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Lay Abstract

Is it possible to estimate an unknown probability distribution given random sam-

ples from it? This is a fundamental problem known as distribution learning (or density

estimation) that has been studied by statisticians for decades, and in recent years has

become a topic of interest for computer scientists. While distribution learning is a

mature and well understood problem, in many cases the samples (or data) we ob-

serve may consist of sensitive information belonging to individuals and well-known

solutions may inadvertently result in the leakage of private information.

In this thesis we study distribution learning under the assumption that the data

is generated from high-dimensional Gaussians (or their mixtures) with the aim of

understanding how many samples an algorithm needs before it can guarantee a good

estimate. Furthermore, in order to protect against leakage of private information, we

consider approaches that maintain differential privacy – the gold standard for modern

private data analysis.
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Abstract

In this thesis we prove sample complexity upper bounds for privately PAC learning

two fundamental classes of distributions:

Multivariate Gaussians. We provide sample complexity upper bounds for semi-

agnostically learning multivariate Gaussians under the constraint of approximate dif-

ferential privacy. These are the first finite sample upper bounds for general Gaussians

which do not impose restrictions on the parameters of the distribution. Our bounds

are near-optimal in the case when the covariance is known to be the identity, and

conjectured to be near-optimal in the general case. From a technical standpoint, we

provide analytic tools for arguing the existence of global “locally small” covers from

local covers of the space. These are exploited using modifications of recent techniques

for differentially private hypothesis selection.

Mixtures of Gaussians. We consider the problem of learning mixtures of Gaus-

sians under the constraint of approximate differential privacy. We provide the first

sample complexity upper bounds for privately learning mixtures of unbounded axis-

aligned (or even unbounded univariate) Gaussians. To prove our results, we design

a new technique for privately learning mixture distributions. A class of distributions
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F is said to be list-decodable if there is an algorithm that, given “heavily corrupted”

samples from f ∈ F , outputs a list of distributions, F̂ , such that one of the dis-

tributions in F̂ approximates f . We show that if F is privately list-decodable then

we can privately learn mixtures of distributions in F . Finally, we show axis-aligned

Gaussian distributions are privately list-decodable, thereby proving mixtures of such

distributions are privately learnable.
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Chapter 1

Introduction

The fundamental problem of distribution learning is concerned with the design

of algorithms (i.e., estimators) that, given samples generated from an unknown dis-

tribution f , output an “approximation” of f . While the literature on distribution

learning is vast and has a long history dating back to the late nineteenth century, in

many cases the dataset may consist of sensitive data belonging to individuals, and

naive execution of classic methods may inadvertently result in private information

leakage.

To address concerns of this nature, in 2006, Dwork, McSherry, Nissim, and Smith

introduced the celebrated notion of differential privacy (DP) [DMNS06], which pro-

vides a strong standard for data privacy. Roughly speaking, differential privacy guar-

antees that no single data point can influence the output of an algorithm too much,

which intuitively provides privacy by “hiding” the contribution of each individual.

Differential privacy has seen practical adoption in many organizations, including Ap-

ple [Dif17], Google [EPK14, BEM+17], Microsoft [DKY17], and the US Census Bu-

reau [DLS+17]. At this point, there is a rich body of literature, giving differentially

1
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private algorithms for a wide array of tasks.

It is thus natural to ask whether it is possible to design differentially private

distribution learning algorithms. Differentially private algorithms benefit from having

access to large amounts of data. Roughly speaking, this is because it is easier to

“hide” the contribution of any individual datapoint when the amount of data provided

increases. Unfortunately, there exist learning problems where satisfying the constraint

of differential privacy provably requires an infinite number of datapoints to solve! (see,

e.g. [BNSV15].) Put another way, for certain learning problems, there does not exist

an algorithm that uses a finite number of datapoints to solve the problem accurately,

while also respecting differential privacy.

This highlights that for certain problems, the cost of privacy on the required

amount of data can be insurmountable. In this thesis, we will be interested in study-

ing what the cost of privacy is for learning two extremely fundamental classes of dis-

tributions often used to model data: i) high-dimensional Gaussians, and ii) mixtures

of Gaussians. While the amount of data required to learn these classes non-privately

is very well understood, our goal will be to better understand how much more data

we need to learn these classes under the constraint of differential privacy.

1.1 Learning Unbounded Multivariate Gaussians

In recent years, there has been a flurry of activity in differentially private distri-

bution learning. A number of techniques have been developed in the literature for

this problem. In the pure differentially private setting, Bun et al. [BKSW19] recently

introduced a method to learn a class of distributions when the class admits a finite

cover, i.e. when the entire class of distributions can be well-approximated by a finite

2
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number of representative distributions. In fact, they show that this is an exact char-

acterization of distributions which can be learned under pure differential privacy in

the sense that a class of distributions is learnable under pure differential privacy if

and only if the class admits a finite cover [HT10, BKSW19]. As a consequence of this

result, they obtained pure differentially private algorithms for learning Gaussian dis-

tributions provided that the mean of the Gaussians are bounded and the covariance

matrix of the Gaussians are spectrally bounded.1 Moreover, such restrictions on the

Gaussians are necessary under the constraint of pure differential privacy.

One way to remove the requirement of having a finite cover is to relax to a weaker

notion of privacy known as approximate differential privacy. With this notion, Bun,

Kamath, Steinke, and Wu [BKSW19] introduced another method to learn a class

of distributions that, instead of requiring a finite cover, requires a “locally small”

cover, i.e. a cover where each distribution in the class is well-approximated by only a

small number of elements within the cover. They prove that the class of Gaussians

with arbitrary mean and a fixed, known covariance matrix has a locally small cover

which implies an approximate differentially private algorithm to learn this class of

distributions.

As the most notable omission, Bun, Kamath, Steinke, and Wu do not provide

a locally small cover for general multivariate Gaussians. Indeed, for Gaussians with

identity covariance, it is easy to reason about the local size of covers, as total variation

distance between distributions corresponds to the `2-distance between their means.

However, when the covariance is not fixed, the total variation distance is characterized

by the Mahalanobis distance, which has a significantly more sophisticated geometry.

1When we say that a matrix Σ is spectrally bounded, we mean that there are 0 < a1 ≤ a2 such
that a1 · I � Σ � a2 · I.

3
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Analyzing these situations to show local smallness appears to be intractable using

current analytic techniques, which involve explicitly constructing and analyzing a

cover of the space. Given this challenge, up to now it has not been clear even whether

a finite sample algorithm exists at all! And this is only for the fundamental case of

Gaussians, raising the question of how one would even approach more complex classes

of distributions.

1.1.1 Contributions to Learning Multivariate Gaussians

We resolve these issues by providing a simpler method for proving the existence

of locally small covers. This lead to the main results of Chapter 3: we present

sample complexity upper bounds for semi-agnostically learning Gaussian distributions

under approximate differential privacy. We informally state our results below. In the

following theorem and the rest of this thesis we use Õ to hide polylogarithmic factors,

i.e. Õ(f(x)) means O(f(x) logc f(x)) for some c > 0.

Theorem 1.1.1 (Informal version of Theorem 3.6.6). The sample complexity of semi-

agnostically learning a d-dimensional Gaussian distribution to α-accuracy in total

variation distance under (ε, δ)-differential privacy is

Õ

(
d2

α2
+
d2

αε
+

log(1/δ)

ε

)
.

This is the first sample complexity bound for privately learning a multivariate

Gaussian with no conditions on the covariance matrix. The first and third terms

are known to be tight, and there is strong evidence that the second is as well. The

previous best algorithm was that of [KLSU19], which provided the stronger guarantee

4
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of concentrated differential privacy [DR16, BS16] (which is intermediate to pure and

approximate DP). However, it required the true covariance matrix to be spectrally

bounded as I � Σ � KI for some known parameter K, and the third term in

the sample complexity is instead O
(
d3/2 log1/2K

ε

)
, which is prohibitive for large (or

unknown) K. In contrast, our result holds for unrestricted Gaussian distributions.

We also provide a better upper bound for the case when the covariance matrix is

known.

Theorem 1.1.2 (Informal version of Theorem 3.6.4). The sample complexity of semi-

agnostically learning a d-dimensional Gaussian distribution with known covariance to

α-accuracy in total variation distance under (ε, δ)-differential privacy is

Õ

(
d

α2
+

d

αε
+

log(1/δ)

ε

)
.

This is the first bound which achieves a near-optimal dependence simultaneously

on all parameters. In particular, it improves upon previous results in which the

third term is replaced by O
(

log(1/δ)
αε

)
[BKSW19] or O

(√
d log3/2(1/δ)

ε

)
[KV18, KLSU19,

BKSW19].

1.2 Learning Unbounded Mixtures of Gaussians

It is straightforward to see that if a class of distributions admits a finite cover then

the class of its mixtures also admits a finite cover. Combined with the aforementioned

work of Bun, Kamath, Steinke, and Wu this implies a pure differentially private algo-

rithm for learning mixtures of Gaussians with bounded mean and spectrally bounded

covariance matrices. It is natural to wonder whether an analogous statement holds

5
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for locally small covers. In other words, if a class of distributions admits a locally

small cover then does the class of mixtures also admit a locally small cover? If so,

this would provide a fruitful direction to design differentially private algorithms for

learning mixtures of unbounded Gaussians.

Unfortunately, there are simple examples of classes of distributions that admit a

locally small cover yet their mixture do not. (See Section 4.4 for a formal statement

and proof.) This leaves open the question of designing private algorithms for many

classes of distributions that are learnable in the non-private setting. One concrete

open problem is for the class of mixtures of two univariate Gaussian distributions.

A more general problem is private learning of mixtures of k axis-aligned Gaussian

distributions. (Recall that an axis-aligned Gaussians is a Gaussian with a diagonal

covariance matrix.)

1.2.1 Contributions to Learning Mixtures Gaussians

We demonstrate that it is indeed possible to privately learn mixtures of unbounded

univariate Gaussians. This leads to the main results of Chapter 4: we provide sample

complexity upper bounds for learning mixtures of unbounded d-dimensional axis-

aligned Gaussians and mixtures of d-dimensional Gaussians with the same known

covariance matrix. We informally state our results below.

Theorem 1.2.1 (Informal version of Theorem 4.7.3). The sample complexity of learn-

ing a mixture of k d-dimensional axis-aligned Gaussians to α-accuracy in total vari-

ation distance under (ε, δ)-differential privacy is

Õ

(
k2d log3/2(1/δ)

α2ε

)
.

6
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Even for the univariate case, our result is the first sample complexity upper bound

for learning mixture of Gaussians under differential privacy for which the variances

are unknown and the parameters of the Gaussians may be unbounded. In the non-

private setting, it is known that Θ̃(kd/α2) samples are necessary and sufficient to

learn an axis-aligned Gaussian in Rd [SOAJ14, ABH+20].

If the covariance matrix of each component of the mixture is the same and known

or, without loss of generality, equal to the identity matrix, then we can improve the

dependence on the parameters and obtain a result that is in line with the non-private

setting.

Theorem 1.2.2 (Informal version of Theorem 4.7.1). The sample complexity of learn-

ing a mixture of k d-dimensional Gaussians with identity covariance matrix to α-

accuracy in total variation distance under (ε, δ)-differential privacy is

Õ

(
kd

α2
+
kd log(1/δ)

αε

)
.

To prove our results, we first construct a two step algorithm for privately learn-

ing univariate mixtures. The algorithm first privately estimates the variance of the

mixture components, and then uses these estimates of the variance to carefully esti-

mate the mean of the mixture components privately. Both of these steps rely on the

celebrated stable histogram algorithm, and require a very careful construction of the

histogram bin widths. Finally, we show how to extend this algorithm for univariate

mixtures to d-dimensional axis-aligned mixtures.

7
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1.3 Thesis Organization

In Chapter 2 we go over some basic definitions and well known results that we

will make use of in this thesis. Chapter 3 is dedicated to proving our sample com-

plexity upper bounds for learning unbounded high-dimensional Gaussians. Finally,

in Chapter 4 we prove our sample complexity upper bounds for learning mixtures of

Gaussians. We conclude with some open problems in Chapter 5.

8



Chapter 2

Background

This chapter is dedicated to going over the background information required to

successfully read Chapters 3 and 4. We begin by going over the notation used in this

thesis. We then define differential privacy and standard results related to it. Next,

we state the problem of distribution learning and formally define different notions

of learning algorithms for this problem. We then state the definition of the Vapnik-

Chervonenkis dimension. Finally, we conclude by going over related work in the

literature.

2.1 Notation

For any m ∈ N, [m] denotes the set {1, 2, . . . ,m}. Let X ∼ f denote a random

variable X sampled from distribution f . Let (Xi)
m
i=1 ∼ fm denote an i.i.d. random

sample of size m from distribution f .

For a positive integer d let Sd ⊂ Rd×d be the set of all d-by-d positive semi-

definite real matrices. For a matrix A ∈ Rm×n, define ‖A‖1,1 =
∑m

i=1

∑n
j=1 |Aij| and

9
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‖A‖∞,∞ = maxi,j |Aij|. The determinant of a square matrix A is given by det(A).

For a vector µ ∈ Rd and a matrix Σ ∈ Sd, we use N (µ,Σ) to denote the multivari-

ate normal distribution with mean µ and covariance matrix Σ. A useful property of

Gaussian distributions is that any linear transformation of a Gaussian random vector

is also a Gaussian random vector. In particular, if X ∼ N (µ,Σ) is a d-dimensional

Gaussian random vector and A and b are a d-dimensional square matrix and vector

respectively, it follows that

AX + b ∼ N (Aµ+ b, AΣAT ). (2.1.1)

2.2 Differential Privacy

Let X∗ = ∪∞i=1X
i be the set of all datasets of arbitrary size over a domain set X.

We say two datasets D,D′ ∈ X∗ are neighbours if D and D′ differ by at most one data

point. Informally, an algorithm is differentially private if its output on neighbouring

databases are similar. Formally, differential privacy (DP)1 has the following definition.

Definition 2.2.1 ([DMNS06, DKM+06]). A randomized algorithm T : X∗ → Y is

(ε, δ)-differentially private if for all n ≥ 1, for all neighbouring datasets D,D′ ∈ Xn,

and for all measurable subsets S ⊆ Y,

Pr [T (D) ∈ S] ≤ eε Pr[T (D′) ∈ S] + δ .

If δ = 0, we say that T is ε-differentially private.

1We will use the acronym DP to refer to both the terms “differential privacy” and “differentially
private”. Which term we are using will be clear from the specific sentence.

10
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We refer to ε-DP as pure DP, and (ε, δ)-DP for δ > 0 as approximate DP. We

make use of the following property of differentially private algorithms which asserts

that adaptively composing differentially private algorithms remains differentially pri-

vate. By adaptive composition, we mean that we run a sequence of algorithms

M1(D), . . . ,MT (D) where the choice of algorithm Mt may depend on the outputs

of M1(D), . . . ,Mt−1(D).

Lemma 2.2.2 (Composition of DP [DMNS06, DRV10]). If M is an adaptive composi-

tion of differentially private algorithms M1, . . . ,MT then the following two statements

hold:

1. If M1, . . . ,MT are (ε1, δ1), . . . , (εT , δT )-differentially private, then M is (ε, δ)-

differentially private for

ε =
∑T

t=1 εt and δ =
∑T

t=1 δt.

2. If M1, . . . ,MT are (ε0, δ1), . . . , (ε0, δT )-differentially private for some ε0 ≤ 1,

then for any δ0 > 0, M is (ε, δ)-differentially private for

ε = ε0

√
6T log(1/δ0) and δ = δ0 +

∑T
t=1 δt.

The first statement in Lemma 2.2.2 is often referred to as basic composition and

the second statement is often referred to as advanced composition. We also make use

of the fact that post-processing the output of a differentially private algorithm does

not impact privacy.

11
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Lemma 2.2.3 (Post Processing). If M : X n → Y is (ε, δ)-differentially private, and

P : Y → Z is any randomized function, then the algorithm P◦M is (ε, δ)-differentially

private.

A fundamental building block of differential privacy is the the exponential mech-

anism [MT07]. It is used to privately select an approximate “best” candidate from

a (finite) set of candidates. The quality of a candidate with respect to the dataset

is measured by a score function. Let R be the set of possible candidates. A score

function S : X∗×R → R maps each pair consisting of a dataset and a candidate to a

real-valued score. The exponential mechanism ME takes as input a dataset D, a set

of candidates R, a score function S, a privacy parameter ε and outputs a candidate

r ∈ R with probability proportional to exp
(
εS(D,r)
2∆(S)

)
, where ∆(S) is the sensitivity

of the score function which is defined as

∆(S) = max
r∈R,D∼D′

|S(D, r)− S(D′, r)| .

Theorem 2.2.4 ([MT07]). For any dataset D, score function S and privacy pa-

rameter ε > 0, the exponential mechanism ME(D,S, ε) is an ε-differentially private

algorithm, and with probability at least 1− β, it selects an outcome r ∈ R such that

S(D, r) ≥ max
r′∈R

S(D, r′)− 2∆(S) log(|R|/β)

ε
.

12
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2.3 Distribution Learning

A distribution learning method is a (potentially randomized) algorithm that, given

a sequence of i.i.d. samples from a distribution f , outputs a distribution f̂ as an esti-

mate of f . The focus of this paper is on absolutely continuous probability distributions

(distributions that have a density with respect to the Lebesgue measure), so we refer

to a probability distribution and its probability density function interchangeably. The

specific measure of “closeness” between distributions that we use is the total variation

distance.

Definition 2.3.1. Let g and f be two probability distributions defined over X and let

Ω be the Borel sigma-algebra on X . The total variation distance between g and f is

defined as

dTV(g, f) = sup
S∈Ω
|Pg(S)−Pf (S)| = 1

2

∫
x∈X
|g(x)− f(x)|dx =

1

2
‖g − f‖1 ∈ [0, 1].

where Pg(S) denotes the probability measure that g assigns to S. Moreover, if F is a

set of distributions over a common domain, we define dTV(g,F) = inff∈F dTV(g, f).

We say distributions g and f are α-close if dTV(g, f) ≤ α. We also say a distri-

bution g is α-close to a set of distributions F if dTV(g,F) ≤ α. We now formally

define distribution learners in a few different settings.

Definition 2.3.2 (Realizable PAC learner). We say Algorithm A is a realizable

PAC-learner for a class of distributions F which uses n(α, β) samples, if for every

α, β ∈ (0, 1), every f ∈ F , and every n ≥ n(α, β) the following holds: if the algorithm

is given parameters α, β and a sequence of n i.i.d. samples from f as inputs, then it

13
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outputs an approximation f̂ such that dTV(f̂ , f) ≤ α with probability at least 1− β.2

Definition 2.3.3 (C-agnostic PAC learner). For C > 0 we say Algorithm A is C-

agnostic PAC learner for a class of distributions F with sample complexity nC(α, β)

if for any α, β ∈ (0, 1), every distribution g such that dTV(g,F) = OPT, and every

n ≥ nC(α, β) the following holds: if the algorithm is given parameters α,β and a

sequence of n i.i.d. samples from g, the algorithm outputs an approximation f̂ such

that dTV(f̂ , g) ≤ C ·OPT + α with probability at least 1− β.

If C = 1 we will refer to the algorithm as an agnostic PAC learner and for C > 1

we will refer to the algorithm as a semi-agnostic PAC learner as is standard in learning

theory.

