) with time-varying gain (6.15)

and the control moment (6.4) achieve the following results:

1. The safety constraint Cij(t) = (qi − qj)T(qi − qj)− r2
ij > 0 is satisfied for t ≥ 0.

2. The motion variables remain bounded for t ≥ 0.

3. If limt→∞ q̈d = 0, then velocities are synchronized for all the robots and the

payload, i.e., limt→∞ ˙̃qi = 0 and limt→∞ ˙̃qL = 0.

6.2 Experimental Validation

In the experiments, three conventional quad-rotors each weighing mi = 0.67 kg co-

operatively carry a cable-suspended payload with a mass of mL = 0.4 kg. The cable
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attachment points are intentionally placed off the COMs of the drones. The experi-

mental setup is similar to Figure 5.2. See chapter 5 for more details on the hardwares.

The outer-loop control gains for all the quad-rotors are as follows,

Kpi = diag{9, 6, 9} , Kdi = diag{3, 2.25, 1.25}

where the cuboid shape of the battery led to different control parameters along the

x and y axis. In addition, there exists a trade-off in picking both of proportional and

derivative terms. If the gain Kpi is increased, then the system would have a smaller

steady state error due to gravity and disturbances. However, a higher Kpi may lead to

oscillations in the system response as well as hitting the saturation limit of actuators.

If the nominal damping, Kdi is increased, then it may make the response sluggish as

it injects dissipation. However, a very low value for Kdi can also cause an oscillatory

response. The inner-loop control gains for all the quad-rotors are selected as,

Kci = diag{10, 15, 18} , Kvi = diag{7.5, 8.5, 10}

The barrier function gains are kbij = 0.15 for all the inter-drone collision avoid-

ance terms and ε = 0.1 is selected for the passivity observer. The inter-drone

damper coefficients, kdij , are set to zero, unless stated otherwise. Three scenarios

were considered to illustrate the effectiveness of the proposed controller. Videos

demonstrating these scenarios are available at https://youtu.be/UQTLOxcVb6w and

https://youtu.be/1vmqre2lpCU.
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Figure 6.2: The trajectories of the drones and the payload during the flight. Note
that the payload position is measured only for illustration and is not used in the

controller.

6.2.1 Square-Shaped Reference Trajectory

The first experiment scenario is as follows. First, the drones fly up to an altitude of

about z = 1.4 m. Then, they follow a square trajectory parallel to the ground in the

x−y plane. Once back at the same x−y position, they land at their original location

on the ground. The yaw angles are kept at zero for all the three quad-rotors.

Figure 6.2 shows the position trajectories of the drones as well as the payload.

The drones are able to fly stably along their desired paths with some small errors

mostly due to the gravity. It should be noted that the position of the payload is

measured only for illustration purposes and is not used in the control.

Figure 6.3 displays the behavior of the passivity observer over time. It is notable

that around t = 7 sec, as the quad-rotors begin to ascend, the passivity observer de-

tects potential active behavior from the nominal controller and responds by activating

the time-varying damping. This triggers extra dissipation to prevent build-up of the

storage function. For the remainder of the flight, the passivity observer/controller

remains inactive as no extra dissipation is needed beyond what is already provided
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Figure 6.3: The response of passivity observer/controller. At around t = 7 sec, the
cables status changes from slack to taut. This is when the drones start to ascend

and the payload suddenly leaves the ground. As a result, abrupt forces and moments
are exerted on the quad-rotors leading to potential active behavior by the nominal

controller. This is immediately remedied by the passivity observer/controller.

by the nominal controller.

Figure 6.4 plots the thrust forces of the quad-rotors versus time. Note that around

t = 7 sec, the time-varying dampers are activated to contribute to system stability.

Figure 6.5 shows the euclidean norm of relative distances of quad-rotors as a function

of time. All the constraints were set to Cij > 0.65 m. It is evident that the control

system satisfies the collision avoidance constraints throughout the flight.

Payload swing can be a concern in aerial transportation and its reduction is de-

sirable [62]. Figure 6.6 represents the attitude of the payload during the flight. Dis-

regarding the take-off stage, the rest of the flight shows a satisfactory swing for the

payload. The proposed controller successfully attenuates oscillations in the payload

motion. Figure 6.7 depicts the position errors of the quad-rotors during the square-

trajectory flight. The position errors are mainly due to effects of the cables and

gravity.
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Figure 6.4: Plots of the thrust forces of the quad-rotors. The first and last
four-second segments correspond to the ramp-up and ramp-down phases of the

propellers.

Figure 6.5: Distances between drones throughout the square-shaped trajectory. The
red lines represent the minimum distances which are set to r = 0.65 m for all the

constraints.
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Figure 6.6: Payload attitude angles throughout the square-trajectory flight. Except
a few spikes, the rest of the flight has an acceptable swing range.
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Figure 6.7: Quad-rotors position errors while following the square-trajectory. The
blue, red and black belong to quad-rotor 1, 2, and 3, respectively.

95



Ph.D. Thesis – K. Mohammadi McMaster – Electrical & Computer Engineering

Figure 6.8: The trajectories of the drones and the payload during the second set of
experiments where the payload is subject to 20 perturbations. The flight is about 90
second long at a constant altitude. The ascending and landing phases are excluded

from the plots to better display the response to the disturbances.

6.2.2 Robustness to Perturbations

In this experiment, the drones hover at a constant altitude of z = 1.4 m for about

90 seconds. The payload is perturbed using a stick for 20 times during the flight.

The perturbations propagate to the drones due to mechanical coupling. Figure 6.8

illustrates the positions of the drones and the payload in response to the perturba-

tions. There are some deviations from the nominal positions as a result. Figure 6.9

shows that the minimum set distance between the drones are kept despite the dis-

turbances, demonstrating the effectiveness of the collision avoidance control using a

barrier function.

It is instructive to see how the passivity observer and controller manage to preserve

stability of the system throughout this flight. Figure 6.10 demonstrates the time

history of the passivity observer. Once the observer detects an active behaviour in

the system, it instantaneously triggers the passivity controller by injecting additional

damping to the system and quickly dissipating the extra energy. Figure 6.11 shows
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Figure 6.9: Distances between drones in the second scenario where the payload is
subject to 20 perturbations and kdij = 0. The red lines represent the minimum

distances which are set to r = 0.65 m for all the constraints. Note that the
minimum set distance is satisfied throughout the flight.

the values of time-varying dampings which respond to active behavior detected by

the passivity observer.

The performance of the proposed controller in the second scenario was also com-

pared to the controller in Chapter 4 to highlight the effectiveness of the collision

avoidance strategy. Although the system remained stable during the flight with the

controller in Chapter 4, the data in Tables 6.1 and 6.2 show the new controller is

much more effective in keeping the drones away at a safe distance from each other.

Figure 6.12 also shows that with the controller in Chapter 4, the drones would violate

the minimum distant constraint a number of times as the controller obviously lacks

a mechanism for enforcing such constraints.

It is instructive to compare Figure 6.9 and Figure 6.12 in terms of oscillations.

The formation controller with kdij = 0 only includes terms with respect to relative

positions and lacks damping. The barrier function exerts significant repulsive forces

and introduces oscillations that are damped poorly. This problem is resolved by
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Figure 6.10: The output of the passivity observer in the second experiment scenario.
This is used for introducing additional damping in the system. Note that positive

values indicate active behavior which is quickly remedied by the controller.

Figure 6.11: The values of time-varying dampers used to compensate for active
behavior in the system during the second experiment scenario.

Table 6.1: Minimum distance (in meters) between the drones in the second
experiment scenario.

min(‖qi − qj‖) ‖q1−q2‖ ‖q1−q3‖ ‖q2−q3‖
Equ. 6.22 with kdij =0 0.80 0.66 0.78

Equ. 6.22 with kdij=0.9 0.80 0.77 0.83
The controller in Chapter 4 0.69 0.54 0.69
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Figure 6.12: The distances between the drones in the second experiment scenario
using the controller in Chapter 4. Note that the distance between the second and

third drones falls below the safety threshold a number of times during the
experiment.

