
Existence and Stability of Periodic Waves in the
Fractional Korteweg–de Vries Type Equations



EXISTENCE AND STABILITY OF PERIODIC WAVES IN
THE FRACTIONAL KORTEWEG–DE VRIES TYPE

EQUATIONS

BY
UYEN LE, M.A, B.Sc

a thesis
submitted to the department of Department of Mathematics

and Statistics
and the school of graduate studies

of mcmaster university
in partial fulfilment of the requirements

for the degree of
Doctor of Philosophy

© Copyright by Uyen Le, 2021
All Rights Reserved



Doctor of Philosophy (2021) McMaster University
(Department of Mathematics and Statistics) Hamilton, Ontario, Canada

TITLE: Existence and Stability of Periodic Waves in the
Fractional Korteweg–de Vries Type Equations

AUTHOR: Uyen Le
M.A(University of Kansas)
B.Sc(Seattle University)

SUPERVISOR: Dr. Dmitry Pelinovsky

NUMBER OF PAGES: x, 143

ii



Abstract

This thesis is concerned with the existence and spectral stability of periodic
waves in the fractional Korteweg–de Vries (KdV) equation and the fractional
modified Korteweg–de Vries (mKdV) equation. We study the existence of
periodic travelling waves using various tools such as Green’s function for frac-
tional Laplacian operator, Petviashvili fixed point method, and a new vari-
ational characterization in which the periodic waves in fractional KdV and
fractional mKdV are realized as the constrained minimizers of the quadratic
part of the energy functional subject to fixed L3 and L4 norm respectively.
This new variational framework allows us to identify the existence region of
periodic travelling waves and to derive the criterion for spectral stability of
the periodic waves with respect to perturbations of the same period.

iii



Acknowledgements

First and foremost, I would like to express my sincere gratitude to my advi-
sor, Dr. Dmitry Pelinovsky for his patience and unwavering support through
my graduate studies. It has been a challenging and rewarding journey to study
under his guidance. I can only hope that one day I will be able to emulate his
work ethics and his vast amount knowledge.

I would like to thank Dr. Bartosz Protas, Dr. Stanley Alama, Dr. Lia
Bronsard and Dr. Eric Sawyer for their wonderful and inspiring courses. I
must also extend my thanks to Dr. Aaron Childs, Christopher McLean and
the administrative staff members, Paula Marcoux and Taryn Sutton, who have
guided me through my teaching duties.

I want to thank my peers in the department especially Lorena, Alexander,
Adilbek, Priptal ”Pip”, Szymon, Anthony, Elkin, Jie, Subhajit and Neela.
Their kindness and friendships have made my four years at McMaster Univer-
sity full of good memories.

Last but not least, I would like to thank my mother who is my constant
source of comfort. Without her unconditional love and trust I could not have
made it this far.

iv



To my parents

v



Contents

Abstract iii

Acknowledgements iv

1 Introduction 1
1.1 Nonlinear Dispersive Waves . . . . . . . . . . . . . . . . . . . 1
1.2 Stability Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Numerical Methods . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Background Literature . . . . . . . . . . . . . . . . . . . . . . 10
1.5 Future Study . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.6 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . 12

2 The Green’s Function For The Fractional KdV Equation 15
2.1 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 Properties of the Mittag–Leffler Function . . . . . . . . . . . 17
2.3 Integral Representation . . . . . . . . . . . . . . . . . . . . . . 20
2.4 Properties of Green’s function for α ≤ 2 . . . . . . . . . . . . 22
2.5 Properties of Green’s function GT for α > 2 . . . . . . . . . . . 27
2.6 Numerical Illustrations . . . . . . . . . . . . . . . . . . . . . . 30

3 Existence Of Periodic Waves Of The Fractional KdV Equation 35
3.1 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2 Proof of Theorem 3.1 . . . . . . . . . . . . . . . . . . . . . . . 39
3.3 Proof of Theorem 3.2 . . . . . . . . . . . . . . . . . . . . . . . 41
3.4 Proof of Theorem 3.3 . . . . . . . . . . . . . . . . . . . . . . . 45
3.5 Periodic Waves for α = 1 and 2 . . . . . . . . . . . . . . . . . 49

4 Convergence Of the Petviashvili Method 51
4.1 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2 Proof of Theorem 4.1 . . . . . . . . . . . . . . . . . . . . . . . 55
4.3 Proof of Theorem 4.2 . . . . . . . . . . . . . . . . . . . . . . . 57
4.4 Proof of Theorem 4.3 . . . . . . . . . . . . . . . . . . . . . . 62
4.5 Numerical Illustrations . . . . . . . . . . . . . . . . . . . . . . 63

vi



5 Spectral Stability Of Periodic Waves In Fractional KdV Equa-
tion 71
5.1 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.2 Proof of Theorem 5.1 . . . . . . . . . . . . . . . . . . . . . . . 73
5.3 Proof of Theorem 5.2 . . . . . . . . . . . . . . . . . . . . . . . 78
5.4 Proof of Theorem 5.3 . . . . . . . . . . . . . . . . . . . . . . . 85
5.5 Numerical Illustrations . . . . . . . . . . . . . . . . . . . . . . 87

6 Periodic Waves In Fractional Modified KdV Equation 94
6.1 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.2 Odd Periodic Waves . . . . . . . . . . . . . . . . . . . . . . . 98
6.3 Even Periodic Waves . . . . . . . . . . . . . . . . . . . . . . . 106
6.4 Examples and Numerical Illustrations . . . . . . . . . . . . . . 113

A Preliminary Results 132

B Periodic Waves In The KdV And BO Equation 135

vii



List of Figures

1.1 Phase Portrait of the KdV equation (1.4): ψ′ vs ψ with b = 0
and c = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Countable sequence of zeros {an}n∈N of 2.47 . . . . . . . . . . 29
2.2 Left: areas on (a, x) plane where GT is positive (yellow) and

negative (blue). Right: the same but for G ′T. . . . . . . . . . . 31
2.3 Profiles of GT for α = 0.5 (left) and α = 1.5 (right) for specific

values of c. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4 Profiles of G on T for α = 2.5 (top) and α = 3.5 (bottom) at

specific values of c. . . . . . . . . . . . . . . . . . . . . . . . . 32
2.5 Difference between computations of GT(π) in (2.51) and (2.52)

for α = 2.5 (left) and α = 3.5 (right) versus parameter c. . . . 33
2.6 Top: Location of the first five roots of GT(π) on the (c, α) plane.

Bottom left: The first root of GT(π) relative to the boundary
cα (left). Bottom right: Coalescence of the 2nd and 3rd roots
(upper right) and the 4th and 5th roots (lower right). . . . . . 34

3.1 Schematic representation of the constant fixed point ψc and
pairs of non-trivial fixed points on the (c, ‖ψ‖L2

per
) plane for

α = 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2 Left: profile ψ in (3.40), α = 2 and k = 0.5, Right: profile ψ in

(3.42), α = 1 and γ = 1.0884 . . . . . . . . . . . . . . . . . . 50
4.1 Plot of Λ2 versus α. . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2 Left: Eigenvalues of the operator L̃−1

c,αH̃c,α for α = 2. The blue
curves and green curves represent the five largest and five small-
est eigenvalues respectively. Right: Zoom in with the asymp-
totic dependence given by (4.38) and (4.39). . . . . . . . . . . 64

4.3 The plot of |1 − λ| for the complex eigenvalues λ. The insert
shows that the complex eigenvalues do not reach the boundary
of the unit disk. . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.4 Iterations for c = 2 and α = 2. (a) The last iteration versus x.
(b) Computational errors versus n. . . . . . . . . . . . . . . . 65

4.5 Iterations for c = 2.3 and α = 2. (a) The last iteration versus
x. (b) Computational errors versus n. . . . . . . . . . . . . . 66

viii



4.6 Iterations for c = 3 and α = 2. (a) The last two iterations
versus x. (b) Computational errors versus n. . . . . . . . . . 66

4.7 Left: Eigenvalues of the operator L̃−1
c,αH̃c,α for α = 1. Right:

Zoom in with the asymptotic dependence given by (4.38) and
(4.39). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.8 Iterations for c = 1.1 and α = 1. (a) The last four iterations
versus x. (b) Computational errors versus n. . . . . . . . . . 67

4.9 Iterations for c = 1.3 and α = 1. (a) The last four iterations
versus x. (b) Computational errors versus n. . . . . . . . . . 68

4.10 Iterations for c = 1.6 and α = 1. (a) The last two iterations
versus x. (b) Computational errors versus n. . . . . . . . . . 68

4.11 Iterations for c = 3 and α = 2. (a) The last iteration versus x.
(b) Computational errors versus n. . . . . . . . . . . . . . . . 70

4.12 Iterations for c = 1.6 and α = 1. (a) The last iteration versus
x. (b) Computational errors versus n. . . . . . . . . . . . . . 70

5.1 The dependence of b versus c (left) and µ versus ω (right) for
α = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.2 Left: the dependence of b versus c for α = 2. Right: the differ-
ence between the numerical and exact values of b versus c. . . 89

5.3 Left: the dependence of b versus c for α = 0.6 obtained with
the Petviashvili method. Right: Profiles of ψ for two values of c. 90

5.4 Left: the dependence of b versus c for α = 0.55 obtained with
the Petviashvili method. Right: The number of Fourier modes
versus c. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.5 The dependence of b versus c for α = 0.5 (left) and α = 0.45
(right) obtained with the Newton’s method. . . . . . . . . . . 92

5.6 The dependence of µ versus ω for α = 0.6 (left) and α = 0.5
(right) obtained with the Newton’s method. . . . . . . . . . . 92

6.1 Normalized eigenfunctions of H on T for α = 2 computed from
the exact expression of equations (6.71)–(6.73) and (6.75)–(6.76) 102

6.2 Periodic waves for α = 2. Top left: Profiles of ψ with b = 0 for
three different values of c. Top right: Profiles of ψ with b 6= 0 for
three values of c. Middle left: Dependence of b versus c showing
the pitchfork bifurcation point c∗. Middle right: Dependence of
the momentum F (ψ) versus c. Bottom left: Dependence of σ0

versus c. Bottom right: The lowest eigenvalues of H versus c.
The blue (red) line corresponds to the family with b = 0 (b 6= 0). 120

6.3 The same as Figure 6.2 but for α = 1. . . . . . . . . . . . . . . 121
6.4 Periodic waves for α = 2. Top: Profiles of ψ for three different

values of c. Bottom: Dependence of the momentum F (ψ) versus
c (left) and F (φ) versus ω (right). . . . . . . . . . . . . . . . 128

ix



6.5 Periodic waves for α = 1. Top: Profiles of ψ for three different
values of c (left). Dependence of the momentum F (ψ) versus
c (right). Bottom: Dependence of F (φ) versus ω (left). and
derivatives of F (φ) in ω (right). The solid (dashed) line shows
the partial (ordinary) derivative in ω. . . . . . . . . . . . . . . 129

6.6 The same as Figure 6.5 but for α = 0.6. . . . . . . . . . . . . . 131

x



Chapter 1

Introduction

1.1 Nonlinear Dispersive Waves

The study of dispersive waves has long and rich history dating back to the
work of Airy, Boussinesq and Stokes, where Airy developed the linear theory
for water waves and Boussinesq and Stokes pioneered the nonlinear theory
[3, 4, 22, 90]. Informally, the dispersing effect refers to the phenomenon where
waves at different frequency propagate at different speed. This effect is readily
seen via the Airy equation, which is a linear partial differential equation of the
form

ut + uxxx = 0 (1.1)

where u(t, x) : R×R→ R. The equation admits the plane wave solution

u(x, t) = ei(ξx+ξ3t). (1.2)

Hence, the dispersion relation obtained from u(t, x) = eiξx−iω(ξ)t is given by

ω(ξ) = −ξ3. Since the phase velocity of the wave is given by c = ω(ξ)
ξ

, the so-
lution implies that waves move to the left and waves with higher wave number
propagate at higher speed. An example of nondispersive wave is the transport
equation ut + vux = 0; the solution is u(t, x) = f(x − vt) and the dispersion
relation of which is ω = vξ, implying that for any frequency, the wave travels
at the same speed v.

The nonlinear counterpart of the Airy equation is the Korteweg–de Vries
equation

ut + uxxx + 2uux = 0 (1.3)

Although equation (1.3) was first introduced by Boussinesq in 1877 [23], it
bears the name of Diederik Korteweg and Gustav de Vries, who rediscovered
and studied the equation in depth about twenty years later [61].

The KdV equation has a wide range of applications in various fields. In
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the context of water waves, it is used to model unidirectional propagation of
shallow surface waves in a canal, internal solitons in the ocean, propagation of
nonlinear acoustic waves in bubbly liquids.

Equation (1.3) is completely integrable, which can be solved explicitly using
the method of IST (Inverse Scattering Transform). It is known that equation
(1.3) admits travelling wave solution of the form u(t, x) = ψ(x− ct) where c is
a real valued constant representing the wave speed. When the travelling wave
ψ(x − ct) = ψ(ξ) is substituted to equation (1.3), we obtain the third order
ordinary differential equation

ψ′′′ − cψ′ + 2ψψ′ = 0.

Integrating the equation above once yields a nonlinear second order differential
equation

ψ′′ − cψ + ψ2 − b = 0, (1.4)

where b is a constant of integration. Viewing the above as Newton’s law, we
obtain the potential function

V (ψ) =
1

3
ψ3 − c

2
ψ2 − bψ,

whose critical points occur when ψ2 − cψ − b = 0 corresponding to the equi-
librium solutions of (1.4). Setting the constant of integration b to zero, we
have two equilibria at ψ = 0 and ψ = c. There are two types of travelling
waves solutions of (1.3): solitary and periodic waves. Fig 1.1 shows the phase
portrait of (1.4) with b = 0 and c = 1 where we see a homoclinic orbit (red
curve) to the saddle point (0, 0) and a family of periodic orbits surrounding the
center point (1, 0). The homoclinic orbit defines a solitary wave as a bounded
solution on the line and decaying to zero at infinity. The periodic orbits define
periodic waves. It is well-known [2] that the solitary wave solution of equation
(1.3) takes the form

u(t, x) =
3c

2
sech2

(√
c

2
(x− ct)

)
,

and the periodic solutions are expressed as cnoidal waves [61].
This thesis focuses on the existence and stability of nonlinear, periodic

travelling waves with nonlocal dispersion, that is, the dispersion relation ω(ξ)
is no longer a polynomial in iξ. Models of the form

ut −Mux + f ′(u)ux = 0 (1.5)

2
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Figure 1.1: Phase Portrait of the KdV equation (1.4): ψ′ vs ψ with b = 0 and
c = 1

where M is a constant coefficient, pseudodifferential operator and f is a gen-
eral function were first studied in [1]. The equation can be used to describe
unidirectional wave motion, and dynamics of dislocation in crystals. We are
particularly interested in the case when M = Dα = (−∆)α/2 is the fractional
Laplacian defined via Fourier series by

f(x) =
∑
n∈Z

fne
inx, (Dαf)(x) =

∑
n∈Z

|n|αfneinx. (1.6)

The fractional KdV and fractional mKdV equations are given respectively
by

ut + 2uux − (Dαu)x = 0, (1.7)

ut + 6u2ux − (Dαu)x = 0, (1.8)

where u(t, x) : R×T := [−π, π]. From the travelling wave anzat u(t, x) =
ψ(x− ct), we obtain the stationary equations for(1.7) and(1.8)

Dαψ + cψ − pψp+1 + b = 0, ψ ∈ Hα
per(T) (1.9)

where p = 1, 2 respectively, the constant of integration b is another parameter
of (1.9) in addition to the wave speed c, and the space Hα

per(T) is the class of
L2
per(T) functions, whose derivatives up to order α also belong to L2

per(T) and

3
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satisfying

Hα
per(T) =

{
f ∈ L2

per(T) :
∑
n∈Z

(
1 + |n|2

)α |fn|2 <∞} .
For simplicity, in what follows, we will write Hα

per and L2
per instead of Hα

per(T)
and L2

per(T). The subspace of odd (even) periodic functions in is denoted
Hα

per,odd (Hα
per,even). Similarly, the subspace of odd (even) functions in L2 is

denoted by L2
per,odd (L2

per,even).
We are interested in the single-lobe, periodic waves ψ satisfying the follow-

ing definition.

Definition 1.1. We say the periodic wave ψ satisfying (1.9) has a single lobe
profile if there exists only one maximum and minimum of ψ on T.

In equation (1.7), when α = 2 we recover the KdV equation (1.3), and
when α = 1, we recover the Benjamin-Ono (BO) equation [19, 77], which
models unidirectional propagation of small amplitude, internal waves in deep
water. Similarly in equation (1.8), the two special cases are when α = 1 and 2,
corresponding to the modified KdV and modified BO equations.

Equation (1.7) has the following conserved quantities

M(u) =

∫ π

−π
udx, (1.10)

F (u) =
1

2

∫ π

−π
u2dx, (1.11)

E(u) =
1

2

∫ π

−π

(
D

α
2 u
)2
dx− 1

3

∫ π

−π
u3dx, (1.12)

representing mass, momentum and energy respectively. Equation (1.8) also
admits the same conserved quantities with the mass and momentum defined
similarly to (1.10) and (1.11) respectively, whereas the energy of equation (1.8)
is given by

E(u) =
1

2

∫ π

−π

((
D

α
2 u
)2 − u4

)
dx, (1.13)

Moreover, the stationary equation (1.9) is the Euler-Lagrange equation of the
augmented Lyapunov functional

Gc,b(u) = E(u) + cF (u) + bM(u), (1.14)

so that the solution ψ of (1.9) is a critical point of Gc,b(u) satisfying G′c,b(ψ) =

0. The conserved quantities in (1.10)-(1.12) and (1.13) are defined in H
α
2

per.
By Sobolev inequality, it follows that the last term of the energy in (1.12) is

4



PhD Thesis – U. Le McMaster University – Mathematics

bounded if α > 1
3
. Similarly, to control the second term of the energy in (1.13),

we require α > 1
2
.

1.2 Stability Theory

After well–posedness theory of the initial value problem, stability theory plays
important role in the analysis of partial differential equations. Since the equa-
tions aim to model physical phenomena, their solutions are only useful if they
can actually manifest in real life. Therefore, it is of special interest that we
have a theory which can determine the robustness of the solutions, i.e, whether
the solutions can persist under perturbations.

In general, we can give four definitions of stability of solutions in nonlinear
evolution equations: spectral stability, linearized stability, orbital stability and
asymptotic stability. However, in this thesis, we focus mainly on spectral sta-
bility. In order to explain the formalism of spectral stability for the travelling
wave, let us consider the stationary equation (1.9) when p = 1. We compute
the Hessian operator from (1.14) and find the linearized operator around the
wave ψ in the form

H := G′′c,b(ψ) = Dα + c− 2ψ. (1.15)

We note that H is related to the (1.9). Indeed, when we take the derivative in
(1.9) with respect to the spatial variable, we get H(∂xψ) = 0. It follows that
the zero is an eigenvalue of H with eigenfunction ∂xψ. The property that zero
is a simple eigenvalue turns out to be important in our analysis.

The linearized operator H determines the spectral stability of the periodic
wave with the profile ψ. By using u(t, x) = ψ(x − ct) + v(t, x − ct) and
substituting equation (1.9) for ψ, we obtain

vt + 2vvx + 2(ψv)x − cvx −Dαvx = 0. (1.16)

Replacing the nonlinear equation (1.16) by its linearization at the zero solution
yields the linearized evolution equation

vt = ∂xHv, (1.17)

where H is given by (1.15). Since ψ depends only on x, separation of variables
in the form v(t, x) = eλtη(x) with some λ ∈ C and η(x) : T → C reduces the
linear equation (1.17) to the spectral stability problem

∂xHη = λη. (1.18)

Definition 1.2 (Spectral stability of periodic wave).
The periodic wave with profile ψ is said to be spectrally stable with respect to

5
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perturbations of the same period if σ(∂xH) ⊂ iR in L2
per. Otherwise, it is

spectrally unstable if σ(∂xH) in L2
per contains a point λ with Re(λ) > 0.

In fact, since the operator ∂x is not one–to–one in the periodic case, the
spectral problem (1.18) with λ 6= 0 is restricted to the space of zero mean
functions

∂xH
∣∣
X0
v = λv, X0 :=

{
f ∈ L2

per : 〈f(x), 1〉 = 0
}
, (1.19)

where 〈·, ·〉 denotes the standard inner product in L2
per. In [36,50], it is shown

that the periodic wave with profile ψ is spectrally and orbitally stable if it
is the constrained minimizer of the energy (1.12) subject to fixed momentum
(1.11) and mass (1.10). The mass constraint is given by the zero mean function
space X0 and the momentum constraint provides an additional orthogonality
condition 〈f, ψ〉 = 0. Since H is the Hessian operator of G(u) in (1.14), ψ is
the constrained minimizer if the operator H satisfies

H
∣∣
L2
c
> 0, ker(H|L2

c
) = ker(H) = span(∂xψ) (1.20)

where L2
c := {f ∈ L2

per : 〈f, 1〉 = 0 = 〈f, ψ〉} is a constrained subspace of L2
per.

Then, Theorem A.3 provides the count for the number of negative eigenvalues
of H

∣∣
L2
c

by relating to the number of negative and zero eigenvalues of the

matrix D(λ), which is constructed from the two constraints of L2
c

D(λ) :=

[
〈(H− λI)−1ψ, ψ〉 〈(H− λI)−1ψ, 1〉
〈(H− λI)−11, ψ〉 〈(H− λI)−11, 1〉

]
, λ /∈ σ(H). (1.21)

By using Lagrange multipliers theorem we can show that the constrained
minimizers are indeed solutions to the boundary value problem (1.9) but this
leads to a delicate issue of determining if the solutions can be smoothly con-
tinued with respect to the Lagrange multipliers, which incidentally is the wave
speed c and the integration constant b. In [53], it was claimed that for all
α ∈ [1/3, 2], the solution of (1.9) with p = 2 obtained from minimizing the
energy subject to fixed mass and momentum is smoothly differentiable with
respect to both b and c and that the kernel of the operator H is one dimen-
sional. However, from Stokes expansion argument (see Chapter 3) we observe
a threshold α0 := log 3

log 2
− 1 for which the number of negative eigenvalue of H

changes from 1 to 2 as α crosses α0 from above. If α < α0, we show that
the solution ψ to the boundary value problem (1.9) continued with respect
to parameters c and b may pass the fold point in the sense of the following
definition.

Definition 1.3. We say that the solution ψ to the stationary equation (1.9) is
at the fold point if the linearized operator H at ψ has a double zero eigenvalue.

6
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To ensure the smooth continuation of the solution with respect to pa-
rameter c and b, in Chapter 5 we develop a new variational method which
characterizes the solution as minimizer of the quadratic part of the energy
functional subject to the zero mean condition and the fixed L3 norm (see [65]
for similar approach for the fifth order KdV equation). By using the new vari-
ational method, we are able to establish the sharp condition for stability of the
periodic waves of the fractional KdV equation (1.7) based the monotonicity
of the map between the wave speed c and the momentum. Furthermore, this
variational characterization allows us to classify the entire region of existence
of the periodic waves for α near α0.

Although spectral stability does not imply other modes of stability, the
spectral information are important for the study of linear or nonlinear stability.
If the periodic wave ψ is spectrally unstable, one can conclude that ψ is also
linearly unstable. One mode of stability that is closely related to spectral
stability is orbital stability. In order the define orbital stability we first have
to define an orbit of ψ, that is, the family of T (ω)ψ, where ω ∈ R belongs
to an open set and T (ω) is a generator of the group related to the symmetry
of the evolution equation. We will use the following definition for the orbital
stability of the periodic wave with the profile ψ.

Definition 1.4 (Orbital Stability of periodic wave).
The periodic wave with profile ψ is said to be orbitally stable in Banach space X
with norm ‖ · ‖X if for any ε > 0, there is a δ > 0 such that if ‖u(t)−ψ‖X < δ
then

inf
ω∈R
‖u(t)− T (ω)ψ‖X < ε (1.22)

for all t ∈ R+. Otherwise, ψ is orbitally unstable in X.

In the context of the fractional KdV and the fractional mKdV equations,
the orbit of ψ is generated by the translation invariance, i.e T (ω)ψ = ψ(·+ω)

and the Banach space X is given by the energy space H
α/2
per . In the case of

the fractional KdV equation, given global well-posedness in the space Hs
per for

s > α
2
, if a periodic wave with profile ψ is spectrally stable then it is also

orbitally stable according to the technique developed in [9].
Stability of the periodic waves in the cubic case with p = 2 has been unex-

plored for α < 2. In Chapter 6, we use the similar approach to that of Chapter
5 and construct the periodic waves as the minimizers of the quadratic part of
the energy functional subject to the zero mean condition and the fixed L4

norm. Unlike the fractional KdV case, we are not able to classify all possible
periodic, single-lobe solutions in the cubic case because the Galilean transfor-
mation in the cubic case generates an additional quadratic term. However, we
are still able to consider the periodic waves satisfying (1.9) with p = 2 and
b = 0 and establish the criteria for their spectral stability and instability.
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1.3 Numerical Methods

Due to the pseudo–differential operator Dα, (1.7) and (1.8) are not integrable
except when α = 1, 2. Thus, explicit solutions are difficult to obtain. Here,
we outline two fixed point methods which will be employed to numerically
generate solutions of (1.7) and (1.8) in later chapters.

1.3.1 Petviashvili method

First introduced in Petviashvili’s seminal paper in 1976 [82], the iteration
method is robust for capturing solitary wave solutions in nonlinear evolution
equations. In recent years, renewed interest in the method has resulted in
several convergence analysis and modifications of the iteration, [8, 32, 39, 41].
While the convergence analysis of the Petviashvili method applied to the peri-
odic fractional KdV equation is the main topic of Chapter 4, we briefly explain
the iteration scheme here. Let us motivate the formulation of the Petviashvili
method by first considering a nonlinear equation of the form

L(u) = up, (1.23)

where L is a positive operator and p > 1. The stationary equations (1.9) with
the constant of integration b = 0 can be formulated in the form of (1.23) with

L = Dα + c (1.24)

Since L is a positive operator, it is invertible; an intuitive, although naive,
fixed point iteration of (1.23) reads

un+1 = L−1upn, n ∈ N. (1.25)

However, it is easy to see that if φ is a solution of (1.23), then the scheme
(1.25) fails to converge for the sequence un = anφ where {an} ⊂ R satisfying

an+1 = apn

since a∗ = 1 is an unstable fixed point of the above for p > 1. To circumvent
this difficulty, Petviashvili method introduces the stabilizing factor Mn to the
naive iteration (1.25) as follows

un+1 = Mγ
nL−1un

8
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where

Mn =
〈Lun, un〉
〈usn, un〉

,

and γ is a constant which can be chosen to be p
p−1

for optimal convergence.

This can be observed by taking un = anφ. Then, Mn = a1−p
n and the iteration

gives an+1 = a
p+γ(1−p)
n so the value of γ = p

p−1
reduces the power to 0 and the

iterations converge in a single iteration.
Although Petviashvili method is favored for approximating solitary waves

[31, 40], empirical experiments have shown it to diverge for periodic waves in
finite depth, particularly sign indefinite, periodic waves. In [87], Petviashvili
method was modified and it successfully approximated the periodic waves in
infinite depth, however, the iteration did not work in finite depth. In [32],
to overcome this drawback, the authors suggest rewriting the Euler equations
in the form of a Babenko equation [16], then use a variable transform which
makes the Babenko equation suitable for the classical Petviashvili method.
The work [41] explores the generalization of Petviashvili method for non-power
nonlinearities proposed originally in [63].

The rigorous analysis for the convergence (or divergence) of the classical
Petviashvili method for periodic waves is one of the main results of Chapter 4.
By using Stokes expansion and perturbation analysis, we are able to demarcate
the specific range of c and α for which the Petviashvili iteration converges (or
diverges) for both left propagating and right propagating waves. Moreover,
we discover an important threshold α0 = log 3

log 2
− 1 ≈ 0.585. As α changes

from α > α0 to α < α0, the number of negative eigenvalues of the operator H
increases from 1 to 2, which implies a double zero eigenvalue at α = α0. Since
the operator H coincides with Hessian operator of the action functional G in
(1.14), the number of zero eigenvalues has important implication in stability of
the periodic waves [53] and in the solution continuation argument in Chapter
5.

1.3.2 Newton’s method

We recast equation (1.23) as a root finding problem

F (u) := L(u)− up = (c+Dα)u− up = 0, (1.26)

then given an initial guess u0, the Newton’s method is defined by

un+1 = un − [F ′(un)]
−1
F (un), n ∈ N, (1.27)

9
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where F ′ := (c+Dα)u − pup−1 denotes the Jacobian operator of equation
(1.26). Note that when p = 2, F ′ = H in equation (1.15). It is well known
that the Newton’s method converges quadratically whenever the operator F ′

is invertible. By differentiating in x we see that if ψ is the solution then ψ′

belongs to ker(F ′), corresponding to the a zero eigenvalue of H induced by
translational symmetry. Thus, using parity between ψ and ψ′ we need to
restrict F ′ to appropriate subspace in order to guarantee its invertibility.

One drawback of the Newton’s method is that it requires a good initial
guess whereas the Petviashvili method is not as sensitive to the initial guess.
Hence, it makes sense to use the Petviashvili method and the Newton’s method
in tandem. In bifurcation and solution continuation problems, which we en-
counter in Chapter 5 and 6, the Petviashvili method is used first to approxi-
mate the periodic wave, then this solution is set to be the initial seed for the
Newton’s method.

1.4 Background Literature

We list the important results in local well–posedness, stability theory and
numerical analysis of (1.7) and (1.8).

1.4.1 Fractional KdV

Local well-posedness of the Cauchy problem for fractional KdV equation (1.7)
was proven in [1] for the initial data in Sobolev space Hs(R) or Hs(T) for s ≥ 3

2
.

Local well-posedness in Hs(R) for s > 3
2
− 3

8
α was proven in [67], where the

authors also showed existence of weak global solutions in energy space H
α
2 (R)

for α > 1
2

and for α = 1
2

and small data. More recently, local well-posedness
in Hs(R) was proven in [73] for α > 0 and s > 3

2
− 5

4
α. Together with the

conservation of energy, the latter result implies global well-posedness in the
energy space H

α
2 (R) for α > 6

7
. Traveling solitary waves were characterized

as minimizers of energy subject to the fixed momentum in [68] for α ∈
(

1
2
, 1
)

and in [5] for α ≥ 1.
Existence and stability of traveling periodic waves were analyzed by using

perturbative [54], variational [25, 27, 53], and fixed-point [26] methods. From
the variational point of view, the traveling periodic waves are characterized
as constrained minimizers of energy E(u) subject to fixed momentum F (u)
and mass M(u) for every α ∈

(
1
3
, 2
]

[53]. Spectral stability of periodic waves
with respect to perturbations of the same period follows from computations
of eigenvalues of a 2-by-2 matrix involving derivatives of momentum and mass
with respect to two parameters of the periodic waves, see [36, 50] for review.
Recently, a different approach was developed in [48] where the periodic waves
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with single–lobe profile were constructed by minimizing the energy E(u) using
the fixed momentum F (u) as the only constraint. It was shown that such min-
imizers were degenerate up to the translation symmetry and were spectrally
stable.

1.4.2 Fractional mKdV

In the case of equation (1.8), the well–posedness and stability theory are lim-
ited to the local cases α = 1, 2. The global well-posedness results for the initial
data in Hs(R) with s > 1

4
and in Hs(T) with s ≥ 1

2
were obtained for α = 2

in [33]. Local well-posedness results for initial data in Hs(R) with s ≥ 1
2

were
obtained for α = 1 in [59]. Energy and momentum are conserved in the time
evolution of such solutions. Local solutions with sufficiently large initial data
in H

1
2 (R) blow up in a finite time [58,70].

Spectral and orbital stability of the periodic waves of the stationary equa-
tion (1.9) with p = 2 were studied in the local case α = 2. Employing the
arguments in [21] and [92, 93], orbital stability of sign-definite dnoidal waves
was proven in [12]. Spectral stability of sign-indefinite cnoidal waves was
studied in [36] by using the count of negative eigenvalues of the operator H
restricted to the orthogonal complement of span(1, ψ) (also also [50, 80]). It
was discovered in [36] that the cnoidal waves were spectrally stable for smaller
speeds c and spectrally unstable for larger speeds c. Spectral and orbital sta-
bility and instability of the cnoidal waves was proven in [15] by adopting the
arguments of [66] in the periodic context and employing the approach in [51]
based on the existence of a sufficiently smooth data-to-solution-map. Orbital
stability of a particular family of positive periodic waves of the dnoidal type
with b 6= 0 was proven in [11] by adopting the arguments of [47].

1.5 Future Study

We address possible avenues for future research, which arise from the results
this thesis.

� In Chapter 2, we formulate two conjectures which are supported numer-
ically. Since the Green’s function was formulated using integral repre-
sentation with the Mittag–Leffler functions, one possible route to pursue
analytical evidence for the conjectures is to study the asymptotic expan-
sion of the Mittag–Leffler function and to investigate how to control the
associating error.

� The variational problem with one constraint (fixed L4 norm), (6.5) and

11
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(6.9) presented in Chapter 6 only describes only two particular fami-
lies of periodic solution of the stationary equation (6.2) with b = 0.
These families generalize the sign-indefinite cnoidal and the sign-definite
dnoidal elliptic solutions of the local case α = 2. However, it remains an
open problem to characterize the most general solution of the stationary
equation (6.2) with arbitrary b. Further studies are needed to investigate
if the variational problem with two constraints

inf
u∈H

α
2
per

{∫ π

−π

[
(D

α
2 u)2 + c0u

2
]
dx :

∫ π

−π
u4dx = 1,

1

2π

∫ π

−π
udx = m

}
can recover the most general periodic solution to (6.2).

1.6 Outline of the Thesis

Chapter 2,3 and 4 focus on the existence and positivity property of the periodic
waves of the fractional KdV (1.7) while Chapter 5 and 6 deal with the spectral
stability of the periodic waves of the fractional KdV (1.7) and the fractional
mKdV (1.8). The brief overview of each chapter is as follows.

� In Chapter 2, we study the Green’s function, GT, of the shifted frac-
tional Laplacian operator c+ (−∆)

α
2 := c+Dα, with c > 0, on periodic

domain, which arises from the stationary equation of the fractional KdV.
We show that GT is positive and has single-lobe profile for α ∈ (0, 2]. In
particular, we give explicit formulation of the Green’s function in terms
of the Mittag–Leffler functions. The Mittag–Leffler functions are im-
portant special functions of mathematical physics and often used in the
context of Riemann–Liouville and Caputo’s fractional derivatives. The
positivity result of the Green’s function is going to provide an important
ingredient for the proof of the existence of positive, periodic waves of the
fractional KdV in Chapter 3.

The content of Chapter 2 is based on:
U. Le and D. Pelinovsky, “Green’s Function for the Fractional KDV
Equation on the Periodic Domain via Mittag–Leffler’s Function”.
arXiv:2101.02269

� In Chapter 3, our main goal is to establish the existence of single-lobe,
periodic, travelling waves of (1.7). First, we make use of the perturba-
tive argument to review existence of periodic waves in small amplitude
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limits. We identify the left travelling waves bifurcation from zero solu-
tion via Stokes expansion. We also connect the left propagating waves to
the right propagating waves using the speed parameter c. Then, we use
the property of the Green’s function obtained in Chapter 2 to show that
the right moving waves are positive. This task is achieved by utilizing
the Kranoselskii’s fixed point theorem in a positive cone, and applying a
homotopy argument with the Leray–Schauder index to distinguish single
lobe solution from constant solution. Finally, we will also verify that the
right–propagating waves are minimizers of the constrained energy func-
tional.

� In Chapter 4, we recast the stationary equation of (1.9) with p = 1
as a fixed point problem to study the Petviashvili method. We explain
the divergence (convergence) of the fixed point iterations from unstable
eigenvalues of the generalized eigenvalue problem. We also show that a
simple modification of the iterative method after the mean value shift
results in the unconditional convergence of Petviashvili method. Then,
we will illustrate the results numerically for the classical Korteweg–de
Vries and Benjamin–Ono equations.

The content of Chapter 3 and Chapter 4 is based on:
U.Le, D. Pelinovsky, “Convergence of the Petviashvili’s Method Near
Periodic Waves in the Fractional Korteweg–De Vries Equation”. SIAM
J. Math. Anal. 51 (2019), 2850–2883.