We now define differentially private analogues of distribution learners.

Definition 2.3.4 ((ε, δ)-DP realizable PAC learner). We say algorithm A is an (ε, δ)-

DP realizable PAC learner for a class of distributions F that uses n(α, β, ε, δ) samples

if:

1. Algorithm A is a realizable PAC Learner for F that uses n(α, β, ε, δ) samples.

2. Algorithm A satisfies (ε, δ)-DP.

Definition 2.3.5 ((ε, δ)-DP C-agnostic PAC learner). We say algorithm A is an

(ε, δ)-DP realizable PAC learner for a class of distributions F that uses nC(α, β, ε, δ)

samples if:

1. Algorithm A is a C-agnostic PAC learner for F that uses nC(α, β, ε, δ) samples.

2. Algorithm A satisfies (ε, δ)-DP.

2The probability is over n(α, β) samples drawn from f and the randomness of the algorithm.
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A useful object for us to define is the total variation ball.

Definition 2.3.6 (TV ball). The total variation ball of radius γ ∈ (0, 1), centered

at a distribution g with respect to a set of distributions F , written B (γ, g,F), is the

following subset of F :

B (γ, g,F) := {f ∈ F : dTV(g,F) ≤ γ} .

In this paper we consider coverings and packings of sets of distributions with

respect to the total variation distance.

Definition 2.3.7 (γ-covers and γ-packings). For any γ ∈ (0, 1) a γ-cover of a set

of distributions F is a set of distributions Cγ, such that for every f ∈ F , there exists

some f̂ ∈ Cγ such that dTV(f, f̂) ≤ γ.

A γ-packing of a set of distributions F is a set of distributions Pγ ⊆ F , such that

for every pair of distributions f, f ′ ∈ Pγ, we have that dTV(f, f ′) ≥ γ.

Definition 2.3.8 (γ-covering and γ-packing number). For any γ ∈ (0, 1), the γ-

covering number of a set of distributions F , N(F , γ) := min{n ∈ N : ∃Cγ s.t. |Cγ| =

n}, is the size of the smallest possible γ-covering of F . Similarly, the γ-packing

number of a set of distributions F , M(F , γ) := max{n ∈ N : ∃Pγ s.t. |Pγ| = n}, is

the size of the largest subset of F that forms a packing for F .

The following proposition follows directly from a well known relationship between

packings and covers of metric spaces (see [Ver18, Lemma 4.2.8]).

Proposition 2.3.9. For a set of distributions F with γ-covering number M(F , γ)
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and γ-packing number N(F , γ), the following holds:

M(F , 2γ) ≤ N(F , γ) ≤M(F , γ).

We now formally define what it means for a set of distributions to be “locally

small”.

Definition 2.3.10 (γ-locally small). Fix some γ ∈ (0, 1). We say a set of distribu-

tions F is (k, γ)-locally small if

sup
f∈F
|B (γ, f,F) | ≤ k,

for some k ∈ N. If no such k exists, we say F is not γ-locally small.

2.4 VC Dimension

An important property of a set of binary functions is its Vapnik-Chervonenkis

(VC) dimension, which has the following definition:

Definition 2.4.1 (VC dimension [VC71]). Let H be a set of binary functions h :

X → {0, 1}. The VC dimension of H is defined to be the largest d such that there

exist x1, · · · , xd ∈ X and h1, · · · , h2d ∈ H such that for all i, j ∈ [2d] where i < j,

there exists k ∈ [d] such that hi(xk) 6= hj(xk).

We can define the VC dimension of a set of distributions F by looking at the

VC dimension of a set of binary functions that is defined with respect to F . More

precisely:
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Definition 2.4.2 (VC dimension of a set of distributions). Let F be a set of probability

distributions on a space X . Define the set of binary functions H(F) = {hfi,fj : fi, fj ∈

F} where ∀x ∈ X , hfi,fj(x) = 1 ⇐⇒ fi(x) > fj(x). We define the VC dimension of

F to be the VC dimension of H(F).3

2.5 Additional Related Work

There has been a flurry of activity on differentially private distribution learn-

ing and parameter estimation in recent years for many problem settings [NRS07,

BUV14, DHS15, SU17a, SU17b, DSS+15, BSU17, KV18, KLSU19, CWZ19, BKSW19,

DFM+20, ASZ20, KSU20, BDKU20, LKKO21]. While many of these focus on settings

with parameters bounded by some constant, some pay particular attention to the cost

in terms of this bound, including [KV18, KLSU19, BKSW19, BDKU20, DFM+20].

The work of Bun, Kamath, Steinke, and Wu [BKSW19] is built upon classic

results in hypothesis selection, combined with the exponential mechanism [MT07].

The underlying non-private approach was pioneered by Yatracos [Yat85], and refined

in subsequent work by Devroye and Lugosi [DL96, DL97, DL01]. After this, additional

considerations have been taken into account, such as computation, approximation

factor, robustness, and more [Mu08, DDS12, DK14, SOAJ14, AJOS14, DKK+16,

ABDM18, ABDH+18, AFJ+18, BKM19, AA20]. Notably, these primitives have also

been translated to the more restrictive setting of local differential privacy [GKK+20].

Similar techniques have also been exploited in a federated setting [LSY+20].

Bun, Kamath, Steinke, and Wu [BKSW19] showed how to learn spherical Gaussian

mixtures where each Gaussian component has bounded mean under pure differential

3To avoid measurability issues we assume the preimage of 0 is measurable for any h ∈ H(F).
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privacy. Acharya, Sun and Zhang [ASZ20] were able to obtain lower bounds in the

same setting that nearly match the upper bounds of Bun, Kamath, Steinke and

Wu [BKSW19]. Both [NRS07, KSSU19] consider differentially private learning of

Gaussian mixtures, however their focus is on parameter estimation and therefore

require additional assumptions such as separation or boundedness of the components.

There has also been a lot of work on private distribution learning and parameter

estimation in the locally private setting [DJW17, WHW+16, KBR16, ASZ19, DR18,

DR19, JKMW19, YB18, GRS19]. Other work on differentially private estimation

include [DL09, Smi11, BD14, ASZ18, BS19, CKM+19, ZKKW20]. See [KU20] for

more coverage of recent works in private statistics.
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Chapter 3

Privately Learning Unbounded

Gaussians

In this chapter, we will prove sample complexity upper bounds for privately learn-

ing the class of d-dimensional Gaussians where we make no assumptions on the pa-

rameters of the Gaussians. The content of this chapter is based on joint work with

Hassan Ashtiani and Gautam Kamath [AAK21].

3.1 Main Results

We prove sample complexity upper bounds for learning high-dimensional Gaus-

sians with a known covariance matrix and unknown covariance matrix. We informally

state the two main results of this chapter below.

Theorem 3.1.1 (Informal version of Theorem 3.6.4). The sample complexity of semi-

agnostically learning a d-dimensional Gaussian distribution with known covariance to
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α-accuracy in total variation distance under (ε, δ)-differential privacy is

Õ

(
d

α2
+

d

αε
+

log(1/δ)

ε

)
.

This is the first bound which achieves a near-optimal dependence simultaneously

on all parameters. In particular, it improves upon previous results in which the

third term is replaced by O
(

log(1/δ)
αε

)
[BKSW19] or O

(√
d log3/2(1/δ)

ε

)
[KV18, KLSU19,

BKSW19].

Theorem 3.1.2 (Informal version of Theorem 3.6.6). The sample complexity of semi-

agnostically learning a d-dimensional Gaussian distribution to α-accuracy in total

variation distance under (ε, δ)-differential privacy is

Õ

(
d2

α2
+
d2

αε
+

log(1/δ)

ε

)
.

This is the first sample complexity bound for privately learning a multivariate

Gaussian with no restrictions on the condition number of it’s covariance matrix.

Prior to this result, it was not even known if it were possible to privately learn a

Gaussian that has a covariance matrix with unbounded condition number!

3.2 Techniques

Our proof techniques build upon the approach of Bun, Kamath, Steinke, and

Wu [BKSW19] to provide methods better suited for estimation under the constraint

of approximate differential privacy. Their work focuses primarily on pure DP distri-

bution estimation for classes of distributions with a finite cover. Specifically, given a
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class of distributions with an α-cover of size Cα, they give a pure DP algorithm for

learning said class in total variation distance that uses O(log |Cα|) samples. Naturally,

this gives vacuous bounds for classes with an infinite cover – indeed, packing lower

bounds show that this is inherent under pure DP [HT10, BBKN14, BKSW19]. To

avoid these lower bounds, they show that learning is still possible if one relaxes to

approximate DP and considers a “locally small” cover: one that has at most k ele-

ments which are within an O(α)-total variation distance ball of any element in the set.

The sample complexity of the resulting method does not depend on |Cα|, and instead

we pay logarithmically in the parameter k. They apply this framework to provide

algorithms for estimating general univariate Gaussians, and multivariate Gaussians

with identity covariance. However, their arguments construct explicit covers for these

cases, and it appears difficult to construct and analyze covers in situations with a

rich geometric structure, such as multivariate Gaussians. Indeed, it seems difficult in

these settings to reason that a set is simultaneously a cover (i.e., every distribution

in the class has a close element) and locally small (i.e., every distribution does not

have too many close elements).

We avoid this tension by taking a myopic view: in Lemma 3.5.1, we show that if

we can construct a cover with few elements for the neighbourhood of each individual

distribution, then there exists a locally small cover for the entire space. This makes it

significantly easier to reason about locally small covers, as we only have to consider

covering a single distribution at a time, and we do not have to reason about how the

elements that cover each distribution overlap with each other. For example: to cover

the neighbourhood of a single Gaussian with (full rank) covariance Σ, we can trans-

form the covariance to the identity by multiplying by Σ−1/2, cover the neighbourhood
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of N(0, I) (which is easier), and transform the cover back to the original domain.

This is far simpler than trying to understand how to simultaneously cover multiple

Gaussians with differently shaped covariance matrices in a locally small manner. Our

results for covering are presented in Section 3.5.

We then go on to apply these locally small covers to derive sample complexity

upper bounds for learning high-dimensional Gaussians. As mentioned before, this

is done in [BKSW19], though we refine their method to achieve stronger bounds.

While this refinement is simple, we believe it to be important both technically (as

it allows us to achieve likely near-optimal sample complexities) and conceptually (as

we believe it clearly identifies what the “hard part” of the problem is). To elaborate,

our approach can be divided into two steps;

1. Coarse Estimation. Find any distribution which is 0.99-close to the true

distribution, using the approximate DP GAP-MAX algorithm in [BKSW19].

2. Fine Estimation. Generate an O(α)-cover around the distribution from the

previous step, and run the pure DP private hypothesis selection algorithm

in [BKSW19].

We are not the first to use this type of two-step approach, as such decomposition

has been previously applied, e.g., [KV18, KLSU19, KSU20]. However, it was not

applied in the context of the GAP-MAX algorithm in [BKSW19], preventing them

from getting the right dependencies on all parameters – in particular, it was not clear

how to disentangle the dependencies on log(1/δ) and 1/α using their method directly.

As another contribution, in Section 3.4, we revisit the generic private hypothesis

selection problem. The main result of Bun, Kamath, Steinke, and Wu [BKSW19] is

an algorithm for this problem which requires knowledge of the distance to the best
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hypothesis. They then wrap this algorithm in another procedure which “guesses” the

distance to the best hypothesis, resulting in a semi-agnostic algorithm. However, this

loses large factors in the agnostic guarantee and is rather indirect. We instead analyze

the privatization of a different algorithm, the minimum distance estimate, which gives

a semi-agnostic algorithm directly, with an optimal agnostic constant (i.e., providing

a tight factor of 3 [DL01]). In our opinion, the algorithm and proof are even simpler

than the non-agnostic algorithm of Bun, Kamath, Steinke, and Wu [BKSW19].

3.3 Preliminaries

We state some definitions and simple results that will be useful for this chapter.

We define the set of d-dimensional location Gaussians as GdL :=
{
N (µ, I) : µ ∈ Rd

}
,

and the set of d-dimensional scale Gaussians as GdS := {N (0,Σ) : Σ ∈ Sd}. We define

the set of (all) d-dimensional Gaussians as Gd :=
{
N (µ,Σ) : µ ∈ Rd,Σ ∈ Sd

}
.

The following Lemma gives us the VC dimension of the classes GdL and Gd.

Lemma 3.3.1. The class of d-dimensional location Gaussians GdL has VC dimension

d+1. Furthermore, the class of d-dimensional Gaussians Gd has VC dimension O(d2).

Proof. For location Gaussians, H(GdL) corresponds to linear threshold functions (i.e.,

half-spaces), which have VC dimension d+1. SimilarlyH(Gd) corresponds to quadratic

threshold functions, which have VC dimension
(
d+2

2

)
= O(d2) [Ant95].

While we have defined the standard notions of realizable and semi-agnostic PAC

learning in Chapter 2, we will need the following intermediate notion of learning in

this thesis. In this setting, we will be able to handle model-misspecification like in
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the semi-agnostic case, however we will require an upper bound on “how wrong” our

model is.

Definition 3.3.2 ((ξ, C)-robust PAC learner). For ξ ∈ (0, 1) and C > 0 we say

Algorithm A is a (ξ, C)-robust PAC learner for a class of distributions F which

uses ñC(α, β) samples, if for every α, β ∈ (0, 1), every distribution g such that

dTV(g,F) ≤ ξ, and every n ≥ ñC(α, β) the following holds: if the algorithm is given

parameters ξ, α, β and a sequence of n i.i.d. samples from g as inputs, then it outputs

an approximation f̂ such that dTV(f̂ , g) ≤ C · ξ + α with probability at least 1− β.

We can also define a differential private analogue of robust PAC learners.

Definition 3.3.3 ((ε, δ)-DP (ξ, C)-robust PAC learner). We say algorithm A is an

(ε, δ)-DP realizable PAC learner for a class of distributions F that uses ñC(α, β, ε, δ)

samples if:

1. Algorithm A is a (ξ, C)-robust PAC learner for F that uses ñC(α, β, ε, δ) sam-

ples.

2. Algorithm A satisfies (ε, δ)-DP.

3.4 Private Hypothesis Selection

The problem of hypothesis selection is a classical approach for reducing estimation

problems to pairwise comparisons. Roughly speaking, in hypothesis selection we are

given a list of distributions F and sample access to an unknown distributions g, and

our goal is to pick a distribution f̂ ∈ F that is close to g using samples from g.
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Given this (informal) definition, we can see that the only difference between hy-

pothesis selection and distribution learning is that in the former, we are required

to output some distribution f̂ ∈ F , while in the latter, we are free to output any

distribution (possibly not in F). As is standard in learning theory, we call these

two setting proper learning and improper learning respectively. While this difference

might seem minor, it turns out to have some technical consequences. Bousquet, Kane

and Moran [BKM19] recently showed that one can achieve strictly better accuracy

with improper learning over proper learning. Nevertheless, for our purposes we are

willing to work with the slightly weaker guarantees provided by considering proper

learners. Thus, throughout this thesis we will work with proper learning algorithms

and refer to hypothesis selection and distribution learning interchangeably.

3.4.1 Known Results

Recently, Bun, Kamath, Stenike and Wu [BKSW19] translated the powerful tools

for hypothesis selection to the differentially private setting, giving an ε-DP algorithm

for hypothesis selection that uses the exponential mechanism with a carefully con-

structed score function.

Theorem 3.4.1 below is a modified version of a result of Bun, Kamath, Stenike

and Wu [BKSW19] where we decouple the accuracy parameter α from the robustness

parameter ξ, and boost the success probability to be arbitrarily high. The proof of

this modified version follows immediately from their proof.

Recall that in the (ξ, C)-robust PAC learning setting we have a predetermined

class of distributions F and receive i.i.d. samples from an unknown distribution g,

where we know the upper bound dTV(g,F) ≤ ξ. For a class of distributions F , we
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will denote f ∗ as the distribution in F that is closest to the unknown distribution g.

Finally, recall that we take f̂ ∈ F to be the output of the learning algorithm.

Theorem 3.4.1 ([BKSW19]). For any ξ, ε ∈ (0, 1) and class of distributions F =

{f1, . . . , fm}, PHS(ξ, α, β, ε,F , D) is an ε-DP (ξ, 3)-robust PAC learner for F that

uses

ñ3(α, β, ε, δ) = O

(
log(m/β)

α2
+

log(m/β)

αε

)
samples. Furthermore, when the algorithm succeeds it guarantees that dTV(f̂ , f ∗) ≤

2ξ + α.

We note the guarantee that the algorithm gives with respect to f ∗ in the the-

orem statement for technical reasons that will become apparent in the proofs of

Section 3.4.3. Unfortunately, to get finite sample guarantees using the above result,

we are limited to considering finite classes of distribution.

Using a uniform convergence argument together with a GAP-MAX algorithm [BDRS18],

Bun, Kamath, Steinke, and Wu [BKSW19] showed that it may also be possible to get

a similar guarantee when the size of the class of distributions is infinite, provided that

we relax the notion of privacy to approximate differential privacy. The following is an

alternate version of Theorem 4.1 in [BKSW19]. Again, in this version we decouple the

accuracy parameter α from the robustness parameter ξ. The proof follows directly

from the proof of Theorem 4.1 in [BKSW19].

Theorem 3.4.2 ((alternate) Theorem 4.1 [BKSW19]). For any ξ, ε, δ ∈ (0, 1) and

class of distributions F with VC dimension d that satisfies |B (3ξ + α, f ∗,F) | ≤ k,

GAP-MAX(ξ, α, β, ε, δ, k,F , D) is an (ε, δ)-DP (ξ, 4)-robust PAC learner for F that
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uses

ñ4(α, β, ε, δ) = O

(
d+ log(1/β)

α2
+

log(k/β) + min{log(|F|), log(1/δ)}
αε

)

samples.

Furthermore, when the algorithm succeeds it guarantees that dTV(f̂ , f ∗) ≤ 3ξ + α.

Note that Theorem 3.4.2 requires knowledge of |B (3ξ + α, f ∗,F) |, which we likely

do not know a priori. In fact, since by definition a (ξ, C)-robust PAC learner must

work for any distribution g satisfying dTV(g,F) ≤ ξ, f ∗ can change depending on g.

So, instead of focusing on a single f ∗, we can find an upper bound on the size of the

largest total variation ball centered at any f ∈ F , i.e. supf∈F |B (3ξ + α, f,F) | ≤ k.

This directly translates to showing F is (k, 3ξ + α)-locally small.

This lays the foundation for the strategy used by Bun, Kamath, Steinke, and

Wu [BKSW19] to construct a private distribution learner for an infinite class of dis-

tributions F : by using a ξ-cover for F that is (k, 6ξ + α)-locally small1 as the input

to the GAP-MAX algorithm, given the right amount of samples (which depends on

k), with high probability the algorithm outputs a distribution that is (8ξ + α)-close

to the unknown distribution g.

As we will see in Section 3.4.3, Bun, Kamath, Steinke, and Wu [BKSW19] also

gave a method that can convert a robust PAC learner to a semi-agnostic learner at

the cost of some poly-logarithmic factors and a larger agnostic constant. This leads

to the natural question of whether there exists an ε-DP semi-agnostic learner which

achieves the same bound on the required number of samples as the PHS algorithm

with a comparable agnostic constant. We answer this question in the affirmative and

1Note that the guarantee we can get from any ξ-cover Cξ is dTV(f∗, Cξ) ≤ ξ =⇒ dTV(g, Cξ) ≤ 2ξ.
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give the details in Section 3.4.2 below.