Table 6.2: The average values of the distances (in meters) between the drones in the
second experiment scenario.

mean(‖qi − qj‖) ‖q1−q2‖ ‖q1−q3‖ ‖q2−q3‖
Equ. 6.22 with kdij =0 1.01 0.84 1.02

Equ. 6.22 with kdij=0.9 0.98 0.90 0.94
The controller in Chapter 4 0.89 0.77 0.92
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Figure 6.13: The distances between the drones while the payload was perturbed for
20 times by a wooden stick. The inter-drone damper kdij = 0.9 eliminates the

oscillations induced by the barrier terms. The drones maintain the minimum safety
distance throughout the experiment.

introducing inter-drone dissipative terms (kdij = 0.9), as it can be seen in Figure 6.13.

The oscillations have diminished significantly compared to the case with kdij = 0. In

addition, the minimum safe inter-drone distances are still maintained throughout the

experiment.

6.2.3 Aggressive Maneuver

Aggressive maneuvers are not usually desirable or expected in typical transportation

applications. In the square trajectory following experiment the average velocity of

the UAVs was 0.3m
s

between any two consecutive way-points. A new experiment was

carried out to test how the controller would respond to more aggressive reference

trajectories.

Butterfly-shaped reference trajectories were considered for the three quad-copters

as shown in Figure 6.14. The scenario for this experiment is as follows: First, the

drones ascend to a desired altitude of 2.1m. Then, they simultaneously move −1.5m
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Figure 6.14: Aggressive butterfly-shaped desired trajectories for the three
quad-copters.

along both x and y axis while reducing the height to a desired value of 1.7m. While

at the same x and y coordinates, they go up again to a desired altitude of 2.1m. Next,

they come back to the original locations while decreasing a desired height of 1.7m.

Finally, the cooperative aerial transportation system lands at the initial place.

Figures 6.15 and 6.16 demonstrate the desired velocity and acceleration of the

flock, respectively. It can be seen that the maximum desired acceleration in this

experiment was 2.25m
s2

.

Figures 6.17, 6.18 and 6.19 illustrate the time history of the positions for the first,

second and third quad-copters, respectively. The desired trajectories have been shown

in blue color. It can be seen that the control system successfully preserved stability

during the aggressive maneuver. The existing errors are mainly due to the effect of

cables and gravity.
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Figure 6.15: Desired velocity of the formation in the aggressive maneuver
experiment.

Figure 6.16: Desired acceleration of the formation in the aggressive maneuver
experiment.

102



Ph.D. Thesis – K. Mohammadi McMaster – Electrical & Computer Engineering

Figure 6.17: UAV 1 - Desired and measured positions in the aggressive maneuver

Figure 6.18: UAV 2 - Desired and measured positions in the aggressive maneuver
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Figure 6.19: UAV 3 - Desired and measured positions in the aggressive maneuver

6.3 Summary

In this chapter, a passivity-based control approach was proposed for stable motion

control of multiple quad-rotors carrying a cable-suspended payload. The controller

requires no measurements from the payload and guarantees the closed-loop stabil-

ity irrespective of the status of cable tensions. It also accommodates arbitrary cable

attachment points between the payload and the drones. The controller combines nom-

inal PD-type translational and attitude controllers with correction terms to maintain

stability in the presence of the quad-rotors under-actuation. To this end, an energy-

like storage function was defined and the dissipative terms were computed to ensure

that the value of this storage function decreased over time, guaranteeing the stability

of the control system. The controller was augmented with a collision avoidance term

to ensure that drones keep a minimum safe distance between each other during their

operation. In experiments, three conventional quad-rotors were able to stably carry a

cable-suspended payload using the proposed controller. Moreover, the new controller
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maintained a pre-defined minimum safe distance among the drones even when the

payload was subjected to repeated disturbances; a baseline controller, used for com-

parison, failed to do so. Furthermore, the proposed controller preserved stability for

a more aggressive maneuver.

In the next chapter, a cooperative passivity-based control strategy is introduced

which is highly effective in preserving the formation shape. Interactive control actions

among UAVs require transmitting of measurements. As the control law depends on

measurements from the other agents, it is practical to introduce time-delay into the

analysis as well. Hence, closed-loop stability has to be proven in the presence of both

time-delay and under-actuation.
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Chapter 7

Cooperative Control with Time

Delay

The control laws presented in Chapters 4 and 5 are decentralized in the sense that

the individual controller on each quad-copter relies on its measurement and can be

implemented locally. The only coordination among the quad-copters is through the

coordinated desired position trajectories that represent the desired formation in mo-

tion. The main advantage of this decentralized architecture is its simplicity that

eliminates the need for inter-drone communication. However, external disturbances

can potentially affect the formation shape more significantly because of this lack of

communication. In this chapter, additional inter-drone coupling terms are introduced

in the control laws to help preserve better the formation shape in the presence of dis-

turbances. The inclusion of these coupling terms in the control law can introduce time

delay in some of the feedback signals. These delays could potentially cause system

instability [29]. It is therefore crucial to carefully analyze the closed-loop stability by

considering the delays in the feedback loops. To this end, a formal proof of stability
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has been provided, which utilizes Lyapunov-Krasovskii functionals [61] along with the

theorems from cascaded systems [77]. It is noted that the work in [53] addressed the

formation control problem of quad-copters with communication delays. However, the

angular controller in that paper requires attitude velocity and acceleration reference

commands.

7.1 Mathematical Preliminaries

Theorem 4 ([54]) Consider the following linear system with constant time delay

T ∈ R+,

ẋ = A1x+ A2x(t− T) , t ≥ 0 (7.1)

where x ∈ Rn, A1, A2 ∈ Rn×n denote the state variables and system matrices, respec-

tively. This time-delayed system is exponentially stable with decay rate α > 0 if there

exists symmetric positive definite matrices P,Q ∈ Rn×n such that the following linear

matrix inequality holds:

S∗(α,T,A1,A2),

ĀTP + PĀ+ TQ TeαTĀTPA2

TeαTAT
2 PĀ −TQ

<0 (7.2)

where Ā = A1 + αIn + A2 exp(αT) and In ∈ Rn×n is the identity matrix. Then, the

time-delayed system in (7.1) is exponentially stable with stability degree α.
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Proof. The transformation w(t) = exp(αt)x(t) turns dynamical equation (7.1) into

the following system,

ẇ(t) = (A1 + αIn)w(t) + A2 exp(αT)w(t− T) (7.3)

Now, consider the following Lyapunov-Krasovskii functional candidate,

V(wt) = L(wt)
TPL(wt) +

∫ t

−T

∫ t

t+s

w(ρ)TQw(ρ)dρds (7.4)

where L(wt) , w(t) +
∫ t
t−TA2 exp(αT)w(s)ds. After some algebraic manipulations,

the time derivative of the functional (7.4) along the trajectory of the system (7.3) can

be obtained as,

V̇(wt) = wT(t)S∗w(t) < 0 (7.5)

which proves asymptotic stability of the dynamical system in (7.3). Since limt→∞w(t) =

0, the coordinate transform exp(−αt)w(t) = x(t) shows exponential stability of x(t)

by a decay rate α. See [54] for the details.

Lemma 1 Consider the following time-delayed perturbed system,

ẋ = A1x+ A2x(t− T) + f(t, x) , t ≥ 0 , x ∈ D (7.6)

where T is a constant delay. Assume the origin is an exponentially stable equilibrium

for the nominal system, i.e. f(x) = 0. Suppose the perturbation satisfies ‖f(t, x)‖ ≤

%‖x‖, % > 0 in the domain of interest D. Then, the origin is an exponentially stable

equilibrium of the perturbed system for all x ∈ D if the decay rate α is sufficiently
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large.

Proof. The result is a direct consequence of [39, Lemma 9.1]. The lemma proves that

an exponentially stable equilibrium point shows robustness to perturbations with

linear growth upper-bounds.