� In Chapter 5, we put forth a new variational method where the peri-
odic waves are realized constrained minimizers of the quadratic form of
energy subject to fixed cubic part of energy and the zero mean. This new
variational characterization allows us to unfold the existence region of
travelling periodic waves and to give a sharp criterion for spectral stabil-
ity of periodic waves with respect to perturbations of the same period.
The sharp stability criterion is given by the monotonicity of the map
from the wave speed to the wave momentum similarly to the stability
criterion for solitary waves.

The content of Chapter 5 is based on:
F. Natali, U. Le and D. Pelinovsky, “ New Variational Characterization
of Perioic Waves in the Fractional Korteweg–de Vries Equation”. Non-
linearity 33, 2020, 1956–1986.
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� In Chapter 6, we extend the variational framework in Chapter 5 to the
fractional mKdV equation (1.8). Two families of solutions in the local
case are given by the sign-definite dnoidal and sign-indefinite cnoidal
solutions. Both solutions can be characterized in the general fractional
case as global minimizers of the quadratic part of the energy functional
subject to the fixed L4 norm: the sign-definite (sign-indefinite) solutions
are obtained in the subspace of even (odd) functions. Morse index is
computed for both solutions and the spectral stability criterion is de-
rived. We show numerically that the family of sign-definite solutions has
a generic fold bifurcation for the fractional Laplacian of lower regular-
ity and the family of sign-indefinite solutions has a generic symmetry-
breaking bifurcation both in the fractional and local cases.
The content of Chapter 6 is based on:

F. Natali, U. Le and D. Pelinovsky, “Periodic Waves in the Fractional
Modified Korteweg–de Vries Equation”. In print. arXiv:2006.14398
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Chapter 2

The Green’s Function For The
Fractional KdV Equation

This chapter covers the strict positivity and single-lobe profile properties of
the Green’s function for the linear operator

Lc,α := c+ (−∆)α/2, (2.1)

where (−∆)
α
2 = Dα as defined in (1.6), c > 0 is a parameter and α > 0.

Our goal is to provide a new formulation of the Green’s function GT using the
Mittag–Leffler function [72] and to prove the positivity of GT using this new
representation.

Properties of the fractional Laplacian on the d-dimensional torus Td were
studied in [86]. Recent review of boundary-value problems for the fractional
Laplacian and related applications can be found in [69].

The Green’s function satisfies the periodic boundary value problem[
c+ (−∆)α/2

]
GT(x) = δ(x), x ∈ T, (2.2)

where δ is the Dirac delta distribution. The solution is represented via Fourier
series by

GT(x) =
1

2π

∑
n∈Z

cos(nx)

c+ |n|α
=

1

2π

(
1

c
+ 2

∞∑
n=1

cos(nx)

c+ nα

)
. (2.3)

Green’s function GT arises in the study of the nonlinear equation[
c+ (−∆)α/2

]
ψ(x) = ψ(x)1+p, x ∈ T, (2.4)

where p ∈ N. The nonlinear equation (2.4) defines the travelling periodic
waves of the fractional Korteweg–de Vries (fKdV) equation with the speed c
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[26,27,53,54,74,75] and the standing periodic waves of the fractional nonlinear
Schrödinger (fNLS) equation with the frequency c [30, 48]. Periodic solutions
in other nonlinear elliptic equations associated with the fractional Laplacian
were also considered, i.e., in [10, 38].

The plan for this chapter is as follows. The main results of the chapter are
stated in Section 2.1. In Section 2.2, we mention properties of the Mittag–
Leffler function which are important to the proof of the main results. Section
2.3 and 2.4 are devoted to proving the two main theorems of this chapter.
We discuss the conjectures which extends of the main results to the case α ∈
(2, 4] in Section 2.5. Finally, numerical illustrations and numerical evidence to
support the conjectures are collected in Section 2.6.

2.1 Main Results

We prove strict positivity and single–lobe profile properties of Green’s function
GT satisfying the boundary-value problem (2.2) on T for every c > 0 and every
α ∈ (0, 2]. Moreover, the main novelty of our approach is to relate GT and the
Mittag–Leffler functions [72]. The positivity of GT for α ∈ (0, 2] are crucial
for the existence of positive periodic, travelling waves of the fractional KDV
equation (1.7), see Remark 2.5 and Chapter 3 for more details.

The following theorems summarize our results. The Green’s function GT
can be rewritten from its Fourier series definition in (2.3) to the integral form
involving the Mittag–Leffler function Eα,α according to the following theorem

Theorem 2.1. For every c > 0 and every α ∈ (0, 2] and x ∈ T it is true that

GT(x) =
1

2πc
+

1

π

∫ ∞
0

(
et cos(x)− 1

1− 2et cos(x) + e2t

)
tα−1Eα,α(−ctα)dt. (2.5)

Furthermore, the representation (2.5) holds for α > 2 provided that c ∈ (0, cα),
where cα is given by

cα :=
[
cos
(π
α

)]−α
, (2.6)

Remark 2.1. Several equivalent forms of the fractional Laplacian operator
on Rd with d = {1, 2, 3...} were shown in [62]. However, to the best of our
knowledge, the fractional Laplacian has not been expressed in terms of the
Mittag–Leffler function.

Theorem 2.2. For every c > 0 and every α ∈ (0, 2], Green’s function GT
defined by (2.2) and (2.3) is even, strictly positive on T, and monotonically
decreasing on (0, π).

Remark 2.2. The property of strict positivity of Green’s function was proven
for different boundary-value problems associated with the fractional operators
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in [76] for α ∈ (0, 1) and in [17] for α ∈ (1, 2); however, the fractional deriva-
tives were considered in the Riemann–Liouville sense (see [60, 83] for review
of fractional derivatives).

Remark 2.3. We note that strict positivity and single–lobe profile property of
the Green’s function on the real line, GR, has been shown in [42] (see Lemma
A.4) using similar properties of the heat kernel related to the fractional Lapla-
cian (−∆)α/2 (see Lemma A.1 in [42]). The constant c > 0 in Lc,α can be
normalized to unity when Lc,α is considered on the real line R. We observe
that the same properties hold for Green’s function GT on the periodic domain
T because it can be written as the following periodic superposition of Green’s
function GR on the real line R:

GT(x) =
∑
n∈Z

GR(x− 2πn), x ∈ T. (2.7)

Hence, if GR(x) > 0 for x ∈ R, then GT(x) > 0 for x ∈ T and if G ′R(x) ≤ 0
and G′′R(x) ≤ 0 for x ≥ 0 for x ≥ 0, then G ′T(x) ≤ 0 for x ∈ [0, π]. However,
here the parameter c in GT cannot be normalized to unity.

Remark 2.4. In [88], the author gave an alternative proof of Theorem 2.2
using probabilistic argument and proved complete monotonicity property of GT
on (0, π).

Remark 2.5. Equation (2.4) coincides with the travelling wave reduction of
the fractional KdV equation (1.9) for p = 1and b = 0. The positive solution
ψ of (2.4) can be realized as a fixed point of the nonlinear operator Aα,c(ψ) :
L2
per(T)→ L2

per(T)

Ac,α(ψ) :=

∫ π

−π
GT(x− s)ψ(s)2ds. (2.8)

Choosing an appropriate positive cone, and the positivity of the Green’s func-
tion implies that the operator Ac,α is closed in the cone. Then, application of
the Kranoselskii’s fixed point theorem verifies the existence of a fixed point of
Ac,α in the cone, see Section 3.4.

2.2 Properties of the Mittag–Leffler Function

We first review some important properties of the Mittag–Leffler function which
will be used for the proof of Theorem 2.1. The Mittag–Leffler function is
defined by

Eα(x) =
∞∑
k=0

xk

Γ(kα + 1)
, α > 0, (2.9)
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and its two-parametric generalization is defined by

Eα,β(x) =
∞∑
k=0

xk

Γ(kα + β)
, α, β > 0. (2.10)

Mittag–Leffler functions were introduced in the theory of analytic functions
[72]. In recent years, they have become popular due to their applications in
fractional differential equations [60]. In depth studies of the Mittag–Leffler
functions can be found in [18] and [46]. Mittag–Leffler functions are typi-
cally used to represent solutions of initial-value problems for the fractional
differential equations defined by the Riemann-Liouville or Caputo fractional
derivatives [60].

Lemma 2.1. For every α > 0 and every x ∈ R, it is true that

Eα,α(x) = α
d

dx
Eα(x). (2.11)

Proof. The result is obtained by differentiating (2.9) and using (2.10):

d

dx
Eα(x) =

∞∑
k=1

xk−1

αΓ(αk)
=

1

α

∞∑
k=0

xk

Γ(αk + α)
=

1

α
Eα,α(x).

The series converges absolutely for every x ∈ R since Eα and Eα,α are entire
functions.

Lemma 2.2. [84] For every α ∈ (0, 1], the function x 7→ Eα(−x) is positive
and completely monotonic for x ≥ 0, that is

(−1)m
dm

dxm
Eα(−x) ≥ 0, m ∈ N, x ≥ 0. (2.12)

Consequently, Eα,α(−x) ≥ 0 for every x ≥ 0.

Remark 2.6. A necessary and sufficient condition for the function x 7→
Eα(−x) to be completely monotonic for x ≥ 0 is that Eα(−x) can be expressed
in the form

Eα(−x) =

∫ ∞
0

e−xtdFα(t), x ≥ 0,

where Fα is a non decreasing and bounded on (0,∞). The proof of [84] is based
on the representation of Eα(−x) given by

Eα(−x) =
1

2iπα

∫
C

et
1/α

t+ x
dt,

with a specially selected the contour C in C.
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Lemma 2.3. [46] For every α ∈ (0, 2), Eα(−xα) admits the asymptotic ex-
pansion

Eα(−xα) = −
N∑
k=1

(−1)k

Γ(1− αk)xαk
+O

(
1

|x|αN+α

)
as x→∞, (2.13)

where N ∈ N is arbitrarily fixed. For every α ≥ 2, Eα(−xα) admits the
asymptotic expansion

Eα(−xα) =
1

α

N∑
n=−N+1

eanx +O
(

1

|x|α

)
as x→∞, (2.14)

where an = e
iπ(2n−1)

α and N is the largest integer satisfying the bound 2N −1 ≤
α
2

.

Remark 2.7. Asymptotic expansions (2.13) and (2.14) can be differentiated
term by term.

Remark 2.8. We list the explicit cases of the Mittag–Leffler function Eα(−xα)
for the first integers:

α = 1, E1(−x) = e−x,

α = 2, E2(−x2) = cos(x),

α = 3, E3(−x3) =
1

3
e−x +

2

3
e
x
2 cos

(√
3x

2

)
,

α = 4, E4(−x4) = cos

(
x√
2

)
cosh

(
x√
2

)
.

For α = 1, the asymptotic representation (2.13) admits zero leading-order
terms for every N ∈ N. The asymptotic representation (2.14) is also obvious
from the exact expressions for α = 2, 3, 4, moreover, the remainder term is
zero for α = 2 and can be included to the summation by increasing N by one
for α = 3 and α = 4.

Lemma 2.4. [46] For every α ∈ (0, 2) and every x ∈ R, Eα(−x) satisfies the
following integral representation,

Eα(−xα) =
2

π
sin
(πα

2

)∫ ∞
0

tα−1 cos(xt)

1 + 2tα cos
(
πα
2

)
+ t2α

dt. (2.15)

Remark 2.9. It is claimed in [46] that the integral representation (2.15) is
true for all α > 0, however, the integral is singular for α = 2 and a discrepancy
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exists at x = 0 for α > 2. For example, when α = 3, it follows from (2.9)
that E3(0) = 1 whereas computing the integral given in (2.15) via the change
of variable u = t3 gives

E3(0) = − 2

3π

∫ ∞
0

du

1 + u2
= −1

3
6= 1.

Hence, the integral representation (2.15) can only be used for α ∈ (0, 2), for
which Eα(−xα) is bounded and decaying as x→ +∞.

2.3 Integral Representation

The goal of this Section is to prove Theorem 2.1.

Proof. Assume first that x 6= 0 and c ∈ (0, 1). Expanding each term of the
trigonometric sum in (2.3) into absolutely convergent geometric series and
interchanging the two series, we obtain

∞∑
n=1

cos(nx)

c+ nα
=
∞∑
n=1

cos(nx)

nα

∞∑
k=0

(
−c
nα

)k
=
∞∑
k=0

(−c)k
∞∑
n=1

cos(nx)

nα(k+1)
. (2.16)

It is known from the integral representation (1) in [85, Section 5.4.2] that for
every x 6= 0 and α > 0 that

∞∑
n=1

cos(nx)

nα(k+1)
=

1

Γ(αk + α)

∫ ∞
0

tα(k+1)−1 (et cos(x)− 1)

1− 2et cos(x) + e2t
dt, (2.17)

where k ≥ 0. Substituting (2.17) into (2.16) and interchanging formally the
summation and the integration yields the following representation:

∞∑
n=1

cos(nx)

c+ nα
=
∞∑
k=0

(−c)k

Γ(αk + α)

∫ ∞
0

tα(k+1)−1 (et cos(x)− 1)

1− 2et cos(x) + e2t
dt, (2.18)

=

∫ ∞
0

(
et cos(x)− 1

1− 2et cos(x) + e2t

)
tα−1

∞∑
k=0

(−ctα)k

Γ(αk + α)
dt, (2.19)

=

∫ ∞
0

(
et cos(x)− 1

1− 2et cos(x) + e2t

)
tα−1Eα,α(−ctα)dt. (2.20)

This yields formally the integral formula (2.5). Let us now justify the in-
terchange of summation and integration in (2.18). Using the chain rule and
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Lemma 2.1, we get

tα−1Eα,α(−ctα) = −1

c

d

dt
Eα(−ctα). (2.21)

It follows from (2.21) that for every α ∈ (0, 2], the asymptotic expansion (2.13)
in Lemma 2.3 for α ∈ (0, 2) and Remark 2.8 for α = 2 imply that

sup
t∈[0,∞)

tα−1|Eα,α(−tα)| <∞. (2.22)

Hence, the integral in (2.5) converges absolutely for every x 6= 0 and α ∈ (0, 2].
Similarly, the integral in (2.18) converges absolutely for every x 6= 0 and α ∈
(0, 2], whereas the numerical series converges absolutely for every c ∈ (0, 1).
Thus, the interchange of summation and integration in (2.18) is justified by
Fubini’s theorem.

For x = 0, we note that GT(0) < ∞ if α > 1 and GT(0) = ∞ if α ∈
(0, 1]. Since Eα,α(−xα) = 1 +O(xα) as x→ 0, the integral in (2.5) converges
absolutely for x = 0 and α ∈ (1, 2] and diverges for x = 0 and α ∈ (0, 1].
Hence, the integral representation (2.5) holds again for x = 0, c ∈ (0, 1), and
α ∈ (0, 2]. In order to extend the integral representation (2.5) from c ∈ (0, 1)
to every c > 0, we use real analyticity of Green’s function GT and the integral
in (2.5) in c for c > 0. Due to uniqueness of the analytical continuation of both
GT and the integral in (2.5) in c, the equality in (2.5) is uniquely continued
from c ∈ (0, 1) to c > 0.

Next, we verify that the integral representation (2.5) extends to α > 2 if
c is sufficiently small. The asymptotic expansion (2.14) in Lemma 2.3 implies
for every c > 0 and α > 2 that

sup
t∈[0,∞)

e−t cos( πα)tα−1|Eα,α(−tα)| <∞, (2.23)

where we have used again the connection formula (2.21). In addition, Eα,α(−xα) =
1 + O(xα) as x → 0. Due to the above properties, the integral in (2.5) con-
verges absolutely for every x ∈ T if c ∈ (0, cα), where cα is given by (2.6).
This justifies the formal computations similarly to those in the case when
α ∈ (0, 2].

Remark 2.10. For c ≥ cα and α > 2, the Fourier series representation (2.3)
suggests that |GT(x)| < ∞ for every x ∈ T. However, the integral in (2.5)
does not converge absolutely, hence it is not clear if the integral representation
(2.5) can be used in this case. Our numerical results in Section 2.6 show that
the integral representation (2.5) cannot be used for c > cα.
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2.4 Properties of Green’s function for α ≤ 2

Here, we prove Theorem 2.2 by incorporating the integral representation (2.5)
in Theorem 2.1. It follows from (2.3) that GT is even for every c > 0 and
α > 0. Furthermore, if α ∈ (0, 1], then lim

x→0
GT(x) = +∞, and if α > 1, then

GT(0) =
1

2π

(
1

c
+ 2

∞∑
n=1

1

c+ nα

)
> 0.

We shall prove that G ′T(x) ≤ 0 for x ∈ (0, π) and GT(π) > 0 for every c > 0
and α ∈ (0, 2]. The proof of G′T(x) ≤ 0 on (0, π) of is broken into Propositions
2.2, 2.3 and 2.4 corresponding to α ∈ (0, 1], α ∈ (1, 2) and α = 2 respectively.
Proposition 2.1 gives an integral representation for GT(π) which implies its
strict positivity for every c > 0 and α ∈ (0, 2). For α = 2, this result follows
from the exact analytical representation of GT.

Proposition 2.1. For every c > 0 and every α ∈ (0, 2), it is true that

GT(π) =
sin(απ

2
)

πc1− 1
α

∫ ∞
0

sα csch(πc
1
α s)

1 + 2α cos(απ
2

) + s2α
ds, (2.24)

which implies GT(π) > 0.

Proof. Evaluating the integral representation (2.5) at x = π, we obtain

GT(π) =
1

2πc
− 1

π

∫ ∞
0

1

1 + et
tα−1Eα,α(−ctα)st (2.25)

Substituting (2.21) into (2.25), integrating by parts, and using the asymptotic
representation (2.13) to get zero contribution in the limit of t→∞, we obtain

GT(π) =
1

πc

∫ ∞
0

et

(1 + et)2
Eα(−ctα)st, (2.26)

where the integral converges absolutely for every c > 0 and α ∈ (0, 2). Sub-
stituting the integral representation (2.15) for Eα(−ctα) from Lemma 2.4 into
(2.26), we obtain

GT(π) =
2

π2c
sin
(απ

2

)∫ ∞
0

et

(1 + et)2

∫ ∞
0

sα−1 cos(c
1
α ts)

1 + 2α cos(πα
2

) + s2α
dsdt (2.27)

Since both integrates belong to L1(0,∞), the order of integration in (2.27) can
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be interchanged to get

GT(π) =
2

π2c
sin
(απ

2

)∫ ∞
0

sα−1

1 + 2α cos(πα
2

) + s2α

∫ ∞
0

et cos(c
1
α st)

(1 + et)2
dtds (2.28)

The inner integral is evaluated exactly with the help of integral (7) in [85,
Section 2.5.46]: ∫ ∞

0

et cos(c
1
α st)

(1 + et)2
dt =

π

2
c

1
α s csch(πc

1
α s),

When it is substituted into (2.28), it yields the integral representation (2.24).
The integrated is positive and absolutely integrate for every c > 0 and α ∈
(0, 2), which implies that GT(π) > 0.

Remark 2.11. positivity of GT(π) for c > 0 and α ∈ (0, 1] also follows from
the representation (2.26) due to positivity of Eα(−ctα) for every t > 0 in
Lemma 2.2. However, Eα(−ctα) is not positive for all t > 0 when α > 1,
hence, the representation (2.26) is not sufficient for the proof of positivity of
GT(π) if α ∈ (1, 2).

It remains to prove that G ′T(x) ≤ 0 for every x ∈ (0, π). The proof is
carried differently for α ∈ (0, 1], for α ∈ (1, 2), and for α = 2. In the first case,
we obtain the integral representation for G ′T(x), which is strictly negative for
x ∈ (0, π). In the second case, we employ the variational method to verify
that the unique solution GT of the boundary-value problem (2.2) admits the
single lobe profile, with the only maximum located at the point of symmetry
at x = 0. In the case α = 2, we rely on the exact analytic form of GT.

The next two propositions give results for the case α ∈ (0, 1] and α ∈ (1, 2).

Proposition 2.2. For every c > 0 and every α ∈ (0, 1], G ′T(x) < 0 for every
x ∈ (0, π).

Proof. Differentiating the integral representation (2.5) in x yields

G ′T(x) =
1

πc

∫ ∞
0

tα−1Eα,α(−ctα)
d

dx

(
et cos(x)− 1

1− 2et cos(x) + e2t

)
dt,

= −sin(x)

πc

∫ ∞
0

tα−1Eα,α(−ctα)
et(e2t − 1)

(1− 2et cos(x) + e2t)2dt, (2.29)

where the integrand is absolutely integrable. It follows by Lemma 2.2 that
Eα,α(−ctα) ≥ 0 for t > 0. Since sin(x) > 0 for x ∈ (0, π), and the integrand is
positive, it follows from the integral representation (2.29) that G ′T(x) < 0 for
x ∈ (0, π).
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Proposition 2.3. For every c > 0 and every α ∈ (1, 2), G ′T(x) ≤ 0 for every
x ∈ (0, π).

Proof. The proof consists of the following two steps. First, we obtain a vari-
ational solution to the boundary-value problem (2.2). Second, we use the
fractional Polya–Szegö inequality to show that the solution GT has a single-
lobe profile on T with the only maximum located at the point of symmetry at
x = 0.

Step 1: Let us consider the following minimization problem,

Bc := min
u∈H

α
2
per

{Bc(u)− u(0)}, (2.30)

where the quadratic functional Bc(u) is given by

Bc(u) =
1

2

∫
T

[(
D

α
2 u
)2

+ cu2
]
dx. (2.31)

Since c > 0, we have

1

2
min(1, c)‖u‖

H
α
2
per

≤ Bc(u) ≤ 1

2
max(1, c)‖u‖

H
α
2
per

,

hence, Bc(u) is equivalent to the squared H
α
2

per norm. Moreover, for α ∈ (1, 2),

δ ∈ H−
α
2

per , the dual of H
α
2

per since

‖δ‖
H
−α2
per

=
∑
ξ∈Z

1

(1 + |ξ|2)
α
2

<∞.

Thus, by Lax–Milgram theorem (see Corollary 5.8 in [24]), there exists a unique

GT ∈ H
α
2

per such that GT is the global minimizer of the variational problem
(2.30), for which the Euler–Lagrange equation is equivalent to the boundary-
value problem (2.2). By uniqueness of solutions of the two problems, GT is
equivalently written as the Fourier series (2.3), from which it follows that
GT(π) < GT(0). Hence, GT is different from a constant function on T.

Remark 2.12. The variational method and in particular the Lax–Milgram the-
orem cannot be applied to the case α ∈ (0, 1] since the Dirac delta distribution

δ does not belong to the dual space of H
α
2

per when α ∈ (0, 1].

Step 2: We utilize the fractional Polya–Szegö inequality, proved in the
appendix of [30], to show that a symmetric decreasing rearrangement of the
minimizer GT on T does not increase Bc(u). For completeness, we state the
following definition and lemma.
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Definition 2.1. Let m be the Lebesgue measure on T and f(x) : R→ R be a
2π periodic function. The symmetric and decreasing rearrangement f̃ of f on
T is given by

f̃(x) = inf{t : m({z ∈ T : f(z) > t}) ≤ 2|x|}, x ∈ T. (2.32)

The rearrangement f̃ satisfies the following properties:

i) f̃(−x) = f̃(x) and f ′(x) ≤ 0 for x ∈ (0, π).

ii) f̃(0) = maxx∈T f(x).

iii) ‖f̃‖L2(T) = ‖f‖L2(T).

Lemma 2.5. [30] For every α > 1 and every f ∈ H
α
2
per(T), it is true that∫ π

−π
|D

α
2 f̃ |2dx ≤

∫ π

−π
|D

α
2 f |2dx. (2.33)

The argument of the proof in the second step goes as follows. Suppose
G̃T is the symmetric and decreasing rearrangement of GT, then by Lemma 2.5
and by property (iii) of Definition 2.1 we have Bc(G̃T) ≤ Bc(GT). Since the

global minimizer of the variational problem (2.30) is uniquely given by GT, G̃T
coincides with GT up to a translation on T. However, it follows from (2.3) that
GT(−x) = GT(x) and GT(π) < GT(0), hence an internal maximum at x0 ∈ (0, π)
would contradicts to the single-lobe profile of GT and the only maximum of
GT is located at 0, so that GT(x) = G̃T(x) for every x ∈ T. It follows from
property (i) of Definition 2.1 that G ′T(x) ≤ 0 for x ∈ (0, π).

Finally, we derive the explicit form of GT for α = 2. The proposition below
verifies Theorem 2.2 for α = 2.

Proposition 2.4. For every c > 0, Green’s function GT at α = 2 is even,
strictly positive on T, and strictly monotonically decreasing on (0, π).

Proof. For α = 2, Green’s function GT satisfies the second-order differential
equation

− G ′′T(x) + cGT(x) = δ(x), x ∈ T, (2.34)

where c > 0. It follows from the theory of Dirac delta distributions that GT
is continuous, even, periodic on T, and have a jump discontinuity of the first
derivative at x = 0.
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To see the jump condition of G ′T(x) across x = 0, we integrate (2.34) on
(−ε, ε) and then take the limit as ε→ 0.

lim
ε→0

∫ ε

−ε
(−G ′′T(x) + cGT(x)) dx = lim

ε→0

∫ ε

−ε
δ(x)dx = 1, (2.35)

where the last equality follows from properties of δ. Since GT ∈ C0(R), the
second term on the left hand side vanishes as ε→ 0, which yields −G ′T(0+) +
G ′T(0−) = 1. Since GT is even on R, we obtain

G ′T(0+) = −1

2
. (2.36)

Additionally, it follows from the Fourier series representation (2.3) with α = 2
that

GT(0) =
1

2π

∑
n∈Z

1

c+ n2
=

coth(
√
cπ)

2
√
c

, (2.37)

where we have used numerical series (4) in [85, Section 5.1.25].
The differential equation (2.34) is solved for even GT as follows:

GT(x) = GT(0) cosh(
√
cx) + G ′T(0+)

sinh(
√
c|x|)√
c

, x ∈ T.

Due to (2.36) and (2.37), this can be rewritten in the closed form as

GT(x) =
cosh(

√
c(π − |x|))

2
√
c sinh(

√
cπ)

, x ∈ T. (2.38)

It follows from (2.38) that

G ′T(x) = −sinh(
√
c(π − x))

2 sinh(
√
cπ)

< 0, x ∈ (0, π), (2.39)

and hence GT is strictly monotonically decreasing on (0, π). On the other hand,

GT(π) =
1

2 sinh(
√
cπ)

> 0, c > 0, (2.40)

and hence GT is strictly positive on T. Note that the exact expression for GT(π)
in (2.40) also follows from numerical series (6) in [85, Section 5.1.25].

Remark 2.13. It follows from (2.38) that G ′T(π) = 0, due to smoothness and
periodicity of even GT(x) across x = ±π. Therefore, the exact expression in
(2.38) and the relation for GT(0) in (2.37) can be alternatively found by solving
the differential equation (2.34) for even GT subject to the boundary conditions
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G ′T(0±) = ∓1
2

and G ′T(±π) = 0.

2.5 Properties of Green’s function GT for α > 2

From the results of previous sections, we see that the properties of GT for
α ∈ (0, 2) is similar to those of α = 2 (the same is true for GR). However, it
is an open question if the properties of GT for α ∈ (2, 4) is similar to those of
α = 4, for which GR has infinitely many oscillations, whereas the number of
oscillations of GT only becomes infinite in the limit of c → ∞. We make the
following conjectures.

Conjecture 2.1. For each α ∈ (2, 4], there exists c0 > 0 such that for c ∈
(0, c0), Green’s function GT defined by (2.2) and (2.3) is even, strictly positive
on T, and monotonically decreasing on (0, π). For c ∈ [c0,∞), GT has a finite
number of zeros on T. The number of zeros is bounded in the limit of c→∞
if α ∈ (2, 4) and unbounded as c→∞ if α = 4.

Since the limit c→∞ for Green’s function GT can be re-scaled as Green’s
function GR with c normalized to unity, Conjecture 2.1 implies the following
conjecture (which is relevant for interactions of strongly localized waves in
[34,35]).

Conjecture 2.2. For every c > 0 and every α ∈ (2, 4], Green’s function GR
is not strictly positive on R and is not monotonically decreasing on (0,∞). It
has a finite number of zeros on R if α ∈ (2, 4) and an infinite number of zeros
if α = 4.

Since we can obtain the exact analytical form of GT for α = 4, we prove
Conjecture 2.1 for α = 4 in Proposition 2.5. For the case α ∈ (2, 4), numerical
approximations of GT to support Conjecture 2.1 are given in Section 2.6.

Proposition 2.5. There exists c0 > 0 such that for c ∈ (0, c0), Green’s func-
tion GT at α = 4 is even, strictly positive on T, and strictly monotonically
decreasing on (0, π). For c ∈ [c0,∞), GT has a finite number of zeros on T,
which becomes unbounded as c→∞.

Proof. For α = 4, Green’s function GT satisfies the fourth-order differential
equation

G ′′′′T (x) + cGT(x) = δ(x), x ∈ T, (2.41)

where c > 0. It follows from the theory of Dirac delta distributions that
GT is continuous, even, periodic on T, and have a jump discontinuity of the
third derivative at x = 0. Similarly to the computation in (2.35), it follows
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that Green’s function solves the boundary-value problem with the boundary
conditions

G ′T(0) = G ′T(±π) = G ′′′T (±π) = 0, G ′′′T (0±) = ±1

2
. (2.42)

Due to the boundary conditions (2.42), it is easier to solve the differential
equation (2.41) for G ′T on [0, π]. By using the parametrization c = 4a4, we
obtain

G ′T(x) = c1 cosh(ax) cos(ax) + c2 cosh(ax) sin(ax)

+c3 sinh(ax) cos(ax) + c4 sinh(ax) sin(ax), x ∈ [0, π],

where c1, c2, c3, and c4 are some coefficients. We can find c1 = 0 and c4 = 1
4a2

from the two boundary conditions (2.42) at x = 0+. The other two boundary
conditions (2.42) at x = π gives the linear system for c2 and c3:[

cosh(πa) sin(πa) sinh(πa) cos(πa)
sinh(πa) cos(πa) − cosh(πa) sin(πa)

] [
c2

c3

]
= −c4

[
sinh(πa) sin(πa)
cosh(πa) cos(πa)

]
.

By Cramer’s rule, we find the unique solution

c2 = −c4
sinh(2πa)

cosh(2πa)− cos(2πa)
, c3 = c4

sin(2πa)

cosh(2πa)− cos(2πa)
,

which results in the exact analytical expression

G ′T(x) =
1

4a2

sinh(ax) sin a(2π − x)− sin(ax) sinh a(2π − x)

cosh(2πa)− cos(2πa)
, x ∈ [0, π].

(2.43)
Integrating (2.43) in x yields the exact analytical expression for GT:

GT(x) =
1

8a3

g(x)

cosh(2πa)− cos(2πa)
, x ∈ [0, π], (2.44)

where

g(x) := sinh(ax) cos a(2π − x) + cosh(ax) sin a(2π − x)

+ sin(ax) cosh a(2π − x) + cos(ax) sinh a(2π − x)

and the constant of integration is set to zero due to the differential equation
(2.41).

We verify the validity of the exact solution (2.44) by comparing GT(0) and
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GT(π) with the Fourier series representation (2.3) for α = 4:

GT(0) =
1

2π

∑
n∈Z

1

4a4 + n2
=

1

8a3

sinh(2πa) + sin(2πa)

cosh(2πa)− cos(2πa)
(2.45)

and

GT(π) =
1

2π

∑
n∈Z

(−1)n

4a4 + n2
=

1

4a3

sinh(πa) cos(πa) + sin(πa) cosh(πa)

cosh(2πa)− cos(2πa)
. (2.46)

Indeed, the exact expressions coincide with those found from the numerical
series (1) and (2) in [85, Section 5.1.27].

It follows from (2.46) that GT(π) vanishes for c = 4a4 > 0 if and only if
a > 0 is a solution of the transcendental equation

tanh(πa) + tan(πa) = 0. (2.47)

Elementary graphical analysis on Figure 2.1 shows that there exist a countable
sequence of zeros {an}n∈N such that an ∈

(
n− 1

4
, n
)
, n ∈ N. Hence, GT is not

positive for a ∈ (a1,∞).

Figure 2.1: Countable sequence of zeros {an}n∈N of 2.47

Let us now show that the profile of GT is strictly, monotonically decreasing
on (0, π) for small a. It follows from (2.43) that G ′T(x) < 0 for x ∈ (0, π) if and
only if

sin(ax)

sinh(ax)
>

sin a(2π − x)

sinh a(2π − x)
, x ∈ (0, π). (2.48)

The function

x 7→ sin(ax)

sinh(ax)
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is monotonically decreasing on [0, 2π] as long as

cos(ax) sinh(ax)− sin(ax) cosh(ax) ≤ 0, x ∈ [0, 2π], (2.49)

which is true at least for a ∈ (0, 1
2
). Hence, GT is strictly monotonically

decreasing on (0, π) with GT(π) > 0 for a ∈ (0, a0), where a0 ∈ (1
2
, 1). On the

other hand, it is obvious that there exists a∗ ∈ (1, 3
2
) such that the inequality

(2.49) [and hence the inequality (2.48)] is violated at x = π for a ∈ (a∗, 2), for
which G ′T(x) > 0 at least near x = π.

The first part of the proposition is proven due to the relation c = 4a4. It
remains to prove that GT has a finite number of zeros on T for fixed a ∈ [a0,∞)
which becomes unbounded as a → ∞. To do so, we simplify the expression
(2.44) for GT in the asymptotic limit of large a for every fixed x ∈ (0, π):

GT(x) =
1

8a3

[
e−ax cos(ax) + e−ax sin(ax) +O(e−a(2π−x))

]
as a→∞.

(2.50)
Thus, as a gets large, there are finitely many zeros of GT on (0, π) but the
number of zeros of GT grows unbounded as a→∞.

Remark 2.14. The leading-order term in the asymptotic expansion (2.50)
represents Green’s function GR. The proof of Conjecture 2.2 for α = 4 follows
from this explicit expression.

Remark 2.15. Figure 2.2 shows boundaries on the (a, x) plane between posi-
tive (yellow) and negative (blue) values of GT (left) and G ′T (right). It follows
from the figure that the zeros of GT and G ′T are monotonically decreasing with
respect to parameter a and the number of zeros only grows as a increases. In
other words, zeros of GT cannot coalesce and disappear. We were not able to
prove these properties for every a > 0 inside (0, π).

2.6 Numerical Illustrations

In this section, we present graphical illustrations for Theorem 2.2 and Con-
jecture 2.1 as well as numerical approximations of the Green’s function (2.3),
and its the first five roots.

Figure 2.3 illustrates the statement of Theorem 2.1. It shows the single-
lobe positive profile of GT for two values of c in the case α = 0.5 (left) and
α = 1.5 (right). The only difference between these two cases is that GT(0) is
bounded for α > 1 and is unbounded for α ≤ 1.

Figure 2.4 supports the statement of Conjecture 2.1. For α = 2.5 (top),
Green’s function G has the single-lobe positive profile for c = 2 (red curve) but
it is not positive for c = 10 (blue curve). For α = 3.5 (bottom), it is positive
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Figure 2.2: Left: areas on (a, x) plane where GT is positive (yellow) and nega-
tive (blue). Right: the same but for G ′T.

Figure 2.3: Profiles of GT for α = 0.5 (left) and α = 1.5 (right) for specific
values of c.

for c = 1 (red curve), has one pair of zeros for c = 10 (blue curve), and has
two pairs of zeros for c = 60 (black curve).

Next, we study how zeros of GT (π) depend on parameters (c, α), which
supports Conjucture 2.1. The profiles of GT are depicted on Figure 2.4.