3.4.2 Semi-Agnostic Private Hypothesis Selection

As a first attempt to directly obtain a semi-agnostic algorithm, Bun, Kamath,

Steinke, and Wu [BKSW19] gave an ε-DP 9-agnostic PAC learner based on the

Laplace mechanism. This algorithm – which we will refer to as Näıve-PHS – is sim-

ilar to the PHS algorithm. Unfortunately, the number of samples of the Näıve-PHS

algorithm uses is

n9(α, β, ε, 0) = O

(
log(|F|/β)

α2
+
|F|2 log(|F|/β)

αε

)
,

which is exponentially worse than the PHS algorithm. This leads to the interesting

question of whether we can do better in the semi-agnostic setting.

The PHS algorithm (Theorem 3.4.1) is based on the celebrated Scheffé tournament

(see, e.g., Chapter 6 of [DL01]), where the distributions in F play a round robin

tournament against one another. The winner of this tournament is then chosen as

the output. One of the technical difficulties in constructing privatized versions of

the Scheffé tournament via the exponential mechanism is that a single sample can

quite drastically change the outcome of the tournament, which makes choosing score

functions based on tournaments challenging. We can sidestep this issue completely

by considering another approach to hypothesis selection called the minimum distance

estimate (MDE).

The MDE approach is based on maximizing a particular function of the data

and F as we will see shortly. Fortunately, this estimator is already in the form of

a maximization problem and the function we aim to maximize has low sensitivity.
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Thus, using the exponential mechanism together with the MDE is a very natural way

to privatize semi-agnostic hypothesis selection.

The standard MDE requires O(m3) computations, where m is the number of hy-

potheses in F . Mahalanabis and S̆tefankovic̆ [Mu08] presented a modified MDE that

is very similar to the original MDE, but only requires O(m2) computations. Fortu-

nately, this modified algorithm maintains the guarantee of the original algorithm, so

we will privatize the modified MDE instead of the original MDE. We formally state

our result below.

Theorem 3.4.3. For any ε ∈ (0, 1) and class of distributions F = {f1, . . . , fm},

there exists an ε-DP 3-agnostic PAC learner for F that uses

n3(α, β, ε, δ) = O

(
log(m/β)

α2
+

log(m/β)

αε

)

samples.

Before we prove the result, we define a few things. For an ordered pair of distri-

butions (fi, fj) over a common domain X , we define their Scheffé set as Aij = {x ∈

X : fi(x) > fj(x)}. Observe that the Scheffé sets “witness” the TV distance between

two distributions over the same domain. We will thus find it useful to write the TV

distance between fi and fj as:

2dTV(fi, fj) =
(
Pfi(Aij)−Pfj(Aij)

)
+
(
Pfi(Aji)−Pfj(Aji)

)
.

We note that most of the analysis in our proof of Theorem 3.4.3 is standard in

proving the correctness of the MDE (e.g., see the proof of Theorem 6.3 in [DL01]),

and is slightly adapted using the analysis of the modified MDE algorithm in Theorem
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4 of [Mu08]. The only difference here is our use of the exponential mechanism.

Proof of Theorem 3.4.3. Fix some distribution g and class F with common domain

X . For a dataset D (of i.i.d. samples drawn from g) and set A ⊆ X , we define

P̂ (A,D) = 1
n
· |{x ∈ D : x ∈ A}|. For a distribution f ∈ F and a set A ⊆ X , let

R(f, A) = Pf (A)− P̂ (A). For any fi ∈ F , we define the score function

S(D, fi) = − sup
j∈[m]\{i}

∣∣∣(Pfi(Aij)− P̂ (Aij, D)
)
−
(
Pfi(Aji)− P̂ (Aji, D)

)∣∣∣
= − sup

j∈[m]\{i}
|R(fi, Aij)−R(fi, Aji)| .

With this in place, the algorithm is simple: run the exponential mechanism [MT07]

with this score function, on the set of candidates F , with dataset D, and return

whichever distribution it outputs.

It is not hard to see that the score function has sensitivity 2/n. Let fk ∈ F be any

distribution that maximizes the score function. From Theorem 2.2.4, it follows that

running the exponential mechanism with our dataset D, the class of distributions F ,

privacy parameter ε and the the score function above outputs a distribution fk′ ∈ F

that guarantees, with probability no less than 1− β/2,

S(D, fk′) ≥ S(D, fk)−
4 log(2m/β)

nε
≥ S(D, fk)− α,

where the second inequality holds so long as n = Ω
(

log(m/β)
αε

)
. We condition on this
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event, which can equivalently be stated as

sup
j∈[m]\{k′}

|R(fk′ , Ak′j)−R(fk′ , Ajk′)| ≤ sup
j∈[m]\{k}

|R(fk, Akj)−R(fk, Ajk)|+ α.

(3.4.1)

We can now bound the total variation distance between the unknown distribution g

and the output fk′ . Let fl be any distribution in F that satisfies dTV(fl, g) = OPT.2

Using the triangle inequality we have,

2dTV(fk′ , g) = ‖fk′ − g‖1 ≤ ‖fl − g‖1 + ‖fk′ − fl‖1. (3.4.2)

We now look at the right most term in Eq. (3.4.2). By the definition of the TV

distance and an application of the triangle inequality we have

‖fk′ − fl‖1 =
(
Pfk′

(Ak′l)−Pfl(Ak′l)
)

+
(
Pfl(Alk′)−Pfk′

(Alk′)
)

=
∣∣(Pfk′

(Ak′l)−Pfl(Ak′l)
)

+
(
Pfl(Alk′)−Pfk′

(Alk′)
)∣∣

≤ |R(fk′ , Ak′l)−R(fk′ , Alk′)|+ |R(fl, Alk′)−R(fl, Ak′l)|

≤ sup
j∈[m]\{k′}

|R(fk′ , Ak′j)−R(fk′ , Ajk′)|+ sup
j∈[m]\{l}

|R(fl, Alj)−R(fl, Ajl)| .

Using Eq. (3.4.1), the fact that fk maximizes the score function, and the triangle

2Note that this implies that ‖fl − g‖1 = 2OPT.
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inequality all together yields

‖fk′ − fl‖1 ≤ sup
j∈[m]\{k}

|R(fk, Akj)−R(fk, Ajk)|+ sup
j∈[m]\{l}

|R(fl, Alj)−R(fl, Ajl)|+ α

≤ 2 sup
j∈[m]\{l}

|R(fl, Alj)−R(fl, Ajl)|+ α

≤ 2 sup
j∈[m]\{l}

∣∣(Pfl(Alj)−Pg(Alj)
)

+
(
Pg(Ajl)−Pfl(Ajl)

)∣∣
+ 2 sup

j∈[m]\{l}

∣∣∣(Pg(Alj)− P̂ (Alj, D)
)

+
(
P̂ (Ajl, D)−Pfl(Ajl)

)∣∣∣+ α.

Notice that the first term on the right hand side of the final inequality is at most

twice the `1 distance between fl and g. Let

∆(g) = 2 sup
j∈[m]\{l}

∣∣∣(Pg(Alj)− P̂ (Alj, D)
)

+
(
P̂ (Ajl, D)−Pfl(Ajl)

)∣∣∣ .
This gives us

‖fk′ − fl‖1 ≤ 2‖fl − g‖1 + ∆(g) + α.

Furthermore, notice that the term ∆(g) is small when the difference between the

empirical and the true probability measures assigned by g to the Scheffè sets is small.

We can thus upper bound this term by α by using 2
(
m
2

)
standard Chernoff bounds

together with a union bound to get

‖fk′ − fl‖1 ≤ 2‖fl − g‖1 + 2α, (3.4.3)

with probability no less than 1−β/2 so long as n = Ω
(

log(m/β)
α2

)
. Putting Eq. (3.4.2)
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and Eq. (3.4.3) together gives us,

dTV(fk′ , g) = 3OPT + α.

A union bound together with setting n = Ω
(

log(m/β)
α2 + log(m/β)

αε

)
completes the proof.

3.4.3 Converting a Robust PAC Learner to a Semi-Agnostic

PAC Learner

Unfortunately, the algorithms in Theorem 3.4.1 and Theorem 3.4.2 are not semi-

agnostic and require an upper bound on OPT = dTV(g,F) via ξ. Although we

have given an (ε, δ)-DP semi-agnostic algorithm comparable to PHS in Section 3.4.2,

we do not have an analogous (ε, δ)-DP semi-agnostic algorithm for the GAP-MAX

algortihm.

To get around this issue of having to know ξ, Bun, Kamath, Steinke, and Wu [BKSW19]

gave a simple procedure that takes an (ε, δ)-DP robust PAC learner and constructs an

(ε, δ)-DP semi-agnostic PAC learner, at the cost of some low order poly-logarithmic

factors in the bounds on the required number of samples, and an increase in the

agnostic constant. We can thus use the GAP-MAX algorithm together with this

procedure to get an (ε, δ)-DP semi-agnostic PAC leaner given an infinite class of dis-

tributions. The procedure [BKSW19] came up with works in the following way: run

the (ε, δ)-DP robust PAC learner with (a small number of) different values for ξ to

get a shortlist of candidates. Use the semi-agnostic NäıvePHS algorithm to select a

good hypothesis from the short list. As we mentioned earlier, the guarantee of this
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approach (Theorem 3.4 in [BKSW19]) is stated specifically in terms of converting the

PHS algorithm from Theorem 3.4.1 into an ε-DP semi-agnostic PAC learner, however

it can be immediately generalized to construct (ε, δ)-DP semi-agnostic PAC learners

given any (ε, δ)-DP robust PAC learner. Furthermore, we can replace the Näıve-PHS

algorithm with the sample efficient algorithm from Theorem 3.4.3 to reduce the agnos-

tic constant, and also remove some logarithmic factors in the bound on the required

number of samples. This yields the following result.

Lemma 3.4.4. Let ε, δ ∈ (0, 1) and T = dlog2(1/α)e. Given an (ε, δ)-DP (ξ, C)-

robust PAC learner for a class of distributions F that uses ñC(α, β, ε, δ) samples,

there exists an (ε, δ)-DP 6C-agnostic PAC learner for F that uses

n6C (α, β, ε, δ) = ñC

(
α

12
,

β

2(T + 4)
,

ε

2(T + 4)
,

δ

T + 4

)
+O

(
log(T/β)

α2
+

log(T/β)

αε

)

samples.

Proof. Fix parameters ε, δ, α, β ∈ (0, 1). We split our dataset D ∼ gn into D1 and D2,

where |D1|+ |D2| = n. Let T = dlog2(1/α)e. For all t ∈ [T + 4], let ξt = 2t−1α/12C.

The algorithm is simple: we run the (ε, δ)-DP (ξ, C)-robust PAC learner T + 4

times, where each run t uses parameters α/12, β/2(T +4), ε/2(T +4), δ/2(T +4) and

dataset D1. We then use the private semi-agnostic learner from Theorem 3.4.3 with

parameters α, β/2, ε/2, and dataset D2. By basic composition of DP (Lemma 2.2.2),

it follows immediately that our algorithm is (ε, δ)-DP.

We now argue about the accuracy of the algorithm. Let ft be the otuput of run

t of the robust PAC learner. If |D1| = ñC

(
α
12
, β

2(T+4)
, ε

2(T+4)
, δ
T+4

)
, a union bound

guarantees that with probability at least 1 − β/2 each ft is accurate (assuming ξt is
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a correct upper bound for OPT).

Notice that if run t succeeds and OPT ∈ (ξt−1, ξt], we have dTV(g, ft) ≤ Cξt +

α/12 ≤ 2C · OPT + α/12. Similarly, if OPT ≤ ξ1 then f1 satisfies dTV(g, f1) ≤

Cξ1 + α1 = α/12 + α/12 = α/6. Finally, if OPT > ξT+4 this implies OPT > 8/12C,

so any distribution f ∈ F satisfies dTV(g, f) ≤ 2C · OPT trivially. So regardless of

OPT, there is a run t that satisfies dTV(g, ft) ≤ 2C ·OPT + α/6.

Finally, Theorem 3.4.3 guarantees that, with probability greater than 1−β/2, the

second step in our above procedure will output a distribution f̂ such that

dTV(g, f̂) ≤ 3 inf
ft
dTV(g, ft) + α/2,

as long as |D2| = Ω
(

log(T/β)
α2 + log(T/β)

αε

)
.

Thus, by a union bound, we have with probability at least 1−β that our algorithm

outputs a distribution f̂ such that dTV(g, f̂) ≤ 3(2C ·OPT+α/6)+α/2 = 6C ·OPT+α

so long as

n = ñC

(
α

12
,

β

2(T + 4)
,

ε

2(T + 4)
,

δ

T + 4

)
+ Ω

(
log(T/β)

α2
+

log(T/β)

αε

)
.

3.5 Covering Unbounded Gaussians

In this section, we demonstrate a simple method to prove that a class of distri-

butions has a locally small cover. As an application, we use this result to show that
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the set of unbounded location Gaussians and scale Gaussians have locally small cov-

ers. We use these two results to give the first sample complexity result for privately

learning unbounded high dimensional Gaussians in Section 3.6.

3.5.1 From Covering TV balls to Locally Small Covers

The biggest roadblock to using Theorem Theorem 3.4.2 is demonstrating the exis-

tence of a locally small cover for the class of distributions F . Unfortunately, explicitly

constructing a global cover (which is locally small) can be complicated, and may re-

quire cumbersome calculations even for “simple” distributions (see, e.g., Lemma 6.13

of [BKSW19]). We offer a conceptually simpler alternative to prove a class of distri-

butions F has a locally small cover: we demonstrate that if for every f ∈ F the total

variation ball B (γ, f,F) has an ξ
2
-cover of size no more than k, then there exists a

ξ-cover for F that is (k, γ)-locally small.

Lemma 3.5.1. Given a class of distributions F and ξ ∈ (0, 1), if for every distri-

bution f ∈ F the total variation ball B (γ, f,F) ⊆ F has an ξ
2
-cover of size no more

than k, then there exists a (k, γ)-locally small ξ-cover for F .

Proof. Fix some f ∈ F . By assumption, we have that the set of distributions

B (γ, f,F) has an ξ
2
-cover of size no more than k, which by definition implies that

the ξ
2
-covering number of B (γ, f,F) is no more than k. By Proposition 2.3.9, the

ξ-packing number of B (γ, f,F) is also at most k.

Now consider a ξ-packing Pξ for the class of distributions F . We claim any such

Pξ must be (k, γ)-locally small, and we prove this by contradiction. Suppose to the

contrary that there were a distribution f ′ ∈ Pξ such that |B (γ, f ′,Pξ)| > k. This

would imply that there is a ξ-packing for B (γ, f ′,F) with size larger than k, which
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contradicts the above observation that the packing number of any B (γ, f ′,F) is at

most k.

A ξ-packing for F is called maximal if it is impossible to add a new element of F

to it without violating the ξ-packing property. We claim that any maximal packing

P ′ξ of F is also a ξ-cover of F . We can prove this by contradiction. Suppose to the

contrary that there were a distribution f ′′ ∈ F with dTV(f ′′,P ′ξ) > ξ. Then we could

add f ′′ to P ′ξ to produce a strictly larger packing, contradicting the maximality of

P ′ξ. Thus taking Pξ to be a maximal packing gives us a (k, γ)-locally small ξ-cover.

Therefore, it only remains to show that a maximal packing actually exists, which

follows from a simple application of Zorn’s Lemma.3

3.5.2 Locally Small Gaussian Covers

We now prove that both the class of d-dimensional location Gaussians and scale

Gaussians can be covered in a locally small fashion. Our first result shows that the

class of d-dimensional location Gaussians GdL has a locally small cover. Our second

result is proving the existence of a locally small cover for the class of d-dimensional

scale Gaussians GdS.

Covering Location Gaussians

It is not too difficult to come up with an explicit locally small cover for the set

of location Gaussians without using Lemma 3.5.1 as is demonstrated in [BKSW19,

3Let M be the set of all γ-packings of F . Define a partial order on M by the relation P1 ≤
P2 ⇐⇒ P1 ⊆ P2 where P1,P2 ∈ M . We claim that every chain in this partially ordered set has
an upper bound in M ; by Zorn’s lemma, this would imply that M has a maximal element which
concludes the proof. To see why every (possibly infinite) chain P1 ≤ P2 ≤ . . . has an upper bound
in M , we consider the following upper bound U = ∪iPi. Note that U ∈ M since otherwise there
would be an index i such that Pi /∈M .
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Lemma 6.12]. Nonetheless, we choose to do so as a warmup before attempting to

solve the (harder) problem for scale Gaussians. In the case of location Gaussians, our

proof is very similar to Lemma 6.12 in [BKSW19]. Constructing an explicit cover is

not too difficult in this case because the geometry of GdL is “simple”, given that the

TV distance between any two distributions is determined by the `2 distance of their

means. Unfortunately the situation is not that simple in the scale Gaussian case as

we will see shortly. We begin by showing that the TV ball centered at any Gaussian

N (µ, I) with respect to GdL can be covered, as long as the radius is not too large.

Lemma 3.5.2. For any d ∈ N, µ ∈ Rd, γ ∈ (0, c1) and ξ ∈ (0, γ) where c1 is a

universal constant, there exists a ξ-cover for the set of distributions B
(
γ,N (µ, I),GdL

)
of size (

γ

ξ

)O(d)

.

Proof. Fix some N (µ, I) ∈ GdL. From [DMR18, Theorem 1.2] we have

1

200
min {1, ‖µ1 − µ2‖2} ≤ dTV (N (µ1, I),N (µ2, I)) ≤ 9

2
min {1, ‖µ1 − µ2‖2} .

(3.5.1)

For any γ smaller than the universal constant c1, the lower bound in Eq. (3.5.1)

implies that any N (µ̃, I) ∈ B
(
γ,N (µ, I),GdL

)
must satisfy ‖µ− µ̃‖2 ≤ 200γ. We thus

propose the following cover:

Cξ =

{
N (µ+ ẑ, I) : ẑ ∈

(
2ξ

9
√
d

)
Zd, ‖ẑ‖2 ≤ 200γ

}
.