Lemma 2 ([32]) For a positive definite matrix Ψ, the following inequality holds,

−2aT(t)

∫ t

t−d(t)

b(τ)dγ −
∫ t

t−d(t)

bT(γ)Ψb(γ)dγ ≤ d̄aT(t)Ψ−1a(t) (7.7)

where a(t) and b(t) are vector functions and d(t) is a time-varying scalar with 0 ≤

d(t) ≤ d̄.

Proof. See [32].

7.2 Control Design and Stability Analysis

Throughout this chapter, the following assumptions have been made:

• The cables are attached to the COM of quad-copters.

• Each UAV establishes a communication with the other vehicles in order to send

its position and velocity measurements. The ith quad-copter transmits signals

with a constant time delay Ti ∈ R+.

• The aerodynamic damping forces and moments applied on the quad-copters

have been compensated by adaptive control laws. See [51] for the adaptation

strategy.
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7.2.1 Control Laws

Consider the following position control scheme,

µi =miq̈d−Kdi
˙̃qi−Kpi q̃i−

n∑
j=1
j 6=i

Kpij

(
q̃i−q̃j(t− Tj)

)
(7.8)

−
n∑
j=1
j 6=i

Kdij

(
˙̃qi − ˙̃qj(t− Tj)

)
+migz

where the positive-definite matrices Kdi , Kpi , Kpij , Kdij ∈ R3×3 stand for the position

and formation control gains. It is assumed that Kpij = Kpji and Kdij = Kdji . The

position error is represented by q̃i , qi − qdi and qdi(t) : [0,∞) → R3 is the desired

reference trajectory of the ith quad-copter. It is assumed that reference trajectories

satisfy the following conditions:

• It is assumed that all the UAVs fly with the same velocity and acceleration

profiles, i.e., q̇di = q̇d, q̈di = q̈d.

• The desired reference velocity consists of two parts q̇d(t) = Qd+q̇d(t), a constant

vector Qd ∈ R3 and an energy bounded signal q̇d(t) ∈ L2. This would imply

that the desired acceleration also belongs to the same space, i.e. q̈d ∈ L2 as

well.

The proposed controller in (7.8) consists of three parts, a passivity-based controller

for individual drones, a distributed inter-drone passivity-based formation control and

feedforward terms to compensate gravity and desired acceleration. Implementation

of the control law in (7.8) requires force generation in certain directions. However,

quad-copters are under-actuated and cannot produce arbitrary forces unless aligned
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with the thrust direction. This is a major limitation in conventional quad-copters

which results in an under-actuation force error δi(ηi, ηdi , fi) ∈ R3 defined as,

δi(ηi, ηdi , fi) = fiR(ηi)z − µi , fi
(
R(ηi)−R(ηdi)

)
z (7.9)

where ηdi = [φdi θdi ψdi ]
T ∈ R3 is the direction of the desired force governed by the

control law (7.8). A well-known solution to this problem is to utilize a cascade control

structure with an outer-loop position controller and an inner-loop angular one. The

outer-loop generates the desired angles ηdi and passes them to the angular controller

as the attitude reference commands. This requirement can be formulated as,

fiR(ηdi)z , µi (7.10)

where we solve for the thrust magnitude and the desired angles. Since Equation (7.10)

is underdetermined, desired reference for yaw can be picked and controlled indepen-

dently.

Now, it is necessary to design an attitude controller for following the reference

attitude commands. The angular motion is not only decoupled from the rest of the

dynamics, but also a fully-actuated subsystem. As a result, it is possible to design a

feedback linearization controller as

τi =
(
Ψ(ηi)

T
)−1
(
M(ηi)vi + C(ηi, η̇i)η̇i

)
(7.11)

where vi has yet to be designed. This would result in a double-integrators system

η̈i = vi for the angular motion.
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7.2.2 Stability Analysis

Substituting the position controller (7.8) and the proposed angular feedback lineariza-

tion (7.11) into the open-loop dynamics (3.2), (3.3), (3.4) and 3.5 yields,

mi
¨̃qi+kdi ˙̃qi + kpi q̃i= δi(ηi, ηdi ,fi) +TiRLei (7.12)

−
n∑
j=1
j 6=i

Kpij

(
q̃i−q̃j(t−Tj)

)
−

n∑
j=1
j 6=i

Kdij

(
˙̃qi − ˙̃qj(t−Tj)

)

η̈i = vi (7.13)

mL(q̈L−q̈d) +DT (q̇L − q̇d) =−
n∑
i=1

TiRLei −mLgz (7.14)

−mLq̈d −DLq̇d

JLω̇L + ω×LJLωL +DRωL =
n∑
i=1

r×i (−Tiei) (7.15)

where the positive definite matrices DT , DR ∈ R3×3 are air drag coefficients for the

payload. This dynamical system has the same form as the augmented system in

Theorem (1) where Equations (7.12), (7.14) and (7.15) represent x dynamics and

Equation (7.13) matches ζ. Hence, Theorem (1) seems appropriate for investigating

closed-loop stability. The only interconnection term between the two subsystems is

the under-actuation force error δi(ηi, ηdi , fi). Figure 7.1 summarizes the required steps

to prove closed-loop stability using Theorem (1).
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1- Consider ηi as a virtual control
to the dynamical system
represented by (7.12), (7.14)
and (7.15)

2- Design a stabilizing controller
ηi = β(q̃i, ˙̃qi) and substitute it
in equation (7.12)

3- Show that the system obtained
is globally asymptotically stable

4- Show that the system obtained
is locally exponentially stable

5- Pick the angular controller as

vi=−KKvi η̇i−K2Kci(ηi−ηdi)

6- Finally, conclude semi-global
stabilization for the augmented
system represented by (7.12-7.15)

1

Figure 7.1: Steps taken to prove closed-loop stability using Theorem (1).

Consider ηi as a virtual control for the system dynamics (7.12). The choice ηi , ηdi

would result in δi(ηdi , ηdi , fi) = 0 and eliminates the interconnection term. The

following theorem proves global asymptotic stability of the outer-loop subsystem.

Theorem 5 Consider the translational motion of quad-copters (7.12) with no inter-

connection term, i.e. δi(ηi, ηdi , fi) = 0 as well as the payload dynamics (7.14) and

(7.15). The system is globally asymptotically stable if there exists a solution to the

following LMI:

Kdi−nTiI3−
1

4

n∑
j=1
j 6=i

(TjK
2
pij

+Kdij)>0 , ∀i=1, ...,n (7.16)

and limt→∞ q̈d = 0.

proof. Consider the following Lyapunov-Krasovskii storage function V = V1 + V2,
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where V1 and V2 are defined as

V1=
1

2

n∑
i=1

mi
˙̃qT
i

˙̃qi+
1

2
mL

(
q̇L−q̇d

)T(
q̇L−q̇d

)
+

1

2
ωT
LJLωL (7.17)

+
1

2

n∑
i=1

q̃T
i Kpi q̃i+

1

4

n∑
i=1

n∑
j=1
j 6=i

(
q̃i−q̃j

)T
Kpij

(
q̃i−q̃j

)

+
(
DTQd+mLgz

)T
(qL−

n∑
i=1

qdi

n
) + κ

V2 = n
n∑
i=1

∫ 0

−Ti

∫ t

t+γ

˙̃qi(s)
T ˙̃qi(s)dsdγ (7.18)

where κ > 0 adjusts the reference for gravitational potential energy. The time deriva-

tive of the storage function along the trajectories of the closed-loop system can be

obtained as (see the appendix for the details),

V̇ ≤−
n∑
i=1

˙̃qT
i

(
Kdi − nTiI3 −

n∑
j=1
j 6=i

Tj
4
K2
pij

)
˙̃qi (7.19)

+
n∑
i=1

(
˙̃qT
i (t− Ti)

( n∑
j=1
j 6=i

Kdij

4

)
˙̃qi(t− Ti)

)

− ωT
LDRωL − (q̇L − q̇d)T(DT −

εI3

4
)(q̇L − q̇d)

+
1

ε
(DT q̇d +mLq̈d)

T(DT q̇d +mLq̈d)

where ε ∈ R+ is an arbitrary small positive number such that DT − εI3
4
> 0 always

holds. To show boundedness of the storage function, we transfer the analysis from

power domain to energy domain by one integration. Since these physical signals are
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causal and take zero values in negative times, it can be shown that,