It follows from the Fourier series (2.3) that GT(π) can be computed by the
numerical series

GT(π) =
1

2π

(
1

c
+ 2

∞∑
n=1

(−1)n

c+ nα

)
, (2.51)

where the series converges absolutely if α > 1. On the other hand, GT(π) can
also be computed from the integral representation (2.5), that is,

GT(π) =
1

πc

∫ ∞
0

et

(1 + et)2
Eα(−ctα)dt, (2.52)
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Figure 2.4: Profiles of G on T for α = 2.5 (top) and α = 3.5 (bottom) at
specific values of c.

which converges absolutely for c ∈ (0, cα), see Theorem 2.1, where cα is given
by (2.6). Figure 2.5 shows the difference of GT(π) computed from (2.51) and
(2.52) for α = 2.5 (left) and α = 3.5 (right) in logarithmic scale versus pa-
rameter c. The Fourier series (2.51) is truncated such that the remainder is
of the size O(10−10). For the integral representation of GT(π) in (2.52), we
numerically compute the Mittag–Leffler function Eα(−ctα) on the half line;
this task is accomplished by using the Matlab code provided in [44], where
the Mittag–Leffler functions are approximated with relative errors of the size
O(10−15). As follows from Fig. 2.5, the difference between the two compu-
tations is constantly small if c < cα, when the integral representation (2.52)
converges absolutely, where cα=2.5 ≈ 18.8 and cα=3.5 ≈ 5.2. However, the ac-
curacy of numerical computations based on the integral representation (2.52)
deteriorates for c approaching cα and as a result, the difference between two
computations quickly grows for c > cα.
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Figure 2.5: Difference between computations of GT(π) in (2.51) and (2.52) for
α = 2.5 (left) and α = 3.5 (right) versus parameter c.

Green’s function GT was computed versus x using the Fourier series repre-
sentation (2.3) for fixed values of (c, α). The plots of GT are shown in Figures
2.3 and 2.4. The roots of GT(π) in c for each fixed α > 2 are computed using
the bisection method. Figure 2.6 (top) shows the first five zeros of GT(π) on
the (c, α) plane, where the dots show the roots of GT(π) computed from the
exact solutions in using the transcendental equation (2.47) for α = 4. The
first root exists for every α > 2 and is located inside (0, cα), in particular,
the first root of GT(π) occurs at c ≈ 2.507 for α = 2.5 and at c ≈ 1.446 for
α = 3.5, see Fig. 2.6 (bottom left panel). The threshold c0 in Conjecture 2.1
reduces with the larger value of α. The other roots are located outside (0, cα)
and disappear via pairwise coalescence as α is reduced towards α = 2, see the
bottom right panels. The 2nd and 3rd roots coalesce at α ≈ 3.325 and the
4th and 5th roots coalesce at α ≈ 3.89. The number of terms in the Fourier
series of GT(π) is increased to compute the 4th and 5th roots such that the
remainder is of the size of O(10−14) because GT(π) becomes very small near
the location of these roots.

Table 2.1 compares the error between the numerically detected roots at
α = 4 and the roots of GT(π) obtained from solving the transcendental equation
(2.47).
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Figure 2.6: Top: Location of the first five roots of GT(π) on the (c, α) plane.
Bottom left: The first root of GT(π) relative to the boundary cα (left). Bottom
right: Coalescence of the 2nd and 3rd roots (upper right) and the 4th and 5th
roots (lower right).

Root Error
1st 1.9915 e-11
2nd 7.1495 e-08
3rd 3.3182 e-06
4th 0.0031
5th 0.0156

Table 2.1: Difference between locations of the first five roots of GT(π) for α = 4
computed from (2.3) and (2.47).
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Chapter 3

Existence Of Periodic Waves Of
The Fractional KdV Equation

In this chapter, we turn our attention to the existence of periodic, travelling
waves of the fractional KdV equation (1.7). Our goal is to prove the exis-
tence of periodic waves in the small–amplitude limit, and to verify that these
solutions are the local minimizers of the energy(1.12) subject to fixed mass
(1.10) and momentum (1.11). Moreover, we prove a new result stating that
the periodic waves, travelling to the right, are positive by using the positivity
result of the Green’s function in Theorem 2.1.

We recall the fractional KdV equation (1.7) taken in the normalized form

ut + 2uux − (Dαu)x = 0, (3.1)

where u(t, x) : R×T 7→ R, T := [−π, π], and the fractional Laplacian Dα is
defined via Fourier series by

f(x) =
∑
n∈Z

fne
inx, (Dαf)(x) =

∑
n∈Z

|n|αfneinx. (3.2)

Periodic traveling waves are solutions of the fractional KdV equation (3.1)
in the form u(t, x) = ψ(x− ct), where ψ is a periodic function in its argument
and c is the speed parameter. Without loss of generality, due to scaling and
translation invariance of the fractional KdV equation (3.1), we scale the period
of ψ to 2π and translate ψ to become an even function of its argument. The
wave profile ψ is a 2π-periodic even solution to the following boundary-value
problem (1.9) with p = 1 and the constant of integration b = 0 due to Galilean
invariance

(Dα + c)ψ = ψ2, ψ ∈ Hα
per. (3.3)

We say that the periodic wave has a single-lobe profile accordingly to Definition
1.1, that is, if there exist only one maximum and minimum of ψ on the period.
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For uniqueness of solutions, we place the maximum of ψ at x = 0 and the
minimum of ψ at x = ±π. If c > 0, then the wave with profile ψ propagates
to the right. In addition, we can also consider 2π-periodic waves with profile φ
propagating to the left. These are solutions of the KdV equation (3.1) in the
form u(t, x) = φ(x + ct), with c > 0 satisfying the following boundary-value
problem:

(c−Dα)φ+ φ2 = 0, φ ∈ Hα
per. (3.4)

A very simple formula connects the right-propagating waves with the left-
propagating waves:

φ(x) = −c+ ψ(x). (3.5)

The wave profile φ is a solution to the boundary-value problem (3.4) with some
c > 0 if and only if ψ is a solution to the boundary-value problem (3.3) with
the same c > 0.

Although recent works in the literature (see Section 1.4.1, particularly [14,
26, 27, 53, 54]) are devoted the right-propagating waves with profile ψ, there
are no apriori reasons to prefer these waves over the left-propagating waves
with profile φ. As we are going to show in Theorem 3.1, the perturbative
expansions for waves of small amplitudes are more easily developed for the
left-propagating waves with profile φ since they arise in the local bifurcation
theory from linearization of the zero equilibrium. On the other hand, the right-
propagating waves with profile ψ are more suitable for the proof of positivity
result in Theorem 3.3. Moreover, we are going to prove in Theorem 3.2 that
these right travelling waves in the small-amplitude limit are the constrained
minimizers of the energy functional (1.12) subject to fixed mass (1.10) and
momentum (1.11).

The chapter is organized as follows. In Section 3.1 we present the main
results of the chapter. Section 3.2 is dedicated to the proof of the Stokes
expansion for the solution of the boundary value problem (3.4). Section 3.3
presents the proof that the periodic, small-amplitude, single–lobe solutions are
the local minimizers of the energy subject to fixed mass and momentum; we
also state the closed form solutions for the integrable cases α = 1 and α = 2.
Section 3.4 presents the proof of the existence of the positive periodic wave with
profile ψ of the boundary value problem (3.3). Section 3.5 provides explicit
solution of the classical KdV and BO equations as examples of Theorem 3.3.

3.1 Main Results

Here, we state the main results for this chapter. Let us define the following
operators and important thresholds of α which will be referred to throughout
the rest of the chapter. The Jacobian operator of the boundary value problem
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(3.3) is given by
Hc,α := Dα + c− 2ψ, (3.6)

the Jacobian operator of the boundary value problem (3.4) is given by

H̃c,α := Dα − c− 2φ, (3.7)

and the thresholds for α are

α0 :=
log 3

log 2
− 1, α1 :=

log 5

log 2
− 1. (3.8)

Theorem 3.1. For every α > α0, there exists c0 > 1 such that for every
c ∈ (1, c0) there exists a unique single-lobe solution φ of the boundary-value
problem (3.4) with the global maximum at x = 0. The wave profile φ and the
wave speed c are real-analytic functions of the wave amplitude a satisfying the
following Stokes expansions:

φa,α(x) = a cos(x) + a2φ2(x) + a3φ3(x) + a4φ4(x) +O(a5), (3.9)

where

φ2(x) = −1

2
+

1

2(2α − 1)
cos(2x), (3.10)

φ3(x) =
1

2(2α − 1)(3α − 1)
cos(3x), (3.11)

φ4(x) =
1

4
− 1

4(2α − 1)
− 1

8(2α − 1)2
+

1

4(2α − 1)2

[
2

3α − 1
− 1

2α − 1

]
cos(2x)

(3.12)

+
1

8(2α − 1)(4α − 1)

[
4

3α − 1
+

1

2α − 1

]
cos(4x),

and
ca,α = 1 + c2a

2 + c4a
4 +O(a6), (3.13)

with the correction terms given by

c2 = 1− 1

2(2α − 1)
, (3.14)

c4 = −1

2
+

1

2(2α − 1)
+

1

4(2α − 1)2
+

1

4(2α − 1)3
− 3

4(2α − 1)2(3α − 1)
.

(3.15)

Remark 3.1. The small-amplitude periodic waves bifurcate from the constant
zero solution to the boundary-value problem (3.4). The construction of the
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small-amplitude periodic waves is nearly identical to Lemma 2.1 in [54] subject
to the following two changes. First, the constant of integration is set to zero,
while in [54] the constant was carried as an additional (redundant) parameter
of the problem. Second, the speed c is used as the main parameter of the
periodic solution while the period is set to 2π, whereas in [54] c was set to 1
and the period was taken as the main parameter of the periodic solution.

Remark 3.2. Although the formal computations of the periodic waves in the
small-amplitude limit hold for every α > 0, the justification of the perturbative
expansions requires α > 1/2, for which Hα

per is a Banach algebra with respect
to multiplication with a continuous embedding into L∞per. A typical justification
of the perturbative expansions is based on the method of Lyapunov–Schmidt
reductions (see Appendix A of [54]) which requires smoothness of the nonlin-
ear mappings. This smoothness is guaranteed in Hα

per with α > 1/2. Since
refinement to α ∈ (0, 1/2) is not important for the subject of our work, we
leave the restriction α > 1/2 in the same way as it was used in Theorem A.1
in [54].

The next theorem shows that the small-amplitude single-lobe solutions to
Theorem 3.1 agree with the variational characterization of single–lobe solutions
as minimizers of energy subject to fixed mass and momentum as in Proposition
2.1 shown in [53].

Theorem 3.2. Let ψ = ca,α + φa,α be the locally unique single–lobe solution
of the boundary value problem (3.3) for α > α0 and c > 1 defined by Theorem
3.1. Then, ψ is a local minimizer of the energy

E(u) = −1

2

∫ π

−π
u (Dαu) dx− 1

3

∫ π

−π
u2dx, (3.16)

subjected to the fixed momentum F (u) = 1
2

∫ π
−π u

2dx and mass M(u) =
∫ π
−π udx.

Remark 3.3. In Proposition 2.1 of [53], the variational results are obtained

in the energy space H
α/2
per for α ∈ (1/3, 2] and for every c > 0, however, it

is overlooked that the local minimizer may coincide with the nonzero constant
solution ψc(x) = c for all x ∈ T to the boundary-value problem (3.3). The
same problem is present in Proposition 12 in [25].

Lastly, the following theorem proves the existence of positive, periodic and
single–lobe wave with profile ψ in the boundary value problem (3.3) for all
c > 1 and α ∈ (α0, 2] by using the positivity result of the Green’s function
obtained in Theorem 2.1.

Theorem 3.3. Assume that the spectrum of the Jacobian operator Hc,α in L2
per

consists of one simple negative eigenvalue and a simple zero eigenvalue bounded
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away from the rest of its spectrum for every c > 1 and α ∈ (α0, 2]. Then, there
exists a unique single-lobe solution ψ of the boundary-value problem (3.3) such
that ψ(x) > 0 for every x ∈ T.

Remark 3.4. The result has not appeared in the literature, e.g. a remark in
the proof of Proposition 2.1 in [53] states that a periodic solution need not be
positive everywhere. On the other hand, positivity of the Fourier coefficients in
the Fourier series for the periodic wave ψ is proven in Theorem 3.5 of [26] for
every α > 1/2 and for sufficiently large periods (which is equivalent to c > 1
at the 2π-period).

Remark 3.5. In Lemma 3.1, we show that there exists c0 > 1 such that the
assumption of Theorem 3.3 is satisfied for c ∈ (1, c0) and α ∈ (α0, 2]. See
Section 4.5.2 for numerical evidence supporting the assumption of Theorem
3.3 for all c > 1.

Remark 3.6. Our proof has similarity to the work of [91] on the second-order
differential equations. However, the existence of constant solutions is elimi-
nated in [91] by the space-dependent coefficients in the boundary-value problem.
Since the boundary value problem (3.3) has space independent coefficients, we
have to use the Leray–Schauder index to single out single-lobe periodic solu-
tions from the constant solutions.

3.2 Proof of Theorem 3.1

We prove Theorem 3.1 by employing algorithmic computations of the higher
order coefficients to the periodic wave.

Proof. From the classical Stokes expansions:

φ(x) =
∞∑
k=1

akφk(x), c = 1 +
∞∑
k=1

c2ka
2k,

the correction terms satisfy recursively,
O(a) : (1−Dα)φ1 = 0,
O(a2) : (1−Dα)φ2 + φ2

1 = 0,
O(a3) : (1−Dα)φ3 + c2φ1 + 2φ1φ2 = 0,
O(a4) : (1−Dα)φ4 + c2φ2 + 2φ1φ3 + φ2

2 = 0,
O(a5) : (1−Dα)φ5 + c2φ3 + c4φ1 + 2φ1φ4 + 2φ2φ3 = 0,

For the single-lobe wave profile φ with the global maximum at x = 0, we select
uniquely φ1(x) = cos(x) since Kereven(1−Dα) = span{cos(·)} in the space of
even functions in L2

per. In order to select uniquely all other corrections to
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the Stokes expansion (3.9), we require the corrections terms {φk}k≥2 to be
orthogonal to φ1 in L2

per.
Solving the inhomogeneous equation at O(a2) yields the exact solution in

Hα
per:

φ2(x) = −1

2
+

1

2(2α − 1)
cos(2x).

The inhomogeneous equation at O(a3) admits a solution φ3 ∈ Hα
per if and only

if the right-hand side is orthogonal to φ1, which selects uniquely the correction
c2 by

c2 = 1− 1

2(2α − 1)
.

After the resonant term is removed, the inhomogeneous equation at O(a3)
yields the exact solution in Hα

per:

φ3(x) =
1

2(2α − 1)(3α − 1)
cos(3x).

By continuing the algorithm, we find the exact solution of the inhomogeneous
equation at O(a4) in Hα

per:

φ4(x) =
1

4
− 1

4(2α − 1)
− 1

8(2α − 1)2
+

1

4(2α − 1)2

[
2

3α − 1
− 1

2α − 1

]
cos(2x)

+
1

8(2α − 1)(4α − 1)

[
4

3α − 1
+

1

2α − 1

]
cos(4x).

Finally, the inhomogeneous equation at O(a5) admits a solution φ5 ∈ Hα
per if

and only if the right-hand side is orthogonal to φ1, which selects uniquely the
correction c4 by

c4 = −1

2
+

1

2(2α − 1)
+

1

4(2α − 1)2
+

1

4(2α − 1)3
− 3

4(2α − 1)2(3α − 1)
.

Thus, we obtain the higher order correction terms for φ and c as stated in
equations (3.10) to (3.14).

Note that c2 > 0 if α > α0 := log 3/ log 2 − 1 ≈ 0.585, which implies that
the small-amplitude periodic wave with profile φ exists in the boundary-value
problem (3.4) for c ∈ (1, c0) with c0 > 1, and α > α0. The periodic wave has
a global maximum at x = 0 for small a since x = 0 is the only maximum of
φ1(x) = cos(x) and φ′(0) = 0 with φ′′(0) = −a+O(a2) < 0.

Justification of the existence, uniqueness, and analyticity of the Stokes ex-
pansions (3.9) and (3.13) is performed with the method of Lyapunov–Schmidt
reductions for α > 1/2, see Lemma 2.1 and Theorem A.1 in [54]. Since
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α0 > 1/2, the justification procedure applies for every α > α0.

Remark 3.7. If α < α0, then c2 < 0 so that the small-amplitude periodic
wave exists for c ∈ (c0, 1) with some c0 < 1. The critical value α0 can also be
seen in the expansion of the wave period T (for fixed c = 1) with respect to the
wave amplitude a in Lemma 2.1 of [54].

3.3 Proof of Theorem 3.2

Here, we are going to verify that the small-amplitude, periodic and single-lobe
solution ψ = ca,α+φa,α with φa,α given in Theorem 3.1 are the local minimizers
of the energy subject to fixed mass and momentum.

Let us consider the Euler–Lagrange equation

(Dα + c)ψ − ψ2 + b = 0, (3.17)

which is associated with the action functional (1.14)

Gc,b(u) := E(u) + cF (u) + bM(u).

Note that the Euler–Lagrange equation (3.17) coincides with the equation (3.3)
for b = 0. With the transformation

ψ(x) =
1

2

(
c−
√
c2 + 4b

)
+ ψ̃(x), (3.18)

the Euler–Lagrange equation (3.17) transforms to the form

(Dα + c̃) ψ̃ − ψ̃2 = 0,

with c̃ :=
√
c2 + 4b. By expansion (3.13) in Theorem 3.1, we have the following

Stokes expansion for the new speed

c̃ = 1 + c2a
2 +O(a4),

from which the parameter a = a(c, b) near (1, 0) is defined by

c2a
2 = c− 1 + 2b+O

(
(c− 1)2 + b2

)
. (3.19)

A single–lobe periodic solution of the Euler–Lagrange equation (3.17) for (c, b)
near (1, 0) is defined by the expansion (3.10) in Theorem 3.1 as follows:

ψ(x) = 1− b+ a cos(x) + a2 (c2 + φ2(x)) +O
(
a3 + b2

)
. (3.20)

This single-lobe periodic solution is a critical point of the action functional
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Gc,b(u) in (1.14); hence we denote it as ψc,b(x). The Hessian operator of the
action functional Gc,b(u) at the critical point u = ψc,b is given by G′′c,b(ψc,b) =
Dα+c−2ψc,b. We observe that G′′c,b(ψc,b) has one zero eigenvalue which persists
with respect to b since Gc,b(ψc,b)ψ

′
c,b(x) = 0 for every b ∈ R.

When the critical point ψc,b of Gc,b(u) is considered as a critical point of
E(u) subject to the fixed F (u) and M(u), the space L2

per(T) is constrained by
two orthogonality conditions

〈ψc,b, v〉 = 0, 〈1, v〉 = 0, (3.21)

imposed on the perturbation v ∈ Hα
per(T) to the periodic wave ψc,b ∈ Hα

per(T).
By Theorem A.3, the number of negative eigenvalues of G′′c,b(ψc,b) in L2

per(T)
is reduced under the constraints (3.21) by the number of negative eigenvalues
of the matrix[
〈
[
G′′c,b(ψc,b)

]−1
ψc,b, ψc,b〉 〈

[
G′′c,b(ψc,b)

]−1
1, ψc,b〉

〈
[
G′′c,b(ψc,b)

]−1
ψc,b, 1〉 〈

[
G′′c,b(ψc,b)

]−1
1, 1〉

]
= −

[
∂Pc,b
∂c

∂Pc,b
∂b

∂Mc,b

∂c

∂Mc,b

∂b

]
,

where we denote Fc,b := F (ψc,b) and Mc,b := M(ψc,b), and have used the
derivative equations

G′′c,b(ψc,b)∂cψc,b = −ψc,b, G′′c,b(ψc,b)∂bψc,b = −1,

assuming that ψc,b is differentiable with respect to c and b. It follows from
(3.19) and (3.20) that ψc,b is differentiable in c and b if c2 6= 0 (α 6= α0).
Thanks to the expansion (3.20) for (c, b) near (1, 0), we compute

Fc,b = π

[
1− 2b+ a2

(
2c2 −

1

2

)
+O

(
a4 + b2

)]
,

and

Mc,b = 2π

[
1− b+ a2

(
c2 −

1

2

)
+O

(
a4 + b2

)]
,

from which we obtain[
∂Fc,b
∂c

∂Fc,b
∂b

∂Mc,b

∂c

∂Mc,b

∂b

]
=
π

c2

[
3
2
− 1

2α−1
1− 1

2α−1

1− 1
2α−1

− 1
2α−1

]
, (3.22)

where the chain rule with the expression (3.19) has been used. Since the
determinant of the matrix above is −π2

c2
and c2 > 0 thanks to α > α0 >

1
2
, there

exists exactly one positive and one negative eigenvalues. Hence, the number
of negative eigenvalues of G′′c,b(ψc,b) in the constrained L2

per(T) is reduced by
one. Therefore, ψc,b is a local minimizer of E(u) subject to the fixed F (u) and
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M(u) for (c, b) near (1, 0) if we can show that σ(G′′c,b(ψc,b)) has only one simple
negative eigenvalue.

Notice that when b = 0, ψc,b=0 coincides with ψ = cc,α + φa,α so G′′c,b=0(ψ)
coincides with the Jacobian operator Hc,α (3.6). Moreover, using the transfor-
mation (3.5), we have also that the Jacobian operator Hc,α of the boundary
value problem (3.3) is identical to the Jacobian operator H̃c,α of the boundary
value problem (3.4)

Hc,α = Dα + c− 2ψ = Dα + c− 2(c+ φ) = Dα − c− 2φ = H̃c,α. (3.23)

Hence, the assertion of Theorem 3.2 is obtained once we prove Lemma 3.1

which verifies that for α > α0 and c ∈ (1, c0) with c0 > 1, σ
(
H̃c,α

)
has only

one simple negative eigenvalue, one simple zero eigenvalue and the rest of its
spectrum bounded away from zero.

Remark 3.8. Another periodic wave solution of the boundary value problem
(3.3) is the constant wave ψc(x) = c. It is also a critical point of the action
functional Gc,b=0(u) with the Hessian operator G′′c,b=0(ψc) has only one simple
negative eigenvalue for c ∈ (0, 1) and three more negative eigenvalues for c > 1.
The constraints of fixed momentum F (u) and fixed mass M(u) impose only
one orthogonality condition 〈1, v〉 = 0 since ψc(x) = c. Computing Pc :=
P (ψx) = πc2 shows that the constraint removes exactly one negative eigenvalue
of G′′c,b=0(ψc). Hence, the constant wave ψc is a local constrained minimizer of
E(u) subject to fixed F (u) and M(u) for c ∈ (0, 1), but it is a saddle point of
E(u) for c > 1.

Lemma 3.1. For every α > α0, there exists c0 > 1 such that for every c ∈
(1, c0), σ(H̃c,α) in L2

per consists of one simple negative eigenvalue, a simple zero
eigenvalue, and a countable sequence of positive eigenvalues bounded away from
zero.

Proof. Note that σ(H̃c,α) in L2
per is purely discrete for every c > 1, thanks to

the compactness of [−π, π] and boundedness of φ ∈ L∞per. Let us consider the
linear operator

L̃c,α := Dα − c (3.24)

in L2
per with domain in Hα

per. For c = 1, H̃c=1,α coincide with L̃c=1,α, whose

spectrum in L2
per is obtained for every α > 0 as σ

(
L̃c=1,α

)
= {|n|α−1, n ∈ Z}.

Hence, it follows that σ(H̃c=1,α) has a simple negative eigenvalue, a double zero
eigenvalue, and a countable sequence of positive eigenvalues bounded away
from zero.

Since H̃c,α − L̃c,α = −2φ is a bounded perturbation and (φ, c) depend
analytically on a, the analytic perturbation theory (Theorem VII.1.7 in [57])
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guarantees continuity of eigenvalues for c > 1 close to their limiting values as
c → 1. Therefore, the proof is achieved if we can show that the double zero
eigenvalue of H̃c,α in L2

per splits as c > 1 into a simple zero eigenvalue and a
simple positive eigenvalue.

Since Ker(H̃c=1,α) = span{cos(·), sin(·)} and H̃c,αφ
′ = 0 for every c > 1

with odd φ, the zero eigenvalue associated with the subspace Kerodd(H̃c=1,α) =
span{sin(·)} persists for c > 1. It remains to check the shift of the zero eigen-
value associated with the subspace Kereven(H̃c=1,α) = span{cos(·)}. Hence, we
expand H̃c,α in powers of a by using (3.9):

H̃c,α = −1−Dα − 2a cos(x)− a2

2α − 1

[
cos(2x)− 1

2

]
+O(a3) (3.25)

and look for solutions (λ, v) ∈ R×Hα
per of the eigenvalue problem H̃c,αv = λv

near (λ, v) = (0, cos(·)) by using the expansions{
v(x) = cos(x) + av1(x) + a2v2(x) +O(a3),
λ = aλ1 + a2λ2 +O(a3).

The correction terms in Hα
per satisfy recursively,{

O(a) : (1 +Dα)v1 + 1 + cos(2x) + λ1 cos(x) = 0,
O(a2) : (1 +Dα)v2 + 2 cos(x)v1 + 1

2α−1

[
cos(2x)− 1

2

]
cos(x) + λ2 cos(x) = 0.

In order to determine them uniquely, we impose orthogonality conditions of
{vk}k≥1 to cos(·) in L2

per. The linear inhomogeneous equation at O(a) admits
a solution v1 ∈ Hα

per if and only if λ1 = 0, after which the solution is found
explicitly:

v1(x) =
1

2α − 1
cos(2x)− 1.

The linear inhomogeneous equation at O(a2) admits a solution v2 ∈ Hα
per if

and only if λ2 = 2c2, where c2 is defined by (3.14); c2 is positive if α > α0

and negative if α < α0. Hence, if α > α0, the small positive eigenvalue
λ = 2c2a

2 + O(a3) bifurcates from the zero eigenvalue as c > 1. Functional-
analytic setup for justification of perturbative expansions can be found in [54]
(see also [52]) for α > 1/2, which is met since α0 > 1/2.

Remark 3.9. It was shown in Proposition 3.1 and Lemma 3.3 of [53] that
Ker(H̃c,α) = span{φ′} is one-dimensional, the zero eigenvalue is the lowest
eigenvalue in the subspace of odd functions in L2

per, and σ(H̃c,α) has either
one or two negative eigenvalues for every c > 1 and α ∈ (1/3, 2]. By Lemma
3.1 above, for c > 1 σ(H̃c,α) has one negative eigenvalue for α > α0 and two
negative eigenvalues for α < α0.
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3.4 Proof of Theorem 3.3

In this section, we present the proof for Theorem 3.3, which states that the
single-lobe wave profile ψ in the boundary-value problem (3.3) is positive for
every c > 1 and α ∈ (α0, 2].

Proof. For c ∈ (1, c0) with some c0 > 1, the assertion follows from Theorem
3.1 thanks to the transformation (3.5) and smallness of a in the Stokes expan-
sion (3.9). In order to prove the same for every c > 1, we use Kranoselskii’s
fixed–point theorem in a positive cone and a homotopy argument with the
Leray–Schauder index to trace a branch of the single–lobe positive solution in
c. We divide the proof in five steps.

Step 1. The Green’s function for (Dα + c).
We recall the Green’s function GT which satisfies the equation (2.2), and is
given by the Fourier series

GT(x) =
1

2π

∑
n∈Z

cos(nx)

c+ |n|α
. (3.26)

In what follows, we will denote the Green’s function GT as Gc,α to emphasize the
dependence on the parameters c and a. It follows from (3.26) that Gc,α ∈ L2

per

if α > 1/2 but Gc,α(0) =∞ if α ≤ 1. It has been proven in Theorem 2.1 that
Gc,α is positive for α ∈ (0, 2]. There is a positive (c, α)-dependent constant
mc,α such that

Gc,α(x) ≥ mc,α, x ∈ T. (3.27)

In addition, for α > 1/2, there exists a positive (c, α)-dependent constant Mc,α

such that
‖Gc,α‖L2

per
≤Mc,α.

Step 2. Nonlinear operator Ac,α in a positive cone Pc,α.
Let us consider a positive cone in the space of L2

per-functions defined by

Pc,α :=

{
ψ ∈ L2

per : ψ(x) ≥ mc,α

Mc,α

‖ψ‖L2
per
, x ∈ T

}
. (3.28)

Define the following nonlinear operator Ac,α(ψ) : L2
per 7→ L2

per for any c > 0:

Ac,α(ψ) := (Dα + c)−1ψ2 ⇒ Ac,α(ψ)(x) =

∫ π

−π
Gc,α(x− s)ψ(s)2ds. (3.29)
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The operator Ac,α is bounded and continuous in L2
per thanks to the gener-

alized Young inequality:

‖Ac,α(ψ)‖L2
per
≤ ‖Gc,α‖L2

per
‖ψ2‖L1

per
≤Mc,α‖ψ‖2

L2
per
. (3.30)

Moreover, Ac,α is compact because it is the limit of compact operators A
(N)
c,α

given by the first 2N + 1 Fourier coefficients. Indeed, we have

‖Ac,α(ψ)− A(N)
c,α (ψ)‖2

L2
per

=
1

2π

∑
|n|>N

|(ψ2)n|2

(c+ |n|α)2

≤ 1

2π
‖(ψ2)n‖2

`∞

∑
|n|>N

1

(c+ |n|α)2

≤ 1

2π
‖ψ2‖2

L1
per

∑
|n|>N

1

(c+ |n|α)2

=
1

2π
‖ψ‖4

L2
per

∑
|n|>N

1

(c+ |n|α)2
,

where the numerical series converges for every α > 1/2. Therefore, for every
ψ ∈ L2

per,

lim
N→∞

‖Ac,α(ψ)− A(N)
c,α (ψ)‖L2

per
= 0,

so that Ac,α maps bounded sets in L2
per to pre-compact sets in L2

per.
Thanks to the positivity of the Green function in (3.27), we confirm that

the operator Ac,α(ψ) is closed in Pc,α ⊂ L2
per:

Ac,α(ψ)(x) ≥ mc,α‖ψ‖2
L2
per
≥ mc,α

Mc,α

‖Ac,α(ψ)‖L2
per
. (3.31)

A fixed point ψ of Ac,α(ψ) in Pc,α ⊂ L2
per corresponds to the positive function

ψ such that ψ(x) > 0 for every x ∈ T.

Step 3. Existence of a fixed point in the positive cone Pc,α.
Let Br := {ψ ∈ L2

per : ‖ψ‖L2
per
< r} be a ball of radius r in L2

per. The existence

of a fixed point of Ac,α(ψ) in Pc,α ∩ (B̄r+\Br−) for some 0 < r− < r+ < ∞
follows from Krasnoselskii’s fixed-point theorem if there exist r− and r+ such
that

‖Ac,α(ψ)‖L2
per
< ‖ψ‖L2

per
, ψ ∈ Pc,α ∩ ∂Br− (3.32)

and
‖Ac,α(ψ)‖L2

per
> ‖ψ‖L2

per
, ψ ∈ Pc,α ∩ ∂Br+ . (3.33)

The bound (3.32) follows from (3.30) with Mc,αr− < 1. The bound (3.33)
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follows from (3.31) with
√

2πmc,αr+ > 1, hence the two radii satisfy the con-
straints

0 < r− <
1

Mc,α

≤ 1√
2πmc,α

< r+ <∞, (3.34)

where
√

2πmc,α ≤ Mc,α follows from (3.27). Hence, there exists a fixed point
of Ac,α(ψ) in Pc,α ∩ (B̄r+\Br−).

Step 4. Regularity of the fixed point.
We use bootstrapping arguments similar to those used in the proof of Proposi-
tion 2.1 in [53] and show that the fixed point of Ac,α in L2

per also exists in Hα
per,

hence ψ is a positive solution of the boundary-value problem (3.3). Indeed, if
ψ ∈ L4

per(T), then ψ ∈ Hα
per thanks to the estimate:

‖Dαψ‖L2
per

= ‖Dα(Dα + c)−1ψ2‖L2
per
≤ ‖ψ2‖L2

per
= ‖ψ‖2

L4
per
.

In order to show that ψ ∈ L4
per(T), we use the generalized Young and Hölder

inequalities:

‖ψ‖Lrper ≤ ‖Gc,α‖Lpper‖ψ
2‖Lqper , 1 +

1

r
=

1

p
+

1

q
, p, q, r ≥ 1, (3.35)

≤ ‖Gc,α‖Lpper‖ψ‖Lsqper‖ψ‖Lsq/(s−1)
per

, s ≥ 1. (3.36)

By using the Hausdorff–Young inequality

‖Gc,α‖Lpper ≤ Cp‖(|n|α + c)−1‖`p/(p−1) , p ≥ 2,

we can see that ‖Gc,α‖Lpper < ∞ if αp/(p − 1) > 1. If α ≥ 1, then Gc,α ∈ Lpper

for every p ∈ [2,∞). Applying (3.35) with r = p and q = 1, we have ψ ∈ Lpper

for every p ∈ [2,∞).
If α ∈ (α0, 1), we set p0 = 1/(1 − α0) > 2 and obtain with the same

argument that Gc,α, ψ ∈ Lp0per. Then, using bound (3.36) with sq = 2 and
sq/(s − 1) = p0, that is, with s = 1 + 2/p0 and q = 2p0/(2 + p0), we
obtain ψ ∈ Lrper with r = 2p0/(4 − p0) > p0 (because p0 > 2). Iterating
bound (3.36) with sq = 2 and sq/(s − 1) = r, we obtain a bigger value for
r = p0/(3 − p0) > 2p0/(4 − p0), hence by further iterations, we get ψ ∈ Lpper

for every p ∈ [2,∞) including p = 4.

Step 5. Leray–Schauder index along branches of fixed points.
The fixed point ψ ∈ Pc,α ∩ (B̄r+\Br−) for r− < r+ satisfying (3.34) exists for
every c > 0. However, the constant periodic solution

ψc(x) = c, x ∈ T (3.37)
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is a fixed point of Ac,α in Pc,α ∩ (B̄r+\Br−) for every c > 0 and α > 0. Indeed,
Ac,α(ψc) = ψc for every α > 0 and ψc ∈ Pc,α ∩ (B̄r+\Br−) for every c > 0

thanks to the condition
√

2πmc,α ≤ Mc,α. In order to be able to claim that
there exists a non-trivial fixed point ψ ∈ Pc,α∩(B̄r+\Br−) for c > 1 in addition
to the constant fixed point ψc, we look at the Leray–Schauder index of the fixed
point in the subspace of even functions in L2

per:

Definition 3.1. The Leray–Schauder index of the fixed point ψ is defined as
(−1)N , where N is the number of unstable eigenvalues of A′c,α(ψ) outside the
unit disk with the account of their multiplicities.

For the fixed point ψc in (3.37), we have A′c,α(ψc) = 2c(Dα + c)−1, hence
there exists N = K + 1 unstable eigenvalues of A′c,α(ψc) outside the unit disk
for every c ∈ (Kα, (K+1)α), where K ∈ N. Therefore, the index of ψc changes
sign every time c crosses values in the set {Kα}K∈N, as is shown on Figure 3.1.
On the other hand, for K = 1, c = 1 is a bifurcation value by Theorem 3.1 and
two non-trivial fixed points ψ ∈ Pc,α∩ (B̄r+\Br−) bifurcate for c > 1 if α > α0,
one is single-lobe with maximum at x = 0 and the other one is single-lobe
with minimum at x = 0, both are strictly positive. For the non-trivial fixed
points ψ, we have

A′c,α(ψ) = 2(Dα + c)−1ψ = Id− (Dα + c)−1Hc,α,

where it follows from positivity of ψ that A′c,α(ψ) ≥ 0. By the assumption that
the spectrum of Hc,α contains only one negative eigenvalue and a simple zero
eigenvalue for all c > 1 and α ∈ (α0, 2], there exists N = 1 unstable eigenvalues
of A′c,α(ψ). Therefore, the pair of non-trivial fixed points ψ ∈ Pc,α∩(B̄r+\Br−)
is distinct from the constant fixed point ψc for every c ∈ (1, c0), as is shown
on Figure 3.1.

Figure 3.1: Schematic representation of the constant fixed point ψc and pairs
of non-trivial fixed points on the (c, ‖ψ‖L2

per
) plane for α = 2.

The pair of non-trivial fixed points for the single-lobe solution remains
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inside Pc,α∩(B̄r+\Br−) in continuation of the solution family in c for a fixed α ∈
(α0, 2], thanks to the conditions (3.32),(3.33), and (3.34). Their indices also
remain invariant with respect to c because no zero eigenvalue ofH are supposed
to exist in the parameter continuations of the periodic waves. Therefore,
these fixed points cannot coalesce with any other fixed points of Ac,α in Pc,α ∩
(B̄r+\Br−). By continuity, these fixed points coincide with the single-lobe
solutions, existence of which is proven in Proposition 2.1 in [53].