We now prove that Cξ is a valid ξ-cover. Fix some N (µ̃, I) ∈ B
(
γ,N (µ, I),GdL

)
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and define z = µ̃ − µ. We know ‖z‖2 ≤ 200γ. Let ẑ =
(

2ξ

9
√
d

)
b
(

9
√
d

2ξ

)
zc and

µ̂ = µ + ẑ. Note that we have N (µ̂, I) ∈ Cξ. Furthermore, z and ẑ are element-wise

close (‖z − ẑ‖∞ ≤ 2ξ/9
√
d) therefore we have

dTV (N (µ̃, I),N (µ̂, I)) ≤ 9

2
‖µ̃− µ̂‖2

=
9

2
‖z − ẑ‖2

≤ 9
√
d

2
‖z − ẑ‖∞

≤ 9
√
d

2
· 2ξ

9
√
d

= ξ,

where the first inequality follows from Eq. (3.5.1). We now bound the size of this

cover.

|Cξ| =
∣∣∣∣{N (µ+ ẑ, I) : ẑ ∈

(
2ξ

9
√
d

)
Zd, ‖ẑ‖2 ≤ 200γ

}∣∣∣∣
≤

∣∣∣∣∣
{
ẑ : ẑ ∈ Zd, ‖ẑ‖2 ≤

900
√
dγ

ξ

}∣∣∣∣∣ ≤
∣∣∣∣{ẑ : ẑ ∈ Zd, ‖ẑ‖1 ≤

900dγ

ξ

}∣∣∣∣
≤
∣∣∣∣{z1 − z2 : z1, z2 ∈ Zd+, ‖z1‖1 ≤

⌈
900dγ

ξ

⌉
, ‖z2‖1 ≤

⌈
900dγ

ξ

⌉}∣∣∣∣
≤
∣∣∣∣{z : z ∈ Zd+, ‖z‖1 ≤

⌈
900dγ

ξ

⌉}∣∣∣∣2

≤

d900dγ/ξe∑
i=1

(
i+ d− 1

d− 1

)2

≤
(⌈

900dγ

ξ

⌉(
d900dγ/ξe+ d− 1

d− 1

))2

≤
(
γ

ξ

)O(d)

,
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where the third last inequality follows from the standard solution to the stars and

bars problem.

Combining Lemma 3.5.1 with Lemma 3.5.2 immediately gives us the following

corollary:

Corollary 3.5.3. For any d ∈ N, γ ∈ (0, c1), and ξ ∈ (0, γ) where c1 is a universal

constant, there exists a ξ-cover Cξ for the class of d-dimensional location Gaussians

GdL that is
(
(2γ/ξ)O(d), γ

)
-locally small.

Covering Scale Gaussians

It is not a trivial exercise to come up with an explicit cover for the class of scale

Gaussians due to the complicated nature of the geometry of GdS. Fortunately for

us, Lemma 3.5.1 simplifies things significantly. It turns out that if we want to cover

the TV ball centered at any N (0,Σ), we can use a cover for N (0, I) and “stretch” the

covariance matrices of every distribution in the cover (using Σ) so that the modified

cover becomes a valid cover for the TV ball centered at N (0,Σ). The following lemma

tells us that we can cover the total variation ball centered at N (0, I) with respect to

GdS as long as the radius is not too large.

Lemma 3.5.4. For any d ∈ N, γ ∈ (0, c2) and ξ ∈ (0, γ) where c2 is a universal

constant, there exists a ξ-cover for the set of distributions B
(
γ,N (0, I),GdS

)
of size

(
γ

ξ

)O(d2)

.
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Proof. From [DMR18, Theorem 1.1] we have,

dTV(N (0, I),N (0,Σ)) ≥ 1

100
min

1,

√√√√ d∑
i=1

λ2
i

 , (3.5.2)

where λ1 . . . λd are the eigenvalues of Σ− I, and it holds that
√∑d

i=1 λ
2
i = ‖Σ− I‖F .

For any γ smaller than the universal constant c′2, the lower bound in Eq. (3.5.2)

implies two things: 1) for any N (0,Σ) ∈ B
(
γ,N (0, I),GdS

)
, ‖Σ− I‖F ≤ 100γ and 2)

the minimum eigenvalue of Σ, λmin, satisfies λmin ≥ 1− 100γ.

We thus propose the following cover:

Cξ =
{
N (0, I + ∆̂) : ∆̂ ∈ ρZd×d ∩ Sd, ‖∆̂‖F ≤ 100γ

}
,

where ρ = ξ
√

2πe(1−100γ)

d+ξ
√

2πe
. First we will show that this is a valid cover. Consider an

arbitrary N (0,Σ) ∈ B
(
γ,N (0, I),GdS

)
. We want to show that there is a distribution

N (0, Σ̂) ∈ Cξ that is ξ-close to N (0,Σ). Let ∆ = Σ − I, let ∆̂ = ρb∆/ρc, and let

Σ̂ = I + ∆̂. Since ‖∆‖F = ‖Σ− I‖F ≤ 100γ, N (0, Σ̂) is indeed in the cover.

Next we show that dTV(N (0,Σ),N (0, Σ̂)) ≤ ξ. We use Proposition 32 in [VV10],

which states for any two positive definite matrices Σ and Σ̂, if ‖Σ− Σ̂‖∞,∞ ≤ ρ′ and

the smallest eigenvalue of Σ satisfies λmin > η, then we have

dTV(N (0,Σ),N (0, Σ̂)) ≤ dρ′√
2πe(η − ρ′)

. (3.5.3)

By the definition of Cξ, ‖∆̂ − ∆‖∞,∞ ≤ ρ. Since any valid Σ must satisfy λmin ≥
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1− 100γ, our choice of setting ρ = ξ
√

2πe(1−100γ)

d+ξ
√

2πe
implies that

dTV(N (0,Σ),N (0, Σ̂)) ≤ ξ,

for any γ smaller than the universal constant c′2.

We now bound the size of the cover in a similar manner to the case of location

Gaussians.

|Cξ| =
∣∣∣{∆̂ ∈ ρZd×d ∩ Sd : ‖∆̂‖F ≤ 100γ

}∣∣∣
≤
∣∣∣{∆̂ ∈ Zd×d : ‖∆̂‖F ≤ 100γ/ρ

}∣∣∣
≤
∣∣∣{∆̂ ∈ Zd×d : ‖∆̂‖1,1 ≤ 100γd/ρ

}∣∣∣
≤
∣∣∣{∆̂ ∈ Zd×d+ : ‖∆̂‖1,1 ≤ d100γd/ρe

}∣∣∣2
≤

⌈100γd(d+ ξ
√

2πe)

ξ
√

2πe(1− 100γ)

⌉
·
(⌈100γd(d+ξ

√
2πe)

ξ
√

2πe(1−100γ)

⌉
+ d2 − 1

d2 − 1

)2

,

for any γ smaller than the universal constant c′′2 we have,

|Cξ| ≤
(
γ

ξ

)O(d2)

.

Setting c2 = min{c′2, c′′2} completes the proof.

The following corollary is a direct consequence of Lemma 3.5.4 and Proposi-

tion A.0.1.

Corollary 3.5.5. For any d ∈ N, γ ∈ (0, c2), ξ ∈ (0, γ) where c2 is a universal con-

stant, and Σ ∈ Sd, there exists a ξ-cover for the set of distributions B
(
γ,N (0,Σ),GdS

)
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of size (
γ

ξ

)O(d2)

.

Proof. Fix γ ∈ (0, c2), ξ ∈ (0, γ) and Σ ∈ Sd. We first consider the case that Σ has

full rank.

Let Σ1/2 be the unique matrix square root of Σ. Our cover is simple; we take

the cover Cξ from Lemma 3.5.4 and replace every Gaussian N (0,Σ1) ∈ Cξ with

N (0,Σ1/2Σ1Σ1/2) to get the modified cover Ĉξ. Note that the size of the modified

cover remains the same.

We now argue that this is a valid cover for B
(
γ,N (0,Σ),GdS

)
and we prove this

by contradiction. Suppose to the contrary that there is a distribution N (0,Σ′) ∈

B
(
γ,N (0,Σ),GdS

)
such that dTV(N (0,Σ′), Ĉξ) > ξ. It follows from Corollary A.0.2,

Eq. (2.1.1), and our assumption on N (0,Σ′) that

dTV

(
N
(
0,Σ−1/2Σ′Σ−1/2

)
, Cξ
)

= dTV

(
N (0,Σ′) , Ĉξ

)
> ξ,

which implies that N
(
0,Σ−1/2Σ′Σ−1/2

)
6∈ B

(
γ,N (0, I),GdS

)
since Cξ is a ξ-cover for

B
(
γ,N (0, I),GdS

)
. However, by a similar observation, we have that

dTV

(
N
(
0,Σ−1/2Σ′Σ−1/2

)
,N (0, I)

)
= dTV (N (0,Σ′) ,N (0,Σ)) ≤ γ,

which implies that N
(
0,Σ−1/2Σ′Σ−1/2

)
∈ B

(
γ,N (0, I),GdS

)
, a contradiction. Thus

we have proven that Ĉξ is a ξ-cover for B
(
γ,N (0,Σ),GdS

)
.

We now consider the case that Σ has rank r < d. It is a well known fact that any

Gaussian g ∈ GdS that satisfies dTV(g,N (0,Σ)) < 1 must have a covariance matrix

with the same range as Σ. Thus, every Gaussian in B
(
γ,N (0,Σ),GdS

)
must have a
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covariance matrix with the same range as Σ.

Let Π be a d × r matrix whose columns form an orthonormal basis for range(Σ)

and let Σ̂ = Π>ΣΠ. Notice that Σ̂ is an r × r positive definite matrix. We first

obtain a ξ-cover for B
(
γ,N (0, Σ̂),GrS

)
and modify this cover to be a ξ-cover for

B
(
γ,N (0,Σ),GdS

)
. Since Σ̂ has full rank, we can use the cover Ĉξ we derived in the

full rank case above as cover for B
(
γ,N (0, Σ̂),GrS

)
. To modify this to be a ξ-cover for

B
(
γ,N (0,Σ),GdS

)
, we replace every distribution N (0,Σ2) ∈ Ĉξ with N (0,ΠΣ2Π>) to

get the modified cover C̃ξ. A simple proof by contradiction similar to the one above

shows that this is a valid cover for B
(
γ,N (0,Σ),GdS

)
. Finally, it is easy to see that

|C̃ξ| = O(γ/ξ)O(r2) < O(γ/ξ)O(d2). This completes the proof.

We can now combine Lemma 3.5.1 with Corollary 3.5.5 to get the following:

Corollary 3.5.6. For any d ∈ N, γ ∈ (0, c2), and ξ ∈ (0, γ) where c2 is a uni-

versal constant, there exists an ξ-cover Cξ for the set of scale Gaussians GdS that is(
(2γ/ξ)O(d2), γ

)
-locally small.

3.6 Boosting Weak Hypotheses

As we mentioned before, by using a (k, 6ξ+α)-locally small ξ-cover for an infinite

set of distributions F , one can utilize Theorem 3.4.2 to privately learn a distribution

to low error. Unfortunately, this approach will yield a sample complexity bound

that has a term of order O(log(1/δ)/αε). In the case of learning an unbounded

univariate Gaussian in the realizable setting, it is known that the sample complexity

is O(1/α2 + log(1/δ)/ε) [KV18], however the upper bound on the sample complexity
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achieved by Theorem 3.4.2 (together with an appropriate locally smaller cover) is

O(1/α2 + log(1/δ)/αε) [BKSW19, Corollary 6.15]. In order to overcome the poor

dependence on log(1/δ), we can instead aim for a two step approach:

1. Use the GAP-MAX algorithm in Theorem 3.4.2 but with constant accuracy C

to learn a distribution f ′ that is roughly C-close to the true Gaussian for some

appropriately selected constant C < 1.

2. Build a finite cover for B (C, f ′,F) and use the private hypothesis selection

algorithm (Theorem 3.4.1) to learn a distribution f̂ that is α-close to the true

Gaussian.

Running the GAP-MAX algorithm with constant accuracy C thus removes the de-

pendence on α in the O(log(1/δ)/ε) term. Intuitively, this approach learns a “rough”

estimate of the right distribution using approximate differential privacy. Since we

know that we are roughly C-close to the true Gaussian, we can cover B (C, f ′,F)

with a finite cover, and use the ε-differentially private hypothesis selection algorithm.

This two step approach which we dub boosting gets us a much better dependence on

the privacy parameter δ in our sample complexity bounds, and as we will see it holds

more generally in the robust learning setting.

Remark 3.6.1. We note that the first step in the above approach may only need

to produce an exceptionally coarse estimate to the true distribution – one to which

it bears very little resemblance at all! We illustrate this with the simple problem of

privately estimating a univariate Gaussian N (µ, 1) (in the realizable case).

We work backwards: our overall target is an algorithm with sample complexity

Õ(1/α2 + 1/αε+ log(1/δ)/ε). Since using the pure DP hypothesis selection algorithm
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of Theorem 3.4.1 takes O(log |Cα|(1/α2 + 1/αε)) samples, we require only that |Cα|

is less than some quasi-polynomial in 1/α. For the sake of exposition, suppose we

restrict further and require |Cα| ≤ 1/α101. This can be achieved by starting at any

point which is at most 1/α100 from the true mean µ and taking an α-additive grid

over this space. But if we only require a starting point µ̂ which is 1/α100-close to the

true mean µ, this corresponds (by Gaussian tail bounds) to a distribution whose total

variation distance is roughly 1− exp(−1/α200) with respect to the true distribution.

We can see that the first step in the procedure truly requires an exceptionally coarse

estimate of the distribution. The estimate of the mean described is significantly further

from the true mean than any individual point will be. Interestingly, note that if one

requires a more accurate final distribution, the distribution output in the first step is

allowed to be less accurate.

3.6.1 Warmup: Learning Location Gaussians

As a first step, we can show that Algorithm 1 can achieve a slightly more general

guarantee than a robust PAC learner. We make Algorithm 1 more general than it

needs to be to give a robust learning guarantee for GdL in order to make use of it as a

subroutine in Algorithm 2 which robustly learns Gd.

Lemma 3.6.2. For any b ≥ 1, β, ε, δ ∈ (0, 1), α ∈ (0, 4c1
3b+12

) and ξ ∈ (0, c1
3b+4

)

where c1 is a universal constant, given dataset D ∼ gn where g satisfies dTV(g,GdL) ≤

bξ+α/4, Algorithm 1 is an (ε, δ)-DP algorithm which outputs some f̂ ∈ GdL such that

dTV(f̂ , g) ≤ 3(b+ 1)ξ + α with probability no less than 1− β, so long as

n = Ω

(
d log(1/ξ) + log(1/β)

α2
+
d log(1/ξ) + log(1/β)

αε
+

log(1/βδ)

ε

)
.
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Algorithm 1: Boosting for learning GdL: BOOST1(b, ξ, α, β, ε, δ,D).

Input : Parameters b ≥ 1, β, ε, δ ∈ (0, 1), α ∈ (0, 4c1
3b+12

), ξ ∈ (0, c1
3b+4

) and

dataset D of size n.

Output: Distribution f̂ ∈ GdL.
1 Split D into D1, D2 where |D1| = n1, |D2| = n− n1

2 Set Cξ as a locally small ξ-cover for GdL
3 f ′ = GAP-MAX

(
(b+ 1)ξ + α

4
, c1

3b+4
− 3α

4
, β

2
, ε

2
, δ, k, Cξ, D1

)
// f ′ = N (µ′, I)

4 Set C̃ξ as ξ-cover for B
((

3(b+ 1)ξ + c1
3b+4

)
, f ′,GdL

)
5 Return f̂ = PHS((b+ 1)ξ + α

4
, α

4
, β

2
, ε

2
, C̃ξ, D2) // f̂ = N (µ̂, I)

Proof of Lemma 3.6.2.

Privacy. We first show Algorithm 1 satisfies (ε, δ)-differential privacy. Line 3 of

the algorithm is (ε/2, δ)-differentially private by the guarantee of Theorem 3.4.2.

Line 4 maintains (ε/2, δ)-privacy by post-processing (Lemma 2.2.3). Finally, line 5 is

(ε/2, 0)-differentially private by Theorem 3.4.1. By basic composition (Lemma 2.2.2),

the entire algorithm is (ε, δ)-differentially private.

Accuracy. We now argue about the accuracy of the algorithm. Recall that for any

γ < c1, Corollary 3.5.3 guarantees the existence of a ξ-cover that is (k, γ)-locally small

where k = (2γ/ξ)O(d). Thus, for any ξ < c1
3b+4

, we can set Cξ to be a ξ-cover that is

(k, γ)-locally small where γ = 3(b+1)ξ+ c1
3b+4

in line 2. Note that dTV(g,GdL) ≤ bξ+α/4

implies dTV(g, Cξ) ≤ (b+ 1)ξ + α/4.

By an upper bound on the VC-dimension of Cξ (Lemma 3.3.1) and the guarantee of

the GAP-MAX algorithm (Theorem 3.4.2), we have with probability at least 1−β/2

that the output of the GAP-MAX algorithm on line 3 is a distribution f ′ that is

(3(b + 1)ξ + c1
3b+4

)-close to f ∗ so long as |D1| = Ω
(
d log(1/ξ)+log(1/βδ)

ε

)
and α < 4c2

9b+12
.
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We condition on this occurring.

On line 4 we build a ξ-cover C̃ξ for B
((

3(b+ 1)ξ + c1
3b+4

)
, f ′,GdL

)
that satisfies

dTV(f ∗, C̃ξ) ≤ ξ, which implies dTV(g, C̃ξ) ≤ (b+ 1)ξ + α/4. By Lemma 3.5.2, we can

indeed construct such a C̃ξ satisfying |C̃ξ| ≤
(

3(b+ 1) + c1
ξ(3b+4)

)O(d)

for any ξ < c1
3b+4

.

By the stated accuracy and size of C̃ξ, with probability no less than 1 − β/2 Theo-

rem 3.4.1 guarantees that line 5 outputs f̂ satisfying

dTV(g, f̂) ≤ 3((b+ 1)ξ + α/4) + α/4 = 3(b+ 1)ξ + α,

so long as |D2| = Ω
(
d log(1/ξ)+log(1/β)

α2 + d log(1/ξ)+log(1/β)
αε

)
.

A union bound and setting n = Ω
(
d log(1/ξ)+log(1/β)

α2 + d log(1/ξ)+log(1/β)
αε

+ log(1/βδ)
ε

)
completes the proof.

The following result can be derived by using an algorithm very similar to Algo-

rithm 1. The proof is nearly identical to the proof of Lemma 3.6.2.

Lemma 3.6.3. For any ε, δ ∈ (0, 1) and ξ ∈ (0, c3) where c3 is a universal constant,

there exists an (ε, δ)-DP (ξ, 6)-robust PAC learner for GdL that uses

ñ6(α, β, ε, δ) = O

(
d log(1/ξ) + log(1/β)

α2
+
d log(1/ξ) + log(1/β)

αε
+

log(1/βδ)

ε

)

samples.

We can now convert our (ε, δ)-DP robust PAC learner (Lemma 3.6.3) into an

(ε, δ)-DP semi-agnostic PAC learner using Lemma 3.4.4. Note that while the bound

in Lemma 3.6.3 has a dependence on log(1/ξ), we can replace this with log(1/α) in the

semi-agnostic bounds. This is because when we convert from robust to semi-agnostic
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learners (Lemma 3.4.4) we run the robust learner T times with different robustness

parameter ξt, where ∀t ∈ [T ], ξt = Ω(α). Thus, log(1/ξt) terms simplify to log(1/α).

Theorem 3.6.4. For any ε, δ ∈ (0, 1) and OPT smaller than a universal constant,

there exists an (ε, δ)-DP 36-agnostic PAC learner for GdL that uses

n36(α, β, ε, δ) = Õ

(
d+ log(1/β)

α2
+
d+ log(1/β)

αε
+

log(1/βδ)

ε

)

samples.

3.6.2 Learning Gaussians

We can now show that Algorithm 2 achieves the following upper bound on the

sample complexity of robustly learning Gd.