∫ tf

0

n∑
i=1

(
˙̃qT
i (t− Ti)

( n∑
j=1
j 6=i

Kdij

)
˙̃qi(t− Ti)

)
dt (7.20)

=

∫ tf−Ti

−Ti

n∑
i=1

(
˙̃qT
i (s)

( n∑
j=1
j 6=i

Kdij

)
˙̃qi(s)

)
ds

=

∫ tf−Ti

0

n∑
i=1

(
˙̃qT
i (s)

( n∑
j=1
j 6=i

Kdij

)
˙̃qi(s)

)
ds

≤
∫ tf

0

n∑
i=1

(
˙̃qT
i (s)

( n∑
j=1
j 6=i

Kdij

)
˙̃qi(s)

)
ds

It follows from integration of inequality (7.19) from t = 0 to t = tf with the upper-

bound given in (7.20) that,

V (tf )+

∫ tf

0

n∑
i=1

˙̃qT
i

(
Kdi−nTiI3−

1

4

n∑
j=1
j 6=i

(TjK
2
pij

+Kdij)
)

˙̃qidt

+

∫ tf

0

ωT
LDRωLdt+

∫ tf

0

(q̇L−q̇d)T(DT−
εI3

4
)(q̇L−q̇d)dt

≤ V (0) +A

where A ,
∫ tf

0
1
ε
(DT q̇d + mLq̈d)

T(DT q̇d + mLq̈d)dt is bounded based on the afore-

mentioned assumptions on the reference trajectories. If there exists a solution for

the LMIs given by (7.16), then, it can be easily concluded that V (tf ) ∈ L∞ and

˙̃qi, (q̇L − q̇d), ωL ∈ L2. Moreover, if the system comes to a rest at the steady-state,

i.e. limt→∞ q̈d = 0, then, it follows from systems dynamics (7.12), (7.14) and (7.15)

as well as Barbalat’s lemma [85] that limt→∞ ˙̃qi, (q̇L − q̇d), ωL = 0. Similar arguments
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can be used to show convergence of accelerations. Since at the steady state condition

lim
t→∞

q̃i(t)−q̃j(t−Tj) = lim
t→∞

q̃i(t)−q̃j(t) +

∫ t

t−Tj

˙̃qj(γ)dγ

= q̃i(t)−q̃j(t)

then, the closed-loop system finally settles at the expected equilibrium point
n∑
i=1

Kpi q̃i =

−mLgz − DTQd. It can be seen that the inter-drone virtual spring forces are not

present. This is due to the fact that they act as internal forces and have been canceled

out in final static balance equation. This completes the proof for global asymptotic

stability. �

The next step is to prove local exponential stability of the system without inter-

connection terms. This is the fourth step in terms of the block diagram in Figure 7.1.

As it has been already shown that the system enjoys global asymptotic stability, it

would suffice to prove that convergence rate is exponential. A worst-case analysis

has been provided here, where it is assumed Ti = Tmax = max{T1,T2, ...,Tn}. This

would allow for a more compact representation of system dynamics in favor of space

constraints. It follows from the result of Theorem (5) that cable forces are bounded

and can be seen as disturbances to translational motion of quad-copters (7.12). Con-

sider TiRLei , gi(t, q̃i, ˙̃qi) + Ci where g(t, q̃i, ˙̃qi) : [0,∞)×R3×R3 → R3 is a nonlinear

function upper bounded by ‖g(t, q̃i, ˙̃qi)‖ ≤ %i‖[q̃i, ˙̃qi]‖, %i ∈ R+ and g(t, 0, 0) = 0. In

addition, Ci ∈ R3 is a constant vector such that
n∑
i=1

Ci = −mLgz − DLQd. Let us

define the following state variables,

X , [(q̃1 − q∗1)T ˙̃qT
1 (q̃2 − q∗2)T ˙̃qT

2 · · · (q̃n − q∗n)T ˙̃qT
n ]T
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where q∗i ∈ R3 , i = 1, 2, ..., n is the solution to the following set of linear equations,

i.e. the equilibrium points,



Kp1 q̃1 +
n∑
j=2

Kp1j(q̃1−q̃j) = C1

Kp2 q̃2 +
n∑
j=1
j 6=2

Kp2j(q̃2−q̃j) = C2

...

Kpn q̃n +
n−1∑
j=1

Kpnj
(q̃n−q̃j) = Cn

(7.21)

The vehicle dynamics (7.12) without the interconnection terms can be represented

as,

Ẋ (t) = A1X (t) + A2X (t− Tmax) +G(X ) (7.22)

where A1 ∈ R6n×6n is the delay-free system matrix,

A1 =



A11 06×6 · · · 06×6

06×6 A12 · · · 06×6

...
. . .

...

06×6 06×6 · · · A1n


(7.23)

where,

A1i =

 03×3 I3

−Kpi −
n∑
j=1
j 6=i

Kpij −Kdi −
n∑
j=1
j 6=i

Kdij


6×6

(7.24)
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In addition, A2 ∈ R6n×6n is the system matrix for delayed terms,

A2 = [A2ij ] ∈ R6n×6n (7.25)

A2ij =


Kpij If i = 2K1, j = 2K2 − 1, i 6= j − 1

Kdij If i = 2K1, j = 2K2, i 6= j

03×3 Otherwise

and K1,K2 ∈ {1, 2, .., n}. Finally, the vector G(X ) ∈ R6n can be defined as,

G(X ) ,

[
01×3 gT

1 01×3 gT
2 · · · 01×3 gT

n

]T

(7.26)

which acts as a disturbance on this network of linear time-invariant system with time

delay.

The system represented by (7.22) has the same form as the general dynamics

given by (7.6) in Lemma (1). Hence, it follows from Lemma (1) that the time-delayed

perturbed system is exponentially stable if the nominal system (i.e. with G(X ) = 0)

is exponentially stable with sufficiently large decaying rate. Exponential stability of

the nominal system can be investigated through Theorem (4). Based on that, for a

given stability degree α > 0, constant time delay Tmax > 0 and A1 and A2 defined

as (7.23) and (7.25), if there exists symmetric positive definite matrices P,Q ∈ R6n×6n

such that the linear matrix inequality S∗(α,Tmax, A1, A2) < 0 is satisfied, then the

nominal system is exponentially stable. This condition can be held with proper choice

of control gains. Once exponential stability of the nominal system is established,
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it follows from Lemma (1) that the perturbed system remains locally exponentially

stable in a given compact setD ⊂ R6n around the origin, if the decay rate is sufficiently

large. This would complete the fourth step in terms of block diagram (7.1).

The next step is to design a stabilizing controller for the angular dynamics of the

quad-copters. Since the outer-loop system without the interconnection terms enjoys

both GAS and LES, then it follows from Theorem (1) that the following angular

controller would achieve semi-global stabilization of the equilibrium point,

vi = −KKvi η̇i −K2Kci(ηi − ηdi) (7.27)

where K,Kci , Kvi ∈ R3×3 are positive-definite gains. The noteworthy observation for

the control law (7.27) is that it does not involve the reference angular velocity and

acceleration. As a result, the proposed control scheme in this chapter works only

based on position and velocity measurements. These constitute the fifth and sixth

steps of the block diagram in Figure 7.1 and result in the closed-loop stability of the

augmented system.

7.3 Experimental Verification

To investigate the effectiveness of the proposed controller, an experiment with three

quad-copters and a cable-suspended payload was conducted in an indoor environ-

ment. The implementation of the proposed approach needs communications among

the UAVs. However, this would increase hardware complexity as we had to still main-

tain wireless communications from the ground station to each UAV. This is due to the

fact that the motion capture system streams position data to the ground station. As
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a result, the time delay was artificially added to the inter-drone control actions inside

the code to mimic this adverse phenomena. Hence, all the outer-loop control compu-

tations were carried out in the ground station and then each quad-copter wirelessly

received its desired thrust and angles.