Remark 3.10. At every bifurcation point c = Kα with K ≥ 2, a pair of
additional fixed points of Ac,α bifurcates in Pc,α ∩ (B̄r+\Br−), as is shown on
Figure 3.1 for K = 2 and α = 2. These fixed points are not single-lobe solutions
for K ≥ 2 but instead these are concatenations of the single-lobe solutions with
K periods on [−π, π].

3.5 Periodic Waves for α = 1 and 2

We give examples illustrating positivity of ψ for the classical cases α = 2 and
α = 1. For the KdV equation (see, e.g., Proposition 4.1 in [49]), the solution
φ to the boundary-value problem (3.4) with α = 2 is given by

φ(x) =
2K(k)2

π2

[
1− 2k2 −

√
1− k2 + k4 + 3k2cn2

(
K(k)

π
x; k

)]
(3.38)

where cn is the Jacobi elliptic function, K(k) is a complete elliptic integral
of the first kind, and k ∈ (0, 1) is the elliptic modulus that parameterizes the
wave speed c given by

c =
4K(k)2

π2

√
1− k2 + k4. (3.39)

Using the relation between φ and ψ in equation (3.5), we obtain

ψ(x) =
2K(k)2

π2

[
1− 2k2 +

√
1− k2 + k4 + 3k2cn2

(
K(k)

π
x; k

)]
, (3.40)

from which ψ(x) ≥ ψ(±π) > 0 holds for every x ∈ T and every k ∈ (0, 1), in
accordance with Theorem 3.3 (see Figure 3.2, left panel). Indeed, if α = 2,
the boundary-value problem (3.3) can be formulated as a planar Hamiltonian
system on the phase plane (ψ, ψ′) and a set of closed orbits for periodic so-
lutions is located on the phase plane between the saddle point (0, 0) and the
center point (c, 0), hence, ψ(x) > 0 for every x ∈ [−π, π].

For the BO equation (see, e.g., [71]), the solution φ to the boundary-value
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problem (3.4) with α = 1 is given by

φ(x) =
cosh γ cosx− 1

sinh γ(cosh γ − cosx)
, c = coth γ. (3.41)

Again, we use equation (3.5) to obtain

ψ(x) =
sinh γ

cosh γ − cosx
, (3.42)

from which ψ(x) ≥ ψ(±π) = tanh γ > 0 holds for every x ∈ T and every
γ ∈ (0,∞), in agreement with Theorem 3.3 (see Figure 3.2, right panel).

-3 -2 -1 1 2 3
x

1.0

1.1

1.2

1.3

1.4
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x

1.0

1.5
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Figure 3.2: Left: profile ψ in (3.40), α = 2 and k = 0.5, Right: profile ψ in
(3.42), α = 1 and γ = 1.0884
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Chapter 4

Convergence Of the Petviashvili
Method

In this chapter, our goal is to analyze the convergence of the Petviashvili
method for approximating the solution of the boundary value problems:

(c−Dα)φ+ φ2 = 0, φ ∈ Hα
per, (4.1)

and
(c+Dα)ψ = ψ2, ψ ∈ Hα

per. (4.2)

Let us first explain the classical Petviashvili method applied to the equation
(4.1). For c /∈ {1, 2α, 3α, . . . } and given a suitable initial guess w0 ∈ Hα

per, we
define a sequence {wn}n∈N ⊂ Hα

per by the iterative rule

wn+1 = T̃c,α(wn) := [M̃(wn)]2L̃−1
c,α(w2

n), n ∈ N. (4.3)

where the Petviashvili quotient is given by

M̃(w) :=
〈L̃c,αw,w〉
〈w2, w〉

, w ∈ Hα
per, (4.4)

with the linear operator Lc,α := Dα− c and its spectrum in L2
per for c ∈ R and

α > 0 is given by
σ(Lc,α) = {|n|α − c, n ∈ Z}. (4.5)

Here, we note that the exponent of M(wn) is chosen to be quadratic so that
T̃c,α(w) is a homogeneous power function in w of degree zero. This ensures the
fastest convergence rate of the iterative method (4.3) near a solution of the
nonlinear equation (4.1) [81].

Linearizing T̃c,α at φ with wn = φ + ωn, where ωn ∈ Hα
per, yields the
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linearized iterative rule:

ωn+1 = −2〈L̃c,αφ, ωn〉
〈L̃c,αφ, φ〉

φ+ L̃−1
c,α(2φωn), n ∈ N. (4.6)

Since L̃−1
c,α(φ2) = φ and L̃−1

c,α(2φφ′) = φ′, the linearized iterative rule (4.6) is
invariant in the constrained space

L2
c :=

{
ω ∈ L2

per : 〈φ2, ω〉 = 〈φφ′, ω〉 = 0
}
. (4.7)

To satisfy the two constraints, one can expand ωn = anφ + bnφ
′ + βn with

βn ∈ Hα
per ∩ L2

c and derive the following from (4.6):

an+1 = 0, bn+1 = bn, βn+1 = L̃Tβn, (4.8)

where

L̃T := L̃−1
c,α(2φ·) = Id− L̃−1

c,αH̃c,α : Hα
per ∩ L2

c 7→ Hα
per ∩ L2

c (4.9)

with the Jacobian operator for (4.1) defined as H̃c,α := Dα − c− 2φ. We call
L̃T the linearized iterative operator of the iterative rule (4.3).

As is well understood since the first proof of convergence in [81] (see also
follow-up works in [6, 7, 29, 37, 63]), convergence of the iterative method is
analyzed from the contraction of the linearized iterative operator L̃T in (4.9).
We observe that the operator L̃T is necessarily a contraction if its spectrum
is confined within the unit disk. Moreover, by Lemma 1.2 in [81], the set of
fixed points of T̃c,α coincides with the set of solutions to the boundary-value
problem (4.1). Thus, the contraction of the operator L̃T is determined by the
spectrum of the generalized eigenvalue problem

H̃c,αv = λL̃c,αv, v ∈ Hα
per. (4.10)

Similarly for the boundary value problem (4.2), for any suitable initial
guess w0 ∈ Hα

per we have the iteration rule

wn+1 = Tc,α(wn) := [M(wn)]2 L−1
c,α(w2

n), n ∈ N. (4.11)

where

M(w) :=
〈Lc,αw,w〉
〈w2, w〉

, w ∈ Hα
per, (4.12)

with the positive operator Lc,α = Dα + c. We linearize Tc,α at ψ with wn =
ψ + anψ + bnψ

′ + βn satisfying the two constraints in

L2
c :=

{
ω ∈ L2

per : 〈ψ2, ω〉 = 〈ψψ′, ω〉 = 0
}
, (4.13)
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and obtain the linearized iterative rule

an+1 = 0, bn+1 = bn, βn+1 = LTβn, (4.14)

where the linearized iterative operator is given by

LT := L−1
c,α(2ψ·) = Id− L−1

c,αHc,α : Hα
per ∩ L2

c 7→ Hα
per ∩ L2

c (4.15)

with Hc,α = Dα + c − 2ψ is the Jacobian operator of the boundary value
problem (4.2). We recall from Chapter 3 that Hc,a by the relation

Hc,α = Dα + c− 2ψ = Dα + c− 2(c+ φ) = Dα − c− 2φ = H̃c,α.

Hence, the contraction of operator LT is also determined by the spectrum of
the generalized eigenvalue problem

Hc,αv = λLc,αv, v ∈ Hα
per. (4.16)

This chapter is organized as follows. In Section 4.1, we state the main
results regarding the sufficient condition for convergence (divergence) of itera-
tions (4.3) and (4.11); we also describe the specific range of parameters c and
α for which the convergence (divergence) of the Petviashvili iteration occurs
when applied to the boundary value problems (4.1) and (4.2). The proofs of
the main results will be presented in Section 4.2, 4.3, and 4.4. Finally, we
collect the numerical illustrations for iterations (4.3) and (4.11) in Section4.5.

4.1 Main Results

Here, we provide the sufficient condition for convergence and divergence of the
iterations (4.3) and (4.11). In order to make the statement less cumbersome,
we only mention the iteration (4.3) in the Theorem 4.1. The same conclusion
also holds when the iteration (4.11) replaces the iteration (4.3).

Theorem 4.1. Assume∫ π

−π
φ3dx 6= 0,

∫ π

−π
φ(φ′)2dx 6= 0. (4.17)

If σ(L̃T ) in L2
c includes at least one eigenvalue outside the unit disk, then there

exists w0 ∈ Hα
per near φ ∈ Hα

per such that the iterative method (4.3) diverges

from φ. Otherwise, if σ(L̃T ) in L2
c is located inside the unit disk, there exists

a small ε0 > 0 such that for every w0 ∈ Hα
per satisfying

ε := ‖w0 − φ‖Hα
per
≤ ε0, (4.18)

53



PhD Thesis – U. Le McMaster University – Mathematics

there exist b∗ satisfying |b∗| ≤ Cε for some ε-independent C > 0 such that the
iterative method (4.3) converges to φ(· − b∗).

We recall again the two thresholds of α, which were obtained through the
perturbative argument in Chapter 3

α0 =
log 3

log 2− 1
≈ 0.558,

and

α1 =
log 5

log 2
− 1.

The following two theorems describe the convergence (divergence) of the Petvi-
ashvili method when applied to the boundary value problems (4.1) and (4.2).

Theorem 4.2. For every c > 1 and α ∈ (α0, 2], consider the unique, single–
lobe solution φ ∈ Hα

per obtained in Theorem 3.1. There is c0 > 0 such that
for every c ∈ (1, c0) this solution is an unstable fixed point of the iterative
method (4.3) for α ∈ (α0, α1) and an asymptotically stable fixed point (up to
a translation) for α ∈ (α1, 2].

Remark 4.1. Theorem 4.2 implies that the iterative method (4.3) diverges
from φ for the classical BO equation with α = 1. Although the iterative method
(4.3) converges to φ for the classical KdV equation with α = 2 for c ∈ (1, c0),
we show numerically that it diverges from φ for c > c0 with c0 ' 2.3. Instabil-
ities of the iterative method (4.3) are explained by the unstable eigenvalues of
the generalized eigenvalue problem (4.10).

Theorem 4.3. Consider the unique, single–lobe solution ψ ∈ Hα
per obtained

in Theorem 3.3. This unique solution is an asymptotically stable (up to a
translation) fixed point of the iterative method (4.11) for every c > 1 and
α ∈ (α0, 2].

Remark 4.2. We observe that the small–amplitude solution φ of the boundary
value problem (4.1) obtained by Theorem 3.1 satisfies assumption (4.17). In
fact, using the Stokes expansion of φ we have∫ π

−π
φ3dx =

3πa4

4(2α − 1)
(3− 2α+1) +O(a6)

and ∫ π

−π
φ(φ′)2dx =

πa4

4(2α − 1)
(5− 2α+1) +O(a6),

which imply that for α0 and α1 given in (3.8)∫ π

−π
φ3dx

< 0, α > α0,
> 0, α < α0,

}
(4.19)

54



PhD Thesis – U. Le McMaster University – Mathematics

and ∫ π

−π
φ(φ′)2dx

< 0, α > α1,
> 0, α < α1,

}
. (4.20)

The solution ψ of the boundary value problem (4.2) defined in Theorem 3.3
also satisfies assumption (3.3) thanks to the positivity of ψ.

Remark 4.3. The unconditional convergence of the iterative method (4.11)
compared to the iterative method (4.3) has a well-known physical interpreta-
tion. The phase velocity of the linear waves of the fractional KdV equation
(1.7) on the zero background is strictly negative, hence the travelling wave
u(x, t) = φ(x + ct) propagating to the left is in resonance with the linear
waves. On the other hand, the travelling wave on the constant background
b := −c < 0 propagates to the right and avoids resonances with the linear
waves on the background b < 0, which still have negative phase velocity.

Remark 4.4. The new iterative method (4.11) can be considered as a mod-
ification of the classical Petviashvili method (4.3) after the shift of the field
variable proposed in [8]. The modified algorithm consists of three steps. In the
first step, the constant value b is found from the constant solution of the sta-
tionary problem (4.1). Solving cb+ b2 = 0 for nonzero b yields b = −c. In the
second step, the change of variables φ = b+ψ transforms the original problem
(4.1) to the new problem (4.2), which is confirmed from the transformation
formula (3.5) since b = −c. Finally, the third step is the iterative method for
the transformed problem (4.2), which is defined by the new iterative operator
T̃c,α in (4.11).

Remark 4.5. In the case of solitary waves, the boundary-value problem (4.1)
for φ and c > 0 admits no solutions and the iterative method (4.3) cannot be
defined since L̃c,α is not invertible in L2(R) for c > 0. On the other hand, the
boundary-value problem (4.2) for ψ and c > 0 admits solitary wave solutions
and the iterative method (4.11) is well-defined to approximate this solution, as
shown numerically in [39].

4.2 Proof of Theorem 4.1

If σ(L̃T ) in L2
c admits at least one eigenvalue outside the unit disk, the cor-

responding eigenfunction of L̃T defines a direction in Hα
per along which the

sequence {wn}n∈N diverges from the fixed point φ, as follows from the unsta-
ble manifold theorem.

To show that the iteration (4.3) converges to a translation of φ if σ(L̃T ) in
L2
c is confined inside the unit disk, we first prove it for an even initial guess

w0 then extend it to a general function.
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Let us first assume that w0 ∈ Hα
per is even, in which case the assertion is true

with b∗ = 0. Since L̃c,α maps even functions to even functions, the sequence
of functions {wn}n∈N in Hα

per generated by iteration (4.3) is even. Therefore,
the linearization wn = φ + ωn and the decomposition ωn = anφ + bnφ

′ + βn
yields bn = 0 for every n ≥ 0. The linear iterative formula (4.8) yields an = 0
for every n ≥ 1 even if a0 6= 0. The linearized operator L̃T given by (4.9) is a
strict contraction if σ(L̃T ) in L2

c is located inside the unit disk. Convergence
of the sequence to φ follows by Banach’s fixed-point theorem A.5.

Let us now relax the condition that the initial guess w0 ∈ Hα
per is even. In

order to control the projection bn in the decomposition ωn = anφ+ bnφ
′ + βn,

we need to use tools of the modulation theory for periodic waves, see, e.g.,
Section 5 in [43]. Instead of defining bn by ωn = anφ + bnφ

′ + βn, we define
bn ∈ R by using the decomposition

wn(x) = φ(x− bn) + ωn(x− bn) (4.21)

and the orthogonality condition

〈φφ′, ωn〉 = 0. (4.22)

By a standard application of the implicit function theorem, see, e.g., Lemma
6.1 in [43], for every wn ∈ Hα

per satisfying

εn := inf
b∈[−π,π]

‖wn − φ(· − b)‖Hα
per
≤ ε0, (4.23)

the decomposition (4.21)–(4.22) is unique under the assumption
∫ π
−π φ(φ′)2dx 6=

0 with uniquely defined bn near the argument of the infimum in (4.23) and
uniquely defined ωn satisfying

‖ωn‖Hα
per
≤ C0εn (4.24)

for some εn-independent constant C0 > 0.
Substituting the decomposition (4.21) into the iterative method (4.3) and

using the translational invariance in x, we obtain the equivalent iterative
scheme:

ωn+1 = φ(·+ ∆bn)− φ+ T̃ ′(φ(·+ ∆bn)ωn(·+ ∆bn) +N(ωn(·+ ∆bn)), (4.25)

where ∆bn := bn+1−bn, T̃ ′(φ)ωn denotes the linearized iterative operator given
by the right-hand side in (4.6), and N(ωn) is the nonlinear terms satisfying

‖N(ωn)‖Hα
per
≤ C‖ωn‖2

Hα
per
, (4.26)
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for every ωn ∈ Bρ(0) :=
{
ω ∈ Hα

per : ‖ω‖Hα
per
≤ ρ
}

, where the constant C > 0
does not depend on ρ provided the radius ρ of the ball Bρ(0) is small. Thanks
to (4.18) and (4.24), we work with ρ = Cε for some positive ε-independent
constant C.

By using the constraint (4.22) both for ωn and ωn+1, we derive the following
equation for ∆bn:

0 = 〈φφ′, φ(·+∆bn)−φ〉+〈φφ′, T̃ ′(φ(·+∆bn)ωn(·+∆bn)〉+〈φφ′, N(ωn(·+∆bn))〉.
(4.27)

This equation can be treated as the root-finding problem F (∆bn, ωn) = 0,
where

F : R×Hα
per 7→ R

is a smooth function in its variables satisfying F (0, 0) = 0 and ∂∆bnF (0, 0) 6=
0 thanks to smoothness of φ ∈ H∞per and N(ωn) as well as the assumption∫ π
−π φ(φ′)2dx 6= 0. By the implicit function theorem, the root-finding problem

(4.27) is uniquely solvable in ∆bn for every ωn ∈ Bρ(0) with small ρ > 0.
Moreover, thanks to 〈φφ′, T̃ ′(φ)ωn〉 = 〈φφ′, ωn〉 = 0 and (4.26), the uniquely
found ∆bn satisfies the bound

|∆bn| ≤ C‖ωn‖2
Hα

per
, (4.28)

for some constant C > 0 that does not depend on the small radius ρ.
Substituting ∆bn satisfying (4.28) into (4.25) and decomposing ωn = anφ+

βn with an ∈ R and βn ∈ Hα
per ∩ L2

c , we obtain the linearized problem

an+1 = 0, βn+1 = L̃Tβn. (4.29)

Since L̃T is a strict contraction in L2
c , convergence an → 0, ∆bn → 0, and βn →

0 as n → ∞ follows by Banach’s fixed-point theorem A.5. Moreover, these
sequences converge exponentially fast so that the sequence {bn}n∈N converges
to a limit denoted by b∗. Since |b∗ − b0| ≤ Cε2 thanks to (4.24) and (4.28),
whereas |b0| ≤ Cε thanks to (4.18), (4.23), and triangle inequality, we also
have |b∗| ≤ Cε for some ε-independent C > 0. The assertion is proven thanks
to the decomposition (4.21) with ωn = anφ+ βn.

4.3 Proof of Theorem 4.2

Here, we present the proof of convergence (divergence) results for the iteration
(4.3). The proof is achieved through Lemma 4.1 and Corollary 4.1. In Lemma
4.1, we characterize the spectrum of the operator L̃−1

c,αH̃c,α for c ∈ (1, c0) with
some c0 > 1, then in Corollary 4.1 we count the number of remaining unstable
eigenvalues in the constrained space L2

c in (4.7).
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We begin by determining the spectrum of the operator L̃−1
c,αH̃c,α in L2

per in
the following lemma.

Lemma 4.1. For every α > α0 there exists c0 ∈ (1, 2α) such that for every
c ∈ (1, c0), σ(L̃−1

c,αH̃c,α) in L2
per consists of a countable sequence of eigenvalues

in a neighborhood of 1 and simple eigenvalues {−1, 0, λ1, λ2} with

λ1 →
2α+1 − 5

2α+1 − 3
and λ2 → 2 as c→ 1.

Moreover, λ2 < 2, whereas λ1 < 0 if α ∈ (α0, α1) and λ1 ∈ (0, 1) if α > α1.

Proof. It follows from (4.5) that for every c ∈ (1, 2α), the operator L̃c,α in L2
per

is invertible and
σ(L̃−1

c,α) = {(|n|α − c)−1, n ∈ Z}.

Since the sequence of eigenvalues is squared summable if α > 1/2, the lin-
ear bounded operator L̃−1

c,α is of the Hilbert-Schmidt class (see Example 2 in

Section 5.16 of [94]), hence it is compact. The linear operator L̃T in L2
per is

a composition of a bounded operator 2φ· and a compact (Hilbert–Schmidt)
operator L̃−1

c,α, hence L̃T is a compact operator and σ(L̃T ) in L2
per consists of a

sequence of eigenvalues converging to 0. Thanks to the representation (4.9),
σ(L̃−1

c,αH̃c,α) in L2
per consists of a sequence of eigenvalues converging to 1.

Eigenvalues {−1, 0} of L̃−1
c,αH̃c,α in L2

per follow from exact computations for
every c > 1:

L̃−1
c,αH̃c,αφ = −φ and L̃−1

c,αH̃c,αφ
′ = 0. (4.30)

In order to identify other eigenvalues of L̃−1
c,αH̃c,α in L2

per, we consider the

generalized eigenvalue problem (4.10) defined by linear operators L̃c,α and
H̃c,α in L2

per with the domains in Hα
per.

Since H̃c=1,α coincides with L̃c=1,α, the generalized eigenvalue problem
(4.10) for c = 1 admits only one solution λ = 1 for every v ∈ Hα

per\{eix, e−ix}.
Since (φ, c) depend analytically on a in Theorem 3.1, by the analytic pertur-
bation theory (Theorem VII.1.7 in [57]), the eigenvalues of L̃−1

c,αH̃c,α in L2
per

for every c > 1 are divided into two sets: a countable sequence of eigenvalues
near 1 and converging to 1 related to the subspace L2

per\{eix, e−ix} and a fi-
nite number of eigenvalues related to the subspace {eix, e−ix}. The second set
includes eigenvalues {−1, 0} due to the exact solutions (4.30) for every c > 1.
The subspace {eix, e−ix} may be related to more than two simple eigenvalues
in the generalized eigenvalue problem (4.10) because both H̃c=1,α and L̃c=1,α

vanish on the subspace.
In order to study all possible eigenvalues of L̃−1

c,αH̃c,α in L2
per related to the

subspace {eix, e−ix}, we perform perturbation expansions. Since L̃c,α and H̃c,α

are closed in the subspaces of even and odd functions in L2
per, the generalized
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eigenvalue problem (4.10) can be uncoupled in these subspaces. By using
(5.15) and (3.25), we rewrite the generalized eigenvalue problem (4.10) in the
perturbed form:

(λ− 1)
[
1−Dα + c2a

2 + c4a
4 +O(a6)

]
v

−2
[
a cos(x) + a2φ2(x) + a3φ3(x) + a4φ4(x) +O(a5)

]
v = 0. (4.31)

Assuming λ 6= 1, we are looking for perturbative expansions of the eigenvalues
related to the even and odd subspace of {eix, e−ix} separately from each other.
For the even subspace, we set

v(x) = cos(x) + av1(x) + a2v2(x) +O(a3) (4.32)

and obtain recursively{
O(a) : (λ− 1) (1−Dα) v1 = 1 + cos(2x),
O(a2) : (λ− 1) (1−Dα) v2 + (λ− 1)c2 cos(x) = 2 cos(x)(v1 + φ2).

At O(a), we obtain the exact solution in Hα
per:

v1(x) =
1

λ− 1

[
1− cos(2x)

2α − 1

]
. (4.33)

The linear inhomogeneous equation at O(a2) admits a solution v2 ∈ Hα
per if

and only if λ satisfies [
λ− 2

λ− 1

]
c2 = 0.

If α > α0, then c2 6= 0 and λ satisfies the quadratic equation λ(λ−1) = 2 with
two roots {−1, 2}. For each of the two roots, we obtain the exact solution in
Hα

per:

v2(x) =
(3− λ) cos(3x)

2(λ− 1)2(2α − 1)(3α − 1)
. (4.34)

For the odd subspace, we set

v(x) = sin(x) + av1(x) + a2v2(x) +O(a3) (4.35)

and obtain recursively{
O(a) : (λ− 1) (1−Dα) v1 = sin(2x),
O(a2) : (λ− 1) (1−Dα) v2 + (λ− 1)c2 sin(x) = 2(cos(x)v1 + sin(x)φ2).
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At O(a), we obtain the exact solution in Hα
per:

v1(x) = − sin(2x)

(λ− 1)(2α − 1)
. (4.36)

The linear inhomogeneous equation at O(a2) admits a solution v2 ∈ Hα
per if

and only if λ satisfies

λc2 +
λ

(λ− 1)(2α − 1)
= 0.

If α > α0, then c2 6= 0 and λ satisfies the quadratic equation

λ
[
(2α+1 − 3)λ− (2α+1 − 5)

]
= 0

with two roots {0, 2α+1−5
2α+1−3

}. For each of the two roots, we obtain the exact
solution in Hα

per:

v2(x) =
(3− λ) sin(3x)

2(λ− 1)2(2α − 1)(3α − 1)
. (4.37)

Summarizing, we have obtained four eigenvalues related to the subspace {eix, e−ix},
which are located as c→ 1 at the points {−1, 0, 2α+1−5

2α+1−3
, 2}.

The eigenvalues {−1, 0} are preserved for every c > 1 thanks to the exact
solution (4.30). However, the eigenvalues {λ1, λ2} near {2α+1−5

2α+1−3
, 2} depend

generally on c. It follows by the perturbation theory that λ1 < 0 if α ∈ (α0, α1)
and λ1 ∈ (0, 1) if α > α1. We now claim that λ2 < 2 if α > α0 and c > 1. To
prove this claim, we use the extended spectral problem (4.31) up to the order
O(a4). Hence, instead of the expansion (4.32) with (4.33) and (4.34), we use
the expansions{

v(x) = cos(x) + av1(x) + a2v2(x) + a3v3(x) + a4v4(x) +O(a5),
λ = 2 + Λ2a

2 +O(a4),
(4.38)

where

v1(x) = 1− cos(2x)

2α − 1
, v2(x) =

cos(3x)

2(2α − 1)(3α − 1)
.

We obtain from the extended spectral problem (4.31) the linear inhomogeneous
equations:
O(a3) : (1−Dα)v3 + Λ2(1−Dα)v1 + c2v1 = 2 [cos(x)(v2 + φ3) + φ2v1] ,
O(a4) : (1−Dα)v4 + Λ2(1−Dα)v2 + c2v2 + (c4 + c2Λ2) cos(x)

= 2 [cos(x)(v3 + φ4) + φ2v2 + φ3v1] .
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The linear inhomogeneous equation at O(a3) admits the explicit solution:

v3(x) =
3α − 2α+1 + 1

2(2α − 1)2(3α − 1)(4α − 1)
cos(4x)

+

[
Λ2

2α − 1
− 1 + (2 + c2)(3α − 1)

(2α − 1)2(3α − 1)

]
cos(2x)

−
(

Λ2 + c2 + 1 +
1

2(2α − 1)2

)
.

The linear inhomogeneous equation at O(a4) admits a solution v4 ∈ Hα
per if

and only if Λ2 is given by

Λ2 = −1 +
3

2α − 1
− 7

2α+1 − 3
. (4.39)

It is easy to see that Λ2 has a vertical asymptote at α = α0. By plotting Λ2

versus α on Figure 4.1, we verify that Λ2 < 0 for every α > α0. Hence, the
eigenvalue λ = 2 + Λ2a

2 +O(a4) satisfies λ < 2 for every α > α0.

Figure 4.1: Plot of Λ2 versus α.

The following Corollary describes the range of α for which the operator L̃T
is the strict contraction in the constrained space L2

c defined in (4.7), and thus
determines the convergence of the iteration (4.3).

Corollary 4.1. For every c ∈ (1, c0) in Lemma 4.1, the iterative method (4.3)
converges to φ in Hα

per if α > α1 and diverges from φ if α ∈ (α0, α1).

Proof. If α > α1, then λ1 ∈ (0, 1) by Lemma 4.1. By using the representation
(4.9) and the count of eigenvalues of the generalized eigenvalue problem (4.10)
in Lemma 4.1, we can see that σ(L̃T ) in L2

per consists of a countable sequence of
eigenvalues in a neighborhood of 0 and converging to 0, two simple eigenvalues
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inside the interval (−1, 1), and two additional simple eigenvalues: 1 related to
the eigenfunction φ′ and 2 related to the eigenfunction φ. The two constraints
in (4.7) remove the latter two eigenvalues so that the operator L̃T is a strict
contraction in L2

c for every c ∈ (1, c0) if α > α1. Convergence of the iterative
method (4.3) for α > α1 follows by Theorem 4.1.

If α ∈ (α0, α1), then λ1 < 0 by Lemma 4.1. Then, σ(L̃T ) in L2
per consists of

a countable sequence of eigenvalues in a neighborhood of 0 and converging to
0, one simple eigenvalue inside the interval (−1, 1), simple eigenvalue 1 related
to the eigenfunction φ′, simple eigenvalue 2 related to the eigenfunction φ,
and an additional simple eigenvalue bigger than 1 with an odd eigenfunction
denoted by v∗. Because of the orthogonality conditions

〈L̃c,αvj, vk〉 = 0, j 6= k,

between eigenfunctions vj and vk of the generalized eigenvalue problem (4.10)
for distinct eigenvalues, we verify that 〈φ2, v∗〉 = 〈φφ′, v∗〉 = 0, which implies
that v∗ ∈ L2

c . Therefore, σ(L̃T ) in L2
c contains exactly one eigenvalue outside

the unit disk for every c ∈ (1, c0) if α ∈ (α0, α1). Divergence of the iterative
method (4.3) for α ∈ (α0, α1) follows by Theorem 4.1.

Remark 4.6. Since the unstable eigenfunction v∗ is odd, divergence of the
iterative method (4.3) for α ∈ (α0, α1) is only observed if the initial guess
w0 ∈ Hα

per is not even but of a general form.

4.4 Proof of Theorem 4.3

The proof of Theorem 4.3 is achieved from Lemma 4.2 and Corollary 4.2. In
Lemma 4.2, we prove that the spectrum of the operator L−1

c,αHc,α is confined in
the unit disk for every c > 1. Then, Corollary 4.2 concludes that the operator
LT is a strict contraction in the constrained space (4.13) and thus the iteration
(4.11) converges to the single–lobe solution ψ of the boundary value problem
(4.2).

Lemma 4.2. For every c > 1 and α ∈ (α0, 2], σ(L−1
c,αHc,α) ∈ (0, 1) in L2

c.

Proof. We note that Lc,α is positive for every c > 1 and α > 0, whereas, by
assumption given in Theorem 3.3, the operator Hc,α has one simple negative
eigenvalue and a simple zero eigenvalue for every c > 1 and α ∈ (α0, 2].

By Theorem 1 in [28], σ(L−1
c,αH̃c,α) in L2

per is real and contains one simple
negative eigenvalue and a simple zero eigenvalue, the rest of the spectrum
is positive and bounded away from zero. The negative and zero eigenvalues
correspond to the exact solutions:

L−1
c,αHc,αψ = −ψ and L−1

c,αHc,αψ
′ = 0. (4.40)
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These eigenvalues are removed by adding two constraints in the definition of
L2
c in (4.7). The positive eigenvalues are bounded from above by 1 because

the operator
LT = L−1

c,α(2ψ·) = Id− L−1
c,αHc,α

is strictly positive due to positivity of Lc,α and ψ. Hence, σ(L−1
c,αHc,α) ∈ (0, 1)

in L2
c .

Corollary 4.2. For every c > 1 and α ∈ (α0, 2], the iterative method (4.11)
converges to ψ in Hα

per.

Proof. As mentioned in Remark 4.2, conditions
∫ π
−π ψ

3dx > 0 and
∫ π
−π ψ(ψ′)2dx >

0 follow by positivity of ψ in Theorem 3.3. By Lemma 4.2, the operator LT is
a strict contraction in L2

c for every c > 1 and α ∈ (α0, 2]. Convergence of the
iterative method (4.11) follows by Theorem 4.1.

4.5 Numerical Illustrations

Here we address numerically convergence of the iterative method (4.3) and
(4.11) near the single-lobe periodic wave for c ∈ (1, 2α). For simplicity of
computations, we only consider the classical KdV and BO equations.

4.5.1 Iteration (4.3)

In the case of the KdV equation with α = 2, the following numerical re-
sults illustrate the convergence of the method for c ∈ (1, c0) with c0 ≈ 2.3 in
agreement with Corollary 4.1, the transition to instability at c = c0, and the
divergence for c ∈ (c0, 4).

Figure 4.2 shows eigenvalues of the generalized eigenvalue problem (4.10)
computed numerically with the Fourier method for c ∈ (1, 4). Five largest
and five smallest eigenvalues of the operator L̃−1

c,αH̃c,α are shown on the left
panel. In agreement with the result of Lemma 4.1, we observe eigenvalues
λ near points {−1, 0, 3

5
, 2} in addition to a countable sequence of eigenvalues

near 1. The right panel zooms in eigenvalues near c = 1 and shows the
asymptotic approximation of the eigenvalue near 2 given by (4.38) and (4.39)
with α = 2. For c∗ ≈ 1.2, two real eigenvalues coalesce to create a pair of
complex eigenvalues that exist for every c > c∗. Figure 4.3 shows that |1− λ|
for the eigenvalues of LT remains inside the unit disk for c ∈ (c∗, 4). Therefore,
the complex eigenvalue pair does not introduce additional instability to the
iterative method.

For c ∈ (1, c0) with c0 ≈ 2.3, the spectrum of L̃T in L2
c remains inside the

unit disk for c ∈ (1, c0). However, the largest eigenvalue of L̃−1
c,αHc,α crosses the
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Figure 4.2: Left: Eigenvalues of the operator L̃−1
c,αH̃c,α for α = 2. The blue

curves and green curves represent the five largest and five smallest eigenvalues
respectively. Right: Zoom in with the asymptotic dependence given by (4.38)
and (4.39).

level 2 for c = c0 and the corresponding eigenvalue of L̃T is smaller than −1
for c ∈ (c0, 4). This numerical result suggests that the iterative method (4.3)
converges for c ∈ (1, c0) and diverge for c ∈ (c0, 4). Moreover, for c1 ≈ 2.7, the
second largest eigenvalue of L̃−1

c,αH̃c,α crosses the level 2, hence the iterative
method (4.3) diverges with two unstable eigenvalues for c ∈ (c1, 4).

To illustrate convergence of the iterative method (4.3) for α = 2, we use
the initial function

u0(x) = a cos(x) +
1

2
a2 (cos(2x)− 3) + ε sin(x), (4.41)

where a > 0 and ε ∈ R are small parameters to our disposal. Notice that we
include the O(a2) correction term of the Stokes expansion (5.14) in the initial
function (4.41) to avoid vanishing denominator in the Petviashvili quotient M
defined by (4.4). Indeed,

∫ π
π

cos(x)3dx = 0, whereas
∫ π
−π φ

3dx < 0 for every
c > 1 and α = 2, see Lemma B.1 Appendix B. Computations reported below
correspond to a = 0.4 and ε = 0; we have checked that computations for other
small values of a and ε return similar results. We measure the computational
errors in three ways: the quantity |1−Mn|, where Mn = M(un), the distance
between two successive approximations ‖un+1− un‖L∞ , and the residual error
‖cun + u′′n + u2

n‖L∞ . If iterations do not converge, we stop the algorithm after
500 iterations.

Figure 4.4 shows the profile of the last iteration and the three computa-
tional errors versus the number of iterations in the case c = 2. It is seen
that the iterative method (4.3) converges to the single-lobe periodic wave,
in agreement with Corollary 4.1. Since the exact periodic wave is known in
(3.38)–(3.39), we can also compute the distance between the last iteration and
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Figure 4.3: The plot of |1−λ| for the complex eigenvalues λ. The insert shows
that the complex eigenvalues do not reach the boundary of the unit disk.

the exact solution, in which case we find ‖u−φ‖L∞ ≈ 2 · 10−11. If ε 6= 0 in the
initial function (4.41), the convergence to the periodic wave is still observed
but the last iteration is shifted from x = 0, in agreement with Theorem 4.1.

Figure 4.4: Iterations for c = 2 and α = 2. (a) The last iteration versus x. (b)
Computational errors versus n.

Figure 4.5 illustrates the case c = 2.3. Since the largest eigenvalue of
L̃−1
c,αH̃c,α crosses the level 2 at this value of c, see Figure 4.2, this case is

marginal for convergence of iterations. As we can see from Figure 4.5, it-
erations still converge to a single-lobe periodic wave but the convergence is
slow.

Figure 4.6 illustrates the case c = 3. The iterative method (4.3) diverges
from the single-lobe periodic wave. The instability is related to the eigenvalue
of LT which is smaller than −1, hence the period-doubling instability leads
to an alternating sequence which oscillates between two double-lobe profile
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Figure 4.5: Iterations for c = 2.3 and α = 2. (a) The last iteration versus x.
(b) Computational errors versus n.