Lemma 3.6.5. For any ε, δ ∈ (0, 1), and ξ ∈ (0, c4) where c4 is a universal constant,

Algorithm 2 is an (ε, δ)-DP (ξ, 24)-robust PAC learner for Gd that uses

ñ24(α, β, ε, δ) = O

(
d2 log(1/ξ) + log(1/β)

α2
+
d2 log(1/ξ) + log(1/β)

αε
+

log(1/βδ)

ε

)

samples.
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Algorithm 2: Boosting for learning Gd: BOOST2(ξ, α, β, ε, δ,D).

Input : Parameters α, β, ε, δ ∈ (0, 1), ξ ∈ (0, c4) and dataset D of size 2n.

Output: Distribution f̂ ∈ GdS.

1 Split D into D1, D2, D3 where |D1| = 2n1, |D2| = n2, |D3| = n3

2 Set Cξ as a locally small cover for GdS
3 Set D′1 = {Y 1, . . . , Y n1} where Y i = 1√

2
(X2i −X2i−1), X i ∈ D1

4 f ′ = GAP-MAX
(
3ξ, c2

10
, β

4
, ε

4
, δ

2
, k, Cξ, D′1

)
// f ′ = N (0,Σ′)

5 Set C̃ξ a a ξ-cover for B
((

9ξ + c3
10

)
, f ′,GdS

)
6 f̂1 = PHS(3ξ, α

4
, β

4
, ε

4
, C̃ξ, D2) // f̂1 = N (0, Σ̂)

7 Set D′3 = {W 1, . . . ,W n3} where W i = Σ̂−1/2X i, X i ∈ D3

8 f̂2 = BOOST1

(
7, ξ, α, β

2
, ε

2
, δ

2
, D′3

)
// f̂2 = N (µ̂, I)

9 Return: f̂ = N
(

Σ̂1/2µ̂, Σ̂
)

Proof of Lemma 3.6.5.

Privacy. We first show Algorithm 2 satisfies (ε, δ)-differential privacy. Line 4 of

the algorithm is (ε/4, δ/2)-differentially private by the guarantee of Theorem 3.4.2.

Line 5 maintains (ε/4, δ/2)-privacy by post-processing (Lemma 2.2.3). Line 6 is

(ε/4, 0)-differentially private by Theorem 3.4.1. Line 7 maintains privacy by post

processing (Lemma 2.2.3). Finally, line 8 is (ε/2, δ/2)-differentially private by the

privacy of Algorithm 1 proved in Lemma 3.6.2. By basic composition (Lemma 2.2.2)

the entire algorithm is (ε, δ)-differentially private.

Accuracy. We now argue about the accuracy of the algorithm. Recall that for any

γ < c2, Corollary 3.5.6 guarantees the existence of a ξ-cover that is (k, γ)-locally

small where k = (2γ/ξ)O(d2). Thus, on line 2 we can set Cξ to be a ξ-cover that is

(k, γ)-locally small where γ = 9ξ + c2
10

, so long as ξ < c2
10

.
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Let f ∗ = N (µ∗,Σ∗) be a distribution that satisfies dTV(f ∗, g) ≤ ξ. By Proposi-

tion A.0.4, for every Y ∈ D′1 on line 3 we have that Y ∼ q1 where dTV(q1,N (0,Σ∗)) ≤

2ξ. This implies that dTV(q1, Cξ) ≤ 3ξ. By an upper bound on the VC dimension of

Cξ (Lemma 3.3.1) and the guarantee of the GAP-MAX algorithm (Theorem 3.4.2),

we have with probability at least 1−β/4 that the output of the GAP-MAX algorithm

on line 4 is a distribution f ′ = N (0,Σ′) that is
(
9ξ + c2

10

)
-close to N (0,Σ∗), so long

as |D′1| = Ω
(
d2 log(1/ξ)+log(1/βδ)

ε

)
. We condition on this occurring.

On line 5, we build a ξ-cover C̃ξ for B
(
9ξ + c2

10
, f ′,GdS

)
that satisfies dTV(N (0,Σ∗), C̃ξ) ≤

ξ, which implies that dTV(q1, C̃ξ) ≤ 3ξ. By Corollary 3.5.5, we can indeed construct

such a C̃ξ satisfying |C̃ξ| ≤ (9 + c2
10ξ

)O(d2) for any ξ < c2
10

. By the stated accuracy

and size of C̃ξ, with probability no less than 1− β/4, Theorem 3.4.1 guarantees that

line 6 outputs f̂1 = N (0, Σ̂) such that dTV(f̂1,N (0,Σ∗)) ≤ 6ξ + α/4 so long as

|D2| = Ω
(
d2 log(1/ξ)+log(1/β)

α2 + d2 log(1/ξ)+log(1/β)
αε

)
. We further condition on this occur-

ring.

For samples W ∈ D′3 on line 7, let q2 be the distribution satisfying W ∼ q2.4 By

Eq. (2.1.1) and Corollary A.0.2,

dTV(q2,N (Σ̂−1/2µ∗, Σ̂−1/2Σ∗Σ̂−1/2)) ≤ ξ.

Furthermore, using the triangle inequality, Corollary A.0.2, Eq. (2.1.1), and the above

4If Σ̂ is not invertible, the range of Σ̂ is an r-dimensional linear subspace of Rd, for some r < d.
Let Π be a d× r matrix whose columns form a orthonormal basis for the range of Σ̂. It follows that
Σ̃ = Π>Σ̂Π is a r × r positive definite covariance matrix. Moreover, by construction, Σ̃ is identical
to Σ̂ after projection on to the subspace defined by the range of Σ̂. We can thus project our data
onto the range of Σ̂ and continue the algorithm using Σ̃.
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inequality, we have

TV (q2,N (Σ̂−1/2µ∗, I)) ≤ dTV(q2,N (Σ̂−1/2µ∗, Σ̂−1/2Σ∗Σ̂−1/2))

+ dTV(N (Σ̂−1/2µ∗, Σ̂−1/2Σ∗Σ̂−1/2),N (Σ̂−1/2µ∗, I))

≤ ξ + dTV(N (µ∗,Σ∗),N (µ∗, Σ̂))

= ξ + dTV(N (0,Σ∗), f̂1)

≤ 7ξ + α/4,

which proves that q2 is (7ξ + α/4)-close to GdL.

Thus, by the guarantee of Lemma 3.6.2, when we run BOOST1(7, ξ, α, β/2, ε/2, δ/2, D′3)

on line 8, we have with probability no less than 1 − β/2 that the output f̂2 =

N (µ̂, I) satisfies dTV(f̂2, q2) ≤ 24ξ + α, so long as ξ < c1
25

, α < 4c1
33

,5 and |D′3| =

Ω
(
d log(1/ξ)+log(1/β)

α2 + d log(1/ξ)+log(1/β)
αε

+ log(1/βδ)
ε

)
.

Note that the above guarantees hold for any ξ < min{ c2
10
, c1

25
} = c4. Thus,

from Corollary A.0.2 and Eq. (2.1.1), it follows that the output of line 8 satisfies

dTV(f̂ , g) = dTV(f̂2, q2) ≤ 24ξ + α.

Setting n = Ω
(
d2 log(1/ξ)+log(1/β)

α2 + d2 log(1/ξ)+log(1/β)
αε

+ log(1/βδ)
ε

)
together with a

union bound completes the proof.

Finally, we can combine the above result with Lemma 3.4.4 to get a semi-agnostic

PAC learner that can handle modest levels of model misspecification.

5For any target α ≥ 4c1
33 , we can run the algorithm with α′ = 4c1

34 and the guarantee will trivially
hold with respect to α.
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Theorem 3.6.6. For any ε, δ ∈ (0, 1) and OPT smaller than a universal constant,

there exists an (ε, δ)-DP 144-agnostic PAC learner for Gd that uses

n144(α, β, ε, δ) = Õ

(
d2 + log(1/β)

α2
+
d2 + log(1/β)

αε
+

log(1/βδ)

ε

)

samples.

3.6.3 Bounds for the Realizable Setting

The following sample complexity bounds hold for (ε, δ)-DP (realizable) PAC learn-

ing. The proofs are very similar to the proofs for (ε, δ)-DP robust PAC learning, where

the slight difference is that we can build the covers directly with accuracy α (instead

of ξ) since we assume realizability. The first bound is nearly tight (up to the log(1/α)

factors) and the second one is conjectured to be nearly tight.

Lemma 3.6.7. For any ε, δ ∈ (0, 1) there exists an (ε, δ)-DP PAC learner for GdL

that uses

n(α, β, ε, δ) = O

(
d log(1/α) + log(1/β)

α2
+
d log(1/α) + log(1/β)

αε
+

log(1/βδ)

ε

)

samples.

Lemma 3.6.8. For any ε, δ ∈ (0, 1) there exists an (ε, δ)-DP PAC learner for Gd

that uses

n(α, β, ε, δ) = O

(
d2 log(1/α) + log(1/β)

α2
+
d2 log(1/α) + log(1/β)

αε
+

log(1/βδ)

ε

)

samples.
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Chapter 4

Privately Learning Mixtures of

Axis-Aligned Gaussians

In this chapter, we will prove sample complexity upper bounds for privately learn-

ing the class of mixtures of high-dimensional Gaussians where (i) all the component

have the same known covariance matrix and (ii) all the components are axis-aligned

Gaussians. The content of this chapter is based on joint work with Hassan Ashtiani

and Christopher Liaw [AAL21].

4.1 Main Results

We prove sample complexity upper bounds for learning mixtures of unbounded

d-dimensional axis-aligned Gaussians and mixtures of d-dimensional Gaussians with

the same known covariance matrix. We informally state these two results below.
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Theorem 4.1.1 (Informal version of Theorem 4.7.3). The sample complexity of learn-

ing a mixture of k d-dimensional axis-aligned Gaussians to α-accuracy in total vari-

ation distance under (ε, δ)-differential privacy is

Õ

(
k2d log3/2(1/δ)

α2ε

)
.

Even for the univariate case, this is the first sample complexity upper bound

for learning mixture of Gaussians under differential privacy where the variances are

unknown and the parameters of the Gaussians may be unbounded.

If the covariance matrix of each component of the mixture is the same and known

or, without loss of generality, equal to the identity matrix, then we can improve the

dependence on the parameters and obtain a sample complexity upper bound that is

similar to the non-private setting.

Theorem 4.1.2 (Informal version of Theorem 4.7.1). The sample complexity of learn-

ing a mixture of k d-dimensional Gaussians with identity covariance matrix to α-

accuracy in total variation distance under (ε, δ)-differential privacy is

Õ

(
kd

α2
+
kd log(1/δ)

αε

)
.

4.2 Techniques

To prove our results, we devise a novel technique which reduces the problem

of privately learning mixture distributions to the problem of private list-decodable

learning of distributions. The framework of list-decodable learning was introduced

by Balcan, Blum, and Vempala [BBV08] and Balcan, Röglin, and Teng [BRT09] in
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the context of clustering but has since been studied extensively in the literature in

a number of different contexts [CSV17, DKS18, KKK19, CMY20, DKK20, RY20a,

RY20b, BK21]. The problem of list-decodable learning of distributions is as follows.

There is a distribution f of interest that we are aiming to learn. However, we do

not receive samples from f ; rather we receive samples from a corrupted distribution

g = (1− γ)f + γh where h is some arbitrary distribution. In our application, γ will

be quite close to 1. In other words, most of the samples are corrupted. The goal in

list-decodable learning is to output a short list of distributions f1, . . . , fm with the

requirement that f is close to at least one of the fi’s. The formal definition of list-

decodable learning can be found in Definition 4.3.6. Informally, the reduction can be

summarized by the following theorem which is formalized in Section 4.5.

Theorem 4.2.1 (Informal). If a class of distributions F is privately list-decodable

then mixtures of distributions from F are privately learnable.

Roughly speaking, the reduction from learning mixtures of distribution to list-

decodable learning works as follows. Suppose that there is an unknown distribution

f which is a mixture of k distributions f1, . . . , fk. A list-decodable learner would then

receive samples from f as input and output a short list of distributions F̂ so that for

every fi there is some element in F̂ that is close to fi. In particular, some mixture of

distributions from F̂ must be close to the true distribution f . Since F̂ is a small finite

set, the set of possible mixtures must also be relatively small. This last observation

allows us to make use of private hypothesis selection which selects a good hypothesis

from a small set of candidate hypotheses [BKSW19, AAK21]. In Section 4.5, we

formally describe the aforementioned reduction. We note that a similar connection

between list-decodable learning and learning mixture distributions was also used by
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Diakonikolas et al. [DKS18]. However, our reduction is focused on the private setting.

The reduction shows that to privately learn mixtures, it is sufficient to design

differentially private list-decodable learning algorithms that work for (corrupted ver-

sions of) the individual mixture components. To devise list-decodable learners for

(corrupted) univariate Gaussian, we utilize “stability-based” histograms [KKMN09,

BNS16] that satisfy approximate differential privacy.

To design a list-decodable learner for corrupted univariate Gaussians, we follow

a three-step approach that is inspired by the seminal work of Karwa and Vadhan

[KV18]. First, we use a histogram to output a list of variances one of which approxi-

mates the true variance of the Gaussian. As a second step, we would like to output

a list of means which approximate the true mean of the Gaussian. This can be done

using histograms provided that we roughly know the variance of the Gaussian. Since

we have candidate variances from the first step, we can use a sequence of histograms

where the width of the bins of each of the histograms is determined by the candidate

variances from the first step. As a last step, using the candidate variances and means

from the first two steps, we are able to construct a small set of distributions one

of which approximates the true Gaussian to within accuracy α. In the axis-aligned

Gaussians setting, we use our solution for the univariate case as a subroutine on

each dimension separately. Now that we have a list-decodable learner for axis-aligned

Gaussians, we use our reduction to obtain a private learning algorithm for learning

mixtures of axis-aligned Gaussians.

4.3 Preliminaries

We state some definitions and simple results that will be useful for this chapter.
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We define G to be the class of univariate Gaussians and GdA = {N (µ,Σ) : Σij =

0 ∀i 6= j and Σii > 0 ∀i} to be the class of axis-aligned Gaussians.

Definition 4.3.1 (α-net). Let (X, d) be a metric space. A set N ⊆ X is an α-net

for X under the metric d if for all x ∈ X, there exists y ∈ N such that d(x, y) ≤ α.

The following result is very standard. We add a proof for completeness.

Proposition 4.3.2. For any α ∈ (0, 1] and k ≥ 2, there exists an α-net of ∆k under

the `∞-norm of size at most (3/α)k.

Proof. We will give an algorithmic proof of this fact. Let r = d1/αe and fix x ∈ ∆k.

Let ` =
∑k

i=1 rxi − brxic. Note that
∑k

i=1 rxi = r and rxi − brxic ∈ [0, 1) so ` is an

integer in the interval [0, r − 1]. Now define x̂

x̂i =


brxic+1

r
i ≤ `

brxic
r

i > `

.

Clearly, ‖x− x̂‖∞ ≤ 1/r ≤ α. It remains to check that x̂ ∈ ∆k. Indeed,

k∑
i=1

x̂i =
k∑
i=1

brxic
r

+
`

r
=

k∑
i=1

brxic
r

+
k∑
i=1

rxi − brxic
r

= 1,

where in the second equality, we used the definition of `. Note that for each i,

x̂i ∈ {0, 1/r, 2/r, . . . , 1} so this shows that

∆̂k = {(t1/r, . . . , tk/r) : t ∈ Zk≥0, ‖t‖1 = r},

is an α-net for ∆k of size (r+ 1)k. To obtain the bound as asserted in the claim, note

that r + 1 = d1/αe+ 1 ≤ 1/α + 2 ≤ 3/α for α ∈ (0, 1].

58



M.Sc. Thesis – I. Aden-Ali McMaster University – Computing and Software

Definition 4.3.3 (k-mix(F)). Let F be a class of probability distributions. Then the

class of k-mixtures of F , written k-mix(F), is defined as

k-mix(F) := {
∑k

i=1wifi : (w1, . . . , wk) ∈ ∆k, f1, . . . , fk ∈ F }.

We will refer to realizable PAC learners and (ε, δ)-DP realizable PAC learners as

PAC learners and (ε, δ)-DP PAC learners. We omit any reference to realizability since

we will focus on realizability for the entirety of this chapter.

We will work with a standard additive corruption model often studied in the list-

decodable setting that is inspired by the work of Huber [Hub64]. In this model, a

sample is drawn from a distribution of interest with some probability, and with the

remaining probability is drawn from an arbitrary distribution. Our list-decodable

learners take samples from these “corrupted” distributions as input.

Definition 4.3.4 (γ-corrupted distributions). Fix some distribution f and let γ ∈

(0, 1). We define a γ-corrupted distribution of f as as any distribution g such that

g = (1− γ)f + γh,

for an arbitrary distribution h. We define Hγ(f) to be the set of all γ-corrupted

distributions of f .

Remark 4.3.5. Observe that Hγ(f) is monotone increasing in γ, i.e. Hγ(f) ⊂ Hγ′(f)

for all γ′ ∈ (γ, 1). To see this, note that if g = (1−γ)f +γh then we can also rewrite

g = (1− γ′)f + (γ′− γ)f + γh = (1− γ′)f + γ′
(

(γ′ − γ)

γ′
f +

γ

γ′
h

)
= (1− γ′)f + γ′h′,
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where h′ = γ′−γ
γ
f + γ

γ′
h. Hence, g ∈ Cγ′(f).

We note that in this work, we will most often deal with γ-corrupted distribution

where γ is quite close to 1; in other words, the vast majority of the samples are

corrupted.

Now we define list-decodable learning. In this setting, the goal is to learn a

distribution f given samples from a γ-corrupted distribution g of f . Since γ is close

to 1, instead of finding a single distribution f̂ that approximates f , our goal is to

output a list of distributions, one of which is accurate. This turns out to be a useful

primitive to design algorithms for learning mixture distributions.

Definition 4.3.6 (list-decodable learner). We say algorithm AList is an L-list-decodable

learner for a class of distributions F using nList(α, β, γ) samples if for every α, β, γ ∈

(0, 1), n ≥ nList(α, β, γ), f ∈ F , and g ∈ Hγ(f), the following holds: given parame-

ters α, β, γ and a sequence of n i.i.d. samples from g as inputs, AList outputs a set

of distributions F̃ with |F̃ | ≤ L such that with probability no less than 1− β we have

dTV(f, F̃) ≤ α.

We now define the private version of list-decodable learners.

Definition 4.3.7 ((ε, δ)-DP list-decodable learner). We say algorithm AList is an

(ε, δ)-DP L-list-decodable learner for a class of distributions F that uses nList(α, β, γ, ε, δ)

samples if:

1. Algorithm AList is a L-list-decodable learner for F that uses nList(α, β, γ, ε, δ)

samples.

2. Algorithm AList satisfies (ε, δ)-DP.
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4.4 Locally Small Covers for Mixtures

A natural approach one might suggest to prove sample complexity upper bounds

for mixture classes is to use the local cover based techniques in Chapter 3. Unfortu-

nately, we cannot hope to do so because it is not possible to construct locally small

covers for mixture classes in general. While univariate Gaussians admit locally small

covers [BKSW19], the following simple proposition shows that mixtures of univariate

Gaussians do not.

Proposition 4.4.1. For every γ ∈ (0, 1), any (γ/2)-cover for 2-mix(G) is not γ-

locally small.