In order to apply the proposed controller to the system, it is first essential to satisfy

all the stability conditions. During this experiment, the following control gains were

selected for all the quad-copters,

Kpi = diag
{

9, 6, 9
}
,

Kdi = diag
{

3.75, 2.25, 2.25
}

The inter-drone coupling terms were chosen as:

Kpij = diag
{

2.25, 2.25, 2.25
}
, Kdij = diag

{
1.05, 1.05, 1.05

}

The artificial delay inside the code was set to Ti = 0.04 second for all the coupling

terms. In order to verify stability conditions, a couple of LMIs have to be satisfied.

First, it can be shown that the LMI in (7.16) is satisfied with our choice of control

gains since the following matrix,

Kdi−nTiI3−
1

4

n∑
j=1
j 6=i

(TjK
2
pij

+Kdij)= diag
{

2.7750, 1.2750, 1.2750
}
> 0

is positive-definite. The next step is to show that conditions for local exponential

stability are held. This can be verified through Theorem (4). Let α = 1 and Q = I18,

then a positive-definite P matrix can be found, to satisfy LMI (7.2). See appendix (B)
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Figure 7.2: Positions of the UAVs and the payload with time-delayed coupling
terms in control.

for the numerical values. This solution was obtained using MATLAB LMI toolbox.

7.3.1 Reference Following

The following scenario was considered to evaluate closed-loop stability of the system

in the presence of time-delay: The quad-copters first flew to an altitude of 1.4m. They

then moved diagonally for 1.5m along both x and y axes. Afterwards, they returned

to their original position. This pattern of movement was repeated twice. Finally, the

quad-copters landed at the starting point. Figure 7.2 illustrates the positions of quad-

copters as well as the cable-suspended payload. Although the system experienced

time-delay in the control loop, it could still preserve stability. Moreover, it can be

seen from Figures 7.3, 7.4 and 7.5 that the the proposed controller has a satisfactory

performance in terms of reference following. The position errors are mainly due to

the payload and cables.
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Figure 7.3: Position versus time for Quad-copter 1. The red and blue show the
desired and measured signals, respectively.

Figure 7.4: Position versus time for Quad-copter 2. The red and blue show the
desired and measured signals, respectively.
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Figure 7.5: Position versus time for Quad-copter 3. The red and blue show the
desired and measured signals, respectively.

7.3.2 Comparison to a Baseline Controller

The addition of the inter-drone coupling terms is expected to enhance the controller’s

ability to preserve the formation shape in the presence of external disturbances. In

this subsection, the performance of the new controller is compared to the fully de-

centralized controller of Chapter 4. The following scenario was considered in this

comparison: The drones flew to a hovering altitude of approximately z = 1.15 m.

While hovering, the first quad-copter was pulled away from its position twice with

the help of an extra long rope attached to it. This was done to compare the responses

of the controllers to an external disturbance. A video demonstrating this experiment

is available at https://youtu.be/PVI-tvyfZ40.

Figure 7.6 illustrates the positions of the quad-copters and the payload throughout

the experiment with the distributed cooperative control law (7.8). It is clear that

once the first quad-copter was perturbed, the other quad-copters moved in the same

direction in order to maintain the formation shape.

Figure 7.7 depicts the positions of the drones and the payload with the fully

123

https://youtu.be/PVI-tvyfZ40


Ph.D. Thesis – K. Mohammadi McMaster – Electrical & Computer Engineering

Figure 7.6: The positions of the drones and the payload with the new controller
with inter-drone coupling terms. The first quad-copter was pulled away from its

position twice with the aid of a rope attached to it.

decentralized controller from Chapter 4. It is clear that the controller is less effective

in maintaining the formation shape. This is because the control action of each quad-

copter responds only to local errors with no feedback from the other two quad-copters.

The small movements of the second and third quad-copters are due to the mechanical

coupling through the payload and the cables. In contrast, the inter-drone coupling

terms in the new controller provide a more effective mechanism for preserving the

formation shape in response to the disturbance.

7.4 Summary

In this chapter, a revised controller was introduced to help improve the system’s abil-

ity to preserve the formation shape in response to external disturbances. This new

controller added inter-drone coupling terms, which requires inter-drone communica-

tion of the position measurements. A comprehensive analysis of the system stability

was presented, where under-actuation and communication time delay were taken into
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Figure 7.7: 3D positions of the aerial transport system with the fully decentralized
controller of Chapter 4. An extra rope attached to UAV 1 was pulled twice during

the experiment.

account. Stability conditions were derived to establish guidelines for selecting the

controller gains based on the amount of time delay in the inter-drone communication

links. Experiments were carried that showed that the system stability can be main-

tained in the presence of time delay. Moreover, as predicted, the new controller proved

more effective than the one introduced in Chapter 4 in preserving the formation shape

in response to an external disturbance.
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Chapter 8

Formation Shape Design

The previous chapters focused on the design of controllers for multi-UAV cable-based

aerial transport system. In those controllers, the reference positions for the UAVs

were assumed known and provided by the user. These reference points ultimately

determine the shape of the formation and the pose of the payload. However, a given

payload pose may be achieved with many different formations and the question that

naturally arises is which formation should be chosen.

In this chapter, we formulate an optimization problem to select the reference

positions for the UAVs to minimize the total power consumed during the hovering

stage of the flight. In hovering, the quad-copters mostly fight against gravity and

hence minimizing their total power would minimize the lost power used to keep the

payload in one position. The hovering power can be determined by a steady-state

analysis, which provides a number of constraints for the optimization problem. The

other constraints in the problem are the thrust limits, the kinematic constraints of

the cables, and the desired minimum distance between the drones.
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The payload parameters are needed in the formulation of the optimization prob-

lem. They impact the optimal formation shape. A calibration process is proposed

to estimate these parameters experimentally. In this process, the quad-copters fly

with the cable-suspended payload in an arbitrary formation and the sensor data is

recorded. The payload parameters, i.e., the COM location of the payload (the vectors

ris in Figure 8.1) are estimated by solving a least-squares problem.

8.1 Optimal Formation Shape and Reference Tra-

jectories

Precise control of the payload position and pose is not required in most transportation

applications. Since the position of the payload is constrained by the cables, it often

suffices to control the positions of the UAVs instead. However, certain applications

may require the payload to follow a desired pose configuration. For instance, a bucket

of water may have to be oriented in a particular way so it can be emptied to extinguish

fire. In such tasks, position and orientation of the payload must be controlled. The

reference positions for the UAVs can be found based on the static balance equations

as well as the kinematic constraints. A minimum of three drones are required to fully

control the payload position and orientation [48]. The formation solution for a given

payload position/orientation is not unique. An optimization problem is formulated

here to determine a unique solution.

Short flight time is a major issue in aerial transportation so power efficiency is

critical in this application [62]. We seek to find a solution that would minimize the

total power of the UAVs in the hovering phase. This is also the power that the vehicles
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consume in steady state when moving with constant velocity (in the absence of drag

forces). It follows from a similar derivation to that in [17] and Equation (7.10) that

the power of a single quad-copter Pi ∈ R in hovering can be calculated from,

Pi = ξif
1.5
iss = ξi‖µiss‖1.5 (8.1)

where ξi > 0 and the subscript “ss” stands for the steady state condition of signals.

It follows from the control law (7.8) that

µiss = −Kpi q̃i−
n∑
j=1
j 6=i

Kpij(q̃i−q̃j) +migz (8.2)

where the spring-type actions and gravity compensation are present.

8.1.1 Optimization Problem

The operator expresses the desired pose of the payload (qLd
, RLd

) for Nw ∈ N way-

points. At each of these waypoints, the following optimization is solved to obtain the
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formation shape as well as the UAV waypoints:

min
qi,qdi ,Ti

n∑
i=1

ξi‖µiss‖1.5

subject to µiss =
Ti
li

(qi−qLd
−RLd

ri)−migz , i=1, ..., n

n∑
i=1

Ti
li

(qi − qLd
−RLd

ri) = −mLgz

n∑
i=1

r×i
(
TiR

T
Ld

(qi − qLd
−RLd

ri)
)

= 0

‖qi − qLd
−RLd

ri‖ ≤ li , i = 1, ..., n

‖qi − qj‖≥ dsij , i=1, ..., n , j= i+ 1, ..., n

Ti ≥ 0 , i = 1, ..., n

‖µiss‖ ≤ fsati

(8.3)

where dsij ∈ R+ denotes the safe distance between the ith and the jth UAVs. The

thrust saturation limit is represented by fsati ∈ R+. After solving this minimization

problem forNw times, the desired UAV positions qdis are obtained at given waypoints.