Figure 4.6: Iterations for c = 3 and α = 2. (a) The last two iterations versus
x. (b) Computational errors versus n.

shown on the left panel. The right panel shows that the factor M no longer
converges to 1 but to -4.3737 and the residual errors does not converge to 0
but remains strictly positive with the number of iterations. Therefore, the two
limiting states of the iterative method (4.3) in the 2-periodic orbit are not a
periodic wave of the boundary-value problem (4.1).

In the case of BO equation with α = 1, we show that the method diverges
for c ∈ (1, 2) in agreement with Corollary 4.1.

Figure 4.7 shows the eigenvalues of the generalized eigenvalue problem
(4.10) for α = 1. The eigenvalue λ1 = 2α+1−5

2α+1−3
in Lemma 4.1 yields λ1 = −1 for

α = 1 in addition to the other eigenvalue −1 in {−1, 0, λ1, λ2}. Hence, λ = −1
is a double eigenvalue and the left panel shows that this double eigenvalue is
preserved in c. The right panel zooms in eigenvalues near c = 1 and shows the
asymptotic approximation of the eigenvalue near 2 given by (4.38) and (4.39)
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with α = 1.

Figure 4.7: Left: Eigenvalues of the operator L̃−1
c,αH̃c,α for α = 1. Right: Zoom

in with the asymptotic dependence given by (4.38) and (4.39).

Figure 4.8: Iterations for c = 1.1 and α = 1. (a) The last four iterations versus
x. (b) Computational errors versus n.

To illustrate the divergence of the iterative method (4.3) for α = 1, we use
the initial function

u0(x) = a cos(x) +
1

2
a2 (cos(2x)− 1) + ε sin(x), (4.42)

where a > 0 and ε ∈ R. We verify in Lemma B.2 in Appendix B that indeed,∫ π
−π φ

3dx < 0 for every c > 1 when α = 1. We include the second term of the
Stokes expansion (4.20) in the initial function (4.42) in order to ensure that∫ π
−π]

u3
0dx < 0. In computations below, we take a = 0.4.

As predicted by Corollary 4.1 for α = 1, the iterative method (4.3) diverges
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Figure 4.9: Iterations for c = 1.3 and α = 1. (a) The last four iterations versus
x. (b) Computational errors versus n.

Figure 4.10: Iterations for c = 1.6 and α = 1. (a) The last two iterations
versus x. (b) Computational errors versus n.

for the BO equation and this divergence is due to an odd eigenfunction of the
generalized eigenvalue problem (4.10) for the eigenvalue λ1 = −1.

Figure 4.8 illustrates the case c = 1.1 showing the last four iterations in
the left panel and the factor M converging to 1.0107 and the residual er-
ror converges to 0.0826 in the right panel. In this computation, we take
ε = 0. Although the residual error starts to decrease initially due to con-
tracting properties of L̃T on the even subspace of L2

per, round-off errors induce
odd perturbations which result in slow instability. As a result, the periodic
wave of amplitude 0.458 is not captured by the iterative method (4.3), instead
iterations converge to the periodic profile of amplitude 0.344 which is drifted
by every iteration to the right. This drifted periodic profile of the iterative
method (4.3) is not a solution to the boundary-value problem (4.1). If ε 6= 0,
the instability develops much faster and the drifted periodic profile is drifted
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to the right if ε > 0 and to the left if ε < 0.
Figure 4.9 shows the marginal case c = 1.3 where another unstable eigen-

value of L̃T related to the even eigenfunction crosses the level −1. Although
the instability pattern of Figure 4.8 is repeated on Figure 4.9, the periodic
profile becomes more complicated and the instability process is accompanied
by many intermediate oscillations. Here again we set ε = 0, if ε 6= 0, the
drifted periodic profile is formed much faster and intermediate oscillations are
reduced.

Figure 4.10 illustrates the case c = 1.6 when several eigenvalues of L̃T are
located below −1. After short intermediate iterations, the iterative method
starts to oscillate between two iterations, similarly to the pattern of Figure 4.6.
The right panel of Figure 4.10 shows that the factor M converges to −5.1447
and the residual error remains strictly positive. The two limiting states of the
iterative method (4.3) in the 2-periodic orbit are not a periodic wave of the
boundary-value problem (4.1).

4.5.2 Iteration (4.11)

Finally, we demonstrate the convergence of the iterative method (4.11) using
the initial condition

u0(x) = c+ a cos(x)

with a = 0.4. This initial guess corresponds to the first two terms of the Stokes
expansion (5.14) for ψ(x) = c+ φ(x). We do not need to include the O(a2) to
the initial guess because

∫ π
−π u

3
0dx > 0 and the denominator of the Petviashvili

quotient (4.12) does not vanish at u0.
Figure 4.11 shows the result of iterations for c = 3 and α = 2. It is seen

that iterations converge quickly to a positive, single-lobe periodic wave ψ in
agreement with Corollary 4.2. Note that the iterative method (4.3) diverges
for c = 3 and α = 2, as is seen from Figure 4.6. We can also compute the
distance between the last iteration and the exact solution, in which case we
find ‖u− φ‖L∞ ≈ 1.3 · 10−11.

Figure 4.12 reports similar results for c = 1.6 and α = 1. Again, the
iterative method (4.3) diverges for these values of c and α, as is seen from
Figure 4.10. We can also compute the distance between the last iteration and
the exact solution, in which case we find ‖u− φ‖L∞ ≈ 5.9 · 10−11.
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Figure 4.11: Iterations for c = 3 and α = 2. (a) The last iteration versus x.
(b) Computational errors versus n.

Figure 4.12: Iterations for c = 1.6 and α = 1. (a) The last iteration versus x.
(b) Computational errors versus n.
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Chapter 5

Spectral Stability Of Periodic
Waves In Fractional KdV
Equation

The goal of this chapter is of twofold. First, we want to develop a new vari-
ational characterization for the periodic, travelling wave solutions of the frac-
tional KdV equation (1.7) which allows us to determine the conditions with
which the periodic solutions can be smoothly continued with respect to the
Lagrange multipliers. Second, we wish to study the spectral stability of such
waves according to definition 1.2.

Again, we recall the stationary equation of the fractional KdV equation
(1.7) when p = 1

Dαϕ+ cϕ− ϕ2 + b = 0, (5.1)

where b is another real constant obtained from integrating equation (1.7) in
x. If we require that ϕ(x) : T→ R be a periodic function with the zero mean
value, then b = b(c) is defined at an admissible solution ϕ by

b(c) :=
1

2π

∫ π

−π
ϕ2dx. (5.2)

The solution ϕ also depends on the speed parameter c but we often omit
explicit reference to this dependence for notational simplicity. The momentum
F (u) (1.11) and mass M(u) (1.10) computed at the solution ϕ are given by

F (ϕ) = πb(c), M(ϕ) = 0. (5.3)

The relation (5.2) closes the stationary equation (5.1) as the boundary-value
problem

Dαϕ+ cϕ = Π0ϕ
2, ϕ ∈ Hα

per, (5.4)
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where Π0f := f − 1
2π

∫ π
−π f(x)dx is the projection operator to the closed sub-

space X0 of periodic functions with zero mean

X0 :=

{
f ∈ L2

per :

∫ π

−π
f(x)dx = 0

}
.

By following the procedure outlined in Section 1.2, spectral stability of the
periodic wave ϕ is determined by the spectrum of the linearized operator ∂xH
in L2

per in the sense of Definition 1.2.

5.1 Main Results

The following theorems present the main results of this chapter.

Theorem 5.1. Fix α ∈
(

1
3
, 2
]
. For every c0 ∈ (−1,∞), there exists a solution

to the boundary-value problem (5.4) with the even, single-lobe profile ϕ0, which
is obtained from a constrained minimizer of the following variational problem:

inf
u∈H

α
2
per(T)

{∫ π

−π

[
(D

α
2 u)2 + c0u

2
]
dx :

∫ π

−π
u3dx = 1,

∫ π

−π
udx = 0

}
. (5.5)

Remark 5.1. In [48], the positive single-lobe periodic waves were constructed
by minimizing the energy E(u) subject to only one constraint of the fixed mo-
mentum F (u). It was shown that for every α ∈

(
1
2
, 2
]

and for every positive
value of the fixed momentum each such minimizer is degenerate only up to
the translation symmetry and is spectrally stable. Compared to the variational
method in [48], our method allows us (i) to construct all single-lobe periodic
solutions of the stationary equation (5.1) on the (c, b) parameter plane, (ii)
to extend the results for every α ∈

(
1
3
, 2
]
, (iii) to filter out the constant solu-

tion from the single-lobe periodic solutions, (iv) to find more spectrally stable
branches of local minimizers, and (v) to unfold the fold point in Definition 1.3.

Theorem 5.2. Fix α ∈
(

1
3
, 2
]
. Let ϕ0 be the even, single–lobe solution ob-

tained from Theorem 5.1. Assuming that Ker(H|X0) = span(∂xϕ0) for the
linearized operator H at ϕ0, there exists a C1 mapping c 7→ ϕ(·, c) ∈ Hα

per in a
local neighborhood of c0 such that ϕ(·, c0) = ϕ0 and the spectrum of H in L2

per

includes

� a simple negative eigenvalue and a simple zero eigenvalue if c0+2b′(c0) >
0,

� a simple negative eigenvalue and a double zero eigenvalue if c0+2b′(c0) =
0,
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� two negative eigenvalues and a simple zero eigenvalue if c0 + 2b′(c0) < 0.

Theorem 5.3. Under the same assumption as Theorem 5.2, the periodic wave
with profile ϕ is spectrally stable if b′(c) ≥ 0 and is spectrally unstable with
exactly one unstable (real, positive) eigenvalue of ∂xH in L2

per if b′(c) < 0.

Remark 5.2. Thanks to the correspondence F (ϕ) = πb(c) in (5.3), the spec-
tral stability result reproduces the criterion for stability of solitary waves [56,66,
80,?bona2]. Note that this scalar criterion, obtained from the new variational
characterization of periodic waves in Theorem 5.1, replaces computations of a
2×2 matrix needed to establish if the periodic wave is a constrained minimizer
of energy subject to fixed momentum and mass as in [53]. In particular, the
sharp criterion based on the sign of b′(c0) works equally well in the cases when
the linearized operator H has one or two negative eigenvalues, see Remark
5.11.

Remark 5.3. If b′(c0) > 0 and the periodic wave with profile ϕ0 is spectrally

stable, then it is also orbitally stable in H
α
2

per according to the standard technique
from [9], assuming global well-posedness of the fractional KdV equation (1.7)
in Hs

per for s > α
2

. For such results on the orbital stability of the periodic wave,
we do not need to use the non-degeneracy assumption on the 2-by-2 matrix of
derivatives of momentum F (ϕ) and mass M(ϕ) with respect to parameters c
and b stated in Theorem 4.1 in [53].

5.2 Proof of Theorem 5.1

In this section, we obtain solutions to the boundary-value problem (5.4) for α >
1
3
. These solutions have an even, single-lobe profile ϕ in the sense of Definition

1.1 for α ≤ 2. Compared to statement of Theorem 5.1, we use the general
notation ϕ for the profile of the periodic wave satisfying the boundary-value
problem (5.4) and c for the (fixed) wave speed. For every fixed c ∈ (−1,∞),
the assertion of Theorem 5.1 is proven from Theorem 5.4, Corollary 5.1, and
Proposition 5.1. First, in Theorem 5.4, we prove the existence of a minimizer
of the following minimization problem

qc = inf
u∈Y0
Bc(u), Bc(u) :=

1

2

∫ π

−π

[
(D

α
2 u)2 + cu2

]
dx (5.6)

in the constrained set

Y0 :=

{
u ∈ H

α
2

per(T) :

∫ π

−π
u3dx = 1,

∫ π

−π
udx = 0

}
. (5.7)

Second, in Corollary 5.1, we use Lagrange multipliers to show that the Euler–
Lagrange equation for (5.6) and (5.7) is equivalent to the stationary equation
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(5.1). Third, by using bootstrapping argument similar to the one given in
Step 4 of the proof of Theorem 3.3, we conclude that the solution ϕ of the
minimization problem (5.6) is actually smooth in H∞per(R) so that it satisfies
the boundary-value problem (5.4).

Theorem 5.4. Fix α > 1
3
. For every c > −1, there exists a ground state of the

constrained minimization problem (5.6), that is, there exists φ ∈ Y0 satisfying

Bc(φ) = inf
u∈Y0
Bc(u). (5.8)

If α ≤ 2, the ground state has an even, single-lobe profile φ in the sense of
Definition 1.1.

Proof. It follows that Bc is a smooth functional bounded onH
α
2

per(T). Moreover,
Bc is proportional to the quadratic form of the operator c + Dα with the
spectrum in L2

per given by {c + |m|α, m ∈ Z}. Thanks to the zero-mass
constraint in (5.7), for every c > −1, we have

Bc(u) ≥ 1

2
(c+ 1)‖u‖2

L2
per
, u ∈ Y0, (5.9)

and by the standard G̊arding’s inequality, for every c > −1 there exists C > 0
such that

Bc(u) ≥ C‖u‖2

H
α
2
per

, u ∈ Y0.

Hence Bc is equivalent to the squared norm in H
α
2

per(T) for functions in Y0,
yielding qc ≥ 0 in (5.6). Let {un}n∈N be a minimizing sequence for the con-
strained minimization problem (5.6), that is, a sequence in Y0 satisfying

Bc(un)→ qc as n→∞.

Since {un}n∈N is bounded in H
α
2

per(T), there exists φ ∈ H
α
2

per(T) such that, up
to a subsequence,

un ⇀ φ in H
α
2

per(T), as n→∞.

For every α > 1
3
, the energy space H

α
2

per(T) is compactly embedded in L3
per(T).

Thus,
un → φ in L3

per, as n→∞.
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Using the estimate∣∣∣∣∫ π

−π
(u3

n − φ3)dx

∣∣∣∣ ≤ ∫ π

−π
|u3
n − φ3|dx

≤
(
‖φ‖2

L3
per

+ ‖φ‖L3
per
‖un‖L3

per
+ ‖un‖2

L3
per

)
‖un − φ‖L3

per
,

it follows that
∫ π
−π φ

3dx = 1. By a similar argument, since H
α
2

per(T) is also

compactly embedded in L1
per(T), it follows that

∫ π
−π φdx = 0. Hence, φ ∈ Y0.

Thanks to the weak lower semi-continuity of Bc, we have

Bc(φ) ≤ lim inf
n→∞

B(un) = qc.

Therefore, Bc(φ) = qc.
If α ∈ (0, 2], the symmetric decreasing rearrangements of u do not increase

Bc(u) while leaving the constraints in Y0 invariant thanks to the fractional
Polya–Szegö inequality, see Lemma A.1 in [30]. As a result, the minimizer
φ ∈ Y0 of Bc(u) must decrease away symmetrically from the maximum point.
By the translational invariance, the maximum point can be placed at x = 0,
which yields an even, single-lobe profile for φ.

Corollary 5.1. For every α ∈
(

1
3
, 2
]
, there exists a solution to the boundary-

value problem (5.4) with an even, single-lobe profile ϕ.

Proof. By Lagrange’s Multiplier Theorem, the constrained minimizer φ ∈ Y0

in Theorem 5.4 satisfies the stationary equation

Dαφ+ cφ = C1φ
2 + C2, (5.10)

for some constants C1 and C2. From the two constraints in Y0, we have

C1 = 2Bc(φ), C2 = − 1

2π

(∫ π

−π
φ2dx

)
C1, (5.11)

The scaling transformation ϕ = C1φ maps the stationary equation (5.10) to
the form (5.1) with b = b(c) computed from ϕ by (5.2).

The following lemma states that the infimum qc in (5.6) is continuous in c
for c > −1 and that qc → 0 as c→ −1.

Lemma 5.1. Let φ ∈ Y0 be the ground state of the constrained minimization
problem (5.6) in Theorem 5.4 and qc = Bc(φ). Then qc is continuous in c for
c > −1 and qc → 0 as c→ −1.
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Proof. For a fixed u ∈ Y0 and for every c′ > c > −1, we have

0 ≤ Bc′(u)− Bc(u) =
1

2
(c′ − c)‖u‖2

L2
per
≤ c′ − c
c+ 1

Bc(u),

thanks to the bound (5.9). Let Bc(φ) = qc and Bc′(φ′) = qc′ . Then, we have

qc′ − qc = Bc′(φ′)− Bc(φ′) + Bc(φ′)− Bc(φ) ≥ Bc′(φ′)− Bc(φ′) ≥ 0

and

qc′ − qc = Bc′(φ′)− Bc′(φ) + Bc′(φ)− Bc(φ) ≤ Bc′(φ)− Bc(φ) ≤ c′ − c
c+ 1

Bc(φ).

From here, it is clear that qc′ → qc as c′ → c, so that qc is continuous in c for
c > −1. It remains to show that qc → 0 as c → −1. Consider the following
family of two-mode functions in Y0:

uµ(x) = µ cos(x) +
2

3πµ2
cos(2x), µ > 0,

which satisfy the constraints in (5.7). Substituting uµ into Bc(u) yields

Bc(uµ) =
π

2

[
µ2(1 + c) +

4

9π2µ4
(2α + c)

]
≥ 3π(2α + c)

1
3 (1 + c)2/3

2(3π)2/3
,

where the lower bound is found from the minimization of Bc(uµ) in µ. There-
fore, we obtain

0 ≤ qc ≤
3π(2α + c)

1
3 (1 + c)2/3

2(3π)2/3
,

which shows that qc → 0 as c→ −1.

The following proposition ensures that ϕ is smooth in x and hence satisfies
the boundary-value problem (5.4).

Proposition 5.1. Assume that ϕ ∈ H
α
2

per(T) is a solution of the stationary
equation (5.1) with c > −1 and b = b(c) in the sense of distributions. Then
ϕ ∈ H∞per(T).

Proof. See Step 4 of the proof of Theorem 3.3 in Section 3.4.

We show next that the periodic waves of the boundary-value problem (5.4)
with an even, single-lobe profile ψ in the sense of Definition 1.1 are given
by the Stokes expansion for c near −1. Because we reuse the method of
Lyapunov–Schmidt reductions from [54], the results on the Stokes expansion
of the periodic wave ψ are restricted to the values of α > 1

2
.
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The small-amplitude (Stokes) expansion for single-lobe periodic waves of
the boundary-value problem (5.4) is constructed in three steps. First, we
present Galilean transformation between solutions of the stationary equation
(5.1). Second, we obtain Stokes expansion of the normalized stationary equa-
tion. Third, we transform the Stokes expansion of the normalized stationary
equation back to the solutions of the boundary-value problem (5.4)

Proposition 5.2. Let ϕ ∈ Hα
per be a solution to the stationary equation (5.1)

with some (c, b). Then,

ψ := ϕ− 1

2

(
c−
√
c2 + 4b

)
(5.12)

is a solution of the stationary equation

Dαψ + ωψ − ψ2 = 0, ψ ∈ Hα
per, (5.13)

with ω :=
√
c2 + 4b.

Proof. The proof is given by direct substitution.

Proposition 5.3. For every α > 1
2
, there exists a0 > 0 such that for every

a ∈ (0, a0) there exists a locally unique, even, single-lobe solution ϕ of the
stationary equation (5.13) in the sense of Definition 1.1. The pair (ω, ϕ) ∈
R×Hα

per is smooth in a and is given by the following Stokes expansion:

ψ(x) = 1 + a cos(x) + a2ψ2(x) + a3ψ3(x) +O(a4), (5.14)

and
ω = 1 + ω2a

2 +O(a4), (5.15)

where the corrections terms are

ψ2(x) = ω2 −
1

2
+

1

2(2α − 1)
cos(2x), (5.16)

ψ3(x) =
1

2(2α − 1)(3α − 1)
cos(3x). (5.17)

ω2 = 1− 1

2(2α − 1)
. (5.18)

Proof. The proof is given by algorithmic computations similarly to the proof
of Theorem 3.1 in Section 3.2. However, we note that in Theorem 3.1 the
parameter b was set to be 0 whereas in this case we consider nonzero b.

Corollary 5.2. For every α ∈
(

1
2
, 2
]
, there exists c0 ∈ (−1,∞) such that the

solution of the boundary-value problem (5.4) for every c ∈ (−1, c0) with an
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even, single-lobe profile ϕ in Theorem 5.4 and Corollary 5.1 is given by the
following Stokes expansion:

ϕ = a cos(x) +
a2

2(2α − 1)
cos(2x) +

a3

2(2α − 1)(3α − 1)
cos(3x) +O(a4) (5.19)

with parameters

c = −1 +
1

2(2α − 1)
a2 +O(a4) (5.20)

and

b(c) =
1

2
a2 +O(a4). (5.21)

Proof. We apply the Galilean transformation (5.12) of Proposition 5.2 to the
Stokes expansion (5.14) and (5.15) in Proposition 5.3. Therefore, we define

ϕ = Π0ψ, c = ω − 1

π

∫ π

−π
ψdx, b(c) =

1

4
(ω2 − c2) (5.22)

and obtain the Stokes expansion (5.19), (5.20), and (5.21) for solutions of the
boundary-value problem (5.4).

It follows from (5.19) and (5.20) that ‖ϕ‖L2
per
→ 0 as c → −1. Since the

Stokes expansion (5.14) for the even, single-lobe solution ϕ is locally unique
by Proposition 5.3 and Bc(φ) → 0 as c → −1 by Lemma 5.1 implies that
‖ϕ‖L2

per
→ 0 as c → −1, the small-amplitude periodic wave (5.19) with an

even, single-lobe profile ϕ coincides as c → −1 with the family of minimizers
in Theorem 5.4 and Corollary 5.1 given by ϕ = 2Bc(φ)φ.

Remark 5.4. It follows from (5.18) that ω2 > 0 if and only if α > α0, where

α0 :=
log 3

log 2
− 1 ≈ 0.585.

It follows from the expansions (5.19), (5.20), and (5.21) that the threshold α0

does not show up in the Stokes expansion of the solution ϕ to the boundary-
value problem (5.4).

5.3 Proof of Theorem 5.2

In order to prove Theorem 5.2, we first characterize the number and multi-
plicity of negative and zero eigenvalues of the linearized operator H in L2

per

in Corollary 5.3. Because we use the oscillation theory from [53], the results
on the smooth continuation of periodic waves with respect to wave speed c
are limited to the interval α ∈ (1

3
, 2] and to the periodic waves with an even,

single-lobe profile ϕ.
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Next, in Lemma 5.3 we find a sharp condition for the continuation of the
zero-mean solution ψ of the boundary-value problem (5.4) as a smooth family
with respect to the wave speed c in a local neighborhood of c0. Then, for
each value of c0 ∈ (−1,∞), for which the family is a C1 function of c, we
show in Lemma 5.4 that the number of negative eigenvalues of H is character-
ized by the sign of c0 + 2b′(c0). Moreover, H has a double zero eigenvalue if
c0 + 2b′(c0) = 0 and a simple zero eigenvalue if c0 + 2b′(c0) 6= 0. The assertion
of Theorem 5.2 is proven from Lemma 5.3, Corollary 5.6, and Lemma 5.4.

Let ϕ ∈ H∞per be a solution to the boundary-value problem (5.4) for some
c ∈ (−1,∞) obtained with Theorem 5.4, Corollary 5.1, and Proposition 5.1.
The solution has an even, single-lobe profile ϕ in the sense of Definition 1.1.
The linearized operator H at ϕ is given by (1.15), which we rewrite again as
the following self-adjoint operator:

H = Dα + c− 2ϕ : Hα
per ⊂ L2

per → L2
per. (5.23)

For continuation of the solution ϕ ∈ H∞per to the boundary-value problem
(5.4) in c, we need to determine the multiplicity of the zero eigenvalue of H
denoted as z(H). For spectral stability of the periodic wave ϕ, we also need to
determine the number of negative eigenvalues of H with the account of their
multiplicities denoted as n(H).

It follows by direct computations from the boundary-value problem (5.4)
that

Hϕ = −ϕ2 − b(c) (5.24)

and

H1 = −2ϕ+ c. (5.25)

By the translational symmetry, we always have H∂xϕ = 0. However, the
main question is whether Ker(H) = span(∂xϕ), that is, if z(H) = 1. The
following corollary gives the count for zero eigenvalues and negative eigenvalues
of operator H.

Corollary 5.3. Assume ϕ be an even, single-lobe periodic wave obtained
with Theorem 5.4, Corollary 5.1, and Proposition 5.1 for α ∈ (1

3
, 2] and

c ∈ (−1,∞). Then, n(H) ∈ {1, 2} and z(H) ∈ {1, 2}.

Proof. It follows by (5.24) that

〈Hϕ, ϕ〉 = −
∫ π

−π
ϕ3dx = −8Bc(φ)3 < 0, (5.26)
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thanks to (5.7), (5.9), and (5.11). Therefore, n(H) ≥ 1. Thanks to the
variational formulation (5.6)–(5.7) and Theorem 5.4, ϕ ∈ H∞per is a minimizer
of G(u) in (6.3) for every c ∈ (−1,∞) subject to two constraints in (5.7).
Since H is the Hessian operator for G(u) in (1.15), we have

H
∣∣
{1,ϕ2}⊥ ≥ 0. (5.27)

By Courant’s Mini-Max Principle, n(H) ≤ 2, so that n(H) ∈ {1, 2} is proven.
Since ϕ is even, L2

per is decomposed into an orthogonal sum of an even
and odd subspaces. By Proposition A.3, 0 is the lowest eigenvalue of H in
the subspace of odd functions in L2

per with the eigenfunction ∂xϕ with a single
node. Hence, z(H) ≥ 1. To determine the upper bound for z(H), we rely
on Proposition A.1 which concerns Sturm’s oscillation theory for fractional
derivative operators developed in [53].

In the subspace of even functions in L2
per, the number of nodes is even.

If n(H) = 1, then 0 is the second eigenvalue of H. By Proposition A.1, the
corresponding even function may have at most two nodes, hence there may be
at most one such eigenfunction of H for the zero eigenvalue in the subspace of
even functions in L2

per. If n(H) = 2, then the second (negative) eigenvalue has
an even eigenfunction with exactly two nodes, whereas 0 is the third eigenvalue
of H. According to Proposition A.1, the corresponding even function for the
zero eigenvalue may have at most four nodes, hence there may be at most one
such eigenfunction of H in the subspace of even functions in L2

per. In both
cases, z(H) ≤ 2, so that z(H) ∈ {1, 2} is proven.

The following lemma characterizes the kernel of H|X0 = Π0HΠ0, where Π0

is defined in (5.4) and X0 :=
{
f ∈ L2

per :
∫ π
−π f(x)dx = 0

}
.

Lemma 5.2. Assume α ∈ (1
3
, 2] and ϕ ∈ H∞per be an even, single-lobe periodic

wave. If there exists f ∈ Ker(H|X0) such that 〈f, ∂xϕ〉 = 0 and f 6= 0, then

Ker(H) = span(∂xϕ), 〈f, ϕ〉 6= 0, and 〈f, ϕ2〉 = 0. (5.28)

Proof. Since f ∈ Ker(H|X0), then 〈1, f〉 = 0 and f satisfies

0 = H|X0f = Hf +
1

π

∫ π

−π
fϕdx. (5.29)

Either 〈f, ϕ〉 = 0 or 〈f, ϕ〉 6= 0.
Assume first that 〈f, ϕ〉 = 0. It follows by (5.29) that f ∈ Ker(H)

and by equality (5.24), we have 〈f, ϕ2〉 = 0. By Corollary 5.3, the kernel
of H can be at most two-dimensional, hence Ker(H) = span(∂xϕ, f) and
{1, ϕ, ϕ2} ∈ [Ker(H)]⊥. By Fredholm theorem for self-adjoint operator (5.23),
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we have {1, ϕ, ϕ2} ∈ Range(H) and by Proposition A.2, Ker(H) = span(∂xϕ)
in contradiction to the conclusion that f ∈ Ker(H). Therefore, assumption
〈f, ϕ〉 = 0 leads to contradiction.

Assume now that 〈f, ϕ〉 6= 0. It follows by (5.29) that 1 ∈ Range(H).
Then, by (5.24) and (5.25), we have ϕ2 ∈ Range(H) and ϕ ∈ Range(H)
respectively. In other words, {1, ϕ, ϕ2} ∈ Range(H) and by Proposition A.2,
Ker(H) = span(∂xϕ). In addition, by (5.24), we have

〈f, ϕ2〉 = −〈f,Hϕ〉 = −〈Hf, ϕ〉 =
1

π
〈f, ϕ〉〈1, ϕ〉 = 0.

This yields (5.28).

Remark 5.5. Proposition A.2 is Proposition 3.1 in [53] and is proven from
the property {1, ϕ, ϕ2} ∈ Range(H) claimed in (L3) of Lemma 3.3 in [53]. The
proof of (L3) relies on the smoothness of minimizers of energy E(u) subject
to fixed momentum F (u) and mass M(u) with respect to Lagrange multipliers
c and b. Unfortunately, this smoothness cannot be taken as granted and may
be false. Indeed, Ker(H) 6= span(∂xϕ) for some periodic waves satisfying the
stationary equation (5.1) for α < α0 (see Corollary 5.6, Remark 5.9, and
Remark 5.10).

Corollary 5.4. If f exists in Lemma 5.2, then Ker(H|X0) = span(∂xϕ, f).

Proof. Assume two orthogonal vectors f1, f2 ∈ Ker(H|X0) such that 〈f1,2, ∂xϕ〉 =
0 and f1,2 6= 0. Since 〈f1,2, ϕ〉 6= 0, there exists a linear combination of f1 and
f2 in Ker(H) in contradiction with Ker(H) = span(∂xϕ) in (5.28).

Corollary 5.5. Ker(H|X0) = Ker(H|{1,ϕ2}⊥).

Proof. By using orthogonal projections, we write

H|{1,ϕ2}⊥f = Hf +
1

π

∫ π

−π
fϕdx− αΠ0ϕ

2, α =
〈Hf,Π0ϕ

2〉
〈ϕ2,Π0ϕ2〉

, (5.30)

where 〈ϕ2,Π0ϕ
2〉 = ‖ϕ‖4

L4 − 1
2π
‖ϕ‖2

L2 > 0 for every non-constant (single-lobe)
ϕ.

By Lemma 5.2, if f ∈ Ker(H|X0), then 〈f, ϕ2〉 = 0. Since 〈1,Π0ϕ
2〉 = 0, it

follows from (5.29) and (5.30) that f ∈ Ker(H|{1,ϕ2}⊥).
In the opposite direction, assume that f ∈ Ker(H|{1,ϕ2}⊥), 〈f, ∂xϕ〉 = 0,

and f 6= 0. Since 〈f, 1〉 = 〈f, ϕ2〉 = 0, we have by (5.24) that 0 = 〈f,Hϕ〉 =
〈Hf, ϕ〉 = α〈Π0ϕ

2, ϕ〉. Since 〈Π0ϕ
2, ϕ〉 = 〈ϕ2, ϕ〉 > 0, thanks to (5.7), (5.9),

and (5.11), we obtain α = 0 which implies that f ∈ Ker(H|X0).

The following lemma provides a sharp condition for a smooth continuation
of the periodic wave with profile ϕ with respect to the wave speed c.
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Lemma 5.3. Assume α ∈ (1
3
, 2] and ϕ0 be an even, single-lobe solution of the

boundary-value problem (5.4) for a fixed c0 ∈ (−1,∞) obtained with Theorem
5.4, Corollary 5.1, and Proposition 5.1. Assume Ker(H|X0) = span(∂xϕ0).
Then, there exists a unique continuation of even solutions of the boundary-
value problem (5.4) in an open interval Ic ⊂ (−1,∞) containing c0 such that
the mapping

Ic 3 c 7→ ϕ(·, c) ∈ Hα
per(T) ∩X0 (5.31)

is C1 and ϕ(·, c0) = ϕ0.

Proof. Let ϕ0 ∈ Hα
per ∩ X0 be an even, single-lobe solution of the boundary-

value problem (5.4) for c0 ∈ (−1,∞). Let ϕ ∈ Hα
per ∩X0 be a solution of the

boundary-value problem (5.4) for c ∈ (−1,∞) to be constructed from ϕ0 for c
near c0. Then, ϕ̃ := ϕ− ϕ0 ∈ Hα

per ∩X0 satisfies the following equation:

H0|X0ϕ̃ = −(c− c0)(ϕ0 + ϕ̃) + Π0ϕ̃
2, (5.32)

where H0 is obtained from H in (5.23) at c = c0 and ϕ = ϕ0, whereas H0|X0

acts on ϕ̃ by the same expressions as in (5.29).
Assume Ker(H0|X0) = span(∂xϕ0) and consider the subspace of even func-

tions for which ϕ0 belongs. Then, H0|X0 is invertible on the subspace of even
functions in Hα

per∩X0 so that we can rewrite (5.32) as the fixed-point equation:

ϕ̃ = −(c− c0) (H0|X0)
−1 (ϕ0 + ϕ̃) + (H0|X0)

−1 Π0ϕ̃
2. (5.33)

By the Implicit Function Theorem, there exist an open interval containing c0,
an open ball Br ∈ Hα

per ∩ X0 of radius r > 0 centered at 0, and a unique C1

mapping Ic 3 c 7→ ϕ̃(·, c) ∈ Br such that ϕ̃(·, c) is an even solution to the
fixed-point equation (5.33) for every c ∈ Ic and ϕ̃(·, c0) = 0. In particular, we
find that

∂cϕ(·, c0) := lim
c→c0

ϕ− ϕ0

c− c0

= − (H0|X0)
−1 ϕ0. (5.34)

Hence, ϕ(·, c) is an even solution of the boundary-value problem (5.4) for every
c ∈ Ic.

Remark 5.6. Although the solution ϕ0 is obtained from a global minimizer
of the variational problem (5.6)–(5.7), the solution ϕ(·, c) in Lemma 5.3 is
continued from the Euler–Lagrange equation (5.4). Therefore, even if the so-
lution ϕ(·, c) is C1 with respect to c in Ic as in Lemma 5.3, this solution may
not coincide with the global minimizer of Bc in Y0 for c 6= c0, the existence of
which is guaranteed by Theorem 5.4 for every c ∈ (−1,∞). For example, the
solution may only be a local minimizer of Bc in Y0 for c 6= c0 in Ic. Similarly,
we cannot guarantee that the solution ϕ(·, c) has a single-lobe profile for c 6= c0.

Remark 5.7. In what follows, we again use the general notation ϕ for the
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solution to the boundary-value problem (5.4) and c for the (fixed) wave speed.

Corollary 5.6. For every c ∈ (−1,∞) for which Ker(H|X0) = span(∂xϕ), we
have

H∂cϕ = −ϕ− b′(c), (5.35)

where b′(c) = 1
π

∫ π
−π ϕ∂cϕdx. If c + 2b′(c) 6= 0, then Ker(H) = span(∂xϕ),

whereas if c+ 2b′(c) = 0, then Ker(H) = span(∂xϕ, 1− 2∂cϕ).

Proof. By Lemma 5.3, equation (5.35) follows from (5.34) and the definition
of H|X0 in (5.29). The same equation can also be obtained by formal differ-
entiation of the boundary-value problem (5.4) in c since ϕ and b are C1 with
respect to c. It follows from (5.25) and (5.35) that

H (1− 2∂cϕ) = c+ 2b′(c), (5.36)

If c + 2b′(c) = 0, then Ker(H) = span(∂xϕ, 1 − 2∂cϕ) by Corollary 5.3. If
c + 2b′(c) 6= 0, then {1, ϕ, ϕ2} ∈ Range(H) by (5.24), (5.25), and (5.35), so
that Ker(H) = span(∂xϕ) by Proposition A.2.

Remark 5.8. It follows from (5.24) and (5.35) that

−2πb(c)〈H∂cϕ, ϕ〉 = 〈∂cϕ,Hϕ〉 = −2π

3
γ′(c),

so that γ′(c) = 3b(c) > 0, where γ(c) := 1
2π

∫ π
−π ϕ

3dx.

Remark 5.9. If c0 + 2b′(c0) = 0 for some c0 ∈ (−1,∞), then ψ and ω, which
satisfy the stationary equation (5.13) after the Galilean transformation (5.12),
are C1 functions of c in Ic but not C1 functions of ω at ω0 :=

√
c2

0 + 4b(c0).
Indeed, differentiating the relation ω2 = c2 + 4b(c) in c yields

ω
dω

dc
= c+ 2b′(c),

so that dω
dc
|c=c0 = 0 and the C1 mapping Ic 3 c → ω(c) ∈ Iω is not invertible.