Proof. Fix some γ ∈ (0, 1). Let f = N (0, 1) and define g(µ) := (1 − γ)N (0, 1) +

γN (µ, 1) (note that f = g(0)). We will show that the following two statements hold

for every µ, µ′ ∈ R:

1. dTV(g(µ), g(µ′)) ≤ γ, and

2. If |µ− µ′| ≥ C for a sufficiently large constant C, dTV(g(µ), g(µ′)) ≥ γ/2.

Consider the set of distributions F = {g(µ) : µ ∈ {C, 2C, . . . }} for some large

positive constant C. For every g, g′ ∈ F , it follows from claim 1 that g, g′ ∈

B (γ, f, 2-mix(G)) and from claim 2 that dTV(g, g′) ≥ γ/2 for sufficiently large C.

Thus, the (γ/2)-packing number of B (γ, f, 2-mix(G)) is unbounded, and by Proposi-

tion 2.3.9, the (γ/2)-covering number of B (γ, f, 2-mix(G)) is also unbounded. This

implies that every (γ/2)-cover for 2-mix(G) is not γ-locally small by definition.

It remains to prove the two claims above. From the definition of the TV distance
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we have

dTV(g(µ), g(µ′)) =
1

2
‖(1− γ)N (0, 1) + γN (µ, 1)− (1− γ)N (0, 1)− γN (µ′, 1)‖1

=
γ

2
‖N (µ, 1)−N (µ′, 1)‖1

= γdTV(N (µ, 1),N (µ′, 1)). (4.4.1)

Using the trivial upper bound on the TV distance between any two distributions,

we have from Eq. (4.4.1) that dTV(g(µ), g(µ′)) ≤ γ, which proves the first claim.

If |µ − µ′| ≥ C for sufficiently large C, it follows from Gaussian tail bounds that

dTV(N (µ, 1),N (µ′, 1)) = 1 − exp(−Ω(C2)). Thus, by choosing C to be sufficiently

large, it follows from Eq. (4.4.1) that dTV(g(µ), g(µ′)) ≥ γ/2.

4.5 List-decodability and Learning Mixtures

In this section, we describe our general technique which reduces the problem of

private learning of mixture distributions to private list-decodable learning of distri-

butions. We show that if we have a differentially private list-decodable learner for a

class of distributions then this can be transformed, in a black-box way, to a differ-

entially private PAC learner for the class of mixtures of such distributions. In the

next section, we describe private list-decodable learners for the class of Gaussians and

thereby obtain private algorithms for learning mixtures of Gaussians.

First, let us begin with some intuition in the non-private setting. Suppose that

we have a distribution g which can be written as g =
∑k

i=1
1
k
fi. Then we can view

g as a k−1
k

-corrupted distribution of fi for each i ∈ [k]. Any list-decodable algorithm

that receives samples from g as input is very likely to output a candidate set F̂
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which contains distributions that are close to fi for each i ∈ [k]. Hence, if we let

K = {
∑

i∈[k]
1
k
f̂i : f̂i ∈ F̂}, then g must be close to some distribution in K. The only

remaining task is to find a distribution in K that is close to g; this final task is known

as hypothesis selection and has a known solution [DL01]. We note that the above

argument can be easily generalized to the setting where g is a non-uniform mixture,

i.e. g =
∑k

i=1wifi where (w1, . . . , wk) ∈ ∆k.

The above establishes a blueprint that we can follow in order to obtain a private

learner for mixture distributions. In particular, we aim to come up with a private list-

decoding algorithm which receives samples from g to produce a set F̂ . Thereafter, one

can construct a candidate set K as mixtures of distributions from F̂ . Note that this

step does not access the samples and therefore maintains privacy. In order to choose

a good candidate from K, we make use of private hypothesis selection algorithms

first studied by Bun, Kamath, Steinke, and Wu [BKSW19] that we improved upon

in Section 3.4.2.

We now formalize the above argument. Algorithm 3 shows how a list-decodable

learner can be used as a subroutine for learning mixture distributions. In the algo-

rithm, we also make use of a subroutine for private hypothesis selection from Sec-

tion 3.4.2. In hypothesis selection, an algorithm is given i.i.d. sample access to some

unknown distribution as well as a list of distributions to pick from. The goal of the

algorithm is to output a distribution in the list that is close to the unknown distri-

bution. The following Corollary follows immediately from Theorem 3.4.3. Note that

we have named the algorithm in the following Corollary “PHS”. This is not to be

confused with the algorithm from Theorem 3.4.1 that has the same name; we have

overloaded this name for convenience.
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Corollary 4.5.1. Let n ∈ N. There exist an (ε/2)-DP algorithm PHS(ε, α, β,F , D)

with the following property: for every ε, α, β ∈ (0, 1), and every set of distributions

F = {f1, . . . , fM}, when PHS is given ε, α, β,F , and a dataset D of n i.i.d. samples

from an unknown (arbitrary) distribution g as input, it outputs a distribution fj ∈ F

such that

dTV (g, fj) ≤ 3 · dTV (g,F) + α/2,

with probability no less than 1− β/2 so long as

n = Ω

(
log(M/β)

α2
+

log(M/β)

αε

)
.

We now formally relate the two problems via the theorem below.

Algorithm 3: Learn-Mixture(α, β, ε, δ, k,D).

Input : Parameters α, β, ε, δ > 0, k ∈ N and dataset D of n i.i.d. samples

generated g.

Output: mixture ĝ =
∑n

i=1 ŵif̂i.

1 Split D into D1, D2 where |D1| = n1, |D2| = n− n1

// n1 = nList
(
ε
2
, δ, α

18
, β

2k
, 1− α

18k

)
.

2 F̂ = {f̂1, . . . , f̂L} ← AList(α/18, β/2k, 1− α/18k, ε/2, δ,D1) //
(
ε
2
, δ
)
-DP

L-list-decodable learner.

3 Set ∆̂k as (18k/α)-net of ∆k from Proposition 4.3.2

4 Set K = {
∑k

i=1 ŵif̂i : ŵ ∈ ∆̂k, f̂i ∈ K}
5 ĝ ← PHS(ε/2, α, β/2,K, D2)

6 Return ĝ

Theorem 4.5.2. Let k ∈ N and ε, δ ∈ (0, 1). Suppose that F is (ε/2, δ)-DP L-list-

decodable using nList samples. Then Algorithm 3 is an (ε, δ)-DP PAC learner for
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k-mix (F) that uses

n(α, β, ε, δ) = nList

(
α

18
,
β

2k
, 1− α

18k
,
ε

2
, δ

)
+O

(
k log(Lk/α) + log(1/β)

α2
+
k log(Lk/α) + log(1/β)

αε

)

samples.

Proof. We begin by briefly showing that Algorithm 3 satisfies (ε, δ)-DP before arguing

about its accuracy.

Privacy. We first prove that Algorithm 3 is (ε, δ)-DP. Step 2 of the algorithm

satisfies (ε/2, δ)-DP by the fact that AList is an (ε/2, δ)-DP L-list-decodable learner.

Steps 3 and 4 maintain (ε/2, δ)-DP by post processing (Lemma 2.2.3). Finally, step 5

satisfies (ε/2)-DP by Corollary 4.5.1. By basic composition (Lemma 2.2.2) the entire

algorithm is (ε, δ)-DP.

Accuracy. We now proceed to show that Algorithm 3 PAC learns k-mix(F). In

step 2 of Algorithm 3, we use the (ε/2, δ)-DP L-list-decodable learner to obtain a set

of distributions F̂ of size at most L. Note that for any mixture component fj, g is a

(1− wj)-corrupted distribution of fj since

g = wjfj +
∑

i 6=j wifi = wjfj + (1− wj)
∑

i 6=j
wifi
1−wj

= wjfj + (1− wj)h,

where h =
∑

i 6=j
wifi
1−wj

.

Let N = {i ∈ [k] : wi ≥ α/18k} denote the set of non-negligible components. We

first show that for any non-negligible component i ∈ N , there exists f̂ ∈ F̂ that is
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close to fi.

Claim 4.5.3. If |D1| ≥ nList(α/18, β/2k, 1 − α/18k, ε/2, δ) then dTV(fi, F̂) ≤ α/18

for all i ∈ N with probability at least 1− β/2.

Proof. Fix i ∈ N . Note that 1 − wi ≤ 1 − α/18k so f ∈ H1−α/18k(fi). Since

step 2 of Algorithm 3 makes use of a list-decodable learner, as long as |D1| ≥

nList(α/18, β/2k, 1 − α/18k, ε/2, δ) we have dTV(fi, F̂) ≤ α/18 with probability at

least 1 − β/2k. Since this is true for any fixed i ∈ N , a union bound gives that

dTV(fi, F̂) ≤ α/18 for all i ∈ N with probability at least 1− β/2.

Steps 3 and 4 of Algorithm 3 constructs a candidate set K of mixture distributions

using F̂ and a net of the probability simplex ∆k. The next claim shows that as long

as dTV(fi, F̂) is small for every non-negligible i ∈ N , dTV(g,K) is small as well.

Claim 4.5.4. If dTV(fi, F̂) ≤ α/18 for every i ∈ N , then dTV(g,K) ≤ α/6. In

addition, |K| ≤
(

54Lk
α

)k
.

Proof. Step 3 constructs a set ∆̂k which is an (18k/α)-net of the probability simplex

∆k in the `∞-norm. By the hypothesis of the claim, for each i ∈ N , there exists

f̂i ∈ F̂ such that dTV(fi, f̂i) ≤ α/18. Recall that g =
∑

i∈[k] wifi. Let ŵ ∈ ∆̂k such

that ‖ŵ − w‖∞ ≤ α/18k. Now let g̃ =
∑

i∈[k] ŵif̂i. Note that g̃ ∈ K. Moreover, a

straightforward calculation shows that dTV(g, g̃) ≤ α/6 (see Proposition B.1.1 for the

detailed calculations). This proves that dTV(g,K) ≤ α/6.

Lastly, to bound |K| we have |K| ≤ |F̂|k · |∆̂k|. Note that |F̂ | ≤ L since it is the

output of an L-list-decodable learner and |∆̂k| ≤ (54k/α)k by Proposition 4.3.2. This

implies the claimed bound on |K|.
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The only remaining step is to select a good hypothesis from K. This is achieved

using the private hypothesis selection algorithm from Corollary 4.5.1 which guarantees

that step 5 of Algorithm 3 returns ĝ satisfying dTV(g, ĝ) ≤ 3 · dTV(g,K) + α/2 with

probability 1− β/2 as long as

|D2| = Ω

(
log(|K|/β)

α2
+

log(|K|/β)

αε

)
= Ω

(
k log(Lk/α) + log(1/β)

α2
+
k log(Lk/α) + log(1/β)

αε

)
. (4.5.1)

Combining this with Claim 4.5.3, Claim 4.5.4, and a union bound, we have that with

probability 1− β,

dTV(g, ĝ) ≤ 3 · dTV(g,K) + α/2 ≤ α,

where the first inequality follows from private hypothesis selection and the second

inequality follows from Claim 4.5.3 and Claim 4.5.4.

Finally, the claimed sample complexity bound follows from the samples required

to construct F̂ (which follows from Claim 4.5.3) and the samples required for private

hypothesis selection which is given in Eq. (4.5.1).

This reduction is quite useful because it is conceptually much simpler to devise

list-decodable learners for a given class F . In what follows, we will devise such list-

decodable learners for certain classes and use Theorem 4.5.2 to obtain private PAC

learners for mixtures of these classes.
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4.6 Learning Mixtures of Univariate Gaussians

Let G be the class of all univariate Gaussians. In this section we consider the

problem of privately learning univariate Guassian Mixtures, k-mix(G). In the previ-

ous section, we showed that it is sufficient to design private list-decodable learners

for univariate Gaussians. As a warm-up and to build intuition about our techniques,

we begin with the simpler problem of constructing private list-decodable learners for

Gaussians with a single known variance σ2. In what follows, we often use “tilde”

(e.g. M̃, Ṽ ) to denote sets that are meant to be coarse, or constant, approximations

and “hat” (e.g. F̂ , M̂ , V̂ ) to denote sets that are meant to be fine, say O(α), approx-

imations.

4.6.1 Warm-up: Learning Gaussian Mixtures with a Known,

Shared Variance

In this sub-section we will construct a private list-decodable learner for univariate

Gaussians with a known variance σ2. A useful algorithmic primitive that we will

use throughout this section and the next is the stable histogram algorithm. In the

following lemma and the remainder of the thesis, n denotes the number of samples

that is given to the algorithm.

Lemma 4.6.1 (Histogram learner [KKMN09, BNS16]). Let n ∈ N, η, β, ε ∈ (0, 1)

and δ ∈ (0, 1/n). Let D be a dataset of n points over a domain X . Let K be a

countable index set and B = {Bi}i∈K be a collection of disjoint bins defined on X ,

i.e. Bi ⊆ X and Bi ∩ Bj = ∅ for i 6= j. Finally, let pi = 1
n
· |D ∩ Bi|. There is an

(ε, δ)-DP algorithm Stable-Histogram(ε, δ, η, β,D,B) that takes as input parameters
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ε, δ, η, β, dataset D and bins B, and outputs estimates {p̃i}i∈K such that for all i ∈ K,

|pi − p̃i| ≤ η,

with probability no less than 1− β so long as

n = Ω

(
log(1/βδ)

ηε

)
.

We note that the condition above on δ ∈ (0, 1/n) is standard in the differential

privacy literature. Indeed, for useful privacy, δ should be “cryptographically small”,

i.e., δ � 1/n.

For any fixed σ2 > 0 we define Gσ to be the set of all univariate Gaussians

with variance σ2. For the remainder of this section, we let g = N (µ, σ2) ∈ Gσ

and g′ ∈ Hγ(g). (Recall that g′ ∈ Hγ(g) means that g′ = (1 − γ)g + γh for some

distribution h.) Algorithm 4 shows how we privately output a list of real numbers,

one of which is close to the mean of g given samples from g′.

Algorithm 4: Univariate-Mean-Decoder(β, γ, ε, δ, σ̃, D).

Input : Parameters ε, β, γ ∈ (0, 1), δ ∈ (0, 1/n), σ̃ and dataset D

Output: Set of approximate means M̃ .

1 Partition R into bins B = {Bi}i∈N where Bi = ((i− 0.5)σ̃, (i+ 0.5)σ̃].

2 {p̃i}i∈N ← Stable-Histogram(ε, δ, (1− γ)/24, β/2, D,B).

3 H ← {i : p̃i > (1− γ)/8}
4 If |H| > 12/(1− γ) fail and return M̃ = ∅
5 M̃ ← {iσ̃ : i ∈ H}
6 Return M̃ .

The following lemma shows that the output of Algorithm 4 is a list of real numbers
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with the guarantee that at least one element in the list is close to the true mean of a

Gaussian which has been corrupted. Note that the lemma assumes the slightly weaker

condition where the algorithm receives an approximation to the standard deviation

instead of the true standard deviation. This additional generality is used in the next

section.

Lemma 4.6.2. Algorithm 4 is an (ε, δ)-DP algorithm such that for any g = N (µ, σ2)

and g′ ∈ Hγ(g), when it is given parameters ε, β, γ ∈ (0, 1), δ ∈ (0, 1/n), σ̃ ∈ [σ, 2σ)

and dataset D of n i.i.d. samples from g′ as input, it outputs a set M̃ of real numbers

of size

|M̃ | ≤ 12

1− γ
.

Furthermore, with probability no less than 1− β there is an element µ̃ ∈ M̃ such that

|µ̃− µ| ≤ σ,

so long as

n = Ω

(
log(1/βδ)

(1− γ)ε

)
.

Let us begin by gathering several straightforward observations about the algo-

rithm. Let pi = PX∼g′ [X ∈ Bi] be the probability that a sample drawn from g′ lands

in bin Bi. Let pi = 1
n
|D∩Bi| be the actual number of samples drawn from g′ that have

landed in Bi. Let j = dµ/σ̃c. It is a simple calculation to check that |jσ̃ − µ| ≤ σ.

Thus, we would like to show that jσ̃ ∈ M̃ or, equivalently, that j ∈ H. As a first

step, we show that many samples actually land in bin Bj.

Claim 4.6.3. If n = Ω(log(1/β)/(1−γ)) then pj > (1−γ)/6 with probability at least

1− β/2.
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Proof. First, observe that for a bin Bi = ((i− 0.5)σ̃, (i+ 0.5)σ̃] and X ∼ g′, we have

(recalling Definition 4.3.4), pi = PX∼g′ [X ∈ Bi] ≥ (1 − γ)PX∼g[X ∈ Bi]. A fairly

straightforward calculation (see Proposition B.2.1) gives that PX∼g[X ∈ Bj] ≥ 1/3

so that pj ≥ (1− γ)/3.

A standard Chernoff bound (Lemma A.0.5) implies that |pj − pj| < pj/2 with

probability at least 1 − β/2 provided n ≥ C log(1/β)/(1 − γ) for some constant

C > 0. As pj ≥ (1− γ)/3 this implies pj > (1− γ)/6.

Next, we claim that the output of the stable histogram approximately preserves

the weight of all the bins and, moreover, that the output does not have too many heavy

bins. The first assertion implies that since bin Bj is heavy, the stable histogram also

determines that bin Bj is heavy. The second assertion implies that the algorithm does

not fail. Let {p̃i}i∈N be the output of the stable histogram, as defined in Algorithm 4.

Claim 4.6.4. If n = Ω(log(1/βδ)/(1 − γ)ε) then with probability 1 − β/2, we have

(i) |pi − p̃i| ≤ (1 − γ)/24 for all i ∈ N and (ii) |H| = |{i ∈ N : p̃i > (1 − γ)/8}| ≤

12/(1− γ).

Proof. The first assertion directly follows from Lemma 4.6.1 with η = (1− γ)/24. In

the event that |pi − p̃i| ≤ (1− γ)/24, we now show that |H| ≤ 12/(1− γ). Note that

it suffices to argue that if i ∈ H then pi > (1− γ)/12. Since
∑

i∈N pi = 1, this implies

that |H| ≤ 12/(1− γ). Indeed, we argue the contrapositive. If pi ≤ (1− γ)/12 then

p̃i ≤ pi + (1− γ)/24 ≤ (1− γ)/8 and, hence, i /∈ H.

With Claim 4.6.3 and Claim 4.6.4 in hand, we are now ready to prove Lemma 4.6.2.

Proof of Lemma 4.6.2. We briefly prove that the algorithm is private before proceed-

ing to the other assertions of the lemma.
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Privacy. Line 2 is the only part of the algorithm that looks at the data and it is

(ε, δ)-DP by Lemma 4.6.1. The remainder of the algorithm can be viewed as post-

processing (Lemma 2.2.3) so it does not affect the privacy.

Bound on |M̃ |. For the bound on |M̃ |, observe that if |H| > 12/(1 − γ) then the

algorithm fails so |M̃ | ≤ 12/(1− γ) deterministically.

Accuracy. Let g, g′, µ be as defined in the statement of the lemma. We now show

that there exists µ̃ ∈ M̃ such that |µ̃− µ| ≤ σ. Let j = dµ/σ̃c. For the remainder of

the proof, we assume that n = Ω(log(1/βδ)/(1− γ)ε).

Claim 4.6.3 asserts that, with probability 1 − β/2, we have pj > (1 − γ)/6.