Provided that the time distance of the waypoints is sufficiently large, dynamically-

feasible trajectories can be easily found between each two waypoints of the ith UAV

since the boundary conditions are known. It should be noted that the formulation

in (8.3) is a non-convex optimization problem. Hence, finding a global minimum is

not guaranteed.

It is noted that the angular positions of the quad-copters are absent in the opti-

mization formulation. This is because the cables are assumed to be attached to the

COM of the quad-copters, decoupling their angular dynamics from the rest of the sys-

tem dynamics. In addition, the proposed attitude controller in (7.27) guarantees that
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limt→∞ ηi = ηdi . This would eliminate the coupling term (7.9) in the translational

motion of quad-copters in steady state.

For homogeneous UAVs and a symmetric payload (i.e.,
n∑
i=1

ri = 0), minimizing

the cost function in optimization (8.3) has the effect of distributing the load uni-

formly within the feasible solution space. This would ensure that load distribution

imbalances would not prematurely drain the energy supply of any UAVs and should

ultimately prolong the flight time.

8.1.2 Calibration

The optimization problem in the previous section is payload-specific as it requires the

mass and COM position of the payload. The mass value can be easily measured but

the location of COM is trickier to find. A calibration process is proposed here that

would help determine the COM of each UAV, i.e., the vectors ris in Figure 8.1. This

process involves the following steps:

1. The quad-copters fly with the payload following an arbitrary references trajec-

tory with the only constraint that the cables must be in tension throughout this

calibration flight.

2. Once in steady state, the UAV positions are recorded for each sample i ∈

{1, ...,Nc}. A total number of Nc ∈ N data samples are collected. Having the

positions available, it follows from (8.2) that the steady-state control input is

known. This information can be used to calculate the unit vector along each
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Figure 8.1: Schematic of the aerial transportation system where the cables are
attached to the COM of the UAVs.

cable in the world frame as well as the tension in the cable as follows,

‖µiss [i] +migz‖ = Ti[i] , i = 1, ..., n (8.4)

µiss [i] +migz = Ti[i]RL[i]ei[i] , i = 1, ..., n (8.5)

3. Now that the positions of the UAVs, qi[i]s and the unit vectors in the world

frame RL[i]ei[i] are known, we can find the positions of the attachment points

with respect to the world frame,

pi[i] , qi[i] + liRL[i]ei[i] (8.6)

See Figure 8.1 for more details.
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4. The positions of the attachment points can be used to determine the orientation

of the payload:

RL[i] =
[
a1L [i]; a2L [i]; a3L [i]

]
(8.7)

where a1L [i] , p1[i]−p2[i]
‖p1[i]−p2[i]‖ , a3L [i] ,

a1L [i]×(p3[i]−p2[i])

‖a1L [i]×(p3[i]−p2[i])‖ and a2L [i] = a3L [i]×a1L [i].

Therefore, the rotation matrix of the payload is known at each sample time.

This rotation matrix can be employed to obtain eis, the unit vectors expressed

in the body-fixed frame of the object.

5. With the cables in tension, one can write (see Figure 8.1),

r1 − rj = RT
L[i]
(
p1[i]− pj[i]

)
, j = {2, 3, ..., n} (8.8)

In addition, the balance equation of the moment has to hold for each sample

time,

n∑
i=1

(
Ti[i]ei[i]

)×
ri = 0 (8.9)

Equations (8.8) and (8.9) for samples i = 1 to i = Nc can be written in the

compact form

A [rT
1 rT

2 ... rT
n ]T = B (8.10)
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where A ∈ R3nNc×3n. For a special case that n = 3, A and B can be written as,

A=



I3 −I3 03×3

I3 03×3 −I3

T1[1]e1[1]× T2[1]e2[1]× T3[1]e3[1]×

...
...

...

I3 −I3 03×3

I3 03×3 −I3

T1[Nc]e1[Nc]× T2[Nc]e2[Nc]× T3[Nc]e3[Nc]×


9Nc×9

B =



RT
L[1]

(
p1[1]− p2[1]

)
RT
L[1]

(
p1[1]− p3[1]

)
03×1

...

RT
L[Nc]

(
p1[Nc]− p2[Nc]

)
RT
L[Nc]

(
p1[Nc]− p3[Nc]

)
03×1


9Nc×1

6. The above system of equations is over-determined. A least-squares solution to

the problem is given by

[rT
1 rT

2 ... rT
n ]T = (ATA)−1ATB (8.11)
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Figure 8.2: Snapshot of experiment with the whiteboard payload.

Increasing the number of samples should improve the accuracy of the estimation

by reducing noise.

It is noted that the proposed calibration method requires no measurements from

the payload. While the proposed strategy does not close the feedback loop over

payload position measurement, it fully considers its desired pose in designing reference

trajectories for the UAVs.

8.2 Experimental Results

In this section, formation shape design problem is considered for two different pay-

loads. The first one is a whiteboard with a large effective surface area. Since the

attachment points are far away, a rigid-body representation seems essential for such

an object. Figure 8.2 shows a snapshot of experiment with this payload. The second

payload has a small cylindrical shape. This object has been also used in previous

experiments. See Figure 1.1 for more details. They both weigh around mL = 0.41

kg.
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Figure 8.3: Positions of the UAVs and the cable-suspended payload during a
hovering. The whiteboard payload experience significant swings and never reaches

an equilibrium.

8.2.1 Whiteboard Payload

Given the relatively large dimensions of the whiteboard payload (76 cm × 100 cm), it

is necessary to consider a rigid-body representation in the optimization formulation.

This requires the vectors ris in Fig. 8.1. A calibration experiment was performed on

this payload. Payloads with large effective surface area are generally more prone to

swing and oscillations. This turned out to be the case during calibration experiment

with the whiteboard payload. Due to the swings and oscillations the payload never

reached a steady state equilibrium during the calibration.

Figure 8.3 shows the positions of the quad-copters and the whiteboard in this

experiment. The orientation angles of the payload are plotted in Figure 8.4. It is

apparent that an equilibrium condition is never reached. The transitory oscillatory

motion involves velocity and acceleration components that were ignored in deriving

the calibration equations. Since the proposed calibration test only works based on
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Figure 8.4: Orientation of the whiteboard payload while hovering.

position measurements, the approach cannot be effectively applied to this particular

case. The effect of airflow for large surface payloads needs to be investigated in the

future.

8.3 Point Mass Payload

The formation shape optimization problem can be directly applied to a point mass

payload with no need for calibration. The following parameters are used in the

optimization problem,

mi = 0.67 kg, mL = 0.41 kg, l1 = 165 cm, l2 = 102 cm, l3 = 98 cm,

dsij = 70 cm, fsati = 10 N

The reference position for the payload is set to qLd
= [0 0 0.6]T. The optimization

problem was solved using MATLAB fimincon optimizer which returned the following
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Figure 8.5: Positions of the UAVs and the cable-suspended payload while hovering
for 25 seconds with the formation obtained from optimization.

solution,

qd1 = [0.98 − 0.79 2.07]T (8.12)

qd2 = [−0.39 − 0.24 2.07]T (8.13)

qd3 = [0.16 0.43 2.07]T (8.14)

It is noted that the desired altitudes of the quad-copters have been constrained to be

equal due to limited space in the laboratory.

An experiment with three identical quad-copters and a cable-suspended payload

was carried out where the quad-copters were commanded to hover for 25 sec at the

reference positions obtained from solving the optimization problem. Figure 8.6 shows

the results of this experiment. The system is mostly in steady-state condition as the

payload experiences only minor swings.