Since the kernel of H at ϕ0 is two-dimensional, the solution ϕ0 is at the fold
point according to Definition 1.3. The fold point yields the fold bifurcation of
the solution ψ with respect to parameter ω at ω0.

The following lemma provides the explicit count of the number of nega-
tive eigenvalues n(H) and the multiplicity of the zero eigenvalue z(H) for the
linearized operator H in (5.23).
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Lemma 5.4. Assume α ∈ (1
3
, 2] and ϕ ∈ H∞per be an even, single-lobe periodic

wave for c ∈ (−1,∞) in Lemma 5.3 with Ker(H|X0) = span(∂xϕ). Then, we
have

z(H) =

{
1, c+ 2b′(c) 6= 0,
2, c+ 2b′(c) = 0,

(5.37)

and

n(H) =

{
1, c+ 2b′(c) ≥ 0,
2, c+ 2b′(c) < 0.

(5.38)

Proof. Thanks to (5.27), we have n(H
∣∣
{1,ϕ2}⊥) = 0. By Corollary 5.5 and the

assumption Ker(H|X0) = span(∂xϕ), we have z(H
∣∣
{1,ϕ2}⊥) = 1. By Theorem

5.3.2 in [55] or Theorem A.3, we construct the following symmetric 2-by-2
matrix related to the two constraints in (5.27):

P (λ) :=

[
〈(H− λI)−1ϕ2, ϕ2〉 〈(H− λI)−1ϕ2, 1〉
〈(H− λI)−11, ϕ2〉 〈(H− λI)−11, 1〉

]
, λ /∈ σ(H).

By Corollary 5.6, we can use equation (5.35) in addition to equations (5.24)
and (5.25). Assuming c+ 2b′(c) 6= 0, we compute at λ = 0:

〈H−11, 1〉 =
〈1− 2∂cϕ, 1〉
c+ 2b′(c)

=
2π

c+ 2b′(c)
,

〈H−11, ϕ2〉 =
〈1− 2∂cϕ, ϕ

2〉
c+ 2b′(c)

=
2π

c+ 2b′(c)

[
b(c)− 2

3
γ′(c)

]
,

〈H−1ϕ2, 1〉 = −〈ϕ, 1〉 − b(c)〈1− 2∂cϕ, 1〉
c+ 2b′(c)

= − 2πb(c)

c+ 2b′(c)
,

〈H−1ϕ2, ϕ2〉 = −〈ϕ, ϕ2〉 − b(c)〈1− 2∂cϕ, ϕ
2〉

c+ 2b′(c)
= −2πγ(c)− 2πb(c)

c+ 2b′(c)

[
b(c)− 2

3
γ′(c)

]
,

where γ′(c) = 3b(c) holds by Remark 5.8. Therefore, the determinant of P (0)
for c+ 2b′(c) 6= 0 is computed as follows:

detP (0) = − 4π2γ(c)

c+ 2b′(c)
. (5.39)

Denote the number of negative and zero eigenvalues of P (0) by n0 and z0

respectively. If c+ 2b′(c) = 0, then P (0) is singular, in which case denote the
number of diverging eigenvalues of P (λ) as λ→ 0 by z∞. By Theorem 4.1 in
[79], we have the following identities:{

n(H
∣∣
{1,ϕ2}⊥) = n(H)− n0 − z0,

z(H
∣∣
{1,ϕ2}⊥) = z(H) + z0 − z∞.

(5.40)
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Since γ(c) > 0, it follows that z0 = 0. Since n(H
∣∣
{1,ϕ2}⊥) = 0 we have

n(H) = n0 by (5.40). It follows from the determinant (5.39) that n0 = 1 if
c+ 2b′(c) > 0 and n0 = 2 if c+ 2b′(c) < 0. This yields (5.38) for c+ 2b′(c) 6= 0.

Since z(H
∣∣
{1,ϕ2}⊥) = 1, we have z(H) = 1 + z∞ by (5.40). If c+ 2b′(c) 6= 0,

then z∞ = 0 so that z(H) = 1. The determinant (5.39) implies that one
eigenvalue of P (λ) remains negative as λ → 0, whereas the other eigenvalue
of P (λ) in the limit λ → 0 jumps from positive side for c + 2b′(c) > 0 to the
negative side for c+ 2b′(c) < 0 through infinity at c+ 2b′(c) = 0. Therefore, if
c+ 2b′(c) = 0, then n0 = 1 and z∞ = 1 so that n(H) = 1 and z(H) = 2. This
yields (5.37) and (5.38) for c+ 2b′(c) = 0.

Remark 5.10. By Proposition 5.2, we have invariance of the linearized oper-
ator H under the Galilean transformation (5.12):

H = Dα + c− 2ϕ = Dα + ω − 2ψ. (5.41)

By using (5.20) and (5.21), we compute the small-amplitude expansion

c+ 2b′(c) = 2α+1 − 3 +O(a2).

Hence, for α > α0 and small a ∈ (0, a0), we have c + 2b′(c) > 0 so that
n(H) = 1 in agreement with Lemma 2.2 in [64], whereas for α < α0 and small
a ∈ (0, a0), we have c + 2b′(c) < 0 so that n(H) = 2. In the continuation of
the solution ϕ in a for α < α0 by Corollary 5.2, there exists a fold point in the
sense of Definition 1.3 for which c+ 2b′(c) = 0, see Corollary 5.6 and Remark
5.9.

5.4 Proof of Theorem 5.3

Here we consider the spectral stability problem (1.18). We assume that ϕ ∈
H∞per is an even, single-lobe solution to the boundary-value problem (5.4) for
some c ∈ (−1,∞) obtained with Theorem 5.4, Corollary 5.1, and Proposition
5.1. Since ϕ is smooth, the domain of ∂xH in L2

per is H1+α
per .

If Ker(H|X0) = span(∂xϕ), then ϕ(·, c) and b(c) are C1 functions in c by
Lemma 5.3. Therefore, we can use the three equations (5.24), (5.25), and
(5.35) for the range of H. We can also use the count of n(H) and z(H) in
Lemma 5.4.

It was shown in [36, 50] that the periodic wave ϕ is spectrally stable if it
is a constrained minimizer of energy (1.12) under fixed momentum (1.11) and
mass (1.10). Since H is the Hessian operator for the action functional G(u) in
(1.15), the spectral stability holds if

H
∣∣
{1,ϕ}⊥ ≥ 0. (5.42)
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On the other hand, the periodic wave ϕ is spectrally unstable with exactly one

unstable (real, positive) eigenvalue of ∂xH in L2
per if n

(
H
∣∣
{1,ϕ}⊥

)
= 1.

By Theorem 5.3.2 in [55] or Theorem 4.1 in [79], we construct the following
symmetric 2-by-2 matrix related to the two constraints in (5.42):

D(λ) :=

[
〈(H− λI)−1ϕ, ϕ〉 〈(H− λI)−1ϕ, 1〉
〈(H− λI)−11, ϕ〉 〈(H− λI)−11, 1〉

]
, λ /∈ σ(H).

Assuming c+ 2b′(c) 6= 0, we compute at λ = 0:

〈H−11, 1〉 =
2π

c+ 2b′(c)
,

〈H−11, ϕ〉 = − 2πb′(c)

c+ 2b′(c)
,

〈H−1ϕ, 1〉 = − 2πb′(c)

c+ 2b′(c)
,

〈H−1ϕ, ϕ〉 = −πb′(c) +
2π[b′(c)]2

c+ 2b′(c)
.

Therefore, the determinant of D(0) for c+ 2b′(c) 6= 0 is computed as follows:

detD(0) = − 2π2b′(c)

c+ 2b′(c)
. (5.43)

Denote the number of negative and zero eigenvalues of D(0) by n0 and z0

respectively. If c+ 2b′(c) = 0, then D(0) is singular, in which case denote the
number of diverging eigenvalues of D(λ) as λ→ 0 by z∞. By Theorem 4.1 in
[79], we have the following identities:{

n(H
∣∣
{1,ϕ}⊥) = n(H)− n0 − z0,

z(H
∣∣
{1,ϕ}⊥) = z(H) + z0 − z∞.

(5.44)

By Lemma 5.4, n(H) = 1 if c + 2b′(c) ≥ 0 and n(H) = 2 if c + 2b′(c) < 0,
whereas z(H) = 1 if c+ 2b′(c) 6= 0 and z(H) = 2 if c+ 2b′(c) = 0.

Assume first that c + 2b′(c) 6= 0 so that z∞ = 0. If b′(c) > 0, then z0 = 0
whereas n0 = 1 if c + 2b′(c) > 0 and n0 = 2 if c + 2b′(c) < 0. In both cases,
it follows from (5.44) that n(H

∣∣
{1,ϕ}⊥) = 0 and z(H

∣∣
{1,ϕ}⊥) = 1 which implies

spectral stability of ϕ.
If b′(c) = 0, then z0 = 1 whereas n0 = 0 if c + 2b′(c) > 0 and n0 = 1 if

c + 2b′(c) < 0. In both cases, it follows from (5.44) that n(H
∣∣
{1,ϕ}⊥) = 0 and

z(H
∣∣
{1,ϕ}⊥) = 2, which still implies spectral stability of ϕ.

If b′(c) < 0, then z0 = 0 whereas n0 = 0 if c + 2b′(c) > 0 and n0 = 1 if
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c + 2b′(c) < 0. In both cases, it follows from (5.44) that n(H
∣∣
{1,ϕ}⊥) = 1 and

z(H
∣∣
{1,ϕ}⊥) = 1, which implies spectral instability of ϕ.

If c+ 2b′(c) = 0, then z∞ = 1 and z(H) = 2. Therefore, there is no change
in the count compared to the previous cases.

Remark 5.11. By using (5.20) and (5.21), we compute

b′(c) = 2α − 1 +O(a2),

which shows that the small-amplitude periodic waves are spectrally stable for
small a and α > 0 thanks to Lemma 5.3. Since the fold point in the sense of
Definition 1.3 exists for α < α0, see Remark 5.10, the result of Lemma 5.3
shows spectral stability of the periodic waves across the fold point as long as
b′(c) > 0.

5.5 Numerical Illustrations

Here, we illustrate the theoretical results by approximating the existence curve
for the single-lobe periodic solutions of the boundary-value problem (5.4) on
the parameter plane (c, b) for α ∈

(
1
3
, 2
]
.

For the integrable BO equation (α = 1), the single-lobe periodic solution
to the boundary-value problem (5.13) is known in the exact form:

ω = coth γ, ψ(x) =
sinh γ

cosh γ − cosx
, (5.45)

where γ ∈ (0,∞) is a free parameter of the solution. Since
∫ π

0
ψ(x)dx = π,

we compute explicitly c = ω − 2 and b = 1
4
(ω2 − c2) = ω − 1. Eliminating

ω ∈ (1,∞) yields b(c) = c+ 1, shown on the left panel of Fig. 5.1.
In the right panel of Fig 5.1 we reproduce the existence curve but on the

parameter plane (ω, µ), where ω is the Lagrange multiplier in the boundary-
value problem (5.13) and µ := 1

2π

∫ π
−π ψ

2dx is the period-normalized momen-
tum computed at the periodic wave ψ. The parameter (ω, µ) corresponds to
the minimization of the energy E(u) subject to the fixed momentum F (u)
with a = 0 used in [48].

There exists a constrained minimizer of energy for every µ > 0 as in The-
orem 1 in [48], however, it is given by the constant solution for µ ∈ (0, 1)
and ω ∈ (0, 1) with the exact relation µ = ω2 (solid black curve) and by the
single-lobe periodic solution for µ ∈ (1,∞) and ω ∈ (1,∞) with the exact
relation µ = ω (solid blue curve).

As shown in Chapter 3 (see Remark 3.8), the constant solution is a saddle
point of energy for µ ∈ (1,∞) (dotted black curve). As a result, the family of
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constrained minimizers of energy is piecewise smooth and a transition between
the two minimizers occur at µ = 1. Moreover, the slope of µ along the branch
for single-lobe periodic waves at ω = µ = 1 can be found directly from the
Stokes expansion (5.14) and (5.20) as

lim
ω↘1

µ′(ω) = 2− 1

2ω2

=
3 · 2α − 5

2 · 2α − 3
.

The slope becomes horizontal at α = α∗ = log 5−log 3
log 2

≈ 0.737, negative for

α ∈ (α0, α∗), vertical at α = α0 = log 3
log 2
− 1 ≈ 0.585, and positive for α < α0.

By comparing the left and right panels of Fig. 5.1, we highlight the differences
in the outcomes of our variational method to the method of [48] as mentioned
in Remark 5.1.

Figure 5.1: The dependence of b versus c (left) and µ versus ω (right) for
α = 1.

For the integrable KdV equation (α = 2), the single-lobe periodic solution
to the boundary-value problem (5.13) is known in the exact form:

ω =
4K(k)2

π2

√
1− k2 + k4 (5.46)

and

ψ(x) =
2K(k)2

π2

[√
1− k2 + k4 + 1− 2k2 + 3k2cn2

(
K(k)

π
x; k

)]
, (5.47)

where the elliptic modulus k ∈ (0, 1) is a free parameter of the solution. Since∫ π

0

ψ(x)dx =
2K(k)2

π

[√
1− k2 + k4 + 1− 2k2

]
+

6K(k)

π

[
E(k) + (k2 − 1)K(k)

]
,

88



PhD Thesis – U. Le McMaster University – Mathematics

where K(k) and E(k) are complete elliptic integrals of the first and second
kinds, respectively, we compute explicitly

c =
4K(k)2

π2

[
2− k2 − 3E(k)

K(k)

]
(5.48)

and

b =
4K(k)4

π4

[
−3(1− k2) + (2− k2)

6E(k)

K(k)
− 9E(k)2

K(k)2

]
. (5.49)

Fig.5.2 (left) shows the existence curve (5.48) and (5.49) on the parameter
plane (c, b). It follows that the function b(c) is monotonically increasing in c.
In the limit k → 1, for which K(k) → ∞ and E(k) → 1, we compute from
(5.48) and (5.49) the asymptotic behavior

b(c) ∼ 3

π
c3/2 as c→∞,

which coincides with the behavior of KdV solitons.

Figure 5.2: Left: the dependence of b versus c for α = 2. Right: the difference
between the numerical and exact values of b versus c.

The existence curve on the (c, b) plane is also computed numerically by
using the Petviashvili method (see Chapter 4) for the stationary equation
(5.13) with ω ∈ (1,∞) and applying the transformation formula (5.22). Fig.5.2
(left) also shows the numerically obtained existence curve (invisible from the
theoretical curve). The right panel of Fig.5.2 shows the error between the
numerical and exact curves for two computations different by the number N
of Fourier modes in the approximation of periodic solutions (for N = 512 by
red curve and N = 4906 by blue curve). The more Fourier modes are included,
the smaller is the error.
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Figure 5.3: Left: the dependence of b versus c for α = 0.6 obtained with the
Petviashvili method. Right: Profiles of ψ for two values of c.

For other values of α in
(

1
3
, 1
)
, we only compute the existence curve nu-

merically. Fig.5.3 shows the existence curve (left) and two profiles of the
numerically computed ψ in the stationary equation (5.13) (right) in the case
α = 0.6 > α0. The function b(c) is still monotonically increasing in c and the
values of c ∈ (−1,∞) are obtained monotonically from the values of ω ∈ (1,∞)
in the stationary equation (5.13). We also note that the greater is the wave
speed c, the larger is the amplitude of the periodic wave and the smaller is its
characteristic width.

Fig.5.4 (left) shows the existence curve in the case α = 0.55 < α0 computed
numerically (blue curve) and by using Stokes expansions (5.20) and (5.21) (red
curve). The insert displays the mismatch between the red and blue curves
with a small gap. The reason for mismatch is the lack of numerical data
for c ∈ (−1,−0.6) due to the fold point discussed in Remarks 5.4, 5.9, and
5.10. The function ω(c) is not monotonically increasing near the fold point
and there exist two single-humped solutions for ω < 1. Only the solution with
n(H) = 1 can be approximated with the Petviashvili method (see Chapter 4),
whereas the other solution with n(H) = 2 is unstable in the iterations of the
Petviashvili method which then converge to a constant solution instead of the
single-lobe solution. This is why we augmented the existence curve on Fig.
5.4 (left) with the Stokes expansion given by (5.20) and (5.21).

The right panel of Fig.5.4 shows the number of Fourier modes used in our
numerical computations as the wave speed c increases. We have to increase
the number of Fourier modes in order to control the accuracy of the numerical
approximations and to ensure that the strongly compressed solution with the
wave profile ψ is properly resolved. It follows from the Heisenberg’s uncertainty
principle that the narrower is the characteristic width of the wave profile, the
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Figure 5.4: Left: the dependence of b versus c for α = 0.55 obtained with the
Petviashvili method. Right: The number of Fourier modes versus c.

weaker is the decay of the Fourier transform at infinity. We compute the
maximum of the Fourier transform at the last ten Fourier modes and increase
the number of Fourier modes every time the maximum becomes bigger than
a certain tolerance level of the size 10−8. The computational time becomes
longer for larger values of the wave speed, nevertheless, it is clear that the
function b(c) is still monotonically increasing in c.

In order to overcome the computational problem seen on Fig.5.4 (left), we
have developed the Newton’s method for the solutions ψ to the stationary
equation (5.13) near the fold point that exists for α < α0. With the initial
guess from the Stokes expansion in (5.14) and (5.15), we were able to find the
branch of solutions with n(H) = 2 and connect it with the branch of solutions
with n(H) = 1. As a result, the mismatch seen on the insert of Fig.5.4 for
α = 0.55 has been eliminated by using the Newton’s method (not shown).

Fig.5.5 shows the existence curve on the parameter plane (c, b) in the cases
α = 0.5 (left) and α = 0.45 (right) obtained with Newton’s method. It is
obvious that the function b(c) is monotonically increasing in c for α = 0.5 and
approaches to the horizontal asymptote as c → ∞, whereas the function b(c)
is not monotone in c for α = 0.45 and is decreasing for large values of c. This
coincides with the conclusion of [13] on the solitary waves which correspond
to the limit of c→∞.

By the stability result of Theorem 5.2, we conjecture based on our nu-
merical results that the single-lobe periodic waves are spectrally stable for
α ∈

[
1
2
, 2
]

since b′(c) > 0 for every c ∈ (−1,∞). On the other hand, for
α ∈

(
1
3
, 1

2

)
, there exists c∗ ∈ (−1,∞) such that b′(c) > 0 for c ∈ (−1, c∗) and

b′(c) < 0 for c ∈ (c∗,∞), hence the periodic waves are spectrally stable for
c ∈ (−1, c∗) and spectrally unstable for c ∈ (c∗,∞).
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Figure 5.5: The dependence of b versus c for α = 0.5 (left) and α = 0.45
(right) obtained with the Newton’s method.

Fig.5.6 shows the bifurcation diagram on the parameter plane (ω, µ) for
α = 0.6 (left) and α = 0.5 (right).

Figure 5.6: The dependence of µ versus ω for α = 0.6 (left) and α = 0.5 (right)
obtained with the Newton’s method.

For α = 0.6, see Fig. 5.6 (left), two single-lobe periodic waves (blue curve)
coexist for the same value of µ below 1. The right branch is a local minimizer
of energy E(u) subject to fixed momentum F (u), whereas the left branch is a
saddle point of energy subject to fixed momentum and is a local minimizer of
energy E(u) subject to two constraints of momentum F (u) and mass M(u).
This folded picture is unfolded on Fig. 5.3 (left), which contains all the single-
lobe periodic waves and none of the constant solutions.

For α = 0.5, see Fig. 5.6 (right), the folded diagram on the (ω, µ) plane
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becomes more complicated because two single-lobe periodic waves coexist for
ω below 1 (red and blue curves) and two periodic waves coexist for µ below 1.
The red (blue) curve on Fig. 5.6 (right) corresponds to the part of the curve on
Fig. 5.5 (left) below (above) the red point. Both branches are resolved well by
using the Newton’s method. The branch shown by the red curve corresponds
to n(H) = 2, nevertheless, it is a local minimizer of energy E(u) subject to two
constraints of momentum F (u) and mass M(u). At the fold point ω0 ∈ (0, 1),
the linearized operator H is degenerate with z(H) = 2. The branch is contin-
ued below the fold point and then to the right with n(H) = 1. The decreasing
and increasing parts of the branch have the same variational characterization
as those on Fig. 5.6 (left). The folded picture is again unfolded on Fig. 5.5
(left) on the parameter plane (c, b), where the scalar condition b′(c) > 0 for
spectral stability of the single-lobe periodic waves implies that every point on
the folded bifurcation diagram on the (ω, µ) parameter plane correspond to
spectrally stable periodic waves. The fold point on Fig. 5.6 (right), where
the linearized operator H is degenerate and the momentum and mass are not
smooth with respect to Lagrange multipliers, appears to be an internal point
on the branch on Fig. 5.5 (left) which remains smooth with respect to the
only parameter of the wave speed c.

Thus, we conclude that the new variational characterization of the zero-
mean single-lobe periodic waves in the fractional KdV equation (1.7) allows
us to unfold all the solution branches on the parameter plane (c, b) and to
identify the stable periodic waves using the scalar criterion b′(c) > 0.
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Chapter 6

Periodic Waves In Fractional
Modified KdV Equation

In this chapter, our goal is to extend the variational framework outlined in
Chapter 5 to study existence, variational characterization, bifurcations and
spectral stability of periodic solutions of the fractional mKdV equation

ut + 6u2ux − (Dαu)x = 0, (6.1)

with u(t, x) : R × T 7→ R. A travelling wave solution to the mKdV equation
(6.1) satisfies the stationary equation

Dαψ + cψ + b = 2ψ3, (6.2)

where the wave ψ(x) : T 7→ R has single–lobe profile defined accordingly to
Definition 1.1, (c, b) are real parameters, and Dα is the fractional Laplacian
operator on T as defined in (1.6).

The fractional mKdV equation (6.1) admits the following conserved quan-
tities:

M(u) =

∫ π

−π
udx,

F (u) =
1

2

∫ π

−π
u2dx,

E(u) =
1

2

∫ π

−π

((
D

α
2 u
)2 − u4

)
dx,

which stand for mass, momentum and energy respectively. The stationary
equation (6.2) is the Euler–Lagrange equation for the action functional,

G(u) = E(u) + cF (u) + bM(u), (6.3)
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so that G′(ψ) = 0. The Hessian operator from the action functional (6.3)
yields the linearized operator around the wave ψ in the form:

H := G′′(ψ) = Dα + c− 6ψ2. (6.4)

Global well-posedness results for the initial data in Hs(R) with s > 1
4

and
in Hs(T) with s ≥ 1

2
were obtained for α = 2 in [33]. Local well-posedness

results for initial data in Hs(R) with s ≥ 1
2

were obtained for α = 1 in [59].
Energy and momentum are conserved in the time evolution of such solutions.
Local solutions with sufficiently large initial data in H

1
2 (R) blow up in a finite

time [58,70].
In the case of the fractional KdV, we saw that the variational approach in

Chapter 5 combining with the Galilean transformation allow us to represent
all possible periodic waves of the single-lobe profile ψ and to derive a simple
stability criterion from the derivative of the momentum F (ψ) with respect
to the wave speed c. However, when these ideas are extended to the cubic
nonlinearity in the framework of the stationary equation (6.2), we face the
difficulty that the Galilean transformation generates a quadratic nonlinear
term and connects solutions of the fractional mKdV equation to solutions of
the fractional Gardner equation. As a result, we are not able yet to characterize
all possible periodic waves of the single-lobe profile in the stationary equation
(6.2). Instead, we shall study the two particular families of solutions which
correspond to b = 0 and generalize the sign-definite dnoidal and sign-indefinite
cnoidal elliptic solutions of the local case α = 2. Both families are obtained as
minimizers of the quadratic part of the action functional G(u) subject to the
fixed quartic part of the energy, but one family is obtained in the subspace
of even functions which we refer to as the even periodic waves, and the other
family is obtained in the subspace of odd function and to be referred to as the
odd periodic waves.

The chapter is organized as follows. The main results are stated in Section
6.1 followed by their proofs in Sections 6.2 and 6.3. Lastly, the numerical
illustrations are collected in Section 6.4.

6.1 Main Results

The following two theorems describe the variational characterization and cri-
teria for spectral stability for the even periodic waves and the odd periodic
waves the stationary equation (6.2) when b = 0. The subspace of odd (even)
functions in L2 is denoted by L2

odd (L2
even). Similarly, the subspace of odd

(even) periodic functions in Hs
per is denoted by Hs

per,odd (Hs
per,even).

Theorem 6.1 (Odd periodic wave). Fix α ∈
(

1
2
, 2
]
. For every c0 ∈ (−1,∞),
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there exists a solution to the stationary equation (6.2) with b = 0 and the odd,
single-lobe profile ψ0, which is obtained from a constrained minimizer of the
following variational problem:

inf
u∈H

α
2
per,odd

{∫ π

−π

[
(D

α
2 u)2 + c0u

2
]
dx :

∫ π

−π
u4dx = 1

}
. (6.5)

There exists a C1 mapping c 7→ ψ(·, c) ∈ Hα
per,odd in a local neighborhood

of c0 such that ψ(·, c0) = ψ0. The spectrum of H in L2(T) has exactly two
negative eigenvalues and if 1 ∈ Range(H), a simple zero eigenvalue. Assuming
1 ∈ Range(H) and setting σ0 := 〈H−11, 1〉, the periodic wave with the profile
ψ0 is spectrally stable if

σ0 ≤ 0,
d

dc
‖ψ‖2

L2 ≥ 0 (6.6)

and is spectrally unstable with exactly one real, positive eigenvalue of ∂xH in
L2(T) if

either σ0
d

dc
‖ψ‖2

L2 > 0 or σ0 = 0,
d

dc
‖ψ‖2

L2 < 0, or σ0 > 0,
d

dc
‖ψ‖2

L2 = 0.

(6.7)
If 1 /∈ Range(H), then the periodic wave is spectrally unstable with exactly one
real positive eigenvalue of ∂xH in L2(T) if

d

dc
‖ψ‖2

L2 ≥ 0. (6.8)

Remark 6.1. If σ0 = 0, the odd periodic wave of Theorem 6.1 undertakes the
stability bifurcation, which also results in the bifurcation of new solutions in
the stationary equation (6.2) with b 6= 0. The stability bifurcation was first
discovered in [36] for α = 2. We show numerically that this bifurcation is
generic for every α ∈

(
1
2
, 2
)
.

Remark 6.2. Based on numerical studies, see Section 6.4, we conjecture that
the case 1 /∈ Range(H) is impossible for the odd periodic wave in Theorem
6.1 for every α ∈

(
1
2
, 2
]

and every c ∈ (−1,∞). Nevertheless, the case 1 /∈
Range(H) is observed for the new solutions bifurcating from the odd periodic
wave in Theorem 6.1.

Remark 6.3. Although the solution ψ0 is obtained as a global minimizer of the
variational problem (6.5), the solution ψ(·, c) ∈ Hα

per,odd in a local neighborhood
of c0 is continued from the Euler–Lagrange equation. Therefore, even if the
solution ψ(·, c) ∈ Hα

per,odd is C1 with respect to c, it may not coincide with
the global minimizer of (6.5) for c 6= c0 because uniqueness of minimizers of

96



PhD Thesis – U. Le McMaster University – Mathematics

the variational problem (6.5) is not proven. Nevertheless, the spectral stability
conclusions of Theorem 6.1 apply to every global minimizer of the variational
problem (6.5) for every c0 ∈ (−1,∞).

Theorem 6.2 (Even periodic wave). Fix α ∈
(

1
2
, 2
]
. For every c0 ∈

(
1
2
,∞
)
,

there exists a solution to the stationary equation (6.2) with b = 0 and the even,
single-lobe profile ψ0, which is obtained from a constrained minimizer of the
following variational problem:

inf
u∈H

α
2
per,even

{∫ π

−π

[
(D

α
2 u)2 + c0u

2
]
dx :

∫ π

−π
u4dx = 1

}
. (6.9)

The spectrum of H in L2(T) has exactly one simple negative eigenvalue and if
1 ∈ Range(H), a simple zero eigenvalue. With the transformation,

ψ0(x) = a0 + φ0(x), a0 :=
1

2π

∫ π

−π
ψ0(x)dx, ω0 := c0 − 6a2

0, (6.10)

assuming ω0 ∈ (−1,∞), there exists a C1 mapping (ω, a) 7→ φ(·, ω, a) ∈
Hα

per,even in a local neighborhood of (ω0, a0) such that φ(·, ω0, a0) = φ0 and
the mean value of φ is zero. The periodic wave ψ0 is spectrally stable if

∂

∂ω
‖φ‖2

L2 ≥ 0 (6.11)

and is spectrally unstable with exactly one real, positive eigenvalue of ∂xH in
L2(T) if

∂

∂ω
‖φ‖2

L2 < 0. (6.12)

Remark 6.4. We derive the criterion for 1 /∈ Range(H), in which case H
has the double zero eigenvalue and the even periodic wave of Theorem 6.2
undertakes the fold bifurcation. Two solutions of the stationary equation (6.2)
with b = 0 coexist for the same value of c near the fold bifurcation. We show
numerically that the fold bifurcation is generic for every α ∈

(
1
2
, α0

)
, where

α0 :=
log 8− log 5

log 2
≈ 0.6781.

If α ∈
(

1
2
, α0

)
, two solutions with the even, single-lobe profile exist for the same

value of c ∈ (c0,
1
2
) with c0 ∈

(
0, 1

2

)
beyond the admissible range of values of c

in Theorem 6.2.

Remark 6.5. Based on numerical evidences, we conjecture that ω ∈ (−1,∞)
is always satisfied for the even periodic wave in Theorem 6.2.
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Remark 6.6. Similarly to Remark 6.3, the smooth continuation of the solu-
tion ψ(·, ω, a) = a + φ(x, ω, a) with φ(·, c, a) ∈ Hα

per,even is obtained from the
Euler–Lagrange equation and the solution ψ(·, ω, a) may not coincide with the
global minimizer of (6.9) for c(ω, a) 6= c0. Nevertheless, under the assumption
ω0 ∈ (−1,∞), the spectral stability conclusions of Theorem 6.2 apply to every
global minimizer of the variational problem (6.9) for every c0 ∈ (1

2
,∞).

6.2 Odd Periodic Waves

Here, we study the odd periodic waves and provide the proof of Theorem 6.1.
First, in Theorem 6.3 and Corollary 6.1, we obtain the variational charac-
terization of the odd periodic waves. Next, Lemma 6.2 provides a smooth
continuation of the odd periodic waves with respect to the speed parameter
c. Finally, we obtain the spectral stability conclusions in Lemma 6.5 and
Theorem 6.4.

6.2.1 Variational Characterization

If ψ ∈ Hα
per is a solution to the stationary equation (6.2) with b = 1

π

∫ π
−π ψ

3dx,
then ψ satisfies the zero-mean constraint and the boundary-value problem:

Dαψ + cψ = 2Π0ψ
3, (6.13)

where Π0f := f − 1
2π

∫ π
−π f(x)dx is the projection operator reducing the mean

value of 2π-periodic functions to zero. Since we use variational methods, we

consider weak solutions of the boundary-value problem (6.13) in H
α
2

per. By

the same bootstrapping argument as in Proposition 5.1, if ψ ∈ H
α
2

per is a
weak solution of the boundary-value problem (6.13), then ψ ∈ H∞per and, in
particular, it is a strong solution to the boundary-value problem (6.13) in Hα

per.
The following theorem and its corollary give the construction and prop-

erties of the periodic waves in a subspace of odd functions which satisfy the
boundary-value problem (6.13).

Theorem 6.3. Fix α > 1
2
. For every c > −1, there exists the ground state

(minimizer) χ ∈ H
α
2

per,odd of the following constrained minimization problem:

qc,odd := inf
u∈H

α
2
per,odd

{
Bc(u) :

∫ π

−π
u4dx = 1

}
, (6.14)

where

Bc(u) :=
1

2

∫ π

−π

[
(D

α
2 u)2 + cu2

]
dx. (6.15)
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If α ≤ 2, the ground state has the single-lobe profile, which is even with respect
to the points at x = ±π/2.

Proof. The proof follows from the proof of Theorem 5.4, mutatis mutandis.
We note that the symmetric rearrangement of the ground state yields the
single-lobe profile with the maximum points located at x = ±π/2 as opposed
to at x = 0 in the proof of Theorem 5.4.

Corollary 6.1. Let χ be the ground state of Theorem 6.3. There exists C > 0
such that ψ(x) = Cχ(x) satisfies the stationary equation (6.2) with b = 0.

Proof. By Lagrange’s Multiplier Theorem, the constrained minimizer χ ∈
H

α
2

per,odd satisfies the stationary equation

Dαχ+ cχ = µχ3, (6.16)

where µ = 2Bc(χ) is the Lagrange multiplier found from the constraint
∫ π
−π χ

4dx =

1. Since Bc(χ) > 0, the scaling transformation ψ = Cχ with C :=
√
Bc(χ)

maps the stationary equation (6.16) to the form (6.2) with b = 0.

Lemma 6.1. Let χ be the ground state of Theorem 6.3 and qc,odd = Bc(χ).
Then qc,odd is continuous in c for c > −1 and qc,odd → 0 as c→ −1.

Proof. The proof of continuity of qc,odd follows the proof of Lemma 5.1 verba-
tim. In order to show that qc,odd → 0 as c → −1, we consider the following
function

u(x) = A sin(x),

which satisfy the constraint in (6.14) for A :=
(

4
3π

)1/4
. Substituting u into

Bc(u) yields

Bc(u) =
π

2
A2(1 + c) =

√
π√
3

(1 + c).

Since
0 ≤ qc,odd ≤ Bc(u),

it follows that qc,odd → 0 as c→ −1.

6.2.2 Smooth continuation

Let ψ ∈ Hα
per,odd be a solution to the boundary-value problem (6.13) for some

c ∈ (−1,∞) obtained by Theorem 6.3 and Corollary 6.1. Let H be the lin-
earized operator around the wave ψ given by (6.4) and

H : Hα
per ⊂ L2(T)→ L2(T). (6.17)
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In what follows, we determine the multiplicity of the zero eigenvalue of H
denoted as z(H) and the number of negative eigenvalues of H with the account
of their multiplicities denoted as n(H). It follows from the stationary equation
(6.2) with b = 0 that

H1 = c− 6ψ2 (6.18)

and

Hψ = −4ψ3. (6.19)

Due to the translational symmetry, we always have H∂xψ = 0.
By an elementary application of the implicit function theorem (similarly

to Lemma 5.3), we obtain the smooth continuation of the solution to the
boundary value problem (6.13) with respect to parameter c.

Lemma 6.2. Assume α ∈ (1
2
, 2] and ψ0 ∈ Hα

per,odd be a solution obtained in
Theorem 6.3 and Corollary 6.1 for c = c0. Assume Ker(H|L2

odd
) is trivial.

Then, there exists a C1 mapping in an open subset of c0 denoted by I ⊂ R:

I 3 c 7→ ψ(·; c) ∈ Hα
per,odd (6.20)

such that ψ(·; c0) = ψ0 and H∂cψ(·; c0) = −ψ0.

Proof. Let Υ : (−1,∞)×Hα
per,odd → L2

odd(T) be defined by Υ(c, f) := Dαf +
cf − 2f 3. By hypothesis of the lemma, we have Υ(c0, ψ0) = 0. Moreover, Υ
is smooth and its Fréchet derivative with respect to f evaluated at (c0, ψ0) is
given by H computed at ψ0. Since Ker(H|L2

odd
) is empty by the assumption,

we conclude that H is one-to-one. It is also onto since its spectrum consists of
nonzero isolated eigenvalues with finite algebraic multiplicities because Hα

per,odd

is compactly embedded in L2
odd(T) if α > 1/2 and because H is a self-adjoint

operator. Hence, H is a bounded linear operator with a bounded inverse.
Thus, since Υ and its derivative with respect to f are smooth maps on their
domains, the result follows from the implicit function theorem.

Since ψ is the single-lobe profile of the periodic wave in the sense of Defi-
nition 1.1 and since ψ is even with respect to the points at x = ±π/2, then we
can place the unique maximum of ψ at x = π/2 and adopt several results in
Propositions A.1, A.2, A.3 after translating x 7→ x− π/2. We compute n(H)
and z(H) in the following lemma.