Claim 4.6.4 asserts that, with probability 1 − β/2, p̃j ≥ pj − (1 − γ)/24 and that

|H| ≤ 12/(1−γ). By a union bound, with probability 1−β, we have that pj > (1−γ)/8

and the algorithm does not fail. This implies that j ∈ H so jσ̃ ∈ M̃ . Finally, note that

|jσ̃ − µ| ≤ σ̃/2 ≤ σ where the last inequality uses the assumption that σ̃ ≤ 2σ.

Corollary 4.6.5. For any ε ∈ (0, 1) and δ ∈ (0, 1/n), there is an (ε, δ)-DP L-list-

decodable learner for Gσ with known σ > 0 where L = O(1/(1−γ)α), and the number

of samples used is

nList(α, β, γ, ε, δ) = O

(
log(1/βδ)

(1− γ)ε

)
.

Proof. The algorithm is simple; we run Univariate-Mean-Decoder(ε, δ, β, γ, σ,D)

and obtain the set M̃ . Let M̂ be an ασ-net of the set of intervals {[µ̃ − σ, µ̃ + σ] :

µ̃ ∈ M̃} of size |M̃ | · (2 · d1/2αe+ 1), i.e.

M̂ = {µ̃+ 2jασ : µ̃ ∈ M̃, j ∈ {0,±1, . . . ,±d1/2αe}.

72



M.Sc. Thesis – I. Aden-Ali McMaster University – Computing and Software

We then return F̂ = {N (µ̂, σ2) : µ̂ ∈ M̂}. Finally, Lemma 4.6.2 and post-processing

(Lemma 2.2.3) imply that the algorithm is (ε, δ)-DP while Lemma 4.6.2 and Propo-

sition A.0.6 imply the accuracy guarantee.1

Finally, we use Corollary 4.6.5 and Theorem 4.5.2 to construct an (ε, δ)-DP PAC

learner for k-mix(Gσ).

Theorem 4.6.6. For any ε ∈ (0, 1) and δ ∈ (0, 1/n), there is an (ε, δ)-DP PAC

learner for k-mix(Gσ) with known σ > 0 that uses

n(α, β, ε, δ) = O

(
k log(k/α) + log(1/β)

α2
+
k log(k/αβδ)

αε

)
= Õ

(
k + log(1/β)

α2
+
k log(1/βδ)

αε

)

samples.

4.6.2 Learning Arbitrary Univariate Gaussian Mixtures

In this section, we construct a list-decodable learner for G, the class of all univari-

ate Gaussians. First, in Algorithm 5, we design an (ε, δ)-DP algorithm that receives

samples from g′ ∈ Hγ(g) where g ∈ G and outputs a list of candidate values for the

standard deviation, one of which approximates the standard deviation of g with high

probability. Then, in Algorithm 6, we use Algorithm 4 and Algorithm 5 to design an

(ε, δ)-DP list-decoder for G.

1Note that we can only use Proposition A.0.6 for target α as large as 2/3. For any target α > 2/3,
we can simply run the algorithm with α = 2/3.
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Estimating the variance

We begin with a method to estimate the variance. Algorithm 5 shows how to take

a set of samples and output a list of standard deviations, one of which approximates

the true standard deviation up to a factor of 2.

Algorithm 5: Univariate-Variance-Decoder(β, γ, ε, δ,D).

Input : Parameters ε, β, γ ∈ (0, 1), δ ∈ (0, 1/n), and a dataset D

Output: Set of approximate standard deviations Ṽ = {σ̃1, . . . , σ̃L}.
1 Yk ← |(X2k −X2k−1)/

√
2| for k ∈ [n]. // X is from Dataset

D = {X1, . . . , X2n}
2 D′ ← {Y1, . . . , Yn}.
3 Partition R>0 into bins B = {Bi}i∈Z where Bi = (2i, 2i+1].

4 {p̃i}i∈Z ← Stable-Histogram(ε, δ, (1− γ)2/24, β/2, D′,B).

5 H ← {i : p̃i > (1− γ)2/8}
6 If |H| > 12/(1− γ)2 fail and return Ṽ = ∅
7 Ṽ ← {2i+1 : i ∈ H}.
8 Return Ṽ

Lemma 4.6.7. Algorithm 5 is an (ε, δ)-DP algorithm such that for any g = N (µ, σ2)

and g′ ∈ Hγ(g), when it is given parameters ε, β, γ ∈ (0, 1), δ ∈ (0, 1/n) and dataset

D of 2n i.i.d. samples from g′ as input, it outputs a set Ṽ of positive real numbers of

size

|Ṽ | ≤ 12

(1− γ)2
.

Furthermore, with probability no less than 1− β there is an element σ̃ ∈ Ṽ such that

σ ≤ σ̃ < 2σ,
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so long as

n = Ω

(
log(1/βδ)

(1− γ)2ε

)
.

The proof of Lemma 4.6.7 mirrors that of Lemma 4.6.2. Let g = N (µ, σ2) and

g′ ∈ Hγ(g). Let X,X ′ ∼ g′ and let Y = |X−X ′|/
√

2. For an integer i, let pi = P[Y ∈

Bi] where Bi = (2i, 2i+1]. Let j be the (unique) integer such that σ ∈ (2j, 2j+1].

Claim 4.6.8. If n = Ω(log(1/β)/(1 − γ)2) then pj > (1 − γ)2/6 with probability

1− β/2.

Proof. Since, X,X ′ ∼ g′ and Y = |X −X ′|/
√

2, a straightforward calculation shows

that pj ≥ (1− γ)2/4 (see Proposition B.2.2 and Proposition B.2.3 for details).

Next, a standard Chernoff bound (Lemma A.0.5) implies that |pj − pj| < pj/3

with probability at least 1−β/2 provided n ≥ C log(1/β)/(1− γ)2 for some constant

C > 0. As pj ≥ (1− γ)2/4 this implies pj > (1− γ)2/6.

Claim 4.6.9. If n = Ω(log(1/βδ)/(1 − γ)2ε) then with probability 1 − β/2, we have

(i) |pi − p̃i| ≤ (1− γ)2/24 for all i ∈ N and (ii) |H| = |{i ∈ N : p̃i > (1− γ)2/8}| ≤

12/(1− γ)2.

Proof. The first assertion directly follows from Lemma 4.6.1 with η = (1−γ)2/24. In

the event that |pi− p̃i| ≤ (1−γ)2/24, we now show that |H| ≤ 12/(1−γ)2. Note that

it suffices to argue that if i ∈ H then pi > (1−γ)2/12. Since
∑

i∈N pi = 1, this implies

that |H| ≤ 12/(1− γ)2. Indeed, we argue the contrapositive. If pi ≤ (1− γ)2/12 then

p̃i ≤ pi + (1− γ)2/24 ≤ (1− γ)2/12 and, hence, i /∈ H.

Given Claim 4.6.8 and Claim 4.6.9, we now prove Lemma 4.6.7.

Proof of Lemma 4.6.7. We briefly prove that the algorithm is private before proceed-

ing to the other assertions of the lemma.
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Privacy. Line 4 is the only part of the algorithm that looks at the data and it is

(ε, δ)-DP by Lemma 4.6.1. The remainder of the algorithm can be viewed as post-

processing (Lemma 2.2.3) so does not affect the privacy.

Bound on |Ṽ |. For the bound on |Ṽ |, observe that if |H| > 12/(1 − γ)2 then the

algorithm fails so |Ṽ | ≤ 12/(1− γ)2 deterministically.

Accuracy. Let g, g′, σ be as defined in the statement of the lemma. We now show

that there exists σ̃ ∈ Ṽ such that σ̃ ∈ [σ, 2σ). Let j be the unique integer such that σ ∈

(2j, 2j+1]. For the remainder of the proof, we assume that n = Ω(log(1/βδ)/(1−γ)2ε).

Claim 4.6.8 asserts that, with probability 1 − β/2, we have pj > (1 − γ)2/6.

Claim 4.6.9 asserts that, with probability 1 − β/2, p̃j ≥ pj − (1 − γ)2/24 and that

|H| ≤ 12/(1 − γ)2. By a union bound, with probability 1 − β, we have that pj >

(1− γ)2/8 and the algorithm does not fail. This implies that j ∈ H so 2j+1 ∈ Ṽ and,

by the choice of j, σ ≤ 2j+1 < 2σ. This completes the proof.

A list-decodable learner for univariate Gaussians

Finally, in this this section, we use Algorithm 4 and Algorithm 5 to design a

list-decodable learner for G. The list-decodable learner is formally described in Algo-

rithm 6.

Lemma 4.6.10. Algorithm 6 is an (ε, δ)-DP algorithm such for any g = N (µ, σ2)

and g′ ∈ Hγ(g), when it is given parameters ε, α, β, γ ∈ (0, 1), δ ∈ (0, 1/n) and

dataset D of n i.i.d. samples from g′ as inputs, it outputs a set M̂ of real numbers
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Algorithm 6: Univariate-Gaussian-Decoder(α, β, γ, ε, δ,D).

Input : Parameters ε, α, β, γ ∈ (0, 1), δ ∈ (0, 1/n) and a dataset D

Output: Set of approximate means M̂ and variances V̂ .

1 Set T = 12/(1− γ)2

2 Set ε′ = ε/(2
√

6T log(2(T + 1)/δ)) and δ′ = δ/2(T + 1)

3 Split D into D1, D2 where |D1| = n1, |D2| = n2 = n− n1

// n1 = Θ(log(1/βδ)/(1− γ)2ε).

4 Ṽ ← Univariate-Variance-Decoder(β/2, γ, ε/2, δ/2, D1)

5 Initialize M̂ ← ∅
6 For σ̃i ∈ Ṽ do

7 M̃i = Univariate-Mean-Decoder(β/2, γ, ε′, δ′, σ̃i, D2)

8 M̂i ← {µ̃+ jασ̃i : µ̃ ∈ M̃i, j ∈ {0,±1,±2, . . . ,±d1/αe}
9 M̂ ← M̂ ∪ M̂i

10 C ← {log2(1 + α), 2 log2(1 + α), . . . , d1/ log2(1 + α)e · log2(1 + α)}
11 V̂ ← {σ̃ · 2c−1 : σ̃ ∈ Ṽ , c ∈ C}
12 Return M̂, V̂
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and a set V̂ of positive real numbers such that

|M̂ | ≤ 144 · (2 · d1/αe+ 1)

(1− γ)3
and |V̂ | ≤

12 · dlog1+α(2)e
(1− γ)2

.

Furthermore, with probability no less than 1− β, we have the following:

1. ∃µ̂ ∈ M̂ such that |µ̂− µ| ≤ ασ

2. ∃σ̂ ∈ V̂ such that |σ̂ − σ| ≤ ασ

so long as

n = Ω

(
log(1/βδ)

(1− γ)2ε
+

log(1/(1− γ)βδ)
√

log(1/(1− γ)δ)

(1− γ)2ε

)
= Ω̃

(
log3/2(1/βδ)

(1− γ)2ε

)
.

Before we prove the lemma, we make a few simple observations. Fix g = N (µ, σ2)

and g′ ∈ Hγ(g). We assume that the algorithm receives D ∼ (g′)2n as input.

Claim 4.6.11. If n1 = Ω(log(1/βδ)/(1 − γ)2ε) then with probability 1 − β/2, (i)

there exists σ̃ ∈ Ṽ such that σ̃ ∈ [σ, 2σ) and (ii) there exists σ̂ ∈ V̂ such that that

|σ̂ − σ| ≤ ασ.

Proof. Lemma 4.6.7 directly implies that in line 4, with probability 1− β/2, there is

some σ̃ ∈ Ṽ such that σ̃ ∈ [σ, 2σ).

For the final assertion, suppose that σ̃ ∈ [σ, 2σ). In particular, log2(2σ/σ̃) ∈ (0, 1].

Note that C is log2(1 + α)-net of the interval [0, 1]. Hence, there exists some c ∈ C

such that |c− log2(2σ/σ̃)| ≤ log2(1 +α). For such a value of c, we have (σ̃/σ) · 2c−1 ∈

[1/(1 + α), 1 + α], which upon rearranging gives σ̃2c−1 ∈ [σ/(1 + α), σ(1 + α)]. As

1/(1 + α) ≥ 1− α, this shows that |σ̃2c−1 − σ| ≤ ασ. This completes the proof since

σ̃2c−1 ∈ V̂ .
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Claim 4.6.12. Let ε′, δ′ be as defined in Algorithm 6. Suppose that there exists σ̃i ∈ Ṽ

such that σ̃i ∈ [σ, 2σ). If n2 = Ω(log(1/βδ′)/(1 − γ)ε′) then with probability 1 − β/2

there exists µ̂ ∈ M̂ such that |µ̂− µ| ≤ ασ.

Proof. The condition that there exists σ̃i ∈ Ṽ such that σ̃i ∈ [σ, 2σ) implies that one

of the runs of Univariate-Mean-Decoder on line 7 uses σ̃i ∈ [σ, 2σ). The guarantee

of Lemma 4.6.2 shows that with probability 1− β/2, there is some µ̃ ∈ M̃i satisfying

|µ̃ − µ| ≤ σ. Finally, on line 8, the algorithm constructs M̂i which is a (ασ̃i/2)-net

of the interval [µ̃− σ̃i, µ̃+ σ̃i] ⊃ [µ̃− σ, µ̃+ σ]. Hence, there exists µ̂ ∈ M̂i such that

|µ̂ − µ| ≤ ασ̃/2 < ασ where the latter inequality used that σ̃ < 2σ. Since M̂i ⊂ M̂ ,

this implies the claim.

Proof of Lemma 4.6.10.

Privacy. We first prove that the algorithm is (ε, δ)-DP. By Lemma 4.6.2, line 4

satisfies (ε/2, δ/2)-DP. The loop on line 6 runs at most 12/(1− γ)2 times since |Ṽ | ≤

12/(1 − γ)2 (see Lemma 4.6.7). So, by our choice of ε′, δ′ (line 2) and advanced

composition (Lemma 2.2.2), all the iterations of line 7 collectively satisfy (ε/2, δ/2)-

DP. No subsequent part of the algorithm accesses the data so by basic composition

(Lemma 2.2.2) and post processing (Lemma 2.2.3), the entire algorithm is (ε, δ)-DP.

Bound on |M̂ | and |V̂ |. We now prove the claimed upper bounds on the sizes

of M̂ and V̂ . First, we have |Ṽ | ≤ 12/(1 − γ)2 by Lemma 4.6.7. Since |C| =

d1/ log2(1 + α)e = dlog1+α(2)e, this gives |V̂ | = |Ṽ | · |C| ≤ 12 · dlog1+α(2)e/(1− γ)2.

Next, we have that each |M̃i| ≤ 12/(1 − γ) in Line 8 by Lemma 4.6.2, so |M̂i| ≤

12 · (2 · d1/αe + 1)/(1 − γ). Hence, |M̂ | ≤ |Ṽ | · 12 · (2 · d1/αe + 1)/(1 − γ) ≤

144 · (2 · d1/αe+ 1)/(1− γ)3.
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Existence of µ̂ and σ̂. Claim 4.6.11 asserts that with probability 1−β/2, there is

σ̃ ∈ Ṽ such that σ̃ ∈ [σ, 2σ) and that there exists σ̂ ∈ V̂ such that |σ̂− σ| ≤ ασ. The

latter statement is the bound that we asserted for σ̂ in the statement of the lemma.

Next, conditioning on the event that there exists σ̃ ∈ Ṽ such that σ̃ ∈ [σ, 2σ),

Claim 4.6.12 implies that with probability 1 − β/2, there is some µ̂ ∈ M̂ such that

|µ̂− µ| ≤ ασ.

To conclude, taking a union bound shows that with probability 1−β, there exists

µ̂ ∈ M̂, σ̂ ∈ V̂ satisfying |µ̂− µ| ≤ ασ and |σ̂ − σ| ≤ ασ.

Sample complexity. Finally, we argue about the sample complexity. For Claim 4.6.11,

we needed n1 = Ω(log(1/βδ)/(1 − γ)2ε) samples and for Claim 4.6.12, we needed

n2 = Ω(log(1/βδ′)/(1 − γ)ε′) samples. Adding n1, n2 and plugging in the values for

ε′, δ′ as defined in Algorithm 6 gives the claimed bound on the number of samples

required.

Corollary 4.6.13. For any ε ∈ (0, 1) and δ ∈ (0, 1/n), there is an (ε, δ)-DP L-list-

decodable learner for G where

L = O

(
1

(1− γ)5α2

)
,

and the algorithm uses

nList(α, β, γ, ε, δ) = O

(
log(1/βδ)

(1− γ)2ε
+

log(1/(1− γ)βδ)
√

log(1/(1− γ)δ)

(1− γ)2ε

)

= Õ

(
log3/2(1/βδ)

(1− γ)2ε

)

samples.
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Proof. The algorithm is simple; we run Univariate-Gaussian-Decoder(α, β, ε, δ, γ,D)

and obtain the sets M̂ and V̂ . We then output F̂ = {N (µ̂, σ̂) : µ̂ ∈ M̂, σ̂ ∈ V̂ }.

The algorithm is (ε, δ)-DP by the guarantee of Lemma 4.6.10 and post processing

(Lemma 2.2.3). We have from the guarantee of Lemma 4.6.10 that

|F̂ | = |M̂ | · |V̂ | ≤
(

1728

(1− γ)5

)
·
⌈
log1+α(2)

⌉
· (2 d1/αe+ 1).

Note that log1+α(2) = ln(2)
ln(1+α)

≤ 2 ln(2)
α

where the last inequality follows from the

inequality ln(1 + x) ≥ x/2 valid for x ∈ [0, 1]. This gives the claimed bound that

L = |F̂ | = O
(

1
(1−γ)5α2

)
.

For any g ∈ G and g′ ∈ Hγ(g), given n samples from g′ as input, we have from

the guarantee of Lemma 4.6.10 and Proposition A.0.6 that the algorithm outputs F̂

satisfying dTV(g, F̂) ≤ α so long as

n = Ω

(
log(1/βδ)

(1− γ)2ε
+

log(1/(1− γ)βδ)
√

log(1/(1− γ)δ)

(1− γ)2ε

)
= Ω̃

(
log3/2(1/βδ)

(1− γ)2ε

)
.

This proves the corollary.

We can now use Corollary 4.6.13 and Theorem 4.5.2 to immediately get the fol-

lowing Theorem.

Theorem 4.6.14. For any ε ∈ (0, 1) and δ ∈ (0, 1/n), there is an (ε, δ)-DP PAC

learner for k-mix(G) that uses

n(α, β, ε, δ) = Õ

(
k2 log3/2(1/βδ)

α2ε

)

samples.
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4.7 Learning Mixtures of High-dimensional Gaus-

sians

In this section, we prove sample complexity upper bounds for learning mixtures of

high dimensional Gaussians where (i) each component has the same known covariance

matrix and (ii) each component is an axis-aligned Gaussian.

4.7.1 Learning Mixtures with Know Covariance

Let Gd1 be the class of Gaussians with identity covariance matrix. We use ideas

similar to those in section 4.6.1 to prove the following result.

Theorem 4.7.1. For any ε ∈ (0, 1) and δ ∈ (0, 1/n), there is an (ε, δ)-DP PAC

learner for k-mix
(
Gd1
)

that uses

n(α, β, ε, δ) = Õ

(
kd log(1/β)

α2
+
kd+ log(1/βδ)

αε

)

samples.