It is instructive to see how closely the payload follows its reference position, qLd
.
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Figure 8.6: Position of the payload (blue) throughout a 25 seconds hovering
experiment. The reference position (red) is qLd

= [0 0 0.6]T.

Figure 8.5 depicts the measured and reference positions of the payload. The errors

stem mainly from parameter errors such as errors in the cables lengths. Moreover, it

is assumed that the cables are attached to the COM of the UAVs, while this may not

be exactly true in the actual experiments.

Three other experiments with arbitrary formation shapes were carried out and

their results were compared with those from the optimization problem solution. In

each of these experiments, the quad-copter hovered for about 25 seconds in their

respective formation. These triangle shapes are shown in Figure 8.7 where the star,

circle and cross symbols denote the reference positions for the first, second and third

UAVs, respectively.

Figure 8.8 compares the four formations in terms of total consumed power. It

is clear that the formation shape obtained from the optimization problem consumes

the least amount of power among the four. Table 8.1 summarizes the results in these

four hovering experiments, which confirms the formation shape obtained from the
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Figure 8.7: The optimal and three arbitrary reference formation shapes. The star,
circle and cross symbols denote the reference positions for the first, second and third

UAVs, respectively.

optimization is the most power efficient of the four.

8.4 Summary

In this chapter, an optimization problem was formulated to achieve a formation shape

for the quad-copters that places the payload at a desired position and orientation,

Table 8.1: Comparison of power usage for four different formations. The last

column represents an index (i.e.
3∑
i=1

Pi

ξ
=

3∑
i=1

f 1.5
iss =

3∑
i=1

‖µiss‖1.5) for power

consumption of the system during a 25-second hovering flight.

Triangle Shapes qd2 − qd1 qd3 − qd1 mean (
3∑
i=1

‖µiss‖1.5)

Optimized Formation [2.6 0.3 0]T [1.8 − 1.3 0]T 68.95
Arbitrary Formation 1 [2.0 − 0.6 0]T [1.2 − 2.3 0]T 71.65
Arbitrary Formation 2 [3.0 0 0]T [2.0 − 1.8 0]T 72.11
Arbitrary Formation 3 [1.38 − 0.55 0]T [0.88 − 1.25 0]T 73.88
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Figure 8.8: Power consumption of the four formation shapes over during a
25-second hovering flight. Note that since UAVs are identical, ξ1 = ξ2 = ξ3.

while minimizing the total consumed power during hovering. This optimization prob-

lem requires the positions of the payload attachment points. A calibration procedure

was proposed to estimate these positions from experiments in quasi-static conditions.

It turned out that for light payloads with large effective surface area, quasi-static con-

ditions are hard to achieve due to airflow interference among the quad-copters and

the payload. Further research is needed to investigate this phenomenon and develop

effective modeling, estimation and control strategies for such payloads. Experiments

with another payload modeled as a point mass demonstrated that an optimized for-

mation shape consumes less power than three other arbitrarily chosen formations in

a hovering flight.
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Chapter 9

Conclusion

This thesis was concerned with the motion control problem of an aerial transport

system where multiple quad-copters cooperatively carry a cable-suspended payload.

Unlike many existing methods, the proposed passivity-based controllers make no as-

sumption about the cables being in tension. They require no measurements from the

payload and consider the under-actuation of quad-copters in their design and stabil-

ity analysis. A number of improvements to the controller were proposed throughout

various chapters in the thesis to help avoid inter-drone collisions and reduce the effect

of external disturbances. Detailed stability proofs were provided for all the control

schemes. The effectiveness of the proposed controllers were evaluated in experiments

carried out in an indoor setting using a motion capture system to measure the quad-

copter positions.

The first method was essentially a decentralized controller for the quad-copters

that exploited the passivity of the multi-body mechanical system to guarantee the

system stability. The quad-copter controllers have a cascaded architecture with inner-

loop attitude and outer-loop position control. Initially, the angular controller was
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designed to achieve exponential convergence of the tracking errors. This attitude

controller required the first and second derivatives of the desired attitude, which itself

was the output of the outer-loop controller, ultimately leading to linear acceleration

and jerk measurements in the control signals. A modified controller was proposed

to address this issue by eliminating the derivatives of the desired attitude in the

inner-loop controller. Moreover, this controller used an energy observer to estimate

injected energy into the system by external disturbances and dissipated this energy

via time-varying dampers. Experimental results showed a significant reduction in

disturbance-induced oscillations as a result of implementing this scheme.

Next, a modified passivity-based controller was introduced that no longer required

the cables being attached to the quad-copters centers of mass. In this controller, a

passivity observer monitors the total energy of the system and activates a comple-

mentary damper to counter any potential active behavior. The controller was further

augmented with a barrier-type controller to help avoid inter-drone collisions. Closed-

loop stability was proven where safety constraints were theoretically shown to never be

violated. The payload was intentionally perturbed in an experiment to demonstrate

the effectiveness of the proposed method in preventing drone-to-drone collisions.

Although decentralized controllers are simple and robust, they might be challenged

in preserving the formation shape in response to external perturbations acting on the

system. Inter-drone control coupling terms were introduced for a better preservation

of the formation shape. Implementation of this controller required communication

among the drone, which could potentially be subject to time delay. The stability of

the system with such delays was analyzed to obtain conditions that the controller gains

need to satisfy in order to maintain stability. The under-actuation was considered in
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this analysis. The robust stability of the system was demonstrated in an experiment

with three quad-copters and a cable-suspended payload. Furthermore, the distributed

cooperative controller was compared to the fully decentralized controller of Chapter 4

in order to highlight its improved capability in preserving the formation shape.

Finally, the thesis presented a method for designing the reference position com-

mands for the proposed controllers. The method involves formulating an optimization

problem, the goal of which is to place the payload at a desired position and orien-

tation, while minimizing the total consumed power. This problem was formulated

under quasi-static conditions, using kinematic as well as torque balance equations

of constraints. Results of experiments showed that the quad-copters consumed less

power in the formation determined from the solution of the optimization problem

compared with three other other arbitrary formations.

9.1 Future Work

While this thesis made significant contributions towards enabling aerial transporta-

tion of cable-suspended payloads, there are still a number of avenues for future re-

search:

• An immediate practical consideration for future work relates to the position

measurements in outdoor settings. The work in this thesis was exclusively

carried out in an indoor lab environment where a motion capture system pro-

vided highly accurate measurements at relatively high update rates. Real-Time

Kinematic (RTK) GPS [30] technology can potentially be used to measure the
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drones’ positions in outdoors. This sensor would be adequate for global posi-

tioning of the drones as a group along the path. However, it may not be ac-

curate enough to implement strategies such as inter-drone collision avoidance.

To preserve the coordinated movement, the vehicles can measure their relative

positions with higher accuracy using other sensors. Intel Realsense depth cam-

era [55] can be a good candidate for this purpose. As a result, the outdoor

implementation requires sensor fusion algorithms along with inter-drone com-

munications to achieve accurate measurements in terms of both relative and

global positions of the drones.

• Path and trajectory planing algorithms must be developed to allow the system

operate in environments cluttered with obstacles and where flight restrictions

exist. These algorithms must consider other operational constraints in planing

the reference trajectories for the quad-copters that are safe and energy efficient.

• Experiments showed that light payloads with large effective surface area are

prone to significant swings due to airflow interference. More work is needed to

properly model these effects and to develop effective payload swing suppression

strategies for such scenarios. This may require additional measurements from

the payload.

• Scalibility is one of the most important features of the cooperative transporta-

tion systems. However, it is not generally straightforward to come up with the

required number of drones for a practical application. In order to achieve a high

level of robustness, more parameters have to be considered beyond the payload’s

weight. Failure of drones, payload’s volume, disconnection of the cables and etc.
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have to be all considered for finding the required number of drones. Given de-

sired robustness margin, an index can be defined to find the required number

of UAVs.