Lemma 6.3. Let α ∈ (1
2
, 2] and ψ ∈ Hα

per,odd be a solution obtained in Theorem
6.3 and Corollary 6.1. Then, n(H) = 2 and

z(H) =

{
1, if 1 ∈ Range(H),
2, if 1 /∈ Range(H).
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Proof. Since ψ ∈ Hα
per,odd is a minimizer of the constrained variational problem

(6.14) with only one constraint, we have n(H|L2
odd

) ≤ 1. On the other hand,
we have

〈Hψ, ψ〉L2 = −4‖ψ‖4
L4 < 0,

with odd ψ, hence n(H|L2
odd

) ≥ 1, so that n(H|L2
odd

) = 1.
Thanks to Proposition A.1, which states that an eigenfunction correspond-

ing to the n-th eigenvalue of H can change signs at most 2(n−1) times over T,
we see that 0 is not the first eigenvalue of H|L2

even
because ∂xψ ∈ Ker(H) and

∂xψ is even with two nodes on T. Hence, n(H|L2
even

) ≥ 1. However, another
negative eigenvalue of H|L2

even
is impossible since the eigenfunction for the sec-

ond eigenvalue of H|L2
even

must have two nodes by Proposition A.1 and the
nodes are located at the symmetry points x = ±π/2, hence this eigenfunction
is not orthogonal to ∂xψ ∈ Ker(H). Therefore, 0 is the second eigenvalue of
H|L2

even
, which yields n(H|L2

even
) = 1 and

n(H) = n(H|L2
odd

) + n(H|L2
even

) = 2.

It remains to consider z(H) ≥ 1. For illustration purposes, we give the
first five eigenfunctions of the operator H in L2(T) for α = 2 on Figure 6.1.

By the symmetry of ψ and ψ2, the operator H in (6.4) and (6.17) has a
π-periodic potential, which is even with respect to both x = 0 and x = π/2.
The negative eigenvalue of H in L2

even, which is the lowest eigenvalue of H in
L2(T), corresponds to the sign-definite π-periodic function, which is even with
respect to both x = 0 and x = π/2. The negative eigenvalue in L2

odd, which
is the second eigenvalue of H in L2(T), corresponds to the eigenfunction with
two nodes on T, which is even with respect to x = π/2. The eigenfunction ∂xψ
for the zero eigenvalue in L2

even, which is the third eigenvalue of H in L2(T),
has two nodes and is odd with respect to x = π/2. By Proposition A.3, the
zero eigenvalue is the lowest eigenvalue for the eigenfunctions that are odd
with respect to x = π/2.

Finally, we consider the eigenfunctions with four nodes on T since 0 is
the third eigenvalue of H. These eigenfunctions have the same parity with
respect to x = 0 and x = π/2, hence odd functions in L2

odd are also odd with
respect to x = π/2. Since the zero eigenvalue is the lowest eigenvalue for the
eigenfunctions that are odd with respect to x = π/2, the odd eigenfunction
of H in L2

odd with four nodes corresponds to the positive eigenvalue of H.
Therefore, z(H|L2

odd
) = 0 and by Lemma 6.2, the mapping c 7→ ψ(·; c) is C1 in

c with H∂cψ = −ψ, so that ψ ∈ Range(H).
Assume that the even eigenfunction of H in L2

even with four nodes (call it
f) belongs to Ker(H), hence Ker(H) = span(∂xψ, f). Either 〈1, f〉L2 = 0 or
〈1, f〉L2 6= 0. If 〈1, f〉L2 = 0, then 1 ∈ Range(H). It follows from (6.18) that if
1 ∈ Range(H), then ψ2 ∈ Range(H). Therefore, {1, ψ, ψ2} ∈ Range(H) and
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by Proposition A.2, Ker(H) = span(∂xψ), so that the existence of f ∈ Ker(H)
leads to a contradiction. Hence, z(H) = 1 if 1 ∈ Range(H). If 〈1, f〉L2 6=
0, then 1 /∈ Range(H) because Range(H) is orthogonal to Ker(H). Hence,
z(H) = 2 if and only if 1 /∈ Range(H).
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Figure 6.1: Normalized eigenfunctions of H on T for α = 2 computed from
the exact expression of equations (6.71)–(6.73) and (6.75)–(6.76)

Next, we recall the subspace of L2 with zero mean X0 defined in (1.19):

X0 :=
{
f ∈ L2(T) :

∫ π

−π
f(x)dx = 0

}
. (6.21)

Denote Π0HΠ0 by H|X0 . By an explicit computation, it follows that if f ∈
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Hα
per ∩X0, then

H|X0f := Hf +
3

π
〈f, ψ2〉. (6.22)

The following result is similar to Lemma 5.2.

Lemma 6.4. Let α ∈ (1
2
, 2] and ψ ∈ Hα

per,odd be a solution obtained in Theorem
6.3 and Corollary 6.1. If there exists a nonzero f ∈ Ker(H|X0) such that
〈f, ∂xψ〉 = 0, then

z(H) = 1, and 〈f, ψ2〉 6= 0. (6.23)

Proof. Since f ∈ Ker(H|X0), then 〈1, f〉 = 0 and f satisfies

Hf = − 3

π
〈f, ψ2〉. (6.24)

Either 〈f, ψ2〉 = 0 or 〈f, ψ2〉 6= 0.
If 〈f, ψ2〉 = 0, then f ∈ Ker(H) so that z(H) = 2 and 1 /∈ Range(H) by

Lemma 6.3. However, 1 ⊥ span(∂xψ, f) = Ker(H) implies 1 ∈ Range(H),
which is a contradiction.

If 〈f, ψ2〉 6= 0, then it follows from (6.24) that 1 ∈ Range(H) and hence
z(H) = 1 by Lemma 6.3. This yields (6.23).

Remark 6.7. Assuming 1 ∈ Range(H), let us define σ0 := 〈H−11, 1〉. Then,
z(H|X0) = 2 if and only if σ0 = 0. On the other hand, z(H) = 2 if and only if
σ0 is unbounded.

6.2.3 Spectral Stability

Next, we study the condition for which the ground state of the variational
problem (6.14) with a single constraint is a local minimizer of the following
variational problem with two constraints:

rc := inf
u∈H

α
2
per

{
Bc(u) :

∫ π

−π
u4dx = 1,

∫ π

−π
udx = 0

}
. (6.25)

It is clear that rc ≤ qc,odd and therefore, minimizers of (6.14) could be saddle
points of (6.25).

The following lemma provides the count of the negative and zero eigen-
values of the operator H in the constrained space related to the variational
problem (6.25).

Lemma 6.5. Let α ∈ (1
2
, 2] and ψ ∈ Hα

per,odd be a solution obtained in Theorem
6.3 and Corollary 6.1. If 1 ∈ Range(H), then

n(H|{1,ψ3}⊥) =

{
0, σ0 ≤ 0,
1, σ0 > 0,

z(H|{1,ψ3}⊥) =

{
1, σ0 6= 0,
2, σ0 = 0,

(6.26)
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where σ0 := 〈H−11, 1〉. If 1 /∈ Range(H), then

n(H|{1,ψ3}⊥) = 1, z(H|{1,ψ3}⊥) = 1. (6.27)

Proof. By using the result of Theorem A.3, we construct the following sym-
metric 2-by-2 matrix related to the two constraints in (6.25):

P (λ) :=

[
〈(H− λI)−1ψ3, ψ3〉 〈(H− λI)−1ψ3, 1〉
〈(H− λI)−11, ψ3〉 〈(H− λI)−11, 1〉

]
, λ /∈ σ(H).

If 1 ∈ Range(H), then

〈H−11, 1〉 = σ0, 〈H−11, ψ3〉 = 〈H−1ψ3, 1〉 = 0, 〈H−1ψ3, ψ3〉 = −1

4

∫ π

−π
ψ4dx,(6.28)

thanks to equation (6.19). By Theorem A.3, we have the following identities:{
n(H

∣∣
{1,ψ3}⊥) = n(H)− n0 − z0,

z(H
∣∣
{1,ψ3}⊥) = z(H) + z0,

(6.29)

where n0 and z0 are the numbers of negative and zero eigenvalues of P (0).
Since n(H) = 2 and z(H) = 1 by Lemma 6.3, the count (6.29) yields (6.26)
due to (6.28).

If 1 /∈ Range(H), then z(H) = 2 but z(H|X0) = 1 by Lemma 6.4. By
Theorem A.3, the count (6.29) must be replaced by{

n(H
∣∣
{1,ψ3}⊥) = n(H)− n0 − z0,

z(H
∣∣
{1,ψ3}⊥) = z(H) + z0 − z∞,

(6.30)

where z∞ = 1, z0 = 0, and n0 = 1. The count (6.30) yields (6.27).

It follows by Lemma 6.5 that the ground state of the variational problem
(6.14) is a local minimizer of the variational problem (6.25) if σ0 ≤ 0, which
is only degenerate by the translational symmetry if σ0 6= 0, whereas it is the
saddle point of the variational problem (6.25) if σ0 > 0 or if 1 /∈ Range(H), in
which case σ0 is unbounded.

Equipped with the variational characterization of Lemma 6.5, we can clarify
the spectral stability of the odd periodic waves. The following theorem gives
the relevant result.

Theorem 6.4. Let α ∈ (1
2
, 2] and ψ ∈ Hα

per,odd be a solution obtained in
Theorem 6.3 and Corollary 6.1. If 1 ∈ Range(H), then the periodic wave is
spectrally stable if

σ0 ≤ 0,
d

dc
‖ψ‖2

L2 ≥ 0, (6.31)

104



PhD Thesis – U. Le McMaster University – Mathematics

and is spectrally unstable with exactly one real positive eigenvalue of ∂xH in
L2(T) if

either σ0
d

dc
‖ψ‖2

L2 > 0 or σ0 = 0,
d

dc
‖ψ‖2

L2 < 0, or σ0 > 0,
d

dc
‖ψ‖2

L2 = 0,

(6.32)
where σ0 := 〈H−11, 1〉. If 1 /∈ Range(H), then the periodic wave is spectrally
unstable with exactly one real positive eigenvalue of ∂xH in L2(T) if

d

dc
‖ψ‖2

L2 ≥ 0. (6.33)

Proof. It is well-known [50] that the periodic wave ψ is spectrally stable if it
is a constrained minimizer of energy (1.13) under fixed momentum (1.11) and
mass (1.10). Since H is the Hessian operator for G(u) in (6.4), the spectral
stability holds if

H
∣∣
{1,ψ}⊥ ≥ 0. (6.34)

On the other hand, the periodic wave ψ is spectrally unstable with exactly one

real positive eigenvalue if n
(
H
∣∣
{1,ψ}⊥

)
= 1, whereas the case n

(
H
∣∣
{1,ψ}⊥

)
= 2

is inconclusive (see [80]).
Similarly to the proof of Lemma 6.5, we construct the following symmetric

2-by-2 matrix related to the two constraints in (6.34):

D(λ) :=

[
〈(H− λI)−1ψ, ψ〉 〈(H− λI)−1ψ, 1〉
〈(H− λI)−11, ψ〉 〈(H− λI)−11, 1〉

]
.

If 1 ∈ Range(H), then

〈H−11, 1〉 = σ0, 〈H−11, ψ〉 = 〈H−1ψ, 1〉 = 0, 〈H−1ψ, ψ〉 = −1

2

d

dc
‖ψ‖2

L2 ,(6.35)

where we have used H∂cψ = −ψ from Lemma 6.2, which can be applied since
z(H|L2

odd
) = 0 follows from the proof of Lemma 6.3. By Theorem A.3, we have

the following identities:{
n(H

∣∣
{1,ψ}⊥) = n(H)− n0 − z0,

z(H
∣∣
{1,ψ}⊥) = z(H) + z0,

(6.36)

where n0 and z0 are the numbers of negative and zero eigenvalues of D(0).
Since n(H) = 2 and z(H) = 1 by Lemma 6.3, the count (6.36) implies
n(H

∣∣
{1,ψ}⊥) = 0 due to (6.35) if the conditions (6.31) are satisfied and n(H

∣∣
{1,ψ}⊥) =

1 if the condition (6.32) is satisfied.
If 1 /∈ Range(H), then z(H) = 2 but z(H|X0) = 1 by Lemma 6.4. By
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Theorem A.3, the count (6.36) must be replaced by{
n(H

∣∣
{1,ψ}⊥) = n(H)− n0 − z0,

z(H
∣∣
{1,ψ}⊥) = z(H) + z0 − z∞,

(6.37)

where z∞ = 1 and n0 + z0 = 1 if the condition (6.33) is satisfied. In this case,
n(H

∣∣
{1,ψ}⊥) = 1 and the periodic wave is spectrally unstable.

Remark 6.8. If 1 ∈ Range(H), the case σ0 > 0 and d
dc
‖ψ‖2

L2 < 0 is incon-
clusive because n(H

∣∣
{1,ψ}⊥) = 2. In this case, one needs to find if the spectral

stability problem has eigenvalues λ ∈ iR with so-called negative Krein sig-
nature, see [80] for further details. The same is true if 1 /∈ Range(H) and
d
dc
‖ψ‖2

L2 < 0.

6.3 Even Periodic Waves

Here, we consider the even periodic waves and provide the proof of Theorem
6.2. The structure is similar to that of Section 6.2. First, in Theorem 6.5,
we obtain the variational characterization of the even periodic waves. Next,
a smooth continuation of the even periodic waves is provided in Lemma 6.8.
Finally, we prove criteria for the spectral stability in Theorem 6.6.

6.3.1 Variational characterization

The odd periodic wave constructed in Theorem 6.3 and Corollary 6.1 is even
after translation x 7→ x − π/2. However, since n(H) = 2 by Lemma 6.3 and
the eigenfunctions corresponding to the negative eigenvalues are both even
after the translation x 7→ x− π/2 Figure6.1, the odd periodic wave translated
into an even function cannot be a solution of the constrained minimization
problem with a single constraint. Therefore, the same constrained minimiza-
tion problem (6.14) in a subspace of even functions yields a different branch of
periodic waves. The following theorem gives the construction and properties
of the even periodic waves.

Theorem 6.5. Let α > 1
2

be fixed. For every c > 0, there exists the ground

state (minimizer) χ ∈ H
α
2

per,even of the following constrained minimization prob-
lem:

qc,even := inf
u∈H

α
2
per,even

{
Bc(u) :

∫ π

−π
u4dx = 1

}
, (6.38)

with the same Bc(u) as in (6.15). There exists C > 0 such that ψ(x) = Cχ(x)
satisfies the stationary equation (6.2) with b = 0. If α ≤ 2, the ground state
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is the constant solution for c ∈
(
0, 1

2

]
and has the single-lobe profile for c ∈(

1
2
,∞
)
.

Proof. The proof follows from the proof of Theorem 5.4, mutatis mutandis.
Here, we note that in order to ensure that the minimizer has the single-lobe

profile, we need to eliminate the constant solution in H
α
2

per,even. By Lagrange’s

Multiplier Theorem, the constrained minimizer χ ∈ H
α
2

per,even satisfies the sta-
tionary equation

Dαχ+ cχ = µχ3, (6.39)

where µ = 2Bc(χ) due to the normalization in (6.38). Since Bc(χ) > 0,
the scaling transformation ψ = Cχ with C :=

√
Bc(χ) maps the stationary

equation (6.39) to the form (6.2) with b = 0. The nonzero constant solution
to the stationary equation (6.2) with b = 0 is given by ψ(x) =

√
c/2 up to a

sign choice. The linearization operator H in (6.4) evaluated at the constant
solution is given by

H = Dα + c− 6ψ2 = Dα − 2c.

Since n(H) = 1 if and only if c ∈
(
0, 1

2

]
, the constant wave is a constrained

minimizer of (6.38) for c ∈
(
0, 1

2

]
and a saddle point of (6.38) for c ∈

(
1
2
,∞
)
.

By the symmetric rearrangements, the global minimizer is given by the con-
stant solution in the former case and by a non-constant solution with the
single-lobe profile in the latter case.

6.3.2 Smooth continuation

Let ψ ∈ Hα
per,even be a solution to the stationary equation (6.2) with b = 0

for c ∈
(

1
2
,∞
)

obtained by Theorem 6.5. We introduce again the linearized
operator H by (6.4) and (6.17). Equalities (6.18) and (6.19) hold true for the
even periodic wave and.

The following lemma presents the count of n(H) and z(H) for the even
periodic wave.

Lemma 6.6. Let α ∈ (1
2
, 2] and ψ ∈ Hα

per,even be a solution obtained in Theo-
rem 6.5. Then, n(H) = 1 and

z(H) =

{
1, if 1 ∈ Range(H),
2, if 1 /∈ Range(H).

Proof. Since ψ ∈ Hα
per,even is a minimizer of the constrained variational problem

(6.38) with only one constraint, we have n(H|L2
even

) ≤ 1. On the other hand,
we have

〈Hψ, ψ〉L2 = −4‖ψ‖4
L4 < 0,
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with even ψ, hence n(H|L2
even

) ≥ 1, so that n(H|L2
even

) = 1. By Proposition A.3
(without translation), n(H|L2

odd
) = 0 and z(H|L2

odd
) = 1. Hence, n(H) = 1.

It remains to consider z(H) ≥ 1. Since 0 is the second eigenvalue of H,
Proposition A.1 suggests that if z(H) = 2, then the even eigenfunction of
Ker(H) has at most two symmetric nodes on T. If the periodic wave has the
single-lobe profile ψ, then ψ3 has also the single-lobe profile. By using the same
argument as in the proof of Proposition 3.1 in [53], it follows that z(H) = 1 if
and only if {1, ψ3} ∈ Range(H).

Indeed, if h ∈ Ker(H) is an even eigenfunction in the case z(H) = 2 and
{1, ψ3} ∈ Range(H), then 〈h, 1〉 = 0 and 〈h, ψ3〉 = 0. The first condition
suggests that h is sign-indefinite with exactly two symmetric nodes at ±x0

with x0 ∈ (0, π), but then 〈h, ψ3−ψ3(x0)〉 is sign-definite and cannot be zero,
so that no h ∈ Ker(H) exists.

Since ψ3 ∈ Range(H) due to equation (5.25), it follows that z(H) = 1 if
and only if 1 ∈ Range(H).

The definition of H|X0 , where X0 ⊂ L2(T) is defined by (6.21), is the same
as in (6.22). The result of Lemma 6.4 holds true for the even periodic wave
ψ ∈ Hα

per,even. In order to count the indices n(H|X0) and z(H|X0), we shall
re-parameterize the even periodic wave to the zero-mean periodic waves.

The even periodic wave with profile ψ has generally nonzero mean value
and does not satisfy the boundary-value problem (6.13). Let us define ψ(x) =
a + φ(x), where a := 1

2π

∫ π
−π ψ(x)dx. Then, φ ∈ Hα

per,even ∩X0 is a solution of
the stationary equation:

Dαφ+ ωφ+ β = 2
(
φ3 + 3aφ2

)
, (6.40)

where ω := c − 6a2 and β := ca − 2a3. Since φ has zero mean, β can be
equivalently written as

β :=
1

π

∫ π

−π

(
φ3 + 3aφ2

)
dx, (6.41)

so that the stationary equation (6.40) can be rewritten as the boundary-value
problem:

Dαφ+ ωφ = 2Π0

(
φ3 + 3aφ2

)
. (6.42)

The following lemma presents the computation of n(H|X0) and z(H|X0).

Lemma 6.7. Let α ∈ (1
2
, 2] and ψ ∈ Hα

per,even be a solution obtained in Theo-
rem 6.5. Assume that ω ∈ (−1,∞) after the transformation to the stationary
equation (6.40). Then, n(H|X0) = 1 and z(H|X0) = 1.

Proof. Transformation ψ = a + φ and ω = c − 6a2 changes H given by (6.4)
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into the equivalent form:

H = Dα + c− 6ψ2 = Dα + ω − 6φ2 − 12aφ =: H̃. (6.43)

Then, it follows directly that

〈H|X0φ, φ〉 = −4

∫ π

−π
φ4dx− 6a

∫ π

−π
φ3dx. (6.44)

Taking an inner product of the stationary equation (6.40) with φ yields the
Pohozhaev-type identity

Bω(φ) =

∫ π

−π
φ4dx+ 3a

∫ π

−π
φ3dx. (6.45)

where Bω(φ) is defined by (6.15). Since ω ∈ (−1,∞) and φ ∈ Hα
per,even ∩X0,

we have Bω(φ) ≥ 0, so that the equality (6.44) can be estimated by

〈H|X0φ, φ〉 ≤ −2

∫ π

−π
φ4dx < 0. (6.46)

Hence n(H|X0) ≥ 1 and since n(H) = 1 by Lemma 6.6, we have n(H|X0) = 1.
By Theorem A.3, we have the following identities:{

n(H|X0) = n(H)− n0 − z0,
z(H|X0) = z(H) + z0 − z∞,

(6.47)

where z∞ = 1 if 1 /∈ Range(H). It follows from the first equality in (6.47)
that n0 = z0 = 0 since n(H) = n(H|X0) = 1. Then, the second equality yields
z(H|X0) = z(H)−z∞. If z(H|X0) = 2, then z(H) ≥ 2, which is in contradiction
with Lemma 5.2 extended to the even periodic wave ψ ∈ Hα

per,even. Hence,
z(H|X0) = 1, in which case z(H) = 1 + z∞ in agreement with Lemma 6.6.

Remark 6.9. It follows from the proof of Lemma 6.7 that σ0 > 0 if 1 ∈
Range(H), where σ0 := 〈H−11, 1〉.

In order to derive the spectral stability result, we shall now extend solutions
to the stationary equation (6.40) with respect to two independent parameters
(ω, a) with β being a C1 function of (ω, a). Since the periodic waves satisfy the
stationary equation (6.2) with b = 0, where c is the only parameter, parameters
ω, a, and β in the stationary equation (6.40) are parameterized by c, hence a
is not independent of ω. The following lemma allows us to extend zero-mean
solutions to the boundary-value problem (6.42) with respect to independent
parameters (ω, a) near each uniquely defined point (ω0, a0).
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Lemma 6.8. Assume α ∈ (1
2
, 2] and φ0 ∈ Hα

per,even ∩ X0 be a solution to the
boundary-value problem (6.42) with ω = ω0 ∈ (−1,∞) and a = a0 ∈ R. Then,
there exists a C1 mapping in an open subset of (ω0, a0) denoted by O ⊂ R2:

O 3 (ω, a) 7→ φ(·;ω, a) ∈ Hα
per,even ∩X0, (6.48)

such that φ(·;ω0, a0) = φ0.

Proof. The proof repeats the arguments in the proof of Lemma 6.2. Let Υ :
(−1,∞)× R×Hα

per,even ∩X0 → L2
even(T) ∩X0 be defined by

Υ(ω, a, g) := Dαg + ωg − 2Π0

(
g3 + 3ag2

)
. (6.49)

By hypothesis we have Υ(ω0, a0, φ0) = 0. Moreover, since Υ is smooth, its
Fréchet derivative with respect to g evaluated at (ω0, a0, φ0) is given by

DgΥ(ω0, a0, φ0) = Dα + ω0 − 6Π0

(
φ2

0 + 2a0φ0

)
= Dα + c0 − 6Π0ψ

2
0 = H|X0 ,

(6.50)
where we have unfolded the previous transformation ψ0 = a0 + φ0 and ω0 =
c0 − 6a2

0 and used the same operator as in (6.22) computed at ψ0.
Since z(H|X0) = 1 by Lemma 6.7 and Ker(H|X0) = span{∂xφ0} with ∂xφ0 /∈

Hα
per,even ∩X0, we conclude that DgΥ(ω0, a0, φ0) is one-to-one. Next, we show

that DgΥ(ω0, a0, φ0) is onto. Since Hα
per,even ∩ X0 is compactly embedded in

L2
even(T)∩X0 if α > 1/2, the operatorH|X0 has compact resolvent. In addition,
H|X0 is a self-adjoint operator, hence its spectrum σ(H|X0) consists of isolated
eigenvalues with finite algebraic multiplicities. Since DgΥ(ω0, a0, φ0) is one-
to-one, it follows that 0 is not in the spectrum of DgΥ(ω0, a0, φ0), so that it
is onto. Hence, DgΥ(ω0, a0, φ0) is a bounded linear operator with a bounded
inverse. Thus, since Υ and its derivative with respect to g are smooth maps
on their domains, the result follows from the implicit function theorem.

Recall thatH = H̃ in (6.43). Extension of relations (6.18) and (6.19) yields

H̃1 = ω − 12aφ− 6φ2 (6.51)

and

H̃φ = −β − 6aφ2 − 4φ3, (6.52)

where β = β(ω, a) is a C1 function by Lemma 6.8 and the representation
(6.41). Therefore, we also obtain two more relations:

H̃∂ωφ = −∂ωβ − φ, (6.53)
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and

H̃∂aφ = −∂aβ + 6φ2. (6.54)

These relations allow us to completely characterize Ker(H), which can be two-
dimensional if 1 /∈ Range(H) by Lemma 6.6.

Lemma 6.9. Assume α ∈ (1
2
, 2] and φ ∈ Hα

per,even∩X0 be a single-lobe solution
to the boundary-value problem (6.42) with ω ∈ (−1,∞) and a ∈ R. Then,
z(H) = 1 if and only if s0 := ω − ∂aβ + 12a∂ωβ 6= 0.

Proof. Eliminating φ and φ2 from (6.51), (6.53), and (6.54) yields

H̃ (1 + ∂aφ− 12a∂ωφ) = ω − ∂aβ + 12a∂ωβ =: s0. (6.55)

Recall that H̃ = H in (6.43). If s0 6= 0, then 1 ∈ Range(H), so that z(H) = 1
holds by Lemma 6.6. If s0 = 0, then 1 + ∂aφ− 12a∂ωφ ∈ Ker(H) in addition
to ∂xφ ∈ Ker(H).

6.3.3 Spectral stability of even periodic waves

We are now ready to provide the criterion for spectral stability of the even
periodic waves. This result is given by the following theorem.

Theorem 6.6. Assume α ∈ (1
2
, 2] and φ ∈ Hα

per,even ∩ X0 be a single-lobe
solution to the boundary-value problem (6.42) with ω ∈ (−1,∞) and a ∈ R.
The periodic wave is spectrally stable if and only if

∂

∂ω
‖φ‖2

L2 ≥ 0, (6.56)

independently of either z(H) = 1 or z(H) = 2.

Proof. We proceed similarly to the proof of Theorem 6.4. If 1 ∈ Range(H),
we use (6.55) and compute

σ0 := 〈H−11, 1〉 =
2π

s0

,

where s0 6= 0 by Lemma 6.9. For the even periodic wave, we have σ0 > 0
(see Remark 6.9), so that s0 > 0. Eliminating constant term from (6.53) and
(6.55) yields

H̃
[
∂ωφ+ s−1

0 ∂ωβ (1 + ∂aφ− 12a∂ωφ)
]

= −φ, (6.57)

By projecting (6.53) to ∂aφ and (6.54) to ∂ωφ, it is easy to verify that

6〈φ2, ∂ωφ〉+ 〈φ, ∂aφ〉 = 0. (6.58)
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Using (6.57) yields

〈H−11, φ〉 = 〈H−1φ, 1〉 = −σ0∂ωβ,

where we have used that

2π∂ωβ = 6〈φ2, ∂ωφ〉+ 12a〈φ, ∂ωφ〉 = −〈φ, ∂aφ〉+ 12a〈φ, ∂ωφ〉,

which follows from (6.41) and (6.58). Finally, we obtain from (6.57) and (6.58)
that

〈H−1φ, φ〉 = −〈φ, ∂ωφ〉+ σ0 (∂ωβ)2 .

Theorem A.3, we have the following identities:{
n(H

∣∣
{1,ψ}⊥) = n(H)− n0 − z0,

z(H
∣∣
{1,ψ}⊥) = z(H) + z0,

(6.59)

where n0 and z0 are the numbers of negative and zero eigenvalues of D(0) in
the proof of Theorem 6.4. Since

detD(0) = −σ0〈φ, ∂ωφ〉.

and σ0 > 0, we have n0 + z0 = 1 if the condition (6.56) is satisfied and
n0 + z0 = 0 if it is not satisfied. Since n(H) = 1 and z(H) = 1 by Lemmas
6.6 and 6.9, the count (6.59) implies n(H

∣∣
{1,ψ}⊥) = 0 if the condition (6.56) is

satisfied and n(H
∣∣
{1,ψ}⊥) = 1 if it is not satisfied. This gives the assertion of

the theorem if 1 ∈ Range(H).
If 1 /∈ Range(H), then z(H) = 2 and s0 = 0. In this case, the count (6.59)

should be adjusted as{
n(H

∣∣
{1,ψ}⊥) = n(H)− n0 − z0,

z(H
∣∣
{1,ψ}⊥) = z(H) + z0 − z∞,

(6.60)

where z∞ = 1. At the same time, n0 + z0 = 1 if and only if the same condition
(6.56) is satisfied and n0 + z0 = 0 if it is not satisfied. Hence the stability
conclusion remains unchanged if 1 /∈ Range(H).

Remark 6.10. The momentum (1.11) computed at the even periodic wave
with the profile ψ and the decomposition ψ = a+ φ is given by

F (ψ) = F (φ) + πa2.
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If ω and a are independent parameters, it is true that

∂

∂ω
F (φ) =

∂

∂ω
F (ψ), (6.61)

however, this quantity is not defined by the dependence of the momentum F (ψ)
on the original wave speed c. In addition, if ψ satisfies the stationary equation
(6.2) with b = 0, then a depends on ω, therefore, the dependence of F (ψ) versus
ω does not generally provide information about the slope condition (6.61). See
also numerical approximations in the next section.

6.4 Examples and Numerical Illustrations

Here, we provide examples for the odd and even periodic waves.

6.4.1 Stokes Expansion for Odd Waves

Stokes expansions of small-amplitude periodic waves near the bifurcation point
c = −1 are rather standard in getting precise results on the existence and
stability of periodic waves. The following proposition describes the properties
of the small-amplitude periodic waves.

Proposition 6.1. For each α ∈
(

1
2
, 2
]
, there exists c0 ∈ (−1,∞) such that

the odd periodic wave exists for c ∈ (−1, c0) with n(H) = 2, z(H) = 1 and is
spectrally stable.

Proof. We solve the stationary equation (6.2) with b = 0 in the space of odd
functions by using Stokes expansions in terms of small amplitude A:

ψ(x) = Aψ1(x) + A3ψ3(x) +O(A5) (6.62)

and
c = −1 + A2c2 +O(A4). (6.63)

We obtain recursively: ψ1(x) = sin(x),

ψ3(x) =
1

2(1− 3α)
sin(3x),

and c2 = 3
2

uniformly in α.
Since H = Dα − 1 + O(A2), then 1 ∈ Range(H) for small A, so that

n(H) = 2 and z(H) = 1 for any α ∈
(

1
2
, 2
]

by Lemma 6.3.
Furthermore, H−11 = −1 + O(A2), so that σ0 = 〈H−11, 1〉 = −2π +

O(A2) < 0, which implies n(H|{1,ψ3}⊥) = 0 and z(H|{1,ψ3}⊥) = 1 by Lemma
6.5. Hence, the odd periodic wave for small amplitude A represents a local
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minimizer of the variational problem (6.25) with two constraints for any α ∈(
1
2
, 2
]
.

Finally, we obtain ‖ψ‖2
L2 = πA2 +O(A4) so that

d

dc
‖ψ‖2

L2 =
2π

3

[
1 +O(A2)

]
> 0.

By Theorem 6.4, the Stokes wave (6.62) for small A is spectrally stable since
the criterion (6.31) is satisfied.

Remark 6.11. For c near −1, the small-amplitude wave of Proposition 6.1
coincides with the odd periodic wave obtained in Theorem 6.3 and Corollary
6.1. This follows from local uniqueness of the small-amplitude wave in the

neighborhood of (0,−1) in H
α
2

per,odd × R 3 (ψ, c) and the result of Lemma 6.1

which guarantees that ψ → 0 in H
α
2

per,odd as c→ −1.

6.4.2 Exact Solutions for Odd Wave with α = 2

In the case of the modified KdV equation (α = 2), the stationary equation
(6.2) with b = 0 can be solved in the space of odd functions by using the
Jacobian cnoidal function [15,36].

Let us recall the normalized second-order equation

ψ′′0(z) + (1− 2k2)ψ0(z) + 2ψ0(z)3 = 0, (6.64)

which admits the periodic solution ψ0(z) = kcn(z; k) with the period 4K(k),
where K(k) is the complete elliptic integral of the first kind and k ∈ (0, 1).
The periodic solution also satisfies the first-order invariant given by

(ψ′0)2 + (1− 2k2)ψ2
0 + ψ4

0 = k2(1− k2). (6.65)

By adopting a scaling transformation and a translation of the even function
cn(z; k) by a quarter-period, we obtain the exact solution for the odd periodic
wave in the form:

ψ(x) =
2

π
kK(k)cn

[
2

π
K(k)x−K(k); k

]
=

2

π
k
√

1− k2K(k)
sn
[

2
π
K(k)x; k

]
dn
[

2
π
K(k)x; k

] (6.66)

with

c =
4

π2
K(k)2(2k2 − 1). (6.67)

We recall some properties of complete elliptic integrals K(k) and E(k) of the
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first and second kinds, respectively:

(a) E(0) = K(0) =
π

2
,

(b) E(k)→ 1, K(k)→∞, as k → 1,

and

(c)
d

dk
E(k) =

E(k)−K(k)

k
< 0,

d

dk
K(k) =

E(k)

k(1− k2)
− K(k)

k
> 0.

It follows from (a) and (c) that

(1− k2)K(k) < E(k) < K(k), k ∈ (0, 1). (6.68)

The following proposition summarizes properties of the odd periodic waves
for α = 2. These properties were also studied in [36] and [15].

Proposition 6.2. Fix α = 2. The odd periodic wave (6.66) exists for every
c ∈ (−1,∞) with n(H) = 2 and z(H) = 1. There exists c∗ ∈ (−1,∞) such
that the odd periodic wave is spectrally stable for c ∈ (−1, c∗] and is spectrally
unstable with one real positive eigenvalue for c ∈ (c∗,∞).

Proof. The mapping (0, 1) 3 k 7→ c(k) ∈ (−1,∞) is one-to-one and onto. This
follows from

π2

8

dc

dk
=

K(k)

k(1− k2)

[
(1− k2)[K(k)− E(k)] + k2E(k)

]
> 0,

where property (6.68) has been used. Hence, the odd periodic wave parame-
terized by k ∈ (0, 1) in (6.66) and (6.67) exists for every c ∈ (−1,∞).

The first five eigenvalues and eigenfunctions of the normalized linearized
operator

H0 = −∂2
z + 2k2 − 1− 6k2cn(z; k)2 (6.69)

are known in space L2(−2K(k), 2K(k)) in the explicit form [12, 36]. The
two negative eigenvalues and a simple zero eigenvalue with the corresponding
eigenfunctions are given by

λ0 = 1− 2k2 − 2
√

1− k2 + k4, λ1 = −3k2, λ2 = 0, (6.70)

ϕ0(z) = 1 + k2 +
√

1− k2 + k4 − 3k2sn(z; k)2, (6.71)

ϕ1(z) = cn(z; k)dn(z; k), (6.72)

ϕ2(z) = sn(z; k)dn(z; k). (6.73)

The next two positive eigenvalues with the corresponding eigenfunctions are
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given by

λ3 = 3(1− k2), λ4 = 1− 2k2 + 2
√

1− k2 + k4, (6.74)

ϕ3(z) = sn(z; k)cn(z; k), (6.75)

ϕ4(z) = 1 + k2 −
√

1− k2 + k4 − 3k2sn(z; k)2. (6.76)

Eigenvalues and eigenvectors of the linearized operator H are obtained af-
ter the same scaling and translational transformation as in (6.66), see Fig-
ure 6.1. In agreement with Lemma 6.3, we have n(H) = 2, z(H) = 1, and
1 ∈ Range(H) for every c ∈ (−1,∞). Moreover, we compute

1

2
√

1− k2 + k4
H0

[
λ4ϕ0 − λ0ϕ4

λ0λ4

]
= 1 and

1

2
√

1− k2 + k4
[ϕ0 − ϕ4] = 1,

from which it follows that

〈H−1
0 1, 1〉 =

λ4〈ϕ0, 1〉 − λ0〈ϕ4, 1〉
2
√

1− k2 + k4λ0λ4

= −4 [2E(k)−K(k)] .