Note that the theorem also implies the case where the covariance matrix Σ is an

arbitrary but known covariance matrix. Indeed, given samples X1, . . . , Xm, one can

apply the algorithm of Theorem 4.7.1 to Σ−1/2X1, . . . ,Σ
−1/2Xm instead.

The proof of Theorem 4.7.1 follows from Theorem 4.5.2 and Corollary 4.7.2, which

is a corollary of Lemma 4.6.2.

Corollary 4.7.2. For any ε ∈ (0, 1) and δ ∈ (0, 1/n), there is an (ε, δ)-DP L-list-

decodable learner for Gd1 where L = O(d/(1− γ)α)d, and the number of samples used
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is

nList(α, β, γ, ε, δ) = O

(
d log(d/βδ)

(1− γ)ε

)
.

Proof. For each i ∈ [d] let Di = {Xi : X ∈ D} be the dataset consisting of the ith co-

ordinate of each element inD. We run Univariate-Mean-Decoder(ε/d, δ/d, β/d, γ, σ,Di)

to obtain the set M̃i. Let M̂i be an (α/d)-net of the set of intervals {[µ̃i− 1, µ̃i + 1] :

µ̃i ∈ M̃i} of size |M̃i| · (2 · dd/2αe+ 1), i.e.

M̂i = {µ̃i + 2jα/d : µ̃i ∈ M̃i, j ∈ {0,±1, . . . ,±dd/2αe}.

Let M̂ = {(µ̂1, . . . , µ̂d) : µ̂i ∈ M̂i}. We then return F̂ = {N (µ̂, I) : µ̂ ∈ M̂}.

Finally, Lemma 4.6.2 (with a union bound over the d coordinates), basic composition

(Lemma 2.2.2), and post-processing (Lemma 2.2.3) imply that the algorithm is (ε, δ)-

DP while Lemma 4.6.2, Proposition A.0.3, and Proposition A.0.6 imply the accuracy

guarantee.

4.7.2 Learning Mixtures of Axis-Aligned Gaussians

In this section, we prove the following result regarding privately learning the class

of mixtures of k axis-aligned Gaussians, k-mix(GdA).

Theorem 4.7.3. For any ε ∈ (0, 1) and δ ∈ (0, 1/n), there is an (ε, δ)-DP PAC

learner for k-mix
(
GdA
)

that uses

n(α, β, ε, δ) = Õ

(
k2d log3/2(1/βδ)

α2ε

)

samples.
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We now demonstrate how to construct an (ε, δ)-DP list-decodable learner for

the class of d-dimensional axis-aligned Gaussians, GdA. Recall that the class of d-

dimensional axis-aligned Gaussians is the class of all Gaussians with a diagonal co-

variance matrix, where the diagonals are arbitrary positive real numbers.

Algorithm 7: Multivariate-Gaussian-Decoder(α, β, γ, ε, δ,D).

Input : Parameters ε, α, β, γ ∈ (0, 1), δ ∈ (0, 1/n), and a dataset D

Output: Set of distributions F̂ ⊂ GdA.

1 Initialize V̂j ← ∅, M̂j ← ∅ for j ∈ [d]

2 Set Di ← {Xi : X ∈ D} for i ∈ [d] // Split dataset by dimension.

3 For i ∈ [d] do

4 M̂i, V̂i ← Univariate-Gaussian-Decoder(α/d, β/d, γ, ε/d, δ/d,Di)

5 M̂ ← {(µ̂1, . . . , µ̂d) : µ̂i ∈ M̂i, i ∈ [d]}
6 Λ̂← {diag(σ̂2

1, . . . , σ̂
2
d) : σ̂i ∈ V̂i, i ∈ [d]}

7 F̂ ←
{
N (µ̂, Σ̂) : µ̂ ∈ M̂, Σ̂ ∈ Λ̂

}
8 Return F̂

Lemma 4.7.4. For any ε ∈ (0, 1) and δ ∈ (0, 1/n), Algorithm 7 is an (ε, δ)-DP

L-list-decodable learner for GdA where

L = O

(
d2

(1− γ)5α2

)d
,

and the algorithm uses

nList(α, β, γ, ε, δ) = O

(
d log(d/βδ)

(1− γ)2ε
+
d log(d/(1− γ)βδ)

√
log(d/(1− γ)δ)

(1− γ)2ε

)

= Õ

(
d log3/2(1/βδ)

(1− γ)2ε

)
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samples.

Proof.

Privacy. We first prove the algorithm is (ε, δ)-DP. By the guarantee of Lemma 4.6.10,

each run of line 4 in the loop is (ε/d, δ/d)-DP. No subsequent part of the algo-

rithm accesses the data, so by post processing (Lemma 2.2.3) and basic composition

(Lemma 2.2.2) the entire algorithm is (ε, δ)-DP.

Bound on |F̂ |. We now prove the claimed upper bound on the size of F̂ . By

the guarantee of Lemma 4.6.10, each M̂i and V̂i obtained on line 4 satisfy |M̂i| ≤

144 · (2 · dd/αe+ 1)/(1− γ)3 and |V̂i| ≤ 12 · dlog1+α/d(2)e/(1− γ)2. This immediately

gives us

|F̃ | = |M̂ |·|Λ̂| =

(
d∏
i=1

|M̂i|

)
·

(
d∏
i=1

|V̂i|

)
≤
((

1728

(1− γ)5

)
·
⌈
log1+α/d(2)

⌉
· (2 · dd/αe+ 1)

)d
.

To get the bound on L = |F̂ | as stated in the lemma, we use the fact that log1+α/d(2) =

ln(2)
ln(1+α/d)

≤ 2 ln(2)
α/d

, where the inequality uses the fact that ln(1+x) ≥ x/2 for x ∈ [0, 1].

Accuracy and sample complexity. We now prove that the algorithm is a list-

decodable learner. Fix some g =
∏d

i=1N (µi, σ
2
i ) ∈ GdA and g′ ∈ Hγ(g). By our

choice of parameters and the guarantee of Lemma 4.6.10, a single run of algorithm

Univariate-Gaussian-Decoder on line 4 outputs lists M̂i and V̂i such that there

exist µ̂i ∈ M̂i and σ̂i ∈ V̂i satisfying |µ̂i − µi| ≤ ασi/d and |σ̂i − σi| ≤ ασi/d with
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probability at least 1− β/d so long as

n = Ω

(
d log(d/βδ)

(1− γ)2ε
+
d log(d/(1− γ)βδ)

√
log(d/(1− γ)δ)

(1− γ)2ε

)
.

By a union bound, we have with probability no less than 1 − β that for all i ∈ [d],

|µ̂i − µi| ≤ ασi/d and |σ̂i − σi| ≤ ασi/d. By a standard argument, this implies that

with probability at least 1 − β there is some ĝ ∈ F̂ such that dTV(ĝ, g) ≤ α (see

Proposition A.0.6 and Proposition A.0.3).

We can now put together Lemma 4.7.4 and Theorem 4.5.2 to immediately get

Theorem 4.7.3.
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Chapter 5

Conclusion

In thesis, we proved upper bounds on the amount of data required to privately

learn distributions from two fundamental classes. More specifically, we proved sample

complexity upper bounds for privately learning arbitrary high-dimensional Gaussians

and mixtures of axis-aligned Gaussians under the rigid constraint of differential pri-

vacy.

Many interesting and important questions remain open related to the results in

Chapters 3 and 4. We conclude this thesis by stating the most important ones.

Learning Gaussians. While our algorithms in Chapter 3 are statistically efficient,

they leave much to be desired in terms of computational efficiency. Thus, a major open

problem is whether there exists computationally efficient algorithms that achieves the

same or comparable sample complexity bounds as ours, even for the realizable setting.

Recall that it is known that the first and last terms in Theorem 3.6.6 are nearly

tight (there exist matching lower bounds up to log-factors). It is thus an interesting

question whether the second term in our bound is also nearly tight.
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Learning Mixtures of Gaussians. Many interesting open problems remain for

privately learning mixtures of Gaussians. The simplest problem is to understand

the exact sample complexity (up to constants) for learning mixtures of univariate

Gaussians under approximate differential privacy. We make the following conjecture

based on known bounds for privately learning a single Gaussian [KV18].

Conjecture 5.0.1 (Informal). The sample complexity of learning a mixture of k,

univariate Gaussians to within total variation distance α with high probability under

(ε, δ)-DP is

Θ

(
k

α2
+

k

αε
+

log(1/δ)

ε

)
.

Another wide open question is whether it is even possible to privately learn mix-

tures of high-dimensional Gaussians when each Gaussian can have an arbitrary co-

variance matrix. We believe it is possible, and make the following conjecture based

on our results in Chapter 3 for privately learning a single high-dimensional Gaussian

with no assumptions on the parameters.

Conjecture 5.0.2 (Informal). The sample complexity of learning a mixture of k, d-

dimensional Gaussians to with total variation distance α with high probability under

(ε, δ)-DP is

Θ

(
kd2

α2
+
kd2

αε
+

log(1/δ)

ε

)
.
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Appendix A

Useful Inequalities

Proposition A.0.1. Let X and Y be random variables taking values in the same set.

For any function f , we have dTV(f(X), f(Y )) ≤ dTV(X, Y ).

Proof. For any set A we have,

Pr[f(X) ∈ A]−Pr[f(Y ) ∈ A] = Pr[X ∈ f−1(A)]−Pr[Y ∈ f−1(A)] ≤ dTV(X, Y ).

Taking the supremum of the left hand side completes the proof.

Corollary A.0.2. Let X and Y be random variables taking values in the same set.

For any invertible function f , we have dTV(f(X), f(Y )) = dTV(X, Y ).

Proof. By Proposition A.0.1, dTV(f(X), f(Y )) ≤ dTV(X, Y ) and dTV(f−1(f(X)), f−1(f(Y ))) ≤

dTV(f(X), f(Y )).

Proposition A.0.3 (Lemma 3.3.7, [Rei89]). For i ∈ [d] let pi and qi be distributions
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over the same domain X . Then

dTV

(
d∏
i=1

pi,

d∏
i=1

qi

)
≤

d∑
i=1

dTV (pi, qi) .

Proposition A.0.4. Fix some ξ ∈ (0, 1). Let g be a distribution that satisfies

dTV(g,N (µ,Σ)) ≤ ξ. If X1, X2 ∼ g2, and Y = (X1−X2)/
√

2 ∼ q, then dTV(q,N (0,Σ)) ≤

2ξ.

Proof. Let X1, X2 ∼ P 2 and Z1, Z2 ∼ (N (µ,Σ))2. It follows from Proposition A.0.3

and our assumption on P that

dTV

(
(X1, X2), (Z1, Z2)

)
≤ 2dTV(P,N (µ,Σ)) ≤ 2ξ.

Let f(x, y) = (x − y)/
√

2 so that f(X1, X2) ∼ Q and f(Z1, Z2) ∼ N (0,Σ).

Using Corollary A.0.2 with the observation above gives us

dTV(Q,N (0,Σ)) = dTV

(
f(X1, X2), f(Z1, Z2)

)
= dTV

(
(X1, X2), (Z1, Z2)

)
≤ 2ξ.

Lemma A.0.5 (Chernoff bound; see [Ver18, Exercise 2.3.6]). Let X1, . . . , Xn be in-

dependent Bernoulli random variables. Let Sn =
∑n

i=1Xi and µ = Sn. Then for any

δ ∈ (0, 1] and some absolute constant c > 0

P[|Sn − µ| ≥ δµ] ≤ 2e−cµδ
2

.

Proposition A.0.6 (Lemma 2.11, [ABH+20]). For any µ, µ̃ ∈ R and σ, σ̃ > 0 with
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|µ̃ − µ| ≤ ασ and |σ̃ − σ| ≤ ασ where α ∈ [0, 2/3], the Gaussians N (µ, σ2) and

N (µ̃, σ̃2) statisfy

dTV

(
N (µ, σ2),N (µ̃, σ̃2)

)
≤ α.
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Appendix B

Omitted Results from Chapter 4

B.1 Omitted Results from Section 4.5

Proposition B.1.1. Let α ∈ (0, 1) and k ∈ N. Let g =
∑k

i=1wifi and g̃ =
∑k

i=1 w̃if̃i

be two mixture distributions that satisfy

1. ‖w − w̃‖∞ ≤ α/k; and

2. dTV(fi, f̃i) ≤ α for i ∈ [k] such that wi ≥ α/k.

Then dTV(g, g̃) ≤ 3α.
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Proof. Let N = {i ∈ [k] : wi ≥ α/k}. We have that

dTV(ĝ, g) =
1

2

∥∥∥∥∥
k∑
i=1

ŵif̂i −
k∑
i=1

wifi

∥∥∥∥∥
1

=
1

2

∥∥∥∥∥
k∑
i=1

ŵi(f̂i − fi) +
k∑
i=1

(ŵi − wi)fi

∥∥∥∥∥
1

≤ 1

2

∥∥∥∥∥
k∑
i=1

ŵi(f̂i − fi)

∥∥∥∥∥
1

+
1

2

∥∥∥∥∥
k∑
i=1

(ŵi − wi)fi

∥∥∥∥∥
1

≤ 1

2

∥∥∥∥∥∑
i 6∈N

ŵi(f̂i − fi)

∥∥∥∥∥
1

+
1

2

∥∥∥∥∥∑
i∈N

ŵi(f̂i − fi)

∥∥∥∥∥
1

+
1

2

∥∥∥∥∥
k∑
i=1

(ŵi − wi)fi

∥∥∥∥∥
1

≤ 1

2

∑
i 6∈N

ŵi

∥∥∥f̂i − fi∥∥∥
1

+
1

2

∑
i∈N

ŵi

∥∥∥f̂i − fi∥∥∥
1

+
1

2

k∑
i=1

|ŵi − wi|
∥∥∥f̂i∥∥∥

1

≤
∑
i 6∈N

α

k
· 1 +

∑
i∈N

ŵi · α +
k∑
i=1

α

k
· 1

≤ α + α + α = 3α.

Note that in the second-to-last inequality, we used that for i /∈ N , ŵi ≤ α/k and the

trivial bound ‖f̂i − fi‖1 ≤ 2 while for i ∈ N , we have ‖f̂i − fi‖1 ≤ α.

B.2 Omitted Results from Section 4.6

Proposition B.2.1. Fix some univariate Gaussian g = N (µ, σ2). Let σ̃ satisfy

σ ≤ σ̃ < 2σ. Partition R into disjoint bins {Bi}i∈N where Bi = ((i− 0.5)σ̃, (i+ 0.5)σ̃]

and let j = dµ/σ̃c, where d·c denotes rounding to the nearest integer. It follows that:

1. PX∼g[X ∈ Bj] ≥ 1/3,

2. µ ∈ [(j − 0.5)σ̃, (j + 0.5)σ̃].
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Proof. We first prove item 1.

PX∼g[X ∈ Bj] = Φ

(
(j + 0.5)σ̃

σ
− µ

σ

)
− Φ

(
(j − 0.5)σ̃

σ
− µ

σ

)
= Φ

(
jσ̃ − µ
σ

+
σ̃

2σ

)
− Φ

(
jσ̃ − µ
σ

− σ̃

2σ

)
:= f

(
jσ̃ − µ
σ

)
.

Notice that f(ξ) = Φ(ξ + σ̃/2σ) − Φ(ξ − σ̃/2σ) is decreasing with |ξ|. Furthermore,

by the definition of j we have,

∣∣∣∣jσ̃ − µσ

∣∣∣∣ =
σ̃

σ

∣∣∣j′ − µ

σ̃

∣∣∣
≤ σ̃

σ
· 1

2
=

σ̃

2σ
.

So,

PX∼g[X ∈ Bj] = f

(
jσ̃ − µ
σ

)
≥ f

(
σ̃

2σ

)
= Φ

(
σ̃

σ

)
− Φ(0)

≥ Φ(1)− Φ(0) ≥ 1/3,

where the second last inequality follows from the fact that σ̃/σ ≥ 1 together with the

monotonicity of the c.d.f. and the last inequality follows from a direct calculation.

We now prove the second claim that µ ∈ [(j−0.5)σ̃, (j+0.5)σ̃)]. As we saw above,
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it follows that

1

σ
|jσ̃ − µ| ≤ σ̃

2σ
=⇒ µ ∈ [(j − 0.5)σ̃, (j + 0.5)σ̃].

Proposition B.2.2. Fix some univariate Gaussian g = N (0, σ2). Partition R>0 into

disjoint bins {Bi}i∈Z where Bi = (2i, 2i+1] and let j ∈ N satisfy 2j < σ ≤ 2j+1. It

follows that:

PX∼g[|X| ∈ Bj] ≥
1

4
.

Proof. Since 2j < σ ≤ 2j+1, we can write σ = 2j+c for some c ∈ (0, 1]. Let x = 2−c

and notice x ∈ [1/2, 1). We have the following:

PX∼g[|X| ∈ Bj] = 2

(
Φ

(
2j+1

σ

)
− Φ

(
2j

σ

))
= 2

(
Φ
(
21−c)− Φ

(
2−c
))

= 2f(2−c), (B.2.1)

where we define f(x) = Φ(2x)−Φ(x). We now aim to lower bound f(x). By taking the

derivative of f(x) twice, we have that f ′′(x) =
√

(1/2π)(xexp(−x2/2)−8xexp(−2x2)).

By a simple calculation, we have that f ′′(x) ≤ 0 when x ∈ [0, 2 ln 8/3] ⊃ [1/2, 1), so

f(x) is concave when x ∈ [1/2, 1). This implies that f(x) ≥ min{f(1/2), f(1)} for

95



M.Sc. Thesis – I. Aden-Ali McMaster University – Computing and Software

any x ∈ [1/2, 1), so from Eq. (B.2.1) we have

PX∼g[|X| ∈ Bj] ≥ 2 min {f(1/2), f(1)}

= 2 min

{
Φ (1)− Φ

(
1

2

)
,Φ (2)− Φ (1)

}
>

1

4
,

where the last inequality follows from a direct calculation.

Proposition B.2.3. Fix g = N (µ, σ2) and g′ ∈ Hγ(g). Let Z = (X1 − X2)/
√

2

where X1, X2 ∼ g′ i.i.d. Let Y ∼ N (0, σ2). Then for any measurable S ⊆ R

P[|Z| ∈ S] ≥ (1− γ)2 ·P[|Y | ∈ S].

Proof. We prove this via a coupling argument. Since g′ ∈ Hγ(g) we have g′ =

(1− γ)g + γh for some distribution h.

Let Y1, Y2 ∼ g i.i.d. so that Y = Y1−Y2√
2
∼ N (0, σ2). Also, let H1, H2 ∼ h i.i.d.

Finally, let B1, B2 be independent Bernoulli random variables with parameter 1− γ,

i.e. Bi = 1 with probability 1− γ and Bi = 0 with probability γ.

Now let Xi = Yi · Bi + Hi · (1 − Bi) and note that Xi ∼ g′. If B1 = B2 = 1 and

|Y | ∈ S then certainly |Z| = |X1 −X2|/
√

2 ∈ S. Hence,

P[|Z| ∈ S] ≥ P[{B1 = 1} ∩ {B2 = 1} ∩ {|Y | ∈ S}] = (1− γ)2P[|Y | ∈ S],

where the last equality uses the fact that B1, B2, Y are mutually independent random

variables.
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