• Safety is a critical consideration in aerial transport systems. A drone may fail

due to faults in sensors or actuators. It is crucial for the multi-drone system to

be somewhat resilient to such faults and or at least avoid catastrophic failure

and safely land in such emergencies. An area of interest for future research is

fault detection and fault-tolerant control. Operating under fault may require

re-configuring of the controller and re-designing of the formation shape on the

fly.

• Many tasks are highly sensitive and fully autonomous operations may be risky

in such scenarios. A human operator may have to be involved in the loop to

supervise the mission and intervene in the task as needed. For instance, the

cooperative aerial transportation system can be used in accident sites or search

and rescue operations. An operator can guide the flock to a desired location

and deliver essential services. With more than three UAVs, the operator can

also control the orientation of the payload. This adds extra flexibility for the

human to control the system.
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Appendix A

Details on proof for Theorem 5

The time derivative of the storage function (7.17) along the system trajectories (7.12),

(7.14) and (7.15) can be obtained as,

V̇1 =
n∑
i=1

˙̃qT
i

(
−Kdi

˙̃qi−Kpi q̃i−
n∑
j=1
j 6=i

Kpij

(
q̃i−q̃j(t−Tj)

)
(A.1)

−
n∑
j=1
j 6=i

Kdij

(
˙̃qi − ˙̃qj(t− Tj)

)
+ TiRL(ηL)ei

)

+
n∑
i=1

q̃T
i Kpi

˙̃qi +
1

2

n∑
i=1

n∑
j=1
j 6=i

(
q̃i − q̃j

)T
Kpij

(
˙̃qi − ˙̃qj

)

+
(
q̇L−q̇d

)T(− n∑
i=1

TiRL(ηL)ei−mLgz−mLq̈d−DT q̇d
)

+ ωT
L

(
− ω×LJLωL −DRωL −

n∑
i=1

r×i Tiei
)

+
(
DTQd +mLgz

)T
(q̇L − q̇d)
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The terms related to the power of inter-drone interactions require more algebraic ma-

nipulations. Consider the power of inter-drone virtual springs, since
n∑
i=1

n∑
j=1
j 6=i

˙̃qT
j Kpij

(
q̃i−

q̃j
)

= −
n∑
i=1

n∑
j=1
j 6=i

˙̃qT
i Kpij

(
q̃i−q̃j

)
then, 1

2

n∑
i=1

n∑
j=1
j 6=i

(
q̃i−q̃j

)T
Kpij

(
˙̃qi− ˙̃qj

)
=

n∑
i=1

n∑
j=1
j 6=i

˙̃qT
i Kpij

(
q̃i−q̃j

)
.

Adding and subtracting q̃i(t − Tj), and the fact that q̃j − q̃i(t − Tj) =
∫ t
t−Tj

˙̃qj(γ)dγ

results in,

n∑
i=1

n∑
j=1
j 6=i

˙̃qT
i Kpij

(
q̃i−q̃i(t−Tj) + q̃i(t−Tj)−q̃j

)
= (A.2)

n∑
i=1

n∑
j=1
j 6=i

˙̃qT
i Kpij

(
q̃i−q̃i(t−Tj)

)
−

n∑
i=1

n∑
j=1
j 6=i

˙̃qT
i Kpij

∫ t

t−Tj

˙̃qj(γ)dγ

It follows from Lemma (2) that the following upper-bound exists for the second term

on the right hand side of (A.2),

−
n∑
i=1

n∑
j=1
j 6=i

˙̃qT
i Kpij

∫ t

t−Tj

˙̃qj(γ)dγ ≤
n∑
i=1

˙̃qT
i (t)

( n∑
j=1
j 6=i

Tj
4
K2
pij

)
˙̃qi(t) (A.3)

+
n∑
i=1

n∑
j=1

∫ t

t−Tj

˙̃qT
j (γ) ˙̃qj(γ)dγ

The power of inter-drone virtual dampers can be rewritten as,

−
n∑
i=1

n∑
j=1
j 6=i

˙̃qT
i Kdij

(
˙̃qi− ˙̃qj(t−Tj)
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=−

n∑
i=1

˙̃qT
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( n∑
j=1
j 6=i
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)
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+
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i=1

˙̃qT
i

n∑
j=1
j 6=i

Kdij
˙̃qj(t− Tj)
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It follows from property −aTb ≤ aTa
4

+ bTb, ∀a, b ∈ R3 and proof by induction that

the following upper-bound exists for the second term on the right hand side of (A.4),

n∑
i=1

˙̃qT
i

n∑
j=1
j 6=i

Kdij
˙̃qj(t− Tj) ≤

n∑
i=1
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4
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Now, it follows from (A.4) and (A.5) that,

−
n∑
i=1

n∑
j=1
j 6=i

˙̃qT
i Kdij
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Kdij

4

)
˙̃qi(t− Ti)

)

The time derivative of the storage function in 7.18 can be found as,

V̇2 ≤
n∑
i=1

˙̃qT
i (nTiI3) ˙̃qi −

n∑
i=1

n∑
j=1

∫ t

t−Tj

˙̃qT
j (γ) ˙̃qj(γ)dγ (A.7)

where we used the following two facts that
n∑
j=1

1 = n and
n∑
j=1

n∑
i=1

∫ t
t−Ti

˙̃qT
i (γ) ˙̃qi(γ)dγ =

n∑
i=1

n∑
j=1

∫ t
t−Tj

˙̃qT
j (γ) ˙̃qj(γ)dγ. Now, it follows the time derivatives of the storage func-

tions (A.1), (A.7), the property aTb ≤ εaTa
4

+ bTb
ε

, ∀a, b ∈ R3, ε ∈ R+, along with the
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algebraic manipulations (A.2), (A.3), (A.6) that,

V̇ ≤−
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i
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Appendix B

Numerical Value of P Matrix

Since the P matrix is symmetric, it can be rewritten as,

P18×18 =

P11 P12

P12 P22

 (B.1)
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where P11, P12 and P22 ∈ R9×9 and are obtained as,

P11 =



0.644 0 0 0.061 0 0 0.001 0 0

0 0.6948 0 0 0.0833 0 0 0.0225 0

0 0 0.713 0 0 0.0672 0 0 0.018

0.061 0 0 0.035 0 0 0.0125 0 0

0 0.0833 0 0 0.0518 0 0 0.0229 0

0 0 0.0672 0 0 0.0425 0 0 0.0149

0.001 0 0 0.0125 0 0 0.6446 0 0

0 0.0225 0 0 0.0229 0 0 0.6948 0

0 0 0.0180 0 0 0.0149 0 0 0.7137


(B.2)

P12 =



0.0125 0 0 0.001 0 0 0.0125 0 0

0 0.0229 0 0 0.0225 0 0 0.0229 0

0 0 0.0149 0 0 0.018 0 0 0.0149

0.0061 0 0 0.0125 0 0 0.0061 0 0

0 0.0144 0 0 0.0229 0 0 0.0144 0

0 0 0.0096 0 0 0.0149 0 0 0.0096

0.0610 0 0 0.001 0 0 0.0125 0 0

0 0.0833 0 0 0.0225 0 0 0.0229 0

0 0 0.0672 0 0 0.018 0 0 0.0149


(B.3)
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P22 =



0.0350 0 0 0.0125 0 0 0.0061 0 0

0 0.0518 0 0 0.0229 0 0 0.0144 0

0 0 0.0425 0 0 0.0149 0 0 0.0096

0.0125 0 0 0.6446 0 0 0.0610 0 0

0 0.0229 0 0 0.6948 0 0 0.0833 0

0 0 0.0149 0 0 0.7137 0 0 0.0672

0.0061 0 0 0.0610 0 0 0.0350 0 0

0 0.0144 0 0 0.0833 0 0 0.0518 0

0 0 0.0096 0 0 0.0672 0 0 0.0425


(B.4)

Using MATLAB, the eigenvalues of P matrix can be found as,

λP = {0.0251, 0.0251, 0.0288, 0.0288, 0.0317, 0.0317,

0.0351, 0.0484, 0.0563, 0.6473, 0.6473, 0.6587,

0.6779, 0.6779, 0.6998, 0.6998, 0.7631, 0.7642}
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