Since

d

dk
kE(k) = 2E(k)−K(k), (6.77)

d2

dk2
kE(k) =

(1− k2)[E(k)−K(k)]− k2E(k)

k(1− k2)
< 0, (6.78)

in addition to (b), there exists exactly one value of k, labeled as k∗ ≈ 0.909
in [36], such that 〈H−1

0 1, 1〉 < 0 for k ∈ (0, k∗) and 〈H−1
0 1, 1〉 > 0 for k ∈

(k∗, 1). Up to a positive scaling factor, 〈H−1
0 1, 1〉 gives the value of σ0 =

〈H−11, 1〉. By Lemma 6.5, this implies that n(H|{1,ψ3}⊥) = 0 for k ∈ (0, k∗]
and n(H|{1,ψ3}⊥) = 1 for k ∈ (k∗, 1). Therefore, there exists a bifurcation
at k = k∗ such that the odd periodic wave (6.66) is a local minimizer of the
variational problem (6.25) with two constraints for k ∈ (0, k∗) and a saddle
point for k ∈ (k∗, 1). The value of k∗ defines uniquely a value c∗ ≈ 1.425 by
(6.67).

Finally, we obtain

‖ψ‖2
L2 =

8

π
K(k)

[
E(k)− (1− k2)K(k)

]
> 0
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and

π

9

d

dk
‖ψ‖2

L2 =

1

k(1− k2)

[
(1− k2)K(k)[K(k)− E(k)] + E(k)[E(k)− (1− k2)K(k)]

]
> 0,

for every k ∈ (0, 1), where the property (6.68) has been used. By Theorem 6.4
due to the stability and instability criteria (6.31) and (6.32), the odd periodic
wave (6.66) with the speed (6.67) is spectrally stable for c ∈ (−1, c∗] and is
spectrally unstable with exactly one real positive eigenvalue if c ∈ (c∗,∞).

Remark 6.12. The cnoidal wave of Proposition 6.2 coincides with the odd pe-
riodic wave obtained in Theorem 6.3 and Corollary 6.1 for α = 2. This follows
from uniqueness of smooth, odd, and 2π-periodic solutions of the differential
equation

− ψ′′ + cψ = 2ψ3, (6.79)

with c ∈ (−1,∞), where the second-order equation (6.79) is the Euler–Lagrange
equation for the variational problem in Theorem 6.3 and Corollary 6.1.

The claim in Remark 6.12 is based on the following proposition. Since the
previous results in [45, 89] are not sufficient for the proof of this proposition,
we provide a simple proof based on explicit computations.

Proposition 6.3. For every c ∈ R, there exists a family of L-periodic, sign-
indefinite solutions of the differential equation (6.79), which can be parame-
terized by the value I of the first-order invariant

I = (ψ′)2 − cψ2 + ψ4. (6.80)

The mapping I 7→ L is monotonically decreasing for every c ∈ R with L ∈
(0, 2π|c|−1/2) for c < 0 and L ∈ (0,∞) for c ≥ 0. Consequently, the odd, 2π-
periodic solution of the differential equation (6.79) for c ∈ (−1,∞) is unique.

Proof. Elementary phase-plane analysis (see [45, 89]) shows the existence of
the L-periodic, sign-indefinite solutions of the differential equation (6.79) in-
tegrable with the first-order invariant (6.80). By using the scaling transfor-
mation, the L-periodic sign-indefinite solution is obtained from the periodic
solution ψ0(z) = k cn(z; k) of the normalized equations (6.64) and (6.65) in
the form:

ψ(x) = k α cn(αx; k), α :=

(
c

2k2 − 1

)1/2

, (6.81)

where k ∈ (0, 1√
2
) if c < 0 and k ∈ ( 1√

2
, 1) if c > 0. For c = 0, the choice

k = 1√
2

is unique but parameter α is arbitrary.
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It follows from (6.81) that period L and parameter I are expressed uniquely
by

L = 4α−1K(k), I = α4k2(1− k2), (6.82)

where α depends on k if c 6= 0. Computing derivatives in k yields

dI
dk

= − 2kc

(1− 2k2)3
,

dL

dk
=

4√
c(2k2 − 1)

[
(1− 2k2)

d

dk
K(k)− 2kK(k)

]
.

If c > 0 and k ∈ ( 1√
2
, 1), then dI

dk
> 0 and dL

dk
< 0 so that the mapping

I 7→ L is monotonically decreasing. As k → 1√
2
, α → ∞ and L → 0. As

k → 1, K(k)→∞ and L→∞.
If c < 0 and k ∈ (0, 1√

2
), then dI

dk
< 0 and dL

dk
< 0 due to (6.68) and

dL

dk
=

4√
c(2k2 − 1)k(1− k2)

[
(1− k2)(E(k)−K(k))− k2K(k)

]
< 0,

so that the mapping I 7→ L is also monotonically decreasing. As k → 1√
2
,

α→∞ and L→ 0. As k → 0, K(k)→ π
2

and L→ 2π|c|−1/2.
If c = 0 and k = 1√

2
, then the parameter α ∈ R is arbitrary and it follows

from (6.81) that I = C/L4 for some C > 0 so that the mapping I 7→ L is also
monotonically decreasing and L ∈ (0,∞).

Since the period function L = L(I) is monotonically decreasing in I, there
exists exactly one odd, 2π-periodic solution for every c ∈ (−1,∞) and by
uniqueness of solutions to differential equations, this unique solution is given
by the cnoidal wave (6.66) and (6.67).

6.4.3 Numerical Approximations for Odd Waves

Here, we numerically compute solutions of the stationary equation (6.2) using
Newton’s method in the Fourier space. For better performance, the odd peri-
odic wave with profile ψ in Theorem 6.3 is translated by a quarter period π/2
to an even function of x. The starting iteration is generated from the Stokes
expansion (6.62) after the translation and this solution is uniquely continued
in c for all c ∈ (−1,∞). This family of solutions correspond to b = 0 in the
stationary equation (6.2).

Additionally, we add a perturbation to the profile ψ to preserve the even
symmetry but to break the odd symmetry after the translation. Numerical
iterations converge back to the same family of solutions with b = 0 for c < c∗,
where c∗ ∈ (−1,∞) is the bifurcation point for which a nontrivial solution in
Lemma 6.4 exists. The value of c∗ exists for all α ∈

(
1
2
, 2
]
. When c > c∗,

numerical iterations converge to a new family of solutions to the stationary
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equation (6.2) with b 6= 0, which is then continued with respect to c. Conver-
gence of numerical iterations is measured by the L2 norm of the residue for
the stationary equation (6.2), with the tolerance equals to 10−10.

Figure 6.2 presents the periodic wave solutions to the stationary equation
(6.2) for α = 2. The top left panel shows the profiles of ψ of the family
with b = 0 for three different values of c: near the Stokes wave limit (blue
curve), near the bifurcation point c∗ (black curve) and when c is away from
the bifurcation point c∗ (red curve). The top right panel shows the profiles of ψ
of the bifurcating family with b 6= 0 near the bifurcation point c∗ (black curve)
and increasingly away from the bifurcation point (blue and red curves). The
vertical lines show the symmetry points at x = ±π/2. The family with b = 0
has odd symmetry with respect to these points, whereas the family with b 6= 0
does not have this symmetry; both families are even at x = 0 and x = ±π.

The middle left panel of Figure 6.2 shows the dependence of b in the station-
ary equation (6.2) versus speed c. The pitchfork bifurcation point is located
at c∗ ≈ 1.425. The two symmetric branches of solutions with b > 0 and b < 0
are obtained by using the positive and negative perturbations to the family of
solutions with b = 0.

The middle right panel of Figure 6.2 shows the momentum F (ψ) versus c.
The bottom left panel shows the dependence of σ0 versus c. The bottom right
panel displays the lowest eigenvalues of H versus c. The blue curve shows
the family of solutions with b = 0, whereas the red curve shows the family of
solutions with b 6= 0.

As shown on the middle right panel of Figure 6.2, the momentum F (ψ) is
increasing function of c for both the families. In agreement with the theory, σ0

for the family with b = 0 changes sign from negative to positive when c passes
through the bifurcation point c∗, see the bottom left panel of Figure 6.2. By
Theorem 6.4, it follows that the family of solutions with b = 0 is spectrally
stable for c < c∗ and spectrally unstable for c > c∗.

On the other hand, the bifurcating family with b 6= 0 has σ0 < 0 near the
bifurcation point but there exists another point ĉ∗ > c∗ such that σ0 diverges
at c = ĉ∗ and becomes positive for c > ĉ∗. This agrees with the behavior of
the lowest eigenvalues of H shown on the bottom right panel of Figure 6.2
since z(H) = 2 at c = ĉ∗, n(H) = 2 for c < ĉ∗ and n(H) = 1 for c > ĉ∗.
Lemma 6.5 and Theorem 6.4 are trivially extended to the family with b 6= 0
and they confirm that for both cases of c < ĉ∗ and c > ĉ∗, the periodic waves of
the family with b 6= 0 correspond to minimizers of the constrained variational
problem (5.6) and they are spectrally stable for c > c∗.

Figure 6.3 presents similar results for the periodic wave solutions to the
stationary equation (6.2) for α = 1. Note that bifurcation point c∗ moves to
the left and becomes c∗ ≈ −0.310. The existence and stability of the family of
solutions with b = 0 is very similar with the only difference that the dependence
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Figure 6.2: Periodic waves for α = 2. Top left: Profiles of ψ with b = 0 for
three different values of c. Top right: Profiles of ψ with b 6= 0 for three values
of c. Middle left: Dependence of b versus c showing the pitchfork bifurcation
point c∗. Middle right: Dependence of the momentum F (ψ) versus c. Bottom
left: Dependence of σ0 versus c. Bottom right: The lowest eigenvalues of H
versus c. The blue (red) line corresponds to the family with b = 0 (b 6= 0).
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Figure 6.3: The same as Figure 6.2 but for α = 1.
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of the momentum F (ψ) versus speed c approaches the horizontal asymptote
as c → ∞ since α = 1 is the L2-critical modified Benjamin–Ono equation
[20, 58, 70] and the periodic waves with the single-lobe profile converge to the
solitary waves in the limit c→∞.

The stability of the family of solutions with b 6= 0 is however different.
The momentum F (ψ) is a decreasing function of the speed c, as the insert
shows, hence the family of solutions is spectrally unstable for all c > c∗. It
also approaches to the horizontal asymptote as c → ∞. Profiles of both the
families in the limit of large c approach the soliton profile, but the family with
b = 0 contains two solitons on the period, whereas the family with b 6= 0
contains a single soliton on the period. Hence the momentum F (ψ) of the
family with b = 0 approaches the double horizontal asymptote as c → ∞
compared to the momentum F (ψ) of the family with b 6= 0.

We have checked again that σ0 along the family with b = 0 changes sign
from negative to positive at the bifurcation point c = c∗, whereas σ0 along the
family with b 6= 0 is negative for c ∈ (c∗, ĉ∗) and positive for c ∈ (ĉ∗,∞), where
ĉ∗ is the point where z(H) = 2 along the family with b 6= 0.

6.4.4 Stokes Expansion for Even Waves

Stokes expansion gives again a direct way to illustrate small-amplitude periodic
waves bifurcating from the constant solutions at c = 1

2
. In order to eliminate

the constant wave, we set

ψ(x) =

√
c√
2

+ ϕ(x), (6.83)

where ϕ is not required to satisfy the zero-mean property. The stationary
equation (6.2) with b = 0 is written in the equivalent form:

Dαϕ− 2cϕ = 2ϕ3 + 3
√

2cϕ2. (6.84)

By using the Stokes expansion in terms of small amplitude A:{
ϕ(x) = Aϕ1(x) + A2ϕ2(x) + A3ϕ3(x) +O(A4),
2c = 1 + A2γ2 +O(A4),

, (6.85)

we obtain recursively: ϕ1(x) = cos(x),

ϕ2(x) = −3

2
+

3

2(2α − 1)
cos(2x),

ϕ3(x) =
1

2(3α − 1)

[
1 +

9

2α − 1

]
cos(3x),

122



PhD Thesis – U. Le McMaster University – Mathematics

and

γ2 =
15

2
− 9

2(2α − 1)
.

It follows that γ2 = 0 if and only if 2α = 8
5
, which is true at

α0 :=
log 8− log 5

log 2
≈ 0.6781. (6.86)

The following proposition summarizes properties of the small-amplitude peri-
odic waves.

Proposition 6.4. Let α0 be given by (6.86). For each α ∈ (α0, 2], there exists
c0 >

1
2

such that the even periodic wave exists for c ∈
(

1
2
, c0

)
with n(H) = 1,

z(H) = 1 and is spectrally stable. For each α ∈
(

1
2
, α0

)
, there exists c0 <

1
2

such that the even periodic wave exists for c ∈
(
c0,

1
2

)
with n(H) = 2, z(H) = 1,

and is spectrally stable.

Proof. The existence statement follows from the Stokes expansion (6.85) with
small wave amplitude A since γ2 > 0 for α > α0 and γ2 < 0 for α < α0.

In order to compute n(H) and z(H), we substitute (6.83) and (6.85) into
(6.4) and obtain

H = Dα − 1− A cos(x)− A2
[
γ2 + 6ϕ2(x)− 6 cos2(x)

]
+O(A3).

We solve the spectral problem Hv = λv perturbatively near the eigenvalue
λ = 0 associated with the subspace of even functions in L2(T). Hence, we
expand

u = cos(x) + Au1(x) + A2u2(x) +O(A3), λ = A2λ2 +O(A4),

and obtain recursively: u1(x) = 2ϕ2(x) and λ2 = 2γ2. Hence, λ > 0 if γ2 > 0
and λ < 0 if γ2 < 0. The zero eigenvalue associated with the subspace of odd
functions in L2(T) is preserved at zero for every A due to ∂xψ ∈ Ker(H). In
addition, there exists a negative eigenvalue of H associated with the constant
functions at A = 0. Hence, we confirm that n(H) = 1 for α > α0 and n(H) = 2
for α < α0, whereas z(H) = 1 for both α > α0 and α < α0.

In order to deduce the spectral stability conclusion, we use transformation
ψ(x) = a+ φ(x), where the zero-mean function φ satisfies the boundary-value
problem (6.42). Computing the mean value

a :=
1

2π

∫ ∞
−∞

ψ(x)dx =
1

2
+

3

8

[
1− 3

2α − 1

]
A2 +O(A4)
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we obtain

ω := c− 6a2 = −1 +
3

2

[
1 +

3

2α − 1

]
A2 +O(A2)

and

β := ca− 2a3 =
3

2
A2 +O(A4).

No fold point occurs in the expansion of ω with respect to the Stokes amplitude
A, in particular,

dω

dA2
=

3

2

[
1 +

3

2α − 1

]
+O(A2) > 0.

Since ‖φ‖2
L2 = πA2 +O(A4), we have

d

dω
‖φ‖2

L2 =
2π

3

2α − 1

2α + 2
+O(A2) > 0, (6.87)

and
∂

∂ω
‖φ‖2

L2 =
d

dω
‖φ‖2

L2 +O(A2) > 0.

By Theorem 6.6, the periodic waves are spectrally stable for small A both for
α > α0 and α < α0.

Remark 6.13. For α > α0, the small-amplitude periodic wave in Proposition
6.4 have the same properties n(H) = 1, z(H) = 1, and σ0 > 0 as the even
periodic wave in Theorem 6.5. However, for α < α0, the small-amplitude
periodic wave in Proposition 6.4 cannot be a minimizer of the constrained
variational problem (6.38) in Theorem 6.5 because it exists for c < 1

2
and has

n(H) = 2 and σ0 < 0. Spectral stability of the periodic wave with n(H) = 2,
σ0 < 0, and the slope condition (6.56) follows from the same computation as
in the proof of Theorem 6.6.

6.4.5 Exact Solutions for Even Wave with α = 2

In the case of the modified KdV equation (α = 2), the stationary equation
(6.2) with b = 0 can be solved in the space of even functions by using the
Jacobian dnoidal function [12,36].

Let us recall the normalized second-order equation

ψ′′0(z) + (k2 − 2)ψ0(z) + 2ψ0(z)3 = 0, (6.88)

which admits the periodic solution ψ0(z) = dn(z; k) with the period 2K(k),
where K(k) is the complete elliptic integral of the first kind. Adopting an
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elementary scaling transformation yields the exact solution in the form:

ψ(x) =
1

π
K(k)dn

[
1

π
K(k)x; k

]
(6.89)

with

c =
1

π2
K(k)2(2− k2). (6.90)

The following proposition summarizes properties of the even periodic waves
for α = 2. These properties were studied in [12,36].

Proposition 6.5. Fix α = 2. The even periodic wave (6.89) exists and is
spectrally stable for every c ∈

(
1
2
,∞
)
. Moreover, n(H) = 1, z(H) = 1, and

σ0 > 0 for every c ∈
(

1
2
,∞
)
.

Proof. The mapping (0, 1) 3 k 7→ c(k) ∈
(

1
2
,∞
)

is one-to-one and onto. This
follows from

π2

2

dc

dk
=

K(k)

k(1− k2)

[
(2− k2)E(k)− 2(1− k2)K(k)

]
> 0, (6.91)

where the latter inequality was proved in [12] (see also [36]). Indeed, if

f(k) := (2− k2)E(k)− 2(1− k2)K(k),

then f(0) = 0, whereas f ′(k) = 3k[K(k) − E(k)] > 0 so that f(k) > 0 for
k ∈ (0, 1).

The mean value of the periodic wave in (6.89) is computed explicitly by

a :=
1

2π

∫ π

−π
ψ(x)dx =

1

π

∫ K(k)

0

dn(z; k)dz =
1

2
.

Hence, the zero-mean function φ(x) := ψ(x)−a is a solution to the boundary-
value problem (6.42) with

ω = c− 3

2
, β =

1

2

(
c− 1

2

)
.

This gives the straight line dependence β = 1
2
(ω + 1) for the periodic waves

with the single-lobe profile. Furthermore, we can compute

‖φ‖2
L2 =

2

π
K(k)E(k)− π

2
,

125



PhD Thesis – U. Le McMaster University – Mathematics

from which we verify that

〈φ, ∂kφ〉 = − 1

πk(1− k2)

[
K(k)2(1− k2)− E(k)2

]
> 0.

The latter inequality is also proven directly by setting

f(k) := K(k)2(1− k2)− E(k)2

such that f(0) = 0 and f ′(k) = −2k−1[K(k) − E(k)]2 < 0 so that f(k) < 0
for k ∈ (0, 1). By Theorem 6.6, the even periodic wave (6.89) with the speed
(6.90) satisfying (6.91) is spectrally stable for c ∈

(
1
2
,∞
)
.

Other properties such as 1 ∈ Range(H), σ0 > 0, and n(H) = 1 for every k ∈
(0, 1) can be confirmed by explicit computations. The normalized linearized
operator is given by

H0 = −∂2
z − 4 + 5k2 − 6k2cn(z; k)2. (6.92)

Eigenvalues of H0 in (6.92) are given by subtracting 3(1−k2) from eigenvalues
of H0 in (6.69). However, H0 in (6.92) is considered in space L2(−K(k), K(k))
so that the eigenvalues λ1 and λ2 given below (6.92) with the eigenfunctions
in L2(−2K(k), 2K(k)) are not relevant. Hence, the first three eigenvalues of
H0 in (6.92) are given by

λ0 = −2 + k2 − 2
√

1− k2 + k4, ϕ0(z) = 1 + k2 +
√

1− k2 + k4 − 3k2sn(z; k)2,

λ1 = 0, ϕ1(z) = sn(z; k)cn(z; k),

λ2 = −2 + k2 + 2
√

1− k2 + k4, ϕ2(z) = 1 + k2 −
√

1− k2 + k4 − 3k2sn(z; k)2.

Eigenvalues and eigenvectors of the linearized operator H are obtained after
the same scaling transformation as in (6.89). In agreement with Lemma 6.6,
we have n(H) = 1 and z(H) = 1. The property 1 ∈ Range(H) follows from
the representation

1

2
√

1− k2 + k4
H0

[
λ2ϕ0 − λ0ϕ2

λ0λ2

]
= 1 and

1

2
√

1− k2 + k4
[ϕ0 − ϕ2] = 1.

Direct computations yield

〈H−1
0 1, 1〉 =

λ2〈ϕ0, 1〉 − λ0〈ϕ2, 1〉
2
√

1− k2 + k4λ0λ2

=
2

k4

[
(2− k2)K(k)− 2E(k)

]
> 0,

where the latter inequality is justified by assigning

f(k) := (2− k2)K(k)− 2E(k)
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with f(0) = 0 and f ′(k) = k(1 − k2)−1[E(k) − (1 − k2)K(k)] > 0 so that
f(k) > 0 for k ∈ (0, 1).

Remark 6.14. Explicit computations in the proof of Proposition 6.5 repeat
computations in [36], however, the expression for 〈H−1

0 1, 1〉 was typed incor-
rectly in [36].

Remark 6.15. The dnoidal wave of Proposition 6.5 coincides with the even
periodic wave obtained in Theorem 6.5 for α = 2. Similarly to Remark 6.12,
this follows from uniqueness of smooth, positive, and 2π-periodic solutions
of the differential equation (6.79) with c ∈ (1

2
,∞), where the second-order

equation (6.79) is the Euler–Lagrange equation for the variational problem in
Theorem 6.5. Compared to Proposition 6.3, it is well-known (see, e.g., [?Yaga])
that the mapping I 7→ L is monotonically increasing for the L-periodic, positive
solutions of the differential equation (6.79) with the first-order invariant (6.80)
for c > 0 such that L ∈ (2π(2c)−1/2,∞). Therefore, there exists exactly one
even, positive, 2π-periodic solution for every c ∈ (1

2
,∞) and by uniqueness of

solutions to differential equations, this unique solution is given by the dnoidal
wave (6.89) and (6.90).

6.4.6 Numerical Approximations

Here we numerically compute solutions of the stationary equation (6.2) with
b = 0 using Newton’s method in the Fourier space. The starting iteration
is generated from the Stokes expansion (6.85) and this solution is uniquely
continued in c for all c ∈

(
1
2
,∞
)

if α > α0.
Figure 6.4 presents the periodic wave solutions for α = 2. The top panel

shows the profiles of ψ for three different values of c. The bottom panels show
the dependence of F (ψ) versus c (left) and the dependence of F (φ) versus ω
(right), where φ and ω was computed from the transformation φ(x) = ψ(x)−a
and ω = c − 6a2 with a := 1

2π

∫ π
−π ψ(x)dx. The even periodic wave with the

single-lobe profile ψ (red line) bifurcates at c = 1
2

from the constant wave (grey
line) shown on the bottom left. Since F (φ) is increasing in ω and a = 1

2
is

independent of ω, the even periodic wave is stable by Theorem 6.6.
Figure 6.5 presents similar results but for α = 1. The periodic wave (red

line on the top right panel) still bifurcates from the constant wave (grey line
on the top right panel) to the right of the bifurcation point at c = 1

2
. However,

a depends on ω for the even periodic wave, hence

d

dω
F (φ) =

∂

∂ω
F (φ) +

da

dω

∂

∂a
F (φ)

by the chain rule. In the Stokes limit, we have shown in Appendix A that
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Figure 6.4: Periodic waves for α = 2. Top: Profiles of ψ for three different
values of c. Bottom: Dependence of the momentum F (ψ) versus c (left) and
F (φ) versus ω (right).
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Figure 6.5: Periodic waves for α = 1. Top: Profiles of ψ for three different val-
ues of c (left). Dependence of the momentum F (ψ) versus c (right). Bottom:
Dependence of F (φ) versus ω (left). and derivatives of F (φ) in ω (right). The
solid (dashed) line shows the partial (ordinary) derivative in ω.
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∂
∂a
F (φ) = O(A2) for small A so that

∂

∂ω
F (φ) =

d

dω
F (φ) +O(A2) > 0.

However, a discrepancy between partial and ordinary derivatives of F (φ) in
ω exists away from the Stokes limit. The additional bottom right panel on
Fig. 6.5 (compared to Fig. 6.4) shows the partial and ordinary derivatives
on the same graph by the solid and dashed lines respectively. Since ∂

∂ω
F (φ)

remains positive, the even periodic wave is stable by Theorem 6.6. Since F (ψ)
for the even periodic wave is decreasing in c towards the horizontal asymptote
as c → ∞, it is clear that the stability conclusion does not follow from the
dependence of the momentum F (ψ) versus the wave speed c (see Remark 6.10).

Figure 6.6 presents similar results but for α = 0.6 < α0. The periodic wave
with the single-lobe profile ψ bifurcates to the left of the bifurcation point at
c = 1

2
. There exists a fold point c = c0 ≈ 0.4722, where the branch turns and

extends to all values of c > c0. The upper branch (shown in red line on the
top right panel) in c ∈ (c0,

1
2
) has n(H) = 2, whereas the lower branch (shown

in blue line on the top right panel) has n(H) = 1. The two branches were
found iteratively from different initial approximations: the Stokes expansion
was used for the upper branch and the periodic wave with larger c > 1

2
was

used for the lower branch, then the two branches were continued in either
direction. The grey line on the top right panel shows the momentum F (ψ) of
the constant solution.

It follows from the graph of F (φ) versus ω and its derivatives (bottom
panels) that the periodic wave is stable near the bifurcation point before and
after the fold point but there exists c∗ ≈ 0.4774 such that the even periodic
wave is stable for c < c∗ and unstable for c > c∗. By comparing the partial
and ordinary derivatives of F (φ) with respect to ω (solid and dashed lines,
respectively), we can see that the partial derivative becomes zero for a smaller
value of ω, which gives the correct transition from stability to instability at
c = c∗ by Theorem 6.6.
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Appendix A

Preliminary Results

Here, we list a few basic definitions and results which are referred to throughout
the thesis.

Definition A.1 (Resolvent and Spectrum set).
Let H be a Hilbert space with the inner product 〈·, ·〉H and L be a densely
defined operator on H with the domain Dom(L) ⊆ H The resolvent set of L,
denoted ρ(L) is the set of λ ∈ C such that (L − λI)−1 exists, bounded and
Ran(L− λI) is densed in H.

The spectrum of L, denoted σ(L), is the complement of the resolvent set
of L, that is, σ(L) = C \ρ(L). Moreover, spectrum of L comprises of three
disjoint sets:

� The point spectrum σp(L) is the set of λ ∈ σ(L) such that Ker(L−λI) 6=
{0},

� The residual spectrum σr(L) is set of λ ∈ σ(L) such that (L − λI)−1

exists and Ran(L− λI) is not densed in H,

� The continuous spectrum σc(L) is the set of λ ∈ σ(L) such that (L −
λI)−1, Ran(L − λI) is dense in H but the operator (L − λI)−1 is not
bounded.

Definition A.2 (Adjoint operator).
Let H be a Hilbert space with the inner product 〈·, ·〉H and L be a densely
defined operator on H with the domain Dom(L) ⊆ H. The adjoint operator
L∗ with the domain Dom(L∗) ⊆ H is defined by

∀u ∈ Dom(L), v ∈ Dom(L∗) : 〈Lu, v〉 = 〈u, L∗v〉

We say L is self–adjoint if L = L∗.
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Definition A.3 (Fredholm operator).
We say a linear operator L : Dom(L) ⊂ H → H is a Fredholm operator of
index zero if

dim (ker(L)) = dim (ker(L∗)) <∞

and Ran(L) is closed.

Theorem A.1 (Orthogonal decomposition of H).
Let L be a Fredholm operator of index zero. Then

H = Ker(L∗)⊕Ran(L), H = Ker(L)⊕Ran(L∗).

Theorem A.2 (Fredholm Alternative).
Let L : Dom(L) ⊂ H → H is a Fredholm operator of index zero. There exists
a solution u ∈ Dom(L) of the inhomogeneous equation Lu = f for a given
f ∈ H if and only if 〈f, v0〉 = 0 for all v0 ∈ Ker(L∗). Moreover, the solution
u is unique under the constraint 〈u,w0〉=0 for all w0 ∈ Ker(L).

Theorem A.3 (Eigenvalue Count in Constrained L2 space). [78]
Let L be a self-adjoint operator in L2 with σc(L) ≥ c > 0 and dim (σp(L)) <∞,
and denote the number of negative and zero eigenvalues of L by n(L) and z(L).
Define L2

c as the subspace of L2 by

L2
c = {u ∈ L2 : {〈u, vj〉L2 = 0}Nj=1},

where {vj}Nj=1 is a set of linearly independent vectors. Let A(µ) be the matrix
valued function defined by

∀µ /∈ σ(L) : Ai,j(µ) = 〈(µ− L)−1 vi, vj〉L2 , i, j ∈ {1, 2, ..., N}

Let n0, z0 and p0 be the numbers of negative, zero, and positive eigenvalues of
lim
µ→0

A(µ) and denote z∞ = N − n0 − z0 − p0. Then, the number of negative

and zero eigenvalues of L|L2
c

are given by

n(L|L2
c
) = n(L)− p0 − z0,

z(L|L2
c
) = z(L) + z0 − z∞

Theorem A.4 (Impicit Function Theoreom).
Let X, Y , and Z be Banach spaces and let F (x, y): X × Y 7→ Z be a C1 map
on an open neighborhood of the point (x0, y0) ∈ X × Y . Assume that

F (x0, y0) = 0,

and that
DxF (x0, y0) : X 7→ Z is one-to-one and onto.
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There are r > 0 and δ > 0 such that for each y with ‖y−y0‖ ≤ δ there exists a
unique solution x ∈ X of the operator equation F (x, y) = 0 with ‖x−x0‖ ≤ r.
Moreover, the map Y 3 y 7→ x(y) ∈ X is C1 near y = y0.

Theorem A.5 (Banach Fixed Point Theorem).
Let M be a closed, non–empty subset in the Banach space X and let A : M 7→
M be a contraction operator, that is, for all u, v ∈ M there exists q ∈ [0, 1)
satisfying ‖Au−Av‖X ≤ q‖u− v‖X . Then, there exists a unique y ∈M such
that A(y) = y.

The following three propositions are formulated as Lemma 3.2 and claims
(L1) and (L3) in Lemma 3.3 of [53]

Proposition A.1. Let α ∈ (1
3
, 2] and ψ ∈ Hα

per,odd be a solution obtained in
Theorem 6.3 and Corollary 6.1. An eigenfunction of H defined by (6.4) and
(6.17) corresponding to the n-th eigenvalue of H for n = 1, 2, 3 changes its
sign at most 2(n − 1) times over T. An eigenfunction of H|L2

even
for the n-th

eigenvalue of H|L2
even

changes its sign at most 2(n− 1) times over T.

Proposition A.2. Assume α ∈ (1
3
, 2] and ψ ∈ Hα

per,odd be a solution obtained
in Theorem 6.3 and Corollary 6.1. If {1, ψ, ψ2} ∈ Range(H), then Ker(H) =
span(∂xψ).

Proposition A.3. Assume α ∈ (1
3
, 2] and ψ ∈ Hα

per,odd be a solution obtained
in Theorem 6.3 and Corollary 6.1. Then, ∂xψ ∈ Ker(H) corresponds to the
lowest eigenvalue of H in the space of odd functions with respect to x = π/2.
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Appendix B

Periodic Waves In The KdV
And BO Equation

We verify the assumptions 4.17 in Theorem 4.1 of Chapter 4 for the KdV and
BO equations.

The solution φ to the boundary-value problem (4.1) with α = 2 is given by

φ(x) =
2K(k)2

π2

[
1− 2k2 −

√
1− k2 + k4 + 3k2cn2

(
K(k)

π
x; k

)]
(B.1)

where cn is the Jacobi elliptic function, K(k) is a complete elliptic integral
of the first kind, and k ∈ (0, 1) is the elliptic modulus that parameterizes the
wave speed c given by

c =
4K(k)2

π2

√
1− k2 + k4. (B.2)

The small-amplitude expansions (3.9) and (3.13) are recovered from (3.38)–
(3.39) with the wave amplitude a := 3k2/4 +O(k4) as k → 0.

We prove that the map (0, 1) 3 k 7→ c ∈ (1,∞) is strictly increasing, hence
the explicit solution (3.38)–(3.39) exists for every c > 1 (see also [14]). We
also extend the inequalities (4.19) and (4.20) with α = 2 for every c > 1.

Lemma B.1. The map (0, 1) 3 k 7→ c ∈ (1,∞) for the solution (B.1)–(B.2)
is strictly increasing. In addition, for every c > 1, we have∫ π

−π
φ3dx < 0,

∫ π

−π
φ(φ′)2dx < 0. (B.3)

Proof. We have φ = 0 and c = 1 at k = 0. Thanks to the smoothness of φ
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and c in k, it holds from (3.39) by explicit differentiation:

π2
√

1− k2 + k4

4K(k)

dc

dk
= 2(1− k2 + k4)

dK(k)

dk
− k(1− 2k2)K(k).

By using the differential relation,

dK(k)

dk
=
E(k)− (1− k2)K(k)

k(1− k2)
,

the previous expression can be reduced to the form

π2k(1− k2)
√

1− k2 + k4

4K(k)

dc

dk
= 2(1−k2+k4)E(k)−(2−3k2+k4)K(k) =: I(k),

where E(k) is a complete elliptic integral of the second kind and I(k) is
introduced for convenience. Note that I(0) = 0. We claim that the map
(0, 1) 3 k 7→ I is strictly increasing. Indeed, by using the differential relation

dE(k)

dk
=
E(k)−K(k)

k
,

we obtain after straightforward computations

dI(k)

dk
= 5k

[
(1− k2)K(k)− (1− 2k2)E(k)

]
> 0,

where the last inequality follows from the fact that K(k) > E(k) for every
k ∈ (0, 1). Since I(0) = 0, we have I(k) > 0 for every k ∈ (0, 1), which implies
that dc

dk
> 0 for every k ∈ (0, 1).

Let us now prove the inequalities (B.3) for every c > 1. Since φ and c
are smooth in k, we differentiate the nonlinear equation in the boundary-value
problem (4.1) with α = 2 in k and obtain

[c+Dα=2 + 2φ]
∂φ

∂k
+
dc

dk
φ = 0.

Multiplying this equation by φ and integrating on [−π, π] imply that∫ π

−π
φ2∂φ

∂k
dx = − dc

dk

∫ π

−π
φ2dx,

where we have used the facts that Dα=2 is self-adjoint in L2
per(−π, π) and

φ, ∂aφ ∈ Hα=2
per (−π, π). Since dc

dk
> 0 for every k ∈ (0, 1), the map k 7→

∫ π
−π φ

3dx

is strictly decreasing with
∫ π
−π φ

3dx = 0 at k = 0. Therefore,
∫ π
−π φ

3dx < 0 for
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k ∈ (0, 1) by the continuity argument in k.
Finally, the inequality

∫ π
−π φ(φ′)2dx < 0 for every c > 1 follows from the

boundary-value problem (4.1) with α = 2:∫ π

−π
φ(φ′)2dx = −1

c

[∫ π

−π
(φ′)2φ′′dx+

∫ π

−π
φ2(φ′)2dx

]
,

where the first term in the right-hand side is zero thanks to the smoothness of
φ.

The next Lemma shows that the solution φ of the boundary value problem
(4.1) when α = 1 also satisfies assumption 4.17.

Lemma B.2. Let

φ(x) =
cosh γ cosx− 1

sinh γ (cosh γ − cosx) , c = coth γ
(B.4)

be the solution of (4.1) with α = 1 then the inequalities∫ π

−π
φ3dx < 0,

∫ π

−π
φ(φ′)2dx < 0 (B.5)

hold for every c > 1.

Proof. We notice that the small amplitude expansion (3.9) and (3.13) are
recovered from (B.4) with the wave amplitude a := 2e−γ +O(e−3γ) as γ →∞.
Since the map (0,∞) 3 γ 7→ c = coth γ ∈ (1,∞) is strictly decreasing, the
explicit solution (B.4) exists for every c > 1.

Using the explicit formula (B.4) and symbolic computations with Wol-
fram’s Mathematica, we obtain∫ π

−π
φ3dx = −π(c− 1)2(2c+ 1),

and ∫ π

−π
φ(φ′)2dx =

π

4
(c1 − 1)2,

from which the inequalities (B.5) hold for all c > 1.
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[7] J. Álvarez and A. Durán, Petviashvili type methods for traveling wave computations:
Ii. acceleration with vector extrapolation methods, Math. Comput. Simulation (2016),
19–36.
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